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Abstract

NONLINEAR DYNAMICAL ANALYSIS IN MAGNETIC HYPERTHERMIA

Author: Filipe Eduard Leite Ossege

Supervisor: PhD Aline Souza de Paula (ENM/UnB)

Co-supervisor: PhD Rafael Gabler Gontijo (ENM/UnB)

Graduate Program in Mechanical Sciences

Brasília, February 06, 2023

Magnetic hyperthermia is a cancer treatment based on heating tumors using
ferrofluids. Motivated by this therapy, this work evaluates different nonlinear dynamical
responses seeking the better performance in terms of temperature increase. Through a
system with 250 lattices with 300 particles each, a ferrofluid is simulated numerically under
several circumstances. Due to the random effect, 50 realizations of the same system are
applied and average time response is obtained. Three different excitation are applied: pure
alternating magnetic field, alternating magnetic field with alternating shear rate and pure
chaotic magnetic field. In the case of pure alternating magnetic field, system response is
evaluated for different values of the Péclet number, volume fraction, Langevin parameter,
dipolar interaction parameter and magnetic field's angular frequency. The best situation is
associated with a more intense magnetic field. In the case of alternating magnetic field with
alternating shear motion, the shear rate's amplitude and angular frequency are the varied
parameters. The results indicate that the shear motion brings no benefits for magnetic
hyperthermia. In the case of pure chaotic magnetic field, system response is evaluated for
different values of the Langevin parameter. From the 3 excitations considered, the pure
alternating magnetic field produced the best dynamical behavior for this cancer treatment.
It is also important to highlight that, beyond the goal of temperature increase, this work
brings a better understanding of dynamical response of FF’s in MH.

Keywords: Magnetic Hyperthermia; Particulate System; Dynamical Analyzis; Nonlinear
System
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Resumo

ANÁLISE DINÂMICA NÃO-LINEAR EM MAGNETOHIPERTERMIA

Autor: Filipe Eduard Leite Ossege

Orientadora: Profa. Dra. Aline Souza de Paula (ENM/UnB)

Coorientador: Prof. Dr. Rafael Gabler Gontijo (ENM/UnB)

Programa de Pós Graduação em Ciências Mecânicas

Brasília, 06 de fevereiro de 2023

Magnetohipertermia é um tratamento de câncer baseado no aquecimento de tumores usando
ferrofluidos. Motivado por essa terapia, esse trabalho avalia diferentes respostas dinâmicas
não-lineares, a fim de aprimorar seu desempenho em termos do aumento de temperatura.
Através de um sistema com 250 caixas com 300 partículas cada, um ferrofluido é simulado
numericamente sob diversas circunstâncias. Devido ao efeito randômico, 50 realizações
do mesmo sistema são aplicadas e a resposta temporal média é obtida. Três forçamentos
distintos são aplicados: campo magnético alternado puro, campo magnético alternado com
cisalhamento alternado e campo magnético caótico puro. Para o caso do campo magnético
alternado puro, a resposta do sistema foi avaliada para diferentes valores do número de
Péclet, da concentração de partículas, do parâmetro de Langevin, do parâmetro de interação
dipolar e da frequência angular do campo magnético. A melhor situação obtida está
associada a um campo magnético mais intenso. Para o caso do campo magnético alternado
com cisalhamento alternado, a amplitude e a frequência angular da taxa de cisalhamento
são os parâmetros variados. Os resultados indicam que o cisalhamento não traz benefícios
para a magnetohipertermia. Para o caso do campo magnético caótico, o paramêtro de
Langevin é avaliado. Dos três forçamentos considerados, o campo magnético alternado
puro é o comportamento mais apropriado para esse tratamento de câncer. É importante
destacar que, além do objetivo de aumentar a temperatura, esse trabalho permite um
melhor entendimento da resposta dinâmica de ferrofluidos em magnetohipertermia.

Palavras-chaves: Magnetohipertermia; Sistema Particulado; Análise Dinâmica; Sistema
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shear motion rad s−1

xxviii



1 Introduction

“We are not to tell nature what she's gotta be...
She's always got better imagination than we have.”

Richard Feynman

In medicine, hyperthermia is a term which describes the treatment of tumors by
increasing temperature in various ways (Hildebrandt et al., 2002). Normally, a biological
tissue is heated above 40°C, as cancer growth is interrupted in high temperatures (Périgo
et al., 2015). Hyperthermia is commonly used as a complementary method for cancer
therapy, accompanied mostly by radiotherapy and chemotherapy (Hildebrandt et al., 2002).
It is believed that the first use of hyperthermia was around 3,000 years B.C. (Périgo et
al., 2015), as a papyrus of the ancient Egypt describes the treatment of breast cancer
(Hajdu, 2011). Several procedures have been developed based on hyperthermia, such
as radio-frequency, ultrasound irradiation and local thermal contact (Odenbach, 2009).
According to Odenbach (2009), the main disadvantage of common hyperthermia methods
are the side effects in healthy tissues, due to the high temperature.

The heating can also be achieved by magnetic means with Magnetic Hyperthermia
(MH) or Magnetic Nanoparticle Hyperthermia, in which a biocompatible magnetic fluid is
injected in the organic unhealthy tissue and subjected to a time dependent magnetic field
(Liu et al., 2020). Due to hysteresis losses, the energy of the magnetic field is dissipated,
increasing the temperature locally (Rosensweig, 2002), (Carrey; Mehdaoui; Respaud, 2011).
MH presents fewer side effects in comparison with other hyperthermia methods, as the
heating region can be controlled by the magnetic field (Thiesen; Jordan, 2008). Furthermore,
MH is commonly used in combination with other treatments to increase efficacy. In a
nanoscopic scale, a localized temperature rise is promoted by the action of an applied
magnetic field in a continuum medium filled with magnetic particles. Present challenges of
MH consist on increasing heating power and controlling the cancer temperature (Peiravi
et al., 2022).

Some of the physical mechanisms associated with MH are the energy dissipation
of the magnetic field; the blood perfusion rate, which varies depending on healthy and
cancerous cells (Tang; Jin; Flesch, 2020); the densities of blood, healthy cells, cancerous
cells; the thermal conductivity inside the organic tissue; the metabolic heat of healthy
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cells and cancerous cells; the specific heat capacity; properties of the magnetic fluid and
so on. The blood perfusion rate acts in MH maintaining the temperature of 36°C in the
human body, cooling the effect of MH. But the multiplication of tumors cells affects the
blood flow, which decreases the perfusion rate and its effect in the temperature. Because
of this, it is easier to heat cancerous cells than healthy cells.

To apply the MH, a magnetic suspension is used, that is, a particle conglomerate
dispersed in a liquid carrier (Gontijo; Cunha, 2015). Such suspensions are called either a
magnetorheological suspension or a Ferrofluid (FF) (also know as magnetic fluid), depending
on the magnetic particles' diameter (Gontijo, 2013). More specifically, magnetorheological
suspensions have non-colloidal particles with typical size of 100 𝜇m, whereas FFs are made
with colloidal particles with typical size of 10 nm (ROURE NETO, 2018). Furthermore,
FFs are considered smart nanomaterials whose particles are named Magnetic Nanoparticles
(MNP) (Huang et al., 2017), (Coisson et al., 2017).

MH was first highlighted by Gilchrist et al. (1957), who conducted experiments
of sickly beef livers under alternating magnetic field. At that time, magnetorheological
suspensions were applied in the treatment. However, problems such as biocompatibility with
the human body still persisted (Blanco-Andujar; Teran; Ortega, 2018). Later, the treatment
was greatly improved by nanotechnology, as the magnetic particles' diameter became
smaller and FF was created (Liu et al., 2020). Therefore, most of the problems regarding
MH were solved and the method could be applied with human patients (Blanco-Andujar;
Teran; Ortega, 2018).

The first FF was fabricated by Papell (1965), at the National Aeronautics and
Space Administration (NASA), with the objective of creating a rocket fuel capable of
being controlled by a magnetic field in zero gravity environments. In the composition of a
FF, a surfactant envelops the MNPs to prevent such particles to agglomerate with each
other due to the magnetic forces (Huang et al., 2017). According to Huang et al. (2017),
the brownian random motion avoids the particle sedimentation when a gravitational or a
magnetic field is applied. To exemplify the structure of a FF, Figure 1.1 shows a MNP,
with its core and the additional layer provided by the surfactant. The common diameter of
the magnetic core is 10 nm and the diameter considering the surfactant layer (also called
hydrodynamic diameter) can reach 25 nm (Finlayson, 2013). Thus, a common size for the
hydrodinamic radius is 𝑎 = 25/2 nm = 12.5 nm.

Furthermore, in the early stages of the FF manufacture, wet grinding of magnetite
(Fe3O4) mixed with surfactant was used, along with centrifugation (Sezer et al., 2021). As
reported by the Sezer et al. (2021), such method demanded long periods of time and high
amounts of energy, so that new processes were developed. For example, coprecipitation
(Lee et al., 2004), thermal decomposition (Maity et al., 2009) and hydrothermal synthesis
(Haw et al., 2010) were applied.

The MH method has shown potential, as it decreases the cancer's mass and increases
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𝑎

Figure 1.1 – Representation of a magnetic particle: magnetic core (in violet) and organic
surfactant shell that prevents conglomeration (in blue), where 𝑎 is the parti-
cle's hydrodynamic radius. Figure adapted from Arias et al. (2018).

the life expectancy of animals in experiments (Silva et al., 2010). For example, cancerous
cells of mice under an alternating magnetic field with magnitude 30,6 kA/m and frequency
118 kHz have achieved a temperature of 46°C using magnetite particles (Ito et al., 2001).
Concerning experiments with humans, cerebral tumors of male patients have reached a
temperature of 65.6°C with a magnetic field with magnitude from 2.5 to 18 kA/m and
frequency 100 kHz using iron oxide nanoparticles (Landeghem et al., 2009). The MH
treatment has an edge, considering that is effective and minimally invasive and can destroy
the cancer or detain its expansion (Silva et al., 2010).

The performance of the MH technique depends upon the increase of the FF's
temperature. From a dynamical point of view, the temperature increase is associated with
the particles agitation intensity. The collision of the MNPs under magnetic attraction and
their dynamics can influence greatly the cancer treatment, thus, it is important to evaluate
the dynamical response and understand its influence in the temperature variation.

1.1 State of the Art

The applications of FFs are separated by Sezer et al. (2021) in 4 groups: biomedical,
environmental, energy and mechanical. Regarding the biomedical use, some implemen-
tations are drug delivery (Polyak; Friedman, 2009), hyperthermia in cancer therapy for
lungs (Sadhukha; Wiedmann; Panyam, 2013), prostate (Johannsen et al., 2010), liver
(Wang; Song; Zhang, 2009) and breast (Hilger; Hergt; Kaiser, 2005). In the medical area,
compounds of maghemite (𝛾−Fe2O3) and magnetite (Fe3O4) are mostly utilized (Sezer et
al., 2021), (Neuberger et al., 2005).

In relation to the environmental applications, FFs are used as a method of separating
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mixtures, with the purpose of separating garbage from the ecosystem. To do so, one can
identify magnetic separation (Nogueira et al., 2019) and adsorption (Kakavandi et al.,
2015). Concerning the energy applications, magnetic fluids are used in energy harvesting
systems (Bibo et al., 2012) and in heat transfer, such as in thermomagnetic convection
(Nkurikiyimfura; Wang; Pan, 2013).

Regarding the mechanical applications, FFs are applied in dampers (Wang; Liu;
Li, 2018), dynamic vibration absorbers (active (Ohno; Suzuki; Sawada, 2011), semi-active
(Kondo; Ikari; Sawada, 2016) and passive (Zhu et al., 2015)), vibration isolators (active
(Kamiyama; Okamoto; Oyama, 2002) and passive (Liu, 2009)) and lubrication (Huang et
al., 2011). For this topic, the article of Huang et al. (2017) is recommended. In addition,
there are others industrial applications of FFs in computer hard disks (Scherer; Neto,
2005), robotics (Hsu; Wong-Foy; Pelrine, 2018) and loudspeakers (Bottenberg; Melillo;
Raj, 1980). For this subject, the article of Kole and Khandekar (2021) is recommended.

Concerning the dynamical analysis of FFs, the bifurcation of a superparamagnetic
magnetic fluid has been investigated numerically using the eulerian description and linear
stability analysis (Pérez et al., 2011). Chaotic behavior was identified in a system described
by a gas bubble immersed in FF by means of Lyapunov exponent (Malvar; Gontijo;
Cunha, 2018). The temperature profile of a FF under chaotic regime was investigated
using bifurcation diagrams, Lyapunov exponents, phase space and Fourier power spectrum
(Laroze; Siddheshwar; Pleiner, 2013).

1.2 Objectives

The main goal of this work is to perform a dynamical analysis of the system, linking
its dynamical behavior with the highest production of internal energy. Lastly, the specific
objectives are:

• Evaluate the dynamical response and the internal energy production for 3 different
types of excitations:

– Pure alternating magnetic field;

– Alternating magnetic field with alternating shear rate;

– Pure chaotic magnetic field.

• For each case, identify the parameters that most contribute for the internal energy
production of the system, enhancing the MH;

• Identify the most appropriate behavior from the three excitation.
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1.3 Methodology

To achieve the goals described in the Objectives, Fig. 1.2 shows the flowchart
summarizing the methodology. For the first branch, through numerical simulation, an
alternating magnetic field is applied. The time response of the system and its internal
energy production are obtained and evaluated. Then, the best case for this excitation is
determined. For the second branch, an alternating magnetic field along with alternating
shear motion is applied, the response and internal energy are evaluated and the best
case for this excitation is determined. For the third branch, a pure chaotic magnetic field
is imposed, the response and internal energy are evaluated and the best case for this
excitation is determined. Lastly, the best case from all three excitation is determined.

Investigate the dynamical
behavior of FF in MH

Apply an
alternating

magnetic field
with alternating

shear motion

Apply an
alternating

magnetic field

Impose chaotic
behavior to

magnetic field

Evaluate the
internal energy

production

Evaluate the
internal energy

production

Evaluate the
internal energy

production

Determine
the best case

Determine
the best case

Determine
the best case

Determine
the best case

scenario

Figure 1.2 – Flowchart representing the methodology of this work.
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1.4 Contribution

Although some authors in the literature carry out a dynamical analysis of FFs, none
of them considers a FF under MH. This work contributes to filling this gap, evaluating
a dynamical analysis of FF used in MH. To simulate a FF, it is considered a dynamical
system made with MNPs and governed by nonlinear differential equations. The internal
energy per unit volume produced by the MNPs is quantified for different parameters and
types of excitation, with the main purpose of defining the best scenario for MH, i.e., the
case in which the internal energy production is the highest.

1.4.1 Scope of the Work

Figure 1.3 displays a flowchart of the structure of this dissertation. Chapter 2:
Ferrohydrodynamics and Description of the System presents the derivation of the equations
of motion that govern the MNPs' system, as well as the numerical methodology applied in
order to achieve faster convergence. Chapter 3: Nonlinear Dynamics and Signal Processing
describes the dynamical tools and nonlinear concepts used in this work, such as bifurcation
diagram, Poincaré map, and Fourier Transform. Gathering Chapters 2 and 3, Chapter
4: Results of Alternating Magnetic Field displays the results for a system with only an
alternating magnetic field as excitation. Chapter 5: Results of Alternating Magnetic Field
with Shear Motion shows the results with both magnetic field and an alternating shear
flow as excitation. Chapter 6: Results of Chaotic Magnetic Field displays the results for
a imposed chaotic magnetic field. Chapter 7: Conclusion and Future Work shows the
conclusion of the work and insights for future work.
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Chapter 4: Results of Al-
ternating Magnetic Field

Chapter 2: Ferrohydrodynamics
and Description of the System

Chapter 3: Nonlinear Dy-
namics and Signal Processing

Chapter 5: Results of
Alternating Magnetic

Field with Shear Motion

Chapter 6: Results of
Chaotic Magnetic Field

Chapter 7: Conclu-
sion and Future Work

Figure 1.3 – Schematic representation of the chapters in this dissertation.

7



2 Ferrohydrodynamics and
Description of the System

“When you yourself are responsible for some new application in mathematics in your chosen
field, then your reputation, possibly millions of dollars and long delays in the work, and possibly
even human lives, may depend on the results you predict. It is then the need for mathematical

rigor will become painfully obvious to you.”

Richard Hamming

2.1 Spatial description

The system consists of MNPs dispersed in a newtonian fluid under low Reynolds
number, analyzed by the lagrangean description (Gontijo; Cunha, 2015). Each particle
is a rigid body with mass and volume, subjected to translation and rotation. Hence, a
many-body problem is carried out.

A sample of 300 MNPs is simulated in a volume represented by a cubic box, shown
in Fig. 2.1. The boundary of the box is displayed by gray lines, while the MNPs are
represented by black spheres with red magnetic moments. A monodisperse suspension is
considered, that is, all the MNPs have the same volume (same radius).

The magnetic response of the system depends on the average of all magnetic dipole
moments. The MNPs initially have an homogeneous random distribution, such that the
magnetic response of the system is equal to zero - Fig. 2.1 (a). When an external magnetic
field is applied, the MNPs align in the direction of the magnetic field and the system
presents a magnetic response - Fig. 2.1 (b). A complete three-dimensional view of the
system is shown in Fig. 2.1 (c).
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m𝑖

x̂

ẑ

(a)

m𝑖

M

x̂

ẑ

H

(b)

m𝑖

x̂ ŷ

ẑ

(c)

Figure 2.1 – Representation of MNPs dispersed in a liquid carrier. Each particle contains
a magnetic moment dipole vector (m𝑖) with its own orientation, illustrated in
red. (a) MNPs initially randomly distributed. (b) MNPs after the application
of an external magnetic field (H) represented in blue, such that the particles
show a preferential direction and magnetization vector can be observed (M).
(c) Three-dimensional view of the MNPs' domain.

Each MNP has a permanent magnetic dipole moment, m𝑖, where 𝑖 ∈ N | 1 ≤ 𝑖 ≤ 𝑁

is a natural number that represents the index of each particle and 𝑁 = 300 is the total
number of particles. Thus,

m𝑖 = 𝑚d̂𝑖, 𝑖 = 1, . . . , 𝑁, (2.1)

where 𝑚 is a scalar quantity named dipole intensity and d̂𝑖 is an unit vector representing
the 𝑖-th particle dipole orientation and 𝑁 is the total number of MNPs.

For any given configuration of particles, the system's magnetic response can be
calculated by Eq. (2.2),
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M = 1
𝑉

𝑁∑︁
𝑖=1

m𝑖 = 𝑁

𝑉

⎛⎝ 1
𝑁

𝑁∑︁
𝑖=1

m𝑖

⎞⎠ = 𝑛m, (2.2)

where M is the magnetization vector, 𝑉 is the total volume of the system, 𝑛 = 𝑁/𝑉 is
the density number and m is the mean value of all magnetic dipole vectors. To represent
a cartesian coordinate system, x̂, ŷ and ẑ are, respectively, the unit vectors in the 𝑥, 𝑦,
and 𝑧 directions, such that M = 𝑀𝑥x̂ +𝑀𝑦ŷ +𝑀𝑧ẑ.

For example, in Fig. 2.1a, there is no magnetic field applied, consequently, the sum
of all magnetic dipole moments results in a magnetization equal to zero

(︀
‖M‖ = 0

)︀
and the

system behaves like a newtonian fluid (Gontijo; Cunha, 2015). On the other hand, in Fig.
2.1b, if one applies a magnetic field, H, most magnetic dipole moments orient themselves
at the same direction of the field. As a result, the magnetization in the system is greater
than zero

(︀
‖M‖ > 0

)︀
and the fluid behaves like a non-newtonian fluid (Rosensweig, 2013).

When all magnetic moments are in the same direction, due to a high magnitude
magnetic field, H, the system reaches the saturation magnetization, 𝑀𝑠, that is, the
maximum magnetization possible from the FF, given by Eq. (2.3),

𝑀𝑠 = 𝜑𝑀𝑑, (2.3)

where 𝜑 is the magnetic volume fraction and 𝑀𝑑 is the spontaneous magnetization of the
magnetic material, i.e., the solid from which the particles are made (Odenbach, 2009). For
instance, the spontaneous magnetization of magnetite is 𝑀𝑑 = 4, 5 · 105A/m.

2.1.1 Volume Estimation

The volume fraction of MNPs is calculated by Eq. (2.4),

𝜑 = 𝑉𝑝

𝑉
= 1
𝑉

𝑁∑︁
𝑖=1

𝑣𝑖, (2.4)

where 𝑉𝑝 is the volume occupied by all MNPs and 𝑣𝑖 is the volume of the 𝑖-th MNP.

Considering that all MNPs are perfect spheres with same radius, 𝑎,

𝑉𝑝 =
𝑁∑︁

𝑖=1

4𝜋
3 𝑎3 = 4𝜋

3 𝑁𝑎3. (2.5)

The substitution of Eq. (2.5) into Eq. (2.4) yields

𝜑 = 4𝜋𝑎3

3
𝑁

𝑉
. (2.6)
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Hence, the volume of the box is given by

𝑉 = 4𝜋𝑎3

3
𝑁

𝜑
. (2.7)

Applying the values 𝑁 = 300, 𝜑 = 1% and 𝑎 = 12.5 nm gives 𝑉 ≈ 2.45 · 10−19 m3

as estimation of the FF's volume. Thus, a very small sample is simulated in this work.

2.1.2 Boundary Conditions

Periodic boundary conditions are applied in each boundary of the box, such that,
when a particle reaches a boundary, it is translated to opposing side. The goal of this
boundary condition is to simulate an infinite suspension, that is, a continuous media of
the FF, without the influence of boundaries, given that particles near walls have their
motion greatly affected (Gontijo; Cunha, 2015). Figure 2.2 shows the moment when a
particle crosses the boundary.

x̂

ẑ

𝑡 = 0.0 s

(a)
x̂

ẑ

𝑡 = 1.0 s

(b)

Figure 2.2 – Representation of a periodic boundary condition, as a MNP crosses the border.
(a) Before the MNP reaches the rightmost boundary. (b) After the MNP
reaches the rightmost boundary.

2.2 Time description

2.2.1 Initial Condition

A uniform distribution of MNPs is applied as initial condition, with random and
independent positions and dipole moments.

Whenever particle overlap occurs during the generation of the initial condition, a
random displacement based on brownian motion is applied to separate the particles, so
that the particle distribution in space is statistically homogeneous (Gontijo; Cunha, 2015).
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Fig. 2.3 shows a case of particle agglomeration in the initial condition and the procedure
to separate them.

(a) (b)

Figure 2.3 – Representation of the superposition of two particles in the generation of
the initial condition. a) Overlapped particles. b) Particles separated after
brownian motion.

2.2.2 Equations of Motion

The motion of each MNP is governed by the Newton's second law (Newton-Euler
equations), given by Eq. (2.8) and Eq. (2.9) (Gontijo; Cunha, 2015). Regarding the
translational motion, there is Eq. (2.8),

ℳdu𝑖

d𝑡 = −6𝜋𝜂𝑎u𝑖 + 4
3𝜋𝑎

3Δ𝜌g + FB𝑖 + Fm𝑖 + Fr𝑖 + Fc𝑖, (2.8)

in which u𝑖 is the linear velocity of the 𝑖-th MNP, ℳ is its mass (all MNPs have the same
volume and mass), 𝑡 is the time, Δ𝜌 = 𝜌𝑠 − 𝜌𝑓 is the difference between the density of the
particles, 𝜌𝑠, and the density of the fluid carrier, 𝜌𝑓 , 𝜂 is the dynamic viscosity of the fluid
carrier, g is the gravitational vector field, such that g = −𝑔ẑ, where 𝑔 = 9.8 m/s2 is the
magnitude of gravity, FB𝑖 is the brownian force imposed in the 𝑖-th particle, Fm𝑖 is the
magnetic force applied upon the 𝑖-th particle, Fr𝑖 is the repulsive force in the 𝑖-th particle
and Fc𝑖 is the contact force applied in the 𝑖-th particle.

Concerning rotational motion, Eq. (2.9) shows the governing equation,

ℐ d𝜔𝑖

d𝑡 = −8𝜋𝜂𝑎3𝜔𝑖 + TB𝑖 + Tm𝑖, (2.9)

where ℐ is the 𝑖-th particle's moment of inertia, 𝜔𝑖 is its angular velocity, TB𝑖 is the
brownian torque imposed in the 𝑖-th particle and Tm𝑖 is the magnetic torque upon the
𝑖-th particle.

Thus, the kinematics of each magnetic moment is given by Eq. (2.10)

d
d𝑡 d̂𝑖 = 𝜔𝑖 × d̂𝑖, (2.10)
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where × is the cross product between two vectors.

Each force and torque from Eqs. (2.8) and (2.9) is described in the next sections.

2.2.2.1 Magnetic Force and Torque

To calculate the magnetic forces, one must consider the interactions between
particles and the interaction of each particle with an external magnetic field. For the first
one, the potential under the 𝑖-th particle due to dipole-dipole interaction, 𝜓𝑝𝑖

, is given by
Eq. (2.11),

𝜓𝑝𝑖
= 𝑚𝑖

𝑁∑︁
𝑗=1
𝑗 ̸=𝑖

𝜇0𝑚𝑗

4𝜋𝑟𝑖𝑗

[︂
d̂𝑖 · d̂𝑗 − 3

(︁
d̂𝑖 · r̂𝑖𝑗

)︁ (︁
d̂𝑗 · r̂𝑖𝑗

)︁]︂
, (2.11)

where the index 𝑗 represents all the other particles that influence the motion of the 𝑖-th
particle, 𝜇0 = 1.26 · 10−6 H m−1 is the vacuum permeability, 𝑚𝑖 is the magnetic dipole
intensity of the 𝑖-th particle and 𝑟𝑖𝑗 is the distance between the center os mass of the 𝑖-th
particle and the 𝑗-th particle. Lastly, the vector r𝑖𝑗 represents the distance between the
centers of mass of both particles, such that the vector begins at the 𝑗-th particle and end
at the 𝑖-th particle. In this manner, Eqs. (2.12) and (2.13) show the relation of such vector,

r𝑖𝑗 = r𝑖 − r𝑗, (2.12)

r𝑖𝑗 = 𝑟𝑖𝑗 r̂𝑖𝑗, (2.13)

in which r𝑖 and r𝑗 are, respectively, the position vector of the 𝑖-th and the 𝑗-th particle
with respect to the origin, r̂𝑖𝑗 is the unitary vector in the direction between those two
particles and 𝑟𝑖𝑗 = ‖r𝑖𝑗‖.

Fig. 2.4 exemplifies the process of calculating the potential of the 𝑖-th particle (on
left) upon the presence of another particle (on right). Note that the distance vector r𝑖𝑗

begins at the 𝑗-th particle and ends at the 𝑖-th particle.
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d̂𝑗

d̂𝑖

𝑎 𝑎

r𝑖𝑗

r𝑗
r𝑖

𝑂

Figure 2.4 – Representation of the dipole-dipole potential for the 𝑖-th particle (on left),
where the 𝑗-th particle (on right) influences the motion of the former. 𝑂 is
the origin, 𝑎 is the hydrodynamic radius, d̂𝑖 is the dipole direction for the
𝑖-th particle, r𝑖 and r𝑗 are, respectively, the position vectors for the 𝑖-th and
𝑗-th particle, r𝑖𝑗 is the vector of the distance between the centers of mass of
both particles.

For the second interaction, the potential upon the 𝑖-th particle due to an external
magnetic field, 𝜓𝑓𝑖

, is given by Eq. (2.14)

𝜓𝑓𝑖
= −𝜇0𝑚𝑖𝐻

(︁
d̂𝑖 · Ĥ

)︁
, (2.14)

where H is the external magnetic field vector, such that H = 𝐻Ĥ, in which 𝐻 is its
intensity and Ĥ is its direction.

From Eqs. (2.11) and (2.14), the magnetic force for the 𝑖-th particle, Fm𝑖, is given
by Eq. (2.15),

Fm𝑖 = −
(︁
∇𝜓𝑓𝑖

+ ∇𝜓𝑝𝑖

)︁
, (2.15)

where ∇ = 𝜕

𝜕𝑥
x̂ + 𝜕

𝜕𝑦
ŷ + 𝜕

𝜕𝑧
ẑ is the gradient operator.

Similarly, the magnetic torque upon the 𝑖-th particle, Tm𝑖, is stated by Eq. (2.16),

Tm𝑖 = −d̂𝑖 ×
(︁
∇d̂𝑖

𝜓𝑓𝑖
+ ∇d̂𝑖

𝜓𝑝𝑖

)︁
, (2.16)

in which ∇d̂𝑖
= 𝜕

𝜕𝑑𝑖𝑥

x̂ + 𝜕

𝜕𝑑𝑖𝑦

ŷ + 𝜕

𝜕𝑑𝑖𝑧

ẑ represents the gradient so that the derivatives

are taken with respect to the dipole orientation (Gontijo; Cunha, 2015).

The development of Eqs. (2.15) and (2.16) yields Eqs. (2.17) and (2.18)
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Fm𝑖 =
{︃

3𝜇0𝑚𝑖

4𝜋

𝑁∑︁
𝑗=1
𝑗 ̸=𝑖

𝑚𝑗

𝑟4
𝑖𝑗

[︁ (︁
d̂𝑖 · d̂𝑗

)︁
r̂𝑖𝑗 +

(︁
d̂𝑖 · r̂𝑖𝑗

)︁
d̂𝑗 +

(︁
d̂𝑗 · r̂𝑖𝑗

)︁
d̂𝑖+

− 5
(︁
d̂𝑖 · r̂𝑖𝑗

)︁ (︁
d̂𝑗 · r̂𝑖𝑗

)︁
r̂𝑖𝑗

]︁}︃
+ 𝜇0𝑚𝑖𝐻

(︁
d̂𝑖 · ∇Ĥ

)︁
, (2.17)

Tm𝑖 =
{︃

3𝜇0𝑚𝑖

4𝜋

𝑁∑︁
𝑗=1
𝑗 ̸=𝑖

𝑚𝑗

𝑟3
𝑖𝑗

[︁
− 1

3
(︁
d̂𝑖 × d̂𝑗

)︁
+
(︁
d̂𝑗 · r̂𝑖𝑗

)︁ (︁
d̂𝑖 × r̂𝑖𝑗

)︁ ]︁}︃
+ 𝜇0𝑚𝑖𝐻d̂𝑖 × Ĥ. (2.18)

Under the hypothesis that all magnetic particles have the same magnetic moment
intensity, such that 𝑚𝑖 = 𝑚𝑗 = 𝑚, and that the external magnetic field does not depend
on the position, such that ∇H = 0, Eqs. (2.17) and (2.18) are simplified to Eqs. (2.19)
and (2.20),

Fm𝑖 =
{︃

3𝜇0𝑚
2

4𝜋

𝑁∑︁
𝑗=1
𝑗 ̸=𝑖

1
𝑟4

𝑖𝑗

[︁ (︁
d̂𝑖 · d̂𝑗

)︁
r̂𝑖𝑗 +

(︁
d̂𝑖 · r̂𝑖𝑗

)︁
d̂𝑗 +

(︁
d̂𝑗 · r̂𝑖𝑗

)︁
d̂𝑖+

− 5
(︁
d̂𝑖 · r̂𝑖𝑗

)︁ (︁
d̂𝑗 · r̂𝑖𝑗

)︁
r̂𝑖𝑗

]︁}︃
, (2.19)

Tm𝑖 =
{︃

3𝜇0𝑚
2

4𝜋

𝑁∑︁
𝑗=1
𝑗 ̸=𝑖

1
𝑟3

𝑖𝑗

[︁
− 1

3
(︁
d̂𝑖 × d̂𝑗

)︁
+
(︁
d̂𝑗 · r̂𝑖𝑗

)︁ (︁
d̂𝑖 × r̂𝑖𝑗

)︁ ]︁}︃
+ 𝜇0𝑚𝐻d̂𝑖 × Ĥ. (2.20)

Due to the dependence on 1/𝑟4
𝑖𝑗 and 1/𝑟3

𝑖𝑗, the magnetic force and torque are
nonlinear terms of the differential governing equations, Eq. (2.8) and Eq. (2.9).

2.2.2.2 Brownian Force and Torque

The brownian force is calculated by the stochastic Langevin's equation, considering
its behavior as a stationary white noise (Poland, 1977), (Gontijo; Cunha, 2015). For an
isolated particle (Guimarães; Cunha; Gontijo, 2020), the stochastic brownian force is given
by Eq. (2.21),

FB𝑖 = 6𝜋𝜂𝑎
(︃

6𝒟𝑡

𝛿𝜏

)︃1/2

𝜉, (2.21)

where 𝒟𝑡 =
𝐾𝑏𝑇

6𝜋𝜂𝑎 is the translational brownian diffusion coefficient of Stokes-Einstein
(Einstein, 1956), 𝐾𝑏 is the Boltzmann's constant, 𝑇 is the temperature in Kelvin, 𝛿𝜏 is
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the time step related to brownian thermal fluctuations (Guimarães; Cunha; Gontijo, 2020)
and 𝜉 is a random unitary vector, defined by Eq. (2.22),

𝜉 = 1
‖𝜉‖

(︁
𝜉𝑥x̂ + 𝜉𝑦ŷ + 𝜉𝑧ẑ

)︁
, (2.22)

where 𝜉𝑥, 𝜉𝑦 and 𝜉𝑧 are 3 distinct random numbers with uniform distribution between
[1,−1] and ‖𝜉‖ =

√︁
𝜉2

𝑥 + 𝜉2
𝑦 + 𝜉2

𝑧 .

In a similar way to Eq. (2.21), stochastic brownian torque is given by Eq. (2.23),
(Gontijo; Cunha, 2015)

TB𝑖 = 8𝜋𝜂𝑎3
(︃

6𝒟𝑟

𝛿𝜏

)︃1/2

𝜉, (2.23)

where 𝒟𝑟 =
𝐾𝑏𝑇

8𝜋𝜂𝑎3 is the rotational brownian diffusion coefficient of Stokes-Einstein
(Einstein, 1956).

The terms 6𝜋𝜂𝑎
(︂

6
𝒟𝑡

𝛿𝜏

)︂1/2
and 8𝜋𝜂𝑎3

(︂
6

𝒟𝑟

𝛿𝜏

)︂1/2
represent the modeling of the stochas-

tic force and torque, respectively, while the term 𝜉 represents the algorithm variable im-
plemented to simulate the force and torque. The brownian force and torque are stochastic
terms of the differential governing equations, Eq. (2.8) and Eq. (2.9).

2.2.2.3 Repulsive and Contact Forces

During the computational simulation, overlapping of particles must be avoided.
Because there are no lubrication forces, a numerical fictitious force is added to the system
(Cunha et al., 2002). This force is described by Eqs. (2.24) and (2.25),

Fr𝑖 = 𝐶1 (6𝜋𝜂𝑎)𝑢𝑖 exp
(︃

− 𝜖𝑖𝑗

𝐶2

)︃
r̂𝑖𝑗. (2.24)

𝜖𝑖𝑗 = |𝑟𝑖𝑗 − 2𝑎| (2.25)

in which 𝐶1 and 𝐶2 are calibrations constants associated with intensity and range of
the near field interaction, exp is the exponential function with Euler's number as the
base number, r̂𝑖𝑗 is the unitary vector in the particle's radial direction, 𝜖𝑖𝑗 is the distance
between the surfaces of the near particles, 𝑢𝑖 = ‖u𝑖‖ is the magnitude of the 𝑖-th particle's
velocity and 𝑟𝑖𝑗 = ‖r𝑖𝑗‖ (Gontijo; Cunha, 2015). Figure 2.5 shows a schematic drawing of
2 near particles and the repulsive force applied in both to avoid superposition.

Due to the dependence on 𝑢𝑖 exp
(︁
− 𝜖𝑖𝑗

𝐶2

)︁
, the repulsive force is a nonlinear term of

the governing equations of motion, Eq. (2.8) and Eq. (2.9).
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d̂𝑗d̂𝑖
Fr𝑗Fr𝑖

𝑟𝑖𝑗

𝜖𝑖𝑗

Figure 2.5 – Representation of the repulsive forces (Fr𝑖 and Fr𝑗) added to two particles
under attraction movement, due to the position of the magnetic dipoles (d̂𝑖

and d̂𝑗). Figure adapted from Gontijo and Cunha (2015)

As the particle's inertia is not negligible in the simulations, a contact force must
also be considered in the system, representing the particles' collision with each other
(Gontijo; Cunha, 2015). This condition of Hertz contact force is shown at Eqs. (2.26) and
(2.27),

Fc𝑖 = 𝐶3𝜀𝑏
1/2𝜖

3/2
𝑖𝑗 r̂𝑖𝑗. (2.26)

𝜀 = 𝐸

2 (1 − 𝜈) (2.27)

where 𝐶3 is a calibration constant, 𝜀 is a material constant, 𝐸 is the particles' Young
modulus, 𝜈 is the particles' Poisson's ratio and 𝑏 is a parameter equal to 𝑎/2 for the case of
monodisperse suspensions. During the collision, 𝑟𝑖𝑗 < 2𝑎, such that 𝜖𝑖𝑗 = 2𝑎− 𝑟𝑖𝑗. Figure
2.6 displays a schematic drawing of the collision of two particles and the position of each
contact reppeling force at the radial direction.

Fc𝑗Fc𝑖

𝜖𝑖𝑗

Figure 2.6 – Representation of two particles collision and their contact forces (Fc𝑖 and
Fc𝑗). Figure adapted from Gontijo and Cunha (2015)

Due to the dependence on 𝜖3/2
𝑖𝑗 , the contact force is a nonlinear term of the governing

equations of motion, Eq. (2.8) and Eq. (2.9).

2.3 Shear Rate

Shear rate is a condition both spatial and time dependent. In this study, MNPs
are subjected to oscillatory simple shear, so that translation of particles depends on the
height. When shear motion is activated in the simulations, a shear flow is added in the ŷ
direction, such that the velocity of each particle is given by a new variable, ush𝑖,

ush𝑖 = u𝑖 + (0, 𝛾̇𝑧, 0) , (2.28)
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in which ush𝑖 is the velocity of the system under shear flow, 𝛾̇ is the shear rate, 𝑧 is the
height of the particle (position at the ẑ direction). In a similar way, for the rotational
motion, shear rate yields

𝜔sh𝑖 = 𝜔𝑖 +
(︃
𝛾̇

2 , 0, 0
)︃
, (2.29)

where 𝜔sh𝑖 is the angular velocity of the 𝑖-th particle when the system is under shear flow.

Hence, the kinematics of each dipole orientation, d̂𝑖, is

d
d𝑡 d̂𝑖 = 𝜔sh𝑖 × d̂𝑖 (2.30)

To exemplify the shear motion, Fig. 2.7 shows a system under simple shear motion,
without the magnetic mechanisms and for a constant shear rate 𝛾̇. The MNPs start aligned
in the ẑ direction at 𝑡 = 0. For 𝑡 > 0, the shear motion begins. The particles at the bottom
do not translate, but only rotate, while the ones at the top experience both translation
and rotation.

u1

u2

u3

u4

ŷ

ẑ

𝑡 = 0.0 s

(a)

u1

u2

u3

u4

ŷ

ẑ

𝑡 = 1.0 s

(b)

Figure 2.7 – Representation of the simple shear motion. Velocities of each particle in blue
and magnetic moments in red. (a) Particles aligned in the initial condition,
at 𝑡 = 0 s. (b) Particles after the start of the shear motion, at 𝑡 = 1 s.

If an oscillatory simple shear is imposed, the motion reverses direction indefinitely.
Fig. 2.8 shows an example of MNPs subjected to oscillatory simple shear, that is, for a
shear rate dependent of time, 𝛾̇ (𝑡) = 𝛾̇0 sin (𝜔𝑆𝑡), in which 𝛾̇0 and 𝜔𝑆 are, respectively, the
shear rate's amplitude and frequency.
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u1

u2

u3

u4

ŷ

ẑ

𝑡 = 0.0 s

(a)

u1

u2

u3

u4

ŷ

ẑ

𝑡 = 1.0 s

(b)

u1

u2

u3

u4

ŷ

ẑ

𝑡 = 2.0 s

(c)

u1

u2

u3

u4

ŷ

ẑ

𝑡 = 3.0 s

(d)

Figure 2.8 – Representation of the oscillatory simple shear mechanism. Velocities of each
particle in blue and magnetic moments in red. (a) Particles aligned in the
initial condition (𝑡 = 0 s). (b) Particles after the start of the shear motion,
moving to the right (𝑡 = 1 s). (c) Particles when the shear motion changes
direction, moving from the right to the left (𝑡 = 2 s). (d) Particles after the
reversal shear motion, moving to the left (𝑡 = 3 s).

2.4 Average Magnetization

The system is random, due to the probabilistic nature of brownian motion, which
represents the collision of the MNPs with the newtonian fluid. Because of this, each
magnetization can be different from another for the same number of particles. To decrease
the random effect in the magnetization, several realizations of the system are performed
for each moment of time and a mean value of all theses samples is obtained, as specified
by Eq. (2.31),

M (𝑡) = 1
𝐾

𝐾∑︁
𝑘=1

M𝑘 (𝑡) (2.31)

where 𝑘 ∈ N | 1 ≤ 𝑘 ≤ 𝐾 is a natural number representing the index of each realization, 𝐾
is the total number of realizations (𝐾 = 50 for all simulations), M𝑘 is the magnetization

19



for the 𝑘-th realization and M is the average magnetization for all realizations.

2.5 Average Rate of Internal Energy Dissipation

From the first law of thermodynamics,

d𝑈 = 𝛿𝑄+ 𝛿𝑊, (2.32)

where d𝑈 is the internal energy per unit volume, 𝛿𝑄 is the heat per unit volume and 𝛿𝑊
is the magnetic work per unit volume under the system.

Under the hypothesis of an adiabatic process, such that 𝛿𝑄 = 0,

d𝑈 = 𝛿𝑊. (2.33)

For the magnetic work per unit volume, one can use 𝛿𝑊 = H · dB, in which B is
the induction vector field (Stratton, 2007),

d𝑈 = H · dB. (2.34)

From the definition of the induction vector field,

B = 𝜇0 (M + H) . (2.35)

The substitution of Eq. (2.35) into (2.34) yields

d𝑈 = 𝜇0H · dM + 𝜇0H · dH. (2.36)

One can note that, by the product rule of derivatives,

d
(︃

‖H‖2

2

)︃
= d

(︃
H · H

2

)︃
= 1

2 (H · dH) + 1
2 (H · dH) = H · dH (2.37)

Applying Eq.(2.37) into (2.36) yields

d𝑈 = 𝜇0H · dM + 𝜇0 d
(︃

‖H‖2

2

)︃
. (2.38)
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Considering that H = H (𝑡) and M = M (𝑡) are both functions of time, by the
chain rule, one can obtain

d𝑈
d𝑡 d𝑡 = 𝜇0H · dM

d𝑡 d𝑡+ 𝜇0
d
d𝑡

(︃
‖H‖2

2

)︃
d𝑡. (2.39)

Then, Eq. (2.39) is integrated from the time 𝑡 = 0 to 𝑡 = 𝑡𝑓 , where 𝑡𝑓 is the final
time of the simulation

∫︁ 𝑡𝑓

0

d𝑈
d𝑡 d𝑡 = 𝜇0

∫︁ 𝑡𝑓

0
H · dM

d𝑡 d𝑡+ 𝜇0

∫︁ 𝑡𝑓

0

d
d𝑡

(︃
‖H‖2

2

)︃
d𝑡 (2.40)

=⇒ 𝑈
(︁
𝑡𝑓
)︁

− 𝑈 (0) = 𝜇0

∫︁ 𝑡𝑓

0
H · dM

d𝑡 d𝑡+ 𝜇0

2

[︂
‖H‖

(︁
𝑡𝑓
)︁2

− ‖H‖ (0)2
]︂

(2.41)

=⇒ Δ𝑈 = 𝜇0

∫︁ M(𝑡𝑓),H(𝑡𝑓)
M(0),H(0)

H · dM + 𝜇0

2

[︂
‖H‖

(︁
𝑡𝑓
)︁2

− ‖H‖ (0)2
]︂

(2.42)

where Δ𝑈 := 𝑈
(︁
𝑡𝑓
)︁

− 𝑈 (0) is the total variation of the magnetic contribution of internal
energy per unit volume of the system.

Normally, studies of MH assume that the external magnetic field is a periodic
function with period 𝒯 (Rosensweig, 2002). Hence, if the final time of the simulation is
chosen as one multiple of the period (𝑡𝑓 = 𝑐𝒯 ), the expression of Eq. (2.42) is simplified,

Δ𝑈 = 𝜇0

∫︁ M(𝑐𝒯 ),H(𝑐𝒯 )

M(0),H(0)
H · dM + 𝜇0

2
[︁
‖H‖ (𝑐𝒯 )2 − ‖H‖ (0)2

]︁
. (2.43)

For a periodic magnetic field, H (𝑡) = H (𝑡+ 𝑐𝒯 ), where 𝒯 is the period of H and
𝑐 ∈ N is the number of elapsed cycles of H. Thus, H (𝑐𝒯 ) = H (0), such that

=⇒ Δ𝑈 = 𝜇0

∫︁ M(𝑐𝒯 ),H(𝑐𝒯 )

M(0),H(0)
H · dM + 𝜇0

2
[︁
‖H‖ (0)2 − ‖H‖ (0)2

]︁
(2.44)

=⇒ Δ𝑈 = 𝜇0

∫︁ M(𝑐𝒯 ),H(𝑐𝒯 )

M(0),H(0)
H · dM + 0 (2.45)

=⇒ Δ𝑈 = 𝜇0

∫︁ M(𝑐𝒯 ),H(𝑐𝒯 )

M(0),H(0)
H · dM (2.46)

Separating each component of the inner product H · dM, considering each contri-
bution as H = 𝐻𝑥x̂ +𝐻𝑦ŷ +𝐻𝑧ẑ and M = 𝑀𝑥x̂ +𝑀𝑦ŷ +𝑀𝑧ẑ, yields

=⇒ Δ𝑈 = 𝜇0

[︂ ∫︁ 𝑀𝑥(𝑐𝒯 ),𝐻𝑥(𝑐𝒯 )

𝑀𝑥(0),𝐻𝑥(0)
𝐻𝑥 d𝑀𝑥 +

∫︁ 𝑀𝑦(𝑐𝒯 ),𝐻𝑦(𝑐𝒯 )

𝑀𝑦(0),𝐻𝑦(0)
𝐻𝑦 d𝑀𝑦+

+
∫︁ 𝑀𝑧(𝑐𝒯 ),𝐻𝑧(𝑐𝒯 )

𝑀𝑧(0),𝐻𝑧(0)
𝐻𝑧 d𝑀𝑧

]︂
. (2.47)
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Equation (2.47) indicates that the internal energy is calculated through the sum of
the areas under the curve delimited by 𝑀𝑥, 𝐻𝑥; 𝑀𝑦, 𝐻𝑧; and 𝑀 𝑧, 𝐻𝑧 (hysteresis curves).
Applying integration by parts in Eq. (2.46), one can obtain

Δ𝑈 = 𝜇0

[︂
H · M

]︂𝑐𝒯

0
− 𝜇0

∫︁ M(𝑐𝒯 ),H(𝑐𝒯 )

M(0),H(0)
M · dH (2.48)

= 𝜇0

[︂
H (𝑐𝒯 ) · M (𝑐𝒯 ) − H (0) · M (0)

]︂
− 𝜇0

∫︁ M(𝑐𝒯 ),H(𝑐𝒯 )

M(0),H(0)
M · dH (2.49)

= 𝜇0H (0) ·
[︂
M (𝑐𝒯 ) − M (0)

]︂
− 𝜇0

∫︁ M(𝑐𝒯 ),H(𝑐𝒯 )

M(0),H(0)
M · dH. (2.50)

Under the hypothesis that the magnetization is a periodic function with the same
period as H (Rosensweig, 2002), such that M (𝑐𝒯 ) = M (0), from Eq. (2.50), one can
conclude that

Δ𝑈 = −𝜇0

∫︁ M(𝑐𝒯 ),H(𝑐𝒯 )

M(0),H(0)
M · dH. (2.51)

Separating each component of the inner product,

Δ𝑈 = −𝜇0

[︂ ∫︁ 𝑀𝑥(𝑐𝒯 ),𝐻𝑥(𝑐𝒯 )

𝑀𝑥(0),𝐻𝑥(0)
𝑀𝑥 d𝐻𝑥 +

∫︁ 𝑀𝑦(𝑐𝒯 ),𝐻𝑦(𝑐𝒯 )

𝑀𝑦(0),𝐻𝑦(0)
𝑀𝑦 d𝐻𝑦+

+
∫︁ 𝑀𝑧(𝑐𝒯 ),𝐻𝑧(𝑐𝒯 )

𝑀𝑧(0),𝐻𝑧(0)
𝑀𝑧 d𝐻𝑧

]︂
. (2.52)

If the magnetic field is one-dimensional (only present at the ẑ direction), such that
𝐻𝑥 = 𝐻𝑦 = 0, only the area of 𝑀 𝑧 and 𝐻𝑧 contributes for the internal energy, that is,

Δ𝑈 = −𝜇0

∫︁ 𝑀𝑧(𝑐𝒯 ),𝐻𝑧(𝑐𝒯 )

𝑀𝑧(0),𝐻𝑧(0)
𝑀𝑧 d𝐻𝑧, (2.53)

which is the same equation deduced by Rosensweig (2002) under the same set of hypothesis.
For a longer time of simulation, more cycles of M and H are elapsed and the value of Δ𝑈
increases indefinitely, considering an ideal system without loss of energy. To solve this
problem, it is defined the average rate of the magnetic contribution of internal energy

dissipation of the system,
Δ𝑈
Δ𝑡 ,

Δ𝑈
Δ𝑡 = Δ𝑈

𝑡𝑓 − 0 = −𝜇0

𝑡𝑓

∫︁ M(𝑐𝒯 ),H(𝑐𝒯 )

M(0),H(0)
M · dH (2.54)

In such manner, it is guaranteed that Δ𝑈/Δ𝑡𝑓 is a converging value that that
measures the thermic state of the system, when enough time of simulation and a steady-
state condition are reached.
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However, some assumptions made in usual MH studies are no longer valid in this
work. Because the system studied is nonlinear, the periodic behavior for the magnetization
can not be imposed. Furthermore, one of the objectives of the work is to impose a chaotic
behavior for the magnetic field, such that the periodic assumption of H is not valid. Several
conditions of H and M are considered in this work. Because of this, one must use the
most general expression for Δ𝑈 , which leads to Eq. (2.55),

Δ𝑈 = 𝜇0

∫︁ M(𝑡𝑓),H(𝑡𝑓)
M(0),H(0)

H · dM + 𝜇0

2

[︂
‖H‖

(︁
𝑡𝑓
)︁2

− ‖H‖ (0)2
]︂

(2.55)

In this work, the average magnetization, M, is used instead of M. Only the
steady-state response of M is considered, that is, the initial part of the time response is
discarded,

Δ𝑈 = 𝜇0

∫︁ M(𝑡𝑓),H(𝑡𝑓)
M(0),H(0)

H · dM + 𝜇0

2

[︂
‖H‖

(︁
𝑡𝑓
)︁2

− ‖H‖ (0)2
]︂

(2.56)

such that the average rate of internal energy in steady-state is

Δ𝑈
Δ𝑡 = 1

𝑡𝑓

⎧⎨⎩𝜇0

∫︁ M(𝑡𝑓),H(𝑡𝑓)
M(0),H(0)

H · dM + 𝜇0

2

[︂
‖H‖

(︁
𝑡𝑓
)︁2

− ‖H‖ (0)2
]︂⎫⎬⎭ (2.57)

Equation (2.57) is the most general expression for the average rate of internal
energy dissipation of the system. In Chapter 4: Results of Alternating Magnetic Field and
Chapter 5: Results of Alternating Magnetic Field with Shear Motion, a one-dimensional (ẑ
direction) periodic magnetic field is applied, such that the average rate of internal energy
is given by

Δ𝑈
Δ𝑡 = 𝜇0

𝑡𝑓

⎡⎣∫︁ 𝑀𝑧(𝑡𝑓),𝐻𝑧(𝑡𝑓)
𝑀𝑧(0),𝐻𝑧(0)

𝐻𝑧 d𝑀 𝑧

⎤⎦ (2.58)

In Chapter 6: Results of Chaotic Magnetic Field, a two-dimensional (ŷ and ẑ
directions) chaotic magnetic field is applied, such that the average rate of internal energy
dissipation is given by

Δ𝑈
Δ𝑡 = 1

𝑡𝑓

{︃
𝜇0

[︂ ∫︁ 𝑀𝑦(𝑡𝑓),𝐻𝑦(𝑡𝑓)
𝑀𝑦(0),𝐻𝑦(0)

𝐻𝑦 d𝑀𝑦 +
∫︁ 𝑀𝑧(𝑡𝑓),𝐻𝑧(𝑡𝑓)

𝑀𝑧(0),𝐻𝑧(0)
𝐻𝑧 d𝑀 𝑧

]︂
+

+ 𝜇0

2

[︂
𝐻𝑦

(︁
𝑡𝑓
)︁2

+𝐻𝑧

(︁
𝑡𝑓
)︁2

−𝐻𝑦 (0)2 −𝐻𝑧 (0)2
]︂ }︃

(2.59)

Thus, to determine the most efficient way of generating internal energy in MH, the
condition of the system which maximizes the value of Δ𝑈/Δ𝑡 will be considered as the
best case scenario for the MH cancer treatment.
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2.6 Dimensionless Equations

2.6.1 Dimensionless Governing Equations

In this section, the dimensionless forms of Eqs. (2.8) and (2.9) are obtained. To do
so, dimensionless variables are introduced in Eq. (2.60),

𝑡* = 𝑡𝑈𝑠𝑡

𝑎
, u*

𝑖 = u𝑖

𝑈𝑠𝑡

, 𝜔*
𝑖 = 𝜔𝑖𝑎

𝑈𝑠𝑡

and g* = g
𝑔
, (2.60)

where the superscript * indicates a dimensionless quantity, 𝑈𝑠𝑡 = 2Δ𝜌𝑔𝑎2

9𝜂 is the particle's
terminal velocity from Stokes' law and 𝑔 = ‖g‖.

Thus, with a process detailed in appendix A, one can obtain the dimensionless
governing equations of the system, given by Eqs. (2.61) and (2.62),

St du*
𝑖

d𝑡* = −u*
𝑖 + g* + FB

*
𝑖 + Fm

*
𝑖 + Fr

*
𝑖 + Fc

*
𝑖 , (2.61)

St𝑟
d𝜔*

𝑖

d𝑡* = −𝜔*
𝑖 + TB

*
𝑖 + Tm

*
𝑖 (2.62)

where St = ℳ𝑈𝑠𝑡

6𝜋𝜂𝑎2 = 0.1 is the translational Stokes number, which is defined by the
ratio between scales of the relaxation time of particle and its convection time. Similarly,
St𝑟 = ℐ𝑈𝑠𝑡

8𝜋𝜂𝑎4 = 0.01 is the rotational Stokes number. For the dimensionless forces and
torques, consider the dimensionless constants given by Eq. (2.63),

Pe = 𝑈𝑠𝑡𝑎

𝒟𝑡

, Pe𝑟 = 𝑈𝑠𝑡

𝑎𝒟𝑟

, 𝛼 = 𝜇0𝑚𝐻

𝐾𝑏𝑇
, and 𝜆 = 𝜇0𝑚

2

4𝜋𝐾𝑏𝑇 (2𝑎)3 , (2.63)

in which Pe is the translational Peclet number, which indicates the ratio between the
brownian difusion time and the convection time of the MNP, Pe𝑟 is the rotational Peclet
number, 𝛼 is the Langevin parameter, defined as the ratio between the magnetic force due
to the external magnetic field (dipole-field interaction) with the brownian force, and 𝜆

is the dipolar interaction parameter, that measures the ratio of the magnetic force from
dipole-dipole interactions and brownian force (Gontijo; Cunha, 2015). Diving Pe𝑟 and Pe,
one can obtain Pe𝑟

Pe = 4
3, such that it is applied the value Pe𝑟 = 4

3 Pe in this study.

The dimensionless magnetic force and torque from Eqs. (2.61) and (2.62) are given
by Eqs. (2.64) and (2.65),
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Fm
*
𝑖 = 24𝜆

Pe

{︃
𝑁∑︁

𝑗=1
𝑗 ̸=𝑖

1
𝑟*

𝑖𝑗
4

[︁ (︁
d̂𝑖 · d̂𝑗

)︁
r̂𝑖𝑗 +

(︁
d̂𝑖 · r̂𝑖𝑗

)︁
d̂𝑗 +

(︁
d̂𝑗 · r̂𝑖𝑗

)︁
d̂𝑖+

− 5
(︁
d̂𝑖 · r̂𝑖𝑗

)︁ (︁
d̂𝑗 · r̂𝑖𝑗

)︁
r̂𝑖𝑗

]︁}︃
(2.64)

Tm
*
𝑖 = 24𝜆

Pe𝑟

{︃
𝑁∑︁

𝑗=1
𝑗 ̸=𝑖

1
𝑟*

𝑖𝑗
3

[︁
− 1

3
(︁
d̂𝑖 × d̂𝑗

)︁
+
(︁
d̂𝑗 · r̂𝑖𝑗

)︁ (︁
d̂𝑖 × r̂𝑖𝑗

)︁ ]︁}︃
+

+ 𝛼

Pe𝑟

(︁
d̂𝑖 × Ĥ

)︁
(2.65)

The dimensionless brownians force and torque from Eqs. (2.61) and (2.62) are given
by Eqs. (2.66) and (2.67),

FB
*
𝑖 =

(︃
6

Pe 𝛿𝜏 *

)︃1/2

𝜉 (2.66)

TB
*
𝑖 =

(︃
6

Pe𝑟 𝛿𝜏 *

)︃1/2

𝜉 (2.67)

where 𝛿𝜏 * = 𝛿𝜏𝑈𝑠𝑡

𝑎
is the dimensionless time step related to brownian fluctuations.

The dimensionless contact and repulsive forces from Eq. (2.61) are described by
Eqs. (2.68) and (2.69),

Fr
*
𝑖 = 𝐶1𝑢

*
𝑖 exp

(︃
−
𝜖*

𝑖𝑗

𝐶*
2

)︃
r̂𝑖𝑗 (2.68)

Fc
*
𝑖 = 𝑃𝑐𝜖

*
𝑖𝑗

3/2 r̂𝑖𝑗. (2.69)

in which 𝐶*
2 = 𝐶2/𝑎 is the dimensionless calibration constant related to the range of the

field, 𝜖*
𝑖𝑗 = 𝜖𝑖𝑗/𝑎 is the dimensionless distance between the surfaces of the 𝑖-th and 𝑗-th

particles and 𝑃𝑐 = 𝐶3𝜀𝑎
2

6
√

2𝜋𝜂𝑎𝑈𝑠𝑡

is the dimensionless contact parameter that relates the
contact force and hydrodynamics drag force. The value 𝑃𝑐 = 100 has been adopted for all
simulations.

2.6.2 Dimensionless Shear Rate

The translational shear motion is given by

ush𝑖 = u𝑖 + (0, 𝛾̇𝑧, 0) . (2.70)
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Dividing both sides by 𝑈𝑠𝑡,

ush𝑖

𝑈𝑠𝑡

= u𝑖

𝑈𝑠𝑡

+
(︃

0, 𝛾̇𝑧
𝑈𝑠𝑡

, 0
)︃
. (2.71)

Apply 𝑧 = 𝑎𝑧*, where 𝑧* is the nondimensional height of the particle,

ush𝑖

𝑈𝑠𝑡

= u𝑖

𝑈𝑠𝑡

+
(︃

0, 𝑎𝛾̇
𝑈𝑠𝑡

𝑧*, 0
)︃
. (2.72)

Let 𝛾̇* = 𝑎𝛾̇

𝑈𝑠𝑡

be the dimensionless shear rate and ush
*
𝑖 = ush𝑖

𝑈𝑠𝑡

the dimensionless
velocity of the system under shear motion. Thus,

ush
*
𝑖 = u*

𝑖 + (0, 𝛾̇*𝑧*, 0) . (2.73)

For the rotational motion,

𝜔sh𝑖 = 𝜔𝑖 +
(︃

1
2 𝛾̇, 0, 0

)︃
. (2.74)

Multiply both sides by 𝑈𝑠𝑡

𝑎

𝑈𝑠𝑡

𝑎
𝜔sh𝑖 = 𝑈𝑠𝑡

𝑎
𝜔𝑖 +

(︃
𝑈𝑠𝑡

2𝑎 𝛾̇, 0, 0
)︃
. (2.75)

Let 𝜔sh
*
𝑖 = 𝜔sh𝑖

𝑈𝑠𝑡

be the dimensionless angular velocity of the 𝑖-th particle when

shear motion is activated. As 𝛾̇* = 𝑎𝛾̇

𝑈𝑠𝑡

is the dimensionless shear rate, it is obtained

𝜔sh
*
𝑖 = 𝜔*

𝑖 +
(︃
𝛾̇*

2 , 0, 0
)︃
. (2.76)

For the kinematics of the dipoles orientation, there is

d
d𝑡 d̂𝑖 = 𝜔sh𝑖 × d̂𝑖. (2.77)

Substitute 𝑡* = 𝑈𝑠𝑡𝑡

𝑎
,
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𝑎

𝑈𝑠𝑡

d
d𝑡* d̂𝑖 = 𝜔sh𝑖 × d̂𝑖, (2.78)

=⇒ d
d𝑡* d̂𝑖 =

(︃
𝑈𝑠𝑡

𝑎
𝜔sh𝑖

)︃
× d̂𝑖. (2.79)

As 𝜔sh
*
𝑖 = 𝑈𝑠𝑡

𝑎
𝜔sh𝑖, it can be concluded that

d
d𝑡* d̂𝑖 = 𝜔sh

*
𝑖 × d̂𝑖. (2.80)

2.6.3 Dimensionless Average Magnetization

To calculate the maximum magnetization of the system of particles, consider that
all dipoles are aligned in the same direction, such that d̂𝑖 = ẑ. So,

m𝑖 = 𝑚d̂𝑖, 𝑖 = 1, . . . , 𝑁 (2.81)

=⇒ m𝑖 = 𝑚ẑ, 𝑖 = 1, . . . , 𝑁. (2.82)

As such, the maximum magnetization (saturation magnetization) is given by Eq.
(2.83)

M = 𝑀𝑠ẑ = 1
𝑉

𝑁∑︁
𝑖=1

m𝑖 = 1
𝑉

𝑁∑︁
𝑖=1

𝑚ẑ = 𝑚

𝑉

⎛⎝ 𝑁∑︁
𝑖=1

ẑ

⎞⎠ = 𝑚

𝑉
(𝑁 ẑ) =

(︃
𝑁

𝑉

)︃
𝑚ẑ = 𝑛𝑚ẑ (2.83)

∴𝑀𝑠 = 𝑛𝑚. (2.84)

Hence, the scale 𝑀𝑠 is chosen to nondimensionalize the magnetization. Consequently,
the dimensionless magnetization, M*, is given by Eq. (2.85)

M* = M
𝑀𝑠

= M
𝑛𝑚

. (2.85)

As such, the dimensionless magnetization is determined only by the average of d̂𝑖,

M* = 1
𝑛𝑚

M = 1
𝑛𝑚

⎛⎝ 𝑛

𝑁

𝑁∑︁
𝑖=1

m𝑖

⎞⎠ = 1
𝑛𝑚

⎛⎝𝑛𝑚
𝑁

𝑁∑︁
𝑖=1

d̂𝑖

⎞⎠ = 1
𝑁

𝑁∑︁
𝑖=1

d̂𝑖. (2.86)

Thus, the dimensionless average magnetization is given by

M* = 1
𝐾

𝐾∑︁
𝑘=1

M*
𝑘. (2.87)
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2.6.4 Dimensionless Average Rate of Internal Energy Dissipation

To obtain the nondimensionalized form of the average rate of internal energy per
unit volume, one must apply equations M = 𝑀𝑠M

*, H = 𝐻Ĥ and 𝑡𝑓 = 𝑎𝑡*𝑓/𝑈𝑠𝑡 in Eq.
(2.57). Thus,

Δ𝑈
Δ𝑡 = 𝑈𝑠𝑡

𝑎𝑡*𝑓

{︂
𝜇0

∫︁ M*
(︁

𝑡*
𝑓

)︁
,Ĥ
(︁

𝑡*
𝑓

)︁
M*(0),Ĥ(0)

(︁
𝐻Ĥ

)︁
· d
(︁
𝑀𝑠M

*)︁+

+ 𝜇0𝐻
2

2

[︂
‖Ĥ‖

(︁
𝑡*𝑓
)︁2

− ‖Ĥ‖ (0)2
]︂ }︂

(2.88)

=⇒ Δ𝑈
𝑎Δ𝑡/𝑈𝑠𝑡

= 1
𝑡*𝑓

{︂
𝜇0

∫︁ M*
(︁

𝑡*
𝑓

)︁
,Ĥ
(︁

𝑡*
𝑓

)︁
M*(0),Ĥ(0)

(︁
𝐻Ĥ

)︁
· d
(︁
𝑀𝑠M

*)︁+

+ 𝜇0𝐻
2

2

[︂
‖Ĥ‖

(︁
𝑡*𝑓
)︁2

− ‖Ĥ‖ (0)2
]︂ }︂

(2.89)

Let Δ𝑡* = 𝑎Δ𝑡/𝑈𝑠𝑡 be the nondimensionalized variation of time. So,

=⇒ Δ𝑈
Δ𝑡* = 1

𝑡*𝑓

{︂
𝜇0

∫︁ M*
(︁

𝑡*
𝑓

)︁
,Ĥ
(︁

𝑡*
𝑓

)︁
M*(0),Ĥ(0)

(︁
𝐻Ĥ

)︁
· d
(︁
𝑀𝑠M

*)︁+

+ 𝜇0𝐻
2

2

[︂
‖Ĥ‖

(︁
𝑡*𝑓
)︁2

− ‖Ĥ‖ (0)2
]︂ }︂

(2.90)

=⇒ Δ𝑈
Δ𝑡* = 𝜇0𝐻𝑀𝑠

𝑡*𝑓

{︂ ∫︁ M*
(︁

𝑡*
𝑓

)︁
,Ĥ
(︁

𝑡*
𝑓

)︁
M*(0),Ĥ(0)

Ĥ · dM*+

+ 𝐻

2𝑀𝑠

[︂
‖Ĥ‖

(︁
𝑡*𝑓
)︁2

− ‖Ĥ‖ (0)2
]︂ }︂

(2.91)

=⇒
(︃

1
𝜇0𝐻𝑀𝑠

)︃
Δ𝑈
Δ𝑡* = 1

𝑡*𝑓

{︂ ∫︁ M*
(︁

𝑡*
𝑓

)︁
,Ĥ
(︁

𝑡*
𝑓

)︁
M*(0),Ĥ(0)

Ĥ · dM*+

+ 𝐻

2𝑀𝑠

[︂
‖Ĥ‖

(︁
𝑡*𝑓
)︁2

− ‖Ĥ‖ (0)2
]︂ }︂

(2.92)

Let Δ𝑈* = Δ𝑈
𝜇0𝐻𝑀𝑠

be the nondimensionalized variation of internal energy per
unit volume. Hence,

=⇒ Δ𝑈*

Δ𝑡* = 1
𝑡*𝑓

{︂ ∫︁ M*
(︁

𝑡*
𝑓

)︁
,Ĥ
(︁

𝑡*
𝑓

)︁
M*(0),Ĥ(0)

Ĥ · dM* + 𝐻

2𝑀𝑠

[︂
‖Ĥ‖

(︁
𝑡*𝑓
)︁2

− ‖Ĥ‖ (0)2
]︂ }︂

(2.93)

28



in which
Δ𝑈*

Δ𝑡* is the dimensionless average rate of internal energy.

Note that

𝛼

24𝜑𝜆 =
(︃
𝜇0𝑚𝐻

𝐾𝑏𝑇

)︃(︃
4𝜋𝐾𝑏𝑇 (2𝑎)3

𝜇0𝑚2

)︃
1

24𝜑 =
(︃

4𝜋(2𝑎)3𝐻

𝑚

)︃
1

24𝜑 =
(︃

4𝜋𝑎3𝐻

𝑚

)︃
1

3𝜑 (2.94)

Once 𝑣𝑖 =
4𝜋𝑎3

3 is the volume of a MNP,

=⇒ 𝛼

24𝜑𝜆 = 𝑣𝑖𝐻

𝜑𝑚
(2.95)

Using 𝜑 =
𝑁

𝑉
𝑣𝑖 = 𝑛𝑣𝑖,

=⇒ 𝛼

24𝜑𝜆 = 𝑣𝑖𝐻

𝑛𝑣𝑖𝑚
= 𝐻

𝑛𝑚
(2.96)

Applying 𝑀𝑠 = 𝑛𝑚,

=⇒ 𝛼

24𝜑𝜆 = 𝐻

𝑀𝑠

(2.97)

The substitution of Eq. (2.97) into (2.93) yields the most general expression for
the dimensionless average rate of internal energy dissipation,

Δ𝑈*

Δ𝑡* = 1
𝑡*𝑓

{︂ ∫︁ M*
(︁

𝑡*
𝑓

)︁
,Ĥ
(︁

𝑡*
𝑓

)︁
M*(0),Ĥ(0)

Ĥ · dM* + 𝛼

48𝜑𝜆

[︂
‖Ĥ‖

(︁
𝑡*𝑓
)︁2

− ‖Ĥ‖ (0)2
]︂ }︂

(2.98)

In Chapter 4: Results of Alternating Magnetic Field and Chapter 5: Results of
Alternating Magnetic Field with Shear Motion, a one-dimensional (ẑ direction) periodic
magnetic field is applied, such that the dimensionless average rate of internal energy is
given by

Δ𝑈*

Δ𝑡* = 1
𝑡*𝑓

⎡⎢⎣∫︁ 𝑀
*
𝑧

(︁
𝑡*
𝑓

)︁
,𝐻̂𝑧

(︁
𝑡*
𝑓

)︁
𝑀

*
𝑧(0),𝐻̂𝑧(0)

𝐻̂𝑧 d𝑀*
𝑧

⎤⎥⎦ (2.99)

In Chapter 6: Results of Chaotic Magnetic Field a two-dimensional (ŷ and ẑ
directions) chaotic magnetic field is applied, such that the dimensionless average rate of
internal energy is given by
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Δ𝑈*

Δ𝑡* = 1
𝑡*𝑓

{︃∫︁ 𝑀
*
𝑦

(︁
𝑡*
𝑓

)︁
,𝐻̂𝑦

(︁
𝑡*
𝑓

)︁
𝑀

*
𝑦(0),𝐻̂𝑦(0)

𝐻̂𝑦 d𝑀*
𝑦 +

∫︁ 𝑀
*
𝑧

(︁
𝑡*
𝑓

)︁
,𝐻̂𝑧

(︁
𝑡*
𝑓

)︁
𝑀

*
𝑧(0),𝐻̂𝑧(0)

𝐻̂𝑧 d𝑀*
𝑧+

+ 𝛼

48𝜑𝜆

[︂
𝐻̂𝑦

(︁
𝑡*𝑓
)︁2

+ 𝐻̂𝑧

(︁
𝑡*𝑓
)︁2

− 𝐻̂𝑦 (0)2 − 𝐻̂𝑧 (0)2
]︂ }︃

(2.100)

In Eq. (2.100), one can see negative terms, such that it is possible to obtain Δ𝑈*

Δ𝑡* < 0.
This represents a cooling effect due to magnetic refrigeration.

2.7 Algorithm Methods

2.7.1 Numerical Integration Method

The Runge-Kutta of 4-th order numerical method is applied to integrate the
nondimensionlized governing equations. To do so, the system is simulated through an
open source in-house Fortran code with fixed time steps (Gontijo; Cunha, 2015). Several
realizations of the simulation are performed, with the purpose of acquiring consistent
statistical data. The numerical time step used in all simulations is given by Eq. (2.101),

ℎ = min
(︃

St
10 ,

Pe
10 , 0.01

)︃
, (2.101)

in which ℎ is the dimensionless time step.

2.7.2 Procedure to Avoid Aggregation of Particles

To prevent particle agglomeration, one must simulate the effect of the surfactant,
which stabilizes the ferrofluid (Huang et al., 2017). Thus, the magnetic force is deacti-
vated for near particles (Gontijo; Cunha, 2015). As the attraction dipole-dipole force is
proportional to 1/𝑟4

𝑖𝑗, the magnetic force is extraordinary intense in short distances. As a
consequence, if the magnetic force is considered in near particles during the simulation,
particle's agglomeration and superposition will occur.

Thus, according to Gontijo and Cunha (2015), the magnetic force is made inactive
for the optimized range of 𝑟𝑖𝑗 < 10𝑎. To exemplify this, Fig. 2.9 shows the moment when
the magnetic force is disabled for 2 isolated particles. Throughout all time steps in the
simulation, the distance between all particles is verified, such that, if a pair of spheres
approaches each other, their magnetic forces are equal to zero.
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d̂𝑗d̂𝑖
Fm𝑗 = 0Fm𝑖 = 0

10𝑎

Figure 2.9 – Distance which the dipole-dipole magnetic force between two particles is
deactivated to avoid agglomeration. Figure adapted from Gontijo and Cunha
(2015).

2.7.3 Periodic Magnetic Torque

This section describes a algorithm method used only for cases with 𝜑 > 1% and
𝜆 > 1. To compute long range interactions between particles, such as velocities and torques
caused by motion, particles cells are periodically replicated through the suspension volume
(Gontijo; Cunha, 2015). With this, the effect of an infinite suspension can be simulated
(Cunha et al., 2002). As a result, there are hundreds of imaginary cells around a central
cell in the simulation. To harvest the results, data is obtained only from the central cell,
which is influenced by the neighborhood cells. Fig. 2.10 illustrates a simplified example,
with 8 imaginary cells and 1 central cell, to represent a system with particles periodically
replicated through the volume.

In Fig. 2.10, because the number of particles increased with the system's replication,
the computational time to simulate the system has increased as well. Thus, to compute
the calculations of the dipole-dipole interactions in a faster way, Ewald summation on the
physical and reciprocal space is applied (Ewald, 1921), (Beenakker, 1986), (Cunha et al.,
2002). In this work, 125 lattices are used in the physical domain and 125 lattices in the
reciprocal domain, couting 250 lattices in total.

Hence, the nondimensionalized magnetic torque applied in the 𝑖-th particle under the
influence of particles from the central lattice and neighbor lattices periodically distributed
is given by Eqs.(2.102), (2.103), (2.104), (2.105), (2.106) and (2.107),
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x̂

ẑ

ŷ
Figure 2.10 – Schematic of the simulation's physical domain. The central cell (in blue) is

replicated into imaginary cells (in gray), to compute the effect of a suspension.
Figure adapted from Cunha et al. (2002).

Tmp
*
𝑖 =

⎡⎢⎢⎢⎣− 8𝜆
Pe𝑟

∑︁
𝑥∈ℒ

𝒯 1(𝑥) + 1
𝐿3

∑︁
𝑥∈ℒ
𝑘 ̸=0

𝒯 2(𝑘)

⎤⎥⎥⎥⎦+ 𝛼

Pe𝑟

(︁
d̂𝑖 × Ĥ

)︁
, (2.102)

𝒯 1(𝑥) =
(︁
d̂𝑖 × d̂𝑗

)︁
ℬ
(︁
𝑟𝑖𝑗

)︁
−
(︁
d̂𝑖 × r̂𝑖𝑗

)︁ (︁
d̂𝑗 · r̂𝑖𝑗

)︁
𝒞
(︁
𝑟𝑖𝑗

)︁
, (2.103)

𝒯 2(𝑘) = 4𝜋
(︁
d̂𝑖 × k̂

)︁ (︁
d̂𝑗 · k̂

)︁
𝑒(𝜋𝑘/𝜉)2

cos
(︁
2𝜋k̂ · r̂𝑖𝑗

)︁
, (2.104)

ℬ
(︁
𝑟𝑖𝑗

)︁
=
⎡⎣erfc(𝜉𝑟𝑖𝑗) +

(︃
2𝜉𝑟𝑖𝑗√
𝜋

)︃
𝑒(−𝜉2𝑟2

𝑖𝑗)

⎤⎦ 𝑟−3
𝑖𝑗 , (2.105)

𝒞
(︁
𝑟𝑖𝑗

)︁
=
⎛⎝ 2𝜉𝑟𝑖𝑗

𝑟4
𝑖𝑗

√
𝜋

⎞⎠(︁3 + 2𝜉2𝑟2
𝑖𝑗

)︁
𝑒(−𝜉2𝑟2

𝑖𝑗) + 3 erfc(𝜉𝑟𝑖𝑗)
𝑟4

𝑖𝑗

, (2.106)

erfc(𝑥) = 1 − 2√
𝜋

∫︁ 𝑥

0
𝑒−𝑡2d𝑡, (2.107)

where 𝒯 1(𝑥) is a function from the physical domain, 𝒯 2(𝑘) is a function from the reciprocal
domain, k̂ is the wavenumber unit vector, ℬ

(︁
𝑟𝑖𝑗

)︁
and 𝒞

(︁
𝑟𝑖𝑗

)︁
are scalar functions and

erfc(𝑥) is the complementary error function. The parameter 𝜉 dictates the convergence of
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the method (Gontijo; Cunha, 2015). In this work, the value 𝜉 = 𝜋1/2𝑉 −1/3 is used, where
𝑉 is the volume of the central cell (Beenakker, 1986). When the condition of periodic
magnetic torques is activated, the magnetic torque Tm

*
𝑖 is replaced by Tmp

*
𝑖 .
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3 Nonlinear Dynamics and Signal
Processing

“Mathematics is the art of giving the same name to different things.”

Henri Poincaré

This chapter is focused on explaining the nonlinear tools used in this work.

3.1 Poincaré Map

The Poincaré map or return map is a tool used to describe different types of
oscillations in dynamical systems (Seydel, 2009). As stated by Seydel (2009), it is usually
applied to describe stability for periodic orbits. The Poincaré map transforms a continuous
time system into a discrete time system, allowing the study of a lower dimensional problem.
To obtain the map, one must define a hypersurface (Poincaré section) in the phase space,
such that all trajectories intersects the surface transversally and in the same direction.
In other words, the Poincaré map is a stroboscopically portrait of the system. However,
there is no general procedure to construct a Poincaré Map, because it is necessary a prior
knowledge of the system for each case (Wiggins; Wiggins; Golubitsky, 2003).

In this study, once the system analyzed is non-autonomous and the explicit time
dependence is given by the forcing function (magnetic field), the Poincaré section is chosen
as

Σ =

⎧⎨⎩𝐻̂𝑧 = 0, d𝐻̂𝑧

d𝑡 > 0

⎫⎬⎭ (3.1)

in which Σ is the Poincaré section.

In other words, the values of the Poincaré map are selected when the magnetic field
in the ẑ direction has the same phase. Because the simulation values are discrete, to increase
precision, interpolation was applied in the Poincaré mapping, to better approximate the
phase of 𝐻̂𝑧. As an example, Fig. 3.1 shows a typical time response of the magnetization
(in purple) with the Poincaré map selected (in green) for a sinusoidal magnetic field, 𝐻̂𝑧.

34



0 1 2 3 4 5
-1.5

-1

-0.5

0

0.5

1

Figure 3.1 – Example of the Poincaré map (in green, [𝑀𝑧
*]) of the magnetization time

response over time (in purple, 𝑀𝑧
*).

In Fig. 3.1, as M* and Ĥ are delayed, the point of [𝑀*
𝑧] is reached a little before

the complete period of 𝑀*
𝑧. The time response (in purple) is well-behaved, such that

the Poincaré map [𝑀*
𝑧] (in green) is always marked at the same value (approximately

𝑀
*
𝑧 = −1). However, if the behavior of two consecutive points is not linear, the points

marked by [𝑀*
𝑧] can have very distinct values.

3.2 Bifurcation Diagram

Bifurcation or branching is defined as a qualitative change observed in a system
due to the variation of a certain control parameter, 𝜆𝑐 (Seydel, 2009). As this parameter
changes and surpasses a threshold value, a different behavior is noticed on the system.
As examples of qualitative changes, the system may vary between the state of stable or
unstable, regular or irregular, symmetric or asymmetric, ordered or chaotic motions. For
instance, the oscillation of an airfoil may achieve chaotic motion as the speed of the plane
(control parameter) increases and the condition of turbulence flow is reached.

To observe a qualitative change, a scalar measure of the system's states variables
is required. There are several choices for the scalar measure, such as choosing just one
arbitrary variable from all states variables at a specific time, selecting the maximum
value of all state variables or even the 2-norm of all states variables combined (Seydel,
2009). In this work, the equivalent state variables are the x̂, ŷ and ẑ components of the
dimensionless average magnetization, M*. Thus, the notation of scalar measure is given
by

[︁
M*]︁ or, more precisely, by its 3 components,

[︁
𝑀𝑥

*]︁, [︁𝑀𝑦
*]︁ and

[︁
𝑀𝑧

*]︁.
Hence, the bifurcation diagram, also called as branching diagram or response
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diagram, is defined as a graph between
[︁
M*]︁ and 𝜆𝑐. Regarding the various type of scalar

measures, the Poincaré map of M* is chosen for
[︁
M*]︁.

For example, two bifurcation diagrams are shown in Fig. 3.2, as the Poincaré map
is plotted in the ordinate axis. If the response is periodic, thus, [𝑢] always has the same
value (like Fig. 3.1), a bifurcation diagram in Fig. 3.2(a) can be observed (Barbosa et al.,
2015). Even with only periodic response, a threshold value of 𝜆𝑐 = 𝜔 ≈ 0.4 is noticed,
where the value of [𝑢] is drastically changed, presenting a discontinuity in the bifurcation
diagram. If the response is chaotic, the bifurcation diagram in Fig. 3.2(b) can be seen. In
this case, the Poincaré map [𝑢] presents various points for the same parameter value after
a drastically change from one-to-one map to one-to-many map, as shown by the threshold
value of 𝜆𝑐 = 𝑓0 ≈ 0.08. Other threshold values can be observed at 𝑓0 ≈ 0.09, 𝑓0 ≈ 0.095
and 𝑓0 ≈ 0.11.

(a)

0.01 0.03 0.05 0.07 0.09 0.11 0.13 0.15
-2

-1

0

1

2

(b)

Figure 3.2 – Examples of bifurcation diagrams. (a) Threshold value at 𝜔 ≈ 0.4. (b)
Threshold values at 𝑓0 ≈ 0.08, 𝑓0 ≈ 0.09, 𝑓0 ≈ 0.95 and 𝑓0 ≈ 0.11

3.3 Fourier Transform

The Fourier transform adopted in this work is given by Eq. (3.2),

ℱ{𝑀*
𝑧 (𝑡*)}(𝜔*) =

∫︁ ∞

−∞
𝑀*

𝑧 (𝑡*)𝑒−J 𝜔*𝑡* d𝑡*, (3.2)

where 𝑡* is the dimensionless time domain, 𝜔* is the dimensionless angular frequency
domain, J =

√
−1 is the imaginary unit, 𝑀*

𝑧 (𝑡) is the time signal and ℱ{𝑀*
𝑧 (𝑡)}(𝜔*) is

the Fourier transform of the signal (Shin; Hammond, 2008). The Fast Fourier transform
algorithm is applied for discrete time signals.
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4 Results of Alternating Magnetic
Field

“One accurate measurement is worth a thousand expert opinions.”

Grace Hopper

In this chapter, the magnetization relaxation is evaluated, that corresponds to
the system free response just after the magnetic field is turned off. In the sequence, it is
analyzed how nondimensional parameters change the system's dynamical behavior. The
following one-dimensional alternating magnetic field is considered

Ĥ(𝑡*) = 𝐻̂𝑧ẑ = sin(𝜔*
𝐻𝑡

*)ẑ, (4.1)

where 𝜔*
𝐻 is the dimensionless angular frequency associated with the magnetic field. The

period of the magnetic field is given by 𝒯 * = 2𝜋
𝜔*

𝐻

.

As the magnetic field is one-dimensional and periodic, the expression used in this
chapter to calculate the dimensionless average rate of internal energy is

Δ𝑈*

Δ𝑡* = 1
𝑡*𝑓

[︂ ∫︁ 𝑀
*
𝑧

(︁
𝑡*
𝑓

)︁
,𝐻̂𝑧

(︁
𝑡*
𝑓

)︁
𝑀

*
𝑧(0),𝐻̂𝑧(0)

𝐻̂𝑧 d𝑀*
𝑧

]︂
= 1
𝑡*𝑓

[︂ ∫︁ 𝑀
*
𝑧

(︁
𝑡*
𝑓

)︁
𝑀

*
𝑧(0)

sin(𝜔*
𝐻𝑡

*) d𝑀*
𝑧

]︂
, (4.2)

thus,
Δ𝑈*

Δ𝑡* is calculated by the hysteresis curve area only in the ẑ direction.

Fig. 4.1 shows the system treated in this chapter. For this case, a one-dimensional
sinusoidal magnetic field is applied, given by Eq. (4.1). From the dynamical point of view,
the external magnetic vector field can be interpreted as the system excitation.
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d̂𝑖

x̂ ŷ

ẑ

Ĥ(𝑡)

Figure 4.1 – Representation of the system analyzed in this chapter. An external magnetic
vector field with harmonic behavior is applied in the ẑ direction, represented
by (Ĥ). Particles are represented by black dots and their dipole vector in red
(d̂𝑖).

4.1 Magnetization Relaxation

In this section, the objective is to study the system's response under relaxation.
The system is first excited with an alternating magnetic field, then the effect of the field
is deactivated and the system approaches equilibrium. Equation (4.3) shows the applied
magnetic field, described as the conditional function

Ĥ(𝑡*) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
sin(𝜔*

𝐻𝑡
*)ẑ if 0 ≤ 𝑡* <

𝑡*𝑓

2 ,

0 if
𝑡*𝑓

2 ≤ 𝑡* ≤ 𝑡*𝑓 ,

(4.3)

where 𝑡*𝑓 is the dimensionless final time of the simulation. The magnetic field becomes
inactive when the time of the simulation reaches half of its total. Thus, the magnetization
relaxation response correspond to the half final of the response. One can interpret that
a rectangular window is applied on the response (Shin; Hammond, 2008). At last, the
Fourier transform of the windowed signal is calculated.

4.1.1 Results

Fig. 4.2 shows the results of the magnetization relaxation for 𝜆 = 1, Pe = 6 and
𝜑 = 1% and after a magnetic field with 𝛼 = 10 and 𝜔*

𝐻 = 10 is applied.
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Figure 4.2 – Magnetization relaxation for 𝛼 = 10, 𝜔*
𝐻 = 10, 𝜆 = 1, Pe = 6 and 𝜑 = 1%. (a):

Dimensionless time response (in purple) and the cut section used to isolate
the relaxation time response. (b): Signal after the cut-off (windowed time
response), representing the magnetization under relaxation. (c): Absolute
value of the Fourier transform of the windowed signal in logarithm scale.

Fig. 4.2(a) shows the time response, the blue dashed line indicates the moment
when the magnetic field is deactivated. When the excited is on, the system oscillates
with the same frequency of the magnetic field. After it is turned off, the time response
approaches equilibrium. Fig. 4.2(b) shows the time response only in relaxation, when the
magnetic field slowly reaches the value of zero. A Fourier transform is constructed from
the time response in relaxation, shown in Fig. 4.2(c). One can see that the maximum value
of the spectra occurs at 𝜔* = 0, that is, the system's natural frequency is equal to zero,
representing a constant magnetization.

Fig. 4.3 shows the results of the relaxation magnetization varying 𝜑 for the values:
𝛼 = 1, 𝜔*

𝐻 = 1, 𝜆 = 1 and Pe = 1. Fig. 4.3 (a), (b) and (c) correspond to 𝜑 = 1% and Fig.
4.3 (d), (e) and (f) correspond to 𝜑 = 15%.
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Figure 4.3 – Magnetization relaxation for 𝜔*
𝐻 = 1, 𝜆 = 1, Pe = 1 and 𝛼 = 1. (a), (b)

and (c): 𝜑 = 1%. (d), (e) and (f): 𝜑 = 15%. (a) and (d): Dimensionless
time response (in purple) and the cut section used to isolate the relaxation
time response. (b) and (e): Signal after the cut-off (windowed time response),
representing the magnetization under relaxation. (c) and (f): Absolute value
of the Fourier transform of the windowed signal in logarithm scale.

In Fig. 4.3(a), with 𝜑 = 1%, the system behaves with a well-behaved sine wave
before the deactivation of the magnetic field. Analyzing the Fourier transform of the
relaxation magnetization in Fig. 4.3(c), the frequency 𝜔* = 0 has the higher value and the
spectra is noisier than 4.2(c). This happens because the influence of the brownian random
motion is higher than in the previous case (the lower the Pe, the stronger the brownian
force and torque) and the influence of the magnetic field is lower (the lower the 𝛼, the
weaker the magnetic force and torque).

In Fig. 4.3(d), with 𝜑 = 15%, the system behaves in a very similar way of Fig.
4.3(a), with only a slightly higher amplitude before the relaxation. In Fig. 4.3(e), the
system is noisier in the relaxation response, due to the higher number of particles, which
increased the particle's collisions with the newtonian fluid. In Fig. 4.3(f), the Fourier
transform still indicates the frequency 𝜔* = 0, but with an even noisier spectra.

As a conclusion, the variation of the volume fraction parameter has not changed
significantly the dynamical aspect of the system, as only a null natural frequency is
obtained in all cases. The higher the 𝜑, the higher the random effect in the time response.

Fig. 4.4 shows the results of the relaxation magnetization varying 𝛼 for the values:
𝜑 = 1%, 𝜔*

𝐻 = 1, 𝜆 = 1 and Pe = 1. Fig. 4.4 (a), (b) and (c) show 𝛼 = 1 and Fig. 4.4 (d),
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(e) and (f) show 𝛼 = 10.
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Figure 4.4 – Magnetization relaxation for 𝜑 = 1%, 𝜔*
𝐻 = 10, 𝜆 = 1, Pe = 6. (a), (b) and

(c): 𝛼 = 1. (d), (e) and (f): 𝛼 = 10. (a) and (d): Dimensionless time response
(in purple) and the cut section used to isolate the relaxation time response
(in blue). (b) and (e): Signal after the cut-off (windowed time response),
representing the magnetization under relaxation. (c) and (f): Absolute value
of the Fourier transform of the windowed signal in logarithm scale.

In Fig. 4.4(a), for a low value of 𝛼, the amplitude of the time response before the
cut-off is low. After the cut (Fig. 4.4(b)), the Fourier transform in Fig. 4.4(c) shows a
noisy spectra, due to the low value of 𝛼 and 𝛼 being defined as the ratio between the
magnetic energy and brownian energy. Hence, with a low value of 𝛼, the brownian effect
dominates the system. The maximum value of the spectra at 4.4(c) is observed at 𝜔* = 0.

In Fig. 4.4(d), for a high value of 𝛼 (𝛼 = 10), the time response has a higher
amplitude than before. After the cut (Fig. 4.4(e)), the Fourier transform in Fig. 4.4(f)
shows a more smooth spectra - due to the higher value of Pe, the random contribution of
the system decreased. Again, a peak is noted at 𝜔* = 0. The variation of the Langevin
parameter has not changed the system's dynamical aspects.

4.2 Parametric Analysis

A parametric analysis for each dimensionless parameter ( Pe, 𝜑, 𝛼, 𝜆 and 𝜔*
𝐻 ) is

now performed. For each case the system's mean magnetization response, the hysteresis
curve, the phase space and the Poincaré map are obtained.
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4.2.1 Péclet Number Scan

Figure 4.5 displays the results, in steady-state regime, scanning the variable Pe,
varied from Pe = 1 to Pe = 10, whereas the other parameters have the values of 𝛼 = 1,
𝜔*

𝐻 = 1, 𝜆 = 1 and 𝜑 = 1%. As the volume fraction is low (𝜑 = 1%), periodic magnetic
torques are not activated.
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Figure 4.5 – Scan of the Péclet number (Pe) with 𝛼 = 1, 𝜔*
𝐻 = 1, 𝜆 = 1 and 𝜑 = 1%. (a),

(b) and (c): Pe = 1. (d), (e) and (f): Pe = 5. (g), (h) and (i): Pe = 10. (a),
(d) and (g): Dimensionless magnetization's time response. (b), (e) and (h):
Hysteresis curve and dimensionless rate of internal energy dissipation (upper
left corner). (c), (f) and (i): Phase space (in purple) with Poincaré map (in
green).

The first line of Fig. 4.5 shows the results of Pe = 1, the second line shows the
results of Pe = 5 and the third line shows the results of Pe = 10. The first column of 4.5
displays the time response of the dimensionless magnetization, the second column displays
the hysteresis curve of that simulation, as well as the dimensionless average rate of internal
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energy dissipation (numerical value in the upper left corner), and the third column shows
the phase space of that simulation (in purple) and the Poincaré map (in green).

The first simulation is displayed in Fig. 4.5 (a) to (c). The time response at (a) is
a well-behaved sine with low amplitude, the hysteresis curve at (b) yields a small value
of internal energy (Δ𝑈*/Δ𝑡* = 0.05) and the phase space at (c) outputs a Poincaré map
periodic with period 1, as there is a single green point in the map, but with a significant
random effect, showed by the random form of the phase space.

The second simulation, shown by Fig. 4.5 (d) to (f), for a medium value of Péclet
number (Pe = 5), shows that increasing the Péclet number yields better results. The time
response at (d) has a higher amplitude than (a). The hysteresis curve at (e) produces
more internal energy (Δ𝑈*/Δ𝑡* = 0.38) than (b). However, the phase space at (f) still
yields a periodic behavior with period 1, the same as (c).

The third simulation, shown by Fig. 4.5 (g) to (i), for a high value of Péclet number
(Pe = 10), shows that increasing the Péclet number even further does not yield better
results. The time response at (g) approximates a square wave. This happens because
the maximum value of the magnetization (the saturation magnetization) is reached, in a
way that 𝑀*

𝑧 can not be higher than 1. The hysteresis curve at (h) produces slightly less
internal energy (Δ𝑈*/Δ𝑡* = 0.37) than (e) and one can see at (h) the presence of sharp
points. The phase space at (i) still yields a periodic response with period 1, the same as (c)
and (i). Thus, the best case scenario for Δ𝑈*/Δ𝑡* is reached between Pe = 1 and Pe = 10.

The graph of Δ𝑈*/Δ𝑡* versus Pe is shown by the purple dots in Fig. 4.6. The
highest value of Δ𝑈*/Δ𝑡* is achieved by Pe = 6 (drawn attention to by the red dashed
line). Thus, the value Pe = 6 is chosen for the next simulation, being the best case for
the internal energy dissipation. Due to the saturation magnetization, Δ𝑈*/Δ𝑡* can not
grow indefinitely with Pe. One can deduce a power law dependence for the behavior of the
graph such that

Δ𝑈*

Δ𝑡* = −0.3762 Pe−1.086 +0.4214, (4.4)

displayed by the purple line in Fig. 4.6.
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Figure 4.6 – Dimensionless average rate of internal energy versus the Péclet number (purple
dots) and power law fit (purple line) for 𝛼 = 1, 𝜔*

𝐻 = 1, 𝜆 = 1 and 𝜑 = 1%.
The best case scenario is highlighted by the red line (Pe = 6).

4.2.2 Volume Fraction Scan

Results of high (15%) and low (1%) volume fraction are shown in this section. It is
important to mention that a volume fraction of 15% is high in terms of biocompatibility,
which is essential for FF, however, all this range is analyzed in order to have a global
overview of the system dynamic behavior. For 𝜑 = 15%, the condition of periodic magnetic
torques is activated in simulations, for faster convergence. For 𝜑 = 1%, the method of
periodic magnetic torques is deactivated. Figure 4.7 shows the results, in the steady-state
regime, for 𝜑 = 1% and 𝜑 = 15% with the parameters values Pe = 1, 𝛼 = 1, 𝜆 = 1,
𝜔*

𝐻 = 1.
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Figure 4.7 – Scan of the volume fraction parameter (𝜑) with Pe = 1, 𝛼 = 1, 𝜔*
𝐻 = 1 and

𝜆 = 1. (a), (b) and (c): 𝜑 = 1%. (d), (e) and (f): 𝜑 = 15%. (a) and (d):
Dimensionless magnetization's time response. (b) and (e): Hysteresis curve
and dimensionless average rate of internal energy (upper left corner). (c) and
(f): Phase space (in purple) with Poincaré map (in green).

In Fig. 4.7, it is observed that the variation of 𝜑 from 1% to 15% did not change
the results significantly. The time response in Fig. 4.7 (a) and (d) remains the same. The
hysteresis curve at 4.7 (b) and (e) shows a slight difference between the internal energy
(from Δ𝑈*/Δ𝑡* = 0.05 to Δ𝑈*/Δ𝑡* = 0.06) and the Poincaré map at 4.7 (c) and (f) does
not change.

The same simulation from Fig. 4.7 is repeated at 4.8, but with the values of Pe = 10
instead of Pe = 1.
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Figure 4.8 – Scan of the volume fraction parameter (𝜑) with Pe = 10, 𝛼 = 1, 𝜔*
𝐻 = 1

and 𝜆 = 1. (a), (b) and (c): 𝜑 = 1%. (d), (e) and (f): 𝜑 = 15%. (a) and (d):
Dimensionless magnetization's time response. (b) and (e): Hysteresis curve
and dimensionless average rate of internal energy (upper left corner). (c) and
(f): Phase space (in purple) with Poincaré map (in green).

Once again, at 4.8, the variation of 𝜑 from 1% to 15% did not changed the results.
Due to cheaper and faster computation time, the value 𝜑 = 1% is chosen in the next
simulations.

4.2.3 Langevin Parameter Scan

Figure 4.9 displays the results, in steady-state regime, regarding the scan of the
variable 𝛼 from 𝛼 = 1 to 𝛼 = 10, for the constant values of Pe = 6, 𝜔*

𝐻 = 1, 𝜆 = 1 and
𝜑 = 1%.
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Figure 4.9 – Scan of the Langevin parameter (𝛼) with Pe = 6, 𝜔*
𝐻 = 1, 𝜆 = 1 and 𝜑 = 1%.

(a), (b) and (c): 𝛼 = 1. (d), (e) and (f): 𝛼 = 5. (g), (h) and (i): 𝛼 = 10. (a),
(d) and (g): Dimensionless magnetization's time response. (b), (e) and (h):
Hysteresis curve and dimensionless average rate of internal energy (upper
left corner). (c), (f) and (i): Phase space (in purple) with Poincaré map (in
green).

The first simulation (𝛼 = 1), shown by Fig. 4.9 (a) to (c), indicates a periodic
behavior of the average magnetization with a value of internal energy dissipation of
Δ𝑈*/Δ𝑡* = 0.38, as show by Fig. 4.9 (b). However, for the second simulation (𝛼 = 5),
shown by Fig. 4.9 (d) to (f), a lower value of internal energy dissipation is recorded
(Δ𝑈*/Δ𝑡* = 0.23) in Fig. 4.9 (e). This happens due to the saturation magnetization,
represented by the sharp edges of the hysterysis curve, which decreases the area under
the curve of 𝑀*

𝑧 and 𝐻̂𝑧. The third simulation (𝛼 = 10), shown by Fig. 4.9 (g) to (i),
yields an even lower value of internal energy dissipation in Fig. 4.9 (h), as the saturation
magnetization is reached in a faster way. Besides, at 4.9 (g), the time response approximates
even further to a square wave, due to the higher intensity of the dipole-field interaction.
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The graph of Δ𝑈*/Δ𝑡* versus 𝛼 is shown by the purple dots in Fig. 4.10. The
maximum value is achieved by the value 𝛼 = 1. For higher values of 𝛼, the saturation
magnetization is reached. It is expected that the higher the value of 𝛼, the effect of the
magnetic field into the system is increased, which could benefit the value of Δ𝑈*/Δ𝑡* for
different values of parameters. Because of this, the value 𝛼 = 10 is chosen as the best
case and used in the next simulations. One can deduce a power law dependence for the
behavior of the graph, such that

Δ𝑈*

Δ𝑡* = 0.8101𝛼−0.1285 − 0.4273, (4.5)

displayed by the purple line in Fig. 4.10.
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Figure 4.10 – Dimensionless average rate of internal energy versus the Langevin parameter
(purple dots) and power law fit (purple line) for Pe = 6, 𝜔*

𝐻 = 1, 𝜆 = 1 and
𝜑 = 1%. The best case scenario is chosen by 𝛼 = 10.

4.2.4 Dipole Interaction Parameter Scan

Figure 4.9 displays the results, in steady-state regime, regarding the scan of the
variable 𝜆 from 𝜆 = 1 to 𝜆 = 10, whereas the other parameters have the values of Pe = 6,
𝛼 = 10, 𝜔*

𝐻 = 1 and 𝜑 = 1%. For this simulation, the periodic magnetic torque condition
is applied.
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Figure 4.11 – Scan of the dipole interaction parameter (𝜆) with Pe = 6, 𝛼 = 10, 𝜔*
𝐻 = 1

and 𝜑 = 1%. (a), (b) and (c): 𝜆 = 1. (d), (e) and (f): 𝜆 = 10. (a) and (d):
Dimensionless magnetization's time response. (b) and (e): Hysteresis curve
and dimensionless average rate of internal energy (upper left corner). (c)
and (f): Phase space (in purple) with Poincaré map (in green).

The first simulation (𝜆 = 1), shown by Fig. 4.11 (a) to (c), indicates a square wave
(periodic with period-1) with internal energy dissipation of Δ𝑈*/Δ𝑡* = 0.18 for the value
of 𝜆 = 1. However, for the second simulation (𝜆 = 10), shown by Fig. 4.11 (d) to (f), a
lower internal energy dissipation is obtained, Δ𝑈*/Δ𝑡* = 0.15, in Fig. 4.11 (e), as the
condition of saturation magnetization is reached rapidly.

The graph of Δ𝑈*/Δ𝑡* versus 𝜆 is shown by the purple dots in Fig. 4.12. The
decreasing behavior of Δ𝑈*/Δ𝑡* is due to the saturation magnetization, which is reached
faster for higher 𝜆. The maximum value of the internal energy dissipation is reached in
𝜆 = 1, which is chosen as the best case for the next simulations. One can deduce a power
law dependence for the behavior of the graph, such that

Δ𝑈*

Δ𝑡* = −0.007296𝜆0.6488 + 0.1844, (4.6)

displayed by the purple line in Fig. 4.12.
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Figure 4.12 – Dimensionless average rate of internal energy versus the dipole interaction
parameter (purple dots) and power law fit (purple line) for Pe = 6, 𝛼 = 10,
𝜔*

𝐻 = 1 and 𝜑 = 1%. The best case scenario is highlighted by the red line
(𝜆 = 1).

4.2.5 Magnetic Field's Angular Frequency Scan

Figure 4.13 shows the results, in steady-state regime, of the scan of the variable
𝜔*

𝐻 from 𝜔*
𝐻 = 1 to 𝜔*

𝐻 = 10, with the values Pe = 6, 𝛼 = 10, 𝜆 = 1 and 𝜑 = 1%.
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Figure 4.13 – Scan of the magnetic field's angular frequency (𝜔*
𝐻) with Pe = 6, 𝛼 = 10,

𝜆* = 1 and 𝜑 = 1%. (a), (b) and (c): 𝜔*
𝐻 = 1. (d), (e) and (f): 𝜔*

𝐻 = 5.
(g), (h) and (i): 𝜔*

𝐻 = 10. (a), (d) and (g): Dimensionless magnetization's
time response. (b), (e) and (h): Hysteresis curve and dimensionless average
rate of internal energy (upper left corner). (c), (f) and (i): Phase space (in
purple) with Poincaré map (in green).

The first simulation in Fig. 4.13(a) to (c) shows the results of 𝜔*
𝐻 = 1, which

indicates a response with the saturation magnetization. The second simulation in Fig.
4.13(d) to (f) for 𝜔*

𝐻 = 5 indicates that the increase of the frequency made the magnetization
approximate to a sine wave instead of the square wave, as the response remains in the
saturation magnetization (given by 𝑀*

𝑧 = 1 or 𝑀*
𝑧 = −1) for a shorter period of time. The

third simulation in Fig. 4.13(g) to (i) for 𝜔*
𝐻 = 10 shows that, for an ever higher frequency,

the saturation magnetization is not reached, which increases the area of the hysteresis
curve. The internal energy dissipation achieves a maximum value of Δ𝑈*/Δ𝑡* = 5.76 for
𝜔*

𝐻 = 10. One can conclude that reaching the saturation magnetization is not desirable for
MH.
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The calculation of Δ𝑈*/Δ𝑡* accounts the area produced by the hysteresis curve
and the time of the simulation. Because of this, high values of Δ𝑈*/Δ𝑡* indicate that or
the system produced a high area in the hysteresis curve or that the system produced such
area in a short period of time. The value Δ𝑈*/Δ𝑡* = 5.76 obtained for 𝜔*

𝐻 = 10 is greater
than twice the value of Δ𝑈*/Δ𝑡* = 2.21 obtained for 𝜔*

𝐻 = 5, not because the area of the
hysteresis curve doubled, but because the system completed the area in a faster way for
𝜔*

𝐻 = 10 than 𝜔*
𝐻 = 5.

The graph of Δ𝑈*/Δ𝑡* versus 𝜔*
𝐻 is shown by the purple dots in Fig. 4.14. The

graph is peaked at value 𝜔*
𝐻 = 10 (red dot). Thus, the value 𝜔*

𝐻 = 10 is the best analyzed
case and is used for the next simulations. One can deduce a power law dependence for the
behavior of the graph, such that

Δ𝑈*

Δ𝑡* = 0.2816𝜔*
𝐻

1.326 − 0.1522, (4.7)

displayed by the purple line in Fig. 4.14.
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Figure 4.14 – Dimensionless average rate of internal energy versus the external magnetic
field's dimensionless angular frequency (purple dots) and power law fit
(purple line) for Pe = 6, 𝛼 = 10, 𝜆 = 1 and 𝜑 = 1%. The best case scenario
is highlighted by the red line (𝜔*

𝐻 = 10).

Hence, the values at Table 1 correspond to the best scenario considering all values
of analyzed parameters.

Pe 𝜑 𝛼 𝜆 𝜔*
𝐻

6 1% 10 1 10

Table 1 – Values chosen for the maximum value of Δ𝑈*/Δ𝑡* in alternating magnetic field.

Comparing the graphs of Δ𝑈*/Δ𝑡* in Figs. 4.6, 4.10, 4.12 and 4.14, the variable
𝜔*

𝐻 has produced the highest rate of change on Δ𝑈*/Δ𝑡*. Thus, 𝜔*
𝐻 is the parameter
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that has the greatest influence for the system's dissipation of internal energy with a pure
alternating magnetic field.

4.3 Bifurcation Diagram

Fig. 4.15 displays the results of the 𝜔*
𝐻 sweep for 𝛼 = 10, 𝜆 = 1, Pe = 6 and 𝜑 = 1%.

Fig. 4.15(a) shows the bifurcation diagram of 𝑀*
𝑧 using 𝜔*

𝐻 as the control parameter. The
sweep begins at 𝜔*

𝐻 = 1, it waits until the system reaches steady-state condition and
then it passes to the next step of the frequency, for example 𝜔*

𝐻 = 1.1. The process is
repeated until the frequency 𝜔*

𝐻 = 10 is reached. On the bifurcation diagram, some values
of frequencies are highlighted by colors (green, cyan, red and pink) and their respective
phase space and Poincaré map are shown at each corner of the Fig. 4.15(a). The green dot
represents the Poicaré map at frequency 𝜔*

𝐻 = 5.96, the cyan dots the Poincaré map of
𝜔*

𝐻 = 7.43, the red dot the Poincaré map of 𝜔*
𝐻 = 8.35 and the pink dots the Poincaré

map of 𝜔*
𝐻 = 9.27. Fig. 4.15(b) shows the internal energy dissipation generated at each

step of 𝜔*
𝐻 during the sweep (blue curve) and the internal energy dissipation calculated in

isolated simulations (the same graph of Fig. 4.14).
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Figure 4.15 – Results of the magnetic field's angular frequency sweep in steady-state for
𝛼 = 10, 𝜆 = 1, Pe = 6 and 𝜑 = 1%. (a) Bifurcation diagram (on the center)
with phase space and Poincaré map of 4 arbitraly chosen points shown at
each corner. (b) Average internal energy dissipation for each point of the
bifurcation diagram (in blue) and average internal energy dissipation in
isolated simulations (in purple).

In Fig. 4.15(a), the bifurcation diagram begins with a periodic response with period
1 and the Poincaré map is at the right side of the phase space (green dot). Then, the
number of points increases and the Poincaré map is at the lower side of the phase space
(cyan dots). This fast transition of the number of points happens due to the high velocity
coupled with the random contribution of system. Next, Poincaré map shows a single point
once again and Poincaré map is located at the left side of the phase space (red dot). Then,
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the number of points in the Poincaré map increases again and the Poincaré map is located
at the upper side of the phase space (pink dots). Seeing the phase space of the selected
points (green, cyan, red and pink) at each corner, one can conclude that the behavior of
the system remains the same (the shape of the phase space does not change whatsoever)
and the Poincaré map changes in the clockwise direction along the phase space. Thus,
the changes of the number of points in the Poincaré map are due to the frequency sweep
and not due to a drastically change of behavior from the system. Hence, there are no
qualitative changes and no threshold values in the bifurcation diagram of Fig. 4.15(a).

In Fig. 4.15(b), the curve of Δ𝑈*/Δ𝑡* during the frequency sweep (blue) and the
one obtained in isolated simulations (purple) are very close. Although the initial point for
both curves in 𝜔*

𝐻 = 1 is exactly the same, as both have the same initial condition, the
blue curve tends separate from the purple curve, due to the nonlinearities of the system.
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5 Results of Alternating Magnetic
Field with Shear Motion

“Do not be afraid to make mistakes. A mistake for a chess player is fatal; for a mathematician it
is par for the course. What you should be terrified of is a blank sheet in front of you after having

thought about a problem for a little while.”

Béla Bollobás

In this chapter, it is analyzed the system's behavior under an oscillatory shear
motion and an one-dimensional alternating magnetic field. Hence, let 𝛾̇ be the shear rate
under the system, such that

𝛾̇*(𝑡*) = 𝛾̇*
0 sin(𝜔*

𝑆𝑡
*), (5.1)

in which 𝛾̇*
0 is the shear rate dimensionless magnitude and 𝜔*

𝑆 is the dimensionless angular
frequency associated with the dimensionless shear rate. The magnetic field behavior is the
same from the previous chapter,

Ĥ(𝑡*) = sin(𝜔*
𝐻𝑡

*)ẑ. (5.2)

Although the system is under shear movement, the magnetic field is still one-
dimensional and periodic, the same behavior from Chapter 4: Results of Alternating
Magnetic Field. Hence, the expression used in this chapter for the dimensionless average
dissipation of internal energy is the same from Chapter 4,

Δ𝑈*

Δ𝑡* = 1
𝑡*𝑓

[︂ ∫︁ 𝑀
*
𝑧

(︁
𝑡*
𝑓

)︁
,𝐻̂𝑧

(︁
𝑡*
𝑓

)︁
𝑀

*
𝑧(0),𝐻̂𝑧(0)

𝐻̂𝑧 d𝑀*
𝑧

]︂
, (5.3)

that is,
Δ𝑈*

Δ𝑡* is calculated by the area of the hysteresis curve only in the ẑ direction. The
contribution of the ŷ direction is zero, as 𝐻̂𝑦 is zero and the area of 𝐻̂𝑦 and 𝑀

*
𝑦 is zero,
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even though 𝑀
*
𝑦 is not zero under shear movement. Thus, in this chapter, the dissipation

of internal energy is calculated by the area of the hysteresis curve only in the ẑ direction.

Fig. 5.1 shows the system treated in this chapter. Besides the oscillatory magnetic
field in the ẑ direction, an sinusoidal shear rate is applied in the ŷ direction.

d̂*
𝑖

x̂ ŷ

ẑ

Ĥ(𝑡)

𝛾̇*(𝑡)

Figure 5.1 – Representation of the system analyzed in this chapter. A dimensionless shear
rate motion with harmonic behavior is applied in the ŷ direction (𝛾̇*) and a
magnetic field in the ẑ direction (Ĥ). Particles are represented by black dots
and their dipole vector in red (d̂𝑖).

5.1 Parametric Analysis

A parametric analysis for 𝛾̇*
0 and 𝜔*

𝑆 is performed to identify the parameters that
most influences the system dynamics. For each case the system's hysteresis curve, average
magnetization response in ẑ (purple graphs) and ŷ (black graphs) directions, the Fourier
transform in logarithm scale of the time responses, the phase space, the Poincaré map are
presented.

5.1.1 Highest Average Rate of Internal Energy Dissipation

5.1.1.1 Shear Rate's Angular Frequency Scan

Figures 5.2 and 5.3 shows the results, in steady-state regime, for 𝜔*
𝑆 varying from 1

to 10, with the parameters values of Pe = 6, 𝛼 = 10, 𝜔*
𝐻 = 10, 𝜆 = 1, 𝜑 = 1% and 𝛾̇*

0 = 1.
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Figure 5.2 – Scan of the shear rate's angular frequency (𝜔*
𝑆) with Pe = 6, 𝛼 = 10, 𝜔*

𝐻 = 10,
𝜆 = 1, 𝜑 = 1% and 𝛾̇*

0 = 1. (a), (b) and (c): 𝜔*
𝑆 = 1. (d), (e) and (f): 𝜔*

𝑆 = 5.
(g), (h) and (i): 𝜔*

𝑆 = 10. (a), (d) and (g): Time response in ẑ direction. (b),
(e) and (h): Hysteresis curve and dimensionless average rate of internal energy
(upper left corner). (c), (f) and (i): Phase space in ẑ direction (in purple) with
Poincaré map (in green).

In Fig. 5.2, one can be observe that the variation of 𝜔*
𝑆 does not change the behavior

of the system in the ẑ direction. The time response, the value of Δ𝑈*/Δ𝑡*, the phase space
and the Poincaré map remain the same. This happens because the value of 𝛼 and Pe are
too high, making the magnetic field dominant in the system response. As the Langevin
parameter (𝛼) is defined as the ration between magnetic energy and brownian energy, for
a high value of 𝛼 = 10, the magnetic field predominates in the system. At the same time,
once the Péclet number (Pe) is defined as the ratio between the brownian diffusion time
and the convection time of the particle, for a high value of Pe = 6, the convection time
prevails in the system, disturbing the relaxation time of the particles.

On the other hand, in Fig. 5.3, it is notable the changes of the system in the
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ŷ direction. In Figs. 5.3(a), (d) and (g), as 𝜔*
𝑆 increases, the amplitude from the time

response decreases. This happens because the system has less time to respond to the shear
rate excitation with a higher frequency 𝜔*

𝑆. From the phase spaces at Figs. 5.3(b), (e)
and (h), the Poincaré map begins with a periodic response with period 5 with 𝜔*

𝑆 = 1
and then transforms into a periodic response with period 1 for 𝜔*

𝑆 = 5 and 𝜔*
𝑆 = 10.

Lastly, Figs. 5.3(c), (f) and (i) show the Fourier transform in logarithm scale of the time
response in steady-state of the ẑ direction (in purple) and ŷ direction (in black). In all of
the Fourier spectra, the peak at frequency 𝜔* = 10 is notable in the purple curve, once it
is the frequency of the magnetic field, 𝜔*

𝐻 = 10, applied at the ẑ direction. At Figs. 5.3(c),
with 𝜔*

𝑆 = 1, one may expect a peak in 𝜔* = 1, however, due to the noisy spectra, it is not
notable. Two peaks are observed, at 𝜔* ≈ 9 and 𝜔* ≈ 11. At Figs. 5.3(f), with 𝜔*

𝑆 = 5, a
peak of the black curve is notable at 𝜔* = 5 and 𝜔* = 15, due to nonlinearities. At Figs.
5.3(i), with 𝜔*

𝑆 = 10, a peak of the black curve is seen at 𝜔* = 10.
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Figure 5.3 – Scan of the shear rate's angular frequency (𝜔*
𝑆) with Pe = 6, 𝛼 = 10, 𝜔*

𝐻 = 10,
𝜆 = 1, 𝜑 = 1% and 𝛾̇*

0 = 1. (a), (b) and (c): 𝜔*
𝑆 = 1. (d), (e) and (f): 𝜔*

𝑆 = 5.
(g), (h) and (i): 𝜔*

𝑆 = 10. (a), (d) and (g): Time response in ŷ direction. (b),
(e) and (h): Phase space in ŷ direction (in black) with Poincaré map (in
green). (c), (f) and (i): Fourier transform in logarithm scale of the steady-state
time response in ẑ direction (in purple) and in ŷ direction (in black).

The graph of Δ𝑈*/Δ𝑡* versus 𝜔*
𝑆 is shown by the purple curve in Fig. 5.4. The

shear's frequency is indifferent for the dissipation of internal energy considering the adopted
parameters in the analysis.
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Figure 5.4 – Dimensionless average rate of internal energy versus the shear rate's dimen-
sionless angular frequency (in purple) with alternating magnetic field for
Pe = 6, 𝛼 = 10, 𝜔*

𝐻 = 10, 𝜆 = 1, 𝜑 = 1% and 𝛾̇*
0 = 1.

5.1.1.2 Shear Rate's Amplitude Scan

Figures 5.5 and 5.6 show the results, in steady-state regime, for 𝛾̇0 varying from 1
to 10, with the other parameters values of Pe = 6, 𝛼 = 10, 𝜔*

𝐻 = 10, 𝜆 = 1, 𝜑 = 1% and
𝜔*

𝑆 = 10.
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Figure 5.5 – Scan of the shear rate's amplitude (𝛾̇*
0) with Pe = 6, 𝛼 = 10, 𝜔*

𝐻 = 10, 𝜆 = 1,
𝜑 = 1% and 𝜔*

𝑆 = 10. (a), (b) and (c): 𝛾̇*
0 = 1. (d), (e) and (f): 𝛾̇*

0 = 5. (g),
(h) and (i): 𝛾̇*

0 = 10. (a), (d) and (g): Time response in ẑ direction. (b), (e)
and (h): Hysteresis curve and dimensionless average rate of internal energy
(upper left corner). (c), (f) and (i): Phase space in ẑ direction (in purple) with
Poincaré map (in green).

Once again, in Fig. 5.5, the variation of 𝛾̇*
0 did not change the behavior of the

system in the ẑ direction. The time response, the value of Δ𝑈*/Δ𝑡*, the phase space
and the Poincaré map remain the same. This happens because the high values of 𝛼 and
Pe leads to the predominance of the magnetic field. Hence, the shear rate's amplitude is
indifferent for the system in the ẑ direction and in the value of Δ𝑈*/Δ𝑡* as well.

In Fig. 5.6, one can observe that the shear influences system response in ŷ direction.
Figs. 5.6(a), (d) and (g), shows that with the increase of 𝛾̇*

0 , the time response amplitude at
ŷ direction also increases. Due to the higher value of 𝛾̇*

0 , the MNPs line in the ŷ direction
and increase the value of the magnetization in this direction. The same behavior can be
seen at the phase space, in Figs. 5.6(b), (e) and (h), where the amplitude of the phase
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space increases in the ŷ direction. The Poincaré map, however, shows a periodic response
with period 1 in all values of 𝛾̇*

0 , indicating that the time response maintains its periodic
behavior. Lastly, the Fourier transform in Figs. 5.6(c), (f) and (i) indicates the frequency
𝜔* = 10 at the ẑ direction, due to 𝜔*

𝐻 = 10, and a small peak at 𝜔* = 10 at the ŷ direction,
due to 𝜔*

𝑆 = 10. At higher values of 𝛾̇0, the frequency 𝜔* = 0 is reported again.
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Figure 5.6 – Scan of the shear rate's amplitude (𝛾̇0) with Pe = 6, 𝛼 = 10, 𝜆 = 1, 𝜑 = 1%
and 𝜔*

𝑆 = 10. (a), (b) and (c): 𝛾̇*
0 = 1. (d), (e) and (f): 𝛾̇*

0 = 5. (g), (h) and
(i): 𝛾̇*

0 = 10. (a), (d) and (g): Time response in ŷ direction. (b), (e) and (h):
Phase space in ŷ direction (in black) with Poincaré map (in green). (c), (f)
and (i): Fourier transform in logarithm scale of the steady-state time response
in ẑ direction (in purple) and in ŷ direction (in black).

The graph of Δ𝑈*/Δ𝑡* versus 𝛾̇*
0 is shown by the purple curve in Fig. 5.7. The

shear's amplitude does not change the internal energy dissipation significantly.
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Figure 5.7 – Dimensionless average rate of internal energy versus the shear rate's dimen-
sionless angular frequency (in purple) with alternating magnetic field for
Pe = 6, 𝛼 = 10, 𝜔*

𝐻 = 10, 𝜆 = 1, 𝜑 = 1% and 𝜔*
𝑆 = 10.

5.1.2 Low Langevin Parameter and Low Péclet Number

As previous results showed no variation for Δ𝑈*/Δ𝑡*, due to the high values of 𝛼
and Pe, a scan for low values of 𝛼 and Pe is now carried out.

5.1.2.1 Shear Rate's Angular Frequency Scan

Figures 5.8 and 5.9 shows the results, in steady-state regime, for 𝜔*
𝑆 varying from 1

to 10, with the other parameters values of Pe = 1, 𝛼 = 1, 𝜔*
𝐻 = 10, 𝜆 = 1, 𝜑 = 1% and

𝛾̇*
0 = 10.
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Figure 5.8 – Scan of the shear rate's angular frequency (𝜔*
𝑆) with Pe = 1, 𝛼 = 1, 𝜔*

𝐻 = 10,
𝜆 = 1, 𝜑 = 1% and 𝛾̇*

0 = 10. (a), (b) and (c): 𝜔*
𝑆 = 1. (d), (e) and (f): 𝜔*

𝑆 = 5.
(g), (h) and (i): 𝜔*

𝑆 = 10. (a), (d) and (g): Time response in ẑ direction. (b),
(e) and (h): Hysteresis curve and dimensionless average rate of internal energy
(upper left corner). (c), (f) and (i): Phase space in ẑ direction (in purple) with
Poincaré map (in green).

In Fig. 5.8, due to the low value of Pe, the random effect in the system response is
higher when compared with the previous analysis. This can be seen by the random phase
space and the high noise intensity of the Poincaré map. We observe that as the value of
𝜔*

𝑆 increases, both the amplitude of 𝑀*
𝑧 and the value Δ𝑈*/Δ𝑡* decreases.

In Fig. 5.9, the amplitude of 𝑀*
𝑦 decreases for higher values of 𝜔*

𝑆. The Fourier
spectrum in Fig. 5.9(c) shows the multiple frequencies of the excitation 𝜔*

𝐻 = 10 and
𝜔*

𝑆 = 1. The Fourier spectrum in Fig. 5.9(f) shows the frequencies 𝜔*
𝐻 = 10 and 𝜔*

𝑆 = 5
and Fig. 5.9(i) displays 𝜔*

𝐻 = 10 and 𝜔*
𝑆 = 10.
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Figure 5.9 – Scan of the shear rate's angular frequency (𝜔*
𝑆) with Pe = 1, 𝛼 = 1, 𝜔*

𝐻 = 10,
𝜆 = 1, 𝜑 = 1% and 𝛾̇*

0 = 1. (a), (b) and (c): 𝜔*
𝐻 = 1. (d), (e) and (f): 𝜔*

𝐻 = 5.
(g), (h) and (i): 𝜔*

𝐻 = 10. (a), (d) and (g): Time response in ŷ direction.
(b), (e) and (h): Phase space in ŷ direction (in black) with Poincaré map (in
green). (c), (f) and (i): Fourier transform in logarithm scale of the steady-state
time response in ẑ direction (in purple) and in ŷ direction (in black).

The graph of Δ𝑈*/Δ𝑡* versus 𝜔*
𝑆 for low 𝛼 and low Peis shown by the purple curve

in Fig. 5.10, which reach its maximum value at 𝜔*
𝑆 = 1 (red dot). The variation of the

graph is due to the random effect into the system for low Pe.
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Figure 5.10 – Dimensionless average rate of internal energy versus the shear rate's dimen-
sionless angular frequency (in purple) with alternating magnetic field for
Pe = 1, 𝛼 = 1, 𝜔*

𝐻 = 10, 𝜆 = 1, 𝜑 = 1% and 𝛾̇*
0 = 10. The best case scenario

is highlighted by the red line (𝜔*
𝐻 = 10).

5.1.2.2 Shear Rate's Amplitude Scan

Figures 5.5 and 5.6 show the results, in steady-state regime, for 𝛾̇0 varying from 1
to 10, with the values of Pe = 1, 𝛼 = 1, 𝜔*

𝐻 = 10, 𝜆 = 1, 𝜑 = 1% and 𝜔*
𝑆 = 10.

67



25 26 27 28 29 30
-0.1

-0.05

0

0.05

0.1

(a)

-1 -0.5 0 0.5 1

-0.05

0

0.05

0.1

(b)

-0.1 -0.05 0 0.05 0.1
-1

-0.5

0

0.5

(c)

25 26 27 28 29 30
-0.1

-0.05

0

0.05

0.1

(d)

-1 -0.5 0 0.5 1

-0.05

0

0.05

0.1

(e)

-0.1 -0.05 0 0.05 0.1
-1

-0.5

0

0.5

(f)

25 26 27 28 29 30
-0.1

-0.05

0

0.05

0.1

(g)

-1 -0.5 0 0.5 1

-0.05

0

0.05

0.1

(h)

-0.1 -0.05 0 0.05 0.1
-1

-0.5

0

0.5

(i)

Figure 5.11 – Scan of the shear rate's amplitude (𝛾̇*
0) with Pe = 1, 𝛼 = 1, 𝜔*

𝐻 = 10, 𝜆 = 1,
𝜑 = 1% and 𝜔*

𝑆 = 10. (a), (b) and (c): 𝛾̇*
0 = 1. (d), (e) and (f): 𝛾̇*

0 = 5. (g),
(h) and (i): 𝛾̇*

0 = 10. (a), (d) and (g): Time response in ẑ direction. (b), (e)
and (h): Hysteresis curve and dimensionless average rate of internal energy
(upper left corner). (c), (f) and (i): Phase space in ẑ direction (in purple)
with Poincaré map (in green).

In Fig. 5.11, all responses have the same behavior in the ẑ direction, but the
amplitude decreases slightly for a higher 𝛾̇*

0 . The Poincaré maps show high deviation and
presents a period-1 response. In Fig. 5.12(b), (e) and (h), the phase space in the ŷ direction
shifts to the right side of the graph, because of the influence of the magnetic field.
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Figure 5.12 – Scan of the shear rate's amplitude (𝛾̇0) with Pe = 1, 𝛼 = 1, 𝜔*
𝐻 = 10, 𝜆 = 1,

𝜑 = 1% and 𝜔*
𝑆 = 10. (a), (b) and (c): 𝛾̇*

0 = 1. (d), (e) and (f): 𝛾̇*
0 = 5. (g),

(h) and (i): 𝛾̇*
0 = 10. (a), (d) and (g): Time response in ŷ direction. (b), (e)

and (h): Phase space in ŷ direction (in black) with Poincaré map (in green).
(c), (f) and (i): Fourier transform in logarithm scale of the steady-state time
response in ẑ direction (in purple) and in ŷ direction (in black).

The graph of Δ𝑈*/Δ𝑡* versus 𝛾̇*
0 is shown by the purple curve in Fig. 5.7. The

graph is peaked at value 𝛾̇*
0 = 1 (red dot). The value 𝛾̇*

0 = 1 presents the best case for the
shear rate.
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Figure 5.13 – Dimensionless average rate of internal energy versus the shear rate's dimen-
sionless angular frequency (in purple) with alternating magnetic field for
Pe = 1, 𝛼 = 1, 𝜔*

𝐻 = 10, 𝜆 = 1, 𝜑 = 1% and 𝜔*
𝑆 = 10. The best case scenario

is highlighted by the red line (𝛾̇*
0 = 1).

The values of the best case scenario for the shear rate are presented at Table 2.

𝜔*
𝑆 𝛾̇*

0
1 1

Table 2 – Values chosen for the maximum value of Δ𝑈*/Δ𝑡* in alternating magnetic field
with shear motion.

Comparing the graphs of Δ𝑈*/Δ𝑡* in Figs. 5.10 and 5.13, the variable 𝜔*
𝑆 has

produced the highest rate of change on Δ𝑈*/Δ𝑡*. Thus, 𝜔*
𝑆 is the parameter that has

the greatest influence for the system's dissipation of internal energy with an alternating
magnetic field with shear motion. But analyzing the behavior of Δ𝑈*/Δ𝑡* with and
without shear rate, the maximum value of Δ𝑈*/Δ𝑡* is obtained without shear motion.
Thus, shear motion is not recommended for MH.

5.2 Bifurcation Diagram

5.2.1 Highest Internal Energy Dissipation

Fig. 5.14 shows the result of the shear rate's amplitude (𝛾̇*
0) sweep for 𝛼 = 10,

𝜆 = 1, Pe = 6, 𝜑 = 1% and 𝜔*
𝑆 = 10. Figs. 5.14(a) and (b) shows the bifurcation diagram

using 𝜆𝑐 = 𝛾̇*
0 as the control parameter. Fig. 5.14(a) displays the bifurcation diagram for

𝑀
*
𝑧 (in purple), while Fig. 5.14(b) shows the bifurcation diagram for 𝑀*

𝑦 (in black). Fig.
5.14(c) presents the internal energy dissipation generated at each step of 𝛾̇*

0 during the
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sweep (blue curve) and the comparison with the internal energy dissipation obtained in
isolated simulations (purple curve - the same graph of Fig. 5.7). Still in the Figure 5.14(c),
two yellow arrows highlighted the time response of the system at that instant.

The sweep begins at 𝛾̇*
0 = 1 and ends at 𝛾̇*

0 = 10. On the bifurcation diagram of
Figs. 5.14(a) and (b), some values of 𝛾̇*

0 are highlighted by colors (green, cyan, red and
pink) and their respective phase space and Poincaré map are shown at each corner of the
graph.
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Figure 5.14 – Results of the shear rate's amplitude sweep in steady-state for 𝛼 = 10,
𝜔*

𝐻 = 10, 𝜆 = 1, Pe = 6, 𝜑 = 1% and 𝜔*
𝑆 = 10. (a) Bifurcation diagram

of [𝑀*
𝑧] (on the center) with phase space and Poincaré map of 4 arbitraly

chosen points shown at each corner. (b) Bifurcation diagram of [𝑀*
𝑦] (on the

center) with phase space and Poincaré map of the same 4 arbitrarily chosen
points shown at each corner. (c) Average dissipation of internal energy in
isolated simulations (in purple) and average dissipation of internal energy
for each point of the bifurcation diagram (in blue) with time response for 2
values (in cyan).
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In Fig. 5.14(a), the bifurcation diagram of 𝑀*
𝑧 does not have a point of significant

change. On the phase space, the shape of all the phase spaces does not change. The
position of the Poincaré map changes in a clockwise way (in the order green - cyan - pink -
red). As a result, there are no threshold values in the graph and the system behavior does
not change for the 𝛾̇*

0 in the ẑ direction. Indeed, Fig. 5.14(a) has the same shape of the
bifurcation diagram obtained in Fig. 4.15 using 𝜆𝑐 = 𝜔*

𝐻 as the control variable.

In Fig. 5.14(b), the bifurcation diagram of 𝑀*
𝑦 shows more changes than in the

ŷ direction. The phase space highlighted by the green dot is facing left, while the phase
space of the cyan dot is facing right, indicating an inversion has occur between such values.

In Fig. 5.14(c), both the curve of Δ𝑈*/Δ𝑡* for the 𝛾̇*
0 sweep (in blue) and for the

fixed values of 𝛾̇*
0 (in purple) start at the same point, indicating numerical convergence.

However, as the values of 𝛾̇*
0 changes during the sweep, the blue line moves away from the

purple one, due to nonlinearities of the system. The yellow arrows show the time response
at points of divergence between the blue and purple curve. Comparing the difference
between the blue and purple time responses, from the rightmost yellow arrow, one can see
that the responses are similar and only differ slightly by the amplitude, which explains
the difference of the value in Δ𝑈*/Δ𝑡*.

5.2.2 Low Shear Rate’s Frequencies

Fig. 5.15 displays the same results from the previous section, with the exception
of the value 𝜔*

𝑆 = 1, a lower frequency of the shear rate. In other words, a 𝛾̇*
0 sweep is

made with 𝛼 = 10, 𝜔*
𝐻 = 10, 𝜆 = 1, Pe = 6, 𝜑 = 1% and 𝜔*

𝑆 = 1. Fig. 5.15 (a) and (b)
display the bifurcation diagram with phase space at the ẑ and at the at the ŷ direction,
respectively.
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(a)

(b)

Figure 5.15 – Bifurcation diagram of the shear rate's amplitude sweep in steady-state for
𝛼 = 10, 𝜔*

𝐻 = 10, 𝜆 = 1, Pe = 6, 𝜑 = 1% and 𝜔*
𝑆 = 1. Phase space and

Poincaré map of 4 arbitraly chosen points (green, cyan, pink and red) shown
at each corner. (a) Bifurcation diagram of the ẑ direction (in purple). (b)
Bifurcation diagram of the ŷ direction (in black).

In Fig. 5.15(a), the bifurcation diagram of 𝑀*
𝑧 has the same behavior of Fig. 5.14(a).

The only difference is that the curves of the phase spaces are more dense in the present
simulation, because, with a lower frequency of the shear rate, the system takes more time
to achieve steady-state condition. Again, no threshold value of the bifurcation diagram is
remarkable.
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In Fig. 5.15(b), the phase spaces from all points is the same. The dots from the
Poincaré map change position, due to the different frequencies 𝜔*

𝐻 = 10 and 𝜔*
𝑆. Lastly,

there are no threshold values in this simulation.

Fig. 5.16 displays the same results from the previous section, with value 𝜔*
𝑆 = 5, an

intermediary value of the shear rate's frequency. In other words, a 𝛾̇*
0 sweep is made with

𝛼 = 10, 𝜔*
𝐻 = 10, 𝜆 = 1, Pe = 6, 𝜑 = 1% and 𝜔*

𝑆 = 5. Fig. 5.16 (a) and (b) display the
bifurcation diagram with phase space at the ẑ and at the at the ŷ direction, respectively.
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(a)

(b)

Figure 5.16 – Bifurcation diagram of the shear rate's amplitude sweep in steady-state for
𝛼 = 10, 𝜔*

𝐻 = 10, 𝜆 = 1, Pe = 6, 𝜑 = 1% and 𝜔*
𝑆 = 5. Phase space and

Poincaré map of 4 arbitraly chosen points (green, cyan, pink and red) shown
at each corner. (a) Bifurcation diagram of the ẑ direction (in purple). (b)
Bifurcation diagram of the ŷ direction (in black).

In Fig. 5.16(a), the bifurcation diagram of 𝑀*
𝑧 shows that, for a intermediary

frequency of the shear rate, the system has reached steady-state faster (the phase space is
a thin curve). The graph of Fig. 5.16(a) is more similar to Fig. 5.14(a) than Fig. 5.15(a),
because the graph of Fig. 5.15(a) has not reached the steady-state. Again, no threshold
value can be deduced, as the phase space does not change and the Poincaré map only
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changes position clockwise.

In Fig. 5.16(b), the phase space from the points highlighted changes significantly.
The inner shape observed at the green dot phase space has increased its size in the cyan
dot phase space and even more in the pink dot phase space. However, at the red dot
simulation, the phase space and the Poincaré map are the same of the cyan simulation,
which indicates a recurring behavior of the bifurcation diagram.

5.2.3 Low Langevin Parameter and Low Péclet Number

Most bifurcation diagrams in previous simulations have the same behavior, due to
the high values of 𝛼 = 10 and Pe = 6 and the predominance of the magnetic field. Because
of this, bifurcation diagrams with low values of 𝛼 and Pe is made.

Fig. 5.17 shows the bifurcation diagram for a low 𝛼 and high Pe, with values 𝛼 = 1,
Pe = 6, 𝜔*

𝐻 = 10, 𝜆 = 1, 𝜑 = 1% and 𝜔*
𝑆 = 10. Fig. 5.17 (a) and (b) display the bifurcation

diagram with phase space at the ẑ and at the at the ŷ direction, respectively.
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(a)

(b)

Figure 5.17 – Bifurcation diagram of the shear rate's amplitude sweep in steady-state for
𝛼 = 1, 𝜔*

𝐻 = 10, 𝜆 = 1, Pe = 6, 𝜑 = 1% and 𝜔*
𝑆 = 10. Phase space and

Poincaré map of 4 arbitraly chosen points (green, cyan, pink and red) shown
at each corner. (a) Bifurcation diagram of the ẑ direction (in purple). (b)
Bifurcation diagram of the ŷ direction (in black).

In Figs. 5.17(a) and (b), the bifurcations diagrams do not present any threshold
values. However, due to the low values of 𝛼, the rate of change of the bifurcation diagram
is lower than in previous simulations.

Fig. 5.18 shows the bifurcation diagram for a low 𝛼 and low Pe, with values 𝛼 = 1,
Pe = 1, 𝜔*

𝐻 = 10, 𝜆 = 1, 𝜑 = 1% and 𝜔*
𝑆 = 10. Fig. 5.17 (a) and (b) display the bifurcation
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diagram with phase space at the ẑ and at the at the ŷ direction, respectively.

(a)

(b)

Figure 5.18 – Bifurcation diagram of the shear rate's amplitude sweep in steady-state
for 𝛼 = 1, 𝜔*

𝐻 = 10, 𝜆 = 1, Pe = 1, 𝜑 = 1% and 𝜔*
𝑆 = 10. Phase space

and Poincaré map of 4 arbitrarily chosen points (green, cyan, pink and red)
shown at each corner. (a) Bifurcation diagram of the ẑ direction (in purple).
(b) Bifurcation diagram of the ŷ direction (in black).

In Figs. 5.18(a) and (b), once again, the bifurcations diagrams do not present
any threshold values. Due to the low values of both 𝛼 and Pe, the rate of change of
the bifurcation diagram is lower than in previous simulations, approaching a horizontal
line. Seeing the phase spaces and each corner of Figs. 5.18(a) and (b), one can note how
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the phase spaces are noisier and more random. This is due the low 𝛼, which means the
brownian random motion has more contribution to the dynamics of the MNPs from the
system.
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6 Results of Chaotic Magnetic Field

“Young man, in mathematics you don’t understand things. You just get used to them.”

John von Neumann joking to Felix Smith

In this chapter, with the goal of obtaining chaotic responses, a two-dimensional
chaotic external magnetic field is applied. At first, the Arnold equations (Bae, 2004) is
used to generate a chaotic time series as follows,

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
𝑥̇1 = 𝐴 sin (𝑥3) + 𝐶 cos (𝑥2)

𝑥̇2 = 𝐵 sin (𝑥1) + 𝐴 cos (𝑥3)

𝑥̇3 = 𝐶 sin (𝑥2) +𝐵 cos (𝑥1)

, (6.1)

where 𝐴, 𝐵 and 𝐶 are constants and 𝑥1, 𝑥2 and 𝑥3 are the state variables.

The Arnold equation represents the steady-state solution of the three-dimensional
Euler equation, which describes incompressible flow of fluids on a 3D torus space (Nakamura;
Sekiguchi, 2001). As reported by the author, such equation is used to impose chaotic
motion to a two-wheeled mobile robot. One advantage of the Arnold equation is the control
of its behavior using the constant 𝐶: if 𝐶 is 0 or small, the equation displays periodic
behavior; if 𝐶 is large, the equation displays chaotic behavior (Okamoto; Fujii, 1995). In
this work, the value 𝐶 = 0.5 is used.

The Arnold equation is implemented in the ŷ and ẑ direction of the external
magnetic field as shown in Eq. (6.2), thus, the magnetic field in the ŷ-ẑ plane presents a
chaotic behavior:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑥̇1 = 𝐴 sin (𝑥3) + 𝐶 cos (𝑥2)

𝑥̇2 = 𝐵 sin (𝑥1) + 𝐴 cos (𝑥3)

𝑥̇3 = 𝐶 sin (𝑥2) +𝐵 cos (𝑥1)
˙̂
𝐻𝑦 = 𝑣 sin (𝑥3)
˙̂
𝐻𝑧 = 𝑣 cos (𝑥3)

, (6.2)

where 𝑣 is the linear velocity of mobile robot and 𝑥3 is the steering angle of the mobile
robot. The constants values chosen are 𝑣 = 1, 𝐴 = 1, 𝐵 = 0.5, 𝐶 = 0.5. The initial
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conditions chosen are 𝑥1(0) = 0, 𝑥2(0) = 0, 𝑥3(0) = 0, 𝐻̂𝑦(0) = 0 and 𝐻̂𝑧(0) = 0. The x̂
component of the magnetic field is always equal to zero, 𝐻̂𝑥 = 0. As the magnetic field is
nonlinear, it can reach very high values. To prevent this, mirror mapping is applied for the
values 𝐻̂𝑦 = 1, 𝐻̂𝑦 = −1, 𝐻̂𝑧 = 1 and 𝐻̂𝑧 = −1, such that the magnetic field is reflected,
preserving its angle (Bae, 2004). To exemplify this, Fig. 6.1 shows the magnetic field from
ŷ and ẑ directions obtained from the Arnold equation with mirror mapping. Because of
the mirror mapping, for a long period of time, the magnetic field covers all space between
−1 and 1, as shown in Fig. 6.1(c).
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Figure 6.1 – Time evolution of the two-dimensional magnetic field (𝐻̂𝑦 and 𝐻̂𝑧) under
chaotic behavior from the Arnold equation. Each time the value 1 or −1 is
reached by 𝐻̂𝑦 or 𝐻̂𝑧, magnetic field is reflected preserving its angle. (a) 𝐻̂𝑦

vs 𝑡*. (b) 𝐻̂𝑧 vs 𝑡*. (c) 𝐻̂𝑦 vs 𝐻̂𝑧.

As the magnetic field is two-dimensional and nonperiodic, the expression used in
this chapter for the dimensionless average rate of internal energy is
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Δ𝑈*

Δ𝑡* = 1
𝑡*𝑓

{︂ ∫︁ 𝑀
*
𝑦
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𝑡*
𝑓

)︁
,𝐻̂𝑦
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𝑡*
𝑓
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𝑀

*
𝑦(0),𝐻̂𝑦(0)

𝐻̂𝑦 d𝑀*
𝑦 +

∫︁ 𝑀
*
𝑧

(︁
𝑡*
𝑓

)︁
,𝐻̂𝑧

(︁
𝑡*
𝑓

)︁
𝑀

*
𝑧(0),𝐻̂𝑧(0)

𝐻̂𝑧 d𝑀*
𝑧+

+ 𝛼

48𝜑𝜆

[︂
𝐻̂𝑦

(︁
𝑡*𝑓
)︁2

+ 𝐻̂𝑧

(︁
𝑡*𝑓
)︁2

− 𝐻̂𝑦 (0)2 − 𝐻̂𝑧 (0)2
]︂ }︂

(6.3)

Hence, in this chapter, the dissipation of internal energy is calculated by the area
of the hysteresis curve in the ŷ and ẑ direction and by the initial and final condition of
the external magnetic field, 𝐻̂𝑦 (0), 𝐻̂𝑧 (0), 𝐻̂𝑦

(︁
𝑡*𝑓
)︁

and 𝐻̂𝑧

(︁
𝑡*𝑓
)︁
.

Fig. 6.2 shows the system treated in this chapter. A chaotic magnetic field is applied
in the ẑ and in in the ŷ directions.

d̂*
𝑖

x̂ ŷ

ẑ

Ĥ𝑧(𝑡)

Ĥ𝑦(𝑡)

Figure 6.2 – Representation of the system analyzed in this chapter. A chaotic magnetic
field is applied in the ẑ and ŷ directions (Ĥ𝑦 and Ĥ𝑧). Particles are represented
by black dots and their dipole vector in red (d̂𝑖).

6.1 Langevin Parameter Scan

A parameter scan for 𝛼 is performed. Figures 6.3 and 6.4 display the results of
chaotic magnetic field, in steady-state regime, with the values Pe = 6, 𝜆 = 1 and 𝜑 = 1%,
varying 𝛼 from 𝛼 = 1 to 𝛼 = 10.
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Figure 6.3 – Scan of the Langevin parameter (𝛼) with Pe = 6 and 𝜑 = 1% for chaotic
magnetic field. (a), (b) and (c): 𝛼 = 1. (d), (e) and (f): 𝛼 = 10. (a) and
(d): Time response in the ẑ direction. (b) and (e): Hysteresis curve in the ẑ
direction and dimensionless average rate of internal energy (upper left corner).
(c) and (f): Phase space in the ẑ direction.

In Fig. 6.3 (a) and (d), one can see that the time responses do not surpass the
values −1 and 1, due to the saturation magnetization. The time response in the ẑ direction
for 𝛼 = 1 in Fig. 6.3 (a) is different from the time response for 𝛼 = 10 in Fig. 6.3 (d), even
though the magnetic field is the same. In Fig. 6.3 (b) and (e), the hysteresis curve are
almost filled. The value of Δ𝑈*/Δ𝑡* already considers the contribution of both hysteresis
curves in the ẑ and ŷ direction and the contribution of the magnetic field. The hysteresis
curve for 𝛼 = 1 in Fig. 6.3 (b) has a bigger area than the hysteresis curve for 𝛼 = 1 in Fig.
6.3 (e). Lastly, in Fig. 6.3 (c) and (f), the phase spaces are almost filled. The phase space
for 𝛼 = 10 is bigger than the phase space for 𝛼 = 1. The reflection of the magnetic field's
mirror mapping is observed at the sharp points of (1, 0) and (−1, 0) in both phase spaces.
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Figure 6.4 – Scan of the Langevin parameter (𝛼) with Pe = 6 and 𝜑 = 1% for chaotic
magnetic field in the ŷ direction. (a), (b) and (c): 𝛼 = 1. (d), (e) and (f):
𝛼 = 10. (a) and (d): Time response in the ẑ direction. (b) and (e): Hysteresis
curve in the ẑ direction and dimensionless average rate of internal energy
(upper left corner). (c) and (f): Phase space in the ẑ direction.

In Fig. 6.4 (a) and (d), the time responses in the ŷ direction have a similar behavior
from the time responses in the ẑ direction, such that both may present chaotic behavior.
The hysteresis curve in the ŷ direction for 𝛼 = 1 in Fig. 6.4 (b) is bigger than the hysteresis
curve in the ŷ direction for 𝛼 = 10 in Fig. 6.4 (e). Because both hysteresis curve for 𝛼 = 1
are bigger than the ones for 𝛼 = 10, the value of Δ𝑈*/Δ𝑡* is higher for 𝛼 = 1. However,
the value Δ𝑈*/Δ𝑡* = 0.34 is lower than the one obtained in alternating magnetic field.
Lastly, in Fig. 6.4 (c) and (f), the phase spaces in the ŷ direction have the same behavior
from the ones in the ẑ direction.
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7 Conclusion and Future Work

“Unfortunately what is little recognized is that the most worthwhile scientific books are those in
which the author clearly indicates what he does not know; for an author most hurts his readers

by concealing difficulties.”

Évariste Galois

In this work, the performance of MH is evaluated from the dissipation of internal
energy of a nonlinear system of magnetic particles for different parameters and excitation.
The dynamical analysis of the system is carried out by means of time responses, phase
spaces, Poicaré maps and bifurcation diagrams. Three main situations are studied: pure
alternating magnetic field, alternating magnetic field with alternating shear rate and
chaotic magnetic field with alternating shear rate.

In the case of pure alternating magnetic field, it is observed that, under relaxation,
the system has a null natural frequency. The variation of the volume fraction does not
change significantly the results; a higher average rate of internal energy dissipation is
obtained with high 𝜔*

𝐻 (the most sensitive variable for the internal energy) meaning that
a more powerful magnetic field is desirable; and it is shown the average rate of internal
energy dissipation decreases if the system remains in the saturation magnetization. The
bifurcation diagram for 𝜔*

𝐻 showed no qualitative change in the system.

Concerning alternating magnetic field with alternating shear rate, the scan of the
shear rate's variables for high 𝛼 and high Pe indicated that the internal energy did not
changed and the results in the ẑ direction remained the same as well. This is due to the
predominance of the magnetic field over the dipoles of the MNPs, producing always the
same amount of magnetic work. For a low 𝛼 and low Pe, the results indicated that a low
𝜔*

𝑆 (the most sensitive variable for the internal energy) and a low 𝛾̇*
0 increased the average

rate of internal energy dissipation. The values obtained for Δ𝑈*/Δ𝑡* with shear are lower
compared to the values of pure alternating magnetic field. Moreover, the Fourier transform
of the time response pointed frequencies equal to the frequencies of the magnetic field or
shear rate. For a high 𝛼, the bifurcation diagram for 𝛾̇*

0 showed the same behavior from the
bifurcation diagram of 𝜔*

𝐻 without shear rate, due to the predominance of the magnetic
field. For a low value of 𝛼 and Pe, the bifurcation diagrams changed, but revealed no
qualitative changes in the system.
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The last analyzed case consisted in an excitation to impose chaotic behavior. With
respect to chaotic magnetic field, the scan of the Langevin parameter showed that a low 𝛼

increased the average rate of internal energy dissipation. From the 3 excitation considered,
the pure alternating magnetic field produced the best dynamical behavior for MH.

For future work, it is suggested investigating the dynamical response of the partic-
ulate system considering hydrodynamic interactions with mobility formulation (Gontijo;
Cunha, 2017), (Gontijo; Cunha, 2017). For this condition, the existence of the liquid carrier
between magnetic particles is assumed. The forces upon each particle is calculated by the
mobility matrix and the translation of particles affects greatly the dynamic of neighboring
particles. With this, the results produced are more precise than the ones obtained in this
work. However, because of the high number of lattices, the computational times of the
simulations are high.
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A Proof of the Dimensionless
Governing Equations

In this chapter, the demonstration of the dimensionless governing equation, obtained
from Newton's second law, is shown. The nondimensionalization variables chosen are shown
at Eq. (A.1),

𝑡* = 𝑡𝑈𝑠

𝑎
, u*

𝑖 = u𝑖

𝑈𝑠

, 𝜔*
𝑖 = 𝜔𝑖𝑎

𝑈𝑠

and g* = g
𝑔
. (A.1)

A.1 Translation Governing Equation

The translational governing equation is

ℳdu𝑖

d𝑡 = −6𝜋𝜂𝑎u𝑖 + 4
3𝜋𝑎

3Δ𝜌g + FB𝑖 + Fm𝑖 + Fr𝑖 + Fc𝑖, (A.2)

Applying Eq. (A.1) into Eqs. (A.2) yields Eq.(A.3),

(︃
ℳ𝑈𝑠

𝑎

)︃
d

d𝑡* (𝑈𝑠u*
𝑖 ) = −6𝜋𝜂𝑎𝑈𝑠u*

𝑖 +
(︃

4
3𝜋𝑎

3Δ𝜌𝑔
)︃

g* + FB𝑖 + Fm𝑖 + Fr𝑖 + Fc𝑖, (A.3)

Dividing Eq. (A.3) by 6𝜋𝜂𝑎𝑈𝑠, one obtain

(︃
ℳ𝑈2

𝑠

6𝜋𝜂𝑎2𝑈𝑠

)︃
du*

𝑖

d𝑡* = −u*
𝑖 +

(︃
4𝜋𝑎3Δ𝜌𝑔
18𝜋𝜂𝑎𝑈𝑠

)︃
g* + 1

6𝜋𝜂𝑎𝑈𝑠

(FB𝑖 + Fm𝑖 + Fr𝑖 + Fc𝑖)

=⇒
(︃

ℳ𝑈𝑠

6𝜋𝜂𝑎2

)︃
du*

𝑖

d𝑡* = −u*
𝑖 +

(︃
2𝑎2Δ𝜌𝑔

9𝜂𝑈𝑠

)︃
g* + 1

6𝜋𝜂𝑎𝑈𝑠

(FB𝑖 + Fm𝑖 + Fr𝑖 + Fc𝑖)

=⇒
(︃

ℳ𝑈𝑠

6𝜋𝜂𝑎2

)︃
du*

𝑖

d𝑡* = −u*
𝑖 +

(︃
𝑈𝑠

𝑈𝑠

)︃
g* + 1

6𝜋𝜂𝑎𝑈𝑠

(FB𝑖 + Fm𝑖 + Fr𝑖 + Fc𝑖) , (A.4)
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Let St = ℳ𝑈𝑠

6𝜋𝜂𝑎2 be the translational Stokes number and the forces FB
*
𝑖 = FB𝑖

6𝜋𝜂𝑎𝑈𝑠

,

Fm
*
𝑖 = Fm𝑖

6𝜋𝜂𝑎𝑈𝑠

, Fr
*
𝑖 = Fr𝑖

6𝜋𝜂𝑎𝑈𝑠

and Fc
*
𝑖 = Fc𝑖

6𝜋𝜂𝑎𝑈𝑠

the dimensionless forces. Thus, the
dimensionless form of the translational equation is

St du*
𝑖

d𝑡* = −u*
𝑖 + g* + FB

*
𝑖 + Fm

*
𝑖 + Fr

*
𝑖 + Fc

*
𝑖 , (A.5)

A.1.1 Dimensionless Brownian Force

The brownian force is given by

FB𝑖 = 6𝜋𝜂𝑎
(︃

6𝒟𝑡

𝛿𝜏

)︃1/2

𝜉 (A.6)

In this way, the dimensionless brownian force is

FB
*
𝑖 = FB𝑖

6𝜋𝜂𝑎𝑈𝑠

= 1
6𝜋𝜂𝑎𝑈𝑠

⎡⎣6𝜋𝜂𝑎
(︃

6𝒟𝑡

𝛿𝜏

)︃1/2

𝜉

⎤⎦ = 1
𝑈𝑠

(︃
6𝒟𝑡

𝛿𝜏

)︃1/2

𝜉

=
(︃

6 𝒟𝑡

𝑈2
𝑠 𝛿𝜏

)︃1/2

𝜉 (A.7)

By Eq. (A.1), the dimensionless time step, 𝛿𝜏 *, is defined by

𝛿𝜏 * = 𝛿𝜏𝑈𝑠

𝑎
(A.8)

Applying Eq. (A.8) into (A.7) results in

FB
*
𝑖 =

(︃
6 𝒟𝑡

𝑈2
𝑠 𝑎𝛿𝜏

*/𝑈𝑠

)︃1/2

𝜉 =
(︃

6 𝒟𝑡

𝑈𝑠𝑎𝛿𝜏 *

)︃1/2

𝜉 =
⎛⎝ 6

𝑈𝑠𝑎
𝒟𝑡
𝛿𝜏 *

⎞⎠1/2

𝜉 (A.9)

Let Pe = 𝑈𝑠𝑎

𝒟𝑡

be the translational Peclet number. Thus,

FB
*
𝑖 =

(︃
6

Pe 𝛿𝜏 *

)︃1/2

𝜉 (A.10)
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A.1.2 Dimensionless Magnetic Force

The magnetic force is given by

Fm𝑖 =
{︃

3𝜇0𝑚
2

4𝜋

𝑁∑︁
𝑗=1
𝑗 ̸=𝑖

1
𝑟4

𝑖𝑗

[︁ (︁
d̂𝑖 · d̂𝑗

)︁
r̂𝑖𝑗 +

(︁
d̂𝑖 · r̂𝑖𝑗

)︁
d̂𝑗 +

(︁
d̂𝑗 · r̂𝑖𝑗

)︁
d̂𝑖+

− 5
(︁
d̂𝑖 · r̂𝑖𝑗

)︁ (︁
d̂𝑗 · r̂𝑖𝑗

)︁
r̂𝑖𝑗

]︁}︃
+ 𝜇0𝑚𝐻

(︁
d̂𝑖 · ∇Ĥ

)︁
, (A.11)

So, the dimensionless magnetic force is

Fm
*
𝑖 = Fm𝑖

6𝜋𝜂𝑎𝑈𝑠

= 1
6𝜋𝜂𝑎𝑈𝑠

{︃[︃
3𝜇0𝑚

2

4𝜋

𝑁∑︁
𝑗=1
𝑗 ̸=𝑖

1
𝑟4

𝑖𝑗

[︁ (︁
d̂𝑖 · d̂𝑗

)︁
r̂𝑖𝑗 +

(︁
d̂𝑖 · r̂𝑖𝑗

)︁
d̂𝑗 +

(︁
d̂𝑗 · r̂𝑖𝑗

)︁
d̂𝑖+

− 5
(︁
d̂𝑖 · r̂𝑖𝑗

)︁ (︁
d̂𝑗 · r̂𝑖𝑗

)︁
r̂𝑖𝑗

]︁]︃
+ 𝜇0𝑚𝐻

(︁
d̂𝑖 · ∇Ĥ

)︁}︃ (A.12)

Multiply and divide Eq. (A.12) by 𝐾𝑏𝑇 ,

Fm
*
𝑖 = 𝐾𝑏𝑇

6𝜋𝜂𝑎𝑈𝑠

{︃[︃
3𝜇0𝑚

2

4𝜋𝐾𝑏𝑇

𝑁∑︁
𝑗=1
𝑗 ̸=𝑖

1
𝑟4

𝑖𝑗

[︁ (︁
d̂𝑖 · d̂𝑗

)︁
r̂𝑖𝑗 +

(︁
d̂𝑖 · r̂𝑖𝑗

)︁
d̂𝑗 +

(︁
d̂𝑗 · r̂𝑖𝑗

)︁
d̂𝑖+

− 5
(︁
d̂𝑖 · r̂𝑖𝑗

)︁ (︁
d̂𝑗 · r̂𝑖𝑗

)︁
r̂𝑖𝑗

]︁]︃
+ (𝜇0𝑚𝐻)𝐾𝑏𝑇

(︁
d̂𝑖 · ∇Ĥ

)︁}︃
(A.13)

Since 𝒟𝑡 = 𝐾𝑏𝑇

6𝜋𝜂𝑎 , one obtain

Fm
*
𝑖 =

(︃
𝒟𝑡

𝑈𝑠

)︃{︃[︃
3𝜇0𝑚

2

4𝜋𝐾𝑏𝑇

𝑁∑︁
𝑗=1
𝑗 ̸=𝑖

1
𝑟4

𝑖𝑗

[︁ (︁
d̂𝑖 · d̂𝑗

)︁
r̂𝑖𝑗 +

(︁
d̂𝑖 · r̂𝑖𝑗

)︁
d̂𝑗 +

(︁
d̂𝑗 · r̂𝑖𝑗

)︁
d̂𝑖+

− 5
(︁
d̂𝑖 · r̂𝑖𝑗

)︁ (︁
d̂𝑗 · r̂𝑖𝑗

)︁
r̂𝑖𝑗

]︁]︃
+
(︃
𝜇0𝑚𝐻

𝐾𝑏𝑇

)︃(︁
d̂𝑖 · ∇Ĥ

)︁}︃
(A.14)

Next, the dimensionless forms of 𝑟𝑖𝑗 and ∇ are given. The distance between particles,
𝑟𝑖𝑗, has unit of m, such that its dimensionless form is

𝑟*
𝑖𝑗 = 𝑟𝑖𝑗

𝑎
=⇒ 𝑟𝑖𝑗 = 𝑎𝑟*

𝑖𝑗 (A.15)
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in which 𝑟*
𝑖𝑗 is the dimensionless distance between particles.

The gradient operator, ∇, has unit of m−1. In this way, its dimensionless form is

∇* = 𝑎∇ =⇒ ∇ = ∇*

𝑎
(A.16)

The substitution of Eqs. (A.15) and (A.16) into (A.14) produces

Fm
*
𝑖 =

(︃
𝒟𝑡

𝑈𝑠

)︃{︃[︃
3𝜇0𝑚

2

4𝜋𝐾𝑏𝑇

𝑁∑︁
𝑗=1
𝑗 ̸=𝑖

1(︁
𝑎𝑟*

𝑖𝑗

)︁4

[︁ (︁
d̂𝑖 · d̂𝑗

)︁
r̂𝑖𝑗 +

(︁
d̂𝑖 · r̂𝑖𝑗

)︁
d̂𝑗 +

(︁
d̂𝑗 · r̂𝑖𝑗

)︁
d̂𝑖+

− 5
(︁
d̂𝑖 · r̂𝑖𝑗

)︁ (︁
d̂𝑗 · r̂𝑖𝑗

)︁
r̂𝑖𝑗

]︁]︃
+
(︃
𝜇0𝑚𝐻

𝐾𝑏𝑇

)︃(︃
d̂𝑖 · ∇*

𝑎
Ĥ
)︃}︃

(A.17)

Factoring 𝑎,

=⇒ Fm
*
𝑖 =

(︃
𝒟𝑡

𝑈𝑠𝑎

)︃{︃[︃
3𝜇0𝑚

2

4𝜋𝐾𝑏𝑇𝑎3

𝑁∑︁
𝑗=1
𝑗 ̸=𝑖

1
𝑟*

𝑖𝑗
4

[︁ (︁
d̂𝑖 · d̂𝑗

)︁
r̂𝑖𝑗 +

(︁
d̂𝑖 · r̂𝑖𝑗

)︁
d̂𝑗 +

(︁
d̂𝑗 · r̂𝑖𝑗

)︁
d̂𝑖+

− 5
(︁
d̂𝑖 · r̂𝑖𝑗

)︁ (︁
d̂𝑗 · r̂𝑖𝑗

)︁
r̂𝑖𝑗

]︁]︃
+
(︃
𝜇0𝑚𝐻

𝐾𝑏𝑇

)︃(︁
d̂𝑖 · ∇*Ĥ

)︁}︃
(A.18)

Applying Pe = 𝑈𝑠𝑎

𝒟𝑡

,

Fm
*
𝑖 = 1

Pe

{︃[︃
3𝜇0𝑚

2

4𝜋𝐾𝑏𝑇𝑎3

𝑁∑︁
𝑗=1
𝑗 ̸=𝑖

1
𝑟*

𝑖𝑗
4

[︁ (︁
d̂𝑖 · d̂𝑗

)︁
r̂𝑖𝑗 +

(︁
d̂𝑖 · r̂𝑖𝑗

)︁
d̂𝑗 +

(︁
d̂𝑗 · r̂𝑖𝑗

)︁
d̂𝑖+

− 5
(︁
d̂𝑖 · r̂𝑖𝑗

)︁ (︁
d̂𝑗 · r̂𝑖𝑗

)︁
r̂𝑖𝑗

]︁]︃
+
(︃
𝜇0𝑚𝐻

𝐾𝑏𝑇

)︃(︁
d̂𝑖 · ∇*Ĥ

)︁}︃
(A.19)

=⇒ Fm
*
𝑖 = 1

Pe

{︃[︃
24𝜇0𝑚

2

4𝜋𝐾𝑏𝑇 (8𝑎3)

𝑁∑︁
𝑗=1
𝑗 ̸=𝑖

1
𝑟*

𝑖𝑗
4

[︁ (︁
d̂𝑖 · d̂𝑗

)︁
r̂𝑖𝑗 +

(︁
d̂𝑖 · r̂𝑖𝑗

)︁
d̂𝑗 +

(︁
d̂𝑗 · r̂𝑖𝑗

)︁
d̂𝑖+

− 5
(︁
d̂𝑖 · r̂𝑖𝑗

)︁ (︁
d̂𝑗 · r̂𝑖𝑗

)︁
r̂𝑖𝑗

]︁]︃
+
(︃
𝜇0𝑚𝐻

𝐾𝑏𝑇

)︃(︁
d̂𝑖 · ∇*Ĥ

)︁}︃
(A.20)

=⇒ Fm
*
𝑖 = 1

Pe

{︃[︃
24
⎛⎝ 𝜇0𝑚

2

4𝜋𝐾𝑏𝑇 (2𝑎)3

⎞⎠ 𝑁∑︁
𝑗=1
𝑗 ̸=𝑖

1
𝑟*

𝑖𝑗
4

[︁ (︁
d̂𝑖 · d̂𝑗

)︁
r̂𝑖𝑗+

(︁
d̂𝑖 · r̂𝑖𝑗

)︁
d̂𝑗+

(︁
d̂𝑗 · r̂𝑖𝑗

)︁
d̂𝑖+

− 5
(︁
d̂𝑖 · r̂𝑖𝑗

)︁ (︁
d̂𝑗 · r̂𝑖𝑗

)︁
r̂𝑖𝑗

]︁]︃
+
(︃
𝜇0𝑚𝐻

𝐾𝑏𝑇

)︃(︁
d̂𝑖 · ∇*Ĥ

)︁}︃
(A.21)

97



Define 𝛼 = 𝜇0𝑚𝐻

𝐾𝑏𝑇
as the Langevin parameter and 𝜆 = 𝜇0𝑚

2

4𝜋𝐾𝑏𝑇 (2𝑎)3 as the dipolar
interaction parameter.

Fm
*
𝑖 = 1

Pe

{︃[︃
24 (𝜆)

𝑁∑︁
𝑗=1
𝑗 ̸=𝑖

1
𝑟*

𝑖𝑗
4

[︁ (︁
d̂𝑖 · d̂𝑗

)︁
r̂𝑖𝑗 +

(︁
d̂𝑖 · r̂𝑖𝑗

)︁
d̂𝑗 +

(︁
d̂𝑗 · r̂𝑖𝑗

)︁
d̂𝑖+

− 5
(︁
d̂𝑖 · r̂𝑖𝑗

)︁ (︁
d̂𝑗 · r̂𝑖𝑗

)︁
r̂𝑖𝑗

]︁]︃
+ (𝛼)

(︁
d̂𝑖 · ∇*Ĥ

)︁}︃
(A.22)

=⇒ Fm
*
𝑖 = 24𝜆

Pe

{︃
𝑁∑︁

𝑗=1
𝑗 ̸=𝑖

1
𝑟*

𝑖𝑗
4

[︁ (︁
d̂𝑖 · d̂𝑗

)︁
r̂𝑖𝑗 +

(︁
d̂𝑖 · r̂𝑖𝑗

)︁
d̂𝑗 +

(︁
d̂𝑗 · r̂𝑖𝑗

)︁
d̂𝑖+

− 5
(︁
d̂𝑖 · r̂𝑖𝑗

)︁ (︁
d̂𝑗 · r̂𝑖𝑗

)︁
r̂𝑖𝑗

]︁}︃
+ 𝛼

Pe
(︁
d̂𝑖 · ∇*Ĥ

)︁
(A.23)

Considering that Ĥ = Ĥ(𝑡), that is, the dimensionless external magnetic field only
depends on the time and not on the position, ∇*Ĥ = 0, where 0 is the zero second order
tensor. As a consequence,

=⇒ Fm
*
𝑖 = 24𝜆

Pe

{︃
𝑁∑︁

𝑗=1
𝑗 ̸=𝑖

1
𝑟*

𝑖𝑗
4

[︁ (︁
d̂𝑖 · d̂𝑗

)︁
r̂𝑖𝑗 +

(︁
d̂𝑖 · r̂𝑖𝑗

)︁
d̂𝑗 +

(︁
d̂𝑗 · r̂𝑖𝑗

)︁
d̂𝑖+

− 5
(︁
d̂𝑖 · r̂𝑖𝑗

)︁ (︁
d̂𝑗 · r̂𝑖𝑗

)︁
r̂𝑖𝑗

]︁}︃
(A.24)

A.1.3 Dimensionless Repulsive Force

The repulsive force is

Fr𝑖 = 𝐶1 (6𝜋𝜂𝑎)𝑢𝑖 exp
(︃

− 𝜖𝑖𝑗

𝐶2

)︃
r̂𝑖𝑗. (A.25)

Thus, the dimensionless repulsive force is

Fr
*
𝑖 = Fr𝑖

6𝜋𝜂𝑎𝑈𝑠

= 𝐶1

(︃
𝑢𝑖

𝑈𝑠

)︃
exp

(︃
− 𝜖𝑖𝑗

𝐶2

)︃
r̂𝑖𝑗 (A.26)

Since the dimensionless velocity magnitude is 𝑢*
𝑖 = 𝑢𝑖

𝑈𝑠

, one obtain
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Fr
*
𝑖 = 𝐶1𝑢

*
𝑖 exp

(︃
− 𝜖𝑖𝑗

𝐶2

)︃
r̂𝑖𝑗 (A.27)

in which 𝑢*
𝑖 = ‖u*

𝑖 ‖.

Define the dimensionless quantity 𝜖*
𝑖𝑗,

𝜖*
𝑖𝑗 = 𝜖𝑖𝑗

𝑎
=
⃒⃒⃒⃒
𝑟𝑖𝑗

𝑎
− 2

⃒⃒⃒⃒
=⇒ 𝜖𝑖𝑗 = 𝑎𝜖*

𝑖𝑗, (A.28)

in this way, by the substitution of Eq.(A.28) into (A.27),

Fr
*
𝑖 = 𝐶1𝑢

*
𝑖 exp

(︃
−
𝑎𝜖*

𝑖𝑗

𝐶2

)︃
r̂𝑖𝑗 = 𝐶1𝑢

*
𝑖 exp

(︃
−

𝜖*
𝑖𝑗

𝐶2/𝑎

)︃
r̂𝑖𝑗 (A.29)

Let 𝐶*
2 = 𝐶2

𝑎
be the dimensionless calibration constant of the repulsive force for

the range of the field. So,

Fr
*
𝑖 = 𝐶1𝑢

*
𝑖 exp

(︃
−
𝜖*

𝑖𝑗

𝐶*
2

)︃
r̂𝑖𝑗 (A.30)

A.1.4 Dimensionless Contact Force

The contact force is

Fc𝑖 = 𝐶3𝜀𝑏
1/2𝜖

3/2
𝑖𝑗 r̂𝑖𝑗. (A.31)

𝜖𝑖𝑗 = |𝑟𝑖𝑗 − 2𝑎| (A.32)

𝑏 = 𝑎

2 (A.33)

So, the dimensionless contact force is

Fc
*
𝑖 = Fc𝑖

6𝜋𝜂𝑎𝑈𝑠

= 𝐶3𝜀𝑏
1/2

6𝜋𝜂𝑎𝑈𝑠

𝜖
3/2
𝑖𝑗 r̂𝑖𝑗. (A.34)

Using the dimensionless quantity 𝜖*
𝑖𝑗 = 𝜖𝑖𝑗/𝑎 and applying the formula for monodis-

perse suspensions 𝑏 = 𝑎/2,

Fc
*
𝑖 = 𝐶3𝜀

6𝜋𝜂𝑎𝑈𝑠

(︂
𝑎

2

)︂1/2 (︁
𝑎𝜖*

𝑖𝑗

)︁3/2
r̂𝑖𝑗 =

(︃
𝐶3√

2

)︃
𝜀

6𝜋𝜂𝑎𝑈𝑠

(︁
𝑎1/2𝑎3/2

)︁
𝜖*

𝑖𝑗
3/2 r̂𝑖𝑗. (A.35)
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Let 𝐶4 = 𝐶3√
2

be the calibration constant for the dimensionless contact force. Thus,

Fc
*
𝑖 = 𝐶4

𝜀𝑎2

6𝜋𝜂𝑎𝑈𝑠

𝜖*
𝑖𝑗

3/2 r̂𝑖𝑗. (A.36)

Let 𝑃𝑐 = 𝐶4𝜀𝑎
2

6𝜋𝜂𝑎𝑈𝑠

be the dimensionless contact parameter that quantify the relation
between the contact force and hydrodynamic drag force. So,

Fc
*
𝑖 = 𝑃𝑐𝜖

*
𝑖𝑗

3/2 r̂𝑖𝑗. (A.37)

The value 𝑃𝑐 = 100 has been adopted for all simulations.

A.2 Rotational Governing Equation

The rotational governing equation is

ℐ d𝜔𝑖

d𝑡 = −8𝜋𝜂𝑎3𝜔𝑖 + TB𝑖 + Tm𝑖 (A.38)

The substitution of Eq. (A.1) into (A.38) yields

(︃
ℐ𝑈𝑠

𝑎

)︃
d

d𝑡*

(︃
𝑈𝑠

𝑎
𝜔*

𝑖

)︃
= −

(︃
8𝜋𝜂𝑎3𝑈𝑠

𝑎

)︃
𝜔*

𝑖 + TB𝑖 + Tm𝑖 (A.39)

Divide Eq. (A.39) by 8𝜋𝜂𝑎2𝑈𝑠,

(︃
ℐ𝑈𝑠

8𝜋𝜂𝑎3𝑈𝑠

)︃
d

d𝑡*

(︃
𝑈𝑠

𝑎
𝜔*

𝑖

)︃
= −𝜔*

𝑖 + 1
8𝜋𝜂𝑎2𝑈𝑠

(TB𝑖 + Tm𝑖) (A.40)

=⇒
(︃

ℐ𝑈𝑠

8𝜋𝜂𝑎4

)︃
d𝜔*

𝑖

d𝑡* = −𝜔*
𝑖 + 1

8𝜋𝜂𝑎2𝑈𝑠

(TB𝑖 + Tm𝑖) (A.41)

Let St𝑟 = ℐ𝑈𝑠

8𝜋𝜂𝑎4 be the rotational Stokes number and the torques TB
*
𝑖 = TB𝑖

8𝜋𝜂𝑎2𝑈𝑠

and Tm
*
𝑖 = Tm𝑖

8𝜋𝜂𝑎2𝑈𝑠

the dimensionless torques. Thus, the dimensionless rotational equation
is

St𝑟
d𝜔*

𝑖

d𝑡* = −𝜔*
𝑖 + TB

*
𝑖 + Tm

*
𝑖 . (A.42)
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A.2.1 Dimensionless Brownian Torque

The brownian torque is given by

TB𝑖 = 8𝜋𝜂𝑎3
(︃

6𝒟𝑟

𝛿𝜏

)︃1/2

𝜉 (A.43)

So, the dimensionless brownian torque is

TB
*
𝑖 = TB𝑖

8𝜋𝜂𝑎2𝑈𝑠

= 1
8𝜋𝜂𝑎2𝑈𝑠

⎡⎣8𝜋𝜂𝑎3
(︃

6𝒟𝑟

𝛿𝜏

)︃1/2

𝜉

⎤⎦ = 𝑎

𝑈𝑠

(︃
6𝒟𝑟

𝛿𝜏

)︃1/2

𝜉 (A.44)

=
(︃

6 𝑎
2𝒟𝑟

𝑈2
𝑠 𝛿𝜏

)︃1/2

𝜉 (A.45)

By the substitution of Eq. (A.8) in (A.45),

TB
*
𝑖 =

(︃
6 𝑎2𝒟𝑟

𝑈2
𝑠 𝑎𝛿𝜏

*/𝑈𝑠

)︃1/2

𝜉 =
(︃

6 𝑎𝒟𝑟

𝑈𝑠𝛿𝜏 *

)︃1/2

𝜉 =
⎛⎝ 6

𝑈𝑠

𝑎𝒟𝑟
𝛿𝜏 *

⎞⎠1/2

𝜉 (A.46)

Let Pe𝑟 = 𝑈𝑠

𝑎𝒟𝑟

be the rotational Peclet number. Thus,

TB
*
𝑖 =

(︃
6

Pe𝑟 𝛿𝜏 *

)︃1/2

𝜉 (A.47)

A.2.2 Dimensionless Magnetic Torque

The magnetic torque is given by

Tm𝑖 =
{︃

3𝜇0𝑚
2

4𝜋

𝑁∑︁
𝑗=1
𝑗 ̸=𝑖

1
𝑟3

𝑖𝑗

[︁
− 1

3
(︁
d̂𝑖 × d̂𝑗

)︁
+
(︁
d̂𝑗 · r̂𝑖𝑗

)︁ (︁
d̂𝑖 × r̂𝑖𝑗

)︁ ]︁}︃
+ 𝜇0𝑚𝐻d̂𝑖 × Ĥ. (A.48)

Thus, the dimensionless magnetic torque is

Tm
*
𝑖 = Tm𝑖

8𝜋𝜂𝑎2𝑈𝑠

= 1
8𝜋𝜂𝑎2𝑈𝑠

{︃[︃
3𝜇0𝑚

2

4𝜋

𝑁∑︁
𝑗=1
𝑗 ̸=𝑖

1
𝑟3

𝑖𝑗

[︁
− 1

3
(︁
d̂𝑖 × d̂𝑗

)︁
+
(︁
d̂𝑗 · r̂𝑖𝑗

)︁ (︁
d̂𝑖 × r̂𝑖𝑗

)︁ ]︁]︃
+

+ 𝜇0𝑚𝐻d̂𝑖 × Ĥ
}︃ (A.49)

101



Multiply and divide Eq. (A.49) by 𝐾𝑏𝑇 ,

Tm
*
𝑖 = 𝐾𝑏𝑇

8𝜋𝜂𝑎2𝑈𝑠

{︃[︃
3𝜇0𝑚

2

4𝜋𝐾𝑏𝑇

𝑁∑︁
𝑗=1
𝑗 ̸=𝑖

1
𝑟3

𝑖𝑗

[︁
− 1

3
(︁
d̂𝑖 × d̂𝑗

)︁
+
(︁
d̂𝑗 · r̂𝑖𝑗

)︁ (︁
d̂𝑖 × r̂𝑖𝑗

)︁ ]︁]︃
+

+
(︃
𝜇0𝑚𝐻

𝐾𝑏𝑇

)︃
d̂𝑖 × Ĥ

}︃
(A.50)

Applying 𝒟𝑟 = 𝐾𝑏𝑇

8𝜋𝜂𝑎3 ,

Tm
*
𝑖 = 𝒟𝑟𝑎

𝑈𝑠

{︃[︃
3𝜇0𝑚

2

4𝜋𝐾𝑏𝑇

𝑁∑︁
𝑗=1
𝑗 ̸=𝑖

1
𝑟3

𝑖𝑗

[︁
− 1

3
(︁
d̂𝑖 × d̂𝑗

)︁
+
(︁
d̂𝑗 · r̂𝑖𝑗

)︁ (︁
d̂𝑖 × r̂𝑖𝑗

)︁ ]︁]︃
+

+
(︃
𝜇0𝑚𝐻

𝐾𝑏𝑇

)︃
d̂𝑖 × Ĥ

}︃
(A.51)

Substituting Pe𝑟 = 𝑈𝑠

𝒟𝑟𝑎
,

Tm
*
𝑖 = 1

Pe𝑟

{︃[︃
3𝜇0𝑚

2

4𝜋𝐾𝑏𝑇

𝑁∑︁
𝑗=1
𝑗 ̸=𝑖

1
𝑟3

𝑖𝑗

[︁
− 1

3
(︁
d̂𝑖 × d̂𝑗

)︁
+
(︁
d̂𝑗 · r̂𝑖𝑗

)︁ (︁
d̂𝑖 × r̂𝑖𝑗

)︁ ]︁]︃
+

+
(︃
𝜇0𝑚𝐻

𝐾𝑏𝑇

)︃
d̂𝑖 × Ĥ

}︃
(A.52)

Using the dimensionless form, 𝑟𝑖𝑗 = 𝑎𝑟*
𝑖𝑗, yields

Tm
*
𝑖 = 1

Pe𝑟

{︃[︃
3𝜇0𝑚

2

4𝜋𝐾𝑏𝑇

𝑁∑︁
𝑗=1
𝑗 ̸=𝑖

1(︁
𝑎𝑟*

𝑖𝑗

)︁3

[︁
− 1

3
(︁
d̂𝑖 × d̂𝑗

)︁
+
(︁
d̂𝑗 · r̂𝑖𝑗

)︁ (︁
d̂𝑖 × r̂𝑖𝑗

)︁ ]︁]︃
+

+
(︃
𝜇0𝑚𝐻

𝐾𝑏𝑇

)︃
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Applying 𝛼 = 𝜇0𝑚𝐻

𝐾𝑏𝑇
as the Langevin parameter and 𝜆 = 𝜇0𝑚

2

4𝜋𝐾𝑏𝑇 (2𝑎)3 as the

dipolar interaction parameter,
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