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Abstract
In this paper, we are concerned with the problem 

where Ω ⊂ ℝ
2 is a bounded smooth domain and f ∶ ℝ → ℝ is a superlinear continuous 

function with critical exponential growth. We first make a truncation on the prescribed 
mean curvature operator and obtain an auxiliary problem. Next, we show the existence of 
positive solutions of this auxiliary problem by using the Nehari manifold method. Finally, 
we conclude that the solution of the auxiliary problem is a solution of the original problem 
by using the Moser iteration method and Stampacchia’s estimates.

Keywords Prescribed mean curvature problem · Critical exponential growth · Nehari 
manifold method · Moser iterations · Stampacchia estimates
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1 Introduction

In this paper, we are concerned with the existence of positive solutions for the following 
prescribed mean curvature problem with Dirichlet boundary condition

− div

�
∇u

√
1 + �∇u�2

�
= f (u) in Ω, u = 0 on �Ω,
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where Ω ⊂ ℝ
2 is a bounded smooth domain. The function f is given, and we seek a solution 

u satisfying (P).
Since the left‑hand side is the mean curvature of the graph of u, problem (P) is a pre‑

scribed mean curvature equation whose prescription depends on the location of the graph. 
Problems of this type have been studied starting with the pioneering contributions of Geth‑
ardt [15] and Miranda [25] who constructed H1,1 solutions, respectively BV solutions of the 
prescribed mean curvature equation with Dirichlet boundary condition. We also refer to the 
seminal paper by [18], where there are established necessary and sufficient conditions for 
the existence of solutions in a particular case but without boundary conditions. Moreover, 
prescribed mean curvature equation has been the object of extensive studies in the past due 
to arises from some problems associated with differential geometry and physics such as 
combustible gas dynamics [4–7, 10, 14, 19, 31] and also due to the close connection with 
the capillary problem. For example, radial solution of (P) in ℝN when f(u) is replaced by 
�u has been studied in the context of the analysis of capillary surfaces, as can be seen in [9, 
13, 16, 20, 22, 28] and [32].

Recently, by using variational methods, Obersnel and Omari [29] have considered the 
existence and multiplicity of positive solutions to problem (P) with respect to the behavior 
of the nonlinearity near the origin and at infinity. In the references of [29], the reader will 
find different contributions to the study of the prescribed mean curvature equation.

To state our main result, we need some hypotheses. The hypotheses on the continuous 
function f are the following: 

(f1)  There exists 𝛼0 > 0 such that the function f(t) satisfies 

(f2)  The following limit holds: 

 Moreover, f (t) = 0 for all t ≤ 0.
(f3)  The function    t ↦

f (t)

t
    is increasing in   (0,+∞).

(f4)  There exist r > 32

7

√
2 and 𝜏 > 𝜏

∗ such that 

 for all t ≥ 0 , where 

and the constant cr will appear in the Sect. 4, K2 > 0 will appear in Lemma 5.1, and 𝛿 > 0 
will appear in (3.4).

⎧
⎪
⎨
⎪
⎩

− div

�
∇u

√
1 + �∇u�2

�
= f (u) in Ω,

u = 0 on �Ω,

(P)

lim
t→∞

f (t)

exp(𝛼|t|2)
= 0 for 𝛼 > 𝛼0 and lim

t→∞

f (t)

exp(𝛼|t|2)
= ∞ for 𝛼 < 𝛼0.

lim
t→0+

f (t)

t
= 0.

f (t) ≥ �tr−1,

𝜏 > 𝜏
∗ ∶= max

��
16r

√
2

7r − 32
√
2

cr𝛼0

𝜋

�r−2∕2
,
K2

𝛿

�
32r

√
2

7r − 32
√
2
cr

�r−2∕2
, 1

�
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(f5)  The following inequality holds: 

 for all t > 0 , where F(t) ∶= ∫ t

0
f (s)ds.

The main result of this paper establishes the following existence and regularity 
property.

Theorem 1.1 Assume that conditions (f1) − (f5) hold. Then, problem (P) has a positive 
solution u ∈ C1(Ω).

Hypothesis (f1) is closely related to the Trudinger–Moser inequality and establishes 
that the function f has an exponential critical growth in ℝ2.

We would like to highlight that our theorem can be applied for the model nonlinearity

where � and r are the constants in (f4) and �0 is the constant in (f1).
Nonlinear problems with exponential growth have been considered recently by Alves 

and de Freitas [1], Alves and Santos [2], Ambrosio [3], Figueiredo and Severo [12], Li, 
Santos and Yang [23], Medeiros, Severo and Silva [24], etc.

There are some recent papers to prescribe mean curvature problem in two‑dimen‑
sional case. In [27] the authors studied the prescribed mean curvature problem with 
nonhomogeneous boundary condition. More precisely, the authors investigate the 
boundary behavior of variational solutions of problem (P) at smooth boundary points 
where certain boundary curvature conditions are satisfied. In [11] the authors show a 
nonexistence result. To the best of our knowledge, the main result in this paper is the 
first work on the problem of medium curvature in dimension two and non‑linearity with 
critical exponential growth.

The plan of the paper is as follows. We first associate to problem (P) a related nonhomo‑
geneous auxiliary problem with Dirichlet boundary condition. In Sect. 3 we study the vari‑
ational structure of this auxiliary nonlinear problem and we establish several qualitative 
properties of the associated energy functional. The key abstract tools in these arguments 
are the Trudinger–Moser inequality and the Nehari manifold method. Next, minimizing the 
energy function on the Nehari manifold, we prove the existence of solutions to the auxil‑
iary problem. In the final section of this paper, we prove that the solution of the auxiliary 
problem is a solution of the original problem. This is essentially done by using the Moser 
iteration method and Stampacchia’s estimates. We refer to the recent monograph by Papa‑
georgiou, Rădulescu and Repovš [30] for some of the abstract methods used in this paper.

2  An auxiliary problem

Consider the following auxiliary problem

where

0 < rF(t) ≤ f (t)t,

(1.1)f (t) = �tr−1 exp(�0t
2) for all t ≥ 0 and f (t) = 0, for all t ≤ 0,

{
− div

(
a(|∇u|2)∇u

)
= f (u) in Ω,

u = 0 on �Ω,
(Aux)
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Lemma 2.1 The function a ∶ ℝ+ → ℝ+ is decreasing and of C1 class. Moreover, it satis-
fies the following conditions: 

(a1)  7

8
√
2
≤ a(s2) ≤ 1, for all s ≥ 0.

(a2)  a�(s)s ≤ 0 < a(s), for all s ≥ 0.

(a3)  The function

 where A(s) = ∫
s

0

a(t)dt.

Proof Since

the items (a1) and (a2) follow by straightforward computation. For item (a3) note that

If we define b(s) ∶= a(s) + 2sa�(s) , we can prove that b is strictly decreasing in [0, 6
5
] , 

strictly increasing in [ 6
5
, 2] and constant in [2,+∞) . Then,

for all s ≥ 0 and this completes the proof.   ◻

In this section, we prove some auxiliary results which will be very useful throughout the 
paper.

Lemma 2.2 If (a1) − (a2) are true, then:

(i)  The function s ↦ a(s2)s is increasing.

a(s) =

⎧
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎩

1
√
1 + s

s ∈ [0, 1],

(s − 2)2 + 7

8
√
2

s ∈ [1, 2),

7

8
√
2

s ∈ [2,∞).

s ↦ A(s2) is convex for s ≥ 0,

a�(s) =

⎧
⎪
⎪
⎨
⎪
⎪
⎩

−1

2
√
(1 + s)3

s ∈ [0, 1],

s − 2

4
√
2

s ∈ [1, 2),

0 s ∈ [2,∞),

(A(s2))�� = 2[a(s2) + 2s2a�(s2)].

(A(s2))�� ≥ b
�
6

5

�
=

19

40
√
2
> 0,
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(ii)  For all x, y ∈ ℝ
2 , we have

Proof In order to prove (i), note that using (a1) − (a2) , we get

Let us prove (ii). Firstly, note that for z ∈ ℝ
2 , we have

where we have denoted �ij by the Kronecker delta. Hence, for all z, � ∈ ℝ
2 we get

Since

we have

Thus, using (2.2) we deduce that

From (a2) , we have that

Hence,

Now for z = y + t(x − y) , t ∈ [0, 1] and � = x − y , we have

(2.1)⟨a(�x�2)x − a(�y�2)y, x − y⟩ ≥ 7

8
√
2
�x − y�2.

(a(s2)s)� = 2s2a�(s2) + a(s2) = b(s2) > 0.

�

�zi
(a(|z|2)zj) = a(|z|2)�ij + 2a�(|z|2)zizj,

(2.2)
2∑

i,j=1

�

�zi
(a(|z|2)zj)�i�j = a(|z|2)|�|2 + 2a�(|z|2)

2∑

i,j=1

zizj�i�j.

(2.3)
2∑

i,j=1

zizj�i�j =

(
2∑

j=1

zj�j

)2

,

2∑

i,j=1

zizj�i�j = |z|2|�|2 cos2(�) for some � ∈ [0, 2�).

2∑

i,j=1

�

�zi
(a(|z|2)zj)�i�j = |�|2[a(|z|2) + 2a�(|z|2)|z|2 cos2(�)]

= |�|2[a(|z|2) + 2a�(|z|2)|z|2 + 2a�(|z|2)|z|2(cos2(�) − 1).

2a�(|z|2)|z|2(cos2(�) − 1) ≥ 0.

(2.4)

2�

i,j=1

�

�zi
(a(�z�2)zj)�i�j ≥ ���2[a(�z�2) + 2a�(�z�2)�z�2]

= b(�z�2)���2 ≥ 7

8
√
2
���2 for all z, � ∈ ℝ

2.
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Finally, using (2.4) we get (2.1).   ◻

The next result due to Stampacchia [33] will be useful in the arguments used in this 
paper.

Lemma 2.3 Let B(�) be a given C1 vector field in ℝ2 and f(x, s) a bounded Carathéodory 
function in Ω ×ℝ . Let u ∈ H1

0
(Ω) be a solution of

that is,

Assume that there exists 0 < 𝜈 < K such that

for all i, j = 1, 2 and � ∈ ℝ
2 . Then, u ∈ W2,p(Ω) ∩ C1,�(Ω) , for all � ∈ (0, 1) and for all 

p ∈ (1,∞) . Moreover,

In the following result, we show that the differential operator involved in (Aux) veri‑
fies conditions (2.5).

Lemma 2.4 Assume that hypotheses (a1) − (a2) are fulfilled. Then, for all u ∈ H1
0
(Ω) , the 

second-order differential operator B(∇u) = a(|∇u|2)∇u satisfies (2.5) of Lemma 2.3.

Proof Note that

and then

Now, observing (2.2), we can repeat the reasoning of the proof of Lemma 2.2, and using 
(a1) − (a2) , we conclude that

⟨a(�x�2)x − a(�y�2)y, x − y⟩ =
2�

j=1

(a(�x�2)xj − a(�y�2)yj)(xj − yj)

=∫
1

0

2�

i,j=1

�

�zi
(a(�z�2)zj)�i�jdt.

−div (B(∇u)) = f (x, u) in Ω, u = 0 on �Ω,

∫
Ω

B(∇u) ⋅ ∇� = f (x, u)� ∀� ∈ H1
0
(Ω).

(2.5)�|�|2 ≤
2∑

i,j=1

�Bi

��j

(∇u)�i�j and
|||||

�Bi

��j

(∇u)
|||||
≤ K,

(2.6)‖u‖1,� ≤ O(�,K,Ω, ‖f (⋅, u)‖∞).

�Bi

��j

(�) =
�

��j

(a(|�|2)�i) = a(|�|2)�ij + 2a�(|�|2)�i�j,

2∑

i,j=1

�Bi

��j

(∇u)�i�j = a(|∇u|2)|�|2 + 2a�(|∇u|2)
2∑

i,j=1

�u

�xi

�u

�xj
�i�j.
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On the other hand, using (a1) − (a2) , we get

for some positive constant K > 0 . The proof is now complete.   ◻

3  The variational framework and some technical lemmas

Note that, by the hypothesis (a1) , we have that the functional I ∶ H1
0
(Ω) → ℝ given by

is well defined, where F(t) = ∫
t

0

f (s)ds.

Moreover, we have

for all � ∈ H1
0
(Ω) . Thus, I is a C1 functional on H1

0
(Ω) and its critical points are weak solu‑

tion of problem (Aux).
The Nehari manifold associated to the functional I is given by

where J(u) = I�(u)u for u ∈ H1
0
(Ω) . Let us start with the following important result due to 

Trudinger [34] and Moser [26].

Theorem 3.1 For every u ∈ H1
0
(Ω) and 𝛼 > 0

and there is a constant M > 0 such that

for every � ≤ 4�.

Moreover, if 𝛼 > 4𝜋 , then

2�

i,j=1

�Bi

��j

(∇u)�i�j ≥ 7

8
√
2
���2.

|||||

�Bi

��j

(∇u)
|||||
=

|||||
a(|∇u|2)�ij + 2a�(|∇u|2) �u

�xi

�u

�xj

|||||
≤ a(|∇u|2) + |a�(|∇u|2)||∇u|2 ≤ K,

I(u) =
1

2 ∫
Ω

A(|∇u|2)dx − ∫
Ω

F(u)dx

I�(u)� = ∫
Ω

a(|∇u|2)|∇u∇� dx − ∫
Ω

f (u)� dx,

N = {u ∈ H1
0
(Ω)�{0} ∶ J(u) = 0},

(3.1)exp(�u2) ∈ L1(Ω)

(3.2)sup
‖u‖

H1
0
(Ω)

≤1�Ω

exp(�u2)dx ≤ M,
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Note that, from (f2) , for any 𝜀 > 0 , there exists 𝛿 > 0 such that

and

for all 0 < t ≤ 𝛿.
Furthermore, from (f1) , given 𝛼 > 𝛼0 , there exists K > 0 such that

for all t ≥ K . In particular, we get

 with implies

where C
�
=

�

Kq−2
 . Moreover, from (3.6), we get

for all t ≥ K , for all 𝛼 > 𝛼0 , for all q ≥ 0 with C̃
𝜀
=

𝜀

𝛼0K
q+1

.
Consequently, using (3.4), (3.5), (3.7) and (3.8), for all 𝜀 > 0 and for all 𝛼 > 𝛼0 , there 

exists C
𝜀
> 0 such that

and

for all u ∈ H1
0
(Ω) . In particular, in this paper, we will use q > 2.

In the next result, we prove that N  is not empty and that I restricted to N  is bounded 
from below.

Lemma 3.1 For each u ∈ H1
0
(Ω) ⧵ {0} , there exists a unique t > 0 such that tu ∈ N  . 

Moreover, I(u) > 0 for every u ∈ N .

Proof Given u ∈ H1
0
(Ω) ⧵ {0} , let Tu(t) = I(tu) for t > 0 . Then, tu ∈ N  if and only if 

T
�

u
(t) = 0 . Note that, taking 𝜀 > 0 sufficiently small in (3.9) and using (a1) and Sobolev 

embedding, there exists C > 0 such that

(3.3)sup
‖u‖

H1
0
(Ω)

≤1�Ω

exp(�u2)dx = ∞.

(3.4)|f (t)| ≤ �|t|

(3.5)|F(t)| ≤ 1

2
�|t|2,

|f (t)| ≤ � exp(�t2),

(3.6)|f (t)| ≤ �

K
t exp(�t2),

(3.7)|f (t)t| ≤ �

K
t2 exp(�t2) ≤ �

Kq−2
|t|q exp(�t2) = C

�
|t|q exp(�t2),

(3.8)|F(t)| ≤ 𝜀

𝛼K
exp(𝛼t2) ≤ 𝜀

𝛼0K
q+1

|t|q exp(𝛼t2) = C̃
𝜀
|t|q exp(𝛼t2),

(3.9)�
Ω

f (u)udx ≤ ��
Ω

|u|2dx + C
� �

Ω

|u|q exp(�|u|2)dx

(3.10)�
Ω

F(u)dx ≤ 𝜀

2 �
Ω

|u|2dx + C̃
𝜀 �

Ω

|u|q exp(𝛼|u|2)dx,
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Using Hölder’s inequality with s′, s > 1 , we get

Choosing 𝛼 > 𝛼0 and t1 > 0 such that 𝛼s‖t1u‖2 < 4𝜋 , using (3.2) we obtain

for some D1,D2 > 0 and for all 0 ≤ t ≤ t1 . Thus, since 2 < q , there exists 0 < t∗ ≤ t1 such 
that Tu(t) > 0 for all 0 < t < t∗ ≤ t1.

Now, from (a1) and (f4) , we have

where Ω+
u
= {x ∈ Ω ∶ u(x) > 0} . Therefore, since r > 2 , we conclude lim

t→+∞
Tu(t) = −∞ . 

Consequently, there exists at least one t(u) > 0 such that T�
u
(t(u)) = 0 , that is, t(u)u ∈ N .

Suppose, by contradiction, that there are t > 0 and �t > 0 such that

and

Then,

If t >�t  , from Lemma 2.1 and (f3) , we have

which is a contradiction. In the same way, we obtain that we cannot have the case t <�t  . 
We conclude that there is a unique parameter t > 0 such that t(u)u ∈ N  . Note, in particular, 
that t(u) is a global maximum point of Tu and Tu(t(u)) > 0 , i.e. I(t(u)u) > 0 . Since t(u) = 1 
if u ∈ N  , we deduce that I(u) > 0 for every u ∈ N  .   ◻

In the next result we prove that sequences in N  cannot converge to 0.

Lemma 3.2 There exists a constant C > 0 such that 0 < C ≤ ‖u‖ , for every u ∈ N .

Tu(t) =
1

2 �
Ω

A(�t∇u�2)dx − �
Ω

F(tu)dx

≥ 7∕8
√
2 − C𝜀

2
t2‖u‖2 − tqC̃

𝜀 �
Ω

�u�q exp(𝛼�tu�2)dx.

Tu(t) ≥ 7∕8
√
2 − C𝜀

2
t2‖u‖2 − tqC̃

𝜀

�

�
Ω

�u�qs�dx
�1∕s��

�
Ω

exp

�
𝛼s‖tu‖2

�
u

‖u‖

�2
�
dx

�1∕s

.

Tu(t) ≥ D1t
2
1
− D2t

q

1

Tu(t)

t2
≤ 1

2
‖u‖2 − �

r
tr−2 �

Ω+
u

urdx,

∫
Ω

a(|t∇u|2)|∇u|2dx = ∫
Ω

f (tu)

t
udx

∫
Ω

a(|̃t∇u|2)|∇u|2dx = ∫
Ω

f (̃tu)

t̃
udx.

∫
Ω

[
a(|t∇u|2)|∇u|2 − a(|̃t∇u|2)|∇u|2

]
dx = ∫

Ω

[
f (tu)

t
−

f (̃tu)

t̃

]
udx.

0 > ∫
Ω

[
a(|t∇u|2)|∇u|2 − a(|�t∇u|2)|∇u|2

]
dx = ∫

Ω

[
f (tu)

t
−

f (�tu)

�t

]
udx > 0,
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Proof Suppose, by contradiction, that there is (un) ⊂ N  such that

Then, using (3.10), we have

Now, from (a1) we get

Using Sobolev embedding, there exists C > 0 such that

Using Hölder’s inequality with s′, s > 1 , we have

Note that by (3.11), there is n0 ∈ ℕ such that

for all n ≥ n0 and for some 𝛼 > 𝛼0 . Then, from (3.2) and Sobolev embedding again, we 
have

This inequality implies

Since q > 2 , the above inequality contradicts (3.11) and the lemma is proved.   ◻

We set c ∶= infN I , and in the next result we will prove that minimizing sequence for c 
are bounded.

Lemma 3.3 If (un) ⊂ N  is a minimizing sequence for c, then (un) is bounded.

Proof Suppose, by contradiction, that up to a subsequence, ‖un‖ → ∞ and consider 
vn =

un

‖un‖
⇀ v0 . If v0 = 0 , then for all t > 0 , from (a1) we obtain

(3.11)un → 0 in H1
0
(Ω).

�
Ω

a(|∇un|2)|∇un|2dx = �
Ω

f (un)undx ≤ ��
Ω

|un|2dx + C
� �

Ω

|un|q exp(�|un|2)dx.

7

8
√
2
�
Ω

�∇un�2dx ≤ ��
Ω

�un�2dx + C
� �

Ω

�un�q exp(��un�2)dx.

�
7

8
√
2
− C�

�
‖un‖2 ≤ C

� �
Ω

�un�q exp
�
�‖un‖2

� �un�
‖un‖

�2
�
dx.

(3.12)

�
7

8
√
2
− C�

�
‖un‖2 ≤ C

�

�

�
Ω

�un�qs
�

dx

�1∕s��

�
Ω

exp

�
�s‖un‖2

�
un

‖un‖

�2
�
dx

�1∕s

.

‖un‖2 <
4𝜋

𝛼s

�
7

8
√
2
− C�

�
‖un‖2 ≤ MC

�

�

�
Ω

�un�qs�dx
�1∕s�

≤ MC
�
C‖un‖q.

�
7

8
√
2
− C�

�

MC
�
C

≤ ‖un‖q−2.
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where on(1) → 0 as n → +∞ . Since vn → 0 in Lq(Ω) and ‖vn‖ < 4𝜋 , using (3.10), Hölder 
inequality as in (3.12) and Theorem 3.1, we get

But this last convergence implies

which is a contradiction.
Suppose now that v0 ≠ 0 . Then,

where on(1) → 0 as n → +∞ . Hence, using (a1) and (f4) , we get

 Since vn → v in Lr(Ω) and ‖un‖ → +∞ , we have a contradiction.   ◻

To end up this section, let us prove that if the minimum of I over N  is achieved in some 
u0 ∈ N  , then in fact u0 is a critical point of I. This follows from some arguments used in [8, 
Proof of Theorem 1.1 (completed)].

Lemma 3.4 If u0 ∈ N  is such that

then I�(u0) = 0.

Proof Suppose, by contradiction, that c is achieved by u0 and this one is not a critical point 
of I. Then, there exists � ∈ H1

0
(Ω) such that

By the continuity of I′ , we can find �𝜀, �𝛿 > 0 small such that

Moreover, since the map t ↦ I(tu0) attains its maximum at t = 1 as shown in the proof of 
Lemma 3.1, we have

c + on(1) = I(un) = I(‖un‖vn) ≥ I(tvn)

≥ 7

16
√
2
t2 − �

Ω

F(tvn) dx,

∫
Ω

F(tvn) dx → 0.

c ≥ 7

16
√
2
t2, for all t > 0,

1

‖un‖2
I(un) =

c

‖un‖2
= on(1),

�

r
‖un‖r−2 �

Ω

�vn�rdx ≤ �
Ω

F(‖un‖vn)
‖un‖2

=
1

2‖un‖2 �Ω

A(�∇un�2dx + on(1) ≤ 1

2
+ on(1).

I(u0) = min
N

I = c,

I�(u0)𝜙 < 0.

(3.13)I�(t(u0 + 𝜎𝜙))𝜙 < 0, for t ∈ [1 − �𝜀, 1 + �𝜀] and 𝜎 ∈ [−�𝛿, �𝛿].

I�((1 − �𝜀)u
0
)u

0
= Tu

�(1 − �𝜀) > 0 > Tu
�(1 + �𝜀) = I�((1 + �𝜀)u

0
)u

0
.
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Then, again by the continuity of I′ , there exists � ∈ (0, �̃) such that

i.e. T�
u+𝜎𝜙

(1 − �𝜀) > 0 > T
�

u+𝜎𝜙
(1 + �𝜀) . It follows that

From (3.13), we have

so that

which contradicts (3.14) [also, because I(u0) = minN I ]. Therefore, I�(u0) = 0 and the 
proof is complete.   ◻

4  Existence of solution to the auxiliary problem

In this section, in order to prove the existence of result in the exponential critical case, we 
consider the auxiliary problem

 where r is the constant that appear in the hypothesis (f4).
The energy functional associated to problem (A) is defined by

We also define the Nehari manifold

Since the embedding H1
0
(Ω) ↪ Lr(Ω) is compact, using the mountain pass theorem and the 

classical maximum principle, we can prove that there exists a positive solution to problems 
(A) given by wr ∈ H1

0
(Ω) such that

and

where cr = inf
Nr

Ir . The next result is an estimate to c = inf
N

I.

I�((1 − �𝜀)(u0 + 𝜎𝜙)(u0 + 𝜎𝜙) > 0 > I�((1 + �𝜀)(u0 + 𝜎𝜙)(u0 + 𝜎𝜙),

(3.14)t(u0 + ��) ∈ N, for some t ∈ (1 − �̃, 1 + �̃).

I(t(u0 + 𝜎𝜙)) − I(u0) ≤ I(t(u0 + 𝜎𝜙)) − I(tu0) = t �
𝜎

0

I�(t(u0 + 𝜎𝜙))𝜙d𝜎 < 0,

I(t(u0 + 𝜎𝜙)) < I(u0) = c,

{
−Δu = |u|r−2u in Ω,

u ∈ H1
0
(Ω),

(A)

Ir(u) =
1

2 ∫
Ω

|∇u|2dx − 1

r ∫Ω

|u|rdx.

Nr = {u ∈ H1
0
(Ω);u ≠ 0 ∶ I�

r
(u)u = 0}.

Ir(wr) = cr, I�
r
(wr) = 0

(4.1)cr =
r − 2

2r ∫
Ω

|wr|rdx,
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Lemma 4.1 The value c = inf
N

I satisfies

Proof Note that, by the hypotheses (a1) and (f4) , we have

This inequality implies that I�(wr)wr ≤ 0 . Then, from (f3) , there exists � ∈ (0, 1] such that 
�wr ∈ N  . Using (a1) and (f4) again, we obtain

Since I�
r
(wr) = 0 , we conclude that

Using (4.1), we have

The proof is now complete.   ◻

Lemma 4.2 If (un) ⊂ N  is a minimizing sequence for c, then

Proof Note that

From (a1) and (f5) , we get

Since r > 32
√
2

7
 , we obtain

By the estimate on c in Lemma 4.1, we find

c ≤ cr

�2∕(r−2)
.

�
Ω

a(|∇wr|2)|∇wr|2dx ≤ �
Ω

|∇wr|2dx = �
Ω

|wr|r ≤ �
Ω

f (wr)wrdx.

c ≤ I(�wr) ≤ �
2

2 �
Ω

|∇wr|2dx −
�

r
�
r �

Ω

|wr|rdx.

c ≤
[
�
2

2
− �

�
r

r

]

�
Ω

|wr|rdx.

c ≤
[
�
2

2
− �

�
r

r

]
2rcr

(r − 2)
≤ max

s≥0

[
s2

2
− �

sr

r

]
2rcr

(r − 2)
=

(r − 2)

2r

1

�2∕(r−2)

2rcr

(r − 2)
=

cr

�2∕(r−2)
.

lim sup
n→∞

‖un‖2 ≤ 2�

�0

.

c + on(1) = I(un) −
1

r
I�(un)un =

1

2 ∫
Ω

A(|∇un|2)dx −
1

r ∫Ω

a(|∇un|2)|∇un|2dx

+
1

r ∫Ω

f (un)undx − ∫
Ω

F(un)dx.

c + on(1) ≥
�

7

32
√
2
−

1

r

�

�
Ω

�∇un�2dx =
�

7

32
√
2
−

1

r

�
‖un‖2.

‖un‖2 ≤ 32
√
2r

(7r − 32
√
2)
c + on(1)
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Since 𝜏 > 𝜏
∗ in (f4) , then

and the result follows.   ◻

The next result establishes some compactness properties of minimizing sequences.

Lemma 4.3 If (un) ⊂ N  is a minimizing sequence for c, then there exists u ∈ H1
0
(Ω) such 

that

and

Proof It is enough to prove the first limit, since the second one is analogous. By 
Lemma 4.2, we have

and, up to a subsequence, then there exists u ∈ H1
0
(Ω) such that

and

Now it is sufficient to prove that there is g ∶ ℝ → ℝ such that |f (un)un| ≤ g(un) with (g(un)) 
convergent in L1(Ω).

Note that by the inequality (3.9) we have

We will prove that (g(un)) is convergent in L1(Ω) . First, note that

Considering s, s′ > 1 such that 1
s
+

1

s�
= 1 and s close to 1,  we get

‖un‖2 ≤ 32
√
2r

(7r − 32
√
2)

cr

�2∕(r−2)
+ on(1).

‖un‖2 <
2𝜋

𝛼0

+ on(1)

∫
Ω

f (un)undx → ∫
Ω

f (u)udx

∫
Ω

F(un)dx → ∫
Ω

F(u)dx.

(4.2)lim sup
n→∞

‖un‖2 ≤ 2�

�0

un(x) → u(x) a.e. in Ω

f (un(x))un(x) → f (u(x))u(x) a.e. in Ω.

|f (un(x))un(x)| ≤�|un(x)|2 + C
�
|un(x)|q exp

(
�|un(x)|2

)
∶= g(un(x)).

(4.3)∫
Ω

|un|2dx → ∫
Ω

|u|2dx.

(4.4)|un|q → |u|q in Ls
�

(Ω).
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Now choosing 𝛼 > 𝛼0 but close to 1, we have that

Using Lemma 4.2, we can conclude that

Then, it follows by Theorem 3.1 that there is M > 0 such that

Since

we use [21, Lemma 4.8] and conclude that

Now using (4.4), (4.5) and [21, Lemma 4.8] again, we conclude

The proof is complete.   ◻

Theorem 4.1 The auxiliary problem has a nonnegative solution v0 ∈ H1
0
(Ω).

Proof Consider (un) ⊂ N  a minimizing sequence for c. Then, by Lemma  3.3, (un) is 
bounded in H1

0
(Ω) and, up to a subsequence,

We claim that u0 ≢ 0 . Indeed, if u0 ≡ 0 , then, from (a1) and Lemma 4.3, we get

which implies

contradicting Lemma 3.2. Let t0 > 0 such that v0 ∶= t0u0 ∈ N  . Since by (a3) the function 
s ↦ A(s2) is convex, we get �

Ω

A(|∇tu0|2)dx ≤ lim inf
n→∞ �

Ω

A(|∇tun|2)dx . From Lemma 4.3, 

we infer that ∫
Ω

F(tu0)dx = lim
n→∞∫

Ω

F(tun)dx . Then,

∫
Ω

exp

�
�s�un(x)�2

�
dx = ∫

Ω

exp

�
�s‖un‖2

��un(x)�
‖un‖

�2�
dx.

�
Ω

exp

�
�s�un(x)�2

�
dx ≤ �

Ω

exp

�
4�

��un(x)�
‖un‖

�2
�
dx

�
Ω

exp

(
�s|un(x)|2

)
dx ≤ M.

exp

(
�|un(x)|2

)
→ exp

(
�|u(x)|2

)
a.e. in Ω,

(4.5)exp

(
�|un|2

)
⇀ exp

(
�|u|2

)
in Ls(Ω).

∫
Ω

f (un)undx → ∫
Ω

f (u)udx.

un ⇀ u0 in H1
0
(Ω).

7

8
√
2
‖un‖2 ≤ �

Ω

a(�∇un�2)�∇un�2dx = �
Ω

f (un)undx → 0,

‖un‖ → 0,
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From Lemma 3.1, we conclude that

The equality I�(v0) = 0 is a consequence of Lemma 3.4. Since f (t) = 0 , for all t ≤ 0 , we get 
v0 ≥ 0 in Ω .   ◻

5  Proof of Theorem 1.1

We first establish some estimates on solutions of the auxiliary problem from which the 
existence of positive solution of problem (P) will be deduced. Let us point out that the 
classical elliptic regularity theory [17] cannot be applied immediately because the coef‑
ficients in the differential operator are not necessarily continuous. Throughout this section, 
we assume that � = 7∕(8

√
2) and Γ = 1.

Lemma 5.1 If v0 ∈ H1
0
(Ω) is a solution of the auxiliary problem, then v0 ∈ L∞(Ω) and 

there exists K2 > 0 not depending on v0 such that

Proof Since I(v0) = c and I�(v0) = 0 , arguing as Lemma 4.2, we have

Considering 𝜏 > 𝜏
∗ in (f4) , then

In what follows, let R > R1 > 0 with R > 1 and take a cutoff function �R ∈ C∞
0
(Ω) such that 

0 ≤ �R ≤ 1 , �R ≡ 0 in Bc
R
 , �R ≡ 1 in BR1

 and |∇�R| ≤ C∕R , where BR(0) ⊂ Ω is a ball in ℝ2 
and C > 0 is a constant.

Define for L > 0,

with 𝜎 > 1 to be determined later. Taking zL,0 as a test function we obtain

In other words,

c ≤ I(v0) ≤ lim inf
n→∞

I(t0un).

lim inf
n→∞

I(t0un) ≤ lim inf
n→∞

max
t≥0 I(tun) = lim inf

n→∞
I(un) = c.

‖v0‖∞ ≤ K2

�
4r

(r� − 4Γ)

cr

�2∕(r−2)

�2
.

(5.1)‖v0‖2 ≤ 4r

(r� − 4Γ)

cr

�2∕(r−2)
.

(5.2)‖v0‖2 <
2𝜋

𝛼0

.

vL,0(x) =

⎧
⎪
⎨
⎪
⎩

v0(x), if v0(x) ≤ L

L, if v0(x) ≥ L,

zL,0 = �
2
R
v
2(�−1)

L,0
v0 and wL,0 = �Rv0v

�−1
L,0

I�(v0)zL,0 = 0.
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By (3.9), (5.2) and Theorem 3.1, we obtain

Using zL,0 and (a1) , we obtain

The definition of vL,0 implies

Thus, by (a1) again

Taking �𝜏 > 0 and using Young’s inequality, we obtain

Choosing �̃  sufficient small, it follows that

On the other hand, we get

∫
Ω

a(|∇v0|2)∇v0∇zL,0dx = ∫
Ω

f (v0)zL,0dx.

�
Ω

a(|∇v0|2)∇v0∇zL,0dx ≤ � �
Ω

v0zL,0dx +MC
�

(

�
Ω

|vq−1
0

zL,0|s
�

dx

)1∕s�

.

� �
Ω

�
2
R
v
2(�−1)

L,0
|∇v0|2 dx ≤ −�

Ω

a(|∇v0|2)�Rv0v
2(�−1)

L,0
∇�R∇v0 dx

− 2(� − 1)�
Ω

a(|∇v0|2)v
(2�−3)

L,0
v0∇v0∇vL,0dx

+ � �
Ω

|v0|2�2Rv
2(�−1)

L,0
dx +MC

�

(

�
Ω

|vq
0
�
2
R
v
2(�−1)

L,0
|s�dx

)1∕s�

.

−2(� − 1)�
Ω

a(|∇v0|2)v
(2�−3)

L,0
v0∇v0∇vL,0dx ≤ 0.

� �
Ω

�
2
R
v
2(�−1)

L,0
|∇v0|2 dx ≤ ΓC1 �

Ω

�Rv0v
2(�−1)

L,0
|∇�R||∇v0| dx

+ � �
Ω

|v0|2�2Rv
2(�−1)

L,0
dx +MC

�

(

�
Ω

|vq
0
�
2
R
v
2(�−1)

L,0
|s�dx

)1∕s�

.

� �
Ω

�
2
R
v
2(�−1)

L,0
|∇v0|2 dx ≤ΓC1 �

Ω

(
�̃�

2
R
|∇v0|2 + C

�̃
v2
0
|∇�R|2

)
v
2(�−1)

L,0
dx

+ � �
Ω

|v0|2�2Rv
2(�−1)

L,0
dx +MC

�

(

�
Ω

|vq
0
�
2
R
v
2(�−1)

L,0
|s�dx

)1∕s�

.

(5.3)

�
Ω

�
2
R
v
2(�−1)

L,0
|∇v0|2 dx ≤ C2

(

�
Ω

v2
0
v
2(�−1)

L,0
|∇�R|2 dx

+ � �
Ω

|v0|2�2Rv
2(�−1)

L,0
dx +MC

�

(

�
Ω

|vq
0
�
2
R
v
2(�−1)

L,0
|s�dx

)1∕s�)
.
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where SΥ is the best Sobolev constant of H1
0
(Ω) in LΥ(Ω) and Υ.1 that will fix after. But

and therefore,

From this estimate and (5.3),

for every 𝜎 > 1.
The above expression, the properties of �R and vL,0 ≤ v0 imply that

Taking

then we can apply Hölder’s inequality with exponents t∕(t − 1) and t in (5.5) to get

SΥ‖wL,0‖2LΥ(Ω) ≤�
Ω

����
∇

�
�Rv0v

�−1
L,0

�����

2

≤�
Ω

�v0�2v
2(�−1)

L,0
�∇�R�2 + �

Ω

�
2
R

����
∇

�
v0v

�−1
L,0

�����

2

,

�
Ω

𝜂
2
R

||||
∇

(
v0v

𝜎−1
L,0

)||||

2

=�
{|v0|≤L}

𝜂
2
R

||||
∇

(
v0v

𝜎−1
L,0

)||||

2

+ �
{|v0|>L}

𝜂
2
R

||||
∇

(
v0v

𝜎−1
L,0

)||||

2

=�
{|v0|≤L}

𝜂
2
R
||∇v

𝜎

0
||
2
+ �

{|v0|>L}
𝜂
2
R
L2(𝜎−1)||∇v0||

2

≤ 𝜎
2 �

Ω

𝜂
2
R
v
2(𝜎−1)

L,0
|∇v0|2,

‖wL,0‖2LΥ(Ω) ≤ C3�
2

�

�
Ω

�v0�2v
2(�−1)

L,0
�∇�R�2 + �

Ω

�
2
R
v
2(�−1)

L,0
�∇v0�2

�
.

(5.4)

‖wL,0‖2LΥ(Ω) ≤ C4�
2 �

Ω

�v0�2v
2(�−1)

L,0
�∇�R�2

+ �
2C4

�
� �

Ω

�v0�2�2Rv
2(�−1)

L,0
dx +MC

�

�

�
Ω

�vq
0
�
2
R
v
2(�−1)

L,0
�s�dx

�1∕s��
.

(5.5)

‖wL,0‖2Lr(Ω) ≤ C4�
2 �

Ω

�v0�2��∇�R�2

+ �
2C4

�
� �

Ω

�v0�2��2Rdx +MC
�

�

�
Ω

�
2
R
��v0�q−2�v0�2��s

�

dx

�1∕s��
.

(5.6)t ∶=
qq

2(q − 2)
> 1, Υ ∶=

2t

t − 1
,

(5.7)

‖wL,0‖2LΥ(Ω) ≤ C
4
�
2‖v

0
‖2�
L�Υ(BR)

�

�BR

�∇�R�2t
�1∕t

+ C
4
�
2‖v

0
‖2�
L�Υ(BR)

�

�BR

��R�2t
�1∕t

+M
1
C
�
C
4
�
2‖v

0
‖2�
L�Υ(BR)

�

�BR

�v
0
�qq∕2

�1∕t

.
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Since �R is constant on BR1
∪ Bc

R
 and |∇�R| ≤ C∕R , we conclude that

We have used R > 1 and 2t > q > 2 in the last inequality.
Considering

we can use (5.7) and (5.8) to conclude that

Since

we can apply Fatou’s lemma in the variable L and Sobolev embedding to obtain

Here, C7 is a positive constant independent on R. Iterating this process, for each k ∈ ℕ , it 
follows that

Since Ω can be covered by a finite number of balls Bj

R1
 , we have that

Using (5.1) and since 𝜎 > 1 , we let k → ∞ to get K2 > 0 such that

The proof is now complete.   ◻

5.1  Proof of Theorem 1.1 completed

By Lemma (5.1) and (f4) , we obtain

(5.8)�BR

|∇�R|2t = �BR�BR1

|∇�R|2t ≤ C5

R2t−2
≤ C5.

�
Ω

|v0|qq∕2 ≤ K,

‖wL,0‖2LΥ(Ω) ≤ C6�
2‖v0‖2�L�Υ(BR)

.

‖vL,0‖2�L�Υ(BR1
)
=

�

�BR1

v�Υ
L,0

�2∕Υ

≤
�

�
Ω

�
Υ

R
�v0�Υv

Υ(�−1)

L,0

�2∕Υ

= ‖wL,0‖2LΥ(Ω) ≤ C6�
2‖v0‖2�L�Υ(Ω),

‖v0‖L�Υ(BR1
) ≤ C

1∕�

7
�
1∕�‖v0‖.

‖v0‖L�kΥ(BR1)
≤ C

∑k

i=1
�
−i

7
�

∑m

i=1
i�−i‖v0‖.

‖v0‖L�kΥ(Ω) ≤
finite�

j

‖v0‖L�kΥ(Bj

R1
)
≤

finite�

j

C
∑k

i=1
�
−i

7
�

∑m

i=1
i�−i‖v0‖.

‖v0‖L∞(Ω) ≤ K2‖v0‖ ≤ K2

�
4r

(r� − 4Γ)

cr

�2∕(r−2)

�2
.
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Now from (3.4), given 𝜖 > 0 , we get

Using Lemma 2.3, then v0 ∈ C1,�(Ω) , and for 𝜖 > 0 sufficient small, we have

The proof of Theorem  1.1 is now complete.   ◻
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