
Universidade de Brasília
Instituto de Ciências Exatas

Departamento de Ciência da Computação

Dynamically Reconfigurable Heterogeneous Parallel
Island Model

(Modelo de Ilhas Paralelo Heterogêneo
Dinamicamente Reconfigurável)

Lucas Ângelo da Silveira

Tese apresentada como requisito parcial para
conclusão do Doutorado em Informática

Orientador
Prof. Dr. Mauricio Ayala-Rincón

Brasília
2024

Ficha Catalográfica de Teses e Dissertações

Está página existe apenas para indicar onde a ficha catalográfica gerada para dissertações de
mestrado e teses de doutorado defendidas na UnB. A Biblioteca Central é responsável pela ficha,
mais informações nos sítios:

http://www.bce.unb.br
http://www.bce.unb.br/elaboracao-de-fichas-catalograficas-de-teses-e-dissertacoes

Esta página não deve ser inclusa na versão final do texto.

Universidade de Brasília
Instituto de Ciências Exatas

Departamento de Ciência da Computação

Dynamically Reconfigurable Heterogeneous Parallel
Island Model

(Modelo de Ilhas Paralelo Heterogêneo
Dinamicamente Reconfigurável)

Lucas Ângelo da Silveira

Tese apresentada como requisito parcial para
conclusão do Doutorado em Informática

Prof. Dr. Mauricio Ayala-Rincón (Orientador)
Universidade de Brasília, Brasil

Prof. Dr. Carlos Artemio Coello Coello Prof. Dr. Leandro dos Santos Coelho
CINVESTAV, México / UNSW, Austrália Universidade Federal de Paraná, Brasil

Prof. a Dr. a Telma Woerle de Lima Soarez Prof. Dr. Daniel Mauricio Muñoz Arboleda
Universidade Federal de Goiás, Brasil Universidade de Brasília, Brasil

Prof. Dr. Rodrigo Bonifácio de Almeida
Coordenador do Programa de Pós-graduação em Informática

Brasília, 26 de abril de 2024

Dedicatória

Dedico a minha família.

iv

Agradecimentos

Gostaria de expressar minha gratidão ao meu orientador, Mauricio Ayala-Rincón, cuja
orientação e apoio foram fundamentais para a realização deste trabalho. À Thaynara
Adrielly de Lima, minha parceira de pesquisa, agradeço pela colaboração e contribuições
valiosas que enriqueceram este projeto.

Agradeço também à Fundação de Apoio à Pesquisa do Distrito Federal (FAPDF) pelo
financiamento das viagens para a apresentação de artigos, possibilitando a divulgação e
o aperfeiçoamento desta pesquisa.

Em especial, gostaria de expressar minha gratidão aos meus pais e à minha esposa,
verdadeiros alicerces ao longo de toda esta jornada acadêmica. Suas palavras de incentivo,
amor incondicional e apoio constante foram a força motriz por trás de cada passo dado
nesta trajetória desafiadora.

À Universidade de Brasília, estendo meu agradecimento pela oportunidade de apren-
dizado proporcionada, pelos recursos disponíveis e pelo ambiente acadêmico estimulante,
que contribuíram significativamente para o amadurecimento deste trabalho.

O êxito alcançado nesta pesquisa é resultado direto da sabedoria e orientação dos
notáveis indivíduos que generosamente compartilharam seus conhecimentos, abrindo ho-
rizontes além da minha visão inicial. Expresso meu mais sincero reconhecimento a todos
que, de diversas formas, contribuíram para o desenvolvimento deste projeto. Seu apoio e
colaboração foram fundamentais para o alcance dos resultados apresentados, e por isso,
sou profundamente grato.

O presente trabalho foi realizado com apoio da Coordenação de Aperfeiçoamento de
Pessoal de Nível Superior - Brasil (CAPES), por meio do Acesso ao Portal de Periódicos.

v

Resumo

Problemas de otimização NP-difíceis são encontrados em diversos campos de ativi-
dade, e à medida que a compreensão e a prática nesses campos avançam, suas complexi-
dades se acentuam. Nas últimas décadas, diversos algoritmos bioinspirados para resolver
problemas de otimização foram propostos. Cada um desses algoritmos possui caracte-
rísticas únicas que impactam de maneiras distintas tanto o processo evolutivo quanto a
qualidade das soluções alcançadas. O Modelo de Ilhas Paralelas (MIP) é uma estraté-
gia de paralelização de algoritmos bioinspirados que proporciona ganhos significativos na
acurácia das soluções. Nesse modelo, o conjunto de soluções candidatas é dividido em
subpopulações denominadas ilhas. Cada ilha evolui seu conjunto de soluções por meio de
seu próprio algoritmo bioinspirado, operando de forma paralela às outras ilhas. Periodica-
mente, as ilhas trocam soluções entre si através do processo de migração. Esse movimento
de soluções entre as ilhas é condicionado à topologia do modelo e a um conjunto de regras
que compõem a política de migração. Este trabalho propõe uma nova abordagem de
implementação para MIPs, inspirada em heterogeneidade e reconfiguração algorítmica: o
MIP heterogêneo com reconfiguração baseada em estagnação. A heterogeneidade permite
a execução de diferentes algoritmos bioinspirados nas ilhas, aumentando a diversidade. Ao
mesmo tempo, a reconfiguração algorítmica permite a substituição dos algoritmos bioins-
pirados caso a estagnação das ilhas é detectada. Durante o processo evolutivo, cada ilha
mantém um registro do seu progresso, mensurado pelo desempenho do melhor indivíduo
em cada ilha, na geração atual e nas duas gerações anteriores. Sempre que exista estag-
nação, ou seja, não se detecte progresso, a ilha é reconfigurada para continuar o processo
evolutivo executando o melhor algoritmo bioinspirado até o momento. Essa abordagem é
particularmente útil para lidar com problemas de otimização nos quais encontrar soluções
ótimas em tempo polinomial é impraticável. O novo modelo com reconfiguração baseada
em estagnação computa soluções melhores que as obtidas por uma variedade de MIPs
homogêneos e MIPs heterogêneos com reconfiguração aplicada numa frequência fixa.

Palavras-chave: Algoritmos Bioinspirados, Modelos Paralelos de Ilhas, Reconfiguração
Algorítmica, Problemas NP-difíceis

vi

Abstract

NP-hard optimization problems are encountered in various fields of activity, and as
the understanding and practice in these fields advance, their complexities become more
pronounced. Several bioinspired algorithms have been proposed in recent decades to ad-
dress optimization problems. Each of these algorithms possesses unique characteristics
that impact the evolutionary process and the quality of the solutions achieved in dis-
tinct ways. The Parallel Island Model (PIM) is a strategy for parallelizing bioinspired
algorithms that yields significant gains in solution accuracy. In this model, the set of
candidate solutions is divided into subpopulations known as islands. Islands parallelly
evolve, and each island modifies its solutions using its bioinspired algorithm. Periodically,
islands exchange solutions through the migration process. This movement of solutions
between islands is conditioned by the model’s topology and a set of rules comprising the
migration policy. This work aims to design a model that profits from the PIM architec-
ture to compute the highest quality solutions. A new model is introduced, inspired by
heterogeneity and algorithmic reconfiguration: the stagnation-based reconfigurable het-
erogeneous PIMs. Heterogeneity allows the execution of different bioinspired algorithms
on islands, increasing model diversity. At the same time, algorithmic reconfiguration
replaces the applied bioinspired algorithm when islands’ stagnation is detected. During
the evolutionary process, each island maintains a record of its progress, measured by the
fitness of the best individual in each island in the current and previous two generations.
Whenever an island presents stagnation, i.e., no progress is detected, the island is reconfig-
ured to continue the evolutionary process by executing the best-bioinspired algorithm up
to that point. The new stagnation-based reconfigurable model provides better solutions
than various homogeneous PIMs and heterogeneous PIMs with fixed-frequency-based re-
configuration.

Keywords: Bioinspired Algorithms, Parallel Island Models, Algorithmic Reconfiguration,
NP-Hard Problems

vii

Sumário

1 Introduction 1
1.1 Motivation . 2
1.2 Contribution . 4
1.3 Work structure . 7
1.4 Resumo Estendido (Introdução) . 8
1.5 Motivação . 10
1.6 Contribuição . 12
1.7 Estrutura do Trabalho . 15
1.8 Glossary . 17

2 Theoretical Referential 19
2.1 Bio-inspired Algorithms . 19

2.1.1 Self-Adjusting Particle Swarm Optimization 21
2.1.2 Social Spider Algorithm . 22
2.1.3 Differential Evolution Algorithm . 25
2.1.4 Other algorithms . 27

2.2 Parallel Island Models . 29
2.2.1 Communication Topologies . 32

2.3 Case studies . 36
2.3.1 Reversal Distance . 36
2.3.2 Translocation Distance . 38
2.3.3 N-Queens . 41
2.3.4 Task Mapping and Scheduling . 42

3 Overview of Preliminary Research 44
3.1 Evolution and Calibration of Homogeneous Parallel Island Models (HoPIMs) 44
3.2 HoPIMs: Synchronous/Asynchronous, Migration Strategies, Parameter Eval-

uation, BAs . 46
3.3 Related Work in Homogeneous Island Models 48

viii

3.4 Comparative Analysis of Homogeneous and Heterogeneous Models 52
3.5 Reconfigurable Heterogeneous Models . 54
3.6 Summary . 59

3.6.1 Summary on Homogeneous Parallel Island Models 59
3.6.2 Summary: Heterogeneous Parallel Island Models 62

4 Stagnation-Based Reconfigurable Heterogeneous Parallel Island Models 66
4.1 Contribution . 66
4.2 Reconfigurable HePIMs with stagnation policy 67

4.2.1 Communication Topologies . 67
4.2.2 Reconfigurable islands . 68
4.2.3 Stagnation-based Reconfigurable HePIMs 69

4.3 Experiments and analysis of accuracy . 70
4.3.1 Parameter Setup . 74
4.3.2 Analysis of Accuracy . 74
4.3.3 Performance . 82
4.3.4 Statistical Analysis . 83

5 Related Work 90

6 Conclusion and Future Work 97

Referências 102

ix

Lista de Figuras

2.1 One-point and double-point crossing operators. 20
2.2 Flowchart of the GA and GAD. 21
2.3 Flowchart of the PSO. 23
2.4 Flowchart of the SSA. 26
2.5 Flowchart of the DE. 28
2.6 Static topologies: (a) binary tree, (b) ring, (c) complete graph, (d) x×y-net

where x and y represent rows and columns in the net, (e) torus. 33
2.7 Classification of sorted islands. 36
2.8 Organization of dynamic topology neighborhoods. 36
2.9 The dynamic topology resembles a complete graph, where all islands poten-

tially have the capability to communicate. However, the choice of strategy
defines an island’s neighbors, which can be gbmm, ≃, or Random. 37

2.10 Prefix-prefix and prefix-suffix translocations over a signed genome. 39
2.11 Movement of a queen chess piece on an 8× 8 board. 42
2.12 A placement x where fattack(x) = 0. 42

3.1 (a) HePIM organized with a complete graph topology. For simplicity, only
a subset of edges. (b) HePIM configuration using a binary tree topology. . 52

3.2 Accuracy of PHet
Tr12A and related HoPIMs . 54

3.3 Accuracy of PHet
gbmm12A and related HoPIMs. 55

3.4 Accuracy of PHet
Tr12S and related HoPIMs. 56

3.5 Accuracy of PHet
gbmm12S and related HoPIMs. 57

3.6 Example of periodic reconfiguration in the dynamic complete graph topol-
ogy. For simplicity, only a subset of the edges between all islands is in-
cluded. In each reconfiguration cycle, according to the number of gen-
erations controlled by the parameter (RF), the gray island has the best
performance, and the red-dotted island, with the worst performance, has
its BA updated to the BA being executed by the gray island. 58

3.7 P recHet
Tr12A , PHet

Tr12A and related HoPIMs accuracy. 59
3.8 P recHet

gbmm12A, PHet
gbmm12A and related HoPIMs accuracy. 60

x

3.9 Visual Exploration: Mind Map on HoPIMs in our Scientific Research. . . . 64
3.10 Visual Exploration: Mind Map on HePIMs in our Scientific Research. . . . 65

4.1 (a) A dynamic complete graph topology. (b) binary tree topology. In (a),
only a subset of the edges between all islands is included for simplicity. . . 68

4.2 Example of stagnation-based reconfiguration on the complete graph topol-
ogy. For simplicity, only a subset of the edges between all islands is in-
cluded. The yellow islands represent stagnated islands in each generation
that have undergone reconfiguration to the BA algorithm executed by the
best performance island, in gray, computed at the beginning of each cycle
of evolutionary generations defined by the parameter BACI. 71

4.3 Flowchart of the stagnation-based reconfigurable HePIMs. 72
4.4 Accuracy of the sequential BAs: GA, GAD and DE. The radar chart is scaled

according to the worst performance for each input size. Since the target
optimization problem URD is a minimization problem, the smaller the
radius, the better the result. 77

4.5 Above radar chart: accuracy of the HoPIMs from GA. Below radar chart:
Accuracy of the HoPIMs from GAD. Each radar chart is scaled according
to the performance of the associated sequential algorithm since it provides
the worst performance. 78

4.6 Above radar chart: accuracy of the HoPIMs from DE. Below radar chart:
Comparison of the accuracy of all HoPIMs. The first radar chart is scaled
according to the accuracy of the sequential model, while the second radar
chart is scaled according to the model with the worst accuracy for each
input length. 79

4.7 The diagram shows the number of generations required for the reconfig-
urable HePIMs P recHetStag

Tr12A and P recHetStag
gbmm12A to become HoPIMs, i.e., to run the

same BA in all their islands homogeneously. 80
4.8 Above radar chart: accuracy of the HoPIMs from DE. Below radar chart:

Comparison of the accuracy of all HoPIMs. The first radar chart is scaled
according to the accuracy of the sequential model, while the second radar
chart is scaled according to the model with the worst accuracy for each
input length. 81

xi

4.9 Comparing the accuracy of static models: HoPIM from DE and HePIM, and
reconfigurable HePIMs, and dynamic models: HoPIM from DE and HePIM,
and reconfigurable HePIMs. The charts are scaled according to the model
with the worst performance. The HoPIM with static tree topology, P DE

Tr12A,
has the worst accuracy. The dynamic complete graph topology and the
stagnation-based reconfigurable HePIM presented the best accuracy. . . . 86

4.10 Radar chart compiling all accuracies in Figure 4.9. The chart is scaled
according to the accuracy of the static homogeneous model P DE

Tr12A providing
the worst performance. The best accuracy is obtained in all cases by the
dynamic stagnation-based reconfigurable heterogeneous model, P recHetStag

gbmm12A . . 87
4.11 The radar chart shows the accuracy obtained by static and dynamic HoPIMs

from GA and GAD with an evolutionary history of 150 generations. Compare
this with the radar chart on Figure 4.8 showing that in experiments with
200 generations, not necessarily the GA based homogeneous models provide
the best performance. Also, in Table 4.4, no reconfigurable model finishes
running GAD in all its islands. 88

4.12 Comparing the partial evolution during 200 generations of the best models:
HoPIM P DE

gbmm12A and reconfigurable HePIM P recHetStag
gbmm12A 89

xii

Lista de Tabelas

3.1 Speedups for reconfigurable HePIMs. 57

4.1 Parameter Value Ranges . 75
4.2 Parameter Settings for GA, GAD, DE and associated HoPIMs. 75
4.3 Parameter Settings for HePIMs. 75
4.4 Configuration of islands of the reconfiguralbe HePIMs P recHetStag

Tr12A and P recHetStag
gbmm12A

at the end of the evolutionary cycle (200 generations). 82
4.5 Speed-up for HePIMs regarding the sequential version of GA, GAD, and DE for

the dataset with genomes of length 150. The table also includes the average
time in seconds of each algorithm (in the second column and second row). . 83

4.6 Holm test for P DE
gbmm12A x HePIMs. 85

xiii

Chapter 1

Introduction

Bioinspired Algorithms (BAs) represent methods grounded in natural phenomena and

principles derived from biological processes, the behavior of organisms, and complex natu-

ral systems. These algorithms foster innovative and practical approaches for a wide range

of applications. Their remarkable ability to tackle complex challenges and explore uncon-

ventional solutions positions them as relevant and valuable tools, driving advancements

across various domains and contributing significantly to the technological innovation land-

scape. Among the most popular in the literature, we can mention Genetic Algorithm [1]

based on the principles of natural selection and biological evolution, Particle Swarm Opti-

mization [2] inspired by the bird flocking, fish schooling, and other agents (organisms) that

live and move synchronously in groups, Differential Evolution [3] inspired by biological

evolution and the difference between solution vectors, and year after year, new algorithms

are emerging such as Artificial Bee Colony [4], Social Spider Algorithm [5], Cuckoo Search

algorithm [6], the Grey Wolf Optimizer [7], Whale Optimization Algorithm [8]. These are

just a few examples of BAs. Each is based on natural principles, such as evolution, swarm

behavior, and social interactions between organisms, among others.

Many complex optimization problems in engineering, logistics, and biology cannot be

solved by exact optimization methods in polynomial time. For this class of problems,

the so-called NP-hard problems, the BAs are often used to find suboptimal solutions.

1

In addition, there are Parallel Island Models (PIMs), which have received considerable

attention since they can use BAs to enhance exploration and exploitation and improve

speedup and accuracy (e.g., [9], [10], [11]). The PIMs comprise a set of islands, each

containing instances of BAs, developing their populations simultaneously. Periodically,

candidate solutions are exchanged between the islands through a process called migration.

This transfer of solutions is subject to a set of rules known as migration policy and

involves parameters that require careful calibration to achieve satisfactory results. The

communication topologies play a significant role in migration parameters and can be

classified as static or dynamic. The static topologies establish predetermined connections

between the islands, forming fixed neighborhoods during migration. On the other hand,

dynamic topologies allow reconfiguring connections throughout the evolutionary cycle,

enabling neighborhood variations during migration.

The PIMs approach expands the resolution of NP-hard problems, offering an innova-

tive way to tackle the complexity of these challenging tasks. By emulating the principles

of natural evolution, these models provide an effective alternative to seeking high-quality

solutions, fostering diversified exploration of the search space. With their adaptability

and ability to find feasible suboptimal solutions, the PIMs play a pivotal role in computer

science research, paving the way to enhance the quality of solutions for complex problems

with a remarkable gain in runtime. This document is dedicated to extensively exploring

the application and benefits of PIMs as a central object of study.

1.1 Motivation

Solving NP-hard problems requires algorithmic techniques that do not allow the com-

putation of exact solutions in polynomial time and have been the subject of studies in

computer science since before the 1970s when the notions of computational complexity

were consolidated. Thus, we have that the solutions we can find for such problems in poly-

nomial time are approximate. The classic problems, Knapsack, Independent Set, Graph

2

Coloring, Boolean Satisfiability, and Vehicle Routing, are well-studied in the literature

and have applications in various fields, including logistics, features selection, operations

research, and computer science. They are used as benchmark problems to test and com-

pare the efficiency of different algorithms and optimization techniques. Due to BAs’ sim-

ple adaptive nature, authors have resorted to various algorithms to compute high-quality

solutions for such complex problems.

The evolution of hardware technology has increasingly enabled the use of parallel algo-

rithms. BAs have attracted significant interest from researchers who have been exploring

a variety of parallel algorithms seeking to improve the quality of (sequential) solutions.

The parallel modeling simplicity of this class of algorithms has allowed a more efficient

approach to exploring solutions to complex problems. In this context, a simple and effec-

tive way of working with BAs is through PIMs, which make it possible to explore multiple

solutions in parallel and BA collaboration, increasing accuracy and speedup.

Two fundamental approaches emerge in PIMs: homogeneous and heterogeneous PIMs,

for short, HoPIMs and HePIMs, respectively. Inspired by the analogy of isolated islands

within an archipelago, these approaches share the idea that each island represents a

set of potential solutions to the given problem. However, they significantly differ in

their characteristics and methods. In HePIMs, the islands possess distinct characteristics,

potentially incorporating diverse search techniques and BAs. This approach values variety,

enriching the search space exploration and enabling different strategies to collaborate in

finding high-quality solutions. On the other hand, HoPIMs aim for uniformity across all

islands, employing only a BA and identical strategies to explore the search space. These

properties promote cohesive exploration and practical information exchange among the

islands.

Migration between the islands is a critical component for the success of both HoPIMs

and HePIMs. Migration parameters determine the frequency and which solutions are cho-

sen to migrate. Skillful manipulation of these parameters is essential to achieving quality

solutions. Therefore, careful selection and adjustment of migration parameters play a

3

crucial role in the quest for high-quality solutions in PIMs, whether through HoPIMs or

HePIMs approaches. These parameters balance global exploration of the search space

and detailed local exploration, shaping the effectiveness and overall performance of the

optimization strategy. Additionally, effectiveness is influenced by carefully selecting the

bioinspired algorithm used to address the specific problem and the strategy employed to

evolve the global population.

1.2 Contribution

This work’s contribution encompasses a thorough analysis of Parallel Island Models,

carefully considering the intricacies of the mechanisms that must be managed to extract

improved solutions from this methodology.

The research on PIMs began with implementing a Homogeneous PIM (HoPIM) with

migration, and its counterpart without migration in [12]. In the latter model, each island

evolves independently, and in the end, the fittest individual among all islands is considered

the solution. However, the results revealed low-quality solutions in the HoPIM with migra-

tion, inferior to the sequential version, prompting an investigation into this performance.

This early research phase preceded the experiments conducted in [13], where parameter

calibration was introduced to significantly improve the quality of solutions delivered by

HoPIMs, surpassing the accuracy provided by the sequential version. It is worth noting

that although a parameter calibration approach was adopted, the methodology employed

was not complex. A greedy method was chosen to determine parameter values that could

deliver improved solutions. This strategic choice emphasizes the importance of adjusting

evolutionary and migratory parameters, filling a gap in the literature that often over-

looked the significance of these values in the pursuit of quality solutions. Establishing the

necessity of such a proactive parameter calibration approach contributes substantially to

advancing research in PIMs. Indeed, as evidenced in [14, 15, 16], parameter calibration

is essential in developing Heterogeneous PIMs (HePIMs), which improve solutions.

4

Island communication topologies are crucial in determining how migration can occur,

either static or dynamic, and directly impact the solution quality by indicating which

islands are involved in the migration process. In [17], a dynamic topology was introduced,

in which migration can be adjusted dynamically based on the quality of solutions and

the diversity found among the islands during evolution. The topology establishes the

communication structure between the islands according to their evolutionary behavior,

influencing the effectiveness of the migration process and, consequently, affecting the

overall quality of the solutions achieved. The proposal of a dynamic topology represents

an advancement compared to conventional static topologies, as discussed in [18, 19, 15,

20, 16].

The initial populations in the islands, as evidenced in [13, 17], were a crucial aspect

of the research. The experiments demonstrate that using initial populations from the

sequential version leads to more robust and efficient solutions in HoPIMs. This find-

ing significantly enhanced the quality of obtained solutions and has been adopted in all

subsequent works.

The comparative analysis between synchronous and asynchronous HoPIMs, discussed

in [16], unveiled a critical dependency on the specific migration parameters for each prob-

lem. The sensitivity of these parameters was significantly highlighted, emphasizing their

direct influence on the efficiency of HoPIMs. This sensitivity underscores the crucial im-

portance of calibrating these parameters, as noted in [12], as experiments showed that

the same model, whether synchronous or asynchronous, exhibits distinct behaviors in ac-

curacy and speedup. These observations extend to heterogeneous models as discussed in

[14].

Exploring various evolutionary algorithms in [19] provided valuable insights for imple-

menting HePIMs capable of delivering competitive results. Contrary to the prevailing view

in the literature, scenarios were identified where HoPIMs outperform HePIMs in accuracy

[14]. To improve HePIMs accuracy, we focused on developing island algorithm reconfigu-

ration. Such a reconfiguration methodology allows islands to execute different algorithms

5

during evolution [15]. This reconfiguration approach offers greater dynamism and flexi-

bility, where, during a fixed interval of evolution, the island with the poorest performance

undergoes a process in which the evolutionary algorithm is replaced by the algorithm of

the island that has shown the best evolution in its population. In a subsequent research

stage, the reconfiguration methodology was refined by adopting stagnation-based island

reconfiguration [16]. The concept of stagnation is linked to improving the fitness of the

fittest individual. This reconfiguration strategy became a highly flexible dynamic process,

granting each island autonomy to trigger the reconfiguration process whenever its popu-

lation stagnates. Unlike the initial proposal of a single reconfiguration at fixed intervals

in [15], stagnation-based reconfiguration opens the door to multiple reconfiguration pro-

cesses. This approach resulted in improved solutions compared to the approach proposed

in [15] and demonstrated superiority over all previously proposed versions of HoPIMs and

HePIMs.

The approaches used to analyze challenging optimization problems consist of apply-

ing hyper-heuristics. Such methods are based on the selection or generation, in a search

space of heuristics, of the most adequate (meta)-heuristics to solve optimization problems

instead of only searching in the problem’s solution space. In a recent survey, Dokeroglu

et al. [21] examine the most cited works on hyper-heuristics published in the last twenty

years in relevant journals and conferences. The authors classify hyper-heuristics into, not

necessarily disjoint, four classes: selection hyper-heuristics, low-level heuristics, target op-

timization problems, and parallel hyper-heuristics. Considering such a classification, our

work can be seen as a low-level heuristic, as it combines bio-inspired algorithms and exact

algorithms within island models to compute the fitness of individuals for solving opti-

mization problems. Furthermore, it can be viewed as a parallel hyper-heuristic, restricted

to algorithmic-level parallelism, where different (meta)-heuristics are run independently

or cooperatively in parallel.

Additionally, the generic taxonomy of multi-population nature-inspired optimization

includes the structure of PIMs (e.g., Ha et al. [22]). Essentially, the generic taxonomy

6

of multi-population refers to optimization approaches that divide the population into

small sub-populations performing evolutionary operations, such as selection, crossover,

and mutation to evolve individuals, enabling the interaction of these sub-populations

through merging, communication, and re-division processes. The goals, as expected, are

to avoid premature convergence and maintain population diversity to ensure high-quality

solutions. The experience obtained in the design and application of multi-population al-

gorithms, usually described using terms such as “parallel”, “cooperative”, “co-evolution”,

and “islands”, among others [22], is relevant for the vital purposes in our study. Critical

questions presented in multi-population algorithms are related to several issues that arose

in the development of our research. For instance, addressing the question how to deter-

mine the number of sub-populations allowed us to design PIMs with a balanced number

of islands and island population sizes; exploring how to manage communication between

sub-populations enabled us to develop practical communication topologies and migration

policies; finally, thoroughly researching how to define the search strategy of each sub-

population led us to investigate heterogeneous PIMs and dynamic reconfiguration, which,

to the best of our knowledge, has not been addressed in previous work. Additionally, ad-

dressing another question that arises in multi-population algorithms, how to determine the

search area of each sub-population, is of great interest for future research. Tackling this

question is crucial for determining an efficient distribution of the search space exploration

by island populations, reducing individual redundancy, and promoting a comprehensive

exploration of the search space, thereby avoiding convergence to local optima.

In addition to the two taxonomies mentioned above (hyper-heuristics and multi-

population models), Chapter 5 on related work presents more precise references comparing

our work.

1.3 Work structure

The document is structured in the chapters described below.

7

Chapter 2 [Theoretical Referential] presents the background regarding BAs, PIMs,

and benchmark problems.

Chapter 3 [Overview of Preliminary Research] describes the work conducted dur-

ing the research, culminating in developing a novel methodology for island models

based on heterogeneity and reconfiguration.

Chapter 4 [Stagnation-Based Reconfigurable Heterogeneous Parallel Island

Models] discusses the stagnation-based reconfiguration of HePIMs.

Chapter 5 [Related work] reviews related work.

Chapter 6 [Conclusion and Future Work] concludes and discusses possible future

work.

The remaining sections of this chapter include a free translation of the introduction

into Portuguese.

1.4 Resumo Estendido (Introdução)

A seguir, inclui-se a tradução das seções precedentes a modo de resumo estendido.

Os Algoritmos Bioinspirados (ABs) representam métodos fundamentados em fenô-

menos e princípios observados na natureza, derivados de processos biológicos, comporta-

mento de organismos e sistemas naturais complexos. Esses algoritmos promovem aborda-

gens inovadoras e eficazes para uma ampla variedade de aplicações. Sua notável capaci-

dade de enfrentar desafios complexos e explorar soluções não convencionais os posiciona

como ferramentas relevantes e valiosas, proporcionando avanços em diversas áreas e con-

tribuindo de maneira significativa para o panorama da inovação tecnológica. Entre os

mais populares na literatura, podemos citar o Algoritmo Genético [1] baseado nos princí-

pios de seleção natural e evolução biológica, Otimização por Enxame de Partículas [2]

inspirado no comportamento de bandos de pássaros, cardumes de peixes e outros agentes

8

(organismos) que vivem e se movem sincronicamente em grupos, Evolução Diferencial [3]

inspirado na evolução biológica e na diferença entre vetores de solução, e ano após ano,

novos algoritmos estão surgindo, como Colônia Artificial de Abelhas [4], Algoritmo da

Aranha Social [5], Algoritmo de Busca do Cucu [6], Otimizador do Lobo Cinzento [7],

Algoritmo de Otimização da Baleia [8]. Estes são apenas alguns exemplos de ABs. Cada

um deles é baseado em princípios observados na natureza, como evolução, comportamento

de enxame, interações sociais entre animais, entre outros.

Muitos problemas complexos de otimização em engenharia, logística e biologia não

podem ser resolvidos por métodos exatos de otimização em tempo polinomial. Para esta

classe de problemas, os chamados problemas NP-difíceis, os ABs são frequentemente

utilizados para encontrar soluções subótimais. Além disso, os Modelos de Ilhas Paralelas

(MIPs) têm recebido considerável atenção, pois são capazes de utilizar ABs para melhorar

a busca por soluções novas e não convencionais (exploração) e aprofundar a exploração de

áreas conhecidas em busca de soluções de alta qualidade (aproveitamento1), resultando

em melhorias de aceleração (speedup) e acurácia. (por exemplo, [9], [10], [11]). Os MIPs

compreendem um conjunto de ilhas, cada uma contendo instâncias de ABs, evoluindo suas

próprias populações simultaneamente. Periodicamente, soluções candidatas são trocadas

entre as ilhas por meio de um processo chamado migração. Essa transferência de soluções

está sujeita a um conjunto de regras conhecidas como política de migração e envolve

parâmetros que requerem uma calibração cuidadosa para obter resultados satisfatórios.

As topologias de comunicação desempenham um papel importante nos parâmetros de

migração e podem ser classificadas como estáticas ou dinâmicas. As topologias estáticas

estabelecem conexões predefinidas entre as ilhas, formando vizinhanças fixas durante o

processo de migração. Por outro lado, as topologias dinâmicas permitem a reconfiguração

de conexões ao longo do ciclo evolutivo, possibilitando variações nas vizinhanças durante

o processo de migração.

A abordagem dos MIPs expande a resolução de problemas NP-difíceis, oferecendo
1Usamos “exploração” e “aproveitamento” para os conceitos de exploration and exploitation.

9

uma maneira de lidar com a complexidade desses problemas desafiadores. Ao emular os

princípios da evolução natural, esses modelos fornecem uma alternativa eficaz para buscar

soluções de alta qualidade, fomentando uma exploração diversificada do espaço de busca.

Com sua adaptabilidade e capacidade de encontrar soluções subótimas viáveis, os MIPs

continuam desempenhando um papel importante na pesquisa em ciência da computação,

abrindo caminho para aprimorar a acurácia das soluções para problemas complexos com

um ganho notável de aceleração. Este documento é dedicado a explorar a aplicação e os

benefícios dos MIPs como objeto central de estudo.

1.5 Motivação

Resolver problemas NP-Difíceis requer técnicas algorítmicas que não permitem o cál-

culo de soluções exatas em tempo polinomial e têm sido objeto de estudo em ciência da

computação desde antes da década de 1970, quando as noções de complexidade computa-

cional foram consolidadas. Assim, temos que as soluções que podemos encontrar para tais

problemas em tempo polinomial são aproximadas. Os problemas clássicos, como o prob-

lema da Mochila, Conjunto Independente, Coloração de Grafos, Satisfazibilidade Booleana

e Roteamento de Veículos, são amplamente estudados na literatura e têm aplicações em

vários campos, incluindo logística, seleção de características, pesquisa operacional e ciên-

cia da computação, sendo utilizados como problemas de referência para testar e comparar

a eficiência de diferentes algoritmos e técnicas de otimização. Devido à natureza adap-

tativa simples dos ABs, nós recorremos a uma variedade desses algoritmos para calcular

soluções de boa qualidade para tais problemas.

A evolução da tecnologia de hardware tem possibilitado cada vez mais o uso de algo-

ritmos paralelos. Os ABs têm atraído grande interesse de pesquisadores que têm explo-

rado uma variedade de algoritmos paralelos buscando melhorar a qualidade das soluções

(sequenciais). A simplicidade de modelagem paralela dessa classe de algoritmos permitiu

uma abordagem mais eficiente na exploração de soluções para problemas complexos. Nesse

10

contexto, uma maneira simples e eficaz de trabalhar com ABs é por meio de MIPs, que

possibilitam explorar várias soluções em paralelo e colaboração entre ABs, aumentando a

precisão e, é claro, a velocidade.

No contexto de MIPs, dois enfoques fundamentais emergem: MIPs homogêneos e

MIPs heterogêneos, resumidamente HoMIPs e HeMIPs, respectivamente. Inspirados na

analogia de ilhas isoladas dentro de um arquipélago, esses enfoques compartilham a ideia

de que cada ilha representa um conjunto de soluções potenciais para o problema dado. No

entanto, diferem significativamente em suas características e abordagens. Nos HeMIPs,

as ilhas possuem características distintas, potencialmente incorporando uma variedade de

técnicas de busca e ABs. Este enfoque valoriza a diversidade, enriquecendo a exploração

do espaço de busca e possibilitando diferentes estratégias para colaborar na busca por

soluções de alta qualidade. Por outro lado, os HoMIPs visam uniformidade em todas as

ilhas, empregando apenas um AB e estratégias idênticas para explorar o espaço de busca.

Isso promove uma exploração coesa e uma troca eficaz de informações entre as ilhas.

Um componente crítico para o sucesso tanto dos HoMIPs quanto dos HeMIPs é a mi-

gração entre as ilhas. Os parâmetros de migração determinam a frequência e quais soluções

são escolhidas para migrar. A manipulação habilidosa desses parâmetros é essencial para

alcançar soluções de qualidade. Portanto, a seleção cuidadosa e ajuste dos parâmetros de

migração desempenham um papel crucial na busca por soluções de qualidade em MIPs,

seja por meio de abordagens HoMIPs ou HeMIPs. O equilíbrio entre a exploração global

do espaço de busca e a exploração local detalhada é alcançado por meio desses parâmet-

ros, moldando a eficácia e o desempenho geral da estratégia de otimização. Além disso,

a eficácia é influenciada pela seleção cuidadosa do AB usado para abordar o problema

específico, bem como pelas estratégias empregadas para evoluir a população global.

11

1.6 Contribuição

A contribuição deste trabalho abrange uma análise minuciosa dos modelos de ilhas

paralelas, considerando cuidadosamente as complexidades dos mecanismos que devem ser

gerenciados para extrair soluções aprimoradas dessa metodologia.

A pesquisa sobre MIPs começou com a implementação de um MIP Homogêneo (HoMIP)

com migração e seu contraponto sem migração em [12]. Neste último modelo, cada ilha

evolui independentemente e, no final, o indivíduo mais apto entre todas as ilhas é con-

siderado a solução. No entanto, os resultados revelaram soluções de baixa qualidade no

HoMIP com migração, inferiores à versão sequencial, o que motivou uma investigação

sobre esse desempenho. Esta fase inicial de pesquisa precedeu os experimentos realizados

em [13], onde a calibração de parâmetros foi introduzida para melhorar significativamente

a qualidade das soluções fornecidas pelos HoMIPS, superando a precisão fornecida pela

versão sequencial. Vale notar que, embora uma abordagem de calibração de parâmetros

tenha sido adotada, a metodologia empregada não foi complexa. Um método ganan-

cioso foi escolhido para determinar valores de parâmetros que pudessem fornecer soluções

aprimoradas. Esta escolha estratégica enfatiza a importância de ajustar os parâmetros

evolutivos e migratórios, preenchendo uma lacuna na literatura que muitas vezes negli-

genciava a importância desses valores na busca por soluções de qualidade. Estabelecer

a necessidade de uma abordagem proativa de calibração de parâmetros contribui sub-

stancialmente para o avanço da pesquisa em MIPs. De fato, conforme evidenciado em

[14, 15, 16], a calibração de parâmetros é essencial no desenvolvimento de MIPs Heterogê-

neos (HeMIPs), que melhoram as soluções.

As topologias de comunicação entre ilhas são importantes para determinar como a

migração pode ocorrer, seja estática ou dinamicamente, e impactam diretamente a qual-

idade da solução ao indicar quais ilhas estão envolvidas no processo de migração. Em

[17], uma topologia dinâmica foi introduzida, na qual a migração pode ser ajustada di-

namicamente com base na qualidade das soluções e na diversidade encontrada entre as

ilhas durante a evolução. A topologia estabelece a estrutura de comunicação entre as

12

ilhas de acordo com seu comportamento evolutivo, influenciando a eficácia do processo

de migração e, consequentemente, afetando a qualidade geral das soluções alcançadas.

A proposta de uma topologia dinâmica representa um avanço em comparação com as

topologias estáticas convencionais, conforme discutido em [18, 19, 15, 20, 16].

As populações iniciais nas ilhas, conforme evidenciado em [13, 17], foram um aspecto

crucial da pesquisa. Os experimentos demonstram que o uso de populações iniciais a

partir da versão sequencial leva a soluções mais robustas e eficientes nos HoMIPs. Esta

descoberta melhorou significativamente a qualidade das soluções obtidas e foi adotada em

todos os trabalhos subsequentes.

A análise comparativa entre HoMIPs síncronos e assíncronos, discutida em [16], revelou

uma dependência crítica dos parâmetros específicos de migração para cada problema. A

sensibilidade desses parâmetros foi significativamente destacada, enfatizando sua influên-

cia direta na eficiência dos HoMIPs. Isso ressalta a importância crucial de calibrar esses

parâmetros, como observado em [12], pois os experimentos mostraram que o mesmo mod-

elo, seja síncrono ou assíncrono, apresenta comportamentos distintos tanto em precisão

quanto em aceleração. Essas observações se estendem aos modelos heterogêneos, conforme

discutido em [14].

Explorar vários algoritmos evolutivos em [19] forneceu discernimento valioso para a

implementação de HeMIPs capazes de fornecer resultados competitivos. Contrariando

a visão predominante na literatura, foram identificados cenários em que os HoMIPs su-

peram os HeMIPs em precisão [14]. Para melhorar a precisão dos HeMIPs, focamos no

desenvolvimento da reconfiguração de algoritmos de ilhas. Essa metodologia permite que

as ilhas executem diferentes algoritmos durante a evolução [15] oferece maior dinamismo

e flexibilidade, onde, durante um intervalo fixo de evolução, a ilha com o pior desem-

penho passa por um processo no qual o algoritmo evolutivo é substituído pelo algoritmo

da ilha que mostrou a melhor evolução em sua população. Em uma etapa subsequente de

pesquisa, a metodologia de reconfiguração foi refinada adotando a reconfiguração de ilhas

baseada em estagnação [16]. O conceito de estagnação está ligado à melhoria da aptidão

13

do melhor indivíduo. Esta estratégia de reconfiguração tornou-se um processo dinâmico

altamente flexível, concedendo a cada ilha autonomia para acionar o processo de recon-

figuração sempre que sua população estagnar. Ao contrário da proposta inicial de uma

única reconfiguração em intervalos fixos em [15], a reconfiguração baseada em estagnação

abre a porta para múltiplos processos de reconfiguração. Esta abordagem resultou em

soluções aprimoradas em comparação com a abordagem proposta em [15] e demonstrou

superioridade sobre todas as versões anteriormente propostas de HoMIPs e HeMIPs.

As abordagens utilizadas para analisar problemas difíceis de otimização consistem em

aplicar hiper-heurísticas. Tais métodos são baseados na seleção ou geração, em um espaço

de busca de heurísticas, das (meta)-heurísticas mais adequadas para resolver problemas de

otimização, em vez de buscar apenas no espaço de solução do próprio problema. Em uma

pesquisa recente, Dokeroglu et al. [21] examinam os trabalhos mais citados sobre hiper-

heurísticas publicados nos últimos vinte anos em revistas e conferências relevantes na área.

Os autores classificam hiper-heurísticas em quatro classes, não necessariamente disjuntas:

hiper-heurísticas de seleção, heurísticas de baixo nível, problemas de otimização-alvo e

hiper-heurísticas paralelas. Considerando essa classificação, nosso trabalho pode ser visto

como uma heurística de baixo nível, pois combina algoritmos bioinspirados e algoritmos

exatos dentro de modelos de ilhas para calcular a aptidão dos indivíduos para resolver

problemas de otimização. Além disso, pode ser visto como uma hiper-heurística par-

alela, restrita ao paralelismo em nível algorítmico, onde diferentes (meta)-heurísticas são

executadas independentemente ou cooperativamente em paralelo.

Além disso, a taxonomia genérica de otimização inspirada na natureza com múltiplas

populações inclui a estrutura dos MIPs (por exemplo, Ha et al. [22]). Essencialmente,

a taxonomia genérica de múltiplas populações refere-se a abordagens de otimização que

dividem a população em pequenas subpopulações realizando operações evolutivas, como

seleção, cruzamento e mutação para evoluir indivíduos, permitindo a interação dessas sub-

populações por meio de processos de fusão, comunicação e redivisão. Os objetivos, como

esperado, são evitar a convergência prematura e manter a diversidade da população para

14

garantir soluções de alta qualidade. A experiência obtida no desenho e aplicação de al-

goritmos de múltiplas populações, geralmente descritos usando termos como “paralelos”,

“cooperativos”, “co-evolução”, “ilhas”, entre outros [22], é relevante para os propósitos

vitais em nosso estudo. Questões críticas apresentadas em algoritmos de múltiplas pop-

ulações estão relacionadas a várias questões que surgiram no desenvolvimento de nossa

pesquisa. Por exemplo, abordar a questão de como determinar o número de subpopu-

lações nos permitiu projetar MIPs com um número equilibrado de ilhas e tamanhos de

populações de ilhas; explorar como gerenciar a comunicação entre subpopulações nos per-

mitiu desenvolver topologias de comunicação e políticas de migração eficazes; finalmente,

pesquisar minuciosamente como definir a estratégia de busca de cada subpopulação nos

levou a investigar MIPs heterogêneos e reconfiguração dinâmica, que, até onde sabemos,

não foram abordados em trabalhos anteriores. Além disso, abordar outra questão que

surge em algoritmos de múltiplas populações, como determinar a área de busca de cada

subpopulação, é de grande interesse para pesquisas futuras. Abordar essa questão é impor-

tante para determinar uma distribuição eficiente da exploração do espaço de busca pelas

populações das ilhas, reduzindo a redundância individual e promovendo uma exploração

abrangente do espaço de busca, evitando assim a convergência para ótimos locais.

Além das duas taxonomias mencionadas acima (hiper-heurísticas e modelos de múlti-

plas populações), o Capítulo 5 sobre trabalhos relacionados apresenta referências mais

precisas comparando estas com o nosso trabalho.

1.7 Estrutura do Trabalho

O documento está estruturado nos capítulos descritos abaixo.

Capítulo 2 [Referencial Teórico] apresenta o contexto relacionado a ABs, MIPs e

problemas de referência.

15

Capítulo 3 [Visão Geral da Evolução da Pesquisa] descreve o trabalho conduzido

durante a pesquisa, culminando no desenvolvimento de uma nova metodologia para

modelos de ilha baseados em heterogeneidade e reconfiguração.

Capítulo 4 [MIPs Reconfiguráveis com Política de Reconfiguração Baseada

em Estagnação] discute os HeMIPs com reconfiguração baseada em estagnação.

Capítulo 5 [Trabalho Relacionado] revisa trabalhos relacionados.

Capítulo 6 [Conclusão] conclui e discute possíveis trabalhos futuros.

16

1.8 Glossary

≃ Dynamic Complete Graph Topology with migration

between islands of the same performance

12A 12S 12-island asynchronous and synchronous

24A 24S 24-island asynchronous and synchronous

BA Bio-inspired Algorithm (AB in Portuguese)

BACI BA Classification Interval

CEC Congress on Evolutionary Computation

CSA Crow Search Algorithm

CSA Cuckoo Search Algorithm

DE Differential Evolution

DMOP Dynamic Multi-Objective Optimization Problem

EP Emigration Policy

EMI Emigrating Individuals

FM DE mutation factor

GA Genetic Algorithm

GAD Double-point Crossover GA

gbmm Dynamic Complete Graph Topology with migration

between god-bad and medium-medium islands

GWO Grey Wolf Optimization Algorithm

HePIM Heterogeneous PIM (HeMIP in Portuguese)

HoPIM Homogeneous PIM (HoMIP in Portuguese)

IMI Immigrating Individuals

IN Individuals Number

MI Migration Interval

PC DE probability of crossover

PIM Parallel Island Model (MIP in Portuguese)

PSO Particle Swarm Optimization

17

PGA
Tr12A,

PGAD
Tr12A,

PDE
Tr12A,

PPSO
Tr12A

GA, GAD, DE and PSO based asynchronous static 12-island

tree HoPIMs

PGA
Tr12S,

PGAD
Tr12S,

PDE
Tr12S,

PPSO
Tr12S

GA, GAD, DE and PSO based synchronous static 12-island

tree HoPIMs

PGA
gbmm12A,

PGAD
gbmm12A,

PDE
gbmm12A,

PPSO
gbmm12A

GA, GAD, DE and PSO based asynchronous dynamic

12-island complete graph HoPIMs

PGA
gbmm12S,

PGAD
gbmm12S,

PDE
gbmm12S,

PPSO
gbmm12S

GA, GAD, DE and PSO based synchronous dynamic 12-island

complete graph HoPIMs

PHet
Tr12A,

PHet
Tr12S

asynchronous and synchronous static 12-island tree

HePIM

PHet
gbmm12A,

PHet
gbmm12A

asynchronous and synchronous dynamic 12-island

complete graph HePIM

PrecHet
Tr12A ,

PrecHetStag
Tr12A

static 12-island tree reconfigurable and stagnation-based

reconfigurable HePIMs

PrecHet
gbmm12A,

PrecHetStag
gbmm12A

dynamic 12-island complete graph reconfigurable and

stagnation-based reconfigurable HePIMs

RF Reconfiguration Frequency

SSA Social Spider Algorithm

SSCI Symposium Series on Computational Intelligence

SRD Signed Reversal Distance

STD Signed Translocation Distance

TMP Task Mapping Problem

Tr Static Tree Topology

URD Unsigned Reversal Distance

UTD Unsigned Translocation Distance

WOA Whale Optimization Algorithm

18

Chapter 2

Theoretical Referential

The chapter is organized as follows. In Section 2.1, the selected BAs, which serve as

the backbone of the experiments, are presented, discussing their characteristics. Next,

in Section 2.2, the understanding of parallel island models is deepened, exploring the

essential concepts and terminologies fundamental to understanding the applied method-

ology. Section 2.3 highlights the benchmark problems used as case studies to validate the

research.

2.1 Bio-inspired Algorithms

The BAs chosen in the experiments are Genetic Algorithms (GA), Self-Adjusting Parti-

cle Swarm Optimization (PSO), Social Spider Algorithm (SSA), and Differential Evolution

(DE). GA was selected because, in previous work [23, 12, 13], PIMs provided excellent

solutions for two case studies that are used in this research: Unsigned Translocation Dis-

tance and Unsigned Reversal Distance, both detailed in Section 2.3. On its side, PSO

is a well-known, extensively applied optimization algorithm. Also, DE is frequently used

to address problems related to those of the current research ([24, 25, 26]). Finally, SSA

being a more recent algorithm, offers modern optimization approaches. Additionally, it

is essential to emphasize that the PIMs are not dependent on these specific algorithms,

making them applicable to any BA.

19

The GA is inspired by the Darwinian principle of species evolution [27]. GA is a proba-

bilistic method that evolves through reproduction with an adaptive search engine based

on the survival principle of the fittest. In this work, the GA is used with a breeding cy-

cle composed of the following operators: selection, crossover, mutation, and replacement.

These operators are controlled by adjustable parameters within the algorithm, allowing

for fine-tuning and customization.

This algorithm evolves a population by considering a breeding cycle where the best

individuals are selected to produce offspring by applying one-point crossover (Figure 2.1

(a)). Then, the descendants replace the worst individuals in the current population.

The mutation process is conservative. A low mutation rate is applied (as naturally oc-

curs in organisms) since exaggerated mutations corrupt inherited genes. In addition to

incorporating the basic GA into the experiments, it was chosen to employ the Double-

point Crossover Genetic Algorithm (GAD). The algorithm GAD is a variant from the GA in

which the crossover uses the technique illustrated in Fig. 2.1 (b). In this technique, the

replacement of individuals by descendants in the current population randomly selects the

individuals to be replaced. As shown in [28], the results and behavior of both algorithms

are quite different. The flowcharts for algorithms GA and GAD are illustrated in Figure 2.2.

We use GA in research involving HoPIMs from works [12, 13, 17, 18, 19, 20], and it is

also employed in HePIMs [14, 15, 16]. On the other hand, GAD is exclusively applied in

research related to HePIMs [14, 15, 16].

(a) One-point crossover
1 2 3 4 5 6 7 8
5 8 6 4 3 1 2 7

⇝
1 2 3 4 3 1 2 7
5 8 6 4 5 6 7 8

(b) Double-point crossover
1 2 3 4 5 6 7 8
5 8 6 4 3 1 2 7

⇝
1 2 3 4 3 6 7 8
5 8 6 4 5 1 2 7

Figure 2.1: One-point and double-point crossing operators.

20

Begin

Generations
completed?

Generate Inital
Random

Population and
compute fitness

Select the best
parents

no

Apply one-point
crossover for GA
or double-point

crossover for GAD

Apply mutation to
the offspring

Replace the worst
individuals in the

population with the
offspring in GA, or
replace random
individuals in the

population with the
offspring in GAD

Endyes

Figure 2.2: Flowchart of the GA and GAD.

2.1.1 Self-Adjusting Particle Swarm Optimization

Particle Swarm Optimization (PSO) was introduced in [29] to address continuous do-

main problems inspired by the behavior of social organisms in groups, such as species of

birds and schools of fish. In PSO each particle, xi = (xi1, xi2, · · · , xij, · · · , xin)T, represents

a point in the search space and its current position in an n-dimensional space. Variables

xij denote the vector component of the i-th particle in the j-th dimension. The motion

of a i-th particle is specified by the velocity vector vi = (vi1, vi2, · · · , vij, · · · , vin)T with

better position of the i-th particle being stored in pbest. The algorithm maintains the

best position for all particles denoted as gbest, which guides the particles in the search

space. The velocity vector vk+1
ij and position x(i,k+1) for the i–th particle in the step k + 1

21

iteration is given by the expression:

v(i,k+1) = w.v(i,k) + c1.rand1ij.(pbestk
ij − xk

i,j) + c2.rand2ij.(gbestk
ij − xk

i,j)

x(i,k+1) = x(i,k) + v(i,k+1)
(2.1)

In Eq. (2.1), w is the weight of inertia (momentum) that introduces friction into the

particles’ motion, reducing inertial velocity; c1 and c2 are individual and global acceler-

ation coefficients that influence the maximum step size a particle can take and, rand1ij

and rand2ij are vectors containing randomly uniformly distributed numbers generated at

each iteration k, which values range from 0 to 1.

Adaptability in an optimization algorithm can be defined as self-tuning according to

rules that have variable parameters. This work uses the self-adaptive PSO proposed in

[30], where the parameters w, c1, and c2 and the update frequency of each particle are

used to perform the self-tuning in the search process, adjusting each particle through the

equation:

wk+1
i = wk

i + αk
i · (wk

best − wk
i), : i = 1, 2, · · · , m

ck+1
1i = ck

1i + αk
i · (ck

1best − ck
1i), : i = 1, 2, · · · , m

ck+1
2i = ck

2i + αk
i · (ck

2best − ck
2i), : i = 1, 2, · · · , m

(2.2)

We apply PSO in our research encompassing HoPIMs in [19] and HePIMs in [14, 15].

The flowchart for PSO is illustrated in Figure 2.3.

2.1.2 Social Spider Algorithm

The locomotion of spiders has been a subject of research in bionic engineering, par-

ticularly in the context of designing robots [31], with a specific focus on social spiders.

These spiders, such as Mallos gregalis, live in groups and interact with other spiders in

the same group. Based on social spiders, a method for solving optimization problems has

been designed in [32].

22

Begin

Generations
completed?

Initialize the
particle population

with random
positions and

velocities

End

Assign initial
values to

parameters (w,
c1, c2)

Evaluate the
fitness function
for each particle

yes

Update the
pbest for each

particle

Update the
gbest based on
pbest positions

Update the
velocity and

position of each
particle using w,

c1 and c2

Update the
parameters: w,

c1 and c2

no

Figure 2.3: Flowchart of the PSO.

In the Social Spider Algorithm (SSA), the optimization problem search space is formu-

lated as a hyperdimensional spider web. A position on the web represents an acceptable

solution to the problem, and all solutions to the problem have corresponding positions

on that web. In addition to mapping solutions to the problem, the web transmits spider-

generated vibrations. Each spider on the web holds a position, and the solution’s quality

is based on the objective function representing the potential to find a food source in the

position.

Spiders can explore every search space mapped on the web. However, spiders cannot

leave the web since off-web positions represent unfeasible solutions to the problem. When

a spider moves to a new position, a vibration is generated and propagated through the

net. A vibration contains information from the propagating spider that will eventually

be consulted by other spiders for food source information.

A set of information is required on each spider in the SSA: 1) spider position on the

web; 2) spider fitness; 3) The vibration of the spider in the previous iteration; 4) the

23

number of iterations since spider changed its vibration; 5) the movement that the spider

performed in the previous iteration; 6) dimension mask represented by a binary vector

(0−1) with size equal to the input that spider employed to guide movement in the previous

iteration.

The three phases in SSA are described below.

• Initialization: the algorithm defines the objective function and its solution space.

The parameter value used in SSA: vibration rate (pv), probability of changing mask

(pc), and percentage to control updates to mask positions (pm) are assigned. After

setting the values, the algorithm creates an initial optimization spider population

that remains unchanged during the SSA simulation. Spider positions with their fit-

ness values are randomly generated on the search space. The initial target vibration

of each spider in the population is set at its current position, and the vibration

intensity is assigned to be zero.

• Iteration: in each iteration, all spiders on the web go through the following steps:

fitness assessment, vibration generation, mask change, and random walk. The algo-

rithm calculates the fitness of all spiders once and updates the overall ideal value.

Then, these spiders generate vibrations in their positions and propagate such vi-

brations in the web. In this process, each spider receives vibrations from all other

spiders. Information on these vibrations includes the source position of the vibra-

tion and its attenuation intensity. After receiving all the vibrations, the current

spider takes the strongest vibration called vbest and compares it with its current

vibration vlocal
s ; if vbest

s is higher, vlocal
s updates the value by the value in vbest

s and

the number since the current spider vibration was changed denoted as cs is set to

zero; otherwise cs is incremented by 1 and the value in vlocal
s is kept. Subsequently,

the current spider performs a random walk toward vlocal
s using the mask dimension

to guide the movements. Each spider maintains its mask, where initially, all values

are zero. In each iteration, the current spider has a probability of 1− pc
cs to change

24

its mask with pc ∈ (0, 1). If the mask changes, each bit mask has a pm probability

of being changed.

• Stopping criteria: maximum number of iterations (used in this work).

We employed the SSA in HoPIMs in work [19]. Figure 2.4 illustrates the flowchart of

SSA.

2.1.3 Differential Evolution Algorithm

The Differential Evolution (DE) algorithm is a stochastic optimization method that was

proposed in [3]. The BA was designed to tackle global optimization problems involving

highly nonlinear functions and complex search spaces. The algorithm uses NP vectors

with D dimensions to represent individuals in the population for each generation G.

xi,G, i = 1, 2, · · · , NP (2.3)

The initial population is randomly chosen and evolves by adding the weighted differ-

ence between two population vectors to a third vector. This operation is called mutation.

For each target vector xi,G, i = 1, 2, · · · , NP , a mutant vector is generated as follows:

vi,G+1 = xr1,G + FM ∗ (xr2,G − xr3,G) (2.4)

r1, r2, r3 are different vectors randomly selected from the current population, and

FM > 0. Due to the nature of the mutation, the authors suggest working with FM

in the range [0, 2]. Subsequently, a crossover operator called PC , which represents the

probability of applying crossover, is used to improve diversity. Thus, the trial vector:

vi,G+1 = (v1i,G+1, v2i,G+1, · · · , vDi,G+1) is formed as follows:

25

Generate
random initial

population and
initialize

parameters pm,
pc and cs

Begin
Calculate
population

fitness

Intensity of
vsbest greater than

vs
local?

Select the best
local vs

best vibration
from the received

vibrations

Store vs
best as vs

local

yes

Maintain vs
local

no

For each
spider s in the

population
compute spider
vibration and
propagate in

the web

Update cs

Update the mask
dimension using the
parameters pm and

Perform random
walk for spider s

Generations
completed?

Endyes

no

Figure 2.4: Flowchart of the SSA.

uji,G+1 =


vji,G+1 if (randb(j) ≤ PC) or j = rnbr(i)

xji,G if (randb(b) > PC) and j ̸= rnbr(i)

 j = 1, 2, · · · , D.

(2.5)

26

randb(j) represents the j − th evaluation of a randomly generated number within the

range ∈ [0, 1]. PC is the crossover parameter value ∈ [0, 1]. Meanwhile, rnbr(i) returns

the value of the vector at the corresponding index of the mutant vector vi,G+1.

In the population update step, the trial vector ui,G+1 is compared to the vector xi,G.

If the fitness function of the trial vector is better than that of vector xi,G, then the trial

vector will take its place in the next generation; otherwise, the trial vector is discarded.

The DE is used in [14, 15, 16], which is applied to HePIMs. The corresponding flowchart

is illustrated in Figure 2.5.

2.1.4 Other algorithms

In addition to addressing the algorithms explored in this work, it is pertinent to

emphasize that the field of bioinspired algorithms is continually expanding and being

incorporated into model islands. Among these algorithms, we have the Cuckoo Search

Algorithm (CSA) [33], the Grey Wolf Optimization Algorithm (GWO) [34], the Whale

Optimization Algorithm (WOA) [35], and the Crow Search Algorithm (CSA) [36].

The CSA is a metaheuristic inspired by the intelligent foraging behavior of cuckoo

birds. It employs parasitism strategies, where cuckoos lay eggs in the nests of other birds,

representing candidate solutions. The algorithm aims to optimize functions by preserving

suitable solutions and exploring new areas of the search space.

The social hierarchy of wolf packs inspires the GWO. This bioinspired algorithm simu-

lates the social dynamics of grey wolves, including alpha leaders and subordinate members.

Wolves collaborate to hunt prey, representing function optimization. GWO seeks to find

the best solution by balancing exploration and exploitation.

The cooperative hunting behavior of whales inspires the WOA. It introduces the con-

cept of whales coordinating to encircle prey, representing solutions in a search space.

WOA aims to optimize functions using strategies to update whale positions and find

high-quality solutions.

27

Begin

Generate
random initial

population and
initialize

parameters Pc
and FM

Calculate
population

fitness

For each
vector S in the

population

Randomly select distinct
vectors r1, r2 and r3 in the

population

Generate a mutation vector
using the formula: Im = r1 +

FM * (r2 - r3)

Apply crossover in Im with
probability PC to produce

a trial vector It

If the fitness of It is better

than the fitness of S, replace

S with the trial vector It in the

population

Generations
completed? End

no

yes

Figure 2.5: Flowchart of the DE.

The CSA, inspired by the intelligent behavior of crows, is a population-based tech-

nique. Crows, widely recognized as some of the most intelligent animals, exhibit search

behavior akin to an optimization process, hiding and retrieving food in specific locations

within their environment. From an optimization perspective, crows act as seekers; the

28

environment represents the search space, each position in the environment corresponds to

a viable solution, the quality of the food source is the objective function, and the best food

source in the environment equates to the global solution of the problem. The CSA aims

to emulate this intelligent behavior of crows to find solutions to optimization problems.

In Section 3.3, we will address studies exploring the application of CSA, GWO, WOA,

and CSA in island models.

2.2 Parallel Island Models

Studies involving the Parallel Island Models (PIMs) emerged in the 1980s with Pettey

et al. in [37].

Due to the abundance of studies demonstrating improved solutions using PIMs, as

evidenced in the literature review presented in Chapter 5, we have chosen to focus our

research on exploring this model. Furthermore, it is essential to note that the concept of

PIMs proves to be versatile and can be applied to any BA([24],[38],[39],[40],[41],[42],[43],[44]).

An important point is that conducting independent runs for extended periods may not

be advantageous in PIMs. This aspect occurs because individual islands can become stuck

in optimal locations, which is not ideal, as other islands could simultaneously explore the

most promising regions within the search space. Therefore, establishing communication

between islands to coordinate research efforts becomes viable when islands are trapped in

optimal locations or experience low-quality outcomes.

In PIMs, each island maintains an independent population that evolves autonomously.

Periodically, individuals are shared between islands through a process known as migration.

An organizational architecture, referred to in the literature as the migration topology,

defines a communication model between islands. Individuals are selected from the local

island at specific intervals and sent to target islands (those that receive individuals from a

local island). These individuals are incorporated according to particular policies. Below,

we highlight each policy:

29

Number of immigrants and emigrants the number of individuals who will be sent

and received from one island to another. One might select the best, worst, or random

individuals.

Emigration policy remove or clone individuals, considering the choice among worse,

random, or better individuals.

Immigration policy replace individuals considering the choice among worse, random,

or better individuals on the target island.

Migration interval number of generations between one migration and another.

Migration topology organizational model that defines which islands will communicate

with which islands.

Synchronization policy Migration between islands can be asynchronous or synchronous.

When synchronizing the migration, the islands evolve at approximately the same rate

(number of generations, percentage of convergence, etc.), determining when a migration

should occur. Asynchronous migration is unrelated to the state of evolution in all the

islands. This asynchronous behavior is typically found in nature since different environ-

ments are responsible for differences in the speed of evolution.

Parameters involved in Migration Policies

The migration policies deliberated in the previous section are essential for shaping

the performance and accuracy of PIMs. These policies encompass parameters that, when

properly defined, significantly enhance the likelihood of improving solutions for complex

problems within a reasonable timeframe. Conversely, an inadequate definition can detri-

mentally affect the quality of solutions to the extent that they may be inferior to their

sequential counterparts. The explanation for each parameter is as follows:

30

• NumMigIndividuals represents the number of individuals for migration.

• TypeEmIndividual represents the type of individuals selected for emigration among:

1. Better individuals.

2. Worse individuals.

3. Random individuals.

• EmPolicy represents the emigration policy:

1. Clone individuals.

2. Remove individuals.

• TypeImIndividual represents the immigration policy, that is, the kind of individuals

selected in the target island to be replaced by the immigrants:

1. Worse individuals.

2. Random individuals.

3. Similar individuals.

By similar individuals, one understands individuals with the same fitness as the

immigrants.

• MigrationInterval represents the migration interval that is given from the percent-

age of reproduction cycles that need to be performed to initiate the exchange of

individuals between islands.

• Topology: used to define communication between islands.

• Synchronization: defines whether the migration occurs synchronous or asynchronous.

There are two main ways to implement PIMs: homogeneous and heterogeneous. In the

homogeneous models, all islands are configured identically. Homogeneity entails that all

islands execute the same BA and have the same initial settings, resulting in all islands

31

adhering to the same search strategy. On the other hand, in heterogeneous PIMs, islands

are configured differently. Heterogeneity permits islands to use different settings and

parameters, such as different population sizes and BAs. The idea is to explore different and

possibly complementary parts of the search space solutions using diverse search strategies.

It is important to emphasize that the total populations in PIMs have a size equal to

the sequential version since providing a more extensive search space in the parallel version

would be unfair with the sequential ([45], [46], [24]).

In [45], the authors report that PIMs can provide better solutions than algorithms

containing a single large population (Sequential version), both in performance and ac-

curacy. The reason for the performance improvement is linked to MigrationInterval and

Topology, respectively [41]. To improve accuracy, the authors show that the islands can

explore different points in the search space of possible populations, something that the

models containing a unique population cannot perform with mastery. In addition, a

careful investigation into the impact of parameter setting needs to be made [39].

2.2.1 Communication Topologies

Topology is an essential factor in the performance of PIMs since it determines how

slowly or quickly a solution disseminates to other islands. If the topology has dense con-

nectivity, solutions will soon spread to all islands and can quickly take over the population.

On the other hand, if the topology is sparse, the solutions will spread more slowly, allowing

the emergence of different solutions; consequently, these solutions may subsequently form

potentially better individuals. The Figures 2.6 (c), (d), and (e) represent examples of

dense topologies, while Figures 2.6 (a) and (b) depict instances of sparse topologies. The

ring topologies have been successful in various works (e.g., [47], [46], [48], [49], [13]). In

addition, the topology also impacts the cost (run-time) of migration. Densely connected

topologies can promote a better mix of individuals but also entail higher communication

costs and have a high probability of reaching premature convergence.

32

(a)

(b)

(c)

(d) (e)

Figure 2.6: Static topologies: (a) binary tree, (b) ring, (c) complete graph, (d) x× y-net
where x and y represent rows and columns in the net, (e) torus.

33

Another crucial factor to consider when selecting a topology is whether the islands

will be organized statically or dynamically. In static topologies, the arrangement is pre-

determined at the beginning of execution and remains constant throughout. On the other

hand, dynamic topologies involve a more flexible approach, where communication between

islands is not fixed but rather determined by specific criteria. The primary motivation

for employing dynamic topologies is to pinpoint scenarios where migrating individuals are

likely to have a discernible impact. The criteria for selecting an island as a destination can

encompass factors such as population diversity measures [50], assessments of genotypic

dissimilarity between islands [51], or even an attractiveness factor.

Proposed Dynamic Topology

Figure 2.9 depicts a dynamic complete graph topology we propose in [17]. This ap-

proach enables the creation of adaptive neighborhoods capable of adjusting based on the

quality of solutions encoded in individuals and the diversity found within islands. In this

methodology, all islands potentially have the ability to communicate with each other,

making the topology resemble a complete graph. The difference is that neighborhoods

change with each migration process, and not every island will communicate with all the

others in the topology, so there are dashed edges in Figure 2.9. The quality and diversity

of populations on each island were measured to apply dynamics. The islands are qualified

as good, bad, and medium. The status good, bad, and medium are related to the

diversity in the islands using two metrics: variance and average. The variance measures

the diversity of each island, such that a high variance is associated with little resemblance

between native individuals on the island. The average is related to the quality of the

population on each island. Since the problems addressed are minimization, islands with

low average fitness have the potential to be considered good islands. Then, for dynamic

topologies, the algorithm adds these metrics for each island and ranks islands in decreasing

order before migration starts.

34

Algorithm 1 Building dynamic links between islands

1: IdIsland, MediaAverage : array[1..NI]
2: if Topology != Random then
3: for i = 1 to NI do
4: Average ← AveragePop(i); ▷ Average of population in island i
5: Variance ← VariancePop(i); ▷ Variance of population in island i
6: IdIsland[i] ← i;
7: MediaAverage[i] ← Variance + Average;
8: end for
9: MergeSort(IdIsland, MediaAverage); ▷ Indices in IdIsland change according to

merge sort of MediaAverage
10: if Topology == gbmm then
11: for i = 1 to NI/2 do
12: Communication(IdIsland[i], IdIsland[NI − i + 1]);
13: end for
14: end if
15: if Topology == ≃ then
16: for i = 1 to NI/2 do
17: Communication(IdIsland[2i − 1], IdIsland[2i]);
18: end for
19: end if
20: else Random communication between islands;
21: end if

Algorithm 1 creates communications between islands in each migratory process ac-

cording to the discussion in the previous paragraph. NI is the number of islands, and

the central idea is to create keys using the average and variance metrics (line 8) from the

population of each isle. The Mergesort algorithm is used to sort the IdIsland arrange-

ment according to the MediaAverage arrangement (line 9). It was adopted that the first,

middle, and final third of the sorted islands in IdIsland are qualified as good, medium and

bad, respectively (see Figure 2.7).

Before each migration, the communication between islands is generated as specified in

Algorithm 1. Different neighborhood modeling strategies were implemented to diversify

the dynamism in the proposed dynamic topology. In case the communication is ≃, pairs

of contiguous islands are communicated and, case it is gbmm, a pair of islands, which are

selected from the beginning and end to the center of the sorted list of islands, are commu-

nicated (see Figure 2.8). While for Random communication, any island can communicate

35

with any other island, regardless of rank.

good medium bad

Figure 2.7: Classification of sorted islands.

...

...

gbmm

Figure 2.8: Organization of dynamic topology neighborhoods.

2.3 Case studies

In this section, the four case studies used for experiments are described.

2.3.1 Reversal Distance

A unichromosomal genome with n genes can be represented as a permutation π =

(π1, π2, ..., πn), where π(i) = πi, 1 ≤ i ≤ n and πi ∈ {1, . . . , n}. A reversal ρj,k, for 1 ≤ j ≤

k ≤ n is an operation on π that inverts the sub string between πj and πk transforming π

into π′ = (· · · , πj−1, πk, · · · , πj, πk+1, · · ·); for example: for π = (1, 4, 3, 5, 8, 2, 7, 6), ρ5,7(π)

gives π′ = (1, 4, 3, 5, 7, 2, 8, 6). There are two different types of permutations: signed and

unsigned. In the unsigned case, genes are abstracted without any orientation, and in the

36

Figure 2.9: The dynamic topology resembles a complete graph, where all islands poten-
tially have the capability to communicate. However, the choice of strategy defines an
island’s neighbors, which can be gbmm, ≃, or Random.

signed case, each gene has a positive or negative sign reflecting its orientation. A reversal

acts over a signed permutation by also inverting the genes’ orientation in the reversed

substring.

The reversal distance is the shortest length of a sequence of reversals that transform

a permutation π into the identity permutation ı, where ı, is the permutation (1, 2, . . . , n),

for the unsigned case, and (+1, +2, . . . , +n)), for the signed case. The sorting by reversals

problem determines the reversal distance of a permutation [52].

Example: Consider the signed permutation.

π = {(−1, +6, +3, +4,−5, +2, +7)}, and

ı = {(+1, +2, +3, +4, +5, +6, +7)}

Observe that,
π = {(−1, +6, +3, +4,−5, +2, +7)}

πρ1 = {(+5,−4,−3,−6, +1, +2, +7)}

πρ1ρ2 = {(+5,−4,−3,−2,−1, +6, +7)}

πρ1ρ2ρ3 = {(+1, +2, +3, +4,−5, +6, +7)}

πρ1ρ2ρ3ρ4= {(+1, +2, +3, +4,−5, +6, +7)}

Thus, after reversions ρ1, ρ2, ρ3 and ρ4 transform π into ı and reversion distance is 4.

37

The signed version of this problem, for short SRD, was proved to be in P ; namely,

Bader, Moret, and Yan proposed a linear algorithm in [53]. Caprara proved that the

unsigned version of this problem, for short URD, is NP-hard [54]. The case study con-

sidered in this work is U . SRD has been extensively studied in the field of combinatorics

of permutations (e.g., [55], [56]). Our algorithms apply Bader, Moret, and Yan’s linear

solution for SRD as the fitness function to solve URD, as done by Soncco, Muñoz, and

Ayala-Rincón in [57].

2.3.2 Translocation Distance

An integer number represents a ge e. Signed integers model oriented genes and un-

signed integers non-oriented gen s. A chromosome is a finite sequence of genes, and a

genome is a set of chromosomes. Formally, a genome G with N chromosomes and n

genes is a set {(x11, . . . , x1r1), · · · , (xN1, . . . , xNrN
)}, where n = ∑N

k=1 rk and |xij| ≠ |xkl|

whenever i ̸= k or j ̸= l. For 1 ≤ i ≤ N and 1 ≤ ji ≤ ri, if xiji
∈ [±n] = {±1, . . . ,±n}

then G is called a signed genome, whereas if xiji
∈ [n] = {1, . . . , n} then G is an unsigned

genome.

A translocation is an operation that acts over two chromosomes of a genome. There

are two types of translocations: prefix-prefix and prefix-suffix.

Let G = {X1, . . . , X, . . . , Y, . . . , XN} be a genome and X = (x1, . . . , xl) and Y =

(y1, . . . , ym) two chromosomes of G. A prefix-prefix translocation ρ(X, Y, xi, yj), 1 ≤ i < l,

1 ≤ j < m, applied over G maintains the prefixes of X and Y and switches their suffixes,

that is,

Gρ(X, Y, xi, yj) = {X1, . . . , X ′, . . . , Y ′, . . . , XN}, where

X ′ = (x1, . . . , xi, yj+1, . . . , ym) and

Y ′ = (y1, . . . , yj, xi+1, . . . , xl).

Specifying whether G is a signed or an unsigned genome when one defines a prefix-prefix

translocation is unnecessary once this concept is similar for both cases. A prefix-suffix

38

translocation θ(X, Y, xi, yj), 1 ≤ i < l, 1 ≤ j < m, applied over G maintains the prefix of

X and the suffix of Y and interchanges the suffix of X with the prefix of Y , that is,

Gθ(X, Y, xi, yj) = {X1, . . . , X ′, . . . , Y ′, . . . , XN}, where

X ′ = (x1, . . . , xi,−yj, . . . ,−y1) and

Y ′ = (−xl, . . . ,−xi+1, yj+1, . . . , ym),

when G is a signed genome and

X ′ = (x1, . . . , xi, yj, . . . , y1) and

Y ′ = (xl, . . . , xi+1, yj+1, . . . , ym),

when G is an unsigned genome (See Figure 2.10).

Xp Xs

Yp Ys

X =

Y =

Prefix-Prefix
Xp

XsYp

YsX' =

Y' =

Prefix-Suffix
Xp

-Xs

-Yp

Ys

X' =

Y' =

Figure 2.10: Prefix-prefix and prefix-suffix translocations over a signed genome.

Given a chromosome X = (x1, . . . , xl) the elements of the set {x1,−xl} are called tails

of X, if X is a signed chromosome, whereas the elements of the set {x1, xl} are the tails

of X in the unsigned case. Two genomes are considered co-tails if they share the same

set of tails. It’s important to note that if G is a genome and ρ is a translocation, then

Gρ and G are co-tails. Therefore, to guarantee that a genome A can be transformed into

a genome B by translocations, it is necessary to ensure that A and B are co-tai s. The

two variations of the genome rearrangement problem through translocations are defined

as follows.

• Unsigned Translocation Distance Problem (UTD): given two unsigned co-

tails genomes A and B with the same number and over the same set of genes,

39

determine the minimum number of translocations needed to transform A into . One

can assume that the genes of B are in increasing order. One calls B an identity

genome.

• Signed Translocation Distance Problem (STD): it is defined analogously to

UTD. Still, in this case, A and B are signed co-tails genomes, and the genes of the

signed identity genome B are positive and in increasing order.

If ρ1, . . . , ρk is a shortest sequence of translocations such that Aρ1 . . . ρk = B then k is

called the translocation distance between A and B. Since the identity is sorted, the UTD

and STD problems from A to an identity (that is, co-tail with A) are also referred to as

the problem of sorting genome A by translocations.

Example: Consider the signed genomes

A = {(+1, +3), (+4,−8, +5, +2, +6), (+7, +9)}, and

B = {(+1, +2, +3), (+4, +5, +6), (+7, +8, +9)}

Observe that,

A = {(+1, +3), (+4,−8, +5, +2, +6), (+7, +9)}

Aρ1 = {(+1, +2, +6), (+4,−8, +5, +3), (+7, +9)}

Aρ1ρ2 = {(+1, +2, +3), (+4,−8, +5, +6), (+7, +9)}

Aρ1ρ2θ1 = {(+1, +2, +3), (+4,−8,−7), (−6,−5, +9)}

Aρ1ρ2θ1θ2= {(+1, +2, +3), (+4, +5, +6), (+7, +8, +9)}

Thus, the prefix-prefix translocations ρ1 and ρ2 together with the prefix-suffix translo-

cations θ1 and θ2 transform A into B and translocation distance between A and B is

4.

UTD is addressed in this work and was shown to be NP-hard by Zhu and Wang in

[58]. As for SRD, the Signed Translocation Distance problem (STD) considers signed

genomes and belongs to P . Indeed, algorithms of time complexity O(n3) and O(n) were

40

respectively designed by Hannenhalli [59] and by Bergeron, Mixtacki, and Sotye in [60].

In the proposed approaches, the fitness function to solve the UTD problem is computed

using the algorithm proposed in [60].

2.3.3 N-Queens

This problem aims to place n queen chess pieces in an n × n chessboard in a con-

figuration where no two queens can attack each other. The problem is related to the

N -Queens completion problem that consists in completing a configuration from a given

partial solution and is known to be both NP-complete and #P-complete (see [61]). A

relevant advantage of this problem to test optimization algorithms is that it is well-known

each n× n chessboard, for n > 3, has solutions with zero attacks.

This problem is commonly used as a benchmark in different machine learning-based

methods. For example, it has been used in constructive backtracking algorithms ([62])

and BAs-based meta-heuristics such as GA ([63]) and PSO ([64]).

The search for a solution corresponds to a minimization problem. Considering the

search space is given by n different positions in an n × n-chessboard, its size is given by

(n2)!/(n! (n2 − n)!) and the measure of each possible solution is defined as the number of

attacking movements between queens at these positions. Here, each candidate placement

solution is encoded as an n-dimensional vector x, where the pair (j, xj), for j an index

of x, represents the placement of a queen onto the jth row and xjth column of the

chessboard. Notice that, in this manner, the search space is reduced to a set S of nn

possible placements. The goal is to minimize a function fattack : S → N that maps each

x ∈ S into the number of pairs of queen pieces under mutual attack given by the placement

x. The function fattack, used as a fitness function, is linearly computed. Figure 2.11 (taken

from [20]) illustrates the placement of a single queen piece at (4, 4) position on an 8× 8

board and Figure 2.12 shows a placement where none of the 8 queen pieces attack each

other.

41

Figure 2.11: Movement of a queen chess
piece on an 8× 8 board.

Figure 2.12: A placement x where
fattack(x) = 0.

2.3.4 Task Mapping and Scheduling

The Task Mapping Problem (TMP) consists of mapping tasks of a Real-Time Appli-

cation (RTA) onto one of the multiple processor cores of a Real-Time System (RTS). The

correctness of an RTS depends on its compliance with deadlines.

A type of multiple processor, Multiprocessor System-on-Chip (MPSoC) ([65]) is con-

sidered in this case stu y. MPSoCs have a communication architecture comprising a

Network-on-a-Chip, a well-established intra-chip communication architecture paradigm

[66]. Due to the real-time setting, the Network-on-a-Chip fits the category of a Real-Time

Network-on-a-Chip (RTNoC) as defined by [67]. The RTNoC consists of a wormhole

packet switching strategy and virtual channels, allowing the preemption of data flows

during transmission by ones with a higher priority level.

For static schedulability analysis of feasible mapping solutions, this case study uses

a specific model for the RTNoC-based MPSoC platform and the RTA mapped onto it,

similar to the one by [68]. The TMP is NP-hard similar to the knapsack problem given

by [69]; thus, a brute force approach is unfeasible. Indeed, a case where n tasks are being

mapped onto a system with m processors gives a search space with mn possible task

mapping solutions.

The platform model, Ψ = ⟨Π, R, Λ⟩, consists of Π = {π1, ..., πn}, a set of homogeneous

42

processing elements connected to its network interface elements, and a set of routing ele-

ments, R = {ρ1, ρ2, ..., ρn}, to switch messages that connect elements in Π and themselves

using Λ = {λπ1,ρ1 , λρ1,π1λρ1,ρ2 , ..., λρn,ρn−1}, a set of unidirectional links in a regular i × j

processors mesh-grid topology, where ij = n. The model comprises a set of tasks Γ, such

that τ ∈ Γ is given as a tuple ⟨C, T, D, P, ϕ⟩ formed by the worst-case running time,

inter-arrival period, relative deadline time, priority-level, and a transmitted message ϕ,

respectively. At the end of its execution, the task τ may transmit a message ϕ towards an-

other task. The schedulability analysis considers the utilization factor of processor cores

and links. The utilization factor for a processor core, Uπ, presents the ratio in which the

processor is used by the tasks mapped onto it as in [70].

The same principle is used to evaluate the utilization rate of links in the RTNoC to

check whether they do not exceed their maximum communication bandwidth.

This simple analysis is necessary to avoid non-schedulable solutions demanding re-

sources exceeding the available capacity, implying that tasks and messages do not comply

with deadlines. This situation holds for any given processor π if its utilization factor is

such that Uπ > 1 and for any given link λ such that Uλ > 1. However, the utilization

analysis is insufficient. Even in cases where all processors and links are not over-utilized,

the task mapping may not be fully schedulable depending on the task set in the mapped

RTA. Even though these tests are insufficient, they are helpful for quickly identifying

whether mappings suit the time requirements.

Given a set of tasks Γ and a platform Ψ, a task mapping solution can be encoded

as an n-dimensional vector of positive integers x, where each component, xj, represents

the index of the processor in the platform Ψ responsible for processing the task τj ∈ Γ.

The search-based optimization for a task mapping solution that reduces the number of

overused resources is expressed by a function futil that calculates the number of processors

and links overburdened in the system given a task placement x. The minimization goal

using futil as a fitness function is to find a task placement x∗ that respects processors and

links maximum capacities.

43

Chapter 3

Overview of Preliminary Research

This chapter provides a comprehensive overview of our preliminary research. In Sec-

tion 3.1, we begin the discussion regarding HoPIMs, examining the sensitivity of migration

parameters and the methods for creating initial populations for the islands. Section 3.2

explores the evolution of HoPIMs, which have become integral components of recognized

BAs in the literature, serving as evolutionary engines within islands for quality and perfor-

mance comparisons. Related studies on HoPIMs are illustrated in Section 3.3. Section 3.4

ventures into HePIMs, initially discussing the conventional island method that allocates

various evolutionary engines. Following that, Section 3.5 delves into an approach focused

on reconfigurable HePIMs. We conclude the chapter by presenting a mind map that or-

ganizes and elucidates the published works in the research involving both homogeneous

and heterogeneous models, as detailed in Section 3.6.

3.1 Evolution and Calibration of Homogeneous Par-

allel Island Models (HoPIMs)

Our research involving PIMs began in [12], where approaches to address the UTD

problem were proposed. One of these approaches utilized versions of HoPIMs with an

evolutionary engine based on a memetic algorithm developed by the renowned GA for

44

tackling the UTD problem [23]. However, the solutions obtained with the model proved

to be unsatisfactory. The HoPIM used a topology based on a complete graph (see Figure

2.6 c), where the best individual was shared with all other islands in each generation

to replace the worst native individual. It proved to be inadequate as it contributed to

premature convergence. Another critical point to highlight is that the unsatisfactory

performance was related to using the same breeding cycle parameter values used by the

sequential algorithm. The experience gained throughout the work allowed us to under-

stand that HoPIMs require special care both in defining migration policies and in selecting

the parameters of the algorithms responsible for the evolution of populations.

Our article [13] focused on exploring the parameters involved in island models to op-

timize solutions. The GA continued to serve as the evolutionary engine for the proposed

HoPIMs, notable for being a widely recognized algorithm in the literature for addressing

the URD problem [71]. The initial phase involved calibrating migration and evolution pa-

rameters using a greedy method. This approach primarily focuses on identifying suitable

values for reproduction and migration before advancing to the calibration stage. Once

determined, these values are utilized and remain constant across subsequent generations.

The so-called “taxonomy T1” was adopted for calibration as discussed in [72]. The tuning

method employs an iterative approach. The algorithm’s parameters are organized into

a vector, and iteration occurs by traversing each vector position, representing a specific

parameter. In each iteration, various possible values are tested for the current parameter,

and the value that results in a better solution quality is fixed. The procedure is repeated

for each parameter, with the peculiarity that once a compelling value for a parameter is

found, this value is used as a reference for searching one optimized value for the following

parameter. Thus, the method unfolds, adjusting each parameter until all are tuned. In

this work, HoPIMs employing ring and complete graph topologies (refer to Figures 2.6

b and 2.6 c) for the URD case study are proposed. The findings demonstrate that even

with a greedy method, a systematic approach to parameter tuning significantly increases

the likelihood of discovering superior solutions compared to the sequential version.

45

Ultimately, the greedy method provided parameter values that were better suited for

the case study resolution. An important aspect was to assess the behavior concerning

initially randomly generated populations and those drawn from the sequential version,

where the population from the sequential GA is divided into equal-sized partitions and

distributed among the islands. The experiments demonstrated that through straightfor-

ward calibration, as the method employed is greedy, it is possible to achieve superior

solutions compared to the sequential version. Furthermore, it became evident that the

HoPIM employing a ring topology provides better solutions than the HoPIM using the

complete graph topology. Such a behavior could be explained by the former topology

being sparser than the latter. Such experiments also determined a milestone in our re-

search, leading us to adopt the sequential population to initialize populations on the

islands, given that the results were, on average, superior to those obtained by generating

random populations for each island.

The speedup was satisfactory. The ring topology yielded the best speedup results,

reaching around 11, as expected due to its sparser nature. In contrast, the complete

graph topology, being denser, still provided a good speedup, above 7. Models employing

partitioned populations introduce an overhead that negatively impacts runtime, with a

lesser effect on the ring topology model and a more significant degradation in the complete

graph topology model.

3.2 HoPIMs: Synchronous/Asynchronous, Migration

Strategies, Parameter Evaluation, BAs

In [17], [18], [20], a variety of HoPIMs were evaluated using GA as the evolutionary

engine. Synchronous and asynchronous HoPIMs were proposed to solve the four cases of

study: UTD, URD, N -Queens, and TMP. Some discrepancies found in the literature re-

garding HoPIMs were addressed, primarily concerning the behavior of synchronous versus

46

asynchronous versions, the number of islands, and the impact of parameters on accuracy

and speedup.

Initially, we calibrated the parameters of each HoPIM separately using a greedy strat-

egy, as done in [13], to ensure reliable specific configurations. Such a calibration allowed

us to conduct a fair and robust analysis of the overall behavior of each HoPIM, whether

synchronous or asynchronous. Synchronous and asynchronous HoPIMs were implemented

based on the topologies in Figures 2.6 and 2.9 with 12 and 24 islands. All these mod-

els underwent parameter calibration and consistently provided higher-quality solutions

than the sequential version. The experiment results did not identify a generic HoPIM

that offered the best speedup and accuracy for all case studies. Regarding accuracy,

synchronous HoPIM delivered the best solutions in most instances. Synchronous static

12-island HoPIMs proved the most competitive in solving URD, while static and dynamic

12-island HoPIMs excelled in UTD resolution. For TMP, the most effective solutions

came from synchronous dynamic 24-island HoPIMs, and in the case of N -Queens, the

best results were obtained through a synchronous static binary tree 24-island HoPIM.

The experiments over the four case study problems also confirmed various issues dis-

cussed in the literature. Our primary goal was to determine whether a uniformly executing

island model with the same BA, the same number of islands, and the same topology would

yield good adaptation in terms of accuracy and speedup for all problems. The main les-

son learned is that the best-adapted HoPIM depends entirely on the specific problem. An

important observation is that variations in the number of chromosomes in the genome

can significantly impact the choice of the most effective HoPIM.

Although our primary focus has been on accuracy, it is noteworthy that all HoPIMs

provided significant speed gains. In some cases, these gains were so efficient that they

achieved linear speedup, indicating that the performance improvement was proportional

to the increase in the number of processors. This outcome underscores the effectiveness

of PIMs in the addressed case studies.

The existing literature frequently indicates that asynchronous HoPIMs yield superior

47

speedup compared to their synchronous counterparts (e.g., [73, 74, 11]). However, the

experiments revealed that this statement is only valid when all models share the same

parameter configuration. The parameters obtained during the calibration phase, focused

on improving accuracy, also influenced the overall speedup of the HoPIMs. For example,

modifications on the selection and crossover parameters showed a significant impact.

Furthermore, migration parameters, such as MigrationInterval and NumMigIndividuals,

were identified as the most sensitive, as they control the overhead in the HoPIMs. Finally,

evaluating migration topologies highlighted the potential of dynamic topologies when

focused on compelling exploration. Nevertheless, there was no consensus on the best

solutions for all problems, and determining a single superior topology, whether static or

dynamic, was impossible. The only clear conclusion is that sparser topologies, such as

ring, tree, and x× y-net, outperformed denser topologies, like complete graphs and torus.

Based on the feedback received and the information in the literature, our research

continues exploring the impact of solution quality when altering the evolutionary mecha-

nisms within the HoPIMs [19]. The new experiments included three evolutionary engines:

SSA, PSO and GA and the topologies shown in Figures 2.6 and 2.9, applied to the URD case

study. The HoPIMs derived from SSA and PSO underwent a parameter calibration phase,

similar to the process used for GA-based HoPIMs. HoPIMs generated from SSA resulted

in low-quality solutions; furthermore, when considering 24 islands, a higher degradation

was observed than in models with 12 islands. Concerning the quality of HoPIMs gener-

ated using PSO, static topologies stood out, particularly for small to medium-sized URD

instances, surpassing GA-based HoPIMs. However, these HoPIMs were less competitive in

dealing with larger URD instances.

3.3 Related Work in Homogeneous Island Models

This section will primarily delve into works about HoPIMs. We have chosen to omit

discussions related to HePIMs at this point, as those will be thoroughly examined in the

48

upcoming chapter.

Saito et al. [75] introduced an approach to parallelize decomposition-based multi-

objective evolutionary algorithms (MOEA/D). The technique utilizes many-core environ-

ments, such as Graphics Processing Units (GPUs), to prevent degradation in solution

accuracy. Degradation is mitigated by defining a virtual overlapping zone between par-

titions and the selection of individuals. Weight vectors of adjacent partitions are used

to evaluate individuals in this zone for mating and migration. The method is compared

with sequential MOEA/D, parallel MOEA/D without migration, and parallel MOEA/D

with migration. The case study focused on a two-objective knapsack problem with con-

straints. The results highlighted the effectiveness of the proposed method in enhancing

solution diversity and speedup. It is important to note that our work does not explore

multi-objective problems. However, this study emphasizes the potential of island models

to address such problem domains.

Another research aiming at preventing failures in refrigerated display cases installed

in convenience stores and supermarkets was proposed by Otaka et al. in [76]. The

study introduces a fault detection method using folder-based artificial neural networks,

employing a modified brainstorm optimization with PIMs and correntropy (see [77]).

Variations with static ring topology, trigonal pyramid, and cube topologies were explored.

They implemented an elitist migration policy where the best immigrants replace the worst

natives every ten generations. Experiments were conducted with limited numbers of

islands: two, four, and eight. Statistical tests highlighted the superiority of the four-island

trigonal pyramid topology model, indicating a success rate of approximately 99.4% for the

presented samples. This work shares similarities with the approach we are adopting in our

research, including variations in topologies and the number of islands. The difference is

that the authors opted for parameter values without undergoing a parameter calibration,

which, according to our study, significantly affects the quality of solutions.

Ohira et al. [78] proposed a HoPIM using a GA as an evolutionary mechanism for

GPU deployment. The approach clusters similar individuals on each island to focus on

49

a specific search space region. The similarity was calculated using the longest common

subsequence distance ([79]), in contrast to genotype similarity in our approach, justified

because it is more suitable for the type of problems we address. Unlike a parameter-guided

migration, in the proposed approach, at each migration, the global population is grouped

into subpopulations and subsequently distributed among islands based on their similarity.

The approach establishes a dynamic communication topology based on similarity, while

the migration interval is influenced by diversity. The implementation occurs on GPU

and CPU, demonstrating acceleration improvements as the number of islands increases,

with particularly significant acceleration in the CPU version. The outcomes obtained

by the authors reinforce our observations regarding accuracy and speedup, underscoring

that speedup has the potential for scalability exclusively. At the same time, an identical

situation does not occur for accuracy.

Skakovski and Jędrzejowicz propose an island model composed of islands of differ-

ent sizes that operate independently without any communication among themselves [80].

The model successfully executes the DE algorithm on its islands to solve the discrete-

continuous scheduling problem. Our work has not explored such a strategy, as we have

chosen not to work with islands of different sizes. Subsequently, the authors in [81] intro-

duced dynamism by allowing adjustments to the island population during the evolutionary

cycle and a migration policy. Abed-Alguni et al. developed a series of works involving

homogeneous HoPIMs from the Cuckoo Search (CS), Grey Wolf Optimizer (GWO) and

Whale Optimization Algorithm (WOA), respectively. In [82], they proposed a HoPIM

from the GWO [34]. The model allows the exchange of individuals between islands based

on a random ring topology that is altered at each migration process. Such a dynamic

topology does not have a defined criterion for organization, unlike the one applied in our

proposed dynamic topology in [17]. The adopted migration policy is grounded in an eli-

tist and compared to swarm-based optimization algorithms: its sequential version, Cuckoo

Search [33], Memory-Based Hybrid Dragonfly [83], Fireworks Algorithm with Differential

Mutation [84], and Adaptive Differential Evolution with Linear Population Size Reduc-

50

tion Evolution [85]. The results indicate that the HoPIM produces competitive outcomes

compared to the other evaluated algorithms. However, it did not compute superior solu-

tions to the ones computed by the competitors for all assessed problems. Additionally,

the sensitivity of the island model to its parameters was evaluated in various scenarios,

including migration frequency (5% and 10%) and the number of islands (two, five, and

ten). The results suggest that the HoPIM with ten islands and a migration frequency

of 5% delivers the best outcomes. Later, the HoPIM was adapted to deal with discrete

problems [86]. In [87], Abed-Alguni et al. investigated an alternative evolutionary ap-

proach within the context of the HoPIM presented in [82]. The model was adjusted to

evolving islands using the WOA. A comparative analysis involving other HoPIMs suggests

that the model proposed by the authors enhances result accuracy. Moreover, sensitivity

analysis of its parameters reveals that the convergence behavior is intricately linked to the

migration parameters. It is important to note that the authors did not conduct a com-

parative study with the HoPIM proposed in [82], which uses GWO, a potential avenue

for further investigation into the behavior of both models. Recently, Abed-Alguni et al.

[88] employed the CS as the evolutionary engine for islands in the HoPIM presented in

[82]. The model’s performance was deemed efficient in tests conducted in continuous and

discrete contexts. The experiments revealed that this approach yielded superior solutions

to the model utilizing the GWO proposed in [82].

Thaher et al. propose, in their work [89], a HoPIM based on a Crow Search al-

gorithm. The model employs a dynamic communication topology organized in a ring,

which is altered with each migration process. The authors work with the population

percentage in migration, and the migration frequency is controlled by the number of gen-

erations, following an elitist policy where the best immigrants replace the worst natives.

Experiments were conducted using well-known benchmarks in the literature, containing

optimization functions with optimal solutions found in polynomial time. For comparison,

the model was subjected to experiments with various BAs. The experiment scenarios

found in [82, 87, 88], where variations in the number of islands and migration frequency

51

are used to observe the behavior of the models. The authors’ observations emphasize

that migration parameters significantly influence the results; thus, parameters must be

carefully chosen to offer high-quality solutions. Furthermore, the comparison with other

BAs demonstrates that the HoPIM can provide competitive results and achieve the best

outcomes in most cases.

3.4 Comparative Analysis of Homogeneous and Het-

erogeneous Models

DE

GAD

PSO

GAD

PSO

DE
GA

GAD

PSO

DE

GA

GA GA

DE

PSO GAD

GA GAD PSO

(a) (b)

GAD

PSO DE

GADE

1

2

3

4

5

6

7

9

8

10

11

12

1

2 3

4 5 6 7

8 9 10 11 12

Figure 3.1: (a) HePIM organized with a complete graph topology. For simplicity, only a
subset of edges. (b) HePIM configuration using a binary tree topology.

The HePIMs have been a focal point of discussion in our subsequent research reported

in [14]. The NP-hard problems are notable for having a vast and challenging search

space. Adopting HePIMs, which can integrate various BAs, underscores a promising

potential to address these challenges. The intrinsic diversity of these models provides

a range of exploration methodologies within the solution space, enabling adaptation to

different characteristics and nuances of the problem. This flexibility makes HePIMs a

52

valuable approach in pursuing practical solutions amid the inherent complexity of NP-

hard problems.

In our initial research with HePIMs, we employed PSO, GA, GAD and DE as evolu-

tionary engines to tackle instances of the URD problem. We adopted synchronous and

asynchronous 12-island HePIMs using a communication topology based on a static binary

tree (Figure 2.6(a)) and another based on a dynamic complete graph (Figure 2.9). Each

BA was assigned to three islands (see Figure 3.1), and an equal number of generations was

maintained for both homogeneous and heterogeneous PIMs. Experiments with HoPIMs

were required to evaluate the quality of proposed HePIMs.

Let PHet
Tr12S, PHet

gbmm12S, PHet
Tr12A and PHet

gbmm12A denote the synchronous and synchronous HeP-

IMs created from the topologies of binary tree and dynamic complete graph, respectively.

The subscript prefixes Tr and gbmm denote that the model uses the static binary tree and

dynamic complete graph topology, respectively, and the subscript suffixes 12S and 12A

denote the number of islands and whether the model is synchronous or asynchronous.

The experiments indicate that synchronous and asynchronous HePIMs deliver better so-

lutions than homogeneous models when considering PSO, GA and GAD. The only exception

is HoPIMs based on DE. Furthermore, asynchronous HePIMs demonstrated superior so-

lutions to synchronous HePIMs (see details in [14]). The two figures 3.2 and 3.3, and

the two figures 3.4 and 3.5 present a comparative analysis of results between HoPIMs

and HePIMs. The first two figures are for synchronous, and the latter two figures are for

asynchronous PIMs. HoPIMs are distinguished by their names as superscripts. At the

same time, other details are explained similarly for HePIMs, including topology, number

of islands, and synchronization. Instances of the URD problem with sizes 100, 110, . . . ,

140, and 150 were employed to evaluate these models. It’s worth noting that URD is

a minimization problem, so the closer to the center, the better the quality of results.

Notably, HePIMs are surpassed only by homogeneous models implemented from DE, and

homogeneous and heterogeneous versions, utilizing dynamic topology, deliver superior

solutions than versions based on static topology.

53

120 110

130 100

140 150

80.74

89.8398.93

Figure 3.2: Accuracy of PHet
Tr12A and related HoPIMs

3.5 Reconfigurable Heterogeneous Models

In [15], we present reconfigurable heterogeneous PIMs, building upon the work’s con-

tinuity in [14]. We focused exclusively on asynchronous HePIMs, which have proven to

provide more effective solutions for the URD problem than synchronous HePIMs. This re-

configuration concept involves replacing the BA of the island with the worst accuracy with

the BA of the island that presents the best accuracy at predefined intervals determined by

the number of generations. These intervals are identified through calibration experiments

conducted during a setup phase. A master-slave model is utilized to classify islands based

on their fitness average and variance, employing this information to construct neighbor-

hoods throughout the evolutionary process. The master island (Island 1) receives data

from all islands; it ranks and notifies the worst island. The worst island reconfigures (i.e.,

replaces) its BA with the BA of the best-ranked island. The reconfiguration process is

54

100

110120

130

140 150

80.82

90.098.99

Figure 3.3: Accuracy of PHet
gbmm12A and related HoPIMs.

controlled by a parameter called reconfiguration frequency (RF). The (RF) dictates the

number of evolutionary generations for periodic reconfiguration. It is established through

a parameter calibration phase preceding the experiments. We implemented two HePIMs:

P recHet
Tr12A and P recHet

gbmm12A. Both models utilize the reconfiguration methodology, with the for-

mer adopting a static binary tree topology (Figure 2.6 (a)), while the latter employs a

dynamic complete graph topology (Figure 2.9). Operating asynchronously, they evolve

through a refined migration policy, enabling individuals to exchange, thereby preserving

diversity. Figure 3.6 illustrates reconfiguration cycles, using the P recHet
gbmm12A model as an

example.

Reconfigurable HePIMs, especially the P recHet
Tr12A consistently demonstrated superior solu-

tions compared to the traditional method of implementing HePIMs used in [14]. However,

55

100

110120

130

140 150

80.82

89.998.99

Figure 3.4: Accuracy of PHet
Tr12S and related HoPIMs.

the HoPIM utilizing DE stood out by exhibiting superior efficiency, delivering improved

solutions across most input datasets (see Figures 3.7, and 3.8). A more detailed analysis of

the results reveals that the solution quality of HoPIMs based on DE consistently surpasses

that of other HoPIMs, especially when compared to those derived from PSO. Such results

posed a significant challenge for HePIMs to overcome, even with various calibrations in

migration parameters.

Including an evaluation of speedup performance, the reconfigurable HePIMs maintain

competitiveness compared to traditional HePIMs, as evidenced in Table 3.1. HoPIMs’

speedups are calculated according to their sequential versions, while speedups for non-

reconfigurable and reconfigurable HePIMs are based on the average runtime of sequential

BAs: PSO, GA, GAD, and DE. The additional cost associated with reconfiguration can be

56

100

110120

130

140 150

80.82

89.998.99

1

Figure 3.5: Accuracy of PHet
gbmm12S and related HoPIMs.

quantified by the speedup ratio between reconfigurable and non-reconfigurable HePIMs:

0.87 for P recHet
Tr12A and 0.88 for P recHet

gbmm12A.

Table 3.1: Speedups for reconfigurable HePIMs.

Homogeneous Heterogeneous
GA GAD PSO DE

Tr12A gbmm12A Tr12A gbmm12A Tr12A gbmm12A Tr12A gbmm12APHet
Tr12AP recHet

Tr12A PHet
gbmm12AP recHet

gbmm12A

9.48 9.28 8.69 7.94 10.23 9.44 8.86 7.27 8.04 6.99 6.98 6.15

57

DE

GAD

GA

GAD

GAD

DE

GA

GAD

DE

DE

GA

GA

1

2

3

4

5

6

7

8

9

10

11

12

DE

GA

GA

GAD

GAD

DE

GA

GAD

DE

DE

GA

GA

1

2

3

4

5

6

7

8

9

10

11

12

DE

GA

GA

GAD

DE

DE

GA

GAD

DE

DE

GA

GA

1

2

3

4

5

6

7

8

9

10

11

12

RF

...

...

RF

Figure 3.6: Example of periodic reconfiguration in the dynamic complete graph topol-
ogy. For simplicity, only a subset of the edges between all islands is included. In each
reconfiguration cycle, according to the number of generations controlled by the parameter
(RF), the gray island has the best performance, and the red-dotted island, with the worst
performance, has its BA updated to the BA being executed by the gray island.

58

120 110

130 100

140 150

80.74

89.8398.93

Figure 3.7: P recHet
Tr12A , PHet

Tr12A and related HoPIMs accuracy.

3.6 Summary

This section serves as a summary to provide a comprehensive overview of the research

outcomes, elucidating a mind map that encapsulates the published works resulting from

the conducted research. We will further subdivide this section into two subsections for en-

hanced clarity and organization. In Subsection 3.6.1, we delve into publications centered

around HoPIMs, delineating their contributions and outcomes. Subsequently, in Subsec-

tion 3.6.2, the focus shifts to specific publications related to HePIMs, offering insights

into their unique characteristics and impact on the broader research landscape.

3.6.1 Summary on Homogeneous Parallel Island Models

Figure 3.9 presents a mind map associated with our research on HoPIMs, summarizing

the evolution of our study discussed in sections 3.1 and 3.2. The nodes with the darker

59

100

110120

130

140 150

80.82

90.098.99

Figure 3.8: P recHet
gbmm12A, PHet

gbmm12A and related HoPIMs accuracy.

color represent the specific contributions of each work.

In the 2016 Congress on Evolutionary Computation edition, denoted in the mind

map as CEC2016, we first explored the concept of PIMs. Using a static complete

graph topology, we implemented a HoPIM from the GA with the UTD problem as a case

study. The model adopted the same evolutionary parameters as the sequential version. It

has an elitist migration policy where islands exchange their best individuals and replace

their worst native individuals with immigrant individuals. However, the results of the

experiments were not satisfactory, highlighting the need for accurate parameter tuning.

The following year, in CEC2017, the research continued with HoPIMs from the

GA, utilizing neighborhoods constructed from static ring and complete graph topologies.

Different population initialization strategies were explored, creating islands with random

60

populations and others where the population was derived from the sequential version

partitioned in equal sizes for each island. The URD problem was the case study, and

we applied evolutionary and migration parameter tuning. HoPIMs provided the most

effective solutions based on the ring topology, and the strategy of initializing islands from

the population of the sequential version resulted in better solutions. It is important to note

that the observation regarding the significance of parameter tuning in [12] was validated,

and following this adjustment, all models delivered solutions superior to those computed

with the sequential version.

In CEC2018, we designed HoPIMs, implemented from the GA to address the URD

problem. Such models involve static topologies such as a binary tree, torus, and net.

Additionally, we proposed a dynamic topology based on the islands’ quality and diversity

to build the neighborhood between islands during each migratory period. We employed

an approach where each island generates its population randomly. A second approach

involves dividing the population from the sequential version into equal sizes and then

allocating it to the different islands of the model. From experiments, it was observed that

the dynamic model yielded the best solutions. Additionally, partitioning the population

from the sequential version showed superiority over creating random populations.

For the CEC2019, there was a shift to the UTD problem while maintaining static

and dynamic topology HoPIMs from the GA, but adopting only initial populations created

from the sequential version. Variations in the number of islands were introduced, with

HoPIMs altered to operate with 12 and 24 islands while maintaining a total population

of the same number of individuals. Each HoPIM underwent parameter adjustments, and

the best results were obtained by models with 24 islands, particularly the dynamic model

(gbmm).

We expanded our scope in CEC2020, adding static ring and complete graph topolo-

gies. We incorporated extra evolutionary algorithms like SSA and PSO, proposing varia-

tions with 12 and 24 islands for each algorithm (GA, SSA, PSO) and adjusting parameters.

Regardless of the number of islands, all models had the same number of individuals. Ini-

61

tializing populations divided the global population from the sequential version equally

among the islands. Experiments with the URD problem showed that GA-based models

delivered the best solutions compared to models from SSA and PSO, respectively. However,

models from the SSA proved poor solutions, unable to surpass the sequential version.

In the Journal on Applied Soft Computing, denoted in the mind map as ASC2023, the

study exclusively employed the GA as the evolutionary engine. The focus was on evaluating

both synchronous and asynchronous HoPIMs in various scenarios. Four case studies were

considered: TMP, URD, URD, and N -Queens. Static and dynamic topologies with 12

and 24 islands were examined for synchronous and asynchronous models. All HoPIMs

underwent parameter tuning for enhanced solutions. Experiments on the four distinct

problems, considering the number of islands, synchronicity, and topology, resulted in

good adaptation in terms of accuracy, with competitive speedups for all problems. The

primary lesson reaffirmed that the best-adapted model is highly problem-dependent. It

is essential to note that, for the same problem, small changes in parameters can have a

significant combinatorial impact, directly influencing the best-adapted model. Although

the emphasis is on accuracy, all HoPIMs provided substantial speed gains, confirming that

PIMs are excellent strategies for addressing NP-hard problems. It’s worth highlighting

that asynchronous HoPIMs offer better speedups only when all models have the same

parameter configuration. The parameter selection performed in parameter tuning, aimed

at achieving better accuracy results, has a direct impact on the execution speedup of a

model.

3.6.2 Summary: Heterogeneous Parallel Island Models

Figure 3.10 presents the mind map related to the research on Heterogeneous Paral-

lel Island Models, as described in works [14] and [15]. The node with darker coloring

represents the specific contribution of this study.

Our research on heterogeneous models began at the Symposium Series on Computa-

tional Intelligence (SSCI) in 2021 [14] denoted as SSCI2021, where we delved into the

62

fundamental concept in the literature regarding heterogeneous models. This concept in-

volves dividing islands among various BAs, evolving them simultaneously, and exchanging

individuals among them, as defined by migration parameters. We proposed a variety of

synchronous and asynchronous HePIMs, utilizing: GA, GAD, DE and PSO as evolutionary

engines for the islands, employing a static topology (Figure 2.6(a)) and another based

on a dynamic complete graph (Figure 2.9). It’s important to note that each algorithm

had the same number of islands. As a case study, we used the URD problem and applied

parameter tuning only to the migration parameters of each HePIM. The evolutionary

parameters of the algorithms remained as defined through tuning for each HoPIM. The

experiments demonstrated that asynchronous models deliver better solutions than syn-

chronous ones. The inherent diversity in the asynchronous heterogeneous dynamic model

was relevant in achieving the best results among all HePIMs. A comparison between het-

erogeneous and homogeneous versions revealed that heterogeneous models are superior,

except for HoPIMs using DE, which proved superior to the heterogeneous ones. A lesson

gleaned from this study is that overcoming HoPIMs is not as straightforward. When all

islands operate synchronously, the island’s evolution occurs with less diversity compared

to asynchronous models.

At SSCI2022, we expanded upon the work initiated in [14]. We discarded syn-

chronous heterogeneous versions as they provided inferior solutions compared to asyn-

chronous HePIMs, retaining the evolutionary engines and the case study. We opted for

a methodology called island reconfiguration, which involves fixed intervals defined as the

number of executed generations, swapping the evolutionary engine of the worst-performing

island with that of the best-performing island. The intervals are controlled by a parame-

ter defined through parameter tuning. The results of the reconfiguration strategy evolved

and narrowed the gap with the HoPIM from DE. Carefully analyzing the experiments, we

observed a few points. The number of generations we defined, based on the input size,

was not sufficient to converge the populations on the islands, meaning there was a chance

to obtain better solutions if more evolutionary cycles were included. Another interesting

63

observation is that islands executing PSO consistently showed significantly lower solution

quality than the other islands, ultimately impacting the outcome. These insights are

integrated into the evolution of the HePIMs published in [16] and discussed in the next

chapter.

HoPIMs

CEC2016

[12]

CEC2017

[13]

CEC2018

[17]

CEC2019

[18]

CEC2020

[19]

ASC2023

[20]
Parameter

Sensitivity

Case Study:

UTD

Static

Topology

Case Study:

URD

Static

Topologies

Population

Intialization

Method

Case Study:

URD

Static

Topologies

Static

Topologies

Proposed

Dynamic

Topology

Case Study:

UTD

Static and

Dyamic

Topologies

Case Study:

URD

Number

Island

Variations

Number

Island

Variations

Static and

Dyamic

Topologies

Number

Island

Variations

HoPIMs

Asynchronous

and

Synchronous

Case Studies:

URD, UTD,

N-Queens

and

TMP

Evolutionary

Engine: GA

Evolutionary

Engine: GA

Evolutionary

Engine: GA

Evolutionary

Engines:

PSO, GA

and

SSA

Parameter

Tuning

Parameter

Tuning

Parameter

Tuning

Parameter

Tuning

Figure 3.9: Visual Exploration: Mind Map on HoPIMs in our Scientific Research.

64

HePIMs

CEC2016

[12]

SSCI2021

[14]

case study:

URD

Parameter

Tuning

SSCI2022

[15]

Static and

Dyamic

Topology

HePIMs

Asynchronous

and

Synchronous

Parameter

Tuning

Static and

Dyamic

Topoloy

case study:

URD

Evolutionary

Engine: GA,

GAD, DE and

PSO

Island

Reconfiguration

HePIMs

Asynchronous

Evolutionary

Engine: GA,

GAD, DE and

PSO

Figure 3.10: Visual Exploration: Mind Map on HePIMs in our Scientific Research.

65

Chapter 4

Stagnation-Based Reconfigurable

Heterogeneous Parallel Island

Models

4.1 Contribution

To improve the diversity and flexibility of HePIMs, to outperform the accuracy of

results computed by the best-adapted HoPIMs (regarding [19, 14]), the feature of re-

configurability was first added to HePIMs in [15], obtaining encouraging and competitive

results. In such models, each island may run a different BA and update it to the BA being

executed by the island with the best performance, and the reconfiguration process was

periodically performed after a fixed number of generations during the whole evolutionary

process. However, the periodic reconfiguration policy proposed in [20] does not provide

the required diversity to outperform the best-adapted HoPIMs. Results discussed in this

chapter are published in [16].

This chapter introduces reconfigurable HePIMs with a so-called stagnation-based re-

configuration policy providing the required diversity. The algorithmic reconfiguration is

applied continuously if island stagnation is detected. Such improvement in the dynam-

66

icity and flexibility of the reconfiguration phase is possible by maintaining a record of

the algorithm executed by the most evolved island in a previous period of generations

of the evolutionary process. The early reconfigurable PIMs proposed in [15] were refined

after exhaustive experiments. Maintaining such a record eliminates the need to exchange

information between the islands to decide how each island should reconfigure its BA.

The problem addressed is the URD. For comparison matters, we select the best-

adapted HoPIMs to URD from [19] and the HePIMs that performed better from [14].

The HePIMs run three BAs: GA, GAD, and DE, and the best-adapted HoPIMs run DE in

all its islands. Experiments are performed using two different topologies, a static binary

tree topology and the dynamic complete graph topology proposed in [17].

The design decisions used by the stagnation-based reconfigurable HePIMs, introduced

in this chapter, show that empowering HePIMs with the reconfiguration feature opens an

exciting space for investigation since the accuracy of the computed solutions outperforms

the results obtained by all previous PIMs. Moreover, the algorithmic convergence of

stagnation-based reconfigurable PIMs is analyzed by implementing mechanisms to track

island reconfiguration. The phase of the evolutionary process in which the model becomes

homogeneous is identified. Interestingly, convergence does not always happen towards the

best-adapted HoPIM as reported in [19, 14].

4.2 Reconfigurable HePIMs with stagnation policy

4.2.1 Communication Topologies

For comparison, the introduced stagnation-based reconfigurable models select one

static and one dynamic topology that successfully addressed URD in [19, 15].

The static topology is a 12-island bi-directional binary tree. The dynamic topology

is the 12-island complete graph (see Figure 4.1). Other 12- and 24-island topologies

exhaustively examined in [19] were not considered since, in this work, we want to select

the best-adapted PIMs to have a fair comparison.

67

In the complete graph topology, all pairs of islands may exchange individuals. Island

communication dynamism is acquired by exploring the diversity and quality of each is-

land, given by fitness variance and average metrics. Variance measures islands’ diversity:

high variance represents high population individuals’ diversity, improving the chances of

evolution into islands. The fitness average measures the quality of island populations.

According to such metrics, the islands are ranked as good, bad, and medium. Migra-

tions exchange individuals between good and bad islands, and medium and medium

islands only (for short, gbmm).

Island 2

Island 3

Island 4

Island 5

Island 6

Island 7
Island 8

Island 9

Island 10

Island 11

Island 12

Island 1 Island 1

Island 2

Island 4 Island 5

Island 8 Island 9 Island 10

(a) (b)

Island 3

Island 6 Island 7

Island 12Island 11

Figure 4.1: (a) A dynamic complete graph topology. (b) binary tree topology. In (a),
only a subset of the edges between all islands is included for simplicity.

4.2.2 Reconfigurable islands

Reconfigurable HePIMs were proposed initially in [15]. The dynamic complete graph

model classifies islands according to their fitness average and variance and uses it to build

neighborhoods during the evolutionary process. A master island is responsible for re-

ceiving data from all islands; it ranks and notifies the worst island. The worst island

reconfigures (i.e., replaces) its algorithm with the algorithm of the best-ranked island.

Furthermore, the reconfiguration process is controlled by a parameter called reconfigu-

ration frequency (RF). The RF establishes the number of evolutionary generations to

68

(periodically) perform a reconfiguration step. The dynamic reconfiguration allows updat-

ing the BAs executed in their islands. In [15], the authors implemented two reconfigurable

HePIMs: P recHet
Tr12A and P recHet

gbmm12A selected as the most competitive HePIMs from [19]. The

former uses the static binary tree topology, and the latter uses the dynamic complete

graph topology; both models are asynchronous and evolve through a refined migration

policy that allows the exchange of individuals, maintaining diversity.

4.2.3 Stagnation-based Reconfigurable HePIMs

In the stagnation-based reconfiguration approach, instead of conducting a reconfigu-

ration phase after a fixed number of generations (determined by the parameter RF), the

new model may reconfigure the current BA in each island to the best BA in all evolution-

ary generations (See Figure 4.2). The best BA is the BA used by the island, showing the

highest progress in a fixed interval of generations. This interval is given by a BA classifi-

cation interval (BACI) parameter. Exhaustive experiments showed that a good metric to

evaluate the progress of the islands is granted by the difference between the best individ-

ual fitness at the beginning and the end of the interval. Each island maintains a record of

its progress in the current and previous three generations during the evolutionary process.

The island is reconfigured to continue the evolutionary process, executing the best BA

whenever no progress is detected. In contrast to the strategy of periodic reconfiguration,

the island’s ability to maintain this record of progress permanently makes reconfiguring

any stagnated island possible in each generation.

Furthermore, since the best BA is not known during the initial BACI classification

interval, reconfigurations only start afterward. Once the first phase of the classification

of BAs is performed, stagnated islands will continuously update their current BA to the

best BA. The design decision to fix island stagnation as not improving the best individual

fitness in the last three generations was taken according to exhaustive experiments in

which initially reconfiguration was performed periodically in shorter intervals than those

69

applied in [15], and secondly, in which each island was able to reconfigure its BA during

all generations according to its performance in different evolutionary generation intervals.

The flowchart in Figure 4.3 illustrates the abstraction of the model. Initially, a global

population is equally distributed among the islands, with the same number of genera-

tions assigned to each island. Although we explicitly present only islands one and twelve

for spacing reasons, the procedure is analogous for islands two to eleven. Each island

executes the initial 10% of generations without modifying the evolutionary algorithm.

Subsequently, the stagnation-based reconfiguration mechanism is activated. After each

interval of 10% of the total number of generations, all islands send information to island

one, responsible for calculating which island evolved the most during the interval. Island

one, in turn, sends the algorithm of the chosen best-performing island to all other islands.

This process allows any island to replace its current by the best algorithm when it stag-

nates. The flowchart also encompasses the migration process, as islands need to exchange

individuals at some point, considering the topology used to form neighborhoods. We do

not delve into specific topology details here; consider it dynamic or static. Upon complet-

ing the generations, the individual with the highest fitness among all islands is deemed

the solution. The new stagnation-based reconfigurable HePIMs are denoted according to

their topology as P recHetStag
Tr12A and P recHetStag

gbmm12A .

4.3 Experiments and analysis of accuracy

All PIMs, including the new reconfigurable models, were implemented using the MPI

library of C in Linux, and for the sake of comparison, experiments were executed on a

computational platform using two Xeon E5-2620 2.4 GHz six-core processors with hyper-

threading.

To adapt DE to URD, each n-dimensional individual v is represented by a numerical

vector with values in the continuous interval [0, 1], which is associated with the permuta-

tion π = (π1, . . . , πn) given as input. The individual associated to v is an oriented version

70

DE

GAD

GA

GAD

GAD

DE

GA

GAD

DE

DE

GA

GA

1

2

3

4

5

6

7

8

9

10

11

12

DE

GA

GAD

GAD

DE

GA

GAD

DE

DE

GA

DE

1

2

3

4

5

6

7

8

9

10

11

12

DE

GA

GA

GAD

DE

DE

GA

GAD

DE

DE

GA

GA

1

2

3

4

5

6

7

8

9

10

11

12

DE

...

BACI

Figure 4.2: Example of stagnation-based reconfiguration on the complete graph topology.
For simplicity, only a subset of the edges between all islands is included. The yellow islands
represent stagnated islands in each generation that have undergone reconfiguration to the
BA algorithm executed by the best performance island, in gray, computed at the beginning
of each cycle of evolutionary generations defined by the parameter BACI.

of π such that for all i, if the i-th entry of v belongs to the interval [0, 0.5) then πi receives

a negative orientation: ←−πi ; otherwise, if it belongs to the interval [0.5, 1], πi is assigned

71

Island 1
Perform the initial

10% of the
evolutionary cycle
without changing

the BA.

Perform the
evolutionary
cycle of BA

 Best individual
stagnate for 3
generations?

Perform
algorithm

reconfiguration
yes

Perform
Migration?

no

Exchange individuals between neighborhoods defined by the topology migrationyes

Generations
completed?

Output best solutionyes

Reached 10% of
generations since the

last notification?
Notify the island's performance and receive information on which BA showed the most progressyes

no

Global Population

Island 1
Perform the initial

10% of the
evolutionary cycle
without changing

the BA.

Island I2

Reached 10% of
generations since the

last notification?
yes

Perform the
evolutionary
cycle of BA

no

 Best individual
stagnate for 3
generations?

no

Perform
algorithm

reconfiguration
yes

Perform
Migration?

yes

no

Generations
completed?

no

yes

no no

...

...

Island I

Figure 4.3: Flowchart of the stagnation-based reconfigurable HePIMs.

positively: −→πi . In this manner, a signed permutation is built from v and π.

The basis for comparing the performance of PIMs are sequential versions of GA, GAD

and DE with populations of size 24n log n, for inputs of length n, and 200 generations.

Previous experiments were performed considering n generations for inputs of length n,

where 150 was the longest input length. Empirically, we realize that increasing the number

of generations almost closed the accuracy gap between the best-adapted HoPIM, HePIMs,

and reconfigurable HePIMs in [15]. Therefore, the decision is to increase the number of

72

generations for all inputs to 200. Such many generations are also relevant to observing

how stagnation-based reconfigurable HePIMs behave and evolve during the evolutionary

process regarding the best-adapted models (cf. bar diagrams in Figures 4.7, and 4.12)

For a fair comparison, all PIMs deal with populations of the same size. Also, we

select three static binary three and three dynamic complete graph 12-island asynchronous

HoPIMs, designed in [19], each running one of the BAs: GA, GAD and DE. In addition,

two asynchronous 12-island HePIMs, with the topologies of the HoPIMs above, presented

in [14], were adjusted, running in their islands the BAs: GA, GAD and DE. Finally, two

asynchronous 12-island reconfigurable HePIMs, with identical topologies as above, and

applying (periodic) reconfiguration at fixed generation frequencies were adapted from

[15]. It is important to remark here that in [19, 14] also, 24-island HePIMs and different

topologies were designed and verified. However, the best models from these papers were

selected for a fair comparison with the novel reconfigurable HePIMs.

The HoPIMs are P GA
Tr12A, P GAD

Tr12A, P DE
Tr12A, P GA

gbmm12A, P GAD
gbmm12A and P DE

gbmm12A. The super-

scripts denote the BA used by the homogeneous model. The subscript prefixes indicate

whether the model uses the static tree (Tr) or the dynamic complete graph topology

(gbmm), and the subscript suffix 12A indicates the number of islands and that the model

is asynchronous. Furthermore, it is essential to point out that the homogeneous model

P DE
gbmm12A provides the best solutions for the URD problem.

The HePIMs are PHet
Tr12A and PHet

gbmm12A proposed in [14], and the reconfigurable HePIMs

with fixed (periodic) reconfiguration frequency are P recHet
Tr12A and P recHet

gbmm12A proposed in [15].

The new HePIMs with stagnation-based reconfiguration are P recHetStag
Tr12A and P recHetStag

gbmm12A . All

PIMs have the following configuration:

• Each island has 2n log n individuals, for inputs of length n;

• Initially, islands 1, 4, 8 and 12 run GA, islands 2, 7, 10 and 11 DE, and islands 3, 5,

6 and 9 runs GAD;

• Generation number is fixed at 200.

73

4.3.1 Parameter Setup

We use the parameters for BAs, HoPIMs, and HePIMs obtained in [14] and [15] after

an exhaustive parameter setting process. The parameter tuning adopted the “taxonomy

T1” in [90]. In [15], the reconfiguration period of reconfigurable HePIMs was calibrated

after exhaustive experiments; this is the unique additional parameter allowed for recon-

figurable HePIMs. Similarly, for the new stagnation-based reconfigurable HePIMs, the

number of three generations to define island stagnation was determined after exhaustive

experiments. Indeed, for other elaborated reconfigurable HePIM designs, which eventually

consider different BAs, topologies, and migration policies, all parameters, including the

reconfiguration period and (number of generations for) stagnation, should be subjected

to parameter calibration. Table ?? presents the parameter ranges. For percentages, the

tested values range between 2% and 100%. For probabilities, the values range from 0.02

to 1.0, and for the mutation parameter, from 0.01 to 0.02. As for the mutation probability

parameter, bounded by 0, 02, for DE, the FM percentage parameter is set in the range of

1% to 2%. The upper bound of 2% was defined based on the analysis of our parameter

adjustment process, in which solutions with FM greater than 2% substantially degrade

the quality of the solutions.

Table 4.2 presents the parameter value configuration for sequential versions and HoPIMs,

while Table 4.3 shows the parameter values for HePIMs.

4.3.2 Analysis of Accuracy

The experiments were conducted as described below, considering preliminary results

on reconfigurable models obtained in [15].

• The number of generations was extended to 200 for all samples to guarantee the

desired effect from the stagnation-based reconfigurable approach along the evolu-

tionary process. In previous works, the number of evolutionary generations was

74

Table 4.1: Parameter Value Ranges

Parameter Parameter values

GA and GAD

crossover 0.02, 0.04, · · · , 0.98, 1.0
mutation 0.01, 0.011, · · · , 0.019, 0.02
selection 2%, 4%, · · · , 98%, 100%

replacement 2%, 4%, · · · , 98%, 100%

DE PC 0.02, 0.04, · · · , 0.98, 1.0
FM 1%, 1.1%, · · · , 1.9%, 2%

Migration

IN 1,2,3,4,5,6,7,8,9,10,11,12,13
EMI 1=Best, 2=Worst, 3=Random
EP 1=Clone, 2=Remove
IMI 1=Worst, 2=Random, 3=Similar
MI 2%, 4%, · · · , 98%, 100%

Table 4.2: Parameter Settings for GA, GAD, DE and associated HoPIMs.

Parameter GA P GA
Tr12AP GA

gbmm12A GAD P GAD
Tr12AP GAD

gbmm12A DE P DE
Tr12AP DE

gbmm12A

crossover 0.90 0.98 0.96 0.92 0.98 0.98
mutation 0.02 0.015 0.011 0.01 0.01 0.01
selection 60% 92% 94% 98% 98% 94%

replacement60% 70% 70% 90% 80% 90%
PC 0.74 0.72 0.78
FM 1% 1.4% 1%
IN 9 5 12 5 3 5

EMI 1 1 1 1 1 1
EP 2 2 2 1 1 2
IMI 1 1 1 1 1 1
MI 30% 30% 14% 12% 14% 12%

Table 4.3: Parameter Settings for HePIMs.

ParameterPHet
Tr12APHet

gbmm12AP recHet
Tr12A P recHet

gbmm12AP recHetStag
Tr12A P recHetStag

gbmm12A

IN 3 6 3 6 3 6
EMI 1 3 1 3 1 3
EP 2 2 2 1 2 1
IMI 3 3 3 3 3 3
MI 10% 10% 10% 14% 10% 14%
RF 14% 24%

BACI 10% 10%

75

fixed as the length of the permutation inputs reaching the maximum number in

samples of length 150 evolved during 150 generations (cf [14, 15]).

• The PSO algorithm, used by HePIMs in previous work, is no longer used as an

evolutionary engine because it consistently performs much worse than algorithms:

GA, GAD and DE. When considering heterogeneous versions, the PSO maintained a

slice of three islands, and due to its inferior performance, it negatively impacted the

solutions of heterogeneous PIMs (see [15]). Also, the social spider algorithm was

discarded based on its restricted performance regarding self-adjusting PSO over

static and dynamic HoPIMs as investigated in [19].

• We diversified the length of the input instances:

– For each permutation length, n ∈ {100, 110, . . . , 150}, one package of one hun-

dred unsigned permutations with n genes was randomly generated;

– All PIMs were executed ten times (a total of one thousand executions) using

each of the permutations of length n, and the average of these executions for

each permutation was taken as the result. The average gives the computed

number of reversals for each unsigned permutation.

The radar chart in Figure 4.4 compares the sequential algorithms GA, GAD, and DE.

Since URD is a minimization problem, the smaller the output, the higher the accuracy.

The radar chart shows that DE presents the best and GA the worst solutions. The algorithm

GAD only computes better solutions than DE for inputs of length 130. The genetic algorithm

variants GA and GAD behave differently as the search space increases: for permutations of

lengths 100 and 110, GA provides the best solutions, but the scenario is reversed for longer

inputs.

The radar charts in Figure 4.5 and the radar chart in Figure 4.6 show results from the

HoPIMs. They show how sequential versions are easily overcome by HoPIMs and that

the accuracy of the outputs computed by dynamic HoPIMs is better than the outputs

76

100

110120

130

140 150

77 .03 77 .08 77 .13 77 .18
77 .23

85 .67

85 .69

85 .72

85 .74

85 .77

94 .0

94 .1

94 .21

94 .31

94 .41

102 .68102 .88103 .09103 .29103 .5

111 .81

112 .11

112 .4

112 .7

112 .99

121 .25

121 .66

122 .06

122 .47

122 .88

Figure 4.4: Accuracy of the sequential BAs: GA, GAD and DE. The radar chart is scaled
according to the worst performance for each input size. Since the target optimization
problem URD is a minimization problem, the smaller the radius, the better the result.

computed by static versions. The three radar charts have different scales, and for com-

parison, the radar chart in Figure 4.8 presents all static and dynamic homogeneous PIMs.

The best-adapted model is the dynamic HoPIM with BA DE, P DE
gbmm12A. The strength of

dynamic models has already been presented in previous work. The property of not having

a fixed neighborhood allows faster dissemination of genetic material with high evolution-

ary potential among the islands. A less dominant scenario is obtained with experiments

involving HoPIM from the GA as seen in the above radar chart in Figure 4.5, where only

for inputs of size 100, 110, it is possible to see a substantial improvement of the dynamic

HoPIM.

The above and below radar charts in Figure 4.9 compare the results of the static

77

100

110120

130

140 150

77 .01 77 .05 77 .08 77 .12 77 .15

85 .55

85 .59

85 .62

85 .66

85 .69

94 .34

94 .36

94 .37

94 .39

94 .41

103 .06103 .17103 .28103 .39103 .5

111 .77

112 .08

112 .38

112 .69

112 .99

120 .5

121 .09

121 .69

122 .28

122 .88

Tr12A

gbmm12A

Figure 4.5: Above radar chart: accuracy of the HoPIMs from GA. Below radar chart: Ac-
curacy of the HoPIMs from GAD. Each radar chart is scaled according to the performance
of the associated sequential algorithm since it provides the worst performance.

78

100

110120

130

140 150

76 .71 76 .79 76 .86 76 .94 77 .01

85 .13

85 .27

85 .4

85 .54

85 .67

93 .47

93 .61

93 .74

93 .88

94 .02

101 .94102 .11102 .27102 .44102 .6

110 .45

110 .74

111 .02

111 .31

111 .59

119 .08

119 .53

119 .99

120 .44

120 .9

Tr12A

gbmm12A

Figure 4.6: Above radar chart: accuracy of the HoPIMs from DE. Below radar chart:
Comparison of the accuracy of all HoPIMs. The first radar chart is scaled according to
the accuracy of the sequential model, while the second radar chart is scaled according to
the model with the worst accuracy for each input length.

and dynamic HePIMs versus the best static and dynamic HoPIMs, P DE
Tr12A and P DE

gbmm12A,

respectively. Regarding static models (see above chart), the HoPIM presents the worst

solutions. The static neighborhood scenario imposed by the binary tree topology benefits

HePIMs because islands always send and receive individuals with different evolutionary

characteristics, which favors not being trapped in local optima. The static HePIMs show

very similar behavior, with the proposed stagnation-based reconfigurable model P recHetStag
Tr12A

not performing better than the competing periodic reconfigurable model P recHet
Tr12A and the

heterogeneous model, PHet
Tr12A. Considering longer instances of the URD problem, the

periodic reconfigurable model, P recHet
Tr12A , is the best static HePIM. On the other hand, the

stagnation-based reconfiguration method succeeded for the dynamic topology (see the

79

100 110 120 130 140 150
Length

0

20

40

60

80

100

Ge
ne

ra
tio

ns
Tr12A

gbmm12A

Figure 4.7: The diagram shows the number of generations required for the reconfigurable
HePIMs P recHetStag

Tr12A and P recHetStag
gbmm12A to become HoPIMs, i.e., to run the same BA in all their

islands homogeneously.

below chart); indeed, P recHetStag
gbmm12A presented the best quality solutions, and the distance to

the second best model (P DE
gbmm12A) becomes even more significant when considering large

instances of the URD problem.

The radar chart in Figure 4.10 compiles all results in both radar charts in Figure 4.9

using the same scale. In this radar chart, it is clear how the migration policy on the

dynamic topology of the complete graph model jointly with stagnation-based reconfigura-

tion approach provided by the model P recHetStag
gbmm12A give the required diversity to outperform

all other heterogeneous and reconfigurable heterogeneous, and the best adapted homoge-

neous models.

A point that will arouse the reader’s curiosity about the reconfiguration method is

how the islands end up when all generations are executed. After the evolutionary cycle,

both P recHetStag
Tr12A and P recHetStag

gbmm12A have all the islands running the same BA, and both become

homogeneous. The average number of generations required for the models to become ho-

mogeneous is shown in Figure 4.7. The P recHetStag
Tr12A needs more generations until it becomes

80

100

110120

130

140 150

76 .73 76 .84 76 .94 77 .05 77 .16

85 .12

85 .27

85 .41

85 .56

85 .7

93 .52

93 .73

93 .95

94 .16

94 .38

102 .01102 .26102 .52102 .77103 .03

110 .43

110 .72

111 .0

111 .29

111 .58

118 .96

119 .32

119 .68

120 .04

120 .4

Tr12A

gbmm12A

Tr12A

gbmm12A

Tr12A

gbmm12A

Figure 4.8: Above radar chart: accuracy of the HoPIMs from DE. Below radar chart:
Comparison of the accuracy of all HoPIMs. The first radar chart is scaled according to
the accuracy of the sequential model, while the second radar chart is scaled according to
the model with the worst accuracy for each input length.

homogeneous compared with the P recHetStag
gbmm12A , except for the sample size 120. Also, regardless

of the model, the reconfiguration process is complete before reaching 100 generations.

Another question is which BA is dominant? Investigating the input samples for both

stagnation-based reconfigurable models, P recHetStag
Tr12A and P recHetStag

gbmm12A we have the scenario

presented in Table 4.4. Only DE and GA are being shown because there were no samples

where the islands ended running the algorithm GAD. The values in the table are the

percentage of inputs ending with all islands executing either the algorithm DE or GA. The

algorithm DE is dominant for all samples. In addition, the fact that the algorithm GAD

never has dominance is unusual since, as shown in Figure 4.4, it delivers better quality

solutions than the algorithm GA. We investigated it and realized that the HoPIMs from

the GA present better solutions than GAD if we consider a maximum of 150 generations

81

(see Figure 4.11). Furthermore, as seen in Table 4.4, before 100 generations, all islands

have already become homogeneous. We can attribute the success of model P recHetStag
gbmm12A to

the aptitude of the dynamic topology and the fact that it becomes homogeneous earlier.

Hence, the evolutionary engine DE has more time to evolve a population that already has

individuals shaken by GA and GAD, which makes it difficult to stay stuck in great locations.

Finally, partial accuracy results of P DE
gbmm12A and P recHetStag

gbmm12A during the evolutionary cy-

cle are compared in Figure 4.12. The experiment is performed with inputs of length 150.

We use the accuracy population average to measure island development at intervals of

20 generations. The dynamic stagnation-based reconfigurable model P recHetStag
gbmm12A produces

populations better adapted to the URD problem regardless of the analyzed interval. Al-

though the partial accuracy evolution between both models is always very close, it is

noticeable that the advantage caused by heterogeneity and algorithmic stagnation-based

reconfiguration regarding the best adapted homogeneous model, P DE
gbmm12A, at the begin-

ning of the evolutionary cycle is maintained and even improved after the model becomes

homogeneous (cf. Figure 4.7).

Table 4.4: Configuration of islands of the reconfiguralbe HePIMs P recHetStag
Tr12A and P recHetStag

gbmm12A

at the end of the evolutionary cycle (200 generations).

Length P recHetStag
Tr12A P recHetStag

gbmm12A

DE GA DE GA
100 90% 10% 100%
110 100% 80% 20%
120 100% 100%
130 90% 10% 90% 10%
140 100% 70% 30%
150 90% 10% 90% 10%

4.3.3 Performance

The speed-up of the homogeneous models P DE
Tr12A and P DE

gbmm12A was evaluated regarding

the runtime of the sequential algorithm DE. The input dataset with permutations of

length 150 was chosen because such permutations represent more challenging, inherently

82

Table 4.5: Speed-up for HePIMs regarding the sequential version of GA, GAD, and DE for
the dataset with genomes of length 150. The table also includes the average time in
seconds of each algorithm (in the second column and second row).

PHet
Tr12A P recHet

Tr12A P recHetStag
Tr12A PHet

gbmm12A P recHet
gbmm12A P recHetStag

gbmm12A

sec 7.771 8.126 9.761 8.100 8.873 10.120
GA 52.051 6.698 6.405 5.333 6.426 5.866 5.143
GAD 49.765 6.404 6.124 5.098 6.144 5.609 4.917
DE 59.752 7.689 7.353 6.122 7.377 6.734 5.904

complex problems than shorter permutations. The algorithms P DE
gbmm12A, P DE

Tr12A, and DE

were executed ten times for each permutation in the dataset, and the meantime is the

average runtime. The dynamic homogeneous model P DE
gbmm12A reached a speed-up of 7.18

while the static homogeneous model P DE
Tr12A a speed-up of 8.37.

Due to the nature of HePIMs, where groups of islands run different BAs, it is not

easy to decide which sequential BA would be the reference to compute the speed-up;

thus, the Table 4.5 shows the speed-up of heterogeneous models concerning the BAs GA,

GAD, and DE. The methodology to compute speed-ups for HePIMs is the same as that

applied to HoPIMs. The simple versions of HePIMs provide the best speed-ups. Static

HePIMs deliver better performances than dynamic HePIMs since dynamic topology PIMs

build neighborhoods for the islands at each migratory cycle. The proposed reconfigura-

tion process involves sophisticated techniques that improve the quality of the solutions;

however, it impacts performance. The stagnation-based reconfigurable HePIMs P recHetStag
Tr12A

and P recHetStag
gbmm12A are slower than the periodic reconfigurable models P recHet

Tr12A and P recHet
gbmm12A since

they make use of an effortless reconfiguration process.

4.3.4 Statistical Analysis

We apply Friedman’s test and Holm’s analysis. Applying such a statistical methodol-

ogy is motivated by the discussion in [91], which guarantees its application in our case,

where multiple comparisons should be applied over discrete populations, complemented

with a further post hoc analysis to determine which algorithms differ from the others. Sta-

83

tistical tests validated experiments with a significance level α = 0.05, i.e., 5% of chance

of incorrectly rejecting the null hypothesis in the long term.

The samples are the sets of one hundred outputs of lengths from 100 to 150 genes

considered in Section 4.3.2. The first step of the analysis consists of applying the Fried-

man non-parametric statistical test to define the control algorithm. Then, the multiple-

hypotheses Holm’s testing method is applied to check the null hypothesis that the per-

formance of the control algorithm is the same as that of the remaining algorithms.

Table 4.6 presents the statistical results for the HePIMs and the best-adapted HoPIM,

P DE
gbmm12A. In the first step of the analysis, the Friedman test selects P recHetStag

gbmm12A as the con-

trol algorithm. In the second step, Holm’s method rejects the null hypotheses for p-value

≤ 0.05. In Table 4.6, an algorithm has statistical significance, whenever p-value ≤ α/i.

The table shows that the selected model, P recHetStag
gbmm12A , always has statistical significance for

all other HePIMs regardless of the input length. On the other hand, when P recHetStag
gbmm12A is

compared with the best-adapted homogeneous model, P DE
gbmm12A, the analysis gives signifi-

cance only for inputs with a length greater than 130. Therefore, it can be concluded that

the stagnation-based dynamic model P recHetStag
gbmm12A effectively outperforms the best-adapted

homogeneous model P DE
gbmm12A.

84

Table 4.6: Holm test for P DE
gbmm12A x HePIMs.

Length Control i Algorithm p-value α/i

100

6 P recHetStag
Tr12A 1.2258954459292176E-13 0.008

5 PHet
gbmm12A 1.7734111951013715E-13 0.010

P recHetStag
gbmm12A 4 PHet

Tr12A 1.980967305825471E-8 0.0125
3 P recHet

Tr12A 2.761583790983588E-7 0.016
2 P recHet

gbmm12A 8.381464733500173E-7 0.025
1 PDE

gbmm12A 0.7188026245529647 0.05

110

6 P recHetStag
Tr12A 3.6506733156072896E-20 0.008

5 P recHet
Tr12A 9.571441858241067E-14 0.01

P recHetStag
gbmm12A 4 PHet

gbmm12A 9.62783195797665E-13 0.012
3 P recHet

gbmm12A 9.107359384790177E-11 0.016
2 PHet

Tr12A 4.996646058399122E-10 0.025
1 PDE

gbmm12A 0.4515390224098334 0.05

120

6 P recHetStag
Tr12A 1.927919232582314E-21 0.008

5 P recHet
gbmm12A 2.200327289088137E-12 0.01

P recHetStag
gbmm12A 4 PHet

gbmm12A 8.169951697851222E-11 0.012
3 PHet

Tr12A 1.933815449552944E-10 0.016
2 P recHet

Tr12A 3.4787444807522945E-8 0.025
1 PDE

gbmm12A 0.47145170683892584 0.05

130

6 P recHetStag
Tr12A 1.6510072254753912E-27 0.008

5 PHet
gbmm12A 4.422946724480415E-12 0.01

P recHetStag
gbmm12A 4 PHet

Tr12A 1.2595868719961186E-10 0.012
3 P recHet

gbmm12A 2.9565205977131737E-10 0.016
2 P recHet

Tr12A 6.824213461036749E-10 0.025
1 PDE

gbmm12A 0.5891354643621368 0.05

140

6 P recHetStag
Tr12A 1.027115868211875E-31 0.008

5 PHet
Tr12A 5.757742850114732E-20 0.01

P recHetStag
gbmm12A 4 P recHet

gbmm12A 1.5126612148387156E-18 0.012
3 P recHet

Tr12A 1.749612437192936E-18 0.016
2 PHet

gbmm12A 2.413141855941992E-16 0.025
1 PDE

gbmm12A 8.925709019458667E-4 0.05

150

6 P recHetStag
Tr12A 4.288491503871603E-45 0.008

5 PHet
Tr12A 3.257446176124881E-31 0.010

P recHetStag
gbmm12A 4 P recHet

Tr12A 9.286667219420533E-24 0.012
3 P recHet

gbmm12A 4.629733664111373E-22 0.016
2 PHet

gbmm12A 8.052342507094246E-17 0.025
1 PDE

gbmm12A 2.4159005413133192E-5 0.05

85

100

110120

130

140 150

76 .68 76 .73 76 .77 76 .82 76 .87

85 .04

85 .1

85 .16

85 .22

85 .28

93 .38

93 .45

93 .51

93 .58

93 .65

101 .83101 .92102 .0102 .09102 .17

110 .1

110 .21

110 .31

110 .42

110 .52

118 .55

118 .71

118 .86

119 .02

119 .17

Tr12A

Tr12A

Tr12A

Tr12A

100

110120

130

140 150

76 .68 76 .72 76 .76 76 .8 76 .84

85 .02

85 .06

85 .11

85 .15

85 .19

93 .35

93 .4

93 .44

93 .49

93 .53

101 .79101 .84101 .89101 .94101 .99

110 .07

110 .14

110 .22

110 .29

110 .36

118 .49

118 .59

118 .68

118 .78

118 .87

gbmm12A

gbmm12A

gbmm12A

gbmm12A

Figure 4.9: Comparing the accuracy of static models: HoPIM from DE and HePIM, and
reconfigurable HePIMs, and dynamic models: HoPIM from DE and HePIM, and reconfig-
urable HePIMs. The charts are scaled according to the model with the worst performance.
The HoPIM with static tree topology, P DE

Tr12A, has the worst accuracy. The dynamic com-
plete graph topology and the stagnation-based reconfigurable HePIM presented the best
accuracy.

86

100

110120

130

140 150

76 .68 76 .73 76 .77 76 .82 76 .87

85 .04

85 .1

85 .16

85 .22

85 .28

93 .38

93 .45

93 .51

93 .58

93 .65

101 .83101 .92102 .0102 .09102 .17

110 .1

110 .21

110 .31

110 .42

110 .52

118 .55

118 .71

118 .86

119 .02

119 .17

Tr12A

gbmm12A

Tr12A

gbmm12A

Tr12A

gbmm12A

Tr12A

gbmm12A

Figure 4.10: Radar chart compiling all accuracies in Figure 4.9. The chart is scaled
according to the accuracy of the static homogeneous model P DE

Tr12A providing the worst
performance. The best accuracy is obtained in all cases by the dynamic stagnation-based
reconfigurable heterogeneous model, P recHetStag

gbmm12A .

87

100

110120

130

140 150

76 .67 76 .94 77 .22 77 .49 77 .76

86 .05

86 .14

86 .23

86 .32

86 .41

94 .2

94 .41

94 .63

94 .84

95 .05

103 .4103 .5103 .61103 .71103 .82

111 .96

112 .08

112 .2

112 .32

112 .44

120 .74

120 .89

121 .05

121 .2

121 .35

Tr12A

gbmm12A

Tr12A

gbmm12A

Figure 4.11: The radar chart shows the accuracy obtained by static and dynamic HoPIMs
from GA and GAD with an evolutionary history of 150 generations. Compare this with
the radar chart on Figure 4.8 showing that in experiments with 200 generations, not
necessarily the GA based homogeneous models provide the best performance. Also, in
Table 4.4, no reconfigurable model finishes running GAD in all its islands.

88

20 40 60 80 100 120 140 160 180 200
Number of Generations

115

120

125

130

135

140

Av
er

ag
e

Ou
pu

t (
Re

ve
rs

al
 D

ist
an

ce
)

gbmm12A

gbmm12A

Figure 4.12: Comparing the partial evolution during 200 generations of the best models:
HoPIM P DE

gbmm12A and reconfigurable HePIM P recHetStag
gbmm12A .

89

Chapter 5

Related Work

In this study, well-established migration policies, which play a crucial role in the

performance of PIMs, are set through calibrated parameters. Authors such as Grosso

[92] and Starkweather et al. [93] focused on the migration interval, concluding that

high frequency leads to premature convergence, while moderate migration intervals are

conducive to discovering more effective solutions. Skolicki and De Jong [94] examined

the influence of the migration interval and the number of immigrants and emigrants,

determining that the former is a dominant factor. At the same time, the latter plays a

secondary role. Additionally, frequent migrations result in islands dominating each other

and losing global diversity before exchanging genetic material, a finding also observed

in Lissovoi and Witt [38]. Cantú-Paz [9] observed that the response to increasing speed

is linked to population convergence caused by selection pressure related to the type of

individuals chosen for migration. They noted that convergence occurs quickly with a

migration policy where good individuals are selected from local islands to replace the worst

individuals on the target island. Conversely, replacing randomly with random individuals

has a moderate impact, and convergence occurs slowly when migrants and immigrants are

randomly selected. In this work, migration parameters such as the number of migrating

individuals, the type of migrating individuals, and the migration interval are calibrated

using the tuning method (Eiben and Smit [90]) to maximize accuracy in synchronous and

90

asynchronous PIMs.

We have devised synchronous and asynchronous HoPIMs to explore the superiority of

synchronization mechanisms in a general context. Indeed, divergent perspectives exist re-

garding which alternative yields better results. Early studies suggested that asynchronous

HoPIMs could deliver superior speed-ups compared to synchronous architectures (e.g.,

Alba and Troya [73]). More recently, Abdelhafez et al. [11] demonstrated the time supe-

riority of asynchronous architectures, achieving, in some instances, super-linear speed-ups

compared to their synchronous counterparts. Nevertheless, various studies have concluded

that asynchronous models may offer better accuracy than their synchronous counterparts

(e.g., Fernández et al. [74], Izzo et al. [95]). In contrast to the authors mentioned above,

we individually calibrate the parameters of each model to attain the best specific config-

urations, ensuring a fair and more robust analysis of the overall behavior of each model,

be it synchronous or asynchronous.

Some related works have proposed HoPIMs focusing on their adaptability to specific

problems. For instance, Federici et al. [96] introduced an intriguing class of synchronous

PIMs with a unique unidirectional radial dynamic topology, aiming to enhance the quality

of solutions for real-world problems involving satellite trajectories. In this study, solu-

tion quality was improved using fixed parameter values, with changes made only to the

number of individuals and generations. As we aim to provide general insights into the

performance of HoPIMs (see [20]), our experiments encompass various calibrated static,

dynamic, synchronous, and asynchronous HoPIMs across four NP-Hard problems showed

in Chapter 2. Furthermore, experiments use the same resources for all PIMs (number of

generations and individuals) to ensure a fair comparison.

Duarte et al. [24] proposed a migration policy for PIMs called DIM-1 with target

islands defined by attractiveness. The migrations are synchronous to occur point to point,

where links between islands are unidirectional and weighted dynamically according to

the local’s attractiveness to the target island. The weights represent the probability of

each communication being used for migration. Afterward, they presented a new evaluation

91

strategy in [25] called DIM-2 that changes how to define the island’s attractiveness so that

islands become more or less attractive according to their solutions’ quality. The authors

in [97] proposed HePIMs based on strategies DIM-1 and DIM-2 using as an evolutionary

engine only variations of DE, which had a successful history in competitions held by the

CEC. The results presented demonstrated that the HePIMs from the DIM-1 and DIM-2

can produce better results than the HoPIM versions. Duarte et al. also propose tweaks

to the migration policy in [26] by adjusting how the attractiveness and weights of island

connections are calculated. The adjustments were inspired by the natural phenomenon

known as stigmergy proposed by Capriles et al. [98]. The dynamic HePIMs highlighted

in this study enhance the heterogeneity and dynamism of the migration policy, providing

it with algorithmic flexibility achieved through dynamic reconfiguration. Compared with

the work of Duarte et al., we note a significant improvement in parameter configuration,

carried out through automatic parameter adjustments. In contrast, Duarte performs this

task manually and sometimes does not guarantee solutions better than sequential versions

(see [25, 26]). Additionally, we employ denser populations and more islands, offering a

more robust approach.

Qinxue et al. [99] implemented dynamism in PIMs using GA through spectral clus-

tering. The authors do not have a fixed number of islands but limit the number to ten

islands. The model is initialized with an island and starts to evolve. During the evo-

lutionary process, whenever there is a migration “epoch” (migration phase), individuals

are grouped by similarity using spectral clustering, giving rise to new islands. Similar

individuals are assigned to the same island. The standard model is compared with tra-

ditional models, and its performance has proved satisfactory. Among the benefits, the

authors highlight a reduction of the workload, in contrast to other methods in a parallel

environment that usually implement each island allocated to a processor and exchange

individuals in the migration phases via messages. The migration policy of this approach

is dynamic but does not add the power of algorithmic reconfiguration.

Hashimoto et al. [100] proposed a HePIM to solve multi-task problems, where each

92

island evaluates an objective. Migrants are selected at high migration frequency and

removed randomly on each local island, replacing the worst individuals in the target

islands. Since emigrants went to islands responsible for different objectives, their fitness

values are the worst, assuming they have fewer chances of being suitable for the target

island objective. The current work applies migration policies shared by Hashimoto et al.

focusing on consolidating reconfigurability as a new influential parameter to be considered

in the design of HePIMs. Despite this restriction, it is clear that the proposed model’s

heterogeneity is relevant to multi-objective optimization since different BAs adapt better

to various optimization tasks.

Lardeux et al. [101] study dynamic PIMs with a focus on migration policies at the level

of individuals. To control migrations, the authors combine migration and gain matrices

that are updated during the search, allowing the simultaneous use of different migration

policies within the same model. Thus, individuals cooperate and share their information

throughout the evolutionary process. The choices of the best migrations are improved

using the QLearning approach, which aims to learn the best migration options by each

user. The results show that the QLeaning significantly improves the accuracy of the

results. A parallel study addresses the context of population size versus the number of

generations, where results show that increasing the number of individuals and reducing

the number of generations does not benefit the quality of the results. As in the Qinxue

et al. clustering-based approach, in contrast to ours, the Lardeux et al. method allows

variation of island population size through the selection of individual migration choices.

Still, it does not apply the flexibility of reconfiguration.

From our side, Silveira et al. [14] proposed HePIMs running four different BAs on their

islands. The HePIMs maintained population diversity by covering the solution space and

reducing overlap between islands compared to HoPIMs. In [15], the authors go a step

forward, maintaining the population diversity provided by HePIMs and increasing their

flexibility, allowing BA reconfiguration on islands during execution according to their per-

formance, where the islands may substitute their BAs periodically during the evolutionary

93

process. The results were competitive regarding the best-adapted HoPIMs, demonstrat-

ing the potential of adding such (periodic) reconfiguration capability to HePIMs. After

a series of experiments, the current work (Chapter 4) shows how refining the dynamism

of reconfiguration and reaching the stagnation-based reconfiguration approach, such in-

novative ability adds the required flexibility and diversity to HePIMs to outperform the

best-adapted HoPIMs.

Nssibi et al. [102] survey nature-inspired metaheuristic methods in the field of machine

learning, more specifically for feature selection. In this perspective, the authors include

a section highlighting the strength of PIMs in recent works to solve the feature selection

problem. The authors discuss works related to HoPIMs, such as the Harris Hawk Op-

timization algorithm with islands organized over master-slave communication topology.

The slave processors have a swarm of hawks, which send the best solutions to the mas-

ter island when the results of their local optimization are available. Also, they survey

models with a moth flame optimization algorithm using random ring topology with an

elitist policy: the best immigrants replacing the worst natives. A multi-objective evolu-

tionary procedure with an evolutionary engine based on the non-dominated sorting GA is

also considered, where the islands are organized through a dynamic complete graph and

elitist migration policy. Moreover, they survey parallel PSO models where a ring topology

organizes the islands, and the migration policy consists of sending the best individual and

only replacing the worst native if the immigrant has better fitness. The survey does not

address island-based algorithm-adaptative or algorithmic reconfigurable mechanisms like

those introduced in the reconfigurable island models mentioned in this paper. Hence, we

believe that the innovative reconfigurable PIMs introduced here constitute a significant

way for further investigations to improve island-based bio-inspired algorithms.

Another evolutionary mechanism related to reconfiguration is self-adaptation, which

is used to update the parameters of an evolutionary procedure dynamically. For instance,

in a recent work, Case and Lehre [103] adapted the (µ, λ) algorithm as a discrete and

non-elitist evolutionary method incorporating self-adaptation. In the (µ, λ) algorithm, µ

94

represents the population size, and λ is the mutation parameter responsible for evolving

the population. The algorithm incorporates the concept of self-adaptation by dynami-

cally adjusting its parameters during the optimization process in response to changing

conditions. Self-adaptation allows the algorithm to adjust the mutation rate dynamically

based on information obtained from the ongoing optimization process. Theoretical and

experimental analyses suggest that self-adaptation outperforms traditional methods that

rely on static parameter values. Although the work does not involve island models, we

draw a comparison with our approach, where, instead of applying dynamism to evolution-

ary parameters, we explore a strategy of algorithm-level dynamism to enhance the global

population.

Hyper-heuristics are optimization approaches that seek to automate the local search

process, allowing for dynamic and intelligent adaptation. A common strategy is to

combine hyper-heuristics with evolutionary algorithms, as discussed in the survey by

Dokeroglu et al. [104]. This approach typically leverages the principles of evolutionary al-

gorithms by implementing local search methods separately, known as memetic algorithms.

Based on the meme’s notion, memetic algorithms employ local refinement, perturbation,

or constructive methods to enhance solutions. For example, in Silveira et al. [105] and

Sonco-Alvarez and Ayala-Rincón [106], memetic algorithms were developed to address

genome rearrangement problems using a chromosome perturbation heuristic. In another

study, Wang and Tang [107] utilized a memetic algorithm supported by machine learning

techniques to solve the permutation flow-shop scheduling problem. This method asso-

ciates solution instances with a file, where all generated solutions are stored for further

processing, using machine learning techniques to select high-quality solutions. In another

approach, Pereira et al. [108] proposed a memetic optimization approach for robotic

assembly line balancing, considering equipment scheduling decisions. Wang and Wang

[109] proposed a solution for distributed flow-shop scheduling problems: although they

do not use an evolutionary algorithm, the proposed method includes simple heuristics

employing stochastic local search operations, similar to mutation operators in evolution-

95

ary algorithms. Furthermore, some studies have investigated the use of parallelism (see

[104]). A specific example involves island models, as proposed by Borgulya [110], where a

HoPIM for 2D packing problems is presented. This model employs a memetic algorithm,

adopts an approach that learns unfavorable variable values based on the population’s

worst solutions, and controls each mutation operation’s steps.

96

Chapter 6

Conclusion and Future Work

The research represented a profound and enlightening journey into Parallel Island

Models. Throughout this trajectory, we achieved advancements ranging from implement-

ing innovative strategies that underscored the importance of the initial population on the

islands to understanding the influence of parameters on result accuracy. We introduced a

dynamic genotype-based topology and critically analyzed the efficacy of synchronous and

asynchronous models.

While island models have historically shown effectiveness in solving NP-hard prob-

lems, our research uncovered the need to delve into frequently concealed details to ensure

the robust performance of island models. The migration parameters have emerged as cru-

cial pillars that need calibration to ensure good-quality solutions. We presented evidence

that there is no generic configuration capable of guaranteeing competitive solutions for

all problems, emphasizing the importance of calibrating parameters according to the spe-

cific characteristics of each optimization problem. Additionally, our research underscored

the relevance of a careful approach in the initial configuration of homogeneous models,

directly impacting the robustness and efficiency of the obtained solutions.

The comparison between synchronous and asynchronous homogeneous models high-

lighted the specific nuances of each approach, revealing the critical dependence of results

on migration parameters and their direct influence on outcomes.

97

Homogeneous models may offer more effective solutions than heterogeneous models.

Such behavior can occur when a homogeneous model demonstrates a remarkable ability

to solve a problem effectively. In contrast, the algorithms composing a heterogeneous

model may not be equally proficient in solving this specific problem, resulting in inferior

accuracy compared to the homogeneous model. In this context, it becomes crucial to

employ techniques that can extract and adapt the heterogeneous model to improve its

effectiveness.

The introduction of reconfigurable heterogeneous models marked a significant advance-

ment. These models pertinently and dynamically update their local bioinspired algorithms

by employing the proposed stagnation-based reconfiguration approach. In contrast to the

initially proposed periodic reconfiguration mechanism, where island reconfiguration oc-

curred sparingly according to a fixed generational frequency originally proposed in [15],

the stagnation-based reconfiguration mechanism offers the flexibility and variability re-

quirements to surpass all other proposed parallel island models. Statistically evaluated

experiments further support the practicality of this reconfiguration technique, demon-

strating its efficacy in providing competitive solutions. The results indicate that this

approach yields outcomes comparable to reference models that are acknowledged for of-

fering excellent solutions to the unsigned reversal distance problem. This empirical evi-

dence underscores the effectiveness of stagnation-based reconfiguration in enhancing the

performance of parallel island models.

From a practical perspective, it can be reasonably inferred that the reconfiguration

feature naturally converges to the best-adapted homogeneous model for any optimization

problem after a sufficient number of evolutionary generations. However, it is imperative

to investigate how dynamically reconfigurable heterogeneity confers advantages at the

beginning of evolution, which the model can sustain throughout all generations of the

evolutionary process without the necessity of employing the best-adapted bioinspired

algorithm. This situation motivates an interest in conducting experiments with alternative

bioinspired algorithms.

98

In the context of other targeted optimization problems, it is crucial to examine how

the flexibility of the new reconfigurable mechanism adapts to solve diverse optimization

challenges. Notably, algorithmic heterogeneity appears suitable for addressing dynamic

multi-objective optimization problems (DMOPs), which involve simultaneously optimiz-

ing multiple objectives that change over time. These problems present significant chal-

lenges due to the mutable nature of the goals and constraints. The survey by Jiang et al.

[111] highlights the complexity of these problems and the effectiveness of population-based

algorithms, such as NSGA-II and its dynamic variants, in addressing these challenges. A

promising direction for future research is the application of reconfigurable heterogeneous

island models in DMOPs. These models would allow for the dynamic replacement of

algorithms in islands that are not improving the quality of solutions, promoting greater

adaptability and robustness. Developing and testing these approaches across various dy-

namic benchmarks could significantly advance EDMO research, providing more efficient

and resilient solutions in real-world scenarios.

Additionally, considering the success of population size adaptation mechanisms in PSO

[112] and DE [113] algorithms, exploring the use of dynamic populations in reconfigurable

heterogeneous island models presents a promising avenue for future research. In PSO, the

mechanism adapts the population size based on current diversity and deactivates species

that are not contributing to solution improvement, allowing for efficient resource alloca-

tion. In DE, the diversity adaptation mechanism dynamically adjusts the population size

according to measured diversity, increasing or decreasing it to avoid premature conver-

gence and stagnation. Although these strategies are designed for sequential algorithms,

they can be easily extended to island models. We plan to implement these dynamic pop-

ulation strategies in our proposed models, enabling continuous adjustments based on the

problem’s complexity and dynamics.

Another promising direction for future work is the integration of cultural algorithms

that utilize normative, historical, situational, and topographical knowledge, as discussed

in [114, 115]. This knowledge can be applied to dynamically adjust the algorithms’ pa-

99

rameters and reorganize the island model’s topology. Normative knowledge can define

rules and limits for parameters such as population size and those involved in migrations

between islands. Historical knowledge can store and reuse parameter configurations and

migration patterns that have been successful in similar conditions. Situational knowledge

can adjust the parameters and topology of the islands based on the current state of the

populations, such as increasing diversity when necessary or promoting greater exploration.

Implementing these approaches can further improve the effectiveness and robustness of

the solutions found in our models.

Finally, another possible further direction is to use Lyapunov exponents [116] to en-

hance the dynamics of island models. Lyapunov exponents are metrics used to quantify

the degree of separation of trajectories in dynamic systems. Essentially, they measure

sensitivity to initial conditions and can indicate the presence of chaos in the system. A

positive Lyapunov exponent suggests chaotic behavior, while a negative exponent indi-

cates stability. These exponents are used to analyze and understand the dynamics of

complex systems and predict their behavior over time. Applying such analysis to island

models will allow for evaluating population stability in each island, identifying chaotic

behaviors, and real-time monitoring of solution quality. Based on Lyapunov metrics, it

would be possible to dynamically adjust algorithm parameters, optimize communication

topologies between islands, and fine-tune more effective migration and reconfiguration

policies.

The proposed island models can be applied to different case studies to evaluate their

behavior, being of interest to address problems such as feature selection [117] and auto-

matic hyperparameter tuning [118]. Feature selection involves identifying the most rele-

vant attributes in a dataset to improve the performance of machine learning algorithms.

Automatic hyperparameter tuning consists of optimizing the parameters that control the

learning process in deep learning models, such as neural networks. Problems that can

be addressed include text classification, medical diagnosis, and financial data analysis.

In hyperparameter tuning, islands could optimize different sets of hyperparameters for

100

convolutional neural networks, deep regression models, and recurrent neural networks,

sharing promising configurations to accelerate convergence and improve performance.

101

Referências

[1] J. H. Holland. Genetic Algorithms and the Optimal Allocation of Trials. SIAM
Journal on Computing, 2(2):88–105, 1973. 1, 8

[2] R. Eberhart and J. Kennedy. A new optimizer using particle swarm theory. In
Micro Machine and Human Science, 1995. MHS ’95., Proceedings of the Sixth In-
ternational Symposium on, pages 39–43, Oct 1995. 1, 8

[3] R. Storn and K. Price. Differential Evolution – A Simple and Efficient Heuristic
for Global Optimization over Continuous Spaces. Journal of Global Optimization,
11(4):341–359, 1997. 1, 9, 25

[4] D. Karaboga and B. Basturk. A powerful and efficient algorithm for numerical func-
tion optimization: artificial bee colony (abc) algorithm. J. of global optimization,
39(3):459–471, 2007. 1, 9

[5] J. J. Q. Yu and V. O. K. Li. A social spider algorithm for global optimization.
Applied Soft Computing, 30:614–627, 2015. 1, 9

[6] X. S. Yang and S. Deb. Cuckoo search via lévy flights. In 2009 World Congress on
Nature and Biologically Inspired Computing (NaBIC), pages 210–214, 2009. 1, 9

[7] S. Mirjalili, S. M. Mirjalili, and A. Lewis. Grey Wolf Optimizer. Advances in
Engineering Software, 69:46–61, 2014. 1, 9

[8] S. Mirjalili and A. Lewis. The whale optimization algorithm. Advances in Engi-
neering Software, 95:51–67, 2016. 1, 9

[9] E. Cantu-Paz. Migration Policies, Selection Pressure, and Parallel Evolutionary
Algorithms. Journal of Heuristics, 7(4):311–334, Jul 2001. 2, 9, 90

[10] D. Sudholt. Springer Handbook of Computational Intelligence, chapter Parallel Evo-
lutionary Algorithms, pages 929–959. Springer, 2015. 2, 9

[11] A. Abdelhafez, E. Alba, and G. Luque. Performance analysis of synchronous and
asynchronous distributed genetic algorithms on multiprocessors. Swarm and Evo-
lutionary Computation, 49:147–157, 2019. 2, 9, 48, 91

[12] L. A. da Silveira, J. L. Soncco-Álvarez, and M. Ayala-Rincón. Parallel memetic
genetic algorithms for sorting unsigned genomes by translocations. In 2016 IEEE
Congress on Evolutionary Computation (CEC), pages 185–192, 2016. 4, 5, 12, 13,
19, 20, 44, 61

102

[13] L. A. da Silveira, J. L. Soncco-Álvarez, and M. Ayala-Rincón. Parallel genetic
algorithms with sharing of individuals for sorting unsigned genomes by reversals.
In 2017 IEEE Congress on Evolutionary Computation (CEC), pages 741–748, June
2017. 4, 5, 12, 13, 19, 20, 32, 45, 47

[14] L. A. da Silveira, J. L. Soncco-Álvarez, T. A. de Lima, and M. Ayala-Rincón. Hetero-
geneous Parallel Island Models. In 2021 IEEE Symposium Series on Computational
Intelligence (SSCI), pages 1–8, 2021. 4, 5, 12, 13, 20, 22, 27, 52, 53, 54, 55, 62, 63,
66, 67, 73, 74, 76, 93

[15] L. A. da Silveira, T. A. de Lima, and M. Ayala-Rincón. Reconfigurable Heteroge-
neous Parallel Island Models. In 2022 IEEE Symposium Series on Computational
Intelligence (SSCI), pages 1618–1625, 2022. 4, 5, 6, 12, 13, 14, 20, 22, 27, 54, 62,
66, 67, 68, 69, 70, 72, 73, 74, 76, 93, 98

[16] L. A. da Silveira, T. A. de Lima, and M. Ayala-Rincón. On Reconfiguring Hetero-
geneous Parallel Island Models. Swarm and Evolutionary Computation, 2024. 4, 5,
6, 12, 13, 20, 27, 64, 66

[17] L. A. da Silveira, J. L. Soncco-Álvarez, and M. Ayala-Rincón. Parallel Multi-Island
Genetic Algotirth for Sorting Unsigned Genomes by Reversals. In 2018 IEEE
Congress on Evolutionary Computation (CEC), pages 1–8, 2018. 5, 12, 13, 20,
34, 46, 50, 67

[18] L. A. da Silveira, J. L. Soncco-Álvarez, T. A. de Lima, and M. Ayala-Rincón. Par-
allel island model genetic algorithms applied in np-hard problems. In 2019 IEEE
Congress on Evolutionary Computation (CEC), pages 3262–3269, 2019. 5, 13, 20,
46

[19] L. A. da Silveira, J. L. Soncco-Álvarez, T. A. de Lima, and M. Ayala-Rincón. Be-
havior of Bioinspired Algorithms in Parallel Island Models. In 2020 IEEE Congress
on Evolutionary Computation (CEC), pages 1–8, 2020. 5, 13, 20, 22, 25, 48, 66, 67,
69, 73, 76

[20] L. A. da Silveira, T. A. de Lima, J. B. Barros, C. H. Llanos, and M. Ayala-Rincón.
On the behavior of parallel island models. Applied Soft Computing, 148:110880,
2023. 5, 13, 20, 41, 46, 66, 91

[21] T. Dokeroglu, T. Kucukyilmaz, and E. Talbi. Hyper-heuristics: A survey and
taxonomy. Computers & Industrial Engineering, 187:109815, 2024. 6, 14

[22] H. Ma, S. Shen, M. Yu, Z. Yang, M. Fei, and H. Zhou. Multi-population techniques
in nature inspired optimization algorithms: A comprehensive survey. Swarm Evol.
Comput., 44:365–387, 2019. 6, 7, 14, 15

[23] L. A. da Silveira, J. L. Soncco-Álvarez, T. A. de Lima, and M. Ayala-Rincón. Com-
puting translocation distance by a genetic algorithm. In 2015 Latin American Com-
puting Conference (CLEI), pages 1–12, 2015. 19, 45

103

[24] G. Duarte, A. Lemonge, and L. Goliatt. A dynamic migration policy to the island
model. In 2017 IEEE Congress on Evolutionary Computation (CEC), pages 1135–
1142, June 2017. 19, 29, 32, 91

[25] G. R. Duarte, A. Lemonge, and L. Goliatt. A New Strategy to Evaluate the At-
tractiveness in a Dynamic Island Model. In IEEE Cong. on Evol. Comp. (CEC),
2018. 19, 92

[26] G. R. Duarte, A. C. Fonseca, L. G. de Lima, and B. S. L. P. de Lima. An Island
Model based on Stigmergy to solve optimization problems. Natural Computing,
pages 1–29, 2020. 19, 92

[27] D. E. Goldberg. Genetic Algorithms in Search, Optimization and Machine Learning.
Addison-Wesley Longman, 1st edition, 1989. 20

[28] A. Riazi. Genetic algorithm and a double-chromosome implementation to the trav-
eling salesman problem. SN Applied Sciences, 1(11):1397, 2019. 20

[29] R. Eberhart and J. Kennedy. Particle swarm optimization. In IEEE Int. Conf. on
neural networks, volume 4, pages 1942–1948, 1995. 21

[30] K. Yasuda and K. Yazawa. Parameter self-adjusting strategy for particle swarm
optimization. In 11th Int. Conf. on Intelligent Systems Design and Applications,
pages 265–270. IEEE, 2011. 22

[31] Y. Mark, Z. Ying, and D. David. Modular robots. IEEE Spectrum, 39(2):30–34,
2002. 22

[32] J. J. Q. Yu and V. O. K. Li. A social spider algorithm for global optimization.
Applied Soft Computing, 30:614–627, 2015. 22

[33] X. Yang and S. Deb. Cuckoo Search via Lévy Flights. In World Congress on Nature
& Biologically Inspired Computing, NaBIC, pages 210–214. IEEE, 2009. 27, 50

[34] S. Mirjalili, S. M. Mirjalili, and A. Lewis. Grey Wolf Optimizer. Advances in
Engineering Software, 69:46–61, 2014. 27, 50

[35] S. Mirjalili and A. Lewis. The Whale Optimization Algorithm. Advances in Engi-
neering Software, 95:51–67, 2016. 27

[36] A. Askarzadeh. A novel metaheuristic method for solving constrained engineering
optimization problems: Crow search algorithm. Computers & Structures, 169:1–12,
2016. 27

[37] C. B. Tey, M. R. Leuze, and J. J. Grefenstette. Parallel genetic algorithm. In
Genetic algorithms and their applications: proceedings of the second International
Conference on Genetic Algorithms: July 28-31, 1987 at the Massachusetts Institute
of Technology, Cambridge, MA, 1987. 29

[38] A. Lissovoi and C. Witt. A runtime analysis of parallel evolutionary algorithms in
dynamic optimization. Algorithmica, 78(2):641–659, Jun 2017. 29, 90

104

[39] A. Leitão, F. B. Pereira, and P. Machado. Island models for cluster geometry
optimization: how design options impact effectiveness and diversity. Global Opti-
mization, 63(4):677–707, 2015. 29, 32

[40] A. Mambrini and D. Sudholt. Design and Analysis of Schemes for Adapting Mi-
gration Intervals in Parallel Evolutionary Algorithms. Evolutionary Computation,
23(4):559–582, 2015. 29

[41] J. Lässig and D. Sudholt. Design and analysis of migration in parallel evolutionary
algorithms. Soft Computing, 17(7):1121–1144, Jul 2013. 29, 32

[42] J. Lässig and D. Sudholt. The Benefit of Migration in Parallel Evolutionary Algo-
rithms. In Proceedings of the 12th Annual Conference on Genetic and Evolutionary
Computation, GECCO ’10, pages 1105–1112, New York, NY, USA, 2010. ACM. 29

[43] L. Singh and S. Kumar. Migration based parallel differential evolution learning
in Asymmetric Subsethood Product Fuzzy Neural Inference System :A simulation
study. In 2007 IEEE Congress on Evolutionary Computation, pages 1608–1613,
Sept 2007. 29

[44] E. Alba and M. Tomassini. Parallelism and evolutionary algorithms. IEEE Trans-
actions on Evolutionary Computation, 6(5):443–462, 2002. 29

[45] E. Cantu-Paz. A survey of parallel genetic algorithms. Calculateurs paralleles,
reseaux et systems repartis, 10(2):141–171, 1998. 32

[46] D. Whitley, S. Rana, and R. heckendorn. The island Model Genetic algorithm: On
separability, population size and convergence. CIT. J. of computing and information
technology, 7(1):33–47, 1999. 32

[47] T. C. Belding. The distributed genetic algorithm revisited. In Proceedings of the
6th International Conference on Genetic Algorithms, pages 114–121, San Francisco,
CA, USA, 1995. Morgan Kaufmann Publishers Inc. 32

[48] E. Alba and J. M. Troya. Influence of the migration policy in parallel distributed
gas with structured and panmictic populations. Applied Intelligence, 12(3):163–181,
2000. 32

[49] T. Hong, W. Lin, S. Liu, and J. Lin. Experimental analysis of dynamic migra-
tion intervals on 0/1 knapsack problems. In 2007 IEEE Cong. on Evolutionary
Computation (CEC), pages 1163–1167, 2007. 32

[50] M. Munetomo, Y. Takai, and Y. Sato. An Efficient Migration Scheme for
Subpopulation-Based Asynchronously Parallel Genetic Algorithms. In Proceedings
of the 5th International Conference on Genetic Algorithms, page 649, San Francisco,
CA, USA, 1993. Morgan Kaufmann Publishers Inc. 34

[51] S. C. Lin, W. F. Punch, and E. D. Goodman. Coarse-grain parallel genetic algo-
rithms: categorization and new approach. In Proceedings of 1994 6th IEEE Sympo-
sium on Parallel and Distributed Processing, pages 28–37, Oct 1994. 34

105

[52] V. Bafna and P. A. Pevzner. Genome Rearrangements and Sorting by Reversals.
SIAM Journal on Computing, 25(2):272–289, feb 1996. 37

[53] D. A. Bader, B. M.E. Moret, and M. Yan. A linear-time algorithm for computing
inversion distance between signed permutations with an experimental study. Journal
of Computational Biology, 8(5):483–491, 2004. 38

[54] A. Caprara. Sorting by Reversals is Difficult. In Proceedings of the First Annual
International Conference on Computational Molecular Biology, pages 75–83, New
York, NY, USA, 1997. Association for Computing Machinery. 38

[55] S. Grusea and A. Labarre. The distribution of cycles in breakpoint graphs of signed
permutations. Discrete Applied Mathematics, 161(10):1448–1466, 2013. 38

[56] T. A. de Lima and M. Ayala-Rincón. On the average number of reversals needed to
sort signed permutations. Discrete Applied Mathematics, 235(Supplement C):59–80,
2018. 38

[57] J. L. Soncco-Álvarez, D. M. Muñoz, and M. Ayala-Rincón. Opposition-based
memetic algorithm and hybrid approach for sorting permutations by reversals. Evo-
lutionary computation, 27(2):229–265, 2019. 38

[58] D. Zhu and L. Wang. On the complexity of unsigned translocation distance. Theo-
retical computer science, 352(1):322–328, 2006. 40

[59] S. Hannenhalli. Polynomial-time algorithm for computing translocation distance
between genomes. Discrete Applied Mathematics, 71(1):137–151, 1996. 41

[60] A. Bergeron, J. Mixtacki, and J. Stoye. On sorting by translocations. Computational
Biology, 13(2):567–578, 2006. 41

[61] I. P. Gent, C. Jefferson, and P. Nightingale. Complexity of n-Queens Completion.
Journal of Artificial Intelligence Research, 59:815–848, Aug 2017. 41

[62] H. S. Stone and J. M. Stone. Efficient search techniques-an empirical study of the
n-queens problem. IBM Journal of Research and Development, 31(4):464–474, July
1987. 41

[63] M. Lazarova. Efficiency of parallel genetic algorithm for solving n-queens prob-
lem on multicomputer platform. In the 9th WSEAS International Conference on
Evolutionary Computing, pages 51–56, 2008. 41

[64] X. Hu, R. C. Eberhart, and Y. Shi. Swarm intelligence for permutation optimiza-
tion: a case study of n-queens problem. In Proceedings of the 2003 IEEE Swarm
Intelligence Symposium. SIS’03 (Cat. No.03EX706), pages 243–246, April 2003. 41

[65] W. Wolf, A. A. Jerraya, and G Martin. Multiprocessor System-on-Chip (MPSoC)
Technology. IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, 27(10):1701–1713, oct 2008. 42

106

[66] G. de Micheli and L. Benini. Networks on chips: 15 years later. Computer, 50(5):10–
11, May 2017. 42

[67] S. Hesham, J. Rettkowski, and D. Goehringerand M. A. Abd El Ghany. Survey
on Real-Time Networks-on-Chip. IEEE Transactions on Parallel and Distributed
Systems, 28(5):1500–1517, may 2017. 42

[68] L. S. Indrusiak. End-to-end schedulability tests for multiprocessor embedded sys-
tems based on networks-on-chip with priority-preemptive arbitration. Systems Ar-
chitecture, 60(7):553–561, 2014. 42

[69] M. R. Garey and D. S. Johnson. Computers and intractability. a guide to the theory
of np-completeness. Symbolic Logic, 48(2):498–500, 1983. 42

[70] C. L. Liu and J. W Layland. Scheduling algorithms for multiprogramming in a hard-
real-time environment. ssociation for Computing Machinery, 20(1):46–61, 1973. 43

[71] J. L. Soncco-Álvarez and M. Ayala-Rincón. A genetic approach with a simple fitness
function for sorting unsigned permutations by reversals. In 2012 7th Colombian
Computing Congress (CCC), pages 1–6, 2012. 45

[72] A.E. Eiben and S.K. Smit. Parameter tuning for configuring and analyzing evolu-
tionary algorithms. Swarm and Evolutionary Computation, 1(1):19–31, 2011. 45

[73] E. Alba and J. M. Troya. Analyzing synchronous and asynchronous parallel dis-
tributed genetic algorithms. Future Generation Computer Systems, 17(4):451–465,
2001. 48, 91

[74] F. Fernández, G. Galeano, and J. A. Gómez. Comparing Synchronous and Asyn-
chronous Parallel and Distributed Genetic Programming Models. In 5th European
Conference on Genetic Programming, pages 326–335. Springer, 2002. 48, 91

[75] Y. Saito, M. Sato, M. Midtlyng, and M. Miyakawa. Parallel and Distributed
MOEA/D with Exclusively Evaluated Mating and Migration. In 2020 IEEE
Congress on Evolutionary Computation (CEC), pages 1–8. IEEE, July 2020. 49

[76] N. Otaka, Y.Fukuyama, Y. Kawamura, K. Murakami, and A. Santana. Refriger-
ated Showcase Fault Detection by a Pasting based Artificial Neural Networks using
Parallel Multi-population Modified Brain Storm Optimization and Correntropy. In
2020 IEEE Congress on Evolutionary Computation (CEC), pages 1–8. IEEE, July
2020. 49

[77] W. Liu, P. P. Pokharel, and J. C. Principe. Correntropy: A localized similarity
measure. In The 2006 IEEE International Joint Conference on Neural Network
Proceedings, pages 4919–4924, 2006. 49

[78] R. Ohira, M. S. Islam, and H. Kayesh. Speedup vs. quality: Asynchronous and
cluster-based distributed adaptive genetic algorithms for ordered problems. Parallel
Computing, 103, 2021. 49

107

[79] L. Bergroth, H. Hakonen, and T. Raita. A survey of longest common subsequence
algorithms. In Proceedings Seventh International Symposium on String Processing
and Information Retrieval. SPIRE 2000, pages 39–48, 2000. 50

[80] A. Skakovski and P. Jedrzejowicz. An island-based differential evolution algorithm
with the multi-size populations. Expert Syst. Appl., 126:308–320, 2019. 50

[81] A. Skakovski and P. Jedrzejowicz. A multisize no migration island-based differential
evolution algorithm with removal of ineffective islands. IEEE Access, 10:34539–
34549, 2022. 50

[82] B. H. Abed-alguni and M. Barhoush. Distributed grey wolf optimizer for numerical
optimization problems. Jordanian Journal of Computers and Information Technol-
ogy (JJCIT), 04(03):130 – 149, 2018. 50, 51

[83] K. S. S. Ranjini and S. Murugan. Memory based hybrid dragonfly algorithm for
numerical optimization problems. Expert Systems with Applications, 83:63–78, 2017.
50

[84] C. Yu, L. Kelley, S. Zheng, and Y. Tan. Fireworks algorithm with differential
mutation for solving the cec 2014 competition problems. In 2014 IEEE Congress
on Evolutionary Computation (CEC), pages 3238–3245, 2014. 50

[85] T. Ryoji and A. S. Fukunaga. Improving the search performance of shade using lin-
ear population size reduction. In 2014 IEEE Congress on Evolutionary Computation
(CEC), pages 1658–1665, 2014. 51

[86] Bilal H. Abed-alguni and Noor Aldeen Alawad. Distributed grey wolf optimizer for
scheduling of workflow applications in cloud environments. Applied Soft Computing
Journal, 102(107113), 2021. 51

[87] B. H. Abed-Alguni, A. F. Klaib, and K. M. O. Nahar. Island-based whale opti-
mization algorithm for continuous optimization problems. International Journal of
Reasoning-based Intelligent Systems, 11(4):319 – 329, 2019. 51

[88] B. H. Abed-alguni and D. Paul. Island-based cuckoo search with elite opposition-
based learning and multiple mutation methods for solving optimization problems.
Soft Computing, 26:3293–3312, 2022. 51

[89] T. Thaher, A. Sheta, M. Awad, and M. Aldasht. Enhanced variants of crow search
algorithm boosted with cooperative based island model for global optimization.
Expert Systems with Applications, 238, 2024. 51

[90] A. E. Eiben and S. K. Smit. Parameter tuning for configuring and analyzing evo-
lutionary algorithms. Swarm and Evolutionary Computation, 1(1):19–31, 2011. 74,
90

[91] D. G. Pereira, Anabela Afonso, and Fátima Melo Medeiros. Overview of fried-
man’s test and post-hoc analysis. Communications in Statistics - Simulation and
Computation, 44(10):2636–2653, 2015. 83

108

[92] P. B. Grosso. Computer Simulations of Genetic Adaptation: Parallel Subcomponent
Interaction in a Multilocus Model. PhD thesis, University of Michigan, Ann Arbor,
MI, USA, 1985. AAI8520908. 90

[93] T. Starkweather, D. Whitley, and K. Mathias. Optimization using distributed genetic
algorithms, pages 176–185. Springer Berlin Heidelberg, Berlin, Heidelberg, 1991. 90

[94] Z. Skolicki and K. De Jong. The influence of migration sizes and intervals on island
models. In Proceedings of the 7th Annual Conference on Genetic and Evolutionary
Computation (GECCO), pages 1295–1302. Association for Computing Machinery,
2005. 90

[95] D. Izzo, M. Rucinski, and C. Ampatzis. Parallel global optimisation meta-heuristics
using an asynchronous island-model. In 2009 IEEE Congress on Evolutionary Com-
putation (CEC), pages 2301–2308, 06 2009. 91

[96] L. Federici, B. Benedikter, and A. Zavoli. EOS: a Parallel, Self-Adaptive, Multi-
Population Evolutionary Algorithm for Constrained Global Optimization. In 2020
IEEE Congress on Evolutionary Computation (CEC), pages 1–10. IEEE, July 2020.
91

[97] G. R. Duarte and B. S. L. P. de Lima. Differential evolution variants combined in a
hybrid dynamic island model. In 2020 IEEE Congress on Evolutionary Computation
(CEC), pages 1–8, 2020. 92

[98] P. Capriles, L. G. Fonseca, H. J. C. Barbosa, and A. C. C. Lemonge. Rank-based
ant colony algorithms for truss weight minimization with discrete variables. Com-
munications in Numerical Methods in Engineering, 23(6):553–575, 2007. 92

[99] Q. Meng, J. Wu, J. Ellis, and P. J. Kennedy. Dynamic island model based on
spectral clustering in genetic algorithm. In 2017 International Joint Conference on
Neural Networks (IJCNN), pages 1724–1731, 2017. 92

[100] R. Hashimoto, H. Ishibuchi, N. Masuyama, and Y. Nojima. Analysis of Evolutionary
Multi-Tasking as an Island Model. In Proc. of the Genetic and Evol. Comp. Conf.
(GECCO), pages 1894–1897. ACM, 2018. 92

[101] F. Lardeux, J. Maturana, E. Rodriguez-Tello, and F. Saubion. Migration Policies in
Dynamic Island Models. Natural Computing: An International Journal, 18(1):163—
-179, mar 2019. 93

[102] M. Nssibi, G. Manita, and O. Korbaa. Advances in nature-inspired metaheuristic
optimization for feature selection problem: A comprehensive survey. Computer
Science Review, 49(100559), 2023. 94

[103] B. Case and P. K. Lehre. Self-Adaptation in Nonelitist Evolutionary Algorithms on
Discrete Problems With Unknown Structure. IEEE Transactions on Evolutionary
Computation, 24(4):650–663, 2020. 94

[104] T. Dokeroglu, T. Kucukyilmaz, and E. Talbi. Hyper-heuristics: A survey and
taxonomy. Computers & Industrial Engineering, 187:109815, 2024. 95, 96

109

[105] L. A. da Silveira, J. L. Soncco-Álvarez, T. A. de Lima, and M. Ayala-Rincón.
Memetic and Opposition-Based Learning Genetic Algorithms for Sorting Unsigned
Genomes by Translocations. In Advances in Nature and Biologically Inspired Com-
puting, pages 73–85. Springer International Publishing, 2016. 95

[106] J. L. Soncco-Álvarez and M. Ayala-Rincón. Memetic algorithm for sorting unsigned
permutations by reversals. In 2014 IEEE Congress on Evolutionary Computation
(CEC), pages 2770–2777, 2014. 95

[107] X. Wang and L. Tang. A machine-learning based memetic algorithm for the multi-
objective permutation flowshop scheduling problem. Computers & Operations Re-
search, 79:60–77, 2017. 95

[108] J. Pereira, M. Ritt, and Ó. C. Vásquez. A memetic algorithm for the cost-
oriented robotic assembly line balancing problem. Computers & Operations Re-
search, 99:249–261, 2018. 95

[109] J. Wang and L. Wang. A cooperative memetic algorithm with feedback for the
energy-aware distributed flow-shops with flexible assembly scheduling. Computers
& Industrial Engineering, 168:108126, 2022. 95

[110] I. Borgulya. A parallel hyper-heuristic approach for the two-dimensional rectangular
strip-packing problem. Journal of computing & information technology, 22(4):251–
265, 2014. 96

[111] Jiang, J. Zou, S. Yang, and X. Yao. Evolutionary Dynamic Multi-objective Opti-
misation: A Survey. ACM Comput. Surv., 55(4), nov 2022. 99

[112] D. Yazdani, D. Yazdani, D. Yazdani, M. N. Omidvar, A. H. Gandomi, and X. Yao.
A Species-based Particle Swarm Optimization with Adaptive Population Size and
Deactivation of Species for Dynamic Optimization Problems. ACM Trans. Evol.
Learn. Optim., 3(4), dec 2023. 99

[113] R. Poláková, J. Tvrdík, and P. Bujok. Differential evolution with adaptive mech-
anism of population size according to current population diversity. Swarm and
Evolutionary Computation, 50:100519, 2019. 99

[114] Al. Maheri, S. Jalili, Y. Hosseinzadeh, R. Khani, and M. Miryahyavi. A com-
prehensive survey on cultural algorithms. Swarm and Evolutionary Computation,
62:100846, 2021. 99

[115] R. L. Becerra and C. A. C. Coello. Cultured differential evolution for con-
strained optimization. Computer Methods in Applied Mechanics and Engineering,
195(33):4303–4322, 2006. 99

[116] A. Wolf, J. B. Swift, H. L. Swinney, and J. A. Vastano. Determining lyapunov
exponents from a time series. Physica D: nonlinear phenomena, 16(3):285–317,
1985. 100

110

[117] N. Pudjihartono, T. Fadason, A. W. Kempa-Liehr, and J. M. O’Sullivan. A Review
of Feature Selection Methods for Machine Learning-Based Disease Risk Prediction.
Frontiers in Bioinformatics, 2, 2022. 100

[118] M. Feurer and F. Hutter. Hyperparameter Optimization, pages 3–33. Springer
International Publishing, Cham, 2019. 100

111

	Dedicatória
	Agradecimentos
	Resumo
	Abstract
	Introduction
	Motivation
	Contribution
	Work structure
	Resumo Estendido (Introdução)
	Motivação
	Contribuição
	Estrutura do Trabalho
	Glossary

	Theoretical Referential
	Bio-inspired Algorithms
	Self-Adjusting Particle Swarm Optimization
	Social Spider Algorithm
	Differential Evolution Algorithm
	Other algorithms

	Parallel Island Models
	Communication Topologies

	Case studies
	Reversal Distance
	Translocation Distance
	N-Queens
	Task Mapping and Scheduling

	Overview of Preliminary Research
	Evolution and Calibration of Homogeneous Parallel Island Models (HoPIMs)
	HoPIMs: Synchronous/Asynchronous, Migration Strategies, Parameter Evaluation, BAs
	Related Work in Homogeneous Island Models
	Comparative Analysis of Homogeneous and Heterogeneous Models
	Reconfigurable Heterogeneous Models
	Summary
	Summary on Homogeneous Parallel Island Models
	Summary: Heterogeneous Parallel Island Models

	Stagnation-Based Reconfigurable Heterogeneous Parallel Island Models
	Contribution
	Reconfigurable HePIMs with stagnation policy
	Communication Topologies
	Reconfigurable islands
	Stagnation-based Reconfigurable HePIMs

	Experiments and analysis of accuracy
	Parameter Setup
	Analysis of Accuracy
	Performance
	Statistical Analysis

	Related Work
	Conclusion and Future Work
	Referências

