
AN ANALYTICAL MODEL FOR IEEE
802.11AH NETWORKS UNDER THE
RESTRICTED ACCESS WINDOW

MECHANISM AND RAYLEIGH FADING
CHANNEL

STEPHANIE MIRANDA SOARES

TESE DE DOUTORADO
EM ENGENHARIA ELÉTRICA

DEPARTAMENTO DE ENGENHARIA ELÉTRICA

FACULDADE DE TECNOLOGIA

UNIVERSIDADE DE BRASÍLIA

Universidade de Brasília

Faculdade de Tecnologia

Departamento de Engenharia Elétrica

An Analytical Model for IEEE 802.11ah Networks Under the
Restricted Access Window Mechanism and Rayleigh Fading Channel

Stephanie Miranda Soares

TESE DE DOUTORADO SUBMETIDA AO PROGRAMA DE PÓS-GRADUAÇÃO

EM ENGENHARIA ELÉTRICA DA

UNIVERSIDADE DE BRASÍLIA COMO PARTE DOS REQUISITOS NECES-

SÁRIOS PARA A OBTENÇÃO DO GRAU DE DOUTOR.

APROVADA POR:

Prof. Dr. Marcelo Menezes de Carvalho, ENE/UnB

(Orientador)

Prof. Dra. Juliana Freitag Borin , IC/UNICAMP

(Examinador Externo)

Prof. Dr. Renato Mariz de Moraes, CIn/UFPE

(Examinador Externo)

Prof. Dr. Paulo Roberto de Lira Gondim, ENE/UnB

(Examinador Interno)

Brasília/DF, abril de 2024.

FICHA CATALOGRÁFICA

SOARES, STEPHANIE

An Analytical Model for IEEE 802.11ah Networks Under the Restricted Access Window Me-

chanism and Rayleigh Fading Channel. [Brasília/DF] 2024.

204, 2024., 210 x 297 mm (ENE/FT/UnB, Doutor, Tese de Doutorado, 2024).

Universidade de Brasília, Faculdade de Tecnologia, Departamento de Engenharia Elétrica.

Departamento de Engenharia Elétrica
1. IEEE 802.11ah 2. Internet of Things
3. Wireless networks 4. Analytical modeling
5. Non-ideal channel 6. Restricted access window
I. ENE/FT/UnB II. Título (série)

REFERÊNCIA BIBLIOGRÁFICA

SOARES, STEPHANIE (2024). An Analytical Model for IEEE 802.11ah Networks Under the

Restricted Access Window Mechanism and Rayleigh Fading Channel. Tese de Doutorado,

Publicação PPGEE.204/2024, Departamento de Engenharia Elétrica, Universidade de

Brasília, Brasília, DF, 108p.

CESSÃO DE DIREITOS

AUTOR: Stephanie Soares

TÍTULO: An Analytical Model for IEEE 802.11ah Networks Under the Restricted Access

Window Mechanism and Rayleigh Fading Channel.

GRAU: Doutor ANO: 2024

É concedida à Universidade de Brasília permissão para reproduzir cópias deste Tese de

Doutorado e para emprestar ou vender tais cópias somente para propósitos acadêmicos e

científicos. O autor reserva outros direitos de publicação e nenhuma parte deste trabalho pode

ser reproduzida sem autorização por escrito do autor.

Stephanie Soares

Universidade de Brasília (UnB)

Campus Darcy Ribeiro

Faculdade de Tecnologia - FT

Departamento de Engenharia Elétrica(ENE)

Brasília - DF CEP 70919-970

To my grandfather Miranda.

ACKNOWLEDGEMENTS

I am grateful to God for giving me the good health and strength to reach this point. I

would like to express my sincere gratitude to my advisor Marcelo Menezes de Carvalho for

his valuable teachings, patience, dedication, and comprehension. Above all, I want to thank

him for always believing in me and trusting me throughout all these years of work that began

during my undergraduate studies. I am also grateful to my family, especially my mother, for

her love, encouragement, and unconditional support. My grandfather, who is no longer with

us physically, has always been a source of love and support. The University of Brasilia (UnB)

has been my second home for 14 years, and I am thankful for all the professors and colleagues

who have been part of my journey.

ABSTRACT

Many promising technologies have been developed since the conception of Internet of Things

(IoT). In light of the growth of IoT, the IEEE 802.11ah is an amendment to the IEEE 802.11

standard to address IoT’s key challenges, which are connectivity of many devices to a single

access point (AP), longer transmission ranges and limited power resources. Thus, this standard

introduces new features in the Physical and MAC layers to meet IoT requirements. In the Phy-

sical layer, there were modifications to permit the operation in sub-1GHz frequency bands and,

in the MAC layer the standard introduces power saving mechanisms to perform better in dense

networks. One of its main novelties is the restricted access window (RAW), which is a channel

access feature designed to reduce channel contention by dividing stations into RAW groups.

Each RAW group is further divided into RAW slots, and stations only attempt channel access

during the RAW slot they were assigned to. In this dissertation, we first propose a discrete-time

Markov chain model to evaluate the average aggregate throughput of IEEE 802.11ah networks

using the RAW mechanism under saturated traffic and ideal channel conditions.

The proposed analytical model describes the behavior of an active station within its assigned

RAW slot. A key aspect of the model is the consideration of the event of RAW slot time com-

pletion during a station’s backoff operation. The numerical results derived from our analytical

model are compared to computer simulations based on an IEEE 802.11ah model developed for

the ns-3 simulator by other researchers. We study the average aggregate network throughput

for various numbers of RAW slots and stations in the network, and we confirm the importance

of the RAW slot completion probability in our analytical model. For this, we conducted this

comparison in two cases: one where this probability was considered and another where it was

not considered. Moreover, our analytical model is also compared to two other analytical models

proposed in the literature. The presented results indicate that the proposed analytical model

reaches the closest agreement with independently-derived computer simulations.

Furthermore, we extend the discrete-time Markov chain model to consider the impact of

Rayleigh fading channel and large-scale path loss on the operation of IEEE 802.11ah networks.

We also validate the proposed analytical model via ns-3 simulations, and we study network th-

roughput in different scenarios by varying the modulation and coding schemes (MCS), packet

size, and distance to the access point (AP). Our proposed analytical model accurately predic-

ted network performance in most scenarios. However, in some instances, we observed higher

percentage errors between the analytical model and simulations, which we attributed to packet

losses in the simulations that the analytical model did not predict. We propose an expression to

adjust the RAW slot duration based on the distance to the AP. The efficiency of the grouping

strategies is measured in terms of Jain’s fairness. With our case studies, we demonstrate the

necessity of adjusting the RAW slot duration based on the distance between the stations and

the AP to attain throughput fairness among groups.

Keywords: IEEE 802.11ah, internet of things, wireless networks, analytical modeling, non-ideal

channel, restricted access window.

RESUMO

Título: Modelo analítico para redes IEEE 802.11ah sob o mecanismo de janela de acesso

restrito e canal de desvanecimento Rayleigh

Muitas tecnologias promissoras foram desenvolvidas desde a concepção da Internet das

Coisas (IoT, do inglês Internet of Things). À luz do crescimento da IoT, o IEEE 802.11ah é

uma alteração ao padrão IEEE 802.11 para enfrentar os principais desafios da IoT, que são a

conectividade de muitos dispositivos a um único ponto de acesso (AP, do inglês Access Point),

transmissões a longas distãncias e recursos de energia limitados. Deste modo, o IEEE 802.11ah

introduz novos recursos nas camadas Física e MAC (do inglês Medium Access Control) para

atender aos requisitos de IoT. Na camada Física, houve modificações para permitir a operação

em faixas de frequência abaixo de 1GHz e, na camada MAC, o padrão introduz mecanismos

de economia de energia para melhorar o desempenho em redes densas. Uma de suas principais

inovações é a janela de acesso restrito (RAW, do inglês Restricted Access Window), que é um

recurso de acesso ao canal projetado para reduzir a contenção de canais, dividindo as estações

em grupos RAW. Cada grupo RAW é dividido em slots RAW, e somente as estações atribuidas

a um dado slot RAW podem tentar o acesso ao canal durante o intervalo de tempo do slot

RAW. Nesta tese, propomos primeiro um modelo de cadeia de Markov de tempo discreto para

avaliar a vazão média agregada de redes IEEE 802.11ah que utilizam o mecanismo RAW, sob

tráfego saturado e condições de canal ideal.

O modelo analítico proposto descreve o comportamento de uma estação ativa dentro do

seu slot RAW atribuído. O principal aspecto do modelo é a consideração do evento de con-

clusão do tempo de slot RAW durante o processo de backoff de uma estação. Os resultados

numéricos derivados do nosso modelo analítico são comparados com simulações computacionais

independentes baseadas em um módulo do IEEE 802.11ah desenvolvido para o simulador ns-3

por outros pesquisadores. Estudamos a vazão média agregada da rede para vários números de

slots e estações RAW na rede e confirmamos a importância da probabilidade de término do slot

RAW em nosso modelo analítico. Para isso, realizamos esta comparação em dois casos: um em

que esta probabilidade foi considerada e outro em ela não foi considerada no modelo analítico.

Além disso, nosso modelo analítico também é comparado com outros dois modelos analíticos

propostos na literatura. Os resultados apresentados indicam que o modelo analítico proposto

atinge a maior concordância com simulações computacionais derivadas independentemente.

Além disso, estendemos o modelo de cadeia de Markov de tempo discreto para considerar o

impacto do desvanecimento Rayleigh e da perda de caminho em grande escala na operação de

redes IEEE 802.11ah. Também validamos o modelo analítico proposto por meio de simulações

ns-3 e estudamos o desempenho da rede em termos de vazão em diferentes cenários, variando

os esquemas de modulação e codificação (MCS, do inglês Modulation and Coding Scheme),

tamanho do pacote e distância ao ponto de acesso (AP, do inglês Access Point). O modelo

analítico proposto previu com precisão o desempenho da rede na maioria dos cenários. Porém,

em alguns casos, observamos erros percentuais mais elevados entre o modelo analítico e as si-

mulações computacionais. Com as simulações computacionais, percebemos que houve perdas

de pacotes as quais o modelo analítico não prevê. Propomos uma expressão para ajustar a

duração do slot RAW com base na distância das estações até o AP e a eficiência das estraté-

gias de agrupamento foi medida em termos da justiça de Jain. Com nossos estudos de caso,

demonstramos a necessidade de ajustar a duração do slot RAW com base na distância entre as

estações e o AP para obter justiça de acesso ao canal entre os grupos.

Palavras-chave: IEEE 802.11ah, internet das coisas, redes sem fio, modelo analítico, canal não

ideal, janela de acesso restrito.

TABLE OF CONTENTS

Table of contents i

List of figures iii

List of tables vi

List of symbols viii

Glossary ix

Chapter 1 – Introduction 1

1.1 Motivation . 1

1.2 Objectives . 6

1.3 Contributions . 6

1.3.1 Publications . 7

1.4 Organization of the Dissertation . 7

Chapter 2 – Overview of the IEEE 802.11ah 8

2.1 Introduction . 8

2.2 The IEEE 802.11ah standard . 9

2.3 Restricted Access Window (RAW) . 10

2.4 Enhanced Distributed Channel Access (EDCA) 13

2.4.1 Carrier Sense Multiple Access with Collision Avoidance - CSMA/CA . . 15

2.4.2 Binary Exponential Backoff (BEB) Algorithm 16

2.5 Dynamic AID . 16

2.6 Conclusions . 17

Chapter 3 – Related Work 18

3.1 Conclusions . 27

Chapter 4 – Analytical Model 28

Table of Contents ii

4.1 Markov Model for Backoff Operation . 28

4.2 Markov Chain Solution . 31

4.2.1 Ideal Channel . 31

4.2.2 Under Rayleigh Fading Channel . 32

4.3 RAW Slot Time Completion Probability . 34

4.4 Throughput Computation . 36

4.4.1 Ideal Channel . 36

4.4.2 Non-ideal Channel . 37

4.5 Minimum RAW Slot Duration . 38

4.6 Conclusions . 38

Chapter 5 – Numerical Results 40

5.1 Ideal Channel . 40

5.1.1 Impact of RAW Slot Time Completion Probability on Throughput 42

5.1.2 Comparison with other Analytical Models 44

5.2 Impact of Rayleigh Fading Channel . 47

5.2.1 Case 1 . 50

5.2.2 Case 2 . 52

5.2.3 Case 3 . 54

5.2.4 Comparison between the three case studies 56

5.3 Conclusions . 58

Conclusion 61

References 63

Apêndice A – ns-3 program 68

Apêndice B – MATLAB 102

LIST OF FIGURES

2.1 RAW mechanism of IEEE 802.11ah. Each beacon interval is preceded by a RPS

beacon. The beacon interval can have one or more RAW groups, and each RAW

group can be divided into one or more RAW slots. 11

2.2 Backoff procedure inside a RAW group. Station 1 belongs to the single RAW

group, and it is assigned to RAW slot 1, while station 2 does not belong to this

RAW group. Both stations execute the first backoff outside the RAW group

period. When the occurrence of the RAW group begins, both stations go to

sleep state. Station 1 wakes up and performs the second backoff within RAW

slot 1, and sleeps during the remaining RAW group period. Station 2 remains

in sleep state during all RAW group period. 13

2.3 CSMA/CA operation (IEEE STD 802.11AH-2016, 2016) 15

2.4 Example of hierarchical AID in IEEE 802.11 ah networks. 17

4.1 Markov chain model for station operating within its assigned RAW slot according

to the IEEE 802.11ah. 29

5.1 Average aggregate throughput as a function of the total number of stations divi-

ded into 2 RAW slots within a single RAW group per beacon interval. Numerical

results for the analytical model are displayed for the cases when either Eq. (4.21)

or q = 0 are considered for the probability of RAW slot time completion, along

with the results obtained with ns-3 simulations. 43

List of Figures iv

5.2 Average aggregate throughput as a function of the total number of stations divi-

ded into 5 RAW slots within a single RAW group per beacon interval. Numerical

results for the analytical model are displayed for the cases when either Eq. (4.21)

or q = 0 are considered for the probability of RAW slot time completion, along

with the results obtained with ns-3 simulations. 43

5.3 Average aggregate throughput as a function of the total number of stations divi-

ded into 10 RAW slots within a single RAW group per beacon interval. Numerical

results for the analytical model are displayed for the cases when either Eq. (4.21)

or q = 0 are considered for the probability of RAW slot completion time, along

with the results obtained with ns-3 simulations. 44

5.4 Average aggregate throughput as a function of the total number of stations divi-

ded into 2 RAW slots within a single RAW group per beacon interval. Numerical

results for our proposed model, Zheng’s model, and Sangeetha’s model are dis-

played along with the results obtained with ns-3 simulations. 46

5.5 Average aggregate throughput as a function of the total number of stations di-

vided into five RAW slots within a single RAW group per beacon interval. Nu-

merical results for our proposed model, Zheng’s model, and Sangeetha’s model

are displayed along with the results obtained with ns-3 simulations. 46

5.6 Average aggregate throughput as a function of the total number of stations divi-

ded into 10 RAW slots within a single RAW group per beacon interval. Nume-

rical results for our proposed model, Zheng’s model, and Sangeetha’s model are

displayed along with the results obtained with ns-3 simulations. 47

5.7 Network scenario: stations are divided into r zones around the AP. 48

5.8 Comparison of the three case studies considering the throughput per group and

Jain’s fairness obtained in computational simulations for the MCS0 and packet

size of 256 bytes scenario. 57

5.9 Comparison of the three case studies considering the throughput per group and

Jain’s fairness obtained in computational simulations for the MCS0 and packet

size of 1024 bytes scenario. 58

List of Figures v

5.10 Comparison of the three case studies considering the throughput per group and

Jain’s fairness obtained in computational simulations for the MCS3 and packet

size of 256 bytes scenario. 59

5.11 Comparison of the three case studies considering the throughput per group and

Jain’s fairness obtained in computational simulations for the MCS3 and packet

size of 1024 bytes scenario. 59

LIST OF TABLES

2.1 IEEE 802.11ah MCSs for 1MHz and 2MHz with guard interval GI = 8 µs and

data rate in Kbps . 10

3.1 Existing research on RAW mechanism. 26

3.2 Existing grouping proposals. 27

5.1 Values of PHY-layer parameters used in simulations and numerical results. . . . 41

5.2 Values of MAC-layer and other parameters used in simulations and numerical

results. 41

5.3 Physical layer parameters used in ns-3 simulations numerical (analytical) com-

putations. 49

5.4 MAC layer parameters used in ns-3 simulations numerical (analytical) computa-

tions. 49

5.5 Comparison between analytical model and computer simulations of the through-

put in Mb/s for MCS0 and 256 bytes with RAW slots of the same duration in

each RAW group and random groups. 50

5.6 Comparison between analytical model and computer simulations of the through-

put in Mb/s for MCS0 and 1024 bytes with RAW slots of the same duration in

each RAW group and random groups. 51

5.7 Comparison between analytical model and computer simulations of the through-

put in Mb/s for MCS3 and 256 bytes with RAW slots of the same duration in

each RAW group and random groups. 52

LIST OF SYMBOLS vii

5.8 Comparison between analytical model and computer simulations of the through-

put in Mb/s for MCS3 and 1024 bytes with RAW slots of the same duration in

each RAW group and random groups. 52

5.9 Comparison between analytical model and computer simulations of the through-

put in Mb/s for MCS0 and 256 bytes with RAW slots of the same duration in

each RAW group. 52

5.10 Comparison between analytical model and computer simulations of the through-

put in Mb/s for MCS0 and 1024 bytes with RAW slot of the same duration in

each RAW group. 54

5.11 Comparison between analytical model and computer simulations of the through-

put in Mb/s for MCS3 and 256 bytes with RAW slot of the same duration in

each RAW group. 54

5.12 Comparison between analytical model and computer simulations of the through-

put in Mb/s for MCS3 and 1024 bytes with RAW slot of the same duration in

each RAW group. 54

5.13 Comparison between analytical model and computer simulations of the through-

put in Mb/s for MCS0 and 256 bytes with different Raw slot durations. 55

5.14 Comparison between analytical model and computer simulations of the through-

put in Mb/s for MCS0 and 1024 bytes with different RAW slot durations. 55

5.15 Comparison between analytical model and computer simulations of the through-

put in Mb/s for MCS3 and 256 bytes with different Raw slot durations. 56

5.16 Comparison between analytical model and computer simulations of the through-

put in Mb/s for MCS3 and 1024 bytes with different Raw slot durations. 56

LIST OF SYMBOLS

δ Propagation delay
σ Empty slot
τ Steady-state frame transmission probability
bi,j Steady-state probability
q Probability of RAW slot completion
p Probability of failed transmission
B Bandwidth of the transmitted signal
Gr Receive gain
GT Transmit gain
N0 Noise power spectral density
Pb Probability of bit error
Pe Probability of packet error
Ps Probability of successful transmission
Ptr Probability of a frame transmission
PL Path-loss power
Pr Received power
PT Transmit power
SBEACON Aggregate throughput over a beacon interval
SDATAi Throughput over a RAW slot
SRAW_SLOT i Effective throughput over RAW slot in a beacon interval
Tg Guard period
Th Holding period
Tc Time the channel is busy with a collision
Ts Time the channel is busy with a successful transmission

GLOSSARY

AP Access Point
AID Associated Identifier
CSB Cross Slot Boundary
DCF Distributed Coordination Function
EDCA Enhanced Distributed Channel Access
IFS Interframe Space
EIFS Extended Interframe Space
SIFS Short Interframe Space
DIFS DCF Interframe Space
PIFS PCF Interframe Space
AIFS Arbitration Interframe Space
IoT Internet of Things
LPWAN Low-Power Wide Area Networks
MCS Modulation and Coding Schemes
MIMO Multiple Input Multiple Output
RAW Restricted Access Window
RPS RAW Parameter Set
TIM Traffic Indication Map
TWT Target Wake Time
WPAN Wireless Personal Area Networks

CHAPTER 1

INTRODUCTION

1.1 MOTIVATION

Nowadays, wireless networks are becoming increasingly pervasive, extending their reach

to uncharted territories such as farms, manufacturing plants, retail stores, warehouses, and

autonomous vehicles, to name a few, aiming to provide access to a multitude of objects and

unleash the full potential of the Internet of Things (IoT) (AL-FUQAHA et al., 2015; MINOLI et

al., 2017; YAQOOB et al., 2017; SISINNI et al., 2018; BELLINI et al., 2022; QUY et al., 2022;

MISRA et al., 2022). This unprecedented number of over-the-air connections poses significant

challenges to the design of next-generation wireless networks due to the need to support i)

a massive amount of concurrent connections and data traffic; ii) highly heterogeneous and

stringent quality-of-service (QoS) requirements, and iii) efficient and fair use of scarce network

resources (e.g., energy and bandwidth) (TIAN et al., 2021).

In this effort, it is envisaged that Wireless Local Area Networks (WLANs) will play an es-

sential role in the deployment and dissemination of IoT applications because Wi-Fi devices have

been widely adopted and can operate in unlicensed spectrum (AHMED et al., 2022). However,

current Wi-Fi networks (e.g., IEEE 802.11ac/ax) face many challenges in IoT scenarios, con-

sisting of large-scale networks deployed over areas wider than traditional WLANs. Moreover,

as competing stations increase, traditional IEEE 802.11 networks become less efficient due to a

higher probability of data packet collisions, leading to significant performance degradation. Ad-

ditionally, due to the growth of the number of IoT devices and the fact that they are primarily

devices with limited power resources, one of the significant concerns in IoT implementations is

to extend the lifetime of the batteries in the devices. Powering IoT devices with conventional

batteries requires frequent replacements, and billions of batteries will be discarded every year.

The limited lifetime of conventional batteries can become a significant problem in networks

with many connected devices because it increases maintenance and operation costs and has a

1.1 – Motivation 2

negative impact on the environment. Given that medium access control (MAC) layer operati-

ons have a significant energy consumption in wireless communication networks, techniques for

reducing the energy consumption of these operations are widely studied.

Currently, there are two existing low-power IoT communication technologies: Wireless Per-

sonal Area Networks (WPAN) and Low-Power Wide Area Networks (LPWAN). The WPAN

technologies (such as Zig-Bee and Bluetooth Low Energy) provide medium data rates of up to a

few hundred kilobits per second in a short range (tens of meters). On the other hand, LPWAN

technologies (such as LoRa, SigFox, NB-IoT, eMTC, Wi-SUN, and IEEE 802.11ah) focus on

long-range communications up to tens of kilometers and support low or medium data rates,

from a few hundred bits per second to a few megabits per second. Regarding WPAN, Zig-Bee

is developed based on IEEE 802.15.4 and supports many devices and extensive coverage using

a mesh topology, while Bluetooth Low Energy consumes less energy. Regarding LWPAN, NB-

IoT and eMTC are 5G technologies designed for IoT and operate in licensed frequency bands,

while others work in the Industrial, Scientific and Medical (ISM) bands. LoRa and e-MTC

support high mobility and long-range transmissions. The e-MTC supports critical service due

to the high reliability and low latency, while SigFox has the most extended transmission range.

The WPAN and LPWAN technologies have some limitations. WPAN has a short transmission

range, and both WPAN and LPWAN have low data rates. Thus, they are only useful in limited

IoT scenarios. Therefore, there is still a need for a low-power IoT communication technology

that offers sufficient throughput up to tens of megabits per second over medium transmission

ranges. The IEEE 802.11ah, marked as Wi-Fi HaLow, was introduced as a LPWAN technology

to fill this gap, as it has the highest data rate and medium transmission range between WPAN

and most of the LPWAN technologies.

Motivated by such IoT features, the IEEE 802.11ah amendment (IEEE STD 802.11AH-

2016, 2016) was developed to operate on sub-GHz frequency channels in order to support

higher network coverage. In addition, it introduces a number of other features that allow up

to 8,191 stations to be associated with a single access point (AP) under higher energy effici-

ency, which makes it an attractive wireless access technology for IoT applications. The IEEE

802.11ah standard inherited the physical layer of the IEEE 802.11ac, with adaptations to ope-

rate at frequencies below 1 GHz, and channel bandwidths ranging from 1 MHz to 16 MHz, with

1.1 – Motivation 3

the 1 MHz and 2 MHz bands being widely adopted. In particular, many new features were

incorporated into the MAC sub-layer in order to provide better support for energy consumption

and channel access under dense network scenarios, such as the mechanisms of restricted access

window (RAW), traffic indication map (TIM), and target wake time (TWT), along with redu-

ced frame headers, and faster association and authentication procedures. In fact, the RAW

mechanism is one of the main innovations to handle dense scenarios, by which stations are

grouped into “RAW groups,” which are further divided into RAW slots. Only stations assigned

to a given RAW slot can compete for channel access during the occurrence of this specific time

slot. The assignment of stations to RAW groups and RAW slots, as well as their number and

time duration, are all specified by the base station in the so-called RAW Parameter Set (RPS)

transmitted in the beginning of each beacon interval (whose time duration can also be changed

dynamically). Additionally, The AP creates the groups of stations using associated identifier

(AID) numbers, which are first assigned to stations during association. However, the AID can

also be changed dynamically, either by request of the station itself or by initiative of the AP.

The development of analytical models to analyze the performance of these protocols is crucial

in ensuring the efficiency and effectiveness of communication in such networks. It is possible

to analyze network behavior by varying parameters and initial conditions using an analytical

model instead of real devices. Therefore, it is important to develop analytical models that

predict the behavior of networks with high accuracy. Due to the importance and growing

interest in this standard, a number of works have proposed analytical models to evaluate the

performance of IEEE 802.11ah networks, especially with respect to the operation of the RAW

mechanism. However, in general, previous analytical models have either included features that

are not specified in the IEEE 802.11ah standard (ZHENG et al., 2014; SANGEETHA; BABU,

2019), or they have not been validated against some independently-developed simulator that is

widely adopted by the networking community. In fact, many previous works have validated their

results based on their own customized simulators, whose accuracy and compliance to standard

specifications have not been demonstrated (KHOROV et al., 2019; BANKOV et al., 2020;

TARAMIT et al., 2022a; DONG et al., 2016). In this sense, the validation of an analytical

model against a standard-compliant well-known simulator is key to establish its prediction

accuracy. In addition, few works have addressed the impact of channel errors in the operation

of IEEE 802.11ah networks and, more importantly, on its implications in the creation of RAW

1.1 – Motivation 4

groups (ZHENG et al., 2014; SANGEETHA; BABU, 2019; KHOROV et al., 2019; BANKOV

et al., 2020; DONG et al., 2016).

Another line of research related to IEEE 802.11ah is station grouping ideas to optimize

the use of the RAW mechanism to improve network performance. Recently, the study of

multi-rate IEEE 802.11ah networks has received attention due to the “performance anomaly”

issue (HEUSSE et al., 2003): co-located low data rate stations deteriorate throughput of high

data rate ones due to unfair airtime usage. Some previous works mainly focused on grouping

stations according to the modulation and coding scheme (MCS) reported to the AP during

association (MAHESH et al., 2020; SANGEETHA; BABU, 2020; BADARLA; HARIGOVIN-

DAN, 2021). However, the proposed solutions do not address some issues such as: some devices

may be mobile (or be relocated) during operation and data rates announced during associa-

tion may change after some time; they did not consider grouping stations with similar channel

conditions as a parameter, since the successful reception of frames depends on the received

signal strength at the access point (AP), which impacts retransmissions; other traffic patterns

(e.g., data frame lenght, interarrival time distribution, periodicity) should be taken into ac-

count when grouping stations, even if the announced MCS modes are the same. Therefore,

there is still a need for station grouping proposals in order to improve airtime fairness. Thus,

to deal with these issues, the AP needs to learn the dynamics of the network in real time, so it

can group (or regroup) stations according to some criteria. To allow the dynamic grouping of

stations, we have implemented the dynamic AID feature into the ns-3 simulator and studied its

use based on a K-means approach to group stations on-the-fly that re-allocate stations to new

RAW groups according to the dynamic changes in the network. Part of this work is presented

in (OLIVEIRA et al., 2022).

Given the importance of filling these gaps, in our previous work (SOARES; CARVALHO,

2019), we modeled the behavior of an IEEE 802.11ah station inside its assigned RAW slot based

on a discrete-time Markov chain for ideal channel conditions and saturated traffic scenario.

The main innovation of the proposed model is the modeling of the probability of RAW slot

completion time during the activity of a station, which aims to capture the moment that the

station needs to stop its activity and wait for the next assigned RAW slot in the subsequent

beacon interval. For that, we presented two empirical proposals for this probability of RAW

1.1 – Motivation 5

slot completion. The first expression considered that this probability depends only on the

number of retransmission attempts, and the second expression also considered the impact of

the number of stations within the RAW slot. Based on the proposed Markov chain, we derived

an expression for the aggregate average throughput (i.e., considering all RAW slots within

a RAW group), whose numerical results were compared to simulation results using the ns-3

simulator based on the 802.11ah module developed by Le Tian et al. (TIAN et al., 2016). The

model numerical results showed similar behavior compared to the independent ns-3 simulations

with few discrepancies.

Afterwards, we realized that the duration of a RAW slot can greatly influence the probability

of RAW slot completion time. As the RAW slot duration decreases, the chances of a slot ending

during a transmission is greater or it may not even be enough for a transmission. Therefore,

the probability of RAW slot completion time should be greater when the RAW slot duration

is shorter. In this dissertation, we propose a new expression for this probability including

the impact of RAW slot duration. We used the same Markov chain model and throughput

computation, however, we modify the probability of RAW slot completion time expression to

characterize how the RAW slot duration influences this probability. We investigate the impact

of the probability of RAW slot time completion in numerical results by comparing them with

the case when such probability is not taken into account (i.e., removed from the model). We

also compare our analytical model with two other analytical models proposed in literature. The

results obtained in this work were published (SOARES; CARVALHO, 2022).

Additionally, we extend the model to account for non-ideal channel conditions under Ray-

leigh fading. We have validated this model using ns-3 simulations and evaluated channel effects

in different scenarios. We consider various modulation and coding schemes (MCS), packet sizes,

and distances from the access point (AP) to assess their impact on the system’s performance.

Furthermore, we propose an expression for the minimum duration of the RAW slot of each

group to ensure that stations in the furthest groups have sufficient time to transmit their pac-

kets. This is particularly important since these stations are more likely to spend more time in

backoff or re-transmissions due to channel errors. Finally, we evaluate the grouping strategies

in terms of Jain’s Fairness to identify the most effective strategies in order to improve the

required performance metrics, such as throughput and fair channel allocation for stations with

1.2 – Objectives 6

worse channel conditions.

1.2 OBJECTIVES

As objectives of this dissertation, we model the behavior of a station based on the IEEE

802.11ah standard based on its backoff process, according to the distributed coordination func-

tion (DCF) for saturated traffic conditions, and propose an analytical model using Markov

chain for ideal and non-ideal channel conditions. In addition, we introduce the moment of

the RAW slot time completion to the Markovian model and derive expressions for the average

aggregate throughput of the network.

Additionally, we evaluate channel effects in different scenarios by varying the coding and

modulation scheme (MCS), packet size and distance from the access point (AP), and show the

importance of assigning access time to the channel according to the distance of the station from

the AP. Finally, we validate the throughput performance predicted by the analytical model with

computer simulations ((TIAN et al., 2016)).

1.3 CONTRIBUTIONS

The main contributions of this dissertation are the following:

• The analytical model we previously introduced (SOARES; CARVALHO, 2019) is exten-

ded and detailed to foster studies on IEEE 802.11ah network planning, optimization,

and performance evaluation by other researchers without the need to rely on lengthy

simulations;

• An improved heuristic expression for the probability of RAW slot time completion is

introduced;

• The key role of the probability of “RAW slot time completion” is demonstrated via com-

parison with the case when it is not considered in the model;

• Numerical results of the analytical model are compared with ns-3 simulations based on

the well-known IEEE 802.11ah module independently developed by Le Tian et al. (TIAN

1.4 – Organization of the Dissertation 7

et al., 2016), (TIAN et al., 2018);

• The prediction accuracy of the proposed analytical model is shown to be significantly

better than two other analytical models available in literature.

• The analytical model is extended to the case of Rayleigh fading channel;

• Numerical results of the analytical model are compared to ns-3 simulations;

• The grouping of stations is studied according to MCS modes, data frame length (payload),

and distance from the AP;

• An expression to define the duration of the RAW slot in each group is proposed according

to the distance of stations to the AP;

• Heterogeneous allocation of RAW slot duration is evaluated in terms of throughput fair-

ness per group.

1.3.1 Publications

• SOARES, Stephanie M.; CARVALHO, Marcelo M. An analytical model for the aggregate

throughput of IEEE 802.11ah networks under the restricted access window mechanism.

Sensors, v. 22, n. 15, p. 5561, 2022. (SOARES; CARVALHO, 2022)

• OLIVEIRA, Eduardo C.; SOARES, Stephanie M.; CARVALHO, Marcelo M. K-Means

Based Grouping of Stations with Dynamic AID Assignment in IEEE 802.11ah Networks.

In: 2022 18th International Conference on Mobility, Sensing and Networking (MSN).

IEEE, 2022. p. 134-141. (OLIVEIRA et al., 2022)

1.4 ORGANIZATION OF THE DISSERTATION

Chapter 2 provides an overview of the main features of the IEEE 802.11ah used in this work,

while Chapter 3 discusses related works. Chapter 4 contains our analytical model, in which we

considered saturated traffic, ideal channel conditions, and, later, non-ideal channel conditions.

In Chapter 5, we present the numerical results. Finally, the conclusions are in Chapter 5.3.

CHAPTER 2

OVERVIEW OF THE IEEE 802.11AH

2.1 INTRODUCTION

The release of the IEEE 802.11ah standard has introduced several new features that aim

to facilitate the widespread deployment of IoT applications. The standard defines the Physical

and MAC layers, which characteristics are a combination of the IEEE 802.11 standard with

low-power communication technologies features, such as ZigBee and Bluetooth. It was deve-

loped to achieve communication with a range up to 1Km, while keeping the data throughput

around 150Kbps, offering greater area coverage with a throughput considerably higher than the

throughput obtained in low power technologies. In the MAC layer, several characteristics were

introduced in order to meet IoT conditions, among them, reduced header, faster association

and authentication, restricted access window (RAW), traffic indication map (TIM) and target

wake time (TWT). As in traditional IEEE 802.11 power save mode, time is divided into beacon

intervals, which can have one or more RAW groups, and each RAW group also has its time

divided into one or more RAW slots, which are assigned to stations. Only the stations assigned

to a given RAW slot can attempt to access the channel during that RAW slot. The beacon in-

tervals can also have periods that are not occupied by RAW groups, in which all stations in the

network can attempt channel access. Each beacon interval is preceded by the RAW Parameter

Set (RPS) beacon that carries RAW information. The RPS specifies characteristics such as

which stations belong to the RAW group, the RAW duration, and the number of RAW slots.

In addition, the standard defines the Cross Slot Boundary (CSB) that indicates if a data packet

transmission may exceed the RAW slot duration or not. If the CSB is disabled, a data packet

transmission time cannot cross the RAW slot limit. Otherwise, a data packet transmission is

permitted to cross the current RAW slot boundary even if it occupies the channel for the next

RAW slot period. With the CSB disabled, the RAW slot is divided into two periods: the free

access period, in which the stations can attempt to access the channel, and the holding period

2.2 – The IEEE 802.11ah standard 9

Th, which is a period that is unavailable for stations to contend for channel access because

there is not enough time for a packet transmission. The standard also defines a guard period

Tg between RAW slots to prevent a transmission from one RAW slot to overlap the following

RAW slot due to the propagation delay. In this chapter it will be presented the main IEEE

802.11ah features used in this work.

2.2 THE IEEE 802.11AH STANDARD

Thinking about the future scenarios of wireless communication, IEEE 802.11ah was develo-

ped to support higher network coverage (up to 1 km) and a larger number of devices (up to 8,191

stations) associated to a single AP. In addition, it is more efficient in terms of energy consump-

tion, what makes it an attractive communication protocol for IoT applications. In comparison

to the IEEE 802.15.4 protocol (AHMED et al., 2016), the current protocol for low-power devi-

ces with restrictions on power and memory consumption, the IEEE 802.11ah performs better

in scenarios with many connected devices. The IEEE 802.11ah inherited the physical layer

from IEEE 802.11ac, with adaptations to operate at frequencies below 1GHz (which differs

according to country regulations 863 − 868MHz in Europe and 902 − 928MHz in North Ame-

rica, for example)(ADAME et al., 2014). The bandwidth ranges from 1MHz to 16MHz, with

the 1MHz and 2MHz bands being widely adopted. By operating at lower frequencies and a

narrower band, IEEE 802.11ah achieves greater distances with lower power consumption than

traditional Wi-Fi, which uses a frequency of 2.4GHz and bandwidth of 5MHz. The 802.11ah

inherited 10 Modulation and Coding Schemes (MCSs) configurations with different data rates

and reliability according to Table 2.1. Like 802.11ac, 802.11ah uses OFDM (Orthogonal Fre-

quency Division Multiplexing), MIMO (Multiple Input Multiple Output) and DL MU-MIMO

(Dowklink Multi-User MIMO) (KHOROV et al., 2015). Additionally, the data frames should

be encoded using Binary Convolutional Coding (BCC) or Low Density Parity Check (LDPC)

coding.

The release of the IEEE 802.11ah standard has introduced several new features that aim

to facilitate the widespread deployment of IoT applications. In the MAC layer, several cha-

racteristics were introduced in order to meet IoT conditions, among them, reduced header,

faster association and authentication, dynamic AID, restricted access window (RAW), traffic

2.3 – Restricted Access Window (RAW) 10

Table 2.1. IEEE 802.11ah MCSs for 1MHz and 2MHz with guard interval GI = 8 µs and data rate in Kbps

MCS Index Modulation Coding Rate Data Rate Data Rate
(1 MHz) (2 MHz)

0 BPSK 1/2 300 650
1 QPSK 1/2 600 1300
2 QPSK 3/4 900 1950
3 16-QAM 1/2 1200 2600
4 16-QAM 2/3 1800 3900
5 64-QAM 1/2 2400 5200
6 64-QAM 3/4 2700 5850
7 64-QAM 5/6 3000 6500
8 256-QAM 3/4 3600 7800
9 256-QAM 5/6 4000 Not valid
10 BPSK 1/2 with 150 Not valid

2× repetition

indication map (TIM) and target wake time (TWT). For channel access, in order to avoid

collision and obtain a higher throughput in dense networks, the IEEE 802.11ah introduces the

restricted access window, RAW, which divides stations into RAW groups. The time is divided

into intervals, each of which is assigned to a RAW group, and only stations belonging to the

RAW group can access the channel at the given interval. More details on how RAW works

will be given in section 2.3. There is also the TIM segmentation mechanism which divides

the information into several segments to transmit them separately and, along with the TIM

beacon, there is also the Delivery Traffic Indication Map (DTIM) beacon . The access point

sends the DTIM beacon in broadcast to the stations which have TIM segments with pending

data, in this way, the stations wake up only to hear their corresponding TIM beacon, staying

longer in mode of energy saving. The reduction of power consumption can be even greater for

stations that rarely have packets to send using the TWT mechanism. With TWT, stations

can negotiate with the access point when they will send their packet, so they remain in energy

saving mode for a longer period.

2.3 RESTRICTED ACCESS WINDOW (RAW)

In order to reduce the number of collisions when many stations compete for the channel

simultaneously, in RAW mechanism, stations are divided into RAW groups and only stations

2.3 – Restricted Access Window (RAW) 11

that belong to the group can access the channel within the RAW specified time interval. As

well as traditional IEEE 802.11 power save mode, time is divided into beacon intervals and

each beacon interval can have more than one or more RAW groups with different parameters.

Moreover, each RAW group also has its time divided into one or more RAW slots, which are

assigned to stations. Only the stations assigned to a given RAW slot can attempt to access the

channel during that RAW slot. The beacon intervals can also have periods that are not occupied

by RAW groups, in which all stations in the network can attempt channel access. Each beacon

interval is preceded by the RAW Parameter Set (RPS) beacon that carries RAW information.

The RPS specifies characteristics such as which stations belong to the RAW group, the RAW

duration, and the number of RAW slots. The RAW mechanism is shown in Fig. 2.1, which

shows that a beacon interval can have one or more RAW groups, and each RAW group can be

divided into one or more RAW slots.

Figure 2.1. RAW mechanism of IEEE 802.11ah. Each beacon interval is preceded by a RPS beacon. The
beacon interval can have one or more RAW groups, and each RAW group can be divided into one or more RAW
slots.

Stations that belong to a group are required to have sequential AIDs, defined by a start

AID and end AID. Moreover, the stations in a RAW group are evenly split (using round robin

assignment) in the RAW slots. The stations are mapped to RAW slots as follows:

islot = (x+Noffset) mod NRAW , (2.1)

where islot is the index of the RAW slot to which the station is assigned, x is the AID of the

station, Noffset is the offset value in the mapping function to improve fairness, and NRAW is

the number of RAW slots in one RAW group. The RPS beacon also contains the slot format

2.3 – Restricted Access Window (RAW) 12

duration count and slot format information, which are necessary to determine the RAW slot

duration D, given by

D = 500µs+ C × 120µs, (2.2)

where C represents the slot duration count subfield, which is y = 11 bits long when the slot

format subfield is set to 1 or y = 8 when the slot format is set to 0. In addition, the number

of slots field is 14− y bits long. If y = 11, each RAW group consists of at most 8 RAW slots,

and the maximum value of C is 211 − 1 = 2047. When y = 8, each RAW group consists of up

to 64 RAW slots and the maximum value that C can assume is 28 − 1.

Unlike the other IEEE 802.11 standards, each station uses two backoff functions according

to the Enhanced Distributed Channel Access (EDCA). The first backoff function is used in

periods which are not occupied by RAW groups, and all stations in the network are allowed

to freely access the channel. The second backoff function is activated inside the RAW slot the

station was assigned to. The stations execute the first backoff function during the period of

free access to the channel, and suspend it in the beginning of the occurrence of a RAW group.

When a RAW group period starts, the stations that are not assigned to this RAW group go

to sleep state and save the state at which their first backoff function has stopped in, so they

can resume it at the end of the time allocated to this RAW group. The stations assigned to

the RAW group wake up and start the second backoff function within their assigned RAW

slot. When the assigned RAW slot ends, the stations go back to sleep for the rest of the RAW

group period. If the RAW slot ends during execution of the second backoff process, the stations

must discard the state in which they were stopped and start a new backoff function in the next

assigned RAW slot. Inside its assigned RAW slot, the station selects a random backoff interval

according to the binary exponential backoff (BEB) algorithm.

Fig. 2.2 shows an example of when the two different backoff functions are activated. Station

1 belongs to the single RAW group shown in the figure, between beacons, where it is assigned

to RAW slot 1. Suppose that there is a second station not assigned to this RAW group. Then,

when the occurrence of the RAW group begins, both stations stop the first backoff counter and

go to sleep. During the occurrence of the RAW group period, station 1 wakes up to perform the

second backoff within RAW slot 1, and sleeps during the remaining RAW period, while station

2 remains in sleep state during the whole RAW group period because it does not belong to this

2.4 – Enhanced Distributed Channel Access (EDCA) 13

RAW group. Both stations return the execution of the first backoff function at the end of the

time allocated to the RAW group.

Figure 2.2. Backoff procedure inside a RAW group. Station 1 belongs to the single RAW group, and it is
assigned to RAW slot 1, while station 2 does not belong to this RAW group. Both stations execute the first
backoff outside the RAW group period. When the occurrence of the RAW group begins, both stations go to
sleep state. Station 1 wakes up and performs the second backoff within RAW slot 1, and sleeps during the
remaining RAW group period. Station 2 remains in sleep state during all RAW group period.

According to the standard (IEEE STD 802.11AH-2016, 2016), a transmission that occurs

in a RAW slot may or may not exceed the RAW slot limit. In the case where transmission

is allowed to cross the slot, the CSB (Cross Slot Boundary) is enabled, otherwise the CSB

is disabled. When the CSB is disabled, the station will only start its transmission if there is

enough time to successful transmit its packet and receive an ACK, which we call the holding

time Th. In addition to the holding time, there is also the guard interval Tg between RAW slots

to prevent a transmission from one RAW slot to overlap the following RAW slot due to the

propagation delay and synchronization errors.

2.4 ENHANCED DISTRIBUTED CHANNEL ACCESS (EDCA)

The IEEE 802.11ah MAC layer provides EDCA services through DCF (Distributed Coordi-

nation Function) services. As an extension of DCF, the EDCA assigns traffic priority to stations

and the station with higher traffic priority is more likely to transmit than a station with lower

traffic priority. The EDCA supports up to eight priorities on a station, which are mapped into

four different access categories. Thus, the minimum and maximum content windows depend

2.4 – Enhanced Distributed Channel Access (EDCA) 14

on each access category and the station must wait for an AIFS time, which is shorter than the

DIFS of the traditional DCF. In the model and simulations, the stations have the same traffic

priority, so the stations operate under the traditional IEEE 802.11 DCF.

The DCF is based on the CSMA/CA (Carrier Sense Multiple Access Protocol with Collision

Avoidance) protocol where the station must wait an IFS (Interframe Space) period of time to

transmit its packet after realizing that the channel is idle. The IEEE 802.11 Standard classifies

these time intervals between frames according to their purpose, as specified below.

• SIFS (Short Interframe Space): Time interval between frames used for control frames,

which have higher priority,i.e., a control frame is transmitted after the end of the SIFS;

• PIFS (PCF Interframe Space): Used in Point Coordination Function (PCF) networks in

which there is no contention to access the channel. The coordinator (AP) defines in which

time slot the station will transmit;

• DIFS (DCF Interframe Space): Minimum time interval between frames in a network with

contention based medium access, in the distributed coordination function. A station will

only transmit its frame if the channel is idle for a time interval equal to or greater than

DIFS;

• EIFS (Extended Interframe Space): It does not have a fixed size and is used when trans-

mission errors occur;

• AIFS (Arbitration Interframe Space): Time interval used by stations that have traffic

priority in the EDCA.

Therefore, a station that has a packet to transmit checks the channel activity, if the channel

is idle for a time interval greater than or equal to DIFS, the station will transmit its message

and wait for a period equal to SIFS to receive a confirmation that its message arrived correctly

at the receiver. If the channel is busy, the station waits for a random backoff interval chosen

according to the exponential backoff algorithm when it notices that the channel is idle again.

In this way, the protocol minimizes the probability of collision with packets transmitted by

other stations. The station also waits for the random backoff between the transmission of two

consecutive packets even if the channel is idle for a period equal to or greater than DIFS.

2.4 – Enhanced Distributed Channel Access (EDCA) 15

2.4.1 Carrier Sense Multiple Access with Collision Avoidance - CSMA/CA

The CSMA-CA allows packets from multiple devices to be transmitted on the same channel.

Before starting a transmission, the station checks the channel activity. If the channel is idle,

the station must wait for a DIFS time interval to start its transmission. However, if the channel

is busy, the station will choose a random value of backoff and count down as soon as channel

is idle. If the station notice that the channel is busy during the backoff process, the backoff

counter will be frozen until the channel is idle again. Finally, when the counter reaches zero,

the station will transmit its entire frame. If a collision occurs, the station can try to retransmit

the packet until it succeeds or until it reaches the limit of retransmission attempts defined in

the standard. Figure 2.3 describes the CSMA/CA operation.

Figure 2.3. CSMA/CA operation (IEEE STD 802.11AH-2016, 2016)

The CSMA/CA also can use short control frames to avoid collision between hidden ter-

minals packets. These control frames are the RTS (Request to Send), request to send, and

the CTS (Clear to Send), ready to send. Before transmitting a frame, the station transmits

a broadcast RTS to reserve the channel and the access point responds with a CTS informing

that a transmission will occur in this channel. The CTS frame is heard by all stations within

range of the access point, so one station transmits its data frame and all other stations do not

transmit even if the transmitting station is not within their range. The RTS/CTS frames helps

to reduce collisions between packets, improving performance mainly in the transmission of lon-

ger frames. If a collision between RTS/CTS frames occurs, the time interval which the channel

will be occupied by a collision will be shorter. However, the use of RTS/CTS may increase

packet delay and use more device resources, which can reduce throughput and consume more

energy. For this reason, RTS/CTS is most commonly used to reserve the channel for longer

2.5 – Dynamic AID 16

frames transmission.

2.4.2 Binary Exponential Backoff (BEB) Algorithm

As mentioned before, the DCF uses the binary exponential backoff (BEB) algorithm which

sets it according to

Backoff time = Random() × Slot time, (2.3)

where Random() generates an integer value uniformly distributed in the interval [0, CW − 1],

where CWmin ≤ CW ≤ CWmax, and CWmin and CWmax are the minimum and maximum

contention window sizes, respectively. According to the BEB algorithm, when the channel is

idle, the backoff counter is decremented and, if the channel is busy, this counter freezes until the

channel is idle again for a time interval greater than or equal to DIFS. Initially, the contention

window size is set to the minimum value and, for each unsuccessful transmission attempt,

the minimum contention window increases exponentially according to CW = 2iCWmin, where

i ∈ [0,m] and m is the maximum number of re-transmission attempts, i.e., CWmax = 2mCWmin.

Finally, when the backoff counter reaches the value zero, the station can transmit its data packet.

2.5 DYNAMIC AID

In the association procedure, the IEEE 802.11ah AP assigns the Associated Identifier (AID)

to the station with a value between 1 and 8191 (TIAN et al., 2021). The AID in IEEE 802.1ah

is a 13-bit long number that is uniquely assigned to identify each associated station and it

follows an hierarchical organization in a four-level structure with 2-bit pages, 5-bit blocks, 3-bit

subblocks and 3-bit stations. Stations are divided into Np pages with Nb blocks each. Each

block is divided into 8 subblocks and each subblock has 8 stations. Np and Nb can be configured,

with the maximum of Np = 4 and Nb = 32. An example of the Hierarchical AID structure is

depicted in Figure 2.4.

A station is in a RAW group if its AID is between the RAW Start AID and the RAW End

AID from the RAW Group subfield in the RAW assignment of the RPS element. Therefore,

all stations in the same RAW group must have the AID in the same range. Once all stations

2.6 – Conclusions 17

Figure 2.4. Example of hierarchical AID in IEEE 802.11 ah networks.

have their AIDs assigned in the association, it is not possible to shuffle stations between dif-

ferent RAW groups due to the aforementioned AID requirement. To overcome this limitation,

the IEEE 802.11ah amendment supports dynamic AID assignment. A station that supports

dynamic AID may send an AID Switch Request frame to the AP to request a new AID to

change it to another group of stations when it notices changes in its traffic load or service

characteristic (IEEE STD 802.11AH-2016, 2016). An IEEE 802.11ah access point may send an

AID Switch Response frame to stations with no need of receiving an AID Switch Request. It is

only possible if the station supports Unsolicited Dynamic AID, and it must set the Unsolicited

Dynamic AID subfield to 1 in the S1G Capabilities.

2.6 CONCLUSIONS

The IEEE 802.11ah standard was developed to be used in Internet of Things networks.

The standard operates in sub-1GHz frequencies to be able to transmit over long distances and

supports up to 8191 stations associated with a single AP. The IEEE 802.11ah standard proposes

a set of new features for the MAC layer to improve energy efficiency, and reduce latency and

packet collision. One of the main features is the RAW mechanism, which divides stations into

groups to access the channel. This chapter presented the main theoretical concepts of the IEEE

802.11ah standard used in the development of this work.

CHAPTER 3

RELATED WORK

Recently, there have been several works on different aspects of IEEE 802.11ah. The analy-

tical modeling of IEEE 802.11ah networks using the RAW mechanism and station grouping

strategies have been topics of growing interest in the past few years. As far as its analytical

modeling is concerned, there are some different approaches. Some works used mean value ap-

proach, others used discrete-time Markov chain approach, and there is a large amount of works

that proposed stations grouping strategies to optimize the IEEE 802.11ah performance. In the

following, we present the main analytical models proposed to date.

Zheng et al. (ZHENG et al., 2014) proposed an analytical model based on mean value

analysis (MVA) to estimate the average network throughput under saturated traffic conditions.

They considered both the cases for the cross slot boundary (CSB) mechanism: if enabled, it

allows a station to proceed with a packet transmission that can exceed the station’s allocated

RAW slot time. Otherwise, a Markov chain model was proposed to estimate the number of

mini-slots occupied by the last data transmission in the RAW slot, so that the duration of

the next RAW slot can be calculated. They validated their analytical model with simulation

results drawn from their own customized simulator. Qutab-ud-din et al. (DIN MUHAMMAD

et al., 2015) analyzed the performance of the RAW mechanism when the CSB is disabled and

proposed four possible backoff schemes in the holding period to improve the throughput and

energy efficiency of saturated IEEE 802.11ah networks. They used Zheng’s (ZHENG et al.,

2014) analytical model as a benchmark to validate their simulation model developed in the

OMNET++ simulator. Therefore, no new analytical model was actually proposed.

Mahesh and Harigovindan (MAHESH; HARIGOVINDAN, 2019) also used Zheng’s model

to propose a grouping scheme based on the average transmission time requirements of devices

with the assignment of a priority level to each defined group. Then, they extended Zheng’s

analytical model to deal with the average throughput of a single group. They evaluated the

19

average aggregate data transfer by comparing their proposed grouping scheme with uniform

grouping using the ns-3 simulator. Taramiti et al. (TARAMIT et al., 2022a) developed an

analytical model which consider Rayleigh-fading channel with the presence of capture effect.

As Zheng et al. (ZHENG et al., 2014), their model based on Mean Value Analysis (MVA) and

they also developed a process to estimate the number of transmissions that occurred within a

RAW slot. The capture model considers the station’s distance to the AP and the power atte-

nuation of the received packets. They evaluated the impact of different parameters, without

proposing a strategy to define RAW parameters or grouping methods to improve network effici-

ency. Furthermore, their results is based on MATLAB, which does not implement asynchronous

and individual operations of nodes in a network as in the ns-3.

Raeesi et al. (RAEESI et al., 2014b) proposed an analytical model that assumes saturated

traffic conditions to estimate throughput and energy consumption for both basic and four-way

handshake mechanisms. They investigated the performance gains obtained with the RAW me-

chanism compared to the regular operation of the distributed coordination function (DCF).

However, their model does not consider the number of nodes as a parameter, and the probabi-

lity of packet collisions is an input value, not a function of the number of nodes and channel

contention. Moreover, the RAW mechanism is not represented in the model. Raeesi et al. (RA-

EESI et al., 2014a) also worked on the scenario of multiple IEEE 802.11ah access points with

a relatively high number of associated stations. Unfortunately, the proposed analytical model

only deals with a theoretical maximum throughput that assumes no packet collisions (i.e., the

backoff contention window never increases) and, again, the RAW mechanism is not incorporated

in the model.

Park et al. (PARK et al., 2014) developed an algorithm to estimate the number of devices

in the uplink access of IEEE 802.11ah networks in order to determine the optimal duration

of the RAW slot. However, they used the original analytical model for the IEEE 802.11 DCF

provided by Bianchi (BIANCHI, 2000) to represent the behavior of traffic-saturated stations

in IEEE 802.11ah network. Therefore, the analytical model does not take into account the

RAW mechanism explicitly. Moreover, they compared the performance of the uplink total

success probability delivered by their algorithm with the legacy (fixed) scheme via analysis and

simulations, based on their own simulator.

20

Sangeetha et al. (SANGEETHA; BABU, 2019) adopted a discrete-time Markov chain model

for the backoff operation of a station in its assigned RAW slot under saturated and non-

saturated traffic conditions, using Bianchi’s approach (BIANCHI, 2000) to compute the average

throughput. Their model focuses on the case when the CSB is disabled, and assumes that the

backoff counter stops at the end of the RAW slot to resumes its operation in the next assigned

RAW slot, starting from the frozen backoff counter value. Thus, when the backoff counter

reaches the value 1, the station checks whether the remaining time within the RAW slot is

enough to transmit the whole data packet. If not, the station goes to a “defer state” and waits

for its next assigned RAW slot in the following beacon interval. However, the described freezing

of the backoff counter value is not defined in the standard. Instead, the station is supposed

to discard the backoff counter value at the end of a RAW slot and start a new one in the

beginning of the next RAW slot. The proposed analytical model was validated based on the

ns-3 simulator. Later, they have extended their analytical model to address the grouping of

stations according to traffic priority (SANGEETHA; BABU, 2021).

Ali et al. (ALI et al., 2019) proposed a discrete-time Markov chain model for IEEE 802.11ah

to evaluate the performance of heterogeneous IoT networks with different QoS traffic demands

under non-ideal channel. They model channel effects regarding Bit Error Rate (BER) but

did not consider Rayleigh fading. Moreover, they considered the case of a disabled CSB,

and used the same idea as Sangeetha et al. (SANGEETHA; BABU, 2019) regarding a “defer

state” (alternatively named as “delay state”) in case the remaining time within a RAW slot is

not enough for data packet transmission. Nevertheless, unlike Sangeetha’s work, the backoff

counter is reset in the beginning of every RAW slot. In addition, similar to our previous

work (SOARES; CARVALHO, 2019), they defined a state transition probability to capture the

ending of a RAW slot at any given moment during a station’s backoff operation, which makes it

return to an initial state for the following RAW slot. Unfortunately, their work did not provide

an expression to compute this probability or a technique to estimate it, which makes their work

unsuitable for comparison.

Khorov et al. (KHOROV et al., 2015) proposed a discrete-time Markov chain model to find

the probability distribution of the time needed for an arbitrary station to successfully transmit

its frame. Based on that, they developed the probability distribution for the time needed by all

21

stations to transmit their packets successfully, in order to determine the minimum duration of

a RAW slot to improve channel efficiency. Later, they extended their work to a more general

scenario (KHOROV et al., 2019), with various traffic patterns and RAW configurations, and

analyzed network performance in terms of throughput, energy consumption, and packet loss

ratio. For that, they proposed a Markov chain model based on the time slot status, i.e., whether

it is occupied by a successful transmission, packet collision, or idle state, and defined absorbing

conditions to model the completion time of a RAW slot. They validated their model based on

a simulator designed by themselves, i.e., not widely adopted by the networking community.

Nawaz et al. (NAWAZ et al., 2017) presented a model where a RAW group is divided into

two sub-groups and the duration of RAW slots in each sub-group is chosen according to the size

of the group to improve network throughput. They showed that overall throughput is improved

by assigning a relatively smaller RAW slot duration to a larger size group. They also used Bi-

anchi’s model (BIANCHI, 2000) to compute the network throughput, and validated the model

with their own simulator. Finally, Kai et al. (KAI et al., 2019) used Bianchi’s approach to for-

mulate throughput and energy efficiency expressions, and designed a traffic distribution-based

grouping scheme to balance the energy efficiency and fairness guarantees among groups in he-

terogeneous IEEE 802.11ah networks. They proposed the Optimal Traffic Grouping Algorithm

(OTGA) based on an integer nonlinear programming problem and validated their solution with

simulations carried out on a simulator designed by themselves.

With regard to station grouping ideas, optimization proposals for the protocol performance

are also being extensively explored in IEEE 802.11ah related works. In this dissertation, we

focus on those who consider heterogeneous networks. Chang et al. (CHANG et al., 2015)

argued that the grouping mechanism performance is related to the different traffic demands of

the devices, so the groups must be adapted to the demands of traffic. They proposed a greedy

algorithm to add the sensor to the best group that can produce the maximal incremental gain

of channel utilization to deliver data frames. They considered the payload size and sampling

rate as parameters of their grouping scheme and they did not consider any change of these

parameters during network operation.

Sangeetha and Babu (SANGEETHA; BABU, 2020) addressed heterogeneous data rates in

IEEE 802.11ah networks by proposing a data rate grouping algorithm for the initialization

22

phase, when stations associate with the AP. The AP gathers data rate information included

in the PLCP header of association request frames sent by stations and associates the stations

to specific arrays according to the data rate value. In addition to consider only a single para-

meter in their grouping scheme (data rate), the approach is static and it does not allow AID

modifications on the fly if stations change their MCS parameters due to mobility or channel

conditions. Moreover, their analytical model and performance evaluation do not explicitly take

into account the impact of the physical layer and, consequently, the location of nodes in the

terrain.

In a similar approach, Mahesh et al. (MAHESH et al., 2020) proposed a grouping scheme

to resolve the performance anomaly in multi-rate IEEE 802.11ah networks. For that, they

proposed a data rate-based algorithm where the AP gathers the data rate of each station from

the PLCP header of association request frames, and place the stations in a matrix of data rates,

where each row in the matrix represents a group of stations with the same data rate. They

assume the AP regroups stations if a station changes data rate. However, once assigned to

a group, the station is not allowed to change groups without changing its AID. Furthermore,

their grouping scheme does not consider other parameters, such as received signal power and

payload size.

Badarla and Harigovindan (BADARLA; HARIGOVINDAN, 2021) also presented a solution

for multi-rate IEEE 802.11ah networks based on a matrix where each row represents a group

of stations with the same data rate. Similar to (SANGEETHA; BABU, 2020), the matrix is

populated only once, during the association phase, and, therefore, their solution does not allow

changes in the rows during operation in case the stations change their MCS parameters. The

AID is fixed for the whole operation of the network. The main difference is the proportional

allocation of channel time to stations with higher data rates. To accomplish that, they allocate

more RAW slots to groups with higher data rates. However, they assume that stations can

choose the RAW slot, which is not allowed in the standard.

Kai et al. (KAI et al., 2019) designed a traffic distribution-based grouping scheme to ba-

lance energy efficiency and fairness guarantees among groups in heterogeneous IEEE 802.11ah

networks. Their proposal consists of grouping stations according to each traffic demand (packet

size and sampling rate) in order to ensure fairness in terms of energy efficiency. For that, they

23

developed a heuristic traffic mapping algorithm to achieve sub-optimal energy efficiency with

max-min fairness among groups. Mosavat-Jahromi et al. (MOSAVAT-JAHROMI et al., 2019)

also proposed a grouping scheme based on a max-min optimization problem to control the

transmission and collision probabilities corresponding to each group in order to maximize the

minimum per-station throughput. As this is an NP-hard problem, and it is difficult to find an

optimal solution, they used the Ant Colony Optimization method to find a sub-optimal solution

faster and with less complexity. However, the proposals (KAI et al., 2019) and (MOSAVAT-

JAHROMI et al., 2019) do not allow regrouping of stations if traffic conditions change during

the operation.

Considering a sensor network scenario with heterogeneous packet transmission intervals

under certain periodicity, Tian et al. (TIAN et al., 2017) designed the Traffic-Aware RAW

Optimization Algorithm (TAROA) to adapt RAW parameters, such as number of stations and

slot duration, in real time, according to traffic conditions. In every beacon interval, TAROA

regroups the stations based on the estimated packet transmission interval of each station using

packet transmission information obtained by the AP in the past beacon interval, and the

optimal number of stations of a RAW group in order to improve network throughput. The

optimal number is derived from simulations based on the ns-3 simulator under saturated state

for different data rates and payload sizes of the stations. They considered in their evaluation

only stations with the same MCS and payload size. Although the algorithm allows RAW

configuration dynamically, the AID of the stations remains fixed throughout network operation

and only stations with consecutive AID numbers can stay in the same group. Their follow-up

work (TIAN et al., 2018) allows non-saturated conditions and stations with different MCS and

average packet sizes.

Taramit et al. (TARAMIT et al., 2022b) proposed an algorithm to define the optimal

duration of a RAW slot, considering the number of stations, in order to maximize the gains of the

RAW mechanism in terms of throughput and energy efficiency and avoid channel waste. They

considered saturated traffic and Rayleigh fading channel with capture effect. In (TARAMIT et

al., 2023), they proposed an algorithm to define the minimum RAW slot duration to guarantee

that all stations assigned to this RAW slot deliver their packets. For this, they considered

that the stations have only one packet to transmit, and they also considered a Rayleigh fading

24

channel with capture effects. Additionally, they studied the impact of the spatial distribution of

the stations around the AP in the capture effect and, thus, in the minimum RAW slot duration.

However, they did not propose a grouping strategy. In both works they used MATLAB for the

simulations.

Lakshmi and Sikdar (LAKSHMI; SIKDAR, 2019) proposed a fair scheduling grouping

scheme with different traffic patterns. Their proposal assigns weights to the groups accor-

ding to the amount of service, i.e., the amount of data the stations in the group generate per

second. This way, the groups that receive higher weights get more RAW slots than the groups

with lower weights. Moreover, to ensure fairness between stations in a group, they propose

the use of a smaller backoff contention window than the normal one. However, the proposed

grouping scheme does not consider dynamic changes in traffic conditions and does not allow

change of AID.

Dong et al. (DONG et al., 2016) developed a grouping scheme based on the geographical

location of devices to avoid collisions related to the hidden terminal problem by defining a

minimum distance between the stations in a RAW slot. They considered that the packet

arrival follows a Poisson distribution, and their simulations were done in MATLAB. Yoon et

al. (YOON et al., 2016) proposed the Hidden Matrix-based Regrouping (HMR) algorithm to

address the performance degradation due to hidden node problem in 802.11ah networks. The

algorithm detects hidden node pairs using the time difference between the PS-Poll transmission,

and moves nodes experiencing the hidden node problem into another group. They developed

an analytical model for saturated traffic conditions. However, they considered ideal channel

conditions. Their simulations were done in a C++ simulator developed by themselves.

Huang and Huang (HUANG; HUANG, 2023) adopted the Registered Backoff Time (RBT)

mechanism to re-schedule those STAs from the overloaded slots to the slots that are underlo-

aded to achieve load balance between slots, in which the AP reallocate stations according to

the time they spend performing backoff. The AP re-schedule those STAs from the overloa-

ded slots to the slots that are underloaded to achieve load balance between the slots. Their

results are based on computer simulations in a ns-3 simulator like developed by themselves.

Mallok et al. (MALOOK et al., 2023) proposed an algorithm where the AP calculates the pac-

ket transmissions and the number of transmitting stations to modify the RAW slot duration

25

dynamically every three beacon intervals. They proposed an expression to define the minimum

RAW slot duration. However, they did not develop an analytical model to model the behavior

of the network. They carried out their simulations in an ns-3 simulator, and they considered

unsaturated traffic. Finally, Oliveira et al. (??) investigated the use of AID Switch Response

frames to implement dynamic grouping according to changes in the scenario. Their objective is

to enhance throughput fairness among stations that are geographically distributed over some

area.

Finally, in this dissertation, we model the behavior of a station within its assigned RAW

slot with a discrete-time Markov chain. The main innovation of our model is the proposal of

an expression to calculate the probability of the RAW slot time completion during the backoff

operation. We considered saturated traffic and ideal channel, and we compared the numerical

results with independent computer simulations in the ns-3 simulator using the IEEE 802.11ah

module developed by Le Tian et al. (TIAN et al., 2016). We published this part of the work

in (SOARES; CARVALHO, 2022). Additionally, we extend the model for the case of non-

ideal channels, with Rayleigh fading and large-scale path loss. We also validate our analytical

model with computer simulations in an ns-3 simulator, and we study the network throughput

performance in different scenarios by varying the MCS, packet size, and distance to the access

point. Furthermore, we propose an expression to adjust the RAW slot duration based on the

distance to the access point. We measure the efficiency of the grouping strategies in terms of

Jain’s fairness.

In Table 3.1, we summarize the existing works on the RAW mechanism. We describe the

performance parameter that the work aims to improve, the traffic, whether it is saturated or

unsaturated, if it considers a nonideal channel, and if it considers backoff reset,i.e., if it initiates

a new backoff counter in each RAW slot. Finally, we describe which simulator they used for

validation. Additionally, in Table 3.2, we summarize the main works that proposed grouping

methods and which parameters they consider to group stations

26

Table 3.1. Existing research on RAW mechanism.

Reference Objective Traffic Non-ideal Backoff Simulation
Channel Reset

(ZHENG et al., 2014) Throughput Saturated OMNET++
(DIN MUHAMMAD et al., 2015) Throughput Saturated OMNET++

Energy efficiency
(MAHESH; HARIGOVINDAN, 2019) Throughput Saturated NS-3

(TARAMIT et al., 2022a) Throughput Saturated ✓ ✓ MATLAB
(TARAMIT et al., 2022b) Energy efficiency
(TARAMIT et al., 2023) Unsaturated
(RAEESI et al., 2014b) Throughput Saturated Own

Energy consumption Simulator
(PARK et al., 2014) Successful Saturated ✓ Own

probability simulator
(SANGEETHA; BABU, 2019) Throughput Saturated NS-3
(SANGEETHA; BABU, 2020)
(SANGEETHA; BABU, 2021)

(ALI et al., 2019) Throughput Unsaturated ✓ ✓ MATLAB
QoS

(KHOROV et al., 2015) Throughput Unsaturated ✓ Own
(KHOROV et al., 2019) Energy Consumption simulator

Packet loss ratio
(NAWAZ et al., 2017) Throughput Saturated ✓ Own

simulator
(TIAN et al., 2017) Throughput Saturated ✓ NS-3
(TIAN et al., 2018) Unsaturated
(KAI et al., 2019) Throughput Unsaturated ✓ Own

Energy consumption simulator
Fairness

(CHANG et al., 2015) Channel Saturated ✓ Own
utilization Unsaturated simulator

(MOSAVAT-JAHROMI et al., 2019) Throughput Saturated ✓ ✓ Own
Fairness simulator

(LAKSHMI; SIKDAR, 2019) Throughput Saturated NS-3
Fairness

(BADARLA; HARIGOVINDAN, 2021) Throughput Unsaturated ✓ ✓ NS-3
Energy consumption

(YOON et al., 2016) Hidden Saturated ✓ Own
terminal simulator

(DONG et al., 2016) Hidden Unsaturated ✓ MATLAB
terminal

(HUANG; HUANG, 2023) Throughput Saturated Not specified Not specified Own
Load balance simulator

(MALOOK et al., 2023) Throughput Unsaturated ✓ Not specified NS-3
Average delay

Jitter
Packet delivery ratio

(SOARES; CARVALHO, 2022) Throughput Saturated ✓ NS-3
(OLIVEIRA et al., 2022) Throughput Saturated ✓ ✓ NS-3

Fairness

3.1 – Conclusions 27

Table 3.2. Existing grouping proposals.

Reference Grouping Parameter
(CHANG et al., 2015) Payload size

Sampling rate
(SANGEETHA; BABU, 2020) Data rate

(MAHESH et al., 2020) Data rate
(BADARLA; HARIGOVINDAN, 2021) Data rate

(KAI et al., 2019) Payload size
Sampling rate

(MOSAVAT-JAHROMI et al., 2019) Transmission and Collision probabilities
(TIAN et al., 2017) Packet transmission interval

(LAKSHMI; SIKDAR, 2019) Sampling rate
(DONG et al., 2016) Geographical location
(YOON et al., 2016) Geographical location

(HUANG; HUANG, 2023) Backoff time
(OLIVEIRA et al., 2022) Data rate

Geografical location
Payload size

3.1 CONCLUSIONS

In this chapter, we presented the main analytical models of the IEEE 802.11ah developed

in the literature. A number of works have proposed analytical models to evaluate the per-

formance of IEEE 802.11ah networks, especially with respect to the operation of the RAW

mechanism. From this Chapter, we can identify two main lines of work: those that follow a

mean value analysis, as originally used by Zheng et al. (ZHENG et al., 2014), and others that

propose Markov chain models. In this second group, however, there are works that adopt Bi-

anchi’s (BIANCHI, 2000) original model without considering any specific features of the IEEE

802.11ah standard. These works make different assumptions regarding protocol behavior, and

they treat the event of RAW slot time completion differently, which is key for comparison with

our model. In general, these previous analytical models have not been validated against some

independently-developed simulator that is widely adopted by the networking community. They

have validated their results based on their own customized simulators, whose accuracy and

compliance to standard specifications have not been demonstrated. In addition, we presented

the main works which propose station grouping strategies in heterogeneous networks.

CHAPTER 4

ANALYTICAL MODEL

In this Chapter, we present an analytical model to evaluate the average aggregate through-

put of a single-hop IEEE 802.11ah network that is based on a discrete-time Markov chain

model. The model describes the backoff operation of a station within its assigned RAW slot.

It is assumed that there are n stations in the network operating in the basic access mode,

i.e., without RTS/CTS control frames, which are evenly distributed among a certain number of

RAW slots. Furthermore, it is assumed ideal channel conditions (i.e., no channel errors) and sa-

turated traffic, i.e., all stations always have a data frame ready for transmission in their buffers.

The beacon interval has fixed length, and contains only one RAW group with a fixed duration,

i.e., a single RAW group occupies the whole beacon interval. Therefore, the model does not

consider the periods when all stations can contend for channel access altogether (in-between

RAW groups). The Cross Slot Boundary (CSB) is assumed to be disabled, and a station can

transmit multiple data frames in its assigned RAW slot as long as their transmission time fits

into the RAW slot. Finally, based on the analytical model, we derive an expression to compute

the average aggregate throughput to evaluate network throughput performance.

4.1 MARKOV MODEL FOR BACKOFF OPERATION

We model the backoff operation of a station when it is active within its assigned RAW slot

according to the two-dimensional discrete-time Markov model shown in Figure 4.1, where each

state represents the backoff counter value, and each line represents a backoff stage, i.e., the

number of transmission attempts. Similar to the basic IEEE 802.11 DCF, in the beginning of

the Markov chain, the station chooses a random backoff value if the channel is sensed idle for

a time period greater than or equal to a DIFS time interval, defined in the standard. While

the channel is perceived idle, the backoff counter is decremented. Otherwise, the counter is

frozen while the channel is sensed busy. The station transmits its data packet when the backoff

4.1 – Markov Model for Backoff Operation 29

counter reaches the value 0. If a packet collision occurs, the contention window size is doubled,

and the station selects another random value according to Eq. (2.3), moving to the next backoff

stage, as long as the number of re-transmission attempts does not exceed the maximum number

m. If the RAW slot ends in any state, the station returns to the beginning of the Markov chain.

Figure 4.1. Markov chain model for station operating within its assigned RAW slot according to the IEEE
802.11ah.

Let b(t) denote the stochastic process that represents the backoff counter value at time t

for a station assigned to a RAW slot, and s(t) denote the stochastic process that represents

the backoff stage, i.e., the number of packet transmission attempts so far. Let p denote the

probability of data packet collision, which is assumed to be constant and independent of the

number of transmission attempts. Let g denote the “freezing” probability of the backoff counter

4.1 – Markov Model for Backoff Operation 30

when the channel is perceived to be busy, according to the DCF mechanism. We assume that

it is constant and independent of the backoff stage. Since the RAW slot time can finish at

any time during the backoff operation of a station, we represent the occurrence of this event

with a transition probability qi departing from every state (i, j), 0 ≤ i ≤ m, 0 ≤ j ≤ Wi − 1,

and returning to the “start” state. We assume that qi is constant at each stage i and the

stages are independent of each other. We also assume that the event of RAW slot completion

time is independent of the events of freezing the backoff counter value and the occurrence of

packet collisions. Finally, let W0 denote the minimum contention window size and Wi = 2iW0,

0 ≤ i ≤ m. Hence, the one-step transition probabilities P{(i1, j1)|(i0, j0)} = P{s(t + 1) =

i1, b(t+ 1) = j1|s(t) = i0, b(t) = j0} are given by

P{(i, j)|(i, j + 1)} = (1− qi)(1− g), i ∈ [0,m], j ∈ [0,Wi − 1]
P{(i, j)|(i, j)} = g(1− qi), i ∈ [0,m], j ∈ [1,Wi − 1]

P{(0, j)|(i, j)} =
qi
W0

, i ∈ [0,m], j ∈ [0,Wi − 1]

P{(0, j)|(i, 0)} =
(1− p)(1− qi)

W0

, i ∈ [0,m], j ∈ [0,W0 − 1]

P{(i+ 1, j)|(i, 0)} =
p(1− qi)

Wi

, i ∈ [0,m− 1], j ∈ [0,Wi − 1]

P{(0, j)|(m, 0)} =
p(1− qi)

W0

, i = m, j ∈ [0,W0 − 1]

The first equation indicates that the backoff counter advances if the channel is idle and the

RAW slot time is not over; the second equation indicates that the backoff counter remains in the

same state (frozen) if the channel is busy and the RAW slot time is not over; the third equation

contains the probability of ending the RAW slot and return to a new backoff process in the

following RAW slot; the fourth equation represents a successful data frame transmission, which

leads to the beginning of a new backoff operation for the next data frame in queue. The fifth

equation indicates that a collision has occurred, and the station goes to the next backoff stage;

the sixth equation describes the transition probability due to a failed data frame transmission

in the last backoff stage: the data frame is discarded and a new backoff operation is initiated

for the following data frame in the queue.

4.2 – Markov Chain Solution 31

4.2 MARKOV CHAIN SOLUTION

4.2.1 Ideal Channel

Let bi,j denote the steady-state probability of state (i, j) in the Markov chain, i.e., bi,j =

limt→∞ P{s(t) = i, b(t) = j}, i ∈ [0,m], j ∈ [0,Wi − 1]. Using the transition probabilities

defined previously, we get

bi,j =

B, i = 0, j = W0 − 1

B ×
W0−(j+1)∑

l=0

[
(1−g)(1−qi)
1−g(1−qi)

]l
, i = 0, j ∈ [0,W0 − 2]

Ci, i ∈ [1,m], j = Wi − 1

Ci ×
Wi−(j+1)∑

l=0

[
(1−g)(1−qi)
1−g(1−qi)

]l
, i ∈ [1,m], j ∈ [1,Wi − 2]

p(1−qi−1)
Wi

× bi−1,0 ×
Wi−1∑
l=0

[
(1−g)(1−qi)
1−g(1−qi)

]l
, i ∈ [1,m], j = 0,

(4.1)

where

B =
M

W0(1− g(1− qi))
, (4.2)

Ci =
p(1− qi−1)

Wi(1− g(1− qi))
× bi−1,0, (4.3)

and

M =
m∑
i=0

Wi−1∑
j=0

qibi,j +

[
(1− p)

m∑
i=0

(1− qi)bi,0

]
+ p(1− qi)bm,0. (4.4)

Since a station transmits a packet when it reaches any state bi,0, for i ∈ [0,m], the steady-

state packet transmission probability is given by

τ =
m∑
i=0

bi,0 =
m∑
i=0

p(1− qi−1)

Wi

{
Wi−1∑
l=0

[
(1− g)(1− qi)

1− g(1− qi)

]l
× bi−1,0

}
. (4.5)

If n denotes the number of stations competing for the channel in a RAW slot, then a packet

collision occurs if two or more of the n − 1 remaining stations transmit a packet at the same

time. As per existing literature, we assume that all stations transmit packets independently of

each other. Thus, the packet collision probability p will be given by

p = 1− (1− τ)(n−1). (4.6)

4.2 – Markov Chain Solution 32

Similarly, from the station’s point of view, we assume that the probability g of a busy channel

is also the probability of having at least another node transmitting over the channel, i.e.,

g ∼= p = 1− (1− τ)(n−1). (4.7)

The steady-state probabilities of the states of the Markov chain can then be computed by

numerical calculation using the normalization condition

m∑
i=0

Wi−1∑
j=0

bi,j = 1, (4.8)

and Eq. (4.5). Finally, we need to compute the probability qi of RAW slot time completion,

upon which the station cancels its backoff operation and waits for the next RAW slot in the

following beacon interval. Given the complexity in deriving a closed-form expression for the pro-

bability of RAW slot time completion qi, we extend our previous work (SOARES; CARVALHO,

2019) by proposing a new heuristic expression for the probability qi, which aims to represent

this probability more realistically and obtain a more accurate model. The development for

computation of the probability qi is introduced next.

4.2.2 Under Rayleigh Fading Channel

In this Section, we extend our model to consider the impact of large-scale path loss and

small-scale fading propagation effects. In particular, we assume Rayleigh fading and a path-loss

propagation model for outdoor macro deployments adopted for IEEE 802.11ah networks (DIN

MUHAMMAD et al., 2015). We maintain the assumption on saturated traffic at nodes, i.e.,

all stations always have a packet ready for transmission in their buffers. Furthermore, the

model does not consider free access periods in beacon intervals, i.e., the beacon interval is fully

occupied by RAW groups. We assume that the CSB is disabled, and a station can transmit

multiple packets in its RAW slot as long as it is not over.

To incorporate physical layer effects into the Markov chain, we modify the probability p,

originally defined as collision probability. Here, we consider the same Markov chain, but we

refer to p as the probability of failed transmission. Assuming there is no packet capture effect,

a packet is successfully transmitted if only one node transmits over the channel and no bit

errors occur as a result of noise or channel propagation effects (DANESHGARAN et al., 2008).

4.2 – Markov Chain Solution 33

Hence, if ps denotes the probability of successful transmission of a frame, then

ps = P{no bit errors, only 1 node TX}

= P{no bit errors|only 1 node TX}P{only 1 node TX}. (4.9)

But, P{only 1 node TX} = (1− τ)(n−1), where τ is the transmission probability in the Markov

chain and, as usual, it is assumed that nodes transmit independently from each other. Now, if

we denote Pe = 1−P{no bit errors|only 1 node TX} then, the probability of failed transmission

is given by

p = 1− ps = 1− (1− Pe)(1− τ)(n−1). (4.10)

To evaluate Pe, we need the signal-to-noise ratio (SNR)

SNR =
Pr

No ×B
, (4.11)

where Pr (in Watts) is the received power, N0 is the noise power spectral density, and B is

the bandwidth of the transmitted signal. The average received power Pr (in dBm) at a given

distance d from the source is given by Pr = PT + GT + Gr − PL(d), where PT is the transmit

power, GT and Gr are the transmit and receive antenna gains, respectively, and PL(d) is the

large scale path-loss for a station in a distance d from the AP. In this dissertation, we adopt the

path loss for outdoor macro deployments, which is given by (DIN MUHAMMAD et al., 2015)

PL(d) = 8 + 37.6 log10(d) + 21 log10

(
f

900 MHz

)
, (4.12)

where f is the carrier frequency. From the average SNR, we obtain the bit error probabilities

for BPSK and M-QAM modulations (see Table 2.1) under Rayleigh fading, which are given

by (GOLDSMITH, 2005)

Pb =
1

4γb
(BPSK) and Pb =

M − 1

3γb log2M
(M-QAM), (4.13)

where γb =
Eb

N0
= SNR× B

R
, Eb is the energy per bit and R is the bit rate transmission mode.

For every data packet with a payload length of L, we can determine the probability Pe

that a bit error occurs in the packet of length L. Assuming an Additive White Gaussian Noise

Channel, Binary Convolutional Coding, and Hard-Decision Viterbi decoding, we can calculate

Pe as

Pe = 1− (1− Pu)
8×L, (4.14)

4.3 – RAW Slot Time Completion Probability 34

where Pu is the union bound of the first event error probability, Pu =
∑∞

d=dfree
adPd, dfree is

the free distance of the convolutional code, ad is the total number of error events of weight d,

and Pd is the probability that the incorrect path from the correct path is chosen by the Viterbi

decoder is defined by (LACAGE; HENDERSON, 2006)

Pd =

{ ∑d
i=(d+1)/2

(
d
i

)
Pb

i(1− Pb)
d−i if d is odd

1
2

(
d

d/2

)∑d
i=(d/2)+1

(
d
i

)
Pb

i(1− Pb)
d−i otherwise

(4.15)

4.3 RAW SLOT TIME COMPLETION PROBABILITY

The derivation of the probability of RAW slot time completion is not a trivial task because

it depends on a number of events whose characterizations are not easily obtained. Because

of that, we adopt a heuristic approach for its computation by considering some key aspects

and assumptions. First, we notice that the higher the number of transmission attempts for a

given data packet, the longer the time a station spends in backoff and, consequently, the higher

the chances of RAW slot time completion during the transmission attempt of that specific

data packet. Therefore, for any data packet a station attempts to transmit, we assume that the

chances of RAW slot time completion increases proportionally to the number of stages traversed

during backoff.

However, during execution of a given RAW slot, and under traffic saturation, the station

may transmit multiple data packets while contending for channel access with other stations

assigned to the same RAW slot. Hence, if we assume that the IEEE 802.11ah operation is fair,

each of the n contending stations should receive an equal “share” of channel access time within

a given RAW slot, i.e., each station should get a fraction 1/n of the total RAW slot time for

channel access. In this sense, a station is unable to transmit more data packets once its “share”

of channel access time is over. As a result, while the station may have performed the backoff

algorithm for a number of consecutive data packets, the RAW slot will finish during backoff

operation in the transmission attempt of a specific data packet. In other words, such an event

determines in which packet transmission attempt the completion of the RAW slot time actually

occurs.

Finally, we note that, the RAW slot to which the station was assigned occupies a certain

amount of time within the beacon interval. Therefore, the ratio between the RAW slot time and

4.3 – RAW Slot Time Completion Probability 35

the beacon time interval provides an estimate for the probability of finding the station within

its RAW slot at any given time. Based on such observations and assumptions, we are interested

in the probability of the event of RAW slot time completion during execution of the i-th backoff

stage for a given packet, i.e., we are interested in the probability of the joint conditional event

Ei = {RAW slot ends, STA’s fraction of RAW ends, RAW ends in this backoff stage | stage

i}, where STA refers to the station performing backoff. From the Markov chain in Figure 4.1,

the probability qi = P{Ei} of RAW slot time completion during backoff stage i ∈ {0, . . . ,m}

of attempting a given packet transmission will be given by

qi = P{RAW slot ends, STA’s fraction of RAW ends,RAW ends in this stage|stage i},
(4.16)

which can be rewritten as

qi = P{RAW slot ends|STA’s fraction of RAW ends,RAW ends in this stage, stage i}

× P{STA’s fraction of RAW ends|RAW ends in this stage, state i}

× P{RAWends in this stage|stage i}. (4.17)

Since the end of a RAW slot does not depend on the operation of any given station (its

duration is defined by the access point), we have

P{RAW slot ends|STA’s fraction of RAW ends, RAW ends in this stage, stage i} =

= P{RAW slot ends} = 1− (Tslot − Th − Tg)

TBI

, (4.18)

where Tslot, Th, Tg, and TBI are the RAW slot time, the holding time (assuming the CSB is

disabled), the guard interval between RAW slots, and the beacon interval, respectively. Note

that, the shorter the RAW slot time Tslot is, the higher the chances of RAW slot time completion.

Now, assuming that the end of a station’s fair share of channel access does not dependent on

the specific backoff stage the station is currently performing, we have

P{STA’s fraction of RAW ends|RAW ends in this stage, stage i}

= P{STA’s fraction of RAW ends} = 1− 1

n
, (4.19)

since it is assumed that each station occupies 1/n of the RAW slot time Tslot. At last, for

any data packet a station attempts to transmit, the chances of RAW slot time completion are

4.4 – Throughput Computation 36

assumed to increase proportionally to the number of backoff stages traversed. Therefore,

P{RAW ends in this stage|stage i} =
i

m+ 1
. (4.20)

Finally, from Eqs. (4.17), (4.18), (4.19) and (4.20), we obtain

qi =

[
1− (Tslot − Th − Tg)

TBI

](
1− 1

n

)(
i

m+ 1

)
. (4.21)

4.4 THROUGHPUT COMPUTATION

4.4.1 Ideal Channel

In this section, we compute the average aggregate throughput within a beacon interval, i.e.,

the sum average throughput across all RAW slots contained in all RAW groups defined within

the beacon interval. We assume that only the basic access mechanism is used (i.e., no RTS/CTS

frames). Let us first consider the average throughput over a single RAW slot i. Using Bianchi’s

approach (BIANCHI, 2000), let ni denote the number of stations within RAW slot i, and Ptri

denote the probability that a frame is transmitted over the channel during the RAW slot i, i.e.,

Ptri = 1− (1− τi)
ni , (4.22)

and let P i
s denote the conditional probability of a successful DATA frame transmission within

the RAW slot i, given by

Psi =
niτi(1− τi)

(ni−1)

Ptri

. (4.23)

Hence, the probability of a successful DATA frame transmission is PsiPtri , the probability

that a slot is empty is (1−Ptri), and the probability of DATA collision is (1−Psi)Ptri . If E[P]

denotes the average length of a DATA frame payload, the throughput over a given RAW slot i

is given by

SDATAi
=

PsiPtriE[P]

(1− Ptri)σ + PsiPtriTs + (1− Psi)PtriTc

, (4.24)

where σ is the duration of a mini-slot (as defined by the standard), Ts is the time the channel

is busy due to a successful DATA frame transmission, and Tc is the time interval the channel

is busy due to collisions. The values of Ts and Tc are calculated according to

Ts = DIFS +
H

Rh

+
E[P]

Rd

+ 2δ + SIFS + ACK (4.25)

4.4 – Throughput Computation 37

and

Tc = DIFS +
H

Rh

+
E[P]

Rd

+ SIFS + ACKTO, (4.26)

where H is the length of the header of a DATA frame, which contains PHY and MAC layer

headers, δ is the propagation delay, Rh and Rd are the transmission rates for the header and

payload fields, respectively, ACK and ACKTO refer to the duration of the ACK and ACK

timeout, and DIFS and SIFS are specified in the IEEE 802.11ah standard.

Now, we are interested in obtaining the effective throughput within a beacon interval cor-

responding to the data received from stations allocated to RAW slot i. In this case, we must

take into account the time the stations spend waiting for the end of other RAW slots to which

they were not assigned to. Note that, from the point of view of the access point, it will receive

an amount of data from stations allocated to different RAW slots over a period of time. There-

fore, over the duration of a beacon interval, the AP will receive a certain amount of data from

stations allocated to RAW slot i. Hence, the effective throughput SRAW_SLOTi
, over a beacon

interval, for stations assigned to RAW slot i is

SRAW_SLOTi
= SDATAi

× (RAW slot time)i − Th − Tg

Beacon Interval
, (4.27)

where Th = Ts and Tg refer to the holding and guard periods, respectively. The average

aggregate throughput SBEACON , in a given beacon interval, can be obtained by adding the

effective throughput SRAW_SLOTi
of each RAW slot i across all RAW groups l in the beacon

interval, i.e.,

SBEACON =
r∑

l=1

sl∑
i=0

SRAW_SLOTi
, (4.28)

where sl is the number of RAW slots within each RAW group l, and r is the number of RAW

groups within the beacon interval. In this work, we consider r = 1, i.e., the scenario of a single

RAW group in a beacon interval. As a final note, Eq. (4.28) assumes that there are no free

access periods between RAW groups.

4.4.2 Non-ideal Channel

Finally, to include the effect of the PHY layer in the average aggregate throughput calcula-

tion in Eq. (4.24), which considers that the unsuccessful packets were only those that suffered a

4.5 – Minimum RAW Slot Duration 38

collision, we have to include also the packets that suffered bit errors. Hence, the new throughput

expression is

SDATAi
=

PsiPtriE[P](1− Pe)

(1− Ptri)σ + PsiPtriTs + (1− Psi)PtriTc

, (4.29)

where Psi is the probability of a successful transmission and Ptri that a data frame is transmitted

over the channel in a RAW slot i, σ is the duration of a mini-slot (as defined by the standard),

Ts is the time the channel is busy due to a successful DATA frame transmission, and Tc is the

time interval the channel is busy due to collisions. To calculate the effective throughput for

the data received from stations allocated in a specific RAW slot within a beacon interval, and

the effective throughput of a RAW slot over all RAW groups of the beacon interval, we used

Eqs.(4.27) and (4.28), respectively.

4.5 MINIMUM RAW SLOT DURATION

It is expected that stations further away from the AP spend more time backing off before

data transmission and require more retransmissions due to higher chances of bit errors. To

compensate for this, RAW groups of the farthest zones should receive larger RAW slots to

transmit their packets. Hence, we need to define a RAW slot duration to ensure that stations

in each RAW group have enough time to send their packets and improve network fairness in

terms of throughput. Given that packet transmission attempts are assumed to be independent

with probability of success Psi in RAW slot i, the number of transmission attempts until success

can be approximated to a geometric random variable with mean 1/Psi . Hence, to ensure that

at least one successful transmission occurs in RAW slot i, the minimum duration could be set

to

RAW slot duration =

(
1

Psi

+ 1

)
× Ts. (4.30)

We use this expression is Section 5.2.3 to define the RAW slots duration.

4.6 CONCLUSIONS

In this Chapter we presented a discrete-time Markov chain analytical model to describe the

behavior of a station within its assigned RAW slot under ideal channel conditions. A particular

4.6 – Conclusions 39

novelty of the proposed model is the inclusion of a probability to express the completion of

the RAW slot time during the backoff activity of a station, which aims to capture the moment

when the station needs to wait for the next RAW slot in the following beacon interval in order

to resume the transmission attempts for a given data frame. For this, we proposed an empirical

expression which takes into account the duration of the RAW slot, number of stations within

the RAW slot and the backoff stages traversed by the station. In addition, we extended the

model for the case of non-ideal channel, which consider the impact of large-scale path loss and

Rayleigh fading. Finally, we derived a general expression for the computation of the average

aggregate throughput over a set of RAW groups and corresponding RAW slots.

CHAPTER 5

NUMERICAL RESULTS

In this Chapter, we present the numerical results derived from our analytical model and

compare them with computer simulations carried out in the ns-3 simulator based on the IEEE

802.11ah module previously developed by Le Tian et al. (TIAN et al., 2016). In Section 5.1,

we present the results with ideal channel conditions. We present the impact of the proposed

probability of RAW slot time completion on the accuracy of the numerical results, and we

compare our model with two other proposed models in the literature. Section 5.2 presents the

results of the Rayleigh fading channel’s impact on the throughput performance and the fairness

of the network in terms of throughput. We evaluate the throughput performance in different

scenarios, varying the Modulation and Coding Schemes (MCS), packet size, and duration of the

RAW slot.

5.1 IDEAL CHANNEL

In this section, we focus on single-hop networks under ideal channel conditions and saturated

traffic (i.e., all nodes always have a data frame ready for transmission in their queue). In the

proposed scenario, each beacon interval has a fixed duration and contains only one RAW group

with a given number of RAW slots, each with the same and fixed time duration. The RAW

group, with its associated set of RAW slots, occupies the whole beacon interval. Every beacon

interval has the same time duration, and the stations are evenly distributed among a given

number of RAW slots. All stations are configured with UDP traffic and transmit packets with

a time interval small enough to ensure that stations have saturated traffic. In addition, 10

simulation runs are performed for each scenario, and all simulations correspond to 120 seconds

of operation. We present results for the average aggregate throughput by considering different

numbers of stations and RAW slots per beacon interval. Table 5.1 and Table 5.2 show the

parameter values used in all scenarios. The parameter values were chosen based on the IEEE

5.1 – Ideal Channel 41

Table 5.1. Values of PHY-layer parameters used in simulations and numerical results.

Parameter Value
Basic rate 1 Mb/s
Data rate 7.8 Mb/s
Channel bandwidth 2 MHz
Modulation and coding scheme MCS8
PHY layer header 192 µs
Slot duration (σ) 52 µs
Propagation delay (δ) 3.3 µs

Table 5.2. Values of MAC-layer and other parameters used in simulations and numerical results.

Parameter Value
SIFS 160 µs
DIFS 264 µs
ACKTO 2× δ + SIFS + ACK
CWmin / CWmax 16 / 1024
Payload size 256 bytes
ACK 14 bytes + PHY Header
MAC layer header 34 bytes
Beacon interval 0.1s
Guard interval (Tg) 8 µs
Holding period (Th) Ts

802.11ah standard (IEEE STD 802.11AH-2016, 2016), and on the simulation study carried out

by Le Tian et al. (TIAN et al., 2016) to validate their IEEE 802.11ah module developed for

the ns-3 simulator.

In Section 5.1.1, we first present an investigation about the impact of the proposed probabi-

lity of RAW slot time completion (qi in our analytical model) on the accuracy of the numerical

results with respect to the average aggregate throughput obtained via discrete-event simulati-

ons on the ns-3 simulator. This set of results is important to establish the key role that this

probability plays on the accuracy of the proposed analytical model. Then, in Section 5.1.2,

we present a performance comparison of predicted average aggregate throughput between our

analytical model and the two other analytical models previously discussed, adopting the results

derived by simulations performed on the ns-3 simulator based on the IEEE 802.11ah module

developed by Le Tian et al. (TIAN et al., 2016) as a benchmark.

5.1 – Ideal Channel 42

5.1.1 Impact of RAW Slot Time Completion Probability on Throughput

In order to understand the impact of the proposed probability of RAW slot time comple-

tion on the accuracy of the analytical model, we compare the average aggregate throughput

computed in two cases: when the probability of RAW slot time completion is either present

or absent in the Markov Chain model of Figure 4.1 (i.e., we consider the cases qi = 0 or

qi ̸= 0, ∀i ∈ {0, . . . ,m}). In this section, we compute the average aggregate throughput ac-

cording to Eq. (4.28) for the cases of 2, 5, and 10 RAW slots per beacon interval, and vary

the total number of stations in the network from 5 to 100 nodes, evenly distributed among the

RAW slots (note that, depending on the number of stations, there can be some RAW slots with

fewer or no stations).

Figure 5.1 contains the results for the case when there are only 2 RAW slots within the

RAW group. The blue line with circles contains the results for the case when the probability

of RAW slot time completion is absent from the model, while the black curve with squares

shows the results for the case when the probability of RAW slot time completion is taken

into account in the model. The results from ns-3 simulations are shown in red line with

asterisks. As we can see, the results derived from the analytical model without considering

the probability of RAW slot time completion differs significantly from simulations, presenting

very optimistic values compared to the case when such probability is considered. For purposes

of comparison, the root-mean-square error (RMSE) computed between simulation results and

the values predicted by the analytical model if the probability of RAW slot time completion

is disregarded is RMSE = 0.4160 Mb/s, whereas if such probability is considered we get

RMSE = 0.0471 Mb/s.

Figure 5.2 shows the results when there are 5 RAW slots per beacon interval. Again, we

observe the strong disagreement from simulation results when the probability of RAW slot

time completion is disregarded. In this case, we obtain RMSE = 0.2352 Mb/s if qi = 0,

∀i ∈ {0, . . . ,m}, while RMSE = 0.0178 Mb/s if the probability of RAW slot time completion

is considered.

Figure 5.3 depicts the results for the case when there 10 RAW slots per beacon interval. As

the number of stations per RAW slot decreases, we observe higher aggregate throughput values,

5.1 – Ideal Channel 43

Total number of stations

0 10 20 30 40 50 60 70 80 90 100

A
v
e
ra

g
e
 A

g
g
re

g
a
te

 T
h
ro

u
g
h
p
u
t
(M

b
/s

)

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

No qi

Including qi

Simulation

Figure 5.1. Average aggregate throughput as a function of the total number of stations divided into 2 RAW
slots within a single RAW group per beacon interval. Numerical results for the analytical model are displayed
for the cases when either Eq. (4.21) or q = 0 are considered for the probability of RAW slot time completion,
along with the results obtained with ns-3 simulations.

Total number of stations

0 10 20 30 40 50 60 70 80 90 100

A
v
e
ra

g
e
 A

g
g
re

g
a
te

 T
h
ro

u
g
h
p
u
t
(M

b
/s

)

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

No qi

Including qi

Simulation

Figure 5.2. Average aggregate throughput as a function of the total number of stations divided into 5 RAW
slots within a single RAW group per beacon interval. Numerical results for the analytical model are displayed
for the cases when either Eq. (4.21) or q = 0 are considered for the probability of RAW slot time completion,
along with the results obtained with ns-3 simulations.

5.1 – Ideal Channel 44

Total number of stations

0 10 20 30 40 50 60 70 80 90 100

A
v
e
ra

g
e
 A

g
g
re

g
a
te

 T
h
ro

u
g
h
p
u
t
(M

b
/s

)

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

No qi

Including qi

Simulation

Figure 5.3. Average aggregate throughput as a function of the total number of stations divided into 10 RAW
slots within a single RAW group per beacon interval. Numerical results for the analytical model are displayed
for the cases when either Eq. (4.21) or q = 0 are considered for the probability of RAW slot completion time,
along with the results obtained with ns-3 simulations.

since contention decreases at each RAW slot. In this case, RMSE = 0.1416 Mb/s for the case

when there is no probability of RAW slot time completion, and RMSE = 0.0124 Mb/s if such

probability is considered in the analytical model.

5.1.2 Comparison with other Analytical Models

In this section, we compare the average aggregate throughput predicted by our analytical

model with the ones provided by Sangeetha (SANGEETHA; BABU, 2019) and Zheng (ZHENG

et al., 2014) models, considering ns-3 simulations as a benchmark. Considering the two main

lines of work, mean value analysis and discrete-time Markov chain approaches, we chose Zheng

et al. model because they were who originally used the mean value analysis, and we chose

Sangeetha et al. model because they used discrete-time Markov chain as our model. In addi-

tion, Zheng’s and Sangeetha’s works make different assumptions regarding protocol behavior,

and they treat the event of RAW slot time completion differently, which is key for comparison

with our model. It is also worth mentioning that both analytical models make similar assump-

5.1 – Ideal Channel 45

tions as ours, such as saturated traffic and ideal channel conditions, and they consider that

stations are equally divided among RAW slots. Figure 5.4 depicts the results for the average

aggregate throughput when there are only 2 RAW slots within a beacon interval. As we can

observe, Zheng’s and Sangeetha’s models are in strong disagreement with the results obtained

via ns-3 simulations. In particular, we observe that Sangeetha’s model predicts almost no th-

roughput decay as the total number of stations increases. In fact, this is in line with what is

shown in their original work, which presents similar behavior. For Sangeetha’s model we obtain

RMSE = 0.258 Mb/s. In the case of Zheng’s model, we observe a higher decay in throughput

values as the number of stations increases, compared to Sangeetha’s model. However, it does

not show much agreement with simulations, with the exception of some specific results (e.g.,

when the number of stations is 40 and 50). For Zheng’s model we obtain RMSE = 0.198 Mb/s.

As discussed in Chapter 3, both models assume that the backoff process is not renewed at the

beginning of a new RAW slot, i.e., the stations freeze their backoff counter values at the end of a

RAW slot, and resume them in the beginning of the next RAW slot. Such feature has a major

impact on their overall results. In contrast, our analytical model delivers RMSE = 0.0471

Mb/s as previously discussed.

Figure 5.5 contains the results for the case of 5 RAW slots within a single RAW group in the

beacon interval. As expected, the average aggregate throughput increases with respect to the

case with 2 RAW slots across all analytical models and simulations because channel contention

decreases within each RAW slot and, therefore, more data packets can be transmitted per

RAW slot. Sangeetha’s model continues to present a behavior similar to that obtained for 2

RAW slots, but with higher average throughput values and RMSE = 0.206 Mb/s. Zheng’s

model continues to show the trending behavior of throughput decay as the total number of

stations increases. However, it still shows considerable discrepancies with simulations, with

RMSE = 0.150 Mb/s. For our model, the results are closer to simulations, but a bit more

pessimistic in terms of throughput, especially when the number of stations is between 20 and

60. In this scenario, our model delivers RMSE = 0.0178 Mb/s, which means that Zheng ’s

RMSE is about 287% higher than ours.

Figure 5.6 contains the results for the case of 10 RAW slots within a single RAW group

in each beacon interval. Note that, when n = 5, there are empty RAW slots in the beacon

5.1 – Ideal Channel 46

Total Number of stations

0 10 20 30 40 50 60 70 80 90 100

A
v
e
ra

g
e
 A

g
g
re

g
a
te

 T
h
ro

u
g
h
p
u
t
(M

b
/s

)

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

Sangeetha

Zheng

Proposed

Simulation

Figure 5.4. Average aggregate throughput as a function of the total number of stations divided into 2 RAW
slots within a single RAW group per beacon interval. Numerical results for our proposed model, Zheng’s model,
and Sangeetha’s model are displayed along with the results obtained with ns-3 simulations.

Total Number of stations

0 10 20 30 40 50 60 70 80 90 100

A
v
e
ra

g
e
 A

g
g
re

g
a
te

 T
h
ro

u
g
h
p
u
t
(M

b
/s

)

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

Sangeetha

Zheng

Proposed

Simulation

Figure 5.5. Average aggregate throughput as a function of the total number of stations divided into five RAW
slots within a single RAW group per beacon interval. Numerical results for our proposed model, Zheng’s model,
and Sangeetha’s model are displayed along with the results obtained with ns-3 simulations.

5.2 – Impact of Rayleigh Fading Channel 47

Total Number of stations

0 10 20 30 40 50 60 70 80 90 100

A
v
e
ra

g
e
 A

g
g
re

g
a
te

 T
h
ro

u
g
h
p
u
t
(M

b
/s

)

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

Sangeetha

Zheng

Proposed

Simulation

Figure 5.6. Average aggregate throughput as a function of the total number of stations divided into 10 RAW
slots within a single RAW group per beacon interval. Numerical results for our proposed model, Zheng’s model,
and Sangeetha’s model are displayed along with the results obtained with ns-3 simulations.

interval, which leads to low throughput values for the three analytical models and simulations.

Similar to the other scenarios, our analytical model delivers the closest behavior to simulations,

with RSME = 0.0124. In this case, however, the predicted throughput values are a bit more

pessimistic than simulations, as the number of nodes increases. Zheng’s model presents the

general behavior of throughput decay as the number of stations increases. However, while it

is more pessimistic than simulations for lower number of stations, it becomes more optimistic

as the number of nodes increases, especially for n ≥ 80. Zheng’s model gives RSME = 0.068.

Finally, Sangeetha’s model presents the same subtle decrease in throughput as the number

of stations increases, as observed in the numerical results in their work. In this case, we get

RMSE = 0.139 Mb/s.

5.2 IMPACT OF RAYLEIGH FADING CHANNEL

In this section, we analyze the results for non-ideal channel conditions under Rayleigh fading.

We evaluate the channel effects in different scenarios, by varying parameters such as MCS,

5.2 – Impact of Rayleigh Fading Channel 48

packet size, and distance from the access point (AP). For this, we modify the scenario in order

to evaluate the throughput performance of each RAW group and the fairness among the RAW

groups in terms of throughput. All stations are in saturated traffic conditions. Additionally, we

present three case studies to assess the throughput performance, while considering the distance

of stations to the AP and other parameters, like transmission rate and packet size. In the three

case studies, all stations in the network have packets of the same size and transmit under the

same MCS. In the first and second case studies, the beacon interval is equally divided between

the RAW groups, and each RAW slot has the same duration. In the third case, we define the

RAW slot duration according to the distance of each RAW group.

It is expected that stations located further away from the AP spend more time in the

backoff process due to path loss and Rayleigh fading. Consequently, these stations are harmed

by stations closer to the AP and have more difficulty accessing the channel and sending their

packets. With these three case studies, we evaluate the impact of path loss and Rayleigh fading

on the throughput of each group and fairness between the stations when we randomly allocate

the stations in the groups and when we allocate the stations according to their location. In

addition, we show the importance of allocating different RAW slot durations for each group to

ensure fairness for the stations farther away from the AP.

In all case studies, the stations are distributed over a circle around a single AP with radius

200 m, divided into four geographical zones Ri, i ∈ {1, 2, 3, 4}, that assume the shape of rings

around the AP, as shown in Figure 5.7. This way, a station located in the region Ri is closer to

the AP than a station located in region Rj if i < j. We consider the outdoor macro network

Figure 5.7. Network scenario: stations are divided into r zones around the AP.

5.2 – Impact of Rayleigh Fading Channel 49

scenario with the path-loss propagation model of Eq. (4.12), and adopt the YansErrorModel for

the modulation and coding schemes (MCS) of IEEE 802.11ah. Table 5.3 contains the PHY-layer

parameters used in simulations.

Table 5.3. Physical layer parameters used in ns-3 simulations numerical (analytical) computations.
Parameter Value (STA/AP)
Frequency 900 MHz
Channel bandwidth 2 MHz
Transmit power 0 dBm / 0 dBm
Transmission gain 0 dB / 3 dB
Noise figure 6.8 dB
Propagation Loss model Outdoor, macro
Error Rate Mode YansErrorModel
MCS configurations MCS0, MCS3

In the three scenarios, the beacon interval is fully occupied by RAW groups, i.e., there are

no free access periods and the cross slot boundary (CSB) is disabled. Table 5.4 summarizes the

MAC-layer parameters used in simulations numerical (analytical) computations. As in ideal

channel simulations, the simulations correspond to 120 seconds of operation, and 10 simulation

runs are performed for each scenario, and all stations are configured with UDP traffic.

Table 5.4. MAC layer parameters used in ns-3 simulations numerical (analytical) computations.
Parameter Value
Beacon interval (ms) 199.84
RTS/CTS not enabled
Cross slot boundary not enabled
Total RAW time (ms) 199.84
Number of RAW groups 4
Number of RAW slots per group 2
Guard interval (Tg) 8 µs
Holding period (Th) Ts

In all scenarios, there are a total of 80 stations in the network, equally divided into each RAW

group, and randomly placed in each region Ri, i ∈ {1, 2, 3, 4}. For the analytical model results,

we consider the midpoint distance of each ring to compute pass-loss. We focus on the average

throughput per RAW group and, for simulations, we also consider the normalized Jain’s fairness

index: if ri and si denote the data rate (MCS mode) and the average throughput achieved by

station i, respectively, then ui = si/ri is the normalized average throughput achieved by station

i. Therefore, for each RAW group containing |C| elements, the normalized Jain fairness index

5.2 – Impact of Rayleigh Fading Channel 50

is given by

JC =

(∑|C|
i=1 ui

)2

|C|
∑|C|

i=1 u
2
i

, (5.1)

where 0 ≤ JC ≤ 1, and values closer to 1 means higher fairness. As in Section 5.1, all stations

are configured with a saturated UDP traffic, and are performed 10 simulation runs for each

scenario with 120 seconds of operation.

5.2.1 Case 1

In this case, we present the impact of path loss and Rayleigh fading on the station-AP dis-

tance relationship for stations under the same MCS and data frame length when the stations are

randomly grouped. The beacon interval was divided equally between the RAW groups; that is,

the RAW groups have RAW slots with the same duration of 24.98ms. We evaluate throughput

performance and Jain´s Fairness of the network. As the stations are randomly located in the

area around the AP and the groups have stations located in any of the four distance rings, and

we have to choose a fixed distance to compute path loss in the analytical model, we chose the

midpoint distance of 100 meters for the analytical model. In the first scenario, packet sizes

are equal to 256 bytes and transmitted in MCS0 mode. Table 5.5 presents the numerical and

simulation results of the average throughput, in Mb/s, per group, the standard deviation (Sta

dev) of the simulations, and the Jain’s Fairness.

Table 5.5. Comparison between analytical model and computer simulations of the throughput in Mb/s for
MCS0 and 256 bytes with RAW slots of the same duration in each RAW group and random groups.

Group Simulations Sta dev Analytical Model Error %
1 0.2728 0.0287 11.36
2 0.2686 0.0341 0.2418 9.97
3 0.2659 0.0362 9.06
4 0.2756 0.0413 12.26
Jain’s Fairness 0.5900 0.0408

As expected, randomly assigning stations from the four regions to any of the four groups

leads to similar throughput values across groups. From the results, random grouping is generally

harmful to performance in this case: stations distant from the AP have less favorable channel

conditions, making them more likely to undergo more retransmission attempts than stations

5.2 – Impact of Rayleigh Fading Channel 51

close to the AP. As a result, the stations close to the AP are more likely to acquire the channel

immediately after transmission of its data packet due to the binary exponential backoff (BEB)

algorithm: a station farther away from the AP tends to spend more time in the backoff process

due to more retransmission attempts. Thus, the random grouping of stations does not lead to

a fair share of channel access, which we can observe from the Jain’s Fairness (JF) index of

JF = 0.5900 for this scenario. The analytical model presented a maximum percentage error of

12.26% with respect to the average results of simulations, which is acceptable since the range

of distances of the stations from the AP is significant, and we chose only the distance of 100m

to obtain the numerical results.

In Table 5.6, we have the results for the scenario where the stations are configured with

MCS0 mode and packet length of 1024 bytes. Despite the larger packet size, we observe a

slightly decrease in throughput if compared to the case where the packet size is 256 bytes

and a Jain’s fairness index of 0.3660. This scenario becomes less fair because, in addition to

stations located further away from the AP being harmed by being allocated to the same group

of stations located closer to the AP, longer packets have a greater probability of bit error.

As a result, the stations farther away from the AP have more difficulty to send their packets

successfully. Additionally, we notice that, in simulations, 10.88% of the stations (on average)

did not transmit any packet. This explains the highest discrepancy between the analytical

model and simulations.

Table 5.6. Comparison between analytical model and computer simulations of the throughput in Mb/s for
MCS0 and 1024 bytes with RAW slots of the same duration in each RAW group and random groups.

Group Simulations Sta dev Analytical Model Error %
1 0.1910 0.0164 4.02
2 0.1745 0.0155 0.1990 12.31
3 0.1914 0.0067 3.81
4 0.2377 0.0167 16.28
Jain’s Fairness 0.3660 0.0339

For the next scenarios, we use MCS3, which has a higher data rate than MCS0. We use the

same data frame lengths, 256 bytes and 1024 bytes. Table 5.7 shows the results for 256 bytes,

while Table 5.8 shows the results for 1024 bytes.

As expected, throughput increases compared to the scenarios with MCS0 mode due to the

increase in data rate. Additionally, there is a significant improvement of fairness in the scenario

5.2 – Impact of Rayleigh Fading Channel 52

Table 5.7. Comparison between analytical model and computer simulations of the throughput in Mb/s for
MCS3 and 256 bytes with RAW slots of the same duration in each RAW group and random groups.

Group Simulations Sta dev Analytical Model Error %
1 0.5002 0.0430 3.10
2 0.5034 0.0492 0.5157 2.38
3 0.5362 0.0395 3.82
4 0.5133 0.0305 0.46
Jain’s Fairness 0.6096 0.0338

Table 5.8. Comparison between analytical model and computer simulations of the throughput in Mb/s for
MCS3 and 1024 bytes with RAW slots of the same duration in each RAW group and random groups.

Group Simulations Sta dev Analytical Model Error %
1 0.9243 0.0115 0.88
2 0.8933 0.0133 0.9325 4.20
3 0.9621 0.0097 3.07
4 1.0378 0.0131 10.14
Jain’s Fairness 0.6081 0.0333

with the data frames of 1024 bytes. This is because increasing the data rate reduces the trans-

mission duration, allowing more transmissions in a fixed-duration RAW slot. The analytical

model shows a smaller discrepancy compared to simulations, with the highest percentage error

under 11%. For the scenario with a data frame length of 256 bytes, JF = 0.6096, and for the

scenario with data frame length of 1024 bytes, JF = 0.6081.

5.2.2 Case 2

In this case, we evaluate the throughput performance when each RAW group corresponds

to one of the four regions Ri, and has the same duration, i.e., each RAW slot lasts 24.98 ms.

For this case, the analytical model adopts the distance from the midpoint of each ring width to

compute path loss. Like Section 5.2.1, packet sizes are set to 256 bytes and transmitted with

MCS0 mode. Table 5.9 presents the results.

Table 5.9. Comparison between analytical model and computer simulations of the throughput in Mb/s for
MCS0 and 256 bytes with RAW slots of the same duration in each RAW group.

Group Simulations Sta dev Analytical Model Error %
1 0.3074 0.0179 0.3152 2.47
2 0.2671 0.01735 0.2503 6.29
3 0.2563 0.0247 0.2344 8.54
4 0.2497 0.0195 0.2292 8.21
Jain’s Fairness 0.6256 0.0267

5.2 – Impact of Rayleigh Fading Channel 53

The results show that group 1, the closest to the access point (AP), has the highest through-

put, while group 4 has the worst. This is because stations closer to the AP have better channel

conditions, i.e., they are more likely to get access to the channel immediately after transmitting

their data packet. In contrast, stations farther away from the AP have worse channel conditions

and, therefore, are more likely to experience re-transmission attempts. Groups 3 and 4, which

are the farthest groups away from the AP, present the highest percentage erros between model

and simulation, and the model appears to be more pessimistic than the simulations. The mo-

del adopts the distance from the midpoint of the ring width to compute path loss, whereas, in

simulations, stations are randomly distributed over the ring area and may be located in points

of the ring closer to the AP. This leads to some discrepancies between the model and computer

simulations. In this scenario, we have a slight improvement in fairness concerning the scenario

where the stations are grouped randomly (Table 5.5), with JF = 0.6256, which means that

the more distant stations have better channel access conditions when the stations are grouped

according to their distance from the AP.

Now, let us consider fixed packet size of 1024 bytes under MCS0 mode. Table 5.10 shows the

results. As observed in Section 5.2.1, there is a decrease in throughput if compared to the case

with packet size of 256 bytes. Despite obtaining a slight improvement of fairness, JF = 0.4096,

in comparison with the case of random groups, in this case, it is easier to observe how stations

located farther away from the AP have more difficulty accessing the channel. We find that, in

the latest case, a successful transmission lasts approximately 13.8 ms, without considering the

backoff time, and the RAW slot of 24.98 ms is sufficient for only one complete transmission.

Hence, the groups further away from the AP need more time to transmit their packets, since

they spend more time in backoff and re-transmission attempts. Moreover, larger packets have

a higher probability of bit errors. We also notice that, in simulations, 5.3% of stations (on

average) did not transmit any packet. This explains why group 4 has the largest discrepancy

between the analytical model and simulations, and the lowest Jain’s Fairness.

For the next scenarios, we use MCS3, which has a higher data rate than MCS0. We use the

same data frame lengths, 256 bytes and 1024 bytes. Table 5.11 shows the results for 256 bytes,

while Table 5.12 shows the results for 1024 bytes.

As expected, the average throughput also increases compared to the scenarios with MCS0

5.2 – Impact of Rayleigh Fading Channel 54

Table 5.10. Comparison between analytical model and computer simulations of the throughput in Mb/s for
MCS0 and 1024 bytes with RAW slot of the same duration in each RAW group.

Group Simulations Sta dev Analytical Model Error %
1 0.3146 0.0128 0.3236 2.78
2 0.1982 0.0744 0.2054 3.51
3 0.1856 0.0262 0.1978 6.16
4 0.0533 0.0328 0.0843 36.77
Jain’s Fairness 0.4096 0.0628

Table 5.11. Comparison between analytical model and computer simulations of the throughput in Mb/s for
MCS3 and 256 bytes with RAW slot of the same duration in each RAW group.

Group Simulations Sta dev Analytical Model Error %
1 0.6133 0.0544 0.6291 2.51
2 0.5338 0.0483 0.5213 2.34
3 0.5093 0.0408 0.5133 0.78
4 0.5022 0.0189 0.5056 0.67
Jain’s Fairness 0.6256 0.0418

mode due to the increase in data rate. Additionally, there is a significant improvement of

fairness in the scenario with the data frames of 1024 bytes. The analytical model shows a

smaller discrepancy compared to simulations, with the highest percentage being 8.18%. For

the scenario with a data frame length of 256 bytes, JF = 0.6256, and for the scenario with data

frame length of 1024 bytes, JF = 0.6246. We can observe a slight improvement in fairness when

comparing with the values in Tables 5.7 and 5.8, where the stations are grouped randomly.

5.2.3 Case 3

In this case study, we assign different RAW slot duration to each RAW group according to

the zone in which the stations are located to improve fairness and throughput for those further

away from the AP. We choose the RAW slot duration of each group according to Eqs. (2.2)

and (4.30). First, we use Eq. (4.30) to define the minimum duration of the RAW slot required

Table 5.12. Comparison between analytical model and computer simulations of the throughput in Mb/s for
MCS3 and 1024 bytes with RAW slot of the same duration in each RAW group.

Group Simulations Sta dev Analytical Model Error %
1 1.0773 0.0539 1.1734 8.18
2 0.9741 0.1069 0.9406 3.43
3 0.8812 0.0981 0.8867 0.62
4 0.8640 0.0309 0.8549 1.05
Jain’s Fairness 0.6246 0.0421

5.2 – Impact of Rayleigh Fading Channel 55

to obtain at least one successful transmission. Then, we use Eq. (2.2) to find the value closest

to this minimum value to define the duration of the RAW slot according to the standard.

Hence, maintaining the same beacon interval duration, we choose the RAW slots durations

of 19.7 ms, 23.3 ms, 25.7 ms, and 29.3 ms for groups 1, 2, 3 and 4, respectively. Table 5.13

presents the new results for the scenario for MCS0 and a data frame of 256 bytes. Comparing

with Table 5.9, we observe an increase in throughput in the furthest groups (groups 3 and 4).

Despite slightly reducing the throughput of the closest groups, we obtained a significant gain

in fairness, JF = 0.8653 instead of JF = 0.6256 IN Case 2.

Table 5.13. Comparison between analytical model and computer simulations of the throughput in Mb/s for
MCS0 and 256 bytes with different Raw slot durations.

Group Simulations Sta dev Analytical Model Error %
1 0.3066 0.0087 0.3091 0.81
2 0.3040 0.0536 0.3001 1.28
3 0.3010 0.0138 0.2923 2.89
4 0.2806 0.0041 0.2784 0.78
Jain’s Fairness 0.8653 0.0173

Table 5.14 reports the results for MCS0 and packets with 1024 bytes. During simulations,

we observed that all stations transmitted at least one packet when a longer-duration RAW

slot was allocated to this group, unlike in Case 1 and Case 2, where some stations could not

transmit their packets. Despite the throughput of the furthest group remaining low due to the

low data rate and higher error probability, we obtained a significant improvement in network

fairness, with a Jain’s Fairness of JF = 0.7655 instead of JF = 0.4096 in Case 1, and higher

accuracy of the analytical model.

Table 5.14. Comparison between analytical model and computer simulations of the throughput in Mb/s for
MCS0 and 1024 bytes with different RAW slot durations.

Group Simulations Sta dev Analytical Model Error %
1 0.3091 0.0128 0.3047 1.42
2 0.2795 0.0744 0.2713 2.93
3 0.2621 0.0262 0.2498 4.69
4 0.1582 0.0328 0.1564 1.13
Jain’s Fairness 0.7655 0.0403

Tables 5.15 and 5.16 contain the results for MCS3 data frames of 256 bytes and 1024

bytes, respectively. In both scenarios, we achieve a significant improvement in network fairness,

and the throughput of the furthest group is more similar to the throughput of the closest

5.2 – Impact of Rayleigh Fading Channel 56

group when compared to Case 2. Therefore, assigning larger RAW slots to the more distant

groups can compensate for the higher bit error probabilities and provide more similar channel

access conditions between the groups. The analytical model showed similar behavior to the

simulations, with percentage errors lower than 6.32%, and the Jain’s fairness are JF = 0.8541

and JF = 0.8427 for the cases with data frame lengths of 256 and 1024, respectively.

Table 5.15. Comparison between analytical model and computer simulations of the throughput in Mb/s for
MCS3 and 256 bytes with different Raw slot durations.

Group Simulations Sta dev Analytical Model Error %
1 0.6084 0.0192 0.6122 0.62
2 0.5272 0.0130 0.5157 2.18
3 0.5709 0.0317 0.5928 3.69
4 0.5452 0.0112 0.5496 0.80
Jain’s Fairness 0.8541 0.0152

Table 5.16. Comparison between analytical model and computer simulations of the throughput in Mb/s for
MCS3 and 1024 bytes with different Raw slot durations.

Group Simulations Sta dev Analytical Model Error %
1 1.0608 0.0539 1.1401 6.32
2 0.9674 0.1069 0.9298 3.89
3 1.0942 0.0981 1.0519 3.86
4 0.9917 0.0309 0.9833 0.85
Jain’s Fairness 0.8427 0.0261

5.2.4 Comparison between the three case studies

In this section, we show bar graphs comparing network performance across the three case

studies for each scenario. In Figure 5.8 is possible to verify that, although the random grouping

(Case 1) seems fairer, as the throughput in each group has similar values, the fairness is the

lowest among the three case studies. This occurs because stations further away from the AP

compete for the channel in the same group as stations closer to the AP. This way, the closer

stations harm the more distant stations. In Case 2, where stations are grouped according to the

distance from the rings in which they are located, but with RAW slots of the same duration,

we can see a slight increase in Jain fairness, which means that the stations further away were

able to access the channel better when competing with stations with similar channel conditions.

Finally, in Case 3, we observe the importance of allocating channel resources heterogeneously to

5.2 – Impact of Rayleigh Fading Channel 57

Figure 5.8. Comparison of the three case studies considering the throughput per group and Jain’s fairness
obtained in computational simulations for the MCS0 and packet size of 256 bytes scenario.

stations with different channel conditions. We see an increase in the throughput of the groups

further away from the AP and a significant improvement in Jain’s fairness.

We can observe a similar behavior in Figure 5.9. Case 1 seems to be fairer because the

average throughput of each group has approximate values. However, this case had the most

minor justice for this scenario. In Case 2, we have a slight improvement in fairness. At the

same time, we have yet to obtain a significant increase in fairness because more distant stations

need more channel time to transmit their packets, as they take longer in the backoff process and

with retransmission attempts. In addition, this scenario has longer packet lengths and a low

transmission rate, and we observe that some stations did not send their packets. Therefore, the

duration of the RAW slot needs to be increased to guarantee that stations in the most distant

group send their packets. In Case 3, we observe the biggest improvement in fairness when the

RAW slot duration is distributed heterogeneously for each group.

We compare the outcomes for the scenario configured with MCS3 mode and packet lengths

of 256 bytes and 1024 bytes in Figures 5.10 and 5.11, respectively. In both scenarios, Case

1 appears to be more equitable distributed as the average throughput of each group is ap-

proximately similar. In Case 2, we have a small improvement in fairness, but there is still

no significant increase since more distant stations require more channel time to transmit their

5.3 – Conclusions 58

Figure 5.9. Comparison of the three case studies considering the throughput per group and Jain’s fairness
obtained in computational simulations for the MCS0 and packet size of 1024 bytes scenario.

packets. Finally, we also observe a significant improvement in network fairness in Case 3, when

assigned different RAW slot duration for each group. Furthermore, the average throughput of

the furthest group is more similar to the average throughput of the closest group when compa-

red to Cases 1 and 2. Therefore, these results show that assigning larger RAW slots duration

to the more distant groups could compensate for higher bit error probabilities and offer more

equitable channel access conditions between groups.

5.3 CONCLUSIONS

In this Chapter, we presented the numerical results obtained with our analytical model and

computer simulations. First, we validated the importance of the RAW slot completion proba-

bility to the performance of our analytical model with comparisons with computer simulations

by considering two cases for our model: when such probability is taken into account, and when

it is removed from the model. Additionally, we compared the average aggregate throughput

predicted by our analytical model with results provided by two analytical models available in

literature. The results showed that our analytical model predicts network performance with

higher accuracy than the other models. Then, we extended the analysis by including the impact

of Rayleigh fading channel and large-scale path loss, and the results showed that the proposed

5.3 – Conclusions 59

Figure 5.10. Comparison of the three case studies considering the throughput per group and Jain’s fairness
obtained in computational simulations for the MCS3 and packet size of 256 bytes scenario.

Figure 5.11. Comparison of the three case studies considering the throughput per group and Jain’s fairness
obtained in computational simulations for the MCS3 and packet size of 1024 bytes scenario.

5.3 – Conclusions 60

analytical model predicts network performance with high accuracy in most scenarios. In the

scenario in which we obtained a higher percentage error (36.77%) between the analytical model

and simulations, we verified that there were packet losses in the simulations that the analytical

model did not predict. Finally, we showed the need to adjust the RAW slot duration according

to the distance of the stations to the AP to achieve throughput fairness among groups.

CONCLUSION

Currently, there is a growing use of objects inserted in the context of the Internet of Things,

whose main challenges are networks with many connected devices, with limited power and me-

mory resources, and geographically distributed over large areas. To deal with these challenges,

a new Wi-Fi standard was developed, the IEEE 802.11ah, which supports long-range trans-

missions and many connected devices to a single access point. One of its main features is the

restricted access window, RAW. With the RAW mechanism, the stations in the network can be

divided into smaller groups, which can only try to access the channel within the interval time

determined for the group to which they belong. In this work, we introduced a discrete-time

Markov chain model to evaluate the average aggregate throughput performance of an IEEE

802.11ah network under ideal and non-ideal channel conditions and saturated traffic. The mo-

del addresses the dynamics of a station within its assigned RAW slot and includes the impact

of RAW slot time completion as a key parameter, for which we present a heuristic approach

for is derivation and showed its impact on model accuracy through comparisons with computer

simulations.

For this, initially, we presented an analytical model consisting of a discrete-time Markov

chain with two dimensions to describe the behavior of a station in its backoff process within a

RAW slot. Each Markov chain state represents the backoff counter, while the lines represent

the retransmission stages. The transition probabilities represent the events of backoff counter

decrement, backoff counter freeze when the channel is busy, and RAW slot time completion. An

empirical expression was provided for the probability of RAW slot time completion which takes

into account the length of the RAW slot with respect to the beacon interval, the transmission

attempts, and the number of stations within a RAW slot. We evaluated the importance such

probability by comparing the numerical results of the model including the RAW slot completion

probability and the model without including this probability. We verified that the model

that considers the expression of RAW slot time completion was the closest to the computer

62

simulations. Moreover, the performance of the proposed analytical model was compared to two

other analytical models available in the literature, whose numerical results were also compared

to computer simulations carried out independently in the ns-3 simulator. The results showed

that the proposed analytical model predicts network performance with higher accuracy than

the other models (expressed in terms of RMSE).

Furthermore, we extended the analytical model by including the impact of Rayleigh fading

channel and large-scale path loss. The performance of the proposed analytical model after

including these Physical layer parameters was compared to computer simulations carried out

independently in the ns-3 simulator, and the results showed that the proposed analytical model

predicts network performance with high accuracy in most scenarios. Additionally, we showed

the need to adjust the RAW slot duration according to the distance of the stations to the AP to

achieve throughput fairness among groups. We propose an expression to adjust the duration of

the RAW slot according to the distance of the stations to ensure that the more distant stations,

which tend to spend more time in the backoff process and with retransmission attempts due

to poor channel conditions, have time enough to transmit their packets. The results showed a

significant increase in fairness between groups when we allocated different RAW slot durations

according to group distance.

The development of analytical models that describe communication protocols is important

to evaluate the performance metrics of a network. From the analytical model, it is possible to

evaluate how the network behaves with different initial conditions and with variations of its

parameters, which allows the implementation of more efficient communication protocols with

lower energy consumption. Thus, for future work, we plan to develop expressions to compute

delay and energy consumption, and to extend this model to the scenario of non-saturated

networks. Furthermore, we plan to apply the model in efficient station allocation in RAW

groups and RAW slots studies. Additionally, we intend to explore heterogeneous scenarios with

greater mobility of stations and extend our analytical model for these scenarios to formulate

an optimization problem to derive a station grouping strategy.

REFERENCES

ADAME, T.; BEL, A.; BELLALTA, B.; BARCELO, J.; OLIVER, M. Ieee 802.11 ah: the wifi
approach for m2m communications. IEEE Wireless Communications, IEEE, v. 21, n. 6, p.
144–152, 2014. Cited in page 9.

AHMED, N.; DE, D.; BARBHUIYA, F. A.; HUSSAIN, M. I. MAC protocols for IEEE
802.11ah-based internet of things: A survey. IEEE Internet of Things Journal, v. 9, n. 2, p.
916–938, 2022. Cited in page 1.

AHMED, N.; RAHMAN, H.; HUSSAIN, M. I. A comparison of 802.11 ah and 802.15. 4 for
iot. ICT Express, Elsevier, v. 2, n. 3, p. 100–102, 2016. Cited in page 9.

AL-FUQAHA, A.; GUIZANI, M.; MOHAMMADI, M.; ALEDHARI, M.; AYYASH, M.
Internet of things: A survey on enabling technologies, protocols, and applications. IEEE
communications surveys & tutorials, v. 17, n. 4, p. 2347–2376, 2015. Cited in page 1.

ALI, M. Z.; MIŠIĆ, J.; MIŠIĆ, V. B. Performance Evaluation of Heterogeneous IoT Nodes
with Differentiated QoS in IEEE 802.11ah RAW Mechanism. IEEE Transactions on Vehicular
Technology, IEEE, v. 68, n. 4, p. 3905–3918, 2019. Cited 2 times in pages 20 and 26.

BADARLA, S. P.; HARIGOVINDAN, V. Restricted access window-based resource allocation
scheme for performance enhancement of IEEE 802.11ah multi-rate IoT networks. IEEE Access,
IEEE, v. 9, p. 136507–136519, 2021. Cited 4 times in pages 4, 22, 26, and 27.

BANKOV, D.; KHOROV, E.; LYAKHOV, A.; FAMAEY, J. Resource allocation for
Machine-Type communication of Energy-Harvesting devices in Wi-Fi halow networks. Sensors,
Multidisciplinary Digital Publishing Institute, v. 20, n. 9, p. 2449, 2020. Cited 2 times in
pages 3 and 4.

BELLINI, P.; NESI, P.; PANTALEO, G. IoT-enabled smart cities: A review of concepts,
frameworks and key technologies. Applied Sciences, v. 12, n. 3, p. 1607, 2022. Cited in page 1.

BIANCHI, G. Performance Analysis of the IEEE 802.11 Distributed Coordination Function.
IEEE Journal on Selected Areas in Communications, IEEE, v. 18, n. 3, p. 535–547, 2000.
Cited 5 times in pages 19, 20, 21, 27, and 36.

CHANG, T.-C.; LIN, C.-H.; LIN, K. C.-J.; CHEN, W.-T. Load-balanced Sensor Grouping for
IEEE 802.11ah Networks. In: IEEE. IEEE Global Communications Conference. [S.l.], 2015.
p. 1–6. Cited 3 times in pages 21, 26, and 27.

DANESHGARAN, F.; LADDOMADA, M.; MESITI, F.; MONDIN, M.; ZANOLO, M.
Saturation throughput analysis of IEEE 802.11 in the presence of non ideal transmission
channel and capture effects. IEEE transactions on Communications, IEEE, v. 56, n. 7, p.
1178–1188, 2008. Cited in page 32.

References 64

DIN MUHAMMAD, H. A. Qutab-ud; BADIHI, B.; LARMO, A.; TORSNER, J.; VALKAMA,
M. Performance Analysis of IoT-Enabling IEEE 802.11ah Technology and its RAW Mechanism
with Non-cross Slot Boundary Holding Schemes. In: IEEE International Symposium on a
World of Wireless, Mobile and Multimedia Networks. [S.l.: s.n.], 2015. p. 1–6. Cited 4 times
in pages 18, 26, 32, and 33.

DONG, M.; WU, Z.; GAO, X.; ZHAO, H. An Efficient Spatial Group Restricted Access
Window Scheme for IEEE 802.11ah Networks. In: IEEE. Sixth International Conference on
Information Science and Technology. [S.l.], 2016. p. 168–173. Cited 5 times in pages 3, 4, 24,
26, and 27.

GOLDSMITH, A. Wireless communications. [S.l.]: Cambridge university press, 2005. Cited
in page 33.

HEUSSE, M.; ROUSSEAU, F.; BERGER-SABBATEL, G.; DUDA, A. Performance anomaly
of 802.11b. In: IEEE INFOCOM. [S.l.: s.n.], 2003. p. 836–843. Cited in page 4.

HUANG, C.-M.; HUANG, S.-H. Traffic-aware re-grouping for load balance in ieee 802.11 ah
iot network based on the registered backoff time mechanism. The Computer Journal, Oxford
University Press, p. bxad027, 2023. Cited 3 times in pages 24, 26, and 27.

IEEE STD 802.11AH-2016. IEEE Standard for Information technology–Telecommunications
and information exchange between systems – Local and metropolitan area networks–Specific
requirements – Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer
(PHY) Specifications Amendment 2: Sub 1 GHz License Exempt Operation. [S.l.], 2016. Cited
6 times in pages iii, 2, 13, 15, 17, and 41.

KAI, C.; ZHANG, J.; ZHANG, X.; HUANG, W. Energy-Efficient Sensor Grouping for
IEEE 802.11ah Networks with Max-Min Fairness Guarantees. IEEE Access, IEEE, v. 7, p.
102284–102294, 2019. Cited 5 times in pages 21, 22, 23, 26, and 27.

KHOROV, E.; KROTOV, A.; LYAKHOV, A. Modelling Machine Type Communication
in IEEE 802.11ah Networks. In: IEEE. IEEE International Conference on Communication
Workshop. [S.l.], 2015. p. 1149–1154. Cited 2 times in pages 20 and 26.

KHOROV, E.; KROTOV, A.; LYAKHOV, A.; YUSUPOV, R.; CONDOLUCI, M.; DOHLER,
M.; AKYILDIZ, I. Enabling the Internet of Things With Wi-Fi Halow —Performance
Evaluation of the Restricted Access Window. IEEE Access, IEEE, v. 7, p. 127402–127415,
2019. Cited 4 times in pages 3, 4, 21, and 26.

KHOROV, E.; LYAKHOV, A.; KROTOV, A.; GUSCHIN, A. A survey on ieee 802.11 ah: An
enabling networking technology for smart cities. Computer Communications, Elsevier, v. 58,
p. 53–69, 2015. Cited in page 9.

LACAGE, M.; HENDERSON, T. R. Yet another network simulator. In: Proceedings of the
2006 Workshop on ns-3. [S.l.: s.n.], 2006. p. 12–es. Cited in page 34.

LAKSHMI, L. R.; SIKDAR, B. Fair scheduling in ieee 802.11 ah networks for internet of
things applications. In: IEEE. IEEE GLOBECOM. [S.l.], 2019. p. 1–7. Cited 3 times in pages
24, 26, and 27.

References 65

MAHESH, M.; HARIGOVINDAN, V. Restricted Access Window-Based Novel Service
Differentiation Scheme for Group-Synchronized DCF. IEEE Communications Letters, IEEE,
v. 23, n. 5, p. 900–903, 2019. Cited 2 times in pages 18 and 26.

MAHESH, M.; PAVAN, B. S.; HARIGOVINDAN, V. Data rate-based grouping to resolve
performance anomaly of multi-rate IEEE 802.11 ah IoT networks. IEEE Networking Letters,
IEEE, v. 2, n. 4, p. 166–170, 2020. Cited 3 times in pages 4, 22, and 27.

MALOOK, F.; MUJAHID, O.; ULLAH, Z.; FOUZDER, T. On enhancing the performance
of ieee 802.11 ah by employing a dynamic raw approach in iot networks. Wireless Personal
Communications, Springer, v. 129, n. 3, p. 1983–1997, 2023. Cited 2 times in pages 24 and 26.

MINOLI, D.; SOHRABY, K.; OCCHIOGROSSO, B. IoT considerations, requirements,
and architectures for smart buildings—energy optimization and next-generation building
management systems. IEEE Internet of Things Journal, v. 4, n. 1, p. 269–283, 2017. Cited in
page 1.

MISRA, N. N.; DIXIT, Y.; AL-MALLAHI, A.; BHULLAR, M. S.; UPADHYAY, R.;
MARTYNENKO, A. IoT, big data, and artificial intelligence in agriculture and food industry.
IEEE Internet of Things Journal, v. 9, n. 9, p. 6305–6324, 2022. Cited in page 1.

MOSAVAT-JAHROMI, H.; LI, Y.; CAI, L. A throughput fairness-based grouping strategy for
dense IEEE 802.11ah networks. In: IEEE. 2019 IEEE 30th Annual International Symposium
on Personal, Indoor and Mobile Radio Communications (PIMRC). [S.l.], 2019. p. 1–6. Cited
3 times in pages 23, 26, and 27.

NAWAZ, N.; HAFEEZ, M.; ZAIDI, S. A. R.; MCLERNON, D. C.; GHOGHO, M. Throughput
Enhancement of Restricted Access Window for Uniform Grouping Scheme in IEEE 802.11ah.
In: IEEE. IEEE International Conference on Communications. [S.l.], 2017. p. 1–7. Cited 2
times in pages 21 and 26.

OLIVEIRA, E. C.; SOARES, S. M.; CARVALHO, M. M. K-means Based Grouping of Stations
with Dynamic AID Assignment in IEEE802.11ah Networks. In: IEEE. 18th International
Conference on Mobility, Sensing and Networking (MSN). [S.l.], 2022. p. 1–8. Cited 4 times in
pages 4, 7, 26, and 27.

PARK, C. W.; HWANG, D.; LEE, T.-J. Enhancement of IEEE 802.11ah MAC for M2M
Communications. IEEE Communications Letters, IEEE, v. 18, n. 7, p. 1151–1154, 2014. Cited
2 times in pages 19 and 26.

QUY, V. K.; HAU, N. V.; ANH, D. V.; QUY, N. M.; BAN, N. T.; LANZA, S.; RANDAZZO,
G.; MUZIRAFUTI, A. IoT-enabled smart agriculture: Architecture, applications, and
challenges. Applied Sciences, v. 12, n. 7, p. 3396, 2022. Cited in page 1.

RAEESI, O.; PIRSKANEN, J.; HAZMI, A.; TALVITIE, J.; VALKAMA, M. Performance
Enhancement and Evaluation of IEEE 802.11ah Multi-access Point Network Using Restricted
Access Window Mechanism. In: IEEE. IEEE International Conference on Distributed
Computing in Sensor Systems. [S.l.], 2014. p. 287–293. Cited in page 19.

RAEESI, O.; PIRSKANEN, J.; HAZMI, A.; LEVANEN, T.; VALKAMA, M. Performance
Evaluation of IEEE 802.11 ah and its Restricted Access Window Mechanism. In: IEEE. IEEE
International Conference on Communications Workshops. [S.l.], 2014. p. 460–466. Cited 2
times in pages 19 and 26.

References 66

SANGEETHA, U.; BABU, A. Performance Analysis of IEEE 802.11ah Wireless Local Area
Network Under the Restricted Access Window-Based Mechanism. International Journal of
Communication Systems, WILEY 111 RIVER ST, HOBOKEN 07030-5774, NJ USA, v. 32,
n. 4, 2019. Cited 5 times in pages 3, 4, 20, 26, and 44.

SANGEETHA, U.; BABU, A. Fair and efficient resource allocation in IEEE 802.11ah WLAN
with heterogeneous data rates. Computer Communications, Elsevier, v. 151, p. 154–164, 2020.
Cited 5 times in pages 4, 21, 22, 26, and 27.

SANGEETHA, U.; BABU, A. Service Differentiation in IEEE 802.11 ah WLAN under
Restricted Access Window based MAC protocol. Computer Communications, Elsevier, v. 172,
p. 142–154, 2021. Cited 2 times in pages 20 and 26.

SISINNI, E.; SAIFULLAH, A.; HAN, S.; JENNEHAG, U.; GIDLUND, M. Industrial
internet of things: Challenges, opportunities, and directions. IEEE transactions on industrial
informatics, v. 14, n. 11, p. 4724–4734, 2018. Cited in page 1.

SOARES, S. M.; CARVALHO, M. M. Throughput Analytical Modeling of IEEE 802.11ah
Wireless Networks. In: IEEE. 16th IEEE Annual Consumer Communications & Networking
Conference. [S.l.], 2019. p. 1–4. Cited 4 times in pages 4, 6, 20, and 32.

SOARES, S. M.; CARVALHO, M. M. An analytical model for the aggregate throughput of
ieee 802.11 ah networks under the restricted access window mechanism. Sensors, MDPI, v. 22,
n. 15, p. 5561, 2022. Cited 4 times in pages 5, 7, 25, and 26.

TARAMIT, H.; CAMACHO-ESCOTO, J. J.; GOMEZ, J.; OROZCO-BARBOSA, L.; HAQIQ,
A. Accurate analytical model and evaluation of wi-fi halow based iot networks under a
rayleigh-fading channel with capture. Mathematics, MDPI, v. 10, n. 6, p. 952, 2022. Cited 3
times in pages 3, 19, and 26.

TARAMIT, H.; OROZCO-BARBOSA, L.; HAQIQ, A. Resource and energy-efficient
configuration of ieee 802.11 ah networks under rayleigh channels. In: IEEE. 2022 4th IEEE
Middle East and North Africa COMMunications Conference (MENACOMM). [S.l.], 2022. p.
177–184. Cited 2 times in pages 23 and 26.

TARAMIT, H.; OROZCO-BARBOSA, L.; HAQIQ, A.; ESCOTO, J. J. C.; GOMEZ, J.
Load-aware channel allocation for ieee 802.11 ah-based networks. IEEE Access, IEEE, v. 11,
p. 24484–24496, 2023. Cited 2 times in pages 23 and 26.

TIAN, L.; DERONNE, S.; LATRÉ, S.; FAMAEY, J. Implementation and Validation of an
IEEE 802.11ah Module for ns-3. In: ACM. 8th Workshop on ns-3. [S.l.], 2016. p. 49–56. Cited
6 times in pages 5, 6, 7, 25, 40, and 41.

TIAN, L.; KHOROV, E.; LATRÉ, S.; FAMAEY, J. Real-time Station Grouping Under
Dynamic Traffic for IEEE 802.11ah. Sensors, Multidisciplinary Digital Publishing Institute,
v. 17, n. 7, p. 1559, 2017. Cited 3 times in pages 23, 26, and 27.

TIAN, L.; MEHARI, M.; SANTI, S.; LATRÉ, S.; POORTER, E. D.; FAMAEY, J. IEEE
802.11ah Restricted Access Window Surrogate Model for Real-time Station Grouping. In:
IEEE. IEEE 19th International Symposium on"A World of Wireless, Mobile and Multimedia
Networks". [S.l.], 2018. p. 14–22. Cited 2 times in pages 23 and 26.

References 67

TIAN, L.; SANTI, S.; SEFERAGIĆ, A.; LAN, J.; FAMAEY, J. Wi-Fi HaLow for the
Internet of Things: An up-to-date survey on IEEE 802.11ah research. Journal of Network and
Computer Applications, Elsevier, v. 182, p. 103036, 2021. Cited 2 times in pages 1 and 16.

TIAN, L.; ŠLJIVO, A.; SANTI, S.; POORTER, E. D.; HOEBEKE, J.; FAMAEY, J. Extension
of the IEEE 802.11ah ns-3 Simulation Module. In: ACM. 10th Workshop on ns-3. [S.l.], 2018.
p. 53–60. Cited in page 7.

YAQOOB, I.; AHMED, E.; HASHEM, I. A. T.; AHMED, A. I. A.; GANI, A.; IMRAN, M.;
GUIZANI, M. Internet of things architecture: Recent advances, taxonomy, requirements, and
open challenges. IEEE Wireless Communications, v. 24, n. 3, p. 10–16, 2017. Cited in page 1.

YOON, S.-G.; SEO, J.-O.; BAHK, S. Regrouping Algorithm to Alleviate the Hidden Node
Problem in 802.11ah Networks. Computer Networks, Elsevier, v. 105, p. 22–32, 2016. Cited 3
times in pages 24, 26, and 27.

ZHENG, L.; NI, M.; CAI, L.; PAN, J.; GHOSH, C.; DOPPLER, K. Performance Analysis of
Group-Synchronized DCF for Dense IEEE 802.11 Networks. IEEE Transactions on Wireless
Communications, IEEE, v. 13, n. 11, p. 6180–6192, 2014. Cited 7 times in pages 3, 4, 18, 19,
26, 27, and 44.

APÊNDICE A

NS-3 PROGRAM

s1g-tcc-raw.cc

#include "s1g-tcc-raw.h"

NS_LOG_COMPONENT_DEFINE("S1gTccRaw");

uint32_t AssocNum = 0;
int64_t AssocTime = 0;
uint32_t StaNum = 0;
NetDeviceContainer staDeviceCont;
const int MaxSta = 8000;

Configuration config;
Statistics stats;
SimulationEventManager eventManager;

class assoc_record {
public:

assoc_record();
bool GetAssoc();
void SetAssoc(std::string context, Mac48Address address);
void UnsetAssoc(std::string context, Mac48Address address);
void setstaid(uint16_t id);

private:
bool assoc;
uint16_t staid;

};

assoc_record::assoc_record() {
assoc = false;
staid = 65535;

}

void assoc_record::setstaid(uint16_t id) {
staid = id;

}

void assoc_record::SetAssoc(std::string context, Mac48Address address) {
assoc = true;

}

void assoc_record::UnsetAssoc(std::string context, Mac48Address address) {
assoc = false;

}

69

bool assoc_record::GetAssoc() {
return assoc;

}

typedef std::vector<assoc_record *> assoc_recordVector;
assoc_recordVector assoc_vector;

uint32_t GetAssocNum() {
AssocNum = 0;
for (assoc_recordVector::const_iterator index = assoc_vector.begin();

index != assoc_vector.end(); index++) {
if ((*index)->GetAssoc()) {

AssocNum++;
}

}
return AssocNum;

}

void PopulateArpCache() {
Ptr<ArpCache> arp = CreateObject<ArpCache>();
arp->SetAliveTimeout(Seconds(3600 * 24 * 365));
for (NodeList::Iterator i = NodeList::Begin(); i != NodeList::End(); ++i) {

Ptr<Ipv4L3Protocol> ip = (*i)->GetObject<Ipv4L3Protocol>();
NS_ASSERT(ip != 0);
ObjectVectorValue interfaces;
ip->GetAttribute("InterfaceList", interfaces);
for (ObjectVectorValue::Iterator j = interfaces.Begin();

j != interfaces.End(); j++) {
Ptr<Ipv4Interface> ipIface =

(j->second)->GetObject<Ipv4Interface>();
NS_ASSERT(ipIface != 0);
Ptr<NetDevice> device = ipIface->GetDevice();
NS_ASSERT(device != 0);
Mac48Address addr = Mac48Address::ConvertFrom(device->GetAddress());
for (uint32_t k = 0; k < ipIface->GetNAddresses(); k++) {

Ipv4Address ipAddr = ipIface->GetAddress(k).GetLocal();
if (ipAddr == Ipv4Address::GetLoopback())

continue;
ArpCache::Entry * entry = arp->Add(ipAddr);
entry->MarkWaitReply(0);
entry->MarkAlive(addr);
std::cout << "Arp Cache: Adding the pair (" << addr << ","

<< ipAddr << ")" << std::endl;
}

}
}
for (NodeList::Iterator i = NodeList::Begin(); i != NodeList::End(); ++i) {

Ptr<Ipv4L3Protocol> ip = (*i)->GetObject<Ipv4L3Protocol>();
NS_ASSERT(ip != 0);
ObjectVectorValue interfaces;
ip->GetAttribute("InterfaceList", interfaces);
for (ObjectVectorValue::Iterator j = interfaces.Begin();

j != interfaces.End(); j++) {
Ptr<Ipv4Interface> ipIface =

(j->second)->GetObject<Ipv4Interface>();
ipIface->SetAttribute("ArpCache", PointerValue(arp));

}
}

}

70

void OnSignalArrival(Ptr< const Packet > packet, uint16_t channelFreqMhz,
uint16_t channelNumber, uint32_t rate, bool isShortPreamble, WifiTxVector txvector,
double signalDbm, double noiseDbm){

Ptr< Packet > packetCopy = packet->Copy();
uint32_t packetSize = packetCopy->GetSize();

WifiMacHeader hdr;
packetCopy->RemoveHeader (hdr);

Mac48Address destAddr = hdr.GetAddr1();
Mac48Address sourceAddr = hdr.GetAddr2();
const char * typeString = hdr.GetTypeString();

if (hdr.IsData()){
// LlcSnapHeader llchdr;
Ipv4Header ipv4hdr;
// packetCopy->RemoveHeader (llchdr);
packetCopy->RemoveHeader (ipv4hdr);

Ipv4Address sourceip = ipv4hdr.GetSource();
Ipv4Address destinationip = ipv4hdr.GetDestination();
uint8_t tos = ipv4hdr.GetTos();

cout<<"IPv4 source: "<<sourceip<<" ,";
cout<<"IPv4 destination: "<<destinationip<<" ,";
cout<<"Type of Service: "<<unsigned(tos);

}

cout<<endl;
}

vector<string> dataModes = {"MCS2_3", "MCS2_2", "MCS2_1", "MCS2_0"};
string GetRandomDataMode (uint16_t numModes)
{
Ptr<UniformRandomVariable> m_rv = CreateObject<UniformRandomVariable>();

uint16_t modeNum = m_rv->GetInteger(0, numModes-1);

return dataModes[modeNum];
}

string GetRoundRoubindDataMode (uint16_t idx, uint16_t numModes)
{
return dataModes[idx%numModes];
}

void ConfigureTopology (string TopologyFile)
{
uint16_t numZones = 0;
uint16_t minVal = 0, maxVal = 0;
string dataMode;

ifstream topoFile (TopologyFile);

if (topoFile.is_open())
{

71

topoFile >> numZones;
for (uint16_t i = 0; i < numZones; i++)
{
Zone * zone = new Zone;
topoFile >> maxVal;
zone->SetNumSta (maxVal);

topoFile >> minVal;
topoFile >> maxVal;
zone->SetRadius(minVal, maxVal);

topoFile >> dataMode;
zone->SetDataMode(dataMode);

topoFile >> minVal;
topoFile >> maxVal;
zone->SetPayloadSize(minVal, maxVal);

topoFile >> minVal;
topoFile >> maxVal;
zone->SetTrafficInterval(minVal, maxVal);

topology.AddZone(zone);
}
}
else
{
throw::invalid_argument("Invalid topology file.");
}
}

RPSVector configureRAW(RPSVector rpslist, string RAWConfigFile)
{

uint16_t NRPS = 0;
uint16_t NRAWPERBEACON = 0;
uint16_t Value = 0;
uint32_t page = 0;
uint32_t aid_start = 0;
uint32_t aid_end = 0;
uint32_t rawinfo = 0;

uint16_t ngroup;
uint16_t nslot;

ifstream myfile(RAWConfigFile);
//1. get info from config file

uint16_t block = 0;

//2. define RPS
if (myfile.is_open()) {

myfile >> NRPS;
for (uint16_t kk = 0; kk < NRPS; kk++) // number of beacons covering all raw groups
{

RPS *m_rps = new RPS;
myfile >> NRAWPERBEACON;
ngroup = NRAWPERBEACON;
std::cout<<"RPS "<<kk+1<<" number of groups: "<<ngroup<<std::endl;
for (uint16_t i = 0; i < NRAWPERBEACON; i++) // raw groups in one beacon

72

{
RPS::RawAssignment *m_raw = new RPS::RawAssignment;

myfile >> Value;
m_raw->SetRawControl(Value); //support paged STA or not
myfile >> Value;
m_raw->SetSlotCrossBoundary(Value);
myfile >> Value;
m_raw->SetSlotFormat(Value);
myfile >> Value;
m_raw->SetSlotDurationCount(Value);
myfile >> Value;
nslot = Value;
m_raw->SetSlotNum(Value);
myfile >> page;

aid_start = block << 6;
if (aid_start == 0) aid_start = 1;
aid_end = block << 6 | 0x3f;
block++;

rawinfo = (aid_end << 13) | (aid_start << 2) | page;
m_raw->SetRawGroup(rawinfo);

m_rps->SetRawAssignment(*m_raw);
delete m_raw;

}
rpslist.rpsset.push_back(m_rps);

}
myfile.close();

} else
cout << "Unable to open RAW configuration file \n";

return rpslist;
}

/*
pageslice element and TIM(DTIM) together accomplish page slicing.

Prior knowledge:
802.11ah support up to 8192 stations, they are constructed into: page, block,
subblock, sta.

there are 13 bit represent the AID of stations.
AID[11-12] represent page.
AID[6-10] represent block.
AID[3-5] represent subblock.
AID[0-2] represent sta.

A TIM(DTIM) element only support one page
A Page slice element only support one page

Concept of page slicing:
Between two DTIM beacon, there are many TIM beacons, only allow a TIM beacon

include some blocks of one page is called page slice. One TIM beacon is called a
%page slice. Page slcie element specify number of page slice between two DTIM,
number of blocks in each page slice.
Page slice element only appears together with DTIM.

Details:
Page slice element also indicates AP has buffered data for which block,
if a station is in that block, the station should first sleep,
then wake up at corresponding

73

page slice(TIM beacon) which includes that block.

When station wake up at that block, it check whether AP has data for itself.
If has, keep awake to receive packets and go to sleep in the next beacon.
*/

void configurePageSlice (void)
{

config.pageS.SetPageindex (config.pageIndex);
config.pageS.SetPagePeriod (config.pagePeriod);
//2 TIM groups between DTIMs
config.pageS.SetPageSliceLen (config.pageSliceLength);
//each TIM group has 1 block (2 blocks in 2 TIM groups)
config.pageS.SetPageSliceCount (config.pageSliceCount);
config.pageS.SetBlockOffset (config.blockOffset);
config.pageS.SetTIMOffset (config.timOffset);
//std::cout << "pageIndex=" << (int)config.pageIndex <<
", pagePeriod=" << (int)config.pagePeriod << ", pageSliceLength=
" << (int)config.pageSliceLength << ", pageSliceCount="
<< (int)config.pageSliceCount << ",
blockOffset=" << (int)config.blockOffset
<< ", timOffset=" << (int)config.timOffset
<< std::endl;
// page 0
// 8 TIM(page slice) for one page
// 4 block (each page)
// 8 page slice
// both offset are 0

}

void configureTIM (void)
{

config.tim.SetPageIndex (config.pageIndex);
if (config.pageSliceCount)

config.tim.SetDTIMPeriod (config.pageSliceCount); // not necessarily the same
else

config.tim.SetDTIMPeriod (1);

//std::cout << "DTIM period=" << (int)config.pagePeriod << std::endl;
}

void checkRawAndTimConfiguration (void)
{
std::cout << "Checking RAW and TIM configuration..." << std::endl;
bool configIsCorrect = true;
NS_ASSERT (config.rps.rpsset.size());
// Number of page slices in a single page has to equal number of different RPS elements because
// If #PS > #RPS, the same RPS will be used in more than 1 PS and that is wrong because
// each PS can accommodate different AIDs (same RPS means same stations in RAWs)
if(config.pageSliceCount)
{
//NS_ASSERT (config.pagePeriod == config.rps.rpsset.size());
}
for (uint32_t j = 0; j < config.rps.rpsset.size(); j++)
{
uint32_t totalRawTime = 0;
for (uint32_t i = 0; i < config.rps.rpsset[j]->GetNumberOfRawGroups(); i++)
{
totalRawTime += (120 * config.rps.rpsset[j]->GetRawAssigmentObj(i)

74

.GetSlotDurationCount() + 500) * config.rps.rpsset[j]->GetRawAssigmentObj(i).GetSlotNum();
auto aidStart = config.rps.rpsset[j]->GetRawAssigmentObj(i).GetRawGroupAIDStart();
auto aidEnd = config.rps.rpsset[j]->GetRawAssigmentObj(i).GetRawGroupAIDEnd();
configIsCorrect = check (aidStart, j) && check (aidEnd, j);
// AIDs in each RPS must comply with TIM in the following way:
// TIM0: 1-63; TIM1: 64-127; TIM2: 128-191; ...; TIM32: 1983-2047
// If RPS that belongs to TIM0 includes other AIDs (other than range [1-63]) configuration

is incorrect
NS_ASSERT (configIsCorrect);
}
std::cout<<"totalRawTime = "<<totalRawTime<<std::endl;
NS_ASSERT (totalRawTime <= config.BeaconInterval);
}
}
// assumes each TIM has its own beacon - doesn’t need to be the case as there has to be only
PageSliceCount beacons between DTIMs
bool check (uint16_t aid, uint32_t index)
{
uint8_t block = (aid >> 6) & 0x001f;
NS_ASSERT (config.pageS.GetPageSliceLen() > 0);
if (index == config.pageS.GetPageSliceCount() - 1 && config.pageS.GetPageSliceCount() != 0)
{
// the last page slice has 32 - the rest blocks
return (block <= 31) && (block >= index * config.pageS.GetPageSliceLen());
}
else if (config.pageS.GetPageSliceCount() == 0)
return true;

return (block >= index *
config.pageS.GetPageSliceLen()) && (block < (index + 1) * config.pageS.GetPageSliceLen());

}

void sendStatistics(bool schedule) {
eventManager.onUpdateStatistics(stats);
eventManager.onUpdateSlotStatistics(

transmissionsPerTIMGroupAndSlotFromAPSinceLastInterval,
transmissionsPerTIMGroupAndSlotFromSTASinceLastInterval);

// reset
std::fill(transmissionsPerTIMGroupAndSlotFromAPSinceLastInterval.begin(),

transmissionsPerTIMGroupAndSlotFromAPSinceLastInterval.end(), 0);
std::fill(transmissionsPerTIMGroupAndSlotFromSTASinceLastInterval.begin(),

transmissionsPerTIMGroupAndSlotFromSTASinceLastInterval.end(), 0);

if (schedule)
Simulator::Schedule(Seconds(config.visualizerSamplingInterval), &sendStatistics, true);

}

void onSTADeassociated(int i) {
eventManager.onNodeDeassociated(*nodes[i]);

}

void updateNodesQueueLength() {
for (uint32_t i = 0; i < config.Nsta; i++) {

nodes[i]->UpdateQueueLength();
stats.get(i).EDCAQueueLength = nodes[i]->queueLength;

}
Simulator::Schedule(Seconds(0.5), &updateNodesQueueLength);

}

75

void onSTAAssociated(int i) {
// cout << "Node " << std::to_string(i) << " is associated and has aid "
// << nodes[i]->aId << endl;

for (int k = 0; k < config.rps.rpsset.size(); k++) {
for (int j = 0; j < config.rps.rpsset[k]->GetNumberOfRawGroups(); j++) {

if (config.rps.rpsset[k]->GetRawAssigmentObj(j).GetRawGroupAIDStart()
<= i + 1
&& i + 1

<= config.rps.rpsset[k]->GetRawAssigmentObj(j)
.GetRawGroupAIDEnd()) {

nodes[i]->rpsIndex = k + 1;
nodes[i]->rawGroupNumber = j + 1;
nodes[i]->rawSlotIndex =

nodes[i]->aId
% config.rps.rpsset[k]->GetRawAssigmentObj(j).GetSlotNum()

+ 1;
/*cout << "Node " << i << " with AID "
<< (int)nodes[i]->aId << " belongs to " << (int)nodes[i]->rawSlotIndex
<< " slot of RAW group "
<< (int)nodes[i]->rawGroupNumber << " within the " << (int)nodes[i]->rpsIndex
<< " RPS." << endl;

*/
}

}
}

eventManager.onNodeAssociated(*nodes[i]);

// RPS, Raw group and RAW slot assignment

if (GetAssocNum() == config.Nsta) {
cout << "All " << AssocNum << " stations associated at "
<< Simulator::Now ().GetMicroSeconds () <<", configuring clients & server" << endl;

// association complete, start sending packets
stats.TimeWhenEverySTAIsAssociated = Simulator::Now();

if (config.trafficType == "udp") {
configureUDPServer();
configureUDPClients();

}
// else if (config.trafficType == "udpecho") {

// configureUDPEchoServer();
// configureUDPEchoClients();
// }

// else if (config.trafficType == "tcpecho") {
// configureTCPEchoServer();
// configureTCPEchoClients();
// }

// else if (config.trafficType == "tcppingpong") {
// configureTCPPingPongServer();
// configureTCPPingPongClients();
// }

// else if (config.trafficType == "tcpipcamera") {
// configureTCPIPCameraServer();
// configureTCPIPCameraClients();
// }

76

// else if (config.trafficType == "tcpfirmware") {
// configureTCPFirmwareServer();
// configureTCPFirmwareClients();
// }

// else if (config.trafficType == "tcpsensor") {
// configureTCPSensorServer();
// configureTCPSensorClients();
// }
updateNodesQueueLength();

}
}

void RpsIndexTrace(uint16_t oldValue, uint16_t newValue) {
currentRps = newValue;
//cout << "RPS: " << newValue << " at " << Simulator::Now().GetMicroSeconds() << endl;

}

void RawGroupTrace(uint8_t oldValue, uint8_t newValue) {
currentRawGroup = newValue;
// cout << " group " << std::to_string(newValue) << " at "
<< Simulator::Now().GetMicroSeconds() << endl;

}

void RawSlotTrace(uint8_t oldValue, uint8_t newValue) {
currentRawSlot = newValue;
// cout << " slot " << std::to_string(newValue) << " at "
<< Simulator::Now().GetMicroSeconds() << endl;

}

void S1gBeaconTrace(S1gBeaconHeader beacon, RPS::RawAssignment raw) {
beaconCount += 1;
}

void configureNodes(NodeContainer& wifiStaNode, NetDeviceContainer& staDevice) {
cout << "Configuring STA Node trace sources..." << endl;

for (uint32_t i = 0; i < config.Nsta; i++) {

// cout << "Hooking up trace sources for STA " << i << endl;

NodeEntry* n = new NodeEntry(i, &stats, wifiStaNode.Get(i),
staDevice.Get(i));

n->SetAssociatedCallback([=] {onSTAAssociated(i);});
n->SetDeassociatedCallback([=] {onSTADeassociated(i);});

nodes.push_back(n);
// hook up Associated and Deassociated events
Config::Connect(

"/NodeList/" + std::to_string(i)
+ "/DeviceList/0/$ns3::WifiNetDevice/Mac

/$ns3::RegularWifiMac/$ns3::StaWifiMac/Assoc",
MakeCallback(&NodeEntry::SetAssociation, n));

Config::Connect(
"/NodeList/" + std::to_string(i)

+ "/DeviceList/0/$ns3::WifiNetDevice/Mac/$ns3::RegularWifiMac
/$ns3::StaWifiMac/DeAssoc",

MakeCallback(&NodeEntry::UnsetAssociation, n));
Config::Connect(

77

"/NodeList/" + std::to_string(i)
+ "/DeviceList/0/$ns3::WifiNetDevice/Mac/$ns3::RegularWifiMac
/BE_EdcaTxopN/NrOfTransmissionsDuringRaw",

MakeCallback(
&NodeEntry::OnNrOfTransmissionsDuringRAWSlotChanged,
n)); //not implem

Config::Connect(
"/NodeList/" + std::to_string(i)

+ "/DeviceList/0/$ns3::WifiNetDevice/Mac/$ns3::RegularWifiMac
/$ns3::StaWifiMac/TransmissioninRAWSlot",

MakeCallback(
&NodeEntry::OnTransmissionInsideRAWSlot,
n));

Config::Connect(
"/NodeList/" + std::to_string(i)

+ "/DeviceList/0/$ns3::WifiNetDevice/Mac/$ns3::RegularWifiMac
/$ns3::StaWifiMac/RawDuration",

MakeCallback(
&NodeEntry::onRawDurationChanged,
n));

Config::Connect(
"/NodeList/" + std::to_string(i)

+ "/DeviceList/0/$ns3::WifiNetDevice/Mac/$ns3::RegularWifiMac
/$ns3::StaWifiMac/RawSlotDuration",

MakeCallback(
&NodeEntry::OnRAWSlotDurationChanged,
n));

Config::Connect(
"/NodeList/" + std::to_string(i)

+ "/DeviceList/0/$ns3::WifiNetDevice/Mac/$ns3::RegularWifiMac
/$ns3::StaWifiMac/AID",

MakeCallback(
&NodeEntry::OnAIDChanged,
n));

//Config::Connect("/NodeList/" + std::to_string(i) + "/DeviceList/0/$ns3::WifiNetDevice/Mac/$ns3::RegularWifiMac
/$ns3::StaWifiMac/S1gBeaconMissed", MakeCallback(&NodeEntry::OnS1gBeaconMissed, n));

Config::Connect(
"/NodeList/" + std::to_string(i)

+ "/DeviceList/0/$ns3::WifiNetDevice/Mac/$ns3::RegularWifiMac
/$ns3::StaWifiMac/PacketDropped",

MakeCallback(&NodeEntry::OnMacPacketDropped, n));
Config::Connect(

"/NodeList/" + std::to_string(i)
+ "/DeviceList/0/$ns3::WifiNetDevice/Mac/$ns3::RegularWifiMac
/$ns3::StaWifiMac/Collision",

MakeCallback(&NodeEntry::OnCollision, n));
Config::Connect(

"/NodeList/" + std::to_string(i)
+ "/DeviceList/0

/$ns3::WifiNetDevice/Mac/$ns3::RegularWifiMac
/$ns3::StaWifiMac/TransmissionWillCrossRAWBoundary",

MakeCallback(&NodeEntry::OnTransmissionWillCrossRAWBoundary,
n)); //?

// hook up TX
Config::Connect(

"/NodeList/" + std::to_string(i)

78

+ "/DeviceList/0/$ns3::WifiNetDevice/Phy/PhyTxBegin",
MakeCallback(&NodeEntry::OnPhyTxBegin, n));

Config::Connect(
"/NodeList/" + std::to_string(i)

+ "/DeviceList/0/$ns3::WifiNetDevice/Phy/PhyTxEnd",
MakeCallback(&NodeEntry::OnPhyTxEnd, n));

Config::Connect(
"/NodeList/" + std::to_string(i)

+ "/DeviceList/0/$ns3::WifiNetDevice/Phy/PhyTxDropWithReason",
MakeCallback(&NodeEntry::OnPhyTxDrop, n)); //?

// hook up RX
Config::Connect(

"/NodeList/" + std::to_string(i)
+ "/DeviceList/0/$ns3::WifiNetDevice/Phy/PhyRxBegin",

MakeCallback(&NodeEntry::OnPhyRxBegin, n));
Config::Connect(

"/NodeList/" + std::to_string(i)
+ "/DeviceList/0/$ns3::WifiNetDevice/Phy/PhyRxEnd",

MakeCallback(&NodeEntry::OnPhyRxEnd, n));
Config::Connect(

"/NodeList/" + std::to_string(i)
+ "/DeviceList/0/$ns3::WifiNetDevice/Phy/PhyRxDropWithReason",

MakeCallback(&NodeEntry::OnPhyRxDrop, n));

// hook up MAC traces
Config::Connect(

"/NodeList/" + std::to_string(i)
+ "/DeviceList/0/$ns3::WifiNetDevice/RemoteStationManager
/MacTxRtsFailed",

MakeCallback(&NodeEntry::OnMacTxRtsFailed, n)); //?
Config::Connect(

"/NodeList/" + std::to_string(i)
+ "/DeviceList/0/$ns3::WifiNetDevice/RemoteStationManager
/MacTxDataFailed",

MakeCallback(&NodeEntry::OnMacTxDataFailed, n));
Config::Connect(

"/NodeList/" + std::to_string(i)
+ "/DeviceList/0/$ns3::WifiNetDevice/RemoteStationManager
/MacTxFinalRtsFailed",

MakeCallback(&NodeEntry::OnMacTxFinalRtsFailed, n)); //?
Config::Connect(

"/NodeList/" + std::to_string(i)
+ "/DeviceList/0/$ns3::WifiNetDevice/RemoteStationManager
/MacTxFinalDataFailed",

MakeCallback(&NodeEntry::OnMacTxFinalDataFailed, n)); //?

// hook up PHY State change
Config::Connect(

"/NodeList/" + std::to_string(i)
+ "/DeviceList/0/$ns3::WifiNetDevice/Phy/State/State",

MakeCallback(&NodeEntry::OnPhyStateChange, n));

}
}

void StaAIDMonitor (void)
{
ofstream aidFile(config.name+"-aid.txt", ios::app);

79

aidFile << Simulator::Now().GetSeconds() << ",";
for (uint16_t i = 0; i < nodes.size(); i++)
{
uint32_t aid = nodes[i]->aId;
aidFile << aid << ",";
}
aidFile << endl;
Simulator::Schedule(Seconds(1), &StaAIDMonitor);
}

int getBandwidth(string dataMode) {
if (dataMode == "MCS1_0" || dataMode == "MCS1_1" || dataMode == "MCS1_2"

|| dataMode == "MCS1_3" || dataMode == "MCS1_4"
|| dataMode == "MCS1_5" || dataMode == "MCS1_6"
|| dataMode == "MCS1_7" || dataMode == "MCS1_8"
|| dataMode == "MCS1_9" || dataMode == "MCS1_10")

return 1;

else if (dataMode == "MCS2_0" || dataMode == "MCS2_1"
|| dataMode == "MCS2_2" || dataMode == "MCS2_3"
|| dataMode == "MCS2_4" || dataMode == "MCS2_5"
|| dataMode == "MCS2_6" || dataMode == "MCS2_7"
|| dataMode == "MCS2_8")

return 2;

return 0;
}

string getWifiMode(string dataMode) {
if (dataMode == "MCS1_0")

return "OfdmRate300KbpsBW1MHz";
else if (dataMode == "MCS1_1")

return "OfdmRate600KbpsBW1MHz";
else if (dataMode == "MCS1_2")

return "OfdmRate900KbpsBW1MHz";
else if (dataMode == "MCS1_3")

return "OfdmRate1_2MbpsBW1MHz";
else if (dataMode == "MCS1_4")

return "OfdmRate1_8MbpsBW1MHz";
else if (dataMode == "MCS1_5")

return "OfdmRate2_4MbpsBW1MHz";
else if (dataMode == "MCS1_6")

return "OfdmRate2_7MbpsBW1MHz";
else if (dataMode == "MCS1_7")

return "OfdmRate3MbpsBW1MHz";
else if (dataMode == "MCS1_8")

return "OfdmRate3_6MbpsBW1MHz";
else if (dataMode == "MCS1_9")

return "OfdmRate4MbpsBW1MHz";
else if (dataMode == "MCS1_10")

return "OfdmRate150KbpsBW1MHz";

else if (dataMode == "MCS2_0")
return "OfdmRate650KbpsBW2MHz";

else if (dataMode == "MCS2_1")
return "OfdmRate1_3MbpsBW2MHz";

else if (dataMode == "MCS2_2")
return "OfdmRate1_95MbpsBW2MHz";

else if (dataMode == "MCS2_3")

80

return "OfdmRate2_6MbpsBW2MHz";
else if (dataMode == "MCS2_4")

return "OfdmRate3_9MbpsBW2MHz";
else if (dataMode == "MCS2_5")

return "OfdmRate5_2MbpsBW2MHz";
else if (dataMode == "MCS2_6")

return "OfdmRate5_85MbpsBW2MHz";
else if (dataMode == "MCS2_7")

return "OfdmRate6_5MbpsBW2MHz";
else if (dataMode == "MCS2_8")

return "OfdmRate7_8MbpsBW2MHz";
return "";

}

double getDataRate(string dataMode) {
if (dataMode == "MCS1_0")

return 0.3;
else if (dataMode == "MCS1_1")

return 0.6;
else if (dataMode == "MCS1_2")

return 0.9;
else if (dataMode == "MCS1_3")

return 1.2;
else if (dataMode == "MCS1_4")

return 1.8;
else if (dataMode == "MCS1_5")

return 2.4;
else if (dataMode == "MCS1_6")

return 7.0;
else if (dataMode == "MCS1_7")

return 3.0;
else if (dataMode == "MCS1_8")

return 3.6;
else if (dataMode == "MCS1_9")

return 4.0;
else if (dataMode == "MCS1_10")

return 0.15;

else if (dataMode == "MCS2_0")
return 0.65;

else if (dataMode == "MCS2_1")
return 1.3;

else if (dataMode == "MCS2_2")
return 1.95;

else if (dataMode == "MCS2_3")
return 2.6;

else if (dataMode == "MCS2_4")
return 3.9;

else if (dataMode == "MCS2_5")
return 5.2;

else if (dataMode == "MCS2_6")
return 5.85;

else if (dataMode == "MCS2_7")
return 6.5;

else if (dataMode == "MCS2_8")
return 7.8;

return 0.0;
}

81

void OnAPPhyRxDrop(std::string context, Ptr<const Packet> packet,
DropReason reason) {

// THIS REQUIRES PACKET METADATA ENABLE!
auto pCopy = packet->Copy();
auto it = pCopy->BeginItem();
while (it.HasNext()) {

auto item = it.Next();
Callback<ObjectBase *> constructor = item.tid.GetConstructor();

ObjectBase *instance = constructor();
Chunk *chunk = dynamic_cast<Chunk *>(instance);
chunk->Deserialize(item.current);

if (dynamic_cast<WifiMacHeader*>(chunk)) {
WifiMacHeader* hdr = (WifiMacHeader*) chunk;

int staId = -1;
if (!config.useV6) {

for (uint32_t i = 0; i < staNodeInterface.GetN(); i++) {
if (wifiStaNode.Get(i)->GetDevice(0)->GetAddress()

== hdr->GetAddr2()) {
staId = i;
break;

}
}

} else {
for (uint32_t i = 0; i < staNodeInterface6.GetN(); i++) {

if (wifiStaNode.Get(i)->GetDevice(0)->GetAddress()
== hdr->GetAddr2()) {

staId = i;
break;

}
}

}
if (staId != -1) {

stats.get(staId).NumberOfDropsByReasonAtAP[reason]++;
}
delete chunk;
break;

} else
delete chunk;

}

}

void OnAPPacketToTransmitReceived(string context, Ptr<const Packet> packet,
Mac48Address to, bool isScheduled, bool isDuringSlotOfSTA,
Time timeLeftInSlot) {

int staId = -1;
if (!config.useV6) {

for (uint32_t i = 0; i < staNodeInterface.GetN(); i++) {
if (wifiStaNode.Get(i)->GetDevice(0)->GetAddress() == to) {

staId = i;
break;

}
}

} else {

82

for (uint32_t i = 0; i < staNodeInterface6.GetN(); i++) {
if (wifiStaNode.Get(i)->GetDevice(0)->GetAddress() == to) {

staId = i;
break;

}
}

}
if (staId != -1) {

if (isScheduled)
stats.get(staId).NumberOfAPScheduledPacketForNodeInNextSlot++;

else {
stats.get(staId).NumberOfAPSentPacketForNodeImmediately++;
stats.get(staId).APTotalTimeRemainingWhenSendingPacketInSameSlot +=

timeLeftInSlot;
}

}
}

void OnAPReceivedOnRawGroup(string context, const WifiMacHeader *hdr,
uint16_t rawGroup, uint32_t pktSize, uint32_t rate, double signalDbm) {
rawGroupsStats[rawGroup-1].numberOfReceivedPackets += 1;
rawGroupsStats[rawGroup-1].totalByteReceived += pktSize;

macToStaParams[hdr->GetAddr2()].packetSize = pktSize;
macToStaParams[hdr->GetAddr2()].rate = rate;
macToStaParams[hdr->GetAddr2()].signalDbm = signalDbm;
macToStaParams[hdr->GetAddr2()].rawGroup = rawGroup;
}

void onChannelTransmission(Ptr<NetDevice> senderDevice, Ptr<Packet> packet) {
int rpsIndex = currentRps - 1;
int rawGroup = currentRawGroup - 1;
int slotIndex = currentRawSlot - 1;
//cout << rpsIndex << " " << rawGroup << " " << slotIndex << " " << endl;

uint64_t iSlot = slotIndex;
if (rpsIndex > 0)

for (int r = rpsIndex - 1; r >= 0; r--)
for (int g = 0; g < config.rps.rpsset[r]->GetNumberOfRawGroups(); g++)

iSlot += config.rps.rpsset[r]->GetRawAssigmentObj(g).GetSlotNum();

if (rawGroup > 0)
for (int i = rawGroup - 1; i >= 0; i--)

iSlot += config.rps.rpsset[rpsIndex]->GetRawAssigmentObj(i).GetSlotNum();

if (rpsIndex >= 0 && rawGroup >= 0 && slotIndex >= 0)
{

if (senderDevice->GetAddress() == apDevice.Get(0)->GetAddress())
{

// from AP
transmissionsPerTIMGroupAndSlotFromAPSinceLastInterval[iSlot] +=
packet->GetSerializedSize();

}
else
{

// from STA
transmissionsPerTIMGroupAndSlotFromSTASinceLastInterval[iSlot] +=
packet->GetSerializedSize();

83

}
}
//std::cout << "------------- packetSerializedSize =
" << packet->GetSerializedSize() << std::endl;
//std::cout << "------------- txAP[" << iSlot <<"] =
" << transmissionsPerTIMGroupAndSlotFromAPSinceLastInterval[iSlot] << std::endl;
//std::cout << "------------- txSTA[" << iSlot <<"] =
" << transmissionsPerTIMGroupAndSlotFromSTASinceLastInterval[iSlot] << std::endl;

}

int getSTAIdFromAddress(Ipv4Address from) {
int staId = -1;
for (int i = 0; i < staNodeInterface.GetN(); i++) {

if (staNodeInterface.GetAddress(i) == from) {
staId = i;
break;

}
}
return staId;

}

void udpPacketReceivedAtServer(Ptr<const Packet> packet, Address from) { //works
int staId = getSTAIdFromAddress(

InetSocketAddress::ConvertFrom(from).GetIpv4());
if (staId != -1)

nodes[staId]->OnUdpPacketReceivedAtAP(packet);
else

cout << "*** Node could not be determined from received packet at AP "
<< endl;

}

void tcpPacketReceivedAtServer(Ptr<const Packet> packet, Address from) {
int staId = getSTAIdFromAddress(
InetSocketAddress::ConvertFrom(from).GetIpv4());
if (staId != -1)
nodes[staId]->OnTcpPacketReceivedAtAP(packet);
else
cout << "*** Node could not be determined from received packet at AP "
<< endl;
}

void tcpRetransmissionAtServer(Address to) {
int staId = getSTAIdFromAddress(Ipv4Address::ConvertFrom(to));
if (staId != -1)
nodes[staId]->OnTcpRetransmissionAtAP();
else
cout << "*** Node could not be determined from received packet at AP "
<< endl;
}

void tcpPacketDroppedAtServer(Address to, Ptr<Packet> packet,
DropReason reason) {
int staId = getSTAIdFromAddress(Ipv4Address::ConvertFrom(to));
if (staId != -1) {
stats.get(staId).NumberOfDropsByReasonAtAP[reason]++;
}
}

84

void tcpStateChangeAtServer(TcpSocket::TcpStates_t oldState,
TcpSocket::TcpStates_t newState, Address to) {

int staId = getSTAIdFromAddress(
InetSocketAddress::ConvertFrom(to).GetIpv4());
if (staId != -1)
nodes[staId]->OnTcpStateChangedAtAP(oldState, newState);
else
cout << "*** Node could not be determined from received packet at AP "
<< endl;

//cout << Simulator::Now().GetMicroSeconds() << " ********** TCP SERVER SOCKET STATE CHANGED FROM " << oldState << " TO " << newState << endl;
}

void tcpIPCameraDataReceivedAtServer(Address from, uint16_t nrOfBytes) {
int staId = getSTAIdFromAddress(
InetSocketAddress::ConvertFrom(from).GetIpv4());
if (staId != -1)
nodes[staId]->OnTcpIPCameraDataReceivedAtAP(nrOfBytes);
else
cout << "*** Node could not be determined from received packet at AP "

<< endl;
}

void wireTCPServer(ApplicationContainer serverApp) {
serverApp.Get(0)->TraceConnectWithoutContext("Rx",
MakeCallback(&tcpPacketReceivedAtServer));
serverApp.Get(0)->TraceConnectWithoutContext("Retransmission",
MakeCallback(&tcpRetransmissionAtServer));
serverApp.Get(0)->TraceConnectWithoutContext("PacketDropped",
MakeCallback(&tcpPacketDroppedAtServer));
serverApp.Get(0)->TraceConnectWithoutContext("TCPStateChanged",
MakeCallback(&tcpStateChangeAtServer));

if (config.trafficType == "tcpipcamera") {
serverApp.Get(0)->TraceConnectWithoutContext("DataReceived",
MakeCallback(&tcpIPCameraDataReceivedAtServer));
}
}

void wireTCPClient(ApplicationContainer clientApp, int i) {

clientApp.Get(0)->TraceConnectWithoutContext("Tx",
MakeCallback(&NodeEntry::OnTcpPacketSent, nodes[i]));
clientApp.Get(0)->TraceConnectWithoutContext("Rx",
MakeCallback(&NodeEntry::OnTcpEchoPacketReceived, nodes[i]));

clientApp.Get(0)->TraceConnectWithoutContext("CongestionWindow",
MakeCallback(&NodeEntry::OnTcpCongestionWindowChanged, nodes[i]));
clientApp.Get(0)->TraceConnectWithoutContext("RTO",
MakeCallback(&NodeEntry::OnTcpRTOChanged, nodes[i]));
clientApp.Get(0)->TraceConnectWithoutContext("RTT",
MakeCallback(&NodeEntry::OnTcpRTTChanged, nodes[i]));
clientApp.Get(0)->TraceConnectWithoutContext("SlowStartThreshold",
MakeCallback(&NodeEntry::OnTcpSlowStartThresholdChanged, nodes[i]));
clientApp.Get(0)->TraceConnectWithoutContext("EstimatedBW",
MakeCallback(&NodeEntry::OnTcpEstimatedBWChanged, nodes[i]));

85

clientApp.Get(0)->TraceConnectWithoutContext("TCPStateChanged",
MakeCallback(&NodeEntry::OnTcpStateChanged, nodes[i]));
clientApp.Get(0)->TraceConnectWithoutContext("Retransmission",
MakeCallback(&NodeEntry::OnTcpRetransmission, nodes[i]));

clientApp.Get(0)->TraceConnectWithoutContext("PacketDropped",
MakeCallback(&NodeEntry::OnTcpPacketDropped, nodes[i]));

if (config.trafficType == "tcpfirmware") {
clientApp.Get(0)->TraceConnectWithoutContext("FirmwareUpdated",
MakeCallback(&NodeEntry::OnTcpFirmwareUpdated, nodes[i]));
} else if (config.trafficType == "tcpipcamera") {
clientApp.Get(0)->TraceConnectWithoutContext("DataSent",
MakeCallback(&NodeEntry::OnTcpIPCameraDataSent, nodes[i]));
clientApp.Get(0)->TraceConnectWithoutContext("StreamStateChanged",
MakeCallback(&NodeEntry::OnTcpIPCameraStreamStateChanged,
nodes[i]));
}
}

void configureUDPServer() {
UdpServerHelper myServer(9);
serverApp = myServer.Install(wifiApNode);
serverApp.Get(0)->TraceConnectWithoutContext("Rx",
MakeCallback(&udpPacketReceivedAtServer));
serverApp.Start(Seconds(0));

}

void configureUDPClients() {
//Application start time
Ptr<UniformRandomVariable> m_rv = CreateObject<UniformRandomVariable>();

UdpClientHelper myClient(apNodeInterface.GetAddress(0), 9); //address of remote node
myClient.SetAttribute("MaxPackets", UintegerValue(4294967295u));

cout << "Configure UDP Clients. " << endl;
for (uint16_t k = 0; k < topology.GetNumZones(); k++)
{
Zone * zone = topology.m_zones[k];
// uint32_t packetSize = zone->GetMaxPaySize();
uint32_t trafficInterval = zone->GetMaxTrafficInter();

myClient.SetAttribute("Interval",
TimeValue(MilliSeconds(trafficInterval)));

for (auto i: zone->m_nodes)
{
uint32_t packetSize = m_rv->GetInteger(zone->GetMinPaySize(), zone->GetMaxPaySize());
myClient.SetAttribute("PacketSize", UintegerValue(packetSize));
stats.get(i).SetPayLoadSize(packetSize);
ApplicationContainer clientApp = myClient.Install(
wifiStaNode.Get(i));
wireTCPClient(clientApp, i);

double random = m_rv->GetValue(0, trafficInterval);
clientApp.Start(MilliSeconds(5 + random));
clientApp.Stop(Seconds(config.simulationTime + 5));
}

86

}

}

Time timeIdleArray[MaxSta];
Time timeRxArray[MaxSta];
Time timeTxArray[MaxSta];
Time timeSleepArray[MaxSta];
Time timeCollisionArray[MaxSta];

Time timeIdleNotAssociated[MaxSta];
Time timeRxNotAssociated[MaxSta];
Time timeTxNotAssociated[MaxSta];
Time timeSleepNotAssociated[MaxSta];
Time timeCollisionNotAssociated[MaxSta];

double dist[MaxSta];

//it prints the information regarding the state of the device
void PhyStateTrace(std::string context, Time start, Time duration,

enum WifiPhy::State state) {

/*Get the number of the node from the context*/
/*context = "/NodeList/"+strSTA+"/DeviceList/’*’/Phy/$ns3::YansWifiPhy/State/State"*/
unsigned first = context.find("t/");
unsigned last = context.find("/D");
string strNew = context.substr((first + 2), (last - first - 2));

int node = std::stoi(strNew);

if (nodes[node]->isAssociated)
{
switch (state)
{
case WifiPhy::State::SLEEP: //Sleep
timeSleepArray[node] = timeSleepArray[node] + duration;
//NS_LOG_UNCOND(to_string(node + 1) + ",SLEEP,"

+to_string(start.GetMicroSeconds()) + " " + to_string(duration.GetMicroSeconds()));
break;
case WifiPhy::State::IDLE: //Idle
timeIdleArray[node] = timeIdleArray[node] + duration;
//NS_LOG_UNCOND(to_string(node + 1) + ",IDLE,"

+to_string(start.GetMicroSeconds()) + " " + to_string(duration.GetMicroSeconds()));
break;
case WifiPhy::State::TX: //Tx
timeTxArray[node] = timeTxArray[node] + duration;
//NS_LOG_UNCOND (to_string(node+1) + ",TX",

+to_string(start.GetMicroSeconds()) + " " + to_string(duration.GetMicroSeconds()));
break;
case WifiPhy::State::RX: //Rx
timeRxArray[node] = timeRxArray[node] + duration;
//NS_LOG_UNCOND (to_string(node+1) + ",RX,"

+to_string(start.GetMicroSeconds()) + " " + to_string(duration.GetMicroSeconds()));
break;
case WifiPhy::State::CCA_BUSY: //CCA_BUSY
timeCollisionArray[node] = timeCollisionArray[node] + duration;
//NS_LOG_UNCOND (to_string(node+1) + ",CCA_BUSY,"

+ to_string(start.GetMicroSeconds()) + " " + to_string(duration.GetMicroSeconds()));

87

break;
}
}
else
{
switch (state)
{
case WifiPhy::State::SLEEP: //Sleep
timeSleepNotAssociated[node] = timeSleepNotAssociated[node] + duration;
//NS_LOG_UNCOND(to_string(node + 1) + ",SLEEP,"

+
to_string(start.GetMicroSeconds())+
" "+ to_string(duration.GetMicroSeconds()));

break;
case WifiPhy::State::IDLE: //Idle
timeIdleNotAssociated[node] = timeIdleNotAssociated[node] + duration;
//NS_LOG_UNCOND(to_string(node + 1) + ",IDLE," + to_string(start.GetMicroSeconds()) + " "

+ to_string(duration.GetMicroSeconds()));
break;
case WifiPhy::State::TX: //Tx
timeTxNotAssociated[node] = timeTxNotAssociated[node] + duration;
//NS_LOG_UNCOND (to_string(node+1) + ",TX," +

+to_string(start.GetMicroSeconds()) + " "
+ to_string(duration.GetMicroSeconds()));

break;
case WifiPhy::State::RX: //Rx
timeRxNotAssociated[node] = timeRxNotAssociated[node] + duration;
//NS_LOG_UNCOND (to_string(node+1) + ",RX," + to_string(start.GetMicroSeconds()) + " "

+ to_string(duration.GetMicroSeconds()));
break;
case WifiPhy::State::CCA_BUSY: //CCA_BUSY
timeCollisionNotAssociated[node] = timeCollisionNotAssociated[node] + duration;
//NS_LOG_UNCOND (to_string(node+1) + ",CCA_BUSY," + to_string(start.GetMicroSeconds()) + " "

+ to_string(duration.GetMicroSeconds()));
break;
}
}
}

std::vector<double>
GetPositionOnCircle(double cx, double cy, double minR, double maxR){
std::vector<double> coords(2); // {x, y}
Ptr<UniformRandomVariable> randVal = CreateObject<UniformRandomVariable> ();

double radius = randVal->GetValue(minR, maxR);

coords[0] = randVal->GetValue(cx-radius, cx+radius);
coords[1] = sqrt(pow(radius, 2) - pow((coords[0]-cx), 2));

uint32_t sum = randVal->GetInteger(0, 1);

if (sum) coords[1] = cy - coords[1];
else coords[1] = cy + coords[1];

return coords;
}

int main (int argc, char *argv[]) {

88

// Logging components

// LogComponentEnable ("UdpServer", LOG_INFO);
// LogComponentEnable ("UdpClient", LOG_INFO);

// LogComponentEnable ("UdpEchoServerApplication", LOG_INFO);
// LogComponentEnable ("UdpEchoClientApplication", LOG_INFO);

// LogComponentEnable ("ApWifiMac", LOG_DEBUG);
// LogComponentEnable ("StaWifiMac", LOG_DEBUG);
// LogComponentEnable ("EdcaTxopN", LOG_DEBUG);
// LogComponentEnable ("S1gTccRaw", LOG_INFO);
// LogComponentEnable ("Kmeans", LOG_DEBUG);

// LogComponentEnableAll (LOG_DEBUG);

// Create a NetAnim animation for simulation visualization
AnimationInterface * pAnim = 0;

// If true, shows the current position of each node
bool OutputPosition = true;

// Parse configurations
config = Configuration(argc, argv);

// Rng Seed
RngSeedManager::SetSeed(config.seed);

ConfigureTopology(config.topologyFile);

// Setup RAW and TIM
config.rps = configureRAW(config.rps, config.RAWConfigFile);

config.Nsta = topology.GetTotalSta();
config.NRawSta = config.Nsta;

configurePageSlice ();
configureTIM ();
checkRawAndTimConfiguration ();

// What does a NSS file do?
config.NSSFile = config.trafficType + "_" + std::to_string(config.Nsta)
+ "sta_" + std::to_string(config.NGroup) + "Group_"
+ std::to_string(config.NRawSlotNum) + "slots_"
// + std::to_string(config.payloadSize) + "payload_"
+ std::to_string(config.BeaconInterval) + "BI" + ".nss";

// Simulation statistics
stats = Statistics(config.Nsta);
eventManager = SimulationEventManager(config.visualizerIP,
config.visualizerPort, config.NSSFile);

uint32_t totalRawGroups(0);
for (int i = 0; i < config.rps.rpsset.size(); i++) {
int nRaw = config.rps.rpsset[i]->GetNumberOfRawGroups();
totalRawGroups += nRaw;
for (int j = 0; j < nRaw; j++) {
config.totalRawSlots += config.rps.rpsset[i]->GetRawAssigmentObj(j).GetSlotNum();

89

}

}

for (uint16_t i = 0; i < totalRawGroups; i++)
{
RawGroupStats rawStats;

rawGroupsStats.push_back(rawStats);

}

NS_LOG_INFO("Total RAW Groups = " << totalRawGroups);
NS_LOG_INFO("Total RAW Slots = " << config.totalRawSlots);

transmissionsPerTIMGroupAndSlotFromAPSinceLastInterval = vector<long>(
config.totalRawSlots, 0);
transmissionsPerTIMGroupAndSlotFromSTASinceLastInterval = vector<long>(
config.totalRawSlots, 0);

// for (uint16_t i = 0; i < topology.GetNumZones(); i++)
// {
// uint16_t cNodes = wifiStaNode.GetN();
// NodeContainer zoneContainer;

// uint16_t zoneSize = topology.m_zones[i]->GetNumSta();
// zoneContainer.Create(zoneSize);

// vector<uint16_t> staIds;
// for (uint16_t idx = cNodes; idx < cNodes + zoneSize; idx++)
// {
// staIds.push_back(idx);
// }
// topology.m_zones[i]->SetNodes(staIds);
// wifiStaNode.Add(zoneContainer);
// }
// // wifiStaNode.Create(config.Nsta);
// wifiApNode.Create(1);

NS_LOG_INFO("Created " << config.Nsta << " station nodes and the AP node.");

YansWifiChannelHelper channelBuilder = YansWifiChannelHelper();
channelBuilder.AddPropagationLoss("ns3::LogDistancePropagationLossModel",
"Exponent", DoubleValue(3.76), "ReferenceLoss", DoubleValue(8.0),
"ReferenceDistance", DoubleValue(1.0));
channelBuilder.SetPropagationDelay(
"ns3::ConstantSpeedPropagationDelayModel");

channelBuider.AddPropagationLoss("ns3::NakagamiPropagationLossModel","m0", DoubleValue(1),
"m1", DoubleValue(1),"m2", DoubleValue(1));

Ptr<YansWifiChannel> channel = channelBuilder.Create();

YansWifiPhyHelper phy = YansWifiPhyHelper::Default();
phy.SetErrorRateModel("ns3::YansErrorRateModel");
phy.SetChannel(channel);
phy.Set("ShortGuardEnabled", BooleanValue(false));
phy.Set("ChannelWidth", UintegerValue(getBandwidth(config.DataMode))); // changed
phy.Set("EnergyDetectionThreshold", DoubleValue(-110.0));

90

phy.Set("CcaMode1Threshold", DoubleValue(-113.0));
phy.Set("TxGain", DoubleValue(0.0));
phy.Set("RxGain", DoubleValue(0.0));
phy.Set("TxPowerLevels", UintegerValue(1));
phy.Set("TxPowerEnd", DoubleValue(0.0));
phy.Set("TxPowerStart", DoubleValue(0.0));
phy.Set("RxNoiseFigure", DoubleValue(6.8));
phy.Set("LdpcEnabled", BooleanValue(true));
phy.Set("S1g1MfieldEnabled", BooleanValue(config.S1g1MfieldEnabled));

WifiHelper wifi = WifiHelper::Default();
wifi.SetStandard(WIFI_PHY_STANDARD_80211ah);

S1gWifiMacHelper mac = S1gWifiMacHelper::Default();
Ssid ssid = Ssid("ns380211ah");
mac.SetType("ns3::StaWifiMac", "Ssid", SsidValue(ssid),
"ActiveProbing",BooleanValue(false),
"DynamicAidSupported", BooleanValue(true),
"UnDynamicAidSupported", BooleanValue(true));

NetDeviceContainer staDevice;

// vector<string> dataModes = {"MCS2_3", "MCS2_2", "MCS2_1", "MCS2_0"};

vector<double> datarates;

for (auto zone: topology.m_zones)
{
uint16_t cNodes = wifiStaNode.GetN();
uint16_t zoneSize = zone->GetNumSta();

StringValue DataRate;
DataRate = StringValue(getWifiMode(zone->GetDataMode()));

NodeContainer zoneContainer;
zoneContainer.Create(zoneSize);

wifiStaNode.Add(zoneContainer);

vector<uint16_t> staIds;
for (uint16_t idx = cNodes; idx < cNodes + zoneSize; idx++)
{
staIds.push_back(idx);

Ptr<Node> staNode = wifiStaNode.Get (idx);
NetDeviceContainer staDev;

string dataMode = zone->GetDataMode();
if (dataMode == "random")
dataMode = GetRandomDataMode(topology.GetNumZones());
else if (dataMode == "round")
dataMode = GetRoundRoubindDataMode(idx, topology.GetNumZones());

double datarate = getDataRate(dataMode);
stats.get(idx).SetDataRate(datarate);

StringValue DataRate;

91

DataRate = StringValue(getWifiMode(dataMode));
wifi.SetRemoteStationManager

("ns3::ConstantRateWifiManager",DataMode", DataRate,
"ControlMode", DataRate);

staDev = wifi.Install(phy, mac, staNode);
staDevice.Add(staDev);
}
cout << endl;
zone->SetNodes(staIds);
}

// uint32_t nNodes = wifiStaNode.GetN ();
// for (uint32_t i = 0; i < nNodes; ++i)
// {
// Ptr<Node> staNode = wifiStaNode.Get (i);

// StringValue DataRate;
// DataRate = StringValue(getWifiMode(dataModes[i%totalRawGroups]));
// double datarate = getDataRate(dataModes[i%totalRawGroups]);
// wifi.SetRemoteStationManager("ns3::ConstantRateWifiManager", "DataMode",
DataRate, "ControlMode", DataRate);

// NetDeviceContainer staDev;
// staDev = wifi.Install(phy, mac, staNode);
// staDevice.Add(staDev);
// NS_LOG_INFO("Station " << i + 1 << " - DataMode: " << DataRate.Get()
<< " Datarate: " << datarate);

// }

// wifiStaNode.Create(config.Nsta);
wifiApNode.Create(1);
mac.SetType ("ns3::ApWifiMac",
"Ssid", SsidValue (ssid),
"BeaconInterval", TimeValue (MicroSeconds(config.BeaconInterval)),
"NRawStations", UintegerValue (config.NRawSta),
"RPSsetup", RPSVectorValue (config.rps),
"PageSliceSet", pageSliceValue (config.pageS),
"TIMSet", TIMValue (config.tim),
"DynamicAidSupported", BooleanValue(true),
"UnDynamicAidSupported", BooleanValue(true)
);
mac.SetType("ns3::ApWifiMac",
"RAWGroupping", StringValue(config.RawGroupping));

phy.Set("TxGain", DoubleValue(3.0));
phy.Set("RxGain", DoubleValue(3.0));
phy.Set("TxPowerLevels", UintegerValue(1));
phy.Set("TxPowerEnd", DoubleValue(30.0));
phy.Set("TxPowerStart", DoubleValue(30.0));
phy.Set("RxNoiseFigure", DoubleValue(6.8));

apDevice = wifi.Install(phy, mac, wifiApNode);

phy.EnablePcap ("ap-pcap", apDevice.Get(0));
Config::Set(
"/NodeList/*/DeviceList/0/$ns3::WifiNetDevice/Mac/$ns3::RegularWifiMac/BE_EdcaTxopN/Queue

/MaxPacketNumber",
UintegerValue(10));

92

Config::Set(
"/NodeList/*/DeviceList/0/$ns3::WifiNetDevice/Mac/$ns3::RegularWifiMac/BE_EdcaTxopN/Queue

/MaxDelay",
TimeValue(NanoSeconds(6000000000000)));

std::ostringstream oss;
oss << "/NodeList/" << wifiApNode.Get(0)->GetId()
<< "/DeviceList/0/$ns3::WifiNetDevice/Mac/$ns3::RegularWifiMac/$ns3::ApWifiMac/";

Config::ConnectWithoutContext(oss.str() + "RpsIndex", MakeCallback(&RpsIndexTrace));
Config::ConnectWithoutContext(oss.str() + "RawGroup", MakeCallback(&RawGroupTrace));
Config::ConnectWithoutContext(oss.str() + "RawSlot", MakeCallback(&RawSlotTrace));
Config::ConnectWithoutContext(oss.str() + "S1gBeaconBroadcasted", MakeCallback(&S1gBeaconTrace));

oss.str("");
oss.clear();
oss << "/NodeList/" << wifiApNode.Get(0)->GetId()
<< "/DeviceList/0/$ns3::WifiNetDevice/Phy/MonitorSnifferRx";

// mobility.
MobilityHelper mobility;
double xpos = std::stoi(config.rho, nullptr, 0);
double ypos = xpos;

Ptr<ListPositionAllocator> positionAllocSta = CreateObject<
ListPositionAllocator>();

std::vector<double> coords;
// for (int i = 0; i < config.Nsta; i++){
// double minR = (xpos / totalRawGroups) * (i % totalRawGroups);
// double maxR = (xpos / totalRawGroups) * (i % totalRawGroups + 1);
// coords = GetPositionOnCircle(xpos, ypos, minR, maxR);
// positionAllocSta->Add(Vector(coords[0], coords[1], 0.0));
// }
for (uint16_t m = 0; m < topology.GetNumZones(); m++)
{
Zone * zone = topology.m_zones[m];
uint16_t minR = zone->GetMinRadius();
uint16_t maxR = zone->GetMaxRadius();
for (auto k: zone->m_nodes)
{
coords = GetPositionOnCircle(xpos, ypos, (double)minR, (double)maxR);
positionAllocSta->Add(Vector(coords[0], coords[1], 0.0));
}
}

mobility.SetPositionAllocator(positionAllocSta);
mobility.SetMobilityModel("ns3::ConstantPositionMobilityModel");

for (uint16_t i = 0; i < wifiStaNode.GetN(); i++)
{
if (i != 0)
mobility.Install(wifiStaNode.Get(i));
}

mobility.SetMobilityModel("ns3::WaypointMobilityModel");
mobility.Install(wifiStaNode.Get(0));

93

Ptr <WaypointMobilityModel> wpMobility =
DynamicCast <WaypointMobilityModel> (wifiStaNode.Get(0)->GetObject<MobilityModel>());

wpMobility->AddWaypoint(Waypoint (Seconds(0.0), Vector(xpos+5, ypos, 0.0)));
wpMobility->AddWaypoint(Waypoint (Seconds(49.9), Vector(xpos+5, ypos, 0.0)));
wpMobility->AddWaypoint(Waypoint (Seconds(50), Vector(xpos+190.0, ypos, 0.0)));

wpMobility->AddWaypoint(Waypoint (Seconds(69.9), Vector(xpos+190.0, ypos, 0.0)));
wpMobility->AddWaypoint(Waypoint (Seconds(70), Vector(xpos+100, ypos, 0.0)));

MobilityHelper mobilityAp;
Ptr<ListPositionAllocator> positionAlloc = CreateObject<
ListPositionAllocator>();
positionAlloc->Add(Vector(xpos, ypos, 0.0));
mobilityAp.SetPositionAllocator(positionAlloc);
mobilityAp.SetMobilityModel("ns3::ConstantPositionMobilityModel");
mobilityAp.Install(wifiApNode);

/* Internet stack*/
InternetStackHelper stack;
stack.Install(wifiApNode);
stack.Install(wifiStaNode);

Ipv4AddressHelper address;

address.SetBase("192.168.0.0", "255.255.0.0");

staNodeInterface = address.Assign(staDevice);
apNodeInterface = address.Assign(apDevice);

//trace association
std::cout << "Configuring trace sources..." << std::endl;
for (uint16_t kk = 0; kk < config.Nsta; kk++) {
std::ostringstream STA;
STA << kk;
std::string strSTA = STA.str();

assoc_record *m_assocrecord = new assoc_record;
m_assocrecord->setstaid(kk);
Config::Connect(
"/NodeList/" + strSTA
+ "/DeviceList/0/$ns3::WifiNetDevice/Mac/$ns3::RegularWifiMac/$ns3::StaWifiMac/Assoc",
MakeCallback(&assoc_record::SetAssoc, m_assocrecord));
Config::Connect(
"/NodeList/" + strSTA
+ "/DeviceList/0/$ns3::WifiNetDevice/Mac/$ns3::RegularWifiMac/$ns3::StaWifiMac/DeAssoc",
MakeCallback(&assoc_record::UnsetAssoc, m_assocrecord));
assoc_vector.push_back(m_assocrecord);
}

std::cout << "Populating routing tables..." << std::endl;
Ipv4GlobalRoutingHelper::PopulateRoutingTables();
std::cout << "Populating ARP cache..." << std::endl;
PopulateArpCache();

// configure tracing for associations & other metrics
std::cout << "Configuring trace sinks for nodes..." << std::endl;
configureNodes(wifiStaNode, staDevice);

94

Config::Connect(
"/NodeList/" + std::to_string(config.Nsta)
+ "/DeviceList/0/$ns3::WifiNetDevice/Phy/PhyRxDropWithReason",
MakeCallback(&OnAPPhyRxDrop));
Config::Connect(
"/NodeList/" + std::to_string(config.Nsta)
+ "/DeviceList/0/$ns3::WifiNetDevice/Mac/$ns3::ApWifiMac/PacketToTransmitReceivedFromUpperLayer",
MakeCallback(&OnAPPacketToTransmitReceived));
Config::Connect(
"/NodeList/" + std::to_string(config.Nsta)
+ "/DeviceList/0/$ns3::WifiNetDevice/Mac/$ns3::ApWifiMac/ReceivedOnRawGroup",
MakeCallback(&OnAPReceivedOnRawGroup));

Ptr<MobilityModel> mobility1 =
wifiApNode.Get(0)->GetObject<MobilityModel>();
Vector apposition = mobility1->GetPosition();
if (OutputPosition) {
uint32_t i = 0;
while (i < config.Nsta) {
Ptr<MobilityModel> mobility = wifiStaNode.Get(i)->GetObject<
MobilityModel>();
Vector position = mobility->GetPosition();
nodes[i]->x = position.x;
nodes[i]->y = position.y;
std::cout << "Sta node#" << i << ", " << "position = " << position
<< std::endl;
dist[i] = mobility->GetDistanceFrom(
wifiApNode.Get(0)->GetObject<MobilityModel>());
i++;
}
std::cout << "AP node, position = " << apposition << std::endl;
}

/*Print of the state of the stations*/
for (uint32_t i = 0; i < config.Nsta; i++) {
std::ostringstream STA;
STA << i;
std::string strSTA = STA.str();

Config::Connect(
"/NodeList/" + strSTA
+ "/DeviceList/*/Phy/$ns3::YansWifiPhy/State/State",
MakeCallback(&PhyStateTrace));
}

eventManager.onStartHeader();
eventManager.onStart(config);
if (config.rps.rpsset.size() > 0)
for (uint32_t i = 0; i < config.rps.rpsset.size(); i++)
for (uint32_t j = 0;
j < config.rps.rpsset[i]->GetNumberOfRawGroups(); j++)
eventManager.onRawConfig(i, j,
config.rps.rpsset[i]->GetRawAssigmentObj(j));

for (uint32_t i = 0; i < config.Nsta; i++)
eventManager.onSTANodeCreated(*nodes[i]);

eventManager.onAPNodeCreated(apposition.x, apposition.y);
eventManager.onStatisticsHeader();

95

sendStatistics(true);

Simulator::Stop(Seconds(config.simulationTime + config.CoolDownPeriod));
// allow up to a minute after the client & server apps are finished to process the queue

pAnim = new AnimationInterface (config.name+"-netanim.xml");
pAnim->SetMaxPktsPerTraceFile(50000000);

// Instala FlowMonitor em todos os nós
FlowMonitorHelper flowmon;
Ptr<FlowMonitor> monitor = flowmon.InstallAll ();

Simulator::Schedule(Seconds(1), &StaAIDMonitor);

Simulator::Run();

monitor->CheckForLostPackets ();

ofstream delayFile(config.name+"-delay.txt", ios::app);

// // Mostra estatísticas por fluxo
// Ptr<Ipv4FlowClassifier> classifier = DynamicCast<Ipv4FlowClassifier>
(flowmon.GetClassifier ());
// std::map<FlowId, FlowMonitor::FlowStats> flowStats = monitor->GetFlowStats ();

// double totalDelay = 0;
// double totalRxPackets = 0;

// for (std::map<FlowId, FlowMonitor::FlowStats>::const_iterator i = flowStats.begin ();
i != flowStats.end (); ++i)
// {
// Ipv4FlowClassifier::FiveTuple t = classifier->FindFlow (i->first);
// std::cout << "Flow " << i->first << " (" << t.sourceAddress << ":" << t.sourcePort
<< " -> "<< t.destinationAddress << ":" << t.destinationPort << ")\n";
// std::cout << " Tx Pacotes: " << i->second.txPackets << "\n";
// // std::cout << " Tx Bytes: " << i->second.txBytes << "\n";
// std::cout << " Tx Taxa de bits média: " << ((i->second.txBytes * 8.0)/
((i->second.timeLastTxPacket.GetSeconds()-i->second.timeFirstTxPacket.GetSeconds()))) << " bps\n";
// std::cout << " Rx Pacotes: " << i->second.rxPackets << "\n";
// // std::cout << " Rx Bytes: " << i->second.rxBytes << "\n";
// // std::cout << " Rx Taxa de bits média: " << ((i->second.rxBytes * 8.0)/
((i->second.timeLastRxPacket.GetSeconds()-i->second.timeFirstRxPacket.GetSeconds()))) << " bps\n";
// // std::cout << " Throughput médio (simulação): " << (i->second.rxBytes * 8.0)
/config.simulationTime << " bps\n";
// // std::cout << " Atraso médio: " << i->second.delaySum.GetSeconds()/i->second.rxPackets
<< " s\n";
// totalDelay += i->second.delaySum.GetSeconds();
// totalRxPackets += i->second.rxPackets;
// // std::cout << " Jitter médio: " << 1000 * (i->second.jitterSum.GetSeconds()/
(i->second.rxPackets -1)) << " ms\n";
// // std::cout << " Número de pacotes perdidos: " << i->second.lostPackets << "\n";
// }

// cout << "Total Delay: " << totalDelay << endl;
// cout << "N RX packets: " << totalRxPackets << endl;
// cout << "Average Delay: " << totalDelay / totalRxPackets << endl;

// delayFile << totalDelay / totalRxPackets << endl;

96

// Visualizer throughput
int pay = 0, totalSuccessfulPackets = 0, totalSentPackets = 0, totalPacketsEchoed = 0;
uint32_t totalBytesReceived = 0;

int k = 0;
for (auto zone: topology.m_zones)
{
for (auto i: zone->m_nodes)
{
totalSuccessfulPackets += stats.get(i).NumberOfSuccessfulPackets;
totalBytesReceived += (stats.get(i).NumberOfSuccessfulPackets * stats.get(i).PayLoadSize);
cout << i << " sent: " << stats.get(i).NumberOfSentPackets
<< " ; delivered: " << stats.get(i).NumberOfSuccessfulPackets
<< " ; echoed: " << stats.get(i).NumberOfSuccessfulRoundtripPackets
<< "; packetloss: "
<< stats.get(i).GetPacketLoss(config.trafficType) << endl;
}
k++;
}

// Result files
ofstream throughputFile(config.name+"-throughput.txt", ios::app);
if (config.trafficType == "udp")
{
double throughput = 0;
uint32_t totalPacketsThrough =
DynamicCast<UdpServer>(serverApp.Get(0))->GetReceived();
throughput = totalBytesReceived * 8
/ (config.simulationTime * 1000000.0);
cout << "totalPacketsThrough " << totalPacketsThrough << " ++my "
<< totalSuccessfulPackets << endl;
cout << "throughput " << throughput << " ++my "
<< totalBytesReceived * 8. / (config.simulationTime * 1000000.0) << endl;
std::cout << "throughput" << std::endl;
std::cout << throughput << " Mbit/s"
<< std::endl;

throughputFile << throughput * 1000 <<",";

}
cout << "total packet loss % "
<< 100 - 100. * totalPacketsEchoed / totalSentPackets << endl;

ofstream lossFile(config.name+"-loss.txt", ios::app);
lossFile << 100 - 100. * totalPacketsEchoed / totalSentPackets << endl;
lossFile.close();

Simulator::Destroy();

ofstream risultati;
string addressresults = config.OutputPath + "moreinfo.txt";
risultati.open(addressresults.c_str(), ios::out | ios::trunc);

risultati << "Sta node#,distance,timerx(notassociated),timeidle(notassociated),
timetx(notassociated),timesleep(notassociated),timecollision(notassociated)" << std::endl;

int i = 0;
string spazio = ",";

97

uint16_t slotDuraitonCount = config.rps.rpsset[0]->GetRawAssigmentObj(0).GetSlotDurationCount();
uint16_t numRAWSlots = config.rps.rpsset[0]->GetRawAssigmentObj(0).GetSlotNum();
uint16_t slotDuration = 500 + slotDuraitonCount * 120;
double totalRAWSlotTime = (slotDuration * beaconCount) / 1000000;

ofstream rawThrougputFile(config.name+"-raw-th.txt", ios::app);
for (uint16_t g = 0; g < totalRawGroups; g++)
{
cout << "Byte receive = " << rawGroupsStats[g].totalByteReceived << endl;
cout << "Packets receive = " << rawGroupsStats[g].numberOfReceivedPackets << endl;
double rawGroupThroughput = (double) rawGroupsStats[g].totalByteReceived * 8 /

(totalRAWSlotTime * numRAWSlots * 1000000);
cout << "RAW " << g + 1 << " THROUGHPUT: " << rawGroupThroughput << " Mbps" << endl;
rawThrougputFile << rawGroupThroughput * 1000 << ",";
}
rawThrougputFile << endl;
rawThrougputFile.close();

std::vector<double> zonesThroughput = {0.0, 0.0, 0.0, 0.0};
double sum1 = 0, sum2 = 0;
double squareSum1 = 0, squareSum2 = 0;

long double avgDelay = 0;

uint16_t zone_idx = 0;
for (auto zone : topology.m_zones)
{
for (auto i: zone->m_nodes)
{
risultati << i << spazio << dist[i] << spazio <<timeRxArray[i].GetSeconds() << ",
("<< timeRxNotAssociated[i].GetSeconds() << "),
" << timeIdleArray[i].GetSeconds() << ",
(" << timeIdleNotAssociated[i].GetSeconds() << ")," << timeTxArray[i].GetSeconds() << ",(" << timeTxNotAssociated[i].GetSeconds() << ")," << timeSleepArray[i].GetSeconds() << ",(" << timeSleepNotAssociated[i].GetSeconds() << ")," << timeCollisionArray[i].GetSeconds() << ",(" << timeCollisionNotAssociated[i].GetSeconds() << ")" << std::endl;

long nOfSuccessfulPackets = stats.get(i).NumberOfSuccessfulPackets;
long payLoadSize = stats.get(i).PayLoadSize;
long double delay = stats.get(i).getAveragePacketSentReceiveTime();
Time txTime = stats.get(i).TotalTransmitTime;
double staThroughput = (nOfSuccessfulPackets * payLoadSize * 8) / (totalRAWSlotTime * 1000000.0);
sum1 += staThroughput;
squareSum1 += (staThroughput * staThroughput);

zonesThroughput[zone_idx] += staThroughput / numRAWSlots;

long nOfTransmissions = stats.get(i).NumberOfTransmissions;
double datarate = stats.get(i).DataRate;

double normThroughput = staThroughput / datarate;
sum2 += normThroughput;
squareSum2 += (normThroughput*normThroughput);

avgDelay = (delay + (avgDelay * i)) / (i + 1);

cout << "Station "<< i + 1 <<":"<<endl;
cout << " Throughput = "<< staThroughput * 1000 << " Kbit/s" <<endl;
cout << "Tx Time = " << txTime.GetSeconds() << std::endl;
cout << "Datarate = " << datarate * 1000 << " Kbit/s" << std::endl;
cout << "Payload Size = " << stats.get(i).PayLoadSize << " bytes" << std::endl;
cout << "Throughput / RX rate = " << normThroughput << std::endl;

98

cout << "Delay = " << delay << std::endl;
cout << std::endl;

throughputFile << staThroughput * 1000 << ",";
}
zone_idx += 1;
}

throughputFile << endl;
throughputFile.close();

delayFile << avgDelay << endl;
delayFile.close();

ofstream zonesthFile(config.name+"-zone-th.txt", ios::app);
ofstream fairnessFile(config.name+"-fairness.txt", ios::app);
ofstream normFairnessFile(config.name+"-norm-fairness.txt", ios::app);

for (uint32_t k = 0; k < zonesThroughput.size(); k ++)
{
zonesthFile << zonesThroughput[k] * 1000 << ",";
}
zonesthFile << endl;
zonesthFile.close();

double fairness1 = (sum1*sum1) / (config.Nsta * squareSum1);
double fairness2 = (sum2*sum2) / (config.Nsta * squareSum2);
std::cout << "Jain’s Fairness Index = " << fairness1 << endl;
std::cout << "Jain’s Fairness Index (normalized)= " << fairness2 << endl;

fairnessFile << fairness1 << endl;
normFairnessFile << fairness2 << endl;

fairnessFile.close();
normFairnessFile.close();
risultati.close();

uint64_t rngRun = RngSeedManager::GetRun();
ofstream kmeansFile("kmeans/"+config.name+"-"+to_string(rngRun)+".txt");

for (auto staParams : macToStaParams)
{
kmeansFile << staParams.second.packetSize << ",";
kmeansFile << staParams.second.rate << ",";
kmeansFile << staParams.second.signalDbm << ",";
kmeansFile << staParams.second.rawGroup << endl;
}
kmeansFile.close();

return 0;
}

Configuration.h

#pragma once

99

#include "ns3/core-module.h"
#include "ns3/network-module.h"
#include "ns3/applications-module.h"
#include "ns3/wifi-module.h"
#include "ns3/mobility-module.h"
#include "ns3/ipv4-global-routing-helper.h"
#include "ns3/internet-module.h"
#include "ns3/extension-headers.h"
#include <iostream>
#include <fstream>
#include <stdio.h>
#include <stdlib.h>
#include <ctime>
#include <fstream>
#include <sys/stat.h>
#include <string>

using namespace ns3;
using namespace std;

struct Configuration {
/*
* New configuration parameters
*
* */

RPSVector rps;
uint32_t nRps; // Ordinal number of current RPS element; RPS Index
uint64_t totalRawSlots = 0;
// Total number of RAW slots in all RAW groups in all RPS elements

std::string RawConfigString;
// RPS=2;{RAW=2;[0,1,1,204,2,0,1,16][0,1,1,412,1,0,17,32]}{RAW=1;[0,1,1,180,3,0,33,35]}

UintegerValue maxNumberOfPackets = 4294967295u; // 4294967295u
string trafficType = "udp";
// important - udp is considered to be only uplink in NodeStatistics::GetPacketLoss tcpipcamera
tcpfirmware

// Page slicing
pageSlice pageS;
TIM tim;

/*pageSliceCount = 0 means:
*
* - if pageSliceLength > 1, 32nd TIM in this DTIM can contain DL information for STAs that do not
support

* page slicing and for STAs who’s AID is within the 32nd block of this page and do support page slicing
*
* - if pageSliceLength = 1, all STAs for which the AP has DL BU are included in the *only TIM*
that is scheduled

* within the DTIM
*
* */

uint32_t pagePeriod = 1;
// Number of Beacon Intervals between DTIM beacons that carry Page Slice element
for the associated page

uint8_t pageIndex = 0;

100

// The Page Index subfield indicates the page whose slices are served during beacon intervals
within a page period

uint32_t pageSliceLength = 4;
// Number of blocks in each TIM for the associated page except for the last TIM (1-31)
(value 0 is reserved);

// The number of blocks in each page slice is equal to the value of the Page Slice Length subfield
uint32_t pageSliceCount = 1;
// Number of TIMs in a single page period (1-31)

uint8_t blockOffset = 0;
// The 1st page slice starts with the block with blockOffset number

uint8_t timOffset = 0;
// Offset in number of Beacon Intervals from the DTIM that carries the first page slice of the
page

/*
* Common configuration parameters
* */

double simulationTime = 120; // in seconds
uint32_t seed = 1;
int NRawSta;
uint32_t Nsta;
uint32_t BeaconInterval = 199840; // In microseconds

double bandWidth = 2; // in MHz
string rho="200"; // Maximum distance of the AP

string visualizerIP = "localhost"; // empty string if no visualization TODO
int visualizerPort = 7707;
double visualizerSamplingInterval = 1;

string RawGroupping = "kmeans"; // ’kmeans’, ’random’, ’static’
string name = "kmeans"; //
string APPcapFile = "appcap"; // empty string if no visualization TODO
string NSSFile = "test.nss";

/*
* Le’s config params
* */

// uint32_t payloadSize = 1400;
// string folder="./scratch/";
// string file="./scratch/mac-sta.txt";
string TrafficPath="./OptimalRawGroup/traffic/data-32-0.82.txt";
bool S1g1MfieldEnabled=false;
string RAWConfigFile = "./OptimalRawGroup/RawConfig-test.txt";
string DataMode = "MCS2_0";
string OutputPath = "./OptimalRawGroup/";
string topologyFile = "./topology/zones4-sta20-uniform.txt";
/*
* Amina’s configuration parameters
* */

bool useV6 = false; //false
uint32_t nControlLoops = 0;// = 100;
uint32_t coapPayloadSize = 0;// = 15;

uint32_t trafficInterval = 2; //ms 55,110,210,310,410,515,615,720,820,950,1024 beacon interval *4
uint32_t trafficIntervalDeviation = 1000; //1000 discuss with Jeroen

int SlotFormat=0; //0;
int NRawSlotCount=0; //162;
uint32_t NRawSlotNum=0;

101

uint32_t NGroup=0;

/*
* tcpipcamera configuration parameters
* */

double ipcameraMotionPercentage = 1; //0.1
uint16_t ipcameraMotionDuration = 10; //60
uint16_t ipcameraDataRate = 128; //20
uint32_t MinRTO = 81920000; //819200
uint32_t TCPConnectionTimeout = 6000000;
uint32_t TCPSegmentSize = 3216; //536
uint32_t TCPInitialSlowStartThreshold = 0xffff;
uint32_t TCPInitialCwnd = 1;

int ContentionPerRAWSlot=0; //-1
bool ContentionPerRAWSlotOnlyInFirstGroup=false; //false

double propagationLossExponent = 3.67; //3.76
double propagationLossReferenceLoss = 8;

bool APAlwaysSchedulesForNextSlot = false;
uint32_t APScheduleTransmissionForNextSlotIfLessThan = 0;// = 5000;

uint32_t firmwareSize = 0;// = 1024 * 500;
uint16_t firmwareBlockSize = 0;// = 1024;
double firmwareNewUpdateProbability;// = 0.01;
double firmwareCorruptionProbability;// = 0.01;
uint32_t firmwareVersionCheckInterval;// = 1000;

uint16_t sensorMeasurementSize;// = 54; //1024

uint16_t MaxTimeOfPacketsInQueue = 100; //100

uint16_t CoolDownPeriod = 4; //60

Configuration();
Configuration(int argc, char *argv[]);

};

APÊNDICE B

MATLAB

% model with channel error 2 slots per RAW group
% The stations are arranged in rings of 50/100/150/200 meters
%Uniform case
clear all;
close all;
% Definio de variveis
basic_rate = 1000000; %bits/s

data_rate_0 = 650000; % bits/s
%data_rate_1 = 1300000; % bits/s
%data_rate_2 = 1950000; % bits/s
%data_rate_3 = 2600000; % bits/s

phy_header = 0.000192; %in seconds, ah parameter
%h = 416/basic_rate; % (416 = 224 bits cabealho MAC + 192 bits cabealho
%PHY)em segundos, cabealho antigo
%ack = 304/basic_rate; % (304= 112 bits + 192 bits phy) seconds
mac_header = (34*8)/basic_rate;
h = phy_header + mac_header;
ack = (14*8)/basic_rate + phy_header;
e = 1024*8; % payload size/bitrate
%e2=768*8;
%e3 = 512*8;
%e4 = 256*8;

e_duracao = e/data_rate_3;
%e_duracao_2 = e2/data_rate_0;
%e_duracao_3 = e3/data_rate_0;
%e_duracao_4 = e4/data_rate_0;

%sifs = 0.000160; % seconds
%difs = 0.000303; % seconds
%delta = 0.000006; % seconds
%sigma = 0.000052; % seconds
%ack_timeout = 0.000600;
sifs = 0.000160; % seconds
difs = 0.000304; % seconds
delta = 0.0000033; % seconds
sigma = 0.000052; % seconds
ack_timeout = 2*delta + sifs + ack;
beacon_interval = 0.19984; % seconds

x0 = [0.01;0.01]; % valor inicial para fsolve
% time occupied by a successful transmission
Ts1 = h + e_duracao + sifs + (2.*delta) + ack + difs;
Ts2 = h + e_duracao + sifs + (2.*delta) + ack + difs;
Ts3 = h + e_duracao + sifs + (2.*delta) + ack + difs;
Ts4 = h + e_duracao + sifs + (2.*delta) + ack + difs;
% time occupied by a collision
Tc1 = h + e_duracao + difs + delta + ack_timeout;
Tc2 = h + e_duracao + difs + delta + ack_timeout;

103

Tc3 = h + e_duracao + difs + delta + ack_timeout;
Tc4 = h + e_duracao + difs + delta + ack_timeout;
% guard period and holding period
Tg = 0.000008;
Th1 = Ts1 + 2*Tg;
Th2 = Ts2 + 2*Tg;
Th3 = Ts3 + 2*Tg;
Th4 = Ts4 + 2*Tg;

n = 10;
nslots = 2;

Tidle_2_R1 = (beacon_interval/8)-Th1;
Tidle_2_R2 = (beacon_interval/8)-Th2;
Tidle_2_R3 = (beacon_interval/8)-Th3;
Tidle_2_R4 = (beacon_interval/8)-Th4

prob_erro_50m;
prob_erro_100m;
prob_erro_150m;
prob_erro_200m;

% 10 stations within a RAW slot, each group have 2 RAW slots
% for 50m R1
fun1 = @solucao_10sta_50m;
result1 = fsolve(fun1,x0);
taud1 = result1(1);
b0_01 = result1(2);

% probabilities
ptr1 = 1 - ((1-taud1)^n);
pds1 = ((n*taud1*((1-taud1)^(n-1)))/ptr1)*(1-perr50);

% success probabilities
t_slot1 = ((1 - ptr1).*sigma + ptr1.*pds1.*Ts1 + ptr1.*(1 - pds1).*Tc1);
s1 = (pds1.*ptr1.*e./t_slot1);

% for 100m R2
fun2 = @solucao_10sta_100m;
result2 = fsolve(fun2,x0)
taud2 = result2(1);
b0_02 =result2(2);

ptr2 = 1 - ((1-taud2)^n);
pds2 = ((n*taud2*((1-taud2)^(n-1)))/ptr2)*(1-perr100);
t_slot2 = ((1 - ptr2).*sigma + ptr2.*pds2.*Ts2 + ptr2.*(1 - pds2).*Tc2);
s2 = (pds2.*ptr2.*e./t_slot2);

% for 150m R3
fun3 = @solucao_10sta_150m;
result3 = fsolve(fun3,x0);
taud3 = result3(1)
b0_03 = result3(2)

ptr3 = 1 - ((1-taud3)^n);
pds3 = ((n*taud3*((1-taud3)^(n-1)))/ptr3)*(1-perr150);

104

t_slot3 = ((1 - ptr3).*sigma + ptr3.*pds3.*Ts3 + ptr3.*(1 - pds3).*Tc3);
s3 = pds3.*ptr3.*e./t_slot3;

% for 200m R4
fun4 = @solucao_10sta_200m;
result4 = fsolve(fun4,x0);
taud4 = result4(1);
b0_04 = result4(2);

ptr4 = 1 - ((1-taud4)^n);
pds4 = ((n*taud4*((1-taud4)^(n-1)))/ptr4)*(1-perr200);
t_slot4 = ((1 - ptr4).*sigma + ptr4.*pds4.*Ts4 + ptr4.*(1 - pds4).*Tc4);
s4 = pds4.*ptr4.*e./t_slot4;

vazao_R1 =(((Tidle_2_R1)/beacon_interval)/100000)*s1*nslots
vazao_R2 =(((Tidle_2_R2)/beacon_interval)/100000)*s2*nslots
vazao_R3 =(((Tidle_2_R3)/beacon_interval)/100000)*s3*nslots
vazao_R4 =(((Tidle_2_R4)/beacon_interval)/100000)*s4*nslots

prob_erro_50.m

% Error probability 50 m
clc;
d = 50; %meters
f = 900; % MHz
Pt = 0;%10*log10(0.001/0.001); % dB
Gt = 0; % dB
Gr = 3; %dB
N = 6.8; %dB
R = 0.5;%650000; %bits/s
B = 2000000; %Hz
L = 256*8; %bits
dfree = 10;
adfree = 11;
%path loss
pl = 8 + 36.7*log10(d)% + 21*log10(f/900) %dB
%Received Power
Pr = Pt + Gt + Gr - pl %dB
pr_lin = 10.^(Pr/10)
N_lin = 10.^(N/10)
% cálculo de SNR
snr = pr_lin/(N_lin*B) %dB
% cálculo de Eb/N0
EbNodB= snr*(B/R) %dB
EbNolin=10.^(EbNodB/10)
% BER BPSK
Berb = 0.5*erfc(sqrt(EbNolin))
%BER M-QAM
M = 16
k = log2(M)
if(M==4)

a=1;
else

a=4/log2(M);
end
b=3*log2(M)/(M-1);

105

Ber= [0.5*a*(1-sqrt(0.5*b*EbNolin/(1+0.5*b*EbNolin)))]

%k=log2(m)

% rayleigh channel
Ber1 = (4/k)*erfc(sqrt(3*EbNolin/(M-1)))

%viterbi decoder
dstart = floor((dfree+1)/2)
dend = dfree
pd = 0
if (mod(d,2) == 1), %odd

for i = dstart:1:dend
pd = pd + nchoosek(dfree,i)*(Berb^i)*((1-Berb)^(dfree-i))

endfor;

else
for i = dstart:1:dend
pd = pd + 0.5*nchoosek(dfree,i)*(Berb^i)*((1-Berb)^(dfree-i))
endfor

endif;

pu = adfree*pd
pmu = min(pu,1)
perr50 = 1 - (1 - pmu)^L

solucao_10sta_50m.m

% Function with 10 stations in a Raw slot
% error probabilty for 50 m

function F = solucao_10sta_50m(x)
taud = x(1);
b0_0 = x(2);

n = 10;%number of stations in each group
m = 6;%maximum retransmissions

%contention window in each backoff stage
w0 = 16;
w1 = 2*w0;
w2 = 4*w0;
w3 = 8*w0;
w4 = 16*w0;
w5 = 32*w0;
w6 = 64*w0;

prob_q_20sta;
prob_erro_50m;

pcol = 1 - ((1-taud)^(n-1));
g = pcol;
p = pcol - pcol*perr50 + perr50;

%vectors bi,j
b0_j = zeros(1,w0);

106

b1_j = zeros(1,w1);
b2_j = zeros(1,w2);
b3_j = zeros(1,w3);
b4_j = zeros(1,w4);
b5_j = zeros(1,w5);
b6_j = zeros(1,w6);

% states bi,j
% N
n_linha0 = (1 - g*(1-q0));
n_linha1 = (1 - g*(1-q1));
n_linha2 = (1 - g*(1-q2));
n_linha3 = (1 - g*(1-q3));
n_linha4 = (1 - g*(1-q4));
n_linha5 = (1 - g*(1-q5));
n_linha6 = (1 - g*(1-q6));

b1_j(w1)= (p*(1-q0))/(w1*n_linha1).*b0_0;
b1_j_rev = flip(b1_j);
for j = 1:1:w1-1

b1_j_rev(j+1) = (p*(1-q0))/(w1*n_linha1).*b0_0 + (((1-q1)*(1-g))/n_linha1).*b1_j_rev(j);

end
b1_j_rev(w1) = (p*(1-q0)/w1).*b0_0 + (((1-q1)*(1-g))/n_linha1).*b1_j_rev(w1-1);
b1_0 = b1_j_rev(w1);

b2_j(w2)= (p*(1-q1))/(w2*n_linha2).*b1_0;
b2_j_rev = flip(b2_j);
for j = 1:1:w2-1

b2_j_rev(j+1) = (p*(1-q1)/(w2*n_linha2)).*b1_0 + (((1-q2)*(1-g))/n_linha2).*b2_j_rev(j);

end
b2_j_rev(w2) = ((p*(1-q1))/w2).*b1_0 + (((1-q2)*(1-g))/n_linha2).*b2_j_rev(w2-1);
b2_0 = b2_j_rev(w2);

b3_j(w3)= (p*(1-q2))/(w3*n_linha3).*b2_0;
b3_j_rev = flip(b3_j);
for j = 1:1:w3-1

b3_j_rev(j+1) = (p*(1-q2))/(w3*n_linha3).*b2_0 + (((1-q3)*(1-g))/n_linha3).*b3_j_rev(j);

end
b3_j_rev(w3) = ((p*(1-q2))/w3).*b2_0 + (((1-q3)*(1-g))/n_linha3).*b3_j_rev(w3-1);
b3_0 = b3_j_rev(w3);

b4_j(w4)= (p*(1-q3))/(w4*n_linha4).*b3_0;
b4_j_rev = flip(b4_j);
for j = 1:1:w4-1

b4_j_rev(j+1) = (p*(1-q3))/(w4*n_linha4).*b3_0 + (((1-q4)*(1-g))/n_linha4).*b4_j_rev(j);

end
b4_j_rev(w4) = (p*(1-q3)/w4).*b3_0 + (((1-q4)*(1-g))/n_linha4).*b4_j_rev(w4-1);
b4_0 = b4_j_rev(w4);

b5_j(w5)= (p*(1-q4))/(w5*n_linha5).*b4_0;

107

b5_j_rev = flip(b5_j);
for j = 1:1:w5-1

b5_j_rev(j+1) = (p*(1-q4))/(w5*n_linha5).*b4_0 + (((1-q5)*(1-g))/n_linha5).*b5_j_rev(j);

end
b5_j_rev(w5) = (p*(1-q4)/w5).*b4_0 + (((1-q5)*(1-g))/n_linha5).*b5_j_rev(w5-1);
b5_0 = b5_j_rev(w5);

b6_j(w6)= (p*(1-q5))/(w6*n_linha6).*b5_0;
b6_j_rev = flip(b6_j);
for j = 1:1:w6-1

b6_j_rev(j+1) = (p*(1-q5))/(w6*n_linha6).*b5_0 + (((1-q6)*(1-g))/n_linha6).*b6_j_rev(j);

end
b6_j_rev(w6) = (p*(1-q5)/w6).*b5_0 + (((1-q6)*(1-g))/n_linha6).*b6_j_rev(w6-1);
b6_0 = b6_j_rev(w6);

%para o calculo de b0,0
soma_bi_0 = b0_0 + b1_0 + b2_0 + b3_0 + b4_0 + b5_0 + b6_0;
soma_bi_01 = (1-q0).*b0_0 + (1-q1).*b1_0 + (1-q2).*b2_0 + (1-q3).*b3_0 + (1-q4).*b4_0 + (1-q5).*b5_0 + (1-q6).*b6_0;
soma_dados1 = q1.*sum(b1_j_rev)+ q2.*sum(b2_j_rev)+ q3.*sum(b3_j_rev)+ q4.*sum(b4_j_rev)+ q5.*sum(b5_j_rev)+ q6.*sum(b6_j_rev);
b_idle = soma_dados1;

m_linha = (1-p)*soma_bi_01 + b_idle;

b0_j_rev = flip(b0_j);

b0_j_rev(1)= m_linha./(w0*n_linha0);% termo bo,w0-1,0
for j = 1:1:w0-1

b0_j_rev(j+1)= m_linha/(w0*n_linha0) + (((1-q0)*(1-g))/w0*n_linha0).*b0_j_rev(j);

end
b0_j_rev(w0)= m_linha/w0 + (((1-q0)*(1-g))/w0*n_linha0).*b0_j_rev(w0-1);
b0_0 = b0_j_rev(w0);

soma_dados = sum(b0_j_rev)+ sum(b1_j_rev)+ sum(b2_j_rev)+ sum(b3_j_rev)+ sum(b4_j_rev)+ sum(b5_j_rev) + sum(b6_j_rev);

F(1)= soma_bi_0 - taud;
F(2)= soma_dados-1;

end

prob_q_10sta.m

m = 6;
constante_c;
n = 10;
fator_n10 = (n-1)/n;

q0 = fator_n10*c*0;
q1 = fator_n10*c*1/(m+1);
q2 = fator_n10*c*2/(m+1);
q3 = fator_n10*c*3/(m+1);
q4 = fator_n10*c*4/(m+1);

108

q5 = fator_n10*c*5/(m+1);
q6 = fator_n10*c*6/(m+1);

constante_c.m

beacon_interval = 0.19984;
nslots = 2;
Tidle = (beacon_interval/nslots);

razao_nslots = (beacon_interval-Tidle)/beacon_interval;
c = razao_nslots;

	Cover
	Dedication
	Acknowledgements
	Abstract
	Resumo
	Table of contents
	List of figures
	List of tables
	List of symbols
	Glossary
	Chapter 1 – Introduction
	Motivation
	Objectives
	Contributions
	Publications

	Organization of the Dissertation

	Chapter 2 – Overview of the IEEE 802.11ah
	Introduction
	The IEEE 802.11ah standard
	Restricted Access Window (RAW)
	Enhanced Distributed Channel Access (EDCA)
	Carrier Sense Multiple Access with Collision Avoidance - CSMA/CA
	Binary Exponential Backoff (BEB) Algorithm

	Dynamic AID
	Conclusions

	Chapter 3 – Related Work
	Conclusions

	Chapter 4 – Analytical Model
	Markov Model for Backoff Operation
	Markov Chain Solution
	Ideal Channel
	Under Rayleigh Fading Channel

	RAW Slot Time Completion Probability
	Throughput Computation
	Ideal Channel
	Non-ideal Channel

	Minimum RAW Slot Duration
	Conclusions

	Chapter 5 – Numerical Results
	Ideal Channel
	Impact of RAW Slot Time Completion Probability on Throughput
	Comparison with other Analytical Models

	Impact of Rayleigh Fading Channel
	Case 1
	Case 2
	Case 3
	Comparison between the three case studies

	Conclusions

	Conclusion
	References
	Apêndice A – ns-3 program
	Apêndice B – MATLAB

