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ABSTRACT

Artificial Neural Networks (ANN) can be understood as a complex computing system
made up of a series of interconnected processing elements inspired by the Biological Neural
Networks that have the purpose of processing information aiming to generate a response.
This study aims to combine the capabilities of ANN’s, developed using a supervised learning
algorithm for predicting the mechanical behavior and material properties of the respective
rheological models adopted for metallic and polymeric materials. The evaluation of the
polymers is restricted to thermoplastic polymers and a elastic-viscoplastic model based on
the Mulliken-Boyce constitutive model is adopted. The implementation of the model is car-
ried out via VUMAT subroutines (explicit integration) in the commercial software ABAQUS
for the study of uniaxial compression in large deformations. The desired predictions for the
study of the evaluated polymers are: (1) Prediction of the material parameters of the modi-
fied constitutive model of Mulliken-Boyce implemented from the experimental stress-strain
curve and (2) prediction of the stress-strain curve from the material parameters. The study
of metals is based on indentation tests at large deformations. Ludwik equation is adopted
for the description of the mechanical behavior and is implemented via implicit integration
in the same commercial software. The desired predictions for metals are: (1) prediction of
the stress-strain curve from the displacement-force curve obtained through indentation test
and (2) prediction of the displacement-force curve, residual indentation, and contact pres-
sure from the main mechanical properties of metals. All predictions are performed through
the implementation of deep neural networks and supervised training. The results achieved
are satisfactory, the performance of the predictions made for all evaluated cases show good
accuracy with a significant reduction in processing time compared to implementations via
Finite Element.

Artificial Neural Network, Finite Element, Elastic-viscoplastic Model, Mulliken-
Boyce, Indentation.



RESUMO

As Redes Neurais Artificiais (RNA) podem ser entendidas como um sistema computa-
cional complexo formado por uma série de elementos de processamento interconectados
inspirados nas Redes Neurais Biológicas, que têm como finalidade o processamento de in-
formações com o objetivo de gerar uma resposta. Este estudo visa combinar as capacidades
de RNA’s e Elementos Finitos, desenvolvida por meio de algoritmos de aprendizado su-
pervisionado para prever o comportamento mecânico e as propriedades materiais através
de modelos constitutivos para metais e polímeros. A avaliação dos polímeros restringe-se a
polímeros termoplásticos e adota-se um modelo elasto-viscoplástico baseado no modelo con-
stitutivo de Mulliken-Boyce. A implementação do modelo é realizada via sub-rotinas VU-
MAT (integração explícita) no software comercial ABAQUS® para o estudo de compressão
uniaxial em grandes deformações. As previsões desejadas para o estudo dos polímeros
avaliados são: (1) Previsão dos parâmetros materiais do modelo constitutivo modificado
de Mulliken-Boyce implementado, a partir da curva tensão-deformação experimental e (2)
previsão da curva tensão-deformação a partir das propriedades do material. O estudo dos
metais é baseado em testes de indentação em grandes deformações. A equação de Ludwik
é adotada para a descrição do comportamento mecânico e é implementada via integração
implícita no mesmo software comercial. As predições almejadas para os metais são: (1)
predição da curva tensão-deformação a partir da curva deslocamento-força obtida através
do teste de indentação e (2) predição da curva deslocamento-força, indentação residual e
pressão de contato a partir das principais propriedades mecânicas de metais. Todas as
previsões são realizadas através da implementação de redes neurais via treinamento super-
visionado. O desempenho das previsões feitas para todos os casos avaliados mostra boa
acurácia com uma redução significativa no tempo de processamento em comparação com
implementações via Elemento Finito.

Rede Neural Artificial, Elementos Finitos, Modelo elasto-viscoplástico, Mulliken-
Boyce, Indentação.
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Chapter 1

Introduction

1.1 Contextualization

Artificial neural networks (ANN) are being used in a variety of daily and industrial ac-
tivities, including social engineering for bespoke advertising, disease and research, logistical
improvement of transportation systems and the optimization of manufacturing processes.
According to Zhong et al. [2021], its primary purpose is to simplify and hasten the charac-
terization of complicated events found in a variety of scientific domains.

Studies employing Machine Learning (ML) strategies to evaluate mechanical behavior
of materials are widely available. The determination of the stress-strain relationship, for
instance, is one of the most important pieces of information when defining the mechanical
behavior of engineering materials. To generate a complete stress-strain curve, a significant
variety of conventional techniques such as tensile, compression, torsional, and flexural tests
are required. Nevertheless, indentations tests are presented as a common alternative used
to characterize the mechanical properties of materials, being used for both metallic and
polymeric materials. In general, the main source of information for the inference of elastic
and plastic properties comes from the behavior of the displacement-force curve.

Metallic materials are inorganic substances, preferably used as a composition of different
elements in order to form an alloy, instead of being used in its pure form. Such materials are
composed of metallic substances, such as: iron and aluminum, but also by small amounts of
non-metallic such as: carbon, oxygen, and nitrogen. Regarding its mechanical properties,
the microstructure of the metallic material, properties of the elements that compose it, and
manufacturing process have a strong influence. Concerning its use, metallic materials are
important to compose parts and structures due to their excellent mechanical properties
(strength, for example), as well as their good formability. In general, steels represent
approximately 80 % of all metallic materials used in different types of applications.
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Polymers present themselves as a viable alternative for the replacement of parts or
components that were formerly made up solely of metallic or ceramic materials, either by
cost reduction, mechanical characteristics, or other properties intrinsic to the project or
the material. Technological advancement in conjunction with the evolution of materials
engineering has enabled polymers of greater strength, lower density, and lower cost to be
obtained.

According to Canevarolo [2010], the mechanical properties of polymers can be defined
from the response of this material under the application of external efforts. The nature of
this response depends on several factors intrinsic to the polymer manufacturing process,
such as: temperature, processing time and conditions, polymerization process controls,
among others. Not least, the test conditions also have a great influence on the response of
the material, such as: test temperature, loading/unloading and strain rate.

Unlike most metals, polymers have explicitly different characteristics between tensile and
compression. In general, they usually have a fragile behavior in traction and ductile under
compression. Such difference is due to the compression in polymers causing the reduction
in the size of internal defects, such as microcracks, arising from the material manufacturing
process that are accentuated in the tensile tests. Another important aspect that contributes
to the compression behavior of polymers is crystallinity. According to Mccrum et al. [1988],
amorphous polymers have a clearer yielding point, whereas semicrystalline polymers do not
explicitly show such threshold.

The numerical study of the behavior of polymers represents an important branch of the
study of computational methods in engineering materials, as well as an important alterna-
tive to experimental tests that, in certain circumstances, can be destructive and/or require
too much time to achieve the desired result. Unlike metals, for which most commercial soft-
ware has several libraries and models implemented to describe the behavior of either linear,
plastic or viscoplastic, there are few models implemented for elastic-viscoplastic evaluations
in polymers, among the software commonly used, the presence of models for these materials
in most cases covers no more than the hyperelastic behavior.

In parallel to the growing use of polymers for the most diverse purposes, there has
also been advancement in numerical methods capable of predicting the mechanical be-
havior of these materials since the methods applicable to metals are unable to repre-
sent their behavior in a striking way. However, it should be noted that because poly-
meric materials have a greater diversity of mechanical behavior, commonly each numer-
ical method is valid for a restricted range of polymers. Among the various numerical
methods present in the bibliography, the following models can be cited: 8 chain Ar-
ruda and Boyce [1993], Ogden [1985], Extended Tube Model Kaliske and Heinrich [1999],
Suchocki [2015], Bergstrom and Boyce [1998], Arruda-Boyce Boyce et al. [1994], Hybrid
Bergstrom et al. [2003] e Mulliken and Boyce [2006].
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The relevance of defining the mechanical characteristics of materials is crucial. The
employment of computational approaches in conjunction with Machine Learning presents
itself as a feasible alternative for this goal, in addition to providing computational cost
reductions of simulations in a finite element environment.

1.2 State-of-the-Art

In this section the reader will be able to find about the state-of-the art of the most
relevant topics for the development of this work, they are: (1) characterization of the
mechanical behavior of solids, presenting primarily about uniaxial compression and in-
dentation test, (2) rheological models adopted for the mechanical characterization of the
elastic-viscoplastic behavior of thermoplastic polymers, (3) numerical implementations of
indentation test with the presence of permanent deformations, and (4) application of neural
networks for the prediction of mechanical behaviors of materials under different boundary
conditions.

1.2.1 Mechanical Characterization of Solids and Experimental
Indentation Test

The characterization of material behavior is extremely important for the correct descrip-
tion of its mechanical behavior, which is required for a faithful description using numerical
methods. The tensile test is one of the main experiments used to verify the material’s be-
havior and from this test the stress-strain curve can be generated. Several material-related
properties, such as Young’s modulus, yield strength, and ultimate tensile strength, can be
defined using such a curve.

Metals’ behavior in both traction and compression is generally similar when evaluating
their behavior. However, when the behavior of polymers is evaluated from two perspectives:
compression and traction, very different behaviors can be observed. As a result, compression
tests are required to evaluate the behavior of polymers from this standpoint.

The compression test involves compressing a specimen, which is usually cylindrical, be-
tween two parallel flat surfaces. In this manner, a controlled displacement is applied to
one of the surfaces in order to maintain a constant strain rate. The ASTM E9-19 stan-
dard, which aims to standardize experimental compression testing procedures, describes
the procedures for performing compression on metals at room temperature, including the
qualification of the test equipment, dimensions, and specimen preparation, as well as the ex-
perimental procedures to be performed. In terms of polymers, the ASTM D695-15 standard
describes a test method for compressing rigid plastics, which can also be used to evaluate

3



composites with rigid polymers as matrix. In addition to the polymeric material’s stress-
strain curve, the following properties can be determined: Young’s modulus, yield stress,
deformations beyond the yield stress, and compressive strength.

Because polymers are highly dependent on external factors, ambient conditions can
influence their behavior, necessitating the standardization of specimen conditioning and
storage. As a result, supplementary standards are used to avoid exposing these materials
to degenerative environments such as high temperature, UV light, and humidity, as well as
establishing time intervals between specimen manufacture and testing.

The indentation test is another common method for characterizing material properties.
According to George and Mohammadreza [2020], indentation testing is a technique widely
used to probe the mechanical properties of solid state materials, such as hardness and
elastic stiffness, by measuring their surface response to penetration of a probe with known
geometry and imposed load. The resistance of a material to local plastic deformation is
defined as hardness. The most commonly used hardness tests, according to Smith [2007],
are defined by the shape of the indent, the size, and the load. It should be noted that
the indentation tests are usually used to describe other elastic and plastic properties of
the materials, mainly through the force-displacement curve. Some works presented in the
section 1.2.2 demonstrate its use for this purpose.

The main relevant standards to the indentation tests specified above are: (1) ASTM
E10-00, which presents the methodology to be adopted for the Brinell hardness of metallic
materials test, and (2) ASTM D785-03, which establishes the specified standard method
for Rockwell hardness of plastics.

1.2.2 Numerical Constitutive Modeling of Polymers

Several studies discuss the use of computational methods to evaluate the mechanical
behavior of polymers. Such methods must be able to effectively represent their dependence
on several factors, including strain rate and temperature. Furthermore, it should be em-
phasized that each numerical model for evaluating polymers is often suitable to a limited
range of polymers with similar mechanical properties. This, along with advancements in
obtaining new polymers with different behaviors, is one of the reasons why the study of
elastic-viscoplastic models is recurring as a research object.

Among the existing models, Perzyna [1966] presents one of the first viscoplastic models
that, although more applicable to metals, is also found in the literature for the study of
polymers. Such a model is characterized by the replacement of the Lagrange multiplier
method by the Penalty method, in order to impose the plasticization criterion. Jeong
and Anastasia [2009], for example, apply the referred model for the study of high density
polyethylenes under compression in small deformations (1%). Even if in a smaller amount,
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there are also numerical studies that use the Perzyna [1966] model for the evaluation of poly-
mers in large deformations, for example, the study of Nguyen et al. [2016], where the author
presents an elastic-viscoplastic constitutive damage model for amorphous polymers, applied
more specifically to an RTM 6 epoxy resin. Some other studies that use the Perzyna [1966]
model are: Belayachi et al. [2008], Al-Rub and Tehrani [2011] , Al-Rub et al. [2014] and
Belayachi et al. [2008].

One of the first works on the numerical study of polymers was presented by Arruda
and Boyce [1993] and titled by A Three-dimensional constitutive model for the large stretch
behavior of rubber elastic materials. Such an article can be considered as the basis for
the Arruda-Boyce model. It presents a model of hyperelasticity for a material said to
be incompressible from the consideration of a molecular structure of eight chains. Later
on, Boyce et al. [1994] presented studies of numerical models in large deformations for
crystalline polymers, more specifically the PC and PPMA (polymethylmethacrylate). The
works presented by Boyce et al. [1994] are shown as a major advance for the study of
polymers and are widely used until today, in addition to serving as the basis for several
other models obtained later.

In view of the points presented, there are several works that propose modifications or
use exciting numerical methods for the evaluation of polymers under different conditions.
These works aid in the identification of numerical models pertinent to the type of study
and material evaluated. Among the most relevant, there is the study conducted by Antoine
and Batra [2014], where they implement the numerical model of Arruda-Boyce with some
modifications, such as the use of an incompressible viscoelastic model from Ogden [1985],
instead of an eight-chain model. Such a model is used in a three-dimensional study of
ballistics at low speeds, where the object subjected to the impact consists of interleaved
blades of PMMA and PC. Similarly, Torres and Frontini [2016] carry out a numerical-
experimental comparative study of the deformation and failure behavior of the PC under
impact at low speeds. To do so, the authors applied the numerical model of Arruda-Boyce
with modifications in a VUMAT environment, in order to reproduce the thermomechanical
behavior and dependence on the material deformation rate. In the model adopted by the
authors, there are changes in the term referring to the plastic deformation rate, where the
model is considered dependent on the resistance parameters and shear flow exponent, as
well as on a softening term after the occurrence of viscoplastic flow.

Some other pertinent works that use the Arruda Boyce model or this model with mod-
ifications can be found at: Polanco-Loria et al. [2010]; Tomas et al. [2008]; Kermouche
et al. [2013]; Tomas et al. [2015] e Johnsen et al. [2019].

As previously stated, the Arruda-Boyce model served as the foundation for several other
commonly used models, such as the Mulliken Boyce model, which was first presented in 2002
and updated in 2006. This model presents itself as an advance to the Arruda-Boyce model,
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mainly due to the addition of a second viscoplastic network. In this model, some changes
in the calculation of the viscoplastic flow rate are adopted and can be better understood
later in this thesis. An overview of the Mulliken-Boyce model can be found in the paper
presented by Mulliken and Boyce [2006] entitled: Mechanics of the rate-dependent elastic-
plastic deformation of glassy polymers from low to high strain rates, where the model is
applied to describe the behavior of PC and PPMA.

The use of the Mulliken-Boyce model can also be found in several areas of research,
such as the work conducted by Wang et al. [2017], in which the authors combine this model
with the models presented by G’Sell and Jonas [1981] and DSGZ Duan et al. [2001] for
the description of the mechanical behavior of the PC at strain rates of 10−4 to 5000 s−1

through the implementation of VUMAT’s subroutines in the ABAQUS®/Explicit commer-
cial software. The results presented by the authors show a good adequacy of the model
to describe the mechanical behavior of the material. The best match between the results
obtained numerically and experimentally was by imposing a deformation rate of 10−3 s−1,
where the error of 0.58%. The biggest divergence between the data was related to a strain
rate of 10 s−1, where the error was 13.08%.

Varghese and Batra [2009] presented a constitutive model based on the Mulliken-Boyce
model for the numerical representation of the mechanical behavior of PC and PPMA at
high strain rates. In the presented study they point out that the proposed modifications:
an elasticity module dependent only on the temperature history and the effective strain
rate, as well as the introduction of two internal variables in the representation of the two
intermolecular contribution networks for a better characterization of the stress softening
for high deformation rates, lead to a better adaptation of the numerical model for the
simulations conducted. Based on the results, the authors’ proposed model is better suited
for high deformation rates, such as 770 s−1 for the study of PPMA. However, the observed
results indicate a poor suitability for simulations with moderate or low strain rates. In
these circumstances, the original Mulliken-Boyce model is clearly more suitable.

As much as the Mulliken-Boyce model was developed to describe the behavior of ther-
moplastic polymers, its use is also found for the description of thermoset polymers, as is
the case of the work presented by Jordan et al. [2008], where they apply a one-dimensional
model for the evaluation of an EPON 826 Epoxy resin with a cure by diethanolamine (DEA)
at different strain rates (between 10−3 to 104 s−1). Because the mechanical behavior of the
resin used in the studies shows similarity to PC, the authors identified that the Mulliken-
Boyce model presents itself as a viable alternative. A comparison between the experimental
and numerical results shows a good suitability for all investigated cases. Because Epoxy
826 resin presents a similar behavior for both low and high deformation rates, the Mulliken
Boyce model has a better fit than the model presented by Varghese and Batra [2009], for
example. The modifications presented by this last model are more applicable to materials
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that present a relevant yield characteristic after the elastic zone in simulations of high de-
formation rates, as is the case of PC and not of EPON 826 resin. As presented in PC and
PPMA simulations from studies conducted by Mulliken and Boyce [2006], as the deforma-
tion rate increases, or even for materials that have different characteristics, the model has
greater difficulty to represent the zone after the region of linear elasticity, more precisely
when the tangent module of the curve begins to vary. This adjustment difficulty may ex-
tend until the maximum stress peak before the predominance of the nonlinear hardening
region. Some possible alternatives for a better adaptation are neither a numerical extension
of the zone said to be linear or changes in the tangent module, circumstances that must be
weighed by the objectives of the study.

Wang et al. [2018] deals with existing numerical models and proposes new constitu-
tive equations for the evaluation of thermoplastic polymers, using four different numerical
models to evaluate the mechanical behavior of PC and ABS, including the original Mulliken-
Boyce model and a modified one. As in the studies previously presented, Wang et al. [2018]
performs several simulations of low to high deformation rates. The main conclusions show
that the Mulliken-Boyce model was adequate to reproduce the behavior of materials in
almost all simulations conducted, except for those with high strain rates, as also presented
by Varghese and Batra [2009]. It is noteworthy that the model proposed by the authors,
called as Wang model, showed good suitability for all simulations, which makes it a viable
alternative for PC and ABS simulations, especially for cases of very high strain rate applied,
as the model presents a good prediction for strain rates up to 5, 000 s−1. Wang’s model
presents relative simplicity of implementation, the stress is made up of two contribution
networks, the first of which reproduces the contribution of low and medium strain rates
and the second reproduces the contribution of high strain rates.

The Mulliken-Boyce model was also used in other relevant works: (1) Trivedi and
Siviour [2018] apply a modified model for the mechanical evaluation of the behavior of
Polyvinyl Chloride (PVC) under different strain rates; (2) Safari et al. [2016] present a
new adiabatic model based on Mulliken-Boyce’s model for the evaluation of the PC at
large deformation rates; (3) Sun and Gamstedt [2019] apply a modified model presented by
Varghese and Batra [2009] to discuss the phenomenon of shear bands in glassy and amor-
phous polymers (in the case of the study, the material evaluated was PPMA); (4) Furmanski
et al. [2013] use the Mulliken-Boyce model with failure models for the evaluation of PC and
ABS under conditions of large deformations and high deformation rates (> 10, 000 s−1);
(5) Sarva et al. [2007] apply the original model for the investigation of the PC in Taylor
impact experiments, in order to evaluate its mechanical behavior under non-homogeneous
deformation conditions. In this latest study, the evaluations were based on the geometry
shape after the impact, where the numerical behaviors were compared with the experimen-
tal ones. The results show good adequacy of the original Mulliken-Boyce model for the
assessment of scenarios in which the occurrence of residual deformations is one of the topics
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of interest.

1.2.3 Numerical evaluation of indentation tests

The investigation of the mechanical and geometric parameters of bodies in contact is
an important branch of research in tribology. There are several state-of-the-art works
that perform this type of numerical study, and, in general, metallic materials continue to
dominate the subject. The topic of contact in polymers is becoming more popular, owing to
its increasing structural use. However, some factors continue to be obstacles, such as a lack
of libraries previously implemented to evaluate the behavior of polymers, including their
elastic-viscoplastic behavior. Because of the wide variation in polymer properties caused by
their complex molecular structure, dedicated models are usually required to evaluate their
performance.

Indentation test is a relatively cheap characterization process employed for the analysis
of compression and surface properties. In particular, the sphere-to-flat standard Brinell test
which is often used for the evaluation of Hardness Singh [2021]. It can, however, be used to
assess other mechanical properties and parameters related to the elastic and plastic phases
of the material’s mechanical behavior. According to George and Mohammadreza [2020],
the elastic stiffness of a material can be determined by analyzing the surface response to
the probe’s penetration at an imposed load. Moreover, one of the main outputs obtained by
the indentation test is a force-displacement relationship. Therefore, when an indentation
test is carried-out at finite strain, inelastic properties can also be evaluated in a combined
experimental/numerical study.

The Finite Element (FE) modeling is a popular choice for this kind of investigation, as
can be identified in the following studiesWang et al. [2017], Pham and Kim [2017], Wang
et al. [2019], Peng et al. [2020], Chen and Cai [2020]. These studies have as main objective
the identification of elastoplastic properties, such as residual stresses, longitudinal elastic
modulus, and stress-strain curve of metallic materials from the behavior of the depth pen-
etration curves by force, as well residual penetration. Chen and Cai [2020] present several
studies for different types of indentation in metals, by comparing three different methods:
Numerical Model in Finite Elements, experimental tests, and elastic-plastic indentation
model (model based on contact mechanics). The authors’ results show a good correlation
between the three methods used during the study, allowing them to reaffirm what several
other authors have presented thus far: the use of numerical models presents itself as a
relevant tool for describing the phenomenon of contact between continuous solids.

Tkalich et al. [2016] presents experimental and numerical investigations of the residual
deformations of granite under compression, more precisely of the residual indentation. The
evaluations were based on a spherical indentation, considering for both 1/4 of the geometry.
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Among the aspects presented by the authors, the most relevant for this thesis is related to
the adequacy of the numerical force-penetration curve. The results obtained by the authors
show a good adequacy of the curve for the loading phase, whereas for the unloading phase it
was verified that the numerical results were all overestimated, reaching a difference between
the experimental and numerical results of up to 129% (in studies conducted by the authors,
the magnitude of residual penetration was in the order of millimeters).

A common complementary approach to experimental analyses is the usage of calibrated
numerical models. After a series of experiments, material properties and numerical pa-
rameters can be identified and employed in the modeling and simulation of the mechanical
behavior of engineering materials or industrial components. In time, an established nu-
merical model can precisely replicate (or even completely replace) a standard experimental
testing procedure for a given material class Kudela and Matousek [2022]. However, intricate
failure mechanisms (e.g. fatigue and fretting wear) can still be extremely demanding even
after thorough modeling and calibration Doca, Doca et al. [2022, 2022]. A mixed model,
using FE model and ANN for the prediction of the stress-strain curves, has been presented
by Jeong et al. [2020].

1.2.4 Machine Learning Tools Applied to the Mechanical De-
scription of Materials

Nowadays Artificial Intelligence is commonly used in applications in the most diverse
research topics, from the automation of routine processes, to, for example, for the diagnosis
of diseases. Looking down the path taken by Artificial Intelligence in parallel with the basic
purpose of using computers brings up an opportune reflection.

Just like a human being needs to know in advance what would be a house and what
would be a car to be able to make distinctions between the two objects, machines also need
a source of prior information for this purpose, which can be called inputs. In other words,
just as a person cannot identify the dissimilarities between an object X and Y if he never
had contact with them, machines are also unable to do so. This ability of the system to
acquire knowledge from a database of initial information is known as Machine Learning,
one of the subfields of Artificial Intelligence, and is fundamental for the development of this
thesis.

The essence of using computers is the intention to process various types of information
by algorithms, in most situations to perform humanly laborious activities and tasks that
otherwise would be impossible to be carried out in time. Reproducing what would easily be
accomplished by an adult, like differentiating a car and a house in an image, was one of the
greatest challenges in the early days of Machine Learning. In some tasks, a simple human
perception is still difficult to be replicated. Examining the progress of Artificial Intelligence
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in the present day, it is possible to identify a steady growth. The models developed today
present answers to problems of much greater complexity than a simple classification of
images, models developed for cases in which human cognitive ability alone is no longer
sufficient to find the necessary answers.

Regarding the Machine Learning subfields, it is possible to identify two major branches
of study: Supervised and Unsupervised Learning. In the first case, Supervised Learning,
there is the presence of a target, that is, the algorithm will be trained to associate the input
data with the output data. For the previously mentioned case of a dataset of images of
houses and cars, the imagens would be the input of the system, whereas the description of
car or house would define the output, in this case, it could be, for example, 0 for an image
of a house and 1 for the image of a car. In the case of Unsupervised Learning, there is no
target, the main function of the algorithm is to observe several examples and try to learn
without the presence of an instructor. For the case of categorization between home and
car, the basic function of the algorithm would be to identify similarities and dissimilarities
between the images for the inference of the classification, for example.

Deep Learning also presents itself as one of the subfields within Machine Learning and
can be applied to both Supervised and Unsupervised algorithms. This branch of Machine
Learning is based on algorithms that try to model high-level abstractions from the use
of a chain of layers, which can be designed purely sequentially or in a more complex way,
depending on the object of analysis. A philosophical and mathematical view of deep learning
is presented by Bengio et al. [2013], where they describe it as a profound learning from a
hierarchical view, in which the higher level, more abstract, learn from those of lower levels,
with less abstraction.

The use of Machine Learning tools for engineering applications is on the rise and it
is possible to find research that makes use of such tools for the description of different
behaviors of materials. The main applications of Machine Learning are carried out via
numerical implementations, mainly through libraries specially developed for this purpose, as
is the case of the open end-to-end platform Tensor Flow present in programming languages
like Python and R. An introduction to the functionalities existent in TensorFlow, as well
as the Scikit-Learn library, another library widely used in Machine Learning, can be found
in several research studies, including: Geron [2017] and Goodfellow et al. [2016], as well as
supporting material provided by the developers.

The research developed by Yang et al. [2020], a study in the same field of research as
that presented by Gu et al. [2017] in brittle materials, develops a strategy based on Machine
Learning tools to obtain the stress-strain curve of composite materials for stress levels above
the elastic limit of the material, a strategy adopted due to the high computational cost for
conducting simulations on these materials on tools such as Finite Element. To do so, they
apply two different tools: (1) Principal Component Analysis (PCA), a multivariate statis-
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tical tool that allows reducing the number of variables in order to reduce the redundancy
of information, and (2) Convolutional neural network, an image processing and analysis
tool that can be used to obtain lower computational cost during the training. According
to the authors, the stress-strain curve was defined as the model’s output due to its higher
degree of difficulty, given its high dimensionality and additionally because it is possible to
use it to define other material properties such as: elastic modulus, rigidity, and hardness.
For the creation of the target database, a Finite Element modeling was used, generating a
dataset of 100,000 different stress-strain curves with 61 pairs of coordinates, which totals
6,100,000 elements. Regarding the model input, the authors used a binary representation
with 121 elements (11x11), where 0 represents a soft block and 1 corresponds to a stiff block
(representing a plane). The adopted Machine Learning model used the Adam optimizer,
batch size equal to 16 and number of epochs equal to 30, presenting a Mean Absolute Error
(MAE) less than 10%.

Also, in the field of material science, Mangal [2018] presents in his thesis a methodology
based on ML for the prediction of stress hotspots in monophasic equiaxial microstructures
due to the presence of inhomogeneous stress distributions in the crystal structure of metals.
The model used by the authors was based on a dataset of 56 synthetic microstructures in
a tensor form 128x128x128, trained in a neural network composed of non-sequential layers,
as well as the application of PCA to reduce the size of the model. In addition to the
points covered in the two articles previously mentioned, Miyazawa et al. [2019] present the
interference of the configuration of different types of Layers and activation functions, more
precisely tanh and ReLU.

Jordan et al. [2020] present a study about the dependence of the stress-strain curve
in relation to temperature and strain rate in uniaxial tensile tests of polypropylene, using
an experimental, analytical and Machine Learning approach. The adopted model can pre-
dict the stress-strain curve for magnitudes up to 60% from inputs such as strain rate and
temperature. The authors address in their study the impact of the construction of layers,
more precisely the number of layers and neurons, in the mean squared error (MSE). For the
conducted study, the use of a single layer was able to predict the stress-strain curve without
the premise of any mathematical function for the description of the specimen’s mechanical
behavior, providing a good description of all the experiments carried out. The prediction
error was less than the experimental uncertainty.

In order to characterize the mechanical damage in specimens, the study of Zobeiry
et al. [2020] presents an approach via Machine Learning (ML) in laminated composites
reinforced by polymers. To do so, they use the LS-DYNA finite element commercial software
to build a numerical damage model, in order to generate the necessary input for training the
model in ML. To determine the best parameters to compose the input, a sensitivity analysis
was carried out and it was verified that the use of sequential neural networks would not be
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relevant for the conducted study, therefore, differently from the studies presented so far,
the authors used several independent neural networks for determining the four necessary
outputs, a strategy that can be carried out using the API tool present in the Tensorflow
library, which allows the construction of non-sequential neural networks, using an output
as input to another branch of the neural network. It is worth mentioning that the strategy
taken by the authors allowed the application of a model in ML without the need for image
processing, as present in: Yang et al. [2020], Gu et al. [2017] and Mangal [2018], which can
be practical, due to the high computational cost necessary in the treatment of images by
carrying out convolutions and greater memory allocated for data storage and modeling.

Weng et al. [2020] present a study on the use of Machine Learning to correlate constants
of a power low function for the description of plastic behavior to the Mean Error between
the prediction and measured data. The author’s main objective is based on the strategy
of calibrating the stress-strain curve of the material, applying it for the determination of
the stress-strain curve for the case of a nanoindentation in gray cast iron. In another study
about indentations, Jeong et al. [2020] presents mixed models in finite elements and artificial
neural network for the prediction of the stress-strain curve of the plastic zone from the force-
penetration curve obtained by compression simulation by macro indentation. Regarding the
ML model adopted, the force-numerical displacement curve obtained via Finite Element
was used as an input and as output, parameters of the constitutive Swift equation for the
description of non-linear plasticity. The results obtained by the authors showed that a
data of 1000 was sufficient to train the model, providing an error of less than 1% for the
predictions made. In addition to the training carried out with 1000 input data values,
the Taguchi orthogonal array (OA) method was applied, which consists of using a limited
number of experiments within a set, selected by the combination of multiple factors, which
allowed the use of 100 data values instead of 1000. In order to show the effectiveness of
such a model, the predictions were compared with the original model, as well as random
splits of 100 data values out of 1000. The results show that the training carried out from
the application of the OA method presented similar performance as the initial model with
1000 data values as dataset. When evaluating the performance of random splits, it appears
that the results were not satisfactory. Another interesting study about the extraction of
mechanical properties of materials from indentation tests can be found in Lu et al. [2020],
work in the same research domain as those pointed out during this last paragraph.

1.3 Objectives

The use of artificial intelligence is present in the most diverse research fields and engi-
neering applications. Thus, the present work has as main objective the development of a
framework for the prediction of the mechanical behavior of inelastic solid materials under
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compression. Three analysis steps are undertaken: (1) experimental tests, (2) numerical
implementations via Finite Element and (3) development and implementation of neural
networks for prediction.

The main hypothesis discussed throughout this work is based on the use of neural
networks to predict the behavior of materials under pre-established conditions, which is
typically obtained through experimental tests. In this study, predictions were made in
two configurations: (1) uniaxial compression in polymers and (2) residual indentation in
metals, both with large strains. As the results are presented, it will be possible to evaluate
the performance of the neural networks adopted, as well as their use to aid the calibration
process of numerical models. For some cases, some considerations should apply.

In more detail, the investigations carried out for the study of polymers are based on
the use of neural networks to: (1) prediction of the stress-strain curve from the material
parameters of an adopted constitutive model and (2) prediction of the material parameters
of a constitutive model using as input an experimental stress-strain curve. The first case
evaluates the ability of neural networks to reproduce the results obtained via numerical
implementations of a constitutive model and the second case represents the use of neu-
ral networks to support the calibration process necessary for the implementation of the
constitutive equations via a numerical model.

For metals, the hypothesis to be evaluated is based on the use of neural networks to:
(1) prediction of the stress-strain curve from the displacement-force curve for indentation
tests and (2) prediction of the displacement-force curve, residual indentation, and contact
pressure from material properties. The first case evaluates the use of neural networks to
describe the stress-strain curve for a given metal from a displacement-force curve obtained
via indentation experiments, and the second case evaluates the ability of neural networks
to obtain other important parameters also obtained or via indentation experiments.

To reach the proposed objective, some steps have to be performed, for polymers: (1)
due to the performance of simulations in large deformations, implementation of a numer-
ical constitutive model to describe the elastic-viscoplastic behavior of polymers via Finite
Element, (2) implementation and calibration of a numerical model for reproducing the uni-
axial compression test, (3) creation of datasets for further training of the ANN model, and
(4) implementation of neural networks model for the prediction of the established param-
eters. For Metals: (1) implementation of a numerical constitutive model to describe the
elasto-plastic behavior of metals via Finite Element, (2) implementation and calibration of
a numerical model for reproducing indentation tests by spherical indenter, (3) creation of
datasets for further training of the ANN model, and (4) implementation of neural networks
model for the prediction of the established parameters.

It should be noted that the implementation of a numerical model for the description
of the elasto-viscoplastic behavior of the evaluated polymers is a fundamental step for the
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study carried out and contributes to the state-of-the-art, given the limited number of works
in this field. The numerical model applied to describe the behavior of the evaluated metals
is already widely applied and does not bring great contributions.

1.4 Outline

This document comprises:

Chapter 1: Contextualization and introduction to the topic of study, as well as the
objectives pursued in this thesis;

Chapter 2: Presentation of the basic concepts of Continuum Mechanics, in order to
present the mathematical basis pertinent to the constitutive models and introduction to
concepts related to contact mechanics;

Chapter 3: Detailing of the most widely used computational plasticity models. This
chapter presents in more detail the constitutive model for the evaluation of polymeric
materials;

Chapter 4: (1) Definition of the constitutive models adopted for studying the me-
chanical behavior of thermoplastic polymers and metals under predefined conditions, (2)
validation of both models adopted through uniaxial compression tests on polymers and
indentation tests on metals and, (3) presentation of the methodology adopted for the im-
plementation of ANN for predicting the desired targets for the different studies carried
out;

Chapter 5: Presentation of the results obtained for each of the studies carried out, as
well as discussion of the main points observed. After presenting all the identified results, a
general conclusion is presented;

Chapter 6: This chapter presents future works that will continue to be developed,
mainly directed to the study of polymers.
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Chapter 2

Mechanical behavior of solids

In this chapter the reader will find the basic principles and properties about continuum
mechanics, which will provide the necessary basis for understanding the constitutive models
presented in the subsequent chapters for the evaluation of the visco-elastoplastic mechanical
behavior of solids. In addition, it is also presented in this chapter about Henck’s Hyperlastic
Model, base model for the description of the mechanical behavior of materials as polymers.

Subsequently, it can find a brief introduction on the most pertinent concepts and prin-
ciples about the mechanics of contact, an important basis for the numerical applications
carried out later in the study of the contact between a sphere and flat surface, such as
the Hertz formulation for the specific case of contact between two spheres, a formulation
that can be used for contact between sphere and plane when considering one of the bodies
having infinite radius.

2.1 Continuum Mechanics

Continuum Mechanics consists of the study of solids and fluids through a unified ap-
proach, where the analyzed subject can be divided into three different parts. The first part
refers to field equations, something applied simultaneously to solids and fluids. The second
part refers to the constitutive equations, which are different for each type of solid or fluid
studied. Finally, the third part deals with objects of analysis that can only be studied from
governing equations obtained by combining field equations with appropriate constitutive
equations.

According to [15], it is known that the physical object is composed of molecules, which
are composed of atoms and, therefore, particles that are not continuously distributed in the
object (macroscopic observations reveal the presence of empty spaces between particles).
The presence of gaps may or may not be considered when studying the external effects on a
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physical object, depending on the hypothesis taken as a basis. The study that considers the
presence of gaps is called a microscopic study, whereas the study that ignores the presence
of gaps and considers the physical object as a continuous distribution of matter is called a
macroscopic study.

Based on the macroscopic view of a solid or fluid, the notion of Continuum can be de-
scribed as a hypothetical physical material in which all matter is continuously distributed
throughout the object. It can be used to study deformations and movements of the contin-
uum from a unified approach to the mechanics of solids and fluids.

2.1.1 Kinematic Description of a Continuum

Considering a deformable body represented by a Continuum that occupies a volume
V in an initial instant (t=0). The application of an external force to this body causes
a displacement of each material point that composes it, in which the trajectory can be
defined as an evolution of the position x⃗ as a function of time (t). It is worth noting that
the coordinates called materials are constant over time, whereas spatial coordinates evolve
over time. The equation 2.1 formally represents the set of trajectories of all material points
of the continuum [48].

x⃗ = ϕ⃗(X⃗, t) (2.1)

Regarding the mathematical aspect, the transformation ϕ⃗ is a bijective function, that
is, each material point X⃗ corresponds only to a single spatial point at each instant t. In the
same sense, two distinct material points cannot present the same spatial position for each
instant t. Thus, the initial position of a particle can be obtained by the inverse of eq. 2.1,
such as:

X⃗ = ϕ⃗−1(x⃗, t) (2.2)

given the bijective characteristic existing between the spatial and material coordinates, an
Eulerian representation (x⃗,t) and a Lagrangian representation (X⃗,t) can be defined as an
independent variable for the description of the movement.

Once the transformation of the Continuum ϕ⃗ has been defined, the notions of displace-
ment, velocity and acceleration can be represented as eq. 2.3 with support of figure 2.1.

u⃗(X⃗, t) = x⃗(X⃗, t⃗) − X⃗

v⃗(X⃗, t) = ∂
∂t

u⃗(X⃗, t)

a⃗(X⃗, t) = ∂
∂t

v⃗(X⃗, t)

(2.3)
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Figure 2.1: Representation of the Continuum transformation.

2.1.2 Deformation of a Continuum

Adopting a Lagrangian point of view and considering a transformation ϕ⃗ from an initial
configuration ω0 to a current configuration ω, the local transformation in the vicinity of a
point X⃗ can be described, with reference to the initial spatial coordinates, as:

d⃗x = F dX⃗ (2.4)

That is, the Gradient Strain Tensor F can be defined by:

F = ∂x⃗

∂X⃗
(2.5)

Chadrasekharaiah and Debnath [1943] shows that from a mathematical point of view,
the vectors dX⃗ and dx⃗ are elements of vector spaces that tangent to X⃗ and x⃗, respectively.
Since dX⃗ and dx⃗ belong to distinct spaces, an expression like dX⃗ + dx⃗ has no mathematical
meaning. From a physical point of view, dX⃗ represents the direction of a line or material
fiber drawn in ω0 that necessarily passes through X. This line becomes a curve which the
tangent in x is in accordance with dx⃗.

The deformation gradient can also be called a transformation gradient, as it is a tangent
linear application. Its existence comes from the regularity admitted for ϕ⃗ and particularly in
the initial time (t=0) it is identical to the second-order identity tensor, since ω(X⃗, 0) = X⃗.
Another important characteristic of the deformation gradient tensor is that the determinant
is always greater than zero.

F (X⃗, t = 0) = I (2.6)

As already presented, the deformation of a material fiber element dX⃗ (initial config-
uration) for a later configuration (dx⃗) is performed through the deformation gradient F .
Therefore, it is possible to establish how volumes and surfaces behave as the body moves.

Having as reference the presence of three non-coplanar material vectors (dX⃗1, dX⃗2 and
dX⃗3), the scalar triple product between them can be expressed as:
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dX⃗1.(dX⃗2 ∧ X⃗3) > 0 (2.7)

Give that the scalar triple product presented above represents the volume of a paral-
lelepiped delimited by three vectors, it can be presented that:

dV = dX⃗1.(dX⃗2 ∧ X⃗3) > 0 =
[
dX⃗1, dX⃗2, dX⃗3

]
(2.8)

that is, the scalar triple product can be obtained by the determinant of a second order
tensor composed of the three column vectors, as follows:

dV = dx⃗1.(dx⃗2 ∧ x⃗3) > 0 = [dx⃗1, dx⃗2, dx⃗3] = [F dx⃗1, F dx⃗2, F dx⃗3] = (detF )
[
dX⃗1, dX⃗2, dX⃗3

]
(2.9)

and written in another way, in terms of the Jacobian, as:

dv

dV
= J , J : = detF > 0 (2.10)

Regarding the deformation process, if a material body in a reference configuration ω0 is
submitted to a transformation F 1 and immediately afterwards, starting from a configuration
ω1, it is submitted to a new F 2 transformation. The total transformation, in reference to
the ω0 reference configuration, can be represented by:

F = F 1F 2 (2.11)

this equation shows that the deformation of a solid can be decomposed and mathematically
represented by a tensor product. However, it is important to note that the mathematical
procedure presented is not applicable for all types of deformation gradients.

In the same line of reasoning, Kroner [1959] and Lee [1969] showed that the deformation
gradient can be decomposed multiplicatively into elastic and plastic components, such as:

F = F eF p (2.12)

2.1.3 Deformation tensors

It is considered a rigid body that moves according to:

x⃗(X⃗, t) = R(t)X⃗ + c⃗(t) (2.13)

where, R represents a rigid body rotation and c⃗ a rigid translational displacement.
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Since R is an orthogonal tensor, the following property is therefore valid:

RRT = RT R = I (2.14)

For pure rigid body movement, the deformation gradient tensor F is not null, but equal to
the rotation tensor.

As exposed by Simo and Hughes [1997], the right and left Cauchy-Green deformation
tensors are presented as alternatives for the use of the deformation gradient tensor. The use
of such tensors is present, for example, in constitutive equations of hyperelasticity and they
are of great importance in the studies conducted during this thesis. The definition of the
right Cauchy-Green deformation tensor can be obtained from the scalar product between
two elementary vectors dX⃗1 and dX⃗2 as they become dx⃗1 and dx⃗2, as follows:

d⃗x1.d⃗x2 = (F .d⃗X1).(F .d⃗X2) = d⃗X1.(F T .F ).d⃗X2 = d⃗X1.C.d⃗X2 (2.15)

That is,
C = F T F (2.16)

This is a second order tensor, symmetrical and called material tensor since it operates from
also material vectors.

In Lagrangian representation, the expression of the scalar product of the elementary
vectors in a reference configuration as the initial configuration can be presented by:

d⃗X1.d⃗X2 = (F −1.d⃗x1).(F −1.d⃗x2) = d⃗x1.(F −T .F −1).d⃗x2 = d⃗x1.B.d⃗x2 (2.17)

where B is called the left Cauchy-Green deformation tensor, also being a symmetrical
and second order tensor. However, it is important to note that, unlike the Cauchy-Green
expansion tensor on the right, this is a spatial tensor.

B = F F T (2.18)

Like the F tensor, C and B tensors also have the property of not being null in rigid
body movements.

2.1.4 Polar Decomposition

From a purely mathematical point of view, it can be shown that every second-order
tensor can be written as the product of an orthogonal tensor R and another symmetric
tensor called U , such as:
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F = RU (2.19)

Based on eq. 2.16 and applying the equation eq. 2.19, it is possible to show that:

C = F T F = UT RT RU = UU (2.20)

that is, the U tensor can be determined by the square root of the right Cauchy-Green
deformation tensor (C), as shown below:

U =
√

C (2.21)

In order to determine the solution of the equation presented in eq. 2.21, Chaves [2019]
shows that it is necessary to rotate this tensor until it contains only the eigenvalues on its
main diagonal. In this way, the square root can be determined using the relation shown
below, since C

′ only presents values in its main diagonal.

√
C

′ =


√

c
′
11 0 0

0
√

c
′
22 0

0 0
√

c
′
33

 Where : C
′ =


c

′
11 0 0

0 c
′
22 0

0 0 c
′
33

 (2.22)

Since C is a positive symmetric tensor, it has a set of positive eigenvalues (λ11, λ22 and
λ33), which allows rewrites it as:

C = QT C
′
Q (2.23)

In this case,

C
′ =


λ11 0 0
0 λ22 0
0 0 λ33

 and Q =


... ... ...
N1 N2 N3
... ... ...

 (2.24)

Finally, the U tensor can be determined by:

U =
√

C = QT .
√

C
′
.Q (2.25)

According to Chadrasekharaiah and Debnath [1943], the decomposition presented above
portrays that the tensor U performs an extension of the dX⃗ fiber and then a rotation R

of that fiber is applied. Such a tensor is configured as a material tensor, as well as F .

Similar to that performed in eq. 2.19, it is also possible to decompose F in terms of a
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rotation tensor followed by a stretch tensor in a spatial configuration denoted by V , such
as:

F = V R (2.26)

i. e.,
V = F R−1 (2.27)

In summary, the figure 2.2 explains the transformations presented so far. Through it, it is
possible to verify three different transformations, the first represents the purely application
of the gradient deformation tensor, the second represents a material transformation, where
first there is a stretching of the body to later rotate it. Finally, the third represents a spatial
transformation, where at first there is the rotation of the object to later stretching it.

Figure 2.2: Linear stretching and rotation transformations.

Two other important properties of the tensors U and V refer to the determination of
Hencky’s Lagrangian and Eulerian logarithmic deformations (something discussed in more
detail in the section 2.1.6) and can be expressed as follows:

log (U) = 1
2 log (C) (2.28)

log (V ) = 1
2 log (B) (2.29)
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2.1.5 Velocity Gradient

The determination of the strain-rate tensor assumes that the spatial representation of
the velocity gradient (L) can be expressed by:

L(x⃗, t) = ∇v⃗(x⃗, t) (2.30)

Being the time derivative of the deformation gradient:

Ḟ = ∂2ϕ

∂t∂X⃗
(X⃗, t) = ∂2ϕ

∂X⃗∂t
(X⃗, t) = ∇V⃗ (X⃗, t) = ∇v⃗(x⃗, t)F (2.31)

the inverse of the gradient on both sides of the equation can be applied, allowing to find
that:

L = Ḟ L−1 (2.32)

Since every tensor can be expressed as the sum of a symmetric part D and another
asymmetric part W , the velocity gradient tensor L can be expressed by:

L = D + W (2.33)

Where, D can be understood as a strain rate and W as a rotation rate tensor Irgens [2008].

Since the elastic deformation gradient is restricted to being only the result of the elon-
gation (L), it can therefore be decomposed into:

L = Le + LeLp(Le)−1 (2.34)

Where,
Lp = Ḟ p(F p)−1 = Dp + W p (2.35)

In the equation 2.35, Dp is the plastic strain rate and W p is the plastic rotation rate
tensor. For isotropic materials, W p is assumed to be a null tensor, which allows to present
that:

Ḟ p = DpF p (2.36)

2.1.6 Hencky’s Hyperelastic Model

According to Xiao and Chen [2002], the hyperelasticity model of Hencky [1931] presents
itself as a model of finite isotropic elasticity with a linear relationship between the Kirch-
hoff stress tensor and the logarithmic strain tensor (Hencky deformation). This model is
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configured as a generalization of the classic law of Hooke Truesdell and Noll [1965] for a
case of infinitesimal elasticity (eq.2.37).

Lijkl = Λδijδkl + G(δikδjlδjk) (2.37)

Assuming that the stress-strain relationship for an isotropic solid in infinitesimal strains
is characterized by Hooke’s law, that is, it can be represented by the tensor of fourth order
of linear elasticity (eq.2.37), a consideration of an isotropic material and symmetry of the
stress tensor allows to obtain:

σ = Λtr(ϵ)I + 2Gϵ (2.38)

In this case, σ represents the Cauchy stress tensor, ϵ the infinitesimal strain tensor; Λ and
G are Lamé’s elastic constants, which can be determined by the relationships below:

Λ = Eν

(1 + ν)(1 − 2ν) (2.39)

G = E

(1 + ν) (2.40)

The relationship for an isotropic elastic solid, in the case of infinitesimal deformations,
can be described from a non-linear stress response function, in which the stress is a function
of the right Cauchy-Green deformation tensor as σ = Φ(B). According to Truesdell and
Noll [1965] and Ogden [1985], this relationship can be called hyperelastic or in the sense of
Green, whenever there is a potential isotropic function called a stress-energy function, such
as ∑ = ∑̂(B).

In fact, Hooke’s law was developed to represent an isotropic hyperelastic relationship in
infinitesimal deformations, as presented in eq. 2.37. However, it can be used to describe the
elastic behavior of engineering materials within an adequate range of finite deformations.
For this purpose, the replacement of the Cauchy stress tensor and infinitesimal deformation
is performed by the Kirchhoff tensor and finite deformation, respectively, according to eq.
2.41.

T = Λtr(E)I + 2GE (2.41)

The strain tensor can be represented logarithmically as:

E = 1
2 ln(B) (2.42)

Considering the relationship between Cauchy and Kirchhoff tensors, the elastic stress
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can be expressed by:

σe = 1
Je

(2µeEe + λetr(Ee)I) (2.43)

The term referring to logarithmic deformations can be obtained from the principal ap-
plied stretches and the corresponding orthonormal vectors represented by the eigenvectors
of the right Cauchy-Green deformation tensor.

E =
3∑

i=1
ln(λi) ⊗ nini (2.44)

Tomas et al. [2008] present that an approximation to the logarithmic deformation can be
performed from a fourth-order Padé approximator expanded in the vicinity of the second-
order identity tensor, as follows:

E = ln(U e) = ln(
√

F eT F e) = ln(
√

Ce) (2.45)

ln(
√

X) ≈ 3(X + I)(X − I)[2(X2 + 4X + I)]−1 (2.46)

2.2 Analytical Conception of Contact Mechanics

Contact Mechanics is a field of knowledge, which focuses on the interaction between two
or more surfaces in contact, either through the application of external loads, or through the
molecular interaction between the surfaces in contact.

When two solid surfaces are in contact with the application of a compressive load or
even without the application of external forces, when only the body forces act, there will
always be distortions in each of the solids. Such deformations will be purely elastic if the
internal forces are not large enough to cause stresses above the elastic limit of the material.
Otherwise, the solids will present permanent deformations.

The changes in the surfaces in contact can be observed in two different scales: micro-
scopic or macroscopic. On a microscopic scale, the deformations will cover the roughness
of the surface in contact, while on the macroscopic scale they will cover the geometric
deformations of the solid and can be classified according to the following classes:

1. Punctual Contact (example: sphere/sphere);

2. Linear Contact (example: cylinder/cylinder);

3. Surface Contact (example: plane/plane).
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In view of the brief introduction presented so far, Hertz’s theory presents itself as an
analytical investigation of the mechanical behavior of solids in contact, which can be applied,
mainly, for the study of punctual and linear contact. However, extensions of Hertz’s theory
can be carried out to study more complex contact configurations.

According to Johnson [1985], a first consideration for applying the theory of Hertz [1882]
is based on the fact that, initially, when two elastic solids of revolution are brought into
contact, this contact will occur over a line or a point, depending on the geometry of the
surfaces in contact. The application of an external load, or even the effect of body forces,
will cause deformations in the vicinity of the point initially in contact, originating no longer
a line or a point in contact, but an area (it is important to note that the region in contact
should have dimensions much smaller than the other dimensions of the solids). The four
main conditions of Hertz’s theory are presented below.

1. All solids in contact must respect Hooke’s law, that is, present homogeneous, isotropic
and linear elastic behavior;

2. The surfaces in contact must be continuous and counter-formal;

3. The applied forces must be purely normal, without the presence of tangential forces.

4. The area in contact should be small when compared to the dimensions of the solids
in contact and the equivalent radii of curvature.

The fourth hypothesis is based on the consideration of elastic semi-spaces to determine
local displacements. When a normal compression force is applied, a small elliptical area
represents the region of contact between the bodies. In this case, the contact pressures
must not suffer any interference from the presence of the boundaries.

The mathematical description of the punctual contact phenomenon can be carried out
by applying a normal load of small magnitude to both solids, as shown in Figure 2.3. The
region in contact between the solids deforms elastically in a distributed and symmetrical
way around an initial point of contact Johnson [1985].
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Figure 2.3: Geometric representation of the deformation of elastic bodies subjected to purely
normal load. Johnson [1985]

As normal compressive force is applied, the centers of the contacting solids represented
by δ1 and δ2 shift. The approximation of the centers can be determined by the distance
between them, known as penetration, that is, δ = δ1 + δ2.

The term called penetration does not represent the term itself, since there is no pene-
tration between bodies, something physically impossible. The formulation for penetration
represents the elastic displacements in the z direction that the bodies undergo. Such dis-
placements can therefore be represented for each solid by:

uz,1 = w1

uz,2 = w2

(2.47)

where, the distance between the points presented by S1 and S2, in the occurrence of elastic
deformations, can be obtained, geometrically by:

z = z1 + z2 − δ + (ω1 + ω2) (2.48)

The surfaces of the solids in contact can be described by a polynomial function, thus,
eq. 2.48 can be rewritten as present in eq. 2.49. In this case, the polynomial function for
the description of the surface in contact was truncated to terms greater than 2.

z = Ax2 + Bx2 − δ + (ω1 + ω2) (2.49)
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The equation presented in eq. 2.49 allows to infer that the right side of the equation
is always equal to or greater than zero, since it becomes null when the points S1 and S2

establish contact. Otherwise, it will always be greater than zero.

Therefore, it can be said that for the considerations presented, the distance between
two points on the surface of each solid, when located on the same normal to the common
tangent plane, can be represented by:

Ax2 + Bx2 − δ + (ω1 + ω2) ≥ 0 (2.50)

where, such an inequality expresses the relationship between geometric modifications and
elastic displacements, being the starting point for the mathematical development of the
elastic contact problem developed by Hertz.

By analogy to the electrostatic problem, in which the intensity of an electric charge in
an elliptical area produces parabolic variation of the electric potential over a surface, the
force distribution per unit area can be expressed in a semi-ellipsoidal form, as shown in eq.
2.51, where a and b represent the major and minor semi-axes, respectively.

p(x, y) = p0

√
1 − x2

a2 − y2

b2 (2.51)

In this case, the total applied load can be expressed in two different ways:

Fn =
∫∫

S
p(x, y) dx dy =

∫∫
S

p0

√
1 − x2

a2 − y2

b2 dx dy (2.52)

Fn = 2
3π a b p0 (2.53)

For the case of two solids in contact, the use of elastic semi-spaces subjected to point
charges allows to determine that the equivalent Young’s modulus (E∗) can be determined
as:

1
E∗ =

(
1 − ν2

1
E1

+ 1 − ν2
2

E2

)
(2.54)

The parameters of maximum Hertz pressure (p0) and average pressure (pm) can be defined
by:

p0 = 3
2

Fn

π a b
(2.55)

pm = Fn

π a b
(2.56)

27



The specific study of the contact between a sphere and a flat plane, the main object
of analysis during this thesis, can be performed from the observation of contact between
two spheres with radii of curvature defined by R1 and R2 (Fig. 2.4). In this situation, the
contact area is defined in a circular shape, which corresponds to an ellipse with a semi-major
axis identical to the semi-minor axis (a = b).

Figure 2.4: Counter-formal contact between two spherical surfaces.[Reproduction]

Therefore, the equation presented in eq. 2.51 can be expressed by:

p(r) = p0

√
1 − r2

a2 (2.57)

The radius of the Hertzian contact area can be described as a function of the normal
force applied or as a function of the maximum Hertz pressure, as shown in eq. 2.58.

a = b = 3

√
3
4

Fn

(A + B)E∗ = π

3
p0

(A + B)E∗ (2.58)

Where, parameters A and B can be determined by:

A = B = 1
2

( 1
R1

+ 1
R2

)
(2.59)

and penetration by:
δ = 3

4
Fn

a E∗ = a2(A + B) = π

2
a p0

R∗ (2.60)

The theory of Boussinesq [1885] together with the assumptions that solids in contact
behave like elastic semi-spaces, makes it possible to determine the solution for the stress
state inside the solids in contact

Based on the same coordinate system shown in fig.2.4 and assuming that in the case
of the Hertz contact, the stresses along the OZ axis are the main stresses due to the
geometric and contact symmetry, it is possible to observe, at first empirically, that the
principal stresses σxx, σyy and σzz reach their maximum magnitudes at the contact surface
and decrease as it moves away from this surface towards the interior of the solid .
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The main stress of greater magnitude is present in the direction of the compressive load
application (direction of the OZ axis) and can be determined by Johnson [1985]:

σmax = Cσσref (2.61)

Cσ = 3
2

k

π

1
C3

a

(2.62)

σref = a(A + B)E∗ (2.63)

For the case of contact between two spheres, the term referring to the eccentricity of an
ellipse is equal to 1, configuring a region of circular contact. The term Ca can be expressed
according to eq 2.64, and for this case it is approximately equal to 0.91.

Ca = 3

√√√√√( 3 a

3 π b

) ∫ 0

π
2

√√√√1 −
(

1 − a2

b2

)
sin(α)2dα (2.64)

Regarding the shear stresses, these can be determined by:

τmax = Cτ σref (2.65)

in which, Cτ can be obtained by eq. 2.66 and for a sphere-sphere configuration it is equal
approximately to 2.35.

Cτ = 3 a

2 b

∫ 0

π
2

dα√
1 −

(
1 − a2

b2

)
sin(α)2

(2.66)

2.3 Material Hardness

According to Gianfrancesco [2017], the term hardness can be defined as the resistance
of the material to plastic deformation such as indentation, wear, abrasion and scratch.
The SI unit of hardness is N/mm2, however, different types of hardness are found in the
bibliography and are not necessarily presented following the SI. Brinell and Rockwell are
the main methods commonly used.

The different types of hardness (Brinell, Rockwell and others) are measured using differ-
ent methods. The common point between them is the application of an indent in order to
create an indentation on the test piece surface area, in which harder materials have shallow
indentation whereas softer materials will present fewer deep indentations.

The Brinell test consists of a steel ball of 10 mm in diameter as an identifier, usually
maintained for 30 seconds under the application of a compressive load. The magnitude
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of the load depends on the material tested, however, commonly is 3000 kg but it can be
reduced to 500 kg for softer materials.

After removing the identifier, the dimensions of the dent are measured and used to
calculate Brinell hardness using the following equation:

HB = 2F

πD(D −
√

D2 − d2)
(2.67)

where, F represents the force in N , D the indenter diameter and d the indentation diameter,
both in mm.

The Brinell hardness test is applied primarily to metallic materials, whereas the Rock-
well test can be applied to a wider range of materials, in which different scales represent
different material characteristics, each one providing the information about the indenter
and compression load.

As an experimental procedure, before carrying out the Rockwell hardness test, a small
test load is applied in order to set the indenter on the test piece and remove the effect of
surface irregularities, thus providing better accuracy.

A relevant point for the experimental test is the loading speed. It appears that varia-
tions in the speed of load application can produce considerable differences in the measured
hardness value. Finally, the formula for Rockwell hardness is:

HR = N − d

s
(2.68)

where, N and s are scales factors depending on the scale used, and d is the depth of the
permanent indentation in mm.
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Chapter 3

Constitutive Models

In order to present the reader about constitutive models in plasticity Regimes, this
chapter aims to present the plasticity models most commonly applied for the description of
plastic behavior in solids. As it will be possible to identify, most models applied to metals
do not present a good prediction of the behavior of polymers, therefore, it is presented
later on models applied specifically for the visco-elastoplastic description of polymers. The
main model presented in this chapter concerns the Mulliken-Boyce model, a base model for
the future applications of this thesis. In this way, it is also presented about the numerical
implementation of such a model, as well as a sensitivity analysis of the main parameters
that constitute such a model.

3.1 Numerical Plasticity Models

The theory of elasticity limited by Hooke’s laws was developed, above all, for the study of
isotropic solids, applying, therefore, for the description of temporary deformation phenom-
ena. In these events, the deformed solid recovers exactly its primitive form after removing
the previously applied external forces. In certain circumstances, when the applied force
amount causes stress above a certain level (yield stress), even after removing the external
stress, permanent deformations are present, that is, the solid no longer presents its initial
configuration [62].

Considering the stress-strain curve for a uniaxial test of a ductile metal (Figure 3.1), it
is possible to identify the presence of the two zones previously indicated. The first domain
represents the existence of a purely elastic zone, that is, without the evolution of any
permanent deformation (plastic deformation) and is bounded by the yield stress (Y0).

If the material continues to be loaded until it exceeds the yield stress, there will be an
evolution of permanent deformations due to the beginning of plastic flow. In parallel with
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the evolution of plastic deformations, an evolution of the yield stress is also observed, a
phenomenon called hardening.

Figure 3.1: Stress-strain curve for a ductile material.

As Neto et al. [2008] shows, the basic premise in the study of plasticity in small deforma-
tions is the decomposition of the total deformation (ϵ) as the sum of an elastic component ϵe

(also known as reversible deformation) and another plastic component (ϵp), such as present
in eq. 3.1.

ϵ = ϵe + ϵp (3.1)

3.1.1 Von Mises criterion

The von Mises criterion suggests that the yield of the materials starts when the second
invariant (J2) of the deviatoric stress reaches a critical value k. For this reason, this criterion
is also commonly known as J2 plasticity theory or J2 flow theory.

The starting point for the development of the von Mises criterion considers that the
threshold for the occurrence of plasticity is linked to the energy of elastic shear deformation.
The elastic energy can be defined, based on the power of internal efforts, such as:

W e =
∫ t

0
−Pintdt

′ =
∫ t

0
σ : ϵ̇edt

′ (3.2)

Introducing the deviatoric parts of the stress tensor and the elastic strain tensor in the
expression of the strain energy presented in eq. 3.2. The part of the energy due to shear
for an isotropic elastic material can be determined as shown in eq. 3.3, where G represents
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the Coulomb shear modulus of elasticity.

W e
D =

∫ t

0
s : ϵ̇e dt

′ = s : s

4G
(3.3)

The von Mises criterion proposes that the shear energy must be less than a threshold
denominated by Wy in order to remain in the elastic domain of the material.

W e
D ≤ Wy (3.4)

Shear energies above this threshold, therefore, cause the presence of plastic deformations.

Mathematically, the plasticity rule for the von Mises criterion can be expressed by eq.
3.5, where, k represents the yield stress of the material in a pure shear condition.

f(J2) =
√

J2 − k = 0 (3.5)

3.1.2 Tresca Criteria

The criterion postulated by Tresca shows that the plasticity in a deformed body is
reached when the absolute value of the shear stress reaches a critical value T . This condition
can be expressed mathematically by:

max
i,j∈{1,2,3}

i ̸=j

|σi − σj| ≤ σY (3.6)

Where the maximum shear stress can be obtained from the principal stresses:

|σmax| = 1
2 max

i,j∈{1,2,3}
i̸=j

|σi − σj| (3.7)

In the Tresca criterion, for a given state of stresses, the elastic limit occurs when the
stress levels are within the failure surface, otherwise, the behavior is called elastoplastic.

3.1.3 Johnson-Cook Constitutive Model

The constitutive model presented by Johnson-Cook is a model based on Mises plasticity
and expresses the stress in the plastic regime as the dissociated product from three different
terms: plastic deformation (isotropic hardening), deformation rate (sensitivity to the rate
of force application) and temperature (softening by thermal effects).
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σY = [A + B(ϵp)n]
[
1 + Cln

(
ϵ̇p

ϵ̇0

)]
(1 − θ̂m) (3.8)

[A, B, n, C, ϵ̇0, m] are parameters of the material, found experimentally. A, B and n

represent the quasi-static behavior and C the plastic effects (it is worth remembering that
the strain rate tends to increase as the loading application speed increases). The third part
of the Johnson Cook equation contemplates the effects of temperature. θ̂m is a relationship
between the melting temperature of the material and the ambient temperature, m the
softening exponent, ϵ0 the effective plastic deformation and ϵ̇p the time derivative of the
effective plastic deformation.

As the constitutive model of Johnson-Cook is a model based on an isotropic hard-
ening, such model does not present good predictions for the response of thermoplastic
polymers under cyclic loads. In the case of the application of a monotonic compression
load, Bergstrom [2015] states that this model shows good agreement with the experimen-
tal behavior for several materials, however the same study pointed out that the behavior
predicted after the removal of the load significantly overlaps the residual deformation.

3.1.4 Drucker-Prager Constitutive Model

The Drucker-Prager failure criterion consists of a plasticity model with isotropic hard-
ening, developed especially for the prediction of granular solids, but that can also be used
to describe the behavior of several thermoplastic polymers. Due to its formulation being
based on a pressure-dependent yield stress, it can represent different yield stresses for tensile
and compression (in fact, several thermoplastic polymers are dependent on yield strength
in relation to pressure).

This constitutive model is based on the modification of the criterion presented by Von
Mises, in which the sensitivity of hydrostatic pressure is introduced in the mathematical
formulation. The criterion defines that the limit of the elastic zone is reached when a critical
combination between the shear stress reaches a certain magnitude. This relationship is
represented, due to the isotropy of the material, by the following equation:

√
J2 + η

I1

3 = c (3.9)

where, n and c represent parameters of the material. In the specific case of n equal to zero,
the cylinder of the Von Mises criterion is reached.

Like the Johnson-Cook model, the Drucker Prager model also has limitations as it fails
to accurately describe the discharge response in many thermoplastic polymers.
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3.2 Arruda-Boyce model

The eight-chain model developed by Arruda-Boyce is a hyperelastic model motivated
by the deformation behavior of the elastomer microstructure and presented itself as a first
model before the development of the elastic-viscoplastic model. The main assumption is
based on the fact that the macromolecules are located, on average, along the diagonals of
a unit cell positioned in the principal stretches, as shown in Figure 3.2.

Figure 3.2: Arruda-Boyce 8-chain model: representative positioning of macromolecules.

Considering the figure 3.2, it is possible to identify that the lateral lengths of the unit
cells in the reference state are indicated by a0 and the length of each non-deformed chain by
r0, that is, r0 = a0

√
3. Furthermore, it is also considered that each macromolecule is freely

articulated with n rigid links, each of length L. For this model, the average point-to-point
distance, in the absence of external force, is equal to L

√
n. Defining λ1, λ2 and λ3 as the

principal distortion stretches applied, the effective length of the distortion chain becomes:

r = a0

√
λ2

1 + λ2
2 + λ2

3 (3.10)

The average of the principal distortion stretches applied allows to determine that:

λchain =
[

λ2
1 + λ2

2 + λ2
3

3

] 1
2

=
√

tr[C∗]
3 =

√
tr[B∗]

3 =
√

tr[I1
∗]

3 (3.11)

where, B∗ = J− 2
3 B. In this equation, it can be inferred that the distortion elongation chain

is, in fact, a function only of the first invariant called I1
∗.

Physically, the eight-chain model is a model defined as an isotropic thermoplastic model,
whose free Helmholtz energy per unit of reference volume (Ψ) is dependent on the temper-
ature θ0,

√
tr[B∗]/3 and the Jacobian.

The Arruda-Boyce elastic-viscoplastic model is a model used for the prediction of both
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glassy and thermoplastic polymers. This model was developed to predict large deformations,
time dependence and possible temperature dependence. The behavior of the polymer class
where the Arruda-Boyce elastic-viscoplastic model is applied is briefly constituted by linear
phase, yield, and non-linear hardening.

In the structure of the Arruda-Boyce elastic-viscoplastic model, the total deformation
gradient is decomposed into two components, one elastic and one plastic, following eq. 3.12
and presented by Kroner [1959] and Lee [1969]. The figure 3.3 shows a one-dimensional
rheological representation, where it is possible to interpret the decomposition of the defor-
mation gradient tensor as two networks acting in series, that is, one network representing
an elastic phase and the other a viscoplastic phase .

Figure 3.3: One-dimensional rheological representation - Arruda-Boyce model.

Using the decomposition of the deformation gradient, it is possible to determine the
Cauchy Stress from an elastic linear relationship, where Ee is the logarithm of the left
stretch tensor ln(V e); µe and λe are the Lamé constants related to the elastic material
properties.

T e = 1
Je

(2µeEe + λetr[Ee]I) (3.12)

The stress that drives the plastic flow (viscoplastic stress) is given by the tensorial
difference between the linear elastic relation and the BackStress, as:

T vp = T e − 1
Je

T eT BT eT (3.13)

The Arruda-Boyce elastic-viscoplastic model is developed from an approach of statisti-
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cal mechanics, more precisely the application of Gaussian statistics, for the description of
forces in a deformed polymeric network. The application of a Gaussian statistic produces
deformation energies, where λ represents the extensions of the fibers and G the rubbery
modulus in function of the chain density n, Boltzmann constant K and the temperature θ.

W = 1
2(λ2

1 + λ2
2 + λ2

3 − 3), G = nKθ (3.14)

Previously to the work proposed by Arruda-Boyce, there are works related to the con-
struction of networks from chains described by Gaussian statistics or by modified Gaussian
statistics in order to evaluate stretches larger than those allowed by the Gaussian mathe-
matical assumptions, as present by Wang and Guth [1952] and Treloar [1946]. These models
have in common the use of two parameters, the rubbery modulus G and the λchain defined
as the elongation value of the chain when the length reaches its maximum extension state.
The stretch of the chain is determined by the current length divided by the initial length,
as shown below:

λchain = rchain

r0
(3.15)

The initial length of the chain is obtained through the theory called by Random Walk
statistics as:

r0 =
√

Nl (3.16)

Thus, for the total length rL = lN , the locking Stretch becomes:

λL = rL

r0
=

√
N (3.17)

According to the statistical mechanics approach to rubber elasticity, the chain segment
between chemical cross-links can be modeled with a number N of rigid links equal to length
1. The rigid link is the length of the real chain segment on the rigid body movement in
response to an imposed deformation. Depending on the rubber material, the rigid link may
span several repeated molecular units. The initial length of the chain is obtained from a
random walk consideration of N steps of length 1 (Random Walk), and is denominated by
r0, as shown in eq. 3.16.

The limiting chain extensibility, defined as the final length divided by the initial length,
is provided in terms of the statistical parameters λL =

√
N . At any chain length value,

the most likely distribution of rigid links in relation to the chain-length vector can be
determined.

According to Kuhn and Grun [1942] about the use of Langevin, the probability of the
distribution of the most likely connection angle given a vector length, is equal to the length
of the vector rchain. In this sense, Kuhn and Grun [1942] obtained an expression for the
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probability density function of the chain lengths and, later, for the configurational entropy
of a stretched chain of length r0.

schain = k

[
c − N

(
rchain

NL

)
β + ln

(
β

sinh(β)

)]
(3.18)

where c is a constant and β is the inverse of the Langevin function β = Ll
−1[ rchain

Nl
], for a

Langevin function defined by L−1(β) = coth(β) − 1
β

The use of the mathematical model proposed by Langevin explains the extensibility of
the limiting chain based on the proportionality of the deformation in relation to the change
in entropy by stretching the chains of an unstretched state.

The energy term can be written as a function of the current length as shown in eq. 3.19,
where n is the chain density and c

′ is a combination of constants.

W = nKΘN

[
rchain

Nl
β + ln

(
β

sinh(β)

)]
− Θc

′ (3.19)

In the developed formulation, the material is considered incompressible, and its principal
stresses can be determined from the work of deformation to an arbitrary pressure p and the
principal stretches denominated by λi.

σi = λi
dW

dλi

+ p (3.20)

The equation 3.21 presents a different writing for the stress-stretch relationship, in terms
of the differences between two principal stresses in order to eliminate the pressure term.

σ1 − σ2 = λ1
dW

dλ1
− λ2

dW

dλ2
(3.21)

Considering the equation 3.21 and deriving the function presented in 3.19 in relation to
λ1 and λ2, it is possible to determine that the stress-stretch can be rewritten as:

σ1 − σ2 = nkΘ
3 NLl

−1
[

λchain√
N

]
λ2

1 − λ2
2

λchain

(3.22)

Briefly, the term obtained in the above equation can be referred as the stress in the
Langevin spring and can finally be represented as:

T B = Cr

√
NLl

−1
[

λchain√
N

]
Λp

i
2 − 1

3I1

λchain

(3.23)
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Where T B is a stress tensor depends on the inelastic deformation, Cr represents the
rubbery modulus, which can be determined by Cr = nkθ and Λp

i are the principal stretches
given by the eigenvalues of the inelastic stretch tensor, something discussed in section 2.1.4.

The term referring to the nonlinear hardening stress can be represented differently as
presented by Mulliken-Boyce (eq. 3.38), where it is not necessary to determine the eigen-
values and eigenvectors of the stretching tensor, something that can be computationally
costly in simulation of explicit integration due to the magnitude of time increment.

T B = Cr

λp
chain

L−1(λp
chain/N)

L−1(1/N) Bp
dev (3.24)

Dealing specifically with the viscoplastic term of the Arruda-Boyce model, it appears
that after obtaining the linear stress term and the BackStress, it is possible to determine
the plastic strain flow tensor Dp. Therefore, it is necessary to determine the deviatoric part
of the viscoplastic stress (3.13), since it is the part responsible for plastic deformations.

T vp
dev = T vp − 1

3tr[T vp] (3.25)

In view of the deviatoric part of the viscoplastic term, the equivalent shear strength can
be obtained as shown in eq. 3.26 and the flow law by eq. 3.27. To obtain the flow law,
it is assumed that the plastic rotation rate tensor is a null tensor, that is, it is considered
exclusively a kinematic strain rate.

τ =
√

T vp
dev : T vp

dev

2 (3.26)

Dp = γ̇pN (3.27)

where, N represents a normalized tensor aligned with the deviatoric stress tensor and is
determined by:

N = T vp
dev√
2τ

(3.28)

In the original Arruda-Boyce study, the plastic flow rate is given by the equation pre-
sented in eq. 3.29, where γ̇0, A and s are material constants. Eq. 3.30 presents the stress
softening term through the evolution to the s athermic shear. In this equation, the terms
h and Sss are also configured as material constants.

γ̇p = γ̇0 exp
[
−As

kθ

(
1 −

(τ

s

)5/6
]

(3.29)
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ṡ = h
[
1 − s

Sss

]
γ̇p (3.30)

3.3 Mulliken-Boyce Model

Mullike-Boyce’s numerical model presents itself as an evolution of the model presented
by Arruda and Boyce [1993]. In this model, instead of using one viscoplastic network,
there are two networks in parallel called by activated molecular processes, each with their
respective elastic and viscoplastic properties, as represented in the figure 3.4.

The basic principle present in the viscoplastic behavior of the material is based on the
flow theory of Ree-Eyring, where, it is shown that there are the presence of several active
processes that can contribute to the general behavior of the material under deformations.
Physically, such processes can be understood as movements at molecular levels, present-
ing a threshold, determined by temperature and strain rate, below which, the associated
molecular movement is restricted. Such a restriction can be understood as the resistance
to deformation of the material.

Figure 3.4: One-dimensional rheological representation - Mulliken-Boyce model

The intermolecular contribution to the stress state of α and β chains can be obtained by
the constitutive laws of springs in a linear-elastic domain, as shown in 3.31. It is noteworthy
that the real stresses are obtained from Hencky’s hyperelastic behavior, as discussed in
section 2.1.6.

T A,α = 1
Jα

Le
α[ln(U e

A,α)]

T A,β = 1
Jβ

Le
β[ln(U e

A,β)]
(3.31)

40



Since the rheological model is represented by two viscoplastic components in parallel
with a non-linear entropic hardening component, referring to the BackStress, it is possible
to show that, under the application of any load, all components are subjected to the same
deformation, therefore:

F A,α = F A,β = F B = F (3.32)

As shown in eq. 2.12, the deformations of α and β contributions can be determined by
the following property:

F A,α = F e
A,αF p

A,α

F A,β = F e
A,βF p

A,β

(3.33)

Conducting stresses are used to specify the directions of the tensors F p
A,α, F e

A,β and
plastic flow, as presented in the equation 3.34. T

′

A,α and T
′

A,β represent the deviatoric
parts of T A,α e T A,β, respectively.

Nα = 1√
2τα

T
′

A,α

Nβ = 1√
2τβ

T
′

A,β

(3.34)

The effective equivalent shear stress is given by:

τα =
√

1
2(T ′

A,α : T
′

A,α)

τβ =
√

1
2(T ′

A,β : T
′

A,β)
(3.35)

Finally, the two constitutive laws for viscoplastic behavior of α and β chains are de-
scribed as:

γ̇p
α = γ̇p

0,αexp
[
−∆Gα

kθ

(
1 − τα

sα+αp,αp

)]

γ̇p
β = γ̇p

0,βexp
[
−∆Gβ

kθ

(
1 − τβ

sβ+αp,βp

)] (3.36)

in the eq. 3.36, γ̇p
α e γ̇p

β represent the pre-exponential factors, ∆Gα and ∆Gβ the
activation energy, p the pressure; αp,α and αp,β the pressure coefficient. The internal variable
sα sβ describes the athermic shear strength and respects the relationships presented below,
where hα e hβ represents the softening slope and sss is called the preferred state.
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s0,α ≡ 0,077µα

1−να

ṡα = hα

(
1 − sα

sss

)
γ̇p

α

s0,β ≡ 0,077µβ

1−νβ

ṡβ = hβ

(
1 − sβ

sss

)
γ̇p

β

(3.37)

In the Mulliken-Boyce model, the nonlinear hardening stress component (BackStress)
due to the entropic resistance of the molecular alignment is defined as:

T B = CR

3

√
N

λp
chain

L−1
(

λp
chain√

N

)
B∗

dev (3.38)

where, B∗
dev is the deviatoric part of the left Cauchy-green Tensor.

Ultimately, the total stress in the polymer is given by the tensorial sum of the contri-
butions of the intermolecular stresses α and β, as well as the nonlinear hardening stress
(BackStress):

T = TB + TA,α + TA,β (3.39)

3.3.1 Implementation and Numerical Calibration of an Elastic-
viscoplastic Model for Thermoplastic Polymers

The numerical model presented by Mulliken and Boyce [2006] was implemented through
the use of subroutines in VUMAT in the commercial software in finite element ABAQUS®,
an interface present in ABAQUS®/explicit, which allows the implementation of constitutive
equations through tensorial definitions, defined by the user.

UMAT subroutines are also intended for the same purpose, however, unlike VUMAT
subroutines, it requires updating the tangent module at each time increment, which can be
considered complex when using constitutive equations, in which the derivative of the stress
tensor increment in relation to the strain deformation tensor is unknown or costly to obtain.
According to Vergard [2014], for the implementation of the Mulliken-Boyce model with an
implicit integration (UMAT), a viable alternative would be the use of the perturbation
method.

Another requirement for using VUMAT is to transform rate equations into incremental
equations using a suitable integration procedure, such as Euler method or midpoint method.
Such methods are reasonably simple to be implemented, however, they present a stability
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limit, that is, deformation increments above a certain threshold cause a non-convergence
of the step. Usually, the stability threshold of the deformation increment is less than the
magnitude of the deformation at the elastic threshold.

The Mulliken-Boyce model, as previously presented, requires the definition of 16 material
parameters referring to the two chains that represent the intermolecular contributions and
the non-linear hardening contribution chain, as present in the section 3.3. Table 3.1 shows
all the parameters necessary to define the relevant material properties.

Table 3.1: Mulliken-Boyce model parameters.

Symbol Parameter
Eα Young’s modulus - alpha chain
Eβ Young’s modulus - beta chain

ν Poisson’s ratio
γ̇p

0,α Pre-exponential factor - alpha chain
γ̇p

0,β Pre-exponential factor - beta chain
αp,α Pressure coefficient - alpha chain
αp,β Pressure coefficient - beta chain

∆Gα Activation energy - alpha chain
∆Gβ Activation energy - beta chain

hα Softening slope - alpha chain
hβ Softening slope - beta chain
sss Preferred states of athermal shear strengths
Cr Rubbery modulus
N Limiting chain extensibility
k Boltzmann Constant
Θ Temperature

The implementation of the Mulliken-Boyce model follows the flowchart of the table 3.2.
For this, a main subroutine was developed containing the main steps for the implementation
of the numerical model. The presence of auxiliary scripts such as: definition of the flow
equation, determination of the contribution of non-linear hardening and tensor calculations
were implemented as auxiliary subroutines, being called whenever necessary.

In the main subroutine there is the definition of the basic properties relevant to the
definition of the material (table 3.1), as well as the input of the variables defined as depen-
dent state variables, better defined later on. The basic operation of the main subroutine is
based on the input of the strain gradient in t and t + δt and the right stretch tensor U in
t + ∆t. Given these input data, tensor calculations are performed during the subroutine, in
order to determine the Cauchy stress tensor. All the tensor calculations necessary for the
definition of additional tensors were presented in the chapter 2.1.
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Table 3.2: Flowchart for implementing the Mulliken-Boyce model: Main subroutine.

1. Initial input data:
tF , t+∆tF , t+∆tU , tF p

A,α, tF p
A,β, ts1 and ts2

2. Compute:
tF e

A,α and tF e
A,β

3. If t = 0:
t+∆tT = t+∆tT A,α + t+∆tT A,β

3.1 Return to co-rotational coordinates:
t+∆tT = t+∆tRT t+∆tT t+∆tR

3.2 Store as dependent variable:
t+∆tF p

A,α, t+∆tF p
A,β, t+∆ts1 and t+∆ts2

4. If t ̸= 0, Compute:
t+ ∆t

2 T A,α, t+ ∆t
2 T A,β and t+ ∆t

2 T B

4.1 From flow law, compute:
t+ ∆t

2 Ḟ
p
A,α, t+ ∆t

2 Ḟ
p
A,β, t+ ∆t

2 ṡ1 and t+ ∆t
2 ṡ2

4.2 Compute:
t+ ∆t

2 F p
A,α, t+ ∆t

2 F p
A,β, t+ ∆t

2 s1 and t+ ∆t
2 s2

4.3 From the flow law, Compute:
tḞ

p
A,α, tḞ

p
A,β, tṡ1 and tṡ2

4.4 Compute the total stress tensor:
t+∆tT = t+∆tT A,α + t+∆tT A,β + t+∆tT B

4.5 Return to co-rotational coordinates:
t+∆tT = t+∆tRT t+∆tT t+∆tR

4.6 Store as dependent variable:
t+∆tF p

A,α, t+∆tF p
A,β, t+∆ts1 and t+∆ts2

4.7 Goto 1

Some points of greater relevance present in the main subroutine to be highlighted are:
(1) use of the midpoint method as an integration procedure for transforming rate equations
into incremental equations and (2) defining the variables to be stored as dependent states,
something better explained later.

The flowcharts presented in 3.3 and 3.4 represent the numerical procedures for the plastic
flow model and non-linear hardening. Both are part of the main subroutine, being called
whenever pertinent.
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Table 3.3: Flowchart for implementing the Mulliken-Boyce model: Viscoplastic flow sub-
routine.

1. Initial input data: T e, p and s

2. Compute:
T e

dev = T e − 1
3 tr[T e]

3. Determine the equivalent stress:

τ =
√

1
2 (T e

dev : T e
dev)

4. Compute:
N = 1√

2τ
T e

dev

5. Compute the constitutive equation for the viscoplastic behavior of the material:
γ̇p = γ̇p

0exp
[
−∆G

kθ

(
1 − τ

s+αpp

)]
6. Calculate the plastic flow law:

Dp = γ̇pN

7. Determine the athermic shear stress flow:
ṡ = h

(
1 − s

sss

)
γ̇p

7. Return: Dp and ṡ

Table 3.4: Flowchart for implementing the Mulliken-Boyce model: Sub-routine for calcu-
lating the nonlinear hardening contribution.

1. Initial input data: F

2. Calculate the left Cauchy-Green tensor:
B = F F T

3. Determine:
B∗ = det(F )− 2

3 B

4. Compute the deviatoric tensor of B∗
dev:

B∗
dev = B∗ − 1

3 tr[B∗]

5. Calculate the chain elongation lock parameter:

λp
chain =

√
tr[B∗]

3

6. Determine the Langevin inverse, as:

L−1(ζ) = cotg(ζ) − 1
ζ , where, ζ = λp

chain√
N

7. Find the contribution due to nonlinear hardening:

T B = CR
3

√
N

λp
chain

L−1
(

λp
chain√

N

)
B∗

dev

8. Return: T B
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3.3.2 Dependent State Variables

To determine the magnitude of plastic deformations of each of the two chains repre-
senting the activated molecular processes, it was necessary to store the variables of the
plastic deformation gradient of the α and β chains, as well as the athermic shear stress
for each chain. This process occurs through the storage of variables such as: dependent
state variables, when at each start of time increment, the variables stored in the previous
increment can be used as variables in the current increment. It should be noted that the
specific storage of the plastic deformation gradient of both chains is not mandatory, the
storage of the elastic deformation gradient can also be a strategy adopted.

3.3.3 Numerical Integration Procedure

The integration scheme using the midpoint method used for the rate equation integration
procedure was implemented in two different ways, first, for the athermic shear stress rate
(ṡ), the method was applied following the procedure presented in eq. 3.40 (Simo and
Hughes [1997]).

t+∆tx = tx + ∆t f(t+ ∆t
2 x)

t+ ∆t
2 x = 1

2(t+∆tx + tx)
(3.40)

For the numerical integration of the hyperelasticity plastic flow equation, the application
of an integration using exponential maps is adequate for the numerical solution of a problem
with a defined initial value. Below is the numerical procedure for an exponential mapping
of the strain rate tensor.

t+ ∆t
2 F p = exp

[(
∆t
2

)
tW

]
tF p

t+∆tF p = exp
[
∆t t+ ∆t

2 W
]

tF p

(3.41)

There are different techniques for determining the exponential tensor, among them the
Hughes-Winget approach (Neto et al. [2008]) and Padé’s approaches (Tomas et al. [2008])
are commonly used for this purpose. The first technique, Hughes-Winget approximation,
shows that if the ∆t n+ 1

2 W is small enough, that is, small increment of rotations, it can be
assumed that the terms of second order or higher orders of ∆t n+ 1

2 W can be neglected, so
it can be considered that the exponential mapping tensor can be approximated by:

exp
[(

∆t

2

)
t+ ∆t

2 W

]
≈
[
I +

(
∆t

2

)
t+ ∆t

2 W

]
(3.42)
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The second order Padé approximation for exponential mapping can be obtained using
the equation presented in eq. 3.43. In this equation, the Padé approximator was expanded
around the null tensor

P 2
2 (exp(x)) = (x2 + 6x + 12I)(x2 − 6x + 12I)−1 (3.43)

Since explicit integrations require small time increments to satisfy the convergence cri-
terion at each time increment, the use of the Padé approach presents an appropriate con-
formity for the exponential calculation of the plastic flow. In his studies, Baaser [2004],
compares a second-order Padé approximation and the analytical solution of an exponen-
tial mapping. The results show that the approximation for a second-order 3X3 tensor is
accurate to approximately 10−6.

Evaluations carried out during the implementation of the Mulliken-Boyce elastic-viscoplastic
model showed that there are no relevant differences between the two methods presented for
performing exponential mapping. Both present a satisfactory approach for this purpose.

3.3.4 Sensitivity Analysis - Mulliken-Boyce Model

A series of changes in the parameters presented in the table 3.1 allow to identify how
each parameter of the material interferes in the behavior of the stress-strain curve. Jordan
et al. [2008] carried out similar verification by changing the material parameters in order
to observe modifications in the behavior curves for compression tests of an epoxy resin.

An evaluation of the order of magnitudes of the parameters presented in the table 3.5
for PC, ABS and a blend of the two materials allowed to infer that the contribution of
the second chain to the description of the material’s behavior under compression in the
test conditions of this study is less relevant than the contribution of the first chain, that
is, changes in the parameters of greater relevance of the second chain do not significantly
interfere in the description of the material’s behavior. However, it is important to note that
for cases of high strain rates, the second chain makes a great contribution in the material
behavior.

In order to verify the influence of each parameter of the behavior of the numerical curve
obtained from the use of the Mulliken-Boyce model, the properties of the PC/ABS 80:20
material present in 3.5 are taken as an example.

With reference to the nominal values presented, changes will be made to these values
of ±30%, in order to verify how each parameter interferes in the behavior of the numerical
model.

The term referring to the pre-exponential factor interferes in the maximum limit of the
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Table 3.5: PC/ABS 80:20 Parameters - Mulliken-Boyce Model

Parameter Nominal value Lower limit Upper limit
E1 1531,0 - -
E2 5,49 - -
ν 0,38 - -

γ̇p
0,α 2, 98 × 1016 2, 08 × 1016 3, 87 × 1016

γ̇p
0,β 3, 36 × 105 - -

αp,α 0,168 - -
αp,β 0,245 - -
∆Gα 4, 14 × 10−19 2, 90 × 10−19 5, 38 × 10−19

∆Gβ 3, 77 × 10−20 - -
hα 300 210 390
hβ - - -
sss 0,88 - -
Cr 12,20 8,54 15,86
N 5,29 3,70 6,87
k 1, 38 × 10−23 - -
Θ 296 - -

linear elastic zone of the curve, so that the greater the magnitude of this parameter, the
greater the limit of the elastic region. However only large variations of this parameter cause
significant changes. For example, the figure 3.5 shows that changes of 30% in the value of
the related parameter do not cause significant changes in the curve. It should also be noted
that significant changes to this parameter may cause a change in the tangent module of the
curve in the elastic zone.

Figure 3.5: Total Cauchy stress: Changes in the pre-exponential factor parameter-alpha
chain.
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Modifications in the activation energy parameter of the same proportionality as those
made in the pre-exponential factor cause more significant changes in the material’s elastic
zone. The figure 3.5 shows that an increase in this parameter caused a grow in the region
of linear elasticity. It is important to note that, in some cases, changes in this parameter
can change the behavior of the compression chain to extension or vice versa.

(a) Cauchy Stress - total.

(b) Cauchy Stress- TA,α.

Figure 3.6: Changes in the Activation energy parameter - alpha chain.

The softening slope and preferred state parameters, differently from the two parameters
presented above, define the behavior of the material yield zone, after the linear elasticity
region. The first parameter (softening slope) produces more subtle changes in this zone,
while the second parameter causes more significant changes, as it can be seen in figure 3.6.
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(a) Cauchy Stress - total.

(b) Cauchy Stress - TA,α.

Figure 3.7: Changes in the Softening slope parameter - alpha chain.

The parameters responsible for the region of non-linear hardening, extensibility of the
limiting chain and rubbery modulus, act in all regions of the material curve, however more
present after the yield zone. The second parameter (rubbery modulus), for the same per-
centage variation, causes more pronounced changes than the limit chain extensibility pa-
rameter. The figures 3.8 and 3.9 show that the extensibility parameter of the limiting chain,
unlike the rubbery modulus, allows the description of curves where the stress increase due
to hardening it is more expressive for higher levels of strain. For low deformations (after
the yielding region), the stress increase occurs more smoothly.
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(a) Cauchy Stress - total.

(b) Cauchy Stress - TB .

Figure 3.8: Changes in the Rubbery modulus parameter - non-linear hardening chain.
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(a) Cauchy Stress - total.

(b) Cauchy Stress - TB .

Figure 3.9: Changes in the Limiting chain extensibility parameter - non-linear hardening
chain

Regarding the model’s response to the description of the viscous behavior of the material,
the figure 3.10 presents sensitivity analyzes of the imposed strain rates. The responses of
the implemented model were consistent with what is physically expected: an increase in the
deformation rate caused, mainly, a greater predominance of the elastic zone. Experimental
and numerical studies on the behavior of PC, ABS and blends of the two materials present
similar behaviors to those found in this sensitivity analysis study (see Wang et al. [2018]
and Varghese and Batra [2009]).
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Figure 3.10: Impact of strain rate variation on the behavior of the stress-strain curve

It is undisputed that the deformation rate imposed on the deformable body is a ratio
between the deformation due to the application of an external effort and the application
time. In explicit dynamics analyzes, the time of application of the external effort interferes
in the computational cost, that is, numerical evaluations with low strain rates can be quite
computationally costly.

In view of the results obtained by the sensitivity analysis of Arruda-Boyce model, it
is possible to observe that the increase or decrease in the region of linear elasticity due
to the magnitude of the deformation rate can be compensated through other parameters
such as the pre-exponential factor or more effectively by modifying the activation energy
parameter. Such a strategy presents itself as a viable alternative for evaluations where the
computational cost can be quite costly, as well as for simulations where the influence of the
strain rate is not configured as the objective of the analysis.
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Chapter 4

Artificial Neural Networks

In general, as previously presented in the chapter 1.2.4, Machine Learning refers to the
study of problems in a statistical way, being able to generalize a function from limited
observations through training models. The most basic representation obtained by using
Machine Learning can be performed for one-dimensional curve-fitting, commonly used, for
example, for linear regression problems with a single variable. When applied to larger
problems, the tool will work on obtaining hypersurfaces that minimize the function.

The basic structure of neural networks is primarily composed of: (1) input and output
data, (2) layers, (3) optimizer and (4) loss function. Figure 4.1 illustrates this basic anatomy
of neural networks, where the input layer receives information from the input data, which
is the data used for training the model. The input layer is then connected to the other
layers that make up the neural network, which can be sequential or non-sequential. The
following steps work as an iterative process, where predictions are made from an entity
called weights. Each prediction made by the model is compared with true targets from
a loss function. In this iterative process, weights are updated from an optimizer, so that
predictions are as close as possible to true targets.
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Figure 4.1: Basic structure of neural networks.

A first introduction about neural networks can be made from the understanding of what
would be a perceptron, a concept developed between 1950 and 1960 by the scientist Frank
Rosenblatt, inspired by Walter Pitts and Warren McCulloch. Such a model is based on a
neural network composed of sigmoid neurons where neurons are capable to output values
equal to 0 or 1. The simple example shown in figure 4.2 shows a perceptron with three
inputs x1, x2 and x3, in which Rosenblatt introduced a first understanding of weights, real
numbers that manage to express the importance of the respective input to the output.
Different from the outputs, it is possible to assign any value to the weights.

Figure 4.2: Structure of a perceptron.
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The structure of layers in neural networks depends on the output format, where each
type of layer is appropriate for a given type of input tensor. In the usual case of a dataset
with different information per event, the use of a two-dimensional tensor can be used,
called Dense class in the Keras library. The basic implementation of dense layers (default
configuration) is based on a linear operation between the output and the input, it should
be noted that when it comes to layers, an input dimension is automatically related to the
output of the previous layer. Thus, the linear representation of a dense layer is given by:

xo = ϕa(x.W + b) (4.1)

Where ϕa represents the activation function applied to the layer, W is the Kernel term,
representing the weight matrix, x the input layer and b the term referring to the bias. For
the initialization of the weight matrix and the bias, random Gaussian values are used. The
figure 4.3 presents a neural network composed by 2 hidden layers, initially fed by a layer
related to the input data. The figure shows the presence of the weight matrix (W), as well
as the bias (b). It is possible to identify schematically, as shown in eq. 4.1, the process of
composing the neurons of each layer in order to obtain the output of the neural network.

Figure 4.3: Representation of a neural network composed of two hidden layers.

As shown in eq. 4.1, the neural network will apply a linear representation between the
output and the input, however, depending on the object of analysis, such representation
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may not be sufficient, therefore, the implementation of customized layers may be necessary.
The use of the API tool allows the creation of layers of greater complexity.

Regarding the activation functions present in the field of neural networks, its application
occurs between the input feeding the current neuron and the output of this same neuron
towards the next layer. Activation functions have a determining role in the output model
of learning, accuracy, and computational efficiency of model training, i.e., they have a
great effect on the model’s capacity and convergence speed. In certain circumstances,
the incorrect use of the activation function can hinder or even prevent the model from
converging.

Among the most commonly used functions are: (1) binary function, which can be used
for classification problems in 2 categories, (2) linear activation functions, (3) sigmoid/logistic
functions, used for outputs between 0 and 1, normalized at the output of each neuron and
commonly used for classification problems, (4) tangent hyperbolic function, (5) ReLU -
Rectified Linear Unit, a function that returns max(x, 0) allowing faster convergence of the
neural network. Other functions are available, as well as the possibility to create customized
functions.

In Machine Learning applications, the back-propagation algorithm is commonly used
in conjunction with Gradient Descent, a base algorithm for several others, such as Adam.
The purpose of applying the Gradient Descent is to minimize the loss function through
an iterative process, starting with random values, called random initialization. Regarding
Gradient Descent, the term called as learning rate refers to the step size of each iteration.
If it is too small, the algorithm will need many iterations to converge and otherwise, if it is
too large, the minimum global value may not be found, leading to a divergence.

Figure 4.4: Example of various learning rates for Gradient Descent method. Geron [2017]

The figure 4.4 presents three different situations for the study of rate learning, in the first
case the learning rate is less than ideal, that is, it appears that it will take more iterations
than the ideal to obtain the convergence of analysis. The opposite situation occurs in the
third graph of the figure, where the learning rate is so large that results in a divergence.
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The second case of the figure presents an intermediate situation, where the imposed value
of the learning rate was able to achieve a convergence, however, without needing so many
iterations for this purpose. Still regarding the optimization process, one of the biggest
difficulties is in identifying when the global minimum is reached and not just some local
minimum, a fact that can be achieved with other strategies, such as the use of Callbacks in
Keras.

Gradient Descent can be applied mainly in three different ways: (1) Batch Gradient
Descent, (2) Stochastic Gradient Descent, and (3) Mini-batch Gradient Descent. In the first
case, the Loss function gradient will be calculated for the entire model, which requires a high
computational cost for that purpose, especially for models with a very large training set. In
the second case, instead of evaluating the entire model, the algorithm will choose a random
instance in the training set (epoch) for each step and thus calculate the gradients for that
instance. Therefore, the computational cost for training the model will be much lower. Due
to its stochastic nature, such a model presents less regularity, that is, instead of decreasing
progressively until reaching the minimum, the Loss function will bounce up and down,
however, decreasing its average until reaching the minimum. According to Geron [2017],
when the Loss function is very irregular, the application of Stochastic Gradient Descent can
help to skip local minimums, having a greater chance of finding the global minimum than
Batch Gradient Descent. Regarding the Mini-batch Gradient Descent, this algorithm will
work similarly to the Batch Gradient Descent, however, at each step, instead of computing
the gradient of the entire training set, it will compute the gradient of small random sets of
instances, called mini-batches.
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Chapter 5

Methodology

This chapter describes the methodology used to: (1) predict the material parameters
of the rheological model used for evaluating polymers under uniaxial compression, as well
as the stress-strain curve, and (2) predict the stress-strain curve, displacement-force curve
and contact pressure of indentation in metals.

The reader will also find information in this chapter about the experimental tests per-
formed for the calibration of the numerical model in Finite Element, as well as the numerical
model validations. The methodology used to predict the targets via ANN for each of the
evaluated cases is then detailed.

5.1 Finite Element Modeling

In this section, the reader will find out about the numerical study of (1) visco-elastoplastic
behavior of polymers under uniaxial compression test and (2) residual indentation in met-
als. For the study of polymers, the model adopted is based on: (1) Mulliken-Boyce model
and (2) Gent model for the nonlinear hardening. Once the rheological model is defined, the
mechanical behavior of cylindrical specimens will be evaluated in a uniaxial compression
test, which will allow the calibration of the numerical model from the data related to the
experimental tests conducted.

For the study of metals, the adopted model is based on the use of Hooke’s law to
describe the linear phase and Ludwik’s equation to describe the non-linear phase. As with
polymers, the studies carried out for metals will be validated by experimental tests of
residual indentation sphere-plane tests.
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5.1.1 Uniaxial Compression study in Polymers

To validate and establish the relevant parameters to the modified Mulliken-Boyce model,
a series of evaluations of uniaxial compression tests for different compositions of polycarbon-
ate (PC) and Acrylonitrile Butadiene Styrene (ABS) were conducted. The establishment
of the parameters of the numerical model was based on the adequacy of the curve obtained
via ABAQUS® in reference to the experimental tests of compression of the specimens.

The compression tests were conducted on a universal testing machine MTS 810 with a
maximum capacity of 100 kN, where cylindrical test pieces of 9 mm in diameter and height
were compressed to a total displacement of 6.1 mm at a strain rate of 0.01 mm/s with
displacement and room temperature at 20◦C control.

The compression was performed in a loading/unloading mode with 8 cycles, each with
5 steps of 0.1525 mm and with a variation in the compression speed in relation to time, in
order to guarantee a constant strain rate. Discharges are considered in the test to reduce
the friction effect between the lower and upper plate of the specimen support, as well as
to mitigate the "jamming" effect of the cylinder under test. Finally, the output curves
represent resulting average curves of 5 compression tests per evaluated material.

5.1.1.1 Numerical Model

During the first steps of the calibration process of Mulliken-Boyce’s implemented nu-
merical model for the description of the elastic-viscoplastic behavior of PC, ABS and blends
of the two materials, challenges were identified in describing the behavior of the non-linear
hardening response for strain levels greater than 60%. Thus, a modification of the orig-
inal Mulliken-Boyce equation was carried out, changing the description of the non-linear
hardening behavior from the 8-chain model by a model based on the equation presented by
Horgan and Saccomandi [2002].

The constitutive model presented by Horgan and Saccomandi [2002] presents itself as
an extension of the Neo-Hookean hyperelastic model, aiming at a better characterization
of the response of elastomer-like materials at large deformations. Therefore, the Cauchy
stress for the description of the nonlinear hardening phase can be determined according to
the following equation:

T G = Mi

J

1
1 − I∗

1 −3
Jm

dev[B∗] + k(J − 1)I (5.1)

where, Mi represents an equivalent shear modulus, Jm is a dimensionless parameter that
controls the limited chain extensibility at large strains, k is the bulk modulus, I∗

1 is the first
invariant of B∗.
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Based on the equation 3.39, it is therefore proposed to replace the term T B for the term
T G in the equation 5.1, i.e., the description of the stress in the solid is:

T = TG + TA,α + TA,β (5.2)

Such rheological model will be called modified Mulliken-Boyce model and will be used
to describe the elastic-viscoplastic behavior of all simulations in Finite Element for poly-
mers conducted during this work. Figure 5.1 presents a comparison between the adopted
rheological model and the original Mulliken-Boyce model and, as it is possible to identify,
the modified model more faithfully represents the results obtained experimentally.

Figure 5.1: Uniaxial compression test - comparative between experimental test, original
Mulliken-Boyce and modified Mulliken-Boyce: ABS.

The numerical reproduction of the uniaxial compression test via ABAQUS® was per-
formed through the consideration of 1/4 of cylinder, being adopted for both symmetry
boundary conditions on the appropriate faces, as shown in figure 5.2(a). In order to repro-
duce the contact between the upper and lower face of the specimen with the support and
compression plate of the test machine, a surface-to-surface interaction between the faces in
contact was adopted. For the properties of the contact formulation, the penalty method
was adopted for normal and tangential behavior, allowing contact separation for the first
mentioned behavior and definition of a friction coefficient of 0.1 for the second.
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(a) Boundary conditions of the FE model. (b) Hexagonal structured mesh of the numerical
model for the study of uniaxial compression.

Figure 5.2: Finite element numerical model of the cylindrical specimen uniaxial compression
test

Regarding the definition of contact, it is worth noting that the two support surfaces were
represented as rigid bodies, in order to have a lower computational cost. The adoption
of this numerical representation was based on the convergence of the simulation since it
allowed the convergence of the numerical tests for deformations greater than 50%. The
use of boundary conditions due to displacement and rotation restrictions were previously
used, however, they did not prove to be a viable alternative for the series of simulations
conducted, since they presented great distortions in the elements present in the restricted
surfaces, thus causing failure of convergence.

The analysis of uniaxial compression of the cylindrical specimen was implemented from a
structured mesh consisting solely of explicit hexagonal elements with an average dimension
of 7 × 10−4 m, length obtained after conducting a mesh convergence study. Due to the
presence of large deformations in the analyzes conducted, the use of mesh distortion and
full integration controls was defined. The mesh adopted in the numerical model is shown
in figure 5.2(b).

Two other important aspects for the implementation of the adopted model are the use
of a non-linear increment of displacement, in order to impose on the simulation a constant
deformation rate and the use of the mass scaling tool for simulations in a quasi-static
regime, that is, when dynamic effects are not significant in the behavior of the analyzed
object. Such a tool works to control the time increment, especially in small elements that
end up controlling the time increment of the simulation.
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5.1.1.2 Numerical Model Validation

The behavior of the cylindrical specimen under the effect of uniaxial compression is
represented in the figure 5.3 in four different compression stages. The numerical model was
adopted to predict the behavior of the specimen up to axial strain rates of 60%, although
it was able to predict at strain levels of 110%. In the latter case, the model presented a
greater inadequacy, especially for ABS and PC.

Figure 5.3: Different stages of simulation of the numerical uniaxial compression test.

The comparative graphs between the experimental and numerical results are presented
in the sequence of figures below. Figure 5.4(a) represents the data for the PC, fig. 5.4(b)
for ABS, 5.5(a) for PC/ABS 80:20 and fig. 5.5(b) for PC/ABS 60:40.

,
(a) Uniaxial compression test - experimental-
numerical: PC.

(b) Uniaxial compression test - experimental-
numerical: ABS.

Figure 5.4: Uniaxial compression test - experimental-numerical calibration
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,
(a) Uniaxial compression test - experimental-
numerical: PC/ABS 80:20.

(b) Uniaxial compression test - experimental-
numerical: PC/ABS 60:40.

Figure 5.5: Uniaxial compression test - experimental-numerical calibration

Table 5.4(a) shows the coefficients of determination for all the comparative curves per-
formed during this section.

Table 5.1: Coefficients of determination between experimental and numerical results.

Material R2

PC 0.96
PC/ABS 80:20 0.98
PC/ABS 60:40 0.99

ABS 0.99

In view of the obtained values, good correlations between the experimental and numer-
ical results for all investigated cases is identified. PC showed the lowest value of coefficient
of determination, equal to approximately 0.96, whereas the PC/ABS 60:40 blend and ABS
showed the best fit with 0.99. In general, the coefficient of determination for all materials
evaluated, under the magnitude of imposed strain, are similar.

When evaluating the curves obtained for all numerical tests conducted, it is identified
that the region to present the greatest dissimilarity in relation to the results obtained
through the experiment is related to the yield zone. The experimental results show a
smoother region, while the numerical model shows a more abrupt yield.

In view of the numerical results presented for the evaluation of the target polymers
of this study, it is possible to identify that the FE model adopted can reproduce the
viscoelasto-plastic behavior of these materials in a satisfactory manner. This preliminary
result contributes to the state of the art, given the small presence of studies that present
methodologies for numerical implementation aimed at evaluating the visco-elasto-plastic
behavior in polymers and in particular for implementations via VUMAT and for the study
of indentation.
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5.1.2 Residual Indentation study in Metals

Indentation tests were performed between two components: (1) prismatic flat counter-
parts composed of various metals in the following dimensions: 20mm x 20mm x 5mm and,
(2) spherical pad made of Tungsten carbide with 2.5 and 7.5 mm radius. The counterpart
and pads are shown in figure 5.6(a).

Regarding the preparation of the samples, all were cleaned with isopropyl alcohol and
stored in zip lock bags, to reduce the possibility of oxidation. Before the experiments, all
the pieces were carefully examined in order to check the presence of any imperfections and
contaminants. After the conclusion of the tests, the parts were cleaned using a compressed
air gun to remove possible particles and put in new zip locks to be subsequently evaluated
under the microscope.

For the experiments carried out, an MTS 809 axial-torsional testing machine was used,
a machine capable to perform axial and rotational motions simultaneously. Therefore, the
experiments were carried out from the insertion of the counterpart together with a custom
holding device in order to accommodate it firmly, as well as the spherical pad, as shown in
figure 5.6(b). Regarding the equipment to evaluate the deformed surface, a confocal laser
microscope (Olympus LEXT OS4100) and an optical microscope (Carl Zeiss AXIO Imager
M2) were used.

After the correct positioning of the counterpart and pad in the test equipment, the Basic
Testware software provided by the manufacturer was used to define the test parameters
related to the application of the compression load. For this purpose, the desired load is
then configured in the software and, after manually displacing the upper grip towards the
lower one, the software slowly rises the flat pad in the direction of the tool at a fixed speed
of 0.5 mm/min. After reaching the desired load, the pad stops moving and remains fixed
with a constant contact pressure at the pre-set value, providing as output a history of
displacement and force during the entire test. After the compression test was performed,
the flat samples were then analyzed in the microscopes with a 20x magnifications lens using
an increase in luminosity of approximately 60%. From these analyzes, residual penetration
and volume of the indentation mark were obtained.
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,
(a) Polymerical flat counterpart and
R3 steel pad.

(b) MTS 809 axial-torsional testing machine: (1)
Crosshead, (2) Force transducer, (3) Top cell, (4) Upper
grip, (5) Lower grip and (6) Bottom cell.

Figure 5.6: Polymerical flat counterpart and R3 steel pad.Padim et al. [2019]

5.1.2.1 Numerical Model

As constitutive model, a J2-associated flow theory with rate-independent deformation
and isotropic hardening is adopted. The flow is described according to the von Mises
criterion and the stress-strain relationship is defined by the Ludwik’s equation,

σ = σ0 + K(ϵ + ϵ0)n, (5.3)

where, σ is the true stress, σ0 the yield stress, ϵ0 the yield strain, ϵ the plastic strain, n the
hardening exponent, and K a strength coefficient.

To simulate the behavior of a solid subjected to a spherical indenter, a FE model is
implemented in the commercial package ABAQUS®. Since the indentation problem is
axisymmetric, its modeling can be achieved in a two-dimensional domain and using only
one-half of its geometry.

Concerning the discretization of the solids, the pad and flat counterpart domains are
divided using structured meshes composed of first order quadrilateral elements. In order
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to achieve accurate results at a reduced computational cost, full Gaussian integration is
used only on the elements at the contact interface while the remaining ones are defined
with a single Gauss point (reduced integration). Moreover, the contact interface is meshed
with 15×10−6m elements while the other zones employ elements up to 2mm in size. The
implementation of the contact constraints is achieved using a node-to-segment segmentation
of the interface and the Lagrange multiplier method for the enforcement of both normal
and tangential constraints. The problem is defined in a static setting and the prescribed
load is applied to the top of the sphere in 100 incremental steps while the base of the
flat counterpart is restrained in the y-direction. The solution procedure adopted is the
Newton’s method with a convergence criteria set as a residual force of 10−8N. Fig. 5.7
shows the geometry, its partitions, and the discretization employed.

Figure 5.7: Finite element numerical model of the flat counterpart and pad.

5.1.2.2 Numerical Model Validation

In order to validate the proposed FE model, two steps are considered: an evaluation in
the linear elastic domain; and another in the inelastic domain. For the validation of the
model in the linear elastic domain, the set of analytical equations for sphere-to-flat contact
known as Hertzian formulae Hertz [1882] and Johnson [1985] has been considered. Since
modeling of elastic behavior is rather trivial, just one material pairing is analyzed: a flat
SAE 1045 steel specimen (E = 210GPa, and ν= 0.33) and a Tungsten carbide spherical
indenter (E = 669GPa, σ0 = 650MPa, and ν = 0.22). The force, F , applied to the indenter
is set to 100N and the indenter radius, r, is 7.5mm. Table 5.2 presents the comparative
data between the numerical and analytical results, showing a maximum relative error equal
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to 3.44%.

Table 5.2: Validation: analytical versus numerical results in the elastic phase.

Parameter Analytical Numerical Rel. error (%)
Indentation depth (mm) 0.0029 0.0030 3.44
Spherical cap’s radius (mm) 0.1470 0.1490 1.34
Max Pressure (MPa) 2186.57 2153.00 1.53
Max shear stress (MPa) 466.64 463.40 0.69

For the validation of the FE model within the plastic zone, an evaluation of the residual
indentation radius of four materials, under at different test configurations, is carried out.
Tungsten carbide spheres (2.5mm and 7.5mm radius) are employed to promote the indenta-
tion marks on prismatic metallic specimens (20mm x 20mm x 5mm). The experiments are
carried-out on a MTS 809 axial testing machine together with a custom holding device to
accommodate the specimens. The compression load is applied using a prescribed displace-
ment rate of 0.5mm/min. After indentation, marks are established and then the specimens
are analyzed in a confocal laser microscope (Olympus LEXT OS4100). Further details on
the experimental procedures can be found in Padim et al. [2019]. Table 5.3 presents the
comparison between experimental and numerical data, where the maximum error observed
is equal to 5.49%.

Table 5.3: Validation: experimental data versus numerical results in the inelastic phase.

Counterpart material F(N) r(mm) Exp. Num. Rel. error (% )
R3 steel 500 7.5 2.56 2.67 4.29
R3 steel 1000 7.5 5.56 5.51 0.90
SAE 1045 2450 2.5 76.0 74.0 2.63
AL 7050 T7451 2450 2.5 95.8 96.2 0.42
Brass C45801 2450 2.5 114.8 121.1 5.49

5.2 Applied Methodology

In order to fulfill the goal of creating an ANN able to make predictions, the methodology
was firstly based on the conception of a numerical model for the simulation of uniaxial
compression in polymers and sphere-to-flat contact interaction for the study of indentation
in metals. In this way, a FE model was implemented within the commercial package
ABAQUS®. Nevertheless, other numerical approaches such as in-house codes and different
methods like the Boundary Element Method can be employed for this task. The only
restriction is the calibration and thorough validation of the numerical model adopted. For
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the description of the mechanical behavior of the evaluated polymers, the modified Mulliken-
Boyce method is applied. For the studies of indentation in metals, Hooke’s law and Hertzian
formulae are employed for the linear elastic zone, while for the nonlinear zone the Ludwik’s
equation was defined. Once identified that the adopted models satisfactorily reproduce the
experimental tests, the numerical model in FE can be employed as a surrogate model for
the generation of the large dataset used to train the ANN model.

The methodology adopted for the mechanical behavior characterization of the evaluated
materials was based on the following structure: creation of an input dataset generated via
simulations in Finite Element and training an ANN model to predict the behavior from the
simulation’s inputs and outputs conducted via FE via ABAQUS®. Due to the numerical
model adopted having as a basic premise the representation of the mechanical behavior of
the materials, the numerical models adopted were previously calibrated from experimental
tests. Such a strategy allows the generation of a larger dataset for the composition of the
ANN model, if compared to the adoption of a training model from a dataset of experimen-
tally data. Such a methodology was designed to perform all predictions studies by the ANN
algorithms developed in this work, and the same methodology is applied to all four studies:

1. Prediction of the material parameters of the modified Mulliken-Boyce model;

2. Prediction of the stress-strain curve using the modified Mulliken-Boyce numerical
model;

3. Prediction of the stress-strain curve through the displacement-force curve obtained
via indentation test;

4. Prediction of the displacement-force curve and contact pressure through the stress-
strain curve obtained via the indentation test;

For all studies performed, a supervised deep learning algorithm was implemented in
Python programming language, using mostly the Keras library.

5.2.1 Uniaxial Compression in Rigid Thermoplastic Polymers

Figure 5.8 shows the adopted methodology applied for the prediction of the material
parameters and stress-strain curve of the modified Mulliken-Boyce model, respectively. The
main differences compared to the study in metals are in the definitions of input, output,
boundary conditions, and Artificial network layout. In general, the methodological structure
will consist of a database generated from a finite element numerical model that reproduces
the experimental tests and, later, will be used as input and/or output dataset for the
implementation of the ANN model.
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Figure 5.8: Methodology flow for predicting the material parameters based on the stress-
strain curve applied for the study in rigid thermoplastic polymers.

The relevant parameters are inputted in the modified Mulliken-Boyce algorithm (imple-
mented via VUMAT) so that Finite Element simulations can be performed. During the FE
simulations, the model’s output is defined, which for the studies carried out are based on the
stress-strain curve. Subsequently, the dataset generated from the material parameters and
the stress-strain curves obtained via FE is used as input and output for the ANN Model.
For the case of the study of indentation in metals, in addition to considering the material
parameters and the stress-strain curve, the displacement-force curve is also considered to
compose the input and/or output, depending on the study carried out, for instance.

The parameters related to the input dataset of the ML model were chosen from the
sensitivity analyzes performed in the section 3.3.4. For the construction of the input dataset,
variations in these parameters were carried out and implemented numerically via Finite
Element through the procedures performed in the section 5.1.1, totaling 520 simulations
to compose the input dataset. The parameters adopted to compose the target of the ML
model are: E1, Mi, Jm, Sss, h1 and ∆G1. Tab. 5.4 shows the range of values considered for
each parameter.
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Table 5.4: Range of material properties adopted for generating the database in the study
of rigid thermoplastic polymers.

Parameter Lower Limit Upper Limit
E1 (MPa) 765 1607

Mi 3.04 19.76
Jm 1.75 4.73

Sss (MPa) 0.27 0.90
h1 (MPa) 125 475
∆G1 (J) 1.86 ×10−19 5.67 ×10−19

Certain magnitudes of the evaluated material parameters resulted in the divergence of
the simulation via FEM. Because of this, in order not to consider incomplete simulations in
the training of the neural network, a data cleaning was performed to exclude simulations
not completed via FEM. Such cases happened for the parameters relevant to the occurrence
of yield and nonlinear hardening.

Regarding the handling of data, the strategy was based on the normalization of both the
input and the output of the ML model, due to the large differences in magnitude between
the data. This strategy is widely used in ANN, since it facilitates the convergence of the
model, as presented by Chollet [2018].

In parallel to the strategy adopted regarding the data interpolation process in order
to decrease the size of the input tensor, the elastic zone of the strain-strain curve with
less data points were intentionally represented, as it is represented by a linear zone. After
such a region, there is the presence of a greater number of points due to the non-linearity
of the curve, favoring the learning process. The highest data density is present in the
representation of the stress-strain curve of the materials investigated in this study, however,
behaviors that exceed the limits established by the behavior of the PC and of ABS were
considered in order to investigate, further on, the possibility of such a proposed and adopted
model being able to describe the behavior of other polymers with similar behavior to the
polymers considered in this work.

5.2.1.1 Artificial Deep Neural Network Applied to the prediction of Mulliken-
Boyce Parameters from Stress-Strain curve

For the description of the stress-strain curve, 150 points were considered, which resulted
in a tensor with dimensions equal to 520x150. As the output dataset is composed of the
material parameters of the modified Mulliken-Boyce model, the dimension of the 2d tensor
is equal to 520X1 or 520x6. It should be noted that the points on the stress-strain curve
considered in the training of the neural network were obtained via interpolation, since the
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use of 150 ordered pairs is sufficient for the ANN. The stress-strain curve generated via
FEM has 1000 ordered pairs.

Regarding the data splitting (splitting of the complete dataset into two different datasets,
training, and testing dataset), it was defined the use of 70% of the total curves for the train-
ing dataset and 30% for the testing dataset.

Concerning the composition of the model’s neural networks, the strategy adopted was
the use of sequential layers implemented via API, where each target’s prediction was ob-
tained via a different branch of the neural network. All predictions were made using linear
neurons, except the predictions for the Mi. For this parameter, it was adopted the use of
quadratic neurons implemented via custom layers also via API.

One of the biggest challenges for the implementation of neural networks is defining the
layer structure, something that requires a lot of time and processing memory due to the
need to run the model for each change in order to assess the impact on the predictions.
The structure of neural networks for predicting the parameters of the modified Mulliken-
Boyce model is shown in figure 5.9. As it is possible to identify in this figure, the adopted
neural network is represented as a deep learning, due to the number of hidden layers of the
model. The neural network for the prediction of material parameters is composed of two
types of branches. The branch presented in orange considers the complete dataset, that
is, all material parameters make up the dataset. The branches shown in blue take into
account only the dataset for parameter to be predicted. In this way, as shown by figure 5.9,
for the prediction of ∆G1, all parameters are considered. For the remaining, the other
parameters are not. For the prediction of ∆G1, E1 and h1 only two hidden layers are used,
all composed of linear neurons. For the prediction of the parameters Sss, Jm and Mi, three
hidden layers are used, and all composed of linear neurons, except the Mi network, which
uses quadratic elements. Several other layer configurations were tested during the studies
carried out (simpler architectures, with fewer layers and neurons, as well as more complex
architectures), the configuration adopted is the one that presents the best accuracy of the
predictions made.
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Figure 5.9: Adopted Neural Network for the prediction of the modified Mulliken-Boyce
parameters through stress-strain curves.

The algorithm adopted for the optimization process was Adam, presented by Kingma
and Ba [2014] and applied for first-order gradient-based optimization of stochastic objective
functions through an adaptive estimate of lower-order moments. In general, the Adam
optimizer can be seen as a combination of two other algorithms: RMSprop and Stochastic
Gradient Descent, working with the squared gradients to scale the learning rate. The
adoption of Adams as an optimizer was made since it allows a faster convergence for studies
of deep neural networks, compared to other optimizers. A comparison between several
optimizers in the learning process in image processing using deep learning was presented
by Kingma and Ba [2014].

Optimizers work along with loss functions for the learning process, for the ML model
proposed, the mean squared error (MSE) was adopted, according to 5.4, where n represents
the number of predictions generated, Y the target and Ŷ the prediction.

MSE = 1
n

n∑
n=1

(Yi − Ŷi)2 (5.4)

Working in parallel to avoid the occurrence of (1) overfitting and underfitting, habitual
problems in the machine training process, and (2) failure of adequacy of the learning rate,
callback functions were implemented via API in the adopted model. For the first situation,
a tool called Early Stopping was implemented, where the learning process is completed
when the algorithm identifies that the Loss function does not improve for more than 50
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epochs. In this case, the learning process is interrupted and the weight matrix adopted
refers to the (n − 50) epoch, where n represents the last epoch of the training.

In the second situation, an algorithm was implemented via API to update the hyper-
parameter related to the learning rate in the Adam optimizer. Therefore, a decrease of
5% in the learning rate was defined for each situation in which the loss function does not
show improvement for more than 15 sequential epochs. The adoption of this strategy, in
addition to allowing better control of the training, allows a lower computational cost, since
it starts training the model with greater magnitudes of learning rate that decrease as the
model learns.

Finally, for the training step, a batch size equal to 32 was defined, which configures
a case of Mini-batch Gradient Descent. During the construction of the ML model, the
three following considerations were investigated: (1) Batch Gradient Descent, (2) Stochastic
Gradient Descent, and (3) Mini-batch Gradient Descent. The use of (3) enabled the best
accuracy of the model. The use of a batch size equal to the dimension of the input dataset
entailed a higher computational cost and, in this study, did not provide improvements.

Table 5.5 summarize the structure and main information of the neural networks con-
sidered, i.e., neural network for predicting the material properties of the modified Mulliken-
Boyce model.

Table 5.5: Number of neurons and activation function adopted for the ANN used to predict
the material parameters of the modified Mulliken-Boyce model.

∆G1 E1 Mi Jm Sss h1

1st hidden layer 64 - relu 64 relu 128 - relu 128 - relu 128 - relu 128 - relu
2nd hidden layer 32 - relu 32 - relu 64 - relu 64 - relu 64 - relu 32 - relu
3rd hidden layer - - 32 - relu 32 - relu 32 - relu -
Neuron Order Linear Linear Quadratic Linear Linear Linear
Learning rate 10−6 10−6 10−6 10−6 10−6 10−6

Output Dimension 6 1 1 1 1 1

5.2.1.2 Artificial Deep Neural Network Applied to the prediction of the Stress-
Strain curve from Mulliken-Boyce Parameters

A reverse model to the one presented in item 5.2.1.1 was also implemented. In this,
instead of predicting the material parameters of the modified Mulliken-Boyce model, the
reverse is performed, i.e., prediction of the stress-strain curve from the material parameters.
In this case, the ANN model behaves like a surrogate model, instead of FEM. It uses
neural networks instead of well-established methods, such as FEM, to obtain the mechanical
behavior of materials.
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To predict the stress-strain curve, it was defined that the output, i. e., the stress-strain
curve, will be composed of 500 ordered pairs. When considering a smaller number of points,
a lower accuracy of the model was obtained. A number of points greater than 500 did not
lead to an improvement in the predictions made, it only increased the processing time. In
this way, the input dataset has a dimension equal to 520x6 and the output a dimension
equal to 520x500. The input and output dataset can still be represented by the data shown
in figure 5.9 however, in the opposite way.

Regarding the other parameters considered in this configuration, the Adams optimizer
continues to be used, however with an initial learning rate equal to 10−6. Regarding the
batch size, the case of Batch Gradient Descent was considered. Mean squared error (MSE)
continues to be used as a Loss Function.

Figure 5.10: Adopted neural network for the prediction of the stress-strain curve through
the modified Mulliken-Boyce parameters.

Fig. 5.10 presents the structure of the neural network considered in the stress-strain
curve prediction study. As seen, there is the consideration of a deep learning with 3 hidden
layers. The neurons used for all layers are linear and all make use of the Relu activation
function. For training the model, 70% of the dataset was considered as training dataset.
Of the remaining 30%, 50% was used during training as a test dataset and the other 50%
used to evaluate the model’s efficiency.

Table 5.6 summarize the structure and main information of the neural networks consid-
ered, i.e., neural network for predicting the stress-strain curve from the material properties.
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Table 5.6: Number of neurons and activation function adopted for the ANN used to predict
the stress-strain curve.

Stress-Strain curve
1st hidden layer 500 - relu
2nd hidden layer 400 - relu
3rd hidden layer 300 - relu
Neuron Order Linear
Learning rate 10−6

5.2.2 Residual Indentation in Metals

Figure 5.11 presents the methodology adopted for the study of metals, i.e, stress-strain
curve prediction from displacement-force curve and displacement-force curve prediction
from stress-strain curve (material properties). As identified by figure 5.11, the study is car-
ried out considering different boundary conditions and material properties: (1) indentation
radius, (2) strength, (3) Young’s modulus, (4) yield strength, (5) hardening strength and (
6) hardening exponent. Table 5.7 presents the total interval considered for the generation
of the database used in the training of the neural network. It should be noted that for the
two studies carried out for metals, different considerations were made, resulting in different
considerations of range of the parameters considered in the study. The considered range
for each of the studies is presented in more detail in items 5.2.2.1 and 5.2.2.2.
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Figure 5.11: Methodology flow for predicting the stress-strain curve based on the
displacement-force curve applied for the study in metals.

The database construction process starts from the generation of random values following
a rectangular distribution for the parameters adopted within the stipulated range (some-
thing also applied for the study in rigid thermoplastic polymers). Subsequently, these values
are used to obtain stress-strain and displacement-force curves via finite element simulations.
Once the necessary databases have been created, in this case: (1) boundary conditions and
material properties, (2) stress-strain curve and (3) displacement-force curve, neural net-
works are trained to carry out the desired predictions. As idealized for polymers, it is
considered that the finite element model works as a surrogate model for the reproduction
of experimental tests.

Table 5.7: Total range of the material properties adopted for generating the database in
the study of metals.

Range
indentation radius (mm) 2.5 - 15
Force (N) 100 - 3000
Young’s modulus (MPa) 147 - 273
Yield strength (MPa) 200 - 800
Hardening strength (MPa) 150 - 1000
Hardening exponent 0.1 - 1.0
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5.2.2.1 Artificial Deep Neural Network Applied to the prediction of the Stress-
Strain curve from Displacement-Force Curve

In this study, the displacement-force curve was considered as input dataset and the
stress-strain curve as output dataset, i.e., the main purpose is to predict the stress-strain
curve from a displacement-force curve obtained through of an indentation test. The total
sample space evaluated was 1000 curves and for such a database, 80% was considered for
the training dataset and 20% for the testing dataset. The use of a larger (2500 curves)
dataset did not result in better predictions.

After the establishment of the surrogate FE model, designed to be employed during
the training phase, four different datasets have been produced. They have been selected
to cover non-ferrous and ferrous materials, at elastic and inelastic loading conditions (the
Poisson ratio of the flat counterparts is set to 0.30 for all simulations performed). A tungsten
carbine spherical indenter is kept, and variations of material properties is only applied to
the flat counterpart. The total range of the parameters that has been used for the training
procedure are given in Table 5.8.

Table 5.8: Range of properties and parameters employed in each ML strategy for predicting
the stress-strain curve.

Strategy E(GPa) σ0(MPa) K(MPa) n F(N) r(mm)
Dataset A 147-273 200-800 150-1000 0.1-1.0 200-2000 2.25-15
Dataset B 147-273 200-800 150-1000 0.1-1.0 2000 2.25-15
Dataset C 147-273 200-800 150-1000 0.1-1.0 2000 7.5

Dataset D 147-273 200-800

150-300
300-450
450-600
600-850
850-1000

0.1-1.0 2000 7.5

It is important to emphasize that all datasets are composed of 1000 stress-strain curves,
so that the comparison between the models can be performed. Each curve is obtained by
combination of the mechanical properties indicated in Table 5.8. The dataset A covers the
full spectrum of variations, meaning changes in material properties, compression force, and
indenter radius. The dataset B covers variations in material properties and indenter radius
at a constant compression force. In the dataset C and dataset D, only the material properties
are varied. Furthermore, the dataset D has its range of strength coefficients segregated in
five groups (1/5 of the original size) which makes it the dataset with narrowest spectrum.
The reason for such considerations being implemented will be better clarified in item 6.1.1.

Four different artificial neural network models were implemented using the datasets
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presented in tab. 5.8: ANN-A, ANN-B, ANN-C, and ANN-D. For all cases, the Adams
optimizer (based on back-propagation algorithm and the Gradient Descent optimizer) has
been used. Different mathematical models for the description of the neurons were evaluated.
Linear neurons were selected as they have shown the best response. Regarding to the other
basic parameters for the implementation of regression models, after several evaluations it
was defined the use of: (1) Adams’ optimizer with an initial learning rate equal to 0.01, (2)
Mean Squared Error as Loss Function and (3) Early stopping, to avoid the occurrence of
overfitting.

All models contain two layers (each one composed of 8 neurons) and in both layers a
Softplus activation is used. Figure 5.12 presents the configuration of the layers used for
the ANN model. It is noteworthy that this same layout is adopted in all studies aiming the
prediction of the stress-strain curve from the displacement-force curve for indentation tests
on metals.

Figure 5.12: ANN layout for the prediction of the stress-strain curve through displacement-
force curve for indentation tests.

5.2.2.2 Artificial Deep Neural Network Applied to the prediction of the Displacement-
Force Curve and Contact Pressure from Material properties

The prediction of the displacement-force and contact pressure curve was obtained by
a neural network with different layout and characteristics from those employed for the
prediction of the stress-strain curve. The neural network is represented in 5.13, and as can
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be seen, it has two hidden layers, each with 128 and 64 neurons. The Softmax activation
function was adopted in both layers.

Figure 5.13: ANN layout for the prediction of the displacement-force curve through material
properties for indentation tests.

The other parameters of the ANN model remained the same, i.e., use of Adams as an
optimizer, initial learning rate equal to 0.01, Mean Square Error as Loss Function and Early
stopping to avoid the occurrence of overfitting.

Given the use of other considerations in its construction, the dataset used for this study
is different from the one used to predict the stress-strain curve. This other consideration was
taken into account because a significant improvement in the predictions of the displacement-
force curve was identified. The same observation was not seen in the studies conducted to
predict the stress-strain curve, and as a result, their dataset is smaller. 3900 curves made up
the dataset used to predict the displacement-force curve, of which 15% served as the testing
dataset and 85% as the training dataset. Four alternative indentation radii were considered
when building the dataset: 2.5mm, 5.0mm, 10.0mm, and 15.0mm. The compression force
applied to the indenter was determined for each simulation from a random process according
to a rectangular distribution, with lower and upper limits following table 5.9. The adoption
of different ranges of forces for each indenter radius was carried out in order to adapt to
the magnitudes adopted in experimental evaluations.
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Table 5.9: Dataset construction: range of applied forces for different indentation radii.

Radius (mm) Lower Limit (N) Upper Limit (N)
2.5 100 1000
5.0 500 1500
10 500 2500
15 500 3000

As can be seen, for the prediction of the displacement-force curve, there was no seg-
regation of the curves in different datasets as performed in the study of the prediction of
the stress-strain curve and presented in the table 5.8. The methodology used to predict
the displacement-force curve, in contrast to the study conducted for the prediction of the
stress-strain curve, can encompass a range of indenter radii, variations in the magnitude
of the applied force, and variations in the properties of the materials while still providing
good accuracy.

81



Chapter 6

Results and Discussions

This chapter aims to present the results for all evaluated cases: (1) prediction of the ma-
terial parameters of the modified Mulliken-Boyce rheological model from the experimental
stress-strain curve, (2) prediction of the stress-strain curve from the material parameters
of the modified Mulliken-Boyce rheological model, (3) prediction of the stress-strain curve
for the study of indentation in metals from the displacement-force curve, (4) prediction of
the displacement-force curve and contact pressure obtained through indentation tests on
metals from the mechanical properties of the material. In all results presented, the alpha
network is represented by subindex 1.

A conclusion is presented at the end of this chapter and summarizes the main results
obtained regarding the use of neural networks for predicting the desired information.

6.0.1 ANN applied for predicting the parameters of the modified
Mulliken-Boyce model

Using data from simulations of uniaxial compression (performed via FEM), the AAN
model was trained up to a maximum of 50000 epochs. It was identified, because a rate
learning and batch descent algorithm optimizer was used, that the trained model shows
improvement in the prediction until the last training epoch, however, the Loss Function
does not present significant improvements that make it worthwhile to continue training for
an epoch number over 50000.

Figures 6.1 to 6.6 present the results for the predictions made regarding the training
dataset. The figure on the right shows the correlation between prediction and target. In
this graph, the closer the data are to the line, the better the predictions, i.e., the smaller
the dispersion and the closer the predictions are to the actual values. The graph on the
left represents the relative percentage errors between prediction and target, such a graph
facilitates the evaluation of the occurrence of greater errors in certain prediction ranges.
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,
(a) Comparative view between predicted and tar-
get data for the training dataset - E1.

(b) Error between predicted and target data for
the training dataset - E1.

Figure 6.1: Comparison between prediction and target for training dataset - E1.

,
(a) Comparative view between predicted and tar-
get data for the training dataset - Jm.

(b) Error between predicted and target data for
the training dataset -Jm.

Figure 6.2: Comparison between prediction and target for training dataset - Jm.
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,
(a) Comparative view between predicted and tar-
get data for the training dataset - Sss.

(b) Error between predicted and target data for
the training dataset -Sss.

Figure 6.3: Comparison between prediction and target for training dataset - Sss.

,
(a) Comparative view between predicted and tar-
get data for the training dataset - h1.

(b) Error between predicted and target data for
the training dataset -h1.

Figure 6.4: Comparison between prediction and target for training dataset - h1.
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,
(a) Comparative view between predicted and tar-
get data for the training dataset - Mi.

(b) Error between predicted and target data for
the training dataset -Mi.

Figure 6.5: Comparison between prediction and target for training dataset - Mi.

,
(a) Comparative view between predicted and tar-
get data for the training dataset - ∆G1.

(b) Error between predicted and target data for
the training dataset -∆G1.

Figure 6.6: Comparison between prediction and target for training dataset - ∆G1.

Table 6.2 summarizes the main statistical parameters for each of the parameters con-
sidered in the prediction study, in order to facilitate the considerations presented below.
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Table 6.1: Main statistical information of the predictions of the modified Mulliken-Boyce
material parameters using the training dataset.

mae Max (%) Mean (%) Min (%) mse r2

E1 4.76 6.37 0.39 0.00 80.75 0.99
Mi 1.61 78.92 15.35 0.01 4.25 0.79
Jm 0.42 45.43 12.85 0.02 0.29 -
Sss 0.03 29.14 4.92 0.04 0.00 0.95
h1 105.95 194.01 35.62 0 16864.42 -
∆G1 0.35 109.89 8.58 0.02 0.39 0.82

From figures 6.1 to 6.6 and table 6.2 we can identify that the predictions made for E1 are
sufficiently accurate for the entire spectrum of evaluated simulations. For this parameter,
the average error was 0.39% and the presence of larger errors happens sporadically, not
occurring more frequently in a certain range of values.

The predictions made for parameter Jm have a different behavior than that found for
E1. In this second case, it is verified that the correlation between the prediction and the
target can be better approximated by a quadratic function and as the parameter Jm grows,
the accuracy of the prediction decreases. The mean error in this second case was 12.85%,
however, high error magnitudes can be found, especially if Jm is greater than 3.0.

Predictions for Sss behave similarly to the one found for E1, where the correlation
between prediction and target does not present a large dispersion. However, differently, the
percentage error between prediction and target tends to decrease as Sss increases. For this
parameter, the average percentage error was 4.92%, a value close to that obtained for Jm.

The predictions made for h1 had a much lower accuracy than the other parameters,
as can be specifically identified in fig. 6.4. It can be seen from this figure that the data
dispersion is much higher than that identified in the other parameters and that this does
not occur specially in some range, but within the entire considered spectrum. As shown in
tab. 6.2, the average percentage error was 35.62% and the maximum error reached 194.01%.
Later, it will be better understood about the impact of such magnitude of errors for the
description of the mechanical behavior.

Evaluating the results for Mi, the predictions are not as good as those obtained for E1

and for Sss, but also not as bad as those obtained for h1. For such parameters, it is identified
that the percentage error decreases as it approaches the maximum evaluated limit. The
mean percentage error for Mi was 15.35%.

Finally, for the last evaluated parameter, the ∆G1, it is also identified that the predic-
tions have good accuracy, without large dispersion. For this parameter, the largest errors
obtained occur exceptionally, in situations where ∆G1 is very small or relatively high. The
mean percentage error for ∆G1 was equal to 8.58%.
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As it is possible to identify by the distribution of the percentage errors for each of
the evaluated parameters, for all cases, except for h1, the data can be represented by a
lognormal distribution, where the errors tend to be concentrated in a region close to 0.
This fact is very evident for E1 and ∆G1. With regard to h1, the distribution is more
similar to a rectangular distribution, that is, if a prediction is made, the probability of the
error obtained being too high or too low is practically the same.

Given the data presented, it is possible to identify an acceptable prediction for the
parameters of the modified Mulliken-Boyce numerical model of the training database. In
all evaluated cases, the best predictions occurred within the composition range of the PC,
ABS, and blends of the two materials. In general, the predictions that showed less accuracy
are related to stress-strain curves very different from those of these materials. Among the
evaluated parameters, those responsible for describing the linear phase are predicted with
better accuracy than the others. For the parameters belonging to the yielding and non-
linear hardening phase, a direct relationship was not observed. For the two predominant
parameters in yielding phase, one of them showed good prediction accuracy (Sss), while
the other showed low prediction accuracy (h1). For the prediction of the predominant
parameters in the non-linear hardening phase, both present similar prediction accuracy,
however the prediction accuracy in relation to the magnitude of the parameter presents
different behavior.

Similarly, the comparative curves between the prediction and the target for the testing
dataset are presented, a common practice in Machine Learning, which aims to verify the ap-
plication of the ANN model for datasets different from those that the model was previously
trained on. Such practice is presented as a confirmation of the effectiveness of the applied
model, in addition to allowing, for example, the identification of possible overfitting.

Table 6.2: Main statistical information of the predictions of the modified Mulliken-Boyce
material parameters using the testing dataset.

mae Max (%) Mean (%) Min (%) mse r2

E1 4.79 6.49 0.39 8.58 87.21 0.99
Mi 1.59 104.65 17.23 0.10 4.22 0.77
Jm 0.45 45.55 13.91 0.25 0.33 -
Sss 0.03 24.99 5.34 0.00 0.00 0.95
h1 96.11 125.87 32.10 0.57 14368.77 -
∆G1 0.37 53.51 8.67 0.10 0.37 0.81
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,
(a) Comparative view between predicted and tar-
get data for the testing dataset - E1.

(b) Error between predicted and target data for
the testing dataset - E1.

Figure 6.7: Comparison between prediction and target for testing dataset - E1.

,
(a) Comparative view between predicted and tar-
get data for the testing dataset - Jm.

(b) Error between predicted and target data for
the testing dataset -Jm.

Figure 6.8: Comparison between prediction and target for testing dataset - Jm.
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,
(a) Comparative view between predicted and tar-
get data for the testing dataset - Sss.

(b) Error between predicted and target data for
the testing dataset -Sss.

Figure 6.9: Comparison between prediction and target for testing dataset - Sss.

,
(a) Comparative view between testing and target
data for the training dataset - h1.

(b) Error between predicted and target data for
the testing dataset -h1.

Figure 6.10: Comparison between prediction and target for testing dataset - h1.
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,
(a) Comparative view between predicted and tar-
get data for the testing dataset - Mi.

(b) Error between predicted and target data for
the testing dataset -Mi.

Figure 6.11: Comparison between prediction and target for testing dataset - Mi.

,
(a) Comparative view between predicted and tar-
get data for the testing dataset - ∆G1.

(b) Error between predicted and target data for
the testing dataset -∆G1.

Figure 6.12: Comparison between prediction and target for testing dataset - ∆G1.

When evaluating the predictions made for the testing dataset (fig.6.7 to 6.12), we can
see that the results are in agreement with the results obtained for the training dataset, all
metrics are quite similar. The biggest divergences observed is that in the training dataset,
the prediction errors of Jm tend to be greater the greater its value, whereas in the testing
dataset this fact is not observed. Another characteristic observed is that the greater the
Jm, the more dispersed are the percentage errors between prediction and target.
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In order to evaluate the performance of the ANN model for predicting the material
parameters of the modified Mulliken-Boyce model, four different materials were tested: PC,
ABS PC/ABS 60:40 and PC/ABS 80:20. It should be noted that the numerical stress-strain
curves of these materials were not considered during the training phase of the ANN model,
in order not to bias the results. To carry out this evaluation, the experimental stress-strain
curve for such materials was imputed in the neural network, thus generating predictions of
the relevant material parameters. Subsequently, the commercial software ABAQUS® was
used to generate the stress-strain curve from the predicted material parameters. Thus,
the curve called prediction in figure 6.13 represent the curves obtained via FEM from the
material parameters predicted by the neural network.

The methodology presented above makes it possible to assess how satisfactory the predic-
tions of the material parameters are. If the stress-strain curves from the obtained material
parameters present satisfactory accuracy, it is possible to state that the use of the neural
network can be used as a computational tool that helps or replaces the calibration proce-
dure of numerical models, a step that generally requires a lot of time processing due to the
recursive process to obtain the ideal parameters.

,
(a) PC. (b) ABS.

Figure 6.13: Comparison between: stress-strain curve obtained via material parameters
predicted by ANN and experimental curve.

,
(a) PC/ABS 60:40. (b) PC/ABS 80:20.

Figure 6.14: Comparison between: stress-strain curve obtained via material parameters
predicted by ANN and experimental curve - Blends.

The predictions of the material parameters via the ANN model for PC, ABS, PC/ABS
60:40 and PC/ABS 80:20 satisfactorily represent the experimental results (6.13 and 6.14).
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In all evaluated cases, the predictions of all points on the stress-strain curve are similar
to the targets. By tab. 6.3, it is identified that the mean difference in MPa between the
predicted curve and the experimental curve was equal to 3.46 for PC, 3.41 for ABS, 4.56 for
PC/ABS 60:40 and 3.18 for PC/ABS 80.20. In all evaluated cases, the greatest difference
occurred in PC and was equal to 8.64 MPa. For all predicted curves, it is identified that
the greatest dissimilarity between prediction and target occurred at the beginning of the
yield phase and this fact is more evident for PC and ABS than for the other materials.
The explanation for the largest errors being present in such a region is because the largest
prediction errors occurred for the material parameter h1, which is mainly responsible for the
description of the yield phase. The explanation for the ABS presenting the largest errors
in the yielding phase than the others is because the parameter h1 has a greater magnitude
than the other evaluated materials and due to this, this parameter has a greater impact on
the description of the entire stress-stress curve.

Table 6.3: Percentage errors between the curve obtained through the prediction of the
material parameters and the experimental curve.

Mean Error (MPa) Max Error (MPa) r2

PC 3.46 8.64 0.98
ABS 3.41 7.00 0.97
PC/ABS 60:40 4.56 8.60 0.98
PC/ABS 80:20 3.18 7.97 0.98

When comparing the manual calibration process presented in item 5.1.1.2 and the cal-
ibration process carried out through the proposed neural network, we can see that the
results are equivalent. Taking the value of r2 as a parameter, the curves obtained through
the calibration process with the aid of neural networks presented inferior performance only
for the ABS, where the manual calibration process presented r2 equals 0.99 and the through
the neural network 0.97. For the blends PC/ABS 60:40 and 60:20 the values of r2 were
identical and for the PC there was an improvement in the r2 of 0.02.

Given the results presented, it is possible to identify the contribution of the use of neu-
ral networks to help the calibration process of the modified Mulliken-Boyce model. The
calibration process of this numerical model is an arduous process that requires a lot of
processing time, each analysis takes approximately 6h (in the machine used to perform
the simulations) and must be repeated several times until the error is small enough (re-
quirement). The use of the proposed methodology, based on the implementation of neural
networks, makes the calibration process more agile (after generating the neural network, it
only takes a few seconds for the predictions to be carried out) and with good performance.
It should be noted that the variation obtained between the predicted and experimental
stress-strain curves was lower than the variations verified during the experimental tests for
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the description of the mechanical behavior of the evaluated materials due to variations in
polymer properties between different specimens.

6.0.2 ANN applied for predicting the stress-strain curve of the
modified Mulliken-Boyce model

As previously mentioned in Chapter 5, for the prediction of the stress-strain curve,
instead of using the material parameters of the modified Mulliken-Boyce model as output,
the stress-strain curve is considered. So, material parameters are used as input. The
modification of the layout (present in 5.2.1.2) and the maximum amount of epoch allowed,
in this case equal to 105, are the main modifications regarding the neural network adopted
for the prediction of the stress-strain curve.

The main consideration taken for the prediction of the stress-strain curve is that the
prediction is performed for all ordered stress-strain pairs that make up the curve. This
second proposed neural network aims to identify the possibility of using neural networks to
reproduce the results obtained by well-established techniques, such as the FEM.

As the percentage error between the prediction and the target can be evaluated for each
ordered pair of the stress-strain curve, the figures below show the distribution of these errors
for all stress-strain curves considered during the evaluation, it allows the evaluation of the
distribution of these errors for several curves in parallel. The three datasets considered
are: training dataset, training dataset 1 and training dataset 2. The difference between
testing dataset 1 and testing dataset 2 lies in the fact that the first one is used to check the
accuracy of the model during the model training and the second one is not considered. In
order to make the distribution of errors more visible, the distribution of the logarithm of
errors is also verified.

,
(a) Distribution of percentage errors between pre-
diction and target.

(b) Distribution of the logarithm of percentage
errors between prediction and target.

Figure 6.15: Percentage errors between prediction and target - Training dataset.
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,
(a) Distribution of percentage errors between pre-
diction and target.

(b) Distribution of the logarithm of percentage
errors between prediction and target.

Figure 6.16: Percentage errors between prediction and target - Testing dataset 1.

,
(a) Distribution of percentage errors between pre-
diction and target.

(b) Distribution of the logarithm of percentage
errors between prediction and target.

Figure 6.17: Percentage errors between prediction and target - Testing dataset 2.

From the figures 6.15, 6.16 and 6.17 it can be seen that for the three datasets considered,
the average percentage errors are concentrated on the left end, i.e., values closest to zero
and that the distribution has characteristics similar to an exponential distribution with a
very sharp drop. These figures also show that the training dataset is the one with the
smallest outliers, the maximum errors are close to 10 %. For testing dataset 1 and 2,
the outliers are of greater magnitude, around 100% and 50%, respectively. In view of such
observations, there is a prior idea that there is a drop in the performance of the ANN model
when predictions are made for cases not considered during the training phase, something
expected.

In order to further evaluate the agent that generates such outliers, it was separately
evaluated whether there is any relationship between the value of the material parameter
considered and the average percentage error (average value per stress-strain curve). Thus,
figure 6.18 presents the mean percentage error for each of the studied parameters. In this
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figure, the evaluation is performed only for training dataset 2, since it is the dataset defined
to evaluate the performance of the proposed neural network. It should be noted that all
subsequent evaluations will also be performed solely for that dataset.

Figure 6.18: Correlation between average percentage error and magnitude of the material
parameter.

From the figure 6.18 it is possible to identify that the largest percentage errors occur
mainly in the following situations: (1) low magnitudes of ∆G1 and (2) E1 close to 1600
MPa. Furthermore, it is also possible to identify that the average percentage error tends
to decrease the higher the ∆G1 is. For the other parameters, the presence of large errors
concentrated in certain regions of the graphs was not identified. The fact that both ∆G1 and
E1 show errors of greater magnitude concentrated in certain intervals is possibly because
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both describe at the same time the behavior of the linear phase of the material. In this
way, both are not necessarily the causative agent of the errors of greater magnitude, there
is the possibility of being only one of them.

Deeper analyzes made it possible to identify that the real agent causing the high average
percentage errors in some predictions was the parameter ∆G1, a fact that was clearly iden-
tified when investigating the behavior of the predictions of the stress-strain curve obtained
by the neural network. When evaluating the stress-strain curves for the worst predictions,
it was identified that in all cases the yield stress was quite low (few representative cases
in the training and test datasets). It should be remembered that the parameter ∆G1 is
mainly responsible for defining the yield stress in the modified Mulliken-Boyce model.

According to the observation presented above, it is possible to state that the proposed
neural network for predicting the stress-strain curve is suitable for values of ∆G1 greater
than 3 × 10−19.

In order to evaluate the performance of the proposed neural network, the following fig-
ures (Fig. 6.19 to 6.21) show a comparative graph between the stress-strain curve predicted
by the neural network and the stress-strain curve obtained via FEM (for each graph, the
comparison between the prediction and the curve via FEM are obtained by the same ma-
terial parameters). The graphs show three different situations. Figure 6.19 shows the two
worst predictions and represents cases where ∆G1 < 3 × 10−19. Figure 6.20 presents the
worst predictions excluding outliers (∆G1 > 3 × 10−19) and figure 6.21) presents the best
predictions obtained by the neural network.

,
(a) Worst stress-strain curve prediction. (b) Second worst stress-strain curve prediction.

Figure 6.19: Worst stress-strain curves predictions by ANN - outliers.
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,
(a) Worst stress-strain curve prediction. (b) Second worst stress-strain curve prediction.

Figure 6.20: Worst stress-strain curves predictions by ANN - excluding outliers.

,
(a) Best stress-strain curve prediction. (b) Second best stress-strain curve prediction.

Figure 6.21: Best stress-strain curves predictions by ANN.

Table 6.4: Mean and maximum error for stress-strain curve prediction.

Max Error (%) Mean Error (%)
Training Dataset 1.46 0.23
Testing Dataset 1 7.64 2.89
Testing Dataset 2 9.05 3.82

Table 6.4 presents a summary of some statistical parameters for the training and testing
datasets. the Mean Error (%) represents the average of the average percentage error ob-
tained in each predicted stress-strain curve and the Max Error (%) represents the average
of the maximum percentage error found for each predicted stress-strain curve. By these
parameters there is an increase both in the Mean Error (%) and in the Max Error (%) if the
training and testing dataset are compared. However, it is identified that the Mean Error
(%) observed for testing dataset 2 is relatively low, i.e., the neural network can reproduce
the data obtained via FEM with good accuracy. In most of the evaluated cases, the mean
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percentage difference between the two methods (FEM and ANN) is less than 5% (varia-
tions in experimental tests can present greater errors than those identified using a surrogate
model).

6.1 Indentation in Metals

6.1.1 Prediction of the Stress-Strain curve from Displacement-
Force Curve

The prediction of the stress-strain curve using displacement-force data can be performed
using different methods. One method is the prediction of material parameters (strength
coefficient, hardening exponent, modulus of elasticity and yield stress) followed by the de-
termination of the stress-strain curve with a chosen rheological model. Another method is
the direct prediction of the stress-strain data points through a rheological model. Prelimi-
nary studies were carried out (with 300 points for each curve) to access the best alternative.
In view of this comparative analysis between the two mentioned methods, the first one had
a much higher error than the second: in some cases, the errors reached levels above 200%.
Thus, the second method (use of stress-strain curve) is employed in all ANN models and
predictions reported here.

As can be identified in the items that follow, results are presented for four different
cases, and for each case, different considerations are taken into account. Each different
configuration encompasses the consideration taken in the previous model, that is, the ANN-
C model necessarily encompasses the considerations of the ANN-B model, and the ANN-D
model necessarily encompasses the considerations of the ANN-C and ANN-B model. The
idealization of the models was carried out chronologically, so it is possible to identify the
impact on predictions if such consideration is taken. The identification and discussion of
the error observed in the four proposed ANN models will be discussed.

Fig. 6.22 shows, for each strategy, the error distributions in relation to the strain. In
the following items, the stress-strain curve predictions obtained using the four ANN models
are discussed and compared. As can be seen during the results, with each consideration
made, the better predictions will be made, however, the more restricted the application of
the neural network becomes.
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,
(a) ANN-A.

,
(b) ANN-B.

,
(c) ANN-C.

,
(d) ANN-D.

Figure 6.22: Mean and maximum percentage error for all ML prediction points.

6.1.1.1 ANN-A predictions

The mean percentage error, the standard deviation and the maximum error for each
prediction point of the stress-strain curve employing ANN-A are shown in Fig. 6.22(a).
A large percentage error is observed in all data points. Moreover, as the strain increases
so does the maximum percentage error between prediction and target. The maximum
errors are presented as outliers that reach percentage errors close to 68%, which might be
considered as unacceptable for most engineering applications. Nevertheless, the ANN-A
showed a mean percentage error and a standard deviation of approximately 10%, meaning
that when it works (which happens in approximately 32% of the cases) it does with a
reasonable precision.

6.1.1.2 ANN-B predictions

In the ANN-B strategy, as previously mentioned, the applied compressive load is kept
constant at the maximum value of the range chosen for that parameter. The mechanical
properties and the indenter’s radii are kept as variables. As expected, due to the reduction
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of variables, an improvement in the predictions is observed. However, a high value of
maximum percentage error remains. As can be identified in Fig. 6.22(b), the main aspect
that differentiates it from the ANN-A is that the predictions have smaller outliers. In
this case, the maximum errors reached values close to 40%. This model also shows a
different behavior when compared to the ANN-A: It initially presents a slight decrease in the
maximum percentage error, but soon after there is an increase as the true strain increases.
An evaluation of the mean percentage error shows an improvement when compared to the
ANN-A (same standard deviation of approximately 10%, but standard deviations of 5%).

6.1.1.3 ANN-C predictions

In the ANN-C, the material properties are the only variables. Fig. 6.22(c) shows the
results for this third model. The values obtained for the mean and maximum errors, as
well as the standard deviations, show a contrasting behavior when compared to the two
previous models. The errors and deviations decrease considerably until the strain point close
to 5%, when a somewhat linear increase of both parameters is noted. When evaluating the
predicted stress-strain curves and comparing them to the targets, such an inflection point
occurs near the beginning of the material’s inelastic zone. This model presents significant
improvement in the prediction mainly due to the presence of fewer variables since it does
not consider variations in the indenter and in the magnitude of applied force. The average
errors are in the range of 2-8%, the maximum standard deviation obtained is approximately
6% and the maximum error is between 8-25%. Therefore, this model is suitable for the small
strains analysis of most metallic materials.

6.1.1.4 ANN-D predictions

The ANN-D can be interpreted as an extended version of ANN-C. As seen in Fig. 6.22(d),
this strategy leads to a significant overall improvement of all error indicators. From the
results obtained, it is possible to point out a significant improvement in the obtained pre-
dictions, with a considerable drop in both the average error, maximum error, and standard
deviation. The biggest error obtained was approximately 21% at the beginning of the de-
scription of the stress-strain curve. Since the magnitude is negligible in such a region if
compared to the other levels during the description of the curve, this value can be consid-
ered as less relevant. Considering the plastic zone of the material, the maximum error in
the prediction was approximately 15.5%. When evaluating the maximum mean error, it
occurred at the end of the description of the stress-strain curve, with a value close to 3.5%,
with a standard deviation of approximately 2.5%.

The proposition of a model composed of different neural networks, each one used for
a certain range of material properties, was defined after evaluating the impact of the ma-
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terial property on the errors obtained by the prediction (considering the 75th percentile).
Moreover, as the increase in errors is verified in the inelastic zone, the evaluation consid-
ered only the parameters pertinent to the inelastic behavior: strength coefficient, K, and
hardening exponent, n. Fig. 6.23 presents the magnitude of the average error in relation to
the magnitude of the strain hardening exponent, n, and the strength coefficient, K. Based
on the correlations, the occurrence of greater magnitude of average error is found primar-
ily in situations of: (1) low strength coefficient and (2) high strength coefficient and high
strain hardening exponent. The smallest errors were found primarily outside these testing
extremes.

Figure 6.23: Correlation between mean percentage prediction error, strain hardening expo-
nent and strength coefficient.

A separate evaluation of the prediction error and magnitude of the parameter K and
n was also carried out. Fig. 6.24(a) and Fig. 6.24(b) were obtained from the implemen-
tation of a clustering analysis, each color represents a different cluster. The aim of such
implementation was to identify the presence of groups within the data. For this purpose,
a K-means clustering coupled with an unsupervised learning technique was implemented.
This technique consists of an iterative process to assign each data point to a group where
data points are grouped based on the similarity of position of the geometric representation
space. Herein, five different groups within the sample space are defined.
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,
(a) Relative to the K. (b) Relative to the n.

Figure 6.24: Clustering errors.

Fig. 6.24(a) and Fig. 6.24(b), clearly shows that there are groups of average percentage
errors in relation to different magnitudes of strength coefficient. Therefore, the errors
obtained must have a relationship with the range of parameter K. In opposition, when
evaluating the results obtained for n, it is not possible to identify a clear correlation. As
can see in Fig. 6.24(b), the presence of groups occurs horizontally (i.e. for the same interval
of such parameter, different groups of mean percentage errors were obtained). Therefore,
the ANN-D has been implemented using five different strength coefficient ranges: 150-300
MPa, 300-450 MPa, 450-600 MPa, 650-850 MPa and 850-1000 MPa. Nevertheless, to ensure
a consistent performance evaluation, it should be noted that all other parameters relevant
to the ML training are identical to the other models.

Since the ANN-D shows the best results, an additional performance analysis (using
displacement-force curves not considered during the training of the ANN model) was carried-
out. The best and worst predictions, for each range of K, are illustrated in Fig. 6.25. It
should be noted that each dataset is composed solely of curves referring to the relevant
strength coefficient range and that the best and worst prediction for each range necessarily
uses the same neural network for different displacement-force curves present in the con-
sidered dataset. The best predictions for all K ranges are almost identical to the target.
The worst predictions showed no specific trend, they could occur at higher or lower stress
levels than the ones observed in the target. For instance, a still good prediction is seen
in Fig. 6.25(b), while in Fig. 6.25(c) the prediction is slightly shifted and in Fig. 6.25(d) a
reasonable description is provided up until a certain strain level is reached.
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,
(a) 150-300 MPa range.

,
(b) 300-450 MPa range.

,
(c) 450-600 MPa range.

,
(d) 650-850 MPa range.

,
(e) 850-1000 MPa range.

Figure 6.25: Best and Worst ANN-D stress-strain predictions for each range of K.
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Table 6.5 summarizes the data related to the mean, maximum and standard deviation
for the plasticity zone of the stress-strain curve for each of the models presented.

Table 6.5: Errors observed at the inelastic zone of each ANN model.

Model Mean Error (% ) Maximum Error (% ) Standard Deviation
ANN-A 13.20 67.49 11.30
ANN-B 12.02 38.45 9.05
ANN-C 8.24 24.80 5.67
ANN-D 2.87 15.90 2.41

6.1.2 Prediction of the Displacement-Force Curve and Contact
Pressure from the Material Properties and Boundary Con-
ditions

As shown in 5.2.2, the Young’s modulus, yield stress, strength coefficient, and hardening
exponent of the material, as well as the boundary conditions (force and indenter radius),
were used to predict the displacement-force curve and contact pressure for indentation tests.
It should be noted that the input dataset was not the same one used to predict the stress-
strain curve because, in accordance with a pre-established rule also presented in item 5.2.2,
the neural network used to predict the displacement-force curve takes variations in force
and indenter radius into account.

In order to evaluate the performance, a random dataset not considered during training
was studied on the ANN model for predicting the displacement-force curve. Figure 6.26
shows the largest prediction errors obtained by each predicted curve in relation to the
considered parameter. As can be seen, the largest percentage errors are exceptions, and the
maximum error is relatively low (close to 16%).

104



(a) Yield Stress. (b) Young’s Modulus.

(c) Hardening Exponent. (d) Strength Coefficent.

(e) Force (f) Identer Radius.

Figure 6.26: Correlation between maximum percentage error and magnitude of the material
parameter.

When evaluating the presence of any correlation between the occurrence of the largest
errors with the considered parameters, it is verified that the largest errors occur in: (1) high
magnitudes of yield stress, (2) low magnitudes of Young’s modulus and (3) high magnitudes
of indenter radius. No correlations were identified in: (1) hardening exponent, (2) strength
Coefficient, and (3) force.

In order to evaluate the performance of the proposed neural network, figure 6.27 presents
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two predictions obtained, the worst prediction is shown on the left and the best prediction on
the right. As it is possible to identify, for the best prediction, there are almost no differences
between the target and the predicted curve, both overlap. For the worst predicted curve,
the prediction of displacements greater than the target is verified for practically all ordered
pairs. When evaluating other predictions made by the same ANN, it is identified that this
is not a general rule, in other situations there is the prediction of displacements lower than
the target.

,
(a) Worst prediction.

(b) Best prediction.

Figure 6.27: Displacement-force curve prediction for an indentation test using mechanical
properties and boundary conditions.
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From the displacement-force curve it is possible to obtain the residual and the maximum
indentation (from these parameters it is possible to calculate the indentation area). Figure
6.28 shows a comparison of maximum and residual indentation between target and predic-
tion for all predictions performed. An average error of 1.87% was found for the residual
indentation predictions and 0.32% for the maximum indentation.

,
(a) Maximun indentation. (b) Residual indentation.

Figure 6.28: Comparative view between prediction and target.

The general mean error of predictions for the displacement-force curve was 0.42%, i.e.,
the performance of the adopted neural network presents good accuracy when compared to
the results obtained via FEM. The neural network adopted for predicting the displacement-
force curve based on material properties and boundary conditions provides better perfor-
mance, even covering more variables, than the neural network for predicting the stress-strain
curve. It should be noted that the same neural network and the same dataset adopted for
the prediction of the displacement-force curve were tested for the prediction of the stress-
strain curve, with some adjustments, but the performance was not superior to the networks
presented in item 6.1.1. In general, the results presented in this item make it clear that
the use of ANN to predict the displacement-force curve based on material properties and
boundary conditions for the study of residual indentation presents itself as a viable and
powerful alternative to FEM.

Finally, the same neural network layout adopted for predicting the displacement-force
curve was used to predict the contact pressure. The comparison between the predictions
and the target is shown in figure 6.29. For such predictions, a mean error equal to 0.38%
and a maximum error equal to 3.51% was obtained.
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Figure 6.29: Comparative view between prediction and target for contact pressure.

6.2 Conclusion

The goal of this work, as previously stated, is to identify the possibility of using Neural
Networks to predict the behavior and properties of metallic and polymeric material (rigid
thermoplastic polymers) under inelastic strains. In order to validate the applicability of
neural networks for this purpose, four different applications were evaluated.

Two evaluations were performed for the study in rigid thermoplastic polymers: (1) pre-
diction of the material parameters of the proposed rheological model (modified Mulliken-
Boyce model) from stress-strain curves obtained through experimental and/or numerical
tests, and (2) prediction of the stress-strain curve from material properties. The first evalu-
ation verifies the applicability of neural networks in assisting with the numerical calibration
procedure of constitutive models, which can be time-consuming. The second evaluation
determines the suitability of neural networks for predicting material behavior (stress-strain
curve) based on material properties. Once such applicability is identified, the use of neural
networks can help or even replace commonly used numerical tools, such as the FEM.

The best predictions for the first evaluation case, predicting material parameters from
the stress-strain curve, occurred for E1, Sss, Mi, and ∆G1. Lower prediction accuracy
was obtained for Jm and h1. Four evaluations were performed to determine the impact of
material parameter predictions on the description of the stress-strain curve: PC, PC/ABS
60:40, PC/ABS 80:20, and ABS. The results obtained show good performance, the worst
adaptation occurred for the ABS, where the r2 was equal to 0.97.

The results of the second case studied, predicting the stress-strain curve from material
properties, were also satisfactory. The mean error and maximum error in the predictions
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of the stress-strain curve were 3.82% and 9.05%, respectively. The largest errors occurred
primarily when low magnitudes of ∆G1 were considered.

In summary, when evaluating the results obtained for the evaluation of rigid thermo-
plastic polymers, it is possible to state that the use of neural networks is a viable tool for
predicting the material properties of the adopted constitutive model as well as the material’s
behavior. Once the database is created, predictions can be made in a matter of seconds,
much less time than it takes to run a simulation in the commercial software ABAQUS®

using VUMAT (approximately 6 hours on the same machine).

Two evaluations were performed for the metals study: (1) prediction of the stress-strain
curve from the displacement-force curve and (2) prediction of the displacement-force curve
and contact pressure from the material properties. The first hypothesis evaluates the ap-
plicability of neural networks for the identification of material behavior, in this case the
stress-strain curve, from the displacement-force curve typically obtained through experi-
mental indentation tests (the stress-strain curve is not a generated output for such testing).
The second hypothesis identifies the ability of neural networks to assist or even replace
commonly used numerical tools, such as the FEM, for such applications.

For the first case, it was identified that, the observed results revealed that the number of
variables and the ML strategy adopt for the training have a significant impact in an ANN
prediction. the ANN-A (a model with fully variable material properties, compression force
and indenter radius) has shown an overall precise representation of the expected (target)
stress-strain relationship, but with an occasional high error. From this observation, a model
(ANN-B) trained using a dataset with a constant compressive force is also analyzed. In
this case, better predictions are identified when compared to the ANN-A model, however,
the relatively high errors in some predictions remained. The ANN-C model, implemented
considering only variations in the material properties, show significant improvements in
the predictions, but, when evaluating the behavior of the predictions, it was found that
the strength coefficient has the greatest influence on the errors observed. This led to the
understanding that possibly a model to predict the stress-strain curve for the entire range
of metallic material it is not the most effective solution. A segregation of the strength
coefficient in smaller subsets for the training of the ANN-D produced the lowest mean
errors (approx. 2.5%) and a mitigation of the maximum error. Moreover, this strategy
does not really require a large dataset for training the neural networks considered. The
amount of data used for each of the neural networks used (pertaining to each strength
coefficient range) was approximately 80% lower than that used for the others, but even so,
with good accuracy.

The second case, prediction of the displacement-force curve, showed better accuracy in
predictions when compared to predictions of the stress-strain curve, with a mean error of
about 1.7%. The maximum error obtained was 16%, but large errors in predictions were
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exceptions. When the residual indentation is evaluated, a parameter that allows obtaining
the dimensions of the indentation marks, the errors obtained by the predictions are even
smaller (maximum error equal to 1.87% mean 0.32%). The maximum contact pressure
predictions are also accurate, with an average and maximum error of 0.38% and 3.51%,
respectively.

The results of the second study show that the use of neural networks provides satisfactory
performance. The prediction errors are significantly low in all cases evaluated, and the
results obtained allow inference that the use of neural networks is a suitable method for
studying the behavior of metals under the conditions considered.

Both the polymer and metal results show that the use of neural networks is a powerful
tool for that can be used to predict the mechanical behavior of solids. Such a tool can be used
as an auxiliary tool or even as a substitute method for well-established numerical and/or
experimental methods. The only requirement, however, is to have a dataset beforehand so
that the training and construction of the networks can be carried out.
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Chapter 7

Future Works

As demonstrated throughout this work, the use of neural networks to predict the ma-
terial behavior for the study of rigid thermoplastic polymers under uniaxial compression
and the study of residual indentation in metals produced good results. Thus, the primary
goal is to apply the same methodology presented and used for the study of indentation in
polymers.

Initial studies were started, in which the modified Mulliken-Boyce model was used to
evaluate indentation in polymers. The first evaluations were carried out for ABS and it was
identified that the adopted model was able to accurately reproduce the mechanical behavior
of the material (the values obtained numerically were very close to the experimental ones).
In the case of PC, the model generally reproduces the experimental results, but not as well
as in the case of ABS. As the magnitude of force increases, the model’s accuracy decreases,
and the error can reach approximately 50% of the average of the experimental results.

Preliminary results show that the modified Mulliken-Boyce model is a viable model
for studying indentation in polymers and it is expected that the methodology adopted for
metals can also be applied to polymers with good prediction accuracy. In this way, the
continuation of this study takes place as follows:

1. Implementation of a 2D model in FEM, in order to reduce computational costs;

2. Check the validity of applying the Modified Mulliken-Boyce model in a two-dimensional
configuration for the study of indentation in polymeric materials through experimen-
tal tests (the VUMAT algorithm developed in this thesis can be applied to two-
dimensional evaluations);

3. Creation of a database (input and output) through the FE model;

4. Application of the methodology adopted in this thesis through Neural Networks for
the prediction of the desired parameters for residual indentation tests in polymeric
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materials.
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