
UNIVERSIDADE DE BRASILIA

Programmable photobioreactors for
studies of microalgae growth dynamics

Author:
Ícaro Lorran Lopes Costa

Supervisor:
Luiz Roncaratti

A thesis submitted in fulfillment of the requirements
for the degree of Master of Science

in the

Institute of Physics

January 2, 2023



ii

“Death is caused by swallowing small amounts of saliva over a long period of time.”

George Carlin
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Most of the free energy available on the surface of the Earth comes from sunlight,
and photosynthesis uses this natural resource to sustain almost all known forms of
life. Such a process took billions of years to evolve and became the primary en-
ergy transformation process in our planet. Microalgae stand out among the many
photosynthetic organisms because of their relative simplicity and variety. In this
work, a network of computer-controlled photobioreactors for precise studies of the
microalgae growth dynamics was developed and tested. These reactors can be used
to characterize a given species or strain of microalgae as a function of the physical
parameters that condition the development of the culture. They can also be used
to study the microalgae response to stress conditions, adaptation to environmental
changes, and the search for optimized culture parameters.
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A fotossíntese é um processo que permite que os organismos vivos produzam
energia usando a luz solar como fonte primária de energia. O processo depende
do comprimento de onda dos fótons, que devem cair dentro da região de radiação
fotossinteticamente ativa (PAR) do espectro solar entre 400 e 700 nanômetros, corre-
spondendo aproximadamente à faixa de luz visível ao olho humano.

As microalgas são organismos fotossintéticos simples encontrados em vários
habitats em todo o mundo, com uma estimativa de 30.000 a 70.000 espécies naturais.
Eles são atraentes para uso em aplicações tecnológicas, especialmente se forem ge-
neticamente manipuláveis, mas há desafios significativos para a produção economi-
camente viável de biocombustíveis a partir de microalgas. A evolução laboratorial
adaptativa (ALE) é um método para melhorar o desempenho de uma linhagem de
microalgas por meio do estudo de fenômenos evolutivos e adaptativos em um am-
biente controlado.

A dinâmica de crescimento de uma cepa de microalga pode ser difícil de medir
em ambientes naturais devido a flutuações nos parâmetros físicos, químicos e bi-
ológicos, mas esses parâmetros podem ser controlados em ambientes artificiais como
fotobiorreatores (PBRs) para entender melhor suas influências individuais na dinâmica
de crescimento. Os PBRs são dispositivos usados para conter e controlar culturas de
microalgas e podem variar em complexidade, desde dispositivos analógicos simples
até dispositivos mecatrônicos totalmente automatizados. Os PBRs podem ser usa-
dos para experimentos de longo prazo para estudar a dinâmica de crescimento de
microalgas e otimizar a eficiência e a produtividade usando algoritmos de otimiza-
ção como algoritmos evolutivos, que são adequados para problemas de "caixa preta"
onde pouco se sabe sobre o comportamento analítico da função que está sendo
otimizada.

Um sistema de controle foi desenvolvido para uma matriz de PBRs programáveis
para ser usado como um aparato experimental para estudar a dinâmica de cresci-
mento de microalgas. O sistema permite interação entre o usuário e cada reator,
operação autônoma de acordo com regras pré-definidas e execução de algoritmos
de otimização para explorar parâmetros físicos que influenciam o desenvolvimento
da cultura. A matriz PBR consiste em sete PBRs idênticos desenvolvidos e construí-
dos no Laboratório de Fotobiorreatores do Instituto de Física da Universidade de
Brasília.

Um algoritmo genético foi implementado usando os PBRs como indivíduos com
genes que representam frequências de intensidade de LED e uma função de aptidão
baseada na taxa de crescimento do meio algal ou eficiência, definida como a quanti-
dade de algas produzidas por quantidade de energia investida. A matriz PBR pro-
gramável permite o estudo da dinâmica de crescimento de microalgas sob várias
condições e a otimização do desempenho da PBR por meio do uso de algoritmos
evolutivos. O sistema de controle e os algoritmos de otimização desenvolvidos neste
estudo apresentam potencial para melhorar a eficiência e produtividade do cultivo
de microalgas em PBRs.
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Chapter 1

Introduction

1.1 Photosynthesis

Most of the free energy available on the surface of the Earth comes from sunlight.
Photosynthesis [1] uses this natural resource to sustain almost all known forms of
life. Such process took billions of years to evolve within photosynthetic organisms
[2] and became the primary energy transformation process in our planet [3, 4]. The
conversion from light to usable energy begins with its absorption by highly struc-
tured protein complexes that contain chlorophylls and other auxiliary pigments [5].
Light absorption generates excitations that diffuse through the photosynthetic appa-
ratus, eventually reaching the reaction centers where charge separation occurs. The
resulting free electrons are moved through a transport chain, generating free Gibbs
energy in the form of a proton gradient across the thylakoid membrane [6]. Finally,
this energy synthesizes adenosine triphosphate (ATP), an organic compound that
provides energy for various processes in living cells.

Light energy acts on photosynthesis in a similar way to electrical energy that
makes a pump capable of accumulating water in an elevated reservoir [1] (see Fig.
1.1). In the case of photosynthesis, the accumulated chemical energy is maintained
due to the metastability of the "organic matter+oxygen" system. In organisms, this
intrinsically unstable system does not react spontaneously but in a controlled way
through special channels controlled by catalytic enzymes that cause the accumulated
energy to be released in small, gradual steps rather than all at once. The release of the
accumulated energy at once would be equivalent to direct combustion, which, even
not causing the organism to ignite, would, in addition to wasting energy, cause local
damage. Respiration is the process that gradually releases the energy accumulated
by photosynthesis in small amounts suitable for the organism’s different physical
and chemical functions. These small amounts of energy are transported by high-
energy phosphate bonds, the most common form of which is the ATP molecule.
This molecule releases about 10 Kcal/mol after being transformed into adenosine
diphosphate (ADP) and inorganic phosphate (Pi) via hydrolysis. As we will see
below, this phosphate bond energy is less than 10% of the energy accumulated in
the elementary process of photosynthesis. In other words, it is as if photosynthesis
delivered 100 bills and breath spent that amount in 10 coins.

Both the reactants and products of photosynthesis consist of the same number of
atoms, C, H, and O. Each of these atoms is composed of a positive nucleus and sur-
rounding electrons. When two atoms approach each other, the electrical interactions
cause a rearrangement of the electrons. A repulsion between them means that the
two electronic systems are more stable when the two nuclei are farther apart. The
energy released or consumed in a chemical reaction is determined by the change in
stability of the systems involved. Photosynthesis starts with a very stable arrange-
ment of C, H, and O atoms in the CO2 and H2O molecules and ends with a much
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FIGURE 1.1: A - Pump and water wheels. B - Photosynthesis and
respiration. Adapted from Ref. [1].

less stable arrangement of the same nuclei and electrons in the CHsystem.2O+O2.
The main reason for this change in stability is that the oxygen atoms are weakly
attracted to each other. The O2 molecule is a relatively weak arrangement; its two
oxygen atoms tend to bond more easily to carbon and hydrogen atoms.

The energy released when two atoms (or groups of atoms) A and B bond together
is called binding energy. It is negative because when a bond is formed, the energy of
the A+B system decreases.

As a first approximation, the total energy of a molecule can be considered the
sum of the energies of its bonds, disregarding the cross interactions between atoms
that do not form bonds. For example, the energy of the molecule H2O can be con-
sidered the sum of the energy of two O-H bonds, whose energy is -110 Kcal/mol,
totaling -220 Kcal/mol. The cross-interaction between the two H atoms is weak and
can be neglected. The total binding energy of the CO2 molecule, -380 Kcal/mol, can
similarly be considered the sum of four C-O bonds, -95 Kcal/mol since each oxygen
is linked to carbon by a double bond. In this case, the cross-interaction between the
two oxygen atoms is also weak and can be neglected. The energy of each O-O bond
in the O2 molecule is only -58 Kcal/mol, totaling -116 Kcal/mol. Therefore, every
time an oxygen molecule is consumed (in respiration or combustion), a considerable
amount of energy is released due to the new, more stable arrangement of the oxygen
atoms with the carbon and hydrogen atoms. Such a process is the primary expla-
nation for the high energy accumulation in photosynthesis, where O-O bonds (-58
Kcal/mol) are formed, and O-H bonds (-110 Kcal/mol) are destroyed. Other bond
changes also occur in photosynthesis, such as the change from O-H bonds to C-H
bonds, but these contribute considerably less to the resulting change in energy than
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FIGURE 1.2: Bond energies and overall energy of photosynthesis and
respiration. Adapted from Ref. [1].

changes from O-O bonds to C-O and O-H bonds. From this analysis, based on the
conservation of bond energy, it results that the energy released by the combustion
of the CH2O molecule (basic unit of carbohydrates) is approximately 110 Kcal/mol
(see Fig. 1.2).

Many free oxygen molecules surround all organic matter (carbohydrates) on
Earth. Respiration enzymes control tiny gates that allow organic molecules, one
by one, to encounter oxygen.

Unlike artificially constructed materials for solar conversion, natural photosyn-
thesis is remarkably robust and adapted to continuous changes in environmental
conditions due to various regulatory processes. In particular, photosynthetic organ-
isms often experience sudden changes in the intensity of incident light over periods
ranging from seconds to months, and the organism may receive an amount of light
that exceeds its capacity of use in assimilating carbon dioxide. This excess energy
can cause photo-oxidative damage to the photosynthetic apparatus due to the for-
mation of reactive oxygen species (ROS) [7, 8]. In chloroplasts, there are two main
pathways for the formation of ROS [9]: (i) electron transfer to molecular oxygen on
the acceptor side of photosystem I (PSI) or II (PSII), leading to the formation of the
superoxide radical ( O−2 ) and, in subsequent reactions, hydrogen peroxide (H2O2)
or hydroxyl radical (OH·); and (ii) energy transfer from triplet chlorophyll (3Chl∗)
to molecular oxygen, which leads to the formation of singlet oxygen (1O∗2). In PSII,
carotenoids play a crucial role in deactivating 3Chl∗ and 1O∗2 and reducing ROS for-
mation through thermal dissipation of excess light energy (non-photochemical quench-
ing, NPQ) at the level of 1Chl∗. Beta-carotene is responsible for the deactivation of
1O∗2 in the PSII reaction center, while xanthophylls are involved in the NPQ of ex-
citations in the antenna complexes. These are examples of mechanisms employed
by photosynthetic organisms to protect themselves from the adverse effects of high
light intensity whose by-product are organic pigments.

In other words, photosynthetic organisms are remarkable examples of biologi-
cal nanomachines that have dominated the process of harvesting sunlight over bil-
lions of years of evolution. Understanding such mechanisms is essential for realizing
promising scientific and technological achievements.

1.2 Spectral irradiance

The Photosynthetically Active Radiation (PAR) refers to the portion of the solar spec-
trum lying between 400 and 700 nanometers, and roughly matches the visible light
range to the human eye. It is a zone that photosynthetic organisms put to use in pho-
tosynthesis. Photons with longer wavelengths lack the necessary energy to trigger
it, while photons at shorter wavelengths are filtered out by the ozone layer because
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FIGURE 1.3: Solar Spectrum as a function of wavelength. Notice that
the 400 to 700 nanometer range lies at the peak of the spectrum. Image

credit: Handbook of Energy Volume I [11]

they are more energetic. Another reason that shorter wavelengths are undesirable
for photosynthesis is that they can harm cells and tissues.

The irradiance of a given light source is the radiant energy emitted per unit time
per unit of area. The SI unit of irradiance is the watt per square metre (W m−2).
Irradiance is often called intensity, but this term is avoided in radiometry where such
usage leads to confusion with radiant intensity. In astrophysics, irradiance is called
radiant flux. Spectral irradiance is the irradiance of a surface per unit wavelength
and is commonly measured in watts per square metre per nanometer (W m−2 nm−1)
[10, p. 161].

Defining S(λ) as the spectral irradiance of a given light source, its irradiance I is
given by

I =
∫

S(λ)dλ. (1.1)

In a naturally occurring setting, the light source comes from our Sun, whose
spectral irradiance obeys Planck’s function for the blackbody radiation curve to an
approximate degree when atmospheric absorption is ignored [10, p. 72]. Such curve
can be seen on figure 1.3.

1.3 Microalgae

Microalgae stand out among the many photosynthetic organisms because of their
relative simplicity and variety. The biodiversity of microalgae is enormous. A con-
servative estimate puts somewhere between 30,000 and 70,000 natural species [13].
They are ubiquitous in nature [14], and their biodiversity is a valuable source of
resources for humanity [15, 16]. Over the last decades, thousands of new compo-
nents have been obtained from microalgae biomass, such as carotenoids, fatty acids,
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FIGURE 1.4: Example of microalgae. Image credit: Dr. Richard R
Kirby [12]

antioxidants, toxins, enzymes, polymers, peptides, and steroids [17]. Furthermore,
depending on the techniques used, microalgae can be converted into various types
of fuels that are promising alternatives to fossil fuels and other known sources of
biofuels such as sugarcane and corn [18–21]. Several companies and government
agencies fund efforts to reduce the required capital and operating costs to make mi-
croalgae fuel production viable [22–24].

Microalgae-derived biomass has considerable advantages over traditional raw
materials: high productivity, usually 10 to 100 times higher than planted crops;
highly efficient carbon capture; grown in salt water, brackish water, and even wastew-
ater and sewage. Moreover, microalgae can be harvested continuously throughout
the year and integrated into a continuous production chain like in a traditional oil
refinery. In addition, both cultivation and processing can occur at the same location,
which favors sequential and integrated production, thus reducing logistical costs.
However, there are still significant technological challenges for an economically vi-
able production of biofuels derived from microalgae, such as the development and
characterization of strains, crop protection, improvements in lipid harvesting and
extraction methods, and efficient cultivation methods.

The diversity of characteristics and habitats make microalgae extremely attrac-
tive for technological applications, especially if the candidate lineage is accessible to
genetic manipulation. Microalgae have numerous advantages over plants for pro-
ducing recombinant proteins through transgenesis. They progress to large-scale pro-
duction in a matter of weeks, which is a short time compared to months or years in
the case of higher plants such as maize or tobacco. Microalgae are unicellular organ-
isms, so there should be less variation in the accumulation of recombinant proteins,
making the process more uniform. They can be grown in closed systems, thus reduc-
ing the risk of contamination in the production system and increasing the protection
of the ecosystem close to potential contamination by genetically modified organisms,
a recurring problem in vegetable crops in open or semi-open environments.

Another valuable technique for improving the performance of a given microal-
gae strain is adaptive laboratory evolution (ALE). This methodology allows the anal-
ysis of evolutionary and adaptive phenomena in a controlled environment. During
microbial ALE, an organism is cultured under clearly defined conditions for long pe-
riods, allowing for improved phenotypes to be selected. Its basic principles go back
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to the work of Anton van Leeuwenhoek, Louis Pasteur, Robert Koch, and Charles
Darwin, with their discoveries about microorganisms, germs theory, and the impor-
tance of natural and artificial selection in the evolution and reproduction of organ-
isms. Despite being carried out for a long time, the advent of new genetic sequenc-
ing technologies and modern control and automation techniques in recent decades
makes ALE an even more promising methodology in biotechnology.

A fundamental feature of a given microalgae strain is its growth dynamics. In
natural environments (oceans, rivers, lakes, and ponds), physical (light, tempera-
ture), chemical (molecules and ions dissolved in water), and biological parameters
(viruses, bacteria, fungi, and predator-prey interactions) can fluctuate over time,
making it difficult to measure the role of each of these parameters in growth dynam-
ics. In artificial environments (photobioreactors), these parameters can be controlled
and their influences individualized.

1.4 Brazilian scenario

Brazil has a vast coastal area, with more than 10,000 km, approximately 12% of the
planet’s freshwater, and receives an average solar irradiance higher than the por-
tion received by most other countries. In addition, the country is home to the richest
flora in the world (40,989 species, 18,932 of which are endemic), with more than 3400
species of algae cataloged [25]. Currently, several Brazilian institutions study and
maintain algae collections, five of which have more than a hundred [26] lineages.
Embrapa and Petrobras lead initiatives that characterize and domesticate native mi-
croalgae strains. While Petrobras focuses on using marine microalgae for biofuel
production, Embrapa focuses on the characterization of continental microalgae and
its uses in bio-products [27].

1.5 Photobioreactors

Photobioreactors (PBR) are devices used to contain and control a microalgae cul-
ture. Although several models have already been presented, the rational design of
PBR still under development. A typical PBR is composed of a sample (microalgae)
immersed in a culture medium under a constant mixture of air with the help of an
air compressor. The sample is kept alight with photons of wavelengths between
400 and 700 nanometers, which defines the photosynthetically active region of the
spectrum.

There are two types of PBR. The first type is called a refinery PBR, consisting
of large reactors whose objective is to produce as much biomass as possible. To
this end, they are designed to keep the crop in optimal conditions continuously and
over long periods. This type of PBR design requires knowledge of the interactions
between the sample and environmental parameters, and its operation requires ex-
pensive and specific installations. The second type is a benchtop PBR, whose ob-
jective is to study the growth dynamics of the sample and its dependence on envi-
ronmental parameters. These reactors can be used to characterize a given species
or strain of microalgae as a function of the parameters that condition the develop-
ment of the sample, e.g., temperature, culture medium, dissolved gases, and light
(intensity, spectrum, and modulation). They can also be used to study the sample’s
response to stress conditions, adaptation to environmental changes, and the search
for optimized conditions. This type of equipment is used in several universities and
research centers worldwide, each custom-made. There are also benchtop PBRs sold
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FIGURE 1.5: Examples of various types of bioreactors. [28] [29] [30]
[31]

by companies that, in general, are very expensive and, because they are designed
as user friendly, have few configuration and operation options, presenting a ques-
tionable cost benefit. From a technological point of view, a PBR can be designed
as anything from a simple, utterly analog device to a fully automated mechatronic
device.

1.6 Autonomous PBRs

Ecology is the study of the relationships between living organisms and their envi-
ronment. In artificial systems, like PBRs, the environment is defined by the reactor
settings. This closed system has both organic (microalgae) and mechatronic parts
(PBR with its sensors and actuators), where sensors monitors conditions and signals
when changes occur, and actuator receives a signal and performs an action. Such a
system can be viewed as a cyborg (portmanteau of cybernetic and organism) since
the involved organic part may present enhanced abilities due to the integration with
the mechatronic parts that relies on some sort of feedback. Cybernetics is a wide-
ranging field concerned with regulatory and purposive systems. One of the most
well known definitions is that of Norbert Wiener who characterised cybernetics as
concerned with "control and communication in the animal and the machine" [32].
A programmable reactor open several possibilities for scientific studies and techno-
logical applications, in particular, stand out the use of PBRs as autonomous devices
able to perform long run experiments accurately, to study the microalgae growth dy-
namics in changing environments and to perform optimization strategies in order to
improve efficiency and productivity.

An optimization algorithm will generally use the historical input data, also known
as training data, to approximate an optimal function by consecutively tweaking the
control parameters in order to maximize a score associated with its performance.
When little is known about the analytical behavior of such a function, we say that
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the function is a "black box". Optimization algorithms that better perform with black
boxes are stochastic. One class of such algorithms is evolutionary algorithms, which
are inspired by the process of natural selection. The case of PBRs can fit better within
this class as the interaction between their sample, and the device itself is complex
enough to be regarded as a black box problem.

1.7 Objective and outline

The main objective of this work is to develop a control system for an array of pro-
grammable benchtop PBRs in order to obtain an experimental apparatus for studies
of microalgae growth dynamics. Such a system should be able to: i) provide the in-
teraction between the user and each reactor; ii) allow reactors to work autonomously
according to predefined rules; and iii) execute optimization algorithms in order to
explore the physical parameters that condition the development of the culture.

The methodology employed in constructing the PBR array and an overview of
the algorithms developed for this project is discussed in the next chapter. Subse-
quently, we report on the outcome of our work in the "results" section. Lastly, a
thorough analysis of the results, critique of the methodology, and proposal of the
following steps are found in the "conclusion."
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Chapter 2

Methodology

2.1 Microalgae

Microalgae from the genus Chlorella are eukaryotic, unicellular, free living photo-
synthetic organisms with a diameter ranging from 1 to 20 µm that can be spherical
or ellipsoid [33]. They can be found in freshwater and marine environments, in
soils and in the air, and can also colonize several invertebrate phyla such as Proto-
zoa, Porifera, Platyhelminthes, Coelenterata, sponges or ascomycetes fungi in lichen
[34]. In particular, Chlorella sorokiniana has been indicated as a promising species for
biotechnology processes and applications [35]. Several studies have demonstrated
that this species has a robust ability to produce biomass, proteins, sugars and high
oil yields under a variety of conditions and can also be genetically manipulated [35].
Moreover, they can acclimatize to artificial conditions including those involving the
use of LED light, high temperatures and low-cost urea, ammonia and nitrate based
fertilizers [36, 37].

The microalgae Chlorella sorokiniana Embrapa LBA39, a Tropical strain isolated
from the Brazilian Savanna (Cerrado) [38], was used in this work. This strain has
been deposited in the Collection of Microorganism and Microalgae for Agroenergy
and Biorefineries of the Brazilian Agricultural Research Corporation - Embrapa (Brasília-
DF) and preserved through protocols described by [39]. Cultures were stored in liq-
uid BG11 medium and kept in two liters PBR under constant temperature of 25 °C,
with photoperiod of 12 h/12 h of neutral white (5000K) LED light.

2.2 Photobioreactors

Seven identical PBRs, developed and built in the Laboratory of Photobioreactors of
the Institute of Physics of the University of Brasília, were used in this work. Each
PBR is an independent mechatronic device capable of carrying out a series of ac-
tions automatically in order to growth microalgae in controlled conditions. They
can be used alone or as part of a network. In the following, the system is described
described in terms of its hardware and software components.

2.2.1 Hardware

The central part of the reactor is a borosilicate glass tube 20 cm high and 3 cm in
diameter, with a total volume of approximately 140 ml (figures 2.1A and 2.3). Of this
total, 100 ml is used for microalgae culture. The upper part of the tube is hermeti-
cally closed with a lid (2.1B) that has four tubes for inlet and outlet of air and liquid
(culture medium and micro algae), a thermometer, and a pH sensor. The bottom of
the tube is fitted to the holder attached at the base of the reactor (figures 2.1C and



10 Chapter 2. Methodology

FIGURE 2.1
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FIGURE 2.2
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20cm

3cm

14cm

FIGURE 2.3: Diagram with the dimensions of the borosilicate glass
tube

2.1E). This holder has an opening with a light sensor (TSL2591 Light-to-Digital Con-
verter) and three LEDs with wavelengths in blue 470 nm, red 680 nm, and infrared
840 nm. The light scattering readings measured by the sensor for each wavelength
can be correlated with the microalgae density and the chlorophyll concentration in
the culture. In addition, this base has also two thermoelectric modules (TEC1-12706,
4cm x 4cm heat sinks and fans) attached on its sides to control the temperature of
the glass tube (figures 2.1C and 2.2F) and a magnetic stirrer at its bottom to keep
the microalgae culture homogeneous inside the tube during cultivation. This base is
part of the reactor structure (figure 2.1F), which also contains an air compressor for
the aeration of the culture, two peristaltic pumps for dilution and density control,
electrical connectors, and the lighting panel. The compressor and peristaltic pumps
are connected to the glass tube cap through silicone hoses. The lighting panel con-
sists of 10 LED channels (figures 2.1D, and 2.2D), each having a different color in the
visible region of the spectrum (440, 470, 495, 530, 595, 634, 660, 684, neutral white,
and full spectrum). The intensity of each channel can be individually controlled;
thus, a lighting spectrum with arbitrary shape and modulation can be programmed
and used.

All these sensors and actuators are powered by an individual power supply of
200 W and correlated through a microprocessor board (Arduino MEGA2560) in-
stalled inside a control box (figure 2.1G). The control box is connected to a computer
with a Linux system (Raspberry pi 3B).

Finally, each computer can be connected to an ethernet local area network, wired
or wirelessly, and controlled individually or together from a computer with control



2.3. Programming and control 13

software. All data is stored and visualized in real-time (more details in sections 2.2.2
and 2.3).

The entire system, hardware, software, and mechanical parts, was designed and
built by our group over the last five years. Some essential features of the system are
(i) it makes use of free software and hardware; (ii) electronic components are low
cost and easily accessible; and (iii) the mechanical parts were designed in CAD and
built with a 3D printer.

2.2.2 Software

All photobioreactors are controlled by a microcontroller board (Arduino Mega 2560)
running a custom firmware designed in our lab called Spectrum. This firmware al-
lows communication to an external computer by spawning a shell via the Arduino’s
serial bus, which in turn can either be manipulated by a user or a bot. The LVP li-
brary is responsible for interpreting all the serial’s incoming instructions according
to its syntax, which listens for either a ’set’ and ’get’ commands to operate on one or
multiple parameters or user-defined commands.

A parameter can be either an actuator or a sensor. Actuators can be divided
into engines, such as the air and water pumps, coolers and the magnetic stirrer, the
Peltier devices, or each one of the LEDs in the LED array. In contrast, the sensors get
data from temperature; red, blue, and infrared light; CO2 levels; and the pH of the
sample.

The commands can instruct the Arduino to execute specific pre-programmed
tasks such as printing the PBR sensor and actuator state into the shell, automati-
cally diluting the culture to a preset concentration of algae, switching the LEDs on
and off over a 12h period, or automatically control the CO2 levels in the air mixture.

2.3 Programming and control

The serial protocol allows only a single transmitter to communicate to a receiver si-
multaneously. Connecting multiple PBR devices in parallel to a computer through
their Arduino USB port, such as in a USB hub, may raise the possibility that more
than one device attempts to send a message simultaneously; This generates a jum-
bled input that the receiver cannot decode, this effect is known as bus contention
(see figure 2.4)[40]. This effect makes a robust long term network through a USB
hub unfeasible to be established.

To avoid such problems, each serial can be connected to an intermediate com-
puter acting as a middle-man, relaying the data over a more robust channel against
bus contention, such as Ethernet or Wi-Fi. In this case, the data is transferred over
HTTP, and the intermediate computer acts as a server. Another reason to imple-
ment this protocol is that it allows for easy scalability: The PBR devices could be
sparsely placed in several geographical locations and be readily available for exter-
nal researchers to retrieve data and submit custom experiments.

By adopting the HTTP structure, the network of our experimental apparatus 2.5
consists of a "main computer" attached to an array of several PBRs. Each contains an
Arduino as a control unit and a Raspberry Pi as a computer unit and HTTP relay.

Since each PBR has a computer attached to them, it can also behave as a stan-
dalone HTTP server. However, when controlled by the "main computer," they are
operated manually by a user or through a Python bot. If the bot is chosen, the user
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FIGURE 2.4: Example of topology that could cause bus contention
[40]. Two transmitters (TX end) connecting to a single receiver (RX)
may try to send a message at the same time, creating a superposed

code that the receiver can’t understand.

PBR1

Computer Unit Control Unit

PBR2

Computer Unit Control Unit

PBRj

Computer Unit Control Unit

PBRN

Computer Unit Control Unit

Raspberry 1

Raspberry 2

...

Raspberry N

Arduino 1 Hardware 1 Culture 1

Arduino 2 Hardware 2 Culture 2

... ... ...

Arduino N Hardware N Culture N

Command & Control Computer

FIGURE 2.5: Network structure of the experimental apparatus.
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can decide between letting the PBRs advance independently or optimizing a param-
eter with a built-in genetic algorithm.

Also, to account for possible power outages, the Python script controlling the
Serial communication was installed as a systemd service ([41]), so the connection
would be re-established automatically after a restart or system crash. While the state
of the PBRs is constantly cached in the "main computer" for quick recovery when the
system is brought back.

2.3.1 Optimization Algorithms

An optimization algorithm is a process capable of solving a minimization or max-
imization problem numerically. A plethora of areas ranging from Artificial Intel-
ligence to Physics and Biology make use of these methods. The most common
types are deterministic, designed to solve convex functions, i.e., functions that only
present a single optimal point within the desired search space. There are many vari-
ants such as Gradient Descent, Nelder-Mead, or Newton-Raphson’s method.

In the context of experiments, the function to be optimized can be either the
"growth rate", defined as the amount of cells being generated per unit time over a
volume element; or the efficiency, which is the ratio between the growth rate with
the power invested into the system from the light panels. The unknown behavior of
the growth rate function embodies a black box optimization problem.

In the case of functions presenting multiple optimal points, we use stochastic
techniques. The implementation of randomness allows these algorithms to find
global optima at the cost of becoming non-deterministic. The class of stochastic al-
gorithms that we will focus on are the Evolutionary Algorithms, which receive this
name for being inspired by the process of evolution of the species.

The Genetic Algorithm (abbreviated to GA) is a subclass of Evolutionary Algo-
rithms. Although there are many possible implementations, our choice considers
the search space embedded in a binary vector space of given dimension n ({0, 1}n).
Within this context, an "individual" is a candidate for a solution to the optimization
problem whose genotype is represented by a point in the aforementioned binary
space (see figure 2.1). A collection of such individuals form a "population," which
undergoes two types of operations along each iteration of the algorithm:

Firstly, a "crossover" operation selects pairs of individuals randomly from a pop-
ulation with a probability distribution based on the function’s response to their
genotype. Then, each pair exchange their corresponding vector components by se-
lecting an index randomly and switching all components after that index with the
components of the other individual (figure 2.2). After that, a "mutation" operation is
applied over the resulting pair of individuals by flipping some of their vector com-
ponents at random over a minuscule probability. A pseudo algorithm is presented
later in the appendix A; see 1.

It may also be of interest to preserve the optimal solution across all iterations of
the GA. In this case, we say that the selection process is "elitist" and will replace the
individual with the worst performance with an intact version of the best one before
the crossover step. When elitism is performed, there is a guarantee that the optima
will evolve monotonically at each iteration, but at a cost that the population might
get "trapped" at the vicinities of the elite individual, being unable to explore different
solutions.
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G =

I1
I2
I3
I4
I5
I6
I7



x1︷︸︸︷
0 1

x2︷︸︸︷
1 1

x3︷︸︸︷
1 0

x4︷︸︸︷
0 0

1 1 1 0 0 1 0 0
0 0 0 1 1 0 0 1
0 0 0 0 1 0 0 0
0 0 0 0 1 1 0 0
1 1 1 1 0 0 1 1
0 0 0 1 0 1 0 0


2.1: Example of binary population matrix (G) tracking the state of an

iteration of a genetic algorithm. Each individual is represented as a
row while groups of columns are used to make a binary representa-

tion of the optimization parameters (x1 to x4).

Ia
Ib

[ cut︷ ︸︸ ︷
0 0 0 1 1 0 1 1
1 1 1 1 0 1 0 1

]
Īa
Īb

[︷ ︸︸ ︷
1 1 1 1 1 0 1 1
0 0 0 1 0 1 0 1

]

2.2: An example of crossover operation carried at only two individu-
als. A random cut is made at the fourth column and values up to this
column are switched between them, generating two more individu-

als.
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Results

The primary feature of the constructed reactors is that they are equipped with a
programmable light panel that can cast light in the visible region. Other than the
light panel, the reactors can be programmed to work autonomously and execute
optimization algorithms. They can also monitor the density and growth rate of the
inserted culture in real time through an optical sensor. With so many features and
adjustable parameters, validation and calibration proved to be necessary.

In this chapter, it will be presented some of the results that allowed for validating
the functioning and usefulness of the system.

3.1 Illumination panel

3.1.1 Modelling of the Spectral Irradiance of the LED Panel

The reactors’ light panels are composed of ten color channels having different spec-
tra. The channels are made of three identical 1.5 W LEDs, and the spectral irradi-
ances of each channel were measured using a spectrometer (CCS200 from Thorlabs)
and a light power meter (PM160T from Thorlabs). Since they were provided by the
spectrometer in arbitrary units, they were converted to W m−2 nm−1 through nor-
malization performed with the readings from the light power meter. The spectral
irradiances obtained in this way are shown in Fig. 3.1 (symbols, scatters). In the
panels of this figure, it can be seen that the spectral irradiance of each channel has
asymmetric bell-shaped profiles that can be fitted with a function given by [42]

F(λ) = f L(λ) + (1− f )G(λ), (3.1)

where

G(λ) =
A

γ(λ)

√
4 ln 2

π
exp

(
−4 ln 2

(
λ− λ0

γ(λ)

)2
)

, (3.2)

L(λ) =
2A

πγ(λ)

1

1 + 4
(

λ−λ0
γ(λ)

)2 (3.3)

and f is the fraction of Lorentzian character contributing to the net line shape. For
example, when f = 1, the shape is a pure Lorentzian and when f = 0, the shape is a
pure Gaussian. The sigmoid function

γ(λ) =
2γ0

1 + exp (a(λ− λ0))
(3.4)

is used to take into account the asymmetry of the spectral irradiances. The parameter
a is a measure of asymmetry. Negative values skew the spectrum towards higher
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FIGURE 3.1: Curves fitting of the spectral irradiances for each channel
of the Illumination panel according to function 3.1.

Wavelength (nm) f A (W m−2) γ0 (nm) a (10−2nm−1) λ0 (nm) f A (W m−2) γ0 (nm) a (10−2nm−1) λ0 (nm)
Irradiance
(W m−2)

440 0.7 74.4 17.2 -3.6 441.0 – – – – – 72.2
470 0.6 88.3 24.1 −2.4 472.6 – – – – – 85.0
495 0.4 86.4 27.1 −2.5 497.8 – – – – – 82.2
530 0.4 89.6 36.4 −1.4 526.0 – – – – – 85.6
595 0.6 22.4 14.9 3.0 597.5 – – – – – 21.7
634 0.6 35.8 17.1 5.0 637.5 – – – – – 34.4
660 0.6 47.3 20.1 4.8 664.6 – – – – – 45.2
684 0.4 60.0 23.5 4.2 685.0 – – – – – 57.4
White 0.9 18.7 20.3 −1.1 450.7 −0.6 99.2 116.6 −0.4 575.4 115.1
Full 0.8 12.7 19.6 −4.1 454.8 −0.0 96.0 94.7 −0.5 652.3 103.5

TABLE 3.1: Parameters used for curve fit presented in figure

wavelengths, while positive values skew it towards lower wavelengths. When a is
zero, equation 3.4 reduces to γ0 and the resulting spectral irradiance is a standard
symmetric Gaussian or Lorentzian profile with a constant width γ0.

In total, five parameters were used to generate each curve fit in figure 3.1. How-
ever, the case for white and full-spectrum LEDs required two F functions to address
their bimodality. The parameters for each curve, obtained using the Levenberg-
Marquardt algorithm, are show in table 3.1. The obtained spectral irradiances for
each channel are shown in figure 3.2.

Limited only by the power that the LED panel can provide, any given spectrum
in the PAR region can be approximated with a linear combination of such curves.
In mathematical language, let C denote the set of LEDs available and denote the
function used to fit a LED of wavelength j ∈ C as Fj. Also, define the real function S
as

S = ∑
j∈C

cjFj. (3.5)
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FIGURE 3.2: Spectral irradiances for each channel of the Illumination
panel over the PAR region.

A proper approximation of an arbitrary spectrum S is one that satisfies the con-
dition

S′ = argminX∈Ud (X, S) . (3.6)

Where the set U represents all real functions that can be written in the form of 3.5
(see figure 3.3) and d is a distance defined over the real function space. Furthermore,
the set U must be constrained by the physical significance of the scalars cj: As they
are related to the PWM intensity of each LED, or rather, the fraction of power that
each of them must provide, they cannot be negative and cannot exceed unit. This
condition can be summarized in mathematical notation as follows:

U =

{
X = ∑

j∈C
cjFj

∣∣∣∣∑
j∈C

√
cj

2 < 1

}
(3.7)

A particular example of an element of the set U is the "neutral" spectrum, which
remains fairly flat within the visible region as it is illustrated in figure 3.4.

3.2 Density

The densities of the microalgae culture inside each reactor are obtained from the
readings of the optical sensor at the 840 nm wavelength. The sensor reading at this
wavelength is then related to the microalgae density through a calibration curve ob-
tained with direct microalgae counting with a Neubauer chamber and microscope.
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FIGURE 3.3: Some examples of spectral irradiances that can be pro-
duced by the illumination panels by the amplitude modulation of the
curves shown in figure 3.2. The dotted lines represent the target spec-

tra while the continuous lines are the actual outputs of the panels.

FIGURE 3.4: Neutral white spectra generated by the panel. Here is
shown the curve with the maximum irradiance possible (130 W m−2).
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Reactor a1 t1 a2 t2

1 71.76 354.32 8.00 5506.99
2 68.10 341.86 7.56 6009.17
3 69.41 312.08 7.85 4884.57
4 68.82 332.10 7.95 5353.53
5 72.15 325.08 7.47 4989.12
6 68.10 292.42 7.37 4406.68
7 70.45 355.07 7.84 5570.97

TABLE 3.2: Parameters obtained for the calibration curve 3.8 of each
reactor

FIGURE 3.5: Calibration curves for microalgae density of each reactor.

The calibration curve of each reactor is shown in figure 3.5. They where obtained us-
ing ten different values of densities (between 0 and 35×106 cells/ml) and the corre-
sponding sensor readings. Each measured data is fitted by a sum of two exponential
curves, that is,

ρ(x) = a1 exp
(
− x

t1

)
+ a2 exp

(
− x

t2

)
. (3.8)

Where ρ is the density and x the sensor readings at 840 nm and lies in the interval
(0, ∞). The best-fit parameters are given in table 3.2.

3.3 Growth dynamics

As a first approach to study the time evolution of the population of the algae sample,
we subjected them under a square pulse of neutral white light of a period of 12
hours with the intent to simulate a day night cycle as it is illustrated in the in figure
3.6 A. The response to this cycle is tracked by the density time series in the plot of
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FIGURE 3.6: Growth dynamics of the culture under 12/12 light cycle
of neutral white light. A) 12/12 light cycle. In panels B, C, D and E
are shown microalgae densities, growth rates, pH and temperatures

inside each reactor over time.
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FIGURE 3.7: Upper panel: Reactors reaching a target density and
keeping it for several hours. Lower panel: The corresponding growth
rate for each reactor (symbols) and the average value (continuous
black line). The shaded band are limited by the corresponding stan-

dard error values.

figure 3.6 B, in which it is noticed that growth occurs in periods where the light is
at its maximum and the converse happens when it is turned off, as expected from a
photosynthesizing organism.

A quantity of major interest is the growth rate, which can be obtained as the
derivative of the density curve. As the plot C in figure 3.6 shows, the growth rate
makes it clear to detect changes in the culture’s behavior. A co-variable with similar
significance is the pH of the culture’s medium, which highly correlates with the
growth rate, as it can be seen on the plot in figure 3.6 D.

The reactors also have a mode of operation in which they’ll seek a predefined
density and keep it at a quasi-static regimen. Figure 3.7 demonstrates the time evo-
lution of the reactors in this mode, starting off from a density that is far below the
target. Also in this case the reactors were set with 20 W m−2 of neutral white light
and the cultures have growth freely until they reach the predefined density. When-
ever the density exceeds the target, the reactor dilutes the culture with more medium
and discards some of the resulting mixture to keep the volume of culture constant.
This procedure will repeat until the density reaches the target or a point below it.
Figure 3.7 also shows the growth rates of each reactor and its average value over
time.
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FIGURE 3.8: Densities kept constant by the reactors over the course
of a week.

The constant density mode of operation can be executed in any range achievable
by the PBRs. Some examples are demonstrated in figure 3.8, where the targets were
kept constant over the course of a week.

In order to study how the microalgae respond to different incident irradiance, the
reactors were programmed to vary the irradiance of the neutral white light over time
accordingly with the pattern shown in the panel D of figure 3.9. For each irradiance
value, in the increasing and in the decreasing part of the irradiance curve over time,
the growth rate and the pH in each reactor were measured and the values are shown
in panels A and B of figure 3.9. The efficiencies, defined as

E = c
k
I

, (3.9)

where, k is the growth rate and I the irradiance, are shown in panel C. The con-
stant c = 0, 3 ml m2 is the product of the reactor volume (100 mL) and the illumi-
nated area (0,003 m2), see figure 2.3. In this way, the efficiency can be represented in
cells/Joules.

3.4 Analysis of Convergence of the Genetic Algorithm

Due to the stochastic nature of the genetic algorithm, there is no deterministic way
to tell how long it would take for it to converge. However, we can perform a statis-
tical analysis in a simplified version of it to estimate the time of convergence. The
appendix A provides an estimate by only taking into account selection over a con-
stant fitness function. For a population of size N with l genes and Gk

0 ones on gene
k, the average hamming distance h̄t+1 is given by equation A.9:
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FIGURE 3.9: Growth rate, pH and efficiency as function of neutral
white light irradiance values. The inset D shows how the irradiance
values were varied over time. In panel A and B, symbols represent
the measurements of each reactor and continuous lines the average
values. Shaded bands are limited by the corresponding standard er-

ror values.
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h̄t+1 =
1
l

l

∑
k=1

(
Gk

0

(
1− 1

N

)t (
N − Gk

0

(
1− 1

N

)))
We will be using this measure as an indication of homogeneity of the popula-

tion. An average hamming distance of zero means that the population is completely
homogeneous, and the algorithm has completely converged. In a realistic scenario,
this measure won’t monotonically converge to zero due to mutation, but it can be
used to estimate when it is a good time to stop the iterations.

By running the genetic algorithm repeatedly over a fixed random initial popu-
lation, we can check the validity of equation A.10 with numerical results. To align
with the case concerning this project, we ran a simulation with a population of size
eight with 64 genes over 500 epochs. In figure 3.10, we can see that the decay is
nearly what equation A.9 describes. When we include mutation, however, the ham-
ming distance no longer converges to zero. Instead, it oscillates with low amplitude,
as in figure 3.11. Whether looking at the numerical ensemble or at the theoretical
estimate, the algorithm seems to converge within 20 iterations.

FIGURE 3.10: Hamming distance decay over time for a population
of 8 individuals and 64 genes. The points in the scatter plot were

obtained by running the algorithm 500 times with no mutation.
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FIGURE 3.11: Hamming distance decay over time for a population
of 8 individuals and 64 genes. The points in the scatter plot were
obtained by running the algorithm 500 times with a mutation rate of

0.001.

3.5 Genetic Algorithm Optimization

The optimization procedure involved the use of only irradiance of the neutral white
light as the dependent parameter and the growth rate as the quantity to be opti-
mized. The mutation rate was set to be 0.1 and the population started homoge-
neously with an irradiance of 6W m−2. We also keep track of the efficiency and
irradiance as the experiment develop over the course of 4.5 days (figure 3.12).

Initially, the system rapidly reaches an apparent maximum within the first 12
hours, with an irradiance of 15W m−2. Soon after this point, the performance of the
system slowly degrades over time, even though it is still set to maximize the growth
rate.
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FIGURE 3.12: Time evolution of the genetic algorithm running with
only white light. The dashed lines represent the average over all
bioreactors, while the black solid line is the maximum at each instant.
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Discussion

The programmable illumination panel is one of the main features of the reactors;
it allows for a virtual study of culture under the influence of various light sources
while remaining in a controlled environment as illustrated in 3.3. These units under
a computer-controlled array provide a framework to run numerous autonomous
experiments simultaneously or to concur towards a single optimization task.

The stability of the system can last up to the order of a whole week. It is also
equipped with some features to avoid disruptions or start from where it left off. Each
bioreactor can also be controlled individually so that a specific unit can be debugged
even during the execution of an experiment.

However, to allow for reliable readings of the culture’s density, the reactor’s op-
tical sensor readings cannot be saturated to the point where it is almost zero, as
it would imply on a high reading error, which is related to the derivative of the
curves in figure 3.5. Indeed, whenever the optical sensor has completely reached
zero counts, it would be impossible to deduce the culture’s density from it as all
incoming light would be absorbed by the culture. Conversely, counts that are too
excessive will saturate the sensor; also causing reading errors and potentially dam-
aging it. For such reasons, the ideal strategy is to keep the density in a quasi-constant
regimen around 4 to 12 counts/103.

Figures 3.6, 3.7 and 3.8 show that the system is stable and accurate, being able
to detect important details of microalgae growth dynamics. Figure 3.9 shows that
the system is able to detect not only the effect of the incident irradiance, but also
the effect of its change over time. In the particular presented study of figure 3.9,
what seems to happen is that irradiances higher than 70 W m−2 cause an irreversible
photodamage to the Chlorella sorokiniana and this may be the cause for the lost of
efficiency in the second half of the experiment.

An unforeseen complication to the optimization task was the apparent time de-
pendence of the growth rate, as show in figure 3.9. Since the genetic algorithm as-
sumes that there are no time related changes in the environment, it couldn’t possibly
perform well, as the fitness function would continuously change. A consequence of
that is seen in figure 3.12, where it is clearly noticed that the optimal solution de-
grades over time.

However, even with such drawbacks, the experiment presented in section 3.5 still
seems to point in the right direction: The irradiance of the first maximum coincides
with the increasing and decreasing averages of figure 3.9 C, suggesting that even
with time dependence, the algorithm is still trying to keep up with the optimal point,
which happens to be around 15W m−2, while the efficiency travels the plot of figure
3.9 C maintaining a constant irradiance.

This leads us to believe that further tinkering with the system could yield more
revealing answers. To account for time dependence, a possible alternative would be
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to create a variant of the genetic algorithm or find another one in which the param-
eters are only allowed to increase at a slow pace.
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Conclusion

We managed to develop a stable framework capable to manage an array of photo-
bioreactors in a local area network, allowing for the parallel execution of replicates,
experiments running with different parameter or collectively under the control of
an intelligent system. Several tests were carried out to validate the operation and
accuracy of the system. In particular, we implemented a genetic algorithm on such
framework in order to optimize the growth efficiency of the microalgae Chlorella
sorokiniana. We can conclude that the presented system works well, constituting a
new tool capable of revealing details of the microalgae growth dynamics that are
impossible to be detected with conventional reactors. Next, we plan to use this ap-
paratus to characterize the growth dynamics of different strains of microalgae and
to study how this dynamics depends on the spectra of the incident light.
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Appendix A

Mathematical Methods

A.1 Genetic Algorithm

A genetic algorithm is an optimization method inspired by the process of the evolu-
tion of the species. Although there are many possible implementations, we will focus
over the following case (A Python implementation is available on GitHub [43]):

Definition 1 For U := {0, 1}l , given f : U → R, find u ∈ U| f (u) = maxx∈U f (x)

Algorithm 1 Genetic Algorithm

1: N ← Population size (even number)
2: l ← Number of alleles
3: K ← Number of steps
4: mp← Probability of mutation
5: G ∈ UN ← Random binary matrix N × l
6: f ← Optimization Function
7: for k← 1..K do
8: F ← N dimensional vector to store output of f
9: for n← 1..N do Fn ← f (Gn)

10: P← softmax(F)
11: selected← Choose pairs from 1.. N

2 with probabilityP
12: G ← crossover(selected)
13: G ← mutation(G, mp)
14: return G

In short, the algorithm spans a binary matrix of N rows and l columns represent-
ing a collection of the genomes of N individuals from U , all with l genes. For each
iteration, a call to the optimization function f is made for each individual, which is
then turned into a probability by the softmax function. From this probability, pairs
of individuals are selected and cross-combined at random splits until we can re-
populate the matrix. For the case of an even number of individuals there will be N

2
pairs whereas for an odd case, we will need N

2 + 1 pairs and drop the last child.
After these steps, a mutation transformation is applied over the matrix G such

that each element has a chance of flipping its state (0 to 1 or 1 to 0). The probability
of mutation is given by mp.

A.1.1 Estimated Conditions for Convergence

Since the genetic algorithm relies on stochastic processes, we cannot define a deter-
ministic stopping time. Instead, we will say that the algorithm converges when the
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population is homogeneous and track the expected value of this homogeneity over
time. As [44] recommends, we will drop the mutation and crossover operators to
ease the analysis and measure the homogeneity of the population as the average of
the hamming distances between each pair of the individuals’ genomes.

For a given gene j, the hamming distance (h) between individuals a and b is
defined as follows:

h(Gaj, Gbj) =

{
1, if Gaj ̸= Gbj

0, otherwise
(A.1)

.
So, for the entire population matrix G, the average hamming distance is

h̄(G) =
1
2l

l

∑
k=1

N

∑
i,j

h(Gik, Gjk) (A.2)

.
As [44] mentions, the case for a constant optimization function f is of particular

interest since the algorithm can do no better than a random guess for the selection
process. That is, the probability distribution for selection is uniform. Under this as-
sumption, the probability that a given column in the matrix G will have k individuals
with ones given its current counts (Xt) is given by a binomial probability:

P (Xt+1 = k|Xt, ..., X0) =

(
N
k

)(
Xt

N

)k (
1− Xt

N

)N−k

(A.3)

.
To calculate the average hamming distance given an initial population matrix,

we will focus on a specific column in the matrix G and analyze the sum of hamming
distances (Ht) over the populations instead. As the counts of ones are known (Xt),
we can directly compute the sum as follows:

Ht = Xt (N − Xt) (A.4)

The expected value of Ht given an initial count X0 is represented by

E [Ht|X0]

From equation A.3, we can compute E [Xt+1|Xt, ..., X0] and E
[
X2

t+1|Xt, ..., X0
]
:

E [Xt+1|Xt, ..., X0] =Xt

E
[
X2

t+1|Xt, ..., X0
]
=X2

t + Xt

(
1− Xt

N

) (A.5)

.
By defining a σ-algebra generated by the collection of random variables Xt, ..., X0

as Ft, we can make use of the following property to calculate the expected values in
function of the first step (t=0) as explained by [45]:

Theorem 1 Given Fa and Fb σ-algebras such that Fa ⊂ Fb, and an observable X, then

E [X|Fa] = E [E [X|Fb] |Fa]
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Since the σ-algebra generated by X0, denoted by F0, is contained in the σ-algebra
generated by the collection Xt, ..., X0, we can use theorem 1 to compute E [Xt+1|F0]
and E

[
X2

t+1|F0
]
:

E [Xt+1|F0] =E [E [Xt+1|Ft] |F0]

=E [E [Xt+1|Xt, ..., X0] |F0]

=E [Xt|X0]

=E [X0|X0]

=X0

(A.6)

E
[
X2

t+1|F0
]
=E

[
E
[
X2

t+1|Ft
]
|F0
]

=E
[
E
[
X2

t+1|Xt, ..., X0
]
|F0
]

=E

[
X2

t + Xt

(
1− Xt

N

)
|F0

]
=E [Xt|F0] +

(
1− 1

N

)
E
[
X2

t |F0
]

(Induction) =⇒

=

(
1− 1

N

)t+1

E
[
X2

0 |F0
]
+ E [X0|F0]

t

∑
u=0

(
1− 1

N

)u

=

(
1− 1

N

)t+1

X2
0 + NX0

(
1−

(
1− 1

N

)t
)

(A.7)

.
Applying the results of equations A.6 and A.7 to compute the expected value of

Ht, we have:

E [Ht+1|F′] = E [Xt+1(N − Xt+1)|F0] = X0

(
1− 1

N

)t (
N − X0

(
1− 1

N

))
(A.8)

.
Notice that, since the term

(
1− 1

N

)
is smaller than one, as the number of steps

grow, we have that the hamming distance tends to zero, resulting in uniform alleles
which are either filled with ones or zeros. By plugging this result back into our
desired metric for the average of the hamming distance of the population (equation
A.2), we conclude that

h̄t+1 =
1
l

l

∑
k=1

(
Gk

0

(
1− 1

N

)t (
N − Gk

0

(
1− 1

N

)))
(A.9)

.
Where Gk

t represents the counts of ones for allele k on step t. For the case where
all alleles start off with the same proportion G0, the equation A.9 can be further
simplified to

h̄t+1 =
1
N

(
G0

(
1− 1

N

)t (
N − G0

(
1− 1

N

)))
(A.10)

.
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Glossary

bot A program which emulates a human performing a specific task. 13

firmware The software responsible to provide low-level control a specific harware.
13

fitness function A function that is optimized by an Evolutionary Algorithm. 24

gene A unit of heredity holding information about the characteristics of an off-
spring. For genetic algorithms, this could be an index on a binary array. 24

genomes A set of genes. 33

HTTP HyperText Transfer Protocol. The protocol used to transfer web pages. 13

PWM Pulse Width Modulation. A way to send a signal between a HIGH and a
LOW by turning the emitter on and off over a fast rate.. 19

script A computer program. This term is mostly used when referring to dynamic
programming languages like Python. 15

serial A communication protocol to send data sequentially over a computer bus. 13

server A computer responsible to provide data and other resources to other com-
puters. 13

shell Command line interface used to interact with a computer. 13
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