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RESUMO
A rigidez muscular desempenha um papel critico na funcdo e no desempenho muscular,

afetando fatores como fadiga, atividade metabdlica e respostas eletromiogréficas. Este estudo
teve como objetivo investigar a rigidez dos musculos reto femoral (RF) e vasto lateral (VL) em
diferentes angulos articulares (60° e 20° de flexdo do joelho) e posi¢des do corpo (supino e
sentado) utilizando Elastografia. Trinta participantes saudaveis foram incluidos em um estudo
randomizado cruzado, com idade de 21,98 + 2,92 anos, altura de 1,70 = 0,10 metros e peso de
62,35 + 13,73 quilos. A rigidez muscular foi avaliada utilizando a elasticidade da onda de
cisalhnamento (kPa) e a velocidade da onda de cisalhamento (m/s), com medidas realizadas nas
regides superficial, intermediaria e profunda dos masculos RF e VL. Os resultados indicaram
valores de rigidez significativamente maiores no SUP60 (em decubito dorsal com joelho a uma
flexdo de 60°) (p<0,001) em comparacdo com outras posicGes para os musculos RF e VL,
medidos pelas variaveis kPa e m/s. A rigidez foi consistentemente maior nas regifes superficiais
(p<0,001) dos musculos em comparacéo as regides intermediarias e profundas em todas as
posicOes. As analises estatisticas revelaram interacdes significativas entre posicdo e tipo
muscular, bem como entre posicédo e profundidade, destacando o impacto matizado do angulo
articular e posicao corporal na rigidez muscular. Nossos achados de Elastografia indicam que
tanto o reto femoral, quanto o vasto lateral apresentam maior rigidez quando posicionadas em
SUP60 em comparacdo com SUP20, SIT60 e SIT20. Além disso, observamos maior rigidez
nas regides superiores desses musculos em todas as posicOes testadas, em contraste com as

regides intermediarias e profundas.

Palavras-chave: Rigidez muscular, elastografia, angulo articular, quadriceps.
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ABSTRACT
Muscle stiffness plays a critical role in muscle function and performance, affecting
factors such as fatigue, metabolic activity, and electromyographic responses. This study
aimed to investigate the stiffness of the rectus femoris (RF) and vastus lateralis (VL)
muscles at different joint angles (60° and 20° of knee flexion) and body positions (supine
and sitting) using elastography. Thirty healthy participants were included in a crossover,
randomized trial, with an age of 21.98 + 2.92 years, height of 1.70 = 0.10 meters, and
weight of 62.35 + 13.73 kilograms. Muscle stiffness was assessed using shear wave
elasticity (kPa) and shear wave velocity (m/s), with measurements taken at superficial,
intermediate, and deep regions of the RF and VL muscles. Results indicated significantly
higher stiffness values in the SUP60 (supine with knee at 60° flexion) (p<0,001) position
compared to other positions for both RF and VL muscles, as measured by both kPa and
m/s variables. Stiffness was consistently higher in the superficial regions (p<0,001) of
the muscles compared to intermediate and deep regions across all positions. Statistical
analyses revealed significant interactions between position and muscle type, as well as
between position and depth, highlighting the nuanced impact of joint angle and body
position on muscle stiffness. Our elastography findings indicate that both the rectus
femoris (RF) and vastus lateralis (VL) exhibit greater stiffness when positioned at SUP60
compared to SUP20, SIT60, and SIT20. Additionally, we observed higher stiffness in
the upper regions of these muscles across all tested positions, in contrast to the
intermediate and deep regions.

Keywords: Muscle stiffness, elastography, joint angle, quadriceps.
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1. INTRODUCTION

Muscle length is a key factor influencing various adaptations in muscle fibers, which
may relate to fatigue (Cavalcante et al., 2024), metabolic activity (Al-Mulla, Sepulveda,
Colley., 2011), electromyographic activity (Lanza et al., 2017), and clinical protocols in
rehabilitation (de Sousa et al., 2023), among other factors. Numerous studies have examined
different muscle lengths under various conditions to observe muscle adaptations, muscle
capacity and muscle archiving. We observed in the literature that studies bring to us that a
relationship between stretching of the musculoskeletal (Bastijns et al., 2020), however the
studies differ about this relation. Kato et al., (2010) show that muscle stiffness is not affected
by stretching, contradicting the findings (Blazevich et al., 2009; Morse et al., 2008) that reduce
muscle stiffness depending on stretching. Longer lengths tend to have higher levels of KPa
(stiffness) compared to shorter lengths in the gastrocnemius muscle (Freitas et al., 2015). The
reduction of stiffness over a static relaxation protocol is higher for longer lengths in this study.
Another finding of this study is that the Kpa presents a greater significant difference close to
the maximal dorsiflexion, compared with reduced articular degrees

Muscle stiffness analysis can reliably be obtained with Elastography using ultrasound
imaging in a passive assessment (Gennisson et al., 2010; Liu et al., 2019). Elastography has the
advantage of assessing muscle stiffness in different muscle positions without requiring
participants to perform muscle contractions (Eby et al., 2015). Some active methods to assess
muscle stiffness, such as Young’s modulus, evaluate stiffness based on participants' physical
efforts (Bravo-Sanchez et al., 2021), which can be unfeasible for individuals with impairments
or impossibility to perform a muscle contraction, perhaps, the better way to evaluate this people
is using passive methods (Lee et al., 2017; Tas et al., 2018). During stiffness evaluation using
elastography, two key variables are typically observed: kilopascals (KPa) and shear wave
propagation speed. These variables are interconnected, as the propagation speed is directly
dependent on the shear wave properties (Albano et al., 2024; Nicholls et al., 2020).

The quadriceps femoris musculature primarily generates knee extensor torque. Each
constituent of the quadriceps—comprising monoarticular muscles: Vastus medialis (VM),
vastus lateralis (VL) and vastus intermedium (V1) and a biarticular muscle (Rectus femoris
(RF))—experiences changes in force production with alterations in hip and knee joint angles
during knee extension (Pincivero et al., 2004). The fascia that surrounds the quadriceps muscles
can transmit tension through the joints, affecting muscle stiffness (Schleip et al., 2012). The

joint angle significantly influences torque production, with an "optimal” length for force
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production around 60 degrees of knee flexion (Cavalcante et al., 2023), where 0 degrees
represents complete knee extension. In various protocols, comparing supine and sitting hip
positions, the strength production of the quadriceps femoris may either decrease or remain
unchanged in the supine position across multiple knee joint angles ranging from 20 to 90
degrees (Mafuilletti et al., 2003). Although knee flexion around 60 degrees favors force
production, it also increases compression in knee structures. Therefore, investigating muscle
stiffness in different positions is necessary to understand the relationship between strength
production capacity and muscle stiffness. Few studies have examined muscle length and
stiffness, especially in the quadriceps, considering hip and knee joint positioning. Chernak et
al., (2013) investigated the relationship between muscle length and stiffness from the speed of
the shear wave in the gastrocnemius, manipulating knee joint positioning through active and
passive dorsiflexions. They observed greater stiffness indicated by velocity during the most
dorsiflexed moments in passive movement, particularly in volunteers with the knee extended
compared to those with it more flexed. Therefore, our objective is to investigate the stiffness of
the rectus femoris and vastus lateralis at different lengths to observe stiffness behavior in a
biarticular and a monoarticular muscle of the quadriceps femoris. We hypothesized that higher
stiffness would be observed in the RF and VL muscles in the SUP60 position, as indicated by
both the KPa and m/s variables. This increased stiffness would likely be more pronounced in

the upper region compared to the others.

2. LITERATURE REVIEW

2.1 Relation between muscle length and force generation capacity

The quadriceps femoris is one of the most studied muscles in the literature, given its
importance for locomotion and sports gestures such as running, jumping and landing. The
quadriceps femoris is formed by four muscular bellies (constituents), these being: rectus
femoris, vast medial, vast intermediate and vast lateral. The rectus femoris presents its origin
located in the anterior-inferior iliac spine, the vast lateral in the lateral greater trochanter, the
vast medial in the femoral neck and vast intermediate in the femoral body. These muscles form
the tendon of the quadriceps femoris, with insertion in the patella, but their tendon fascicles
have different orientations to offer resistance in different directions, Moreover, the patella fits

in the trochlear groove of the femur acting as an anchor for the quadriceps femoris and the
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patellar tendon (Depoujari et al., 2021). The femoral quadriceps is primarily responsible for the
mechanism of knee extension (Olewnik et al., 2021). For this reason, it is widely explored in
the scientific literature, in order to provide better bases for evaluation and therapies in clinical
practice. By sharing the same distal insertion, the constituents of the quadriceps femoris are
likely to suffer changes due to the change of the knee joint position. The study by Cavalcante
et al., (2021) found that knee joint angle positioning interferes with different aspects of the
components of the quadriceps femoris, such as torque, stiffness and stretching. The joint torque
is a reflection of the structural myotendinous capacities of the volunteer. Muscle length is
intrinsically related to the strength production capacity of the muscle fiber (de Sousa et al.,
2023), so depending on the muscle length present during a protocol, be it isometric (Oranchuk
et al., 2019), isokinetic (Marusic et al., 2020; Wan et al., 2017) evoked (Cavalcante et al., 2023)
or voluntary, we will have different outcomes. Muscle length has been extensively investigated
in the literature, under different conditions. Many studies investigated different muscle lengths
during an electrostimulation protocol. A recent meta-analysis shows that muscle length affects
torque during a neuromuscular electrical stimulation protocol. This study made an interesting
distinction, grouping the studies by the degree of positioning of the knee joint, during the
protocol, in order to separate the lengths into groups: very short, short, great, long and very
long. These data related to knee extension bring that: 1- Optimal lengths presents a greater
extensor torque when compared to a muscular length very short, short and long. 2- A long length
has a higher extensor torque when compared to very short. 3- A long length has a higher
extensor torque when compared to short. On the other hand, many studies also investigate the
influence of femoral quadriceps muscle length during a voluntary contraction. Scott et al
compared the force of a voluntary knee extensor torque in order to investigate which joint
positioning would generate a higher torque. The authors compared 3 degrees of the knee joint,
30°; 60°; and 90°; respectively. They observed that the positions in which the quadriceps was
more elongated (90° and 60°) produced a higher torque when compared to the position in which
the quadriceps was more shortened. Garnier et al., (2021) investigated the influence of hip and
knee angle during an isometric maximal voluntary contraction, comparing flexed knee (110°,
considering 0° full knee extension) with extended knee (20°), flexed hip (60°) and extended hip
(0°) found that: torque was higher when the knee was flexed (greater muscle length), compared
to extended knee (shorter muscle length). It also noted that hip positioning was indifferent
during maximal isometric voluntary contraction. Cavalcante eat al., (2021) and Bampouras et
al., (2017) also corroborate this finding, bringing in their studies that torque is indifferent to the

influence of the hip (lying and sitting). The study of Cavalcante et al., (2021) goes even further,
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bringing that in fact what will determine the power production capacity of the quadriceps, is
not the hip positioning, but the knee. These findings corroborate with ancient studies, which
show that there is a length-strength relationship (Gordon 1966). Other studies focus on the
investigation of the muscular architecture observing the length of it. The architecture of the
muscle is reflected in the individual’s torque production capacity. The stiffness of the tendon-
aponeurosis complex (Massey et al., 2015), muscle thickness (Blazevich et al., 2006), fascicular
length, penation angle (Timmins et al., 2016), neural activation (Maffiuletti et al., 2003) and
stiffness (Kubo 2006; Massey 2015) mechanisms of muscle architecture that will reflect on a
better tendon muscle capacity. Thus, changes in the angle of the joint, as far as it is concerned,
can alter the functionality of the muscle (Kubo 2006; Lanza et al., 2017; Pearson et al.,2017).
Therefore, the study of muscle variables affects the action of the system as a whole.

2.2 Muscle stiffness

Muscle stiffness is the combination of the active tension produced through contraction,
and passive tension produced by the connective tissue (Eby et al., 2013; Hug et al., 2015), being
defined as the compression-deformation ratio (Ikezoe et al., 2012; Creze et al., 2018). This
deformation can be created from an external action, often being compression, or an intrinsic
tissue deformation, dependent on tissue properties (Drakonaki et al.,2012; Brandenburg et al.,
2014). Over time it is possible to observe several methods available for the analysis of passive
musculoskeletal stiffness. Passive stretching test is a common technique used to measure
passive stiffness of muscles and joints. Due to the measurement of resistance offered by the
elongated muscle (Magnusson 1966). We can observe the measurement of stiffness through
dynamometry, which will measure the passive resistance during the stretching or movement of
the joints (Aagard 2000). Another means of evaluating this stiffness is through magnetic
resonance imaging, which will use magnetic fields and radio waves to create detailed images
of the surrounding muscles and tissues, assessing passive muscle stiffness through visualization

of internal muscle structures. (Dixon 1992; Rigleb et al., 2007).

2.3 Relation Stiffness- Hip/Knee joint

Stiffness in the muscular belly of knee extensors, such as the muscles of the quadriceps group,
is determined by several structures and factors: 1) Muscle Fibers: The intrinsic properties of

muscle fibers, including their type (slow vs. fast contraction fibers) significantly influence
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muscle stiffness (Lieber, Fridén, 2000; Schiaffino, Reggiani; 2011). 2)Connective tissue: The
endomysium, perimysium and epimysium, which involve muscle fibers, fascicles and all
muscle, respectively, contribute to passive stiffness (Purslow et al., 2002; Gillies, Lieber; 2011).
3)Titin: Titin, a giant protein extending half the length of a sarcomere, plays a key role in
passive muscle stiffness by providing elasticity (Granzier, Labeit, 2004; Linke et al., 2008).
4)Fascia: The fascia surrounding the muscles, particularly the deep fascia like the fascia lata,
contributes to general muscle stiffness (Stecco, et al., 2015; Schleip et al., 2012). 5) Neural
Factors: Muscle tone, regulated by the nervous system, affects stiffness. Increased muscle tone
due to increased neural activation may lead to greater stiffness (Kandel et al., 2000; Butler,
Moseley 2003). 5)Viscoelastic properties: The viscoelastic properties of muscle tissues, which
include their deformation capacity and return to their original shape, impact stiffness (Magid,
Law 1985; Fung et al., 1993). The joint positions of the hip and knee significantly influence the
structures that determine stiffness in the muscular belly of the knee extensors. Thus, the
relationship between muscle length-tension, passive tension, neural factors and fascial
interactions are key aspects of this influence. The position of the hip and knee affects the length
of the quadriceps muscles. For example, hip flexion and knee extension lengthen the rectum
due to its biarticular nature (Gordon et al., 1966; Lieber, Fridén, 2000). When the hip and knee
are positioned to lengthen the quadriceps (hip extension and knee flexion), passive tension
increases due to the stretching of connective tissues and Titin protein (Magnusson et al., 1996;
Granzier, Labeit, 2004). We can observe in the literature that joint position influences neural
activation through mechanisms such as muscle spindles and Golgi’s tendon organs, adjusting
muscle tone and stiffness (Kandel et al., 2000; Enoka et al., 2008). The fascia that surrounds
the quadriceps muscles can transmit tension through the joints, affecting muscle stiffness, so
changes in hip and knee positions alter the tension in these fascial structures (Stecco, 2015;
Schleip et al., 2012). The fascial connections of the rectus femoris and vastus lateral muscles
are also crucial for the biomechanics of the knee and hip joints. We can also observe that the
fascia of the rectus femoris integrates with the quadriceps tendon and the patellar ligament,
providing stability and support to the knee joint (Stecco, et al., 2015; Langevin, Sherman; 2007).
In the hip, the femoral rectum fascia is continuous with the iliotibial band (ITB) and the fascia
lata tensor (TFL), influencing the hip movement and stability (Schleip et al., 2012; Barker et
al., 2014). The fascia of the wide side integrates with the ABI and the lateral retinaculum of the
knee, providing lateral stability to the patella and knee joint (Standring, 2015; Fairclough et al.,
2006). In the hip, we can observe that the fascia of the lateral vast is interconnected with the

gluteal fascia, influencing abduction and hip stability (Willard et al., 2012; Huijing, Jaspers;
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2005).
2.4 Shear Wave Elastography (SWE)

Lately we have observed that many studies have been dedicated to the study of muscle
stiffness, from Shear wave elastography (Davis et al., 2019), and this technique has advantages,
among others because: 1) direct evaluation of elasticity; 2) independence of the compression
that the tissue undergoes; 3) Quantitative data. The acquisition of the stiffness data of Shear
wave elastography, is performed from an acoustic radiation force impulse (ARFI). This
technique generates a high-intensity impulse beam, coming from the transducer, to the tissue.
After the impulse beam, the transducer measures tissue displacement, instantly generating a
qualitative map of stiffness in a B-mode image (Bastijns et al.,2020) . After mapping the tissue
stiffness, a measurement, related to tissue tension ratio (ROI) is provided. The ROI is totally
dependent on the operator, and therefore more qualitative. Soon Shear wave elastography
provides us with both quantitative and qualitative data. The data are expressed as shear (KPa)
and/or shear wave velocity (cm/s). Some factors can quality of acquisition of these data, and
some main care to be taken during image acquisition. First caution: Transducer pressure.
Carpenter et al., (2015) brings that depending on the pressure maintained in the transducer,
there may be changes in the data. For example, Kot et al., (2012) observed that 3 different
pressure levels provide data difference, where increased pressure suggests increased muscle
stiffness of the participant. Second: Position of the transducer. Studies such as (Cortez 2016 et
al., Alfuraih et al., 2017) suggest a difference in acquisition speed according to the aponeurosis
approach. Third: differences between systems and devices. There is low reliability between
measurements performed by different equipment (Alfuraih 2017 et al.,; Franchi-Abella et al.,
2013).

2.5 Applicability of the SWE

Providing quantitative and qualitative muscle data, elastography allows its application
both in a clinical setting and in a research setting. We can observe that many disorders are based
on the condition and structural changes of the muscles, so elastography can allow the finding,
and location of certain pathologies. In addition to identifying the pathology, elastography can
act in order to monitor the evolution during an intervention protocol, or treatment. Due et al.,
(2016) evaluated the ability of elastography, through Shear wave, to assess stiffness in patients
with Parkinson’s disease, since muscle stiffness is one of the symptoms of Parkinson’s. These

authors concluded that SWE can be used to assess muscle stiffness. Ding et al., (2021) goes
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according to the findings, indicating that SWE can be a way of assessing stiffness in patients
with Parkinson’s disease. Another neuromuscular disorder that has been investigated with the
use of SWE is Stroke. Stroke will cause greater muscle stiffness on the affected side compared
to the unaffected side. Eby et al., (2016) proposed to evaluate the potential of SWE in
individuals with muscle stiffness after Stroke. The authors observed that SWE is promising in
the evaluation of muscle stiffness in post-Stroke individuals. In addition to evaluating stiffness,
in post-Stroke individuals, we also observed that it can act following the intervention in these
individuals (Gao 2019). We also observed other conditions present in the literature that can be
evaluated or diagnosed through SWE. Cerebaral palsy (Branderburg et al., 2016; Lee 2016;
Volaet al., 2018), Duchenne muscular dystrophy (Larcourpaille et al., 2015; Pichiecchio et al.,
2018), sarcopenia (Alfuraih et al., 2019b; Bastijns et al., 2019), chronic neck pain (Tas et al.,
2018), among others. It is possible to observe in literature studies are dedicated to investigate
the influence of sex on musculoskeletal stiffness, in order to observe the difference between
groups. Some studies show that women have greater stiffness than men (Lima et al., 2018; Chen
et al., 2017), others show higher values in men when compared to women (Agypong-Badu et
al., 2016; Wang et al.,2017), and others do not find significant difference between groups.
Another well studied relationship is stiffness in aging, however the data are still inconclusive.
Studies report in favor of greater stiffness in younger individuals (Eby et al., 2015; Saito et al.,
2019), but studies have been seen in which older individuals have greater stiffness (Akagi et
al., 2015), while we observed studies that found no difference between groups (Ikezoe et
al.,2012). Among some unanswered questions, such as those mentioned above, a question is
still recurrent regarding the positioning of the subject during the acquisition of muscle stiffness
via SWE. Depending on muscle length, we can increase or decrease muscle tension, and
consequently, change muscle stiffness values. Davis et al., (2019) reports that a small increase
in flexion can change values during data acquisition. It is possible to observe in the literature
that few studies pay attention to the importance of muscle length during a protocol of stiffness
analysis, in healthy or compromised individuals. Thus, this study aims to elucidate this

relationship, investigating the association of these variables in the femoral quadriceps.

3. JUSTIFICATIVE

Recently many studies have evaluated the passive muscular stiffness of the femoral quadriceps
using elastography. However, these studies do not focus on the joint positioning of the hip and

knee, since the quadriceps has monoarticular and biarticular constituents. Previous studies show
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that joint positioning interferes with some structures, however the relationship between passive

stiffness through elastography and angle of knee and hip is not yet clear.

4. OBJECTIVE

Our objective is to investigate the stiffness of the rectus femoris and vastus lateralis at different
lengths to observe stiffness behavior in a biarticular and a monoarticular muscle of the

quadriceps femoris.

5. HYPOTHESIS

We hypothesized that higher stiffness would be observed in the RF and VL muscles in the
SUP60 position, as indicated by both the KPa and m/s variables. This increased stiffness would
likely be more pronounced in the upper region compared to the others.

6. MATERIAS AND METHODS

6.1 Experimental design

This study is a crossover, experimental, and randomized trial conducted at the
Musculotendineal Plasticity Laboratory (LaPlasT) of the Faculty of Ceilandia, University of
Brasilia. The project was approved by the Research Ethics Committee of the University of
Brasilia/Faculty of Ceilandia, in accordance with Resolution 510/16 of the National Health
Council (CAAE: 68446223.2.0000.8093). Following approval by the committee, the research
protocol was registered on ClinicalTrials.gov (68446223.2.0000.80). Participants were
thoroughly informed about the purposes, benefits, and risks of the study at all stages. Their
participation was contingent upon signing the informed consent form, ensuring their voluntary

and informed entry into the study.

6.2 Participants

We included 30 participants (13 men and 17 women) with an average age of 21.98 +
2.92 years, height of 1.70 £ 0.10 meters, and weight of 62.35 + 13.73 kilograms. All participants
were healthy, with a body mass index (BMI) between 18.5 and 24.9 kg/m? (eutrophic), and had
not undergone systematic lower limb strength training in the past six months. Participants were

physically active according to the International Physical Activity Questionnaire (IPAQ),
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engaging in either recreational or sports activities. Exclusion criteria included individuals with
edema, dermal injury, limited joint range of motion, deformity or amputation in any part of the
lower limbs, history of patellar dislocation, or trauma to the lower limbs or trunk that could
compromise results. Additionally, those with conditions affecting musculotendineal
morphology or neuromuscular excitability, such as type Il diabetes mellitus, familial
hypercholesterolemia, neuromuscular disease, or severe cardiopathy, were excluded.
Participants with conditions preventing cooperation with procedures, such as cognitive deficits,
psychiatric disease, chemical dependence, or behavioral problems (Dudley-Javoroski 2010),

were also excluded.

6.3 Randomization and concealment of allocation

In the familiarization session, each participant had their collection randomized by a
randomization application, and their allocation was related to the assorted positions randomly
by the application. The positions were as follows: SUP60 (lying with the knee at 60°), SUP20
(lying with the knee at 20° ), SIT60 (sitting with the knee at 60°) and SIT20 (sitting with the
knee at 20°).

6.4 Blinding

The participants were blinded to the hypotheses of the study and to the numerical values of
the joint angles used. They were not informed which position was expected to result in greater
muscle stiffness. However, due to the nature of each position, the evaluator could not be
blinded.

6.5 Elastography

Muscle stiffness in the RF and (VL was evaluated using shear wave elasticity (kPa) and
shear wave velocity (m/s). Musculoskeletal configurations ranging from 0-300 kPa were
selected using the ACUSON Redwood Ultrasound System (Siemens, USA). Specifically, the
lateral compartment of the RF and the VL were visualized at 50% and 60% of the thigh length,
respectively, measured from the anterior-superior iliac spine to the base of the patella
(Cavalcante et al., 2021a). From B-mode ultrasound images obtained with a linear transducer
(10 L4), ROIs were delineated in a circular format. Thirty ROIs were manually measured: 10
in the superficial region of each muscle (superior part in selection box), 10 in the deep region
(deep part in selection box), and 10 in the intermediate region between the superficial and deep

regions (medium part in selection box). Muscle tissue stiffness was determined by averaging
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the shear modulus velocity from these 30 ROIs apply in each depth per image. The stiffness of
each muscle was calculated based on the mean shear modulus from three obtained images. This
mean shear modulus represented the stiffness of the quadriceps femoris components. During
the ultrasound examination, the transducer surface was covered with water-soluble transmission
gel to ensure acoustic coupling without applying additional pressure on the skin, thereby

preventing overestimation of tissue stiffness.

Figure 1. Visualization of the VL muscle of a participant in all positions. Insert the sealing box

between the aponeuroses, in order to fill the ROI s in the upper, medial and lower part of this box.

All elastography evaluations were performed by the same evaluator, VHSR. The evaluation
environment was maintained at temperatures between 23-25°C to prevent fluctuations in tissue
stiffness (Ando & Suzuki, 2019). Three ultrasound images of each tissue (superficial and deep
fascia of each muscle, RF and VL) were acquired with the participant in a resting position.
Although the acquisition time of the images does not affect stiffness values, a stabilization
period for the elastography map is necessary (Lima 2018). Therefore, images were captured

after a 10-second delay to ensure the map's stabilization (Lima 2017).

6.6 Study design
Participants performed familiarization with the assessments, which included
anthropometric measurements (height and body mass), randomization of the order of joint

positioning, and verification of eligibility criteria. The following positions were evaluated:
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supine with the knee at 60° flexion (SUP60), seated with the knee at 60° flexion (SIT60), supine
with the knee at 20° flexion (SUP20), and seated with the knee at 20° flexion (SIT20). These
knee angles (60° and 20°) were assessed with participants in sitting (hip flexion; 85°) and supine
(hip extension; 0°) positions. The rectus femoris (RF) and vastus lateralis (VL) muscles were
selected to observe the stiffness behavior of two muscles within the same group, with one being
biarticular and the other monoarticular. During anthropometric assessment, participants were
barefoot and wore light clothing. Body mass index (BMI) was calculated as weight in kilograms
divided by the square of height in meters (kg/m?). Physical activity levels were assessed using
the International Physical Activity Questionnaire (IPAQ), which evaluates the frequency and
duration of physical activities over the past week (Scholes et al.,, 2016). Following
familiarization, four sessions were conducted to evaluate stiffness using elastography. Each

session tested one of the four study positions and was separated by 72 hours.

Figure 2. Analysis positioning. Bench press with knee at 60° of flexion (SUP60), sitting with
knee at 60° (SIT60), bench press with knee at 20° (SUP20) and sitting with knee at 20°

(S1T20). The positions were randomized in the familiarization session.
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Figure 3. Data collection. Dynamometer axis aligned with the center of the knee joint, for evaluation

of stiffness in the RF during the SUP20 position.

6.7 Statistical analysis

The results were reported through measures of central tendency and dispersion,
appropriate inference tests, tables and graphs. The normality of the data was verified with the
Shapiro-Wilk test. A three-way ANOVA [ “position” (4 levels: SUP60, SUP20, SIT60 and
SIT20) by “muscle” (2 levels: RF and VL) by “depth” (3 levels: upper, intermediate and deep)]
was applied to verify changes in Kpa and m/S. When a significant difference was detected, we
applied the post-hoc Tukey test. The significance threshold is defined in a < 0.05 for all
procedures. All statistical analyses was performed using the software Statistica 23.0
(STATSOFT Inc., Tulsa, Oklahoma, EUA) and for graphical construction the software
Graphpad Prism 8.3.0 (San Diego, California, USA). To determine the reliability of the
measurements, we calculated the intraclass correlation coefficient (ICC). Reliability was
classified as low (< 0.5), moderate (0.5 - 0.75), good (> 0.75 - 0.9) and excellent (> 0.9) (Koo
2016).

7. RESULTS
7.1 Reliability of elastography
After intra-evaluator ICC analysis, good reliability was observed for RF SUP60 KPa
(0.90), RF SUP20 KPa (0.88), RF SIT60 KPa (0.80), and RF SIT20 KPa (0.87). Similarly, good
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reliability was found for RF SUP60 m/s (0.90), RF SUP20 m/s (0.82), RF SIT60 m/s (0.80),
and RF SIT20 m/s (0.80). For VL, excellent reliability was observed for SUP60 KPa (0.92),
SUP20 KPa (0.92), and SIT60 KPa (0.92), and good reliability for SIT20 KPa (0.80). Similarly,
excellent reliability was found for SUP60 m/s (0.92) and SUP20 m/s (0.90), and good reliability
for SIT60 m/s (0.88) and SIT20 m/s (0.82). Comparing position and muscles

There was a significant difference in position (p<0.001), muscle (p=0.001), depth (p<0.001)
when analyzing KPa data. There was a significant difference in position (p<0.001), muscle
(p=0.001), depth (p<0.001) when analyzing data related to m/s.

7.2 Position x muscle

To assess KPa, the main effect of position and muscle (p < 0.001) (Table 1- Suplementary
table) indicated that the SUP60 group exhibited significantly higher KPa values compared to
the other groups for RF (estimated marginal mean [95% confidence interval]: SUP60 = 12.41
[11.30 — 13.52] %, SUP20 = 7.76 [7.14 — 8.39] %, SIT60 = 7.87 [7.33 — 8.41] %, SIT20 =6.78
[6.21 — 7.35] %) and for VL (estimated marginal mean [95% confidence interval]: SUP60 =
9.63 [8.67 — 10.59] %, SUP20 = 7.22 [6.56 — 7.89] %, SIT60 = 8.30 [7.57 — 9.02] %, SIT20 =
6.52 [5.96 — 7.09] %) (figure 4). In terms of m/s, the main effect of position and muscle (p <
0.001) similarly showed that the SUP60 group had higher m/s values compared to the other
groups for RF (estimated marginal mean [95% confidence interval]: SUP60 = 1.97 [1.88 — 2.07]
%, SUP20 = 1.57 [1.51 — 1.63] %, SIT60 = 1.64 [1.55 — 1.73] %, SIT20 = 1.46 [1.41 — 1.52]
%) and for VL (estimated marginal mean [95% confidence interval]: SUP60 = 1.74 [1.66 —
1.83] %, SUP20 = 1.51 [1.45 — 1.58] %, SIT60 = 1.66 [1.58 — 1.73] %, SIT20 = 1.44 [1.38 -
1.50] %). There was a significant interaction between position x muscle for variable Kpa (F =
14.15, P < 0.001, power = 0.99, np2 = 0.32). KPa was significantly higher in SUP60 compared
to SUP20 (p<0.001), SIT60(p<0.001) and SIT20(p<0.001) in RF. The KPa in VL was
significantly higher in SUP60 compared to SUP20 (p<0.001), SIT60 (p=0.01) and SIT20
(p<0.001). RF KPa was significantly higher than VL in the SUP60 position (p<0.001), however
there was no significant difference when comparing the muscles in the SUP20 (p=0.82), SIT60
(p=0.94) and SIT20 (p=0.99) positions. There was a significant interaction between position X
muscle for variable /S (F = 9.13, P < 0.001, power = 0.99, np2 = 0.23). The m/S was
significantly higher in SUP60 compared to SUP20 (p<0.001), SIT60 (p<0.001) and SIT20
(p<0.001) in RF. The m/S in VL was significantly higher in SUP60 compared to SUP20
(p<0.001), and SIT20 (p<0.001), and there was no significant difference in SUP60 (p=0.20).
RF m/S was significantly higher than VL in the SUP60 position (p<0.001), however there was
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no significant difference when comparing the muscles in the SUP20 (p=0.76), SIT60 (p=0.99)
and SIT20 (p=0.99) positions.

Main effect position: p<0.001 Main effect of position: p <0.001
Main effect muscle: p=0.001 Main effect of muscles: p=0.004
Main effect between position and muscle: p<0.001 Main effect 1 position and - p<0.001
* *
25 | | 3m

204

Positions Positions

Figure 4: Bar graphs. (mean and 95% CI) comparing muscle ultrasonography variables: KPa (A),
m/S (B) m/S, obtained in the SUP60 UP, SUP60 INT, SUP60 DEEP, SUP20 UP, SUP20 INT, SUP20
DEEP, SIT60 UP, SIT60 INT, SIT60 DEEP and SIT20 UP, SIT20 INT, SIT20 DEEP. Black dotted
loops indicate comparisons between position groups. Traced line indicate comparisons between depht
groups. Significant differences (p <0.05) are represented by an asterisk (*). 95% CI = Confidence
interval; KPa: shear wave; m/s: shear wave velocity; SUP60: supine with knee 60; SUP20: supine
with knee 20; SIT60: siting with knee 60; SIT20: sitting with knee 20; RF: Rectus femoris; VL:
Vastus lateralis; UP: Upper; INT: Intermediate.
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Table 1. Kpa an m/S in different muscles grouped by joint angle
Rectus femoris SUP60 SUP20 SIT60 SIT20

KPa 12.41 7.76 7.87 6.78
(11.30,13.52) (7.14,8.39) (7.33,8.41)  (6.21,7.35)
m/s 1.97 157 1.64 1.46

(1.88,2.07)  (1.66,1.83) (1.551.73)  (1.41,1.52)

Vastus lateralis

KPa 9.63 7.22 8.30 6.52
(8.67,10.59)  (6.56,7.89) (7.57,9.02)  (5.96, 7.09)
m/s 1.74 151 1.66 1.44

(1.66,1.83)  (1.45,1.58) (1.58,1.73)  (1.38, 1.50)

Values are reported as estimated marginal means from the models (95% confidence interval).

7.3 Comparing position and depth

The main effect of position and depth on kPa values (Table 11- Suplementary table) (p
= 0.003) indicated significantly higher stiffness values at the upper depth across all evaluated
positions: SUP60 = 12.52 [11.40 — 13.65] %, SUP20 = 8.98 [7.85 — 10.12] %, SIT60 = 9.06
[8.37 — 9.75] %, and SIT20 = 7.51 [6.55 — 8.48] % (figure 5). Intermediate depth also showed
substantial stiffness, albeit lower than the upper depth: SUP60 = 10.49 [9.64 — 11.34] %, SUP20
=7.00 [6.47 — 7.53] %, SIT60 = 7.68 [7.18 — 8.18] %, and SIT20 = 6.35 [5.85 — 6.84] %. The
deep region exhibited the lowest stiffness values: SUP60 = 10.05 [9.25 — 10.84] %, SUP20 =
6.49 [6.15—6.83] %, SIT60=7.51[7.07 — 7.96] %, and SIT20 = 6.09 [5.82 — 6.37] %. Similarly,
for m/s, the main effect of position and depth (p = 0.003) demonstrated higher velocities at the
upper depth: SUP60 =1.99 [1.89 — 2.08] %, SUP20 = 1.68 [1.58 — 1.77] %, SIT60 = 1.73 [1.67
— 1.80] %, and SIT20 = 1.54 [1.45 — 1.63] %. Intermediate depth also showed considerable
velocity, with slightly lower values compared to the upper depth: SUP60 = 1.82 [1.74 — 1.89] %,
SUP20 =1.50[1.45-1.56] %, SIT60 =1.60 [1.53 - 1.66] %, and SIT20=1.42[1.36 — 1.47] %.
The deep region exhibited the lowest velocities: SUP60 = 1.77 [1.70 — 1.85] %, SUP20 = 1.44
[1.41—1.48] %, SIT60 = 1.62 [1.52 — 1.72] %, and SIT20 = 1.40 [1.36 — 1.44] %. There was a
significant interaction between position x depth for variable Kpa (F = 3.39, P = 0.003, power
=0.93, np2 = 0.10). KPa was significantly higher in the upper region compared to Intermediate
and deep in all positions (p<0.001). The KPa in the upper region in SUP60 showed significant
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difference compared to Intermediate (p <0.001) and deep (p <0.001), however there was no
significant difference in the comparison between Intermediate and deep (p = 0.75). The KPa in
the Upper region in SUP20 showed a significant difference compared to Intermediate (p<0.001)
and deep (p<0.001), however there was no significant difference in the comparison between
Intermediate and deep (p=0.55). The KPa in the Upper region in SIT60 showed a significant
difference compared to Intermediate (p<0.001) and deep (p<0.001), however there was no
significant difference in the comparison between Intermediate and deep (p=0.99). The KPa in
the Upper region in SIT20 showed a significant difference compared to Intermediate (p<0.001)
and deep (p<0.001), however there was no significant difference in the comparison between
Intermediate and deep (p=0.99). There was a significant interaction between position x depth
for variable m/S (F = 3.10, P = 0.006, power = 0.91, np2 = 0.09). The m/S was significantly
higher in the upper region compared to Intermediate and deep in all positions (p<0.001). The
m/S in the upper region in SUP60 showed a significant difference compared to Intermediate
(p<0.001) and deep (p<0.001), however there was no significant difference in the comparison
between Intermediate and deep (p=0.84). The m/S in the Upper region in SUP20 showed a
significant difference compared to Intermediate (p<0.001) and deep (p<0.001), however there
was no significant difference in the comparison between Intermediate and deep (p=0.29). The
m/S in the Upper region in SIT60 showed a significant difference compared to Intermediate
(p<0.001) and deep (p<0.001), however there was no significant difference in the comparison
between Intermediate and deep (p=0.99). The m/S in the Upper region in SIT20 showed a
significant difference compared to Intermediate (p<0.001) and deep (p<0.001), however there

was no significant difference in the comparison between Intermediate and deep (p=0.99).
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Figure 5: Bar graphs. (mean and 95% CI) comparing muscle ultrasonography variables: KPa (A),
m/S (B) m/S, obtained in the SUP60 UP, SUP60 INT, SUP60 DEEP, SUP20 UP, SUP20 INT, SUP20
DEEP, SIT60 UP, SIT60 INT, SIT60 DEEP and SIT20 UP, SIT20 INT, SIT20 DEEP. Black dotted
loops indicate comparisons between position groups. Traced line indicate comparisons between depht
groups. Significant differences (p <0.05) are represented by an asterisk (*). 95% CI = Confidence
interval; KPa: shear wave; m/s: shear wave velocity; SUP60: supine with knee 60; SUP20: supine with
knee 20; SIT60: siting with knee 60; SIT20: sitting with knee 20; RF: Rectus femoris; VL: Vastus
lateralis; UP: Upper; INT: Intermediate.
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Table 2. Kpa and m/S at different depht levels grouped by joint angle
Upper SUP60 SUP20 SIT60 SIT20

KPa 12.52 8.98 9,06 751
(11.40,13.65) (7.85,10.12) (8.37,9.75)  (6.55, 8.48)
m/s 1.99 1.68 1.73 1.54

(1.89,2.08) (158, 1.77) (1.67,1.80)  (1.45, 1.63)

Intermediate

KPa 10.49 7.00 7.68 6.35
(9.64,11.34) (6.47,7.53) (7.18,8.18)  (5.85, 6.84)
m/s 1.82 1.50 1.60 1.42

(1.74,1.89)  (1.45,1.56) (1.53,1.66)  (1.36, 1.47)

Deep SUP60 SUP20 SIT60 SIT20

KPa 10.05 6.49 751 6.09
(9.25,10.84) (6.15,6.83) (7.07,7.96)  (5.82, 6.37)
m/s 1.77 1.44 1.62 1.40

(1.70,1.85)  (1.41,1.48) (1.52,1.72)  (1.36, 1.44)

Values are reported as estimated marginal means from the models (95% confidence interval).

7.4 Comparing depth (upper, intermediate, deep) KPa and m/S between groups

A main effect of depth was observed for kPa (p < 0.001), with higher values in the
superficial region (9.35 [8.70 — 10.33] %) compared to both the intermediate (7.88 [7.42 — 8.34]
%) and deep (7.54 [7.20 — 7.87] %) regions (figure 6). Similarly, for m/s, a main effect of depth
was observed (p < 0.000), characterized by higher values in the superficial region (1.73 [1.66 —
1.81] %) compared to both the intermediate (1.58 [1.53 — 1.63] %) and deep (1.56 [1.51 — 1.61]
%) regions. Significant interaction was observed between depht for variable Kpa (F = 35.54, P
<0.001, power =1.00, np2 = 0.55 The Upper KPa region was significantly higher compared to
Intermediate and Upper (p<0.001). However, there was no significant difference between
Intermediate and deep (p=0.36). Significant interaction was observed between depht for
variable m/S (F = 30.19, P < 0.001, power = 1.00, np2 = 0.51). The Upper m/S region was
significantly higher compared to Intermediate and deep (p<0.001). However, there was no

significant difference between Intermediate and deep (p=0.59).



30

Main effect of depht: p<0.001 Main effect depht: p<0.001

S 9 T

KPa

Depht

Figure 7: Bar graphs. (mean and 95% CI) comparing muscle ultrasonography variables: KPa (A),
m/S (B) m/S, obtained in the upper, intermediate and deep regions. Traced line indicate comparisons
between depht groups. Significant differences (p <0.05) are represented by an asterisk (*). 95% CI =
Confidence interval; KPa: shear wave; m/s: shear wave velocity.

8. DISCUSSION

This is the first study to evaluate the muscular stiffness of RF and VL through
elastography, manipulating the hip and knee joint positioning in healthy adults. Our study
identified the following findings: (1) Higher stiffness (KPa and m/s) was observed in the SUP60
position for both RF and VL. (2) Stiffer conditions (KPa and m/s) were consistently found in
the superficial regions across all positions compared to the intermediate and deep regions. (3)
Greater stiffness (KPa and m/s) was noted in the superficial region compared to both the
intermediate and deep regions. Thus, structure architecture and the arrangement of structures in
SUP 60 position, generates a greater passive rigidity compared to other positions. The surface
regions have a higher stiffness compared to the other regions. Probably because the wave has
more difficulty in spreading in deeper regions of the muscle.

Recognizing higher stiffness in specific muscles or positions through research and how
the structures will relate, in the future can contributes to clinical practice by guiding diagnosis,
treatment planning, functional improvement, and injury prevention. Changes in stiffness can be

explained to changes in structure as connective tissues as fascias (Granzier, Labeit, 2004; Stecco
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et al.,2015), and this can explain the behavior of rectus femoris (biarticular) and vastus lateralis
(monoarticular), even hip not influencing the vastus lateralis.

Our data analysis revealed that the SUP60 position exhibited higher stiffness in both KPa
and m/s compared to the other positions. This observed difference in stiffness may be attributed
to the specific muscle capacity in this joint configuration. Muscle capacity, influenced by the
formation of cross-bridges, directly correlates with Young’s modulus and serves as an indicator
of strength during isometric contractions (Bastijns et al.,2020). In a similar protocol, but using
an active assessment, de Sousa et al., (2023) demonstrated that the Young modulus of the
quadriceps femoris is higher when the knee is flexed at 60° compared to 20° during voluntary
isometric contractions. Furthermore, their study indicated that the SUP60 position elicited
higher maximum voluntary isometric contraction (MVIC) values compared to SUP20, SIT60,
and SIT20, suggesting superior force transmission capability in the SUP60 position. Studies by
Lui et al., (2019) and Hug et al., (2015) suggest a relationship between muscle strength and
elastography. Additionally, Bouillard et al., (2011) proposed a correlation between torque
production and kilopascals (KPa) during muscle contraction.

While numerous studies have explored the quadriceps in literature (Ewertsen et al., 2016;
Carpenter et al., 2015; Alfuraih et al., 2018; Lacourpaille et al.,2015), no study to date has
systematically evaluated muscle stiffness using elastography with varied joint positioning of
participants. Most investigations into these muscles typically employ protocols where subjects
are positioned supine (Andonian et al.,2016 ; Kot et al., 2021; Alfuraih et al., 2018). However,
these studies exhibit significant variability in the specific knee joint angles tested (20°, 30°, and
0°, respectively). Bastijns et al., (2020) highlights in a review one of the primary challenges in
elastography as the lack of protocol uniformity and standardization across studies. Dillman et
al., (2015), Alfuraih et al., (2017), and Franchi-Abella et al., (2013) have noted that outcomes
vary based on the ultrasound system, methodology, and transducer used, complicating direct
comparisons between studies. In our study, we observed that the upper region consistently
exhibited higher stiffness across all evaluated positions compared to the intermediate and deep
regions. This finding is consistent with previous research. For example, Ewertsen et al., (2016)
investigated muscles such as the biceps brachii, gastrocnemius, and QF, segmenting their
images to analyze stiffness values across different muscle depths. They similarly reported
decreasing stiffness values with increasing depth. These findings support our observations
regarding variations in muscle stiffness across different regions within the same muscle group.

The reliability of elastography diminishes with increasing muscle depth due to reduced

shear wave propagation, as highlighted by Creze et al., (2017). This effect is more pronounced
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in robust muscles compared to less robust ones. Several factors contribute to the attenuation of
wave propagation, including adipose tissue thickness, BMI, muscle depth, fiber type
composition (type | and Il fibers), bone structure, and underlying pathologies (Bastijns et al.,
2020; Drakonaki et al., 2012). Cadaver studies have examined how these tissues affect stiffness
measurements, but findings on their impact vary (Y oshitake et al., 2016). Recommendations by
Alfuraih et al., (2018) suggest limiting depth to 4 cm for accurate measurements, although
applicability may vary depending on population, region, anatomy, and muscle type. In contrast,
Carpenter et al., (2015) observed differences in data but did not exceed a depth of 2.5 cm in
their measurements. The heterogeneity in study characteristics likely contributes to variations
in reported data across different research efforts. Thus, an alternative approach will attempt to
standardize the protocol with shear wave elastography (SWE), observing confounding variables
such as muscle length, depth of the region of interest (ROI) and adipose tissue. It is important
to acknowledge the limitations of this study. Firstly, the results SWE can vary significantly
depending on the protocol, evaluator, tissue characteristics, and adipose tissue layer. Variations
in the distribution of regions of interest (ROI) can occur, particularly in deeper regions
compared to superficial ones, influenced by individual adipose tissue characteristics. Even with
participants of similar characteristics, controlling for these layers' interference presents
challenges. Additionally, our study involved data collection sessions with seven days between
them. This could potentially induce adaptations in the muscles analyzed, reflecting changes in
participants' routines over time. Therefore, for future studies employing similar protocols, we
recommend conducting data collection sessions on the same day to minimize the influence of

external factors as much as possible.

9. CONCLUSION
Our elastography findings indicate that both the rectus femoris (RF) and vastus lateralis
(VL) exhibit greater stiffness when positioned at SUP60 compared to SUP20, SIT60, and
SIT20. Additionally, we observed higher stiffness in the upper regions of these muscles across

all tested positions, in contrast to the intermediate and deep regions.

10. PRACTICAL IMPACTS OF FINDINGS FOR SOCIETY
This study serves as a first step to a greater understanding of this new technology, as well
as the observation of the relationships between muscle structures, to in the future enable more

complex investigations and understanding as all about these relationships.
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Apresentagcio do Projeto:

RESUMO: "Contexta: & estmulagio ebbtrica neuromuscular (EEMM) do misculo quadricepsfemanal (QF) &
utilizada em programas de reabilitagio fialea, uma vez gue promowe amelhora da fungdo do sistema
s cubtesqueldtice. Mo entanto, Uk das limitagbesdesta teonica & o raplde surgimento da tadiga & do
desconforto sensorial percebldo sendo possivel otimiza-la por melo de ngulos articulares adequados
{exernplo: 607 deflexdo de [oelho), ou seja, adequando o comprimente da unidade musculotendinea(LMT).
O comprireento da UMT & um determanants da geracBo de forga, fatigabllidade, desconforto & captacho de
axigénio. Forém, s efeilos da EENM, aplicada em dierentescomprimentos da UMT na produglo de forga,
fatigabilidade neuwromuscular.desconforto & captagBo de oxigénlo nd3o foram Investigados Objetivo:
Investigar os efeltos do comprimento musculotendines do OF na fadiganeuramuscular, desempenho
neursmuscular, desconforte percebido e extragopeniérica de oxigénio duranie

EENM Métodos: Trata-ge de um ensso crossover, experimental, randomizado & duplo-cago, composta por
até 36 participantss seuddvess (18-45 anos de idade) de ambos o8 saxes. O protocolo de EENM aoomerd a
20% da contragio voluntara rméxima nas posigies:suping com joelho em 607 de flexdo (SupBl), sentado
com joelho em 60 (SenG0),supeme com (oelho am 20° (Sup20) & sentado com joelha em 207 (Sen20). Apds
umasessfo de familianzagdo, o protocolo conslabrd de 20 contraghes em quatro sessiesseparadas por 72h,
uma sessho para cada
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posscionamenta. Os desfechos anbes & apds o protocolo de fadiga serdo & contraclo voluntaria, o nivel de
ativacdo voluntana, a ondaM. o reflexs H, 8 abvacioe muscular

(Root Mean Square), a frequéncia de ativagho, aarguitetura muscular, as propriedades tendineas, o
desconforto sensonial & a extraciotecidual de oxgénio. Além disso, & variagdo da arquitetura muscular, as
propriedadestendineas & o desconforio sensorial serdo avallados durante confracies voluntarias antesa
apos a fadiga induzida pela EENM._Resultades esperados: Espera-se gue com o joelho a 609,
independentemeante daposi¢ho do quadril, haja malor fatgabdidade, porém menor desconforte sensornkal
nollF. A fadiga serd explicada por fatores centrals e periféricos, predominando menorefickéncia da

Conbn sl 2o Paseoe. B 192 558

contratiidade & caplacBo de oxigénio nas posiches encurtadas e menorativacdo ceniral nas posighes
alongadas

Hipdtese:
“A fadiga voduntéria serd malor com o joelhae ern 60° de flexBo de joelho, comparada com20®, poedenda ou
N&0 sef malor guando o gquadnl estiver estendide, comparade com Betido;, O reflexe H, a onda M. o nivel de
ativaiio voluntaria, a RMS e a freguéncia medianapederdo estar mals reduzidos com o joelho 8 307 apds
fadiga com EEMM, devido fadigacentral ern detriments da peridérica. O guadril estendide poderd reduzir &
fadiga central eaumentar & tadiga periténica; A fadiga evocada (varacio do lorgue evocado niclands & 20%
da CWIM & do tempaintegral de torque) serd malor com o joelho em G0° de flexdo de joelho, comparada
com20®, podendo ou ndo ser maler quanda o quadrll estiver estendido, comparada com

flatide; A varlagso do p e do Cf durante a MVIC reduziro proporcionalmenta 2o torque se ndohauver o talor
confundider da redugdo da ngidez das estruluras tendineas, conformehipdtese abaixg, A espessura
muscular, cuja varacBo & mals relevante no repouso indicard a presenca de edema muscular, que serd
makod nas posicies com o jeelho a B0% A rigidez do CTA poderd ser reduzida apds o protoecolo de fadiga
para &s posicbes

malsalongadas; As propriedades tendineas podero estar alleradas (menor fgidez e menor mdduloeldstico)
reduzida apts o protocobe de fadiga para 83 posigles mals alongadas: A integral de forga-ternpo serd em
rdia malor nas posigbes com o joelho a 60°, porém,esta reduzird mats ao longo da sessdo, Indicando
masor fadiga com o joelho a 60% A extragho tecidual de cxbgdnlo sera malor guanda malor torgue for
desemvolvido independente da atividade eletroméogratica; Independentements da posicBo do guadrll, menar
amgiitude de cormente Serd requerida coom o peelhe a 607 para manter o oagee 8 20% da CW. Portanto,
havera maler eficiénclada comente em G0° comparads a 209 Serd reportada menor percepio de
desconforta com o [oslho a 60°
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comparado a 20° com nenhuma ou pouca nfuénca do guadril.”

Canbrussis & Paseos B 192 558

Metodologia Proposia:

“Os participanies seromiciaimente familiarizados &8s avallagbes @ ao treinamento com EENM. Ma
familiarizagho, serBo realizados: antropometria (altura & peso), localizagBo dos pontos
roiores randomizagio da ordern do posiclonaments articular que serd avallado: potenciacho muscular; &
s CVM e trds contraglies eletricamente induzidas em cada posicdo detresnamento para werificar g2 os
participantes podemn alcangar 20% da CWM por meso daEENK. O profocolo de fadiga corm EENM ocormerns a
20% da coniragdo voluntaria maximanas posigies suping com jeelho em 60° de flexBo (Supsld), sentado
com joelho erm 605 Sendd), supno com joelho em 20° (Sup20) e sentado com joelho em 207 (Sen20). Apds
atamiliarizagho, heverd guatro sessbes, uma para cada posigho, para aplicagio de um protocolode fadiga
induzida pela EEMM, composto por 20 contragies elatricaments induzidas a 20%.da CVIM (CEI20%:). Cada
sesgdo, separada por T2 h. Serdo observados o8 seguintes desfechos antes & apds o profocolo de fadiga:
CWING reflexo H, Onda M & nivel de ativagio voluntaria; atividade eletromiografica; arguitetura muscular;
propriedades tendineas eextracdo tecidual de magénés. Duranie o profocolo de fadiga (cinco primelras e
cinco dtimascontracbes evocadas, serdo avaliados: (1) fatigabdidade pela curva de decalimento do
torque2) integral da forga-tempe; (3) extragio tecidual de cxiggnio. B) Ordemn cronoldgica dasavaliaghes e
da Intervencao. Legenda:

EWA: Escala Visual Analdgica; MIRS: Mear InfraredSpectroscopy (para avakagio da exfragio tecidual de
oiplnio). RF: reto fermoral; VL vastolateral; TP: tend&o patelar. CWIM: contragBo voluntana méxdma®.

Criténn de Inclusio:

“Serdo incluidos participantes idade entre 16 & 45 anos de (dade, de amboes ossecos, higidos, com indice de
reassa corpdeea (IMC) entre 18,5 & 24,8 kg/m® (ou seja eutrdfices), gue nBo realizaram de tresnamento
slatematico de fortalecimento dosmembros inferlores nos dltimos seds meses, praticantes ou nBo de
atividades esportivas recreativamente, fisicamente ativos de acorde com o Ouestionare Intemacional
deAtfividade Fisica (IPAG), & com alcance de lorgue minimo de 20% da CWM durante aEEMM =em
desconforto excessg,”

Criténo de exclusdo:
"Serdo excluidos agueles que tiverern: edema, lesBo démmica, kmitagio da amplitude de
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movimento aficular, deformidade ou amputagdo em qualguer pane dos membros inferiores, assim como
histdrico de uxaclo patelar culra uma nos membros inferiores ou tronco que com@rometa o8 resultados.
Tarnbérn serfo excduidos aqueles com condigdes gue afetern a morfelogia musculotendinea ou &
excitabdidade newomuscular como diabetes mellitus

tipo I, hipercolesteralemiafarmdiar, deenga neuromuscular e cardiopatia grave, cu condigies que inviabilizem
ACOOperatin com 08 procedimentos. coma défict cognitivo, doenca psiquidinea dependéncla guimsca ou
problermas compoertamentals (Dudley-Javoroski et al., 2010)."

Objetive da Pesguisa:

Objetiva Prirmdria:

“Wvestgar os efelios do comprimento musculotendineo do OF na fadiga neuromuscularinduzida pela EENM,
no desempenho muscular, o desconforto @ na extragdo penféricade axgénio.”

Conlrussis S Pascer: B 192 558

Objetivo Secundarks:

“Investigar o indice de fadiga voluntara (variagio da MVIC) apds uma sessio de EEMNMem quatro
combinagies de Angulos do quadril e do joelho; Investigar o reflexs H, a onda M. o nivel de ativacio
volunténa, a RMS e a frequénela mediana antes e apds uma sesslo de EEMM am guatro combinagbes de
anguios do quadrl e do joelho; Investigar o indice de fadiga evocada (variagao do torque evocado Inicando
a 2% dalwiM) durante um profocolo de fadiga com EEMM em quatro combinagdes de ngulos doguadrl &
dio poelho; Analisar a vanagho da espessura muscular, p e do C { durante a CVM antes e apds umprobocolo
de fadiga com EEMM em quatro combinacBbes de dngulos do quadril & dojoelho; Analisar a ngidez do CTA
durante & CWM antes & apbs um protecolo de fadiga comEENM em quatro combinapies de angulos do
quadril & do poelhe; Analisar as propriedades morfoldgicas. mecanicas @ matenas do tenddo patelar antes
eapds um protocole de fadiga com EENM em quatro combinagbes de Angulos do

quadril ede joelha; Analisar a integral de forga-tempo durante um protocolo de fadiga com EEMM em
quatrocombinagies de Angulos do quadrl e do joelho; Analisar a extraclo tecidual de oxigénio antes,
durante apds um protocols de fadiga comEEMM em quatne combinacies de Snguios do guadril & do peedho;
Ayaliar a amplitude da corrente para atingir o torque evecads equivalents a 20% emquatro combinagies de
Angulos do quadril e do joelho; Avallar 8 percepclo de desconforio antes. durante e apés um profocolo de
fadiga emqualre combinagbes de angulos do guadril & do joelho.”

Avaliacho dos Riscos & Beneficios:
Riscos:
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"Durante as avallaghes de contragio voluntina maxima, poderd haver um aumento da pressBo arterial e da
frequéncia cardiaca como comumente esperado durante atividades fisicas desta magnitude. Tanio a
pressdoarterial quanto a frequéncla serdo monitorados antes, durante e

imediatamente apds a realizacio dos testes. Caso guaisguer alteracties fora dos padries de normalidade
sejamn obsanvadas, ou caso o participants ndo se ainta confotével para continuar, o teste serd interrompldo
irmediatarvente & lodas as medidas de culdados para a sadde do participante serdo providencliadas. Durante
0s procedimentos gue envelvem eletmestimulacie, podera haver fadiga muscular, desconforto sensarial e
dar muscular de

inicio tandso (apts a indugdo da fadiga). Caso quaisquer alteragdes fora dos padries de normalidade seam
observadas, ou caso o participante ndo se sinta confortdvel para continuar, o teste serd interrompsdo
imediataments & todas as medidas de culdados para a sadde do participante serBo providencladas. As
dores musculares de inkclo tande poderdo ser manimizadas com aplicagio de compressa de gelo & repausa.
Além disso, poderd

aoofrer iritagdo cutines agds & elefroestimulagho @ pelos eletrodos de EMG, gque tende a reduzir apds
algumas horas da sessho de eleroestimulagdo. Caso os sintomas se exacerbem, os pesquisadones se
responsablizardo por providenciar o atendimento medico emergencial e

laboratonal necessanos. Podem ocormer reacies adversas a nivel da pele devido a NMES, porém, Usaremos
rreatedias que ndo possuem histdrico de proporclonar reagdes adversas ao contato com a eplderme integra
& a intensidade da cormente alétrica serd estabelecida de forma gradual e de acords com a tolerdncla do
partcipante. O riscos decomentes de sul paricigacio na pesquisa ado reagbes adversas devido a NMES,
fadegamuscular & constrangimento durante as avallagdes ®

Contrusio 5o Paseosr B 193 558

Beneficios:

" Og parlicipanies receberfo, por e-mall elou verbalmente, os resultados dos exames de imagem &
eletramiograficos realzados e sardo

explicados o significado e &s repercussies conformne a literatura aneal;

= 0= participantes terSo a forga e resisténcla dos extensores do joelho avaliadas, e saberdo se se
encontram na falza esperada para sua falza

etiria e perfl

= Apds finalizacio do estuds & publicaclo, todos os participantes terdo |we acesso 4 Tese no acerva da
Biblioteca d¢a UnB/FCE, bem como nas
bases online em que o8 artigos publcados eatejam disponivels.

= e vool aceitar participar, estara confribuindo para o entendimento do posicionamento ideal dos
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memibros inferiores para wso da Estimulagso

Elétrica para que seus efelios sejarm oimzados em pesscas que precisam dessa terapla para reabilitaclo e
recupera;ao da forca & da massa muscular.”

Comentarios & Consideracbes sobre 8 Pesquisa:

Projeto de Doutorado do Programa de Pds-Graduaclo em Cnclas da Reabditacio. na linha de Pesguisa
Aspactos bioldglcos, biomé&canicos e funclonals associados & prevencdo & reabilitagio. O cnentador & o
Prof. Jodo Luiz Quaglicttl Durigan e os colaboradores sdo Jonathan Galvio Tendeo Cavalcante, Luls André
Oliveira Soares; Datane Viewra de Barmos, Leandno Gomes de Jesus Fermeira; Caeo Edusido Rocha da Siva;
Gabriel de Oliveira Resende; Leonarde Barmos Canclano; Sofia Glowanna Oliveira de Lima; Ana Clafa
Redrigues de Matos Félix; Viténa dos Santos Nogueira.

A pesquisa preve 36 participantes.

Consideragbes sobre o8 Termos de apresantagso obrigabdria:
Todos o8 lermos joram apresenatos.

Recomendacoes:

Mo ha.

Conclusdes ou Pendéncias @ Lista de Inadeqguagbes:
Todas as pendencias foram atendidas.

Consideragbes Finais a critério do CEP:

Ddante do exposto, o Comité de Etica em Pesguiza — CEP, de acordo com as atribuigdes definidas na
Resolugio CNS n.* 466, de 2012, e na Morma Operacional n.* 001, de 2013, do CHNS, manifesta-se pela

aprovagio do prolocolo de pesdquiss.

Este parscer foi elaborade baseado nos documenios abaixe relacionados:

Tipo Documento Arquive Postagem Autor Situagho

Informacies Basicas| PB_IM BASICAS_DO_P | 100062023 ACERD
artadependancias. pdl 18006500023 |V R HU DE Aoslo

- - _ Jld440 |
Frojeto Detalhado /| Frogeto. pdl 18006500023 |V R HU DE Aoslo
Brochira 14:32:19 | S0UZA RIBEIRD
investigador
Enderago:  UNE - Prédic da Unidade de Ensing & Dockncla (UED], Cenan Mefropolitana, conj. &, lobe 01, Sala ATO7IEE
Bairro: CEILANDHA SUL (CELANDLA] CEP: 73 220.900
UF: OF Municipio; BRASILLA
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[Frojeln Detalhade | | Propete. oocs 10062023 |VICTOR HUGD DE | Aceko
Brachura 142052 |SOUZA RIBEIRO
||:|!a|:|.|gnmr
Chutros LattesVilona pdl 10/052023 |VICTOR HUGO DE | Aceko
11:38.22 |SOUZA RIBEIRD
[ Chutros LattesSofiaGlovannalivesra pdi 10/052023 |VICTOR HUGO DE | Aceto
11:32:50 | SOUZA RIBEIRD
[Outroa LattesAnaCiarakndrigues. pdl 10/052023 |VICTOR HUGO DE | Aceko
11:32:21_ | S0OUZA RIBEIRD
[Outroa cana_para_encamnhamento_ge_pende| 10/052023 |VICTOR HUGO DE | Aceko
nciag docy I 11:22:54 | SOUZA RIBEIRD
[Outros carta_para_encaminhamento_gde_pende| 10/052023 |VICTOR HUGO DE | Aceko
ncia 11:21:48 | SOUZA RIBEIRD
TCLE | Termoe de TEE&_ﬂmnrrhEIm.p-:ﬂ 10/05/2023 |VICTOR HUGO DE | Aceko
Assentimente / 11:1543 |SOUZA RIBEIRO
Justficativa de
Auséncia
TGLE { Termos de | TGLE, wiciomibeino. docs 10052023 |VICTOR HUGO DE | Aceto
Assentiments | 11:1530  |SOUZA RIBEIRO
Justificativa oe
Auséncia
Cronograma Cronograma pal 10/052023 |VICTOR HUGO DE | Aceko
11:15:00 | SOUZA RIBEIRD
[ Cronegrama CronDgranma gocx 10052023 |VICTOR HUGD DE | Aceko
11:13:44 | SOUZA RIBEIRD
[ Chgamento Orcamento. pdt 101052023 |VICTOR HUGO DE | Aceto
11:13.29 | SOUZA RIBEIRD
[(Ccamenio Crcamento. docx 105023 |VICTOR HUGD DE | Acelo
11:13:10 | SOUZA RIBEIRD
[Cutroa Tarmo_0e_cONCONGAancia_permanente pa| 30032023 |VICTOR HOGO DE | Aceto
f 2214113 |SOUZA RIBEIRO
[(Cuiros Cana_de_encammnamento. pal 0023 |VICTOR HUGD DE | Aceto
_ _ 22:12:20 | SOUZA RIBEIRD
[(Cuiros Termo_de_responsabilidade. pal 3032023 |VICTOR HUGD DE | Aceko
[ _ _ 221133 |S0OUZA RIBEIRD
Folha o Rosio Folha_de_rosto. pdl 30032023 |VICTOR HUGO DE | Aceko
72.00:24 | SOUZA RIBEIRD
[Churos LatlesCake. pol 20052023 |VICTOR HUGO DE | Aceto
_ . 19:49:21 | SOUZA RIBEIRD
[Cutroa Lattesllatane POF ZO/032023 |VICTOR HOGO DE | Aceko
_ 19:48:55 | SOUZA RIBEIRD
[(Cuiros Latesbungan pat 20032023 |VICTOR HUGD DE | Aceto
10:48:11_ | SOUZA RIBEIRD
[(Cuiros Lattestabriel pal 2032023 |VICTOR HUGD DE | Aceko
_ 1347 14
Chutros Lattesjonatan, pdf Z9/03/2023 |VICTOR HUGO DE | Aceko
19:46:57 | SOUZ4 RIBEIRD
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[Culros LattesLeandro.pdi 20/032023 |VICTOR HUGD DE | Aceto
_ 10:46:36 | SOUZA RIBEIRD
[Ouros LattesL eonaroo. pol 20032023 |VICTOR HUGD DE | Aceto
19:46:16 | SOUZA RIBEIRD
[(Cutros LattesLuls.paf 20032023 |VICTOR HUGD DE | Acelo
— e
[Ouros Lattesvicior POF 20/032023 |VICTOR HUGD DE | Aceto
19:45.28 | SOUZA RIBEIRD
Siluagio do Parecer:
Aprovado
Mecesaita Apreciacio da COMNEP:
Mao

BRASILIA, 20 de Julho de 2023

Assinade por:

MARLANA SODARID CRUZ

(Coordenador(a))
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CEP: 72 220-800
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oep ioafigmail oom

Piiggres 3 on




50

12.2 Appendix Il — Suplementary table 1

Supplementary Table 1. Type Il Analysis of Variance Table of KPa.

Sum SQ Meansquare Df Fvalue P value
Positions 1948.23 649 3 74.138 <0.001
Muscles 112.23 112.23 1 12.48 0.001
Depht 538.74 269.37 2 35.54 <0.001
Positions x Muscles 261.31 87.10 3 14.15 < 0.001
Positions x Depht 33.04 5,51 6 3.39 0.003
Muscles x Depht 4.26 2.13 2 1.81 0.171
Positions x Muscles x Depht 1.06 0.18 6 0.16 0.98

Sum SQ: Sum of squares

Df: degrees of freedom

12.3 Appendix 111 — Suplementary table 2

Supplementary Table 2. Type 111 Analysis of Variance Table of m/S.

Sum SQ Meansquare Df Fvalue P value
Positions 16.56 5.52 3 63.93 <0.001
Muscles 0.96 0.96 1 9.71 0.004
Depht 4.32 2.16 2 30.19 < 0.001
Positions x Muscles 1.55 0.51 3 9.13 <0.001
Positions x Depht 0.30 0.05 6 3.10 0.006
Muscles x Depht 0.05 0.02 2 1.99 0.145
Positions x Muscles x Depht 0.01 0.00 6 0.16 0.98

Sum SQ: Sum of squares
Df: degrees of freedom
DenDF: DF in the denominator



12.4 Appendix 1V - Research ethics committee approval

ClinicalTrials.gov PRS Contact ClinicalTrials.gov PRS

Protocol Registration and Results System Org: UBrasilia |User |ASiqueira  Logout

Home = Record Summary

ID: 68446223.2.0000.80 Effect of Femoral Quadriceps Muscle Length on Fatigue Induced by Neuromuscular Electrical Stimulation NCT05905406

Record Summary

“Home Help @

. Record Status
In Progress ==& Entry Completed ==& Approved ==& Released ==» PRS Review == Public

Reset to In-Progress
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