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The only thing that interferes with my learning is my education.

(Albert Einstein)
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Resumo Expandido

TRI Profundo: uma aplicação de métodos de redes neurais profundas à Teoria de Resposta ao

Item

Este trabalho buscou um novo método para a estimação do nível de conhecimento de alunos,

no contexto de TRI para estimação da habilidade latente, o que foi feito ao criar um modelo

de redes neurais capaz de utilizar algoritmos de aprendizado de máquina a fim de estimar os

parâmetros do ML3. Essa rede foi aplicada ao Exame Nacional do Ensino Médio (Enem),

resultando em estimativas mais precisas do que alcançado por métodos tradicionais. Também

faz parte do escopo deste trabalho a replicação dos métodos oficiais de correção e atribuição de

notas aos alunos em uma linguagem aberta.

O trabalho é introduzido por uma contextualização do que é o Exame Nacional do Ensino

Médio, destacando sua relevância para a população e para a educação do país. Os métodos

utilizados na correção desse exame são indicados, com observações acerca de suas limitações

intrínsecas. Então, métodos de inteligência artificial são ilustrados, demonstrando sua abrangên-

cia e grande utilidade, e, em sequência, a utilização desses métodos em Teoria de Resposta ao

Item, na área que está sendo denominada TRI Profunda, sendo este trabalho uma expansão dos

modelos atualmente disponíveis e sua aplicação aos dados do Enem.

Em seguida, a revisão de literatura busca cadenciar o surgimento da TRI Profunda, tratando
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inicialmente da própria TRI e de redes neurais profundas, para mostrar como o modelo tradi-

cional de 3 parâmetros (ML3) pode ser escrito como uma rede neural. Então, é mostrado

sucintamente o modelo de TRI Profunda de Tsutsumi et. al (2021) e o que seriam positional

encoders, método utilizado mais à frente. Ainda como parte da revisão, são resumidas infor-

mações sobre o método de estimação utilizado pelo Inep e sobre as bases de dados disponibi-

lizadas publicamente e que foram o escopo de análise deste trabalho.

O Capítulo seguinte apresenta os dois métodos propostos para tratar dados binários origina-

dos de respostas de alunos a um teste: ML3 Raso (Shallow 3PL) e ML3 Profundo (Deep 3PL),

buscando extender os modelos previamente revisados, especialmente no caso deste último, que

se deriva mais diretamente do modelo de Tsutsumi et al. (2021). Os modelos utilizam es-

tratégias diferentes para lidar com o grande volume de dados de entrada, um com camadas de

embedding e o outro com positional encoders.

A Aplicação inicialmente descreve os passos percorridos neste trabalho, desde o tratamento

da base de dados, indicando os softwares e métodos utilizados. Então são apresentados os re-

sultados, primeiramente comparando o alcançado pelo Inep utilizando o software proprietário

BILOG e sua replicação no mirt, pacote de TRI disponível no R. Estes resultados são então

comparados aos modelos propostos, destacando-se a performance do modelo ML3 Raso, mais

preciso (com o menor EQM e perda) e maior verossimilhança das probabilidades de acerto

estimadas às respostas empíricas. Os resultados alcançados em lingaguem aberta também in-

dicam performance superior, apesar da falta de informações divulgadas sobre o método oficial

de estimação.

Por fim, esses resultados são sintetizados na Conclusão, com sugestões para trabalhos fu-

turos, destacando-se a fixação dos parâmetros dos itens na estimação das habilidades dos alunos.

Assim a estimação das notas poderá ser feita pelo algoritmo Adam, muito mais parcimonioso,

em vez das aproximações e integrações (Quadratura Gaussiana) do algoritmo EM utilizado.

Dessa forma, apresenta-se uma alternativa que poderia contribuir com o trabalho atualmente

feito pelo Inep, tanto na questão da transparência do cálculo das notas dos alunos, como na
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simplicidade e maior confiabilidade da estimação conduzida pela rede neural.

Palavras-chave: Teoria de Resposta ao Item (TRI); redes neurais profundas; aprendizado de

máquina; inteligência artificial; TRI Profundo
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Abstract

This work aimed to provide a new method for the estimation of examinees’ abilities in the

IRT context, which was done by designing a novel neural network capable of using machine

learning algorithms to estimate the 3PL IRT model parameters. This network was applied to

Brasil’s National High School Exam (Enem), yielding more accurate estimates than the tradi-

tional methods. It is also in the scope of this work to replicate the official methods used in the

evaluation of students’ grades in an open software.

Keywords: Item Response Theory (IRT); deep neural networks; machine learning; artificial

intelligence; Deep IRT

10



Contents

1 Introduction 16

2 Literature Review 19

2.1 Item Response Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.1.1 Three-Parameter Logistic Model (3PL) . . . . . . . . . . . . . . . . . 21

2.1.2 Estimation Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.2 Deep Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.2.1 The 3PL Model as a MLP . . . . . . . . . . . . . . . . . . . . . . . . 27

2.2.2 Regularization and Optimization . . . . . . . . . . . . . . . . . . . . . 31

2.3 Deep-IRT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.4 Positional Encoders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.5 Enem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3 Proposed Methods 38

3.1 Shallow 3PL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.2 Deep 3PL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4 Application 43

4.1 Inep’s estimation process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.2 Alternative estimation approaches . . . . . . . . . . . . . . . . . . . . . . . . 44

4.2.1 3PL in Mirt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

11



4.2.2 Shallow 3PL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.2.3 Deep 3PL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.3.1 The proposed models: Shallow 3PL and Deep 3PL . . . . . . . . . . . 51

5 Conclusions 54

A Description of the marginal maximum likelihood method 56

References 59

12



List of Tables

4.1 Comparison of the traditional 3PL methods applied to the estimation of Enem, with the

correlation coefficients between BILOG, mirt and Shallow 3PL. . . . . . . . . . . . 49

4.2 Grades and ranking of the ten best students according to Inep’s calculation through

different estimation methods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.3 Performance of all the methods applied to the estimation of Enem, the CTT being the

simplest model possible of the Classic Test Theory, that is, merely the sum of correct

answers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.4 Grades and ranking of the ten worst evaluated students according to Inep’s calculation

through different estimation methods. . . . . . . . . . . . . . . . . . . . . . . . . 51

13



List of Figures

2.1 (a) ICC’s of items 2 and 3 from R database LSAT7 (Bock Lieberman, 1970). The

second item shows adequate discrimination power (sharp slope) and difficulty close to

the mean (0), but has approximately 0.3 probability of randomly choosing the correct

item. The third item is somewhat ideal, with almost no chance of lucky answers, but

it’s an easy question. (b) IIC’s from the same items 2 and 3. One is able to see that the

items provide most information around the difficulty level (when θ ≈ b), with the third

item providing overall more information, showing that the parameters a and c really

influence the item information. (c) TIC providing the overall information given by the

five items in the test database. The red dashed line shows the SE(θ̂). . . . . . . . . . 23

2.2 3PL IRT model as a neural network. This visualization shows the path in the

model for the second examinee (s2 = (0, 1, 0)) and the third item (q3 = (0, 0, 1))

in a hypothetical test with only 3 examinees and 3 items. The light grey lines

represent the elements in the weight matrix which are forced to equal zero. . . . 28

2.3 Deep-IRT. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.1 Shallow 3PL model. This visualization higlights the path in the model for the

second examinee (vs = 2) and the third item (vq = 3) in a hypothetical test with

only 3 examinees and 3 items. . . . . . . . . . . . . . . . . . . . . . . . . . . 39

14



§0.0. LIST OF FIGURES

3.2 Deep 3PL model. This visualization shows the path in the model for the i-

th examinee and j-th item in a hypothetical test with only 3 examinees and 3

items. The examinee network has dimension d = 4 for the positional encoder,

8 neurons in both densely connected layers. . . . . . . . . . . . . . . . . . . . 41

4.1 Dispersion between Inep’s estimation and the estimation conducted in mirt of: (a) item

parameter discrimination a; and item parameter difficulty b; (b) item “guessing" pa-

rameter c; (c) student’s grade, obtained by a linear transformation of their estimated

abilities θ, given by 100θ + 500 (see Section 2.1.1). Dispersion between mirt estima-

tion and the Shallow 3PL estimation of: (d) item parameter discrimination a; and item

difficulty parameter b; (e) item “guessing" parameter c; (f) student’s grade. . . . . . . 48

4.2 Dispersion between Inep’s estimation and the Shallow 3PL estimation of: (a) item

parameter discrimination a; and item “guessing" parameter c; (b) item parameter diffi-

culty b; (c) student’s grade; and (d) dispersion plot of estimated probabilities by empir-

ical probabilities, by rounding each pij to the second decimal, then using these rounded

values as subsets of the probability dataset in which each of these subsets the average

of the binary responses was calculated, thus obtaining the empirical probabilities. . . 50

4.3 Confusion matrices of abilities between Inep’s estimation and the estimation conducted

in (a) mirt and (b) Shallow 3PL. . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.4 Dispersion plot of estimated probabilities by empirical probabilities. . . . . . . . . . 53

15



Chapter 1

Introduction

The Enem (National High School Exam) is a multidisciplinary test administered annually, since

1998, by Inep, the Anísio Teixeira National Institute for Educational Studies and Research.

While primarily aimed at high school students, participation is open to anyone with a valid

identity document, making it the largest educational assessment in Brazil. Its significance arises

from three main factors. Firstly, since 2009, it serves as the primary pathway for admission to

most public universities in Brazil, including prestigious institutions and several universities in

Portugal. It also facilitates access to full scholarships and educational loans in private institu-

tions. Secondly, it provides an assessment of the quality and effectiveness of education provided

in the country. Lastly, it serves as a historical benchmark for monitoring educational standards

in Brazil. Given these reasons, it is crucial to ensure the credibility of the exam’s measure-

ment of students’ knowledge to maintain fairness among all candidates. To achieve this, Inep

employs Item Response Theory (IRT) alongside traditional estimation methods. However, it is

concerning that Inep’s code is not open access and that it utilizes expensive and obscure soft-

ware. The difficulty in replicating one’s Enem grade has been a long-standing criticism voiced

by students and experts alike.

The current model used by Inep to estimate student’s grades in Enem is the traditional 3PL

model (Birnbaum, 1968), which presents intrinsic assumptions, such as local independence and
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the assumption of an underlying data generating distribution. When not satisfied, it can lead to

suboptimal results, compromising the estimates accuracy, most importantly, the values for the

latent skill θ, which directly correspond for the students’ grades.

In the last decade, deep neural networks arose again with a boom of new applications in

the most diverse fields of knowledge, going from language models (ChatGPT from OpenAI)

to computational vision (Khan, Salman et al., 2018), helping in quantile regression (Kumar,

Liang, and Ma, 2019), as well as other classes of probabilistic models. Artificial intelligencies

have been surprising users all over the world and are being implemented in many businesses and

government departments, automating varied working processes or supporting many other tasks,

such as contract review (How AI Is Changing Contracts by Beverly Rich, Harvard Business

Review, 2018), review and support in judicial systems (K. Ashley, Artificial Intelligence and

Legal Analytics, Cambridge University Press, 2017).

Many authors sought methods that combine the IRT interpretability advantage with the pre-

dictive capability of deep neural networks, firstly to improve Knowledge Tracing (KT) - see

Cheng and Liu (2019), Gan et al. (2020) and of Ghosh et al. (2020). There are even some mod-

els that seek to evaluate discursive responses - Amur, Z. H., Hooi, Y. K., Soomro, G. M. (2022,

December): Automatic Short Answer Grading (ASAG) using Attention-Based Deep Learning

Model.

For the task of exam grading, a new model was developed by Tsutsumi et al. (2021), intro-

ducing an architecture able to combine two neural networks - one for the abilities and another

for the items - to describe an alternative to the 2PL IRT model. The authors show that joint es-

timation of the parameters have the benefits of raising the predictive capability while naturally

dealing with heterogeneous populations, since it does not assume any underlying distribution.

Despite these advancements, the current Deep-IRT model does not include the “guessing"

parameter, and it is not known how well it will perform when applied to Enem data. In this

dissertation, we will seek to apply machine learning estimation methods to the IRT 3PL model

and to introduce a new model, an extended version of Deep-IRT by Tsutsumi et al. (2021). At
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last, the available methods will be compared in the context of a national educational assessment.

In short, this work will provide three main results: an investigation of how Enem’s grades

and item parameters are calculated and its replication in an open software; calculating Enem’s

grades using deep learning estimation; and, finally, introducing a new model that combines the

3PL IRT model with deep neural networks: Deep IRT.

18



Chapter 2

Literature Review

This chapter aims to present the advancements made in the field of study, defining the research’s

scope and connecting the content in a way that leads to the subsequent evolution of methods.

To begin, a summary of Item Response Theory (IRT) will be provided, highlighting its

primary estimation processes. This will be followed by a concise overview of deep neural net-

works and their ability to incorporate less restrictive assumptions compared to traditional sta-

tistical methods. Finally, we will explore the latest developments that merge these two domains

through Deep IRT.

2.1 Item Response Theory

How can we assess a person’s intellectual capacity? How do we measure their ability to select

and apply information, often relying on memorization and problem-solving skills? Exams,

which have evolved and taken various forms throughout history, serve as tools to measure what

is now referred to as latent traits - characteristics that cannot be directly measured, such as

mathematical intelligence, reading proficiency, and logical thinking.

The Chinese Bureaucracy was the earliest example of widespread use of written tests to

select the most capable individuals for government service, dating back to at least 1300 years

19
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ago (Wang, Rui, 2013). This practice took eighteen centuries to become common in the Western

world. In medieval Europe and many other cultures, candidates for public offices, priestly

positions, or universities admissions relied heavily on personal connections. In some cases, they

were evaluated through oral examinations, such as debates (disputatio) or by giving lectures

on the subject. In the seventeenth century, Jesuits, having contact with the highly developed

Chinese civilization, introduced the written evaluation that had been in use there for millennia.

Today, exams are the most common, useful, and efficient method of assessing knowledge,

despite not being able to assess other aspects equally or more important, such as discipline and

commitment. Regardless, beyond the exam itself, there is a need to determine how to measure

and translate the data from examinees’ answers into meaningful information. The Classical Test

Theory (CTT) approach, the most common one, sums up the correct answers to obtain a general

test score. Another approach is Item Response Theory (IRT), which focuses on the response to

each item, aiming to extract more information beyond a simple right or wrong. IRT also allows

for the comparison of individuals who have participated in different tests, provided there are

common items between them.

IRT is able to provide a more detailed interpretation of the cognitive process which led to

a specific answer by attempting to describe the probability of a examinee j with a certain skill

level to give the correct response to an item i. In turn, each item is described by parameters,

such as their difficulty level and discrimination capacity (the ability of the item to differentiate

between high-skilled and low-skilled examinees).

The simplest models only have one item parameter, its difficulty, and one parameter for the

examinee’s ability. By adding more parameters, we can attempt to describe more items’ charac-

teristics and even different skill sets, with more examinees’ parameters in the multidimensional

models. Nevertheless, we shall focus on the model at hand, the three-parameter logistic model.

20
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2.1.1 Three-Parameter Logistic Model (3PL)

Presented by Birnbaum (1968), it consists in the use of the logistic function to associate skill θj

- the latent trait - of a examinee j with three item parameters, ai, bi and ci, from a certain item

i, and then to compute the probability of the correct answer to item i by examinee j, pij:

Uij ∼ Bernoulli(pij),

pij = ci +
1− ci

1 + exp [−ai(θj − bi)]
,

Uij =


1, if examinee j correctly answers item i;

0, if examinee j incorrectly answers item i;

where ai is the discrimination parameter of item i; bi represents the difficulty (position) of item

i; ci reflects the probability of a examinee with very low skill to correctly answer item i (lower

asymptote parameter, also called “guessing parameter"); and θj represents the skill or ability

(or proficiency) of the j-th examinee.

This probability is visualized as a function of the ability θ, forming the Item Characteristic

Function or Item Characteristic Curve (ICC) - as shown in Figure 1(a). The parameter a is

proportional to the derivative of the tangent of the ICC at its inflection point. It denotes the

item’s capacity in discerning the proficient examinee by discriminating if the examinee possess

the necessary ability to solve the item. It is not expected to have negative values, which would

mean that examinees with lower skill levels have greater probability of correctly answering the

item. If this happens, the item should be reviewed or discarded. The parameter b is measured on

the same scale as the ability θ, while the parameter c varies between 0 and 1, being a probability.

The ability scale is arbitrarily defined by any transformation of the values ranging from −∞ to

∞, by choosing an origin (reference value) and a unit of measure to the variability.

The simpler models 2PL (Two-Parameter Logistic Model) and 1PL (Rasch Model) are triv-
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ially obtained from 3PL, as shown by Birnbaum (1968) based on the models suggested by Lord

(1952). One can easily get 2PL from 3PL making c = 0, and from that get 1PL making a

constant for all the items.

Besides the ICC, another useful visualization is the Item Information Function or Curve

(IIC), which indicates the amount of information given by an item around different skill levels

- Figure 1(b) - that is, how much the item contributes to the estimation of the ability of a certain

examinee: Ii(θ) =
[ d
dθ

Pi(θ)]
2

Pi(θ)[1−Pi(θ)]
, where Ii(θ) is the information provided by item i in a θ point,

and Pi(θ) is the answer function of item i, P (Uij = 1|θj = θ). For the ML3, one can write:

Ii(θ) = D2a2i
1− Pi(θ)

Pi(θ)

[
Pi(θ)− ci
1− ci

]2
,

where D is a constant scale factor (D = 1, 7 when an approximation to the Normal is desired).

In the form (2.1.3) of the IIC, it is clear that information is greater as bi gets closer to θ, ai grows

and ci approaches zero.

A measure that is very useful for an overall assessment of a test is the Test Information

Curve (TIC) - Figure 1(c), which is the sum of all items’ informations regarding a certain θ:

I(θ) =
∑I

i=1 Ii(θ). By this equation, we can see that each item is independent from the others

when contributing to the test information, since each IIC can be obtained without knowing the

other items, which is not possible in Classical Test Theory. Inversely proportional to the test

information, the precision of the estimation of the ability at a point θ is given by the standard

estimation error: SE(θ̂) = 1√
I(θ)

.
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(a) Item Characteristic Curves. (b) Item Information Curves. (c) Test Information Curve.

Figure 2.1: (a) ICC’s of items 2 and 3 from R database LSAT7 (Bock Lieberman, 1970). The second
item shows adequate discrimination power (sharp slope) and difficulty close to the mean (0), but has
approximately 0.3 probability of randomly choosing the correct item. The third item is somewhat ideal,
with almost no chance of lucky answers, but it’s an easy question. (b) IIC’s from the same items 2
and 3. One is able to see that the items provide most information around the difficulty level (when
θ ≈ b), with the third item providing overall more information, showing that the parameters a and c
really influence the item information. (c) TIC providing the overall information given by the five items
in the test database. The red dashed line shows the SE(θ̂).

2.1.2 Estimation Methods

Inep uses marginal bayesian estimation, that, when assumed an uniform prior distribution, is

equivalent to the maximum marginal likelihood for the estimation of the item parameters. It

will be presented here shortly; the interested reader may see the method in more detail in the

article “Marginal Maximum Likelihood Estimation of Item Parameters: Application of an EM

Algorithm" (Bock and Aitkin, 1981, p. 443). Other methods will be pointed out by the end of

this Section.

Let ξ⊤i = (ai, bi, ci) be the vector parameter of the i-th item, and ξ⊤ = (ξ⊤1 , . . . , ξ
⊤
I ) the

vector with the parameters of each item. Let, still, Y ⊤ = (Y1, . . . , YI), Yi ∈ {0, 1}, for i =

1, . . . , I , a vector of responses from a examinee with skill θ. The probability of these answers

is:

P (Y |θ, ξ) =
I∏

i=1

P (Yi = 1)yi [1− P (Yi = 1)]1−yi .
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Assuming that the examinees come from a population where the ability θ is continuously

distributed, with density g(θ) whose average and variance are finite, the marginal probability is

given by:

P (y|ξ) =
∫

P (y|θ, ξ)g(θ)dθ (2.1)

and the marginal likelihood function,

L = P (y1, . . . , yN |ξ) =
N∏
j=1

P (yj|ξ),

where N is the amount of examinees that answered the test.

The integral in (2.1.5) is estimated by Gaussian quadrature (Stroud and Secrest, 1966).

Maximizing L is the same as maximizing logL, which is easier. Finally, the EM Algorithm is

used to obtain the solution of the system ∂ logL
∂ξil

= 0, assuming the normal distribution for the

ability, with average 0 and variance 1.

In the case of multiple groups, as in Enem, the densities gk(θ) from each group must be

incorporated, by estimating those densities’ parameters together with the item parameters by

choosing a reference group that will give fixed density parameters also with average 0 and

variance 1, forming an ηk = {µk = 0, σ = 1} vector of parameters from the data generating

distribution of this group k. The marginal likelihood is then given by:

L =
K∏
k=1

Nk∏
j=1

P (ykj|ξ, ηk) =
K∏
k=1

Nk∏
j=1

∫
P (ykj|θ, ξ)gk(θ)dθ, (2.2)

and the EM algorithm can be used in this equation for item parameters’ estimation.

The likelihood can incorporate the prior distribution of item parameters g(ξ), so the bayesian

estimator is the value that maximizes the posterior distribution

g(ξ|y1, . . . , yN) =
P (y1, . . . , yN |ξ)g(ξ)

P (y1, . . . , yN)
,
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so the optimization problem becomes maximizing

log(L) + log g(ξ), (2.3)

which also can be done by the EM algorithm. Notice that the optimization problem becomes a

Maximum a Posteriori (MAP) bayesian inference with a Gaussian prior that acts as a regular-

ization term in the field of machine learning.

Ultimately, Expected A Posteriori (EAP) is used for the estimation of the abilities, consid-

ering the answer vector of each examinee and the previously calculated item parameters. For

the examinees in the reference group, this function also has average 0 and variance 1. For the

rest of the examinees in the other groups, the ability (that is, their grade) is given by:

θ̂j ≈
∑Q

q=1 XqP (yj|Xq, ξ)A(Xq)∑Q
q=1 P (yj|Xq, ξ)A(Xq)

, (2.4)

whose precision is measured by the posteriori standard deviation (PSD):

PSD(θ̂j) ≈
∑Q

q=1(Xq − θ̂j)
2P (yj|Xq, ξ)A(Xq)∑Q

q=1 P (yj|Xq, ξ)A(Xq)
,

where Xq is a quadrature point, and A(Xq) is a positive weight corresponding to the density

g(θ) at the point Xq.

EAP basically consists of a degenerate prior for the ability estimation, assuming that the

estimated item parameters are the real values. The estimation of θ can be approximated by

several methods other than Gaussian-Hermite quadrature, such as Markov Chain Monte Carlo

(MCMC).

There are even more alternatives when one chooses to estimate items and ability parame-

ters together, instead of integrating over the ability distribution in order to obtain a marginal

likelihood. For more information, see You, H. (2022).
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2.2 Deep Neural Networks

Although new optimization methods and adaptations that allow choosing from a larger set of

assumed population distributions, the traditional IRT models present intrinsic limitations: lo-

cal independence (McDonald, 1982) - that is, all the manifest variables (yij) are independent

random variables if the latent variables (θ, ξ = {a, b, c}) are controlled (fixed), so the condi-

tional probability of observing a response pattern given a particular latent trait value - P (y|θ, ξ)

- equals the product of the itemsâ conditional probabilities; and assumption of a data generating

distribution.

Deep Neural Networks do not require any of those assumptions, and can, in fact, encompass

these other methods in its own structure, as we will see later on.

They are called networks for representing a composition of many functions in a chain struc-

ture. For example, suppose three functions f1, f2 e f3 connected as f(x) = f3(f2(f1(x))). This

feature allows them to map a path between input variables x and output variables y that best

approximates the true function y = f ∗(x). Of course, the neural network model is not merely

approximating a mathematical function. It estimates the parameters of a probabilistic model.

Each function in this chain is a layer of the network, known as hidden layers, except for the

last one, called the output layer. The learning algorithm chooses how to use those hidden layers

in such a way to minimize a determined cost function for the model at hand. The term “deep"

originates from this layer terminology: the more layers composing a neural network, the deeper

it will be.

Lastly, each layer can have varied dimensions, that is, the amount of hidden units composing

them. Each of those units compute the data in parallel, acting as functions of vectors to scalars,

resembling actual biological neurons in the sense that they receive inputs from many other units

(connected to each other as dendrites) and compute a new activation value. In this way, we can

understand the name deep neural networks.

Notice that this solution does not require knowledge of a prior distribution nor that inputs be
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independent from each other. Besides, as the model allows for the composition of many, varied

functions, basically any interaction between parameters can be mapped, not being limited to

linearity.

2.2.1 The 3PL Model as a MLP

The feedforward network is the exemplary deep neural network. Also known as multilayer

perceptron (MLP), they are one application of the general principle of improving models by

learning features. They learn mappings from input to output without feedback connections

between the layers. The data flows constantly until the output layer.

To be able to seek the best mapping from input to output, the neural network must have an

architecture consisting of the choice or the tuning of how many layers (how deep one wants

the network to be), how many units in each layer (dimensionality), how these layers will be

connected, and also of the optimizer, the cost function, the form of the output units, and the

activation functions to compute each hidden layer values.

The 3PL IRT model can be written as a feedforward network, letting N be the number of

examinees and I the number of items in a test.

Consider the following neural network, with just one hidden layer and a customized activa-

tion function, whose structure can be visualized in Figure 2. The ability of the second examinee

corresponds exactly to the w21 weight, w21 = θ2, since w11 and w31 are multiplied by zero. The

same happens to the item parameters in the multiplication of W⊤X, since there is only one

element in q3 that is not zero; so w62 = a, w63 = b, and w64 = c.

With the inclusion of another hidden layer, as in Tstsumi et al. (2021) - see Figure 3, sj

would be projected to θj , and qi projected to βi separately, eliminating the need of fixing some

weights to be zero.
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Figure 2.2: 3PL IRT model as a neural network. This visualization shows the path in the model
for the second examinee (s2 = (0, 1, 0)) and the third item (q3 = (0, 0, 1)) in a hypothetical test
with only 3 examinees and 3 items. The light grey lines represent the elements in the weight
matrix which are forced to equal zero.

The input is simply concatenating two one-hot vectors qi, i = 1, . . . , I , and sj , j =

1, . . . , N , wherein the i-th and the j-th elements represent the i-th item and the j-th exami-

nee, which are equal to 1 while the rest of the elements are just zeroes. Suppose N = I = 3,

meaning a test with only three examinees and three items, and let us write the network for the

second examinee and the third item, j = 2 and i = 3.

X′
23 = (0, 1, 0︸ ︷︷ ︸

s2

, 0, 0, 1︸ ︷︷ ︸
q3

)′

The weight matrix maps the input layer to the first hidden layer. It has a structure of (N +

I)× (4), in our example, 6× 4.
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W =



w11 w12 w13 w14

w21 w22 w23 w24

w31 w32 w33 w34

w41 w42 w43 w44

w51 w52 w53 w54

w61 w62 w63 w64


=



θ1 0 0 0

θ2 0 0 0

θ3 0 0 0

0 a1 b1 c1

0 a2 b2 c2

0 a3 b3 c3 ;


,

where the circled elements are all zeroes.

So, we can write H23 = W⊤X23,

H23 =



θ2

a3

b3

c3


.

Finally, the examinee and item parameters in H translate to the probability of examinee j

correctly answering item i through the following customized activation function:

pij = ŷ(i, j) = P (Yij = 1|H) = Φ(H) = α(c) + [1− α(c)]
1

1 + exp[−a(θ − b)]
,

where α(.) is the logistic function, in order to guarantee that parameter c̃ = α(c) = 1/(1 +

exp(−c)) is within the [0, 1] interval, since it represents a probability.

The cross-entropy loss function is

l(ŷij, yij) = −[yij log ŷij + (1− yij) log(1− ŷij)], (2.5)
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where y is the observed answer, so we can minimize

I∑
i=1

N∑
j=1

l(ŷij, yij),

by some optimizer, in order to find the weights W.

Notice that equation (2.2.1) has a direct correspondence to the likelihood in equation (2.1.2):

L =
N∏
j=1

I∏
i=1

P (Yij = yij|H) =
N∏
j=1

I∏
i=1

P (Yij = 1|θ, ξ)

=
N∏
j=1

I∏
i=1

P (Yij = 1)yij [1− P (Yij = 1)]1−yij

=
N∏
j=1

I∏
i=1

Φ(H)yij [1− Φ(H)]1−yij

=
I∏

i=1

N∏
j=1

ŷ
yij
ij (1− ŷij)

(1−yij),

which can be written to equal the cross-entropy:

− log(L) = − log

[
I∏

i=1

N∏
j=1

ŷ
yij
ij (1− ŷij)

(1−yij)

]
=

I∑
i=1

N∑
j=1

l(ŷij, yij). (2.6)

So we can see that the task of minimizing the cross-entropy function is the same as the task

of maximizing the likelihood function performed in the MAP method described in section 2.1.2,

more specifically, equation 2.1.3, that provides the loss function with weight decay regulariza-

tion (see Section 2.2.2), except that, there, the ability parameter is estimated by EAP in another

step, after the MAP estimation of item parameters.

For the task of optimization, one can choose from a multitude of methods, such as stochastic

gradient descent, AdaGrad, RMSProp and Adam - see Chapter 7 and 8 of GOODFELLOW, I.;

BENGIO, Y.; COURVILLE, A. Deep Learning; [S.l.]: MIT Press, 2016.
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2.2.2 Regularization and Optimization

Already introduced in Section 2.1.2, when describing equation 2.1.3, regularization is an at-

tempt of avoiding overfitting and making the algorithm perform well on new inputs. It does so

by any alteration in the network design that reduces its generalization error, the error on the test

set, even if it means increasing training error.

In the field of machine learning, finding the best model is often done by applying a more

general, large model that has been appropriately regularized instead of a very complex model

that has a right number of parameters that perfectly describes the data.

On the other hand, optimization, in the context of machine learning, involves minimizing

a cost function L(θ) that can also minimize some performance measure P that we are actually

interested in. And most of the time, for the problem at hand, reaching a value that is smaller

than some criterion is enough, so one does not have to be concerned about reaching the global

minimum. Another advantage is that optimization in machine learning typically compute each

update to the parameters based on an expected value of the cost function estimated using only

a subset of the terms of the full cost function, because it can be decomposed as a sum over the

training examples (see equation 2.2.2). These are called batch and minibatch algorithms, which

can be optimized in parallel.

Stochastic gradient descent (SGD) may be the most popular optimization algorithm, not just

for deep learning, but for machine learning in general. It is an elegant and simple solution to

optimize the parameters one is interested in. It works by “following" the gradient of randomly

selected minibatches of the training set until a convergence criterion is satisfied. Many algo-

rithms are modifications to the SGD in the crucial parameter that is the learning rate, which

can have momentum to accelerate learning (e.g., Nesterov momentum) and even by changing

learning rates for each parameter in the adaptative moments techniques (AdaGrad, RMSProp,

Adam). Other optimization algorithms involve approximate second-order methods and many

strategies can be applied to these algorithms to try and make them more efficient, such as batch
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normalization and averaging.

There are some challenges in neural network optimization. Ill-conditioning is one of them,

characterized by a very slow learning process despite the presence of a strong gradient because

the learning rate must be shrunk to compensate for an even stronger curvature. Other challenges

involve plateaus, saddle points and other flat regions in a cost function. When a network has

many layers, there may be cliffs and exploding gradients. But we do not expect to encounter

such complex challenges in the optimization of Deep IRT.

2.3 Deep-IRT

Though innovative in its conception, Deep IRT research still did not achieve interpretable pa-

rameters for the examinee’s skill and item difficulty, crucial factor in the field of Test Theory.

The proposed models of deep knowledge tracing were aimed at the estimation of time series

changes in the skill of a group of examinees. With the model proposed by Tsutsumi et al.

(2021), Deep IRT is presented as a new test theory, seeking the estimation of item parameters

and examinees’ skills independently, in order to achieve the interpretability needed to actually

grade the test.

The new model showed that its precision when estimating examinees’ skills is greater than

traditional IRT when those skills do not come from a same data generating distribution and

when there are no common items between the tests that were applied. In other words, Deep

IRT overcomes the assumptions that the parameter be identically distributed and locally inde-

pendent.

The Deep IRT model proposed by Tsutsumi et al. (2021) is composed by two neural net-

works, one for the item difficulty parameter and the other for the examinee ability parameter.

This way, the parameters will still have interpretability with the possibility of higher accuracy

in their estimation.

The examinee network, described in Figure 3 as Examinee Layer, has two hidden layers. To
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represent the j-th examinee from a total of J examinees, the input is a one-hot vector si, where

the element j is equal to one and the other J − 1 elements are zero. The layers are given by

θ
(i)
1 = tanh (Wθ1sj + τθ1) ;

θ
(i)
2 = tanh

(
Wθ2θ

(i)
1 + τθ2

)
;

θ
(i)
3 = Wθ3θ

(i)
2 + τθ3 ,

where the activation function is the hyperbolic tangent

tanh(x) =
exp(x)− exp(−x)

exp(x) + exp(−x)
.

Figure 2.3: Deep-IRT.

The weight matrices in the hidden layers are

Wθ1 =



w
(11)
θ1

w
(12)
θ1

. . . w
(1I)
θ1

w
(21)
θ1

w
(22)
θ1

. . . w
(2I)
θ1

...
... . . . ...

w
(|θ1|1)
θ1

w
(|θ1|2)
θ1

. . . w
(|θ1|I)
θ1


,
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where |θk| denotes the length of the θk vector,

Wθ2 =



w
(11)
θ2

w
(12)
θ2

. . . w
(1|θ1|)
θ2

w
(21)
θ2

w
(22)
θ2

. . . w
(2|θ1|)
θ2

...
... . . . ...

w
(|θ2|1)
θ2

w
(|θ2|2)
θ1

. . . w
(|θ2||θ1|)
θ2


,

and the weight vector in the output layer is

Wθ3 =
(
w

(1)
θ3
, w

(2)
θ3
, . . . , w

(|θ2|)
θ3

)
.

Also, τθ1 and τθ2 are the bias parameter vectors, and τθ3 is the bias parameter.

The item layer is analogous, with the qj one-hot vector input and layers

β
(j)
1 = tanh (Wβ1qi + τβ1) ; (2.7)

β
(j)
2 = tanh

(
Wβ2β

(j)
1 + τβ2

)
; (2.8)

β
(j)
3 = Wβ3β

(j)
2 + τβ3 . (2.9)

Then, the output from both networks is the input for the hidden layer ŷij , describing the

probability of examinee j correctly answering item i:

hij = W⊤
y (θ

(i)
3 − β

(j)
3 ),

ŷij = softmax(hij)

=
1

1 + exp(hij)
.

Here, Wy = (wy1 , wy2), which can be related to the function of the discrimination parameter

a in the 2PL IRT model, with the restriction that, here, it is not related to each item, so it is a

general parameter a for all the items.
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This model, called Deep-IRT, does not assume any distribution for examinees’ abilities

neither for items’ parameters. It estimates the relation of one examinee’s ability to all the

others’, which is done in the second to the third layer, by maximizing the prediction accuracy of

the responses. Consequently, this method does not require linkage to different tests by having

common items between them.

The cross-entropy function is the same of equation (2.2.2) but with a cost sensitive approach

that weighs some small number of data over majority, because Deep-IRT would not be able to

make accurate predictions when the data has small numbers of correct or incorrect answers. So,

the loss function for Deep-IRT is given by

Loss =
∑
i

∑
j

l(ŷij, yij)

= γ1
∑
i∈Le

∑
j∈uij=1

l(ŷij, yij)

= γ2
∑
i∈He

∑
j∈uij=0

l(ŷij, yij)

= γ3
∑
i∈Li

∑
j∈uij=1

l(ŷij, yij)

= γ4
∑
i∈Hi

∑
j∈uij=0

l(ŷij, yij),

where Le stands for a group of examinees whose correct answer rates are less than αLe , He de-

notes a group of examinees whose correct answer rates are more than αHe , Li is a group of items

of which correct answer rates are less than αLi
, and Hi represents a group of items with correct

answer rates that are more than αHi
. Here, γ1, γ2, γ3, γ4 and αLe , αHe , αLi

, αHi
are tuning

parameters. Because of the fact that Enem has many respondents to each item, this cost sensi-

tive approach may not be necesssary, so the loss function is simply Loss =
∑

i

∑
j l(ŷij, yij).

Adaptative moment estimation (Adam) is in charge of learning all parameters simultaneously

through this loss function.
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2.4 Positional Encoders

Positional encoding describes the location or position of an object within a sequence in order to

assign an unique representation to each position. There is a reason why a single number, such

as the index value, is not used to represent an itemâs position in transformer models. For long

sequences, the indices can grow large in magnitude, making it impractical or computationally

expensive.

Transformers, or positional encoders, use a clever positional encoding scheme, where each

position/index is mapped to a vector. Therefore, the output of the positional encoding layer is a

matrix, where each row of the matrix represents an encoded object of the sequence summarised

with its positional information (VASWANI, A. et al. Attention is all you need. In: Advances in

neural information processing systems. [s.n.], 2017. p. 5998â6008).

The positional encoders are the result of the following:

P (k, 2i) = sin

(
k

n2i/d

)
, (2.10)

P (k, 2i+ 1) = cos

(
k

n2i/d

)
. (2.11)

Here,

k: position of an object in the input sequence,

d: dimension of the output embedding space,

P (k, j): position function for mapping a position in the input sequence to index of the

positional matrix,

n: user-defined scalar, set to 10,000 - VASWANI, A. et al. (2017),

i: mapping of column to indices, with a single value to both sine and cosine functions.

In the above expression, one can see that even positions correspond to a sine function and

odd positions correspond to cosine functions.
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2.5 Enem

This section aims to present and gather the information about the tests used in Enem - their

structure, scale, etc. - and the estimation process conducted by Inep. It basically follows the

description in Section 2.2, where the integral in (2.1.5) is estimated by Gaussian quadrature

(Stroud and Secrest, 1966) - Inep uses 40 quadrature points. The normal distribution is the prior

for all the parameters. Also, it is not divulged which would be the “reference group" that had its

parameters made to be fixed in the Institute’s estimation, regarding equations 2.1.2 and 2.1.3.

All of these procedures are conducted by Anísio Teixeira Institute in the paid software BILOG,

which has a license costing US$ 10,475.00 annually.

Regarding the scale of the sutdents’ grade, in Enem, the reference value for the ability

is 500, that is, the average skill of a student from that year’s test, with a standard deviation

of 100. Being N the number of students, θ1, . . . , θN are shifted in this manner: a(θ − b) =

(a/100)[(100θ + 500) − (100b + 500)]. Therefore, θ = 100θ + 500, b = 100b + 500 and

a = a/100. In this scale, a student whose grade is 600 is one standard deviation unit from the

average skill.

Enem 2022 microdata is available at Inep’s website and it is composed by two files. One is

a table of 76 columns and 3,389,832 observations representing each student applying for Enem

that year; the variables of interest are the ones containing the students’ answers for each item

and the respective answer key for each of the 4 knowledge areas in which the exam is divided -

so we actually have 4 different exams - and the rest of the columns are only sociodemographic

questions. The second file is also a table, but with a smaller size of 810 observations by 14

columns, containing information about every item used in that year’s Enem, including their

position in each version of the test (“caderno de prova") and the item parameters.
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Chapter 3

Proposed Methods

Seeking to build up on the previous models reviewed, this work proposes two neural networks

to treat binary data originated from a test, attempting to maintain the usefulness of traditional

IRT, but making use of the developments reached in the field of deep learning.

The first model is shallow in the sense that it was designed to provide a faster and simpler

connection of input data to output data, while the deep model has an intuitive scalable structure,

by simply increasing the number of layers and neurons after the input data.

Both models present different ways of receiving input data, one making use of embedding

layers, while the other applies positional encoders, as shown in the next Sections.

3.1 Shallow 3PL

Comprising the key aspect of this model, the embedding layers seem to be an ideal solution,

because they provide a direct relation of the examinee to its ability, and the item to its three pa-

rameters, working as a look-up table. So the interpretability of the IRT paradigm is maintained,

extended from the Deep-IRT model of Tsutsumi et al. (2021), that could only reach a general

item discrimination parameter (Section 2.3).
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§3.1. Shallow 3PL

Figure 3.1: Shallow 3PL model. This visualization higlights the path in the model for the second
examinee (vs = 2) and the third item (vq = 3) in a hypothetical test with only 3 examinees and
3 items.

With N examinees and I items, the inputs for the examinee and item networks are one-to-

one vectors:

V = {vs, vq}, (3.1)

vs = i, i = {1, 2, . . . , N}, (3.2)

vq = j, j = {1, 2, . . . , I}, (3.3)

embedded to:

E = {es, eq}, (3.4)

es = θi, (3.5)

eq = {aj, bj, cj}, (3.6)

The concatenation layer C = {θi, aj, bj, cj} is necessary so we can use the customized
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activation function for the output ŷ:

ŷij = cj + (1− cj)softmax(aj(θi − bj)) (3.7)

= cj + (1− cj)
1

1 + exp(aj(θi − bj))
. (3.8)

The loss is the same cross-entropy function explicited in equation 2.2.2, and is the one to be

optimized by the Adam algorithm.

3.2 Deep 3PL

The proposed deep network is similar to the Deep-IRT network structure and equations (see

Section 2.3), but with changes in the input of the examinee network, in the number of neurons

of the output of the item network, and in the activation function.

The model proposed in Tsusumi et. al (2021) does not assume normality, but it was not

designed for a large dataset. So instead of one-hot vectors, the input of the examinee network

is composed by positional encoders, in such a way that each student is represented by a unique

vector that has a practical size, say d. That way, the input is not a million × million matrix, but

a million × d matrix (VASWANI, A. et al. Attention Is All You Need, 2023).
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Figure 3.2: Deep 3PL model. This visualization shows the path in the model for the i-th ex-
aminee and j-th item in a hypothetical test with only 3 examinees and 3 items. The examinee
network has dimension d = 4 for the positional encoder, 8 neurons in both densely connected
layers.

The item network would keep its one-hot vectors inputs, since it leads only to an I × I

matrix, with two fully connected hidden layers and hyperbolic tangent activation functions, as

in equations (2.3.1) and (2.3.2). But the final layer does not output only one parameter β3 to

be concatenated with the single output θ3 of the examinee network. It outputs three parameters,

whose weights should work as the item parameters in the 3PL IRT model, so equation (2.3.3)

would be: q(j) = Wqβ
(j)
2 + τq.

And the activation function would be customized:

ŷij = wq3 + (1− wq3)softmax(wq1(θ
(i)
3 − wq2)) (3.9)

= wq3 + (1− wq3)
1

1 + exp(wq1(θ
(i)
3 − wq2))

. (3.10)

The three item weights (wq1 , wq2 , wq3) and the student ability weight (θ(i)3 ) are joined in a
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concatenation layer and then passed to the final layer ŷij = pij .

The network has to reach a significant size so that the weights can actually be identified

to item parameters and the ability parameter, because there is not a direct correspondence of

network weights from the densely connected layers to IRT model parameters as the embedding

layers do in Shallow 3PL. In the example of Figure 5, there are 4 × 8 + 8 × 8 + 8 × 1 = 104

weights in the examinee network. Notice that if there were, say, 1,000 examinees, this structure

would not nearly be enough to represent their respective ability parameters. This indicates a

difficulty when the model is met by a very large sample size.
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Application

Besides applying a new estimation method for Enem candidates’ grades (proportional to their

abilities), it is in the scope of this project investigating the calculation performed by Inep. All the

information made available by the institute is presented and, from that, we sought to replicate

the results of the previous exam in an open software.

The preprocessing of the data was somewhat toilsome, because the items had to be aggre-

gated according to their knowledge area (Nature Sciences, Mathematics, Human Sciences, and

Languages), and the answers labeled to 0 or 1 (if correct) according to the answer key, which

resulted in 4 tables with about 100 columns representing the items.

Then, Shallow 3PL and Deep 3PL are applied to the same Enem data, and the precision of

each method and its impact on the ranking/classification of the examinees are compared.

4.1 Inep’s estimation process

Prior to the estimation of Enem candidates’ abilities, the estimation of item parameters is not

conducted using the national exam itself, but using information from groups of students whose

schools were previously selected for the so called pre-tests, gathering it in equation (2.1.2) and

using the EM algorithm.
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Having obtained items’ difficulty, discrimination, and guessing parameters, Inep, by some

undisclosed internal set of criteria, selects some items from the pre-tests to be part of the Na-

tional Bank of Items (BNI).

From this, students abilities are estimated using actual Enem data with fixed item parame-

ters, using equation 2.1.3. At this point, there is another frail step in the estimation, because

Inep does not inform which is the reference group, that is, the group of examinees that were

used to solve the indetermination of parameters from multiple groups by fixing the mean to 0

and the variance to 1.

4.2 Alternative estimation approaches

In order to present an accessible, public, transparent alternative, it is part of this project esti-

mating Enem applicants’ grades given by 3PL IRT model using a free and open code software.

In this way, the researchers and organizations could replicate the estimation of the applicant’s

grades, which today is, sadly, far from reality, where anxious students seeking to enter in pres-

tiged universities must blindly trust the results given by Inep, since reference groups identifica-

tion and the software program used are not public.

Then, two innovative models complete this work, modernizing the application of IRT and

striving to seek greater efficiency in the estimation process, by taking advantage of the develop-

ment of deep learning methods.

4.2.1 3PL in Mirt

First, a data pre-processing relatively toilsome was needed for the Enem data available. Then,

R software provides implemented packages for a flexible IRT analysis that allows the choice of

the options in the functions’ arguments according to the information that is actually disclosed.

The mirt package was chosen among others tested, irtoys, est and ltm, due to its robustness and

flexibility.
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4.2.2 Shallow 3PL

As part of this open code estimation bridging the proposed estimation model, R interface with

Python machine learning keras package was used to build the Shallow 3PL IRT model. Then,

the Adam algorithm could be used to estimate the parameters so there is more freedom and

simplicity in the estimation process, since Inep uses the MAP method described in Section

2.1.2, using complicated numerical integration with the assumption of normality for marginal

distributions.

4.2.3 Deep 3PL

The Deep 3PL model was also built using keras. In order to achieve the relation of one studentâs

ability to all the othersâ, thus dispensing an assumed underlying data generation distribution

(such as the normal distribution that Inep assumes), the formulas 2.4.1 and 2.4.2 were used

to obtain the positional encoders for each student. Then, many different architectures, with

varying numbers of neurons in the hidden layers, were tested, seeking the maximum prediction

accuracy of the students’ responses, measured by the loss function (2.2.2) and mean squared

error.

4.3 Results

This section presents the performance comparison between the two traditional IRT model es-

timation approaches (BILOG, and mirt) and then between them and the proposed Shallow and

Deep IRT models, using dispersion plots and Spearman correlation coefficients, as well as a

calibration plot designed to present and compare the accuracy of predictions for each method.

Rank correlation was also calculated, but showed very similar values, equal to the second deci-

mal of the correlation coefficients.

The test whose results are portrayed in this Section is the Natural Sciences test in Enem.

The other areas - Mathematics, Languages and Human Sciences - had similar results for the
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estimation conducted in mirt. It must be pointed out that the differences between the results of

the estimation process conducted in mirt and the one conducted by Inep in BILOG do not come

only from this circumstance. Without access to the so called pre-tests, the item parameters were

estimated using data from the actual Enem test, so the estimation was conducted on completely

different populations.

The 3PL IRT model in BILOG and its replication in mirt

Here we present the very well known and widely used 3 Parameter Logistic Item Response

Theory Model, as reviewed in Section 2.1.1, applied to the analysis of the Enem national exam,

comparing the performance obtained from the use of mirt and the official estimation conducted

by Inep with BILOG.

The item parameters estimates were only somewhat close regarding the difficulty b, as seen

in Table 4.1 and in the dispersion plot of Figures 6(a), with a correlation of 89.99% between

BILOG and mirt. In the case of parameters a and c the correlation observed was much weaker

- Figure 4.1(b).

Nonetheless, the estimation of the abilities θ in mirt was close to its estimation in BILOG -

Figure 4.1(c) - with a correlation of 98.95%.

The dispersion plot of the averaged probabilities pij - Figure 4.2(d) - indicates calibration

issues with mirt and BILOG. Their estimated probabilities lines followed a close path to each

other, initially overestimating the probability of correct answers in values below 0.7 and then

underestimating them. The respective correlations between estimated and empirical probability

of a correct answer are given in Table 4.3.

There are noteworthy results when the item parameters are not estimated in R, but fixed

using the ones provided by Inep. Given mirt could only converge to a certain sample size, with

a sample of one million students the correlation between θ estimated in mirt and estimated in

BILOG achieved 99.93%. This indicates that, if the open code estimation could be conducted

in the same pre test populations, perhaps the results would be even more similar, with the
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possibility of even greater accuracy by using mirt.

Table 4.2 and Table 4.4 shows how students’ performance is affected according to the esti-

mation procedure used. Their ranking in mirt is only diminished in one position until the sixth

best one, but with many alterations in the lower grades, as seen in Figure 4.3(a). The worst clas-

sified examinee by Inep would have its ranking improved in 457,396 positions by the estimation

conducted in mirt.
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(a) Dispersion plot of a and b. (b) Dispersion plot of c.

(c) Dispersion plot of θ. (d) Dispersion plot of a and b.

(e) Dispersion plot of c. (f) Dispersion plot of θ.

Figure 4.1: Dispersion between Inep’s estimation and the estimation conducted in mirt of: (a) item
parameter discrimination a; and item parameter difficulty b; (b) item “guessing" parameter c; (c) student’s
grade, obtained by a linear transformation of their estimated abilities θ, given by 100θ+500 (see Section
2.1.1). Dispersion between mirt estimation and the Shallow 3PL estimation of: (d) item parameter
discrimination a; and item difficulty parameter b; (e) item “guessing" parameter c; (f) student’s grade.
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Comparison ρa ρb ρc ρθ
BILOG vs. mirt 67.12% 89.99% 53.89% 98.95%

BILOG vs. Shallow 3PL 26.06% 89.92% 62.07% 92.45%
mirt vs. Shallow 3PL 17.94% 91.49% 46.72% 94.19%

Table 4.1: Comparison of the traditional 3PL methods applied to the estimation of Enem, with the
correlation coefficients between BILOG, mirt and Shallow 3PL.

student θShallow3PL θmirt θBILOG Rankmirt RankShallow3PL

1 860.87 837.12 867.10 2 3
2 862.23 837.12 867.10 3 2
3 857.50 837.12 867.10 4 5
4 858.53 837.12 867.10 5 4
5 867.10 837.12 867.10 6 1
6 821.26 828.23 854.24 7 7
7 804.48 817.17 850.83 11 26
8 807.91 817.17 850.83 12 16
9 803.54 817.17 850.83 13 27

10 803.12 817.17 850.83 14 29

Table 4.2: Grades and ranking of the ten best students according to Inep’s calculation through different
estimation methods.

Method loss mse
Correlation with

empirical probability
BILOG 59.79% 18.74% 94.55%

mirt 57.85% 18.71% 95.37%
Shallow 3PL 53.25% 17.62% 99.26%

CTT 58.08% 19.71% 99.99%

Table 4.3: Performance of all the methods applied to the estimation of Enem, the CTT being the simplest
model possible of the Classic Test Theory, that is, merely the sum of correct answers.
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(a) Dispersion plot of a and b. (b) Dispersion plot of c.

(c) Dispersion plot of θ. (d) Dispersion plot of ŷij by yij .

Figure 4.2: Dispersion between Inep’s estimation and the Shallow 3PL estimation of: (a) item parame-
ter discrimination a; and item “guessing" parameter c; (b) item parameter difficulty b; (c) student’s grade;
and (d) dispersion plot of estimated probabilities by empirical probabilities, by rounding each pij to the
second decimal, then using these rounded values as subsets of the probability dataset in which each of
these subsets the average of the binary responses was calculated, thus obtaining the empirical probabili-
ties.
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(a) θBILOG × θmirt. (b) θBILOG × θShallow3PL.

Figure 4.3: Confusion matrices of abilities between Inep’s estimation and the estimation conducted in
(a) mirt and (b) Shallow 3PL.

student θShallow3PL θmirt θBILOG Rankmirt RankShallow3PL

1 9.15 13.31 2.01 2245361 2245425
2 10.64 7.67 1.86 2245396 2245415
3 9.16 13.75 1.86 2245359 2245424
4 12.31 3.79 1.70 2245428 2245407
5 10.87 11.01 1.55 2245373 2245413
6 8.75 4.05 1.55 2245426 2245427
7 50.64 63.97 1.39 2244174 2222905
8 9.81 18.18 1.08 2245321 2245417
9 3.44 0.00 0.15 2245445 2245442

10 159.36 177.17 0.00 1788049 1855830

Table 4.4: Grades and ranking of the ten worst evaluated students according to Inep’s calculation
through different estimation methods.

4.3.1 The proposed models: Shallow 3PL and Deep 3PL

Now, we turn our focus to the estimation provided by the two proposed models, as presented in

Section 3.1 and 3.2, applied to Enem data, with the performance comparison to the traditional

3PL. First, the results achieved by the Shallow 3PL model are shown, and afterwards, the results

that could be achieved with a limited version of the Deep 3PL model.
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For the Shallow model, as in the case between BILOG and mirt, the item parameters esti-

mates were close regarding the difficulty b, as seen in Table 4.1 and in the dispersion plot of

Figure 4.1(e), reaching a correlation of 91.49% between mirt and Shallow 3PL. In the case of

parameters a and c the correlation observed was also weaker - Figure 4.1(d).

The comparison of the ability estimation by the Shallow 3PL model and by the 3PL model

can be seen in Figures 6(f) and 7(c), respectively showing a 92.45% correlation between Shallow

3PL and mirt and a 92.83% correlation between Shallow 3PL and BILOG.

The calibration issue was solved by using the Shallow 3PL model, observed in the disper-

sion plot of the averaged probabilities pij - Figure 4.2(d). The estimated probabilities follow

the empirical probabilities, meaning that the model is closer to the actual response of the exam-

inees throughout the ability scale, with only some moderate undulations in the average abilities,

reaching an outstanding 99.26% correlation to the averaged observed responses - Table 4.3.

Table 4.2, and specially Table 4.4, and Figure 4.3(b) show a greater desynchronization be-

tween the examinees’ official classification and that given by the Shallow 3PL model. The

worst classified examinee by Inep would have its ranking improved by 389,615 positions by the

Shallow 3PL model.

The Deep 3PL model, as explained in Section 3.2, requires a massive amount of weights so

it can accurately represent the ability parameter θ for all the examinees. Unfortunately, a model

with enough layers and neurons could not be achieved with current computational resources

available to this research. It must be pointed out that the model has the potential of greater

performance if its structure can be expanded.

Therefore, the proposed Deep 3PL model was tested on a restricted variation of hyperpa-

rameters’ values: (d = 10; d = 12; d = 20; d = 28), for the positional encoders; (128, 264,

512) number of neurons in the second layer; and (64, 128, 264, 512) number of neurons in the

third layer. Perhaps the greatest restriction was not being able to work with the whole popula-

tion of examinees. Various samples were tested, with different sizes (n = 100000; n = 200000;

n = 400000; and n = 500000), but half a million examinees was the greatest sample that could

52



§4.3. Results

be run through the model.

With all these aspects in mind, considering the 59.56% of loss value and 20.32% of MSE

(even smaller loss than BILOG’s), the proposed Deep 3PL model performance was subpar,

showing great discalibration, as seen in Figure 4.4.

The model was run with only half a million students and limited number of neurons: 22, 128, 128, 1

for the examinee network, so there was no way to identify weights to their respective abilities,

with only 22 × 128 + 128 × 128 + 128 × 1 = 19328 weights to be mathed to the 500000

examinees. Other combinations of hyperparameters showed similar results.

(a) Dispersion plot of ŷij by yij

Figure 4.4: Dispersion plot of estimated probabilities by empirical probabilities.
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Chapter 5

Conclusions

This work was initiated as an attempt to contribute to the task of evaluating the latent trait of

knowledge in a given population that answered a given set of questions in an exam. For such

purpose, the National High School Exam (Enem) of Brazil was analyzed.

The process applied by the official government institute responsible for the exam’s correc-

tion and evaluation (Inep) was studied and replicated in an open language environment. Using

mirt the 3PL IRT for Enem was estimated as closely as possible to the actual process Inep

applies, with the EM algorithm and numerical approximations.

Then, with keras, state of the art machine learning algorithms and techniques (such as em-

bedding layers) were used in the optimization of the maximum likelihood estimation. A new

IRT calculation approach was proposed: Shallow 3PL.

This proved to be a very successful endeavour, since the precision and calibration of the

Shallow 3PL was superior to that of Inep (using proprietary software BILOG) and even than

the replication performed in mirt, as seen in Section 5.3. And this was achieved without the

assumption of a normal distribution, in fact, without assuming any underlying data generation

distribution neither local independence, thanks to the estimation of the students’ abilities in-

terconnected with all the others, characteristic found in Tsutsumi’s model (Section 2.3), but

applied differently in this case since embedding layers were used to process the input data. So
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a more robust and more flexible estimation method was found to suit Enem data.

Despite the incipient practical application, the proposed Deep 3PL model also poses as a

new approach to the calculation of IRT, using sophisticated solutions (as the positional en-

coders) to free ourselves from the traditional assumptions. We hope to achieve better results

when the whole population can be analyzed by the model and the number of neurons and layers

can be expanded.

Also for future works, simulation studies with diverse tests (with varied numbers of students

and items) can be done, as in Tsutsumi et al. (2021), so there is complete knowledge of how the

new models will behave in different contexts.

Perhaps, the most relevant next step is fixing the item parameters in the Shallow 3PL es-

timation, so this new method can be suggested as the new calculation of Enem examinees’

grades.

Finally, it was made clear that the process applied to attribute students’ grades does not

guarantee the best likelihood to their actual knowledge, and how the evaluation of their abili-

ties varies depending on the estimation method, or even by varying the hyperparameters in a

given method. We hope this work inspires more transparency in the important social process of

examination and testing of individual abilities.
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Appendix A

Description of the marginal maximum

likelihood method

Let ξ′
i be the vector of parameters of the i-th item, and ξ

′
= (ξ

′
1, . . . , ξ

′
m) the vector with all the

item parameters.

Let, still, U ′
= (U1, . . . , Um), Uk = 0 or 1, a vector of answers of an examinee with ability

θ. The probability of ocurrence of this answer vector is:

P (u|θ, ξ) =
m∏
k=1

P uk
k1 (1− Pk1)

1−uk .

Assuming that the exmaminees belong to a population whose ability θ is continually dis-

tributed, with density g(θ) and finite mean and variance, the marginal probability is

P (u|ξ) =
∫

P (u|θ, ξ)g(θ)dθ

and the marginal likelihood function,

L = P (u1, . . . , uN |ξ) =
N∏
k=1

P (uk|ξ),
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where N is the amount of examinees that answered the exam.

The integral above is estimated by the Gaussian quadrature formula:

P (u|ξ) ≈
Q∑

q=1

P (u|Xq, ξ)A(Xq),

where Xq is a quadrature point and A(Xq) is the weight corresponding to the density function

g(θ) at Xq (Stroud and Sechrest, 1966). Inep uses 40 quadrature points to Enem.

The task of maximizing L becomes simpler when done in logL, which results in equivalent

value. This can be done from the following system:

∂logL

∂ξil
=

Q∑
q=1

1∑
k=0

r̃ikq
1

Pjk(Xq ,ξi)

∂Pjk(Xq, ξi)

∂ξil
,

where i = 1, . . . ,m an l = 1, 2, 3, being m the number of items. r̃ikq is the expected number

of answers in category k = 0 or 1 of item i of examinees with ability in the interval (Xq −

∆Xq/2, Xq +∆Xq/2), which, in turn, can be estimated by:

r̃ikq =
N∑
j=1

xijkP (Xq, uj, ξ)∆Xq.

Furthermore, Ñikq is the expected number of examinees that answered item i with proficency

in the interval (Xq −∆Xq/2, Xq +∆Xq/2):

Ñikq =
1∑

k=0

r̃ikq.

The probability of the ability to belong to this interval, given the answer vector uj and the

parameter vector ξ is given by:

P (Xq|uj, ξ)∆Xq =
P (uj|Xq, ξ)A(Xq)∑Q
q=1 P (uj|Xq, ξ)A(Xq)

.

Finally, using the EM algorithm (Expectation-Maximization) one can obtain the solution of
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the system ∂logL
∂ξil

= 0. The algorithm is executed in two steps:

• Step E: from the values ξ′
1, . . . , ξ

′
m, r̃ikq and Ñikq are calculated;

• Step M: given r̃ikq e Ñikq, ξ that solves the system is found.

The cycle is repeated until the estimates of ξ are stable.

Normal distribution with mean 0 and variance 1 is assumed for the proficiency or ability

parameter.

Inep uses marginal bayesian estimation, which, however, results in the same process de-

scribed above.

In this method, a prior continuous distribution is assumed for the item parameters, given by

g(ξ). The bayesian estimator is the value of ξ that maximizes the density a posteriori

g(ξ|u1, . . . , uN) =
P (u1, . . . , uN |ξ)g(ξ)

P (u1, . . . , uN)
,

where P (u1, . . . , uN |ξ) = L is the marginal likelihood function of ξ.

Therefore, it is equivalent to maximizer logL + log[g(ξ)], which can be done by the EM

algorithm as described in the maximum likelihood method, only adding the prior distributions

of the parameters

In the case of multiple groups, as in the Enem, one must incorporate the densities gk(θ) of

each one of the groups in analysis, estimating these densities’ parameters together with the item

parameters. For the reference group chosen, the parameters are fixed with mean equal to 0 and

variance equal to 1. The marginal likelihood results in:

L =
K∏
k=1

nk∏
i=1

P (xki|ξ, ηk) =
K∏
k=1

nk∏
i=1

∫
P (xki|θ, ξ)gk(θ)dθ,

and the EM algorithm can be used in this equation for the estimation of the item parameters.

Finally, for the estimation of examinees’ abilities the method of the posterior expectation

(EAP), considering the answer vector of each examinee and the respective item parameters

previously estimated.
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The EAP method basically consists in the use of a prior probability function to calculate the

ability, that, for the examinees of the reference group, has mean 0 and variance 1. For the rest of

the examinees, the formula below expresses the ability, which is rescaled to form their grades:

θ̂ ≈
∑Q

q=1XqP (uj|Xq, ξ)A(Xq)∑Q
q=1 P (uj|Xq, ξ)A(Xq)

,

whose precision is measured by the posterior standard deviation (PSD):

PSD(θ̂j) ≈
∑Q

q=1(Xq − θ̂j)
2P (uj|Xq, ξ)A(Xq)∑Q

q=1 P (uj|Xq, ξ)A(Xq)
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