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Resumo

Título: Alguns problemas do tipo Ca�arelli-Kohn-Nirenberg
em RN .

Nesse trabalho, provamos alguns resultados referentes a problemas do tipo Ca�arelli-
Kohn-Nirenberg em RN .

No primeiro capítulo, provamos a existência de soluções não-triviais com não-linearidades
do tipo Berestycki-Lions usando o Teorema do Passo da Montanha, o Princípio Variacional
de Ekeland e um resultado de compacidade do tipo Strauss. Mais precisamente, estudaremos
a seguinte classe de problemas

−div
(
|x|−ap|∇u|p−2∇u

)
+ |x|−bp∗ |u|p−2u = |x|−bp∗h(u), em RN , (PM)

e
−div

(
|x|−ap|∇u|p−2∇u

)
= |x|−bp∗f(u), em RN , (ZM)

onde 1 < p < N , 0 ≤ a < N−p
p , a < b ≤ a+ 1, p∗ = p∗(a, b) = pN

N−dp e d = 1 + a− b.
No segundo capítulo, provamos a existência e concentração de soluções ground state

para uma classe de problemas subcrítico, crítico ou supercrítico do tipo Ca�arelli-Kohn-
Nirenberg usando o Teorema do Passo da Montanha e o método de Iteração de Moser. Mais
precisamente, estudaremos a seguinte classe de problemas quasilineares

−div
(
|x|−ap|∇u|p−2∇u

)
+ |x|−bp∗ [1 + µV (x)]|u|p−2u = |x|−bp∗ [f(u) + %|u|σ−2u], (Pµ,%,σ)

em RN , onde 1 < p < N , 0 ≤ a < N−p
p , a < b ≤ a+ 1, p∗ = p∗(a, b) = pN

N−dp , d = 1 + a− b
e µ > 0.

No terceiro capítulo, provamos as existências de soluções ground state positiva e nodal
minimizando o funcional na variedade de Nehari e em um subconjunto da variedade de
Nehari para a seguinte classe de problemas do tipo Ca�arelli-Kohn-Nirenberg

−div
(
|x|−ap|∇u|p−2∇u

)
+ |x|−bp∗V (x)|u|p−2u = |x|−bp∗K(x)f(u), em RN , (P)

onde 1 < p < N , 0 ≤ a < N−p
p , a < b ≤ a+ 1, p∗ = p∗(a, b) = pN

N−dp e d = 1 + a− b.

Palavras-chave: Problemas do tipo Ca�arelli-Kohn-Nirenberg; Problema do tipo
Berestycki Lions; Existência e concentração de soluções ground state; Existência de soluções
ground state positiva e nodal.



Abstract

Title: Some Ca�arelli-Kohn-Nirenberg's type problems in RN .
In this work we prove some results concerning to Ca�arelli-Kohn-Nirenberg's type

problems in RN .
In the �rst chapter we prove the existence of nontrivial solutions with Berestycki-Lions

type nonlinearities using the Mountain Pass Theorem, Ekeland's Variational Principle and a
Strauss-type compactness result. More precisely, we study the following classes of problems

−div
(
|x|−ap|∇u|p−2∇u

)
+ |x|−bp∗ |u|p−2u = |x|−bp∗h(u), in RN , (PM)

and
−div

(
|x|−ap|∇u|p−2∇u

)
= |x|−bp∗f(u), in RN , (ZM)

where 1 < p < N , 0 ≤ a < N−p
p , a < b ≤ a+ 1, p∗ = p∗(a, b) = pN

N−dp and d = 1 + a− b.
In the second chapter we prove the existence and concentration of ground state solutions

for a class of subcritical, critical or supercritical Ca�arelli-Kohn-Nirenberg type problems
using the Mountain Pass Theorem and the Moser Iteration method. More precisely, we are
going to study the following class of quasilinear problems

−div
(
|x|−ap|∇u|p−2∇u

)
+ |x|−bp∗ [1 + µV (x)]|u|p−2u = |x|−bp∗ [f(u) + %|u|σ−2u], (Pµ,%,σ)

in RN , where 1 < p < N , 0 ≤ a < N−p
p , a < b ≤ a+ 1, p∗ = p∗(a, b) = pN

N−dp , d = 1 + a− b
and µ > 0.

In the third chapter we prove the existence of a positive and a nodal ground state
solutions minimizing the functional in the Nehari manifold and in a subset of the Nehari
manifold to the following class of Ca�arelli-Kohn-Nirenberg type problems

−div
(
|x|−ap|∇u|p−2∇u

)
+ |x|−bp∗V (x)|u|p−2u = |x|−bp∗K(x)f(u), in RN , (P)

where 1 < p < N , 0 ≤ a < N−p
p , a < b ≤ a+ 1, p∗ = p∗(a, b) = pN

N−dp and d = 1 + a− b.

Key words: Ca�arelli-Kohn-Nirenberg's type problems; Berestycki Lions' type problems;
Existence and concentration of ground state solutions; Existence and concentration of
positive and nodal ground state solutions.
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Introduction

In this work we are going to study problems involving the operator div
(
|x|−ap|∇u|p−2∇u

)
.

Problems involving this kind of operator are known as Ca�arelli-Kohn-Nirenberg (CKN)
type problems because Ca�arelli, Kohn and Nirenberg proved an important interpolation
inequality in 1984 [19], which allows to work on this class of problems using a variational
approach. Ca�arelli-Kohn-Nirenberg type problems has some applications, for instance, in
�uid mechanics, in Newtonian �uids, in �ow through porous media, in glaciology (see [25])
and in problems of existence of stationary waves for anisotropic Schrödinger equation
(see [48]).

Elliptic di�erential equations with singular terms, such as CKN type problems, are an
important topic in applied mathematics that arises in various contexts such as physics,
engineering, biology, and geology. These equations describe phenomena where solutions are
smooth in some regions and exhibit singularities in others.

Elliptic equations are known to have smooth, continuous, and well-behaved solutions.
However, when singular terms are introduced into these equations, the smoothness of
solutions can be compromised.

A classic example of an elliptic equation with singular terms is the Poisson's equation
with a singularity at the origin given by

∆u =
1

|x|α
·

In this equation, the term |x|α represents a singularity at x = 0. The solution to this
equation will be smooth everywhere except at the origin where the singularity is located.

The Poisson's equation is one of some examples of elliptic di�erential equations with
singular terms that are essential for modeling physical and natural phenomena that exhibit
singularities, such as the charge distribution in electrostatics (Coulomb's law leads to a
singularity at 1

|x|), wave propagation in media with discontinuities, behavior of �uids in
complex geometries, elasticity problems in materials with fractures, and more.

Solving these equations is challenging due to the singularities, and advanced techniques
such as regularization are needed to obtain valid solutions. Additionally, elliptic di�erential
equations with singular terms are fundamental in the theory of distributions and the study
of Sobolev spaces.

In summary, elliptic di�erential equations with singular terms play a crucial role in
modeling a wide range of complex phenomena and are an important research topic in applied
mathematics and theoretical physics. Understanding these equations and their solutions is
fundamental for solving practical problems in various �elds of science and engineering. More
information on physical motivation for this class of problems can be seen in [29], [32], [41]
and [44].

CKN type problems are a kind of elliptic di�erential equations with singular term. Much
progress has been made for this class of problems. For example, in [46], in bounded domain,
the authors consider the existence of non-trivial solutions to semi-linear Brezis-Nirenberg
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type problems with Hardy potential and singular coe�cients. The study the eigenvalue
problem for this class of problems is in [47]. Results related to problems in the RN are
more frequent. The best embedding constants, the existence and nonexistence of extremal
functions, and their qualitative properties were studied in [19], [20] and [48]. Results of the
existence of a solution for problems in the RN require results of compactness. For example,
in [12] the authors put special conditions about the potentials in order to overcome the lack
of compactness and to show existence of solution for a problem with this class of problems.
A result of compactness involving radial functions was proved in [25] to show the existence
of radial solution for a problem with this class of operators.

In order to contribute to the advance of the understanding of the solutions of this class
of operators, we prove some results related to CKN type problems in RN . Before present
our results, we describe brie�y what we do in each chapter of this thesis. In the �rst chapter
we prove the existence of nontrivial solutions for a class of Ca�arelli-Kohn-Nirenberg type
problems adapting the ideas in [6] and [34]. Essentially, we obtain a (PS) sequence of radial
functions bounded in order to prove the existence of a solution and, in sequence, we prove
a Strauss-type estimate and a Strauss-type compactness result to show that the solution
obtained is nontrivial. Finally, we use the Principle Symmetric Criticality to show that
the critical point of the Euler-Langrange functional restricted to the subspace of the radial
functions is, in fact, a critical point of the Euler-Lagrange functional in the whole space.
The lemma 1.3.8 and the Principle Symmetric Criticality are proved in the Appendix A. In
the second chapter we prove the existence and concentration of ground state solutions for
subcritical, critical and supercritical problems, where we apply the Moser iteration method
for the supercritical problem. Also, we need to prove the existence of a ground-state solution
for an auxiliary problem in a bounded domain, which the proof is in Appendix B. In the
third chapter we prove the existence of a positive ground-state solution and a nodal ground-
state solution, which changes the sign exactly once. We prove some compactness results,
some properties of functions in the Nehari set, the existence of a positive ground-state
solution arguing by contradiction and the existence of a nodal ground-state solution for a
minimization argument.

In order to motivate the problem of the �rst chapter, let us consider a classical problem
in the literature. Using a constrained minimization method, Berestycki and Lions [15] show
existence of positive solution of C2 class of problem

−∆u = g(u) in RN (0.0.1)

with exponential decay and spherically symmetric, where g : R→ R is a continuous function
such that g(0) = 0. The authors assume that g is odd and satis�es the following conditions.

g1) −∞ < lim inf
s→0+

g(s)/s ≤ lim sup
s→0+

g(s)/s = −m ≤ 0;

g2) −∞ ≤ lim sup
s→∞

g(s)/s2∗−1 ≤ 0;

g3) There exists ξ > 0 such that G(ξ) =

∫ ξ

0
g(s)ds > 0.

The constraint cause a Lagrange multiplier to appear that can be removed using the special
homogeneity of the operator and a scale change in RN . They studied two cases: The Positive
mass, that is m > 0 and the Zero Mass case, that is m = 0.

Alves, Montenegro and Souto in [4] have studied the existence of ground state solution
for (0.0.1) with critical growth. By using the variational method, the authors in [4] give a
uni�ed approach in order to deal with subcritical and critical case. However, we would like
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to point out that a result due to Jeanjean and Tanaka [37], which say that the Mountain-
Pass value gives the least energy level, was the main tool used. A similar study was made
for the critical case in Zhang and Zou [51].

After this pioneering papers, many researches worked in this subject, extending or
improving in several ways, see, for instance, [1], [2], [6], [8], [16], [22], [23], [24], [35] and
references therein.

Motivated by this subject, we study in the �rst chapter the existence of nontrivial
solutions for the following classes of problems

−div
(
|x|−ap|∇u|p−2∇u

)
+ |x|−bp∗ |u|p−2u = |x|−bp∗h(u) in RN , (PM)

and
−div

(
|x|−ap|∇u|p−2∇u

)
= |x|−bp∗f(u) in RN , (ZM)

where 1 < p < N , 0 ≤ a < N−p
p , a < b ≤ a+ 1, p∗ = p∗(a, b) = pN

N−dp and d = 1 + a− b.

To present the main results of this chapter, it is necessary to put hypotheses about the
nonlinearities h and f . The hypotheses on the function h are the following:

h1) There exists q ∈ (p, p∗) such that

lim
|t|→0

h(t)

|t|q−1
= lim
|t|→∞

h(t)

|t|p−1
= 0;

h2) There exists ξ > 0 such that pH(ξ)− ξp > 0, where H(t) =

∫ t

0
h(r)dr.

Example 0.0.1. As example of function satisfying the previous hypothesis, we have:
Let α ∈ (p, p∗) and h(s) = |s|α−2s with α > q.

For the Zero Mass case we use D1,p
a (RN ) that is the completion of the C∞0 (RN ) with the

norm

‖u‖p =

∫
RN
|x|−ap|∇u|pdx,

where C∞0 (RN ) is the space of smooth functions with compact support.

For the Positive Mass case we use E0 = {u ∈ D1,p
a (RN ) :

∫
RN
|x|−bp∗ |u|pdx < ∞} with

the norm

‖u‖p0 =

∫
RN
|x|−ap|∇u|pdx+

∫
RN
|x|−bp∗ |u|pdx.

Let

Lsb(RN ) =

{
u : RN → R : u is measurable and

∫
RN
|x|−bp∗ |u|sdx <∞

}
with the norm de�ned as

|u|ss =

∫
RN
|x|−bp∗ |u|sdx.

The �rst main result is:

11



Theorem 0.0.2. Assume the conditions h1) and h2). Then, problem (PM) has a nontrivial
solution.

The �rst class of problems is called Positive Mass because g(t) = h(t) − t satis�es g1),
g2) and g3) for the case m > 0.

In the case (ZM), the hypotheses on the function f are the following:

f1)

lim
|t|→0

f(t)

|t|p∗−1
= lim
|t|→∞

f(t)

|t|p∗−1
= 0;

f2) There exists ξ > 0 such that F (ξ) > 0, where F (t) =

∫ t

0
f(r)dr.

Example 0.0.3. As example of function satisfying the previous hypothesis, we have:
Let p < q2 < p∗ < q1 and

f(s) =

{
|s|q1−2s, if |s| < 1,

|s|q2−2s, if |s| ≥ 1.

The second main result is:

Theorem 0.0.4. Assume the conditions f1) and f2). Then, problem (ZM) has a nontrivial
solution.

The second class of problems is called Zero Mass because f satis�es g1), g2) and g3) for
the case m = 0.

In this chapter we adapt some arguments that can be found in [34], which was used for
the �rst time by [36]. More precisely, we �nd a Palais-Smale sequence satisfying a property
related to Pohozaev identity. The same approach was used in [6] for a problem involving
the Grushin operator.

Finally, we would like to �nish this brief introduction about the chapter 1 listing below
what we believe to be the main contributions of our work.

(i) The proof of Theorems 0.0.2 and 0.0.4, we have found some di�culties to apply
variational methods. For example, for this class operator there is no a result like
Jeanjean and Tanaka [37], which say that the Mountain-Pass value gives the least
energy level of the Pohozaev manifold, which is crucial in order to use the arguments
due to Berestycki-Lions. We overcome this di�culty exploring the argument in [34].

(ii) The operator that we work is not well-behaved for translations. Thus, we have proved
a Strauss-type Lemma result for this class of problems (Lemma 1.3.3 and Lemma
1.3.4) in order to show that the critical points have found in the Theorems 0.0.2 and
0.0.4 are nontrivial inspired by the argument in [6].

In the second chapter, we are interested in a class of problems with the subcritical,
critical or supercritical growth on the nonlinearity. More precisely, we are going to study
the following class of quasilinear problems

−div
(
|x|−ap|∇u|p−2∇u

)
+ |x|−bp∗ [1 + µV (x)]|u|p−2u = |x|−bp∗ [f(u) + %|u|σ−2u] (Pµ,%,σ)
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in RN , where 1 < p < N , 0 ≤ a < N−p
p , a < b ≤ a+ 1, p∗ = p∗(a, b) = pN

N−dp , d = 1 + a− b
and µ > 0.

We are considering three cases. The �rst case is the subcritical growth on the
nonlinearity, i.e. when % = 0. In this case we have

−div
(
|x|−ap|∇u|p−2∇u

)
+ |x|−bp∗ [1 + µV (x)]|u|p−2u = |x|−bp∗f(u), (Pµ,0,σ)

in RN .

The second case is the critical growth on the nonlinearity, i.e. when % = 1 and σ = p∗.
In this case we have

−div
(
|x|−ap|∇u|p−2∇u

)
+|x|−bp∗ [1 + µV (x)]|u|p−2u

=|x|−bp∗f(u) + |x|−bp∗ |u|p∗−2u, in RN .
(Pµ,1,p∗)

The last case is the supercritical growth on the nonlinearity, i.e. when % = 1 and σ > p∗.
In this case we have

−div
(
|x|−ap|∇u|p−2∇u

)
+|x|−bp∗ [1 + µV (x)]|u|p−2u

=|x|−bp∗f(u) + |x|−bp∗ |u|σ−2u, in RN .
(Pµ,1,σ)

In order to state the main result, we need to introduce the hypotheses on the functions
V and f . The condition in V ∈ C(RN ,R) are the following:

(V1) The potential V is nonnegative, that is,

V (x) ≥ 0, for all x ∈ RN ;

(V2) The set Ω := int
{
x ∈ RN | V (x) = 0

}
is a non-empty bounded open set with smooth

boundary ∂Ω;

(V3) There exists V ∗ > 0, such that

meas
({
x ∈ RN : V (x) ≤ V ∗

})
<∞.

Potentials of type 1 + µV (x) satisfying (V1), (V2) and (V3) are called steep potential
well. Bartsch and Wang [11] considered a problem with steep potential well and Laplacian
operator. They proved existence and concentration of positive ground state solution uµ for
µ large. In particular, in [3] the authors have studied the case exponential critical and in [50]
the authors have studied the case polinomial critical of [11]. The existence of sign-changing
solutions well was studied in [42]. In the literature, we �nd a lot of papers where the authors
have considered elliptic problems with steep potential as [3], [9], [10], [11], [13], [26], [27], [39]
and [50].

In our work, the hypotheses on the nonlinearity f ∈ C(R,R) are the following:

(f1)

lim
|s|→0

f(s)

|s|p−1
= 0 and f(s) = 0, for all s ≤ 0;

(f2) There exists p < r < p∗ such that

lim
|s|→∞

f(s)

|s|r−1
= 0;

13



(f3) There exists θ ∈ (p, p∗), such that

0 < θF (s) ≤ f(s)s, for s 6= 0,

where F (s) =

∫ s

0
f(t)dt;

(f4) s 7→ f(s)

sp−1
is nondecreasing;

(f5) There exist τ ∈ (p, p∗) and λ∗ > 1 such that

f(s) ≥ λ|s|τ−1, for all s ≥ 0,

for a �xed λ > λ∗ and λ∗ will be �xed latter.

Example 0.0.5. As example of functions satisfying the previous hypothesis, we have:

• V (x) =

{
0, if |x| < 1,

|x|2 − 1, if |x| ≥ 1.

• f(s) =

{
0, if s ≤ 0,

λsτ−1, if s ≥ 0.

We use D1,p
a (RN ) that is the completion of the C∞0 (RN ) with the norm

‖u‖p =

∫
RN
|x|−ap|∇u|pdx,

where C∞0 (RN ) is the space of smooth functions with compact support.

We use E = {u ∈ D1,p
a (RN ) :

∫
RN
|x|−bp∗ [1 + µV (x)]|u|pdx <∞} with the norm

‖u‖pµ =

∫
RN
|x|−ap|∇u|pdx+

∫
RN
|x|−bp∗ [1 + µV (z)]|u|pdx.

We also use E0 = {u ∈ D1,p
a (RN ) :

∫
RN
|x|−bp∗ |u|pdx <∞} with the norm

‖u‖p0 =

∫
RN
|x|−ap|∇u|pdx+

∫
RN
|x|−bp∗ |u|pdx.

Let us denote by

Lsb(RN ) =

{
u : RN → R : u is measurable and

∫
RN
|x|−bp∗ |u|sdx <∞

}
.

Using an inequality established by Ca�arelli, Kohn, and Nirenberg given by [19](∫
RN
|x|−bp∗ |u|p∗dx

)p/p∗
≤ Sa,b

∫
RN
|x|−ap|∇u|pdx,

we conclude that the embedding D1,p
a (RN ) ↪→ Lp

∗

b (RN ) is continuous. Moreover, by
interpolation, we also conclude that E ↪→ Lsb(RN ) and E0 ↪→ Lsb(RN ) are continuous,
for s ∈ [p, p∗].

Here is the main result of this chapter.
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Theorem 0.0.6. Assume that (f1)− (f4) and (V1)− (V3) are satis�ed. Then,

(i) there exists µ∗ > 0 such that problem (Pµ,0,σ) has a ground state solution uµ ∈ E for
all µ > µ∗.

(ii) if the function f satis�es (f5) there exist positive numbers λ∗ and µ∗∗, such that
problem (Pµ,1,p∗) or problem (Pµ,1,σ) has a ground state solution uµ ∈ E for all µ > µ∗∗

and for all λ > λ∗.

(iii) Moreover, as µ → +∞, the sequence (uµ) converges in E to a ground state solution
u∞ ∈ E(Ω) of the problem{
−div

(
|x|−ap|∇u|p−2∇u

)
+ |x|−bp∗ |u|p−2u = |x|−bp∗f(u) + |x|−bp∗ |u|σ−2u, in Ω,

u = 0, on ∂Ω.

where E(Ω) is de�ned by E(Ω) = {u ∈ D1,p
0,a(Ω) :

∫
Ω
|x|−bp∗ |u|pdx <∞} with the norm

‖u‖p0,Ω =

∫
Ω
|x|−ap|∇u|pdx+

∫
Ω
|x|−bp∗ |u|pdx.

Our arguments were strongly in�uenced by [3], [9], [10], [11], [12], [13], [25], [26], [39]
and [50].

Finally, we would like to �nish this brief introduction about the chapter 2 listing below
what we believe to be the main contributions of our work.

(i) The results that can be found in this chapter are complementary to the results of [12]
and [25]. Furthermore, as far as we know, this is the �rst result of concentration of
solutions for this class of problems.

(ii) Since we work with singularity not only in the nonlinearity but also in the operator,
some estimates are more re�ned. See for example Theorem 2.2.3, which is a version
of Lions's Lemma for this class of problems.

(iii) Unlike the works [3], [9], [10], [11], [13], [26], [39] and [50], we are also considering the
supercritical case.

The third chapter deals mainly with the existence of a positive and a nodal solutions to
the following class of Ca�arelli-Kohn-Nirenberg type problems give by

−div
(
|x|−ap|∇u|p−2∇u

)
+ |x|−bp∗V (x)|u|p−2u = |x|−bp∗K(x)f(u) in RN , (P)

where 1 < p < N , 0 ≤ a < N−p
p , a < b ≤ a+ 1, p∗ = p∗(a, b) = pN

N−dp and d = 1 + a− b.

In order to �nd these solution we use D1,p
a (RN ) that is the completion of the C∞0 (RN )

with the norm

‖u‖p =

∫
RN
|x|−ap|∇u|pdx,

where C∞0 (RN ) is the space of smooth functions with compact support.

Let us denote by

Lsb(RN ) =

{
u : RN → R : u is measurable and

∫
RN
|x|−bp∗ |u|sdx <∞

}
15



and

L∞b (RN ) =

{
u : RN → R : u is measurable and sup

RN
ess|x|−bp∗ |u| <∞

}
.

On functions V,K : RN → R continuous on RN we assume the following general
conditions. We say that (V,K) ∈ K if

(V K0) V (x),K(x) > 0 for all x ∈ RN and K ∈ L∞b (RN ) ∩ L∞(RN ).

(V K1) If {An}n ⊂ RN is a sequence of Borel sets such that the Lebesgue measure meas(An) ≤
R, for all n ∈ N and some R > 0, then

lim
r→+∞

∫
An∩Bcr(0)

|x|−bp∗K(x) = 0, uniformly in n ∈ N.

Furthermore, one of the below conditions occurs

(V K2) K
V ∈ L

∞
b (RN ) ∩ L∞(RN )

or

(V K3) there exists m ∈ (p, p∗) such that

K(x)

V (x)
p∗−m
p∗−p

→ 0 as |x| → +∞.

Moreover, we assume the following growth conditions in the origin and at in�nity for the
C1 function f : R→ R:

(f1)

lim
|t|→0+

f(t)

|t|p−1
= 0 if (V K2) holds

or

(f̃1)

lim
|t|→0+

f(t)

|t|m−1
= 0 if (V K3) holds

with m ∈ (p, p∗) de�ned before in (V K3);

(f2) f has a �quasicritical growth� at in�nity, namely,

lim
|t|→+∞

f(t)

|t|p∗−1
= 0;

(f3) There exists θ ∈ (p, p∗) so that

0 < θF (t) = θ

∫ t

0
f(s)ds ≤ f(t)t, for all |t| > 0;

(f4) The map

t 7→ f(t)

|t|p−1
is strictly increasing for all |t| > 0,

or, equivalently,

f ′(t) > (p− 1)
f(t)

t
, for all t 6= 0.
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Example 0.0.7. As example of functions satisfying the previous hypothesis, we have:
Let

K(x) :=

{
|x|bp∗ , |x| ≤ 1,

e−bp
∗(|x|−1), |x| > 1,

V (x) = c > 0 for all x ∈ RN ,

and
f(t) = |t|q−1t, for all t ∈ R and where q ∈ (m, p∗).

The main results of this chapter are stated in the following theorem.

Theorem 0.0.8. Suppose that (V,K) ∈ K and f ∈ C1(R,R) veri�es (f1) or (f̃1) and
(f2) − (f4). Then, problem (P ) possesses a positive ground state weak solution. Moreover,
(P ) admits a nodal ground state weak solution, which has precisely two nodal domains.

Our arguments were strongly in�uenced by [12].
Finally, we would like to �nish this brief introduction about the chapter 3 listing below

what we believe to be the main contributions of our work.

(i) Comparing our results with [12], we observe that the singularities that appear in our
work are more general. Then, the estimates are more re�ned.

(ii) Furthermore, the positive solution was obtained by a technique di�erent from the
technique used in [12] . Our results complete the result that can be found in [12],
because we also show a solution that sign-changes. Apparently, this is the �rst result
of a nodal solution for this class of problems.

We �nish this introduction observing that the main results of this thesis as well as all
hypothesis from them will stated again in each chapter for a better comprehension of the
reader.
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Notation

In this work we use the following notation:
C∞0 (RN ) space of smooth functions with compact support;

D1,p
a (RN ) completion of the C∞0 (RN ) with the norm ‖ · ‖;

‖u‖p =

∫
RN

|x|−ap|∇u|pdx norm of the u in D1,p
a (RN );

E0 =

u ∈ D1,p
a (RN ) :

∫
RN

|x|−bp∗ |u|pdx <∞

 subspace of D1,p
a (RN );

‖u‖p0 =

∫
RN

|x|−ap|∇u|pdx+

∫
RN

|x|−bp∗ |u|pdx norm of the u in E0;

Lsb(RN ) =

u : RN → R :

∫
RN

|x|−bp∗ |u|sdx <∞

 Lebesgue space with weight;

|u|ss =

∫
RN

|x|−bp∗ |u|sdx norm of the u in Lsb(RN );

E0(BR(0)) E0 restrict to BR(0);

Lsb(BR(0)) Lsb(RN ) restrict to BR(0);

|u|ss,BR(0) =

∫
BR(0)

|x|−bp∗ |u|sdx norm of the u in Lsb(BR(0));

E0,rad subspace of radial functions of E0;

C∞0,rad(RN ) subspace of radial functions of C∞0 (RN );

D1,p
a,rad(R

N ) completion of C∞0,rad(RN ) under the norm ‖ · ‖;



E = {u ∈ D1,p
a (RN ) :

∫
RN

|x|−bp∗ [1 + µV (x)]|u|pdx <∞} subspace of D1,p
a (RN );

‖u‖pµ = ‖u‖p +

∫
RN

|x|−bp∗ [1 + µV (z)]|u|pdx norm of the u in E;

L∞b (RN ) =

{
u : RN → R : sup

RN
ess|x|−bp∗ |u| <∞

}
L∞ space with weight;

X =
{
u ∈ D1,p

a (RN ) :
∫
RN |x|

−bp∗V (x)|u|p dx <∞
}

subspace of D1,p
a (RN );

‖u‖pV =
∫
RN
|x|−ap|∇u|p dx+

∫
RN
|x|−bp∗V (x)|u|p dx norm of the u in X;

Lζb,K(RN ) =

u : RN → R :

∫
RN

|x|−bp∗K(x)|u|ζ dx <∞

 Lebesgue space with weight;

Ω bounded domain;

BR(0) open ball of radius R centered at 0;

meas(A) measure of a measurable set A.
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Chapter 1

Ca�arelli-Kohn-Nirenberg type

problems with Berestycki-Lions type

nonlinearities

In this chapter, we use a Mountain Pass Theorem and an Ekeland's Variational Principle
developed in [34] to �nd weak solutions in the subspace of radial functions once that there
is no a result like [37], which say that the Mountain-Pass value gives the least energy level
of the Pohozaev manifold, which is crucial in order to use the arguments due to Berestycki-
Lions. Next, we adapt an argument in [6] to show that the weak solutions are nontrivial
because the operator that we work is not well-behaved for translations, then the Critical
Symmetric Principle ensures that the weak solutions are solutions in the whole space.

1.1 Introduction

This chapter is focused to prove the existence of nontrivial solutions for the following classes
of problems

−div
(
|x|−ap|∇u|p−2∇u

)
+ |x|−bp∗ |u|p−2u = |x|−bp∗h(u) in RN , (PM)

and
−div

(
|x|−ap|∇u|p−2∇u

)
= |x|−bp∗f(u) in RN , (ZM)

where 1 < p < N , 0 ≤ a < N−p
p , a < b ≤ a+ 1, p∗ = p∗(a, b) = pN

N−dp and d = 1 + a− b.
Observe that the hypothesis that a ≥ 0 is important once that the estimate (1.3.6) fails

for a < 0.

To present the main results of this chapter, it is necessary to put hypotheses about the
nonlinearities h and f . The hypotheses on the function h in this case are the following:

h1) h is continuous and there exists q ∈ (p, p∗) such that

lim
|t|→0

h(t)

|t|q−1
= lim
|t|→∞

h(t)

|t|p−1
= 0;

h2) There exists ξ > 0 such that pH(ξ)− ξp > 0, where H(t) =

∫ t

0
h(r)dr.
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The �rst main result is:

Theorem 1.1.1. Assume the conditions h1) and h2). Then, problem (PM) has a nontrivial
solution.

The �rst class of problems is called Positive Mass because g(t) = h(t) − t satis�es g1),
g2) and g3) for the case m > 0.

For the problem (ZM), the hypotheses on the function f in this case are the following:

f1) f is continuous and

lim
|t|→0

f(t)

|t|p∗−1
= lim
|t|→∞

f(t)

|t|p∗−1
= 0;

f2) There exists ξ > 0 such that F (ξ) > 0, where F (t) =

∫ t

0
f(r)dr.

The second main result is:

Theorem 1.1.2. Assume the conditions f1) and f2). Then, problem (ZM) has a nontrivial
solution.

The second class of problems is called Zero Mass because f satis�es g1), g2) and g3) for
the case m = 0.

We would like to point out that in the proof of Theorems 0.0.2 and 0.0.4, we have found
some di�culties to apply variational methods. For example, for this class operator there is
no a result like Jeanjean and Tanaka [37], which say that the Mountain-Pass value gives the
least energy level of the Pohozaev manifold, which is crucial in order to use the arguments
due to Berestycki-Lions. Furthermore, it was necessary to prove a Straus-type Lemma result
for this class of problems (Lemma 1.3.3 and Lemma 1.3.4).

Finally, it is very important to say that in the literature, we �nd many papers where
the authors study problems involving the operator div

(
|x|−ap|∇u|p−2∇u

)
, see, for example,

Bastos, Miyagaki and Vieira [12], Catrina andWang [20], Chen [25], Xuan [46] and references
therein. In Chen [25] we can �nd a Straus-type Lemma result for this class of problems.
However, the Chen's result cannot be applied for our problem, because we have another
class of nonlinearities.

1.2 The variational framework

For the Zero Mass case we use D1,p
a (RN ) that is the completion of the C∞0 (RN ) with the

norm

‖u‖p =

∫
RN
|x|−ap|∇u|pdx,

where C∞0 (RN ) is the space of smooth functions with compact support.

For the Positive Mass case we use E0 = {u ∈ D1,p
a (RN ) :

∫
RN
|x|−bp∗ |u|pdx < ∞} with

the norm

‖u‖p0 =

∫
RN
|x|−ap|∇u|pdx+

∫
RN
|x|−bp∗ |u|pdx.

Let de�ne
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Lsb(RN ) =

{
u : RN → R : u is measurable and

∫
RN
|x|−bp∗ |u|sdx <∞

}
with the norm de�ned as

|u|ss =

∫
RN
|x|−bp∗ |u|sdx.

We also de�ne E0(BR(0)) = {u ∈ D1,p
a (BR(0)) :

∫
BR(0)

|x|−bp∗ |u|pdx <∞} and

Lsb(BR(0)) =

{
u : BR(0)→ R : u is measurable and

∫
BR(0)

|x|−bp∗ |u|sdx <∞

}
with the norm de�ned as

|u|ss,BR(0) =

∫
BR(0)

|x|−bp∗ |u|sdx.

Using an inequality established by Ca�arelli, Kohn, and Nirenberg given by [19](∫
RN
|x|−bp∗ |u|p∗dx

)p/p∗
≤ Sa,b

∫
RN
|x|−ap|∇u|pdx, (1.2.1)

we conclude that the embedding D1,p
a (RN ) ↪→ Lp

∗

b (RN ) is continuous. Moreover, by
interpolation, we also conclude that E0 ↪→ Lsb(RN ) is continuous, for s ∈ [p, p∗].

1.3 The existence of solution for Positive Mass Case

Consider the functional I : E0 → R associated given by

I(u) =
1

p
‖u‖p0 −

∫
RN
|x|−bp∗H(u)dx.

As a consequence of (h1), we obtain that I is well-de�ned and of C1 class. Moreover, note
that

I ′(u)φ =

∫
RN
|x|−ap|∇u|p−2∇u∇φdx+

∫
RN
|x|−bp∗ |u|p−2uφdx−

∫
RN
|x|−bp∗h(u)φdx,

for all φ ∈ E0. Then, the critical points of I are weak solutions of (PM).

We will restrict the functional I to the space

E0,rad = D1,p
a,rad(R

N ) ∩ Lpb,rad(R
N )

under the norm ‖ · ‖0 to overcome the loss of compactness of the space E0, then we will use
the Principle of Symmetric Criticality to obtain the solutions in the whole space.

Observe that the restriction is necessary only for prove the Lemma 1.3.3 and the Lemma
1.3.4 so that the arguments in this section can be done for the whole space with exception
of these lemmas, which are important to show the nontriviality of the weak solutions.

In order to use critical point theory, we �rstly derive results related to the Palais-Smale
compactness condition. We say that a sequence (un) is a Palais-Smale sequence for the
functional I if

I(un)→ c∗
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and
‖I ′(un)‖ → 0 in (E0,rad)

′,

where
c∗ = inf

η∈Γ
max
t∈[0,1]

I(η(t)) > 0

and
Γ := {η ∈ C([0, 1], E0,rad) : η(0) = 0, I(η(1)) < 0}.

If every Palais-Smale sequence of I has a strong convergent subsequence, then one says
that I satis�es the Palais-Smale condition ((PS) for short).

Lemma 1.3.1. The functional I satis�es the following conditions:
(i) There exist ρ1, ρ2 > 0 such that:

I(u) ≥ ρ2 with ‖u‖0 = ρ1;

(ii) There exists e ∈ Bc
ρ1(0) with I(e) < 0 and ‖e‖0 > ρ1.

Proof. i) First of all, observe that

Statement 1.3.2. ∫
RN
|x|−bp∗H(u)dx ≤ ε

p
‖u‖p0 +

C1Cε
q
‖u‖q0. (1.3.1)

Proof. For h1), given ε > 0, there exists Cε > 0 such that

h(t) ≤ ε|t|p−1 + Cε|t|q−1, ∀t ∈ R. (1.3.2)

Thus, (1.3.2) implies that∫
RN
|x|−bp∗H(u)dx ≤

∫
RN
|x|−bp∗ |H(u)|dx

≤
∫
RN

(∫ u

0
|x|−bp∗(ε|t|p−1 + Cε|t|q−1)dt

)
dx

=
ε

p

∫
RN
|x|−bp∗ |u|pdx+

Cε
q

∫
RN
|x|−bp∗ |u|qdx.

The de�nition of the norm implies that

ε

p

∫
RN
|x|−bp∗ |u|pdx+

Cε
q

∫
RN
|x|−bp∗ |u|qdx ≤ ε

p
‖u‖p0 +

Cε
q

∫
RN
|x|−bp∗ |u|qdx,

Finally, the continuous embedding E0 ↪→ Lqb(R
N ) gives

ε

p
‖u‖p0 +

Cε
q

∫
RN
|x|−bp∗ |u|qdx ≤ ε

p
‖u‖p0 +

C1Cε
q
‖u‖q0,

where C1 is the constant of the embedding, which proves (1.3.1).
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Using (1.3.1) and taking ε > 0 su�ciently small such that ‖u‖0 = ρ1, we obtain

I(u) ≥
(

1

p
− ε

p

)
‖u‖p0 −

C1Cε
q
‖u‖q0.

and the result follows because q > p.
ii) From h2), there exists φ ∈ C∞0 (RN ) such that∫

RN
|x|−bp∗

(
H(φ)− |φ|

p

p

)
dx > 0.

For t > 0, setting

ωt(x) = φ
(x
t

)
and deriving φ

(
x
t

)
, we have

I(ωt) =
1

p

∫
RN

∣∣∣x
t

∣∣∣−ap ∣∣∣∇(φ(x
t

))∣∣∣p dx+
1

p

∫
RN

∣∣∣x
t

∣∣∣−bp∗ ∣∣∣φ(x
t

)∣∣∣p dx− ∫
RN

∣∣∣x
t

∣∣∣−bp∗ H(φ(x/t))dx

=
1

p

∫
RN

∣∣∣x
t

∣∣∣−ap t−p ∣∣∣∇φ(x
t

)∣∣∣p dx− ∫
RN

∣∣∣x
t

∣∣∣−bp∗ (H(φ(x/t))− |φ(x/t)|p

p

)
dx,

doing the change of variables x 7→ y = x/t, we get

1

p

∫
RN

∣∣∣x
t

∣∣∣−ap t−p ∣∣∣∇φ(x
t

)∣∣∣p dx− ∫
RN

∣∣∣x
t

∣∣∣−bp∗ (H(φ(x/t))− |φ(x/t)|p

p

)
dx

=

∫
RN
|y|−apt−p|∇φ(y)|ptNdy −

∫
RN
|y|−bp∗

(
H(φ(y))− |φ(y)|p

p

)
tNdy

= tN−p
∫
RN
|y|−ap|∇φ(y)|pdy − tN

∫
RN
|y|−bp∗

(
H(φ(y))− |φ(y)|p

p

)
dy,

therefore

I(ωt) = tN−p
∫
RN
|y|−ap|∇φ(y)|pdy − tN

∫
RN
|y|−bp∗

(
H(φ(y))− |φ(y)|p

p

)
dy → −∞,

as t→∞. Then, there exists t̄ > 0 large such that e = ωt̄ satis�es I(e) < 0 and ‖e‖0 > ρ2.
Note also c∗ ≥ ρ2.

Next, we will prove the compactness result is crucial in our approach. We denote by
C∞0,rad(RN ) the collection of smooth radially symmetric functions with compact support, i.e,

C∞0,rad(RN ) = {u ∈ C∞0 (RN ) : u(x) = u(|x|), x ∈ RN}.

Let D1,p
a,rad(R

N ) be the completion of C∞0,rad(RN ) under the norm ‖ · ‖.
The next lemma is important to prove a compactness result, which will be used to show

the nontriviality of the critical point.

Lemma 1.3.3. [Radial Lemma in E0,rad] Let u ∈ E0,rad, then for almost every x ∈ RN\{0},
then there exists C = C(a, b, p) > 0 such that

|u(x)| ≤ C 1

|x|
(N−p)−ap∗

p

‖u‖0.
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Proof. Up to a standard density argument, we only consider u ∈ C∞0,rad(RN ). Denote by ωN
the volume of the unit sphere in RN . We have

−u(Υ) = u(∞)− u(Υ) =

∫ ∞
Υ

u′(s)ds.

Thus,

|u(Υ)| ≤
∫ ∞

Υ
|u′(s)|ds =

∫ ∞
Υ

s−a|u′(s)|s
N−1
p sas

1−N
p ds

From Hölder inequality, we get

|u(Υ)| ≤
(∫ ∞

Υ
s−ap|u′(s)|psN−1ds

)1/p(∫ ∞
Υ

s
ap
p−1 s

1−N
p−1 ds

)(p−1)/p

. (1.3.3)

Observe that

a <
N − p
p

<
N − 1

p
=⇒ ap+ 1−N < 0.

Thus, ∣∣∣∣∫ ∞
Υ

s
ap+1−N
p−1 ds

∣∣∣∣ =

∣∣∣∣∣∣s
ap+1−N
p−1

+1|∞Υ(
ap+p−N
p−1

)
∣∣∣∣∣∣

=

∣∣∣∣∣∣s
ap+p−N
p−1 |∞Υ(

ap+p−N
p−1

)
∣∣∣∣∣∣

=

∣∣∣∣( p− 1

ap+ p−N

)
(0−Υ

ap+p−N
p−1 )

∣∣∣∣
=

(
p− 1

N − p− ap

)
|Υ|

−(N−p−ap)
p−1

=

(
p− 1

N − p− ap

)
1

|Υ|
(N−p)−ap

p−1

.

If Υ = |x|, then ∣∣∣∣∫ ∞
Υ

s
ap+1−N
p−1 ds

∣∣∣∣ =

(
p− 1

N − p− ap

)
1

|x|
(N−p)−ap

p−1

. (1.3.4)

Proposition C.0.5 provides(∫ ∞
Υ

s−ap|u′(s)|psN−1ds

)1/p

≤
(∫ ∞

0
s−ap|u′(s)|psN−1ds

)1/p

= ω
− 1
p

N−1

(∫
RN
|x|−ap|∇u|pdx

)1/p

(1.3.5)

It follows from (1.3.3), (1.3.4) and (1.3.5) that

|u(Υ)| ≤ ω
−1
p

N

(
p− 1

N − p− ap

) p−1
p 1

|x|
(N−p)−ap

p

(∫
RN
|x|−ap|∇u|pdx

)1/p

.
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Now we present a compactness result.

Lemma 1.3.4. The embedding E0,rad ↪→ Lsb(RN ) is compact for all s ∈ (p, p∗).

Proof. Let (un) ⊂ E0,rad(RN ) be a bounded sequence and let C > 0 be such that

‖un‖0 ≤ C, ∀n ∈ N.

By Lemma 1.3.3 it follows that, for all n ∈ N,

|un(x)| ≤ CC 1

|x|
(N−p)−ap

p

, a.e. in RN\{0}.

Since s > 1, given ε > 0, there exists R > 0 such that, for all n ∈ N,

|un(x)|s ≤ ε

2CC
|un(x)| ∀x ∈ BR(0)c.

This implies that∫
BR(0)c

|x|−bp∗ |un|sdx ≤
ε

2CCRbp∗

∫
BR(0)c

|un|dx ≤
ε

2R
(N−p)−ap+bpp∗

p

≤ ε

2
, (1.3.6)

for all n ∈ N. Moreover, since E0(BR(0)) is compactly embedded into Lsb(BR(0)), there
exists u ∈ Lsb(BR(0)) such that, up to a subsequence un → u in Lsb(BR(0)), as n → ∞.
Then there exists n0 ∈ N such that∫

BR(0)
|x|−bp∗ |un − u|sdx <

ε

2
, ∀n ≥ n0. (1.3.7)

Let us de�ne u : RN → R as to be equal to u in BR(0) and equal to 0 in BR(0)c. Then, by
(1.3.6) and (1.3.7), it follows that∫

RN
|x|−bp∗ |un − u|sdx =

∫
BR(0)

|x|−bp∗ |un − u|sdx+

∫
BR(0)c

|x|−bp∗ |un|sdx < ε.

Then it is clear that un → u in Lsb(RN ), as n→∞.

Following [34] and [36], we consider an auxiliary functional Ĩ ∈ C1(R×E0,rad) given by

Ĩ(θ, u) =
exp((N − p)θ)

p

∫
RN
|x|−ap|∇u|pdx+

exp (Nθ)

p

∫
RN
|x|−bp∗ |u|pdx (1.3.8)

− exp (Nθ)

∫
RN
|x|−bp∗H(u)dx.

This functional will be important to show the boundedness of a (PS) sequence that we
will �nd.

Statement 1.3.5. The following properties hold, for all (θ, u) ∈ R× E0,rad,

Ĩ(0, u) = I(u),

Ĩ(θ, u) = I(u(x/ exp(θ))).
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Proof. A direct computation shows that Ĩ(0, u) = I(u).
We proceed to prove the second property. Doing a change of variables y 7→ x := exp(θ)y,

Ĩ(θ, u) =
exp((N − p)θ)

p

∫
RN
|y|−ap|∇u(y)|pdy +

exp(Nθ)

p

∫
RN
|y|−bp∗ |u(y)|pdy

− exp (Nθ)

∫
RN
|y|−bp∗H(u(y))dy

=
exp((N − p)θ)

p

∫
RN

∣∣∣∣ x

exp(θ)

∣∣∣∣−ap ∣∣∣∣∇u( x

exp(θ)

)∣∣∣∣p exp(−Nθ)dx

+
exp(Nθ)

p

∫
RN

∣∣∣∣ x

exp(θ)

∣∣∣∣−bp∗ ∣∣∣∣u( x

exp(θ)

)∣∣∣∣p exp(−Nθ)dx

− exp (Nθ)

∫
RN

∣∣∣∣ x

exp(θ)

∣∣∣∣−bp∗ H (u( x

exp(θ)

))
exp (−Nθ)dx.

Cancelling exp (Nθ) with exp(−Nθ), we get

exp((N − p)θ)
p

∫
RN

∣∣∣∣ x

exp(θ)

∣∣∣∣−ap ∣∣∣∣∇u( x

exp(θ)

)∣∣∣∣p exp(−Nθ)dx

+
exp(Nθ)

p

∫
RN

∣∣∣∣ x

exp(θ)

∣∣∣∣−bp∗ ∣∣∣∣u( x

exp(θ)

)∣∣∣∣p exp(−Nθ)dx

− exp (Nθ)

∫
RN

∣∣∣∣ x

exp(θ)

∣∣∣∣−bp∗ H (u( x

exp(θ)

))
exp (−Nθ)dx

=
exp(−pθ)

p

∫
RN

∣∣∣∣ x

exp(θ)

∣∣∣∣−ap ∣∣∣∣∇u( x

exp(θ)

)∣∣∣∣p dx
+

1

p

∫
RN

∣∣∣∣ x

exp(θ)

∣∣∣∣−bp∗ ∣∣∣∣u( x

exp(θ)

)∣∣∣∣p dx− ∫
RN

∣∣∣∣ x

exp(θ)

∣∣∣∣−bp∗ H (u( x

exp(θ)

))
dx.

Putting exp(−pθ) inside of the integral, we have

exp(−pθ)
p

∫
RN

∣∣∣∣ x

exp(θ)

∣∣∣∣−ap ∣∣∣∣∇u( x

exp(θ)

)∣∣∣∣p dx
+

1

p

∫
RN

∣∣∣∣ x

exp(θ)

∣∣∣∣−bp∗ ∣∣∣∣u( x

exp(θ)

)∣∣∣∣p dx− ∫
RN

∣∣∣∣ x

exp(θ)

∣∣∣∣−bp∗ H (u( x

exp(θ)

))
dx

=
1

p

∫
RN

∣∣∣∣ x

exp(θ)

∣∣∣∣−ap ∣∣∣∣ 1

exp(θ)
∇u
(

x

exp(θ)

)∣∣∣∣p dx
+

1

p

∫
RN

∣∣∣∣ x

exp(θ)

∣∣∣∣−bp∗ ∣∣∣∣u( x

exp(θ)

)∣∣∣∣p dx− ∫
RN

∣∣∣∣ x

exp(θ)

∣∣∣∣−bp∗ H (u( x

exp(θ)

))
dx.
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Finally, we use the chain rule to obtain

1

p

∫
RN

∣∣∣∣ x

exp(θ)

∣∣∣∣−ap ∣∣∣∣ 1

exp(θ)
∇u
(

x

exp(θ)

)∣∣∣∣p dx
+

1

p

∫
RN

∣∣∣∣ x

exp(θ)

∣∣∣∣−bp∗ ∣∣∣∣u( x

exp(θ)

)∣∣∣∣p dx− ∫
RN

∣∣∣∣ x

exp(θ)

∣∣∣∣−bp∗ H (u( x

exp(θ)

))
dx

=
1

p

∫
RN

∣∣∣∣ x

exp(θ)

∣∣∣∣−ap ∣∣∣∣∇(u( x

exp(θ)

))∣∣∣∣p dx
+

1

p

∫
RN

∣∣∣∣ x

exp(θ)

∣∣∣∣−bp∗ ∣∣∣∣u( x

exp(θ)

)∣∣∣∣p dx− ∫
RN

∣∣∣∣ x

exp(θ)

∣∣∣∣−bp∗ H (u( x

exp(θ)

))
dx

= I(u(x/ exp(θ)).

We equip a standard product norm

‖(θ, u)‖pR×E0,rad
= |θ|p + ‖u‖p0

to R× E0,rad. Now we prove that Ĩ satis�es the Mountain Pass geometry.

Lemma 1.3.6. The functional Ĩ satis�es the following conditions:
(i) There exist ρ1, ρ2 > 0 such that:

Ĩ(θ, u) ≥ ρ2 with ‖(θ, u)‖R×E0,rad
= ρ1;

(ii) There exists ẽ ∈ Bc
ρ1(0) with Ĩ(ẽ) < 0 and ‖ẽ‖R×E0,rad

> ρ1.

Proof. The item i) follows by using the same argument of Lemma 1.3.1 and for item ii) it
is su�cient to take ẽ = (0, e). Indeed,

Ĩ(θ, u) =
exp(Nθ)

p

(
‖u‖p +

∫
RN
|x|−bp∗ |u|pdx

)
+

exp(−pθ)
p

‖u‖p − exp (Nθ)

∫
RN
|x|−bp∗H(u)dx

=
exp(Nθ)

p
‖u‖p0 +

exp(−pθ)
p

‖u‖p − exp (Nθ)

∫
RN
|x|−bp∗H(u)dx.

Using that exp(−pθ)
p ‖u‖p ≥ 0, we have

exp(Nθ)

p
‖u‖p0 +

exp(−pθ)
p

‖u‖p − exp (Nθ)

∫
RN
|x|−bp∗H(u)dx

≥ exp(Nθ)

p
‖u‖p0 − exp (Nθ)

∫
RN
|x|−bp∗H(u)dx.

By (1.3.1) and the continuous embedding E0 ↪→ Lqb(R
N ),

exp(Nθ)

p
‖u‖p0 − exp (Nθ)

∫
RN
|x|−bp∗H(u)dx

≥ exp(Nθ)

p
‖u‖p0 − exp (Nθ)

ε

p
‖u‖p0 − exp (Nθ)

C1Cε
q
‖u‖q0

=
exp(Nθ)

p
‖u‖p0(1− ε)− exp (Nθ)

C1Cε
q
‖u‖q0,
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therefore

Ĩ(θ, u) ≥ exp(Nθ)

p
‖u‖p0(1− ε)− exp (Nθ)

C1Cε
q
‖u‖q0,

which proves item i) if ‖u‖0 = ε > 0 is su�ciently small because q > p. Finally,

Ĩ(ẽ) = Ĩ(0, e) = I(e),

which is negative as we saw in the Lemma 1.3.1 and ‖ẽ‖R×Erad = ‖e‖0 > ρ2.

In what follows, we de�ne the Mountain Pass level c̃∗ for Ĩ by

c̃∗ = inf
η∈Γ

max
t∈[0,1]

Ĩ(η(t)) > 0

and

Γ̃ := {η ∈ C([0, 1],R× Erad) : η(0) = 0, Ĩ(η(1)) < 0}.

Note that c̃∗ ≥ ρ2.

Lemma 1.3.7. The Mountain Pass levels of I and Ĩ coincide, namely c∗ = c̃∗ > 0.

Proof. Note that Γ ∼= {0} × Γ ⊂ Γ̃, which implies c̃∗ ≤ c∗. On the other hand, consider

γ̃ ∈ Γ̃ arbitrary. Then, for each t ∈ [0, 1], we have γ̃(t) = (θt, ut). De�ne γ(t) := ut

(
x

exp(θt)

)
.

From the Statement 1.3.5, we conclude Ĩ(γ̃t) = Ĩ(θt, ut) = I(ut(x/ exp(θt))) = I(γ(t)) for
each t ∈ [0, 1]. Hence γ ∈ Γ, where we derive c̃∗ ≥ c∗.

Lemma 1.3.8. Let ε > 0. Suppose that η̃ ∈ Γ̃ satis�es

max
t∈[0,1]

Ĩ(η̃) ≤ c∗ + ε,

then, there exists (θ, u) ∈ R× E0,rad such that

• distR×E0,rad
((θ, u), η̃([0, 1])) ≤ 2

√
ε;

• Ĩ(θ, u) ∈ [c∗ − ε, c∗ + ε];

• ‖DĨ(θ, u)‖R×E∗0,rad ≤ 2
√
ε.

Proof. See Appendix A.

The proof of the next lemma is a consequence of Lemma 1.3.8.

Lemma 1.3.9. There exists a sequence ((θn, un)) ⊂ R × E0,rad such that, as n → ∞, we
get

• θn → 0;

• Ĩ(θn, un)→ c∗;

• ∂θ Ĩ(θn, un)→ 0;

• ∂uĨ(θn, un)→ 0, strongly in E∗0,rad.
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Proof. For any j ∈ N, we can �nd a γj ∈ Γ such that

max
t∈[0,1]

I(γj(t)) ≤ c∗ +
1

j
·

Since c̃∗ = c∗ and γ̃j(t) = (0, γj(t)) ∈ Γ̃ satis�es maxt∈[0,1] Ĩ(γ̃j)(t) ≤ c̃∗+ 1
j , we can �nd

a (θj , uj) by the Lemma 1.3.8 such that

• distR×E0((θj , uj), γ̃j([0, 1])) ≤ 2/
√
j;

• Ĩ(θj , uj) ∈ [c∗ − 1/j, c∗ + 1/j];

• ‖DĨ(θj , uj)‖R×E∗0,rad ≤ 2/
√
j.

Since γ̃([0, 1]) ⊂ {0}×E0,rad, the �rst inequality implies |θj | ≤ 2/
√
j and, consequently,

θj → 0. The second item implies Ĩ(θj , uj)→ c∗ and the last item implies the last two items
of these lemma.

1.3.1 Proof of Theorem 0.0.2

By Lemma 1.3.9, there exists a sequence ((θn, un)) ⊂ R× E0,rad such that,

exp((N − p)θn)

p
‖un‖p +

exp(Nθn)

p

∫
RN
|x|−bp∗ |un|pdx

− exp (Nθn)

∫
RN
|x|−bp∗H(un)dx = c∗ + on(1); (1.3.9)

(N − p)exp((N − p)θn)

p
‖un‖p + N

exp(Nθn)

p

∫
RN
|x|−bp∗ |un|pdx

− N exp (Nθn)

∫
RN
|x|−bp∗H(un)dx = on(1);(1.3.10)

exp((N − p)θn)‖un‖p + exp(Nθn)

∫
RN
|x|−bp∗ |un|pdx

− exp (Nθn)

∫
RN
|x|−bp∗h(un)undx = on(1)‖un‖0. (1.3.11)

From (1.3.9) and (1.3.10), we have

exp((N − p)θn)‖un‖p = Nc∗ + on(1). (1.3.12)

Since θn → 0 and p < N , we have that (un) is bounded in D1,p
a,rad(R

N ) and it is bounded

in Lp
∗

b (RN ) by (1.2.1).
From h1), given ε = 1

2 , there exist δ > 0 and A > 1 such that

h(t)t ≤ 1

2
|t|p, for all t ∈ (0, δ),

h(t)t ≤ 1

2
|t|q < 1

2
|t|p∗ , for all t ∈ (A,∞)

and the continuity of h over the compact interval [δ, A] ensures that there exists C > 0
such that

30



h(t)t ≤ C|t|p∗ , for all t ∈ [δ, A].

The last three inequalities ensures that

h(t)t ≤ 1

2
|t|p + C|t|p∗ , for all t ∈ R.

Using the last inequality in (1.3.11), we get

exp((N − p)θn)‖un‖p + exp(Nθn)

∫
RN
|x|−bp∗ |un|pdx

= exp (Nθn)

∫
RN
|x|−bp∗h(un)undx+ on(1)‖un‖0

≤ exp (Nθn)

∫
RN
|x|−bp∗

(
1

2
|un|p + C|un|p

∗
)
dx+ on(1)‖un‖0

=
1

2
exp(Nθn)

∫
RN
|x|−bp∗ |un|pdx+ C exp(Nθn)

∫
RN
|x|−bp∗ |un|p

∗
dx+ on(1)‖un‖0,

i.e.,

exp((N − p)θn)‖un‖p + exp(Nθn)

∫
RN
|x|−bp∗ |un|pdx

≤ 1

2
exp(Nθn)

∫
RN
|x|−bp∗ |un|pdx+ C exp(Nθn)

∫
RN
|x|−bp∗ |un|p

∗
dx+ on(1)‖un‖0.

Observe that exp((N − p)θn)‖un‖p ≥ 0, then

1

2
exp(Nθn)

∫
RN
|x|−bp∗ |un|pdx ≤ C exp (Nθn)

∫
RN
|x|−bp∗ |un|p

∗
dx+ on(1)‖un‖0,

but ‖un‖p0 = ‖un‖p +
∫
RN |x|

−bp∗ |un|pdx and (un) is bounded in D1,p
a,rad(R

N ), it follows that

on(1)‖un‖p0 = on(1)‖un‖p + on(1)
∫
RN |x|

−bp∗ |un|pdx and lim
n→∞

on(1)‖un‖p = 0, then

(
1

2
exp(Nθn)− on(1))

∫
RN
|x|−bp∗ |un|pdx ≤ C exp (Nθn)

∫
RN
|x|−bp∗ |un|p

∗
dx,

then, up to a subsequence,

1

2
exp(Nθn)

∫
RN
|x|−bp∗ |un|pdx ≤ C exp (Nθn)

∫
RN
|x|−bp∗ |un|p

∗
dx,

which implies that (un) is bounded in E0,rad. Hence, there exists u ∈ E0,rad such that,
up to a subsequence, un ⇀ u in E0,rad. From Lemma 1.3.9, for all v ∈ E0,rad, we have
∂uĨ(θn, un)v = on(1), that is,

exp((N − p)θn)

∫
RN
|x|−ap|∇un|p−2∇un∇vdx

+ exp(Nθn)

∫
RN
|x|−bp∗ |un|p−2unvdx

− exp (Nθn)

∫
RN
|x|−bp∗h(un)vdx = on(1). (1.3.13)
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Since θn → 0 in R and from weak convergence, for all v ∈ Erad, Theorem D.0.6 provides∫
RN
|x|−ap|∇u|p−2∇u∇vdx+

∫
RN
|x|−bp∗ |u|p−2uvdx

−
∫
RN
|x|−bp∗h(u)vdx = 0,

showing that I ′(u)v = 0, for all v ∈ Erad, that is u is a critical point of I. We are going to
show that u is not trivial. Suppose that u = 0. From h1) there exist ε > 0 and Cε > 0 such
that ∣∣∣∣∫

RN
|x|−bp∗h(un)undx

∣∣∣∣ ≤ ε∫
RN
|x|−bp∗ |un|pdx+ Cε

∫
RN
|x|−bp∗ |un|qdx.

Since (un) is bounded in E0,rad and since E0,rad ↪→ Lqb(R
N ) is compact from Lemma 1.3.4,

there exist M > 0 such that∫
RN
|x|−bp∗ |un|pdx ≤M, for all n ∈ N

and ∫
RN
|x|−bp∗ |un|qdx = on(1).

Then

lim sup
n→∞

∣∣∣∣∫
RN
|x|−bp∗h(un)undx

∣∣∣∣ ≤ εM.

For ε > 0 small, we conclude that∫
RN
|x|−bp∗h(un)undx = on(1).

This limit combined together with the limit ∂uĨ(θn, un)un = on(1) allows to deduce
that un → 0 in E0,rad. Hence, Ĩ(θn, un)→ 0 = c∗, which is absurd. Thus, u is a nontrivial
critical point of I in E0,rad. Finally, u is a nontrivial critical point of I in E0 using the
Principle of Symmetric Criticality (see Theorem A.2.2 in the Appendix A) if we consider
the antipodal action of G = Z2 on E0.

1.4 The existence of solution for Zero Mass Case

Consider the functional I0 : D1,p
a (RN )→ R associated given by

I0(u) =
1

p
‖u‖p −

∫
RN
|x|−bp∗F (u)dx.

Note that I0 is well-de�ned and of C1 class. Moreover, note that

I ′0(u)φ =

∫
RN
|x|−ap|∇u|p−2∇u∇φdx−

∫
RN
|x|−bp∗f(u)φdx,

for all φ ∈ D1,p
a (RN ). Then, the critical points of I0 are weak solutions of (ZM) in D1,p

a (RN ).
We will restrict the functional I0 to the space D1,p

a,rad(R
N ) under the norm ‖·‖ to overcome

the loss of compactness of the space D1,p
a (RN ), then we will use the Principle of Symmetric

Criticality to obtain the solutions in the whole space.
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Observe that the restriction is necessary only for prove the Lemma 1.3.3 and the Lemma
1.3.4 so that the arguments in this section can be done for the whole space with exception
of these lemmas, which are important to show the nontriviality of the weak solutions.

We say that a sequence (un) is a Palais-Smale sequence for the functional I0 if

I0(un)→ c0

and
‖I ′0(un)‖ → 0 in (D1,p

a,rad(R
N ))′,

where
c0 = inf

η∈Γ
max
t∈[0,1]

I0(η(t)) > 0

and
Γ0 := {η ∈ C([0, 1],D1,p

a,rad(R
N )) : η(0) = 0, I0(η(1)) < 0}.

If every Palais-Smale sequence of I0 has a strong convergent subsequence, then one says
that I0 satis�es the Palais-Smale condition ((PS) for short).

Lemma 1.4.1. The functional I0 satis�es the following conditions:
(i) There exist ρ1, ρ2 > 0 such that:

I0(u) ≥ ρ2 with ‖u‖ = ρ1;

(ii) There exists e ∈ Bc
ρ1(0) with I0(e) < 0 and ‖e‖ > ρ1.

Proof. i) First of all, observe that

Statement 1.4.2.

∫
RN
|x|−bp∗F (u)dx ≤

εS
p∗
p

ab

p∗
‖u‖p∗ +

C2Cε
q
‖u‖q. (1.4.1)

Proof. For f1), given ε > 0, there exists Cε > 0 such that

f(t) ≤ ε|t|p∗−1 + Cε|t|q−1,∀t ∈ R. (1.4.2)

Thus, (1.4.2) implies that∫
RN
|x|−bp∗F (u)dx ≤

∫
RN
|x|−bp∗ |F (u)|dx

≤
∫
RN

(∫ u

0
|x|−bp∗(ε|t|p∗−1 + Cε|t|q−1)dt

)
dx

=
ε

p∗

∫
RN
|x|−bp∗ |u|p∗dx+

Cε
q

∫
RN
|x|−bp∗ |u|qdx,

then

ε

p

∫
RN
|x|−bp∗ |u|p∗dx+

Cε
q

∫
RN
|x|−bp∗ |u|qdx ≤ ε

p

(
Sa,b

∫
RN
|x|−ap|∇u|pdx

) p∗
p

+
Cε
q

∫
RN
|x|−bp∗ |u|qdx

=
ε

p
S
p∗
p

a,b‖u‖
p∗ +

Cε
q

∫
RN
|x|−bp∗ |u|qdx
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by Ca�arelli-Kohn-Nirenberg's inequality.
Finally, the continuous embedding E ↪→ Lqb(R

N ) gives

ε

p
S
p∗
p

a,b‖u‖
p∗ +

Cε
q

∫
RN
|x|−bp∗ |u|qdx ≤ ε

p
S
p∗
p

a,b‖u‖
p∗ +

C2Cε
q
‖u‖q,

where C2 is the constant of the embedding, which proves (1.4.1).

Using (1.4.1) and taking ε > 0 su�ciently small such that ‖u‖0 = ρ1, we obtain

I0(u) ≥ 1

p
‖u‖p − ε

p
S
p∗
p

a,b‖u‖
p∗ − C2Cε

q
‖u‖q

and the result follows because q ∈ (p, p∗).
ii) From f2), there exists φ ∈ C∞0 (RN ) such that∫

RN
|x|−bp∗F (φ)dx > 0.

For t > 0, setting

ωt(x) = φ
(x
t

)
and deriving φ

(
x
t

)
, we have

I0(ωt) =
1

p

∫
RN

∣∣∣x
t

∣∣∣−ap ∣∣∣∇(φ(x
t

))∣∣∣p dx− ∫
RN

∣∣∣x
t

∣∣∣−bp∗ F (φ(x/t))dx

=
1

p

∫
RN

∣∣∣x
t

∣∣∣−ap t−p ∣∣∣∇φ(x
t

)∣∣∣p dx− ∫
RN

∣∣∣x
t

∣∣∣−bp∗ F (φ(x/t))dx,

doing the change of variables x 7→ y = x/t, we get

1

p

∫
RN

∣∣∣x
t

∣∣∣−ap t−p ∣∣∣∇φ(x
t

)∣∣∣p dx− ∫
RN

∣∣∣x
t

∣∣∣−bp∗ F (φ(x/t))dx

=

∫
RN
|y|−apt−p|∇φ(y)|ptNdy −

∫
RN
|y|−bp∗F (φ(y))tNdy

= tN−p
∫
RN
|y|−ap|∇φ(y)|pdy − tN

∫
RN
|y|−bp∗F (φ(y))dy,

therefore

I0(ωt) = tN−p
∫
RN
|y|−ap|∇φ(y)|pdy − tN

∫
RN
|y|−bp∗F (φ(y))dy → −∞,

as t→∞. Then, there exists t̄ > 0 large such that e = ωt̄ satis�es I0(e) < 0 and ‖e‖ > ρ2.
Note also c∗ ≥ ρ2.

As in the previous section, we consider an auxiliary functional Ĩ0 ∈ C1(R ×
D1,p
a,rad(R

N ),R) given by

Ĩ0(θ, u) =
exp(N − p)θ

p
‖u‖p0 − exp (Nθ)

∫
RN
|x|−bp∗F (u)dx. (1.4.3)

This functional will be important to show the boundedness of a (PS) sequence that we
will �nd.
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Statement 1.4.3. The following properties hold, for all (θ, u) ∈ R×D1,p
a,rad(R

N ),

Ĩ0(0, u) = I0(u),

Ĩ0(θ, u) = I0(u(x/ exp(θ)).

Proof. The proof is the same of the Statement 1.3.5.

We equip a standard product norm

‖(θ, u)‖p
R×D1,p

a,rad(RN )
= |θ|p + ‖u‖p

to R×D1,p
a,rad(R

N ). Now we prove that Ĩ0 satis�es the Mountain Pass geometry.

Lemma 1.4.4. The functional Ĩ0 satis�es the following conditions:
(i) There exist ρ1, ρ2 > 0 such that:

Ĩ0(θ, u) ≥ ρ2 with ‖(θ, u)‖R×D1,p
a,rad(RN )

= ρ1;

(ii) There exists ẽ ∈ Bc
ρ1(0) with Ĩ(ẽ) < 0 and ‖ẽ‖R×D1,p

a,rad(RN )
> ρ1.

Proof. The item i) follows by using the same argument of Lemma 1.4.1 and for item ii) it
is su�cient to take ẽ = (0, e). Indeed,

Ĩ0(θ, u) =
exp((N − p)θ)

p
‖u‖p − exp (Nθ)

∫
RN
|x|−bp∗F (u)dx

By (1.4.1),

exp((N − p)θ)
p

‖u‖p − exp (Nθ)

∫
RN
|x|−bp∗F (u)dx

≥ exp(Nθ)

p
‖u‖p − exp (Nθ)

ε

p
S
p∗
p

a,b‖u‖
p∗ − exp (Nθ)

C2Cε
q
‖u‖q

=
exp(Nθ)

p
‖u‖p − εexp(Nθ)

p
S
p∗
p

a,b‖u‖
p∗ − exp (Nθ)

C2Cε
q
‖u‖q,

therefore

Ĩ0(θ, u) ≥ exp(Nθ)

p
‖u‖p − εexp(Nθ)

p
S
p∗
p

a,b‖u‖
p∗ − exp (Nθ)

C2Cε
q
‖u‖q,

which proves item i) if ‖u‖0 = ρ1 > 0 is su�ciently small because q ∈ (p, p∗). Finally,

Ĩ0(ẽ) = Ĩ0(0, e) = I0(e),

which is negative as we saw in the Lemma 1.4.1 and ‖ẽ‖R×D1,p
a,rad(RN )

= ‖e‖ > ρ1.

In what follows, we de�ne the Mountain Pass level c̃0 for Ĩ0 by

c̃0 = inf
η∈Γ

max
t∈[0,1]

Ĩ0(η(t)) > 0

and
Γ̃ := {η ∈ C([0, 1],R×D1,p

a,rad(R
N )) : η(0) = 0, Ĩ0(η(1)) < 0}.

Note that c̃0 ≥ ρ2.
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Lemma 1.4.5. The Mountain Pass levels of I0 and Ĩ0 coincide, namely c0 = c̃0.

Proof. Note that Γ ∼= {0} × Γ ⊂ Γ̃, which implies c̃∗ ≤ c∗. On the other hand, consider

γ̃ ∈ Γ̃ arbitrary. Then, for each t ∈ [0, 1], we have γ̃(t) = (θt, ut). De�ne γ(t) := ut

(
x

exp(θt)

)
.

From the Statement 1.4.3, we conclude Ĩ(γ̃t) = Ĩ(θt, ut) = I(ut(x/ exp(θt))) = I(γ(t)) for
each t ∈ [0, 1]. Hence γ ∈ Γ, where we derive c̃∗ ≥ c∗.

Lemma 1.4.6. Let ε > 0. Suppose that η̃ ∈ Γ̃0 satis�es

max
t∈[0,1]

Ĩ0(η̃) ≤ c0 + ε,

then, there exists (θ, u) ∈ R×D1,p
a,rad(R

N ) such that

• distR×D1,p
a,rad(RN )

((θ, u), η̃([0, 1])) ≤ 2
√
ε;

• Ĩ0(θ, u) ∈ [c0 − ε, c0 + ε];

• ‖DĨ0(θ, u)‖R×(D1,p
a,rad(RN )∗) ≤ 2

√
ε.

Proof. The proof is the same proof of the Lemma 1.3.8.

The proof of next lemma is the same proof of Lemma 1.3.9.

Lemma 1.4.7. There exists a sequence ((θn, un)) ⊂ R×D1,p
a,rad(R

N ) such that, as n→∞,
we get

• θn → 0;

• Ĩ0(θn, un)→ c0;

• ∂θ Ĩ0(θn, un)→ 0;

• ∂uĨ0(θn, un)→ 0, strongly in (D1,p
a,rad(R

N ))∗.

1.4.1 Proof of Theorem 0.0.4

By Lemma 1.4.7, there exists a sequence ((θn, un)) ⊂ R×D1,p
a,rad(R

N ) such that,

(exp(N − p)θn)

p
‖un‖p − exp (Nθn)

∫
RN
|x|−bp∗F (un)dx = c0 + on(1); (1.4.4)

(N − p)(exp(N − p)θn)

p
‖un‖p −N exp (Nθn)

∫
RN
|x|−bp∗F (un)dx = on(1); (1.4.5)

exp((N − p)θn)‖un‖p − exp (Nθn)

∫
RN
|x|−bp∗f(un)undx = on(1)‖un‖. (1.4.6)

From (1.4.4) and (1.4.5) and since N > p, we have

(exp(N − p)θn)‖un‖p = Nc0 + on(1). (1.4.7)

Since θn → 0, we have that (un) is bounded in D1,p
a,rad(R

N ) and Lp
∗

b (RN ).
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Hence, there exists u ∈ D1,p
a,rad(R

N ) such that, up to a subsequence, un ⇀ u in

D1,p
a,rad(R

N ). From Lemma 1.4.7, for all v ∈ D1,p
a,rad(R

N ), we have ∂uĨ0(θn, un)v = on(1),
that is,

exp((N − p)θn)

∫
RN

|x|−ap|∇un|p−2∇unvdx− exp (Nθn)

∫
RN

|x|−bp∗f(un)vdx = on(1).(1.4.8)

Since θn → 0 in R and from weak convergence, for all v ∈ D1,p
a,rad(R

N ), Theorem D.0.7
provides ∫

RN
|x|−ap|∇u|p−2∇u∇vdx−

∫
RN
|x|−bp∗f(u)vdx = 0,

showing that I ′0(u)v = 0, for all v ∈ D1,p
a,rad(R

N ), that is u is a critical point of I0. We are
going to show that u is not trivial. Suppose that u = 0. From f1) there exist ε > 0 and
Cε > 0 such that∣∣∣∣∫

RN
|x|−bp∗f(un)undx

∣∣∣∣ ≤ ε∫
RN
|x|−bp∗ |un|pdx+ Cε

∫
RN
|x|−bp∗ |un|qdx.

Since (un) is bounded in Lp
∗

b (RN ) and since D1,p
a,rad(R

N ) ↪→ Lqb(R
N ) is compact from Lemma

1.3.4, there exist M > 0 such that∫
RN
|x|−bp∗ |un|p

∗
dx ≤M, for all n ∈ N

and ∫
RN
|x|−bp∗ |un|qdx = on(1).

Then

lim sup
n→∞

∣∣∣∣∫
RN
|x|−bp∗f(un)undx

∣∣∣∣ ≤ εM.

For ε > 0 small, we conclude that∫
RN
|x|−bp∗f(un)undx = on(1).

This limit combined together with the limit ∂uĨ0(θn, un)un = on(1) allows to deduce
that un → 0 in D1,p

a,rad(R
N ). Hence, Ĩ0(θn, un) → 0 = c0, which is absurd. Thus, u is a

nontrivial critical point of I0 in D1,p
a,rad(R

N ). Finally, u is a nontrivial critical point of I0 in

D1,p
a (RN ) using the Principle of Symmetric Criticality (see Theorem A.2.2 in the Appendix

A) if we consider the antipodal action of G = Z2 on D1,p
a (RN ).
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Chapter 2

Existence and concentration of

ground state solutions for a class of

subcritical, critical or supercritical

Ca�arelli-Kohn-Nirenberg type

problems

In this chapter, we use the Mountain Pass Theorem to prove the existence of ground state
solutions for a class of problems with subcritical, critical and supercritical growth. In
the critical case, we use an auxiliary problem and the hypothesis (f5) to show that the
mountain pass level is below to a speci�c constant, which allow us to prove the existence
of ground state solution. In the supercritical case, we de�ne a truncation function and we
prove the existence of a ground state solution for an auxiliary problem de�ned with respect
to this truncation, then we use Moser's Iteration Method to show that the norm of the
solution of the auxiliary problem is below to 1, then this solution will be a solution for
the problem with supercritical growth. Also, we prove a result about concentration. This
chapter is based on [27]. The contributions of this chapter are the proof of a concentration
result, the existence of a ground state solution for the supercritical problem for a class of
Ca�arelli-Kohn-Nirenberg type problems and the proof of some estimates more re�ned than
the estimates in the work that we based on (see Theorem 2.2.3).

2.1 Introduction

This chapter is focused to prove existence and concentration of ground state solutions for a
class of subcritical, critical or supercritical Ca�arelli-Kohn-Nirenberg type problems. More
precisely, we are going to study the following class of quasilinear problems

−div
(
|x|−ap|∇u|p−2∇u

)
+ |x|−bp∗ [1 + µV (x)]|u|p−2u = |x|−bp∗ [f(u) + %|u|σ−2u], (Pµ,%,σ)

in RN , where 1 < p < N , 0 ≤ a < N−p
p , a < b ≤ a+ 1, p∗ = p∗(a, b) = pN

N−dp , d = 1 + a− b
and µ > 0. We are considering three cases. The �rst case is the subcritical growth on the
nonlinearity, i.e. when % = 0. In this case we have

− div
(
|x|−ap|∇u|p−2∇u

)
+ |x|−bp∗ [1 + µV (x)]|u|p−2u = |x|−bp∗f(u), (Pµ,0,σ)

in RN .
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The second case is the critical growth on the nonlinearity, i.e. when % = 1 and σ = p∗.
In this case we have

−div
(
|x|−ap|∇u|p−2∇u

)
+|x|−bp∗ [1 + µV (x)]|u|p−2u

=|x|−bp∗f(u) + |x|−bp∗ |u|p∗−2u, in RN .
(Pµ,1,p∗)

The last case is the supercritical growth on the nonlinearity, i.e. when % = 1 and σ > p∗.
In this case we have

−div
(
|x|−ap|∇u|p−2∇u

)
+|x|−bp∗ [1 + µV (x)]|u|p−2u

=|x|−bp∗f(u) + |x|−bp∗ |u|σ−2u, in RN .
(Pµ,1,σ)

In order to state the main result, we need to introduce the hypotheses on the functions
V and f . The condition in V ∈ C(RN ,R) are the following:

(V1) The potential V is nonnegative, that is,

V (x) ≥ 0, for all x ∈ RN ;

(V2) The set Ω := int
{
x ∈ RN | V (x) = 0

}
is a non-empty bounded open set with smooth

boundary ∂Ω;

(V3) There exists V ∗ > 0, such that

meas
({
x ∈ RN : V (x) ≤ V ∗

})
<∞.

The hypotheses on the nonlinearity f ∈ C(R,R) are the following:.

(f1)

lim
|s|→0

f(s)

|s|p−1
= 0 and f(s) = 0, for all s ≤ 0;

(f2) There exists p < r < p∗ such that

lim
|s|→∞

f(s)

|s|r−1
= 0;

(f3) There exists θ ∈ (p, p∗), such that

0 < θF (s) ≤ f(s)s, for s 6= 0,

where F (s) =

∫ s

0
f(t)dt;

(f4) s 7→ f(s)

sp−1
is increasing;

(f5) There exist τ ∈ (p, p∗) and λ∗ > 1 such that

f(s) ≥ λ|s|τ−1, for all s ≥ 0,

for a �xed λ > λ∗ and λ∗ will be �xed latter.
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We use D1,p
a (RN ) that is the completion of the C∞0 (RN ) with the norm

‖u‖p =

∫
RN
|x|−ap|∇u|pdx,

where C∞0 (RN ) is the space of smooth functions with compact support.

We use E = {u ∈ D1,p
a (RN ) :

∫
RN
|x|−bp∗ [1 + µV (x)]|u|pdx <∞} with the norm

‖u‖pµ =

∫
RN
|x|−ap|∇u|pdx+

∫
RN
|x|−bp∗ [1 + µV (z)]|u|pdx.

We also use E0 = {u ∈ D1,p
a (RN ) :

∫
RN
|x|−bp∗ |u|pdx <∞} with the norm

‖u‖p0 =

∫
RN
|x|−ap|∇u|pdx+

∫
RN
|x|−bp∗ |u|pdx.

Let us denote by

Lsb(RN ) =

{
u : RN → R : u is measurable and

∫
RN
|x|−bp∗ |u|sdx <∞

}
.

Using an inequality established by Ca�arelli, Kohn, and Nirenberg given by [19](∫
RN
|x|−bp∗ |u|p∗dx

)p/p∗
≤ Sa,b

∫
RN
|x|−ap|∇u|pdx,

we conclude that the embedding D1,p
a (RN ) ↪→ Lp

∗

b (RN ) is continuous. Moreover, by
interpolation, we also conclude that E ↪→ Lsb(RN ) and E0 ↪→ Lsb(RN ) are continuous,
for s ∈ [p, p∗].

Here is the main result of this chapter.

Theorem 2.1.1. Assume that (f1)− (f4) and (V1)− (V3) are satis�ed. Then,

(i) there exists µ∗ > 0 such that problem (Pµ,0,σ) has a ground state solution uµ ∈ E for
all µ > µ∗.

(ii) if the function f satis�es (f5) there exist positive numbers λ∗ and µ∗∗, such that
problem (Pµ,1,p∗) or problem (Pµ,1,σ) has a ground state solution uµ ∈ E for all µ > µ∗∗

and for all λ > λ∗.

(iii) Moreover, as µ → +∞, the sequence (uµ) converges in E to a ground state solution
u∞ ∈ E(Ω) of the problem{
−div

(
|x|−ap|∇u|p−2∇u

)
+ |x|−bp∗ |u|p−2u = |x|−bp∗f(u) + |x|−bp∗ |u|σ−2u, in Ω,

u = 0, on ∂Ω.
(P0,1,σ)

where E(Ω) is de�ned by E(Ω) = {u ∈ D1,p
0,a(Ω) :

∫
Ω
|x|−bp∗ |u|pdx <∞} with the norm

‖u‖p0,Ω =

∫
Ω
|x|−ap|∇u|pdx+

∫
Ω
|x|−bp∗ |u|pdx.
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2.2 Variational framework and some preliminary results for
the subcritical (% = 0) and for the critical case (% = 1) and
(σ = p∗)

In this section, we are considering the cases % = 0 or % = 1 with σ = p∗. More speci�cally,{
−div

(
|x|−ap|∇u|p−2∇u

)
+|x|−bp∗ [1 + µV (x)]|u|p−2u = |x|−bp∗f(u) + %|x|−bp∗ |u|p∗−2u,

u ∈ E.
(Pµ,%,p∗)

Since the approach is variational, let us consider the energy functional associated Iµ,% : E →
R given by

Iµ,%(u) :=
1

p

∫
RN

|x|−ap|∇u|pdx+
1

p

∫
RN

|x|−bp∗ [1 + µV (x)]|u|pdx (2.2.1)

−
∫
RN

|x|−bp∗F (u)dx− %

p∗

∫
RN

|x|−bp∗ |u|p∗dx.

By standard arguments, it is possible to prove that Iµ,% ∈ C1(E,R) and each critical point
of Iµ,% is a weak solution of our problem.

Note that (f1) and (f2) imply that for any given ξ > 0, there is a constant Cξ > 0, such
that

|f(s)| ≤ ξ|s|p−1 + Cξ|s|r−1, for all s ∈ R. (2.2.2)

Moreover, by (f3), for s > 1 there exists a positive constant D1 such that

F (s) ≥ D1|s|θ, for all s > 1. (2.2.3)

To use the Mountain Pass Theorem [7], we de�ne the Palais-Smale compactness condition.
We say that a sequence (un) ⊂ E is a Palais-Smale sequence at level cµ,% for the functional
Iµ,% if

Iµ,%(un)→ cµ,%

and
‖I ′µ,%(un)‖ → 0, in (E)′,

where
cµ,% = inf

η∈Γ
max
t∈[0,1]

Iµ,%(η(t)) > 0 (2.2.4)

and
Γ := {η ∈ C([0, 1], E) : η(0) = 0, Iµ,%(η(1)) < 0}.

If every Palais-Smale sequence of Iµ,% has a strong convergent subsequence, then one
says that Iµ,% satis�es the Palais-Smale condition ((PS) for short). Now let us show that
the functional Iµ,% has the mountain pass geometry.

We say that a solution uµ,% ∈ E \ {0} of (Pµ,%,p∗) is a ground solution if
Iµ,%(uµ,%) = inf

Nµ
Iµ,%(u), where Nµ,% is the Nehari manifold associated to Iµ,% given by

Nµ,% := {u ∈ E : u 6= 0 : Iµ,%
′(u)u = 0}.

Lemma 2.2.1. The functional Iµ,% : E → R and the constant cµ,% satisfy the following
conditions:
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(i) There are positive numbers α and ρ, such that

Iµ,%(u) ≥ α if ‖u‖µ = ρ;

(ii) For any positive function w ∈ C∞0 (Ω), we have

lim
t→∞

Iµ,%(tw) = −∞;

(iii) There exists a positive constant Υ1 which does not depend of µ, such that cµ,% ≤ Υ1.

Proof. Using (2.2.2), we have

Iµ,%(u) ≥ 1

p
‖u‖pµ −

ξ

p

∫
RN

|x|−bp∗ |u|pdx−
Cξ
r

∫
RN

|x|−bp∗ |u|rdx− %

p∗

∫
RN

|x|−bp∗ |u|p∗dx.

Therefore, using the Sobolev embeddings and taking ξ and ‖u‖µ su�ciently small, there are
constants C1, C2 > 0 such that

Iµ,%(u) ≥ C1‖u‖pµ − C2‖u‖rµ − C3%‖u‖p
∗
µ

and the item (i) is proved.
Now we are going to show that the item (ii) holds. Since for all x ∈ Ω, we have

µV (x) = 0, for a positive function w ∈ C∞0 (Ω) with ‖w‖∞ > 1 and t > 0, we can use (2.2.3)
to obtain

Iµ,%(tw) ≤ tp

p
‖w‖pp −D1t

θ

∫
RN

|x|−bp∗ |w|θdx.

Since p < θ, this completes the proof of the item (ii). The proof of the item (iii) follows by
the last inequality and the item (i) because

0 < cµ,% ≤ max
t≥0

 tp
p
‖w‖pp −D1t

θ

∫
RN

|x|−bp∗ |w|θdx

 := Υ1,

where D1 was de�ned in (2.2.3).

From [49, Lemma 1.15] and Lemma 2.2.1 ensures that there exists a sequence (PS)cµ,%
for the functional Iµ,%, where cµ,% is set in (2.2.4).

Lemma 2.2.2. Let (un) be a (PS)cµ,% sequence of the functional Iµ,%. Then the following
statements hold.

(i) The sequence (un) is bounded in E.

(ii) There exists a positive constant Υ2, which does not depend on µ, such that

lim sup
µ→∞

‖un‖µ ≤ Υ2.

Consequently, lim inf
µ→+∞

cµ,% > 0.
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Proof. Since (un) is a (PS)cµ,% sequence of the functional Iµ,%, then, by (f3),

on(1) + cµ,% + on(1)‖un‖µ =Iµ,%(un)− 1

θ
I ′µ,%(un)un

=

(
1

p
− 1

θ

)
‖un‖pµ +

1

θ

∫
RN

|x|−bp∗ [f(un)(un)− θF (un)] dx

+ %

(
1

θ
− 1

p∗

) ∫
RN

|x|−bp∗ |un|p
∗
dx

≥
(

1

p
− 1

θ

)
‖un‖pµ.

(2.2.5)

Then, we can concluded that (un) is bounded in E.

Let us show that the item (ii) holds. Using the item (i) we can consider
Rµ,% := lim sup

n→∞
‖un‖µ. We suppose, by contradiction, that Rµ,% → +∞ when µ → +∞.

Hence for µ large enough we can guarantee that there exists mµ,% ∈ N such that

‖umµ,%‖µ ≥
Rµ,%

2
→ +∞, when µ→ +∞.

Therefore, using (2.2.5) and the item (iii) of Proposition 2.2.1, we conclude that

Υ1

‖umµ,%‖µ
+ oµ(1) ≥

(
1

p
− 1

θ

)
‖umµ,%‖p−1

µ .

This absurd shows the �rst part of item (ii). To conclude the item (ii) let us suppose by
contradiction that lim inf

µ→+∞
cµ,% = 0. Then using the inequality (2.2.5), we see that

on(1) + on(1)‖un‖µ ≥
(

1

p
− 1

θ

)
‖un‖pµ − cµ,ρ.

Taking lim supµ→+∞,

on(1) + on(1) lim sup
µ→+∞

‖un‖µ ≥
(

1

p
− 1

θ

)
lim sup
µ→+∞

‖un‖pµ + lim sup
µ→+∞

(−cµ,ρ),

then

on(1) + on(1) lim sup
µ→+∞

‖un‖µ ≥
(

1

p
− 1

θ

)
lim sup
µ→+∞

‖un‖pµ − lim inf
µ→+∞

cµ,ρ.

By hypothesis,

on(1) + on(1) lim sup
µ→+∞

‖un‖µ ≥
(

1

p
− 1

θ

)
lim sup
µ→+∞

‖un‖pµ − oµ(1).

lim sup
µ→∞

‖un‖µ ≤ Υ2 provides

on(1) + on(1)Υ2 ≥
(

1

p
− 1

θ

)
lim sup
µ→+∞

‖un‖pµ − oµ(1),

i.e.,

‖un‖µ = on(1) + oµ(1). (2.2.6)
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Since I ′µ,%(un)un = on(1), we get

‖un‖pµ =

∫
RN

|x|−bp∗f(un)undx+ %

∫
RN

|x|−bp∗ |un|p
∗
dx+ on(1).

Using Sobolev embedding and (2.2.2) there exists a constant C > 0 which is independent
of µ such that

on(1) + (1− ξC) ‖un‖pµ ≤ CξC
∫
RN

|x|−bp∗ |un|r dx+ %

∫
RN

|x|−bp∗ |un|p
∗
dx ≤ C[‖un‖rµ + %‖un‖p

∗
µ ].

Hence
(1− ξC) + on(1) ≤ C

[
‖un‖r−pµ + %‖un‖p

∗−p
µ

]
,

which is a contradiction with (2.2.6). Then, we conclude that lim inf
µ→+∞

cµ,% > 0.

The next result is important in order to show that the solutions of our problem is not
trivial.

Theorem 2.2.3. [Lions' Lemma in D1,p
a (RN )] Suppose there exist R > 0, p ≤ q < p∗ and

a bounded sequence (un) in E such that

sup
y∈RN

∫
BR(y)

|x|−bp∗ |un|qdx→ 0, as n→∞. (2.2.7)

Then un → 0 in Lsb(RN ) for all s ∈ (p, p∗).

Proof. Let q < r < p∗ and (un) ⊂ E that (2.2.7) holds. As q < r < p∗, it remains that
1
p∗ <

1
r <

1
q , therefore there exists θ ∈ (0, 1) such that 1

r = θ 1
q + (1− θ) 1

p∗ by the convexity

of the interval
(

1
p∗ ,

1
q

)
. Thus,

θr

q
+

(1− θ)r
p∗

= r

(
θ

q
+

(1− θ)
p∗

)
= r

1

r
= 1.

This allows us to use Hölder's inequality to get∫
BR(y)

|x|−bp∗ |un|rdx =

∫
BR(y)

|x|−b
(
θr
q

)
p∗ |un|θr|x|

−b
(

(1−θ)r
p∗

)
p∗ |un|(1−θ)rdx

≤

(∫
BR(y)

(
|x|−b

(
θr
q

)
p∗ |un|θr

) q
θr

dx

) θr
q

∫
BR(y)

(
|x|−b

(
(1−θ)r
p∗

)
p∗ |un|(1−θ)r

) p∗
(1−θ)r

dx


(1−θ)r
p∗

=

(∫
BR(y)

|x|−bp∗ |un|qdx

) θr
q
(∫

BR(y)
|x|−bp∗ |un|p

∗
dx

) (1−θ)r
p∗

.

(2.2.8)
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Ca�arelli-Kohn-Nirenberg's inequality implies that∫
BR(y)

|x|−bp∗ |un|rdx ≤

(∫
BR(y)

|x|−bp∗ |un|qdx

) θr
q
(∫

BR(y)
|x|−bp∗ |un|p

∗
dx

) (1−θ)r
p∗

≤ S
(1−θ)r
p

a,b

(∫
BR(y)

|x|−bp∗ |un|qdx

) 1
q

θr

‖un‖(1−θ)r0 , (2.2.9)

where

θ

q
+

(1− θ)
p∗

=
1

r
.

Observe that
θ

q
+

(1− θ)
p∗

=
1

r
⇐⇒ θ =

(p∗ − r)
(p∗ − q)

q

r
.

De�ning

λ := 1− θ = 1−
((

p∗ − r
p∗ − q

)
q

r

)
=

(r − q)
(p∗ − q)

p∗

r
,

(2.2.9) reduces to∫
BR(y)

|x|−bp∗ |un|rdx

≤ S
λr
p

a,b


 ∫
BR(y)

|x|−bp∗ |un|qdx


1
q


(1−λ)r ∫

BR(y)

|x|−ap|∇u|pdx+

∫
BR(y)

|x|−bp∗ |u|pdx


λr
p

.(2.2.10)

Cover RN by balls of radius R such that each point of RN is contained in at most N + 1
balls and consider a partition (Pm) of RN such that Pm∩BR(yk) = Pm or Pm∩BR(yk) = ∅
for every m, k ∈ N and for each m ∈ N, Pm is contained in at most N + 1 balls of the
covering. Then (2.2.10) provides∫

RN
|x|−bp∗ |un|rdx ≤

N+1∑
k=1

∫
BR(yk)

|x|−bp∗ |un|rdx

≤ S
λr
p

a,b sup
y∈RN


(∫

BR(y)
|x|−bp∗ |un|qdx

) 1
q

(1−λ)r


N+1∑
k=1

(∫
BR(yk)

|x|−ap|∇u|pdx+

∫
BR(yk)

|x|−bp∗ |u|pdx

)λr
p

= S
λr
p

a,b sup
y∈RN


(∫

BR(y)
|x|−bp∗ |un|qdx

) 1
q

(1−λ)r


N+1∑
k=1

(
N+1∑
m=1

∫
BR(yk)∩Pm

|x|−ap|∇un|pdx+

∫
BR(yk)∩Pm

|x|−bp∗ |un|pdx

)λr
p
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≤ S
λr
p

a,b sup
y∈RN


(∫

BR(y)
|x|−bp∗ |un|qdx

) 1
q

(1−λ)r


+ (N + 1)

(
N+1∑
m=1

∫
Pm

|x|−ap|∇un|pdx+

∫
Pm

|x|−bp∗ |un|pdx

)λr
p

= S
λr
p

a,b(N + 1) sup
y∈RN


(∫

BR(y)
|x|−bp∗ |un|qdx

) 1
q

(1−λ)r
(∫

RN
|x|−ap|∇un|pdx+

∫
RN
|x|−bp∗ |un|pdx

)λr
p

≤ S
λr
p

a,b(N + 1) sup
y∈RN


(∫

BR(y)
|x|−bp∗ |un|qdx

) 1
q

(1−λ)r
 ‖un‖λrµ ,

Then un → 0 in Lrb(RN ) by the hypothesis (2.2.7) and the boundedness of the sequence
(un) ⊂ E. Now, we consider s ∈ (p, r) and s ∈ (r, p∗). Suppose s ∈ (p, r) (the other
case is analogous). Arguing analogously to the way that we derive the (2.2.8), we have an
interpolation inequality for the weighted Sobolev space

∫
RN
|x|−bp∗ |un|sdx ≤

(∫
RN
|x|−bp∗ |un|pdx

) γs
p
(∫

RN
|x|−bp∗ |un|rdx

) (1−γ)s
r

,

where 0 < γ < 1.
E ↪→ Ltb(RN ) for t ∈ [p, p∗] and boundedness of (un) in E imply that

∫
RN
|x|−bp∗ |un|sdx ≤

(∫
RN
|x|−bp∗ |un|pdx

) γs
p
(∫

RN
|x|−bp∗ |un|rdx

) (1−γ)s
r

≤ C3‖un‖γs0

(∫
RN
|x|−bp∗ |un|rdx

) (1−γ)s
r

≤ C3‖un‖γsµ
(∫

RN
|x|−bp∗ |un|rdx

) (1−γ)s
r

≤ C4

(∫
RN
|x|−bp∗ |un|rdx

) (1−γ)s
r

,

then un → 0 in Lsb(RN ) for p < s < r.
The same argument shows that un → 0 in Lsb(RN ) for r < s < p∗.
Now, applying again interpolation inequality on the Lebesgue spaces, we conclude that

un → 0 in Lsb(RN ) for all s ∈ (p, p∗).
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2.3 The proof of the item (i) of Theorem 2.1.1 for the
subcritical case (% = 0)

From Lemma 2.2.1 and Lemma 2.2.2 there exists a bounded (PS)cµ,0 sequence (un) for Iµ,0.
Then, by Sobolev embedding, there exists uµ ∈ E such that, up to a subsequence, we have

un ⇀ uµ, in E;
un → uµ, in Lsb,loc(Ω), 1 ≤ s < p∗;

un → uµ, a.e in RN .
(2.3.1)

Moreover, we can conclude from Theorem D.0.8 that uµ is a critical point of Iµ,0.

Now we prove that uµ is a critical point of Iµ,0 at Mountain Pass level cµ,0, for µ large
enough. First of all, some technical lemmas.

Lemma 2.3.1. Consider uµ ∈ E, then there exists a positive constant Υ3 which does not
depend on µ such that

lim inf
µ→+∞

∫
RN

|x|−bp∗ |uµ|rdx ≥ Υ3.

Proof. Let us suppose, by contradiction, that lim inf
µ→+∞

∫
RN

|x|−bp∗ |uµ|rdx = 0. As uµ is a

critical point for Iµ,0,

0 = I ′µ,0(uµ)uµ = ‖uµ‖pµ −
∫
RN
|x|−bp∗f(uµ)uµdx.

Using Sobolev embeddings and (2.2.2), we obtain

−‖uµ‖pµ = −
∫
RN
|x|−bp∗f(uµ)uµdx ≥ −ξC1‖uµ‖pµ − Cξ

∫
RN
|x|−bp∗ |uµ|rdx.

Thus,

0 ≥ (1− ξC1)‖uµ‖pµ − Cξ
∫
RN
|x|−bp∗ |uµ|rdx.

Taking the lim sup
µ→+∞

in the inequality above with ξ su�ciently small such that 1−ξC1 > 0,

we have

0 ≥ (1− ξC1) lim sup
µ→+∞

‖uµ‖pµ + lim sup
µ→+∞

{
−Cξ

∫
RN
|x|−bp∗ |uµ|rdx

}
= (1− ξC1) lim sup

µ→+∞
‖uµ‖pµ − Cξ lim inf

µ→+∞

{∫
RN
|x|−bp∗ |uµ|rdx

}
.

By hypothesis, lim inf
µ→+∞

∫
RN

|x|−bp∗ |uµ|rdx = 0, then lim sup
µ→+∞

‖uµ‖pµ = 0. Thus,

‖uµ‖pµ ≤ oµ(1). (2.3.2)

Then, uµ ≡ 0, which implies that un ⇀ 0 in E. By (2.3.1),

sup
y∈RN

∫
BR(y)

|x|−bp∗ |un|qdx→ 0, as n→∞.
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From Theorem 2.2.3, we conclude that un → 0 in Lsb(RN ) for all s ∈ (p, p∗). Now using
(2.2.2), we obtain ∫

RN
|x|−bp∗f(un)undx→ 0,

which implies that un → 0 in E and Iµ,0(un) → 0. Hence, lim
µ→∞

cµ,0 = 0 which contradicts

the item (ii) of Lemma 2.2.2.

Proposition 2.3.2. There exists µ∗ > 0 such that Iµ,0 has a critical point uµ ∈ E at
mountain pass level cµ,0, for µ ≥ µ∗.

Proof. By (2.3.1), there exists a critical point for Iµ,0. By Lemma 2.3.1 there exists µ∗ > 0
such that the critical point is nontrivial, for µ ≥ µ∗. On the other hand, the hypothesis (f4)
implies that

t 7−→ 1

p
f(t)t− F (t), is increasing for t ∈ (0,+∞).

Therefore, by (2.3.1) and Fatou's Lemma, we obtain

Iµ,0(uµ) = Iµ,0 (uµ)− 1

p
I ′µ,0 (uµ)uµ

=

∫
RN

|x|−bp∗
(

1

p
f (uµ)uµ − F (uµ)

)
dx

≤ lim inf
n→+∞

∫
RN

|x|−bp∗
(

1

p
f (un)un − F (un)

)
dx


= lim

n→+∞
Iµ,0 (un) = cµ,0.

Hence, using the characterization (2.2.4) of the mountain pass level cµ,0, we conclude

cµ,0 6 Iµ,0 (uµ) ≤ lim
n→+∞

Iµ,0 (un) = cµ,0, µ ≥ µ∗.

2.4 The proof of the item (ii) of Theorem 2.1.1 for the critical
case (% = 1 and σ = p∗)

To �nd a nontrivial solution for the case critical of the problem (Pµ,1,p∗) it is necessary to
control the level critical cµ,1. For this, we need to consider an auxiliary problem given by{

−div
(
|x|−ap|∇u|p−2∇u

)
+ |x|−bp∗ |u|p−2u = |x|−bp∗ |u|τ−2u, in Ω,

u ∈ E(Ω),
(PΩ)

where τ is the constant that appeared in the hypothesis (f5) and Ω is the bounded domain
that appeared in the hypothesis (V2). The Euler-Lagrange functional associated to (PΩ) is
given by

Φ0(u) =
1

p

∫
Ω

|x|−ap|∇u|pdx+
1

p

∫
Ω

|x|−bp∗ |u|pdx− 1

τ

∫
Ω

|x|−bp∗ |u|τdx

and the Nehari manifold

NΦ0 = {u ∈ E(Ω) : u 6= 0 and Φ
′
0(u)u = 0}.
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Then, from Appendix B, there exists wτ ∈ E(Ω) such that

Φ0(wτ ) = c0, Φ
′
0(wτ ) = 0

and

c0 ≥
(
τ − p
τp

)∫
Ω

|x|−bp∗ |wτ |τdx. (2.4.1)

Lemma 2.4.1. There exists a positive number λ∗ such that the level cµ,1 satis�es

cµ,1 <

(
1

p
− 1

p∗

)
S
N/pd
a,b , for all µ ≥ 0 and for all λ > λ∗.

Proof. Since V (x) = 0 for x ∈ Ω, and the hypothesis (f4) holds, there exists t > 0, such
that

Iµ,1(tµwτ ) = sup
t>0

Iµ,1(twτ ).

Therefore, using (f5) and that Φ′0(wτ )wτ = 0, we obtain

cµ,1 ≤ Iµ,1(tµwτ ) ≤ tpµ
p

∫
Ω

|x|−ap|∇wτ |pdx+
tpµ
p

∫
Ω

|x|−bp∗ |wτ |pdx− λ
tτµ
τ

∫
Ω

|x|−bp∗ |wτ |τdx

≤
[
tpµ
p
− λ

tτµ
τ

] ∫
Ω

|x|−bp∗ |wτ |τdx ≤ max
s≥0

[
sp

p
− λs

τ

τ

] ∫
Ω

|x|−bp∗ |wτ |τdx.

Then, using (2.4.1) and some straight forward algebric manipulations, we get

cµ,1 ≤ max
s≥0

[
sp

p
− λs

τ

τ

]
c0pτ

(τ − p)
=

[
τ − p

pλp/(τ−p)

]
c0p

(τ − p)
=

c0

λp/(τ−p)
·

Hence, choosing λ > λ∗ :=

 c0pp
∗

(p∗ − p)S
N
dp

a,b


τ−p
p

in (f5), the result follows.

Let us introduce the notation which we are going to use in the next results. From Lemma
2.2.1 and Lemma 2.2.2 there exists a bounded (PS)cµ,1 sequence (un) for Iµ,1. Then, by
Sobolev embedding, there exists uµ ∈ E such that, up to a subsequence, we have

un ⇀ uµ, in E;
un → uµ, in Lsb,loc(Ω), 1 ≤ s < p∗;

un → uµ, a.e in RN .
(2.4.2)

Moreover, we can conclude from Theorem D.0.10 that uµ is a critical point of Iµ,1.

First of all, using the notation above, we are going to prove some technical result.

Lemma 2.4.2. Let uµ ∈ E be the weak limit of the sequence de�ned in (2.4.2). For λ > λ∗,
there exists a positive constant Υ4, which does not depend on µ, such that

lim inf
µ→+∞

∫
RN

|x|−bp∗ |uµ|rdx ≥ Υ4.
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Proof. Let us suppose, by contradiction, that lim inf
µ→+∞

∫
RN

|x|−bp∗ |uµ|rdx = 0. As uµ is a

critical point for Iµ,1, it follows from Lemma 2.2.1 (iii) that

Υ1 ≥ cµ,ρ = Iµ,ρ(uµ)−1

θ
I ′µ,ρ(uµ)uµ ≥

(
1

p
− 1

θ

)
‖uµ‖pµ ≥

(
1

p
− 1

θ

) ∫
RN

|x|−bp∗ |uµ|pdx for all µ ≥ 0.

By (2.2.2), we obtain∣∣∣∣∣∣
∫
RN

|x|−bp∗f (uµ)uµdx

∣∣∣∣∣∣− Cξ
∫
RN

|x|−bp∗ |uµ|rdx ≤ ξ
∫
RN

|x|−bp∗ |uµ|pdx ≤ ξ
Υ1(

1
p −

1
θ

) .
Taking the lim sup

µ→+∞
followed by the limit as ξ → 0,

lim sup
µ→+∞

∣∣∣∣∣∣
∫
RN

|x|−bp∗f (uµ)uµdx

∣∣∣∣∣∣ ≤ oµ(1),

hence ∫
RN

|x|−bp∗f (uµ)uµdx = oµ(1). (2.4.3)

Since I ′µ,1(uµ)uµ = 0, then∫
RN

|x|−ap|∇uµ|pdx+

∫
RN

|x|−bp∗ [1 + µV (x)]|uµ|pdx =

∫
RN

|x|−bp∗ |uµ|p
∗
dx+ oµ(1).

Setting

l :=

∫
RN

|x|−bp∗ |uµ|p
∗
dx+ oµ(1),

we have that l > 0, from Lemma 2.2.2 we have cµ,1 > 0, for all µ > 0. By de�nition of the
best constant S in the embedding from D1,p

a (RN ) into Lp
∗

b (RN ), we get

Sa,b ≤

∫
RN

|x|−ap|∇uµ|pdx

 ∫
RN

|x|−bp∗ |uµ|p
∗
dx

p/p∗
≤ lpd/N . (2.4.4)

Using (2.2.5) and (2.4.4), we obtain cµ,1 ≥
(

1

p
− 1

p∗

)
SN/pd, which contradicts the Lemma

2.4.1.

Proposition 2.4.3. There exist positive numbers µ∗∗ and λ∗, which are independent each
other, such that Iµ,1 has a nontrivial critical point uµ ∈ E at mountain pass level cµ,1, for
µ ≥ µ∗∗ and for λ ≥ λ∗.

Proof. The proof follows using the same reasoning that can be found in Proposition
2.3.2.
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2.5 Concentration Results

We are going to investigate the behavior of a sequence of ground solution (uµn) of (Pµ,%,p∗)
when µn → ∞. For simplicity of notation such sequence will be denoted just by (un). For
this goal, let us consider the limit problem{
−div

(
|x|−ap|∇u|p−2∇u

)
+ |x|−bp∗ |u|p−2u = |x|−bp∗f(u) + %|x|−bp∗ |u|p∗−2u in Ω,

u = 0 on ∂Ω.
(P0,%,p∗)

The functional associated to (P0,%,p∗) is

J%(u) =
1

p

∫
Ω

|x|−ap|∇u|pdx+
1

p

∫
Ω

|x|−bp∗ |u|pdx−
∫
Ω

|x|−bp∗F (u)dx− %

p∗

∫
Ω

|x|−bp∗ |u|p∗dx,

which is di�erentiable on E(Ω), and let N% be the Nehari manifold associated to J% given
by

N% =
{
u ∈ E(Ω)\{0} : J ′%(u)u = 0

}
.

Proposition 2.5.1. Let (un) ⊂ E(Ω) \ {0} be a sequence of ground states solutions for
(Pµn,%,p∗)µn≥1. Then, up to a subsequence, there exists u∞ ∈ E such that un ⇀ u∞ in E.
Furthermore,

(i) u∞ = 0 in RN \ Ω, u∞(x) ≥ 0, u∞(x) 6= 0.

(ii) Setting dµn,% := inf
u∈Nµn

Iµn,%(u), then

lim
n→+∞

dµn,% = lim
n→+∞

Iµn,%(un) = J%(u∞).

Moreover, un → u∞ in E and J%(u∞) = d% := inf
N%
J%.

Proof. Using Lemma 2.2.1 (iii), we conclude that (‖un‖µn) is bounded in R and (un) is
bounded in E. Indeed,

Υ1 ≥ cµ,ρ = Iµ,ρ(un)− 1

θ
I ′µ,ρ(un)un ≥

(
1

p
− 1

θ

)
‖un‖pµ for all n ∈ N.

So, up to a subsequence, there exists u∞ ∈ E such that

un ⇀ u∞ in E and un(x)→ u∞(x) for a.e. x ∈ RN . (2.5.1)

Now, for each m ∈ N, we de�ne Cm =

{
x ∈ RN ; V (x) ≥ 1

m

}
. Thus

∫
Cm

|x|−bp∗ |un|p dx ≤
m

µn

∫
Cm

|x|−bp∗
(
µnV (x) + 1

)
|un|p dx ≤

C

µn
. (2.5.2)

Taking n→∞, we have by Fatou's lemma,∫
Cm

|x|−bp∗ |u∞|p dx = 0,

implying that u∞ = 0 in Cm and consequence, u∞ = 0 in RN \Ω, which implies u∞ ∈ E(Ω)
(see [14, Proposition 9.18]).
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Next we claim that the limit u∞ is a nontrivial solution for (P0,%,p∗). To prove this let
us consider the following sets

ÃR = {x ∈ RN\BR(0) : V (x) ≥ V ∗} and AR = {x ∈ RN\BR(0) : V (x) < V ∗}.

Using Lemma 2.2.1 (iii) and (V3) we can ensure, by Hölder's inequality and Sovolev
embedding, that there exists Υ5 > 0 such that∫

ÃR

|x|−bp∗ |un|p dx ≤ 1

1 + µnV ∗

∫
RN

|x|−bp∗ [1 + µnV (x)] |un|p dx

≤ 1

1 + µnV ∗
‖un‖pµ

≤ Υ5

1 + µnV ∗

and

∫
AR

|x|−bp∗ |un|p dx ≤

 ∫
AR

|x|−bp∗ |un|p∗ dx


p
p∗

R−bp
∗
meas(AR)

p∗−p
p∗ ≤ Υ5oR(1).

Hence, by the interpolation argument there exists Υ6 > 0 such that

lim sup
n→+∞

∫
ÃR

|x|−bp∗ |un|r dx = 0 and lim sup
n→+∞

∫
AR

|x|−bp∗ |un|r dx ≤ Υ6oR(1). (2.5.3)

Observe that, from Lemma 2.2.1 (iii), the constants Υ5 and Υ6 are independent on the
parameter µ. Since, up to a subsequence, un → u∞ in Lrloc(RN ) and (2.5.3) holds, we
obtain that

lim inf
n→+∞

∫
RN

|x|−bp∗ |un|r dx ≤ lim sup
n→+∞

∫
RN

|x|−bp∗ |un|r dx

≤ lim sup
n→∞

 ∫
BR(0)

|x|−bp∗ |un|r dx+

∫
Λ̃R

|x|−bp∗ |un|r dx+

∫
ΛR

|x|−bp∗ |un|r dx


≤

∫
BR(0)

|x|−bp∗ |u∞|r dx+ Υ6oR(1). (2.5.4)

Hence, by Lemma 2.3.1 (for % = 0) or Lemma 2.4.2 (for % = 1) the claim follows, for R large
enough. Moreover, using (f1) and u−∞ a test function, we get u∞ ≥ 0 and u∞ 6= 0.

We now prove the second item (ii). Observe that since V = 0 in Ω, we obtain∫
RN

|x|−bp∗V (x)|u|pdx =

∫
RN\Ω

|x|−bp∗V (x)|u|pdx+

∫
Ω

|x|−bp∗V (x)|u|pdx = 0, for all u ∈ E(Ω),

which implies

Iµn,%(u) = J%(u) and I ′µn,%(u)u = J ′%(u)u, for all u ∈ E(Ω). (2.5.5)

Then, from (2.5.5), we have that u ∈ Nµn,%, for all u ∈ N%. Hence,

dµn,% ≤ d%. (2.5.6)
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On the other hand, since un ⇀ u∞ in E we have, by Fatou's Lemma,

0 ≤
(

1

p
− 1

θ

) ∫
RN

|x|−ap|∇u∞|pdx+

(
1

p
− 1

θ

) ∫
RN

|x|−bp∗ |u∞|pdx

≤ lim inf
n→+∞

(
1

p
− 1

θ

) ∫
RN

|x|−ap|∇un|pdx+

(
1

p
− 1

θ

) ∫
RN

|x|−bp∗ |un|pdx.
(2.5.7)

Therefore, using the fact that u∞ ∈ N%, we obtain, by (2.5.5), (2.5.6) and (2.5.7),

dµn,% ≤ d% ≤ J%(u∞) = Iµn,%(u∞)− 1

θ
I ′µn,%(u∞)u∞

≤ lim inf
n→∞

[
Iµn,% (un)− 1

θ
I ′µn,%(un)un

]
= Iµn,%(un) + on(1) = dµn,% + on(1),

(2.5.8)

which implies
lim

n→+∞
dµn,% = lim

n→+∞
Iµn,%(un) = J%(u∞). (2.5.9)

Assume, by contradiction, that
un → u∞ in E, (2.5.10)

does not hold. Then, the inequality (2.5.7) is strict and hence, arguing as (2.5.8), there
exists n0 ∈ N

d% < dµn,% +
d%
2
, n ≥ n0.

This contradicts (2.5.9).

2.6 Theorem 2.1.1 (subcritical case)

Proof of Theorem 2.1.1(subcritical case). From Proposition 2.3.2, we can guarantee that
there exists µ∗ > 0 such that (Pµ,0,σ) has a positive ground state solution uµ ∈ E, for
µ ≥ µ∗. Then, using Proposition 2.5.1, we obtain, up to a subsequence, uµ → u∞ in E
when µ→ +∞, where u∞ is a ground state solution to problem{

−div
(
|x|−ap|∇u|p−2∇u

)
+ |x|−bp∗ |u|p−2u = |x|−bp∗f(u), in Ω,

u = 0, on ∂Ω.
(P0,0)

2.7 Theorem 2.1.1 (critical case)

Proof of Theorem 2.1.1(critical case). From Proposition 2.4.3, we can guarantee that there
exist µ∗∗ > 0 and λ∗ > 0 such that (Pµ,1,p∗) has a positive ground state solution uµ ∈ E,
for all µ ≥ µ∗∗ and λ ≥ λ∗. Then, using Proposition 2.5.1, we obtain, up to a subsequence,
uµ → u∞ in E when µ→ +∞, where u∞ is a ground state solution to problem{
−div

(
|x|−ap|∇u|p−2∇u

)
+ |x|−bp∗ |u|p−2u = |x|−bp∗f(u) + |x|−bp∗ |u|p∗−2u, in Ω,

u = 0 , on ∂Ω.
(P0,1,p∗)
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2.8 Case supercritical

In this section we are going to study the supercritical case of the problem (Pµ,1,σ), that is,

when % = 1 and σ > p∗, observe that in this case
∫
RN
|x|−bp∗ |u|σ dx is not well de�ned in

E. Then, inspired by [21] and [30], we are going to consider in this section the function
ψ : R→ R given by

ψ(s) :=


0 , if s < 0,
sσ−1 , if 0 ≤ s ≤ 1,
sp
∗−1 , if s > 1.

It follows immediately that

ψ(s) ≤ |s|p∗−1, for all s ∈ R, (2.8.1)

and

1

θ

∫
RN

|x|−bp∗ [ψ(u)u− θΨ(u)] dx

≥
(

1

θ
− 1

p∗

) ∫
{|u|≤1}

|x|−bp∗ |u|σ dx+

∫
{|u|>1}

|x|−bp∗ |u|p∗ dx

 > 0, (2.8.2)

where Ψ(s) :=

∫ s

0
ψ(t)dt. We also consider the auxiliary problem

{
−div

(
|x|−ap|∇u|p−2∇u

)
+ |x|−bp∗ [1 + µV (x)]|u|p−2u = |x|−bp∗f(u) + |x|−bp∗ , ψ(u) in RN ,

u ∈ E.
(Pµ,σ)

Remark 1. If uµ is a nonnegative solution of (Pµ,σ) with ‖uµ‖∞ ≤ 1, then uµ is also a
nonnegative solution of (Pµ,1,σ).

2.8.1 Existence of positive solution for problem (Pµ,σ)

The nonnegative weak solutions for the problem (Pµ,σ) are the critical points of the
functional Iµ,σ : E → R given by

Iµ,σ(v) =
1

p

∫
RN
|x|−ap|∇v|pdx+

1

p

∫
RN
|x|−bp∗ [1 + µV (x)]|v|pdx

−
∫
RN
|x|−bp∗F (v)dx−

∫
RN
|x|−bp∗Ψ(v)dx,

where Ψ(s) :=

∫ s

0
ψ(t)dt. Now we are going to �nd a nontrivial and nonnegative solution

for (Pµ,σ).
Using the same arguments of Lemma 2.4.2 and Proposition 2.4.3 with short modi�cations

we can prove the following results.

Proposition 2.8.1. There exist µ∗∗ > 0 and λ∗ > 0 such that the functional Iµ,σ has a
nontrivial critical point uµ ∈ E at the mountain pass level cµ,σ, for all µ ≥ µ∗∗ and λ ≥ λ∗.

The next result relates the critical points of the functional Iµ,σ with solutions to
the problem (Pµ,1,σ), the arguments used here are inspired by [5, Lemma 5.5] and
[33, Theorem 3].
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Lemma 2.8.2. Let uµ ∈ E be a nonnegative solution for problem (Pµ,σ). Then,

‖uµ‖L∞(RN ) ≤ 1, for all λ > λ∗.

Moreover, the function uµ is a solution of (Pµ,1,σ).

Proof. For each L > 0, let

uL(x) =

{
uµ(x), uµ(x) ≤ L,
L, uµ(x) > L,

(2.8.3)

and
zL := u

p(γ−1)
L uµ

with γ > 1 will be determined later.
Taking zL as a test function, we obtain that I ′µ,σ(uµ)zL = 0. That is,∫

RN

|x|−apup(γ−1)
L |∇uµ|pdx+ p(γ − 1)

∫
RN

|x|−apup(γ−1)−1
L uµ|∇uµ|p−2∇uµ∇uLdx

+

∫
RN

|x|−bp∗ [1 + µV (x)]|uµ|pup(γ−1)
L dx =

∫
RN

|x|−bp∗f(uµ)uµu
p(γ−1)
L dx

+

∫
RN

|x|−bp∗ψ(uµ)uµu
p(γ−1)
L dx.

Using (f1), (f2) and (2.8.1) we obtain that given ξ > 0 there exists Cξ > 0, such that∫
RN

|x|−apup(γ−1)
L |∇uµ|pdx+ p(γ − 1)

∫
RN

|x|−apup(γ−1)
L |∇uL|pdx+

∫
RN

|x|−bp∗up(γ−1)
L |uµ|p

≤ξ
∫
RN

|x|−bp∗up(γ−1)
L |uµ|pdx+ (Cξ + 1)

∫
RN

|x|−bp∗up(γ−1)
L |uµ|p

∗
dx.

Let us now consider the function wL := uµu
γ−1
L . Hence, by inequality above,∫

RN

|x|−ap|∇wL|pdx ≤2p
∫
RN

|x|−apup(γ−1)
L |∇uµ|pdx

+ 2p(γ − 1)p
∫
RN

|x|−apup(γ−1)
L |∇uL|pdx

≤4pγpξ

∫
RN

|x|−bp∗up(γ−1)
L |uµ|pdx

+ 4pγp(Cξ + 1)

∫
RN

|x|−bp∗up(γ−1)
L |uµ|p

∗
dx.

(2.8.4)

Therefore, since uL ≤ uµ,

‖wL‖p
Lp
∗
b (RN )

≤Sa,b
∫
RN

|x|−ap|∇wL|pdx

≤4pγpSa,bξ

∫
RN

|x|−bp∗ |uµ|pγdx

+ 4pγpSa,b(Cξ + 1)

∫
RN

|x|−bp∗ |uµ|γp|uµ|p
∗−pdx,

(2.8.5)
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where Sa,b is the best Sobolev constant of the embedding D1,p
a (RN ) ↪→ Lp

∗

b (RN ).
Also, observe that∫

RN

|x|−bp∗ |uL|p(γ−1)|uµ|p
∗
dx =

∫
RN

|x|−bp∗ |wL|p|uµ|p
∗−pdx.

This and (2.8.5) ensure that

‖wL‖p
Lp
∗
b (RN )

≤Sa,b
∫
RN

|x|−ap|∇wL|pdx

≤4pγpSa,bξ

∫
RN

|x|−bp∗ |uµ|pγdx

+ 4pγpSa,b(Cξ + 1)

∫
RN

|x|−bp∗ |wL|p|uµ|p
∗−pdx,

(2.8.6)

The next step is to show that uµ ∈ L
(p∗)2
p

b (RN ).

Statement 2.8.3. uµ ∈ L
(p∗)2
p

b (RN ).

Proof. We choose γ =
p∗

p
in (2.8.6) then, by Hölder's inequality,

‖wL‖p
Lp
∗
b (RN )

≤
(

4p∗

p

)p
Sa,bξ‖uµ‖p

∗

Lp
∗
b (RN )

+

(
4p∗

p

)p
Sa,b(Cξ + 1)‖uµ‖p

∗−p
Lp
∗
b (RN )

‖wL‖p
Lp
∗
b (RN )

.

Using (2.8.2) and Lemma 2.4.1 and that the function uµ is a critical point of Iµ,σ, we have
that

c0

λ
p

τ−p
≥ cµ,σ = Iµ,σ(uµ)− 1

θ I
′
µ,σ(uµ)uµ

≥
(

1
p −

1
θ

)
‖uµ‖pµ

≥
(

1
p −

1
θ

)
S−1
a,b‖uµ‖

p

Lp
∗
b (RN )

.

(2.8.7)

Remember that γ = p∗

p . From the de�nition of uL and wL,

uL(x)
L→∞−→ uµ(x) a.e. x ∈ RN

and

wL(x)
L→∞−→ (uµ(x))γ−1 a.e. x ∈ RN . (2.8.8)

Observe that

‖uµ‖pγ
Lp
∗γ
b (RN )

=

(∫
RN
|x|−bp∗ |uµ|p

∗γdx

) pγ
p∗γ

=

(∫
RN
|x|−bp∗(|uµ|γ)p

∗
dx

) p
p∗

= ‖uγµ‖Lp∗b (RN )
.
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This, (2.8.8) and Fatou's lemma ensure that

‖uµ‖pγ
Lp
∗γ
b (RN )

= ‖uγµ‖
p

Lp
∗
b (RN )

=

(∫
RN
|x|−bp∗(|uµ|γ)p

∗
dx

) p
p∗

≤ lim inf
L→∞

(∫
RN
|x|−bp∗(wL)p

∗
dx

) p
p∗

= lim inf
L→∞

‖wL‖p
Lp
∗
b (RN )

≤ ‖wL‖p
Lp
∗
b (RN )

.

From this and (2.8.5), it follows that ∫
RN

|x|−bp∗ |uµ|
(p∗)2
p dx


p
p∗

=‖uµ‖pγ
Lp
∗γ
b (RN )

≤‖wL‖p
Lp
∗
b (RN )

≤Sa,b
∫
RN

|x|−ap|∇wL|pdx

≤4pγpSa,bξ

∫
RN

|x|−bp∗ |uµ|pγdx

+ 4pγpSa,b(Cξ + 1)

∫
RN

|x|−bp∗ |uµ|γp|uµ|p
∗−pdx.

By Hölder with exponents p∗

p and p∗

p∗−p ,

∫
RN

|x|−bp∗ |uµ|γp|uµ|p
∗−pdx ≤

∫
RN

|x|−bp∗ |uµ|
(p∗)2
p dx


p
p∗
∫
RN

|x|−bp∗ |uµ|p
∗
dx


p∗−p
p∗

.

Thus, ∫
RN

|x|−bp∗ |uµ|
(p∗)2
p dx


p
p∗

=‖uµ‖pγ
Lp
∗γ
b (RN )

≤‖wL‖p
Lp
∗
b (RN )

≤Sa,b
∫
RN

|x|−ap|∇wL|pdx

≤4pγpSa,bξ

∫
RN

|x|−bp∗ |uµ|pγdx

+ 4pγpSa,b(Cξ + 1)

∫
RN

|x|−bp∗ |uµ|γp|uµ|p
∗−pdx
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≤4pγpSa,bξ

∫
RN

|x|−bp∗ |uµ|p
∗
dx

+ 4pγpSa,b(Cξ + 1)

∫
RN

|x|−bp∗ |uµ|
(p∗)2
p dx


p
p∗


∫
RN

|x|−bp∗ |uµ|p
∗
dx


p∗−p
p∗

By (2.8.7),

∫
RN

|x|−bp∗ |uµ|p
∗
dx ≤

 Sa,bc0(
1
p −

1
θ

)
λ

p
τ−p


p∗
p

.

Let Aλ :=
Sa,bc0(

1
p
− 1
θ

)
λ

p
τ−p

. Then

 ∫
RN

|x|−bp∗ |uµ|
(p∗)2
p dx


p
p∗

≤4pγpSa,bξA
p∗
p

λ

+ 4pγpSa,b(Cξ + 1)

∫
RN

|x|−bp∗ |uµ|
(p∗)2
p dx


p
p∗ (

A
p∗
p

λ

) p∗−p
p∗

,

hence

1− 4pγpSa,b(Cξ + 1)

(
A
p∗
p

λ

) p∗−p
p∗
 ∫

RN

|x|−bp∗ |uµ|
(p∗)2
p dx


p
p∗

≤ 4pγpSa,bξA
p∗
p

λ

Observe that lim
λ→+∞

Aλ = 0. This and the last estimate shows that uµ ∈ L
(p∗)2
p

b (RN ) for

λ large.

Note that from (2.8.4) and previous arguments there exists a positive constant K, such
that

‖wL‖p
Lp
∗
b (RN )

≤ 4pγpSa,b(K + 1)

∫
RN

|x|−bp∗ |uµ|γp|uµ|p
∗−pdx. (2.8.9)

We are now going to consider γ = γ0 :=
p∗

p

(t− 1)

t
in (2.8.9), where t :=

(p∗)2

p(p∗ − p)
> 1.

Then, use Hölder inequality with exponents t and t
t−1 in the integral in (2.8.9) and Fatou's

Lemma,

‖uµ‖pγ0
L
p∗γ0
b (RN )

≤ lim inf
L→+∞

‖wL‖p
Lp
∗
b (RN )

≤ ‖wL‖p
Lp
∗
b (RN )

≤ 4pγp0Sa,b(K + 1)‖uµ‖p
∗−p

L
(p∗)2
p

b (RN )

‖uµ‖γ0p
Lp
∗
b (RN )

.
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Hence,

‖uµ‖Lp∗γ0b (RN )
≤

4S
1
p

a,b(K + 1)
1
p ‖uµ‖

p∗−p
p

L
(p∗)2
p

b (RN )

 1
γ0

γ
1
γ0
0 ‖uµ‖Lp∗b (RN )

. (2.8.10)

Considering γ = γ2
0 , Hölder's inequality with exponents t and t

t−1 in the integral in
(2.8.5) ensures that∫

RN
|x|−bp∗ |uµ|γ

2
0p|uµ|p

∗−pdx ≤ ‖uµ‖
γ20p

L
p∗γ0
b (RN )

‖uµ‖p
∗−p

L
(p∗)2
p

b (RN )

.

Repeat previous arguments to see that

‖uµ‖
pγ20

L
p∗γ20
b (RN )

= ‖uγ
2
0
µ ‖p

Lp
∗
b (RN )

=

(∫
RN
|x|−bp∗(|uµ|γ

2
0 )p
∗
dx

) p
p∗

≤ lim inf
L→∞

(∫
RN
|x|−bp∗(wL)p

∗
dx

) p
p∗

= lim inf
L→∞

‖wL‖p
Lp
∗
b (RN )

≤ ‖wL‖p
Lp
∗
b (RN )

≤ 4p(γ2
0)pSa,b(K + 1)

∫
RN

|x|−bp∗ |uµ|γ
2
0p|uµ|p

∗−pdx.

The last two estimates provides that

‖uµ‖
pγ20

L
p∗γ20
b (RN )

≤ 4p(γ2
0)pSa,b(K + 1)‖uµ‖

γ20p

L
p∗γ0
b (RN )

‖uµ‖p
∗−p

L
(p∗)2
p

b (RN )

,

i.e.,

‖uµ‖
L
p∗γ20
b (RN )

≤ 4
1

γ20 γ

2

γ20
0 S

1

γ20p

a,b (K + 1)
1

γ20p ‖uµ‖Lp∗γ0b (RN )
‖uµ‖

p∗−p
pγ20

L
(p∗)2
p

b (RN )

.

By (2.8.10),

‖uµ‖
L
p∗γ20
b (RN )

≤

4S
1
p

a,b(K + 1)
1
p ‖uµ‖

p∗−p
p

L
(p∗)2
p

b (RN )


2∑
i=1

1

γi0

γ

2∑
i=1

i

γi0

0 ‖uµ‖Lp∗b (RN )
.

Repeating the arguments above for γ3
0 , γ

4
0 , · · · we can concluded that

‖uµ‖
L
p∗γm0
b (RN )

≤

4S
1
p

a,b(K + 1)
1
p ‖uµ‖

p∗−p
p

L
(p∗)2
p

b (RN )


m∑
i=1

1

γi0

γ

m∑
i=1

i

γi0

0 ‖uµ‖Lp∗b (RN )
. (2.8.11)

Once that
∞∑
i=1

1

γi0
and

∞∑
i=1

i

γi0
,
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are convergent series it follows from (2.8.11) that

‖uµ‖L∞(RN ) ≤

4S
1
p

a,b(K + 1)
1
p ‖uµ‖

p∗−p
p

L
(p∗)2
p

b (RN )


∞∑
i=1

1

γi0

γ

∞∑
i=1

i

γi0

0 ‖uµ‖Lp∗b (RN )
(2.8.12)

= ‖uµ‖
(p∗−p)

p

∞∑
i=1

1

γi0

L
(p∗)2
p

b (RN )

[
4S

1
p

a,b(K + 1)
1
p

] ∞∑
i=1

1

γi0 γ

∞∑
i=1

i

γi0

0 ‖uµ‖Lp∗b (RN )
.

Finally there exists λ∗ > 1 such that, by Statement 2.8.3 and (2.8.12), we can conclude that

‖uµ‖∞ ≤ 1, for all λ > λ∗.

Hence, ψ(uµ) = |uµ|σ−2uµ which implies that the function uµ is a solution of the problem
(Pµ,1,σ).

2.9 Theorem 2.1.1 (supercritical case)

Proof of Theorem 2.1.1(supercritical case). From Proposition 2.8.1, we can guarantee that
there exists µ∗∗ > 0 such that (Pµ,1,σ) has a positive ground state solution uµ ∈ E, for all
µ ≥ µ∗∗ and λ ≥ λ∗. Then, using Proposition 2.5.1 with short modi�cations, we obtain, up
to a subsequence, uµ → u∞ in E when µ → +∞, where u∞ is a ground state solution to
problem (P0,1,σ).
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Chapter 3

Existence of least energy positive and

nodal solutions for a class of

Ca�arelli-Kohn-Nirenberg type

problems

In this chapter, we look for positive and nodal ground state solutions minimizing the Euler-
Lagrange functional over the Nehari manifold and over its subset. This chapter is based
on [12]. It is important to observe that the method used here to �nd positive ground state
solution is di�erent from [12], we work with more general singularities so that some estimates
are more re�ned and we prove the existence of nodal solution.

3.1 Introduction

This chapter is focused to prove the existence of a positive and a nodal solutions to the
following class of Ca�arelli-Kohn-Nirenberg type problems give by

−div
(
|x|−ap|∇u|p−2∇u

)
+ |x|−bp∗V (x)|u|p−2u = |x|−bp∗K(x)f(u) in RN , (P)

where 1 < p < N , 0 ≤ a < N−p
p , a < b ≤ a+ 1, p∗ = p∗(a, b) = pN

N−dp and d = 1 + a− b.

In order to �nd these solutions we use D1,p
a (RN ) that is the completion of the C∞0 (RN )

with the norm

‖u‖p =

∫
RN
|x|−ap|∇u|pdx,

where C∞0 (RN ) is the space of smooth functions with compact support.

Let us denote by

Lsb(RN ) =

{
u : RN → R : u is measurable and

∫
RN
|x|−bp∗ |u|sdx <∞

}
and

L∞b (RN ) =

{
u : RN → R : u is measurable and sup

RN
ess|x|−bp∗ |u| <∞

}
.

On functions V,K : RN → R continuous on RN we assume the following general
conditions. Indeed, we say that (V,K) ∈ K if
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(V K0) V (x),K(x) > 0 for all x ∈ RN and K ∈ L∞b (RN ) ∩ L∞(RN ).

(V K1) If {An}n ⊂ RN is a sequence of Borel sets such that the Lebesgue measure meas(An) ≤
R, for all n ∈ N and some R > 0, then

lim
r→+∞

∫
An∩Bcr(0)

|x|−bp∗K(x) = 0, uniformly in n ∈ N.

Furthermore, one of the below conditions occurs

(V K2) K
V ∈ L

∞
b (RN ) ∩ L∞(RN )

or

(V K3) there exists m ∈ (p, p∗) such that

K(x)

V (x)
p∗−m
p∗−p

→ 0, as |x| → +∞.

Moreover, we assume the following growth conditions in the origin and at in�nity for the
C1 function f : R→ R:

(f1)

lim
|t|→0+

f(t)

|t|p−1
= 0, if (V K2) holds

or

(f̃1)

lim
|t|→0+

f(t)

|t|m−1
= 0, if (V K3) holds

with m ∈ (p, p∗) de�ned before in (V K3);

(f2) f has a �quasicritical growth� at in�nity, namely,

lim
|t|→+∞

f(t)

|t|p∗−1
= 0;

(f3) There exists θ ∈ (p, p∗) so that

0 < θF (t) = θ

∫ t

0
f(s)ds ≤ f(t)t, for all |t| > 0;

(f4) The map

t 7→ f(t)

|t|p−1
is strictly increasing for all |t| > 0,

or, equivalently,

f ′(t) > (p− 1)
f(t)

t
, for all t 6= 0.

The main results of this chapter are stated in the following theorem.

Theorem 3.1.1. Suppose that (V,K) ∈ K and f ∈ C1(R,R) veri�es (f1) or (f̃1) and
(f2) − (f4). Then, problem (P ) possesses a positive ground state weak solution. Moreover,
(P ) admits a nodal ground state weak solution, which has precisely two nodal domains.
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3.2 Variational framework and Compactness results

In order to prove that problem (P ) has a variational structure, let us consider the space

X =

{
u ∈ D1,p

a (RN ) :

∫
RN
|x|−bp∗V (x)|u|p dx < +∞

}
endowed with the norm

‖u‖pV =

∫
RN
|x|−ap|∇u|p dx+

∫
RN
|x|−bp∗V (x)|u|p dx.

Let X ′ the dual space of X endowed with the norm ‖ · ‖X′ . Recall that a weak solution of
problem (P ) is a function u ∈ X such that∫

RN
|x|−ap|∇u|p−2∇u · ∇v dx+

∫
RN
|x|−bp∗V (x)|u|p−2uv dx

−
∫
RN
|x|−bp∗K(x)f(u)v dx = 0, for all v ∈ X.

Note that the weak solutions of (P ) are the critical points of the energy functional J
de�ned on X by

J(u) :=
1

p

∫
RN
|x|−ap|∇u|p dx+

1

p

∫
RN
|x|−bp∗V (x)|u|p dx−

∫
RN
|x|−bp∗K(x)F (u) dx.

More precisely, J ∈ C1(X,R) and its di�erential J ′ : X → X ′ is de�ned as〈
J ′(u), v

〉
=

∫
RN
|x|−ap|∇u|p−2∇u · ∇v dx

+

∫
RN
|x|−bp∗V (x)|u|p−2uv dx−

∫
RN
|x|−bp∗K(x)f(u)v dx,

for every u, v ∈ X.

In order to prove the compactness result, �rst assume that (V K2) holds. By (f1) and
(f2) and then, by integration, it follows that, �xing any ε > 0 there exists a positive constant
Cε > 0 such that

|f(t)| ≤ ε|t|p−1 + Cε|t|p
∗−1, |F (t)| ≤ ε

p
|t|p +

Cε
p∗
|t|p∗ , for all t ∈ R. (3.2.1)

Instead if (V K3) holds, by (f̃1) and (f2) and then by integration for any ε > 0 a positive
constant Cε > 0 exists such that

|f(t)| ≤ ε|t|m−1 + Cε|t|p
∗−1, |F (t)| ≤ ε

m
|t|m +

Cε
p∗
|t|p∗ , for all t ∈ R, (3.2.2)

with m ∈ (p, p∗).

At this point, in order to recover compactness, we prove the following Hardy-type inequality.
First, for every ζ ∈ R, ζ ≥ 1, let us de�ne the Lebesgue space

Lζb,K(RN ) =

{
u : RN → R : u is measurable and

∫
RN
|x|−bp∗K(x)|u|ζ dx < +∞

}
.

Proposition 3.2.1. Assume (V,K) ∈ K. Then, if (V K2) holds, X is compactly embedded
in Lζb,K(RN ) for every ζ ∈ (p, p∗). If (V K3) holds, X is compactly embedded in Lmb,K(RN ).
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Proof. First, assume that (V K2) holds.Let ζ ∈ (p, p∗). Observe that (V K0) implies that

lim
|t|→0

K(x)

V (x)

|t|ζ

|t|p
= 0 a.e. on x ∈ RN .

Fixed ε > 0, there exists t0 > 0 such that

K(x)|t|ζ < εV (x)|t|p for all |t| < t0 and a.e. on x ∈ RN . (3.2.3)

(V K2) implies that

lim
|t|→+∞

K(x)
|t|ζ

|t|p∗
= 0 a.e. on x ∈ RN .

Then there exists t1 > 0 such that

K(x)|t|ζ < ε|t|p∗ for all |t| > t1 and a.e. on x ∈ RN . (3.2.4)

Continuity of the function |t|ζ−p∗ over the compact interval [t0, t1] implies the existence
of C > 0 such that

|t|ζ ≤ C|t|p∗ for all t ∈ [t0, t1]. (3.2.5)

Thus,

K(x)|t|ζ ≤ εC (V (x)|t|p + |t|p∗) + C K(x)χ[t0,t1](|t|)|t|p
∗
, for all t ∈ R.

Fix u ∈ X and let r1 > 0, the last estimate provides∫
Bcr1

|x|−bp∗K(x)|u|qdx ≤ εC

(∫
Bcr1

|x|−bp∗V (x)|u|pdx+

∫
Bcr1

|x|−bp∗ |u|p∗
)

+ C

∫
Bcr1

K(x)χ[t0,t1](|u|)|u|p
∗

≤ εCQ(u) + C

∫
A∩Bcr1

|x|−bp∗K(x)dx, (3.2.6)

where

Q(u) =

∫
Bcr1

|x|−bp∗V (x)|u|pdx+

∫
Bcr1

|x|−bp∗ |u|p∗dx

and A = {x ∈ RN ; t0 ≤ |u(x)| ≤ t1}.
Since vn ⇀ v in X, (vn) is bounded in X. By (1.2.1), there exists c1 > 0 such that

Q(vn) ≤ c1. (3.2.7)

From (V K1), choose r2 > r1 such that∫
A∩Bcr2

|x|−bp∗K(x)dx ≤ ε. (3.2.8)

From (3.2.6), (3.2.7) and (3.2.8),∫
Bcr2

|x|−bp∗K(x)|vn|qdx ≤ ε. (3.2.9)
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Consider vn = v for all n. We see that (3.2.9) allow us to choose r3 > r2 such that∫
Bcr3

|x|−bp∗K(x)|v|qdx ≤ ε. (3.2.10)

From (3.2.9) and (3.2.10),∫
Bcr3

|x|−bp∗K(x)|vn|qdx→
∫
Bcr3

|x|−bp∗K(x)|v|qdx. (3.2.11)

Observe that X(Br3) ↪→ D1,p
a (Br3)

c
↪→ Lζb(Br3) ↪→ Lζb,K(Br3) from Theorem C.0.7 and

the hypothesis (V K0), then

intBr3 |x|
−bp∗K(x)|vn|qdx→

∫
Br3

|x|−bp∗K(x)|v|qdx. (3.2.12)

It follows that ∫
RN
|x|−bp∗K(x)|vn|qdx→

∫
RN
|x|−bp∗K(x)|v|qdx. (3.2.13)

If instead (V K3) holds, we consider, for every x ∈ RN �xed, the function

g(t) = V (x)tp−m + tp
∗−m, for every t > 0.

Since its minimum value is CmV (x)
p∗−m
p∗−p with Cm =

(
p∗−p
p∗−m

)(
m−p
p∗−m

) p−m
p∗−p

, it is

CmV (x)
p∗−m
p∗−p ≤ V (x)tp−m + tp

∗−m, for every x ∈ RN and t > 0.

Combining this inequality with (V K3), for any ε > 0 there exists a positive radius r > 0
su�ciently large such that

K(x)|t|m ≤ εC ′m(V (x)|t|p + |t|p∗), for every t ∈ R and |x| > r

where C ′m = C−1
m , from which it follows∫

Bcr(0)
|x|−bp∗K(x)|u|m dx ≤ εC ′m

∫
Bcr(0)

|x|−bp∗(V (x)|u|p + |u|p∗)dx, for all u ∈ X.

If {un}n is a sequence such that un ⇀ u in X, there exists C ′ > 0 such that∫
RN
|x|−bp∗V (x)|un|p ≤ C ′ and

∫
RN
|x|−bp∗ |un|p

∗
dx ≤ C ′, for all n ∈ N,

and then ∫
Bcr(0)

|x|−bp∗K(x)|un|m dx ≤ 2C ′C ′mε, ∀n ∈ N. (3.2.14)

Since m ∈ (p, p∗) and K is a continuous function, from Sobolev imbeddings on bounded
domains it is

lim
n→+∞

∫
Br(0)

|x|−bp∗K(x)|un|m dx =

∫
Br(0)

|x|−bp∗K(x)|u|m dx. (3.2.15)
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Then, from for ε > 0 small enough such that

lim
n→+∞

∫
RN
|x|−bp∗K(x)|un|m dx =

∫
RN
|x|−bp∗K(x)|u|m dx

and this implies
un → u, in Lmb,K(RN ).

Therefore, we can prove the following compactness result related to the nonlinear term.

Lemma 3.2.2. Suppose that f satis�es (f1)− (f2) or (f̃1)− (f2) and (V,K) ∈ K. If {un}n
is a sequence such that un ⇀ u in X, then

lim
n→+∞

∫
RN
|x|−bp∗K(x)F (un) dx =

∫
RN
|x|−bp∗K(x)F (u) dx

and

lim
n→+∞

∫
RN
|x|−bp∗K(x)f(un)un dx =

∫
RN
|x|−bp∗K(x)f(u)u dx.

Proof. We are going to prove only the second limit because the proof of the �rst limit is
similar to the proof of the second one. Assume that (V K2) holds. From (f1)− (f2), �xing
ζ ∈ (p, p∗) and taking ε > 0, there exists C > 0 such that

|K(x)f(t)t| ≤ εC(V (x)|t|p + |t|p∗) +K(x)|t|ζ , for all t ∈ R. (3.2.16)

From Proposition 3.2.1 since

lim
n→+∞

∫
RN
|x|−bp∗K(x)|un|ζ dx =

∫
RN
|x|−bp∗K(x)|u|ζ dx,

there exists a positive radius r > 0 such that∫
Bcr(0)

|x|−bp∗K(x)|un|ζ dx < ε, for all n ∈ N. (3.2.17)

Since {un}n is bounded in X, there exists a positive constant C ′ such that∫
RN
|x|−bp∗V (x)|un|p ≤ C ′ and

∫
RN
|x|−bp∗ |un|p

∗
dx ≤ C ′, for all n ∈ N.

From this inequality together with (3.2.16) and (3.2.17) it is∣∣∣∣∣
∫
Bcr(0)

|x|−bp∗K(x)|un|ζ dx

∣∣∣∣∣ < (2CC ′ + 1)ε, for all n ∈ N.

Now assume (V K3) and following the same arguments in the second part of proof of
Proposition 3.2.1, given ε > 0 su�ciently small, there exists r > 0 large enough such
that

K(x) ≤ εC ′m(V (x)|t|p−m + |t|p∗−m), for every |t| > 0 and |x| > r.

Consequently, for all |t| > 0 and |x| > r

K(x)|f(t)t| ≤ εC ′m(V (x)|f(t)t||t|p−m + |f(t)t||t|p∗−m).
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From (f̃1) and (f2), there exist C, t0, t1 > 0 satisfying

K(x)|f(t)t| ≤ εC(V (x)|t|p + |t|p∗), for every t ∈ I and |x| > r

where I = {t ∈ R : |t| < t0 or |t| > t1}. Therefore, for every u ∈ X the following estimate
holds ∫

Bcr(0)
|x|−bp∗K(x)f(u)u dx ≤ εCQ(u) + C

∫
A∩Bcr(0)

|x|−bp∗K(x) dx

with

Q(u) =

∫
RN
|x|−bp∗V (x)|u|p dx+

∫
RN
|x|−bp∗ |u|p∗ dx

and
A =

{
x ∈ RN : t0 ≤ |u(x)| ≤ t1

}
.

Since {un}n is bounded in X, there exists C ′ > 0 such that∫
RN
|x|−bp∗V (x)|un|p ≤ C ′ and

∫
RN
|x|−bp∗ |un|p

∗
dx ≤ C ′, for all n ∈ N.

Therefore, ∫
Bcr(0)

|x|−bp∗K(x)f(un)un dx ≤ C ′′ε+ C

∫
An∩Bcr(0)

|x|−bp∗K(x) dx,

where
An =

{
x ∈ RN : t0 ≤ |un(x)| ≤ t1

}
.

Following the same arguments in the proof of Proposition 3.2.1 and by (V K1) we deduce
that ∫

An∩Bcr(0)
|x|−bp∗K(x) dx→ 0, as r → +∞,

uniformly in n ∈ N and, for ε > 0 small enough∣∣∣∣∣
∫
Bcr(0)

|x|−bp∗K(x)f(un)un dx

∣∣∣∣∣ < (C ′′ + 1)ε.

In order to complete the proof, we have to prove that

lim
n→+∞

∫
Br(0)

|x|−bp∗K(x)f(un)un dx =

∫
Br(0)

|x|−bp∗K(x)f(u)u dx.

Since {un}n is bounded in X, {un}n is bounded in D1,p
a (RN ), then it is bounded in

Lp
∗

b (RN ) by (1.2.1). Furthermore, there exists u ∈ Lp
∗

b (RN ) such that

un ⇀ u in Lp
∗

b (RN ),

then

un(x)→ u(x) a.e. in RN .

Let P (x, s) = |x|−bp∗K(x)f(s)s and Q(x, s) = |x|−bp∗K(x)|s|p∗ .
If (V K2) holds, then (f1) and (f2) provide

f(t)t ≤ ε(|t|p + |t|p∗) + C|t|p for all t ∈ R.
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If (V K3) holds, then (f̃1) and (f2) provide

f(t)t ≤ ε(|t|m + |t|p∗) + C|t|p for all t ∈ R

with m ∈ (p, p∗).
In both cases, holds

lim
|s|→+∞

P (x, s)

Q(x, s)
= 0 uniformly in x ∈ RN .

Thus, the result follows from Theorem C.0.9.

3.3 Existence of a least energy positive solution

Since we intend to �nd a positive solution, we will assume that

(f+) f(t) = 0 for all t ∈ (−∞, 0].

Now we de�ne the Nehari set associated to the functional J given by

N = {u ∈ X\{0} : J ′(u)u = 0}.

In the next result we show that for each u ∈ X with u 6= 0, there is an unique projection
in N .

Lemma 3.3.1. If (f1)- (f4) hold, then, for each u ∈ X with u 6= 0, there exists an unique
t0 = t0(u) > 0 such that t0u ∈ N and J(t0u) = max

t≥0
J(tu).

Proof. Let u ∈ X be a function with u 6= 0 and h(t) = J(tu), i.e.,

h(t) =
tp

p

∫
RN
|x|−ap|∇u|pdx+

tp

p

∫
RN
|x|−bp∗V (x)|u|pdx−

∫
RN
|x|−bp∗K(x)F (tu)dx.

Let us start by assuming that (V K2) holds. By (f1) and (f2), �xing ε > 0, there exists
Cε > 0 such that

h(t) ≥ tp

p

∫
RN
|x|−ap|∇u|pdx+ (1− ε) t

p

p

∫
RN
|x|−bp∗V (x)|u|pdx

−Cε
tp
∗

p∗

∫
RN
|x|−bp∗K(x)|u|p∗dx.

Then, there exists t1 > 0 su�cient small such that h(t) > 0, for all 0 < t < t1.
Now suppose that (V K3) holds. By (f̃1) and (f2), �xing ε > 0 there exists Cε > 0 such

that

h(t) ≥ tp

p

∫
RN
|x|−ap|∇u|pdx+

tp

p

∫
RN
|x|−bp∗V (x)|u|pdx

−εt
m

m

∫
RN
|x|−bp∗K(x)|u|mdx− Cε

tp
∗

p∗

∫
RN
|x|−bp∗K(x)|u|p∗dx.

Then, there exists t1 > 0 su�cient small such that h(t) > 0, for all 0 < t < t1.
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Let us recall that, from (f3), there exist two positive constants D,D′ > 0 such that
F (t) ≥ Dtθ − D′, for all t > 0. Then, choosing ϕ ∈ C∞0 (RN ) \ {0} with ϕ ≥ 0 in RN ,
we have

J(tϕ) ≤ tp

p

∫
suppϕ

|x|−ap|∇ϕ|p dx+
tp

p

∫
suppϕ

|x|−bp∗V (x)|ϕ|p dx

−Dtθ
∫

suppϕ
|x|−bp∗K(x)|ϕ|θ dx+D′

∫
suppϕ

|x|−bp∗K(x) dx.

Since p < θ < p∗, there exists t > 1 such that h(t) < 0, for every t ≥ t.
Hence, there exists t0 > 0 such that

h(t0) = max
t≥0

h(t) = max
t≥0

J(tu),

which implies h′(t0) = 0, i.e.,

tp−1
0

∫
RN
|x|−ap|∇u|pdx+ tp−1

0

∫
RN
|x|−bp∗V (x)|u|pdx =

∫
RN
|x|−bp∗K(x)f(t0u)udx

that implies t0u ∈ N .
We show that t0 is unique. Suppose, by contradiction, there exists s > 0 such that

su ∈ N . Then,∫
RN
|x|−ap|∇u|pdx+

∫
RN
|x|−bp∗V (x)|u|pdx =

∫
RN
|x|−bp∗K(x)

f(t0u)

tp−1
0

udx

and ∫
RN
|x|−ap|∇u|pdx+

∫
RN
|x|−bp∗V (x)|u|pdx =

∫
RN
|x|−bp∗K(x)

f(s0u)

sp−1
0

udx.

from (f4), follows by t0 = s0.

In the next lemma we show that the minimizing sequences cannot converge to zero.
Moreover, there exists a real number c = inf

N
J > 0.

Lemma 3.3.2. For all u ∈ N , there exists a positive constant C independent on u such
that 0 < C ≤ ‖u‖ and J(u) ≥ 0.

Proof. Note that using (V K2), (f1), (f2) and for all u ∈ N , we have

‖u‖pV =

∫
RN
|x|−bp∗K(x)f(u)u dx ≤ ε

∣∣∣∣∣∣∣∣KV
∣∣∣∣∣∣∣∣
∞

∫
RN
|x|−bp∗V (x)|u|p dx+Cε

∫
RN
|x|−bp∗K(x)|u|p∗ dx.

Then, choosing ε > 0 we get

0 <

[
(1− εC1

∣∣∣∣K
V

∣∣∣∣
∞)

CεC2‖K‖∞

]1/(p∗−p)
≤ ‖u‖.

Note that using (V K3), (f̃1), (f2) and for all u ∈ N , we have

‖u‖pV =

∫
RN
|x|−bp∗K(x)f(u)u dx

≤ ε

∫
RN
|x|−bp∗K(x)|u|m dx+ Cε

∫
RN
|x|−bp∗K(x)|u|p∗ dx.
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Arguing as Lemma 3.2.2 we get

‖u‖pV ≤
∫
RN
|x|−bp∗K(x)f(u)u dx ≤ ε

∫
RN
|x|−bp∗V (x)up dx+ C

∫
RN
|x|−bp∗K(x)|u|p∗ dx,

using that K is a continuous function and m < p∗ we have

‖u‖pV ≤ εC1‖u‖p + C2‖K‖∞‖u‖m

and choosing ε > 0 we get

0 <

[
1− εC1

C2‖K‖∞

]1/(m−p)
≤ ‖u‖.

Note that, from (f4), we obtain

f ′(t)t− (p− 1)f(t) > 0, (3.3.1)

for all t > 0. But this inequality implies that

1

p
f(t)t− F (t) is increasing for t > 0. (3.3.2)

Using (3.3.2) and (V K0) we derive

J(u) = J(u)− 1

p
J ′(u)u ≥

∫
RN
|x|−bp∗K(x)[

1

p
f(u)u− F (u)]dx ≥ 0.

In the next result we prove that the minimizing sequence is bounded.

Lemma 3.3.3. If (un) ⊂ N is a minimizing sequence for J , then (un) is bounded in E.

Proof. From (f+), we can consider un ≥ 0, for all n ∈ N. Then,

c+ on(1) = J(un)− 1

p
J ′(un)un ≥

1

p
‖un‖pV +

∫
RN

K(x)[
1

p
f(un)un − F (un)]dx.

Using (3.3.2) and (V K0) the proof is over.

In the next result we prove that c is achieved.

Lemma 3.3.4. There exists u ∈ N such that J(u) = c.

Proof. Consider (un) ⊂ N a minimizing sequence. Then, it is bounded in X and, up to a
subsequence, we have un ⇀ u0 in X. Note that u0 6= 0, because otherwise, using Lemma

3.2.2, we obtain ‖un‖pV =

∫
RN
|x|−bp∗K(x)f(un)un dx = on(1), which is a contradiction

with Lemma 3.3.2.
Consider t0 > 0 such that u = t0u0 ∈ N . Since ‖ · ‖V is weak lower semicontinuous and∫

RN
|x|−bp∗K(x)F (t0un)dx =

∫
RN
|x|−bp∗K(x)F (t0u0)dx+ on(1) and we get

c ≤ J(u) = J(t0u0) ≤ lim inf
n→∞

J(t0un) ≤ lim inf
n→∞

J(un) = c.
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3.3.1 Proof of Theorem 3.1.1

Lemma 3.3.5. Suppose that u ∈ N , c = inf
v∈N

J(v) and J(u) = c. Then u is a weak solution

of the problem (P ).

Proof. Suppose, by contradiction, that u is not a weak solution of (P ). Then we �nd a
function φ ∈ C∞0 (RN ) such that

J ′(u)φ =

∫
RN
|x|−ap|∇u|p−2∇u∇φdx+

∫
RN
|x|−bp∗V (x)|u|p−2uφdx

−
∫
RN
|x|−bp∗K(x)f(u)φdx ≤ −1.

Choose ε > 0 small such that

J ′(tu+ σφ)φ ≤ −1

2
, for |t− 1|+ |σ| ≤ ε. (3.3.3)

Let η be a cut-o� function that η(t) = 1 for |t− 1| ≤ ε/2 and η(t) = 0 for |t− 1| ≥ ε.
Now we estimate sup

t≥0
J(tu+εηφ). Observe that for all (t, σ) we have J(tu+εηφ) < J(u).

In fact, for |t − 1| ≥ ε, we have J(tu + εηφ) = J(tu) < J(u). For 0 < |t − 1| ≤ ε, from
(3.3.3) we have

J(tu+ εηφ) = J(tu) +

∫ 1

0
J ′(tu+ σεη(t)φ)εη(t)φdσ ≤ J(tu)− 1

2
εη(t)

≤ J(tu) < J(u).

Now for t = 1, J(tu + εη(t)φ) = J(u + εη(1)φ) ≤ J(u) − 1

2
ε < J(u). We

concluded sup
t≥0

J(tu + εηφ)<c = inf
u∈N

J(u). Now it is su�cient to �nd t̄ > 0 such that

t̄u+ εη(t̄)φ ∈ N , which is a contradiction by de�nition of c. For this, consider the function
h : [1 − ε, 1 + ε] → X given by h(t) = tu + εη(t)φ and Υ : [1 − ε, 1 + ε] → R given by
Υ(t) = J ′(tu+ εη(t)φ)(tu+ εη(t)φ). Note that Υ(t) = P (t)−Q(t) where P is a polynomial
and Q(t) =

∫
RN |x|

−bp∗K(x)f(tu+ εη(t)φ)(tu+ εη(t)φ)dx arguing as Lemma 3.2.2, we get
that Υ is a continuous function.

Observe that Υ(1−ε) = J ′((1−ε)u)(1−ε)u > 0 and Υ(1+ε) = J ′((1+ε)u)(1+ε)u < 0.
Indeed, u ∈ N , then J(u) = maxt≥0 J(tu) from the Lemma 3.3.1, i.e., 1 is the maximum
point of the function w : R→ R, w(t) = J(tu), then

w′(1− ε) = J ′((1− ε)u)u > 0

and

w′(1 + ε) = J ′((1 + ε)u)u < 0.

Since ε > 0 is small, then

J ′((1− ε)u)(1− ε)u > 0

and

J ′((1 + ε)u)(1 + ε)u < 0,

hence
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Υ(1− ε) > 0

and

Υ(1 + ε) < 0.

Thus, Intermediate Value Theorem ensures that there exists t̄ ∈ (1− ε, 1 + ε) such that
Υ(t̄) = 0.

3.4 Existence of a least Energy nodal solution

In the following we search a nodal or sign-changing weak solution of problem (P ), i.e., a
function u ∈ X such that u+ := max{u, 0} 6= 0, u− := min{u, 0} 6= 0 in RN and∫

RN
|x|−ap|∇u|p−2∇u∇v dx+

∫
RN
|x|−bp∗V (x)|u|p−2uv dx

−
∫
RN
|x|−bp∗K(x)f(u)v dx = 0, for all v ∈ X.

In particular, we look for u ∈ X which has exactly two nodal domains or equivalently
changes sign exactly once. Since the Nehari manifold associated to the functional J

N :=

{
u ∈ X\{0} :

〈
J ′(u), u

〉
= 0

}
is a natural constraint for J , we can look for critical points of J constrained on N still
denoting, for simplicity of notations, J|N by J .
Recall that a non zero critical point w of J is a least energy weak solution of (P ) if
J(w) = min

v∈N
J(v) and, since our purpose is to prove the existence of a least energy sign-

changing weak solution of (P ), in particular, we look for w ∈M such that J(w) = min
v∈M

J(v),

whereM is the subset of N containing all sign-changing weak solutions of (P ), i.e.,

M =

{
w ∈ N : w+ 6= 0, w− 6= 0,

〈
J ′(w+), w+

〉
= 0 =

〈
J ′(w−), w−

〉}
.

For sake of simplicity, in the following we often denote∫
RN
|x|−ap|∇w±|p dx+

∫
RN
|x|−bp∗V (x)|w±|p dx =

∫
RN
|x|−bp∗K(x)f(w±)w± dx.

So, let us begin by establishing some preliminary results which will be exploited in the last
section for a minimization argument.
In particular, in this �rst lemma, we prove that J is strictly positive on N then onM, ‖ · ‖
is uniformly bounded from below by a strictly positive radius on N and then on M and
the same applies to the positive and negative part w± of every w ∈M. It follows that J is
coercive on N and in particular onM since J(u)→ +∞ as ‖u‖ → +∞, for every u ∈ N .

Lemma 3.4.1. (i) For all u ∈ N such that ‖u‖V → +∞, then J(u)→ +∞.

(ii) There exists ρ > 0 such that ‖u‖V ≥ ρ for all u ∈ N and ‖w±‖V ≥ ρ for all w ∈M.
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Proof. Consider (un) ⊂ N such that ‖un‖pV →∞. By (f3) and (V K0), we have that

J(un)− 1

θ
J ′(un)un =

(
1

p
− 1

θ

)
‖un‖pV +

∫
RN
|x|−bp∗K(x)[

1

θ
f(un)un − F (un)]dx,

which proves (i).

In order to prove (ii), let us observe that, by assumptions (f1) − (f2) or (f̃1) − (f2),
respectively we have that, for any ε > 0, a positive constant Cε > 0 exists such that

|f(t)t| ≤ ε|t|p + Cε|t|p
∗
, for all t ∈ R. (3.4.1)

|f(t)t| ≤ ε|t|m + Cε|t|p
∗
, for all t ∈ R. (3.4.2)

Since for every u ∈ N it holds∫
RN
|x|−ap|∇u|pdx+

∫
RN
|x|−bp∗V (x)|u|pdx =

∫
RN
|x|−bp∗K(x)f(u)udx

if (V K2) holds, considering (3.4.1), by Sobolev embeddings it is

C ′0‖u‖
p
V ≤ C̃ε‖u‖

p∗

V , (3.4.3)

where C ′0 and C̃ε are positive constants. Instead if (V K3) holds, using (3.4.2) and by
continuous Sobolev imbeddings we get

‖u‖pV ≤ εC̃‖u‖
m
V + C̃ε‖u‖p

∗

V . (3.4.4)

Hence, in both cases, there exists a positive radius ρ1 > 0 such that ‖u‖V ≥ ρ1.
Now, if w ∈M, we have that 〈J ′(w±), w±〉 = 0 namely w± ∈ N , hence by the previous

estimate we obtain 0 < ρ ≤ ‖w±‖V .

From previous lemma we deduce a result valid for every sequence in M that we apply in
the last section to every bounded minimizing sequence of J on M so that the candidate
minimizer is di�erent from zero.

Remark 2. If (wn) is a sequence inM, we have that

lim inf
n→∞

∫
RN
|x|−bp∗ |w±n |m dx > 0.

Lemma 3.4.2. If v ∈ X with v± 6= 0, then there exist t, s > 0 such that〈
J ′(tv+ + sv−), v+

〉
= 0 and

〈
J ′(tv+ + sv−), v−

〉
= 0.

Consequently, tv+ + sv− ∈M.

Proof. Since the support of positive part of v and negative part of v are disjoint, the proof
is similar of Lemma 3.3.1.
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3.4.1 Proof of the existence of nodal solution

At this point, we can �nally prove the existence of w ∈ M in which the in�mum of J is
attained onM. We �nd that w is a critical point of J and then a least energy nodal solution
of (P ). In order to complete the proof of Theorem 3.1.1, we conclude by showing that w
has exactly two nodal domains.

First, let us start with the existence of a minimizer w ∈ M of J . In what follows, we
denote c0 the in�mun of J inM

c0 = inf
v∈M

J(v).

By Lemma 3.4.1, we deduce that c0 > 0. Thus, there exists a bounded minimizing sequence
(wn) in M and J is coercive on M from Lemma 3.4.1. If (V K3) holds, then, arguing as
Proposition 3.2.1, we can assume up to a subsequence that there exist w,w1, w2 ∈ X such
that

wn ⇀ w, w+
n ⇀ w1, w−n ⇀ w2 in X

wn → w, w+
n → w1, w−n → w2 in Lmb,K(RN ), m ∈ (p, p∗).

Since the transformations w → w+ and w → w− are continuous from Lmb,K(RN ) in Lmb,K(RN )

(see Lemma 2.3 in [17] with suitable adaptations), we have that w+ = w1 ≥ 0 and
w− = w2 ≤ 0. At this point, we can prove that w ∈ M. Indeed, by w+

n → w+ and
w−n → w− in Lmb (RN ) it is, as n→ +∞∫

RN
|x|−bp∗ |(wn)±|m dx→

∫
RN
|x|−bp∗ |w±|m dx.

Then, by Remark 2, we conclude that w± 6= 0 and consequently w = w+ + w− is sign-
changing.
By Lemma 3.4.2 and the fact that w+ and w− have disjoint supports, there exist t, s > 0
such that 〈

J ′(tw+ + sw−), w+
〉

=
〈
J ′(tw+), w+

〉
=
〈
J ′(tw+), tw+

〉
= 0, (3.4.5)

〈
J ′(tw+ + sw−), w−

〉
=
〈
J ′(sw−), w−

〉
=
〈
J ′(sw−), sw−

〉
= 0, (3.4.6)

then tw+ + sw− ∈M.
Now, let us prove that t, s ≤ 1.

Proposition 3.4.3. Let t, s > 0 be the values of the projections of w+ and w− inM. Then
t, s ≤ 1.

Proof. Since ‖.‖V is weak lower semicontinuous and∫
RN
|x|−bp∗K(x)f((wn)±)(wn)± dx→

∫
RN
|x|−bp∗K(x)f(w±)w± dx

from the Lemma 3.2.2, we get〈
J ′(w+), w+

〉
≤ 0 and

〈
J ′(w−), w−

〉
≤ 0. (3.4.7)

Note that if t > 1, then 〈J ′(w+), w+〉 6= 0 once that tw+ ∈M and the projection inM
is unique, we conclude that 〈

J ′(w+), w+
〉
< 0. (3.4.8)
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Let h : R+ → R, h(t) = J(tw+). Observe that

h′(t) = 〈J ′(tw+), w+〉 =
1

t
〈J ′(tw+), tw+〉 = 0,

hence h has exactly one critical point once that the projection in M is unique and it is a
maximum point from Lemma 3.3.1. Thus, for ε > 0 small so that (1− ε)t > 1 and〈

J ′((1− ε)tw+), (1− ε)tw+
〉
> 0. (3.4.9)

(3.4.8), (3.4.9) and the Intermediate Value Theorem provide the existence of ξ ∈
(1, (1− ε)t) with 〈

J ′(ξw+), ξw+
〉

= 0,

then h′(ξ) = 1
ξ 〈J

′(ξw+), ξw+〉 = 0, which is a contradiction with the uniqueness of the
critical point of the function h and this shows that t ≤ 1. The same argument shows that
s ≤ 1.

In the next step we show that J(tw+ + sw−) = c0 and t = s = 1 or better J(w) = c0.
Indeed, since t, s ≤ 1 and wn ⇀ w in X as n → +∞, the weak lower semicontinuity of J
on X described above and

t 7−→ 1

p
f(t)t− F (t), is increasing for t ∈ R.

by the hypothesis (f4), we get

c0 ≤ J(tw+ + sw−) = J(tw+ + sw−)− 1

p

〈
J ′(tw+ + sw−), (tw+ + sw−)

〉
= intRN |x|−bp

∗
K(x)

1

p
f(tw+)tw+ − F (tw+)dx

+

∫
RN
|x|−bp∗K(x)

1

p
f(sw−w−)sw−w− − F (sw−w−)dx

≤
∫
RN
|x|−bp∗K(x)

1

p
f(w+)w+ − F (w+)dx

+

∫
RN
|x|−bp∗K(x)

1

p
f(w−)w− − F (w−)dx

= J(w+ + w−)− 1

p

〈
J ′(w+ + w−), (w+ + w−)

〉
≤ lim inf

n→+∞

(
J(w+

n + w−n )− 1

p

〈
J ′(w+

n + w−n ), (w+
n + w−n )

〉)
= lim

n→+∞
J(wn) = c0.

Then we have found that J(tw+ + sw−) = c0 or, equivalently, that there exist 0 < t, s ≤ 1
such that tw+ + sw− ∈ M and J(tw+ + sw−) = c0. Let us observe that, if t 6= 1 or s 6= 1
by above calculations we would obtain a contradiction. Thus, t = s = 1, w+ + w− ∈ M
and J(w) = c0.

At this point, we state that w is a critical point of J , i.e. J ′(w) = 0. Then w is a weak
solution of the problem (P ). Suppose, by contradiction, that w is not a weak solution of
(P ). Then we �nd a function φ ∈ C∞0 (RN ) such that

J ′(u)φ =

∫
RN
|x|−ap|∇w|p−2∇w∇φdx+

∫
RN
|x|−bp∗V (x)|w|p−2wφdx

−
∫
RN
|x|−bp∗K(x)f(w)φdx ≤ −1.
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Choose ε > 0 small such that

J ′(tw+ + sw− + σφ)φ ≤ −1

2
for |t− 1|+ |s− 1|+ |σ| ≤ ε. (3.4.10)

Let η be a cut-o� function that η(t, s) = 1 for |t − 1| ≤ ε/2 and |s − 1| ≤ ε/2 and
η(t, s) = 0 for |t− 1| ≥ ε or for |s− 1| ≥ ε.

Now we estimate sup
t,s≥0

J(tw+ + sw− + εηφ). Observe that for all (t, s, σ) we have

J(tw+ + sw− + εηφ) < J(w). In fact, for |t − 1| ≥ ε or for |s − 1| ≥ ε, we have
J(tw+ + sw− + εηφ) = J(tw+ + sw−) < J(w). For 0 < |t− 1| ≤ ε and for 0 < |s− 1| ≤ ε,
from (3.4.10) we have

J(tw+ + sw− + εηφ) = J(tw+ + sw−) +

∫ 1

0
J ′(tw+ + sw− + σεη(t)φ)εη(t)φdσ

≤ J(tw+ + sw−)− 1

2
εη(t) ≤ J(tw+ + sw−) < J(w).

Now for t = 1 and s = 1, J(tw+ + sw−+ εη(t)φ) = J(w+ εη(1)φ) ≤ J(w)− 1

2
ε < J(w).

We concluded
sup
t,s≥0

J(tw+ + sw− + εηφ)<c0 = inf
v∈M

J(v).

Now it is su�cient to �nd t̄, s̄ > 0 such that t̄w++s̄w−+εη(t̄)φ ∈M, which is a contradiction
by de�nition of c0. For this, consider the function h : [1− ε, 1 + ε]× [1− ε, 1 + ε]→ X given
by h(t, s) = tw+ + sw−+ εη(t)φ and Υ : [1− ε, 1 + ε]× [1− ε, 1 + ε]→ R given by Υ(t, s) =
J ′(tw+ + sw−+ εη(t)φ)(tw+ + sw−+ εη(t)φ). Note that Υ(t, s) = P (t, s)−Q(t, s) where P
is a polynomial and Q(t, s) =

∫
RN |x|

−bp∗K(x)f(tw+ +sw−+εη(t)φ)(tw+ +sw−+εη(t)φ)dx
arguing as Lemma 3.2.2, we get that Υ is a continuous function.

Observe that Υ((1−ε), (1−ε)) = J ′((1−ε)w+ +(1−ε)w−)((1−ε)w+ +(1−ε)w−) > 0
and Υ((1 + ε), (1 + ε)) = J ′((1 + ε)w+ + (1 + ε)w−)(1 + ε)w+ + (1 + ε)w−) < 0. Indeed,
w+, w− ∈ N , then J(w+) = maxt≥0 J(tw+) and J(w−) = maxs≥0 J(sw−) from the Lemma
3.3.1, i.e., t = 1 is the maximum point of the function u+ : R → R, u+(t) = J(tw+) and
s = 1 is the maximum point of the function u− : R→ R, u−(s) = J(sw−), then

(u+)′(1− ε) = J ′((1− ε)w+)w+ > 0,

(u+)′(1 + ε) = J ′((1 + ε)w+)w+ < 0,

(u−)′(1− ε) = J ′((1− ε)w−)w− > 0

and

(u−)′(1 + ε) = J ′((1 + ε)w−)w− < 0.

As a consequence,
Υ((1 − ε), (1 − ε)) = J ′((1 − ε)w+ + (1 − ε)w−)((1 − ε)w+ + (1 − ε)w−) > 0 and

Υ((1 + ε), (1 + ε)) = J ′((1 + ε)w+ + (1 + ε)w−)(1 + ε)w+ + (1 + ε)w−) < 0.
Since ε > 0 is small, the Intermediate Value Theorem ensures that there exist t̄, s̄ ∈

(1− ε, 1 + ε) such that

J ′(t̄w+)w+ = 0

and
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J ′(s̄w−)w− = 0,

hence

J ′(t̄w+)t̄w+ = 0

and

J ′(s̄w−)s̄w− = 0.

The supports of w+ and w− are disjoints, then Υ(t̄, s̄) = 0.
Similar argument shows that there exists w ∈ M such that w is a critical point of J if

(V K2) holds.

Finally, we prove that w has exactly two nodal domains or equivalently it changes sign
exactly once. Let us observe that assumptions (f1) and (f2) or (f̃1) and (f2) ensure that
w is continuous and then R̃N = {x ∈ RN : w(x) 6= 0} is open. Suppose by contradiction
that R̃N has more than two components or w has more than two nodal domains and,
since w changes sign, without loss of generality, we can assume that w = w1 + w2 +
w3,where w1 ≥ 0, w2 ≤ 0, w3 6= 0, and supp(wi) ∩ supp(wj) = ∅, for i 6= j, i, j = 1, 2, 3.
Clearly it is understood that wi = 0 on RN \ supp(wi) for i = 1, 2, 3. So the disjointness of
the supports combined with J ′(w) = 0 implies 〈J ′(w1 + w2), w1〉 = 0 = 〈J ′(w1 + w2), w2〉 .
Since 0 6= w1 = (w1 + w2)+ and 0 6= w2 = (w1 + w2)−, by previous arguments, there exist
t, s ∈ (0, 1] such that t(w1 + w2)+ + s(w1 + w2)− ∈ M namely tw1 + sw2 ∈ M and then
J(tw1 + sw2) ≥ c0.
On the other side, 0 6= w3 ∈ N , Lemma 3.4.1 (ii) and

c0 ≤ J(tw1 + sw2) ≤ J(w1 + w2) < J(w1 + w2) + J(w3) = J(w) = c0

then a contradiction and we conclude that w3 = 0.
Thus, the proof of Theorem 3.1.1 is complete.
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Appendix A

Proof of the Lemma 1.3.8 and

Principle of Symmetric Criticality

A.1 Proof of the Lemma 1.3.8

Recall the Lemma 1.3.8.

Lemma A.1.1. Let ε > 0. Suppose that η̃ ∈ Γ̃ satis�es

max
t∈[0,1]

Ĩ(η̃) ≤ c∗ + ε,

then, there exists (θ, u) ∈ R× E0,rad such that

• distR×E0,rad
((θ, u), η̃([0, 1])) ≤ 2

√
ε;

• Ĩ(θ, u) ∈ [c∗ − ε, c∗ + ε];

• ‖DĨ(θ, u)‖R×E∗0,rad ≤ 2
√
ε.

Proof. Observe that
Ĩ(ũ) = Ĩ(0, u) = I(u)

and

−I(u) ≤ |I(u)| ≤ 1

p
‖u‖p +

ε

p
‖u‖p +

C1Cε
q
‖u‖q ≤ C,

for all u ∈ B(0, ρ) ⊂ E0,rad by (1.3.1), then I is bounded below on B(0, ρ).
As X =

(
B(0, ρ), ‖ · ‖

)
is a complete metric space, I is a lower semicontinuous functional

and bounded below on X, the result follows from the hypothesis and by the Ekeland's
Variational Principle (see Theorem 1.1 in [28]).

A.2 Principle of Symmetric Criticality

We prove the Principle of Symmetric Criticality following the proofs of Proposition 2.1 and
Theorem 2.7 in [40].

Let X be a real Banach space and let X∗ be its dual. The norms of X and X∗ will be
denoted by ‖ · ‖ and ‖ · ‖∗; respectively. We shall denote by X∗〈·, ·〉X the duality pairing
between X and X∗; which will be simply denoted by 〈·, ·〉 if no confusion arises.
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Let G be a group and let π be a representation of G over X; that is, π(g) is a bounded
linear operator in X for each g ∈ G and

π(e)u = u,∀u ∈ X
π(g1g2)u = π(g1)(π(g2))u,∀g1, g2 ∈ G,∀u ∈ X,

where e is the identity element of G: the representation πx of G over X∗ is naturally induced
by π through the relation:

〈π∗(g)v∗, u〉 = 〈v∗, π(g−1)u〉, g ∈ G, v∗ ∈ X∗, u ∈ X. (A.2.1)

For simplicity, we shall often write gu or gv∗ instead of π(g)u or π∗(g)v∗, respectively. A
function h on X (or X∗) is called G-invariant if

h(gu) = h(u), ∀u ∈ X(or h(gu∗) = h(u∗),∀u∗ ∈ X∗), ∀g ∈ G,

and a subset M of X (or M∗ of X∗) is called G-invariant if

gM = {gu;u ∈M} ⊂M(or gM∗ ⊂M∗), ∀g ∈ G.

The linear subspaces of G-symmetric points of X and X∗ are de�ned as the common
�xed points of G:

Σ = {u ∈ X; gu = u,∀g ∈ G},
Σ∗ = {v∗ ∈ X∗; gv∗ = v∗, ∀g ∈ G},

Hence, by (A.2.1), v∗ ∈ X∗ is symmetric if and only if it is a G-invariant functional. Σ
and Σ∗ form closed linear subspaces of X and X∗, respectively, so Σ and Σ∗ are regarded
as Banach spaces with their induced topologies.

Let C1
G(X) be the set of all G-invariant C1-functional on X: we consider the following

principle:

(P ) For all J ∈ C1
G(X), it holds that (J |Σ)′(u) = 0 assures J ′(u) = 0 and u ∈ Σ.

Here (J |Σ)′(u) and J ′(u) denote the Fréchet derivatives of J |Σ and J at u in Σ and X,
respectively.

Proposition A.2.1 ( [40], Proposition 2.1). The principle (P ) is valid if and only if
Σ∗ ∩ Σ⊥ = {0}, where Σ⊥ = {v∗ ∈ X∗; 〈v∗, u〉 = 0,∀u ∈ Σ}.

Proof. Suppose Σ∗ ∩ Σ⊥ = {0} and let u0 be a critical point of J |Σ. We must show
J ′(u0) = 0. Since J(u0) = J |Σ(u0) and J(u0 + v) = J |Σ(u0 + v) for all v ∈ Σ, we get

X∗〈J ′(u0), v〉X =Σ∗ 〈(J |Σ)′(u0), v〉Σ = 0, ∀v ∈ Σ,

where Σ∗〈·, ·〉Σ denotes the duality pairing between Σ and its dual Σ∗. This implies
J ′(u0) ∈ Σ⊥. On the other hand, it follows from the G-invariance of J that

〈J ′(gu), v〉 = lim
t→0

J(gu+ tv)− J(gu)

t

= lim
t→0

J(u+ tg−1v)− J(u)

t

= 〈J ′(u), g−1v〉
= 〈gJ ′(u), v〉,
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for all g ∈ G and u, v ∈ X. This means J ′ is G-equivariant, i.e.,

J ′(gu) = gJ ′(u),∀g ∈ G,∀u ∈ X. (A.2.2)

Especially, since u0 ∈ Σ, we obtain gJ ′(u0) = J ′(u0) for all g ∈ G, that is, J ′(u0) ∈ Σ∗.
Thus, we conclude J ′(u0) ∈ Σ∗ ∩ Σ⊥ = {0}, i.e., J ′(u0) = 0.

Reciprocally, suppose that there exists a non-zero element v∗ ∈ Σ∗∩Σ⊥ and de�ne J∗(·)
by J∗(u) = 〈v∗, u〉. Then J∗ ∈ C1

G(X) and (J∗)
′(·) = v∗ 6= 0 has no critical point in X. On

the other hand, the assumption v∗ ∈ Σ⊥ implies v∗|Σ ≡ 0, whence follows (J∗|Σ)′(u) = 0
for all u ∈ Σ. This violates the principle (P ). Therefore the condition Σ∗ ∩ Σ⊥ = {0} is
necessary for the principle (P ).

We introduce an assumption on G:
(A) G is a compact topological group and the representation π of G overX is continuous,

i.e., (g, u) 7→ gu is a continuous mapping from G×X into X.
By Rudin [ [43], Theorem 3.27], for each u ∈ X, there exists a unique element Au ∈ X

such that

〈v∗, Au〉 =

∫
G
〈v∗, gu〉dµ(g),∀v∗ ∈ X∗, (A.2.3)

where µ is the normalized Haar measure on G: The mapping A is called the averaging over
G and has the following properties:

• A is a continuous linear projection from X onto Σ.

• If K is a G-invariant closed convex subset of X; then A(K) ⊂ K.

Theorem A.2.2 ( [40], Theorem 2.7). If (A) is satis�ed, then the (P ) is valid.

Proof. We check the condition Σ∗∩Σ⊥ = {0} again. Let v∗ ∈ Σ∗∩Σ⊥ and suppose v∗ 6= 0.
Since v∗ ∈ Σ∗, the hyperplane H = {u; 〈v∗, u〉 = 1} becomes a non-empty G-invariant closed
convex subset of X: Then, for any u ∈ H, we have Au ∈ H ∩Σ and hence 〈v∗, u〉 = 0 since
v∗ ∈ Σ⊥. This contradicts the fact that Au ∈ H.
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Appendix B

Existence of a ground state solution

for an auxiliary problem

Consider the problem{
−div

(
|x|−ap|∇u|p−2∇u

)
+ |x|−bp∗ |u|p−2u = |x|−bp∗ |u|τ−2u in Ω,

u ∈ E(Ω),
(PΩ)

where τ is the constant that appeared in the hypothesis (f5) and Ω is a bounded domain
that appeared in the hypothesis (V2). The Euler-Lagrange functional associated to (PΩ) is
given by

Φ0(u) =
1

p

∫
Ω

|x|−ap|∇u|pdx+
1

p

∫
Ω

|x|−bp∗ |u|pdx− 1

τ

∫
Ω

|x|−bp∗ |u|τdx.

Arguing as Lemma 2.2.1, from [49, Lemma 1.15], there exists (un) ⊂ E(Ω), a sequence
(PS)c0 for the functional Φ0. Arguing as Lemma 2.2.2, we can prove that (un) ⊂ E(Ω) is
bounded.

Then, by Sobolev embedding, there exists u ∈ E(Ω) such that, up to a subsequence, we
have 

un ⇀ u, in E(Ω);
un → u, in Lsb,loc(Ω), 1 ≤ s < p∗;

un → u, a.e in Ω.

(B.0.1)

Then,

Cp‖un − u‖p0,Ω = Cp

[∫
Ω
|x|−ap|∇un −∇u|p +

∫
Ω
|x|−bp∗ |un − u|p

]
,

which implies
Cp‖un − u‖p ≤ Φ′0(un)un − Φ′0(un)u+ on(1).
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Appendix C

Basic Results

Lemma C.0.1 (Fatou's lemma). If (fn) is a sequence of nonnegative measurable functions,
then ∫

RN
lim inf
n→+∞

fndx ≤ lim inf
n→+∞

∫
RN
fndx.

Theorem C.0.2 (Brezis Lieb's Theorem). Let Ω be a domain of RN and (hn) ⊂ Ls(Ω)
with s > 1 and

hn(x)→ h(x) a.e. in Ω.

If there exists C > 0 such that ∫
Ω
|hn|sdx ≤ C,

then

hn ⇀ h in Ls(Ω).

Theorem C.0.3 (Lebesgue's Dominated Convergence Theorem). Let A be a measurable
set of RN and (fj) a sequence of measurable functions such that

fj(x)→ f(x) a.e. in A,

where f is a measurable function. If there exists a function g ∈ L1(A) such that

|fj(x)| ≤ g(x) a.e. in A,

then

lim
j→∞

∫
A
fj(x)dx =

∫
A
f(x)dx.

Theorem C.0.4 (Vainberg's Theorem). Let (fj) be a sequence of functions in Lq(Ω) and
f ∈ Lq(Ω) such that

fj → f in Lq(Ω).

Then there exist (fjk) ⊂ (fj) and a function g ∈ Lq(Ω) such that

|fjk(x)| ≤ g(x) a.e. in Ω
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and

fjk(x)→ f(x) a.e. in Ω.

Proposition C.0.5. [ [38], p.250] If f : RN → R is a radial function, then∫
RN

f(|x|)dx = ωN−1

∫ ∞
0

f(r)rN−1dr,

where ωN−1 is the area of the unit sphere SN−1 ⊂ RN .

Proposition C.0.6. Let x, y ∈ RN and 〈·, ·〉 the inner product on RN . Then

〈|x|p−2x− |y|p−2y〉 ≥

{
cp
|x−y|2

(|x|+|y|)
2−p

, 1 < p < 2,

cp|x− y|p, p ≥ 2,
(C.0.1)

where cp is a positive constant.

Theorem C.0.7. [ [46], p. 706] Suppose that Ω ⊂ RN is an open bounded domain with C1

boundary and 0 ∈ Ω, 1 < p < N , −∞ < a < N−p
p . The imbedding D1,p

a (Ω) ↪→ Lr(Ω, |x|−α)

is compact if 1 ≤ r < Np
N−p , α < (1 + a)r +N

(
1− r

p

)
.

Theorem C.0.8. [Concentration Compactness Principle [46], p.709] Let 1 < p < N ,
−∞ < a < N−p

p , a ≤ b ≤ a + 1, q = p∗(a, b) = Np
N−dp , d = 1 + a − b ∈ [0, 1] and M(RN ) be

the space of bounded measures on RN . Suppose that {um} ⊂ D1,p
a (RN ) be a sequence such

that:

um ⇀ u in D1,p
a (RN ),

µm := ||x|a∇um||pdx ⇀ µ inM(RN ),

νm := ||x|bum||qdx ⇀ ν inM(RN ),

um → u a.e. on RN .

then there are the following statements:

(1) There exists some at most countable set J , a family {xj ; j ∈ J} of distinct points in
RN and a family {νj ; j ∈ J} of positive numbers such that

ν = ||x|−bu||qdx+
∑
j∈J

νjδxj ,

where δx is the Dirac-mass of mass 1 concentrated at x ∈ RN .

(2) The following inequality holds

µ ≥ ||x|−a∇u||pdx+
∑
j∈J

µjδxj

for some family {µj ; j ∈ J} satisfying

Sa,b(νj)
p
q ≤ µj for all j ∈ J.

In particular,
∑

j∈J(νj)
p
q <∞.
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Theorem C.0.9. [Compactness lemma of Strauss [15], p.338] Let Ω be a bounded domain
and let P and Q : Ω× R→ R be two continuous functions satisfying

lim
|s|→+∞

P (x, s)

Q(x, s)
= 0 uniformly in x ∈ RN .

Let (un) be a sequence of measurable functions from RN to R such that

sup
n∈N

∫
RN
|Q(x, un(x))|dx < +∞

and

P (un(x, s))→ v(x, s) a.e. in RN and uniformly in x ∈ RN , as n→ +∞.

Then for any bounded Borel set B one has∫
B
|P (x, un(x))− v(x)|dx→ 0 as n→ +∞.
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Appendix D

Technical results

We show the existence of critical points in this appendix.

Lemma D.0.1 (convergence a.e. of the gradient). Let Ĩ the functional de�ned in (1.3.8)
and (un) a bounded sequence in E0 such that un ⇀ u in E0 and Ĩ ′(un)→ 0, then ∇un → ∇u
a.e. in RN up to a subsequence.

Proof. Along this proof, we denote all positive constants by c.
Let (un) a bounded sequence in E0 such that un ⇀ u in E0 and Ĩ ′(un)→ 0. As un ⇀ u in

E0, un(x)→ u(x) a.e. in RN . De�ne en := |x|−ap〈|∇un|p−2∇un−|∇u|p−2∇u,∇(un−u)〉 ≥
0. Let ε > 0, de�ne the function τε : R→ R by

τε(s) =

{
s, |s| ≤ ε,
εs
|s| , |s| > ε.

(D.0.1)

Observe that |τε(s)| ≤ |s|, then τε ∈ E0.
Hölder's inequality provides∣∣∣∣∫

RN
endx

∣∣∣∣ ≤ ∫
RN
||x|−ap+a(|∇un|p−2∇un − |∇u|p−2∇u)|||x|−a∇(un − u)|dx

≤
(∫

RN

∣∣|x|−ap+a|∇un|p−2∇un − |∇u|p−2∇u
∣∣ p
p−1 dx

) p−1
p

×
(∫

RN

∣∣|x|−a∇(un − u)
∣∣p dx) 1

p

≤
(∫

RN
|x|−ap

∣∣|∇un|p−2∇un − |∇u|p−2∇u
∣∣ p
p−1 dx

) p−1
p

×
(∫

RN
|x|−ap |∇(un − u)|p dx

) 1
p

(D.0.2)

Use the inequality (a+ b)r ≤ 2r−1(ar + br) in the last two integrals to have

∫
RN
|x|−ap

∣∣|∇un|p−2∇un − |∇u|p−2∇u
∣∣ p
p−1 dx ≤ 2

1
p−1

∫
RN
|x|−ap(|∇un|p + |∇u|p)dx.

and ∫
RN
|x|−ap |∇(un − u)|p dx ≤ 2p−1

∫
RN
|x|−ap(|∇un|p + |∇u|p)dx.
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These two estimates and the boundedness of the sequence (un) in E0 ensure that (en)
is bounded in L1(RN ).

Let φ ∈ C∞0 (RN ) such that supp φ ⊂ Bm+1(0), 0 ≤ φ ≤ 1 and φ|Bm(0) ≡ 1. Let l > 0
and de�ne

Ωl = {x ∈ RN ; |u(x)| > l} and ωl = {x ∈ RN ; |u(x)| ≤ l},
then ∫

RN
φe

1
p
ndx =

∫
Ωl

φe
1
p
ndx+

∫
ωl

φe
1
p
ndx. (D.0.3)

We proceed to estimate the integral in the right-hand side of the equation above.
Step 1. Estimate over Ωl.
Hölder inequality and the boundedness of (en) provide∫

Ωl

φe
1
p
ndx ≤

(∫
Ωl

endx

) 1
p
(∫

Ωl

φ
p
p−1dx

) p−1
p

≤
(∫

RN
endx

) 1
p

(∫
Ωl∩Bm+1(0)

φ
p
p−1dx

) p−1
p

≤ c

(∫
Ωl∩Bm+1(0)

dx

) p−1
p

≤ c

(∫
Ωl∩Bm+1(0)

|u|
l
dx

) p−1
p

≤ c

(∫
RN
|x|−bp∗ |u|

p∗

lp∗
dx

) 1
p∗
(∫

Bm+1(0)
|x|bp∗dx

) p∗−1
p∗


p−1
p

≤ c 1

l
p−1
p

(D.0.4)

with c independent of l and n.
Step 2. Estimate over ωl.
De�ne

Ωn,ε = {x ∈ RN ; |un(x)− u(x)| ≥ ε} and ωn,ε = {x ∈ RN ; |un(x)− u(x)| < ε},

then ∫
ωl

φe
1
p
ndx =

∫
ωl∩ωn,ε

φe
1
p
ndx+

∫
ωl∩Ωn,ε

φe
1
p
ndx. (D.0.5)

Step 2.1 Estimate over ωl ∩ Ωn,ε

Hölder inequality and the boundedness of (en) provide

∫
ωl∩Ωn,ε

φe
1
p
ndx ≤

(∫
ωl∩Ωn,ε

endx

) 1
p
(∫

ωl∩Ωn,ε

φ
p
p−1dx

) p−1
p

≤ c

(∫
ωl∩Ωn,ε∩Bm+1(0)

φ
p
p−1dx

) p−1
p

≤ c (meas (Ωn,ε ∩Bm+1(0)))
p−1
p .
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As meas (Bm+1(0)) < ∞ and un(x) → u(x) a.e. in RN , we have that (un|Bm+1(0))
converges to u in measure, then there exists n0 ∈ N such that

meas
({
x ∈ RN ; |un(x)− u(x)| ≥ ε

2

}
∩Bm+1(0)

)
<
ε

2
for all n ≥ n0.

Then

(meas (Ωn,ε ∩Bm+1(0))) < ε for all n ≥ n0,

hence

lim sup
n→∞

∫
ωl∩Ωn,ε

e
1
p
ndx < cε

p−1
p . (D.0.6)

Step 2.2 Estimate over ωl ∩ ωn,ε.
Hölder inequality provides∫

ωl∩ωn,ε
φe

1
p
ndx =

∫
ωl∩ωn,ε∩Bm+1(0)

φe
1
p
ndx

≤

(∫
ωl∩ωn,ε∩Bm+1(0)

φendx

) 1
p
(∫

ωl∩ωn,ε∩Bm+1(0)
φdx

) p−1
p

≤ c

(∫
ωl∩Ωn,ε∩Bm+1(0)

φendx

) 1
p

. (D.0.7)

By de�nition of en,∫
ωl∩ωn,ε∩Bm+1(0)

φendx =

∫
ωl∩ωn,ε∩Bm+1(0)

|x|−ap|∇un|p−2∇un∇(un − u)φdx

−
∫
ωl∩ωn,ε∩Bm+1(0)

|x|−ap|∇u|p−2∇u∇(un − u)φdx

=

∫
ωl∩ωn,ε∩Bm+1(0)

|x|−ap|∇un|p−2∇un∇τε(un − u)φdx

−
∫
ωl∩ωn,ε∩Bm+1(0)

|x|−ap|∇u|p−2∇u∇τε(un − u)φdx

≤
∫
RN
|x|−ap|∇un|p−2∇un∇τε(un − u)φdx

−
∫
RN
|x|−ap|∇u|p−2∇u∇τε(un − u)φdx.

This and (D.0.7) provide

c

(∫
ωl∩ωn,ε

φe
1
p
ndx

)p
≤
∫
RN
|x|−ap|∇un|p−2∇un∇τε(un − u)φdx

−
∫
RN
|x|−ap|∇u|p−2∇u∇τε(un − u)φdx. (D.0.8)

Step 2.2.1 Estimate the second integral in the right-hand side of (D.0.8).
Observe the functional H de�ned in E0 by

H(w) =

∫
RN
|x|−ap|∇u|p−2∇u∇wφdx
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is bounded and, as un ⇀ u, we have∫
RN
|x|−ap|∇u|p−2∇u∇τε(un − u)φdx = H(un − u)→ 0. (D.0.9)

Step 2.2.2 Estimate the �rst integral in the right-hand side of (D.0.8).
Observe that∫
RN
|x|−ap|∇un|p−2∇un∇τε(un − u)φdx =

∫
RN
|x|−ap|∇un|p−2∇un∇(τε(un − u)φ)dx

−
∫
RN
|x|−ap|∇un|p−2∇un∇φτε(un − u)dx

(D.0.10)

Step 2.2.2.1 Estimate the second integral in the right-hand side of (D.0.10).
Hölder's inequality, the boundedness of (en) in E0 and τε ≤ ε ensure that∣∣∣∣∫

RN
|x|−ap|∇un|p−2∇un∇φτε(un − u)dx

∣∣∣∣ ≤ ε∫
RN
|x|−ap|∇un|p−1|∇φ|dx ≤ ε‖un‖p−1‖φ‖ ≤ cε.

(D.0.11)

Step 2.2.2.2 Estimate the �rst integral in the right-hand side of (D.0.10).
By de�nition of Ĩ, we have

∂uĨ(θn, un)(φτε(un − u))

= exp((N − p)θn)

∫
RN
|x|−ap|∇un|p−2∇un∇(φτε(un − u))dx

+ exp(Nθn)

∫
RN
|x|−bp∗ |un|p−2un(φτε(un − u))dx

− exp(Nθn)

∫
RN
|x|−bp∗h(un)(φτε(un − u))dx (D.0.12)

Observe that un ⇀ u in E0, then (un) is bounded in E0 and it is bounded in Lpb(R
N ),

hence un ⇀ u in Lpb(R
N ). This and τε ≤ ε ensure that∫

RN
|x|−bp∗ |un|p−2un(φτε(un − u))dx ≤ ε

∫
RN
|x|−bp∗ |un|p−2unφdx = ε

∫
RN
|x|−bp∗ |u|p−2uφdx+ on(1).

(D.0.13)

Since (τε(un−u)) is bounded, we see that ∂uĨ(θn, un)(φτε(un−u))→ 0. From (D.0.12),
(D.0.13), Hölder's inequality, τε ≤ ε, the (1.3.2) and θn → 0, we have
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∣∣∣∣∫
RN
|x|−ap|∇un|p−2∇un∇(φτε(un − u))dx

∣∣∣∣
≤ exp(−(N − p)θn)|∂uĨ(θn, un)(φτε(un − u))|

+ exp(−(N − p)θn)

∣∣∣∣exp(Nθn)

∫
RN
|x|−bp∗ |un|p−2un(φτε(un − u))dx

∣∣∣∣
+ exp(−(N − p)θn) exp(pθn)

∣∣∣∣∫
RN
|x|−bp∗h(un)(φτε(un − u))dx

∣∣∣∣
≤ on(1) + εc exp(pθn)

(∫
Bm+1(0)

|x|−bp∗ |u|pdx

)

+ ε exp(pθn)

(∫
Bm+1(0)

|x|−bp∗h(un)dx

)

≤ on(1) + εc

(∫
Bm+1(0)

|x|−bp∗ |u|pdx

)

+ ε exp(pθn)

(∫
Bm+1(0)

|x|−bp∗(ε|un|p−1 + Cε|un|q−1)φdx

)
(D.0.14)

The boundedness of (un) in E0, Hölder's inequality and E0 ↪→ Lsb(RN ) for s ∈ [p, p∗]
ensure that

ε exp(pθn)

(∫
Bm+1(0)

|x|−bp∗(ε|un|p−1 + Cε|un|q−1)φdx

)

≤ ε exp(pθn)

ε(∫
Bm+1(0)

|x|−bp∗ |un|pdx

) p−1
p
(∫

Bm+1(0)
|x|−bp∗ |φ|pdx

) 1
p

+Cε

(∫
Bm+1(0)

|x|−bp∗ |un|qdx

) q−1
q
(∫

Bm+1(0)
|x|−bp∗ |φ|qdx

) 1
q


≤ εc(1 + on(1)). (D.0.15)

From (D.0.14) and (D.0.15),∣∣∣∣∫
RN
|x|−ap|∇un|p−2∇un∇(φτε(un − u))dx

∣∣∣∣ ≤ εc(1 + on(1)). (D.0.16)

Step 3. Combine the estimates to conclude.
Take the limit in (D.0.10) and use (D.0.11) and (D.0.16), then

lim sup
n→∞

∫
RN
|x|−ap|∇un|p−2∇un∇τε(un − u)φdx

= lim sup
n→∞

∫
RN
|x|−ap|∇un|p−2∇un∇(τε(un − u)φ)dx

− lim sup
n→∞

∫
RN
|x|−ap|∇un|p−2∇un∇φτε(un − u)dx

≤ lim sup
n→∞

(εc(1 + on(1))) + lim sup
n→∞

(cε) ≤ cε, (D.0.17)
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Take the limit in (D.0.8) and use (D.0.9) and (D.0.17), then

lim sup
n→∞

c

(∫
ωl∩ωn,ε

φe
1
p
ndx

)p
≤ lim sup

n→∞

∫
RN
|x|−ap|∇un|p−2∇un∇τε(un − u)φdx

− lim sup
n→∞

∫
RN
|x|−ap|∇u|p−2∇u∇τε(un − u)φdx

≤ lim sup
n→∞

(cε)

≤ cε,

hence

lim sup
n→∞

∫
ωl∩ωn,ε

φe
1
p
ndx ≤ cε. (D.0.18)

Take the limit in (D.0.5) and use (D.0.6) and (D.0.18), then

lim sup
n→∞

∫
ωl

φe
1
p
ndx = lim sup

n→∞

∫
ωl∩ωn,ε

φe
1
p
ndx+ lim sup

n→∞

∫
ωl∩Ωn,ε

φe
1
p
ndx

≤ lim sup
n→∞

(cε
p−1
p ) + lim sup

n→∞
(cε)

≤ o(ε). (D.0.19)

Use (D.0.4) and (D.0.19) in (D.0.3). This shows that

lim sup
n→∞

∫
RN

φe
1
p
ndx = lim sup

n→∞

∫
Ωl

φe
1
p
ndx+ lim sup

n→∞

∫
ωl

φe
1
p
ndx

≤ lim sup
n→∞

(
c

l
p−1
p

)
+ lim sup

n→∞
o(ε)

≤ c

l
p−1
p

+ o(ε).

Thus, ε→ 0 and l→∞ ensure that

lim sup
n→∞

∫
Bm(0)

e
1
p
ndx ≤ lim sup

n→∞

∫
RN

φe
1
p
ndx = 0,

hence

e
1
p
n → 0 in L1(Bm(0)).

If p > 2, then it follows by (C.0.1) that∫
Bm(0)

|∇un −∇u|dx ≤
∫
Bm(0)

e
1
p
ndx→ 0.

Then

∇un → ∇u a.e. in Bm(0).
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If 1 < p < 2, let s = p2−p+2
p2

> 1 and t = 1
sp > 0. Use Hölder's inequality and (C.0.1) to

get ∫
Bm(0)

|∇un −∇u|2tdx ≤
∫
Bm(0)

etn(|∇un|+ |∇u|)(2−p)tdx

≤

(∫
Bm(0)

estn dx

) 1
s
(∫

Bm(0)
(|∇un|+ |∇u|)

(2−p)ts
s−1 dx

) s−1
s

≤

(∫
Bm(0)

e
1
p
ndx

) 1
s
(∫

Bm(0)
(|∇un|+ |∇u|)

(2−p)ts
s−1 dx

)p
→ 0.

Thus,

|∇un −∇u| → 0 in L1(Bm(0)),

hence

∇un → ∇u a.e. in Bm(0),

up to a subsequence. A diagonal argument shows that

∇un → ∇u a.e. in RN .

An adaptation on Step 2.2.2.2 allow to prove the next three lemmas.

Lemma D.0.2 (convergence a.e. of the gradient). Let Ĩ0 the functional de�ned in (1.4.3)
and (un) a bounded sequence in D1,p

a (RN ) such that un ⇀ u in D1,p
a (RN ) and Ĩ ′0(un) → 0,

then ∇un → ∇u a.e. in RN up to a subsequence.

Lemma D.0.3 (convergence a.e. of the gradient). Let Iµ,0 the functional de�ned in (2.2.1)
when % = 0 and (un) a bounded sequence in E such that un ⇀ u in E and I ′µ,0(un) → 0,
then ∇un → ∇u a.e. in RN up to a subsequence.

Lemma D.0.4 (convergence a.e. of the gradient). Let Iµ,1 the functional de�ned in (2.2.1)
when % = 1 and (un) a bounded sequence in E such that un ⇀ u in E and I ′µ,1(un) → 0,
then ∇un → ∇u a.e. in RN up to a subsequence.

Lemma D.0.5. Let un ⇀ u in E0,rad. Then∫
RN
|x|−bp∗ |un|p−2unϕdx→

∫
RN
|x|−bp∗ |u|p−2uϕdx,∀ϕ ∈ C∞0,rad(RN ). (D.0.20)

Proof. From un ⇀ u in E0,rad,

un(x)→ u(x) a.e. in RN .

Observe that
(
|x|−b

(
p−1
p

)
p∗ |un|p−2un

)
⊂ L

p
p−1 (RN ) and |x|−b

(
p−1
p

)
p∗ |u|p−2u ∈

L
p
p−1 (RN ) because∫

RN

(
|x|−b

(
p−1
p

)
p∗ |un|p−1

) p
p−1

dx =

∫
RN
|x|−bp∗ |un|pdx ≤ sup

n∈N
‖un‖p0 <∞
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and ∫
RN

(
|x|−b

(
p−1
p

)
p∗ |u|p−1

) p
p−1

dx =

∫
RN
|x|−bp∗ |u|pdx ≤ ‖u‖p0 <∞.

Also, note that∫
RN

∣∣∣∣|x|−b( 1
p

)
p∗
ϕ

∣∣∣∣p dx =

∫
RN
|x|−bp∗ |ϕ|pdx ≤ ‖ϕ‖p0 <∞,

i.e., |x|−b
(

1
p

)
p∗
ϕ ∈ Lp(RN ).

As |x|−b
(
p−1
p

)
p∗ |un(x)|p−2un(x) → |x|−b

(
p−1
p

)
p∗ |u(x)|p−2u(x) a.e. in RN ,(

|x|−b
(
p−1
p

)
p∗ |un|p−2un

)
is bounded in L

p
p−1 (RN ) and |x|−b

(
p−1
p

)
p∗ |u|p−2u ∈ L

p
p−1 (RN ),

Brezis-Lieb's Theorem implies that∫
RN
|x|−bp∗ |un|p−2unϕdx =

∫
RN
|x|−b

(
p−1
p

)
p∗ |un|p−2un|x|

−b
(

1
p

)
p∗
ϕdx

→
∫
RN
|x|−b

(
p−1
p

)
p∗ |u|p−2u|x|−b

(
1
p

)
p∗
ϕdx

=

∫
RN
|x|−bp∗ |u|p−2uϕdx,∀ϕ ∈ C∞0,rad(RN ),

which proves (D.0.20).

We proceed to show that u is a critical point of I restricted to E0,rad.

Theorem D.0.6. Let un ⇀ u in E0,rad. Then u is a critical point of I restricted to E0,rad.

Proof. Let ϕ ∈ C∞0,rad(RN ) and �x it.
We want to show that

∫
RN
|x|−ap|∇un|p−2∇un∇ϕdx→

∫
RN
|x|−ap|∇u|p−2∇u∇ϕdx, (D.0.21)

∫
RN
|x|−bp∗ |un|p−2unϕdx→

∫
RN
|x|−bp∗ |u|p−2uϕdx (D.0.22)

and

∫
RN
|x|−bp∗h(un)ϕdx→

∫
RN
|x|−bp∗h(u)ϕdx. (D.0.23)

Observe that
(
|x|−a

(
p−1
p

)
p|∇un|p−2∇un

)
⊂ L

p
p−1 (RN ) and |x|−a

(
p−1
p

)
p|∇u|p−2∇u ∈

L
p
p−1 (RN ) because

∫
RN

(
|x|−a

(
p−1
p

)
p|∇un|p−1

) p
p−1

dx =

∫
RN
|x|−ap|∇un|pdx ≤ sup

n∈N
‖un‖p0 <∞

and
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∫
RN

(
|x|−a

(
p−1
p

)
p|∇u|p−1

) p
p−1

dx =

∫
RN
|x|−ap|∇u|pdx ≤ ‖u‖p0 <∞.

Also, note that∫
RN

∣∣∣∣|x|−a( 1
p

)
p∇ϕ

∣∣∣∣p dx =

∫
RN
|x|−ap|∇ϕ|pdx ≤ ‖ϕ‖p0 <∞,

i.e., |x|−a
(

1
p

)
p∇ϕ ∈ Lp(RN ).

As |x|−a
(
p−1
p

)
p|∇un(x)|p−2∇un(x) → |x|−a

(
p−1
p

)
p|∇u(x)|p−2∇u(x) a.e. in RN

from Lemma D.0.1,
(
|x|−a

(
p−1
p

)
p|∇un|p−2∇un

)
is bounded in L

p
p−1 (RN ) and

|x|−a
(
p−1
p

)
p|∇u|p−2∇u ∈ L

p
p−1 (RN ), Brezis-Lieb's Theorem implies that∫

RN
|x|−ap|∇un|p−2∇un∇ϕdx =

∫
RN
|x|−a

(
p−1
p

)
p|∇un|p−2∇un|x|

−a
(

1
p

)
p∇ϕdx

→
∫
RN
|x|−a

(
p−1
p

)
p|∇u|p−2∇u|x|−a

(
1
p

)
p∇ϕdx

=

∫
RN
|x|−ap|∇u|p−2∇u∇ϕdx,∀ϕ ∈ C∞0 (RN ),

which proves (D.0.21).
(D.0.22) is true by the Lemma D.0.5.
un ⇀ u in E0,rad implies that un → u in Lsb(suppϕ) for 1 ≤ s < p∗ from Theorem C.0.7.

The Vainberg's theorem implies that there exists gs ∈ Lsb(suppϕ) with 1 ≤ s < p∗ such that{
un(x)→ u(x) a.e. in RN ;

|un(x)| ≤ |gs(x)| a.e. in RN

up to a subsequence.
By continuity of h,

|x|−bp∗h(un(x))ϕ(x)→ |x|−bp∗h(u(x))ϕ(x) a.e. in RN .

By (1.3.2),

|x|−bp∗h(un(x))ϕ(x) ≤ ε|x|−bp∗ |un(x)|p−1|ϕ(x)|+ Cε|x|−bp
∗ |un(x)|q−1|ϕ(x)|

≤ ε|x|−bp∗ |gp(x)|p−1|ϕ(x)|+ Cε|x|−bp
∗ |gq(x)|q−1|ϕ(x)|, (D.0.24)

therefore Holder's inequality and the boundedness of (un) in Lpb(R
N ) imply that
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∫
RN
|x|−bp∗h(un)ϕdx ≤ ε

∫
RN
|x|−bp∗ |gp|p−1|ϕ|dx+ Cε

∫
RN
|x|−bp∗ |gq(x)|q−1|ϕ|dx

= ε

∫
RN
|x|−b

(
p−1
p

)
p∗ |gp|p−1|x|−b

(
1
p

)
p∗ |ϕ|dx

+ Cε

∫
RN
|x|−b

(
q−1
q

)
p∗ |gq|q−1|x|−b

(
1
q

)
p∗ |ϕ|dx

≤ ε
(∫

RN
|x|−bp∗ |gp|pdx

) p−1
p
(∫

RN
|x|−bp∗ |ϕ|pdx

) 1
p

+ Cε

(∫
RN
|x|−bp∗ |gq|qdx

) q−1
q
(∫

RN
|x|−bp∗ |ϕ|qdx

) 1
q

<∞.

This and (D.0.24) imply that |x|−bp∗h(un(x))ϕ(x) is dominated
by ε|x|−bp∗ |gp(x)|p−1|ϕ(x)| + Cε|x|−bp

∗ |gq(x)|q−1|ϕ(x)| ∈ L1(RN ). Thus, the Dominated
Convergence Theorem provides the convergence (D.0.20). Since θn → 0 from Lemma 1.3.9,

lim
n→+∞

exp((N − p)θn) = lim
n→+∞

exp(Nθn) = 1. These, (D.0.21), (D.0.22), (D.0.23) and

(1.3.13) ensure that

I ′(u)ϕ = 0.

Since ϕ ∈ C∞0,rad(RN ) is arbitrary,

I ′(u)ϕ = 0 for all ϕ ∈ C∞0,rad(RN ).

By density, u is a critical point of I restricted to E0,rad.

We proceed to show that u is a critical point of I0 restricted to D1,p
a,rad(R

N ).

Theorem D.0.7. Let un ⇀ u in D1,p
a,rad(R

N ). Then u is a critical point of I0 restricted to

D1,p
a,rad(R

N ).

Proof. Let ϕ ∈ C∞0,rad(RN ) and �x it.
Observe that the proof that

∫
RN
|x|−ap|∇un|p−2∇un∇ϕdx→

∫
RN
|x|−ap|∇u|p−2∇u∇ϕdx (D.0.25)

is similar to the previous theorem once that the Lemma D.0.2 holds.
We show that

∫
RN
|x|−bp∗f(un)ϕdx→

∫
RN
|x|−bp∗f(u)ϕdx. (D.0.26)

From f1), given ε > 0, there exist δ > 0 and A > 1 such that

f(t) ≤ 1

2
|t|p∗−1, for all t ∈ (0, δ),

f(t) ≤ ε|t|p∗−1, for all t ∈ (A,∞)
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and the continuity of f over the compact interval [δ, A] ensures that there exists C > 0
such that

f(t) ≤ C|t|p∗−1, for all t ∈ [δ, A].

The last three inequalities ensure that

f(t) ≤ ε|t|p∗−1 + Cε|t|p
∗−1, for all t ∈ R.

Then |x|−b
(
p∗−1
p∗

)
p∗
f(un) ∈ L

p∗
p∗−1 (RN ) and it is bounded since (un) is bounded in

Lp
∗

b (RN ).
From un ⇀ u in D1,p

a,rad(R
N ),

un(x)→ u(x) a.e. in RN .

By continuity of f ,

|x|−b
(
p∗−1
p∗

)
p∗
f(un(x))→ |x|−b

(
p∗−1
p∗

)
p∗
f(u(x)) a.e. in RN .

Thus, Brezis-Lieb's Theorem provides (D.0.26).
Since θn → 0 from Lemma 1.4.7, lim

n→+∞
exp((N − p)θn) = lim

n→+∞
exp(Nθn) = 1. These,

(D.0.25), (D.0.26) and (1.4.8) ensure that

I ′0(u)ϕ = 0.

Since ϕ ∈ C∞0,rad(RN ) is arbitrary,

I ′0(u)ϕ = 0 for all ϕ ∈ C∞0,rad(RN ).

By density, u is a critical point of I0 restricted to D1,p
a,rad(R

N ).

We proceed to show that uµ is a critical point of Iµ,0.

Theorem D.0.8. Let un ⇀ uµ in E. Then uµ is a critical point of Iµ,0.

Proof. Let Ω as in (V2), ϕ ∈ C∞0 (Ω) and �x it.
From un ⇀ uµ in E,

un(x)→ uµ(x) a.e. in RN

and

unφ ⇀ uµφ in E.

From Theorem C.0.7, it follows that E(supp φ)
c
↪→ Lsb(supp φ) with s ∈ [1, p∗) and

unφ→ uµφ in Lsb(supp φ).

By the Vainberg's Theorem, there exists h ∈ Lsb(supp φ) such that

un(x)φ(x)→ u(x)φ(x) a.e. in supp φ

and

|un(x)φ(x)| ≤ h(x) a.e. in supp φ
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up to a subsequence.
By continuity of f ,

f(un(x))φ(x)→ f(uµ(x))φ(x) a.e. in supp φ.

Observe that

|x|−bp∗ |f(un(x))φ(x)| ≤ |x|−bp∗(ξ|un(x)|p−1 + Cξ|un(x)|r−1)|φ(x)|
= ξ|x|−bp∗ |un(x)|p−1|φ(x)|+ Cξ|x|−bp

∗ |un(x)|r−1|φ(x)|
≤ ξ|x|−bp∗ |h(x)|p−1|φ(x)|+ Cξ|x|−bp

∗ |h(x)|r−1|φ(x)| a.e. in supp φ.

Holder's inequality ensures that∫
RN
|x|−bp∗ |h(x)|p−1|φ(x)|dx <∞

and ∫
RN
|x|−bp∗ |h(x)|r−1|φ(x)|dx <∞,

then ξ|x|−bp∗ |h(x)|p−1|φ(x)|+ Cξ|x|−bp
∗ |h(x)|r−1|φ(x)| ∈ L1(supp φ).

From Dominated Convergence Theorem,∫
RN
|x|−bp∗f(un)φdx→

∫
RN
|x|−bp∗f(uµ)φdx.

From Brezis-Lieb's theorem and Lemma D.0.3,∫
RN
|x|−ap|∇un|p−2∇un∇φdx→

∫
RN
|x|−ap|∇uµ|p−2∇uµ∇φdx

and ∫
RN
|x|−bp∗ |un|p−2unφdx→

∫
RN
|x|−bp∗ |uµ|p−2uµφdx.

Recall that I ′µ,0(un)φ = on(1).
Combine these convergences and take the limit when n→ +∞ to get

∫
RN
|x|−ap|∇uµ|p−2∇uµ∇φdx+

∫
RN
|x|−bp∗ |uµ|p−2uµφdx−

∫
RN
|x|−bp∗f(uµ)φdx = 0,

i.e.,

I ′µ,0(uµ)φ = 0.

Since φ ∈ C∞0 (Ω) is arbitrary, we have

I ′µ,0(uµ)φ = 0,∀φ ∈ C∞0 (Ω).

By density, uµ is a critical point of Iµ,0.

The next lemma is an adaptation of [ [46], p.711 and 712].
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Lemma D.0.9. Let (un) a (PS)cµ,1 sequence bounded in E such that un ⇀ u in E and

cµ,1 <

(
1
p −

1
p∗

)
S
N/pd
a,b , for all µ ≥ 0 and for all λ > λ∗. Then

∫
RN |x|

−bp∗ |un|p
∗
dx →∫

RN |x|
−bp∗ |u|p∗dx.

Proof. Let φ ∈ C∞0 (Ω) and �x it. Then there exists R > 0 with supp φ ⊂ BR(0).
Since (un) a bounded (PS)cµ,1 sequence in E, (un) is a bounded sequence in E(Ω). Then

(un) is bounded in D1,p
a (Ω),

(|un|p
∗−2un) is bounded in L(p∗)′

b (Ω),

(|un|p−2un) is bounded in Lp
′

b (Ω)

and {
|un(x)|p∗−2un(x)→ |u(x)|p∗−2u(x) a.e. in Ω,

|un(x)|p−2un(x)→ |u(x)|p−2u(x) a.e. in Ω.

Brezis-Lieb's Theorem and Lemma D.0.4 ensure that
|∇un|p−2∇un ⇀ |∇u|p−2∇u in (Lp

′
(Ω, |x|−ap))N ,

|un|p
∗−2un ⇀ |u|p

∗−2u in L(p∗)′

b (Ω),

|un|p−2un ⇀ |u|p−2u in Lp
′

b (Ω).

(D.0.27)

On the other hand,

E(Ω)
c
↪→ Lsb(Ω), 1 ≤ s < p∗.

By the Vainberg's theorem, there exist hs ∈ Lsb(Ω) such that{
un(x)→ u(x) a.e. in Ω,

|un(x)| ≤ hs(x) a.e. in Ω,

then{
f(un(x))→ f(u(x)) a.e. in Ω,

|x|−bp∗ |f(un(x))φ(x)| ≤ ξ|x|−bp∗ |hp(x)|p−1|φ(x)|+ Cξ|x|−bp
∗ |hr(x)|r−1|φ(x)| a.e. in Ω,

where |x|−bp∗ |hp|p−1|φ|+ |x|−bp∗ |hr|r−1|φ| ∈ L1(Ω).
The Dominated Convergence Theorem implies that∫

RN
|x|−bp∗f(un)φdx→

∫
RN
|x|−bp∗f(u)φdx. (D.0.28)

As (un) is a (PS)cµ,1 sequence, holds that

I ′µ,1(un)φ = on(1) (D.0.29)

Do n→ +∞ in (D.0.29), use (D.0.27) and (D.0.28) to have∫
RN
|x|−ap|∇u|p−2∇u∇φdx+

∫
RN
|x|−bp∗ |u|p−2uφdx (D.0.30)

=

∫
RN
|x|−bp∗f(u)φdx+

∫
RN
|x|−bp∗ |u|p∗−2uφdx.
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Let Φ ∈ C∞0 (RN ) such that 0 ≤ Φ(x) ≤ 1 for all x ∈ RN and

Φ(x) =

{
1, if x ∈ B 1

2
(0),

0, if x ∈ Bc
1(0).

For each ε > 0, de�ne

ψε(x) = Φ

(
x− xj
ε

)
,

where {xj}j∈J is a set of points of Ω will be �xed later.
Observe that

ψε(x) =

{
1, if x ∈ B ε

2
(xj),

0, if x ∈ Bc
ε(xj).

Let 1 > ε > 0 such that Bε(xj) ⊂ Ω. We show that (ψεun) is bounded in E. Since
0 ≤ ψε(x) ≤ 1 for all x ∈ RN ,∫
RN

(|x|−ap|∇(ψεun)|p + |x|−bp∗ |ψεun|p)dx ≤
∫
RN

(|x|−ap|∇ψεun|p + |x|−bp∗ |un|p)dx

=

∫
RN
|x|−ap|∇ψε|p|un|pdx+

∫
RN
|x|−ap|∇un|p|ψε|pdx

+

∫
RN
|x|−bp∗ |un|pdx

≤
∫
RN
|x|−ap|∇ψε|p|un|pdx+

∫
RN
|x|−ap|∇un|pdx

+

∫
RN
|x|−bp∗ |un|pdx.

It is su�cient to show that
∫
RN |x|

−ap|∇ψε|p|un|pdx is bounded independent of ε.
Let y =

x−xj
ε , then

∇ψε(x) =
1

ε
∇Φ(y).

Since Φ ∈ C∞0 (RN ), we have

|∇ψε(x)| ≤ ‖∇Φ‖∞
ε

. (D.0.31)

From Hölder's inequality,∫
RN
|x|−ap|∇ψε|p|un|pdx =

∫
RN
|x|−bp|un|p|x|−p(a−b)|∇ψε|pdx

≤
(∫

RN
|x|−bp∗ |un|p

∗
dx

) p
p∗

(∫
RN
|x|−

pp∗(a−b)
p∗−p |∇ψε|pdx

) p∗−p
p∗

.
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From (1.2.1), the boundedness of the sequence (un) in E and (D.0.31)

≤
(∫

RN
|x|−bp∗ |un|p

∗
dx

) p
p∗

(∫
Bε(xj)

|x|−
pp∗(a−b)
p∗−p |∇ψε|pdx

) p∗−p
p∗

≤ 1

Sa,b

(∫
RN
|x|−ap|∇un|pdx

)
(∫

Bε(xj)
|x|−

pp∗(a−b)
p∗−p |∇ψε|pdx

) p∗−p
p∗

≤ 1

Sa,b
sup
n∈N
‖un‖pµ

(∫
Bε(xj)

|x|−
pp∗(a−b)
p∗−p

∣∣∣∣‖∇Φ‖∞
ε

∣∣∣∣p dx
) p∗−p

p∗

=
1

Sa,b
sup
n∈N
‖un‖pµ

∣∣∣∣‖∇Φ‖∞
ε

∣∣∣∣p
(∫

Bε(xj)
|x|−

pp∗(a−b)
p∗−p dx

) p∗−p
p∗

.

From Proposition C.0.5,(∫
Bε(xj)

|x|−
pp∗(a−b)
p∗−p dx

) p∗−p
p∗

= ωN−1

(∫ ε

0
r
− pp

∗(a−b)
p∗−p rN−1dr

) p∗−p
p∗

= ωN−1

(∫ ε

0
r
pp∗(b−a)
p∗−p rN−1dr

) p∗−p
p∗

= ωN−1

(∫ ε

0
r
Np(b−a)

dp rN−1dr

) dp
N

= ωN−1

(∫ ε

0
r
Np(b−a)+Ndp

dp
−1
dr

) dp
N

= ωN−1

(∫ ε

0
r
N
d
−1dr

) dp
N

= ωN−1

(
d

N

) dp
N

εp.

Thus,

∫
RN
|x|−ap|∇ψε|p|un|pdx ≤

1

Sa,b
sup
n∈N
‖un‖pµ

∣∣∣∣‖∇Φ‖∞
ε

∣∣∣∣p
(∫

Bε(xj)
|x|−

pp∗(a−b)
p∗−p dx

) p∗−p
p∗

=
1

Sa,b
sup
n∈N
‖un‖pµ

∣∣∣∣‖∇Φ‖∞
ε

∣∣∣∣p ωN−1

(
d

N

) dp
N

εp

=
1

Sa,b
sup
n∈N
‖un‖pµ‖∇Φ‖p∞ωN−1

(
d

N

) dp
N

,

hence the boundedness of (ψεun) in E follows.
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Choose φ = ψεun in (D.0.29), then∫
RN
|x|−ap|∇un|p−2∇un∇(ψεun)dx+

∫
RN
|x|−bp∗ |un|p−2un(ψεun)dx

=

∫
RN
|x|−bp∗f(un)(ψεun)dx+

∫
RN
|x|−bp∗ |un|p

∗−2un(ψεun)dx,

i.e.,∫
RN
|x|−ap|∇un|p−2∇un∇(ψε)undx+

∫
RN
|x|−ap|∇un|pψεdx+

∫
RN
|x|−bp∗ |un|pψεdx

=

∫
RN
|x|−bp∗f(un)(ψεun)dx+

∫
RN
|x|−bp∗ |un|p

∗
ψεdx, (D.0.32)

Observe that

E(Ω)
c
↪→ Lsb(Ω), 1 ≤ s < p∗.

By the Vainberg's theorem, there exist hs ∈ Lsb(Ω) such that{
un(x)→ u(x) a.e. in Ω,

|un(x)| ≤ hs(x) a.e. in Ω,

then{
f(un(x))→ f(u(x)) a.e. in Ω,

|x|−bp∗ |f(un(x))ψ(x)un(x)| ≤ ξ|x|−bp∗ |hp(x)|p|ψ(x)|+ Cξ|x|−bp
∗ |hr(x)|r|ψ(x)| a.e. in Ω,

where |x|−bp∗ |hp|p|ψ|+ Cξ|x|−bp
∗ |hr|r|ψ| ∈ L1(Ω) once that ψ ∈ C∞0 (RN ).

The Dominated Convergence Theorem implies that∫
RN
|x|−bp∗f(un)(ψun)dx→

∫
RN
|x|−bp∗f(u)(ψu)dx. (D.0.33)

Do n→ +∞ in (D.0.32), use (D.0.27), (D.0.33) and Theorem C.0.8 to have∫
RN
|x|−apu|∇u|p−2∇u∇ψεdx+

∫
RN

µψεdx =

∫
RN
|x|−bp∗f(u)ψεudx+

∫
RN

νψεdx,

i.e.,∫
RN
|x|−apu|∇u|p−2∇u∇ψεdx+

∫
RN

ψεdµ =

∫
RN
|x|−bp∗f(u)ψεudx+

∫
RN

ψεdν. (D.0.34)

Do φ = ψεu in (D.0.30) to have∫
RN
|x|−ap|∇u|p−2∇u∇(ψεu)dx+

∫
RN
|x|−bp∗ |u|p−2u(ψεu)dx

=

∫
RN
|x|−bp∗f(u)(ψεu)dx+

∫
RN
|x|−bp∗ |u|p∗−2u(ψεu)dx,

i.e., ∫
RN
|x|−apu|∇u|p−2∇u∇ψεdx+

∫
RN
|x|−ap|∇u|pψεdx+

∫
RN
|x|−bp∗ |u|pψεdx

=

∫
RN
|x|−bp∗f(u)(ψεu)dx+

∫
RN
|x|−bp∗ |u|p∗ψεdx. (D.0.35)
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From (D.0.34) and (D.0.35),∫
RN

ψεdµ−
∫
RN

ψεdν = −
∫
RN
|x|−apu|∇u|p−2∇u∇ψεdx+

∫
RN
|x|−bp∗f(u)(ψεu)dx

=

∫
RN
|x|−ap|∇u|pψεdx+

∫
RN
|x|−bp∗ |u|pψεdx−

∫
RN
|x|−bp∗ |u|p∗ψεdx.

From this and Theorem C.0.8,∫
RN

ψεdµ =
∑
j∈J

νjψε(xj) +

∫
RN
|x|−ap|∇u|pψεdx+

∫
RN
|x|−bp∗ |u|pψεdx, (D.0.36)

We proceed to show that

lim
ε→0

∫
RN
|x|−ap|∇u|pψεdx = lim

ε→0

∫
RN
|x|−bp∗ |u|pψεdx = 0,

lim
ε→0

∫
RN

ψεdµ =

∫
{xj}

dµ

and

lim
ε→0

∫
RN

ψεdν =

∫
{xj}

dν.

For each ε > 0, ∫
RN
|x|−ap|∇u|pψεdx =

∫
RN
|x|−ap|∇u|pψεχBε(xj)dx

and

||x|−ap|∇u(x)|pψε(x)χBε(xj)(x)| ≤ |x|−ap|∇u(x)|p,

where |x|−ap|∇u|p ∈ L1(RN ). If ε→ 0,

|x|−ap|∇u(x)|pψε(x)χBε(xj)(x)→ 0 a.e. in RN .

Dominated Convergence Theorem ensures that

lim
ε→0

∫
RN
|x|−ap|∇u|pψεdx = 0. (D.0.37)

Similar argument shows that

lim
ε→0

∫
RN
|x|−bp∗ |u|pψεdx = 0. (D.0.38)

For each ε > 0,

|ψε(x)χBε(xj)(x)| ≤ 1.

If ε→ 0,

ψε(x)χBε(xj)(x)→ χ{xj}(x).
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Since Radon measures are �nite, we have that 1 is integrable with respect to ν. Thus,
Dominated Convergence Theorem ensures that

lim
ε→0

∫
RN

ψεdν = lim
ε→0

∫
RN

ψεχBε(xj)dν =

∫
RN

χ{xj}dν =

∫
{xj}

dν. (D.0.39)

Similar argument shows that

lim
ε→0

∫
RN

ψεdµ =

∫
{xj}

dµ. (D.0.40)

From (D.0.36), (D.0.37), (D.0.38), (D.0.39) and (D.0.40),

νj = ν(xj) = µ(xj) = µj ,

then

Sa,b(νj)
p
p∗ ≤ µj = νj ,

i.e.,

νj ≥ S
N
dp

a,b for νj 6= 0. (D.0.41)

As (un) is a (PS)cµ,1 sequence, holds that

cµ,1 + on(1) = Iµ,1(un)− 1

p
I ′µ,1(un)un

=

(
1

p
− 1

p∗

)∫
RN
|x|−bp∗ |un|p

∗
dx

+

∫
RN
|x|−bp∗

(
1

p
f(un)un − F (un)

)
dx.

The hypothesis (f4) implies that

t 7−→ 1

p
f(t)t− F (t), is increasing for t ∈ (0,+∞).

Hence ∫
RN
|x|−bp∗

(
1

p
f(un)un − F (un)

)
dx ≥ 0,

then

cµ,1 + on(1) ≥
(

1

p
− 1

p∗

)∫
RN
|x|−bp∗ |un|p

∗
dx.

0 ≤ ψε(x) ≤ 1 for all x ∈ RN provides that(
1

p
− 1

p∗

)∫
RN
|x|−bp∗ |un|p

∗
dx ≥

(
1

p
− 1

p∗

)∫
RN
|x|−bp∗ |un|p

∗
ψεdx.

If n→∞, Theorem C.0.8 ensures that

lim
n→+∞

(
1

p
− 1

p∗

)∫
RN
|x|−bp∗ |un|p

∗
ψεdx =

(
1

p
− 1

p∗

)∫
RN

|x|−bp∗ |u|p∗ +
∑
j∈J

νjδxj

ψεdx,
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then

cµ,1 ≥
(

1

p
− 1

p∗

)∫
RN

|x|−bp∗ |u|p∗ +
∑
j∈J

νjδxj

ψεdx

≥
(

1

p
− 1

p∗

)∫
RN

∑
j∈J

νjδxj

ψεdx

=

(
1

p
− 1

p∗

)∫
RN

ψενdx

=

(
1

p
− 1

p∗

)∫
RN

ψεdν.

If ε→ 0, (D.0.40) ensures that

cµ,1 ≥
(

1

p
− 1

p∗

)∫
{xj}

dν

=

(
1

p
− 1

p∗

)
νj

From (D.0.41),

cµ,1 ≥
(

1

p
− 1

p∗

)
νj ≥ S

N
dp

a,b for νj 6= 0,

which is a contradiction with the Lemma 2.4.1. Thus, νj = 0 for all j ∈ J and Theorem
C.0.8 ensures the convergence.

We proceed to show that uµ is a critical point of Iµ,1.

Theorem D.0.10. Let un ⇀ uµ in E. Then uµ is a critical point of Iµ,1.

Proof. Let Ω as in (V2), φ ∈ C∞0 (Ω) and �x it.
From un ⇀ uµ in E,

un(x)→ uµ(x) a.e. in RN

and

unφ ⇀ uµφ in E.

From Theorem C.0.7 it follows that E(supp φ)
c
↪→ Lsb(supp φ) with s ∈ [1, p∗) and

unφ→ uµφ in Lsb(supp φ).

By the Vainberg's theorem, there exists h ∈ Lsb(supp φ) such that

un(x)φ(x)→ u(x)φ(x) a.e. in supp φ

and

|un(x)φ(x)| ≤ h(x) a.e. in supp φ

up to a subsequence.
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By continuity of f ,

f(un(x))φ(x)→ f(uµ(x))φ(x) a.e. in supp φ.

Observe that

|x|−bp∗ |f(un(x))φ(x)| ≤ |x|−bp∗(ξ|un(x)|p−1 + Cξ|un(x)|r−1)|φ(x)|
= ξ|x|−bp∗ |un(x)|p−1|φ(x)|+ Cξ|x|−bp

∗ |un(x)|r−1|φ(x)|
≤ ξ|x|−bp∗ |h(x)|p−1|φ(x)|+ Cξ|x|−bp

∗ |h(x)|r−1|φ(x)| a.e. in supp φ.

Holder's inequality ensures that∫
RN
|x|−bp∗ |h(x)|p−1|φ(x)|dx <∞

and ∫
RN
|x|−bp∗ |h(x)|r−1|φ(x)|dx <∞,

then ξ|x|−bp∗ |h(x)|p−1|φ(x)|+ Cξ|x|−bp
∗ |h(x)|r−1|φ(x)| ∈ L1(supp φ).

From Dominated Convergence Theorem,∫
RN
|x|−bp∗f(un)φdx→

∫
RN
|x|−bp∗f(uµ)φdx.

From the Lemma D.0.9,

unφ→ uµφ in Lp
∗

b (supp φ).

By the Vainberg's theorem, there exists h ∈ Lp
∗

b (supp φ) such that

|un(x)|p∗−2un(x)φ(x)→ u(x)|uµ(x)|p∗−2uµ(x)φ(x) a.e. in supp φ

and

|un(x)φ(x)| ≤ h(x) a.e. in supp φ

up to a subsequence.
Observe that

|x|−bp∗ ||un(x)|p∗−2un(x)φ(x)| ≤ |x|−bp∗ |h(x)|p∗−1|φ(x)| a.e. in supp φ.

Holder's inequality ensures that∫
RN
|x|−bp∗ |h(x)|p∗−1|φ(x)|dx <∞,

then |x|−bp∗ |h(x)|p∗−1|φ(x)| ∈ L1(supp φ).
From Dominated Convergence Theorem,∫

RN
|x|−bp∗ |un|p

∗−2unφdx→
∫
RN
|x|−bp∗ |uµ|p

∗−2uµφdx.

From Brezis-Lieb's theorem and Lemma D.0.4,∫
RN
|x|−ap|∇un|p−2∇un∇φdx→

∫
RN
|x|−ap|∇uµ|p−2∇uµ∇φdx
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and ∫
RN
|x|−bp∗ |un|p−2unφdx→

∫
RN
|x|−bp∗ |uµ|p−2uµφdx.

Recall that I ′µ,1(un)φ = on(1).
Combine these convergences and take the limit when n→ +∞ to get∫

RN
|x|−ap|∇uµ|p−2∇uµ∇φdx+

∫
RN
|x|−bp∗ |uµ|p−2uµφdx−

∫
RN
|x|−bp∗f(uµ)φdx

−
∫
RN
|x|−bp∗ |uµ|p

∗−2uµφdx = 0,

i.e.,

I ′µ,1(uµ)φ = 0.

Since φ ∈ C∞0 (Ω) is arbitrary, we have

I ′µ,1(uµ)φ = 0,∀φ ∈ C∞0 (Ω).

By density, uµ is a critical point of Iµ,1.
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