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Abstract

In this work we study the dynamics and topology of the action of a semisimple Lie
group G on its maximal subgroup K, first we study hyperbolic actions on K and
then general translations. For this we find the minimal Morse components and stable
and unstable manifolds and prove that the minimal Morse components are normally
hyperbolic. The unstable manifolds correspond to Bruhat cells whose closure are
the Schubert cells. This division of K by Schubert cells creates a cell complex that
permit the calculation of the homology groups of K. We focus on the case of split
real forms. The boundary operator is found in general and the example SO(3) is

calculated geometrically and then algebraically by the formulas we obtain here.

Keywords: Semisimple Lie groups, Morse decomposition, Normal hyperbolicity,

Iwasawa decomposition, Cellular homology.



Dinamica e Topologia em Subgrupos
Maximais Compactos

Resumo

Neste trabalho estudamos a dinamica e topologia da acao de um grupo de Lie
semissimples G em seu grupo maximal K, primeiro estudamos as acoes hiperbdlicas
em K e depois estudamos translagoes gerais. Para isto achamos as componentes de
Morse minimais e as variedades estaveis e instaveis e provamos que as componentes de
Morse minimais sao normalmente hiperbdlicas. As variedades instaveis correspondem
as células de Bruhar cujos fechos correspondem as células de Schubert. Esta divisao
de K por células de Schubert gera um complexo celular que permite o calculo de
grupos de homologia de K. Focamos no caso de formas reais normais. O operador
fronteira é descoberto em geral e o exemplo do SO(3) é calculado geometricamente e

depois algebricamente pelas formulas obtidas aqui.
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Chapter 1
General Introduction

The first main results in this work follow similar results in flags manifolds that can be
found in [7], [14], [15] and are also collected in [2]. These results study the dynamics
of hyperbolic and general actions on flags, the fixed points, stable, and unstable
manifolds for the hyperbolic action are all found and a linearization of the stable
sets is possible. For the general action the recurrent set is found and a linearization
is also possible. The general methods were maintained with only slight alterations
to obtain similar results.

In [5] it is considered a continuous-time flow generated by semisimple element
H € g acting on the flag manifolds of g: they show that it is a Morse-Bott gradient
flow, and describe its fixed point set and stable manifolds. In [10] it is analyzed a
continuous-time flow generated by an element which is the sum of two commuting
elements of g, one of which induces a gradient vector field and the other generates a
one-parameter field of isometries.

Then normal hyperbolicity was first established when the matrix is diagonalizable
over the complex numbers [5], [7], [I0]. In [15] it is proven that this normal hyper-
bolicity is true in a far more general context of an arbitrary element of a semisimple
Lie group acting on generalized flag manifolds: the so called translations on flag
manifolds.

In [I6], the Bruhat and Schubert cells are used in flag manifolds to divide the
them in cell complexes to then calculate the topology of partial and complete flags.
Formulas for the boundary operator are then found. We also followed the results
of this work for complete flags to produce similar results for the maximal compact
subgroup.

The results of [16] were already partially found for flag manifolds by Kocherlakota
[19]. In the realm of Morse homology in Theorem 1.1.4 [19] it is proven that the

boundary operator for the Morse-Witten complexes are intimately related since



Bruhat cells are unstable manifolds of the gradient flow of a Morse function (see
Duistermatt-Kolk-Varadarajan [5]). Nevertheless the cellular point of view of [16]
has the advantage of showing the geometry in a more evident way, in particular, the
choice of minimal decompositions for the elements of W fix certain signs ambiguous
in the Morse-Witten complex.

The construction of cellular decompositions of group manifolds and homogeneous
spaces is an old theme. For the classical compact Lie groups one can use cells using
products of reflections via the product of reflections via the method that goes back
to Whitehead [25] and was later developed by [23], [24]. More recently it can be
found in section 3.D of [§].

The degeneration of Spectral sequences that occurs for unitary and sympletic
groups fails for the orthogonal groups, because in the analogue of the iterated
fiber decomposition of the orthogonal groups one encounters spheres of adjacent
dimensions (see section 3.2 of [4]).

In the second chapter we will define an action of the semisimple group G by left
multiplication on the homogeneous manifold G/AN where A and N come from the
Iwasawa decomposition. From this we can define what is an hyperbolic action in K
and find its fixed points and stable and unstable manifolds. This decomposition is
also called a Bruhat decomposition.

In the hyperbolic case a linearization of the manifolds is possible. To obtain
the main result in the chapter we begin by constructing a height function and an
appropriate metric in K so that we can show that the system is gradient. The first
main result for regular flows is Theorem 2.18 and the main result of the chapter is

Theorem 2.20 Let ht be a hyperbolic flow in K.

(1) The set of fixed points is the disjoint union of connected components
fix(h') = [ [ {fix(H ) : uw € Uy\U}

where fix(H,u) = KY%ub. The attractors are fix(H,c) for c € Cy\C and the
repellers are fix(H,cu™) for c € Cy\C.

(i7) The group K decomposes as the disjoint union of stable manifolds,

K =][{st(H.v): ueUs\U} (1.1)

where each st(H,u) = Ngfix(H,u) = Ny KYub is diffeomorphic to the stable
fiber over fix(H,u). Also, for ¢ € Cg\C' the stable manifolds are open in K

and their union is dense.



In the third chapter we first show that a general action is decomposable in elliptic,
hyperbolic and nilpotent components that commute with each other, the so called
Jordan decomposition. Next we study the example of SI(2) with K = SO(2) and see
that the system is not gradient. This motivates the study of chain recurrence and
then by working with concrete examples we found Lemma |3.4] where we show that
the system is equivariant by right multiplication by M. This provides a symmetry
necessary to show that chain recurrent components are the fixed points for the
hyperbolic flow fix(h") that is Theorem 3.10. Later we obtain a result for recurrent
points:

Theorem 3.11 Let ¢' be the translations flow in G and g' = e'h'u’ is its Jordan

decomposition. The recurrent set of translations g* induced in K is given by
R(g") = fix(h") N R(u")

and R(u') = n=(fixp(u')), where m is the projection of K in K/M = TF.

Later we also obtain a linearization of the general flow in the stable manifolds.

In the fourth chapter we use the Bruhat and Schubert cells to calculate the
homology of K for split real forms in particular at the end we calculate the homology
of SO(3). In this we follow [16] to first construct the skeleton and then the boundary
map to find algebraic expressions for the degrees of the maps. The calculations for
the degrees in SO(3) are done in two ways, first geometrically and then algebraically
to better illustrate the results obtained. A general result is:

Theorem 4.14  Let o(u,v) be as in Equation[{.3 Then if v = vivy then

c(u,v) = deg (\D’;l o \IJU> (—1)
and if v = vim;vy then
c(u,v) = deg <\If’;1 o \IIU> (—1)j+1+"(“’”)
where

o(u,v) = Z —2<&j’ﬂ>

ﬁenvg <a]7 a]>

as in Proposition 4.13. Whereas Theorem 4.16 is a result most useful when the

calculations from Theorem 4.14 turn too long.



Chapter 2

Hyperbolic translations of K

2.1 Action and metric in K

In this chapter we will first define an action of the semisimple group G by left
multiplication on the homogeneous manifold G/AN where A and N come from
the Iwasawa decomposition. From this we can define an hyperbolic action in K
and we find its fixed points and its stable and unstable manifolds, and show that a
linearization of the stable manifold is possible. For this we first construct a height
function and an appropriate metric in K so that we can show that the system is
gradient.

Let G be a real connected semisimple Lie group and let K, A, N be Lie subgroups
of G obtained by a fized Iwasawa decomposition G = K AN (see Theorem 13.3.8 from
[12]). The natural action of G in G/AN is given by left multiplication (as in section
10.1 of [12]). In this section we will study K as the homogeneous manifold G/AN
taking the base of G/AN, or the left coset AN, as b. So the isotropy subalgebra of
the base will be a & n, where a is the Lie algebra of A and n is the Lie algebra of V.
From this point on we will assume the Lie group K is compact. In Theorem 6.31
item (f) of [I§] we notice that the Lie group K is compact if and only if the center
of G is finite.

Definition 2.1 Let G be a real connected semisimple Lie group and let K,A, N as in
a fized Iwasawa decomposition. Define the action of G in G/AN by left multiplication.
From the Iwasawa decomposition and since G is transitive in G/AN for all g € G

there exists a unique k € K such that
gb=kb

and there are also unique a € A andn € N and g = kan.

Define the quotient map ¢ : G — G/AN as ¢(g) = gb = kb.

4



Action and metric in K 5

The Iwasawa decomposition is in fact a generalization of the Gram-Schmidt
orthogonalization process on the column vector of the matrices, where the orthogonal
result is in fact the & matrix in the decomposition. One can use this to build some
intuition on the action before. Also, in the SI(2) example it turns out that just
dividing by the norm after the linear action in G is enough to understand the action
in K. In the examples, we will take a slightly different approach to get k with less
calculations.

Now, note that,

¢l : K — GJAN, ¢|k:kw— kb

is a K-equivariant diffeomorphism of a Lie group into a homogeneous manifold, and

similarly,

Ol GJAN — K, ¢l kb k

is also K-equivariant.

Informally, we can identify the Lie group K with the homogeneous manifold
G/AN. When necessary we will use these diffeomorphisms to relate the group K
with the homogeneous manifold.

Example: Let G = SI(2) and the Iwasawa subgroups are: K := SO(2),

d (s 2)amones) v f(t )]

Now we will study the hyperbolic action on the compact group SO(2)

et 0 cosa —sina b cosa(t) —sina(t) b
0 et) \sina cosa ~ \sina(t)  cosa(t)

so we need to find the «(t) or the compact component for the matrix

etcosa —elsina
e lsina e tcosa

if we multiply the Iwasawa decomposition taking h(t) to be h and z(t) to be z,

cosa(t) —sina(t)) (A 0 1 =z
sina(t) cosa(t) 0 At)\0 1

From the elements in the first column e’ cos @ = h cos a(t) and €’ sin aw = hsin a(t)
dividing both terms when sina # 0 we get e? cota = cot a(t). So a(t) can be
determined. Remember that in the trigonometric circle the cotangent “axis” is
tangent to (0,1). Now we can identify the unstable equilibrium points are when
cosa = 0 and the stable equilibrium points are when sin « = 0. The first column of

the matrices is used to plot the results in matrix form.
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o)
(5)

By the action of G in K ~ G/AN we have that g belongs to the isotropy group
of kb if, and only if,

gkb = kb < gk € kAN < g € kKANE™!
Let gry be the isotropy subalgebra of kb for k € K then
e = k(a®n)

where the action of the group in the algebra is defined as g X := Ad(g)X for X € g.

Let M := Z(K, a) be the centralizer of the algebra a in K. Let £ be the subalgebra
of K and let 6 be the Cartan involution that fixes the elements in €, Define the
subalgebra s of g by the elements X € g such that (X) = —X.

Note that n can be decomposed by the rootspaces of positive roots, so when
fixing a Iwasawa decomposition we have already chosen the set positive roots X, the
set of H € a such that a(H) > 0 for all positive roots is the positive chamber a* of a.

Now we introduce an important immersion of K/M in s. Let H, € a® be a

reqular element.

Proposition 2.2 If M := Z(K,a), or the centralizer of a in K, and H, € a* be a

reqular element then the map.
j: K/M —s, kMw—kH, kekK
is a K-equivariant differentiable immersion of K/M in s.

Proof: The map j is well defined, indeed since if & € K and m,m’' € M then
kmH, = km'H, = kH,. To show that the map j is injective let & € K and
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kmH, = k'm'H, then kH, = k'H, and k'K’ € Z(H,) N K the centralizer of H, in
K. By Theorem 4.21 in [2], since H, is regular Ky, = Z(H,) N K = M. Then
k=K' € M and KM = kM.

The map j is K-equivariant since j(k.k’'M) = k.k'H, = k.j(k' M) and by Corol-
lary C.7 of [2] it is also differentiable. Since K /M is compact and j is differentiable

then j is an immersion. L]

Now, we will take the application j to be defined with domain K where it fails
to be an immersion.

The Cartan involution 6 that fixes the subalgebra € of K also fixes a Cartan inner
product (-,-). Now, let H be a fized element of clat and define the height function
frg of the application j in the direction H as:

fu: K =G/AN — R, z— (j(z), H)

and then fy(kb) = (kH,, H). Define Gy as the centralizer of H in G and define
Ky = Gg N K as the centralizer of H in K.

Proposition 2.3 The function fy is Kg-invariant and its differential is
fu(kO)K(Z -b) = ([, H,], k™' H)
where k € K and Z € €.

Proof: To show Kpy-invariance, let £ € Ky. By K-equivariance of j

fr(kz) = (kj(x), H) = (j(z), k" H) = (j(x), H)

where k is (-, -)-orthogonal (see Proposition 2.40 of [2]). Lets evaluate its differential
at kb in the direction kZ with Z € ¢,

fu(kb)k(Z -b) = d/dt|,_, fu(kexp(tZ)b)
= d/dt|,_, (kexp(tZ)H,, H)
= d/dt|,_, (™D H, k'H)
= ([Z,H,], k'H)

since k is (-, -)-orthogonal. O

Now, our next objective is to define a metric in K such that the field induced
by H in K is the the gradient of the height function fy. Using the Cartan inner

product, we get a corresponding orthogonal decomposition of g.

g=mead Yy go=—moOabndn
acll
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by Theorem 2.29 from [2], then
(a@n) =maon” (2.1)

Note that by Theorem 4.13 from [2], Ky = K(&)M = M. Then, by Proposition
C.13 (iii) from [2], an inner product in m@n~ is Ky-invariant or M-invariant extends

to K-invariant metric in By, for k£ € K given by
Bip(k(X - b), k(Y - b)) := B(X,Y) where X, Y e m@®n~

By decomposing n™ in M-invariant subspaces we can describe the inner products B
that are M-invariant.

Let A be a real number, and by be the A-eigenspace of ad(H,) in g given by
by:={X €g: ad(H,)X = \X}

Note that

by= >, 6
a(Hr)=\
and

‘I'F:Zb)\

A<0
Since M normalizes each g, by Proposition 3.25 [2] and M normalizes m since

My = exp(m) is a normal subgroup of M we have that M normalizes the inner
product Binm&én~.

For X € g let X, be the orthogonal projection of X in by and let X, be the
orthogonal projection of X in m. Note that for m € M, (mX), = mX,. Let ¢, and
co be positive real numbers associated to by and m, respectively. Lets define the
inner product in m @& n~ given by

B(X,Y):=> c(Xy,Y)) where X,Y e m@®n~ (2.2)
A<0
Since (-,-) is M-invariant then B is also M-invariant.

Using the notation H - x = d/dt|;—¢(e!* ) and the notation H- for the induced

field by H in K, so that H- is in the space of tangent fields I'(TK) of K.

Theorem 2.4 Taking cy = =2\ for A <0 in equation then

H- = gradg (fu)

that is, the induced field by H € s in K is the gradient of the height function fg with

respect to the K-invariant metric B. Also,
B(X,Y) = co(Xo, Yo) + 2([X, H,], V) X, Yemon

where Xy and Yy are the components of X and Y in m. And cq is arbitrary positive.
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Proof: By the definition of gradg for k € K and X e mé&n~,
By ((X - b), grady (fir) (kb)) = fiy (kB)K(X - D)
So to prove the first statement we need to show that
By (k(X - b), H - kb) = f1,(kb)k(X - b) (2.3)

To evaluate the left side, let Y_ be the orthogonal projection of k'H in m @ n~,
that is parallel to a @ n. Note that since k™'H € s then Y_ € n™.

Then Y_-b=k"'H -b,and k(Y_-b) = H - kb. Let X = Xy + X_ where Xy € m
and X_ € n~. By the K-invariance of the metric the left side is

By (k(X -b), H - kb) = By (k(X - b), k(Y -1))
= B(X_,Y.)

= a(X\Y) (2.4)

A<0

To evaluate the right side, let Z7 = Xy 4+ X_ 4+ 60X_ € €. Since 6X_ € n, then
Z-b=(Xo+ X_)-b. By Proposition then

i (kb)k(Xo+X_)-b) =([Z,H,], k" H) (2.5)

To evaluate [Z, H,], first note that

[H,, X_| = ad(H,)X) = X,

A<0 A<0

[H,,0X_] = —[0H,, 6X_] = —6[H,, X_] = = > \0X,
A<0

and that [H,, Xo] = 0. Then

[Z;]{A :ZEZ:A<QXA'_<X3)

A<0

Since k™' H € s (see Proposition 2.40 from [2]) then
(X, k7'H) = —(0X,, 0k 'H) = —(X,, k" 'H)

and
(2, H,), k7 H) =)~ —2MXy, k7 H) = )~ —2M(X,, Y3)
A<0 A<0
since Y_ =}, Y, is the projection of k'H at m & n~. From and since
X = Xog+ X_ then
Fr(kb)k (X -0) =Y~ —2X(X,, V) (2.6)

A<0
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Now, to prove equation (2.3) then by (2.4)) and (2.6) the metric B has ¢y = —2\
for A < 0.

To prove the last statement, let X_,Y_ € n~ then

B(X_,Y)) = =23, AMXy, Y))
= 2N, A V)
— —2([H,,X], Y.)
= 2([X, H,], Y)

Since Y =Yy + Y_ with Yy € m then
B(X7 Y) = B(X07}/b) + B(X—7Y—)

[

The Riemannian metric B constructed on the last Theorem is an extension of
the Borel metric of IF.

2.2 Fixed points

Let M, := N(K,a) and M := Z(K, a), respectively, the normalizer and centralizer
of a in K. Note that in general M is not connected so that M, = exp(m) is, in
general, a proper subgroup of M (see sl(n,C)). To study the fixed points in K it is

convenient to define the group

U := M*/MO

This group will play a similar role to the Weyl group in the study of fixed
points in flags [2]. Since the Weyl group W is M,/M (see Corollary 3.24 [2]) then
W = (M,/My)/(M/My) so that W = U/C where we define

C .= M/Mo

Note that this implies that U is then a group extension of W by C'. Also note that
W is not a subgroup of U and for each element in W there is a corresponding coset
of C'in U.

Remember from the Iwasawa decomposition that G has subgroups K, A, N now,
let €, a and n be their respective subalgebras.

The definitions of U and C' have some useful consequences. For c € C, cH = H
for all H € a. For u € U, uA = Au. Also, for any o € 11, cg, = go s0 cNc™ ! = N.
In general, if u € wC', then ug, = gua-
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In analogy to w™, the principal involution, we fix some u~ € U such that
u” €w C,sothat u n=n"and u" N(u")' =N".

Let us study the flow h' = exp(tH), t € R and H € cla® defined in K using the
action of the beginning of the chapter. In this section, we will describe the fixed
points of h' in K as orbits of GY, the identity component of the centralizer of H in
G. In this description, the orbit of b by M, = N (K, a) has a central role.

From Lemma the hyperbolic component H of any action can be assumed to
be in the closure of the positive chamber by changing the Iwasawa decomposition.
Now note that since Iwasawa decompositions are conjugated to one another the
corresponding flows are also conjugated. So we can assume without loss of generality
that H € cla™.

In the case of complete flags, by Proposition 3.25 of [2], since p = m @ a @ n, then

the action of M, in the isotropy subalgebras is the same as the action of W or,
M,(m@®adn)=W(mdadn)
For the study of actions in the isotropy algebras of K note that,
M, (a®n)=U(a®n)

By the Iwasawa decomposition the action of G in K ~ G /AN corresponds to the
action of Ad in the isotropy algebra of g, = a @ n. We will show that the set of fixed
points in K of h' is the union of the orbits G%ub for u € U. Define

fix(H,u) := GYub
in Theorem we prove that the fixed points of h' are

fix(h') = | fix(H,u) = | ) Gub

uelU uelU

Proposition 2.5 The flow h* in K ~ G/AN is the gradient of the height function

i relation to the Borel metric and the following sets coincide:
(1) The zeros of the vector field H- in K.
(17) The critical points of fg.

(i71) The fized points of the flow ht, t € R.

(iv) The fized points of the flow h', t € Z.
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Proof: By Theorem the induced vector field by H is the gradient of fy in
the Borel metric. Since a gradient field is zero precisely in the critic points of its
height function, then the zeros of the induced vector field by H coincide with the
critic points of fy. Since h!, t € R is the flow induced by the vector field H in K,
then its fixed points are given by the points where the vector field is zero. By the
previous argumentation, these points are the critic points of fz. Note that since A’ is
a gradient flow, then it does not have periodic orbits. Since fy is strictly increasing
along a non-trivial orbit of A’ this implies that the fixed points of (i7i) and (iv)

coincide. ]

Let us define then the fized points of h' in K by the set described in the previous

Proposition.

Proposition 2.6 For any x € K, the following sets of K :
(i) the omega limit of x in the flow b, t € R,
(i1) the omega limit of x in the flow h', t € Z,

coincide and are the fized points of ht in K.

Proof: Let f = fp, then by the Theorem [2.4] then the real function ¢ — f(h'z) is
not-decreasing and since K is compact f limited from above. And ¢t — f(h'z) is
constant if, and only if, z is a critic point of f. By the Proposition [2.5] this occurs
if, and only if, x is a fixed point of A'.

First let us show that if y is an omega limit of z by h' then y is a fixed point
of ', t € R. Let w(x) be the omega limit set of z by h’, t € R. Since the real
function ¢ — f(h'x) is non-increasing and limited from above, there exists a limit a =
lim; . f(h'z). Then, for any real sequence t, — 0o, we have a = lim,,_,, f(h'"z),
so that from the continuity of f, for all z € w(z), f(z) = a. Since y € w(z) and w(x)
are invariant, then h'y € w(x) for all ¢. And then, f(h'y) = a, for all ¢, and from the
argument in the beginning, v is a fixed point of A, t € R.

The omega limit of x by h!, t € Z, is contained in the omega limit of x by A,
t € R. For the opposite implication let y be the omega limit of z by h!, t € R.
Then there is a sequence t; of real numbers where ¢t; — oo and h'iz — y, when
i — 00. From the argument at the beginning, y is a fixed point of h'. Let ¢; € [0, 1]
be a sequence such that t; + ¢; = n; € N for all ¢, since [0, 1] is compact there is
a subsequence of ¢; (and then ¢; and n;) and we can assume lim; ., &; = €. By
continuity and by the fact that y is a fixed point of the flow, we have

lim A"z = lim A% (h"z) = h'y =y

1—00 1—00
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and y is the omega limit of x by hl, t € Z. O

Remember that, Ky = Gy N K, now define
a(0) := generated by {H, : a € 6}

and
a(©)" :={H €a(®): a(H) > 0,YVa € (0)"}

is a Weyl chamber where,

(@) == (0) N II*

We need to find a semisimple algebra such that (©) can be seen as a set of roots.

The subalgebra of type © is the subalgebra

8(0)==a®) @ > ga
a€(O)

This subalgebra is in fact a semisimple algebra (see Proposition 4.2 [2]). Define

For a given H € a consider the annihilator of H in X to be
Y(H):={aeX:a(H)=0}

and n(H)¥* are defined as the nilpotent algebras generated by g(H).

The semisimple group G(0) of type © of G is the connected subgroup generated
by g(0). Denote by K(O), A(©), N(O©)* the connected subgroups generated,
respectively, by €(0), a(0), n(0)*. Define

G(H) := G(X(H))

and its components in the Iwasawa decomposition are given by

Since uMj are lateral classes of M, /M, then uMy, = Myu and we have that
K(H)uMy = K(H)Myu and G(H)uMy = G(H)Myu. Note also that uGru™ = Gu
if u e wC.

Proposition 2.7 If G% and K% are the components of identity of G and Ky then
K%ub = GYub = G(H)Myub = K(H)Myub

15 a compact connected submanifold of K.
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Proof: To show the first equality from Proposition 4.19 from [2] we get
G'wle = walHA(walH N N)

Let u € U such that u € wC. By taking the conjugate of the equation above by u
then
GH == KHA(GH N uNu_l)

Now, AuNu~! fixes ub, in fact, AuNb = uANb = ub and

Since the action of G in K is continuous then G%ub C K%ub and since K% C GY
then G%ub = K%ub.

For the second equality, since Gy = Gy (see Proposition 4.22 [2] ), G(H) =
G(X(H)) and Gog = M AgG(O) (see Proposition 4.14 of [2]), then

Note that G(H) C Gy = Z(ay) normalizes Ay and M, normalizes G(H) so
MoAyG(H) = MyG(H)Ay = G(H) My Ay

and G(H)MyAy is a subgroup of GY%. Since the two subgroups are connected and
have the same Lie algebra then, in fact, G% = G(H)MyAg.
The term Ag C A fixes ub so Aub = uAb = ub and

GYub = G(H)Myub

To get the third equality, we show that K% = K(H)M,. By Theorem 4.21 of
[2], we have Ky = K(H)M. First let us show that M, normalizes (g,), where
R(X)=(X+4+0X)/2, for X € g. By Proposition 3.25 of [2], My C M normalizes g,
for all a. If mg € My there is Z € m such that my = exp(Z), let X € g, then

mok(X) = exp(Z)r(X) = e¥Zp(X) = %eadZ(X +6X)

Since [Z,0X] = 0[Z, X] then e*Z0X = 0e*d? X and

1 1
mok(X) = 5(6adZX + 07 X)) = §(m0X + 0(moX)) = k(mpX)

then mok(ga) € K(ga) and we get that My normalizes x(g,).
Since K(H)My = MoK (H) we conclude that KY = K(H)Mjy, since these Lie
groups have the same Lie algebra. Since My C K% then K% Myu = K%u. Note
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that if uMy = v/ My then K%u = K%u’ so these two subgroups don’t depend on the
choice of the element in the coset class. In a similar form, since My C GY we get
GYhu = GYu'.

For the last statement, since KY is a compact and connected subgroup of K and
the action of G in K is differentiable then M = K%ub is a connected and compact
submanifold of K. O

Note that if uMy = v’ My since My C K% = K(H)M, then K% Myu = K%u and
K%u = K%u' In the proof of the previous Proposition we showed that My C K% C

GY, then we can write K%ub in the form K% uMyb. Similarly, we can write G%ub as

Theorem 2.8 The fized points of h' in K are given by the union

U Kpub = | GYub
wel wel
Proof: By Proposition , the fixed points of h! in K are the critical points of the
height function fy. By Proposition 2.7, K%ub = K (H)Myub.
To get the critical points of fy we rewrite the derivative at the point kb, k € K,
in the direction Z € ¢, given by Proposition [2.3] as follows

fu(kb)k(Z -b) = (k[Z, H.], H)
= ([kZ,kH,)], H)
= —(ad(kH,)kZ, H)
= —(kZ, ad(kH,)H)
= —(kZ, [kH,,H))

where we used that k is (-, -)-orthogonal, kH, € s (see Proposition 2.40 of [2]) and
ad(kH,) is (-, -)-symmetric (see Proposition 2.23 of [2]). Since kt = ¢, then kb is a

critical point of fy if, and only if,
(Z, [kH,,H]) =0, forall Zect

Since kH, and H € s then [kH,, H| € ¢ and, since (-, -) is an inner product in €,
then the previous equation is true if, and only if, [kH,, H] = 0. Then kb is a critical
point of fy if, and only if, kH, centralizes H.

For k € M, we have kH, € a then [kH,, H| = 0. Then the points kb, k € M,,
are all critical points. Since M, = MyU then Myub for u € U are critical points.
Now since fg is Kpy-invariant to the left then the orbit KzUb consists of critical
points. In fact, let a(t) be a differentiable curve such that «(0) = kub, where k € K.
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From the Ky invariance of fg, then fy(a(t)) = fu(k™'a(t)), where k™ 1a(t) is a
differentiable curve and k~'a(0) = ub. Then

(frr o) (0) = (fmok 'a)(0)=0

since ub is a critic point.

In fact, the points KyUb are all the critical points of fy. Indeed, if kb is critical,
k € K, from the previous argument then kH, centralizes H € clat. By Lemma 4.20
of [2], there is | € K(H) such that [kH, € a. By Proposition 4.28 of [2] and by
Corollary 3.24 of [2], there is m € M, such that [kH, = mH,. Then m~'ikH, = H,,
and

m ke Ky =M

and,
k=1"'m(m k) € K(H)M,

Since M, = MyU then k € K(H)MyU. Now, since K = K(H)M, (from the
beginning of the proof of Proposition then K%Ub are the only critical points of
f#r. The equality in the Theorem is a consequence of Proposition [2.7] O

2.3 Linearization

In this section, we will prove in Theorem [2.14] a linearization of the gradient flow h'
around each component of fixed points M = fix(H, u) := K%ub.

First let us define a normal linearization of a differentiable flow.

Definition 2.9 Let ¢' be a differentiable flow in a Riemannian manifoldX fort € R.
A invariant manifold M C X is normally hyperbolic if the tangent bundle of X over
M has orthogonal invariant sub-bundles V=, V't and there are positive constants ¢
and A < p such that

(i) TX|py=TMaV- eVt
(i1) |D¢'v| < ce Mv| for allv € V= and t > 0.
(iii) |Do~v| < ce M| for allv € Vtand t > 0.

(iv) |D¢tv| < ce!v| for allv € TM and t € R.
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In the previous definition V'~ is called the stable fiber of M, V* is the unstable
fiber of M and V~ & V' is the normal bundle

V=V V"

We identify the zero section of the normal bundle with the base M. Let ¢' be a
differentiable flow in X for ¢t € R. Define N¢' as the restriction to the normal fiber
of the differential

N¢' := D¢'|v

A normally hyperbolic linearization around M is a local diffeomorphism f from a
neighbourhood A of the zero section at the normal bundle to a neighbourhood B of
M such that f restricted to the normal bundle is the identity in M and is a local
conjugation

fF(NG'(v)) = ¢' f(v)
for all v € A such that N¢lv € A.

Now, define an adequate complement of the isotropy subalgebra g, for x in K to
use it as a model for the tangent bundle T'K . Let us fix in g a Cartan inner product
(-,+), that is K-invariant (Proposition 2.40 of [2]). Consider g the orthogonal
complement of g, in g with respect to this inner product. From Proposition C.13 (i)
of [21,

g - TK, Xw—X- -z (2.7)

is a linear isomorphism, and, for k£ € K,
k(82) = Oha (2.8)

Now, since gy, = k(a ®n) and (a @ n)* = m ® n~ (equation 2.1). Then, in
particular,
Gy = UM BN ) =mSun” (2.9)

since umg € uMy C M, and umem = m. So we can use g as a model for TK, and

consider the application
TK, - K X -z exp(X)x X ecgr (2.10)

We will show that, for the following Riemannian metric in K, the restriction of this

application to the normal bundle of M is the differentiable linearization needed.
Proposition 2.10 Let

(X -2,V -x), .= (X,Y) for XY € g+



Linearization 18

be a K-invariant Riemannian metric in K such that the map defined in (2.7)) is an
isometry. Then, forY € g,
Y-al, <Y

with equality if, and only if, Y € g+.

Proof: By definition the map in (2.7)) is an isometry and the metric is well defined
in each tangent space. To show the K-invariance of the metric, let X € g, so
k(X -z) = kX - kz, where kX € k(gl) = gi, and similarly, kY € g;i.,. Then by, the

K-invariance of the Cartan inner product and the definition of the metric,

(R(X ), k(Y - 2)pe =

Because of the K-invariance by Proposition C.13 (iii) of [2] this defines a Riemannian
metric.
For the last property, let Y = Y; + Y, where Y} € g+ and Y, & g,. Then
Y.-x=Y -z, and
Y- zfe = V1] < Y]

with equality if, and only if, Y5 = 0 or if, and only if, Y = Y; € g. O]

From now on, let us fix the previous metric in K. Note that, in general, this
metric is different from the Borel metric used previously. First we define candidates
for the stable and unstable bundles orthogonal to the tangent bundle of M. By
Proposition C.9 of [2] the tangent space of the orbit

M = GY%ub
is given by
TM = GY%(gy -ub) C TK
Define

The nilpotent algebras of g(©) are n(0) and n(©)~ (see Proposition 4.5 of [2])
The subalgebra ny is generated by the positive roots not in 3(H) so that
n =n(H) @ ny. The definition of ny; is analogous.

Consider the orthogonal decomposition

g=gn Ony Oy (2.11)
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where gy and n3; are Gy-invariant by Proposition 4.23 from [2]. Define
VE=GY(ng - ub) c TK

for x € M, and subspaces

vp i=ny Mg

T

Proposition 2.11 (i) The tangent space of K in M can be decomposed as the

Whitney orthogonal sum,
TKly=TMadV V"

where VE are Gg-invariant differentiable vector sub-bundles of M. And, in
particular, V= @& VT is a normal fiber of TM.

(i) For x € M, the map
bt - VE  YeVY.r

is a linear isomorphism and k(v,) = vg, for k € Ky.

Proof: Since nj; are G'y-invariant, by Proposition 4.24 of [2], they are G%-invariant
and their image in g/g, is invariant by the isotropy of ub in GY%. From Proposition
C.12 of [2] V* are sub-bundles G%-invariant over M = G%ub. From the GY-

invariance of nﬁ it follows that

VE = {(gni ~gxg) g € G%,gzo =z} = ni ST (2.12)

T

To prove the Whitney sum, by the orthogonal decomposition
g=umen”)Su(adn)
by the decomposition in root spaces of nfl and by equation ([2.9) then

n; = (npNumen’)) e (n;Nu(adn))
= (5 N gw) @ (05 N gu)

For z € M, then z = kub with k € KY%. From equation (2.8) then k(gl) = g
and kg.y = g, Since K% = K N GY normalizes nli{, taking k£ in both sides of the
previous decomposition we get

ny = (g N gy) & (g N gs)

=0, @ (nj; Nge) (2.13)



Linearization 20

From this and from equation (2.12)) then
bt VE Y Y.2

is a linear isomorphism. Since gy is also G%-invariant, the same argument applies
to T™M to get TM, = gy - x and

g = (gu Ngy) @ (9 N ga) (2.14)

and,
TM, = (guNgy) (2.15)

Combining the decompositions , , and , we get the orthogonal sum
g, = (onNg;) ®o, Do

The image of this decomposition by the isometry is the orthogonal sum
TK,=TM,®V, oV

Since k € K% C Ky normalizes n3;, from equation (2.8)) then kv, = vy,. O

To study the dynamics in the fibers V*, first we study the dynamics in the

subalgebras nﬁ.

Lemma 2.12 Let h = exp H, where H # 0. Then
RY | <e™Y| forY €ng, t>0

and
W'Y <e Y| forY enf, t>0

where

p=min{a(H): a(H) >0, a € I1}

Proof: Let Y € n3;, then A'Y = )Y where e!*dH) is (. .)-symmetric with

eigenvalues in nlf, given by

{e*olDt o (H) >0, a € I}

since ad(H) is (-, -)-symmetric (see Proposition 2.23 of [2]) with eigenvalues in n;

given by
{ta(H): a(H) >0, a € I}
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Since Y is an orthogonal sum of eigenvectors Y = 3" Y,, with Y,, € g, then,

‘htY‘2 _ Zezl:Qa(H)t|Ya|2

Fort > 0 and Y € ny, then

‘h—tY|2 _ Ze—Qa(H)t|Ya|2 < e—QMtZ |Ya|2 — o 2ut |Y|2

«

since et < e for t > 0 and all a € II with «(H) > 0, proving the first
statement. For ¢t > 0 and Y € n};, then

‘h—tY|2 _ Ze—2a(H)t|Ya‘2 < e—2,u,tz ’Ya|2 — o 2mt |Y|2

« «

since e )t < e7# for t > 0 and all a € II with o(H) > 0, proving the second

statement. ]

The next result shows that the set of fixed points M of h! in K is normally
hyperbolic (see Definition [2.9)).

Proposition 2.13 The fibers V* are h' invariant and
|h'v] < e |v] forveV—,t>0

|h"t| <e ™| forveV*t t>0

where 1 > 0 is obtained by Lemma|[2.13. And,
|h*v| = |[v| forve TM,teR

Proof: Since n§ and M are hl-invariant, from the definition of V* it is h'-invariant.
From Proposition [2.11{(ii) then v € V* is given by

v=Y x with Y € v, = n5; Ngy
where |v| = |Y| and 2 € M. Since h'v = h'Y - x then
|hfv] < WY

by Proposition [2.10] The inequalities from the Proposition follow from Lemma
and from |Y'| = |v|. To prove the last statement, by equation (2.15)) and the proof of
Proposition [2.11], for v € T M

v=Y - x with Y € gy N gy
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where [v| = |Y| and z € M. Then h'v = h'(Y -x) =Y -z, since h' centralizes gg, so

[R'v] = Y| = |v]
[
Take V' to be the normal bundle NM of M in K so that
V=V aoV"
and define the model of normal bundle V, of x € M by
0, :=b, Do
and define the restriction of the map (equation to the normal bundle by
UV:V oK X -z exp(X)r wherex e M, X €0, (2.16)

The next result shows that this is the linearization we wanted to prove so that

the flow by hA! in K is normally hyperbolic.

Theorem 2.14 (i) ¥ is a normal linearization of the flow h' in a neighbourhood

of M.

(ii) The restriction of ¥ to V'~ is a h'-equivariant diffeomorphism between V'~ and

st(M).
(111) U is Kpy-equivariant.

Proof: Since ¥(0 - z) = z, then VU is a bijection from the zero section V; to M.
First we prove the equivariances of W. From Proposition 2.11|(ii), k(v,) = 0,
for k € Ky, so that for X € v,, then

U(k(X -2)) =V(kX - kx) = exp(kX)kx = kexp(X)x = k¥ (X - z)

that proves the Kpy-equivariance. Next we prove that, h*(v,) = v,. Since h' leaves
x € M fixed then it normalizes g, and it also normalizes g, since h! acts in g as a
self-adjoint transformation with relation to the Cartan inner product. Note that h'

also normalizes n3;, since h' € Gy, so that h* normalizes v,, and
V(' (X -2)) = ¥(h'X -2) = exp(h' X))z = hl exp(X)r = WU (X - 1)

so that ¥ is hl-equivariant.
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To prove the differentiability let us consider an adjusted map to the sub-bundle
V and use the map from Proposition C.13(ii) of [2]. Taking in the Proposition
K = K% and U = M we can consider just the map 1) since it is possible to define
s: M — K9 in the whole set M, if z = ub then

Vivgp XM=V (Y,y) — s(y)(Y - ub)
Remember that there is a diffeomorphism,
¢0:G/AN - K, ¢ :kb—k
Define then the section s(y) = ¢(y)u™! € K% and the map p,(k) = »~'(ku), so that,
vw — Vi 2BV, Y o s(y)(Y - ub)
is a linear isomorphism, since it is a composition of isomorphisms. Also, since

Y(Y,y) = s(y)Y - s(y)ub=s(y)Y -y

where s(y)Y € v,, and

o p(Y,y) = exp(s(y)Y)y = s(y) exp(Y )ub (2.17)

is differentiable in (Y, y).

Next, we prove that W is a local diffeomorphism in a neighbourhood of the
zero section V. From the inverse image Theorem, it is sufficient to prove that the
differential ¥’'(v) is an isomorphism for all v € V. Let 2 € M be the base point of

v =0-z, so that ¥(0,z) = v. So we must prove that
(T o) (0,2) : vy x TM, — TK,

is an isomorphism.

Let us consider the coordinate curve (0, «(t)), where a(0) = z and o/(0) = ¢ €
TM,. And the coordinate curve (tY,z), where Y € v, so that the tangent vectors
in t = 0, are respectively (0,¢) and (Y, 0). So that,

Vo (0,a(t)) = s(at))ub = aft)
since s(y)u =y and
Vo (tY,z) = s(z) exp(tY )ub

Then
(P o) (0,2)(Y,q) = q+ s(z)(Y - ub)
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and the image of the differential (¥ o ¥)'(0,x) is TM, @ V, that is all TK,, by
Proposition [2.11] This proves that ¥’(v) is an isomorphism for all v € Vj.

Now we show that W is injective in a neighbourhood A of V. Assume, by
contradiction, that there is no neighbourhood of V; where ¥ is injective. So that,
there are sequences vy, vj, € V such that vy # v}, V(vg) = ¥(v,) and v, v, — Vj,
when k — oo. Since Vj is compact, we can the assume the neighbourhood is compact

and by taking sub-sequences, vy — 0 -z, v;, — 0 -y, where z,y € fix(H,u). Then
r=V(0 2)= 111?1 U(vy) = liin V(o) =9(0-y)=y

and since vy # vy, the map WU is not locally injective in 0 - z = 0 - y, contradicting

the fact that ¥ is a local diffeomorphism in neighbourhood of the zero section V4.
To finish the proof, define B := WU(A). Item (ii) is then a consequence of Lemma

A5 (iii) [2], since by uniqueness, Wy - is an extension h'-equivariant of Wy —ny4 for

all V. m

2.4 Bruhat Decomposition

The stable set of the invariant set M, written stM, is the set of points of K such
that the omega limit is in M. Later we will prove that in our case this set is in fact
a manifold. Similarly, the unstable set un.M, is the set of points of K that the alpha
limit is in M. In this section we will show that the stable set of each component of

fixed points M = fix(H,u) is an immersed submanifold of K given by the orbit
NyM

This will provide a decomposition of K which we regard as a general Bruhat decom-
position.

Since h* € Gy, by Proposition 4.24 from [2], h* normalizes the nilpotent subgroups
Ny, N~ (H), and nilpotent subalgebras ny, n=(H). In particular this shows that
Ny M is hi-invariant.

Note that since the orbit N,; M in general is not compact, one of the key points
will be to prove that it is still embedded. For this, we study some dynamical

properties of the subgroup N;.
Lemma 2.15 (i) Ny ={n € N~ : limy_,o h'nh™" =1} and

N~ =N, N~(H)
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(i1) If y € Ny, for v € M, then

lim hly =z
t—00

(117) If y = U (v) and x € w(y) "NM. Thenv € V. and y € Nyx. In particular,

w(y) = {z}.

Proof: To prove (i), first we use that exp : n= — N~ is a homeomorphism, by
(Theorem 2.41 of [2]), and n~ =ny,; & n~ (H) (Proposition 4.24 of [2]) then for any
ne N-,n=-exp(Y; +Y2) with ¥] € nj; and Y5 € n™(H), from Lemma then

h'nh™" = exp(h'Y; + Y3) — exp(Y2) € N™(H) (2.18)

when ¢ — oo, since h' centralizes n=(H). So that h'nh™" — 1, if and only if, Y5 = 0,
that is equivalent to Y =Y; € nj; and n € Ny.

To prove that N~ = N;N~(H) let us prove the inclusion “C”since the other
side is immediate. Let n € N~ and n = exp(Y; + Y3) as previously. Consider

nexp(—Yz) € N7, since h' centralizes Y then by equation (2.18])
h'(nexp(=Yz))h™" = (h'nh™") exp(—Y2) — exp(Ys) exp(—Ys) = 1

so that from item (i), nexp(—Y2) = n; € Ny, and n = nyny where ny = exp(Ys) €
N~ (H).
For (ii), let y = na, with n € N5 and h™'x = z, then from (i)

hly = h'nh 'z = x

To prove (iii) let ¥ be the linearization from Theorem and let ¢, — 00 so
that
hiry —

From the h'-equivariance of ¥ then
U(h'"v) = h'"¥(v) = h'"y — 2 = ¥(0 - z)
Since V¥ is a diffeomorphism in a neighbourhood of 1}, then
hirv —0-x

and |hf"v] — 0. From Proposition then v € V—. Now let, v € V.

, Where
v=X- 2/, X € v, then

y=V(v) =exp(X)z' € N’



Bruhat Decomposition 26

since v, C ny. From item (ii),
hiry — o =«

and v € V. Also, w(y) = {x}. O

From items (ii) and (iii) of Lemma then the map
p: NgM — M y|—>tli>r£10hty
is surjective and the fiber over x € M is N z.
Proposition 2.16 (i) The stable set of M,
stM = Ny M
is an immersed submanifold of K.

(i1) The restriction of the linearization ¥ to V'~ is an h'-equivariant diffeomorphism
over Ny M that is then, diffeomorphic to the stable bundle V'~ over M.

(i1i) The following diagram commutes.

NyM < v V-

N

M

In particular, p 1s a differentiable submersion.

Proof: Let S = N;M. Given A and B as in the proof of Proposition m First
we prove that
VWV NnA)=5SnNnB (2.19)

By Proposition [2.11} V.- = v, - 2, where v, C nj and 2 € M, and by the definition
of ¥ and B,
UV NA) C (expngM)NBCSNB

For the converse, let y € SN B. Since y € B then y = ¥(v) for v € A. And since
y € S, by Lemma then h'y — z € M and, by the same Lemma, v € V. So
y = VY(v), where v € V" N A, and

SNBCYV - NA
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Next, we prove that ¥(V~) = S. Let y € S, since S is h'-invariant and B is a
neighbourhood of M, by Lemma there is ¢ > 0 such that hl'y € SN B and
y € h7'(SNB). So that

S=Jr"(snB) (2.20)

>0
A similar argument using that h' invariance of V'~ the neighbourhood A of Vj and
Proposition [2.13| shows that

vo=Jr 'V nA

>0

Then, by equations (2.19) and ([2.20) and by the h'-equivariance of ¥ it follows that

(V)= (U WtV N A)) =Jr v (v nA) = Jr'(SnB) =5

>0 £>0 £>0

From Theorem [2.14((ii) it follows that
stM =5 =N;M

and from the same Theorem [2.14[(ii), we prove item (ii).

Now we prove that S is an immersed submanifold of K. Since Ky normalizes
Ny, by Proposition 4.24(ii) of [2], then the product N;KY is a Lie subgroup of G.
So S = Ny KY%ub is an orbit in K of the Lie subgroup of G, and S is an almost
regular, submanifold of K, that is, let L be a locally connected topological space and
¢ : L — K a continuous application. Let ¢ have values in S. Then, ¢ : L — S is
continuous with relation to the intrinsic topology (see Theorem C.6 [2], and appendix
B of [21]).

Since V™ is an immersed submanifold of V' and ¥ is diffeomorphism of A to B,
then from equation S N B is an immersed submanifold of K. Let A C S be a
neighbourhood of y € S in the intrinsic topology, now we show that A contains a
neighbourhood B in the intrinsic topology of S that is induced by an open set U of
K, that is, such that, B=SNU.

By equation there is ¢ > 0 such that h'y € SN B. Since h' is a dif-
feomorphism of K that leaves invariant the quasi-regular manifold S, then h! is
a diffeomorphism of S (see Proposition C.3 of [2]). Then h'A N B is an intrinsic
neighbourhood of h'y in S N B and, since S N B is immersed, there is an open set U
of K such that

RANB=SNU

So that
B=SNh7'U=h"(SNU)=h""(M"ANB)C A
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is a neighbourhood of y in S in the intrinsic topology that is in A and is induced by
the open set h'U of K, and this proves item (i).
For item (iii), by Proposition let v € V™ such that v = X -z where X €
v, C ny and x € M. Then U(v) = exp(X )z, where exp(X) € Ny and 7(v) = z.
By Lemma then
p(¥(v)) =z = n(v)

that is, po W = 7, as needed. Since V| - is a diffeomorphism and 7 is a differentiable

submersion, then p also is. ]

Now using the various results from the chapter we prove:
Corollary 2.17 The stable set of the fized points fix(H,u) is
st(H,u) = Nyfix(H,u) = Ny K%ub

and

K = U st(H,u)

uelU
where each st(H,u) is an immersed submanifold that is diffeomorphic to the stable

vectorial fiber V'~ over fix(H,u).

Proof: Since y € K then w(y) is a fixed point of A" by Proposition 2.6l Let u € U
such that z € w(y) N fix(H,u), by Theorem 2.8 By Lemma [2.15 this implies that
y € Nyz, and then y € st(H,u), and this proves the second statement. The first
part is Proposition 2.16{i) and the last statement is Proposition [2.16{(ii). O

So from now on, in this section the stable set of M will be taken to mean the
stable manifold.

Note that the set of the components of fixed points {uMy : u € U} is in a set
bijection with W x C since W = U/C'. First we study the regular case: one hyperbolic
flow h* = exp(Ht) is defined as regular if H € a*.

Theorem 2.18 Let ht be a reqular flow in K.
(1) The set of fixed points is the disjoint union
fix(h') = H {fix(H,u): we U}

where fix(H,u) = Moub. The attractive components are Mych, for ¢ € C' and

the repulsive components are Mocu™b where ¢ € C' and v~ € wC.
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(17) The manifold K decomposes in the disjoint union of stable manifolds
K=][{st(Hu): ueU} (2.21)

where each st(H,u) = N~ fix(H,u) = N~ Myub is diffeomorphic to a vector
space Cartesian product with Moub. Also, the union of the attractive stable

manifolds N~ Mycb, where ¢ € C, is open and dense in K.

Proof: Since H is regular, then nﬁ =n* and N[j{: = N*.

For item (i), since H is regular Kz = M (see Theorem 4.21 of [2]) and K% = M.
By Theorem [2.§ then fix(H,u) = Myub and the union in item (i) is disjoint since
U= M,/M.

For the last statement of item (i), note that, by Theorem , Myub is an
attractor if and only if the zero section of the linearization V' around Myub is an
attractor. By Lemma A.5 of [2] then Myub is an attractor if and only if V= = V.
And this is true if and only if

nTNun”T =0T Numen) =0, =0, =un_

that is equivalent to un™ C n~. By the definition of n~ and since ug, = gwa, for

u € wC and w € W, this is equivalent to
w(ll™) C II™

so that, w = 1 or u € C' and the attractors of ht are cMyb for all c € C.
From a similar argument, uMyb is a repeller if and only if un™ C n*, that is
equivalent to
w(Il™) C It

where u € wC|, since w = ww~w~ (see Proposition 3.10 of [2]), then from item (iv)
of Proposition 3.20 of [2] this occurs if and only if ww™ =1 and w = (w™) ™' =w~
that is equivalent to u € w~C', and from the definition of «~ then v € u~C". Then
the repellers of h' are u=cMy for any ¢ € C or cu™ My for any ¢ € C since C is
normal in U.

The first statement of item (iz) follows from Corollary 2.17] noting that the stable
manifolds of different components are disjoint.

To show that the union A := U.ccst(H, ¢) is open and dense, from Proposition
2.16]st(H,u) is an immersed submanifold with the same dimension as mé (un™Nn~).
Since ulMyb is an attractor if and only if v = ¢ € C' and the dimension of st(H,u) is
equal to the dimension of m @& n~. Since K has also the same dimension then A is

open.
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When u ¢ C then st(H, u) has dimension less than the dimension of N~ Myb. A is
a dense manifold then follows from Proposition C.1 of [2], since the complement of A
is the union of finitely many manifolds of dimension strictly less than the dimension
of K.

The last statement follows from the last statement of Corollary 2.17] since in the

regular case each fix(H, u) is Myub, and the stable fiber is a vector space over Myub. [

Now we study the general case where H € cla®™. First note that stable manifolds
are disjoint if and only the corresponding fixed points are disjoint so that to study the
intersection of stable sets we only need to know the intersection of the corresponding
fixed points sets.

To study the general case we need to define the subgroup Uy of U,

Ky nM,

Ug :
H Mo

Note that Uy is a normal subgroup of WxC' since,

KyNM. M KynM,

WyC = =
a M M, M,

and KY is normal in Kp.

The next result studies the possible intersections of fixed points sets.
Corollary 2.19 If fix(H,u) Nfix(H,v) # & then
v € UguM

and in this case,
fix(H,u) = fix(H,v)

Proof: If fix(H,u) N fix(H,v) # & then there are ki, ky € K% so that kyvb = kyub
and vb = kub for k = (k1) 'ky € K%. Then

fix(H,v) = K%vb = Kyub = fix(H,u)
Also, b = v 1kubso v™'ku € KN AN =1 and v = ku. So that
kuMy = vMy C M,

but since uMy C M, then k € M, and k € M, N KY%. Then

M,NKY
c 2 H

k
My

My = UM,
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and v = ku € Ug Myu = UguM,.

Let us now also define the subgroup Cy of C.

K%nM
Cy.=—"HL —
H My

In the general case then the set of fixed points {fix(H, u) : u € U} are in bijection
with the quotient Uy \U. Note that also generally, Uy is not normal in U and this
quotient is not a group but only right cosets. These cosets can then be used to

enumerate the components of fixed points.

Theorem 2.20 Let ht be a hyperbolic flow in K.

(1) The set of fized points is the disjoint union of connected components
fix(h') = [[{fix(H ) : u € Uy\U}

where fix(H,u) = K%ub. The attractors are fix(H,c) for c € Cg\C and the
repellers are fix(H,cu™) for c € Cy\C.

(i7) The group K decomposes as the disjoint union of stable manifolds,

K = H {st(H,u): we Ug\U} (2.22)

where each st(H,u) = Ngfix(H,u) = Ny K%ub is diffeomorphic to the stable
fiber over fix(H,u). Also, for c € Cy\C the stable manifolds are open in K

and their union is dense.

Proof: For the first statement of item (7), that the set of fixed points is given by such
union follows from Theorem [2.8] that this union is disjoint follows from Corollary
219

The first statement of item (i¢) follows from Corollary [2.17, noting that stable
manifolds of disjoint sets are disjoint. For the second statement of item (i), from
Lemma it follows that N~ = N;N(H)~. Since N(H)"M, C G(H)M, C GY%,
then GY = GYN(H)™ M, and

fix(H,c) = GYcb = GYN(H)™ Mych
Since GY% normalizes N (see Proposition 4.24 of [2]), then

st(H,c) = NyGYN(H)™ Mych = G% N~ Mych
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Now note that,
A= U st(H,c) D U N~ Moycb
ceC ceC
and the second set, from item (ii) of Theorem is open and dense, so that A
is also open and dense. This implies that U.ccfix(H, ¢) are the only attractors. To
show that is enough to select ¢ € Cy\C, note that
M _KpnM, KpnM

CNnUg=—n

C
M, M, M, "

The argument for the repellers is similar. [

Note that item (ii) from the previous Theorem illustrates that the height function
on K with respect to H has |M /M| = |C| components that assume the maximum

and |C| components that assume the minimum.



Chapter 3

General translations in K

3.1 Preliminaries

In this chapter we study the continuous flow of translations in G that is a linear flow
g" where exp(Xt) = ¢' in K for t € R, for any X € g.

First we show that every action of GG in K is decomposable in elliptic, hyperbolic
and nilpotent components that commute with each other. Next we study the example
of SI(2) with K = SO(2) and see that the system is not gradient, this motivates
the study of chain recurrence and then in Lemma |3.4] we show that the system is
equivariant by right multiplication by M, this provides a symmetry necessary to
show that chain recurrent components are given by fix(h').

First, we note that for any a € G, the action aexp(Xt)a~' = exp(aXt) is the
dynamical conjugate of the action ¢g*. Lemma 3.1 (i) from [7] helps in decomposing
the action in simpler components. Following the proof of this Lemma we can state
in full that:

Lemma 3.1 Let g be a semisimple algebra. Then for every X € g, there is a Jordan
decomposition X = E + H 4+ N, these components commute, are in g, and N is
additive nilpotent. There is a lwasawa decomposition g = €@ adn such that E € ty
and H € cla*.

This Lemma then helps to conjugate any linear flow to have a more standard
hyperbolic component.

The terms e' := exp(Et), h* = exp(Ht), u' = exp(Nt) are called the Jordan
components of ¢! and are called, respectively, the elliptic, hyperbolic, unipotent
components of ¢g*. Let the H € cla® obtained in item (i) of the previous Lemma be

the hyperbolic type of the translation flow ¢' in G.

33
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Note that the term N in this Lemma is a nilpotent component of X € g, so
that ad/V is a nilpotent action in g. This N € g is not to be confused with the
nilpotent group in the Iwasawa decomposition. Also note that, since all Iwasawa
decompositions are conjugate changing the Iwasawa decomposition is equivalent to a

conjugation by an element in G of X so that also from Lemma 3.1 of [7] we get that:
Proposition 3.2 There is a € G so that aH € cla*.

Then, agta™! is a translation flow in G of hyperbolic component
ah'a™' = exp(aHt)

where aH € cla™. Note that in K, the homeomorphism induced by a in G gives

1

a conjugation between the flows ¢' and ag'a™', so that the dynamics of one is

topologically equivalent to the other.

From now on, we can then assume that the hyperbolic type H of g' is so that
H € cla*. Remember now that the gradient dynamics of A' in K has the following
algebraic description given in Theorem Let U = M,/M,. Then the connected

components of the fixed points of h! in K are given by
fix(H,u) = GYub = K%ub, u € Uy\U
where the respective stable manifolds are given by
st(H,u) = Npfix(H,u) = Ny K%ub, u € Uyg\U

so that {fix(H,u) : u € Ug\U} is the minimal Morse decomposition h'. The next
results prove first that this is also the minimal Morse decomposition of g* and that
each Morse component is normally hyperbolic.

Example: Let G = SI(2) where the Iwasawa subgroups are: K := SO(2),

de () amnnen s {(22) el

Now we will study the nilpotent action on the compact group SO(2). First note that

01 1t
o)<

so the nilpotent action on K is

1t cosa —sina b cosa(t) —sina(t) ;
0 1/ \sina cosa sina(t)  cosalt)
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so we need to find the a(t) for the matrix

(cosa+tsina —sina+tcosa>

sin av COS &

Multiplying the terms of Iwasawa decomposition where h := h(t) and = := z(t)

cosa(t) —sina(t)) (A 0 1
sina(t)  cosa(t) 0 ht)\0 1

and equating both sides, from the elements in the first column cosa + tsina =
hcos a(t) and sin a = hsin a(t) dividing both terms when sin a # 0 we get t+cot o« =
cot a(t). So a(t) can be determined. Remenber that in the trigonometric circle the
cotangent “axis” is tangent to (0,1). Now we can identify that the equilibrium points
are when sin o« = 0 and that they are both stable in one direction and unstable in
the other direction.The first collumn of the matrixes is used to plot the results in

matrix form. Note that in this case the system is not gradient.

o)

3.2 Recurrence and chain recurrence

Let X be a metric space with distance d, the recurrent set of a flow ¢' in a space X
is the set of points
R(¢") ={re X :zecw)}

An (e, t)-chain from z to y is a sequence of points
{r=20,...,2, =y} CX

and a sequence of times ¢; such that ¢; > t and d(¢"(z;),x;11) < €. The chain
recurrent set of a flow @', Re(¢'), is the set of points = such that there is (e, t)-chain

for every € > 0 and ¢ > 0 from z to .
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Proposition 3.3 Let g* be a flow of translations in G. The unipotent and hyperbolic

components of g* are giwen by
u' = exp(tN), h' = exp(tH), teR

where N € g is nilpotent and H € g is additive hyperbolic. The flow g and all its

Jordan components are flows in the centralizer GY.

Proof: The first statement follows from B.24 and the fact that the Jordan compo-
nents of g* are in G follows from Theorem B.19 of [2]. The fact that these components
are in Gy comes from the fact that the terms £, H, N from Lemma 2.1 commute.
For the last statement, note that these components are in GY% since the action is

continuous. ]

The hyperbolic element H € g given by the previous Proposition is the hyperbolic
type of the flow ¢'. In continuous time ¢' = exp(tX), the terms N and H are,
respectively, the nilpotent and hyperbolic additive parts of X.

The translation flows ¢* and its Jordan components induce flows in K. In this
section we will study the recurrence, the chain recurrence and the minimal Morse
decomposition of ¢¢ in K.

The x used next will be defined in the group G and is not related to the kappa,
k, that shows up in Chapter 2 that is based only on the Cartan involution.

Indeed, the following kappa when transposed to the algebra will have kernel a ®n
and depends on the Iwasawa decomposition. Whereas the first kappa has kernel s,

the symmetric space.

Lemma 3.4 Given an I[wasawa decomposition G = KAN, define k : G — K so
that g € k(g)AN, then

k(gm) = K(g)m
for any m € M.

Proof: If m € M then mAm~—' = A and mNm~' = N. So

g€ k(9)AN < gm € k(g)ANm
& gm € k(g)mm TANm
& gm € k(g)mAN

and since m € K then k(gm) = x(g)m.
O

Assume the metric in K is such that multiplication by left or right are isometries.
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Proposition 3.5 Let G be a semisimple Lie group with Iwasawa decomposition
G = KAN and K compact and define k : G — K so that g € k(9)AN. Let u' be a

unipotent flow.

(i) If k € K is a fized point in K of the flow u' then km is also a fized point for
any m € M.

(i1) If k € K is a fized point in K of the flow u' then kby is a fized point of u' in
the maximal flag F. Equivalently u'k € kAN for all t € R then u'k € kM AN
for all t € R.

Proof: For item (i), from hypothesis x(u'k) = k for all ¢ € R, then by Lemma
k(u'km) = k(u'k)m = km for all t € R

For item (ii), if k(u'k) = k for all t € R then, by definition, u'k € kAN C kM AN
for all t € R so that u'kMAN = kM AN. O

Lemma 3.6 Let G be a semisimple Lie group with Iwasawa decomposition G =
KAN with K compact and r : G — K so that g € k(g)AN. Let u' be a unipotent
flow that commutes with the elliptic flow ¢! € K.

(1) There is s, — 0o so that e’» — 1.

(13) For all k € K, there is a,, € N so that k* — 1.

Proof: For item (i), since K is compact there is ¢, — oo and k € K so that

in

e’ — k. Since t, — oo it is possible to assume taking a subsequence of t,, that

Sp = tpe1 — t, — 00. By the isometry of left multiplication then
d(ete ™ 1) = d(ef+ el < d(e+ k) + d(k,e™) — 0

when n — oo and then e’ — 1 when n — oo.
For item (ii), in a similar form to the previous item, taking the sequence k" € K

where n € N, there is a sequence a,, € N so that k% — 1. O

Lemma 3.7 Foralle >0, ke K andT >0 exists s > T, kg € K and m € M, so
that, e* € B(1,¢), k(u™k) € B(ko,€) and k(u’k) € B(kom,€).
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Proof: From item (i) of Lemma [3.6| there is ng € N so that e € B(1,¢€) for n > ny.
Now, by Lemma 1.8 from [2] applied to the maximal flag for all k£ € K there is
ky € K so that u'lkM AN — k,M AN when t — +00. Then

k(u'k)M = k(u'kM) = k(u'kMAN) = k(kfMAN) = koM

when t — +oo. Since s, — 0o then w(k(u=*"k)) € k\M, and since M is compact
taking a subsequence of s,, we can assume there is m’ € M so that k(u=*"k) — kjm/'.
For the last limit we can again taking a subsequence of s,, assume that there also is
m” € M so that k(u*rk) — kym”.

We conclude then that there is p integer so that e’ € B(1,¢), k(u k) €
B(kym',€) and k(u’rk) € B(k{m", €), now take s = s, ko = kim’ and m = (m/)~tm”

then k{m” = k{m/(m/)"'m” = kom. O

Proposition 3.8 Let G be semisimple Lie group with Iwasawa decomposition G =
KAN with K compact. Let k : G — K such that g € k(g)AN. Let €', u' be

commuting elliptic and unipotent flows, then Re(e'u') = K.

Proof: Let x € K and ¢ > 0, to prove the result we will show a (¢, T')-chain from =
to z. First, let us form a (¢/2,T)-chain from x to zm?.

Take € in Lemmato be €/8. Then there are s > T, kg € K and m € M, so
that, e® € B(1,¢/8),

k(u™°k) € B(ko,e/8) and k(u’k) € B(kom,€/8)

By isometry d(1,e*) = d(e®,e’e™*) = d(e®, 1), so e~* € B(1,€/8). From the triangle

inequality,
k(e *u™’k) € B(ko,e/4) and k(e’u’k) € B(kom,e/4)
From Lemma 3.4 for i =1,...,p — 1.
k(e *u~*km') € B(kom',¢/4) and rk(e*u*km') € B(kom't', ¢/4)
Now we prove that the sequence
{k, k(e *u™*km), km, k(e *u""km?), km?, ... kmP}
is a (e/2,T)-chain from k to km? with “times” equal to s. First note that,

d(k(e*u’k), k(e *u"km)) < d(k(

®

u’k), kom) + d(kom, k(e *u"*km))

< +

€
2

Y
I
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And k(e*u®e*u~*km’) = km'. Then from Lemma applied to the previous
equation

d(k(e*u®km’), k(e *u"*km'™)) < %

Proving that the previous sequence is indeed a (€/2,T')-chain from k to km?.

Now take p to be an positive integer so that m? € B(1,¢/2). Since left multipli-
cation by k is an isometry then km? € B(k,¢/2). Exchanging the last term in the
previous chain by k there is then a (e, 7)-chain from £ to k. [

3.3 Minimal Morse decomposition

Definition 3.9 A Morse decomposition of a flow ¢' in a space X, is a finite collection
{My, ..., M.} of subsets of X such that

(i) Each M; is compact and ¢'-invariant.
(i7) For all z € X, w(z), a(x) C UM,.
(i13) If w(z), a(x) C M; then x € M,;.

A minimal Morse decomposition is a decomposition that is contained in any other
Morse decomposition. Each element of the decomposition is also called a component
of the decomposition. An important result from dynamical systems (see [0]) is that

if the Morse components are connected and
UiM; = Re(9')
then this decomposition is minimal.

Theorem 3.10 Let ¢' be a translation flow in G and consider the induced flow of
gt in K ~G/AN. Then

(i) The minimal Morse components are the connected components of fix(h') and
then
Re(gh) = fix(h) = H {ﬁX(H, u) = KYhub: u € UH\U}

where the only attractors are fix(H, c) = K¥%cb where ¢ € Cy\C and the only
repellers are fix(H,cu™) = K%cu™b for c € Cy\C.
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(i) The stable manifolds of g* are st(H,u) = Nz K%ub and the unstable manifolds
of g are un(H,u) = NiK%ub. Also, K can be decomposed as the disjoint

union of stable manifolds
K:H{NI}K%U: ueUy\U} (3.1)
or similarly, the disjoint union of unstable manifolds

K = H {N}Kju: weUy\U} (3.2)

And the union of the stable manifolds of the attractors fix(H,c) = K%cb for all
c € Cy\C is open and dense.

Proof: Since fix(H,u) = GYub and g' € GY, then M = fix(H,u) is g'-invariant.
First we will prove that S = st(H,u) is a stable set from the g’-invariant M. By
the Bruhat decomposition of K (Theorem (ii)), it is enough to show that S is
in the stable manifold of M, that is, it is enough to prove that for any y € S then
w(y) C M.

Let y € S, so y = exp(Y)lub, where Y € ny; and | € G%. Then

9'y = g exp(Y)g~'g'lub = exp(g'Y ) g'lub

where g'lub € fix(H,u), since g'l € GY. First, we prove that ¢g'Y — 0. This follows
from Lemma 1.5 of [2], since the spectral radius of the restriction of g to ny is less
then 1. In fact, from the Jordan decomposition, r(g) is the greatest eigenvalue from
its hyperbolic component, is given by the restriction of i to n,. These eigenvalues
are e ) where o € TIT and a(H) > 0, since 7(g) < 1. Taking then z € w(y)
then let ¢; — oo such that gy — x. Since exp(¢%Y’) — 1, then the limits of the
sequences

gy = exp(g"Y ) g lub and  g'lub

are the same, so
glilub — x

and z is in the closed set fix(H,u), since each g'lub is in fix(H,u). And w(y) C
fix(H,u). Similarly, we can prove that N;;M is the unstable set of the g'-invariant
set M.

Since the stable and unstable of each fix(H, u) with respect to g* or to h' coincide,
then it follows that {fix(H,u) : u € Uy \U} is a Morse decomposition for ¢*, since it

is a Morse decomposition for h'. So that

Relg') C fix(h') = | fix(H, u)

uelU
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To show that fix(h') C Re(g') note that the restriction of ¢* to fix(h') is given
by e'u. So by Proposition [3.8] fix(h!) C Re(e'u'ht) = Re(gh) and Re(gh) = fix (hY).
The other statements of items (i) and (ii) follow from Theorem noting that
stable manifolds and unstable manifolds from ¢* are the same as for the flow A that

is a gradient flow. []

Next we obtain a characterization of the recurrent set.

Theorem 3.11 Let g' be the translations flow in G and gt = e'htu is its Jordan

decomposition. The recurrent set of translations g* induced in K is given by
R(g") = fix(h') N R (u')
and R(u') = 7 (fixp(u')), where m is the projection of K in K/M =F.

Proof: First we prove that fix(h') "R(u') C R(g"). If k € R(u') then kM is a fixed
point of the maximal flag F = K/M, so x(u'k) = km; with m; € M for all t € R
(see Lemma 1.8 of [2] applied to complete flags) . Now we prove that my s = m;.ms.
Indeed, since x(k~'u'k) = my then k~'u'k € myAN and

E Tk = YWk e v’k € mi AN.m AN
and since M normalizes AN, then
miAN.m ;AN = mtmsms’lANmsAN =my.msAN

but since, k~'u!™*k € m; ;AN then m, ;AN = m;.m,AN and m,, = m;.m, for all
t,s € R. Since my = 1 then m_, = m; *. And since M is compact, there is ¢; and
m € M so that u'ik — km, taking a subsequence of ¢; we can assume that et — €

and s; = t;11 —t; — co. Then

My, = My, My, — i - =1
1 1

i+1
and k(u®k) = km,, — k. Since e — e.e~! =1 then
k(g°k) = k(e®u’k) — k

and k € R(g").
Now let us prove that R(g*) C fix(h!) N R(u). From item (i) of Theorem [3.10]
k € R(¢") C Re(gh) = fix(h'), so next we prove that k € R(u). Let t; such

that x(g""k) — k and taking a subsequence we can assume that e — € and that
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S; = tip1 — t; — 00. Since k(g% k) = k(e®u®k) = e’ k(u*k) and since e — 1 then
the sequence x(uk) converges to k and k € R(u').

For the last statement, we need to show that k € R(u') if and only if kM is a
fixed point of the maximal flag K/M. So there is ¢, — oo such that x(u'"k) — k
if and only if k(u'k) = km; with m, € M for t € R. In fact, if x(u"k) — k then
urkMAN — EM AN and u!"kby — kby € F so that kby is a fixed point in F.

Now, if by is a fixed point in F then x(u'k) = km; with m; € M and since M is
compact there is a subsequence t,, such that m;, — m and then x(k~'u'"k) — m.
Taking a subsequence we can assume that s, = t,.1 — ¢, — 00 so /i(k_lus"k) —
mm~' =1 and k(u*rk) — k, so that k is a recurrent point of the flow u’. If 7 is the
canonic projection of K to K/M =T then

R(u") = 7 (fixp(u'))

3.4 Linearization

The next result shows that each minimal Morse component M = fix(H, u) of ¢* in K
is normally hyperbolic (see Definition . Consider the vector bundles V =V-@V™*
over M as in Section 2.3

Proposition 3.12 The vector bundles V* are g'-invariant and there are positive

numbers ¢ and \ < p such that

(i) |g'v] < ce™M|v| forv e V-and t > 0.

(ii) |g~tv| < ce M|v| forv € VTand t > 0.
(iii) |gtv| < cetltl|v| forv e TM andt € R.
Proof: First note that

g = ethtut

where ¢*, e, ht,ut € GY. We have V* = nf - M and GY normalizes n3;, from
Proposition 4.23 of [2], and GY also leaves M invariant, so that V* is g'-invariant.
Let v € V* then v =Y -z with Y € vf = n%, N g’ and x € M, from Proposition
210 Jo] = |Y] and

lg'v] = 1¢'Y - g'x| < |¢'Y|
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where ¢'Y € nfl. It is enough to show then the inequalities for g' restricted to nfl.
First we consider the case where Y € ny;, the next case is proven similarly. From
Lemma [2.12] there is g > 0 such that [h'Z] < e #|Z|, for t > 0 and Z € ny. Since

e! € K% and the inner product is K-invariant, then
g"Y] = [Fu'Y] < e [u'Y]

where we used that u* € G%, so v'Y € n},. From Theorem B. 24 of [2], u' = exp(tN),
H H

tad(N)

for N € g nilpotent and u'Y = e Y. From the triangle inequality then

a ]
Y] = [y ] < 3L ad (V)4 Y] = p(e) Y|

k>0

where || - || is the operator norm associated to the norm |- | in ny and p(t) is a

polynomial, since ad(/N) is nilpotent. Then
g'Y] < e p(t)]Y]
Since |g'v| < |¢'Y| and |v| = |Y| then for v € V™~
lg'vl < e "p(t)vl, t=0
The case for V' is similar so that for v € V'
g < e Mp(t)fu], t=0

For T M, note that x € M and ¢g'x = e'u'z, and ¢' acts as e'u’ in TM. From
equation from Proposition [2.11| a tangent vector v € TM, is v =Y - x, for
Y € gy Ng:. From Proposition lv| = Y| and

lg'v| = |e"u'Y - e'u'z| < |e"u'Y| = [u'Y] < p(t)[Y] = p(t)]v]

where we used that e' € KY and the inequality for |u'Y| previously obtained.
Since e_%tp(t) — 0 when t — +o00, then e_%tp(t) is less then ¢; for t > 0 and

e rip(t) = e 8 (e Ep(t)) ScreH, 120

For the last case, since e #Ilp(t) — 0 when ¢ — +o00, then e #Ip(¢) is less then
¢y for t € R and
p(t) = et (e‘“'t‘p(t)) <l teR

The items (i), (ii) and (iii) of the Proposition follow taking A = 4 and taking ¢ to be

the maximum of ¢; and c,. ]
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Theorem 3.13 Let M C X compact and normally hyperbolic.
(i) There is a normal linearization in a neighbourhood of M.

(ii) The restriction of this linearization to a neighbourhood of NMy in V'~ extends
uniquely to a diffeomorphism from V= to st(M) that is is a global conjugation.
In particular, the stable set st(M) is diffeomorphic to the stable fiber V.

Proof: The first statement is Theorem 1 from [20] for discrete time and Theorem 2

from [20] for continuous time. The second statement is item (iii) from Lemma A.5
from [2]). O

The following result linearizes the flow of translations ¢* around each Morse

component M = fix(H,u), generalizing for ¢' the result of linearization of the
hyperbolic flow (Theorem [2.14)).

Theorem 3.14 (i) There is a normal linearization of the flow g* around fix(H, u).

(i1) This linearization extends in a unique fashion to g'-equivariant diffeomorphism
from V'~ to st(H,u).

Proof: Item (i) follows from Theorem item (i), after noting that the action of
¢! in the normal bundle V is given by the restriction of the action of Dg' in TK to
V', and that the equivariance propriety is equivalent to the property of conjugation
of Theorem [3.13] Since st(M) = Ny M (Theorem (ii)) then item (ii) follows
from Theorem (ii). OJ



Chapter 4

Topology of K

4.1 Bruhat and Schubert cells in K

In this chapter we use the Bruhat and Schubert cells to calculate the homology of K
for split real forms, in particular, at the end we calculate the homology of SO(3). In
this we follow [16] to first construct the skeleton, then the boundary map to find
algebraic expressions for the degrees of the maps. The calculations for the degrees
in SO(3) are done in two ways, first geometrically and then algebraically to better
illustrate the results obtained.

First we will study an example:

Example: Let G = S1(2) and the Iwasawa subgroups are: K := SO(2),

T PO G T

The Bruhat cells in this case are Nub, where u € U = M*, since My = 1. In this
10 0 1 -1 0 0 —1
U — 9 9 ?
0 1 -1 0 0 -1
Let s = then s% = and s3 = s71. So that
-1 0 0 -1 1 0

U=1{1,s,5%s%}.
The 4 Bruhat cells are then Nb, Nsb, Ns?b, Ns3b. Hence Nb = b is a cell of one

point and
1 0 1 1
Nsb= | * P e
0 1/\=1 0 1 0

45
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By the Iwasawa decomposition there exists a, h > 0 and y € R depending on z

such that:
—z 1\ [ cosa sina h 0 1y
—1 0/ \—sina cosa 0 ht 0 1

Calculating the product on the right side, from the first column of the matrix
we get: —x = hcosa and —1 = —hsina, since h > 0 then sina > 0 and we can
consider « in the interval (0, 7). Dividing both equations we get that cota = —z
so « can be found. Then for each € R there are unique corresponding « € (0, ),
h>0,yeR

Taking F' = Ej5 — Fa; then CO_Sa ) exp(Fa) and s = exp(F7).
—sina cosa

The 4 Bruhat cells are 2 manifolds of dimension 1:
Nsb=exp(Fa)b forO0<a<m

Ns’b = Nss?b = exp(Fa)s’h  for0<a<m

And 2 trivial manifolds of one point: Nb = b and Ns%b = s%b, since s? € M.

4.2 Preliminaries

In this section we will be primarily interested in the case that all roots are simple so
that for any root a the eigenspace g, is one dimensional. We will study normal real
forms and will also assume that My = 1 or that the algebra m is trivial. Finally we
will also assume that the real Lie group G can be complexified, in that case M can
be explicitly calculated in function of the roots.

Considering each element w = 7(u) € W as a product of simple reflections r,,
the length of f(w) of w € W is the number of simple reflections in any reduced
expression of w. Another useful result Theorem 4.15.10 of [22] is that I(w) is equal
to the cardinality of IT,, = IIT NwII~, or the set of positive roots sent to the negative
roots by w™t. Let w = 7 ---r4 be a fixed reduced expression of w and «a; = o, be
the simple positive roots for each r;, then each root of II,, can be written explicitly
as in Theorem 4.15.10 of [22] as

I, ={ay,mag,...,r - -rq_104} (4.1)

Since M is normal in M, then C' = M /M, is normal in U = M, /M,. Now note
that since m(s,) = ro then m(sy---s4) =11 ---14 = w. So for any element u € U

there is m € M /M, such that u = s; - - - sgm and 7(u) = w.
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Following the Theorems 7.53 and 7.55 from [I§], we get that F' = M where F is

the cartesian product of cyclic groups of order 2 and is generated by
Yo = exp 2mi|a| 2 H,

In fact, there is a bijective homomorphism from sl(2, R) to g(a) := g.®RH,Dg_o
that can be complexified taking sl(2,C) to g(a)®. In the corresponding homomor-
phism between Lie groups then 7, is the image of —Id. Since g, are one dimensional
define a normalized E, such that g, = E,R. Note that 7, does not depend on the
choice of E, from the original homomorphism.

In a similar manner to [16] we define.

Definition 4.1
V;(t;) = exp(Fjt;) fort; € [0, 7]
where F; = F,, and Fy, := E, +0FE, € € for a fived chosen E, € gq.
Let
So = exp(Fo(m/2)), my = exp(Fym)
And similarly, s; = sa;, M; = My, so that m; = s? = exp(Fjm).

Now, define the map 7 : K — [F by kb — kb, note that this map is a differentiable
finite covering of F with |M | sheets, since we can take F the maximal flag to be K/M
so that it is a finite quotient. Then for a sufficiently small open set V' C [ there is a
diffeomorphism 7! : V' — B, where B is an open set of K, such that 77! = id|y
and 7 '7|p = id|p. Note also that, for any m € M and x € V, n(7~!(x).m) = z, so

that, for a given V, 7! is not uniquely defined and in fact has | M| possible choices.

Note that m(M,) = M,/M = W, but since we took My to be 1 then
U= M, /My = M.

and
n(U)=W

Definition 4.2 For ease of notation we define a Bruhat cell in K as
B(u) := Nub
forue U = M,.

By the dynamical decomposition of the unstable manifolds when H is regular we
have Ny = N and Gy = M, = 1 so from (ii) of [3.10| that

K= |]J Nub= ] Bu)

dis;j. dis;j.
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where the unions are taken over all uw € U. Let m(u) =w € W and w =17y ...74 be a
fixed reduced decomposition.

Note that if one prefers to use instead the stable manifolds decomposition its
possible to obtain similar results by using that N~ = u~N(u~)~! where v~ € w™M
and w™ is the principal involution.

In an analogous fashion to flags we define in K, the Schubert cells to be the

closure of the Bruhat cells.

Definition 4.3 A Schubert cell in K of u € U is defined as the closure of the Bruhat
cell B(u) = Nub,
S(u) == cl(B(u)) = cl(Nub)

Let clA be the closure of the set A. In the present work we take 0(A) to mean
the frontier of the set A, that is clA\A. Note that in this case the frontier of the
Bruhat cell is then 0B(u) = S(u)\B(u). Later, to avoid confusion of notation, we

use 0 to be the boundary operator.

Lemma 4.4 The frontier of a Bruhat cell, 0B(u) := S(u)\B(u) in K is the union
of Bruhat cells B(v) = Nvb for v € V(u), where V(u) is a subset of U. The cells in

0B(u) have smaller dimension then B(u).

Proof: Let nvb be in the frontier of B(u) = Nub for some n € N then B(v) = Nvb is
also in the frontier of Nub. In fact, since nvb is in the frontier of Nub then there is a
sequence ny in N such that nyub — nvb. Let y be any point in Nvb then y = n’vb for
some n’ € N and the sequence in Nub, n'n~'n,ub, converges to n'n='nvb = n'vb =y
and y is also in the frontier of B(u).

Since 7 is a finite cover it preserves dimension of cells. Let 7w(u) = w then
7(0B(u)) C 0B(w), now from Proposition 1.9 (2) of [16] the dimension of 9B(w) is

less then the dimension of B(w). O

So for any u € U there is a subset V(u) of U so that the frontier of S(u) is

U Nuvb

VeV (u)
so that,
S(u) = cl(Nub) = NubU U Nuvb
veV (u)
and since multiplication by right by an element m € M takes Bruhat cells to Bruhat
cells
S(um) = cl(Numb) = Numb U U Nvmb
veEV (u)
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for any m € M, so that V(um) = V(u)m.
Now we construct a map ¥, from a closed cube to the Schubert cell S(u). In
this we mainly use Proposition 1.9 from [16]. Let 7(u) =w e W and w =1ry...7,

be a fixed reduced decomposition. First we prove to Lemmas about the action of M.

Lemma 4.5 The root spaces g are invariant by the action of mq and
(ma)lgs = (~1)*id
Proof: If X € gz and ¢ the imaginary unit then,
Mo X = exp(miH!)X = (i) x
where H) = % Then since ad(H,)X = (a, 5) X,
erd(miHy) o pmie(enf) x

where €(a, f) = % is the Killing number and so it is an integer from Proposition

2.74 of [18]. O

Lemma 4.6 Let t; € (0,7) then m;(t;) = ¢;(t;)m’ for some t; € (0,7) and
m e M.

Proof: Let t; € (0,7) and ¢ # j, remember that 1;(t;) = exp(t;F;), where
F; := E;+60E;, where 6 is the Cartan involution. First, we calculate m;1);(t;)m,;. For
this, let us calculate Ad(m;)E}, since m;ga, = ga, and m? = 1 then Ad(m;)E; = £E;.
Since Ad(m;)8 = §Ad(m;) then if Ad(m,;)E; = Ej,

and if Ad(m;)E; = —E; then

J

So
m; exp(tjlu’j)mj_1 = exp(Ad(m;)(t;F;)) = exp(£t; F})

If Ad(m;)F; = Fj then m;;(t;) = ¢,(t;)m; and if Ad(m;)F; = —F} then
mih;(t;) = ¢j(=t;)mi = ;(m — t5)mym;

and T —t; € (0,7). The case i = j is trivial. O
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Definition 4.7 Let m(u) = w = ry---14 be a reduced expression for w and let
U= s ---54m, for some m € M, then define ¥, : J¢ = K,

ults,. ..o ta) == i(ts) - - - Ya(ta)mb
fort; e J=1[0,m7].
Note that if I = (0, ), then with the definition above,
ub =81~ 8qmb = Py (7/)2) - - a(m/2)mb = U, (7/2,...,7/2) € ¥, (1)

Proposition 4.8 Let w = w(u) = r1---rq be a reduced decomposition and let
u =81 Sqm, for some m € M. Define the intervals I = (0,7) and J = [0, 7], so
that 01 = J\I4, then

S(u) = cl(B(w)) = T, (J)
The frontier of B(u) is
U, (81%) = 9B(u) = S(u)\B(u)

and W, |4 is a diffeomorphism from I¢ to B(u) = Nub.
Proof: First we prove that 7 : K — [ is injective in each Bruhat cell in K. Let n,
n’ € N and assume that nub # n'ub and 7(nub) = m(n'ub). Then there is m € M
such that nub = n’umb, but since the Bruhat cells are disjoint then m = 1, that is a
contradiction and 7 is injective in each Bruhat cell.

Since 7 is G-equivariant then m(Nub) = Nwby, where w(u) = w € W, so that =

is also surjective in Bruhat cells, and then bijective in Bruhat cells.
Now, from Proposition 1.9 items (1),(2),(3) of [16] and using that 7V, = ¥,, then

1. m(U,(J%) C 7(S(u)).
2. (W, (t)) € 7(0B(u)) if and only if t € 9I¢ = J4\[4 = §9-1,
3. W, | [T — Nwby = w(Nub) = n(B(u)) is a diffeomorphism.

To show the corresponding statements for K we need first to show that there is
a open set containing the Bruhat cell. Take N’ = u*N(u*)~! where v* = u~u"'. In
Proposition 2.7 of [13]
N' =(N'NnN7)(N'NN)

Where in the paper the notation N,(B) is used for N’. Now note that

uw u 'Nub=u v 'Nu(u ) 'u"b=Nub=(NNN)(N NN )ub
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and
(NNON)(N'NN ) u"b=(N'n N)u_(u_)_l(N’ AN ub=N NNubC Nu"b

then Nub C u(u™)"*Nu~b but u(u~)"'Nu~b is a translation of an open set so it is
open in K. Taking the translates by right multiplication by M of this open set we
obtain disconnected open sets with the same image in F by m. But since ¥, (/%) is
connected and contains ub then necessarily W, (1¢) = Nub.

So W, (J?%) C S(u) also 1, (t) € OS(u) if and only if t € 9I¢ = J\I? = S9! and
U, |2 I — Nub = B(u) is a diffeomorphism. O

The closed cube J? can be identified by a homeomorphism preserving orientation
to a closed ball By of dimension d so that the frontier of the cube, 1% = J\ ¢, is
identified with a sphere S9!,

4.3 The skeleton X*

To construct the skeleton for the CW or cellular decomposition of K obtained here,
we will follow page 5 of [§] and construct inductively the d-skeleton X9, or the
skeleton of dimension d, from X! starting by the discrete set X° and attaching
the open d-cells, e, via attaching maps ¢, from S ! — X1,

Remember that the dimension of B(u) is the length of w = 7(u). So the dimension
is 0 if and only if I(w) = 0 which happens if and only if w =1 and u = m € M. By
definition B(m) = Nmb = mb, so that B(m) = S(m) = {mb} for m € M are the
only discrete cells.

To construct the next levels of the skeleton X9, we must identify the maps ¢,
from S9! — X1, For this first we fix, for every dimension d, a homeomorphism
from S to the frontier of the closed cube 1% = J\I¢ so that for any x € S9! there
is t(x) € I¢. From Proposition 4.8 we define o, (x) = ¥, (t(z)).

By starting with v € U, such that [(7(u)) = 1, to construct X'. By induction
on the length, we can construct all the skeleton of K. Note that X% when d' has
maximum dimension equals K. Note that there are | M| cells of highest dimension
since these correspond to the u € U, such that 7(u) = w™, the principal involution,
and the dimension of these cells is the number of elements in II,,- = II™.

As a consequence of the second equation in the Proposition 4.8 we have the
following construction. Let d = dimS(u) = dimB(u). The sphere S¢ is the quotient
J4/0I, where the boundary 9I? = J%\I? is collapsed to a point. We can do the
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same to the Schubert cell S(u). Define
ou = 8(u)/0B(u)

that is, the space obtained by identifying the complement of the Bruhat cell B(u) in
S(u) to a point. As U, (9I¢) C dB(u), it follows that ¥, induces a map S¢ — o,

which is a homeomorphism. The inverse of this homeomorphism will be denoted by
v tio, =S¢ (4.2)

note that this is not the same as the inverse of ¥, because of the collapse in the
corresponding borders.
The following is Proposition 1.10 of [16] for Schubert cells in F and it will be

useful later on. Remember that all roots are one dimensional.
Proposition 4.9 Let w, w' € W. The following statements are equivalent:
1. §, C S, and dimS,, — dim S, = 1.

2. If w = ry---1rq is a reduced expression of w € W as a product of simple

reflections and for some i, w' =1ry---1;---1rq is also a reduced expression.

Note that in the previous Proposition 7(u) = w.

Let J¢ be the frontier of J?, that is, dJ¢ = J¥\I?. And let S(u) be the frontier
of S(u), that is, 0S(u) = S(u)\B(u) = Uyey w)B(v).

Let m(u) = w =1y ---rq and let v € U such that 7(v) < 7(u) in the Bruhat order
and the length of 7w(v) is equal to d — 1 then by Theorem 5.10 of [I1], w' = m(v) =
ri---T;+--1q for a unique integer i as the next Lemma shows. First, note that this

expression for 7(v) is necessarily reduced, since the length of 7(v) is d — 1.

Lemma 4.10 Ifw =ry---rq is a reduced expression, w' < w, in the Bruhat order
and also, the length of w' is d — 1, then there is a unique integer i, 1 <1 < d, such

~

that w' =ry---Ti+ - rg.

Proof: Since w’' < w then w’ equals a subexpression of r; ---ry Theorem 5.10 of
[T1]. Since the length of w’ is d — 1 then w’ =ry---7; -+ -1y for some i. To show that

the integer ¢ is unique, let ¢ < 7 such that
rl...ri...rd:frl...rj...rd

then by cancellation, 741 ---7r; = 7;---7;_1 and by substitution of this on the original

expression for w,

w = rl"'(Ti"'rj71>7‘j"'rd:Tl"'(ri+1"'rj>rj"'rd

= rl...ri...rj...rd
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that is a contradiction with original expression for w being reduced. L]

4.4 'The boundary map

Let C be the Z-module freely generated by B(u), v € U. The boundary maps
0 : C — C are defined by

0B(u) = Y c(u,v)B(v)

veV (u)
where c(u,v) := 0, if dimB(u) — dimB(v) # 1 and
c(u,v) :=deg (G, : So ' — ST

if dimB(u) — dimB(v) = 1.
Where the map ¢,,, is the composition of the following maps:

(a) the attaching map W, |gp : St =2 01 — 0B(u) = S(u)\B(u).

(b) the quotient map 0B(u) — 0B(u)/(0B(u)\B(v)), where we take the cell B(v)
and identify its complement in 0B(u) = S(u)\B(u) to a point.

(c) the identification 9B(u)/(0B(u)\B(v)) = S(v)/0B(v) = o,, where the last

equality comes from the definition of o,,.
(d) the map defined by equation (4.2), U1 : o, — SI°1.
Remark

To compute the degree

u

c(u,v) = deg (gbw . §dt Sff’l)

when u = s;---sqm and w(v) = ry---7;---7rq is a reduced expression for some j

then v is one of two options:
V=701V O VUV =7U1M;Uy

where v = s1---s;_1 and vy = 5541 - - - sgqm. These two options will correspond to 0
and 7 in the next Lemma.

We will determine the degree of the map ¢, , in three steps.

Step 1: Domain and co-domain spheres.
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First we identify the spheres S?! in the domain and S9! in the co-domain.
Remember that the “closed ball”, B¢ = J4, where J = [0, 7], as in Theorem and

the domain of ¢, , is the frontier of Je
St = {(ty,...,tq) : 3j,t; =0 or 7}

or the union of the “faces” of the closed cube J¢.

On the other hand, let Bt = J x - -+ x Tx - x J, without the interval in the
jth position. The co-domain is the sphere S¢~! obtained by collapsing to a point
the boundary of B! = J4=1. This is seen in the items (c) and (d) in the definition

of Gy
Step 2: o, in the image U, (S471).

The second step is to see how o, sits inside the image ¥, (S¢"!). The following

Lemma says what is the pre-image of Nvb under V,,.

Lemma 4.11 Ifu=s1---s¢qm and v = sy ---m’---sqm with m' replacing s; where
m' =1 orm’ =m;. Then V,(t1,...,ts) € Nvb=B(v) if and only if t,, € I = (0,7),
forallk #j and t; =0 form' =1, and t; = 7 for m' = m;.

Proof: If t; = 0 then ¢;(0) = 1 and

W (ty, ..y 0, 00 tg) = 1(tr) - 1 hg(tq)mb
Now, since 7(v) is reduced then

oty .0, td) = Wyt sty )

and W, (t1,...,0,...,t4) is in S(vjve), that is the case m’ = 1.
If t; = m then ¢;(m) = m; and

\Ilu(th sy Ty 7td) = 77Z}1(t1) IR 1/}d(td)mb
First note that taking t; = 7/2 for k # j and t; = 7 we obtain
81~--mj---sdm :vlmjvg

Now remember that by Lemma for any k,7 : myp(I) = ¢ (I)m”, and
m” € M. So that, by successive applications of Lemma [4.6]

my i (D) - Ya(l) = i (L) - Pa(l)m”

for some m* € M. So,

\I/u(tl,...,ﬂ',...,td) = 1/11(t1)1¢d(t;)m*mb
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and that is in S(s;---1---sgm*m). By Proposition , we see that
U, (ty,...,m, ..., tqg) € Nvb = B(v)

0

In other words the pre-image of B(v) is contained in BZ and is one of the interior
of the two faces corresponding to the jth coordinate, that is, the faces where t; = 0
and t; = 7 in the case v = vjvy and v = vym,vy, respectively. Note that the
second case can be rewritten by vim;ve = vive(vy lij2> so the previous m* can be
determined .

In the quotient o, = S(v)/0B(v) the faces of B? corresponding to the kth

coordinates k # j, are all collapsed to a point.
Step 3: Degrees.

The degree of ¢,, is then the degree of one of the two maps, namely the maps
restricted to the two faces

}"(.):{(tl,...,O,...,td)} OTF;T:{(tl,...,W,...,td)}

J

The values of ¢,, in these faces are given by

F(8) = (W) (W (tr) - - 5(0) - - - palta)mb)
= (V') (@ (ta) -~ 1+ - ta(ta)mb)

Fr(E) = (W) (i (t) - - s(7) - - - alta)mb)
= (V') (Wi (t1) - my - - 1pa(ts)mb)

~

where t = (t1,...,%;,...,tq) and ¥/ is given by a choice of reduced expression
v =5} ---s,_ym which can, in principle, be different from sy ---§; - - - sgm.

The degree of ¢, , then is the degree of fjo or fi which may be considered as
maps S9! — S9! by collapsing the boundary of the faces to points. Now the degree
of a map ¢ can be computed as the local degree in the inverse image of f~1(£) of a
regular value which has a finite number of points (see [§], Proposition 2.30). In the
case of our map ¢,,,, the maps fJQ and f7 are homeomorphisms so that the pre-image
gb;j)(f) of a point is one point in one of the faces, namely a point x; in face .7:]0 if
v = V1V Or a point x, in .7-']’-’ if v = vym;v,. The local degree at z; is the degree of
f](-) and the local degree at x5 is the degree of f7. Finally, the degrees of f]Q and [

are 1 since they are homeomorphisms.
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Summarizing: To get the degree of ¢, ,, in each case, we must restrict (¥’,)" o
¥, to the faces .7-"][-) and F7 and view these faces as spheres (with boundaries collapsed
to points). The degrees of each one of the restrictions is the degree of ¢, ,. The
restrictions of (¥/,)~! o ¥, to the faces ]—"]Q and FJ are homeomorphisms and hence
have degree +1.

The term (¥’,)~! o ¥, can disappear if ¥, = ¥, this happens when in the graph
of the Bruhat order it is possible to make so that every word immediately bellow is a
subword of the word above. When the Bruhat order graph grows more complicated
this is not possible. So we need more to use of more then one expression for a given

term depending on the relation, see [17].

4.5 Algebraic expressions for the degrees

Here we compute the coefficients ¢(u, v) in terms of the roots by finding the degrees
of the maps involved.

For a diffeomorphism ¢ of the sphere its degree is the local degree at a point x
which in turn is the sign of the determinant det dip, with respect to a volume form
of S¢. Let us apply this in our context.

We let u=s1---sqm and v = s1--- 5 - - - sgqm, with s; = Sqo; and m; =my;. We

must find the degrees of f]0 and f7 defined respectively by
f](')(tlu s 707 R 7td) = \I];_l (wl(tl) RN ?/Jd(td)mb)

f;r(t1>"'77r7"'7td) = \Ij/;l <¢1(t1>m]¢d<td)mb)

in these expressions ' " is defined by a previously chosen expression v = ) - - - s, m/
which can, in principle, be different from s;---5;---s4m. On the other hand
S1-+-5j---sqm can be used to define another characteristic map, which will be

denoted by ¥,. This new characteristic map can then be used to define new functions
Pyt 0, ta) = U (i (t) - 1o pa(ta)mb)
pi(te,..,m, . tg) = Wt (r(t) - - my - - a(ta)mb)
The two pairs of functions are then related by
[ = (\11';1 ° \11> opS, =0,

The composition ¥/~ o W, (also understood as a map between spheres in which
the boundary is collapsed to points) is an homeomorphism of spheres and, hence,
has degree +1.
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Before getting these degrees we make the following discussion on the orientation
of the faces of the cube [—1,1]¢, centered on the origin of R?, which is given with the
basis {e1, ..., eq}. Afterwards we will use the cube [0, 7]?, since there is a translation
and magnification taking one into the other, we have corresponding orientations.

Starting with the (d — 1)-dimensional sphere S?~! we orient the tangent space
at x € S971 by a basis {fs,..., fa} such that {z, fo,..., fa} is positively oriented.
The faces of [~1,1]? are oriented accordingly: given a base vector e;, we let F; be
the face perpendicular to e; that contains —e; and F;r be the one that contains e;.
Then F;~ has the same orientation as the basis ey, . .. ,€5,...,eqif j is even (since
—€j,€1,...,€j,...,eq is positively oriented if j is even). So that the orientation of

j
is (—1)7*! the orientation of e1,...,¢&;,...,eq4

F: is (=1)? the orientation of ey, ...,&;,...,eq. And similarly the orientation of FjJr

Following this system, in the case of one dimension the point 1 is positive oriented
and —1 is negative oriented, in two dimensions the sides of the squares are oriented
counter-clockwise and in the cube the faces are oriented following the right hand
rule, we will call these orientations the standard orientation.

The following facts about the action of an element m € M will be used below in
the computation of the degrees.

Define 11, as I1,, where 7(u) = w. The following is Lemma 2.4 from [16] with

some changes.

Lemma 4.12 For a root o consider the action on K of m = m, = exp(nF,). Then
1. mub = vu"tmub = um'b, for m’ = u"tmu € M, and mNm="' =N
2. the restriction of m to Nub = B(u) is a diffeomorphism from B(u) to B(um').

3. the differential dm,, identifies to the action of m restricted to the subspace

> g

Belly,

where u € wC'.

Proof:
From Lemma for 8 € II then m,gs = gs. Since

mNub = mNm 'mub = Nmub = Nuu'mub = Num'b

where m’ = u™'mu € M.
For the third statement we use the notation X -k = d/dt(exp(tX))|i=o, for k € K
and X € g. Also,for ACglet A-k={X -k:XeA}
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Note that Nub = uu"'Nub and the tangent space to u='Nub at b is spanned
by g, - b with v < 0 such that v = ™' and 8 > 0, that is, uy > 0. Since
(du)(gy - b) = gun - ub, it follows that the tangent space T,,(Nub) is spanned by gs - b
where 8 = uy > 0 such that u=!3 = v < 0. Hence the result. O]

The following is Proposition 2.5 from [16] only separating the degrees, changing
notation, and since in our case the multiplicities of roots are always 1 then I = j

and dimgg = 1 for all 8 in the Proposition.

Proposition 4.13 The degrees are:

1. deg(p}) = (—1)’.

2. deg(pf) = (1), where

2y
o=o(u,v) = Z Aoy, B) (4.3)
II,, = IIT NwII~ and vy = sj41 - - - Sqm.

Proof: The map p? is the projection of the face of a d-dimensional cube onto the

face of a d — 1-dimensional cube, i.e. in coordinates
(tl,...,o,...,td) — (tl,...,%\j,...td)

Note that with respect to the basis ey, ..., e4 the t;-coordinate appears in the jth
position. Hence, by the orientation of the cube, if j is even or odd, the orientation is
respectively, positive or negative. Therefore, deg(p}) = (—1)’.

To get the deg(pf) let m; be the element of M appearing in the expression of
pj. Its left action on K takes any Bruhat cell B(u') = Nu'b to the cell Nm;u'b =
Nu/(u') " 'myu'b = B(u'm'), where m’ = (u/)"*mju’. And hence it takes the Schubert
cell S(u') to S(u'm’). Moreover the restriction of m; to Nu'b is a diffeomorphism.

In particular, we restrict the action of m; to the cell S(v2), ve = sj11 - s4m.
Its action on K takes the Bruhat cell B(vy) = Nuwgb to the cell B(vym”) where

m’ = vy 1m]-vg. Using the parametrization of this cell by the cube B,, = J¥ 7 we get

M1 (tjpa) - Palta)mb = Vi (th ) - - - Yalty)mb

with (t,,,...,ty) =m;(tj41, ..., ta) with m; : B,, — B,, continuous and a diffeo-
morphism of the interior of B,,.
Hence, p7(t1,...,,...,tq) becomes the projection of the (j — 1) first coordinates

and the composition of m; with the projection of the last kth coordinates, k =
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j+1,...,d. From the choice of the orientation of B, = J%, the face (t;,...,m, ..., 1)
of B, has orientation (—1)’"! with respect to the orientation of the coordinates

(t1,... ,f; ,...,tq). Hence after collapsing the boundary to a point, we get the degree
degp? = (—1)’"degm;

The degree of m; equals its degree at one point which in turn is the sign of the
determinant of the differential d(m;),,p restricted to the tangent space of the Bruhat
cell B(vg) = Nuyb at vab:

deg 7 = (17 sen [det (d(my sl o)

By the third statement in Lemma Top(Nvob) identifies to > set,, 95-
Once we have the generators gg - vob, 8 € I1,, for T,,,(Nvsb) together with the
action of m; over gg given by Lemma Malg, = (—1)*?id, we conclude that the

signal of det (d(mj)v2b|Tv2b(NU2b)> = (—1)? where

2<aj7 B>

BEH’UQ <a_77 OZ]>

[

Summarizing, we have the following algebraic expression for the coefficient ¢(u, v).
Theorem 4.14 Let o(u,v) be as in Equation[{.3 Then if v = vivy then
c(u,v) = deg (\11’171 o \IJU> (1)
and if v = vim;vy then
c(u,v) = deg <\Il’;1 o \I/v> (—1)Hitotuw)

We will now cite another formula for o(u,v) ,from [16] Proposition 2.7, that does
not depend on the reduced expressions of v and v. This formula is similar to the one

given by Theorem A of [19] when the dimensions of gz are all 1.

For w e W let
pw) =Y B

Belly
be the sum of roots in I, = IIT™ N wIl~. As before let w = r{---rg, and W' =
ry---7;---1rq be reduced expressions. And correspondingly u = sy ---sqgm and

U:S1"'8Aj'-'8dm=?f102-
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Proposition 4.15 Let 5’ be the unique root (not necessarily simple) such that
w =rgw that is, B’ =ry---rj_10. Then
d(w) — o(w') = (1 - o)

where o = o(w,w') = o(u,v) is the sum in Equation[{.5
Theorem 4.16 Let o(u,v) be as in Equation[4.5 Then if v =vivy then

c(u,v) = deg (\11’171 o \IJU> (1)
and if v = vim;vy then

c(u,v) = deg (\11’;1 o \I/U> (—1)7Frw)

where k(u,v) is the integer defined by ¢p(w) — ¢p(w') = k(u,v)" and ' is the unique
root such that w = rgw'. Note that by Proposition [4.15, k(u,v) =1—o(u,v).

4.6 Example G = SI(3), K = SO(3)

Since right multiplication by m € M is a diffeomorphism then B(um) = B(u)m for
u € M,. So §(B(um)) = 6(B(u))m. So to obtain 6(B(u)) for all u € M, we need
only obtain §(B(u)) for the 5 elements sy, Sa, $152, $251, S15251.

Let E;; be the matrix with 1 in the position (7, ) and zero elsewhere. Take
A= E;5— Ey; and B = Ey3 — E35 note that ¢, (t) = ¢! and (s) = e*P then

1(0) =0

t) = e"b, t € [0, 7]

s) = e*Pb, s € [0, 7]

(t,s) = e4eBb, (L, ) € [0, 7]
(t,s) = eBesb, (L, ) € [0, 7]

518281 <t7 SJ zZ) = etAGSB€ZAb7 (tJ 57 Z) e [07 7T]3

(
(

The multiples by m to the right are similar. Then we obtain expressions for
¢(u,v). The following calculations can be done more geometrically by comparing
orientations of the maps with the standard orientation or more algebraically by
calculating o(u,v) as in Proposition . The Bruhat diagram for the Weyl group

can be represented as:
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Note that in this case there is no need to account for the factor ¥’ " o W, since
there is only one expression needed for each of the five elements. More complex cases
need more care, see [17].

First calculating geometrically:

1. ¢(s1,m1) = 1 and c¢(s1,1) = —1 since ff(r) = ™ = my and f2(0) = 1.
Remember the convention we adopted for orientation of the cube [—1,1]%: at
the final point in the direction of the axis it is +1 and in the initial point

opposite the axis it is —1.

2. c(s2,my) =1 and ¢(s9,1) = —1 since f7(7) = ™ =my and f2(0) = 1.

3. c(s182,51m2) = —1, c(s189,81) = 1, c(s182,m182) = —1,¢(8182,582) = —1. We
need to consider the degree of 4 maps: f7(t,7) = ee™ = e!lmy, fI(t,0) =
A1 = et fr(m, s) = e™e’B = myesB = e Bmymy since mietPmy = e,

f2(0,8) = 1.8 = e*B. These maps are illustrated with orientations in the
next picture. Note that following our convention the positive orientation in

this case is the counter-clockwise orientation.

y A
S1M2
mo ° 1Mo
So ¢ ° ¢ 1M1S2 = S2MM 119
S$182
. >
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4. c(s981,59m1) = —1, c(s951,82) = 1, c(s281,mas1) = —1,¢(s281,51) = —1. We

need to consider the degree of 4 maps: f7(t,7) = eBe™ = eBmy, f2(t,0) =

eB1=eB, fT(m, s) = e™Pet = myest = ™D mym, since mye*Amy = =4,
12(0,5) = 1.e’P = 8. These maps are illustrated with orientations in the

next picture.

y AN
S21M
mq * mime
S1 ¢ ° ¢ MoS1 = S1M1My
S251
. -
1 S9o ma x
5. c(s18981, 5189m1) = 1, ¢(818251, $182) = —1, ¢($18281, M1S281) = 1, (815281, S281) = —1.

We need to consider 4 maps: fF(t,s,m) = eesBmy, fI(t,5,0) = ett.esB,

sBezA — 6(Tr—s)B A w—s)Be(ﬂ'—z)A B

fi(m,s,2) = mye mymee*d = el Mo, since mie*Pm; =

e=*B and mye*Amy = e | f9(0, 5, 2) = e*Be*A. These 4 maps are illustrated

in the next two pictures with orientations of the faces on the edges.

Y
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mims

T?J
ma

515251

e

Now we obtain the same results using the more general algebraic method:

Remember we need to find 11, = II™ NwyIl~ for each case to find the respective
o(u,v). For this we use equation {4.1) and that II,, = Il;(,,) and that a; = (1,—1,0)

and ay = (0,1, —1). Here we will use * to represent m; or 1.

1.

To calculate c(sq, ) we have j = 1 and vy = 1s0Il,, = @. Then ¢(s1,1) = (—1)*

and ¢(sy,mp) = (—=1)'*!

. For ¢(sg,%) we have j = 1 and vy = 1 so II,, = &. Then c(s9,1) = (—1)! and

c(s2,ma) = (1)

. For c(s159,s1%) we have j = 2 and vy = 1 50 I1,, = @. Then c(s152,51) = (—1)*

and c(s189, 51m9) = (—1)'1. Now for c(s;2,*s9) we have j = 1 and vy = s9
so II,, = {az} by Equation [{.]]and o = (2.(—1))/2 = —1. Then c(s152, s2) =

(—=1) and c(s189,m189) = (—1)%.

. For ¢(sgs1, s9%) we have j = 2 and vy = 1 so I1,,, = &. Then ¢(sg51, 52) = (—1)!

and c(s281, 59m1) = (—=1)1. Now for c(s9s1,*s1) we have j = 1 and vy = s
so II,, = {a1} by Equation [{.]]and o = (2.(—1))/2 = —1. Then c(sas1, s2) =

(—=1)* and c(s281,m189) = (—1)%.

. For ¢(s18281, $189%) we have j = 3and v = 15011, = &. Then ¢(s15281, $152) =

(—=1)" and c¢(s18981, 5189m1) = (—1)11. Now for ¢(s15281, *5251) we have j = 1
and vy = s951 s0 I, = {ag, reaq} = {aw, a1 + as} by Equation and
2<Oél,062> 2(&1,&1 +CL’2> 2(—1) 2(1)

<0417 061> <041, 041> 2 2

S0 ¢(818281,89281) = (—1)! and c(s18951,Mm18981) = (=1)F1 =1
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Writing B(m) as m, for any m € M we get,

518(81) =my — 1
518(82) = My — 1

92B(s152) = B(s1)(1 —ma) — B(s2)(1 + myms)
528(8281) = B(Sg)(l — ml) — B(Sl)(l + mlmg)

I3B(s18251) = B(s182)(my — 1) + B(sgsy)(mg — 1)

Calculating the kernel and image of boundary maps d; we can then calculate the

homology of the compact group K.
ker 5k

H. —
: Im 644

Since the operators 0 are equivariant with relation to right multiplication with
members of M then the kernels and images in the previous expression also are
invariant by right multiplication by M.

Note also that d are all linear operators so in the matrix format is always possible
to find the kernels and images by linear algebra calculations. The calculations for
the kernels are all done in the appendix. In the following calculations we will write

B(s;sk) and B(s;) as s;si and s;, respectively.
Im(51 = (m1 — 1,m2 — 1,m1m2 — Mo, M1y — m1>

Im51 = (m1 — 1,m2 — 1,m1m2 — 1>

Now, we can calculate the homology group,

. ker50 . (1,m1,m2,m1m2>
n Im51 B Im51

Hy = <1>
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syma(my + 1) + samq(mg + 1), s1(ma — 1) + so(mymsg + 1))

Let a = d2(s182) = s1(1 — my) — so(1 + myms)

Let b = 09(s251) = s2(1 —my) — s1(1 + mymy)

Since a.(1 4+ mgy)(1 — mymgy) = 0, b.(1 +mq)(1 — myms) = 0 and amy + bmy =
a+ b= —(syma(mq + 1) + symy(mg + 1)) then,

Im 5 = (a, amy, amsy, amyma, b, bmy, bmg, bmims)

Im dy = (a, amy, amsy, b, bmy, bms)

Im dy = (a, amy, ams, b, bmy)

Imdy = (a,amy, a(l 4+ mg),b,b(1 4+ my))

Im dy = (a,amq, a(l +ms),a+b,b(1 4+ my))

Im dy = (a,amq, s2(1 +mima)(1 +ms), a + b, s1(1 +mims)(1 4+ my))
Im dy = (a,amy, s2(1 +mq)(1 +ms),a+ b, s1(1+ ma)(1+ mq))

To the 2nd element add the 1st, 3rd, -5th so that
Im dy = (a, —2syma(1 + my), s2(1 4+ mq)(1 +ma),a+ b, s1(1 + mo)(1 +my))

Comparing Im d, and ker d;, note that they have 4 equal terms and that the 5th
term is double the other, since its easy to check that they are linearly independent.

Then,
ker 6,

- Im52

H,

—7)2Z
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ker 52 = <81$2 my — 1 (m2 + 1), 5182<m1 — 1) + 8281<m2 — 1),

(
s182(my — 1) + sas1mq (1 — ma))
(ma —

(
ker dg = ($152 (mg +1),s182(mq — 1) + s951(mg — 1),
(

S§1S9(M1 — + 5251m1(1 — m2) (5152(m1 — 1) -+ 5251(m2 — 1))>
ker 52 = <8152(m1 (mz —+ 1), 5182<m1 — 1) + 5281(m2 — 1),

(1 —my))

\—/\/\—/\/\—/\/

S9s1(my + 1

Let ¢ = 09(518281) = $182(mq — 1) + s981(mg — 1), Since ¢.(mq + 1)(my + 1) = 0 then,

Im d3 = (¢, emy, cmg, cmyms)

Im d3 = (¢, emy, cms)

Im d3 = (¢, c(mq + 1), c¢(ma + 1))

Imd3 = (s189(m1 — 1) + 8281 (ma — 1), s951(mg — 1)(my + 1), s189(mq — 1)(ma + 1))

Note then that Im d3 = ker d5 so that

ker 52
H = pum
2 Im (53 {0}

ker 63 = (s1s983(my + 1)(me + 1))

ker 3
Im (54

These results agree with SO(3) being homeomorphic to the projective three

H; = =kerds ~7Z

dimensional space.

4.7 Appendix

In the following calculations we will write B(s;sx) and B(s;) as s;s;, and s;, respec-
tively. Also, let a; € Z.
Calculating ker d;:

61(81 (a1 + aoMy + asmeo + a4m1m2) + SQ(CL5 + agMy + armMmo + agmlmg))

= (m1 — 1)(@1 + oMy + asmo + a4m1m2) + (mg — 1)((15 + agmq + arMmeo + agmlmg)
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= (—aytas—as+ar)+my (a3 —as—ag+as)+mso(—az+as+as—az)+myme(—as+az+ag—asg)
So to get ker §; we need
ay +as = az + ar
a1 + ag = as + ag

ag—l—a7:a4—l—a5

as + g = Qg + as

Subtracting the second line by the first and the fourth line by the third,
aq =+ a5 = Q9 —+ ay
as + ag = a7 + asg

asz + a7 = ayq + as

a5+a6:a7—|—a8

So

ay = ay — as + a7 = ag + (ag — a7 — ag) + ar = az + ag — as
a5 = —ag + a7 + as
as = ay+ a5 —ar = ag + (—ag + ay + ag) — ar = ay — ag + as

where the a5 was substituted in the first and third line, so that
s1(a1 + agmy + azmag + agmyms) + sa(as + agmy + azms + agmyms)

= 81((662 + g — ag) + asmq + (a4 — Qg + ag)mg + a4m1m2)
+5o2((—ag + ay + ag) + agmy + azmsg + agmyms)

reorganizing the terms
a231(1 + ml) + (l481(m2 + mlmg) + a6(31(1 — mg) + 82(—1 + ml))

+az(s2(1 4+ ms2)) + ag(s1(—1 4+ mg) + s2(1 + myms))

In the previous expression the terms multiplying as, a4, ag, a7, ag are then

generators of ker ;. To simplify adding the term from ag to ag we get that:

ker 61 = (s1(14+myq), syma(14+myq), so(1+my2), somq(1+msz), s1(1—mg) —s2(1—my))
Calculating ker ds:
d2(s152(ar + agmy + azme + aymimy) + s281(as + agmy + azms + agmymy))

(81(1 — mQ) — 82(1 + mlmg))(al + asmy + azmsg + a4m1m2)

+(s2(1 —my) — s1(1 4+ myma))(as + agmy + azmsg + agmims)
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s1((a; — az — a5 — ag) + my(as — ay — ag — a7) + ma(as — a; — ag — ary)
= 4mima(as —az — as — ag)) + s2((as — a1 — ag — ag) + my(ag — az — az — as)
+ma(ay — az — ag — ag) + mymy(as — ay — ag — ar))
So to get ker 9, we need

(

a1 = az+as + ag

as = a4 + ag + ay

az = ay + ag + ar = (a3 + as + ag) + ag + ar
as = as + a5 + ag = (a4 + ag + a7) + a5 + as
as = aj; + ag + ag = (a3 + as + ag) + a4 + ag
ag = az + as + as = (as + ag + a7) +az + as
a7 = as + az + ag = (a4 + ag + a7) + az + as
ag = ay + ag + a7 = (a3 + as + ag) + a4 + ar

\
where we substituted the the first two lines in the other equations. With some
cancellations we note that the fourth, the seventh and eighth are redundant, then

¢
a1 = az + as + ag

ag = a4 + ag + ay

as+as+ag+ar; =0

azs+ag+ay+ag =0
(| a4 +ar+as+as=0

Summing the last three equations we get as + a4 + ag + as + a5 + a; = 0 and
substituting the third, fourth and fifth equation we get:

(
a; = a3+ as + as

Qo = Q4 + ag + ay
az +as =0

CL5+CL7:0

L aﬁ—l—ag;:O

With this we can put every term as function of a4,a7,ag as

.
a; = —a4 — a7 + as

as = ay4 — ag + ay

a3 — —Aay
a5 = —ary
| Q6 = —as

So that

s182(a1 + agmy + azma + agmyms) + ses1(as + agmy + azmsg + agmyms)
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8182((—6L4 — ay + (18) + (CL4 — as + a7)m1 — A4MM2 + a4m1m2)

+8281(—a7 — agmi + arMms + a8m1m2)

reorganizing terms,

as5152(—1 + my —mo + mima) + az(s152(—1 4+ mq) + s251(—1 + my))

+CL8(8182(1 — ml) + 8281(—7711 + m1m2>>

In the previous expression the three terms multiplying a4,a7,as are then a gener-

ating set for ker 9, or

(s159(my1 — 1)(ma + 1), s152(m1 — 1) 4 s281(ma — 1),

ker 0o =
? 8182<m1 — 1) + 5251m1(1 — m2)>

Calculating ker d3:

d3(s15281 (a1 + agmy + agmeg + agmyms))

= (s182(mq1 — 1) + s281(mo — 1)) (a1 + agmy + azmsy + agmyms)

8182((6L2 - al) + (CLl - ag)ml + (CL4 - a3>m2 + ((13 - a4)m1m2)
+5251((az — ar) + (ag — ag)my + (a1 — az)mag + (az — ag)myms)
So to get ker 63 we need a; = ag, a3 = agand a; = a3, as = a4 0ra; = ag = az = ay

SO

ker 03 = (s1s251a1(1 + my + mg + mymy))

ker 93 = (s18951a1(my + 1)(mg + 1))
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