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Resumo

Decomposicoes de grupos profinitos e suas aplicagoes

Nessa tese estudamos um dos principais objetos da teoria combinatoéria de grupos
profinitos: decomposicoes de grupos profinitos como extensoes HNN ou produtos livres
amalgamados.

Respondemos trés problemas em aberto propostos por Luis Ribes em seu livro
de 2017 "Profinite Graphs and Groups" (veja Open Questions 6.7.1, 15.11.10 e 15.11.11
de [31]). Esses resultados generalizam os teoremas principais de [7] e [45]. Também
generalizamos a versao pro-p do célebre Teorema da decomposicao de Stallings para de-
composigoes sobre grupos pro-p infinitos. Essa construgao estende consideravelmente o
resultado de Weigel-Zalesski de 2017 e nao possui correspondente no caso abstrato. Por
fim, mostramos que a acessibilidade generalizada de grupos pro-p finitamente gerados é
fechada para comensurabilidade.

Produtos amalgamados profinitos e extensoes HNN profinitas podem ser consid-
erados casos particulares de um grupo fundamental de grafo de grupos, o qual denotare-
mos por II;(G,I'). Dessa forma, se dado grupo profinito G possui uma decomposigao
G = 11;(G,T") para algum grafo profinito de grupos (G,T"), obtemos nao s6 propriedades
do grupo G mas também de grafo de grupos (G,T).

Na primeira parte, dado um grupo abstrato G que se decompode como o grupo
fundamental de um grafo infinito de grupos, construimos um grafo profinito de grupos
(G,T) tal que I' mergulha em I' e o completamento profinito de G se decompde como
G = I1,(G,T). Isso responde um Problema em Aberto de Ribes. Com essa construcao
em maos, respondemos dois outros Problemas em Aberto de Ribes. O primeiro esta
relacionado com o fecho de normalizadores e generaliza o teorema principal de um artigo
escrito por Ribes e Zalesski (cf. [34]). O segundo esta relacionado com a separabilidade por
conjugacao de subgrupo de grupos virtualmente livres, generalizando o resultado principal

de um artigo escrito por Chagas e Zalesski (cf. [7]). Nossa estratégia para resolver os



problemas supracitados foi descrever o grupo fundamental profinito de um grafo de grupos
na linguagem de caminhos. Essa nova defini¢ao se comporta bem quando da aplicagao de
limites inversos, o que facilita a interrelagao entre as configuragoes abstrata e profinita da
Teoria de Bass-Serre.

Continuamos nossa jornada investigando o célebre Teorema da Decomposi¢ao de
Stallings. Este estabelece que a decomposi¢ao de um subgrupo H de indice finito de um
grupo finitamente gerado G como um produto livre amalgamado ou uma extensao HNN
sobre um grupo finito implica o0 mesmo para G. A versao pro-p desse resultado foi obtida
por Weigel e Zalesski (cf. [45]) em 2017. Nos mostramos que, na categoria de grupos pro-p,
os teoremas de decomposi¢ao valem além de cisoes sobre grupos finitos. Se G é um grupo
pro-p finitamente gerado que possui um subgrupo normal aberto H que se decompoes
como H = II;(H,A), e supomos que classes de conjugacdo de grupos de vértices sao
G-invariantes, entdo G também se decompoe como G = II;(G,T") (cf. Teorema [11). Se
H é um produto pro-p livre nao trivial obtemos, como um caso particular, o Teorema de
Weigel-Zalesski supracitado. A principal ferramenta por tras da demonstragao é nosso
Teorema da Limitacao, que estabelece um limitante para E(I'), a saber |E(I')| < |E(A)].

Acrescentamos ao nosso Teorema da Limitagao o seguinte resultado: se G é um
grupo pro-p finitamente gerado que possui um subgrupo normal aberto H agindo sobre
uma arvore pro-p 1', com {H, | v € V(T)} sendo G-invariante, entdo G se decompdoe
como G = II;(G,T"). Com esses resultados em maos, obtemos uma poderosa aplicagao:
a acessibilidade generalizada de grupos pro-p finitamente gerados é fechada para comen-
surabilidade. Finalizamos a tese mostrando que nosso Teorema [J] também vale para o

exemplo de grupo pro-p inacessivel dado por Wilkes.

Palavras-chave: Teoria Combinatoria de Grupos; grupos profinitos; grafos infini-

tos de grupos; decomposicao de Stallings.



Abstract

In this thesis we study one of the main objects in profinite combinatorial group
theory: splittings of profinite groups as HNN-extensions or amalgamated free products.

We answer three Open Questions proposed by Luis Ribes in his 2017 book "Profi-
nite Graphs and Groups" (see Open Questions 6.7.1, 15.11.10, and 15.11.11 of [31]). These
results generalize the main Theorems of [7] and [34]. We also generalize the pro-p version
of the celebrated Stallings’ decomposition theorem to splittings over infinite pro-p groups.
This extends by far the Weigel-Zalesski result from 2017 and it does not have any abstract
analogs. Finally we prove that generalized accessibility of finitely generated pro-p groups
is closed for commensurability.

Profinite amalgamated products and profinite HNN-extensions can be considered
as particular cases of profinite fundamental groups of graphs of groups, which we denote
by I1;(G,T"). Hence, if a profinite group G has a splitting G = II;(G,I") for some profinite
graph of groups (G,I"), we obtain not only properties of the group G but also properties
of the graph of groups (G,T").

In the first part, given an abstract group G that splits as the fundamental group
of an infinite graph of groups, we construct a profinite graph of groups (G,T') such that
I' embeds in T’ and the profinite completion of G splits as II;(G,T). This answers an
Open Question of Ribes. With this construction in hand, we answer two more Open
Questions of Ribes. The first concerns the closure of normalizers, which generalizes the
main Theorem of a paper by Ribes and Zalesski (cf. [34]). The second is related to
subgroup conjugacy separability of virtually free groups, generalizing the main Theorem
of a paper by Chagas and Zalesski (cf. [7]). Our strategy for solving the problems above
is to describe the profinite fundamental group of a graph of groups in the language of
paths. Since it behaves very well via inverse limits, it facilitates the interrelation between
the abstract and the profinite settings.

We continue our journey by investigating the Stallings’ decomposition Theorem.
It states that the splitting of a finite index subgroup H of a finitely generated group G as

an amalgamated free product or an HNN-extension over a finite group implies the same



for G. The pro-p version of this result was obtained by Weigel and Zalesskii (see [45]) in
2017. We proved that, in the category of pro-p groups, splitting theorems hold beyond
splittings over finite groups. In fact, if G is a finitely generated pro-p group having an
open normal subgroup H that splits as H = I1;(H, A), and we suppose conjugacy classes
of vertex groups are G-invariant then G also splits as G = II;(G,T) (see Theorem [11)). If
H is a non-trivial free pro-p product we obtain, as a particular case, the aforementioned
Weigel-Zalesski Theorem. The main tool behind the proof is our Limitation Theorem,
which establishes a bound for F(T"), namely |E(T")| < |E(A)].

We attach to our Limitation Theorem the following result: if G is a finitely gen-
erated pro-p group having an open normal subgroup H acting on a pro-p tree T', with
{H, | v e V(T)} being G-invariant, then G splits as G = II;(G,I'). With these results
in hand, we provide a powerful application: generalized accessibility of finitely generated
pro-p groups is closed for commensurability. We finish the thesis by showing that our

Theorem [9 holds even for Wilkes” example of a pro-p inaccessible group.

Key-words: Combinatorial group theory; profinite groups; infinite graphs of

groups; Stallings’ decomposition.



INTRODUCTION

Combinatorial group theory may be characterized as the theory of groups that
are given by a presentation. This notion was introduced by Walther von Dyck in 1882
and it was improved in the subsequent years by the extensive use of free constructions
(a term introduced by Remeslennikov et al. in a survey), namely free products with
amalgamation and Higman-Neumann-Neumann extensions, or simply HNN-extensions.
Free products with trivial amalgamation, also known as free products, were introduced by
Otto Schreier in 1927 and HNN-extensions were introduced by Graham Higman, Bernhard
H. Neumann, and Hanna Neumann in 1949. Free constructions represent just a part of a
bigger structure, with free products with amalgamation being the disconnected case and
HNN-extensions the connected one. Stallings proposed the concept of a bipolar structure,
but the interpretation that lasted was given by Jean Pierre Serre in his Structure Theorem:
a fundamental group of a graph of groups is either a free product with amalgamation or
an HNN-extension.

The theory of profinite groups was inaugurated in 1964 by J.-P. Serre in his book
Cohomologie Galoisienne. Later, in 1978, Ribes and Gidenhuys published a paper ([17])
where they introduced the concept of a profinite graph. The natural continuation was
the development of a profinite Bass-Serre theory, whose foundations were laid in the
’80s. This new technology was essential due to the difficulty of obtaining basic results
on amalgamated free products or HNN-extensions by existing methods. An element of a
profinite group can not be written as a word of generators and so the classical methods

of the Combinatorial Group Theory are absent in the class of profinite groups.
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The content of the doctoral thesis of Pavel Zalesski established the starting point of
the profinite Bass-Serre theory. The thesis appeared in 1988 and consisted of three papers
(I510, 53], [52]), the first two in collaboration with his Ph.D. supervisor Oleg Mel'nikov.
There, Zalesski establishes the theory of covering spaces of profinite graphs (Definition
and defines the fundamental group of a connected profinite graph (Definition .
He also studies the profinite fundamental group of a profinite graph of groups I1;(G,T")
(Definition and the action of this group II;(G,T') on its standard profinite tree
S(G,T) (Definition [1.6.16)). Finally, he investigates subgroups of fundamental groups of
graphs of profinite groups. The considerations are restricted to graphs (G,I") of profinite
groups over finite graphs T', although at the end of [5I] there is a suggestive comment

that we transcribe here:

"In a number of cases, I1;(G,I") can be represented as an inverse limit
of fundamental groups of finite graphs of groups; for example, for

free products over spaces".

This phenomenon is more general than expected at the time by Zalesski. We give,
34 years later, a complete characterization of IT;(G,T") as an inverse limit of fundamental
groups of finite graphs of groups in Proposition 2.1.4, We go beyond and establish the
fundamental group of a graph of groups with a base point in Section [2.1, more specifically
in Theorem [2.2.10] making the concept closer to the classical topological definition and
facilitating the use of projective limits.

Subsequent papers by Luis Ribes, Oleg Mel’'nikov and Pavel Zalesski consolidated
the profinite Bass-Serre theory and established its independence. It is important to men-
tion that some of the classical properties of the abstract case are missing in the profinite
version. For example, it is quite simple to show that every finite graph has a maximal
subtree (see Proposition . However, this is not always true in the profinite case (see
Example 2.1.7). It is a crucial aspect, since one of the forms of defining 71(G,I") in the
abstract case makes use of the maximal subtree of I'. Hence we cannot define IT;(G,T") in
terms of maximal subtrees.

A book that organizes the most important results of the Ribes-Zalesski-Mel'nikov
theory was published by Ribes in 2017 (see [31]). The first two parts of the book address

the pro-C version of the classical Bass-Serre theory. There Ribes defines a profinite graph
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of pro-C groups (G, I'), its pro-C fundamental group I1;(G,T"), and its standard pro-C tree
S€(G,T) on which I1;(G,T") naturally acts. In fact, the action of the fundamental group
on the standard tree obtains I itself as the quotient graph, i.e. I1;(G,T)\S¢(G,T) = T.

The third part of the book is dedicated to applications in abstract groups, where
the methods are based on an interplay between Bass-Serre and Ribes-Zalesski-Mel’'nikov’s
theories. More concretely, if G is the abstract fundamental group G = m(G,T") of a
finite graph of groups (G,I") then the profinite completion G is the fundamental group
G = Hl(gA ,I') over the same graph with fibers being the profinite completions. However,
it works only when the underlying graph I is finite, and sometimes, for example when G
is infinitely generated free-by-finite, the underlying graph I' is infinite.

This motivated Ribes to ask whether there is a reasonable way to define a graph
of groups (G',T) over a profinite graph I' containing I' such that IT,(G',T) = W@)
when I is infinite and the vertex groups are finite. Another question of Ribes in the same
direction is whether the action of II;(G’,T') on S(G’,T) (note that IT;(G’,T)\S(G',T) =T)
extends naturally the action of m(G,T') on S%(G,T"), where S%*(G,T') is the abstract
standard tree of (G,T'). In fact, 7 (G,T)\S%(G,T) =T (cf. |31, Open Question 6.7.1] for
the precise formulation).

Our first result answers these questions; in fact, we state it more generally, namely
for the pro-C completion, where C is the class of finite groups closed for subgroups and
extensions. Throughout this thesis, all theorems and corollaries numbered without section

indication will be original results.

Theorem 1. Let (G,T') be an abstract reduced graph of finite groups over an abstract graph
I' such that 7 (G,T') is residually C. Then there exists a profinite graph T' that contains
I' as a dense subgraph and a profinite graph of finite groups (G,T), with G(m) = G(m),

whenever m € I', such that
(a) The pro-C fundamental group 11$(G,T) is the pro-C completion of m (G, T);

(b) The standard tree S(G,T") for G is densely embedded in the standard pro-C tree
SC(G,T) in such a way that the action of 1I{(G,T) on S¢(G,T) extends the natural
action of m1(G,T) on S%(G,T).

This theorem allows us to answer Open Question 15.11.10 of [3T] on the density

of the normalizer. Let G be a virtually free group and H a finitely generated subgroup of
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G. If we consider the profinite topology of G, then the closure of the normalizer of H in

G is equal to the normalizer of the closure of H in the profinite completion of G.

Theorem 2. Let G be a virtually free abstract group and H a finitely generated subgroup
of G. Then

Theorem [2| generalizes the main result of [34], where it was proved for the finitely
generated case. In fact, we prove a more general result, namely for the pro-C completion

of a free-by-C group assuming that H is closed in the pro-C topology (see Theorem [2.4.2)).

Let G = m(G,T') be the fundamental group of a graph of groups, and suppose
G is residually C. Let G(m) be the closure of G(m) in Gs. We prove a generalization
of Theorem (1| by showing that we can define a profinite graph I' that contains I' as a
dense subgraph and a profinite graph of groups (G,T), where the groups G(m) are not

necessarily finite.

Theorem 3. Let (G, 1) be a reduced graph of groups and G = m1(G,T") be its fundamental
group. Assume that G is residually C. Then,

(a) There exists a profinite graph of pro-C groups (G,T') such that T is densely embedded

m I

(b) for each m e T, the vertex group is G(m);

(¢c) The fundamental pro-C group I1 = II$(G,T) of (G,T) is the pro-C completion of G, so
that all the vertex groups of (G,T) embed in 1I{(G,T) (i.e. (G,T) is injective in the

terminology of [31)]).

(d) If in addition we assume that G(m) is closed in the pro-C topology of G for every
m e I, the standard tree S®* = S(G,T) of the graph of groups (G,T') embeds densely
in the standard pro-C-tree S = S€(G,T) of the profinite graph of profinite groups (G, T)
in such a way that the action of I$(G,T) on S¢(G,T) extends the natural action of
m1(G,T) on S%(G,T).

In order to prove this theorem we give a new description of the profinite fundamen-
tal group of a profinite graph of profinite groups; namely, we transport to the profinite

context the definition of the fundamental group of a graph of groups in the language of
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paths. This gives the possibility of working with morphisms of profinite graphs of groups

and to use their projective limits.

We apply the above results to establish subgroup conjugacy separability of virtually
free groups, answering the Ribes’ Open Question 15.11.11 (cf. [3I]). A group G is said to
be subgroup conjugacy separable if whenever H; and Hs are finitely generated subgroups
of G then H; and H, are conjugate in G if and only if their images in every finite quotient

are conjugate.
Theorem 4. Let G be a virtually free group. Then G is subgroup conjugacy separable.

In fact, we prove the subgroup conjugacy C-separability of a residually C free-by-C
abstract group GG. This generalizes the main result of [7] where it is proved for finitely
generated free-by-C abstract groups.

In 1965, J-P. Serre showed that a torsion-free virtually free pro-p group must be free
(cf. [39]). This motivated him to ask the question of whether the same statement holds
also in the discrete context. His question was answered positively some years later. In
several papers (cf. [40], [42], [44]), J.R. Stallings and R.G. Swan showed that free groups
are precisely the groups of cohomological dimension 1. At the same time J-P. Serre himself
showed that in a torsion-free group GG, the cohomological dimension of a subgroup of finite
index coincides with the cohomological dimension of G (cf. [3§]).

One of the major tools for obtaining this type of result - the theory of ends -
provided deep results also in the presence of torsion. The first result to be mentioned is

‘Stallings’ decomposition theorem’ (cf. [43]).

Theorem (J.R. Stallings). Let G be a finitely generated group containing a subgroup H
of finite index which splits as a non-trivial free amalgamated product or HNN-extension
over a finite group. Then G also splits either as a free product with amalgamation or as

an HNN-extension over a finite group.

The pro-p version of the above theorem was proved by Thomas Weigel and Pavel
Zalesski in [45] generalizing the result of W.N. Herfort and Pavel Zalesski in [23], where
it was proved for virtually free pro-p groups. Chapter [3| of this thesis will be devoted to
showing that, in the category of pro-p groups, splitting theorems hold beyond splitting
over finite groups. More precisely, the result holds for splittings over a general pro-p

group K provided that the factors and the the base group are indecomposable over any
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conjugate of any subgroup of K, i.e. do not split as a free amalgamated pro-p product or
pro-p HNN-extension. Note that, in the pro-p case, an amalgamated free pro-p product or
HNN-extension might be not proper (see Subsections 2.4 and 2.5), i.e. the free factors or
the base group do not embed in general in the free amalgamated product or in the HNN-
extension. In this thesis, every amalgamated free pro-p product and every HNN-extension

will be proper.

Theorem 5. Let H = H 11 Hy be a free amalgamated pro-p product of finitely generated
pro-p groups Hy, Hy that are indecomposable over any conjugate of any subgroup of K.
Let G be a pro-p group having H as an open normal subgroup. Then G splits as a free
amalgamated pro-p product G = G111, G5 such that G;nH are contained in some conjugate

of H;, 1 = 1,2 and L n H s contained in some conjugate of K.

Following [37), Section 6.1] we say that a pro-p group G has the FA property if, for
any pro-p tree T' on which G acts, T # ¢, i.e. if G acts on a pro-p tree T then it has a
global fixed point. Of course, if Hy, H> do not split as a free amalgamated pro-p product
or HNN-extension at all then Theorem [5 holds independently of K.

The class of FA pro-p groups is quite large and includes many important examples.
All Fab pro-p groups, i.e., pro-p groups whose open subgroups have finite abelianization
are FA pro-p groups. Note that Fab pro-p groups include all just-infinite pro-p groups
and play a very important role in class field theory (in particular have importance to
the Fontaine-Mazur Conjecture, cf. [5]), p-adic representation theory [24] and include for
example all open pro-p subgroups of SL,,(Z,). The pro-p completion of the Grigorchuk,
Gupta-Sidki groups, the Nottingham pro-p group and other branch groups are FA pro-p
groups as well. Splittings as amalgamated free products of Fab analytic pro-p groups
occur naturally in the study of generalized RAAG pro-p groups [29, Subsection 5.5] where
it is also proved that an amalgamated free pro-p product of uniformly powerful pro-p
groups is always proper. Thus Theorem [5| applies to these splittings of generalized RAAG
pro-p groups.

In fact, if Hy, Hy are FA, we even do not need a hypothesis of normality on H for

odd p.

Corollary 6. Let p > 2 and H = Hylix Hy be a free amalgamated pro-p product of finitely
generated FA pro-p groups Hy, Hy. Let G be a pro-p group having H as an open subgroup.
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Then G splits as a free amalgamated pro-p product G = G111 Gy such that G; n H are
contained in some conjugate of H;, i = 1,2 and L n H 1is contained in some conjugate of

K.
For an HNN-extension the corresponding statement admits two types of splittings.

Theorem 7. Let H = HNN(H,, K,t) be a pro-p HNN-extension of a finitely generated
pro-p group H; that is indecomposable over any conjugate of any subgroup of K. Let G be
a pro-p group having H as an open normal subgroup. Then G splits as a free amalgamated
pro-p product G = G111, Gy or HNN-extension G = (Gy, L, t) such that G;n H, i =1,2

is contained in some conjugate of Hy, and L n H 1is contained in some conjugate of K.
If Hy is FA then for p > 2 we can drop the hypothesis of normality on H.

Corollary 8. Letp > 2 and H = HNN(Hy, K, t) be a pro-p HNN-extension of a finitely
generated FA pro-p group Hy. Let G be a pro-p group having H as an open subgroup.
Then G splits as a pro-p HNN-eztension G = (G1, L, t) such that G1 n H is contained in

some conjugate of Hy, and L n H s contained in some conjugate of K.

Of course, in general, the factors of an amalgamated free pro-p product H =
H, 1l Hs or the base group of a pro-p HNN-extension H = HNN(Hy, K,t) can split
further, so to extend our results to a more general context we need to have some pro-p
version of a JSJ-decomposition, i.e. H should be the fundamental pro-p group of a graph
of pro-p groups whose vertex groups do not split further over edge groups. Thus we need

to use the Ribes-Zalesski-Mel’nikov theory in the pro-p case.

Theorem 9. Let G be a finitely generated pro-p group having an open normal subgroup
H acting on a pro-p tree T. Suppose {H, | v € V(T)} is G-invariant. Then G is
the fundamental group of a profinite graph of pro-p groups such that each vertex group
intersected with H stabilizes a vertex of T'. In particular, G splits as a non-trivial free

amalgamated pro-p product or a pro-p HNN-extension.

If the stabilizers H, are FA, then the G-invariancy {H, | v € V(T)} is automatic;

moreover, if the H, are Fab, then we can drop the normality assumption on H.

Corollary 10. Let G be a finitely generated pro-p group having an open subgroup H
acting on a pro-p tree T such that each stabilizer H, is Fab. Then G is the fundamental
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group of a profinite graph of pro-p groups such that each vertex group intersected with H
stabilizes a vertex of T'. In particular, G splits as a non-trivial free amalgamated pro-p

product or a pro-p HNN-extension.

Note also that Theorem [J] does not require necessarily the existence of JSJ de-
composition or even accessibility (see Section 2 for definition); in other words, we do not
require that H\T is finite. Indeed, G. Wilkes [46] constructed an example of a finitely
generated inaccessible pro-p group G (that acts on a pro-p tree with infinite G\T'), but
our theorem holds for his example as well (see Section [3.4).

However, if we assume accessibility, we can say more.

Theorem 11. Let G be a finitely generated pro-p group having an open normal subgroup
H that splits as the fundamental pro-p group of a finite graph of finitely generated pro-p
groups (H,A). Suppose conjugacy classes of vertex groups are G-invariant. Then G is the
fundamental group of a reduced finite graph of pro-p (G,T') groups whose vertex and edge
groups intersected with H are subgroups of the vertex and edge groups of H respectively.

Moreover, |[E(T")| < |E(A)].

Once more, if the vertex groups H(v) are Fab, then we can omit G-invariancy and

normality hypotheses.

Corollary 12. Let G be a finitely generated pro-p group having an open subgroup H that
splits as a finite graph of finitely generated pro-p groups (H,A). Suppose the vertex groups
of (H,A) are Fab. Then G is the fundamental group of a reduced finite graph of pro-p
groups (G,T') such that its vertex and edge groups intersected with H are subgroups of
vertex and edge groups of H respectively. Moreover, |E(I")| < |E(A)].

Theorem is a generalization of the pro-p version of Stallings’ decomposition
theorem proved in [45], namely if in Theorem we suppose that H is a non-trivial
free pro-p product, we obtain as a particular case the pro-p version of [45, Theorem 1.1].
Theorem 1.4 of [49] gives an example of a situation when Theorem [11|is applicable, namely
if all vertex groups are Poincaré duality of dimension n (PD™ pro-p groups) and the edge
groups have cohomological dimension < n — 1.

The proofs of Theorem [I1] and Corollaries [6] [§, and [I2] are more subtle and require

the following theorem that is of independent interest. Note that for an open subgroup
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H of the fundamental pro-p group G = II;(G, ', v) of a finite graph of pro-p groups, the
pro-p version of the Bass-Serre theorem for subgroups works, i.e. H = II;(H, H\S(G)) in
the standard manner (see Proposition |1.6.23)).

Theorem 13 (Limitation Theorem). Let G = I[1;(G,T",v) be the fundamental pro-p group
of a finite reduced graph of pro-p groups. Let H be an open normal subgroup of G and
H =T1I;(H, A, V") be a decomposition as the fundamental pro-p group of a reduced graph
of pro-p groups (H,A,v") obtained from (H,H\S(G)) via an reduction process. Then
|E(A)| = |E(T)|. Moreover, for p > 2 the inequality is strict unless I' = A.

Recall that two pro-p groups G, Gy are commensurable if there exist H; open in
G, and Hs open in G5 such that H; =~ H,;. Theorem allows us to prove that the
accessibility of a pro-p group with respect to a family F of pro-p groups is preserved by
commensurability. For accessible abstract groups such a result can be deduced from the
Stallings splitting theorem; we are not aware of such a result for accessible groups with

respect to a family of infinite groups in the abstract situation.

Theorem 14. Let F be a family of pro-p groups closed for commensurability. Let G be
a finitely generated pro-p group and H an open subgroup of G. Then G is F-accessible if
and only if H is F-accessible.

Note that the hypothesis of non-splitting in Theorems [5] [7]and [J9] are essential. The
pro-5 completion of the triangle group G = {(x,y | 2°,v°, (zy)®), for example, contains the
pro-5 completion S of a surface group S as a subgroup of index 5. The group S is a free
pro-5 product of free pro-5 groups with cyclic amalgamation, but GG does not split as a
non-trivial amalgamated free pro-5 product. Indeed, if it did, i.e. if G = Gy 11y G5 then
all torsion elements x,y, and xy have to belong to some free factor up to conjugation,

but then they belong to the normal closure of the same free factor, say G¢; it means that

GY = G which is impossible, since G/G{ =~ Gy/H? # 1.

This thesis is organized as follows. Chapter 1 is dedicated to recalling the elements
of the Bass-Serre theory for abstract and profinite graphs that will be used throughout
the text and establish the notation to be used in subsequent sections. The content of
the next two chapters is completely original. In Chapter 2 we introduce a new definition
of the fundamental group of a graph of pro-C-groups at base point and prove that it

is equivalent to the one that appears in [31]. The second section is the technical heart
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of the chapter and contains the proof of Theorem [3] We construct explicitly the graph
of profinite groups (G,T) starting with an infinite graph of groups (G,T'). With this
construction in hand, Theorem [I] follows immediately. In Section 3 we prove Theorem
on the closure of normalizers. The techniques used here are largely based on Bass-
Serre and Ribes-Zalesski-Mel’nikov’s theories and their close interrelation. We finish the
chapter with Section 4, which contains the proof of Theorem [4]

The third Chapter is organized as follows. Section 1 contains the proof of the
Limitation Theorem and its applications. Section 2 starts with the proof of Theorem
O Then with the Limitation Theorem in hand, we prove Theorem [II} Theorems [3]
and [7] then follow immediately, but their corollaries require some work. Section 3 deals
with finitely generated pro-p accessible groups, where we prove Theorem [I4] In the last
section, we show that our Theorem[9]also works for Wilkes’ example of a finitely generated

inaccessible pro-p group.

Brasilia, 2023
Mattheus Pereira da Silva Aguiar
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CHAPTER 1

BASS-SERRE AND
RIBES-ZALESSKI-MEL’NIKOV’S
THEORIES

This chapter offers an overview of Bass-Serre and Ribes-Zalesski-Mel'nikov’s the-
ories. Bass-Serre’s theory is based on the books of Serre (cf. [37]) and Dunwoody (cf.
[11]); Ribes-Zalesski-Mel’'nikov’s theory is based on the book of Ribes (cf. [31]). Many
of the details and examples provided here derive from Ph.D. course notes given by Pavel

Zalesski between 2000-2010.

1.1 Abstract and profinite graphs

Graphs are our main object of study throughout this work since they interact very
nicely with groups. From the beginning, we will deviate slightly from classical Bass-Serre
theory in order to make it compatible with the profinite version. We start with the

definition of an abstract graph that will be used freely without further mention:

Definition 1.1.1 (Abstract graph). An abstract graph, or simply a graph, is a set T’
constituted by two disjoint subsets, V(I') # & and E(I') = I' — V(I'), where the first

is called the vertices set and the second the edges set, together with two maps dy, d; :
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1.1. Abstract and profinite graphs 27

I' - V(I') called incidence maps. These maps have the property that d;|y ) = idy (), for
i=0,1.

We have the following example

Example 1.1.2. Let I' = V(') u E(I") be the following graph where
o V(I') = {v1, v2,v3}

b E(F) = {61762763a64}

Then we can represent I' by

€2

€4
€3

This abstract graph has 3 vertices, and 4 edges. In addition, e, e, 3, ¢4 have extremi-
ties {v1,v1}; {v1,ve}; {v1,v2} and {ve,v3} respectively. Note that dy(e1) = v1 = dy(e2),
di(e1) = vy = di(er), do(es) = va, di(e3) = vs, do(es) = v1 = di(eq), and dy(v;) = v; =
dy(v;) for all v; € V().

Now the reader must have some intuition about these objects and it is worth
highlighting some details that are hidden in the definition. Firstly, the vertex set is never
empty, but the edge set can be empty. In this case, if [' has more than one vertex, they
will be isolated from each other. Subsequently, it is enough to evaluate the incidence
maps on the edges, since they are the identity on the vertices, so they provide nothing
new. Finally, the initial and final vertices of an edge e (dy(e) and d;(e), respectively) can
be the same v € V(I'). In this case, we say that e is a loop with basis v or simply that e
is a loop if the basis is clear. The edge e, in Example [[.1.2]is a loop with basis v;.

Two vertices are said to be connected if both are extremities of the same edge and
two edges are said to be parallel if they have the same starting and ending points. The
edges e; and e in Example [[.1.2] are parallel and the vertices vy and vz are connected due

to the edge e3.
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28 1. Bass-Serre and Ribes-Zalesski-Mel’nikov’s theories

It is possible to add topology to these structures, giving rise to profinite graphs.
First we recall the concept of inverse limit.
Let (I, <) be a directed partially oriented set (i.e., < is an order relation in I and

if 4, j € I, there exists some k € [ such that i,j < k).

Definition 1.1.3 (Inverse system). An inverse system of topological spaces consists of a
family (X;)ier, and a collection of continuous mappings ¢;; : X; — X, whenever ¢ > j

such that the diagrams

Xi Pik , Xk
X

commute, whenever 1 < j < k.

If Y is another topological space, we can define continuous maps ¢; : ¥ — X, for

every ¢ € I. They are said to be compatible if ¢;;1); = 1);, whenever ¢ > j.

Definition 1.1.4 (Inverse limit). We say that a topological space X, together with a set
of compatible maps p; : X — X, (called projections) is the inverse limit of the inverse

system {X;, ¢;;, I} if the following universal property is satisfied

r~<

7
<

Al

=

whenever Y is a topological space and v¢; : Y — X, is a set of compatible continuous
mappings, then there is a unique continuous mapping ¢ : Y — X such that p;i0 = 1; for
all v e I.

Although this universal property is useful in many cases, [30, Proposition 1.1.1]
provides another form of seeing X = lim_ X;: as the subset of [ [,.; X; (endowed with

the product topology) consisting of those tuples (m;) with ¢;;(m;) = m;, whenever i > j.

Definition 1.1.5 (Profinite space). Using the previous notation, X is said to be a profinite
space if X = lim X, where each X; if finite and endowed with the discrete topology.

By [30, Proposition 1.1.12], a topological space X is profinite if, and only if, it is
Hausdorff, compact and totally disconnected. It is clear that every finite space endowed

with the discrete topology is also profinite.
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The first reference to profinite (or boolean) graphs appears in [17]. Later the
concept was developed by Luis Ribes, Oleg Melnikov, and Pavel Zalesski in order to obtain
a profinite version of the celebrated Bass-Serre theory. Roughly speaking, a profinite graph
is a profinite space with a graph structure.

We provide the formal definition that appears in [31]:

Definition 1.1.6 (Profinite graph, [31], Section 2.1, page 29). A profinite graph is a
profinite space I' with a distinguished closed nonempty subset V(I') called the vertex
set, E(I') = T" — V(I') the edge set and two continuous maps do,d; : I' — V(I') whose
restrictions to V(I') are the identity map idy ). We refer to dy and d; as the incidence

maps of the profinite graph T'.

As usual in profinite constructions, finite abstract graphs with the discrete topology

are profinite graphs. But we provide another example to help the intuition.

Example 1.1.7 (|31], Example 2.1.1(b)). Let N = {0,1,2,---} and N = {n | n € N} be
two copies of the set of the natural numbers (each one with the discrete topology). Define
' = N uUN u {0} to be the one-point compactification of the space N U N. Hence I
is a profinite space because it is compact, Hausdorff and totally disconnected. We can

introduce a profinite graph structure into I' by setting:

o V(I) = N u {o};

e dy(n) =n forme E(I') and dy(n) = n for n e V(I');

e di(n)=n+1forne E(I') and dy(n) =n for ne V(I).

(]
|
]
wl

In this case the subset of edges E(I') = N = {m | n € N} is open, but not closed in
I'. Indeed, we are taking the discrete topology, so N is open, but it is not compact and

therefore not closed.
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30 1. Bass-Serre and Ribes-Zalesski-Mel’nikov’s theories

Definition 1.1.8 (Abstract subgraph). A nonempty subset A of an abstract graph I is

called an abstract subgraph, or simply a subgraph, of I' if whenever m € I, then d;(m) € T’
(j=0,1).

When working with topological spaces, additional conditions on a subset of a profi-
nite graph are needed to constitute a profinite subgraph. It has to be a closed subset in

order to be profinite. We state this in the following definition:

Definition 1.1.9 (Profinite subgraph). A nonempty closed subset A of a profinite graph
I' is called a profinite subgraph of I' if it admits a subgraph structure, i.e. whenever

m e A, then d;j(m)e A (7 =0,1).

Given a profinite graph I', any finite subgraph A of I" is a profinite subgraph. In
example [1.1.7] since the open neighbourhoods of {o0} are all the sets I' — C, where C' is
a compact subspace of N u N , they contain all but finitely many elements of I". Hence
they are closed, because their complement is open. Therefore, if such a neighbourhood
admits a subgraph structure, it is a profinite subgraph of T'.

Maps between graphs work nicely, but they have some particularities as follows

Definition 1.1.10 (Morphism of abstract graphs). A morphism of abstract graphs
a:I'—> A
is a map that commutes with dy and dy, i.e., dj(a(m)) = a(d;(m)), for all m € I' and

j=0,1and a(e) € E(A) for every e € E(T).

If o is a surjective morphism (respectively injective, bijective), we say that a is an
epimorphism (respectively, monomorphism, isomorphism). An isomorphism « : I' — I" of

the graph I to itself is called an automorphism.

Definition 1.1.11. Let A < I, where I', A are abstract graphs and a € I'. Define
qg:I' ->T

by q(z) = x for every x € I' — A and ¢(z) = a for all x € A. The relation z =y <

q(z) = q(y) is an equivalence relation on T

Definition 1.1.12 (Quotient graph). We define an abstract graph I'/A = ¢(I") such that
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o V(I'/A) = q(V(T));

o E(I/A) =T/A — V(I/A);

o do,d; : T/A — V(I'/A) defined by d;(g(m)) = q(d;(m)), (j = 0, 1;m e T/A).
The graph I'/A is called the quotient abstract graph.

The major changes in relation to the abstract context start to appear at this point,
where the g-morphism allows mapping edges to vertices. This works very well with inverse

limit constructions that are not needed in the abstract case.

Definition 1.1.13 (¢g-morphism of profinite graphs). Let I and A be profinite graphs.
A g-morphism or a quasi-morphism of profinite graphs o : I' — A is a continuous map
such that d;(a(m)) = a(d;(m)), for all m € I" and j = 0,1. If in addition a(e) € E(A)

for every e € E(I'), we say that « is a morphism.

The equality d;(a(m)) = a(d;j(m)), (j = 0,1;m € I') implies that a g-morphism of
profinite graphs maps vertices to vertices. Indeed, take m € V(I'). Then d;(a(m)) € V(A)
because d; : A — V(A). Since d;(a(m)) = a(d;(m)), this implies that a(d;(m)) = a(m) €
V(T), as desired. On the other hand, g-morphisms can map edges to vertices, unlike the
abstract case.

We also have a profinite version of a quotient graph.

Example 1.1.14 ([31], Example 2.1.2). Let T" be a profinite graph and A a profinite
subgraph of I’ We can define a natural continuous map « : I' — I'/A, where I'/A is
endowed with the quotient topology, and a profinite graph structure on the space I'/A

inherited from I' as follows:
o V(I'/A) = a(V/(I'));
e dj(a(m)) = a(d;(m)) (j = 0,1);

for all m e I' (note that we only need to define the vertex set and the incidence maps on
the edges, because they are trivial on the vertices). Then « is a g-morphism of profinite
graphs and we call I'/A a quotient graph of I". We can say that I'/A is obtained from T’
by collapsing A to a point. Observe that o maps any edge of I' which is in A to a vertex
of T'/A.
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32 1. Bass-Serre and Ribes-Zalesski-Mel’nikov’s theories

Next, we enlarge the notion of vertex connectivity

Definition 1.1.15. A path p in an abstract graph I' is a finite sequence

En

p= U076§17'U17'” ;€5 5 Un,
where n > 0, v, vy, ,v, € V(['), e1,€9, - e, € E(I'), e, =%1 (i=1,--- ,n),
and do(e;’) = vi_1, di(€;') = v;, fori=1,--- n.
[ts normally abbreviated by e{',--- ,e]", where n > 0.

We say that p = p(vg, v,) is a path between vy and v, of length n. Two vertices
u,v € I' are connected if there is a path between u and v. The fact that u is connected
to v defines an equivalence relation on I' and the equivalence class is called the connected
component of I'. We can observe similarities with the topological notion of connectedness.

We will be exploring it in the profinite case.

Definition 1.1.16. An abstract graph I' is connected if given two vertices u, v € I', there

is a path between u and v.
A connected graph has just one connected component, itself.

Definition 1.1.17. Let p = v, e5', v1, - , €, v, be a path in I'. We say that p is reduced

if, forall i = 1,--- ,n, we have: ¢; = ¢;,1 = ¢; = g;41.

In the case that p is not reduced, there is ¢; € E(I') such that e; = —e;41 and

€; = €i+1, SO we have

€i—1 En

— €1 £ Ei+1 Ei4+2
p = Vg,€1,01, - 7€7j—1 Jvi*17€il7vi7ei+1 7Ui+17ei+27vi+27“' y€n » Un
€1 €i—1 €4 —€4 Ei+2 5
Vo, €1, U1, """ 761717’01'71761'17“1'761‘ Zavi717€i+27vi+2>"' ,en",vn
€1 Ei—1 Ei+2 €
Vo, €1 ,V1," " ,€,_1 avi—17€i+27vi+27"' 76nn7vn

This operation is called the simple reduction of p. By successive simple reduc-
tions, we can transform p into a reduced path, called the reduced form of p. The simple
reduction is an equivalence relation, being the reduced form the representative of the

class. The reduced form of a path over an abstract graph is unique.
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Another change in the profinite case is the one of connectivity. As we will show,
there exist profinite graphs that are connected, but have vertices with no edge beginning

or ending at them.

Definition 1.1.18 (Connected profinite graph). A profinite graph I' is said to be con-
nected if whenever ¢ : ' — A is a ¢g-morphism of profinite graphs onto a finite graph,

then A is connected as an abstract graph.

The following example shows a connected profinite graph which is not connected

as an abstract graph and has a vertex with no edge beginning or ending at it.

Example 1.1.19 ([31], Example 2.1.8). The graph T' of Example is a connected

profinite graph; to see this consider the connected finite graphs I',,

0 1 2 3 n—-1 =n
—————Je—————————e  —— e
0 1 2 n—1

with vertices V(') = {0,1,2,3,--- ,n} and edges E(I',) = {0,1,2,--- ,n — 1} such that
do(?) =14,di(?) =i+1(:=0,1,--- ,n—1)and d;(i) =i forie V(I'),i=0,1,--- ,n;j =
0,1. If n < m, define ¢,,,, : I';, = I';, to be the map of graphs that sends the segment
[0, n] identically to [0,n], and the segment [n,m] to the vertex n. Then {I',,, ¢} is an

inverse system of finite graphs, and

[ = limT,,
am
neN
where o0 = (n),eny (note here the importance of the g-morphism definition. We are

allowed to send the edge [n,m] to the vertex n, what would not be possible with the

abstract definition of a morphism). Our graph I" becomes the following:

0 1 2 3 4w

00— 0————————)0 °
0 1 2 3
Hence I' is a connected profinite graph, because any morphism of G to a finite
graph can be factored through a finite connected graph (cf. [31], Proposition 2.1.5|), so

the finite graph has to be connected. We observe that there is no edge e of I' which has

{oo} as one of its vertices; and so I is not connected as an abstract graph.
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34 1. Bass-Serre and Ribes-Zalesski-Mel’nikov’s theories

The next proposition shows that if F(I") is closed, we cannot have a vertex like
{oo} in a connected profinite graph, such that there is no edge starting or ending at it. In
[31, Proposition 2.1.4], it is shown that every profinite graph can be written as an inverse

limit of its finite quotient graphs.

Proposition 1.1.20 ([3I], Proposition 2.1.6 (c)). Let I' be a connected profinite graph.
If [T| > 1, then T has at least one edge. Furthermore, if the set of edges E(T') of T is
closed in I', then for any vertex v e V(I'), there exists and edge e € E(I') such that either
v =dy(e) orv=de).

Proof. We give an idea of the proof. By [31, Proposition 2.1.4], as E(T") is closed, it can

be written as an inverse limit

B(T) = lim E(T).

icl

Put v; = ¢;(v), where ¢; : I' — T'; is the projection. Since I'; is a connected
finite graph, S; = dy'(v;) U dy'(v;) 0 E(T') # &. Moreover, ¢;;(S;) < S;. Hence the
collection (.S;);er is an inverse system of nonempty finite sets. By [30), Proposition 1.1.4],
Lian‘eI S; # . Let e € LiLniel S;. Then e is an edge of T' with either do(e) = v or
di(e) = v. O

We finish this section with the concept of trees. They are going to be essential

objects in this thesis. The reason they are so special will be uncovered later.

Definition 1.1.21 (Circuit). A circuit on an abstract graph is a reduced path of a vertex

v to itself, with length at least 1.

An abstract graph without circuits is a forest. A connected forest is called a tree.

It is possible to show that if T is a tree and v, w € V(T') there is only one reduced path

p(v,w) connecting v to w. Indeed, if there were two paths p; (v, w) and py(v, w), it would
be possible to define a circuit p3(v,v) = py (v, w)[pe(v,w)]~ . If

p(v,w) = U76§17/U17 e

Y n )

is the reduced path between v and w, we define

l(p(v,w)) = d(v,w) =n.
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We say that the distance between v and w is n. The path [v, w] (unique reduced path) is

called a geodesic.

Definition 1.1.22. Given a vertex v € V(T'), we will define star(v) = dy*(v) U d; ' (v) N
E(T), i.e., the set of all edges that have their beginning or end at v. We define the degree

of v as |star(v)].
For the next result, we are going to use the following classical Lemma

Lemma 1.1.23 (Zorn’s Lemma). Let (A, <) be a partially ordered set in which each

totally ordered subset has supremum. Then A has a maximal element.

Theorem 1.1.24. FEvery connected abstract graph I' has a mazximal subgraph T that is a
tree and V(I') = V(T') (also called a spanning subtree of T").

Proof. We first claim that there exists a maximal subtree T of I'. In fact, the set S of all
subgraphs of I" that are trees forms a partially ordered set by inclusion . Note also that
S # J, because {v} € S, where v € I is arbitrary.

Let T3 € 15 < --- be a chain of subtrees of I'. Then T = U;‘il € S is also a subtree
of I'. It follows from Zorn’s Lemma (cf. Lemma[1.1.23) that S has a maximal element T
and so I' has a maximal subtree T', proving the claim.

Finally, we claim that V(I') = V(T'). Suppose by contradiction that V(T") # V(I'),
i.e., there exists v € V(I') — V(T'). Consider w € T and let p(v,w) be a reduced path from
v to w. It exists because I is connected. Then there exists an edge e in p(v,w) that has
extremities @ € T and w € I' = T. Therefore, T U {e,u} is a subtree of I' containing 7,

which is maximal. Therefore, V(I') = V(T'), as desired. O

As we are going to see later, this does not hold for profinite graphs (cf. Example

2.1.7).

1.2 Groups acting on graphs

We are investigating in this section how groups interact with graphs and what

properties can be inferred by these actions.

Definition 1.2.1. We say that a group G acts on a set X, or that X is a G-set, if there

exists a homomorphism ¢ : G — Sym(X)
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36 1. Bass-Serre and Ribes-Zalesski-Mel’nikov’s theories

GxX — X

(9,7) — g

The action is called transitive if it possesses only a single orbit, i.e., for every pair of

elements x,y € X, there is a group element ¢ such that gr = y.

Definition 1.2.2 (PseudovarietyE] of finite groups). A nonempty class of finite groups
C is a pseudovariety if it is closed under taking subgroups, quotients and finite direct

products. A pseudovariety of finite groups C is said to be extension-closed if whenever

1 > K s G s H

~
—_

is an exact sequence of finite groups with K, H € C, then G € C.

Definition 1.2.3 (Pro-C group). Let C be a nonempty pseudovariety of finite groups.

Define a pro-C group G as an inverse limit

an
1€l
of a surjective inverse system {G}, ¢;;, I} of groups G; in C, where each group G} is endowed

with the discrete topology.

We think of such a pro-C group G as a topological group, whose topology is inher-

ited from the product topology on [ [, ; G;. If C is the pseudovariety of all finite groups,

iel
we call a pro-C group G a profinite group. If it is the pseudovariety of all finite p-groups,
G is said to be a pro-p group. Observe that every pro-C group is also a profinite group.

From now on we shall use the following convenient notations. Let G be a topological
group and H a subgroup of G. Then H <, G, H <. G, H<,G, H<.G, H <; G and
H <y G will indicate, respectively: H is an open subgroup; H is a closed subgroup; H
is an open normal subgroup; H is a closed normal subgroup; H is a subgroup of finite
index; H is a normal subgroup of finite index.

We define the action of a profinite group on a profinite graph and the quotient

graph by an action of a profinite group. These concepts will be useful to understand

Galois coverings in the next section.

n |30] it this is referred as a variety of profinite groups
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Definition 1.2.4. Let GG be a profinite group and let I' be a profinite graph. We say that
the profinite group G acts on the profinite graph I' on the left, or that I' is a G-graph, if

(i) G acts continuously on the topological space I" on the left, i.e., there is a continuous

map G x I' > T', denoted by (g,m) — gm, g€ G, m € I, such that
(gh)ym = g(hm) and 1m = m,

for all g,h € G, m € ', where 1 is the identity element of G; and
(ii) d;(gm) = gd;(m), for all ge G, mel, j=0,1.

Definition 1.2.5 (G-map of graphs). Let G be a profinite group that acts continuously
on two profinite graphs I' and I'V. A g-morphism of graphs ¢ : I' — I"" is called a G-map
of graphs if

wlgm) = ge(m)
forallmel, g e G.

Definition 1.2.6 (Stabilizer). Assume that a profinite group acts on a profinite graph I'
and let m € I'. Define G,,, = {g € G | gm = m} to be the stabilizer, or G-stabilizer of the

element m.

It follows from the continuity of the action and the compactness of G that G,, is

a closed subgroup of G. We have that
G < Gdj(m)

for every m € I, j = 0,1, because Gg4;m) = {9 € G | gd;(m) = d;(m)} and as gd;(m) =
dj(gm), Ga,m) = {g € G [ dj(gm) = d;(m)}.

Definition 1.2.7 (Free action). If the stabiliser G,, of every element m € I' is trivial, i.e.,

G, = 1, we say that G acts freely on I'.

Definition 1.2.8 (G-orbit). If m € T, the G-orbit of m is the closed subset Gm = {gm |
g€ G}.

The next definition is very important for Galois coverings, which will be presented

in the next chapter:
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38 1. Bass-Serre and Ribes-Zalesski-Mel’nikov’s theories

Definition 1.2.9 (Quotient graph under the action of a profinite group). Let G be a
profinite group that acts on a profinite graph I'. In particular, G acts on V(I') (also a
profinite space, because it is a closed subset of I') and E(T"). The space

G\I' = {Gm | meT}
of G-orbits with the quotient topology is a profinite space which admits a natural graph
structure as follows:
o V(G\I') = G\V(I');
e 4,(Gm) = Gd;(m) (j = 0,1).

The profinite graph G\I" is called the quotient graph of I' under the action of G. The

corresponding quotient map

p:I' > G\I'
is an epimorphism of profinite graphs given by m — Gm (meT',g € G).

Remark 1.2.10. The map ¢ sends edges to edges (it is a morphism). Indeed, given
e € E(I') the element ¢(e) = Ge belongs to G\E(I') = G\(I' = V(")) = G\I' - G\V(T') =
G\I' = V(G\I') = E(G\I).

Remark 1.2.11. If N <, G, there is an induced action of G/N on N\I' defined by
(gN)(Nm) = N(gm)

for ge G, meTl.

Proposition 1.2.12 ([31], Proposition 2.2.1). Let a profinite group G act on a profinite
graph T'.

(a) Let N be a collection of closed normal subgroups of G filtered from below (i.e., the

intersection of any two groups in N' contains a group in N') and assume that

G = lim G/N.
NeN
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Then the collection of graphs {N\I' | N € N'} is an inverse system in a natural way

and

I = lim N\T.
NeN

(b) Let N <.G. For m eI, denote by m’ the image of m in N\I'. Consider the natural
action of G/N on N\I' defined above. Then (G/N ) is the image of G, under the
natural epimorphism G — G/N. In particular, if G,, < N, for allm e T, then G/N
acts freely on N\I'.

Let I' be a profinite graph. If {I';, ¢;;, I} is an inverse system of profinite G-graphs
and G-maps over the directed poset I, then

I'=limI;
1€l
is in a natural way a profinite G-graph, defined by V/(I') = lim__ V/(I';) and the incidence
maps as the compositions.

Proposition 1.2.13 (|31], Proposition 2.2.2). Let a profinite group G act on a profinite
graph T'.

(a) Then there exists a decomposition

['=1lmT;
i€l
of I' as the inverse limit of a system of finite quotient G-graphs I'; and G-maps
wij i = T (i > j) over a directed poset (I, <).

(b) If G is finite and acts freely on T, then the decomposition of part (a) can be chosen

so that G acts freely on each T';.

In the category of topological rings, a profinite ring A is an inverse limit of an
inverse system {A;, y;;} of finite discrete rings. We always assume that rings have an
identity element, denoted usually by 1 and that homomorphisms of rings send identity
elements to identity elements. Consider a commutative profinite ring R and a profinite

group G. Define the complete group algebra

R[[G]] = lim [R(G/U)],

Ueld
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of the ordinary group algebras [R(G/U)|, where U is the collection of all open normal
subgroups of G. One can express R [[G]] as an inverse limit of finite rings [(R/I)(G/U)],
where [ and U range over all the open ideals of R and the open normal subgroups of G,

respectively.

Definition 1.2.14 (pro-C-tree). Let I' be a profinite graph. Define E*(I') = I'/V(I) to
be the quotient space of I' (viewed as a profinite space) modulo the subspace of vertices
V(T'). Let R be a profinite ring and consider the free profinite R-modules R [[(E*(T), )]]
and R[[V(I")]] on the pointed profinite space (E*(I'), =) and on the profinite space V/(I'),
respectively. Denote by C(I', R) the chain complex

0 — R[[(E*(D),*)]] = R[V(D)]] —— R

o

of free profinite R-modules and continuous R-homomorphisms d and e determined by
e(v) = 1, for every v € V(I'), d(e) = di(e) — dy(e), where € is the image of an edge
e € E(I') in the quotient space E*(I"), and d(*) = 0. Obviously I'm(d) € Ker(ec) and one
defines the homology groups of I" as the homology groups of the chain complex C(I", R)

in the usual way:
Ho(I',R) = Ker(e)/Im(d) and H,(I', R) = Ker(d).
One says that I' is a pro-C tree if the sequence C(T', Z;) is exact.

By [31, Proposition 2.3.2| a profinite graph is connected if and only if Hy(I", R) = 0,
independently of the choice of the profinite ring R. Therefore a profinite graph I' is a
pro-C tree if and only if it is connected and H(I', Z;) = 0. If v and w are elements of
a tree (respectively C-tree) T, one denotes by [v,w] the smallest subtree (consider the
intersection of all paths from v to w in T') (respectively C-tree) of T' containing v and w.

We collect some results that will be important in the development of the text

Theorem 1.2.15 (Theorem 3.9 of [32]). Suppose that a finite p-group G acts on a pro-p
tree T. Then G = G, for some vertexve V(T).

Theorem 1.2.16 (Theorem 4.1.2 of [3I] or Theorem 2.6 of [51]). Let a pro-C group G

act freely on a pro-C tree T'. Then G is a projective group.

We note that, in the abstract case, a group that acts freely on a tree is itself free.

There is also a graph on which a given group G acts naturally. It is called the Cayley graph
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of G and it was introduced in the very first paper about profinite graphs by Gildenhuys
and Ribes (cf. [17]). define it as follows

Definition 1.2.17 (Cayley graph). Let G be a group and X a subset of G. Put X =
X u {1}. We can define the Cayley graph I'(G, X)) of the group G with respect to the

subset X as follows:
e NG, X)=Gx X
o VNG, X)) ={(g9,1) | g€ G}
e d;:I'(G,X)=GxX - V(I(G,X))

— do(g,z) =g
— di(g,7) = gz

For the profinite case, we ask GG to be a profinite group, X to be a closed subset of
G and G x X to have the product topology with 7 = 0,1. Note that, in this case, G x X
is a profinite space, because G is a pro-C group (and in particular a profinite space), X
is a closed subspace of a profinite space, and so it compact and hence profinite. Hence,
G x X with the product topology is also profinite.

We can identify the space V (I'(G, X)) with G through the homeomorphism (g, 1) —
9 (9€@).

In the profinite case, the incidence maps dy and d; are continuous (one is just a
projection and the other is a left multiplication) and they are the identity map when
restricted to V(I'(G, X)) = {(g,1) | g € G} = G. Therefore T'(G,X) = G x X is a
profinite graph. Note that the space of edges is E(I'(G, X)) = I'(G, X) — V(I'(G, X)) =
G x (X —{1}):

g (9, ) g
where z € X — {1}. It is already open, because V(I'(G, X)) is closed in I'(G, X). It
is closed if, and only if 1 is an isolated point of X. Indeed, note that if 1 ¢ X, then
V(I'(G,X)) = G and E(I'(G, X)) = G x X, and in this case E(I'(G, X)) is clopen. On
the other hand, if 1 € X we have that X = X. If in addition 1 is an isolated point

of X (for example, if X is finite), then X — {1} is also a closed subspace and we have
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42 1. Bass-Serre and Ribes-Zalesski-Mel’nikov’s theories

I'G,X) = I'(G, X — {1}). Note that the Cayley graph I'(G, X') does not contain loops
since the elements of the form (g, 1) are vertices by definition.

Let ¢ : G — H be a continuous homomorphism of profinite groups and let X be a
closed subset of GG, and so compact. Put Y = ¢(X), which is a compact subset of H by the
continuity of ¢ and therefore closed. So we can define the Cayley graph of G with respect
to the subset X, denoted by I'(G, X) and of H with respect to the subset ¢(X), denoted

by T'(H, p(X)). Then ¢ induces a g-morphism of the corresponding Cayley graphs
¢: (G, X)—>T(HY).

In particular, if U is an open normal subgroup of G and Xy = ¢y(X), where ¢y :
G — G/U is the canonical epimorphism, then ¢y induces a corresponding epimorphism
of Cayley graphs ¢y : I'(G, X) — I'(G/U, Xy7). So we can construct with the morphisms
v : (G, X) - I'(G/U, Xy) and g, : I'(G/Uy, Xy,) — I'(G/Us, Xy,) an inverse system
such that

U<,G

is a decomposition of I'(G, X) as an inverse limit of finite Cayley graphs.

We give as example the Cayley graph of Z,

Example 1.2.18 ([31], Example 2.1.1(c)). Let p be a prime number and let Z, be the
additive group of the ring of p-adic integers. According to the definition above, the Cayley
graph of Z,, is

I'=T(Zp, {1}) = Z, x {1}

with set of vertices V(I') =~ Z, and incidence maps do(g,{1}) = ¢, di(g,{1}) = g + 1,
g € Z,. In this case, both V(I') and E(T") are closed, and so profinite spaces.

The subgroup of integers Z is dense in Z, and the topology of Z induced by the
topology of Z, is the discrete topology. Let

Pz (1) = {gevD|gez} v {(s.(1})| g Z}.

Then I'(Z, {1}) is an abstract discrete graph
-2 -1 0 1 2

00— 0—————————0

(—=2,1) (—1,1) (0,1) (1,1)
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which is dense in the profinite graph I' = I'(Z,, {1}). More generally, let 8 be a fixed

element of Z, and define

rz+p.1) = {geviD)|gez+p}u{e.0)|ge 2+ 5}
Then I'(Z + 8, {1}) is an abstract discrete graph

. pB=2 8—1 6] B+1 p+2
(/8_271) (ﬁ_lvl) (571) (5+171)

which is also dense in the profinite graph I' = I'(Z,, {1}). Note that I' = I'(Z,, {1}) is a
disjoint union of uncountably many abstract discrete graphs of the form I'(Z + 3, {1}):

I =T(Z,, {1}) = | JT(Z + B, {1})

AEA

1.3 The fundamental group of a graph

This section is based on a paper by Pavel Zalesski (cf. [52]).

Definition 1.3.1 (Galois covering of profinite graphs). Let G be a pro-C group that
acts freely on a profinite graph I". The natural epimorphism of profinite graphs ( : I' —
A = G\I' of T onto the quotient graph by the action of G, A = G\I' is called a Galois
C-covering of the profinite graph A. The associated pro-C group G is called the group
associated with the Galois covering ¢ and we denote it by G = G(I'|A). If I is finite, one
says that the Galois covering ( is finite. The Galois covering is said to be connected if I’

is connected.

Definition 1.3.2 (Universal Galois C-covering). Let I' be a connected profinite graph. A
universal Galois C-covering ¢ : T' — T is a connected Galois C-covering that respects the
following universal property: given any g-morphism 5 : I' — A to a connected profinite
graph A, any connected Galois C-covering £ : 3 — A, and any vertices m € f, s € X such
that ¢(m) = £(s), there exists a q-morphism of profinite graphs a : I — %, such that
B¢ = Ea and a(m) = s.

%X
Zl lﬁ (1.1)
r —5 A
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We say that « lifts 8, or that « is a lifting (q-morphism) of f.

Once m € I and s € ¥ with BC(m) = £(s) are given, the lifting q-morphism « is

unique. Indeed, suppose the lifting is not unique. We have then a; and ay such that

rs
fl s lﬁ (1.2)
FTA

and ¢ = &ay,8¢ = £as. Hence £ay = £ay and we have a connected Galois covering &,
a connected profinite graph I' and a1, Qo [ > % g-morphisms of profinite graphs with
ap = £ag and ay(m) = as(m) (commutativity of the diagram), for some m € [. By
uniqueness of the diagram, since o and ay agree on one point, by [31, Lemma 3.1.7| they
must be equal. Hence oy = an as desired.

Note also that if the map § is surjective, so is « by [31, Corollary 3.1.6]. Fur-
thermore, it follows from [31, Proposition 3.1.3] that it is sufficient to check the universal

property above for finite Galois C-coverings & : ¥ — A.

Definition 1.3.3 (cf. Theorem 3.7.1 of [31] or cf. in the original Theorem 2.8 of [34]).
If ¢ is the wniversal Galois C-covering of a connected profinite graph, then we define

G = 7¢(T) as the pro-C fundamental group of T

Definition 1.3.4 (C-simply connected profinite graph). We say that a connected profinite
graph I is C-simply connected if 7§ (") = 1.

Let ¢ : I' — T be a Galois covering of a profinite graph I and let G = G(I'|I") be
the associated profinite group. Then we may think of GG as a closed subgroup of Aut (f)

as follows. Each element g € G determines a continuous automorphism

=12
!
e

m — gm
Moreover, the map

v:G — Aut(D)

g = VU
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is a homomorphism, and it is injective because G acts freely on T'.

Now endow Aut (I') with the compact-open topology, i.e., the one generated by a

sub-base of open sets of the form
B(K,U) = {f € Aut (T') | f(K) = U}

where K ranges over the compact subsets of I and U ranges over the open subsets of I

We claim that the monomorphism v : G — Aut (f‘) defined above is continuous. If
K,U < T, the first compact and the second open subset of I', we show that v~ (B(K, U))
is open in G. To see this, it is enough to find an open neighborhood W of g € G contained
in v~ Y(B(K,U)). Since gK < U, for each x € K, there exist open neighborhoods W, of g
in G and V, of x in I such that W,V, < U. Since K is compact, there exist finitely many

points 1, g, - -+ , &y, in K so that | J!_, Vi, = K. Then

is the desired neighborhood of g. This proves the claim.

Finally, since G is compact, the above implies that ¥ maps G homeomorphically
onto Im (v), if the compact-open topology on Aut (f) is Hausdorff. In fact, take distinct
elements f;, f> € Aut (I'). Then there exists an m € Aut (I') with f,(m) # fo(m). Let U;
be a neighborhood of f;(m), (i = 1,2) such that Uy n Uy = . Then f; € B({m},U;),
(i =1,2) and B({m},U;) n B({m},Us) = &, proving the assertion.

These ideas can seem quite abstract since it is not clear how to calculate the

fundamental profinite group of a given profinite graph. The next results provide a way to

obtain it for finite graphs.

Construction 1.3.5 ([31I], Construction 3.5.1). Let I" be a finite connected graph and
let T be a subtree of I" with V(T") = V(I') (T need not equal I'). Denote by X = T'/T

the corresponding quotient space with canonical map
w:I'->X=T/T.

Consider the element * = w(T") as a distinguished point of X. Let F' = F¢(X, *) be the

free pro-C group on the pointed profinite space (X, =) and consider (X, =) a subspace of
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Fe(X, #) in the natural way. Define a profinite graph Y¢(I', T') as follows:
o Te(D,T) = Fe(X,x) x T
o V(YTe(I,T)) = Fe(X, ) x V(D);
o do(r,m) = (r,do(m));
o di(r,m) = (rw(m), di(m)),

(re F, meTl). Next define an action of F' on the graph Y¢(I',T) by
r'(r,m) = (r'r,m)

(r,r" € F,m e T). Clearly, this is a free action (because F is a free group) and F\Y¢(T',T) =

I'. Therefore the natural epimorphism
v:Ye(I,T)—>T

that sends (r,m) to m (r € F,m e T) is a Galois C-covering.

This Galois covering v : Y¢(I',T) — T' is connected (cf. [31, Lemma 3.5.2]). In

fact, as constructed, v is Universal.

Theorem 1.3.6 (|31], Theorem 3.5.3). Let I' be a finite connected graph and let T be a
mazximal subtree of ' (T is a spanning C-simply connected profinite subgraph of I'). Then

one has the following properties:
(a) The Galois C-covering v : Te(I',T) — I' of Construction[1.3.5 is universal.

(b) Let (X,*) = (I'/T,*); then
7(T) = Fe(X, )

is a free pro-C group of finite rank |I'| — |T|;

(¢) The universal Galois C-covering v : Ye(I',T) — T is independent of the mazimal

subtree T' chosen.

Next, we provide some examples of fundamental groups of profinite graphs using

the Construction [.3.5}
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Example 1.3.7 ([31], Exercise 3.3.4(a)). Let C be a pseudovariety of finite groups and
L(0) be the loop

v
Take a maximal subtree 7' = {0} of L(0) and w : L(0) — L(0)/T = L(0). The universal

Galois covering of L(0), by Construction and Theorem [1.3.6] is

Te(L(0),T) = Fe(L(0)/T,w(T)) x L(0)

= Fe(L(0),{0}) x L(0),

Also by Theorem (1.3.6, rank(F') = |L(0)| — [{0}| = 2 —1 = 1, thus F' = Z; (where
F = Fe(L(0), {0})) and

Fe(L(0),{0}) x L(0) = Zg x {0}

= T'(Zs {1}).
Thereafter Y¢(L(0),T) = I'(Z;, 1) is defined by

V(Te(L(0),{0})) = V(I'(Z1))

= {(91) g€ Ze} = Zs;
o do(r,m) = (r,do(m));
e di(r,m) = (rw(m),d;(m));
(re F, me L(0)), with an action of F' = Z; on the graph
Te(L(0),{0}) = T(Zg, {1})
by '(r,m) = (r'r,m), (r,7" € F,m € L(0)). Therefore,

Ze\I'(Ze, {1}) = L(0)
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and

7<(L(0)) = Z.

We construct a Galois profinite covering (i.e. the associated group G = G(I'|A) is

a profinite group) of the graph I' of Example ?7.
Example 1.3.8 (A covering space of a profinite graph). Let I' be the following graph:

€1

€2

Since I' is finite, it is automatically profinite. We can construct a Galois profinite
covering p : Te(I',T) — T for I" as follows. First take a maximal subtree T' = {v} of T
and w: I' > X = I'/T. The Universal Galois covering of I', by Construction and

Theorem [1.3.6] is

Tc(P,T> = Fc(X,w(T>>XF
— Fe(X,{v}) ¥ T,

Also by Theorem |1.3.6] rank(F) = |I'| — [{v}| = 3 =1 = 2, thus F' = (F3)s (where
F = Fe(X, {v})) and

Fc(X, {U}) xI' = (FQ)é x I’

= D((F2)g, {er, e2}).
Thereafter Ye(I',T) = I'((F2)g, {e1, e2}) is defined by
V(Te(l {v}) = V(I((F2)e {er, e2}))-

o do(r,m) = (r,do(m));

e di(r,m) = (rw(m),d;(m));
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(re F, mel), with an action of F' on the graph

Te(l', {v}) = T((F2)e, {e1, e2})

by r'(r,m) = (r'r,m), (r,7" € F,m € I'). Therefore,

(F2)e\L'((F2)g, {e1,e2}) =T

and

(D) = (Fa)e.

In fact, these examples constitute part of a broader idea that we present in the

next Proposition. First we need an example.

Example 1.3.9 ([31], Example 3.1.1(b)). Let (X, *) be a pointed profinite space (i.e., X
is a profinite space with a distinguished point *). Define a profinite graph B = B(X )
by B = X, V(B) = {+} and d;(z) = {+}, (r € X) for ¢ = 0,1. This graph B(X, ) is
named the bouquet of loops associated to (X, *).

For example, if X has 7 points, B(X, «) is the graph

The next Proposition highlights that, as in the abstract case, the most important
thing is the number of edges outside the maximal subtree. They determine the rank of

the free pro-C group «§(T).

Proposition 1.3.10 (Proposition 3.8.1,[31]). The Cayley graph T'(Fe(X, =), X) of a free
pro-C group on a pointed profinite space (X, =) with respect to X is C-simply connected.
In fact, T'(Fe(X,*), X) is the universal Galois C-covering space of the bouquet of loops
B = B(X, ) and 7$(B) = Fo(X, %).

Proof. Consider the bouquet of loops B = B(X, %) associated with (X, ). In this case,

the subgraph T' = {x} is a spanning C-simply connected profinite subgraph of B and
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Y¢(B,T) coincides with the Cayley graph I'(F¢ (X, =), X). By construction, I'(F¢(X, %), X)
is the universal Galois C-covering graph of B, with 7¢(B) = I'(F¢(X, #)). It implies that
['(Fe(X, *)) is C-simply connected. O

Hence, if a free pro-C group G acts on a pro-C tree the quotient graph can be a

bouquet of loops. The next result describes the action when we have a pro-C tree.

Theorem 1.3.11 (Theorem 4.1.1 of [31] and Corollary 3.6 of [32]). Let a pro-C group G
act on a pro-C tree T'. We define G as the subgroup of G generated by the vertex stabilizers,
i.e.,

G ={G,, |[meT),

where Gy, is the G-stabilizer of m. Then G\T is a tree and G/G is a projective pro-C

group. In particular, for the pro-p case, G/CNJ 1S free pro-p.

Example 1.3.12 ([31], Exercise 3.3.4(b)). Let C be a pseudovariety of finite groups and

n be a natural number. Consider the finite graph L(n)

ol
—|
[\]]
3
|
[
IS

Take a maximal subtree T of L(n),

0 1 2 3 n—-1 =n
— — — .%.
0 1 2 n—1

and w : L(n) — L(n)/T = L(0), w(T') = {0}. The universal Galois covering of L(0), by
Construction and Theorem [1.3.6} is

Te(L(n), L(0)) = Te(L(0),{0})
= Fe(L(0),{0}) x L(n),

By Example [I.3.7 F¢(L(0),{0}) = Zs. Therefore,
Te(L(n), L(0)) = T'(Zg, {1}),

Ze\I'(Ze, {1}) = L(0)
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and

i (L(n)) = 7§ (L(0)) = Z.

Suppose now that I' is infinite. How to determine its fundamental group, since
Theorem [1.3.6] and Construction [L.3.5] do not hold in this case? The finite case restriction
is needed because we need a maximal profinite subtree. Although every abstract graph
has a maximal subtree, not every profinite graph has a profinite subtree, as we show in

Example 2.1.7] In order to calculate the fundamental profinite group of I' in Example

2.2.5) in Section we construct m1(I',v) as an inverse limit m (I',v) = mﬂlmz)

This is an original result of this thesis.

1.4 Graphs of groups

Definition 1.4.1 (Pscudo-sheaf of (profinite) groups, Section 5.1 of [3I]). Let 7" be a
(profinite space) set. A pseudo-sheaf of (profinite) groups over T' is a triple (G, w,T),
where G is a (profinite space) set and 7 : G — T is a (continuous) surjection satisfying

the following conditions:

(a) For every t € T, the fiber G(t) = 7~ 1(t) over t is a (profinite) group (whose topology
is induced by the topology of G as the subspace topology);

and only for the profinite case,

(b) If we define
G* ={(g,h) € G x G | n(g) = m(h)},

then the map p : G — G given by ug(g, h) = gh™! is continuous.

Definition 1.4.2. A morphism « = (o, &’) : (G, 7, T) — (G', 7', T") of sheaves of (profi-
nite) groups consists of a pair of (continuous) maps « : G — G’ and o/ : T' — T” such that

the diagram
G —— ¢

Wl lﬁ,

TTT,

commutes and the restriction of « to G(t) is a homomorphism from G(¢) into G'(¢/(t)),

foreachteT.
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If @ and o' are injective, the morphism « is said to be a monomorphism and the

image of a monomorphism G — G’ is called a subsheaf of the pseudo-sheaf G'.

Example 1.4.3. If (G, 7,T) is a pseudo-sheaf and 7" is a (closed) subspace of T', then
the triple
(W_I(T,), 7T|7T71(T/), T/)

is a subsheaf of (G, T).

Example 1.4.4 (Example 5.1.1 of [31]). Let 7" = {1,2,--- ,n} be a finite discrete space
with n points and let Gy, Gy, - -+ , G, be pro-C groups. Define the space G = )/, G; to
have the disjoint topology. Let 7 : G — T be the map that sends G; to i, (i = 1,--- ,n).
Then (G,w,T) is in a natural way a pseudo-sheaf over the space T" with G(i) = G;
(i=1,---,n).

Definition 1.4.5 (Fiber homomorphism). Let (G, 7, T') be a pseudo-sheaf of pro-C groups
and let H be a pro-C group. We can think of H as the fiber of a pseudo-sheaf over a

singleton space. Hence we have the fiber homomorphism
a: G- H

where « is a continuous pseudo-sheaf morphism, i.e., the restriction to each fiber G(¢) is

a homomorphism.

g —2>- H

T —— {1}
Definition 1.4.6 ((Profinite) graph of (profinite) groups). Let I be a connected (profi-
nite) graph with incidence maps dy,d; : I' — V(I'). A (profinite) graph of groups over
I' is a pseudo-sheaf (G, 7, T") of (profinite) groups over I' together with two morphisms
of sheaves (0;,d;) : (G, m, ') — (Gy,m, V(I')), where (Gy,m, V(I')) is a restriction pseudo-
sheaf of (G, m,I') and the restriction of ¢; to G, is the identity map idg,, i = 0,1; in

addition, we assume that the restriction of 0; to each fiber G(m) is an injection.

Definition 1.4.7. A morphism of graphs of groups v = (v,v/') : (G,T) — (H,A) is a

morphism of sheaves such that vo; = o;v.
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Let I be a partially ordered set, {(G;, m;,I';), v;;} an inverse system of finite graphs
of C-groups. Then (G, 7,T") = lim _ 1<gi’ m;, ;) is a profinite graph of pro-C groups.

We finish the section with the definition of the graph of pro-C groups (QN , f) asso-
ciated with a profinite graph of pro-C-groups (G,T') that appears in [51], Subsection 2.5]
and [31), page 185|.

Definition 1.4.8. Let (G, ") be a profinite graph of pro-C groups. Let I be the universal
C-covering of the profinite graph I' and ( : I' - T be the covering map. Consider the
pull-back

q |¢ (1.3)

of the maps 7: G — I" and ( : I' - I'. This means that 5 is defined by
G = {(x,ﬁl)egxfhr(a:) =C(m),meg,mef}ggxf,

where 7 : QN T and 5 : (j — G be the restrictions to (j of the canonical projections from

GxTtol and G respectively. For a fixed m € f‘, define
G(m) = 7 (m) = G(((m)) x {r},

which is a group with respect to the operation (x,m)(z’',m) = (xa',m), x,2’ € G({(M))
and clearly G(m) = G(((m)).

Then (G,T) is a profinite graph of the above defined groups G (i) over the universal
covering graph I of I' with boundary maps &;(g) = (6:(C(g)), di(i)) for g € G(m).

1.5 Free constructions

Two essential particular cases of the fundamental group of a finite graph of pro-C
groups are amalgamated free pro-C products and pro-C HNN-extensions. We start with
the abstract notions since the pro-C version is a completion of the abstract with the
appropriate topology. We follow Robinson’s book (cf. [35]) for the abstract setting and
Ribes and Zalesski’s (cf. [30]) for the profinite one. We start with free groups and free

products.
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Definition 1.5.1. Let X be a subset of a group F'. Then F'is a free group with basis X,
provided the following holds: if ¢ is any function from the set X into a group H, then

there exists a unique extension of ¢ to a homomorphism = from F' into H.

F
Z] go*
X —i H

It is possible to show that X generates (G, so one calls generators the elements of
X. Define X*! = X U X!, where X! is just an isomorphic copy of X. We call letters
the elements of X*!. A word is a finite sequence of letters, w = (ay,as, -+ ,a,), n = 0,
all a; € X*'. We say that a word is reduced if it does not contain 1 nor aa™!, a € X*!.
There is an intuitive reduction process, so we define an equivalence relation between two
words if they have the same reduced form.

The elements of a free group are equivalence classes of words. Note that each
equivalence class contains just one reduced word and the reduced form is unique. If X is

a finite set, the number of its elements is called the rank of F, denoted by 7p.

Definition 1.5.2 (Free product). (cf. Definition 2.1.1 of [35]) Let {G, | A € A} be a
family of groups. The free product of G,’s, denoted by sk ca Gy is a group G and a family
of homomorphisms f, : G, — G such that for every group H and for every family of
homomorphisms gy : G, — H there exists a unique homomorphism ¢ : G — H such that

gr = @o fy, for all A € A, i.e., the following diagram is commutative:

G = *)eaG)

G ——— H
The elements of a free product are equivalence classes of words to which each
letter belongs to some G, and where two letters are equivalent if they are consecutive in
a word and belong to the same G,. As for the free groups, note that each equivalence
class contains just one reduced word and the reduced form is unique. This reduced form

is called ’the normal form’.
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Given a presentation G = (X, | Ry), it is possible to show that

G = %xenGy =< UX)\ ! U Ry).

AEA AEA

1.5.1 Free products with amalgamation

Definition 1.5.3 (Free product with amalgamation). Let H,Gq, Gy be groups and let
fi: H—> Gy, fo : H — G5 be monomorphisms. The free product of G; and G5 with
H amalgamated is a group G with homomorphisms ¢; : G; — G and ¢, : Go — G such

that the following diagram is commutative

and for every group K and homomorphisms v, : Gy — Kby : Gy — K, such that
Yy 0 fi = g0 fo, there exists a unique homomorphism ¢ : G — K such that v o ¢, = 9y

and 1 o @y = 5. In terms of a diagram, we have the following pushout

HL)Gl

le <p1l

Gy —= G

We denote the free product with amalgamation by G = G, *ky G5. Here we use
Robinson’s notation for homomorphisms of groups: fi(H) = H/t. The groups Gy, Go, H
can be seen as subgroups of G (this is not always true for the profinite case, as we will

see). If R = {h/1(h?)~! | h e H}, we have that

G1 % Gy

G=G%pgGy = =

AISO, if G)\ = <X)\ | R)\>, A€ {1,2}, then

G =G %Gy =(X1UXy| Ry, Ry, W' (W)™ he H).
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Example 1.5.4. Let A = {a)y and B = {a) be cyclic groups of orders 4 and 6 respectively.
The free product A sk B has a presentation {a,b | a*,b%). Since a* and b* both have order
2, the subgroups (a?) and (b*) are isomorphic. We may therefore form the free product
with amalgamation G determined by the isomorphism ¢ : (a®) — (b*). This emerges by

identifying a? and b3. Therefore G has presentation
G = Cy%¢, Cs = {a,b| a* a® = b*).

Definition 1.5.5 (|30], Section 9.2). Let G; and G be pro-C groups and let f; : H — G;
(1 = 1,2) be continuous monomorphisms of pro-p groups. An amalgamated free pro-C
product of G; and GG, with amalgamated subgroup H is defined to be a pushout of f;
(i=1,2)

HL)Gl

le lwl

GQT)G

in the category of pro-C groups, i.e., a pro-C group G together with continuous homo-
morphisms ¢; : G; — G (i = 1,2) satisfying the following universal property: for any
pair of continuous homomorphisms v; : G; — K (i = 1,2) into a pro-C group K with
Y1 f1 = o fa, there exists a unique continuous homomorphism ¢ : G — K such that the

following diagram is commutative:

This amalgamated free pro-C product, also referred to as free pro-C product with

amalgamation, is denoted by G = G111y Gs.

Following the abstract notion, we can consider H as a common subgroup of G
and G4 and think of f; and f5 as inclusions. However, unlike the abstract case where the

canonical homomorphisms

@?bs 1 Gy = Grxg Gy
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(1 = 1,2) are always monomorphisms (cf. Theorem 1.1 in [37]), the corresponding maps

in the category of pro-C groups
@i Gi — Gy Gy

(1 = 1,2) are not always injective, as the following example shows

Example 1.5.6 (Example 9.2.9 of [30], non-proper free amalgamated pro-p product).
Let H be an abelian finitely generated pro-p group of order p”, where 1 < n < oo. Put
K = H x H and let T be a procyclic group of order p™. We shall use additive notation

for T' and multiplicative notation for H. Define two actions of 7" on K as follows
t(g,h) = (gh’,h) and t(g, h) = (g,9'h) (t€ T, and g, h € H).

We refer to these actions as the first and the second action, respectively. These two
actions are continuous. Define G; = K x,T and Gy = K x, T to be semidirect products
using the first and the second actions respectively. Consider the amalgamated free pro-p
product G = G; [ [ G2 of G and G5 amalgamating . We show that G is not proper.

Suppose by contraction that it is proper. Let H; be a normal subgroup of index
pin H. We observe that K; = Hy x H; is normal in G; and GG5. Hence K is normal in
G and G/K; can be written as the following pro-p product G/K; = G /k; ]_[K/Kl Go/ K.
We claim that K/K; = H/H; x H/H; does not contain nontrivial proper subgroups
which are normal in both G;/K; and Gy/K;. Indeed, assume that A is a nontrivial
subgroup of K/K; which satisfies the previous assumption. Let 1 # (g,h) € A, where
g,h € H/Hy. Then either g or h is nontrivial, say ¢ # 1. Hence, h = ¢' for some
1 <t < p. So, using the action of T on H/H; x H/H; determined by v, one has
(—t)(g,h) = (g9,97'h) = (g,1). Now using the action of T"on H/H, x H/H; determined
by 1 again, one has 1-(g,1) = (g,g). Thus we get that (¢,1) and (1,9) = (¢7*,1)(g,9)
belong to A. Thus A = K /K. This proves the claim.

It follows that K /K is a finite minimal normal subgroup of G/K;. However, this
is impossible since K /K7 is noncyclic and contains a central element of G/K; according

to [30, Lemma 9.2.8|. This contradiction proves that G is not proper.
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This motivates the next definition:

Definition 1.5.7. An amalgamated free pro-C product G = G; Iy G5 will be called
proper if the canonical homomorphisms ¢; (i = 1,2) are monomorphisms. In that case

we shall identify G, G5 and H with their images in GG, when no possible confusion arises.

Throughout this thesis, all free pro-C products with amalgamation will be proper.

1.5.2 HNN-extensions

As with the previous free constructions, HNN-extensions are defined through a

universal property, as follows:

Definition 1.5.8 (Universal property of HNN-extensions). Let G be a group with isomor-
phic subgroups A, B with ¢ : A — B being the isomorphism. Then an HNN- extension of
G with respect to A and B is a group G*, a homomorphism f : G — G* and an element
t € G* satisfying f(a)' = f(a¥), for all a € A. For every group K with an element k € K
and a homomorphism h : G — K satisfying g(a)® = g(a®), Ya € A, then there exists a
unique homomorphism v : G* — K, with ¥(G*) = K and such that ¢ o f = h.

By construction, we give a presentation of G* that will be simpler to use than
the definition. We also provide a topological example to help intuition. Then we go to

applications in finite group theory.

Definition 1.5.9 (Presentation of an HNN-extension). Let G be a group and let A and
B be subgroups of G with ¢ : A — B an isomorphism. The HNN-extension of G relative
to A, B and ¢ is the group

G* =(G,t| Rg, a' = a*).
The group G is called the base of G*, t is called the stable letter and A, B are the

associated groups.

This construction was introduced by Graham Higman, Bernhard Neumann, and

Hanna Neumann in 1949. The next example shows how it appears in algebraic topology.

Example 1.5.10. Let X be a topological arcwise connected space and suppose U and

V' are both arcwise connected subspaces of X. Let h : U — V be a homeomorphism.
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Choose a base point u € U for the fundamental groups of U and X and h(u) =ve V asa
basepoint for 71 (V). Let I be the unit interval and let C' = U x I. Identify U x {0} with
U and U x {1} with V' by the homeomorphism h. Let Z be the resulting space (what we
have done is to attach a handle to X).
The Seifert-van Kampen Theorem (see [20, Theorem 1.20]) can be used to show
that
m(X)" = m(Z) = (m(X),t [ mU)" =m(V))

We provide now examples in group theory

Example 1.5.11 (Dihedral group). Let Do, = (r,s | 7", s* r°* = r~!) be the dihedral
group with 2n elements. Since {(r) and {s) are both cyclic groups of order two, we can

take an isomorphism ¢ : (s) — (rz). Hence
Di = {r s t|r" s rf=r"1 s =s%).

We observe that this group is infinite since ¢ has infinite order. We note that the torsion

of Dy, appears in Dj .

Example 1.5.12 (Quaternions). Let Qg = (r, s | r%,7? = s r® = r~1) be the quaternions
group. Since (rs) and {(r) are both cyclic groups of order four, we can take an isomorphism

¢ : {rs) — {r). Hence
Qi =(r,s,t|rtrt =81 =r71 (rs) =r¥).

We observe that this group is also infinite since ¢ has infinite order. Also reduced sequences

containing powers of ¢ must be of infinite order by Britton’s Lemma.

Definition 1.5.13 (30], Section 9.4). Let H be a profinite group and let f : A — B be a
continuous isomorphism between closed subgroups A, B, and H. A pro-C HNN-extension
of H with associated groups A, B consists of a pro-C group G = HNN(H, A, f), an
element ¢t € G called the stable letter, and a continuous homomorphism ¢ : H — G with
t(p(a))t™ = pf(a) and satisfying the following universal property: for any pro-C group K,
any k € K and any continuous homomorphism v : H — K satisfying k(¢ (a))k™" = ¢ f(a)

for all a € A, there is a continuous homomorphism w : G — K with w(t) = k such that
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the diagram

1S commutative.

In contrast with the abstract situation, the canonical homomorphism ¢ : H —
G = HNN(H, A, f) is not always a monomorphism. When ¢ is a monomorphism, we
shall call G = HNN(H, A, f) a proper pro-C HNN-extension. Throughout this thesis, all
pro-C HNN-extensions will be proper.

1.6 The fundamental group of a graph of groups

This section is dedicated to the fundamental group of a graph of groups. It is the
main technical object of this thesis and it appears as a generalization of free constructions

presented in the previous section.

Definition 1.6.1 (G-transversal). Let G be a profinite group that acts on a connected
profinite graph T', and let ¢ : ' — A = G\I' be the canonical quotient map. A G-
transversal or a transversal of ¢ is a closed subset J of I' such that ¢; : J — A'is
a homeomorphism. Associated with this transversal there is a continuous G-section or

section of ¢, j: A — T, i.e., a continuous mapping such that ¢j = ida and j(A) = J.
Note that, in general, J is not a graph.

Definition 1.6.2 (O-transversal). We say that a transversal J is a O-transversal if do(m) €

J, for each m € J; in this case we refer to j as a 0-section.
Note that if j is a 0-section, then jdy = dyj.

Definition 1.6.3 (Profinite graph of pro-C groups, [3I], Definition 6.1.1). Let T be a
connected profinite graph with incidence maps dy,d; : I' — V(I'). We can define a
profinite graph of pro-C groups over I" as a pseudo-sheaf (G, 7, T") of pro-C groups together

with two morphisms of sheaves

(aOa do)’ (ala dl) : (ga T, F) - (gVa 7T|7T71(V(F))7 V(F))a
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where the restriction of 0; to Gy is the identity map idg, (i = 0, 1); in addition, we assume

that the restriction of 0; to each fiber G(m) is an injection (m e I'), (i = 0, 1).

Note that Gy denotes the restriction subsheaf of G to the space V(I'), which we
term the 'vertex subsheaf of G’. It is indeed a pseudo-sheaf because the vertex set V(I') is
closed in T, so it is also a profinite space and the vertex pseudo-sheaf is well defined (cf.
Example [1.4.3). The vertex groups of a graph of pro-C groups (G, 7,I') are the groups
G(v) with v € V(I'), and the edge groups are the groups G(e), with e € E(I').

Let (G, 7, T') be a graph of pro-C groups over I', and let

(:I'->T

be a universal Galois C-covering of the profinite graph I'. Choose a continuous 0-section
j of ¢ (it exists because the fundamental group (") acts freely on T, cf. [30, Lemma
5.6.5]), and denote by J = j(I') the corresponding O-transversal. Associated with j there
is a continuous function

x:T — af(T)
defined by x(m) being the unique element of 7¢(I") such that x(m)(jdi(m)) = dij(m).

Definition 1.6.4 (J-specialization). Given a pro-C group H, define a J-specialization of
the graph of pro-C groups (G, 7,T") in H to consist of a pair (3, 8’), where

g:(G,mT)—>H
is a morphism from the pseudo-sheaf (G, n,T") to H, and where
g mi(T) —> H
is a continuous homomorphism satisfying the following conditions:
Bz) = Bio(x) = (8'x(m)) (801 (2))(B'x(m)) (1.4)

for all x € G, where m = w(x). Note that the definition of the map x depends uniquely

on the 0-section j and the corresponding G-transversal J. The following diagram shows
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the compositions:

G —" - H
Blgy, g

& 7 () (1.5)
. X
Gy I

Example 1.6.5 (|31], Example 6.1.2(a)). Assume that the graph of pro-C groups (G, 7,T")
has trivial edge groups, i.e., G(e) = 1, for every edge e € I'. Then we may think of a J-
specialization (3, ') of (G,7,T") in a pro-C group H as simply a morphism § from the
pseudo-sheaf (G, m,I") to H, since conditions are automatic in this case.

Indeed, gives us that:

B(G(m)) = B(G(m)) = (B'x(m))(B21(G(m)))(Bx(m))~"

So, if m € E(T"), we have that:

B(G(e)) = Pau(G(e))
BA) = Bd(1).

By diagram [1.7]

QLH

ol

Gy

so this diagram commutes for every e € E(I'). If v e V(I'), dy(G(v)) = idg() = G(v), then

BGw)) = B2(G(v))
BG() = B(G(v)).

and we have nothing to show. Thus, for ¢, and e € E(I"), we have:

(Bxm(G(e)))(B1(G () (B'x7(G(e))) ™
B = (Bxw(1))(BA(1)(Bxm(1)

=

Q

O
I
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By diagram [I.7]
G— 5 H
Blg, 7
B 7¢(T) (1.6)
7r TX
Gv I

and the condition of Equation (|1.4]) is automatically satisfied.

Example 1.6.6 (|31], Example 6.1.2(b)). If T is C-simply connected, then 7{(T") = 1 and
[ =T = J. Then we can refer to a ’specialization’ rather than ’J-specialization’: it is

just a morphism 3 : G — H such that

plx) = Bdo(x) = Bor(x)

for all z € G. It happens for example if I' is a finite tree or, more generally, an inverse

limit of finite trees.

Now we are able to define the fundamental group of a graph of pro-C groups using
a universal property. In the next chapter, we will present a more intuitive definition, using

loops and a base point.

Definition 1.6.7 (The fundamental group of a graph of pro-C groups). Choose a contin-
uous O-section j of the universal Galois C-covering ¢ : I' — I' and denote by J = J(T') the
corresponding O-transversal. We define a fundamental pro-C group of the graph of groups
(G, m,T) with respect to the O-transversal J to be a pro-C group I1§(G, T'), together with a
J-specialisation (v,1') of (G, w,T') in I1$(G, T') satisfying the following universal property:

1§ (G,T)

whenever H is a pro-C group and (3, 8') a J-specialisation of (G, n,I") in H, there exists
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a unique continuous homomorphism
§:T6(G,T) - H

such that Jv = § and 6/ = p’. We refer to (v,/) as a universal J-specialisation of

(G, 7, T).

Note that in the pro-C case the vertex groups do not necessarily embed in the
fundamental group (namely, v restricted on fibers might not be a monomorphism); when

it is the case, the profinite graph of pro-C groups is called injective.

Remark 1.6.8. Observe that a profinite graph of pro-C groups (G,I") can be replaced
with a natural graph of quotient groups (G,I") by replacing G(m) by its image v(G(m)) in
II§(G,T) for every m e T'; then II§(G,T") = II{(G,T') and (G, I') is injective (see [31, Section
6.4] for details). This means that we do not lose generality restricting our attention to

injective profinite graphs of pro-C groups.

By |31, Theorem 6.2.4] the definition of I1(G,T") does not depend on the choice of

the transversal J. Proposition 6.2.1 of [31] shows that, in fact,

(W uaf(I))

Hg(g7r) = N )

where 11 denotes the free pro-C product of pro-C groups, and where N is the topological

closure of the normal subgroup of the group W L1 7¢(T") generated by the set

{00(@) ™! (xm (@) 01 () (x7(2)) " | = € G}.

The next example shows that an amalgamated free pro-C product appears as a

particular case of the fundamental pro-C group of a profinite graph of pro-C groups.

Example 1.6.9 ([31], Example 6.2.3(d)). Let G, Gy and H be pro-C groups and consider
the following graph of groups:

G1 G2

In this case

G=ai [Je YH.
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endowed with the disjoint union topology. Since our graph I' is a tree, it is C-simply

connected and 7¢(I") = 1 (cf. Example [1.6.5)). Hence the composition y7(x) is the zero

map for all z € G and our J-specialization becomes the following

G, u Gs {1}
N (1.7)
r
Therefore
(g, r) = e

where N is generated by
{00(95) = 61(x) ’ X e g}

We can conclude that the fundamental pro-C group will be
G = H‘f(g, F) = G 1y Gs.

In a more concrete way, using the results of the previous section, we have the

following

Example 1.6.10. Consider the graph of groups (G,T'):

Since Cy % Cy =~ Dy, and Cy %k C3 =~ PSLy(7), its abstract fundamental group is
Wl(g,F) = Doo % PSLQ(Z),

since

On the other hand, its profinite fundamental group is

IL(G.T) = D] [ PSLs(2).
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where D is the infinite dihedral pro-2 group, D =~ Zsy x (.

Example 1.6.11. Consider the graph of groups (G,T'):

C4 06
[ —
Ca

It is known that SLy(Z) = (A, B), where
0 1 0 -1
A= and B =
-1 0 1 1
We note that A2 = —I = B®. Since (A%) < SLy(7Z), because it is a central subgroup,
we have that PSLy(Z) = SLy(Z)/{A?). Therefore, SLy(Z) = (A, B | A* A*> = B3). By

Example [1.5.4
SLQ(Z) = C4 *02 Cﬁ.

Hence we have the fundamental group m1(G,I") = SLy(Z).

On the other hand, its profinite fundamental group is

—_—

I1,(G,T) = SLy(Z).

We observe that S/I/;(\Z) # SLy(Z). In fact, if we consider the natural continuous
epimorphism

¢ SLy(Z) — SLy(Z),
Oleg Mel'nikov proved that Ker ¢ is a free profinite group of countably infinite rank (cf.

[28]), hence the map ¢ cannot be injective.

The profinite HNN-extension is also a particular case of the profinite fundamental
group of a profinite graph of profinite groups. In fact, obtaining the fundamental group
of a graph of groups is an iterated process of computing free amalgamated products and

HNN-extensions.

Example 1.6.12 ([31], Example 6.2.3(¢)). Let G(v) and G(e) be profinite groups and

consider the following graph of groups:

ﬁ G(e)
G(v)
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Then its profinite fundamental group will be the profinite HNN-extension

G = HNN(G(v), do(G(e)), ¢, f)
of G(v), where f : 0y(G(e)) — 1(G(e)) is the isomorphism defined by dy(z) — 01(x), for
all © € G(e) and ¢ is the stable letter related to e € E(T").

The next example combines everything we have developed in this section:

Example 1.6.13. Consider the graph of groups (G,T")

(N e /e

Dg Qs

We can calculate the fundamental group by parts. Example [I.5.11] provides that the
fundamental group of the left loop is Di = (r,s,t | r* s*r® = r71 s = s¥). On the
other hand, Example tells us that the fundamental group of the right loop is
Qf = (rys,t | rtr? = s rs =171 (rs) = r¥). We can identify these two subgroups via
an isomorphism ¢ : (r?)o, — (r*)p,, so we have a free amalgamated product. Therefore

the fundamental group of (G,T") is

Wl(gvr) = Dg *o, Qék

On the other hand, its pro-2 fundamental group is
m(g,T) =Dy [ [ Q.
Lz

where H is the pro-2 completion of a given group H, [ [ is the free pro-2 product, and Z,
is the 2-adic procyclic group.

We present the definitions of the standard tree and standard pro-C tree on which
the fundamental group naturally acts following [37] and [31] respectively; we shall need

them in the following sections.

Definition 1.6.14 (Standard tree). Let G = m(G,T") be the fundamental group of the
graph of abstract groups (G,I"). There is an abstract standard graph S = §%3(G T")
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which is in fact a tree (cf. [37], Sec. 1.5.3). Let 7" be a maximal subtree of I'. We define
Sabs by

V(8) = Uer(r) G/G(v) and E(S™) = UeeE(F) G/G(e)

and its incidence maps

do(9G(e)) = 95 (do(e)), di(9G(e)) = gtcG(di(e))
(9ge G,ec E(I')) and t, = 1,Ve € E(T).
Let (G,T") be a profinite graph of pro-C groups. When I is finite, the definition of

the standard pro-C tree is much simpler and we will use it in Chapter [3]

Definition 1.6.15 (Standard (universal) pro-C tree (cf. [3I] Example 6.3.1)). Associated
with the finite graph of pro-C groups (G,T") there is a corresponding standard pro-C tree
(or universal covering graph) S = S(G) = ), ,.r G/I(m) (cf. [51), Proposition 3.8]). The
vertices of S are cosets of the form g¢Il(v), with v € V(I') and g € Gj its edges are the
cosets of the form gII(e), with e € E(T"); choosing a maximal subtree D of I, the incidence

maps of S are given by the formulas:
do(gTl(e)) = gIl(do(e)); di(gTl(e)) = gt Il(di(e)) (e€ E(T),t. =1if e€ D).
There is a natural continuous action of G on S given by

g(g'Tl(m)) = gg'Tl(m),

where g,g' € G, m € I'. Clearly G\S = I'. There is a standard connected transversal
s: ' — S, given by m — II(m). Note that s|p is an isomorphism of graphs and the
elements t. satisfy the equality d;(s(e)) = tes(dy(e)). Using the map s, we shall identify
II(m) with the stabilizer G, for m e I':

I(e) = Gye) = Gap(s(e)) N Garste)) = L(do(e)) Nt I(dy(e))t, " (1.8)

with ¢, = 1 if e € D. Remark also that since I' is finite, F(S) is compact.

If the profinite graph I' is infinite and does not have a maximal profinite subtree,
we need the general construction below, the C-standard graph associated with a graph of

pro-C groups, as follows:
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Definition 1.6.16 (C-standard graph of a graph of pro-C groups). Let (G, 7, T") be a graph
of pro-C groups over a connected profinite graph I', j : I' — I be a continuous O-section
of the universal Galois C-covering ¢ : I' — ' of I, and let J = j (T") be the corresponding
O-transversal. Let (v,7') be a J-specialisation of (G, 7, I') in the fundamental pro-C group
of (G,n,I), Il = II§(G,n,T'). Then we can define a profinite graph S = S¢(G,I") =
S€(G, T, 1) which is canonically associated to the graph of groups (G, 7, I") and II§(G,T).

For m € T, define II(m) = v(G(m)). As a topological space, S¢(G,T) is defined to

be the quotient space of I' x II modulo the equivalence relation ~ given by
(m,h) ~ (m', ) if m=m/,h'h e Il(m) (m,m' e T, h, b’ € II).

So, as a set, S¢(G,T) is the disjoint union

S¢G,T) = | /m(m).
mel
Denote by o : I' x IT — S¢(G,T") the quotient map. The projection p’ : I’ x II — T induces
a continuous epimorphism p : S¢(G,T") — I, such that p~!(m) = II/II(m) and p’ = pa.
To make S¢(G,T) into a profinite graph we define the subspace of vertices of
SC(G, T, H) by V(S(G,T,H)) = p~*(V(I')) and the incidence maps by

do(hH(m)) = hH (do(mm))

dy(hH (m)) = h(y'x(m))H (di(m)),

(h € Hym € T'). The definition of S¢(G,T) is independent, up to isomorphism, of the
choice of the O-section j (cf. [31], Theorem 6.3.3)

There is a natural continuous action of IT = TI{(G,T') on the graph S¢(G,T) given
by
9(g'l(m)) = gg'Tl(m),

(9, ell,mel).

The C-standard graph is in fact a C-tree when C is a pseudovariety of finite groups
which is extension closed (cf. [31], Corollary 6.3.6).

By this definition, there are numerous ways to produce graph of groups with the

same profinite fundamental group, through fictitious edges, i.e., the edge group is isomor-
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phic to its extremity vertex group. This induces the identity map on the fundamental
group, so we can remove it from the graph of groups without losing any important data,

as follows:

Definition 1.6.17 (Reduced graph of groups). A profinite graph of pro-C groups (G,T")
is said to be reduced if for every edge e, which is not a loop, neither 0, : G(e) — G(di(e))
nor 0y : G(e) — G(dy(e)) is an isomorphism; we say that an edge e is fictitious if it is not

a loop and one of the edge maps 0; is an isomorphism.

Remark 1.6.18. Any finite graph of groups can be transformed into a reduced finite
graph of groups by collapsing fictitious edges using the following procedure. If e is a
fictitious edge, we can remove {e} from the edge set of T', and identify dy(e) and d;(e) to
a new vertex y. Let I” be the finite graph given by V(I") = y u V(I')\{dy(e), d:1(e)} and
E(I) = E(I")\{e}, and let (G’,1") denote the finite graph of groups based on I'" given
by G'(y) = G(di(e)) if do(e) is an isomorphism, and G'(y) = G(dy(e)) if dp(e) is not an
isomorphism. This procedure can be continued until there are no fictitious edges. The

resulting finite graph of groups (G,T') is reduced.

Remark 1.6.19. As mentioned before, the reduction procedure described above does
not change the fundamental group (as a group given by a presentation), i.e. choosing a
maximal subtree to contain the collapsing edge, the morphism (G,I") — (G',I") induces
the identity map on the fundamental group with the presentation given by eliminating

redundant relations associated with fictitious edges that are just collapsed by reduction.

The reduction procedure cannot be applied, however, if I' is infinite profinite since
the removal of an edge results in a non-compact object.

The reduction procedure allows us to refine the main result of [23] as follows:

Theorem 1.6.20. Let G be a finitely generated pro-p group with a free open subgroup
F. Then G is the pro-p fundamental group of a reduced finite graph of finite p-groups
(G,T) with orders of vertex groups bounded by |G : F|. Moreover, if G = II;(G',T")
is another splitting as a reduced finite graph of finite p-groups then |I'| = |I'[,|V/(I")| =
V()L BT = B,

Proof. By [23, Theorem 1.1] G is the pro-p fundamental group of a finite graph of finite p-
groups (G, I') with orders of vertex groups bounded by [G : F| and applying the reduction
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procedure we get the first statement. Maximal finite subgroups of G are exactly the
vertex groups of (G,T) and (G’,I”) up to conjugation by Theorem [1.6.22] so |V(I')| =
[V(I")|. Now by [0, Proposition 3.4] G/G = my(I') = my(I") is a free pro-p groups of rank
E(T)| = V(D) +1 = [E(IY)| — [V(I")] + 1 implying |E(D)| = [E(I")] and [T| = |[|. The
proof is complete.

]

Definition 1.6.21 (FA group, cf. Section 6.1 of [37]). Let G be a pro-p group acting on
a pro-p tree T.. The set T of fixed points of G in T is a subgraph of 7. We say that G
is FA (or has property FA) if T% # (& for any tree T on which G acts.

The following lemma will be very useful in the abstract and profinite cases.

Theorem 1.6.22 (cf. Theorem 7.1.2 of [31] and Theorem 1.15 of [37]). .

(a) Let K be a finite subgroup of the fundamental group m = m1(G,T") of a graph of groups
(G,T). Then
K <gm(v)g™,

for some v e V(I') and g € m (G, T).

(b) Let K be a finite subgroup of the fundamental pro-C group 11 = 1I(G,T') of an injective
graph of pro-C groups (G,T"). Then

K < gll(v)g~ ",

for some ve V(') and g € TI§(G,T).

It is worth mentioning that item (a) of this Proposition is equivalent to showing
that every finite group K is FA (cf. Definition [1.6.21)). Note that K acts on the abstract
standard tree S%%(G,T"). In fact, K fits all the conditions of [37, Theorem I.15]. It cannot
be an amalgam, since amalgams are infinite groups; for the same reason, it cannot have
quotients isomorphic to Z. Finally, K is clearly finitely generated.

We shall use in the last chapter the following results from [53], [9] and [31]. Note
that they only hold in the pro-p case. The first states that for open subgroups of the
fundamental pro-p group of the finite graph of pro-p groups the subgroup theorem of the

Bass-Serre theory works. The second states that geodesics are fixed by the action on a
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tree. The third states that a finitely generated pro-p group acting on a pro-p tree splits

over an edge stabilizer.

Proposition 1.6.23. ([53, Corollary 4.5 combined with 5.4] or [31l, Theorem 6.6.1]) Let
G = 11,(G,T") be the pro-p fundamental group of a finite graph of pro-p groups and H
an open subgroup of G. Let s : H\S(G) — S(G) be a connected transversal. Then
H =1L,(H, H\S(G)) with H(m) = Hyum) for each m € H\S(G).

Proposition 1.6.24. (Corollary 4.1.6 of [31)]) Suppose that a pro-p group G acts on a
pro-p tree T', and let v and w be two different vertices of T. Then the set of edges E([v, w])

of the chain [v,w] is nonempty, and G, N G, < G for every e € E([v,w]).

Theorem 1.6.25. ([4, Theorem 4.2]) Let G be a finitely generated pro-p group acting on a
pro-p tree T without global fixed points. Then G splits non-trivially as a free amalgamated

pro-p product or pro-p HNN-extension over some stabilizer of an edge of T.
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CHAPTER 2

THE PROFINITE FUNDAMENTAL
GROUP OF AN INFINITE GRAPH
OF GROUPS

2.1 Decomposition of an injective profinite graph of

groups

The entirety of this chapter is a novelty (published in the Israel Journal of Math-
ematics, 2022).

We show in this section that an injective profinite graph of profinite groups (G, T")
decomposes as an inverse limit (G,T') = lim _ (G;,I;) of finite graphs of finite groups. In

fact, this characterizes injective graphs of profinite groups.

Lemma 2.1.1. Let (G,I') be a profinite graph of pro-C-groups. Suppose there ezists a
decomposition (G,T") = LiLnZ,E[(Ql-, [';) as a surjective inverse limit of finite graphs of finite
C-groups. Let o = (a, ') : (G,I') — (H,A) be a surjective morphism to a finite graph
of finite C-groups and n : (G,T') — H be a fiber homomorphism (cf. Definition to
a finite C-group H. Then a,n factor via some (G, 'x), i.e. there exist a morphism «y, :
(G, Tk) — (H,A) and a fiber homomorphism ny : (Gx,T'x) — H such that o = a,m,

and n = nwy, where m, = (m;, 7)) : (G, T') —> (G;, T;) is the natural projection.

i
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74 2. The profinite fundamental group of an infinite graph of groups

The statement of the lemma is based on the following commutative diagrams,
where the induced homomorphisms are highlighted by dotted lines.

(G,T) = » (H,A) (G,T) " s H

5 R

% R s e T

(G, ) (G, Tk)

Proof. We adapt the proof of [31, Lemma 2.1.5]).
Let S be the equivalence relation on G whose equivalence classes are the clopen
sets a~(h),h € H and R the equivalence relation on I" whose equivalence classes are the

clopen sets /=1 (m), m € A;

G ——G/S=H

| !

I ——T/R=A

then (G/S,T'/R) = (H,A) and a = («, o) is the natural projection (G,T') — (G/S,T'/R).
Similarly, for i € I, let S; be the equivalence relation on (G, I') whose equivalence classes are
the clopen sets 7r; '(h), h € G; and R; the equivalence relation on (G,T') whose equivalence
classes are the clopen sets (7})~1(m), m € Ty, so that =; = (m;, 7)) : (G,T') — (G/S;,T'/R;)

is the natural projection.

G ——G/S; =G,

! !

Since

(6,1) = lim(G:. ),

iel
the intersections (),_; Si, [ ),e; Ri are the diagonal subsets of G x G and I' x T', respectively.
Note that S, S; are clopen subsets of G x G and R, R; are clopen subsets of I' x T.

In order to seal the argument, we use two crucial properties: compactness of G x G
and I' x I', and [ being a poset. It follows from the compactness of G x G and I' x I" that
there exists a finite subset J of I such that ﬂjeJ S; < Sand ﬂjeJ R; < R. Since the poset
I is directed, there exists a k € [ such that Sy < (,.;5; € S and Ry (., R < R.
This means that there exists a morphism of graphs of groups «, : (G, I'x) — (H,A)

such that oo = oy ;.

The statement about a fiber homomorphism 7y, : (Gy,I'y) — H follows from the
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first since we can consider H as a graph of groups (H, {v}) with the underlying graph

being one vertex v. O

The next lemma deals with a double inverse system structure. It will be useful
to recover the data from intricate arguments that need more than one reduction to finite
situations. For example, in the proof of the main result of this section, starting from
a graph of pro-C groups (G,I"), we obtain a reduction to a profinite graph of C-groups

(Gu,T'), such that (G,T') = lim (Gu,T'). However, we need more, the graph must be

U<,G
finite as well. The next lemma allows us to prove our main result for lim _ (Gy,T)

instead of proving it for (G,T"), since the data can be recovered via inverse limits.

Lemma 2.1.2. Let (G,T') be a profinite graph of pro-C-groups. Suppose there ezists
a decomposition (G,T) = LiI_nUEu(gU,F) as an inverse limit of profinite graph of finite
quotient C-groups over the same graph I'. Assume further that for each U € U the graph
of groups (Gy,I') decomposes as a surjective inverse limit (Gy,T") = lil_nier(givU’ I;). Then

(Giv,Ty) form naturally an inverse system such that (G,T") = lim (Gi, T4).

«—Uel,iely

Proof. We follow the proof of [31], Proposition 3.1.3] making all the appropriate changes.
Denote by ¢; v : (Gu,I') — (G, T';) the canonical projection. Define the indexing set
I = Upey lu- We relabel the elements of Iy an element i € Iy will be denoted from
now on by (¢,U). If (¢,U),(5,V) € I, we say (i,U) < (j,V) if U < V and there exists a
morphism of graph of groups «a : (G;v,I';) — (G v, ;) such that the diagram

®i,v

(gV’ F) I

e

@.1)

~

Gy, T) —— (Gi,Ua I';)

®i,U

(Gjv,Ty)

commutes. Observe that a is unique, if it exists, because ¢;y is surjective. Hence (1, <)
is a partially ordered set. We also observe that the restriction of < to Iy coincides with
the partial order of Iy (U € U). We claim that this ordering makes (I, <) into a directed
poset.

To see this consider (4,V),(i,U) € I. Let L > V,U. Then by Lemma
there exists (k, L) € I, and morphisms of graphs of groups «; : (G, I'x) — (Giv, 1),
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a; : (Grr, Tx) — (Gjv, ;) such that the diagram
(Gv.T) % (Gyv.T))

J

3

/
(G, T) —— (Gri, L'y
\

A\

(gUa F) ? (Gi,U7 Fz)

¥j,U

commutes.
All maps in this diagram are surjective; it follows that «;, o are unique. This

shows that (I, <) is directed and it follows that (G,I") = lim (Giv,I). O

<~—Uel,iely

Theorem 2.1.3. Let C be an extension closed pseudovariety of finite groups. The sheaf of
pro-C groups (G, m, ') decomposes as a surjective inverse limit (G, m, ') = ln_nid(gl-, i, )

of finite sheaves of groups in C.

Proof. Let G = ]_[‘ng be the free pro-C product of the sheaf (G, 7, T'). By a result of
Melnikov (cf. [31, Theorem 5.3.4]), G = lim _ G; where each G; is a free pro-C product
of finite groups, and I" = LiLnl,e ; I';, where each I'; is a finite graph. Hence we can write
Gi = [[Hit so G = @HHM- So we construct an associated sheaf of finite groups
(G, m;, Ty) as follows:

Gi={(mi,h;) €Ty x G; | h; € H; 4}

where 7 : G; — I'; is the restriction of the natural projection I'; x G; — I';. It is clear that
c
Gi = HFi gz
Now construct the canonical fiber homomorphism w : G — G defined by w(m, g) =
g, (g € Gi;;m € T'). We define the map w; : G; — G; by identifying the identity elements

of the fibers. For ¢ > j, we have the following commutative diagram:

| is
G 2 G —% G

i T F

g 7 » G l,ij>gj

where v;; : G; — G; is defined as follows. The map w; becomes injective on G; — (I'; x {1}).
Hence,

-1
Vij = W; ~ © Q5 © Wi.
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For the identity elements, since we have the canonical commutative diagram of the sheaves,

Vij
Gi —— G;

’”l |

define

_ -1 /
Vi —7Tj oVijOﬂ-i'

Let v;; = (vij,v};) be the pseudo-sheaf map. Hence ((G,T),v;;, I) form an inverse

system. By construction, we have that
g = Lin giv

as desired.

[]

We are finally ready to prove the main result in this section. It will be crucial to

define the profinite fundamental group of a graph of groups with a base point.

Proposition 2.1.4. Let (G, T') be an injective profinite graph of pro-C-groups. Then (G,T")
decomposes as an inverse limit (G,I') = lim._ (G;,T';) of finite graphs of C-groups.

<«—iel

Proof. Let G = T1§(G,T') be the fundamental group of (G,T") with respect to a universal
specialization (v,v') : (G,I') — (G, T). Let U be the collection of all open normal
subgroups of G.

1§(g, 1)

/\

Let U € U. Since v(G(m))U /U is finite, it is closed in G/U. Now, by [31, Lemma 5.2.1(d)],
noticing that I' is a profinite space, one has that Gy = |, . ¥(G(m))U/U is closed in
G/U. Therefore the set Gy = {(g,m) € G/U xT' | me T',g € v(G(m))U/U} is a sheaf.
For simplicity we identify from now on the fiber Gy(m) = v(G(m))U/U x {m} with the
subgroup v(G(m))U/U in G/U.
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Define then a profinite graph of finite groups, (Gy, ') putting
0 : Gu(m) — Gu(d;(m))

by 0;(v(9)U) = vd;(g)U, for g € G(m), 7 = 0,1. To see that it is well-defined let
g,h € G(m) such that v(g)U = v(h)U and let y : I' — 7§(T") be the map from Definition
[[.6.4l Then

do(v(g)U) = vio(g)U = v(g)U = v(h)U = v(dy(h))U = do(v(h)U)
and
A (w(9)U) = vor(9)U = (V'x(m))'v(g)v'x(m)U =
= (V'x(m)) v (h)'x(m)U = vor(h)U = &1 (v(h)U).

Put Gy = TI$(Gy,T') and define U = (U n G(v)? | v € V(I'),g € G). Note
that G(v) embeds in G, since (G,T) is injective. Hence G(v)? lies inside G = TI{(G,T).
It is not difficult to see, using a similar argument to the proof of |31, Corollary 5.5.9],

that Gy = G/U and so G = lim . Gy. Thus by Lemma 2.1.2/it suffices to show the

proposition for (G, T').

Let (vy,v;) : (Gu,I') — Gy be the universal specialization. The projection
G /U xI' — G/U restricts to a continuous map p : Gy — G/U that sends Gy (m) identically
to the subgroup v(G(m))U/U of G/U. So p induces a unique continuous homomorphism
fv : Gy — G/U such that fyvy = p. Hence fyvy is injective on Gy (m), for each m € T

By Theorem [2.1.3] the sheaf (Gy, 7y, [') decomposes as a surjective inverse limit

(Gu, 7y, ) = lim (G, m;, T)

el

of finite sheaves (G;, m;, I';). Let ¢, = (¢, ¢;) : (Gu,T') — (Gi, I';) be the natural projec-

tion.
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2.1. Decomposition of an injective profinite graph of groups 79

We need to turn this inverse limit decomposition into a decomposition of graph of
groups, i.e to define the structure of graphs of finite groups on (G;,I';) and show that we
have an inverse system of graphs of groups.

There exists ig € I such that the continuous maps fyvy, fuv x factor via (G, I';,)

(cf. Lemma [2.1.1)), i.e. there exist a fiber homomorphism g;, : G;; — G/U and a
continuous map (3, : I';, — G/U such that fyvy = Bi 04, and fuvyx = B @5, -
For i > iy define a fiber homomorphism §; : G; — G/U and a continuous map

Bi Ty — G/U by B = Biypiy > Bi = 2090;,1‘07 where
Piio : (Gi, Ti) — (Gip, Tiy), ‘P;,z‘o g

These morphisms of the corresponding inverse systems are represented in the following
commutative diagram:

Pii
gi —0> gio

L]

/ 0
i,ig

Then
fove = Bivi, fUV/UX = @{90; (*)

for every i = 1.
Without loss of generality, we assume from now on that all i > iy. In particular, g;
is injective on G;(m) for all m € T'; and for each i € I. Tt follows that the natural morphisms

; : Gy — G; are injective on fibers. Thus we have the following commutative diagram:

r— % .7,
X
7&(T) B;
vy

Gy ——— G;

Define a graph of groups structure on (G;,I';) by considering 0;¢:(9) = ¥id;(9),
g € Gi(m) on (G;, 1), (j = 0,1). We show that ¢; is well-defined on (G;,T), (j = 0,1).
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Choose g € Gy(e), h € G(€') such that ¢i(e) = ¢l(e') and ¢;(g) = wi(h). Since fyvy is
injective on Gy (m) and B;p;(x) = fyvy(x) for every x € Gy by (x), it suffices to show that
fuvudi(g) = fuvwd;(h) for j = 0,1. Since vy(x) = vydo(z) for any = € Gy we have

fovudo(g) = fuvu(g) = Bivi(g) = Bipi(h) = furu(h) = fuvude(h); (%)

so 0p is well-defined. Now we need to show that fyvydi(g) = fuvydi(h). But

—

*

foruéi(g) = fu((yx(e) ™ vulg)vix(e)) = fo(vix(e) ) folvo(9)) fuvix(e) =

=

W (Bi0i(e) o (9)Bipi(e) ) (B (e) " furvu (M) Bli(e) =
— (B fore(MBiee) Y Fuvx(€)) v (ix(€)) = furpds(h)

as desired.
[t remains to observe that ¢; are injective on (G;,T';) since fyvy is injective on
Gu(m) for all m e I'. Thus (Gy,I') = lim (G;, I';) is a decomposition as an inverse limit of

finite graphs of finite C-groups as required. O

Remark 2.1.5. The hypothesis of injectivity of (G,I") If C consists of all finite groups,
then (G,T') is automatically injective. Indeed, in this case I1¢%*(G;,T;) is virtually free

and so I1,(G;, T;) = T1%5(G;, T;); thus (G;, T;) is injective for each i € I. Tt follows that
G, 1) = LiLni(gl-, I';) is injective.

Combining Proposition [2.1.4] and Remark we can state the following

Corollary 2.1.6. Let (G,I) be a profinite graph of profinite groups. Then (G,T") decom-
poses as an inverse limit (G,I") = yLnid(gZ-, [';) of finite graphs of finite groups if and only
if (G,T) is injective.

We finish the section with a very interesting example. It is well known that every
connected abstract graph has a spanning subtree (cf. Theorem , but this is not
always true for profinite graphs. Indeed, the next example shows a connected profinite
graph with no spanning C-simply connected profinite subgraph (cf. Definition .
Hence, it is not possible to define the fundamental group of a graph of groups via maximal
trees, as done in Section through Construction and Theorem [1.3.6] In the next

chapter, we construct an infinite profinite graph of groups that has a maximal subtree.
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Example 2.1.7 ([31], Example 3.4.1). Let N = {0, 1,2, - - } be the set of natural numbers
with the discrete topology and let N = N U {c0} be the one-point compactification of N.
Define a profinite graph I' = N x {0, 1} with space of vertices and edges

e V(I')={i=(i,0)]|ie N};

o B(I)={i=(i,1)|ie N}

o do(i) =i for i € E(T") and do(i) = i for i € V(T);

e di(i) =i+ 1forie E(T)and dy(i) = i for i € V(T).

where o0 + 1 = 0.

So we can represent [' as follows:

0 1 2 3 4

[}
|=
Do
[sY
@8
18

Observe that V(I') and E(I") are disjoint and they are both profinite spaces, be-
cause they are both clopen. Note that I' is the inverse limit of the following finite connected

graphs I'(n) (n = 0)

|
|

where the canonical map I'(n + 1) — I'(n) sends i to i identically, if i < n — 1, and it
sends n and o to 0. Hence I' is a connected profinite graph. We claim that any infinite
connected profinite subgraph I'” of T" coincides with I'; first note that the profinite graph
A defined by

e V(A)={i=(i,0)|ie N}
o BE(A)={i=(i1)]ie N}
e do(i) =i for n e E(A) and dy(i) =i for i € V(A);

o di(i)=i+1forie E(A) and dy(i) = i for i € V(A).

0 1 2 3 4 ... ©
—————————————————————0 .

0 1 2 3
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82 2. The profinite fundamental group of an infinite graph of groups

is not a spanning profinite subgraph of I', because it is not a closed subset of I". Indeed,
suppose by contradiction that A is closed in I'. Since V(A) = V(I') and it is a closed
subset of I' = V(I') u E(T"), we only have to verify that E(A) is closed in E(I"). But E(I)
is closed in I' (because it is compact), so it is profinite. Thus, £(A) must be compact,
absurd. Therefore, A is not a profinite subgraph of T

To prove the claim, since I is connected and contains all the vertices of I, it must
contain all the edges of the form i (¢ = 0,1, --); therefore since I' is compact, it also
contains o0; this proves the claim. On the other hand, if C is a pseudovariety of finite
groups, we see that 7{(I') = Z; (cf. Example [1.3.12). Hence I does not contain any

spanning C-simply connected profinite subgraph.

2.2 The fundamental pro-C group of (G,I') with a base

point

We concluded in the previous section that given an injective profinite graph (G, T
of pro-C groups, we can decompose it as an inverse limit (G,T") = Liﬂiel(gi,n), where
each (G;,[';) is a finite graph of finite C-groups. The goal of this section is to define the
pro-C fundamental group of (G,I") with a base point via an inverse limit of completions

of its finite abstract analogs, i.e.,

15(G, T, v) = lim(my (Gi, Ti, v3)) 6,
iel
where 71(G;, I';, v;) is the usual abstract fundamental group of (G;,I';) with a base point
ve V().

This is a new concept in the Ribes-Zalesski theory and has the advantage of behav-
ing better with respect to inverse limits and morphisms of graphs of groups. We highlight
that it is not possible to use the classical definition of the fundamental group of graph of
groups with respect to a maximal subtree, because the image of a maximal subtree under
an epimorphism of graphs is not a maximal subtree in general. We start with the classical
definition of the fundamental group of a graph of groups with a base point in the abstract

case (cf. [37, Sect. L1.5.1]).

Definition 2.2.1 (The group F(G,I') [37, Sect. 1.5.1]). Let (G,I') be an abstract
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graph of groups. The path group F(G,T") is defined by F(G,T') = W;/N, where W; =
(skvev(r) G(v)) * F(E(T)), where F(E(I')) denotes the free group with basis E(I') and N
is a normal subgroup of W; generated by the set {0y(x)'ed(z)e™! | z € G(e),e € E(T)}.

Definition 2.2.2 (Words of F/(G,T") [37, Sec. 1.5.1, Definition 9]). Let ¢ : vg, €9, - , €, Up,
be a path in I' with length n = I(c) such that v; € V(I'),e; € E(I'), j =0,--- ,n. A word
of type ¢ in F(G,I') is a pair (¢, u) where u = (go, - ,9n) is a sequence of elements
gj € G(vj). The element |c, | : go, €0, g1, €1, ,€n, gn of F(G,T") is said to be associated
with the word (¢, u).

Definition 2.2.3 (The fundamental group of (G,T") [37, Sect. 1.5.1, Definition 9(a)]).
Let v be a vertex of I'. We define m1(G, ", v) as the set of elements of F(G,T") of the form

lc, |, where ¢ is a path whose extremities both equal v.

One sees immediately that 71(G,T',v) is a subgroup of F(G,T'), called the fun-
damental group of (G,I") at v. In particular, if G consists of trivial groups only then
(G, T, v) becomes the usual fundamental group of the graph I and denoted by (T, v).
It can be viewed of course as a subgroup that consists of set of elements of F(G,T") of
the form |c, | : go, €0, g1,€1,"** ,€n, gn, Where ¢ is a path whose extremities both equal
vand go = 1 = ¢ = ... = g,. This way G = m(G,[',v) is a semidirect product
(G, T,v) ={(G(v) | ve V()¢ x m (T, v).

Now we are able to implement the first step of our construction: the notion of
7¢(I",v). Compare this setting to Section , where we defined the fundamental group
of a profinite graph, (") as the group associated with the universal Galois covering of

I.

Definition 2.2.4. If I' is a connected finite graph, its pro-C fundamental group #§ (T, v)
can be defined as the pro-C completion 7 (I, v)s of m(I',v). If I" is a connected profinite
graph and I' = lim I'; its decomposition as an inverse limit of finite graphs I';, then 7$ (T, v)
can be defined as the inverse limit 7§ (I, v) = lim 7§ (T;, v;), where v; is the image of v in

I'; (see [31], Proposition 3.3.2 (b)]).

With this Construction in hand, we obtain the fundamental group 7¢ (T, v), where

I' is the infinite profinite graph of Example that does not have a maximal subtree.

Example 2.2.5. Our graph I is as follows
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84 2. The profinite fundamental group of an infinite graph of groups

o

|

NS

9%
O

It can be written as the inverse limit of the following finite connected graphs I'(n)

1
g

We write then

[' = lim ['(n).
neN

As we obtained in Example [1.3.12] the fundamental group of I'(n) is
i (L(n)) = Z

for every n € N. Choose {0} as the base point of I'. It projects to itself on each I'(n).
Then, by Definition [2.2.4]

(0, {0}) = lim7f(T(n), {0})

= lmZ;

— Z

Hence we obtained the fundamental group 7¢(I") = Z; of an infinite connected profinite
graph that does not have a maximal subtree (cf. Example [2.1.7). It is a novelty and was
not possible before, using the classical setting present in Section [I.3.3]

We shall use a similar approach to define the fundamental pro-C group II§(G, T, v)
with a base point v. However, this next step is more subtle and requires the following

Proposition by Hyman Bass:

Proposition 2.2.6 ([3, Proposition 2.4|). A morphism of graphs of groups

a = (ava,) : (g7r) - (glvrl)
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iduces a morphism of fundamental groups
B:m(G,T,v) — m (G, T, )

defined by B(|c, p|) = o/ (c), ap)], where a(p) = (a(go), a(g1), -+ algn)), gi € G(vi) and
B(v) =a(v) =0
Since we are always interested to recover data via inverse limits, these induced

morphisms allow us to obtain induced inverse limits, as follows:

Proposition 2.2.7. An inverse limit (G,I') = lim._ (G;,I;) of finite abstract graphs of
finite groups (that are in C) induces an inverse limit Um._ (m1(G;, I, v:))e of the pro-C

completions of fundamental abstract groups m (G, T'i, v;).

Proof. Let {(Gi,Ts), ay;, I} be the corresponding inverse system of finite abstract graphs of
groups. By Proposition , the morphism a;; : (G;, ') — (G}, T';) induces a morphism of
fundamental groups f;; : m1(G;, Iy, v;) — m1(G;, T, v;) defined by B(|c, u]) = |&/(c), a(p)],
where a(p) = (a(go), a(g1), -, algn)), gj € G(v;) and B(v;) = o/ (v;) = vy

Therefore, we can construct an inverse system {(m(G;, s, v;))s, Bij, [}. Its inverse

limit is lim__ (7m1(Gs, I, vi)) g, as desired. O

We are ready to define the pro-C fundamental group I1§(G, T, v) of a profinite graph
of pro-C groups with base vertex v of I'. Note that it works only for an injective profinite
graph of pro-C-groups (see Remark . On the other hand, given a graph of pro-C
groups (G,I") that is not injective, it can become injective by replacing G(m) with its
image v/(G(m)) in TI§(G,T) for every m € T' (cf. Remark [1.6.8). This means that we do

not lose generality restricting our attention to injective profinite graphs of pro-C groups.

Definition 2.2.8. Let (G, T") be an injective profinite graph of pro-C groups and (G,I") =
lim I(Qi’ I';) be the decomposition as the inverse limit of finite graphs of finite C-groups
(See Proposition . Let v be a vertex of I. The group lim_ (m1(G;, I';, v:))¢ from
Proposition will be called the pro-C fundamental group of the graph of pro-C groups
(G,T) at the point v and denoted by II§(G, T, v).

The next proposition shows that the definition of II§(G, T, v) does not depend on
the decomposition of (G,I") as an inverse limit of finite graphs of finite groups. By [31]
Proposition 6.5.1], we have that II{(G;, T, v;) = (m1(Gs, I's, v;)) 5
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86 2. The profinite fundamental group of an infinite graph of groups

Proposition 2.2.9. Let (G,T") be an injective profinite graph of pro-C-groups and (G,T") =
@id(gi,ri) be a decomposition as an inverse limit of finite graphs of finite C-groups.
Then

I$(G,T,v) = im II$(G;, T, v;).

el

Proof. Let n: (G,I') — (M, A) be an epimorphism to a finite graph of C-groups (H, A).
Choose v € V(I') and let vy be its image in A. It suffices to show that the natural
epimorphism I$(G, T, v) — T§(H, A, vy) factors through some T1$(G;, Ty, v;).

Since (H,A) is finite, by Lemma n factors through some 1. : (G;,I) —
(H,A), ie. n=mnm;, where m, : (G,I') — (G;, ;) is the natural projection.

1

(G, T) > (H,A)

R

“ Fi)_,_.

Let v; be the image of v in I';. By Proposition n, induces the natural homo-
morphism 7 (G;, Iy, v;) — m1(H, A, vg) that in turn induces the homomorphism of pro-C

completions
H(lj(gzv Fi7 Ui) = (7T1 (gu Fi7 Uz))@ - (771 (Ha A7 UO))@ = Hf(}u Aa UO)'

Thus we have a diagram

I5(G, T, v)
H?(gzy Fiv Ui) — Hf(Hv A) UO)
that commutes on vertex groups and underlying graphs. Hence this diagram commutes

and the proof is finished.
O

We shall show now that for injective (G,I") this definition and Definition are

equivalent.

Theorem 2.2.10. Let (G,T') be an injective profinite graph of pro-C groups. Then
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Proof. Let I' be the universal C-covering of the profinite graph I and ( : I' > T be the
covering map.

Consider a graph of groups (QN , f) from Definition . Choose a base point v € T.
The action of 7$(T',v) on I' induces the action on (G,T') that in turn induces the action
of 7¢(I",v) on (G, T), i.e. we have a semidirect product IT¢(G, T') x m,(T", v).

Choose ¥ € I' such that ¢(7) = v. Let (G,T) = lim (G;, I';) be a decomposition of
[ as the inverse limit of finite quotient graphs of groups (G;,T';) (cf. Proposition [2.1.4)).
By Proposition 3.3.2 [31] the decomposition I' = lim T'; induces an inverse system of
pairs of compatible morphisms ¢; : Iy — I, fi; + m(Ly) — m(T;) such that #¢(T) =
lilli Wf(l}, v;), ¢ = mz (i, where v; is the image of v in I';. This defines a decomposition
as the inverse limit (G,T") = llnz(@, I',) (as (Gi,I;) is defined as a pull-back of G; —> T;
and ¢; : I, — I', see Definition .

Let ©; be the image of ¥ in f‘l and ¢ : v; = vy, €9, " ,€n, v, = V;, be a circuit of
length n such that v; € V(I'),e; € E(I'), j = 0,--- ,n that we regard also as an element
of m (I';,v;). Let f‘?bs be the connected component of f‘l (regarded as an abstract graph)
containing v;. Then f;’bs is the usual universal cover of I'; (see [31, Proposition 8.2.4]). It
follows that the circuit c lifts to the unique path ¢ : v; = vg, €9, . . ., €,, U, = cv; from v; to
ct; in Tabs.

Denote by (QNZ, f‘;’bs) the graph of groups obtained by the restriction of (@, IN‘Z) to
I and let m (G, 19, %;) be its fundamental group. Then 7 (I';, v;) acts naturally on
(G;,T'%%) that induces the action of 7 (T';,v;) on m1(Gs, [P, 3;) so that we can consider
the semidirect product m(@, f?bs, 0;) x (L, vy).

An element |c, p| : go, €0, 91,€1, 5 €ny g 0 T (Gi, Ty, v;), where = (go, -+, gn)
is a sequence of elements g; € G(v;), lifts to a unique element (fi,c) € m1(G;, T ;) x

m1 (L, v), where i = oy -+~ gu € m(G. T 00) with §; = (it (95).

Hence we can define a map ¢; : m(G;, T, v;) — m(gﬁ,ﬁi“bs,@i) x 7y (T, v;) by
Yi(le,p|) = (@i, ¢). To see that 1); is a homomorphism, let |¢, u| = |1, p1||c2, po| and let
¢1, Gy be liftings of ¢, ¢y respectively. Then ;(|c, u|) = (fi,¢) = (fir(crjizcy '), cic2) as
needed.

Thus v; is a homomorphism that is clearly bijective, i.e. 1; is an isomorphism.

Moreover, for ¢ > j the commutative diagram
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e
<
MEL

G

[
«—
Ly

)1
<
e

induces the commutative diagram

7T1(gj,Fj,Uj) » (G, Ti, v3)
wgl

ldli
~ ~ abs
(G, Ty v

7%) A Wl(Fj,Uj) — Wl(giaf?bsyvi) x (1, v;)

~ ~abs
It is straightforward to check that the pro-C completion of 7y (G;, I'; ;) xmy (L', v;)

gives I1$(G;, T, ©) x 7$(T;, v;) as defined above. This shows that t; induces the isomor-
phism

Wi 1§ (G, T, v) — 1§ (G, T, ) x5 (1, 03)
and we have the following commutative diagram

H(lj(gj7rjav]> ? H(lj(glarlavl)
Al

116 (G;, T, 9;) % 7(Ty,05) —— TE(Gi, T, 05) % 76(Ty, 1)

Then 1 = llnzqﬂl is an isomorphism ¢ : II$(G,T,v) — II¢(G, T, %) x 7¢(I, v).
Note that TI$(G,T) = TI(G,T) x #¢(I", v) by [31] Proposition 6.5.1]).

Finally, we take a closer look on the map 3 : G — (G, T, v). If we go back to the

finite case for a moment, since I'; is finite, we follow Example [1.4.4] so

g, = U gi("Uj)

’U]'GV(F)

we can define a map

Bi:G; — 7T1(gv;7rz‘,vz')
by

Bi(Gi(vy)) = [vj, pl,

where v; € V(I'). This map is clearly injective.
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On the other hand, define
vi : Gi — m1(Gi, T'i, v3)

by the natural inclusion
vi(Gi(v;)) = (Gi(vy)),

where v; € V(I'). This map is also clearly injective. The universal property of m(G;, ;)

provides us the following commutative diagram

Now define
0; Wl(gi,ri) - Wl(givriavi)
by
6;(Gi(v;)) = |vj, .
Its kernel is trivial, since the only vertex group that maps to the identity on 71 (G;, I';, v;)
is the trivial group. Hence 0; : m1(G;,I';) — m1(G;, [, v;) is an isomorphism. Define now

f =lim fB;, v = lim v; and 6 = lim §;. The universal property of II{(G,T') provides us
< <~ <~ 1

the following commutative diagram

The maps v/ and 3’ are the inclusions of 7{(I",v) in the semidirect products, so
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they are canonically defined. On the other hand, v : G — II$(G,T) is the universal
specialization map, so it is also uniquely defined.

Therefore lim 6; =0 : 1§(G,T) — II§(G, T, v) is an isomorphism, as desired. ~ [J

2.3 The pro-C completion of the fundamental group
st (g, F, U)

The Ribes-Zalesski-Mel'nikov theory can be used very effectively in the study of
certain abstract groups. One sees a group G as the fundamental group of a graph of
groups and then the profinite completion G is the fundamental group G = Hl((j ,I) of
the same graph of the profinite completions of edge and vertex groups. Through this
view, it is possible to apply geometric techniques to obtain algebraic results. Until now,
one could use this approach only for finitely generated groups, assuming that the graph
I’ in the graph of groups (G,I") is finite. The main reason for this assumption is that
I' is consequently a profinite graph and so (QA, ') is automatically a profinite graph of
pro-C-groups, where each G (m) is the pro-C completion of G. One also has a natural
way of associating m (G,I") with II = Hl(QA, [') and S% = S%5(G T') with S = S(QA, ).
With the aim to apply this technique to abstract groups which are not necessarily finitely
generated, we construct a profinite graph of pro-C groups (G, ') where an infinite abstract
graph I' in densely embedded in T" and the above properties are preserved, the content of
Theorem [3} We assume that (G,T') is reduced, i.e. whenever e is an edge of I' which is
not a loop, then 0;(G(e)) is a proper subgroup of G(d;(e)) (i = 0,1) (cf. Remark [1.6.18).
This of course does not affect the generality of the argument since for any graph of groups
we can collapse fictitious edges successfully (i.e. the edges that are not loops such that
0i(G(e)) = G(d;(e)) for i = 0,1) to arrive at the reduced graph of groups.

We finish this section with the proof of Theorem [I] which answers Ribes Open
Question 6.7.1 of [31].

Parts (a), (b) and (c) of Theorem [3| are the subject of the following

Theorem 2.3.1. Let (G,T') be a reduced graph of groups and G = 7(G,T',v) its funda-
mental group. Assume that G is residually C and denote by G(m) the closure of G(m) in
Ggs. Then
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(a) There exists an injective profinite graph of pro-C groups (G,T) such that T is densely
embedded in T';

(b) for each m €T its vertex group is G(m);

(c) The fundamental pro-C group 11 = TIS(G,T) of (G,T) is the pro-C completion of G

and so (G,T) is injective.

(d) The graph of groups (G,T) decomposes as a surjective inverse limit (G,T) = lim(Gy, T'y)
of finite graphs of finite C-groups and 11 (G, T, v) = lim(71(Gu, v, vr))6-

Proof. Let U be the collection of all open normal subgroups of GG in the pro-C topology
of G. For m e I', U € U, define Gy(m) = G(m)U/U. As Gy(m) < G/U, one concludes
that each Gy(m) € C.

Define the profinite space Gy = |, Guv(m) and Ry to be the following equiva-
lence relation in I': given v, w € V(I'), v ~g, w if Gy(v) = Gy(w) and given e, e’ € E(T),
e ~p, € if do(e) ~g, do(¢’) and dy(e) ~g, di(e'). Hence, the quotient graph I'y; defined
by I'y = T'/Ry is finite.

Define then a finite graph of finite groups, (Gy,'v) by putting Gy (m) = Gy(m)
where m is the equivalence class of m and defining 0;(gU/U) = 0;(9)U/U. To see that
the maps 0; are well-defined, one follows precisely the argument of the third paragraph of
the proof of Proposition ignoring the topology.

Put Gy = m(Gy,I'v) and, for an open subgroup Y <, U, ayy, = (ayu, dyy) :
(Gy,I'y) = (Gu,T'y) to be the epimorphism of graphs of groups defined by a(gY) = gU
and o/ (mRy) = mRy, for m € I and g € G(m). These are the canonical quotient maps,

so we have the following commutative diagram:

Indeed, (ayw o ayy)(gY) = apw(ayu(gY)) = apw (gU) = gW and (azw o ayz)(gY) =
azw(ayz(gY)) = azw(gZ) = gW. For the graph maps,

(O/UW © O‘g/U)(mRY) = abW(ang(mRY)) = O/UW(mRU> = mRy
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and

(O/ZW © O/YZ)(mRY) = a/ZW(&g/Z<mRY)) = O/ZW(mRZ) = mRy.

Hence

Quw © Qyy = Qzy © Qy» (2.2)

for every m e I" and g € G(m).
Choose a vertex v in I and denote by vy its image in I'y. By Proposition [2.2.6]

this diagram induces the diagram of fundamental groups

m1(Gv, Tv, vv)
/ \
7 (Gy, Iy, vy) 1 (Gw, Tw, vw)
\ /

(gZ7FZ7UZ)

Given |c, p| € m1(Gy, Ty ), we have

Buw (Byu(le, ul)) = Buw (lasy (), ayu()]) = [(aw © ayy)(c), (avw © ayv)(u)]
and
Bzw By z(le, ) = Bzw (| z(c), ayz(p)]) = [(ay z 0 ay £)(c), (azw © ayz) ()],
which implies, by Equation (2.2), that
Buw © Byv = Bzw © Pyz (2.3)

for every |c, pu| € m(Gy,'y). Therefore the diagram commutes.
Thus we have an inverse system of graphs of groups {(Gy, '), ayy}. Put (G, T) =
lim(Gy, I'y). By Proposition we have

H(f(g’ T, v) = liLn('/Tl(gU, Ly, vw))e. (2.4)

AGUIAR, M.P.S Julho de 2023 Mat — UnB


mailto: mattheus@mat.unb.br
http://www.mat.unb.br

2.3. The pro-C completion of the fundamental group (G, T, v) 93

Note that by equation (2.4)), I1§(G, ', v) = Gz and so (G, T) is an injective profinite
graph of pro-C groups, since G(m) are naturally subgroups of Ge.

To finish the proof we show that the natural map o/ : I' — T is an injection.
Since (G,I") is reduced G(v) and G(w) are distinct subgroups in G whenever vertices
v and w of I' are distinct. Therefore, as G is residually C, there exists U such that
v #p, w. This shows that ajy ) is injective. Let 7" be a maximal subtree of I'. Since
T has a unique edge connecting two vertices, o/ is also injective. But the image of the
natural map y : I' — m(I"), where x(m) is the unique element of 7{(I") such that
x(m)(jdi(m)) = dyj(m), and that sends T to 1 can be viewed as a basis of m(I"). Since

m(I") < G is residually C it follows that a" p(ry 1s injective as well. ]

Define I' = lim_ T';. As each I'; is a profinite G-graph, we have that V(T;) =
V(G\I';) = G\V(T;), by the definition of the vertex set of a quotient graph by the action
of G. Therefore, V(I') = lim _ V(I';) = lim_, G\V(T;) = G\(lim_, V(T;) = G\V(T),
T;.

where I' = lim
<«——iel

Corollary 2.3.2. We maintain the hypothesis of Theorem [2.3.1. Suppose in addition
that G contains a free normal subgroup ® such that G/® € C. Then there exists an open
normal subgroup in the pro-C topology V- < ® such that for every open mormal subgroup
U <V of G the fundamental group m (Gy, 'y, vy) that appear in (d) is residually C. In

particular, (Gy,Ty) is injective.

Proof. Let (G,T) = lim(Gy, T'y), I§(G,T,v) = lim(m; (G, 'y, vy))e be the decomposi-
tions of Theorem (d), and choosing all U < ®. Then the natural epimorphism G —>
G/® factors via (m(Gy,I'v,vv))s for some V' and therefore via every (m(Gy,T'v,vv))s
for U <V, i.e. we have a homomorphism ¢y : (71 (Gv, I'v,vv))s — G/® which is injec-
tive on vertex groups. Then the kernel of its restriction on 71 (Gy, 'y, vy) is free and so

m(Gu, T, vy) is free-by-C group. Thus m1(Gy, Iy, vy) is residually C. H
The following theorem covers the remaining part (d) of Theorem [3|

Theorem 2.3.3. We continue with the hypotheses and notation of Theorem [2.3.1 Fur-
thermore, we assume that G(m) is closed in the pro-C topology of G, for every m € T.
Then the standard tree S = S(G,T') of the graph of groups (G,T') is embedded densely
in the standard C-tree S = S(G,T) of the profinite graph of profinite groups (G,T) and
the action of I{(G,T) on S¢(G,T) extends the natural action of 71(G,T) on S®(G,T).

AGUIAR, M.P.S Julho de 2023 Mat — UnB


mailto: mattheus@mat.unb.br
http://www.mat.unb.br

94 2. The profinite fundamental group of an infinite graph of groups

Proof. Let f, T be the abstract universal covering and C-universal covering of the abstract

graph I' and profinite graph T respectively. Let ( : I — I, (: T — T be the covering and

C-covering maps. Consider a profinite graph of pro-C-groups (G,T') from Definition |1.4.8

and its abstract version (G,T').

If one denotes G = Wl(g,f,ﬁo), we have the standard tree §Tbs(§,f), defined
by 8% = Uper G/G (1), V(S™) = Uper sy G/G(7) and incidence maps do(gG(e)) =
eV(I),ée ED)).

o) and take its standard C-tree, that
U, & ﬁ/ﬁ(%) and incidence maps

~

)
9G(do(€)) and di(9G(8)) = 9G(i(€)), (g€ G,
In a similar manner, denote II = 1§ (5,
is defined by § = (G, T) = -~ T1/fi(7), V( _
do(9T1(Z)) = 9f1(do(@)) and d (gT1(®)) = ¢(T(d1 (), (9 € TLT e V(T),Z e B(T)).
By Theorem | T is densely embedded in T and IT = G , so there are natural

e

N

9

2k
[

™|
~—

inclusions 7; : I' — T and 125 : G — II. One defines a morphism of graphs

5:5%(3.T) - 3(G,T)
putting 93 (7) — gf1(3), 93(?) — gTl(e), (g€ G5 € V(T),e € B(T). As Gm) (meT) is

~

closed in the pro-C topology of G for every m e T', G (m) (m e T) is also closed in G for
every m € I' and the morphism @ is injective.

Now by [31, Theorem 6.3.3| there is a canonical isomorphism S~ S and similarly,
Gabs ~ S from which we deduce that the G-tree S%* = S(G,T') embeds densely in the
standard pro-C Il-tree S = S¢(G,T) as needed. O

Now one uses Theorem [3 (Theorems [2.3.1] and [2.3.3) to prove Theorem [1}

Proof of Theorem [l As m1(G,T) is residually C, we can apply Theorem to conclude
part (a). On the other hand, since each G(m) is a finite group in C, it is closed in the pro-C
topology of m1(G,T"), so that the hypotheses of Theorem also hold. This concludes
the proof of (b). O

For the next Theorem, we need the following lemmas. Their proofs can be found

in [31, Lemma 8.1.1], page 238, and [31], Lemma 8.2.1], page 241.

Lemma 2.3.4 (cf. Lemma 1.1 of [34] or Lemma 8.1.1 of [31]). Let G be an abstract
group that is residually C. Assume that G acts freely on an abstract tree T' and endow G
with its pro-C topology. Let K be a closed subgroup of G in this topology and let A be a
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finite subgraph of the quotient graph K\T'. Then there exists an open subgroup V of G

containing K such that the natural map of graphs
v K\T — V\T

is injective on A.

Consider now the following situation. Let H be an abstract group that is embedded
as a dense subgroup in an infinite pro-C group H. Assume that T%* is an abstract tree
that is embedded as a dense subgraph of a pro-C tree T. We assume further that H acts
continuously on the pro-C tree T in such a way that 7% is H-invariant and such that

H\T®s is a finite graph, and suppose that the H-stabilizer of each vertex is finite.

Lemma 2.3.5 (cf. Lemma 1.4 of [34] or Lemma 8.2.1 of [31]). Assume in addition that

the natural epimorphism of graphs
H\T™ — H\T

is an isomorphism. Then there exists a unique minimal H-invariant subtree D™ of T

and its closure D = D5 in T is the unique minimal H -invariant C-subtree of T'; moreover,

D = T ~ D and H\D® = H\D is finite.

Now we use Theorem [1] to prove the main technical result on the interrelation of
S and S for a virtually free group. In fact, we adapt the proof of [34, Proposition 1.6]

to the infinitely generated case.

Proposition 2.3.6. Let G = m(G,T") be the fundamental group of a reduced graph of
finite groups having a free subgroup ® such that G/® € C. Let H = {hy,..., h,) be an
infinite finitely generated subgroup of G closed in the pro-C topology of G, and let H be
its closure in the pro-C group Gg. Then the standard tree S has a unique minimal
H-invariant subtree D, and its closure D in the standard pro-C tree S is the unique
minimal H-invariant pro-C subtree of S; furthermore S A D = D%s Dabs = D and

H\D®* = H\D is finite.

Proof. Choose a vertex vy of I', and denote by 7y the vertex oy = 111%%(vy) = 1I1(v) in
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S%s < S, Define a subgraph D%* of S%* as follows
D =) H%y, hiti).
i=1

Put L = | J;_,[0o, hito]; this is obviously a finite connected graph. Then D®* = HL.
Since Lnh;L + & (i = 1,...,7), we have that D% is a connected subgraph of the tree

S and so D¢ is a tree; clearly it is H-invariant. Hence its closure

D = D = | H[do, hiti]

i=1

in S is a pro-C subtree of S; clearly it is H-invariant.

Since H is infinite and each G(m) is finite, our result will follow by Lemma
after we show that the epimorphism of graphs H\D%* — H\D is in fact an isomorphism.
To see this we distinguish two cases.

Case 1. Assume that H < ©.

Since the G-stabilizers of the elements of S®* are finite groups, ® acts freely on S%*. By
Lemma , there exists an open subgroup V of ® (and so of () containing H such that
the map of graphs

H\D® — H\S% —, /\gabs

is injective. Next observe that for every m € I', we have the following equality of double
cosets

VAG/G(m) = V\Gg/G(m)

because V has finite index in G; hence, one deduces that V\S%* is a subgraph of V\S

from Theorem [} Therefore, from the commutative diagram

H\Dabs H\sabs V\sabs

| ! |

D — 5 H\S — 7\S
we deduce that the left vertical map is injective finishing this case.

Case 2. General case.

Define K = ® n H. Note that K is closed in ® and that K\D%* is finite (because K has
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finite index in H). So Lemma can be used again. Mimicking the argument in Case
1 shows that K\D®* = K\D. What this says is that if t,#' € D% and Kt = Kt', then
Kt = Kt.

Now since K has a finite index in H, we have finite unions H = | JKz; and
H = |JKuz; (for some representatives ; € H of the cosets K\H). Let t,t' € D% and
assume that Ht = Ht'. We want to show that then Ht = Ht'. By hypothesis, we have
Uﬁxit = foit' . So for each i, there are some i’ and " such that Kz;t = Kxyt'
and Kx;t' = Kxpt; hence by Case 1 Kt = Kayt' and Ka;t' = Kxyt. Therefore,
U Kzt = Kzt ie., Ht = Ht'. 0

2.4 Closure of normalizers

Let G be an abstract group that is residually C and let H be a finitely generated
closed (in the pro-C topology of G) subgroup of G. In this section we study the relationship
between the normalizer No(H) = {x € R | 2~'Hz} of H in G and the normalizer N, (H)

of H in Gs. When G contains an open free abstract subgroup, we show (Theorem [2)) that

Ng(H) = Ng,(H). This answers Ribes Open Question 15.11.10 of [31] and generalizes
the main result of [34], where the theorem was proved for finitely generated groups. In
particular, we show that Ng(H) = Ngz(H) when G is virtually free and H is a finitely
generated subgroup of G (Corollary .

Ribes and Zalesski have proved the following in [34, Theorem 2.6]:

Theorem 2.4.1. Let G be a finitely generated free-by-C abstract group. Let H be a finitely

generated subgroup of G which is closed in the pro-C topology of G. Then Ng(H) =

Ng,(H), where the closure Ng(H) is taken in Gg.
We state Theorem [2] in a more general form, namely for the pro-C case.

Theorem 2.4.2. Let G be a group having normal free subgroup ® such that G/® € C.

Let H be a finitely generated subgroup of G. Then Ne(H) = Ng,(H), where the closure
N (H) is taken in Gg.

Proof. Obviously Ng(H) < Ng,(H). We need to prove the opposite containment.
We continue with the notations of Sections 2 and 3. According to a result of Scott

(cf. [36]), G is the abstract fundamental group m(G,T",v) of a graph of groups (G,I")
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over a graph I' such that each G(m) (m € T') is a finite group. A finite subgroup of
G is isomorphic to a subgroup of G/®, and so G(m) is in C. By Theorem [2.3.1] there
exists a profinite graph of pro-C groups (G,I') such that II,(G,T) = G. Tt decomposes
as a surjective inverse limit (G,T) = lim(Gy, T'y) of finite graphs of finite C-groups and
(G,T,v) = lim(m(Gu,Tv,vp))e. Let mp : I§(G.T,v) — (m(Gu,Tu,vp))e be the
natural projection. Since 7 is induced by the morphism (G,I') — (Gy,I'y), one has
mu(m (G, 1)) < m(Gy,Ty). Put Gy = m(Gy,lv,vy) and Hy = Cl(my(H)), where
Cl means the closure in the pro-C topology of Gy, and note that by Corollary [2.3.2]
the group Gy is residually C. Then by Theorem [2.4.1 W = N(GU)é(H_U). Since
Hy = ny(H), NGé(ﬁ) = lim, N(GU)CA(H_U) and Ng(H) = @Um one deduces

that Ng(H) = NG€(H) ]

In [21], Marshall Hall proved that a finitely generated subgroup H of a free abstract
group P is closed in the profinite topology of ®. It follows easily that a finitely generated
subgroup of a virtually free (or free-by-finite) abstract group G is automatically closed in

the profinite topology of G. Therefore one has Theorem [2.4.2] as a Corollary.

Corollary 2.4.3. Let G be a virtually free abstract group and let H be a finitely generated
subgroup of G. Then

We shall finish the section proving the same equality for centralizers of cyclic sub-
groups, generalizing |31, Corollaries 13.10, 13.1.12]. However, first, we need the following

lemma:

Lemma 2.4.4. Let G be a group having a normal free subgroup ® of G' such that G/® € C.
Let H be a cyclic non-trivial subgroup of ®. Then

Co(H) = Cg(CIl(H)),

where CI(H) denotes the closure of H in the pro-C topology of G.

Proof. As ® is closed in G, CI(H) is also the closure of H in the pro-C topology of ®. By
[33, Proposition 3.4|, CI(H) is cyclic and contains H as a subgroup of finite index. Say
Cl(H) = (z) and H = {(z"). Now, if a € G and a"'z"a = 2", then both a 'za and z
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are n-th roots of ™. Since in a free abstract group n-th roots are unique, we deduce that

a " 'za = x and the result follows. OJ

Proposition 2.4.5. Let G be a free-by-C abstract group. If H is an infinite cyclic subgroup
of G, then

Co,(H) = Co(H).

e}

Proof. Consider the natural homomorphism
¢: Ng(H) - Aut(H) = Z/27.

Then Ker(yp) = Ca(H).
Assume first that H is closed. Note that

(for the last equality we use Theorem . Since the index of C(H) in Ng(H) is at most 2,
the result follows easily: suppose Cg, (H) = m and let g € Ng(H); then g € Cg, (H),
and so g € Cq(H), ie., Co(H) = Ng(H). Hence Co(H) = C’Gé(ﬁ).

Assume now that H is a cyclic subgroup of ®, not necessarily closed. By Lemma

2.4.4) Co(H) = Cg(Cl(H)). Therefore using the result above for the closed subgroup
CI(H),

Ca(H) = Ca(Cl(H)) = Cq,(CI(H)) = Cq,(H),

since H = CI(H). O

2.5 Subgroup conjugacy separability

A group G is said to be subgroup conjugacy C-separable if whenever H; and Hs
are finitely generated closed subgroups of G (in its pro-C topology), then H; and H, are
conjugate in G if and only if their images in every quotient G/N € C are conjugate, or
equivalently for residually C groups, if and only if their closures in G; are conjugate.
In this section, we prove the subgroup conjugacy C-separability of a free-by-C group G
(Theorem [4]). This answers Open Question 15.11.11 of [3I] and generalizes the main

result of [7] where it is proved for finitely generated free-by-C groups. In particular, if
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G is virtually free then G is subgroup conjugacy separable (Corollary . One uses
again the technique of groups acting on trees and the interrelation between abstract and
profinite graphs and groups.

Thus, for the rest of the section fix a group G having a free subgroup ® with
G/® € C. According to Scott [36], G splits as the fundamental group of a graph of groups
(G,T') over a graph T, i.e., G = m(G,T"), such that G(m) € C for every m € I". In fact,
we may assume that (G,T") is reduced, i.e. whenever e is an edge of T' which is not a
loop, then the order of the finite group G(e) is strictly smaller than the order of G(d;(e))
(i = 0,1) (cf. Remark [1.6.18). Then Gy is the pro-C fundamental group of the profinite
graph of groups (G,T') constructed in Theorem m

Lemma 2.5.1. (G, T) is reduced, i.e. G(e) # G(d;(e)) for alleeT, i=1,2.

Proof. As in the proof of Theorem [3] let Ry be the following equivalence relation in T’
defined by v,w € V(I'), v ~g, w if Gy(v) = Gy(w) and given e, ¢’ € E(I'), e ~g, € if
do(e) ~r, do(€¢') and d;(e) ~g, di(€'), where all U can be taken inside ® and Gy(m) =
G(m)U/U. Hence, the quotient graph I'yy defined by I'yy = I'/ Ry is finite and we have the
finite graph of groups (Gy, I'y) such that Gy (m) = G(m) where m is the equivalence class
of m and 0;(gU/U) = 0;(¢9)U/U.

Therefore, if for a given e € E(T") which is not a loop neither 0; : G(e) — G(di(e))
nor 0y : G(e) — G(dy(e)) is an isomorphism, then neither ¢; : Gy(e) — Gy(di(e)) nor
0o : Gu(e) — Gu(dy(e)) can be an isomorphism, so each finite graph of groups (Gy,T'v)
is reduced. Moreover, for a normal subgroup V' < U of finite index in G the morphism
nvu - (Gv,I'v) — (Gu, T'y) restricted to each vertex group G(v) is an isomorphism. Hence

the inverse limit preserves the property of being reduced and the proof is finished. O]
Theorem 2.5.2. Let G be a free-by-C group. Then G is subgroup conjugacy C-separable.

Proof. We continue with the notation of the section. Let H; and Hs be finitely generated
closed subgroups of G. Since G is residually C, it suffices to prove that if v € G and
H, = vHyvy™', then there exists some g € G such that H; = gHog™".

As usual, we denote by S%* and S the abstract standard tree of (G,T') and the
standard pro-C-tree of (G,T'). We divide the proof in two cases, when H; is infinite and

when H, is finite.
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Case 1. H; is infinite (hence so is Hs). By Proposition , S%5 has a unique
minimal H;-invariant subtree D?bs, and D; = W is the unique minimal H;-invariant
pro-C tree of S (i = 1,2). Then Dy is a minimal H;-invariant pro-C tree of S, and hence
Dy =~Ds.

By Theorem and Proposition one has that D%* is a connected compo-
nent of D; considered as an abstract graph and any other component of D; has the form
BDs for some 3 € H; (i = 1,2). Therefore yD$* is an abstract connected component

of D;. It follows that there exists some ﬁl € H, such that
hiyD3" = Di".

Since H, is infinite and the G-stabilizer of any m € 5% is finite, the tree D2 must contain
at least one edge; say e € F(D%%). Then hyve € D < S5 Since G\S®* =T = T by
Theorem , there exists some g; € GG such that gie = ﬁwe. Hence gflﬁw is in the Gg-
stabilizer of e, which in fact coincides with the G-stabilizer of e since it is finite. Therefore
gfllefy € (G, and so iLl’y = g € (. Finally, taking into account that H; and H, are closed,
we have

Hg=GmE=GmH_1’Y=GmE<hl)_1g=GmF{’=Hf,

as desired.

Case 2. H, is finite (hence so is H,). Since ® is open in Gg, Gg = G®. Hence
v = g7, where ¢ € G and v € ®. Then Hy = H] = (H{’/)"Y'. So, replacing H; with
Hf’/ and v with ¥/, we may assume that v € ®. Hence ®H, = ®H,, and so PH, = ®H,,
because ® is closed in G. Since in fact ®H; is open in G, one has (PH;)s < G5 (i = 1,2).

Thus from now on we may assume that
GZ(I)le(I)HQ:(I)NHl:(I)NHQ.

This implies that H; and H, are maximal finite subgroups of G, and so they are G-
stabilizers of some vertices S < S, say v; and vy, respectively (cf. Proposition .
Recall that by Lemma m, (G,T) is reduced. Then, if v is one of the vertices of
¢ and G, = G, it must be because the image of € in I is a loop.
Since H; stabilises yvg and vy, it must stabilise every element of the chain [yvg, v1]

in S (see Proposition |1.6.24)); therefore, since H; is maximal, it is the G-stabilizer of each
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102 2. The profinite fundamental group of an infinite graph of groups

element of the chain [yv,, v1]. In particular, the endpoints of any edge of this chain have
the same G-stabilizers. By the comment above, this means that the projection on I' of
any edge of [yvy, v1] must be a loop. Since the image of [yvs,v1] in T is a connected
subgraph of the graph T, one deduces that the image of [yvy, v1] in T has a unique vertex.
Therefore yv, and v; are in the same G-orbit. Hence Guy = Em = Gu;.

Since G\S®* = T is densely embedded in ' = G\S, one deduces that Gvy = Go;.
Say guy = vy, where g € G. Then H, = G,, = gG,,g ' = gHog™ 1. [

By the M. Hall theorem every finitely generated subgroup of a virtually free group
is closed in the profinite topology. Thus we have our Theorem [4] as a Corollary:

Corollary 2.5.3. Let G be a virtually free group. Then G is subgroup conjugacy separable.
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CHAPTER 3

GENERALIZED STALLINGS’
DECOMPOSITION THEOREMS FOR
PRO-p GROUPS

The entirety of this chapter is a novelty (published in the Annali della Scuola
Normale Superiore di Pisa - Classe di Scienze, 2023).

The celebrated Stallings” decomposition theorem states that the splitting of a finite
index subgroup H of a finitely generated group GG as an amalgamated free product or an
HNN-extension over a finite group implies the same for G. We generalize the pro-p
version of it proved by Weigel and Zalesskii in [45] to splittings over infinite pro-p groups.
This generalization does not have any abstract analogs. We also prove that generalized

accessibility of finitely generated pro-p groups is closed for commensurability.

3.1 The Limitation Theorem for virtually free pro-p

groups

We prove a special case of the main technical result of this chapter, namely Theo-
rem [13] We will provide the additional elements to prove Theorem [13]in the next section.

Unless explicitly stated otherwise, we maintain the notation of the previous chapters.
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104 3. Generalized Stallings’ decomposition theorems for pro-p groups

Theorem 3.1.1. Let G = 11,(G,T",v) be the fundamental pro-p group of a finite reduced
graph of finite p-groups. Let H be an open subgroup of G and H = TI;(H,A,v") be a
decomposition as the fundamental pro-p group of a reduced finite graph of finite p-groups.
Then |E(A)| = |E(T)].

Proof. Using induction on the index [G : H] we may assume that [G : H]| = p. Consider
the action of G on its standard pro-p tree S(G). Then G/H acts naturally on the quotient
graph H\S(G), i.e.

p:G/H x H\S(G) — H\S(G)

(gH, Hg'Tl(m)) ~— (Hgg'TI(m)),

since H is a normal subgroup of G.

Denote by V; the set of fixed vertices by this action and by V5 the moving ones.
By Proposition [1.6.23] H = II,(H, H\S(G)). Moreover, H(w) is a G-conjugate of some
vertex group G(v) < H for each w € V3; indeed, if w = gG(v) € V, for some g € G, since
w = gHII(v) by definition, then G(v) < HII(v) and consequently G(v) < H, so G acts
non-trivially on G/HG(v) = G/H implying that H(w) = G(w) is conjugate to G(v). If
(H, H\S(QG)) is not reduced, we can apply the procedure described in Remark to
obtain the reduced graph of finite p-groups (H,A). Since G is virtually free pro-p one
can use the Theorem to deduce that it suffices to prove the statement for (H, A).

Identifying Vi with its bijective image in I' we have that for each v € V; the vertex
group H(v) = G(v) n H is of index p in G(v).

If Vi = & then by the previous paragraph all the edge and vertex groups of
(H, H\S(G)) are conjugates of some edge and vertex groups of (G,I'). It follows that
(H, H\S(Q)) is reduced, since (G,I") is by hypothesis. We have that |[H\E(S(G))| =
p|E(T")] and the result follows in this case.

Assume that V] is non-empty. Denote by I'(V;) the spanned graph of V;, i = 1,2
and E5 the edges that connect vertices of V; to vertices of Vo, If (H, H\S(G)) is not
reduced, then the fictitious edges can be only the moved ones that are in E(I'(V})) U Ejs.
Moreover, only one such edge from its G/H-orbit can be collapsed. Indeed, suppose
e12 € Ei9 with extremities v; € Vi, vy € V5 is fictitious and so can be collapsed into the

new vertex va. This can happen because H(v1) has index p in G(v;) and so can be equal

AGUIAR, M.P.S Julho de 2023 Mat — UnB


mailto: mattheus@mat.unb.br
http://www.mat.unb.br

3.1. The Limitation Theorem for virtually free pro-p groups 105

to the edge group, i.e. H(vy) = H(e2) is proper in H(vs) = G(vs). This vy is identified
after the collapse of e with vy (and the rest of the vertices of Gejq are in I'(V3)) and so,
after collapsing, H(gvs) # H(gei2) # H(va). On the other hand, if e € E(T'(V})) then,
after collapsing it, all the other edges from its orbit become loops. Here are the pictures

for the case p = 2, where g € G/H.

Figure 3.1: Graph of groups (H,S(G)/H)

gl'(Va)

%)

Figure 3.2: Reduced graph of groups (#H,A) assuming that e; and ey are collapsed

Thus we can deduce that E(A) = |E(I'(V1))| + p|E(T(V2))| + (p — 1)|E1a] =
|E(I'(V1))| + |E(L(Va))| + |E12] = E(I'). This finishes the induction and concludes the

theorem. O
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106 3. Generalized Stallings’ decomposition theorems for pro-p groups

Remark 3.1.2. It follows from the first 3 lines of the proof of Theorem that |A] <
(G H]|T], [E(A)] < [G: H]|EI)] and [V(A)] < [G = H][V(T)].

Remark 3.1.3. The proof also shows that for p > 2 one has |E(I')| < |E(A)| unless
Vo = & and no edge from I'(V}) is moved, and therefore I' = A. For p = 2 the equality
|E(A)| = |E(T)| can happen either in the case A =T or if for every edge e € F15 one has

[G(do(e)) : G(e)] = 2 and E(I2) = .

3.2 Finitely generated pro-p groups acting virtually

on pro-p trees

In this section, we prove the main results stated in the introduction and deduce
several consequences. The proof of Theorem @] follows the proof of [9, Lemma 4.1] whose

original idea appears in the proof of the main result of [45].

Theorem [9. Let G be a finitely generated pro-p group having an open normal
subgroup H acting on a pro-p tree T'. Suppose {H, | v e V(T)} is G-invariant. Then G
is the fundamental group of a profinite graph (G,T") of pro-p groups such that each H, is
conjugate into a vertex group of G and each vertex group of G intersected with H stabilizes
a vertex of T'. In particular, G splits as a non-trivial free amalgamated pro-p product or

a pro-p HNN-extension.

Proof. Let U be the collection of open normal subgroups U of GG contained in H. Denote

by U the topological closure of U generated by the U-stabilizers of the vertices of T, i.e.,

U={U~nH,|veV(T)).

Then U is a closed normal subgroup of G, since U is normal and {H,, | v € V(T')} is stable
under conjugation of G.

Note that [7\T is a pro-p tree (cf. Proposition and H/(? acts on [7\T
with U/U acting freely. Therefore G/U contains the open normal subgroup U/U which
is finitely generated and free pro-p (cf. Theorem . By Theorem , G/ﬁ is
isomorphic to the pro-p fundamental group II;(Gy, 'y, vy) of a finite graph of finite p-

groups.
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3.2. Finitely generated pro-p groups acting virtually on pro-p trees 107

Although neither the finite graph I'y nor the finite graph of finite p-groups Gy is
uniquely determined by U (resp. U ), the index U in the notation shall express that both
these objects are depending on U. Using the procedure described at Remark we
have a morphism 7 : (Gy,I'y) — (Gu, T'y) to a reduced graph of groups.

For V' < U both open and normal in GG, the decomposition G/‘N/ =11, (Gv, Ty, vy)

gives rise to a natural decomposition of G/ U as the fundamental group
G/ﬁ = Hl(gV,UJ FV; EV)

of a finite graph of finite p-groups (Gy.r,I'v), where the vertex and edge groups are
Gvu(x) = Gy(2)U/U, x € Ty. Thus we have a morphism vy (Gv,Tv) = (Gvy,Ty) of
graphs of groups

Gv —% Gy
fv — fv
Vv.u

By Proposition , this morphism vy, ; of graphs of groups induces a homomorphism of
fundamental groups, so we define vy,;; in such a manner that the induced homomorphism
on the pro-p fundamental groups coincides with the canonical projection vy : G/ V-
G/ﬁ For this, choose a reduction morphism 7y : (gva,Fv) — (?V,U,f[]) to a finite

reduced graph of groups (Gy.yr, ['y) (it is not unique); it induces the identity map on the

fundamental group G/U (see Remark [1.6.19) and so NuVyy induces the homomorphism

I1,(Gyv, Ty, vy) — I (Gyy, Ty, Uy) on the pro-p fundamental groups that coincides with
the canonical projection ¢y : G/ V-G / U.

Using the aforementioned reduction, we have that G/ U = 1,(Gy, Ty, vy). Then
the number of isomorphism classes of finite reduced graphs of finite p-groups (G, I")
which are based on I” satisfying G/U ~ 1, (G}, IV, vg) is finite (cf. [45, Corollary 3.3]).

Let Qpy be a set containing a copy of every such isomorphism class. Since G is
finitely generated, we may choose V;, i € N, to be a decreasing chain of open normal
subgroups of G with Vo = U and (), V; = {1}. For X < Qy; define T(X) to be the set of
all reduced graphs of groups in {2y, , that can be obtained from graphs of groups of X by

the procedure of reduction explained above (note that 7" is not a map).
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108 3. Generalized Stallings’ decomposition theorems for pro-p groups

Define
Q =T(), Q2 =T(T(Ny)), -, =T ()

and note that €); is a non-empty subset of )y for every ¢ € N. Clearly 2,1 < €2; and since
Q) is finite there is an ¢; € N such that Q; = €2, for all j > 4; and we denote this {2, by
Y. Then T'(Xy,) = Xy,_, and so we can construct an infinite sequence of graphs of groups
(Gv;, ') € Qy, such that (Gy,_,,['j_1) € T(Gy;,T';) for all j. This means that (Gy,,I'y;) can
be reduced to (Gy,_,,I';_1), i.e. this sequence {(Gy;,I';)} is an inverse system of reduced
finite graphs of groups satisfying the required conditions. Therefore (G,T") = lim(Gy,,T';)
is a reduced profinite graph of finitely generated pro-p groups satisfying G ~ I1;(G, T, v).
Since the stabilizer of any vertex of U\T in H/V; is finite and so by Theorem it
is conjugated into a vertex group of (Gy,,I';). Therefore for any vertex in T its vertex
stabilizer is conjugate into a vertex of I11 (G, T", v).

Moreover, denoting by xy the image of z € I in I'y we have G(x) = lim Gy, (zv,) if
x is either a vertex or an edge of I'. Since Gy, () n H /V; fixes a vertex in V,\T for each
V;, and the set of fixed vertices of Gy, (z) n H/ ‘N/] is compact, the inverse limit argument
implies that G(z) n H fixes a vertex of 7.

A finitely generated pro-p group that acts on a pro-p tree splits as an amalgamated
free pro-p product or pro-p HNN-extension over the stabilizer of an edge (cf. Theorem
. Using the fact that the fundamental pro-p group of a graph of pro-p groups acts
on its standard pro-p tree (cf. Definition we can deduce that G splits as non-trivial
free amalgamated pro-p product or pro-p HNN-extension. This finishes the proof of the

theorem. O

Corollary 3.2.1. In the hypotheses of Theorem[q one has |E(T')| < |[E(H\T)|. Moreover,
if p>2, |H\T| <0 and I" # H\T, then the inequality is strict.

Proof. It makes sense to prove the statement assuming that H\T is finite. Let I'y, be as
in the proof of Theorem [} By Theorem combined with Theorem [1.6.20} |E(T'y;)| <
|E(H\T')| for each j. Hence |E(I')| < |E(H\T)| as required. Moreover, if I' # H\T then
|\E(I'y,)| < |[E(H\T)]| for each j by Remark [3.1.3| and hence |E(I')| < |E(H\T)|. O

One of the obstacles to obtaining the main structure result in the pro-p version

of Bass-Serre theory is that a maximal subtree of a profinite graph I' does not always
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3.2. Finitely generated pro-p groups acting virtually on pro-p trees 109

exist. The next corollary shows that, for the finitely generated case, this difficulty can be

surpassed.

Corollary 3.2.2. In the hypotheses of Theorem|[9, the graph T' possesses a closed mazimal

pro-p subtree.

Proof. By [37, Section 2.3, Corollary 2| the inverse image of a maximal subtree under a
collapse is a maximal subtree. Hence we can choose maximal subtrees D; of I'y, from the
proof of Theorem @ such that they form the inverse subsystem. Then D = lim D; is a
pro-p tree with V(D) = V(). O

Definition 3.2.3. Following [37, Section 6.1| we say that a pro-p group G has the FA
property if, for any pro-p tree T on which G acts, T¢ # ¢, i.e. if G acts on a pro-p tree
T then it has a global fixed point.

By Theorem [1.6.25] a pro-p group G is FA if it does not split as an amalgamated

free pro-p product or pro-p HNN-extension. In this sense, it is used in the introduction.

Definition 3.2.4 (Fab pro-p groups). We say that a pro-p group G is Fab if every open

subgroup of G has finite abelianization.

Lemma 3.2.5. Let G be a finitely generated Fab pro-p group. Then G is FA (cf. Defini-
tion|1.6.21]), i.e. if G acts on a pro-p tree T then it has a global fixed point.

Proof. Suppose G act on a a pro-p tree T'. We shall use the first paragraph of the proof
of Theorem @ According to it for any open normal subgroup U of G, U/ U is free pro-p,
and since GG is Fab this quotient has to be trivial. Therefore G/ﬁ is finite and so by
Theorem [1.2.15 the set of fixed points (J\T)¢/ U is non-empty. Then T¢ = Lan(ﬁ \T)G/0

is non-empty and the lemma is proved. O

Corollary Let GG be a finitely generated pro-p group having an open subgroup
H acting on a pro-p tree T" such that each stabilizer H, is Fab. Then G is the fundamental
group of a profinite graph of pro-p groups such that each vertex group intersected with
H stabilizes a vertex of T'. In particular, G splits as a non-trivial free amalgamated pro-p

product or a pro-p HNN-extension.
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110 3. Generalized Stallings’ decomposition theorems for pro-p groups

Proof. Let N = Hg be the normal core of H in GG. Since H, is Fab and N, is open in H,,
N, is Fab and hence so is N7. Then by Lemma Ng must fix a vertex of 7. Hence,
the hypotheses of Theorem [J] are satisfied for N and the result follows. O

We are ready to prove Theorem [13] It will be crucial to deal with the generalized
version of Stallings’ decomposition theorem and with accessibility in finitely generated
pro-p groups.

Theorem [13] |Limitation Theorem| Let G = II;(G, T, v) be the fundamental pro-p
group of a finite reduced graph of pro-p groups. Let H be an open normal subgroup of G
and H = TI1(H,A,v") be a decomposition as the fundamental pro-p group of a reduced
graph of pro-p groups (H,A,v") obtained by a reduction process from (H, H\S(G)). Then
|E(A)| = |E(T)|. Moreover, for p > 2 the inequality is strict unless I' = A.

Proof. We consider the action of H on the standard pro-p tree S(G) of G and observe
that since H is normal in G, the set {H, | v € S(G)} is G-invariant. Hence the result
follows from Corollary O

An action of a pro-p group on a pro-p tree T is called k-acylindrical if the stabilizer
of any geodesic in T of length greater than k is trivial. We say that a profinite graph of
pro-p groups (G,I") is k-acylindrical if the action of the fundamental group II;(G,T") on
its standard pro-p tree is k-acylindrical.

Hence, we obtain as a particular case of our Limitation Theorem (cf. Theorem

[13)), the pro-p version of Sela’s Theorem proved by Castellano and Zalesski (cf. [6])

Theorem 3.2.6. Let G = 1I1,(G,T") be the fundamental pro-p group of a finite reduced k-
acylindrical graph of pro-p groups. Then |E(T")| < d(G)(4k+1)—1 and |V (I')| < 4kd(G).

It provides a bound for |E(I")| when (G,T') is a finite reduced k-acylindrical graph
of pro-p groups. However, our Limitation Theorem (cf. Theorem is much stronger
and provides a bound for |E(T)| when (G, T') is any finite reduced graph of pro-p groups.

Theorem [11] Let G be a finitely generated pro-p group having an open normal
subgroup H that splits as the fundamental pro-p group of a finite graph of finitely generated
pro-p groups (H,A). Suppose the set of conjugacy classes of all vertex groups of H is G-
invariant. Then G is the fundamental group of a reduced finite graph (G,T') of pro-p
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3.2. Finitely generated pro-p groups acting virtually on pro-p trees 111

groups such that the vertex groups of H are conjugated into vertex groups of G and the
vertex and edge groups of G intersected with H are conjugated to subgroups of vertex and

edge groups of H respectively. Moreover, |E(T)| < |E(A)|.

Proof. Consider the action of H on its standard pro-p tree S(H). Since the set of the
conjugacy classes of vertex groups of H is G-invariant and the vertex stabilizers for this
action are exactly the conjugates of the vertex groups, we can apply Theorem [J] to obtain
a splitting of G as the fundamental group of a profinite graph of pro-p groups G =
I1,(G, T, v), where the vertex groups of H are conjugate into vertex groups of G and the
vertex groups of (G intersected with H are subgroups of vertex groups of H. Moreover,
since A is finite, by Corollary |E(D)| < |E(A)].

We are left with the statement about edge stabilizers. We use here the decompo-
sition (G,I") = lim(Gy,,I';) as a reduced profinite graph of finitely generated pro-p groups
satisfying G ~ I1;(G, I, v) from the proof of Theorem @ Since I' is finite we may assume
that I' = I'; for all j. Since (Gy;,T';) is reduced, the vertex stabilizers of \N/j\S(H) in H/XN/j
are exactly the maximal finite subgroups of the H/ \N/J (cf. Theorem . This implies,
in particular, that, for V1 <, Vj, the maximal finite subgroups of H /‘7j+1 map onto
maximal finite subgroups of H/ ‘N/J It induces a bijection of the conjugacy classes of the
maximal finite subgroups of H/ XN/jH and H/ XN/] Then, if e is an edge of I, starting from
some j, one has Gy, (e) = Gy, (v) N Gy, (w)?, where v, w are the extremity vertices of e and
are maximal finite subgroups of G/V;.

Let Hy, = I, (H;, Aj, v};) be the splitting of Hy, as an open subgroup of IT; (Gy,, I';, v;)
(see Proposition 1.6.23). Then Hy, n Gy, (e) < H;(e/)" for some ¢’ € E(A;), h € Hy,. It
follows that Hy, n Gy, (e) is contained in the intersection of at least two distinct maximal
finite subgroups of Hy, (some vertex stabilizers of }NIV].\S (H)). Hence G(e) n H is con-
tained in the intersection of at least two distinct vertex stabilizers of 7" and so fixes an

edge of T'. This finishes the proof. ]

With Theorem [11] in hand, we prove Corollary Theorem [5], Corollary [6] and
Corollary [§| respectively.

Corollary Let G be a finitely generated pro-p group having an open subgroup
H that splits as a finite graph of finitely generated pro-p groups (H,A). Suppose the vertex
groups of (H,A) are Fab. Then G is the fundamental group of a reduced finite graph of

AGUIAR, M.P.S Julho de 2023 Mat — UnB


mailto: mattheus@mat.unb.br
http://www.mat.unb.br

112 3. Generalized Stallings’ decomposition theorems for pro-p groups

pro-p groups (G,T') such that its vertex and edge groups intersected with H are subgroups
of vertex and edge groups of H respectively. Moreover, |E(I')| < |E(A)].

Proof. Let N = Hg be the normal core of H in G. Remember that Hg = ﬂgeG g tHg
is the largest normal subgroup of G that is contained in H. By Proposition [1.6.23] N is
the fundamental group IT; (N, Q) of a finite graph of finite p-groups whose vertex groups
are open in the conjugates of vertex groups of (H,A). Since H(v), v € V(A) is Fab and
N AH(v)? is open in HY, the group N nH(v)? is Fab. Then Lemma[3.2.5shows that N?
must fix a vertex of the standard pro-p tree S(H) and so the set of the conjugacy classes

of all vertex groups of N is G-invariant. Hence the result follows from Theorem [II] O

Theorem [l Let H = H, 1ix Hy be a free amalgamated pro-p product of finitely
generated pro-p groups Hy, Hy that are indecomposable over any conjugate of any subgroup
of K. Let G be a pro-p group having H as an open normal subgroup. Then G splits as
a free amalgamated pro-p product G = G Uy, Gy such that H; is conjugate into some G
(i,j = 1,2) and G; n H is contained in some conjugate of H;, i = 1,2 as well as L n H

s contained in some conjugate of K.

Proof. Since H;, Hy are indecomposable over any conjugate of any subgroup of K, by
Theorem [1.6.25] any conjugate of H; and Hs in G must fix a vertex of the standard pro-p
tree S(H). By Theorem [11] G is the fundamental group of graph of groups II;(G,T)
with one edge only (cf. Example and Hq, Hy are conjugate into the vertex groups.
Consider the action of G on its standard pro-p tree and recall that H means the subgroup
generated by the vertex stabilizers. However, H/H is trivial in this case (as Hy, Hy
stabilize some vertices) and since H < G, G/G is finite. Hence G can not be an HNN-
extension, as in the case of an HNN-extension G/G = Z,. Thus I' is one edge with two

vertices and so G = G111, G, where G, G5 are vertex groups and L is the edge group.

O

Corollary [6l Let p > 2 and H = Hy 11k Hy be a free amalgamated pro-p product
of finitely generated FA pro-p groups Hy, Hy. Let G be a pro-p group having H as an open
subgroup. Then G splits as a free amalgamated pro-p product G = G111, Gy such that
G; n H 1s contained in some conjugate of H;, 1 = 1,2 and L n H is contained in some

conjugate of K.
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Proof. We use induction on [G : H]. The base of induction [G : H] = p follows from
Theorem 5[ as H is normal in G in this case. Suppose [G : H] > p and H < N < G with
[N : H] = p. Then, by Theorem |5, N = Nj 1)y No such that H;,i = 1,2 are conjugate
into N;,j = 1,2 and N; n H are conjugate into H;,7 = 1,2. To apply the induction step,
we just need to show that N; and N, are FA.

Assume for definiteness that H; is conjugated into (N7 n H). Then we can suppose
w.lo.g Hy < Ny n H. Since H; is not conjugated into H, we deduce that Ny n H is
conjugate into H; and hence is equal to H; (a pro-p group can not be conjugated to its
proper subgroup). Then H; has at most index p in N; and so N; can not split, because
otherwise H; would split by Proposition and this splitting is non-trivial by Theorem
Thus Ny is FA by Theorem [1.6.25]

If Ny n H is conjugate into Hy then by the same argument one deduces that N, is

FA.

We claim that Non H is not conjugated into H;. Suppose it is, so H is contained in
the normal closure G¢ of G in G and, by Proposition G¢ splits as the fundamental
group of the finite graph of pro-p groups (G;, A) that we may assume to be reduced (see
Remark [1.6.19)). Moreover, by Theorem [13| E(A) = 1 only if p = 2. Since the p = 2 case
is excluded by the hypothesis, the proof is complete. O

Theorem [7] follows by direct application of Theorem [J] combined with Theorem

1.6.25 and Corollary (cf. Example [1.6.12)).

Corollary [8l Let p > 2 and H = HNN(H;, K,t) be a pro-p HNN-extension of
a finitely generated FA pro-p group Hy. Let G be a pro-p group having H as an open
subgroup. Then G splits as a pro-p HNN-eztension G = (Gy, L,t) such that Gy n H is

contained in some conjugate of Hy, and L n H is contained in some conjugate of K.

Proof. We use induction on [G : H]. The base of induction [G : H] = p follows from
Theorem [7| as H is normal in G in this case. Suppose [G : H| > pand H < N < G
with [N : H] = p. Then, by Theorem [5] either N = Ny 1y Ny or N = HNN (N, M, t)
with H; conjugate into N; and Ny n H conjugate into H;. But for p > 2 the first case
N = Nj 11y Ny does not occur, since viewing N as the fundamental group of the graph

of groups (N,T') with I' being an edge with two distinct vertices and viewing H as the
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fundamental group of the graph of groups (H, A) with A being an edge with one vertex we
have I # A and so, by Theorem 13} E(A) must have more than one edge, a contradiction.

Thus N = HNN(Ny, M, t) with H; conjugate into N; and Ny n H conjugate into
H, implying that H; and N; n H are conjugate so, w.l.o.g, we may assume that with
N1 n H = H;. Then H; has index at most p in N;. Then N; can not split, because
then H; would split non-trivially by Proposition and Theorem [I3] contradicting
the hypothesis. So N; is FA by Theorem [I.6.25]

Since N is FA we can apply the induction step to deduce the result.

3.3 Generalized accessible pro-p groups

Abstract accessibility was studied in a series of papers by M.J. Dunwoody (cf. [12]
[13],[14],]15]), where he proved that every finitely presented group is accessible, but not
every finitely generated group over an arbitrary family of groups. In fact, he presented
an example of a finitely generated inaccessible group. Generalized accessible groups were
studied by Bestvina and Feighn (J4]). The pro-p version of accessibility was introduced
by G. Wilkes in [46]. Chatzidakis and Zalesski generalized this definition as follows:

Definition 3.3.1 (Generalized accessible pro-p group, cf. Definition 5.1 of [9]). Let F
be a family of pro-p groups. We say that a pro-p group H is F-accessible if any splitting
of H as the fundamental group of a reduced finite graph (G, I") of pro-p groups such that
the edge groups are in F has a bound on I'.

Now we prove Theorem [14] Recall that two pro-p groups Gy, Gy are commensurable
if there exist H; open in GGy and H, open in G5 such that H; =~ H,. Theorem (13| allows
us to prove that the accessibility of a pro-p group with respect to a family F of pro-p
groups is preserved by commensurability. For accessible abstract groups such a result can
be deduced from the Stallings splitting theorem; we are not aware of such a result for

accessible groups with respect to a family of infinite groups in the abstract situation.

Theorem [14} Let F be a family of pro-p groups closed for commensurability.
Let G be a finitely generated pro-p group and H an open subgroup of G. Then G is
F-accessible if and only if H is F-accessible.
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Proof. Using the obvious induction on [G : H] we may assume that [G : H] = p and so
H is normal in G.

Suppose H is F-accessible and G is not. Then for any n € N there exists a finite
reduced graph of pro-p groups (G,T") such that G = I1;(G,',v) with edge groups in F
and |E(T)| > n. It follows from the proof of Theorem [9] that there exists an open normal
subgroup U of G contained in H such that G/U = I1;(Gy,T) is the fundamental group of
a reduced quotient graph of finite p-groups of (G, I') over the same underlying graph I'.
Then, by Theorem H/U =11, (Hy, Ay, vy) is the fundamental group of a finite reduced
graph of pro-p groups with |E(Ay)| > n. It follows that | E(Ay )| > n for each open normal
V contained in U. By the proof of Theorem [0 the set {(Hy,Ay) | V' <, U} contains
a subset that form a surjective inverse system {(Hy,, Ay,)} with (H,A) = lim(Hy;, Ay;)
being the reduced graph of pro-p groups such that H = I1;(H, A). Moreover, it is proved
in Theorem [L1| that edge groups of (H,A) are virtually F. Therefore, |E(A)| > n for an
arbitrary chosen n € A contradicting F-acessibility of H.

Suppose now G is F-accessible with accessibility number m and H is not. Then
for any n € N there exists a finite reduced graph of pro-p groups (H,A) such that
H =1I,(H,A) with edge groups in F and |E(A)| > n. Again it follows from the proof of
Theorem [9] that there exists an open normal subgroup U of G contained in H such that
Hy = (Hy, A, v) is the fundamental group of a reduced quotient graph of finite p-groups
with the same underlying graph A. On the other hand, the graph of groups (G, I'yy) with
CNJU = Hl(EU,FU,FU) constructed in the proof of Theorem @ must have at most m edges
and therefore by Theorem and Remark A has at most m[G : H| edges. This

contradiction completes the proof of the theorem. O

3.4 Adaptation of Wilkes’ example

In this section we show that our Theorem [J] also works for the inaccessible finitely
generated group J presented by Wilkes in [46, Section 4.2]. This means that any pro-p
group containing J as an open subgroup splits as the fundamental group of a profinite

graph of pro-p groups, and in fact as free amalgamated product over a finite group.

Example 3.4.1. First define the map p,, : {0,...,p" " — 1} — {0, ..., p" — 1} by sending
an integer to its remainder modulo p". Define H,, = F,[{0, ...,p™ — 1}] to be the F,-vector
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space with basis {hg, ..., hyn_1}. There are inclusions H,, < H,; given by inclusions of
bases, and retractions 7, : H,4, — H, defined by hy — h,, ). Note also that there is
a natural action of Z/p"Z on H, given by cyclic permutation of the basis elements, and
that these actions are compatible with the retractions 7;. The inverse limit of the H,
along these retractions is the completed group ring H, = F,[[Z,]] with multiplication
ignored. The continuous action of Z, on the given basis of H,, allows to form a sort of a
pro-p wreath product H, = F,[[Z,]] x Z, = lim(H,, x Z/p") which is a pro-p group into
which H, embeds.

Next set K,, = F, x H, = (k) x H,. Set G, = K; xF,. Forn > 1, let G,
be a finite p-group with presentation G,, = (kn_1,kn, ho, ..., hpn_y | k¥ = hY = 1,h; &
hj,kn_1 < h; for all i # p" ', k, = [ky_1, hyn—1] central) where < denotes the relation
‘commutes with’.

The choice of generator names describes maps H, — G,, K, 1 — G,, and
K, — G,. One may easily see that all three of these maps are injections. Define a
retraction map

Pn - Gn — K,
by killing k, and by sending hy — h,,_, ). Note that p, is compatible with 7, : H, —
H,,_ that is, there is a commuting diagram

K, 1—GaG,

;]
H,,— H,
Mn
Define I1; (G, Iy, vin) to be the pro-p fundamental group of the following graph

of groups:

Gl Kl GQ G"Lfl Km—l Gm

Note that the retraction p, : G, — K, _; induces the retraction P, — P,
represented by the collapse the last right edge of the picture.

Then P =lim I (G, Ui, U ) is the fundamental group of the following profi-
nite graph of pro-p groups

Gl K1 G2 K2 GS GOC
- e e e .
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where the vertex at infinity is a one point compactification of the edge set of the graph
and so does not have an incident edge to it; thus the edge set is not compact. The vertex
group G, of the vertex at infinity is G, = Ko, = liﬂlieN K, =Hy. Let J=Ply, H,.

Then J is the fundamental group of the following profinite graph of groups

G1 K, G2 Ho  Hy o Ho

By [46, Section 4.3|, this graph of pro-p groups is injective and by [46], Section 4.4]
J = (G4, H,). Since G is finite and H,, is 2-generated, J is finitely generated (in fact for
p = 2 the group J is 3-generated). Collapsing the right edge we shall get the reduced graph
of pro-p groups since no vertex group equals to an edge group of an incident edge. Note
that the latter graph of groups has a unique vertex co whose vertex group is infinite and
isomorphic to F,1Z, which does not split over a finite p-group, so satisfies the hypotheses
of Theorem [9] This means that any pro-p group G containing J as an open subgroup,
splits as the fundamental group of a profinite graph of pro-p groups (G, I"). Note however,
that since J is generated by vertex groups arguing as in the proof of Theorem |5 one can
deduce that G/G is finite and so is trivial (cf. [9, Proposition 3.4]. By m ' must be
a pro-p tree and so G splits as a free amalgamated pro-p product by Theorem [1.6.25]
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