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ABSTRACT 

Villamil, A. (2023). Evaluation of artificial neural network to predict sand-geomembrane 

interface shear strength. Master’s dissertation, University of Brasilia, Faculty of Technology, 

Department of Civil and Environmental Engineering, Brasilia DF, 96p. 

 

The implementation of waterproofing systems during the construction of dams, landfills, and 

artificial channels is crucial to avoid fluid infiltration into the foundation soil, which can lead to 

structural damage and other potential hazards. Geomembranes are widely used in civil 

engineering as they offer excellent waterproofing capabilities, low permeability, and favourable 

mechanical properties. Like other construction materials, evaluating the strength at the interface 

between geosynthetics and in-contact material is necessary to ensure enough resistance to 

potential failures. 

 

Various laboratory tests can be conducted to ensure adequate interface resistance, such as direct 

shear, ring shear, and inclined plane. These tests determine the friction angle, a critical factor in 

determining the interface shear strength between granular soil and geosynthetics. However, these 

tests can be time-consuming and expensive and may only sometimes be feasible in project 

planning. Therefore, finding alternative methods to obtain the necessary information is essential. 

One possible solution is to use reference results from other research. In this way, a database of 

previous results can be compiled, and a predictive model can be created to estimate the required 

interface strength values. This study aims to assess the effectiveness of using an Artificial Neural 

Network (ANN) methodology to predict the shear strength at the interface of sand and 

geomembrane. A Multi-Layer Perceptron (MLP) architecture was chosen to configure the ANN 

models, and the training process is a supervised one that involves a Back-Propagation (BP) 

training algorithm coupled with the Differential Evolution (DE) optimization algorithm. The 

input data for the models were defined from 428 laboratory tests reported in previous 

investigations, including 14 input parameters and sand-geomembrane interface strength results. 

 

Four ANN models were analysed and compared, differentiated in terms of their number of inputs 

(9 or 14) and the number of hidden layers (1 or 2). The ANN model with the architecture 14-71-

342-1 displayed the most satisfactory results for the training and testing phase in terms of the 

predicted values' distribution compared to the trend line (R²: 0.919 training, R²: 0.852 testing), a 

lower number of residual values outside the acceptable range (4% training, 11.6% testing), and 
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excellent prediction performance according to statistical metrics for both phases (RMSE: 1.92, 

MAE: 1.32, MAPE: 5.03% training, RMSE: 0.852, MAE: 3.36, MAPE: 7.13% training). Based 

on the results, the ANN technique can be defined as an effective approach for predicting sand-

geomembrane interface strength values (friction angle) for the collected data.  
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RESUMO 

Villamil, A. (2023). Avaliação de rede neural artificial para prever a resistência ao 

cisalhamento da interface areia-geomembrana. Dissertação de Mestrado, Universidade de 

Brasilia, Faculdade de Tecnologia, Departamento de Engenharia Civil e Ambiental, Brasilia 

DF, 96p. 

 

A implementação de sistemas de impermeabilização durante a construção de barragens, aterros 

sanitários e canais artificiais é crucial para impedir a infiltração de fluidos no solo da fundação, 

o que pode levar a danos estruturais e outros perigos potenciais. Nesse contexto, as 

geomembranas são amplamente utilizadas na engenharia civil, pois oferecem excelentes 

capacidades de impermeabilização, baixa permeabilidade e propriedades mecânicas favoráveis. 

Assim como outros materiais de construção, avaliar a resistência na interface entre os 

geossintéticos e o material em contato é necessário para garantir resistência suficiente a 

possíveis falhas. 

 

Para garantir a resistência adequada da interface, vários testes de laboratório podem ser 

realizados, como cisalhamento direto, ring shear e plano inclinado. No entanto, podem ser 

dispendiosos, e nem sempre ser viáveis no planejamento do projeto. Uma alternativa é usar 

resultados de outras pesquisas para criar um banco de dados e um modelo preditivo para estimar 

a resistência à interface. Este estudo avalia a eficácia do uso da metodologia de Redes Neurais 

Artificiais (RNA) para prever a resistência ao cisalhamento na interface entre areia e 

geomembrana. Foi escolhida uma arquitetura de Perceptron de Múltiplas Camadas (PMC) para 

configurar os modelos RNA, o processo de treinamento é supervisionado, envolvendo um 

algoritmo de treinamento de Back-Propagation (BP) combinado com o algoritmo de otimização 

Differential Evolution (DE). Os dados de entrada para os modelos foram definidos a partir de 

428 testes de laboratório relatados em investigações anteriores, incluindo 14 parâmetros de 

entrada e resultados de resistência à interface entre areia e geomembrana. 

 

Quatro modelos de RNA foram analisados e comparados, diferenciados em termos de seu 

número de entradas (9 ou 14) e o número de camadas ocultas (1 ou 2). O modelo de RNA com 

a arquitetura 14-71-342-1 mostrou os resultados mais satisfatórios para a fase de treinamento e 

teste em termos da distribuição dos valores previstos em comparação com a linha de tendência 

(R²: 0,919 treinamento, R²: 0,852 teste), um número menor de valores residuais fora da faixa 
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aceitável (4% treinamento, 11,6% teste) e excelente desempenho de previsão de acordo com as 

métricas estatísticas (RMSE: 1,92, MAE: 1,32, MAPE: 5,03% treinamento, RMSE: 0,852, 

MAE: 3,36, MAPE: 7,13% treinamento). Com base nos resultados, o algoritmo de RNA pode 

ser definido como uma abordagem eficaz para prever valores de resistência à interface entre 

areia e geomembrana (ângulo de atrito) para os dados coletados.  
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1 INTRODUCTION 

1.1 MOTIVATION 

Geosynthetics, including geomembranes (GM), have gained popularity in civil engineering as 

a versatile solution for various geotechnical challenges. Specifically, GM offers an excellent 

solution for dams, landfills, and artificial channels due to waterproofing capabilities, low 

permeability, and favourable mechanical properties (Koerner, 2012), managing liquids and 

preventing infiltration into the underlying soil materials. The strength at the interface between 

geosynthetics and in-contact material, such as soil, is crucial to ensure enough resistance to 

potential failures (Moraci et al., 2014). The friction angle determines the interface shear strength 

between granular soil and geosynthetic and can be determined by various laboratory tests 

(Palmeira, 2009; Moraci et al., 2014; Cen et al., 2018). 

 

Various researchers have conducted multiple studies to investigate the interface resistance 

between soil and geomembranes. These studies have shown that factors other than the testing 

methods impact the strength parameters, including the geomembrane characteristics, soil 

properties, and external conditions such as applied stresses and contact area (Izgin, 1997; Wasti 

& Özdüzgün, 2001; Palmeira et al., 2002; Rebelo, 2003; Aguiar, 2008; Pitanga et al., 2009; 

Moraci et al., 2014; Alzahrani, 2017; Sánchez, 2018; Lashkari & Jamali, 2021; Araújo et al., 

2022; Khan & Latha, 2023; Costa Junior et al., 2023)  

 

During the early stages of a project, it is imperative to determine the shear strength of the soil-

geomembrane interface but performing lab tests to obtain this information can be expensive 

and time-consuming. As a result, designers may choose to use reference parameters from 

previous research with similar specifications. Machine learning (ML) is a computational 

technique that uses algorithms and statistical calculations to analyse and learn from data, 

enabling it to predict or categorise outcomes without requiring extensive programming. 

According to Ebid (2021), Phoon & Zhang (2022) and Baghbani et al. (2022), many authors 

have applied different ML models for evaluating and resolving geotechnical issues. However, 

the assessment of geosynthetics' behaviour by ML is rare in comparison to other subjects (Chao 

et al., 2021). 
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This study presents the application of a Multi-Layer Perceptron (MLP) ANN with a Back-

Propagation (BP) learning algorithm coupled with a Differential Evolution (DE) optimisation 

algorithm to predict the strength parameter at the sand-GM interface (friction angle) based on 

428 laboratory results obtained from previous studies. The training algorithm was conducted 

using the Machine Learning module of the Tyche software (2020) from the University of 

Brasilia, with was implemented in the Python® language. 

1.2 OBJECTIVES 

The overall objective of this study is to assess the accuracy of the Multi-Layer Perceptron-

Artificial Neural Network technique, utilising BP-DE algorithms, for predicting the behaviour 

of interface shear strength between sand and geomembrane (represented by the friction angle). 

The following specific objectives have been itemized: 

 

 Gather and examine data on factors that influence the shear strength of the interface between 

sand and geomembrane from laboratory tests conducted by companies and published 

literature. 

 Conduct statistical analysis on the established database to determine the linear relationship 

between different parameters and the interface friction angle. 

 Create ANN models based on input parameters, the number of hidden layers, and the optimal 

architecture. 

 Conduct training and testing analyses for each established ANN model to predict the 

interface friction angle values. 

 Evaluate the accuracy of the ANN models by comparing predicted values to laboratory test 

results and identifying the most precise model. 

1.3 THESIS OUTLINE 

The study is divided into five chapters. Chapter 1 briefly introduces the research's initial 

considerations, motivation, and objective. Chapter 2 focuses on the literature review, presenting 

geosynthetics' key characteristics and applications, their behaviour at the interface with soil, 

and fundamental definitions and uses of Machine Learning in civil engineering and geotechnics. 

 

Chapter 3 details the methodology and techniques used to develop, implement, process, and 

assess the ANN model to predict the interface strength. This chapter outlines the step-by-step 
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process to create the ANN model, including selecting input parameters and determining the 

optimal architecture. 

 

Chapter 4 presents the results of the applied methodology for predicting the sand-geomembrane 

interface strength. The collected data is interpreted and correlated, and the characteristics of the 

implemented models are described in detail, along with their evaluation. The final developed 

models are evaluated to determine their accuracy compared to the laboratory results collected. 

Ultimately, the most accurate model was identified and selected based on its precision in 

predicting the interface strength. 

 

Finally, Chapter 5 provides a comprehensive overview of the findings and highlights the main 

conclusions drawn from the study. It also outlines the limitations of the research and provides 

recommendations for future work. 

 

The literature references used in this study are presented after the last Chapter. 
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2 LITERATURE REVIEW 

2.1 GEOSYNTHETICS 

Over time, the search for solutions to the diverse civil construction challenges has led to the 

development of engineering design practices, e.g. geosynthetics which is now established as a 

widely used option for geotechnical recommendations. In 1926, the South Carolina Highway 

Department (SCHD), developed several experiments using cotton fabric as a reinforcement 

system for asphalt pavement with successful results in improving the pavement's lifetime. This 

experiment increased interest in implementing geosynthetics to reinforce structures (Koerner & 

Soong, 1997). 

 

Geosynthetics became more relevant in geotechnical engineering in 1977 when the first 

geosynthetic conference occurred in Paris. Factors such as product quality control, easy 

installation, high resistance to biological and chemical degradation, long-term durability in 

contact with soil, and easy storage and transport (Shukla & Yin, 2006; Koerner, 2012), 

established the use of geosynthetics as a high effective alternative material. 

 

ASTM D4439-20 technically defines geosynthetics as “a planar product manufactured from 

polymeric material used with soil, rock, earth, or other geotechnical engineering related 

material as an integral part of a man-made project, structure, or system”. The ISO 10318-1 

standard states that it is a product in which at least one of its components is made from a 

synthetic or natural polymer. 

 

Polymers are commonly characterized as "plastics" made from natural products such as 

petroleum and their derivatives (Koerner, 2012). The author points out that the most commonly 

used polymers for the manufacture of geosynthetics include: High-density polyethylene 

(HDPE), Linear low-density polyethylene (LLDPE), Polypropylene (PP), Polyvinyl chloride 

(PVC), Polyester, Expanded polystyrene (EPS), classified as thermoplastics (have the property 

of modifying their shape after a heating and cooling process without altering their 

characteristics), and Ethylene propylene diene termoplymer (EPDM) which belongs to the 

thermosets (do not possess the property of modifying their shape). 
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2.2 FUNCTION AND TYPES 

According to Koerner (2012), geosynthetics are mainly used because they provide better 

performance and economy in comparison to other conventional materials utilized in 

engineering projects. In addition, as they are manufactured with synthetic or natural materials 

(cotton fibres, jute, coir, wool, among others), they offer greater ease and versatility in 

construction for geotechnical, environmental, hydraulic and transport purposes; for instance, 

foundation reinforcement, dike construction or soil-reinforced retaining walls, embankments, 

erosion control on slopes and riverbanks, hydraulic control, canal lining, rockfall control, 

subgrade reinforcement, asphalt layers and granular base, among others. Figure 2.1 shows some 

different civil construction applications using geosynthetics. 

 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 2.1 – Use of geosynthetics in construction projects: (a) Earth retaining wall, (b) Asphalt 

reinforcement, (c) River bank control, (d) Hydraulic control (Geomatrix Colombia, 2023). 

 

The Brazilian standard ISO 10318-1 outlines seven main functions of geosynthetics: surface 

erosion control, drainage, filtration, barrier, protection, reinforcement and separation. Multiple 
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geosynthetic products are differentiated predominantly by their manufacturing process (IGS, 

2015a), which establishes their functionality and application. Table 2.1 briefly describes each 

of the seven main functions mentioned previously and the most suitable type of geosynthetic; 

the same geosynthetic can be found in different applications.  

 

Table 2.1 - Geosynthetics functions (Modified from ISO 10318-1). 

Function Description Geosynthetic type 

Surface erosion 

control 

Prevent or reduce the movement of soil or other 

superficial particles caused by rainfall or surface 

water runoff. 

GTX (W, K or NW), 

GMA, GCE 

Drainage Collecting and transporting of precipitation, 

groundwater and other fluids using a geosynthetic 

material, which acts as a drain that transports the 

fluid through lower permeability soils. 

GTX (W, K or NW), 

GDP 

Filtration Retention of soil or other particles subjected to 

hydrodynamic forces, allowing the passage of 

fluids into or across a geosynthetic material. 

GTX (N, K o W) 

Barrier Application of a geosynthetic to prevent or restrict 

the migration of fluids (waterproofing). 

GM 

Protection Preventing or limiting of local damage to a given 

element or material by the use of a geosynthetic 

material 

GTX (W or NW), 

GNT 

Refoircement Use of the stress-strain behaviour of a geosynthetic 

material to improve the mechanical properties of 

soil or other construction materials. 

GTX (N, K o W), 

GGR, GCE 

Separation Prevention from intermixing of adjacent dissimilar 

soils and/or fill materials by the use of a 

geosynthetic material. 

GTX (N, K o W), 

GM 

Nomenclature taken from ISO 10318-1: GTX= Geotextile (W= Woven, K= Knitted, NW= 

Non-woven), GMA= Geomat, GCE= Geocell, GDP= Drainage pipe, GM = Geomembrane, 

GNT= Geonet, GGR= Geogrid. 

 

Below it is given a brief description of the different geosynthetics referred previously according 

to the terminology established by the standard ISO 10318-1, and an image example is presented 

in Figure 2.2. 

 

 Geotextile – GTX (N, K, W): planar, permeable, polymeric (synthetic or natural) textile 

material, which may be nonwoven, knitted, or woven, used in contact with soil and/or other 

materials in geotechnical and civil engineering applications. 
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 Geomat – GMA: three-dimensional, permeable structure, made of polymeric 

monofilaments, and/or other elements (synthetic or natural), mechanically and/or thermally 

and/or chemically and/or otherwise bonded. 

 Geocell – GCE: three-dimensional, permeable, polymeric (synthetic or natural) 

honeycomb, or similar cellular structure, made of linked strips of geosynthetics. 

 Geomembrane – GM: also known as geosynthetic barrier – GBR, is low-permeability 

geosynthetic material, used in geotechnical and civil engineering applications with the 

purpose of reducing or preventing the flow of fluid through the construction. 

 Geonet – GNT: geosynthetic consisting of parallel sets of ribs overlying and integrally 

connected with similar sets at various angles. 

 Geogrid – GGR: planar, polymeric structure consisting of a regular open network of 

integrally connected, tensile elements, which may be linked by extrusion, bonding, or 

interlooping or interlacing, whose openings are larger than the constituents. 

 Geocomposite – GCO: manufactured, assembled material using at least one geo-synthetic 

product among the components. 

 

 

Geogrid – GGR 

 

Geotextile – GTX 

 

Geocell – GCE 

 

Barrier – GBR 

 

Geocomposite – GCO 

 

Geomat – GMA 

Figure 2.2 – Geosynthetic photographic sample. 

2.3 GEOMEMBRANE AND CIVIL WORKS APPLICATIONS 

Shukla & Yin (2006) describe GM as a flexible membrane liner (FML) with permeability values 

ranging from 0.5x10-12 to 0.5x10-15 m/s being up to 106 times lower in permeability than 

compacted clay. GM can be used as a barrier inside an earth mass or as a liner when used as an 
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interface. The GM can be manufactured with different characteristics such as thickness, 

roughness (smooth or textured), material (PVC or HDPE), among others, depending on the 

specific needs of the site. 

 

A minimum thickness of 0.75 mm is recommended for all geomembrane, except for HDPE 

type, which should have a minimum thickness of 1.5 mm considering its manufacturing process. 

The most commonly used geomembrane type is HDPE. However, if greater flexibility is 

required, it is possible to use LLDPE (linear low-density polyethylene) geomembrane. 

 

GM has waterproofing properties suitable for hydraulic control in construction sites. In 

landfills, GM is implemented on bottom, top (landfill closure) and lateral slopes, developing a 

system that prevents leachate infiltration (fluid generated by the runoff of water through the 

waste) into the ground (leading to a collection and discharge point), ensuring no soil 

contamination. 

 

For hydraulic structures such as ponds, reservoirs or canals, GM offers effective infiltration 

control, constructability and/or lower cost than other materials such as concrete or soil (which 

can be affected by cracking or erosion). Other applications of GM as complementary elements 

are implemented in earth dams, retaining walls and tunnels (Shukla and Yin, 2006). Geotextiles 

are often installed on top of the GM to protect from damage by building materials or ultraviolet 

radiation (IGS, 2015b). Figure 2.3 shows a photographic sample for smooth and textured 

geomembrane. 

 

 

(a) 

 

(b) 

Figure 2.3 – Geomembrane photographic sample: (a) Smooth, (b) Textured. 
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It is possible to find simple waterproofing systems composed of a single liner of geomembrane 

or in contact to a low permeability soil (composite liner). A composite liner combines two or 

more different materials with low-permeability components giving a better behaviour due to its 

different hydraulic, physical and resistance characteristics. There are also double liner systems 

characterised by two liners and a draining layer for detecting, collecting and removing liquids 

(Giroud & Bonaparte, 1989). Figure 2.4 illustrates fives examples of lining systems. 

 

 

Figure 2.4 – Some examples of lining systems (after Giroud and Bonaparte, 1989). 

2.4 SOIL/GEOSYNTHETIC INTERFACE SHEAR STRENGTH 

In civil engineering constructions using geosynthetics, it is important to evaluate their 

properties and establish an appropriate design to avoid any damage that reduce the operability 

and integrity of the structure. In this context, enough interface strength between the 

geosynthetic and the adjacent material is essential to prevent potential failures. In the case of 

interaction with soil, suitable interface strength will prevent the sliding of the soil mass or 

"pulling out" of the geosynthetic (Costa e Lopes, 2001). 

 

The Mohr-Coulomb rupture criterion is used to define the interface strength with geosynthetics 

by replacing the soil friction angle by the interface strength angle and the cohesion by the 

adhesion between the involved materials (Eq. (2.1)) (Izgin, 1997). 
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𝜏𝑓 = 𝑎′ + 𝜎′𝑓 tan 𝛿′ Eq. (2.1) 

 

Where: 

𝜏𝑓: Shear strength of the interface. 

𝑎′: Adhesion intercept. 

𝜎′𝑓: Effective normal stress acting on the interface. 

𝛿′: Angle of sharing resistance of the interface. 

 

In order to measure the strength parameters, laboratory tests are carried out to obtain the shear 

stress-displacement curve for different loading, thus determining the strength envelope (Costa 

Junior, 2020). For granular soil-geosynthetic interface is typical to neglect the influence by 

adhesion parameter (Markou & Evangelou, 2018). 

 

According to Wu & Shu (2012), stress-displacement curves have three stages known as pre-

peak, softening and residual, as shown in Figure 2.5. The maximum (peak) shear stress value 

occurs between the pre-peak stage and softening stage. Palmeira (1987) indicates that most of 

the friction angle between soil and a reinforcement material is smaller than the friction angle of 

the soil alone. 

 

 

Figure 2.5 – Relationship between Shear stress and Displacement of Geomembrane Interface 

(Modified from Wu & Shu, 2012). 

 



11 

 

Direct Shear, Inclined Plane, Ring Shear, and Pullout tests are used as for shear strength 

evaluation of soil/geosynthetic interfaces. The direct shear test is the most applicable because 

of its ease of application and versatility (Aguiar, 2003, 2008; Rebelo, 2003; Jogi, 2005; Afonso, 

2009; Alzahrani, 2017). Direct shear test and Inclined plane have their particularity and they 

basically are described as follows. 

 

The Direct Shear Test is widely used in practice to evaluate material behaviour. Shear strength 

measurement at soil-geosynthetic interfaces (ASTM D5321-12, Procedure B) is performed by 

placing a geosynthetic specimen completely on a soil substrate in the lower box of the apparatus 

and then covering it with the upper box filled with compacted soil adjusted to the required 

moisture and density (ABNT NBR ISO 12957-1/ ASTM D5321-12). Subsequently, a normal 

load is applied, and the shear force and displacement are measured until a stable condition is 

achieved. The procedure is performed with a minimum of three (3) different loads on the same 

material to obtain the failure envelope and the interface strength parameters (interface friction 

angle δ' and adhesion 𝑎′). Figure 2.6 shows a typical representation of a shear-normal stress 

graph where the slope of the strength envelope represents the interface friction angle shearing 

resistance and the intercept with shear stress axis represents the apparent adhesion (Jogi, 2005).  

 

 

Figure 2.6 – Typical plot of shear stress vs. normal stress obtained from direct shear testing of 

geomembrane- soil interface (Jogi, 2005). 

 

The box size used in the tests depends on the apparatus and procedure. The ABNT NBR ISO 

12957-1/ ASTM D5321-12 standard describes the method for determining the shear strength of 

soil-geosynthetic interface by direct shear test, stipulating a minimum box dimension of 300 

mm (12”) or fifteen (15) times the d85 of the coarser soil used in the test and a container depth 

𝜏𝑓 = 𝑎′ + 𝜎′𝑓 tan 𝛿′ 
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of a minimum 50 mm (2") or six (6) times the maximum particle size of the coarser soil used. 

However, the standard specifies that it is possible to modify the container dimensions. For 

example, the Conventional Direct Shear test (CDS) employs a rounded or squared box of 60 or 

100 mm dimensions, or the Medium Direct Shear test (MDS), where variations in the box size 

of up to 1000 mm are possible in both containers (lower and upper). Sometimes the lower 

container can be made with larger dimensions in case of greater deformations (Aguiar, 2003). 

These container dimension adjustments allow for a more extensive interface area, providing 

easier readings of forces and deformations (Rebelo, 2003). 

 

There is not a single, definitive procedure for direct shear testing. Ingold (1991) specified five 

(5) basic methods for direct shear tests identified as fixed shear box, partially fixed shear box, 

free shear box, large base shear box and central base shear box, as is shown in Figure 2.7. 

 

 

Figure 2.7 – Types of Direct Shear apparatus (After Ingold, 1991). 

 

The Inclined Plane Test measures the friction angle values of a geosynthetic-soil interface at 

low normal stress using an inclining plane apparatus. The test allows the generation of inclined 

slope conditions for low-stress levels, which can produce errors when conventional direct shear 

test is used (Gourc et al., 1996). 

 

The test quantifies the angle necessary to slide a soil box along an inclined articulated base, 

where the geosynthetic is fixed, at a constant speed of 3±5°/minute. The minimum box 

dimensions are 300x300 mm with a depth greater than 50 mm or seven (7) times the maximum 
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particle size of the soil used (according to ABNT NBR ISO 12957-2). Although, similar to the 

DS test, variations in the box dimensions are accepted and implemented. The weights must be 

ensured to be placed on the box to apply soil loads. Figure 2.8 shows a photograph of the 

inclined plane test equipment. 

 

 

Figure 2.8 – IP test equipment photograph (Lima Junior, 2000). 

2.4.1 FACTORS AFFECTING SAND/GEOMEMBRANE INTERFACE STRENGTH 

The previous section discussed the behaviour of interface strength with geosynthetic and 

outlined several methods for assessing strength parameters, including two types of testing that 

will be referred to later in the methodology. Many authors have conducted studies evaluating 

the sand/GM interface strength using DS and IP tests. However, during the execution of the 

tests, various factors were observed to have influenced and affected the strength parameter 

values. Below are referenced some investigations of the various influencing factors related in 

the literature. Each factor is presented independently, starting with external conditions and then 

with the material properties. 

 

Firstly, the type of test choice for assessing material's shear strength, either DS (with 

modifications in the box-dimensions) or IP, will directly influence the interface shear strength. 

The IP test is more appropriate for applying lower normal stresses (Lima Junior, 2000; Ling et 

al., 2002; Viana, 2007; Moraci et al., 2014; Sánchez, 2018; Mello, 2021; Pavanello et al., 2021), 

while the DS test can generate errors (Girard et al., 1990). Furthermore, the configuration of 



14 

 

the equipment can also affect the materials' interaction behaviour and the application of loads 

(Palmeira, 2009). 

 

The DS test results at the sand/geosynthetics interface developed by Lashkari & Jamali (2021) 

demonstrated a decrease in friction angle values with an increase in applied normal stress. A 

similar condition was observed by Wasti & Özdüzgün (2001) and Pitanga et al. (2009) for 

geomembrane/geotextile interfaces. 

 

Afzali-Nejad et al. (2021) conducted direct simple shear tests on various types of sand, 

geomembrane, and woven geotextile to observe the influence of volume change on interface 

strength. Among the results obtained, the authors concluded that an increase in the initial normal 

stress and normal stiffness generated an increase in ultimate and peak strength for dense and 

medium-dense sand interfaces with geosynthetics (also observed by Khan & Latha, 2023). The 

opposite result was obtained for loose sand interfaces. Pavanello et al. (2022), concluded that 

any variations in the normal stress caused by the IP test, do not result in significant differences 

in the outcomes. 

 

Fleming et al. (2006) state that an increase of the normal stress can modify the mechanism of 

interface shear failure, generating a combination of sliding and plowing. This condition is also 

related to the type of geomembrane and soil present at the interface, with a higher shear strength 

observed for more granular soils and smooth geomembranes at sufficiently high normal stress 

due to the embedded particles into the geomembrane. Same sliding to plowing change condition 

was stated by Chen et al. (2021) according to the results of finite element and discrete element 

method analysis for 3D interface shear test simulations between sand and smooth 

geomembrane. 

 

In the study conducted by Sánchez, (2018), different interfaces with geosynthetics were 

evaluated using three types of tests (CDS, MDS and IP). The author found that there is no direct 

relationship between the strength values and the thicknesses of the geotextiles, which was also 

reported by Lima Junior (2000) for inclined plane tests with sand/geosynthetics. On the other 

hand, the author points out that a larger contact area (involving the scale of the tests) influences 

the shear strength response of the interfaces and reduces the influence of other material 

characteristics (such as density and type of matrix). 
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Several authors (Izgin & Wasti, 1998; Lima Junior, 2000; Wasti & Özdüzgün, 2001; Hsieh & 

Hsieh, 2003; Reyes Ramirez & Gourc, 2003; Gourc & Reyes Ramírez, 2004; Viana, 2007; 

Aguiar, 2008; Pitanga et al., 2009; Moraci et al., 2014; Sánchez, 2018) have reported variations 

in the interface friction angle values for different tests when using different equipment scales 

and test box sizes. The results indicated different conclusions for the influence of the box sizes, 

where some authors state that larger contact areas result in higher values of interface friction 

angles, and others commented the opposite. In general, it is possible to suggests that the test 

equipment scale influences the interface strength response. 

 

Monteiro (2012) performed IP and CDS tests on smooth PVC and HDPE geomembranes and 

textured HDPE geomembranes with fine sand (varying the degree of saturation). In general, an 

increase in the shear strength interface was found with higher saturation degree values. In 

addition, lower friction angle values were observed for the interface with smooth 

geomembranes (HDPE and PVC) concerning the values obtained with textured HDPE 

geomembranes. 

 

Costa Junior et al. (2023) carried out direct shear tests using two types of sandy silt-clay soil 

(SM according to USCS system) without plasticity (one of which had a larger particle diameter) 

and nine types of textured geomembranes with an asperity height between 0.52 to 1.0 mm, on 

both sides. The tests were performed using a 300x300 mm box and different load values (5 to 

50 kPa) under both, dry and saturated conditions, with a displacement rate of 1.0 mm/min. The 

results indicated that the strength parameter values were higher for coarser soils and dry 

conditions, particularly for peak values. 

 

Karademir (2011) and Karademir & Frost (2021) studied the behaviour of interface strength 

with geomembranes due to ambient temperature variation. The tests showed an increase in the 

interface strength with geosynthetics proportional to the temperature increase. For sand-

geomembrane interface, Bilgin & Shah (2021) found a contrary condition in large direct shear 

tests where the interface shear strength was decreasing at higher temperatures. However, high 

temperatures can cause GM crystallization, affecting lifespan and functionality (Rowe et al., 

2009). On the other hand, Paruchuri (2011) found no significant influence on the strength of 
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geosynthetic samples when they are in freezing and unfreezing conditions, concluding that the 

impact of freezing temperatures on the interface of geosynthetics is insignificant. 

 

From the geosynthetic interfaces tests performed by Stark et al. (1996), it was noted that there 

is a major difference in the interface strength values for smooth and textured geomembranes, 

significantly higher when textured geomembranes were used. A similar condition was 

evidenced by Araújo et al. (2022), where the interface adherence between sand and GM depends 

on the geomembrane asperity; the results showed a direct influence on the interface shear 

strength due to the asperity height of the geomembrane. 

 

Lopes et al. (2001) conducted inclined plane tests following the standard guidelines for two 

methods. Two types of sand with different grain sizes and two types of HDPE geomembranes 

of the same thickness (2 mm) with a different texture (smooth and textured) were employed. 

The results showed that the sand/GM interface strength is strongly affected by the 

geomembrane surface texture, being higher when the geomembrane is rough. On the other hand, 

they showed that the differences between the applied test methods were not significant. 

 

Ari & Akbulut (2022) tested the interface shear strength for three types of sand and three types 

of geomembrane with different fractal dimensions (units of measurement for objects with 

irregular morphology) by direct shear tests under three different stresses (54, 109 and 163 kPa). 

Figure 2.9 presents the results obtained for the interface friction angle behaviour for the fractal 

dimension of the three types of sand used (black: beach sand, red: crushed sand with rounded 

edges, and blue: crushed sand with angular edges) and the geomembranes (black: smooth, red: 

slightly textured, and blue: heavily textured). The results showed a proportional influence on 

the increase of the interface shear strength with the value of the materials' fractal dimension. 

This allows inferring that both the soil particle size and the geomembrane's asperity height 

characteristics influence the interface behaviour, considering that the soil particles (due to the 

applied normal stress) penetrate the geosynthetic, increasing the resistance to movement. 
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Figure 2.9 – Variation of the sand-geomembrane interface friction angle with fractal dimension 

(Ari & Akbulut, 2022) 

 

The results observed by Jewell et al. (1984), Palmeira & Milligan (1989), Jewell (1990, 1996) 

Lopes & Lopes (1999), Costa e Lopes (2001), Aguiar (2008), Vangla & Latha (2015), Afzali-

Nejad et al. (2017), have shown that soil particle size has a significant impact on the 

geosynthetic shear strength interface behaviour. Another influential feature is the soil density, 

which is directly proportional to the interface shear strength evaluated for the sand/GM 

interface studied by O’Rourke et al. (1990). 

 

According to the observations presented in the different authors' research, the GM interface 

shear strength parameters are linked to different factors, which can be classified as showed in 

Figure 2.10: 

 

 

Figure 2.10 – Sand/GM interface strength influential factors. 
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2.5 MACHINE LEARNING (ML) 

New technologies are characterised by implementing processes and methodologies that 

generate innovative results. However, it is possible to use novel techniques to take advantage 

of the vast amount of existing information produced over time to learn the expected response 

based on the experience already acquired. Machine Learning (ML) is a method capable of 

analysing and learning from previous information (data mining) to predict or classify a response 

using algorithms and statistical calculations without complex programming. 

 

Arthur Samuel (1959) initially defined ML as “the field of study that gives computers the ability 

to learn without being explicitly programmed” and a newer description was given by IBM 

Education (2020) where ML is defined as “…a branch of Artificial Intelligence (AI) and 

computer science which focuses on the use of data and algorithms to imitate the way that 

humans learn, gradually improving its accuracy”. As mentioned before, ML is highly related 

to AI, and a brief description of AI is given below. 

 

AI is related to several disciplines (Russell et al., 2010), generating a powerful computational 

tool capable of developing human-like actions or responses: 

 

 Philosophy: provides the component of intelligence that involves both action and reasoning. 

 Mathematics: requires mathematical ideas based on logic, computation and probability. 

 Economics: making rational decisions when the benefits of actions are not immediate but 

result from several actions taken in sequence. 

 Neuroscience: the study of the nervous system, especially how the brain stores and 

interconnects information to integrate such behaviour into computers. 

 Psychology: how computational models can use psychology regarding memory, language 

and logical thinking. 

 Computer engineering: besides providing intelligence, AI requires efficient machines with 

modern operating systems, programming languages and tools. 

 Control and cybernetics: allowing AI to operate under its own control. 

 Linguistics: the relationship between language and thought, for IA related to computational 

language. 

 

https://www.ibm.com/topics/artificial-intelligence
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Although it may seem like modern 21st-century science, AI has actually existed for about 80 

years since its first application. In 1943, Warren McCulloch and Walter Pitts proposed one of 

the first works, in which they generated an artificial model of "on/off" neurons and simulated 

the response to a psychological stimulus (Russell et al., 2010). Fausett (1994) noted that 

McCulloch and Pitts concluded that combining neurons in a network system could increase 

computational capacity. Consequently, other authors developed new methodologies for AI 

applications and improved programming tools. As a result, AI has become a widely applicable, 

useful and appropriate tool for solving complex problems or making decisions in many fields, 

such as medicine, technology, engineering, marketing, psychology, and others. 

 

Implementing ML (or AI) for different analyses has grown due to its simple applicability using 

specific algorithms without incurring extensive and limited programming codes. Géron (2019) 

mentions the great usefulness of ML as follows: 

 

 From a simpler code (or algorithm), it can solve problems that require more human effort 

or many conditioning rules. 

 Seeks the best technique to find a solution to complex problems that cannot be solved by 

traditional methods. 

 Adapts to existing information, even newly acquired. 

 Obtains results from a large amount of data. 

2.6 TYPES OF LEARNING IN ML 

ML is based on the information available to find an answer to a problem. As mentioned above, 

considering that each issue has different characteristics, it is necessary to establish the best 

algorithm that fits the desired solution. ML can be broadly categorised into three types of 

analysis, mainly focused on the learning rule: Supervised Learning, Unsupervised Learning and 

Reinforced Learning (Abraham, 2005; Shahin et al., 2008). 

2.6.1 SUPERVISED LEARNING 

In supervised learning, both input and output data (desired response) are known, which allows 

the accuracy of the analysis to be established (based on comparison error). This type of learning 

is known as learning with a teacher (Haykin, 1999), where knowledge is represented by an 

input and an example output (result). Supervised learning can be divided into two types of tasks; 
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the first corresponds to Classification, where the algorithm works as a filter to define the desired 

output. The second task is Prediction, where a target value is generated from a set of input data, 

also known as predictors, which are trained through examples (Géron, 2019). Regression 

statistics establish a relationship between the independent variables (predictors) and the 

predicted outcome. 

 

There are different types of supervised learning algorithms and Table 2.2 briefly describes some 

of the most commonly used ones. 

 

Table 2.2 – Types of supervised learning algorithms. 

Type of algorithm General description 

Decision Tree The data are classified in the form of trees, where each tree represents 

a classification case of the information, and each branch is the assumed 

output value. The branch that best splits the training data becomes the 

root of the tree. The algorithm performs multiple splits until it finds 

sub-trees with the same classes at the same level (Maglogiannis, 2007). 

Naïve Bayes (NB) This algorithm corresponds to a probability-based ranking of data to 

predict a response. In this case, each piece of data is considered 

independent and therefore, it is called "naive". The analysis is 

performed according to Bayes' theorem (Ray, 2019). 

Support Vector 

Machine (SVM) 

The algorithm allows for classification and regression analysis. It 

works by generating hyperplanes that divide the data into decision 

boundaries (Ray, 2019). 

Random Forest 

(RF) 

It is a combination of Decision Tree and regression. From the data are 

generated multiple random samples generating k number of trees 

(Forest). Each tree generates a prediction, and the average establishes 

the model's final output (Pant & Ramana, 2022). 

Artificial Neural 

Networks (ANN)* 

ANN is one of the most widely used algorithms at present. Its main 

characteristic is that each input is connected by a network that tries to 

imitate the neurological characteristics of the human body (Fausett, 

1994). This type of network corresponds to units (neurons) organised 

in layers or groups with hidden layers between the input data and the 

output signal. The network generates a nonlinear regression analysis, 

where each output value of the preceding neuron is affected by a 

weight (Haykin, 1999). 

*: a more detailed description is presented in the following chapter to better understand the 

methodology used in this study. 
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2.6.2 UNSUPERVISED LEARNING 

Unlike the previous type of learning, in this method, there are no predefined output values, so 

results are generated based on the analysis of the input data. The implemented algorithms learn 

from existing data independently, i.e. without a teacher (Mahesh, 2020). Like supervised 

learning, there are different task and performance algorithms, as presented in Table 2.3. 

 

Table 2.3 – Types of unsupervised learning (Géron, 2019). 

Type General description Type of algorithm sample 

Clustering Allows to establish groups of existing 

data based on similar characteristics of 

all samples. 

K-means, DBSCAN, 

Hierarchical Cluster 

Analysis (HCA) 

Anomaly detection 

and novelty detection 

Defines values out of the common 

ranges in the input data (outliers). 

One-clas SVM, Isolation 

Forest 

Visualization and 

dimensionality 

reduction  

Visualisation: allows finding and 

visualising specific values or data 

within an organised group of data 

(clustering). Dimensionality 

reduction: reduces or combines 

parameters with similar 

characteristics, generating fewer data 

for analysis. 

Principal Component 

Analysis (PCA), Kernel 

PCA, Locally-Linear 

Embedding (LLE), t-

distributed Stochastic 

Neighbor Embedding (t-

SNE) 

Association rule 

learning 

Establishes relationships between the 

input data to show some interest 

characteristics. 

Apriort, Eclat 

 

2.6.3 REINFORCEMENT LEARNING 

This learning algorithm is based on positive or negative reward classes. It uses a value X as an 

agent in the middle of the data (environment) to find different actions and learn from each result 

until it finds the most successful output according to the most favourable rewards (Géron, 

2019). Figure 2.11 represents the reinforcement learning method in which a final decision is 

made based on learning. 
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Figure 2.11 – Reinforcement learning scheme (Géron, 2019). 

2.7 ARTIFICIAL NEURAL NETWORK (ANN) 

Several methodologies are inspired by characteristics of living beings, such as animals, 

microorganisms, and even humans, due to their behaviour and decision-making processes. One 

of these methods is Artificial Neural Network (ANN), which is a type of ML that attempts to 

mimic the behaviour of the human brain using mathematical algorithms (Fausett, 1994; Basheer 

& Hajmeer, 2000; Shahin et al., 2009). The human brain presents one of the most complex 

structures known; composed of neurons that are connected to each other via axons and synapses 

to transmit signals and product reactions. A biological neuronal network consists of millions of 

neurons interconnected in an organised way (Géron, 2019). 

 

ANNs are also structures as units (neurons) that hold analysis information and are connected 

by links (known as weights) which act as synapses up to an output neuron producing the desired 

outcome (Jain et al., 1996; Haykin, 1999; Abraham, 2005). 

 

The use of ANNs can be traced back to 1943 when McCulloch and Pitts developed an artificial 

binary model of a neuron. They later realised that it was possible to create a network of multiple 

neurons, allowing for computational logic to be performed (Géron, 2019). Since then, the 

application of ANN has grown and can be found in many different areas of study due to their 

versatility, adaptability and potential to solve large and complex tasks (both linear and non-

linear) by learning from existing information (Basheer & Hajmeer, 2000). 
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ANN's application can be categorised into five main categories, including prediction, 

classification, data association, data conceptualisation and data filtering. These categories are 

determined based on existing data from statistical analysis developed by algorithms (Anderson 

& McNeill, 1992). ANN analyse information through neurons connected by links that generates 

signals activated by a function (usually non-linear) until the output signal is determined 

(Fausett, 1994). The author also mentions that an ANN is characterised by three main elements, 

the network architecture (which determines how neurons are organised), the training algorithm 

(how the synaptic weights are determined) and the activation function. 

2.7.1 NETWORK ARCHITECTURE – MULTILAYER PERCEPTRON (MLP) 

As in civil projects, architecture defines the organisation and interaction of the structure's 

elements. The architecture of the ANN determines the network size and how the neurons are 

organised. Network architecture can be divided into feed-forward or recurrent categories (Jain 

et al., 1996). 

 

The network architecture is designed in layers, which can be monolayer when the input and 

output neurons are directly connected, or multilayer when there are one or more intermediate 

hidden layers (see Figure 2.12) —ANNs process in a unidirectional (feedforward) manner in 

the direction of the output layer (Zurada, 1992). 

 

The ANN process starts at an initial layer containing the input values set in n-neurons (𝑋𝑖). The 

process then passes through the hidden layers via "links" or synaptic weights (𝑤𝑖), generating a 

signal that is transmitted to the next neuron (𝑋𝑖 + 1). Each layer converts the preceding 

information into a number by using an activation function (𝑓). This process continues until the 

last layer, where the final value of the model (output, 𝑦) is obtained. To avoid null option in 

each neuron, it is possible to include values known as "bias" (𝜃𝑜) between each layer 

transformation (Haykin, 1999; Shahin et al., 2009). Eq. (2.2) summarizes the aforementioned 

process. 

 

𝑦 = 𝑓 (∑ 𝑋𝑖𝑤𝑖 + 𝜃𝑜

𝑛

𝑖=1

) Eq. (2.2) 
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(a) (b) 

Figure 2.12 – (a): single layer network and (b): Multilayer network. 

 

The perceptron is the simplest form of the artificial neural network. It consists of a single layer 

and an artificial neuron. Developed by Rosenblatt in 1958, the neuron receives the input signals 

(which are affected by synaptic weights), processes the information, and generates the output 

result (Silva et al., 2016). Figure 2.13 illustrates the configuration of a perceptron and its 

mathematical expression. 

 

 

Figure 2.13 – Single perceptron scheme. 

 

In summary, a Multilayer Perceptron (MLP) network refers to a network architecture composed 

of multiple layers and perceptrons. 

2.7.2 TRAINING ALGORITHM – BACKPROPAGATION (BP) 

ANN employs a supervised learning method, i.e. there is control over the outcomes obtained 

from already-known results. The learning process in ANN improves the fitting parameters 

(synaptic weights and bias) until the result with the lowest possible error is achieved, which 

means training the network (done through algorithms). 
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Different types of neural networks exist depending on the training algorithm used (how the 

weights and bias are adjusted). In the case of MLP-ANN, the most widely applied training 

algorithm is BackPropagation (BP) developed by David Rumelhart, Geoffrey Hinton and 

Ronald Williams in 1986 which is based on first-order gradient descent (Basheer & Hajmeer, 

2000; Soleimanbeigi & Hataf, 2006). 

 

The BP algorithm works in two phases. The first phase corresponds to the initial analysis of the 

input data up to the network output, which defines initial values for synaptic weights and bias 

(forward phase). The second phase consists of comparing the obtained results with the actual 

values, calculating the respective error (Eq. (2.3)), and determining the need for a backward 

analysis. Each forward and backward phase is repeated until the smallest possible error gradient 

is found (Silva et al., 2016). These iterative processes are known as epochs, where the algorithm 

is adjusted by reducing the existing error (𝐸) between the output values obtained by the network 

(�̂�𝑖) and the actual ones (𝑦𝑖). In each epoch, the values of the synaptic weights and biases are 

updated (Camarena-Martinez et al., 2021).  

 

𝐸 =
1

𝑛
∑(𝑦�̂� − 𝑦𝑖)

2

𝑛

𝑖=1

 Eq. (2.3) 

 

The algorithm starts with randomly assigned values for the synaptic weights and bias. Each 

iteration involves adjusting the previous synaptic weight value by adding a variable increment, 

which can be positive or negative, determined by the delta rule (Zupan & Gasteiger, 1993; 

Abraham, 2005), as expressed in Eq. (2.4): 

 

𝑤𝑗𝑖
𝑙 (𝑡) = 𝑤𝑗𝑖

𝑙 (𝑡 − 1) + ∆𝑤𝑗𝑖
𝑙 (𝑡);         ∆𝑤𝑗𝑖

𝑙 (𝑡) = 𝜂
𝜕𝐸

𝜕𝑤𝑗𝑖
+ 𝜇∆𝑤𝑗𝑖

𝑙(𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠)
 Eq. (2.4) 

 

Where 𝑡 represents each iteration, 𝑗, 𝑖 are the nodes of each layer 𝑙, 𝑤𝑗𝑖
𝑙  the synaptic weight, 𝐸 

the average of total squared errors, 𝜂 is the learning rate and 𝜇 the momentum coefficient. The 

learning rate determines the step magnitude during weight adjustment; a high learning rate 

value causes oscillations and slow convergence and conversely, if the learning rate is too low, 

it necessitates a large number of iterations. The momentum coefficient modifies the weight 

value of the previous iteration to decrease the error of the current value; a large momentum 
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value increases the probability of overshooting the intended solution, while a very small value 

results in sluggish training. A properly value of 𝜂 and 𝜇 aims to obtain a successful training and 

speed learning of the neural network (Abraham, 2005) The same procedure is applied to the 

bias values. 

 

As an analysis is performed at each epoch, the activation function plays a crucial role in 

estimating the results. The function modifies the combined weighted sum of all incoming 

signals to a neuron in order to determine the intensity of its firing (Basheer & Hajmeer, 2000). 

Different activation functions are available, such as the sigmoidal logistic function, the 

hyperbolic tangential function, or the Rectified Linear Unit function (ReLU) (refer to Figure 

2.14). While the first two functions are widely applicable, they lack symmetry with the central 

coordinate axis (zero axis). Glorot et al. (2011) suggest that the ReLU function is preferred as 

it is one-side antisymmetric, leading to zero response for an opposite real input. 

 

Sigmoidal logistic function 

𝑓1(𝑥) =
1

1 + exp(−𝑥)
 

 

Hyperbolic tangential function 

tanh(𝑥) = 2𝜎(2𝑧) − 1 
 

ReLU function 

𝑔(𝑧) = max {0, z} 

 
Figure 2.14 – Activation function representation and formulation. 

2.7.3 PROBLEMS AND OPTIMISATION 

As described above, the training phase of the network allows the model to be calibrated to 

obtain the smallest possible error between the actual and predicted values by adjusting its 

statistical parameters. It is possible to obtain good results in the training phase for a given 

amount of data. However, the result may be limited to only that information, generating errors 

when values different from those already generalised or memorised are introduced; this type of 

error is known as overfitting. In the opposite case, underfitting when there is not enough 

information to correlate the data (Haykin, 1999; Shahin et al., 2008; Géron, 2019). 
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The developed model needs to be checked for generalisation errors. To achieve this, a testing 

phase is included, therefore, the ANN analysis process is based on two phases. The first phase 

corresponds to the learning or training of the network, and the second phase involves checking 

the model. The final values of synaptic weights and bias defined during training are used in the 

testing phase. To perform the analysis, the data needs to be split into training and testing sets. 

A commonly used training/test ratio is 70/30% or 80/20%, respectively (Jeremiah et al., 2021), 

but it is necessary to verify the size of the database to determine the appropriate ratio (Géron, 

2019). 

 

The training phase can be further subdivided into estimation and validation, which is known as 

cross-validation in statistics. Various combinations of validated estimation models are 

developed to choose the best-performing one. During the cross-validation technique, the error 

value generated by the model can be assessed. The best model selection will occur when the 

validation set error starts to increase, as represented in Figure 2.15 (Early Stopping Method) 

(Haykin, 1999; Silva et al., 2016). 

 

 

Figure 2.15 – Early stopping rule based on cross-validation (Haykin, 1999). 

 

Another way to control the probability of overfitting in the model is to perform hyperparameter 

regularisation. In ML, the input parameters used during training control part of the learning, 

analysis and the outcome to be predicted. However, certain algorithm parameters remain 

constant during the training phase. These parameters are known as hyperparameters, which can 

be optimised to reduce effort and improve the performance of the applied algorithm (Hutter et 
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al., 2019). Optimisation allows for finding the parameter(s) that help to minimise a desired 

function (Das & Suganthan, 2011). 

 

According to Bilal et al. (2020), optimisation algorithms are related to metaheuristics and can 

be separated into two categories. These algorithms may resolve complex problems that classical 

gradient-based methods cannot solve and are listed as follows. 

 

 Neighbourhood-based Algorithms: algorithms based on the search for target improvement 

using neighbouring solutions. The most well-known algorithms are Simulated Annealing 

and Tabu Search. 

 Population-based Algorithms: These are algorithms based on solutions inspired by natural 

population behaviour. Within this category, there are two subcategories known as Swarm 

Intelligence (SI), where the socio-cooperative behaviour of insects and other animals 

defines the analysis actions; the algorithms Ant Colony Optimization, Particle Swarm 

Optimization (PSO), Artificial Bee Colony Optimization, Firefly Algorithm and Cuckoo 

Search, correspond to examples of this group. Evolutionary Algorithms (EA) correspond to 

techniques based on the theory of the evolution of species; it is possible to find algorithms 

such as Evolutionary Programming, Genetic Algorithm (GA), Genetic Programming, 

Evolutionary Strategies and Differential Evolution (DE). 

2.8 ANN IN CIVIL ENGINEERING 

This section shows a brief compilation of papers that focused on the application of AI in Civil 

Engineering (specifically ANN), highlighting its use in Geotechnical Engineering and 

geosynthetics behaviour. 

 

AI has attracted interest in many professional fields due to its versatility, simplicity of 

application and ability to solve complex problems from existing data results. One of the first 

authors to compile publication records on AI in Civil Engineering was Sriram in 1984, who 

presented a series of titles related to architecture, civil engineering and geology using the 

Knowledge-Based Expert Systems (KBES) methodology. Afterwards, other authors published 

state-of-the-art research compiling the application of IA in civil engineering, showing a high 

interest in analysis and problem-solving (Reich, 1997; Adeli, 2001; Lu et al., 2012; Shahin, 
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2013; Salehi & Burgueño, 2018; Dede et al., 2019; Huang et al., 2019; Lagaros & Plevris, 

2022). 

2.8.1 ANN IN STRUCTURAL ENGINEERING 

One of the main phases prior to construction is good structural analysis and design. For this 

reason, ANNs have been used to predict the behaviour of structural elements and materials. For 

instance, Vanluchene & Sun (1990) implemented a BP-ANN to solve three types of complex 

problems, the establishment of recognition patterns for load location problems, the definition 

of the cross-section of reinforced concrete beams and the analysis of bearing plates. 

 

ANN has been used in different solutions, such as defining the design of structural element 

sections (Messner et al., 1994; Kim et al., 2000), damage and crack detection (Theocaris & 

Panagiotopoulos, 1993; Yeh et al., 1993; Hegazy et al., 1998; Chatterjee et al., 2017), structural 

element and material behaviour prediction (Abdalla & Stavroulakis, 1995; Anderson et al., 

1997; Mukherjee et al., 1996; Yun & Bahng, 2000; Cascardi et al., 2017; Yan et al., 2017; 

Naderpour et al., 2018; Barbosa & Evangelista Jr, 2020; Chaves, 2021), assessment of dynamic 

response (Masri et al., 1993; Adeli & Park, 1995; Huang & Loh, 2001), computational tools for 

structural analysis like finite elements and BIM (Manevitz et al., 1997; Pain et al., 1999; García-

Segura et al., 2017). 

 

Other studies related to construction engineering are presented by Adeli (2001) and Huang et 

al. (2019). 

2.8.2 ANN IN ENVIRONMENTAL ENGINEERING AND WATER RESOURCES 

ANNs have also been used to predict and classify features related to environmental conditions 

and water sources’ behaviour. For example, Karunanithi et al. (1994) applied ANNs to predict 

river streamflow of the Huron River at the Dexter sampling station, showing that ANN model 

leads to describes the changes in the flow history. Other related applications include predicting 

pollution and production of toxic waste, presented by Grubert (1995), Kao & Liao (1996), 

Crespo & Mora (1995), and Shang et al. (2004). Additional studies on hydrological phenomena 

using ANN are presented by Deo & Rao (1997), Gangopadhyay et al. (1999), Liong et al. 

(2000), Govindaraju & Rao (2000), Guo (2001). 

2.8.3 ANN IN TRANSPORT ENGINEERING 
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Traffic studies and road design (including paving) are necessary to build highways. ANN has 

also been widely used in analysing these types of studies. In traffic studies, for example, Cheu 

& Ritchie (1995) used three types of ANN to identify incident patterns in traffic data, and 

Lingras & Adamo (1996) successfully estimated average and peak hour traffic volumes using 

ANN. 

 

ANN has also been applied for road design and paving, including pavement condition 

assessment (Owusu-Ababio, 1998; Attoh‐ Okine, 2001; Zaman et al., 2010; Sadrossadat et al., 

2016; Hanandeh et al., 2020). 

2.8.4 ANN IN GEOTECHNICS 

A geotechnical study involves various exogenous and endogenous conditions of earth materials 

with physical, mechanical and chemical characteristics of greater complexity than other 

construction materials (Baghbani et al., 2022). AI techniques have established themselves as 

valuable tools for solving geotechnical problems. As shown previously, various AI techniques 

are based on the type of output required. However, ANN remains the most widely used 

methodology in different investigations. 

 

Phoon & Zhang (2022) presented the results of a survey conducted in 2021 by ISSMGE 

TC304/309 on 444 papers using ML for different geotechnical applications. The survey results 

showed that 43% of the papers were developed using supervised training, where the ANN 

algorithm had been the most applied (120 of the 444 papers). Site characterisation and slope 

stability were the most researched topics. Figure 2.16 shows graphically the results obtained in 

the survey. 

 

  

Figure 2.16 – ML algorithms (left) and applications in geotechnics (right) surveyed by ISSMGE 

TC304/309 (Phoon & Zhang, 2022). 
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In the study entitled "35 Years of (AI) in Geotechnical Engineering: State of Art" by Ebid 

(2021), 626 papers published from 1984 to May-2019 on the application of AI to the evaluation 

of geotechnical techniques were collected. The author concluded that soil properties were the 

major interest topic among the compiled papers. In addition, the authors found that ANN was 

the most widely used methodology within the AI techniques (approximately 48%). Figure 2.17 

shows the relationship between the geotechnical characteristics and the AI technique used in 

the articles. 

 

 

Figure 2.17 – Number of researches classified by Subject and AI Technique (Ebid, 2021). 

 

Baghbani et al. (2022) surveyed a review of articles published in journals and books prior to 

2021, in which IA methods were applied in 9 geotechnical categories (frozen soils and thermal 

soil properties, rock mechanics, subgrade and pavement soil, landslides and liquefaction, slope 

stability, shallow and deep foundations, tunnels and tunnel boring machines (TMB), dams, and 

unsaturated soils). The statistical analysis of the collected data showed that among the nine 

topics mentioned, the study of mechanical rock properties, landslides and liquefaction, and 

TMB were the most investigated, as seen in Figure 2.18. The results also showed that the most 

widely implemented technique is ANN compared to other AI techniques. However, in recent 

years there has been most interest in other types of algorithms (see Table 2.4), where the 

percentage of ANN applications has decreased. 
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Figure 2.18 – Distribution of IA use in 9 categories in geotechnics (Baghbani et al., 2022). 

 

Table 2.4 – ANN application percentage in different periods (Baghbani et al., 2022). 

Time 
period 

Application of artificial neural network (ANN) (%) 

Pavement & 

subgrade soil 

Frozen 

soils 

Slope 

stability 

Landslide & 

liquefaction 

Foundation 

Shallow & Piles 
Dam 

Rock 

mechanic 

Tunneling 

&TBM 

Unsaturated 

soils 

Till 2010 60.00 62.50 63.33 69.57 75.00 73.68 74.07 88.24 84.21 

2011-2015 53.85 69.23 34.15 51.43 50.00 70.83 45.45 64.10 62.50 
2016-2020 48.94 77.14 46.25 28.89 56.06 57.50 54.17 40.66 54.29 

 

As shown above, ANNs have been adequately used for geotechnical engineering problems, 

where soil characterisation is the topic of major interest (Cal, 1995; Basheer et al., 1996; Chang, 

2000; Caglar & Arman, 2007; Boadu et al., 2013; Jeremiah et al., 2021). Table 2.5 shows other 

interesting topics in geotechnical engineering where ANN models were implemented. 

 

Table 2.5 – Geotechnical engineering topics with ANN application. 

Topic Authors 

Load and capacity behaviour in 

foundations 

(Kiefa, 1998; Rahman et al., 2001; Hanna et al., 

2004; Ahmad et al., 2007; Kalinli et al., 2011; 

Shahin, 2016; Pooya Nejad & Jaksa, 2017; 

Alzo’ubi & Ibrahim, 2019; Alzo’Ubi & Ibrahim, 

2021; Bagińska & Srokosz, 2019; Pham et al., 

2020) 

Retaining structures (Goh et al., 1995; Shahin & Jaksa, 2005; Kung et 

al., 2007; Bekdaş & Temür, 2018; Ghaleini et al., 

2019) 

Prediction of liquefaction effects in soil (Young-Su & Byung-Tak, 2006; Hanna et al., 

2007; V. Kumar et al., 2012; Erzin & Ecemis, 

2015) 
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Table 2.6 – Geotechnical engineering topics with ANN application (Continued). 

Topic Authors 

Prediction of foundation settlement (Shahin et al., 2002, 2005; Soleimanbeigi & Hataf, 

2006; Hasanipanah et al., 2016; Chen et al., 2019) 

Application in expansive soils (Erzin, 2007; Ikizler et al., 2010; S. K. Das et al., 

2010; Bekhor & Livneh, 2014; Salahudeen et al., 

2020) 

Slope stability (Mayoraz & Vulliet, 2002; Ermini et al., 2005; 

Ferentinou & Sakellariou, 2007; Chauhan et al., 

2010; Aleshin & Torgoev, 2013; J. A. Abdalla et 

al., 2015; Aghajani et al., 2015; Yi et al., 2022) 

Rock mechanics (Lee & Sterling, 1992; Bahrami et al., 2011; 

Enayatollahi et al., 2014; Leite, 2019) 

GIS in geotechnics (Lee et al., 2003, 2006; Bhardwaj & 

Venkatachalam, 2014; Aditian et al., 2018) 

 

Nonetheless, the different literature studies do not refer to the application of ANN to evaluate 

geosynthetic behaviour. Therefore, some of the research carried out in this field is mentioned 

below. 

 

Abuel-Naga & Bouazza (2014) derived empirical equations from a General Method of Data 

Handling (GMDH) ANN to predict the liquid leakage rate across the GM/GCL interface with 

a circular and longitudinal defect in the GM and free drainage. Data for network analysis were 

obtained from numerical methods. The results achieved from the proposed equations were 

satisfactory when compared to both numerical outcomes and other practical equations. 

 

Similarly, Kumari & Dutta (2019) used an ANN (4-3-1 architecture) for leakage rate prediction 

in a barrier composed of compacted clay and defective geomembrane (in three types of shapes: 

square, rectangular and circular). One hundred sixty-five (165) literature data were used for 

training and testing the network. The authors applied different activation functions, finding that 

the best prediction was achieved with the sigmoidal one. From the ANN, they established an 

equation with better results than other models presented in the literature. Figure 2.19 compares 

ANN results concerning other empirical equations reported by Giroud et al. (1992) and Giroud 

and Bonaparte (1989). In both comparison cases, the R² values of ANN are significantly 
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different from those obtained by the empirical equations, with the results obtained by the ANN 

model being more accurate. 

 

  

Figure 2.19 – Comparison of ANN and empirical models reported by Giroud et al (1992) and 

Giroud and Bonaparte (1989) (Kumari & Dutta, 2019). 

 

Qadir et al. (2020) used ANNs to predict the behaviour of geosynthetics as reinforced for 

asphalt concrete pavements. A multilayer network (MLFNN) and radial-based network 

(RBNN) were utilised to predict flexural stiffness and rutting depth values of reinforced asphalt 

pavements using Marshall test design and rut depth parameters, respectively. Both models 

achieved a good accuracy for parameter estimation despite the small samples quantity. The 

results were employed for designing purposes without carrying out high-tech testes. 

 

Raja & Shukla (2021) used an artificial neural network (ANN) along with the grey wolf 

optimisation (GWO) algorithm to forecast soil settlement in foundations reinforced with 

geosynthetics. They used a dataset of 475 samples with 9 input parameters derived from a 3D 

finite element model. The predicted values were compared to reference studies and assessed 

using statistical metrics such as RMSE, MAE, MAPE%, R², and refined Willmott index. Due 

to the high precision of the predicted values, they derived a final equation to estimate the 

maximum settlement value in reinforced soil foundations supporting service loads. 

 

The prediction for the pullout coefficient in geogrids was studied by Pant & Ramana (2022) 

using four different ML techniques including RF, Multivariate Adaptive Regression Splines, 

MLP and Decision Tree. A dataset of 198 samples from the literature was implemented in the 

different models, which were split into training and testing phases in an 80/20 ratio. The 

Giroud et al [1] 
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accuracy of the models was evaluated using statistical metrics (R², MSE and MAPD%), finding 

the RF as the most precise algorithm and recommended for practical use. 

 

Raja et al. (2022) compared the results of eight ML methodologies (including ANN) used to 

predict CBR values in geosynthetic reinforced soil subgrade (GRS) based on 97 data obtained 

from the literature with 11 parameters of each sample. The dataset was divided into 60% for 

training and 40% for testing. The models were evaluated using R², RMSE, Scatter index, Index 

of agreement, MAE and external validation, where Lazy K-star (LKS) and ANN were the most 

accurate models. Considering the high accuracy of the ANN results, an equation for CBR 

estimation was implemented. 

 

Amjad Raja et al. (2023) employed artificial intelligence (AI) techniques to predict the load-

settlement behavior of geosynthetic-reinforced soil. The researchers utilized the Harry Hawk 

optimization (HHO) algorithm to optimize artificial neural network (ANN) models and 

compared the results with other regression methods such as SVR, Gaussian process regression, 

relevance vector machine, sequential minimal optimization regression, and least-median square 

regression. The dataset used for training and testing consisted of 354 data points obtained from 

finite difference modelling (FDM). The ANN architecture included a 9-input layer, one hidden 

layer with four neurons, and a one-output layer. Six statistical indexes were used to evaluate 

the accuracy of the models, and the ANN-HHO model was found to be the most precise for 

both training and testing phases. Finally, the model outcomes were transformed into a simple 

mathematical equation, which can be easily utilized in the initial design of geosynthetic-

reinforced soil (GRS) abutments. 

 

The following research works are presented, utilizing ANN to forecast the behavior of interface 

strength with geosynthetics. 

 

Debnath & Dey (2017) used an MLP-type neural network model with a hidden layer to predict 

clay-geosynthetic interface behaviour. Three different numbers of hidden layer neurons (4, 10 

and 15) were selected according to the mean squared error (MSE) as presented in Figure 2.20. 
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Figure 2.20 – Relationship between the number of neurons and MSE (Debnath & Dey, 2017). 

 

The database was obtained from literature references for six influencing factors (input 

parameters). The data were split in a 70/30% ratio for training/testing. Three learning 

algorithms (Bayesian regularization, Levenberg-Marquardt and Scaled conjugate gradient) 

were compared. Five statistical evaluation criteria were employed to assess model performance 

(R², MSE, MAPE, MEDAE and VARE). The results showed a good accuracy of the 

implemented ANN models for resistance prediction. The 4-neuron network with Bayesian 

Regularization type algorithm was the most accurate model, as shown in Table 2.6. 

 

Table 2.6 – Statistical errors of different models for predicting PSS (Debnath & Dey (2017). 

ANN model Statistical errors 

Learning algorithms 
No. of hidden 

nodes 
R² MSE MAPE VARE MEDAE 

Bayesian regularization 4 0.988 1.48 3.31 1.27 0.60 

10 0.986 2.21 3.81 1.81 0.602 

15 0.984 2.45 3.82 2.35 0.606 

Levenberg-Marquardt 4 0.964 5.46 7.31 5.52 1.42 

10 0.960 7.48 8.00 6.21 1.73 

15 0.871 23.52 11.72 10.72 2.34 

Scaled conjugate 

gradient 

4 0.977 6.47 3.88 2.09 0.64 

10 0.954 7.73 8.21 6.42 1.49 

15 0.973 3.58 6.18 5.18 1.31 

 

Chao et al. (2021) used five ML techniques to evaluate peak shear strength between soil-

geocomposite interfaces (GDL). The models utilized were the Back Propagation Artificial 

Neural Network (BPANN), the Support Vector Machine (SVM) optimized by Particle Swarm 

Optimisation (PSO) and Genetic Algorithm (GA) algorithms, respectively, and Extreme 

Learning Machine (ELM) optimized with Exhaustive Method algorithm. The database was 
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obtained from 209 direct shear test results. Five statistical criteria were used to define the 

accuracy of the models, with the BPANN-PSO algorithm being the most accurate, as shown in 

Table 2.7. According to the sensitivity analysis results, normal stress had the greatest impact 

among the nine influence factors, with a 17.91% of influence (see Figure 2.21). 

 

Table 2.7 – R² values of the models for training and testing dataset (Chao et al. (2021). 

Phase GA-BPANN PSO-BPANN GA-SVM PSO-SVM ELM 

Training 0.95 0.95 0.90 0.92 0.90 

Testing 0.87 0.93 0.86 0.86 0.79 

 

 

 

Figure 2.21 – Relative importance of the input parameters (Chao et al. (2021).  

 

Chao et al. (2023) coupled a model using Mind Evolutionary (MEA) methodology and the 

Adaptive Boosting – Back Propagation Algorithm (ADA-BPANN) for shear strength 

prediction at clay-geomembrane interfaces, obtaining high accuracy. The method was 

compared with 4 ML techniques (PSO-ADABPANN, GA-ADABPANN, MEA-SVM and 

Random Forest - RF), validating that its results were better than the other techniques as shown 

in Figure 2.22, where the ADA-BPANN has the lowest RMSE values for training and testing 

dataset. A total of 623 direct shear laboratory test results at clay-geomembrane interfaces were 

used for the analysis. As in the previous work, the sensitivity analysis showed that the normal 

stress corresponds to the factor with the highest impact within the five input parameters. 
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Figure 2.22 – RMSE value of the models (Chao et al. (2023). 
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3 METHODS 

In this study, the methodology to evaluate the use of ANN as a sand/GM interface strength 

prediction tool consists of three stages, (i) data collection, (ii) definition of the ANN model and 

(iii) evaluation of the model, as shown in Figure 3.1. The model's performance depends on the 

amount and the limit values of the collected data and the category of use (in this case, 

prediction). Statistical analysis is also used to validate the results by comparing the actual values 

to those predicted by the model. The Python® programming language, developed by the Python 

Software Foundation, was used to implement the analysis algorithm codes. These codes were 

executed in the Machine Learning module available in the software produced by Tyche (2020) 

from the University of Brasilia. The module was successfully utilized in another studies for 

prediction purposes (Chaves, 2021; Tanga, 2022; Chaves et al., 2023; Lima et al., 2023). 

 

 

Figure 3.1 – Methodology outline. 

3.1 DATA COLLECTION 

Applying ANN is profitable for solving problems based on learning input and output data 

(Shahin, 2013). The larger the number of input variables, the larger the size of the network and, 

consequently, the longer the processing time required (Lachtermacher & Fuller, 1994). 

However, many variables can also improve network performance (Shahin et al., 2008). In this 

investigation, an MLP-ANN is used to predict sand/GM interface strength parameter (friction 

angle). 

 

The first stage consisted of a search for laboratory test results to evaluate the interface shear 

strength between the sand and geomembranes from the literature, published in international 

journal articles, thesis and dissertations. For each collected study, the description of the 

interface friction angle, the characteristics of the test type and materials used were verified to 
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establish the input parameters and output values (supervised training). In total, 453 data were 

collected from the literature. In addition, a Brazilian manufacturer company provided more 35 

data, resulting in a total of 488 samples for training and validation of the ANN model. Table 

3.1 presents the general information for each study used as input data. 

 

Table 3.1 – General input data information. 

Study/Paper title Author(s) 

No.  

collected 

data 

General description Country 

Shear Strength 

characteristics of sand-

polymer interfaces 

O’Rourke et 

al., 1990 

12 CDS test: smooth 

HDPE and PVC GM 

type with Ottawa 

sand 

USA 

Interfacial friction study of 

cap and liner components for 

landfill design 

Koutsourais 

et al., 1991 

20 MDS test: 5 types of 

GM with 

Chatahooche river 

medium sand 

USA 

Geomembrane - sand 

interface friction 

Izgin, 1997 195 CDS test: rough and 

smooth GM with 

crushed stone and 

Ottawa sand 

IP test: four types of 

GM with two types of 

crushed stone sand 

and Ottawa sand 

Turkey 

Study of soil-geosynthetic 

interaction in environmental 

protection works using an 

inclined plane equipment (in 

Portuguese) 

Lima Junior, 

2000 

12 IP test: two types of 

GM with coarse 

grained sand 

Brazil 

Study of soil-geosynthetic 

interaction in waste disposal 

slope works (in Portuguese) 

Mello, 2001 15 IP test: three types of 

GM with fine grained 

sand 

Brazil 

Study of soil-geosynthetic 

interaction through inclined 

plane shear tests (in 

Portuguese) 

Costa e 

Lopes, 2001 

6 IP test: smooth and 

rough GM with two 

types of sand 

Portugal 
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Table 3.1 – General input data information (Continued). 

Study/Paper title Author(s) 

No. 

collected 

data 

General description Country 

Interaction between soils and 

geosynthetic  layers in large-

scale ramp tests 

Palmeira et 

al., 2002 

15 IP test: three types of 

GM with fine and 

coarse grained sand 

Brazil 

Interface strength between 

geomembranes and soils 

through Ring Shear test (in 

Portuguese) 

Rebelo, 2003 15 MDS test: 5 types of 

GM with coarse to 

medium grained sand 

Brazil 

Study of stability and 

hydraulic conductivity of 

conventional and alternative 

lining systems for waste 

disposal sites (in Portuguese) 

Viana, 2007 9 IP test: smooth and 

textured GM with 

coarse and fine to 

medium grained sand 

Brazil 

Microscale Geomembrane-

Granular Material 

Interactions 

David Frost 

et al., 2012 

17 CDS test: one smooth 

and two textured GM 

types, with Ottawa 

20/30 and blasting 

sand  

USA 

Frictional behaviour of three 

critical geosynthetic 

interfaces 

Bacas et al., 

2015 

6 MDS test: two 

textured GM with 

fine grained sand 

Spain 

Shear behavior of sand-

smooth geomembrane 

interfaces through micro-

topographical analysis 

Vangla & 

Gali, 2016 

15 MDS test: smooth 

GM with 5 type of 

sand 

India 

Effect of time on soil-

geommebrane interface 

shear strength 

Alzahrani, 

2017 

6 MDS test: smooth 

and textured GM with 

Ottawa 20/30 sand 

USA 

Study of some aspects that 

influence the adhesion 

between geosynthetics and 

different materials (in 

Portuguese) 

Sánchez, 

2018 

45 CDS, MDS and IP 

test: 4 types of 

textured GM and 1 

type of smooth GM, 

with medium-grained 

sand 

Brazil 

Laboratory investigation of 

shear behavior of High-

Density Polyethylene 

Geomembrane interfaces 

Cen et al., 

2018 

16 MDS test: smooth 

and textured GM with 

fine sand and sandy 

gravel 

China 
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Table 3.1 – General input data information (Continued). 

Study/Paper title Author(s) 

No. 

collected 

data 

General description Country 

Global and local sand–

geosynthetic interface 

behavior 

Lashkari & 

Jamali, 2021 

49 CDS test: one type of 

GM with six types of 

sand 

Iran 

Company laboratory test 

results 

Manufacturer 

company 

35 MDS test: one type of 

GM with remolded 

and silty sand 

USA 

 

The samples were chosen based on similar influencing factors, and a set of twelve (12) 

parameters were selected to describe them: displacement rate, applied normal stress, contact 

area, GM thickness, GM asperity height, sand density index, sand unit mass, coefficient of 

curvature, uniformity coefficient, median grain size, soil friction angle and type of test 

implemented (CDS, MDS or IP). Table 3.2 shows the relationship between the input and output 

parameters, as well as the corresponding amount of collected data. 

 

Table 3.2 – Data quantity on influence parameters. 

Sym. Parameter 
Data 

quantity 
Sym. Parameter 

Data 

quantity 

Input 

𝐷𝑟 Displac. rate (mm/min) 437 𝜌 Unit soil mass (g/cm³) 401 

𝜏 Normal stress (kPa) 488 Cc Coefficient of curvature 372 

C.A. Contact area (cm²) 488 Cu Uniformity coefficient 447 

t GM thickness (mm) 451 D50 Median grain size (mm) 422 

𝐴ℎ GM asperity h (mm) 291 𝜙𝑠 Friction angle of soil (°) 431 

𝐼𝑑 Sand density index (%) 253  Type of test 488 

Output    

𝛿′ Friction angle interface (°) 488    

 

Values outside the mean of the data (outliers) were eliminated to avoid overfitting errors during 

the ANN training phase. A final value of 428 useful samples for the analyses was defined. The 

parameters with missing values were completed using the mean of the remaining data. 



43 

 

3.1.1 NORMALISATION 

Data normalisation helps to define more uniform values by decreasing the probability of 

overriding smaller ones, and avoiding information saturation at the network nodes (Basheer & 

Hajmeer, 2000). There is no specific equation to develop a normalisation process. However, in 

this study a max-min normalisation was used as expressed by the Eq. (3.1). 

 

𝑋𝑛𝑜𝑟𝑚 =
𝑋𝑖 − 𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥 − 𝑋𝑚𝑖𝑛
 Eq. (3.1) 

 

Where 𝑋𝑛𝑜𝑟𝑚 is the normalised value of 𝑋𝑖, and 𝑋𝑚𝑖𝑛 and 𝑋𝑚𝑎𝑥 are the minimum and maximum 

values of 𝑋𝑖 in the database. 

3.1.2 DATA CORRELATION - PEARSON'S CORRELATION COEFFICIENT (𝝆𝒓) 

Pearson's correlation coefficient was used to establish both relationship and influence of the 

input parameters in relation to the output value. The 𝜌𝑟, discovered by Bravais in 1846 but 

described by Karl Pearson fifty years later (Hauke & Kossowski, 2011), allows establishing the 

monotonic linear relationship between two continuous and random variables. 

 

The coefficient between two variables can be determined according to Eq. (3.2), obtaining 

results ranging from -1 to 1, where values closer to ±1 show a stronger correlation (the sign 

represents whether the variables are inversely or directly proportional). Table 3.3 sets out some 

ranges of interpretation for the 𝜌𝑟. 

𝜌𝑟(𝑎, 𝑏) =
𝑐𝑜𝑣(𝑎𝑏)

𝜎𝑎𝜎𝑏
 Eq. (3.2) 

 

Where 𝑐𝑜𝑣 represents the covariance between variables and 𝜎 the standard deviation of each 

variable. 
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Table 3.3 – Example of a conventional approach to interpreting a correlation coefficient 

(Schober et al., 2018). 

Absolute magnitude of the observed correlation coefficient Interpretation 

0.00 – 0.10 Negligible correlation 

0.10 – 0.39 Weak correlation 

0.40 – 0.69 Moderate correlation 

0.70 – 0.89 Strong correlation 

0.90 – 1.00 Very strong correlation 

3.2 ANN – MODEL SETTING 

A feedforward MLP network with a backpropagation (BP) learning algorithm was implemented 

for the analysis. The Differential Evolution (DE) algorithm was coupled to perform 

hyperparameter optimisation (HPO) of the network. 

3.2.1 NETWORK ARCHITECTURE 

The MLP network architecture is divided into three main layers: input, hidden layer and output 

(Abraham, 2005). The number of neurons in the input and output layers is determined by the 

influential parameters and the result to be predicted, respectively. However, the definition of 

the number of hidden layers and neurons is more complex, and is established through trial and 

error based on statistical criteria (Shahin et al., 2008; Priyadarshee et al., 2020). Implementing 

many hidden layers allows for a better statistical analysis of the data, but it can lead to longer 

training times and a higher probability of overfitting. Hecht-Nielsen, (1989) suggests that a 

single hidden layer is sufficient, while Lapedes & Farber, (1989) points out that two hidden 

layers give good results in the analysis. 

 

The present study implemented multiple combinations of one- and two-hidden layer networks 

with different numbers of neurons. The optimal network selection was defined using the 

coefficient of determination (R²) according to the analysis results obtained in the 

Backpropagation - Differential Evolution (BP – DE) training and optimisation algorithm. 

Figure 3.2 schematically represents the implemented artificial neural network. The input layer 

includes the influencing parameters (the Test Type parameter encompasses three types: CDS, 

MDS, and IP). The hidden layers can be one or two with a variable number of neurons. The 

output layer represents the predicted interface friction angle. 
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Figure 3.2 – ANN schematic model. 

3.2.2 TRAINING ALGORITHM – BACK PROPAGATION 

The Backpropagation learning algorithm coupled with the Differential Evolution (BP – DE) 

algorithm was applied for the training phase to optimise the hyperparameters. 

 

As mentioned in the previous chapter, the BP algorithm works by iterative analysis (epochs) 

until the lowest error between the actual and predicted network values is found. Haykin (1999) 

cites the following mathematical formulation for the BP algorithm. 

 

Eq. (3.3) is used to estimate the error signal 𝑒𝑗(𝑡) between the desired response 𝑑𝑗(𝑡) for a 

neuron 𝑗 (output node) and the predicted output value 𝑦𝑗(𝑡) for the same neuron 𝑗, both at the 

same iteration 𝑡. 

 

𝑒𝑗(𝑡) = 𝑑𝑗(𝑡) − 𝑦𝑗(𝑡) Eq. (3.3) 

 

The error energy 𝜉 for a neuron 𝑗 can be obtained from Eq. (3.4). Therefore, the sum of all 

neurons in the same layer 𝜉(𝑡) is given by Eq. (3.5). 

 

𝜉(𝑗) =
1

2
𝑒𝑗(𝑡)2 Eq. (3.4) 
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𝜉(𝑡) =
1

2
∑ 𝑒𝑗(𝑡)2

𝑗=𝐶

 Eq. (3.5) 

 

Where 𝐶 corresponds to the number of neurons in the network layers. Eq. (3.5) calculates the 

total error energy for an iteration 𝑛. Then, for all 𝑁 iterations presented in the training phase, 

the average error energy 𝜉𝑎𝑣 is determines by Eq. (3.6). 

 

𝜉𝑎𝑣 =
1

𝑁
∑ 𝜉(𝑡)

𝑁

𝑛=1

 Eq. (3.6) 

 

All the error energy is function of synaptic weights and bias levels (free parameters). Thus, the 

main goal of every single epoch is to find the most accurate free parameter values to reduce the 

average error network 𝜉𝑎𝑣. 

 

For each predicted output value 𝑦𝑗(𝑡) of a neuron 𝑗, there is 𝑚 number of input values of the 

previous layer output 𝑦𝑖(𝑡). Hence, 𝑦𝑗(𝑡) is evaluated by Eq. (3.7) as the total interaction 

between the synaptic weights 𝑤𝑗𝑖 and the input values 𝑦𝑖(𝑡) activated by a function 𝑓. 

 

𝑦𝑗(𝑡) = 𝑓 (∑ 𝑤𝑗𝑖(𝑡)𝑦𝑖(𝑡)

𝑚

𝑖=0

) ⇒ 𝑦𝑗(𝑡) = 𝑓 (𝑣𝑗(𝑡)) Eq. (3.7) 

 

The synaptic weight correction ∆𝑤𝑗𝑖(𝑡) can be expressed as the partial derivate of 𝜉(𝑡) for the 

synaptic weight 𝑤𝑗𝑖(𝑡) as described in Eq. (3.8). 

 

𝜕𝜉(𝑡)

𝜕𝑤𝑗𝑖(𝑡)
=

𝜕𝜉(𝑡)

𝜕𝑒𝑗(𝑡)
 
𝜕𝑒𝑗(𝑡)

𝜕𝑦𝑗(𝑡)
 
𝜕𝑦𝑗(𝑡)

𝜕𝑣𝑗(𝑡)
 

𝜕𝑣𝑗(𝑡)

𝜕𝑤𝑗𝑖(𝑡)
 Eq. (3.8) 

 

Eq. (3.9) to Eq. (3.12) represents the result of each part of the derivate. Therefore, substituting 

each part of the derivate, Eq. (3.8) can be reduces to Eq. (3.13). 

 

𝜕𝜉(𝑡)

𝜕𝑒𝑗(𝑡)
= 𝑒𝑗(𝑡)  Eq. (3.9) 
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𝜕𝑒𝑗(𝑡)

𝜕𝑦𝑗(𝑡)
= −1 Eq. (3.10) 

 

 
𝜕𝑦𝑗(𝑡)

𝜕𝑣𝑗(𝑡)
= 𝑓′ (𝑣𝑗(𝑡)) Eq. (3.11) 

 

𝜕𝑣𝑗(𝑡)

𝜕𝑤𝑗𝑖(𝑡)
= 𝑦𝑖(𝑡) Eq. (3.12) 

 

𝜕𝜉(𝑡)

𝜕𝑤𝑗𝑖(𝑡)
= −𝑒𝑗(𝑡)𝑓′ (𝑣𝑗(𝑡)) 𝑦𝑖(𝑡) Eq. (3.13) 

 

The synaptic weight correction ∆𝑤𝑗𝑖(𝑡) can be also defined by the delta rule as defined in Eq. 

Eq. (3.14). 

 

∆𝑤𝑗𝑖(𝑡) = −𝜂
𝜕𝜉(𝑡)

𝜕𝑤𝑗𝑖(𝑡)
 Eq. (3.14) 

 

Substituting Eq. (3.13) in Eq. (3.14), synaptic weight correction ∆𝑤𝑗𝑖(𝑡) can be rewritten as Eq. 

(3.15):  

 

∆𝑤𝑗𝑖(𝑡) = 𝜂𝑒𝑗(𝑡)𝑓′ (𝑣𝑗(𝑡)) 𝑦𝑖(𝑡)  ⇒  ∆𝑤𝑗𝑖(𝑡) = 𝜂𝛿𝑗(𝑡) 𝑦𝑖(𝑡) Eq. (3.15) 

 

Where, 𝛿𝑗(𝑡) represents the local gradient for neuron 𝑗 and it is directly related to the error 

signal 𝑒𝑗(𝑡) (Eq. (3.3)) . However, this expression is associated with the output node. For a 

hidden node neuron, the error signal is determined by considering all the neurons that is directly 

connected to, redefining the local gradient 𝛿𝑗(𝑡) as: 

 

𝛿𝑗(𝑡) = −
𝜕𝜉(𝑡)

𝜕𝑦𝑗(𝑡)
 
𝜕𝑦𝑗(𝑡)

𝜕𝑣𝑗(𝑡)
=  −

𝜕𝜉(𝑡)

𝜕𝑦𝑗(𝑡)
 𝑓′ (𝑣𝑗(𝑡)) Eq. (3.16) 

 

In Eq. (3.16) the superscript 𝑗 represents a hidden node and the output node will be identified 

as 𝑘. The total error energy 𝜉(𝑡) can be defined in terms of 𝑗, 𝑘 nodes as presented in Eq. (3.17).  
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𝜉(𝑡) =
1

2
∑ 𝑒𝑘(𝑡)2

𝑘∈𝐶

 Eq. (3.17) 

 

Eq. (3.18) defines the equivalent form of differentiating Eq. (3.17) with respect to the function 

signal 𝑦𝑗(𝑡) and applying the chain rule.  

 

𝜕𝜉(𝑡)

𝜕𝑦𝑗(𝑡)
= ∑ 𝑒𝑘(𝑡)

𝑘

𝜕𝑒𝑘(𝑡)

𝜕𝑣𝑘(𝑡)
 
𝜕𝑣𝑘(𝑡)

𝜕𝑦𝑗(𝑡)
  Eq. (3.18) 

 

It is possible to obtain the partial derivate in terms of the local gradient 𝛿𝑘(𝑡) of the output node 

𝑘 by substituting the partial derivate of the error signal 𝜕𝑒𝑘(𝑡) for neuron 𝑘 (Eq. (3.19)) and the 

input of the activated function 𝜕𝑣𝑘(𝑡) for neuron 𝑘 (Eq. (3.20)). 

 

𝜕𝑒𝑘(𝑡)

𝜕𝑣𝑘(𝑡)
=  −𝑓′

𝑘
(𝑣𝑘(𝑡)) Eq. (3.19) 

 

 
𝜕𝑣𝑘(𝑡)

𝜕𝑦𝑗(𝑡)
=  𝑤𝑘𝑗(𝑡) Eq. (3.20) 

 

𝜕𝜉(𝑡)

𝜕𝑦𝑗(𝑡)
= − ∑ 𝑒𝑘(𝑡)

𝑘

𝑓′
𝑘

(𝑣𝑘(𝑡)) 𝑤𝑘𝑗(𝑡) =  − ∑ 𝛿𝑘(𝑡)

𝑘

𝑤𝑘𝑗(𝑡) Eq. (3.21) 

 

Finally, the local gradient for a hidden node 𝛿𝑗(𝑡) can be determined by replacing Eq. (3.21) in 

Eq. (3.16) resulting the back-propagation formula of a hidden node 𝑗 (Eq. (3.22)) 

 

𝛿𝑗(𝑡) = 𝑓′
𝑗

(𝑣𝑗(𝑡)) ∑ 𝛿𝑘(𝑡)

𝑘

𝑤𝑘𝑗(𝑡) Eq. (3.22) 

3.2.3 OPTIMISATION ALGORITHM – DIFFERENTIAL EVOLUTION 

DE is a heuristic optimisation algorithm developed by Storn and Price in 1996. It is based on 

the theory of evolution, known as evolutionary computation or Evolutionary Algorithms (EA). 

Compared to other EA algorithms, DE is characterised by a greater simplicity of 

implementation and better performance (Vesterstrom & Thomsen, 2004; Das & Suganthan, 

2011; Bilal et al., 2020). DE allows the optimisation of nonlinear and non-differentiable 

functions. 
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The DE workflow is divided into two main stages: an initialisation and an evolution stage (see 

Figure 3.3) (Das & Suganthan, 2011; Saleh et al., 2014; Bilal et al., 2020; Atangana Njock et 

al., 2021). In the initialisation stage, initial data vectors of the hyperparameter to be optimised, 

represented by a random population (NP), are established. For any generation G, 𝑋𝑗
𝐺 =

{𝑥1,𝑗
𝐺 , 𝑥2,𝑗

𝐺 , … , 𝑥𝐷,𝑗
𝐺 } describes the D-dimensional vector. In a space 𝑆𝐺 , 𝑋𝑗

𝐺  can be considered 

uniformly random for the upper and lower bounds as follows: 

 

𝑋𝑗
𝐺 = 𝑋𝑙𝑜𝑤 + (𝑋𝑢𝑝𝑝 − 𝑋𝑙𝑜𝑤) ∗ 𝑟𝑎𝑛𝑑(0,1) Eq. (3.23) 

 

Once the population vector has been defined (Eq. (3.23)), the second stage, evolution, is 

activated. This second phase is divided into three sub-phases, Mutation, Crossover, and 

Selection, correlated to Eq. (3.24), Eq. (3.25) and Eq. (3.26), respectively. 

 

(i) Mutation: where the initial vector is affected by a modifying factor (F) that varies from 

1 to 0, generating a new population vector 𝑉𝑗
𝐺 . 

 

𝑉𝑗
𝐺 = 𝑋𝑟1

𝐺 + 𝐹 ∗ (𝑋𝑟2
𝐺 − 𝑋𝑟3

𝐺 );    𝑟1, 𝑟2, 𝑟3 ∈ {1, 2, … , 𝑁𝑃} Eq. (3.24) 

 

(ii) Crossover: a test vector 𝑈𝑗
𝐺 = {𝑢1,𝑗

𝐺 , 𝑢2,𝑗
𝐺 , … , 𝑢𝐷,𝑗

𝐺 } is generated between the initial vector 

𝑋𝑗
𝐺   and the mutated vector 𝑉𝑗

𝐺 = {𝑣1,𝑗
𝐺 , 𝑣2,𝑗

𝐺 , … , 𝑣𝐷,𝑗
𝐺 } using the crossover probability Cr 

factor. 

 

𝑢𝑖,𝑗
𝐺 = {

𝑣𝑖,𝑗
𝐺  𝑖𝑓 𝑟𝑎𝑛𝑑𝑗 ≤ 𝐶𝑟

𝑥𝑖,𝑗
𝐺  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

;        𝑖 ∈  {1, 2, … , 𝐷} 𝑎𝑛𝑑 𝐶𝑟 ∈ [0, 1] Eq. (3.25) 

 

(iii) Selection: is selected between the initial vector 𝑋𝑗
𝐺  and the test vector 𝑈𝑗

𝐺, the one that 

establishes a better performance. The resulting vector will survive for the next 

generation of analysis. 

 

𝑋𝑗
𝐺+1 = {

𝑈𝑗
𝐺 𝑖𝑓 𝑓 (𝑈𝑗

𝐺) ≤ (𝑋𝑗
𝐺)

𝑋𝑗
𝐺  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 Eq. (3.26) 
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The second phase is executed as many times as necessary until the stopping criteria (maximum 

number of generation and/or convergence criterion) is reached. 

 

 

Figure 3.3 – Flowchart of DE (recreated based on Bilal et al., 2020). 

 

The optimisation algorithm aims to find the best ANN for prediction analysis. The applied 

process consists of initialising the defined hyperparameter population, implementing the 

mutation and cross-over phases, training the network using BP and the collected data, and 

selecting the final HPO according to the criteria. The process is iterative until the best accuracy 

value is found by varying the hyperparameter population of the network. The general procedure 

used in the BPANN – DE algorithm model is outlined in Figure 3.4. 

 

For the present study, the number of neurons, the type of activation function, the learning rate 

and the moment coefficient were established as hyperparameters (HPO) of the network. For all 

training cases, a maximum value of 3000 iterations (epochs) with an early stopping criterion 

was set. 
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Figure 3.4 – Flowchart of BPANN – DE coupled model. 

 

For the network training phase, 80% of the input data (342 samples) was randomly selected. 

The remaining 20% (86 samples) was applied to the test phase. During the training phase, the 

data was divided into estimation and validation subsets using the k-fold cross-validation method 

with a k-value equal to 3 (33.33% of the data in each subgroup). The model was then trained 

on the estimation subset and tested on the validation subset using different combinations of 

hyperparameters until the model with the lowest error was identified. This allowed for the 

determination of the optimal values of synaptic weights and biases that generated the lowest 

possible error in the model's prediction. Finally, in the testing phase, the performance of the 

model was evaluated using the final parameters obtained from the training phase. 

3.3 EVALUATION OF THE MODEL 

Once the ANN model for sand/GM interface strength prediction has been established (in each 

training and testing phase), the accuracy was evaluated by comparing the actual and predicted 

values. Figure 3.5 illustrates a graphical example of a comparison between the values predicted 
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by a model and the actual expected values. It is possible to establish a regression line of the 

data; closer values mean a minor difference between both values showing a good prediction 

performance of the model. A perfect model will be establishing when the best fitting line has a 

slope of 45° from the intercept of the graph's axes. 

 

 

Figure 3.5 – General plot of actual vs model predicted values. 

 

Four statistical metrics expressed in Eq. (3.27) to Eq. (3.30) were used in this study to evaluate 

the performance of the implemented ANN model. 

 

(i) The coefficient of determination R-squared (R²): allows to evaluate the goodness of fit 

of a regression model between an actual and an expected value. 

 

𝑅2 = 1 −
∑ (𝑦𝑖 − �̂�𝑖)

2𝑛
𝑖=1

∑ (𝑦𝑖 − �̅�)2𝑛
𝑖=1

 Eq. (3.27) 

 

(ii) The Root Mean Squared Error (RMSE): establishes the squared error between the 

predicted and actual values concerning the mean value of the data. It indicates how the 

data are closer to the line of best fit. 

 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∗ ∑(𝑦𝑖 − �̂�𝑖)2

𝑛

𝑖=1

 Eq. (3.28) 
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(iii) The Mean Absolute Error (MAE): measures the average absolute difference between 

the actual and predicted values in a dataset. 

 

𝑀𝐴𝐸 =
1

𝑛
∗ ∑|𝑦𝑖 − �̂�𝑖|

𝑛

𝑖=1

 Eq. (3.29) 

 

(iv) The Mean Absolute Percentage Error (MAPE): measures the accuracy of a prediction 

model in percentage terms. It is calculated as the average of the absolute differences 

between the actual and predicted values, divided by the actual values, and then 

multiplied by 100 

 

𝑀𝐴𝑃𝐸 =
1

𝑛
∗ ∑ |(

𝑦𝑖 − �̂�𝑖

𝑦𝑖
) 100|

𝑛

𝑖=1

 Eq. (3.30) 

 

In the equations, 𝑛 corresponds to the total number of samples, 𝑦𝑖 is the actual value, �̂�𝑖 is the 

value predicted by the network, and �̅� is the mean of the actual values. 

 

The mean error values, which include the RMSE, MAE, and MAPE, provide an indication of 

how well the predicted values match with the actual ones. When the error values are close to 0, 

it means that the predicted values are very similar to the actual, indicating a better fit of the 

model to the data. On the other hand, the coefficient of determination (R²), which measures the 

proportion of variance in the dependent variable that is explained by the independent variables, 

provides a measure of how well the model fits the data. A value of R² close to 1 indicates a 

good performance of the model, meaning that it can accurately predict the dependent variable 

based on the independent variables. Therefore, when the mean error values are close to 0 and 

the R² value is close to 1, it suggests that the model has a good performance and can accurately 

predict the values of the dependent variable. 

3.3.1 EXTERNAL VALIDATION 

External validation corresponds to a methodology implemented by Golbraikh & Tropsha (2002) 

to verify the accuracy of a predictive model based on the test phase results, considering that the 

value of the determination coefficient R² obtained during training may not represent the actual 

accuracy of the model. 
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An ideal model would correspond to a trend line with a slope of 1:1 and an intercept from the 

origin of the coordinate axis, where all cases of predicted values would be perfectly equal to 

the actual values. Based on this consideration, the closer the model presents a correlation to the 

ideal model, the greater the precision that can be established. Graphically, it is possible to find 

the model's relationship by comparing the actual vs predicted values, or vice versa, thus 

defining that the slopes of the correlation lines would be expressed by 𝑘 or 𝑘′, respectively, 

calculated using Eq. (3.31). 

 

𝑘 =
∑ �̂� ∗ 𝑦𝑛

𝑖=1

∑ �̂�2𝑛
𝑖=1

,      𝑘′ =
∑ �̂� ∗ 𝑦𝑛

𝑖=1

∑ 𝑦2𝑛
𝑖=1

 Eq. (3.31) 

 

And the coefficient of determination values for the trend lines passing through the origin can 

be estimated as expressed in Eq. (3.32) and Eq. (3.33), where 𝑅𝑜
2  and 𝑅𝑜′2 correspond to the 

correlation of the actual vs predicted values or predicted vs actual values, respectively. 

 

𝑅𝑜
2 =

∑ �̂�(1 − 𝑘)2𝑛
𝑖=1

∑ (�̂� − �̅̂�)
2𝑛

𝑖=1

 Eq. (3.32) 

 

𝑅𝑜′2 =
∑ 𝑦(1 − 𝑘′)2𝑛

𝑖=1

∑ (𝑦 − �̅�)2𝑛
𝑖=1

 Eq. (3.33) 

 

A stabilization criterion proposed by Roy & Roy (2008) can be established through Eq. (3.34). 

 

𝑅𝑠
2 = 𝑅2 (1 − √|𝑅2 − 𝑅𝑜

2|) Eq. (3.34) 

 

Finally, it is possible to establish the reliability of the model for the testing phase if it meets at 

least two of the following criteria (Golbraikh & Tropsha, 2002; Pant & Ramana, 2022): 

 

 𝑅2 is greater or equal to 0.6. 

 𝑘 o 𝑘′ is between 0.85 and 1.15. 

 [
𝑅2−𝑅𝑜

2

𝑅2
]< 0.1 or [

𝑅2−𝑅𝑜′2

𝑅2
]< 0.1. 

 𝑅𝑠
2 is greater or equal to 0.5. 
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4 RESULTS 

This chapter presents and discusses the results after applying the previously presented 

methodology to predict the interface shear strength between sand and geomembrane. The 

collected data is initially interpreted and correlated. Then a detailed description of the 

characteristics of the implemented models and their evaluation is made. 

4.1 DATA ANALYSIS 

4.1.1 DATA INTERPRETATION 

As mentioned in Chapter 3.1, 488 samples were collected from the results found in 16 

bibliographic publications and data provided by the manufacturer company. The samples were 

selected considering similar influencing factors, establishing 12 final parameters. Figure 4.1 

shows the trend of missing values (represented as blank spaces) for each parameter. It is 

possible to observe that the relative density (𝐼𝑑) and GM asperity height (𝐴ℎ) correspond to the 

data with the least reported information in the collected studies (for 𝐴ℎ parameter the empty 

data corresponds to textured GM where the height was not specified. In the case of smooth GM, 

the asperity height was specified as null, meaning equal to 0 mm). In contrast, the normal stress 

(𝜏) and contact area (C.A.) represent the data with the highest amount reported in the 

investigations. 

 

 

Figure 4.1 – Existing and absent values distribution of the references used data. 

τ C.A. t Cc Cu D50 фs𝜌𝐴ℎ 𝐼𝑑𝐷𝑟
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Note: The organization of the data was carried out chronologically according to each reference 

as presented in Table 3.1. 

 

Table 4.1 shows the statistical data of the influence parameters used after the outliers data 

cleansing (final value of 428 useful samples). Each parameter's maximum, minimum, and mean 

values are calculated, along with data distribution measured by the standard deviation, 

coefficient of variation, and skewness coefficient. The standard deviation measures the data 

deviation from the average value, with a smaller value indicating a tighter concentration around 

the mean. On the other hand, the coefficient of variation indicates the level of homogeneity of 

the data, with a higher percentage suggesting greater heterogeneity. The skewness coefficient 

indicates the symmetry of the data distribution, with a higher value indicating more significant 

asymmetry and the sign representing its direction (positive: right, negative: left). For the 

parameter "Type of test", it is showing the amount of each test carried out. 

 

Table 4.1 – Statistical information on influence parameters. 

 Parameter Min Max Mean 𝝈 CV Skewness 

Input 

𝐷𝑟 Displac. rate (mm/min) 0.10 3.00 1.20 0.64 52.8% 0.30 

𝜏 Normal stress (kPa) 1.00 500.0 43.51 60.52 139.1% 3.82 

C.A. Contact area (cm²) 36.00 9024.00 1733.74 3169.83 182.8% 1.83 

t GM thickness (mm) 0.50 3.00 1.66 0.42 25.0% 0.48 

𝐴ℎ GM asperity h (mm) 0.00 1.71 0.24 0.33 139.6% 2.08 

𝐼𝑑 Sand density index (%) 20.80 98.00 60.95 12.73 20.9% 0.33 

𝜌 Unit soil mass (g/cm³) 1.40 2.34 1.60 0.18 10.9% 1.12 

Cc Coefficient of curvature 0.80 1.68 1.02 0.15 15.0% 1.77 

Cu Uniformity coefficient 1.11 46.86 3.02 6.11 202.4% 6.94 

D50 Median grain size (mm) 0.20 3.08 0.59 0.31 52.9% 5.97 

𝜙𝑠 Friction angle of soil (°) 29.00 49.50 38.39 4.64 12.1% 0.18 

 Type of test CDS: 57; MDS: 119; IP: 252 

Output 

𝛿′ 
Friction angle interface 

(°) 
16.00 58.70 27.91 6.87 24.6% 0.96 

Legend: GM: Geomembrane, CDS= Conventional Direct Shear, MDS= Medium Direct Shear, 
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IP= Inclined plane, CV= Coefficient of variation, 𝜎= Standard deviation. 

 

The standard deviation of 0.64 for the displacement rate values indicates that the majority of 

data clusters around the mean, with a slight tendency towards higher values (skewness = 0.3). 

The coefficient of variation of 52.8% shows a heterogeneity in the data, with predominant 

values around 1.0 and 1.65 mm/min. This suggests that the displacement rate regularly used is 

relatively low, which helps prevent an excess of pore pressure from interfering with failure 

(ASTM D5321). 

 

The stress range applied in the tests is extensive, ranging from 1 kPa to significant values of 

500 kPa. The data exhibit a highly dispersed tendency (σ=60.52 and CV=139.1%) with a right-

skewed distribution, indicating that the values are variable and often below the mean (43.51 

kPa). This is mainly due to a significant portion of the total data (58.9%) corresponding to 

inclined plane tests primarily conducted at lower normal stresses (Ling et al., 2002; Moraci et 

al., 2014; Pavanello et al., 2021), as well as direct shear tests that start with low loads. The 

higher stress values are associated with larger-scale tests (MDS). 

 

A similar condition is observed in the contact area parameter, where the data exhibits significant 

dispersion (σ=3169.83 and CV=182.8%) due to variations in test conditions across different 

investigations. There is a clear tendency towards smaller contact areas (ranging from 36 to 100 

cm²) in CDS and small-scale inclined plane tests. Intermediate contact areas are observed in 

MDS-type tests. The maximum contact areas (9024 cm²) are associated with large-scale 

inclined plane tests, which show a higher variation in data distribution despite being less 

frequent. 

 

According to the results, the geomembrane's thickness is within the nominal values commonly 

used in the industry, ranging from 0.5 to 3.0 mm. The data indicates a reasonably symmetric 

distribution (σ=0.42), where most data cluster around the mean with a slightly right-skewed 

tendency. Approximately 50% of the tests were conducted on geomembranes with a thickness 

of 1.5 mm. 

 

Regarding GM asperity height, the data reveals that smooth geomembranes with a minimum 

height of 0.0 mm are used. In comparison, textured geomembranes can have heights up to 1.71 
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mm, which is within the industry's typical range of nominal values. However, based on the 

collected data, nearly 50% of the tests were conducted on smooth geomembranes (with heights 

less than 0.24 mm), resulting in a skewness value 2.08. Despite this, the statistics demonstrate 

high heterogeneity with a coefficient of variation (CV) of 139.6%, which provides valuable 

information related to textured conditions. Figure 4.1 illustrates that a significant amount of 

data is missing for this parameter in the collected studies. The missing data points were filled 

with the average value to address this, resulting in a more symmetrical distribution with a 

standard deviation of 0.33. 

 

On the other hand, the statistical information obtained from the different research studies 

reveals the use of various types of sand in relation to soil properties. The sands range from fine-

medium, with an average size of 0.2 mm (as reported by Mello, 2001), to coarse sand, with a 

size of 3.08 mm (according to Vangla & Gali, 2016). The average value of the data (D50 = 0.59 

mm) indicates the presence of medium sands. The data distribution is heterogeneous, with a 

coefficient of variation (CV) of 52.9%, and there is a tendency for values to be lower than the 

average (skewness of 5.97). 

 

The uniformity coefficient (Cu) and coefficient of curvature (Cc) reveals that most sand 

samples used in the tests belongs to the category of poorly-graded soil, with a few exceptions 

where values exceeding a Cu = 4.0 are observed due to fine and gravel materials (Cen et al., 

2018). The maximum values (Cu = 46.86) are responsible for the significant dispersion of the 

data (CV = 202.4%). 

4.1.2 DATA CORRELATION - PEARSON'S CORRELATION COEFFICIENT (𝝆𝒓) 

The Pearson coefficient can be used to establish statistically significant linear monotonic 

correlations that define the relationship between two variables, indicating whether there is a 

direct (positive value) or inversely proportional (negative value) relationship (Schober et al., 

2018). Although the relationship between soil and geomembrane interface strength is not totally 

linear, a 𝜌𝑟 can be used to stablish a linear correlation between with the input parameters and 

interface friction angle results in order to observe behaviour trends. Table 4.2 presents absolute 

values for the classification ranges of the Pearson correlation coefficient for each influential 

parameter, where a value close to zero indicates a weak correlation, while values closer to one 

show a strong relationship. On the other hand, Figure 4.2 and Figure 4.3 illustrates the 
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correlation between different influencing factors and the interface strength obtained from 

laboratory tests. 

Table 4.2 –Pearson coefficient classification range between influential parameter and predict 

outcome. 

Absolute magnitude correlation coefficient Parameter 

0.00 – 0.10 (Negligible correlation) C.A., t, 𝐼𝑑 

0.10 – 0.39 (Weak correlation) 𝐷𝑟, 𝜏, 𝜌, Cc, Cu, D50, 𝜙𝑠, CDS, MDS 

0.40 – 0.69 (Moderate correlation) 𝐴ℎ, IP 

0.70 – 0.89 (Strong correlation)  

0.90 – 1.00 (Very strong correlation)  

 

 

Figure 4.2 – Pearson correlation coefficient of influencing factors and the interface strength 

laboratory results. 

 

Dr 1.00 -1

τ -0.37 1.00

C.A. 0.26 -0.28 1.00

t 0.08 0.09 -0.25 1.00

Ah -0.14 0.22 -0.07 -0.03 1.00

Id -0.21 0.14 -0.12 -0.01 0.18 1.00

ρ -0.13 0.15 0.04 -0.02 0.34 -0.21 1.00

Cc -0.04 -0.02 0.31 -0.19 -0.23 -0.04 0.29 1.00 0

Cu -0.08 0.19 0.01 0.12 -0.01 -0.02 0.31 0.57 1.00

D50 -0.10 0.07 -0.09 -0.06 -0.06 0.21 -0.11 -0.08 -0.02 1.00

фs 0.14 0.00 -0.37 0.13 0.05 0.02 -0.33 -0.36 -0.01 0.11 1.00

CDS -0.55 0.35 -0.21 0.09 0.16 0.12 0.00 -0.23 -0.06 -0.05 0.08 1.00

MDS -0.43 0.25 -0.17 0.01 0.30 0.16 0.38 0.04 0.29 0.18 -0.16 -0.24 1.00

IP 0.78 -0.47 0.30 -0.08 -0.39 -0.23 -0.34 0.13 -0.23 -0.13 0.09 -0.47 -0.74 1.00

δ' 0.24 0.11 -0.05 -0.05 0.69 0.07 0.30 -0.11 0.15 -0.17 0.24 0.15 0.37 -0.44 1.00 1

Dr τ C.A. t Ah Id ρ Cc Cu D50 фs CDS MDS IP δ'
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Figure 4.3 – Pearson correlation coefficient of each influential parameter. 

 

Based on the results, it can be observed that the nominal parameter "test type" has a moderate 

to low correlation with the interface strength, (𝜌𝑟 of 0.15 for CDS, 0.37 for MDS, and -0.44 for 

IP). According to the correlation values, it can be established that the MDS test has a more 

significant direct influence on the determination of the interface friction angle, which can be 

associated with higher strength values (Hsieh et al., 2002). In the case of the IP test, despite 

having a high correlation value, the negative sign may indicate that lower values of the interface 

friction angle can be obtained when this test is executed. Monteiro (2012) observed that the 

interface strength values for low stresses obtained in IP tests are lower than those obtained by 

DS tests. 

 

The correlation analysis of the collected data revealed that the asperity height of the 

geomembrane (Ah) exhibited a strong positive correlation with the interface strength (𝜌𝑟 = 

0.69), which is consistent with previous study results conducted by multiple authors such as 

Stark et al. (1996), Lopes et al. (2001), Frost et al. (2012), Araújo et al. (2022) and Junior et al. 

(2023), where in all cases there was an increment in the interface friction angle values for 

textured GM comparing with smooth GM. The soil unit weight was the second parameter with 

the highest correlation (𝜌𝑟 = 0.3), and it also had a direct proportional relationship with the 

interface strength showing that its increase implies in a higher interface shear strength, which 

is linked to the soil density as indicated by O’Rourke et al. (1990), Gomes (1993) and Lima 

Junior (2000). 
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The sand properties have a minor influence on the interface shear strength, with the friction 

angle being the parameter most strongly correlated (𝜌𝑟 = 0.24), followed by the mean particle 

diameter D50 (𝜌𝑟 = -0.17), the coefficient of uniformity Cu (𝜌𝑟 = 0.15), and finally the coefficient 

of curvature Cc (𝜌𝑟 = -0.11). In each PCC value, the sign represents whether the variables are 

inversely (negative) or directly proportional (positive) to the interface shear strength result. The 

results are not consistent for the D50 and Cc parameters considering that researchers have 

investigated the effects of various soil properties, such as particle size, gradation, and 

angularity, on the interface strength finding a direct relationship with the interface friction 

angles (Izgin & Wasti, 1998; Lopes & Lopes, 1999; Costa e Lopes, 2001; Afonso, 2009; 

Choudhary & Krishna, 2016; Markou & Evangelou, 2018; Cen et al., 2018). 

 

The displacement rate presents a correlation coefficient of 0.24, establishing a weak directly 

proportional influence on the interface strength. This implies that the rate of shear displacement 

(Alzahrani, 2017) or plane inclination rate (Briançon et al., 2011) has minimal proportional 

impact on the interface friction angle. 

 

Thickness of the geomembrane (t) and contact area of the test (C.A.) are the parameters with 

the least correlation for the provided data, with 𝜌𝑟 values equal to 0.05. Similar relationship 

was obtained by Lima Junior (2000) and Sánchez (2018) where the laboratory results showed 

no direct influence between geosynthethics thickness and interface shear strength. However, 

several authors found a variable behaviour of interface friction angle for different box sizes, 

establishing the contact area as influential factor (Izgin & Wasti, 1998; Wasti & Özdüzgün, 

2001; Hsieh & Hsieh, 2003; Reyes Ramirez & Gourc, 2003; Gourc & Reyes Ramírez, 2004; 

Aguiar, 2008; Pitanga et al., 2009; Moraci et al., 2014). 

4.2 ANN MODEL ANALYSIS 

4.2.1 ANN ARCHITECTURE 

Before the neural network's training, its architecture needs to be defined. The analysis type 

utilized for the network is Multi-Layer Perceptron (MLP), which implies the presence of at least 

one hidden layer between the input and output layers (Haykin, 1999). Each layer is comprised 

of interconnected neurons that transmit transformed analysis information. In terms of the input 

and output layers, the number of neurons is determined by the input and outcome parameters, 

respectively. All the analyses were developed using the Machine Learning module available in 
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the Tyche software (2020) from the University of Brasilia. 

 

Initially, two models were developed –  one with a single hidden layer and another with two 

hidden layers, where the maximum number of neurons was limited to 100 for both. The type of 

test (a nominal variable) and parameters of lesser influence according to the data correlation 

(contact area and thickness of the geomembrane) were not considered, resulting in a total of 

nine input parameters. The number of neurons for each layer was determined based on the 

highest coefficient of determination (R²) obtained from different combinations through a trial-

and-error method, which was performed using the optimization Differential Evolution 

algorithm (DE) coupled with the Back-Propagation algorithm described in Chapter 3. The 

number of hidden neurons, the type of activation function (including the logistic sigmoid, 

hyperbolic tangent, and ReLU function), learning rate, and momentum coefficient, were 

defined as the initial hyperparameter population. Each analysis also established the number of 

epochs (3000) and early stopping criterion as constant. The algorithm identified the ReLU 

function as the most effective among the three activation functions analyzed (Glorot et al., 

2011). 

 

The optimal architecture for the single-layer model was 9-60-1 (the sequence represents the 

number of neurons established for input layer (9), number of neurons in the hidden layer (60) 

and neurons in the output layer (1), respectively); the optimal learning rate was 9.25, and a 

momentum coefficient of 0.7 for the best performance. 

 

On the other hand, the optimal architecture for the two-layer model was 9-44-42-1 (the 

sequence represents the number of neurons established for input layer (9), number of neurons 

in the hidden layers (44 and 42) and neurons in the output layer (1), respectively). In this case, 

the optimal learning rate was 61.89, and a momentum coefficient was 0.5. The R² values for 

the different combinations of hidden neurons in the single-layer and two-layer models are 

shown in Figure 4.4 and Figure 4.5, respectively. Figure 4.5 also displays a 2D representation 

corresponding to the sum of neurons in each hidden layer, enabling a clearer visualization. 
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Figure 4.4 – Relationship between number of neurons and R² value, 1-layer model with 9 inputs. 

 

 

 

Figure 4.5 – Relationship between number of neurons and R² value, 2-layer model with 9 inputs. 

 

A model with a single hidden layer was subsequently created considering the total of input 

parameters. In this case, a number of 3000 epochs, an early stopping criterion, and a ReLU 

activation function were defined as constant hyperparameters of the model. The optimal 

architecture for the model was 14-30-1 (the sequence represents the number of neurons 

established for input layer (14), number of neurons in the hidden layer (30) and neurons in the 

output layer (1), respectively). For the best network performance, the optimal learning rate was 

0.003, and momentum coefficient was 0.98. Figure 4.6 shows the R² values greater than 0.5 for 

different numbers of hidden neurons. 
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Figure 4.6 – Relationship between number of neurons and R² value, 1-layer model with 14 

inputs. 

 

Finally, a network consisting of two hidden layers and 14-input was defined. The optimal 

architecture was composed of 14-71-342-1 neurons (the sequence represents the number of 

neurons established for input layer (14), number of neurons in each hidden layers (71 and 342) 

and neurons in the output layer (1), respectively). A momentum coefficient of 0.3 and optimal 

learning rate of 2.33 was determined as the best value for network performance. Figure 4.7 

displays R² values (greater than 0.6) for various combinations of neurons in the hidden layers. 

Figure 4.7 also displays a 2D representation corresponding to the sum of neurons in each hidden 

layer, enabling a clearer visualization. 

 

 

 

Figure 4.7 – Relationship between number of neurons and R² value, 2-layer model with 14 

inputs. 
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Table 4.3 summarizes the optimal architecture obtained for each artificial neural network model 

according with the previous results. 

 

Table 4.3 – Optimal architecture for each ANN model. 

Model No. Inputs No. Hidden layers No. Hidden neurons No. Output 

1 9 1 60 1 

2 9 2 44/42 1 

3 14 1 30 1 

4 14 2 71/342 1 

 

4.2.2 TRAINING/TESTING PHASE AND EVALUATION OF THE ANN MODEL 

The training and testing phases were performed for each previously defined architecture, using 

a random distribution of 80-20% of the data respectively, with 342 data samples for training 

and 86 data samples for testing. The models predict the values of the sand-geomembrane 

interface strength using the synaptic weight and bias values obtained during the training phase. 

After calculating the predicted values, they can be compared with the actual values obtained 

from the collected laboratory data. 

 

Figure 4.8 to Figure 4.11 display comparison charts of the actual and predicted values for the 

single-layer and two-layer models, with nine (9) and fourteen (14) input parameters. The central 

line on the graphs represents a regression line, which illustrates the relationship between the 

two data sets. The closer the data points to the trend line, the more accurate the model's 

predictions are. 
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Figure 4.8 – Correlation graph of actual and predicted interface friction angle values in ANN 

with 1 hidden layer model and 9 input neurons: (a) Training phase and (b) Testing phase. 

 

  

Figure 4.9 – Correlation graph of actual and predicted interface friction angle values in ANN 

with 2 hidden layer model and 9 input neurons: (a) Training phase and (b) Testing phase. 
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Figure 4.10 – Correlation graph of actual and predicted interface friction angle values in ANN 

with 1 hidden layer model and 14 input neurons: (a) Training phase and (b) Testing phase. 

 

  

Figure 4.11 – Correlation graph of actual and predicted interface friction angle values in ANN 

with 2 hidden layer model and 14 input neurons: (a) Training phase and (b) Testing phase. 

 

The graphs also show the coefficient of determination (R²) values obtained from the trend line 

for both the actual and predicted values. Overall, the R² values obtained during the testing phase 

do not exhibit a significant difference compared to those obtained in the training phase, 

suggesting that the models do not generalize (over-fit) the data during the learning process, 

thereby enabling new data analysis (Haykin, 1999; Nunes da Silva et al., 2016). 
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The analysis reveals a noticeable dispersion of data points in the 9-input models when compared 

to the 14-input models. This dispersion is characterized by a larger number of samples deviating 

from the trend line. That observation suggests that for the present study removing the nominal 

parameter (type of test) as well as those with lower linear correlation (GM thickness and contact 

area), leads to a decrease in the accuracy and performance of the model. In other words, even 

though these parameters exhibit low linear correlation or do not correspond to a specific value, 

including them in the analysis helps the model capture the complexity of the data used. 

 

To validate the accuracy of model results, the residual values were calculated by finding the 

difference between the predicted and the actual values. Figure 4.12 to Figure 4.15 show the 

distribution of the laboratory-measured values, as well as the predicted and residual ones 

(difference between measured and predicted) obtained for each model. The horizontal lines 

represent the variation of ±5 in the interface shear strength. The differences in the predicted 

values may be attributed to the significant variation in the data for certain input parameters, 

where the standard deviations exceed 50, and the coefficients of variation are above 100%. 

Although the data heterogeneity contributes to enhancing the network's learning, the model 

employs approximation factors that impact each parameter's influence on establishing a 

correlation with the desired outcome (which varies across each sample). 
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Figure 4.12 – Actual, predicted and residual values for 1 hidden layer model and 9 inputs: (a) 

Training phase and (b) Testing phase. 
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Figure 4.13 – Actual, predicted and residual values for 2 hidden layers model and 9 inputs: (a) 

Training phase and (b) Testing phase. 
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Figure 4.14 – Actual, predicted and residual values for 1 hidden layer model and 14 inputs: (a) 

Training phase and (b) Testing phase. 
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Figure 4.15 – Actual, predicted and residual values for 2 hidden layers model and 14 inputs: (a) 

Training phase and (b) Testing phase. 

 

The percentages of predicted data that were observed outside the considered acceptable range 

of ±5 degrees were determined by calculating the residual quantity. For training phase, the 

residual percentage yielded to 5.6%, 5.3%, 5% and 4% for each model respectively. 

Conversely, the testing phase produces 11.6%, 12.8%, 11.6% and 11.6% for each model 

respectively. The frequency values of residual percentage can be visualized in Figure 4.16 to 

Figure 4.19, which correspond to the frequency histograms of residual values. The histograms 

are divided in three groups, values between 0 and ±5%, values higher than ±5% and values 

higher than ±10%, represented by the yellow, blue and red colour, respectively. Generally, it 

can be observed that the occurrence of residual values outside the acceptable range is minimal, 

and a considerable proportion of the deviations from the predicted data are centred around the 

range of 0° to ±2.5°. This concentration suggests that the model provides a satisfactory 

approximation of the results. 
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Figure 4.16 – Histogram of residual values for 1 hidden layers model and 9 inputs: (a) Training 

phase, 19 out of 342 data and (b) Testing phase, 10 out of 86 data. 

 

  

Figure 4.17 – Histogram of residual values for 2 hidden layers model and 9 inputs: (a) Training 

phase, 18 out of 342 data and (b) Testing phase, 11 out of 86 data. 
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Figure 4.18 – Histogram of residual values for 1 hidden layers model and 14 inputs: (a) Training 

phase, 17 out of 342 data and (b) Testing phase, 10 out of 86 data. 

 

  

Figure 4.19 – Histogram of residual values for 2 hidden layers model and 14 inputs: (a) Training 

phase, 14 out of 342 data and (b) Testing phase, 10 out of 86 data. 

 

From the relative residual values, it can be observed that only the testing phase of the models 

has between 10% and 15% of the data, with a relative difference greater than 15% concerning 

the predicted and actual results. On the other hand, the training phase of all the models show 

less than 10% of relative differences greater than 15%. That suggests a good overall 

performance of the models, considering that relative differences below 15% are acceptable for 

engineering analysis. 
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In addition, in order to evaluate the performance of each implemented model in predicting 

interface shear strength values, statistical errors such as RMSE, MAE, and MAPE were 

calculated as described in Chapter 3. Table 4.4 and Table 4.5 summarize the results of the four 

statistical evaluation criteria mentioned above. 

 

Table 4.4 – Evaluation statistical metrics for training dataset. 

Model 
No. 

Inputs 

No. Hidden 

layers 

No. Hidden 

neurons 
R² RMSE MAE MAPE% 

1 9 1 60 0.871 2.49 1.64 6.06 

2 9 2 44/42 0.888 2.32 1.56 5.71 

3 14 1 30 0.916 2.00 1.23 4.38 

4 14 2 71/342 0.919 1.92 1.32 5.03 

 

Table 4.5 – Evaluation statistical metrics for testing dataset. 

Model 
No. 

Inputs 

No. Hidden 

layers 

No. Hidden 

neurons 
R² RMSE MAE MAPE% 

1 9 1 60 0.734 3.50 2.14 7.76 

2 9 2 44/42 0.721 3.61 2.31 8.31 

3 14 1 30 0.780 3.22 1.80 6.33 

4 14 2 71/342 0.852 3.36 2.03 7.13 

 

The analysis comparing predicted and actual values and the statistical criteria mentioned 

indicates that using more input parameters results in greater accuracy in the neural network 

model. Models with 14 input parameters exhibit better performance but do not achieve a perfect 

relationship, indicated by an R² value of 1 and zero errors. That can be attributed to the influence 

of missing data in certain parameters, which were completed using the average of the available 

data, affecting the network's learning process. For instance, according to the correlation 

presented in the heat map showed in Figure 4.2, the GM asperity height corresponds to the 

parameter with the highest correlation, a factor also highlighted by various authors as 

significantly influencing the interface strength with geomembrane (see Chapter 2). However, it 

is one of the least presented values in the collected data (see Figure 4.1). 

 

There is no clear performance trend for the models regarding the number of hidden layers, as 

they have similar coefficients of determination. Also, the statistical error indices vary, with 
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better accuracy for both one and two layers and lower residual percentages for the training 

phase but constant or higher for the testing phase. 

 

According to the above and to establish the more accurate model between one and two hidden 

layers, the external validation methodology developed by Golbraikh & Tropsha (2002) was 

applied to the testing phase of the 14 input models. Table 4.6 shows the determination 

coefficients for the testing data to a fitting line passing through the origin (𝑅𝑜
2, 𝑅𝑜′2), their 

respective slopes (𝑘, 𝑘′), and the verification of compliance with the validation criteria defined 

in Chapter 3. It is possible to observe that both 14-input models met at least two defined 

conditions, showing that both are reliable. However, the two-layer model satisfies one more 

condition, making it more accurate. 

 

Table 4.6 – External validation for testing phase models. 

Model R² 𝑹𝒐
𝟐

 𝑹𝒐′𝟐 𝒌 𝒌′ 𝑹𝒔 Cond. 1 Cond. 2 Cond. 3 Cond. 4 

2-layers 0.852 0.999 0.996 1.01 0.98 0.52 Yes Yes Not Yes 

1-layer 0.780 0.998 0.991 1.01 0.98 0.42 Yes Yes Not Not 

 

Based on the previous results, it becomes evident that utilizing two hidden layers in the neural 

network enhances the learning process for result prediction, surpassing the performance of a 

single layer (Ali et al., 2022). This improvement is reflected in higher R2 values, indicating a 

stronger correlation between the predicted and actual values. It is possible to infer that in 

complex problems, the first layer captures the influence of the input parameters, while the 

second layer establishes meaningful relationships among them. 
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5 CONCLUSIONS 

5.1 GENERAL CONCLUSIONS 

The focus of this study is to assess the effectiveness of using ANN methodology to predict the 

shear strength at the interface of sand-geomembrane. An MLP architecture was chosen to 

configure the ANN models, and the training process is a supervised one that involves a BP 

training algorithm coupled with the DE optimization algorithm. The input data for the 

implemented models were defined from laboratory tests reported in previous research. Four 

hundred twenty-eight data, including 14 input parameters and sand-geomembrane interface 

strength results, were finally used. Once the results obtained from the various conducted 

analyses have been evaluated, it is possible to establish the following findings: 

 

 The statistical information of the collected data reveals a wide distribution for each 

parameter, enabling a better characterization and analysis for different soil and 

geomembrane conditions. 

 The correlation analysis of the collected data showed that the geomembrane asperity height 

has the highest correlation with the interface shear strength. In contrast, soil properties and 

displacement rate have a medium correlation. The thickness of the geomembrane and 

contact area has the lowest correlation coefficients. Although the results provide a reference 

measure for the established database, they are inconclusive compared to laboratory tests. 

 Four ANN models were analysed, differentiated in terms of their number of inputs (9 or 14) 

and the number of hidden layers (1 or 2). Models with more input parameters showed 

greater accuracy based on distribution analysis, residual values, and statistical criteria 

obtained by comparing predicted and actual values. 

 External validation methodology was applied between the 14-input models, finding that the 

architecture with two hidden layers met more selection criteria and was, therefore, the most 

accurate model. 

 A perfect correlation between the predicted and actual data was not achieved, possibly due 

to the influence of missing values in the input parameters during the network's learning 

process. 

 The ANN model with the architecture 14-71-342-1 displayed satisfactory results in terms 

of the predicted values' distribution compared to the trend line, a lower number of residual 
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values outside the acceptable range (4% for training and 11.6% for testing), and excellent 

prediction performance according to statistical metrics for both phases. 

 It can be concluded that the ANN algorithm is a suitable method for predicting sand-

geomembrane interface strength values (friction angle) for the collected data. 

5.2 LIMITATIONS OF THE MODEL 

The model's main limitation concerns the properties of the materials under evaluation. 

Specifically, the model focuses solely on the interaction between sandy soil and geomembrane. 

Additionally, it is necessary to have the most information possible about the input parameters, 

which must be within the ranges of the data used in the learning algorithms. 

 

Due to the limited detailed information in the available data, the model does not consider other 

factors influencing the interface shear strength, such as saturation degree or thermal conditions. 

5.3 SUGGESTIONS FOR FUTURE RESEARCH 

The findings of this study provide some recommendations for further research on the subject of 

the soil-geosynthetic interface using machine learning technics: 

 

 Develop or gather additional tests for sand-geomembrane interface behaviour, which 

can supplement the current database and provide more samples for training and 

validation. 

 Implement different training and/or optimization algorithms and other ML techniques, 

to compare the results obtained and to establish the most accurate methodology. 

 Initiate research with other materials for soil and geosynthetics, establishing a general 

behaviour for different types of interfaces. 
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