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Resumo

MODELOS DE HECKMAN GENERALIZADOS SIMÉTRICOS

O problema de viés de seleção amostral surge quando uma variável de interesse está cor-

relacionada com uma variável latente, e envolve situações em que a variável de interesse tem

parte das suas observações censuradas. A censura é uma espécie de limitação na amostra em

que determinadas observações da variável resposta não são verificadas, não por sua ausência,

mas por vezes porque o objeto de estudo não sofreu o evento de interesse, porém outras infor-

mações que ajudam a explicar o evento foram obtidas. Esse problema ocorre, em diversas áreas

da Economia, Ciências Políticas, Estatística, Sociologia entre outras.

Para evitar problemas de seleção amostral o recomendado é utilizar toda a amostra de dados,

uma vez que as variáveis explicativas foram observadas e a variável resposta censurada pode

transmitir informação sobre todo o conjunto de dados. Uma forma de verificar se a variável

de interesse censurada transmite informação é utilizar uma covariável que capture o viés ao se

considerar uma amostra, em que apenas as variáveis dependentes foram observadas. Caso esse

viés seja significativo, deve-se trabalhar com a base de dados completa

O matemático e economista James Joseph Heckman foi o primeiro a estudar dados com

de viés de seleção amostral e em 1976 propôs um modelo de seleção amostral baseado na

distribuição normal bivariada que considera tanto a variável de interesse quanto a variável la-
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tente, apesar do seu empenho o método utilizava a estimação por máxima verossimilhança e

foi bastante criticado devido a dificuldade de sua implementação e suposições do modelo, o

que o levou a propor um modelo alternativo mais simples denominado método dos dois passos,

também conhecido como modelo Tobit tipo 2, na literatura econométrica. Estudos propostos,

tais como Nelson (1984), Paarsch (1984), Manning, Duan, and Rogers (1987), Stolzenberg and

Relles (1990) and Leung and Yu (1996) sugerem que o modelo pode reduzir ou eliminar o viés

de seleção quando seus pressupostos são atendidos. Contudo o desvio de normalidade pode

ocasionar uma distorção nos resultados ou mesmo inviabilizar o ajuste.

A suposição de normalidade tem sido relaxada por modelos mais flexíveis, ao sugerir o uso

de outras distribuições bivariadas em substituição a distribuição normal tais como a Student-t

aplicada por Marchenko and Genton (2012) and Lachos, Prates, and Dey (2021) que apresenta

caudas mais pesadas e permite ajustes mais robustos, Skew-normal (Ogundimu and Hutton,

2016), abordagem Bayesiana Ding (2014) e baseada em cópulas Lee (1983). Abordagens semi-

paramétricas (Ahn and Powell, 1993) e não-paramétricas (M. Das and Vella, 2003) também

foram consideradas, contudo as abordagens paramétricas permitem identificar o intercepto do

modelo o que pode ser útil em análises com predições.

No modelo de Heckman Clássico os erros são normalmente distribuídos, com parâmetros

de dispersão e correlação constantes, a generalização do modelo clássico consiste em intro-

duzir covariáveis aos parâmetros de dispersão e correlação, a fim de modelar dados reais que

frequentemente apresentam dispersão variável, possibilitando a identificação de covariáveis re-

sponsáveis pela variabilidade dos dados e o viés de seleção. Nesse sentido este trabalho tem

como objetivo propor modelos de seleção amostral Heckman generalizados baseados nas dis-

tribuições simétricas (Fang, Kotz, and Ng, 1990). Trata-se de uma nova classe de modelo de

seleção amostral em que são acrescidas covariáveis aos parâmetros de dispersão e de correlação,

que possibilitam explicar a heterocedasticidade e o viés de seleção amostral respectivamente.

Neste estudo, na seção 1.2 introduzimos o modelo de Heckman generalizado simétrico, ob-

tendo sua função densidade de probabilidade, que apresenta dois componentes um discreto e
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outro contínuo, que é utilizada para a estimação dos parâmetros do modelo através da função

de log-verossimilhança. Na seção 1.3 derivamos o modelo de Heckman-Student-t generalizado

que é um caso especial do modelo de Heckman generalizado simétrico, obtendo a função den-

sidade de probabilidade e estimando os parâmetros do modelo.

Na seção 1.4, um estudo de simulação de Monte Carlo realizado para avaliar o comporta-

mento do método de estimação de parâmetros dos modelos de Heckman-normal generalizado e

Heckman-Student-t utilizando o viés e o Erro Quadrático Médio (EQM), considerando quatro

cenários mostrou bons resultados, na presença de altas/baixas taxas de censura e correlação.

Dois conjuntos de dados reais, gastos ambulatoriais da base Medical Expenditure Panel Sur-

vey (MEPS) de 2001, também utilizados por Cameron and Trivedi (2009), Marchenko and Gen-

ton (2012), M. Zhelonkin and Ronchetti (2016) e Bastos and Barreto-Souza (2020), disponível

no software R via pacote ssmrob de M. Zhelonkin et al. (2016) e as bases públicas dos gov-

ernos dos Estados de São Paulo e Minas Gerais, com covariáveis que explicam o Investimento

em Educação (IE) no ano de 2018, são analisados, na seção 1.5, para ilustrar a abordagem

proposta e revelaram o bom ajuste do modelo de Heckman-t generalizado comparado com o

modelo normal generalizado, além estimação dos parâmetros, também foram obtidos os resí-

duos do tipo-martingale (MT) e o ajuste dos respectivos quantis favoreceram o modelo proposto

no estudo que se ajusta melhor a dados com valores extremos.

Palavras-chave: Modelos de Heckman generalizados, distribuições simétricas, dispersão

variável, correlação variável.
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Abstract

The sample selection bias problem arises when a variable of interest is correlated with a la-

tent variable, and involves situations in which the response variable had part of its observations

censored. Heckman (1976) proposed a sample selection model based on the bivariate nor-

mal distribution that fits both the variable of interest and the latent variable. Recently, this

assumption of normality has been relaxed by more flexible models such as the Student-t distri-

bution (Marchenko and Genton, 2012; Lachos, Prates, and Dey, 2021). The aim of this work

is to propose generalized Heckman sample selection models based on symmetric distributions

(Fang, Kotz, and Ng, 1990). This is a new class of sample selection models, in which vari-

ables are added to the dispersion and correlation parameters. A Monte Carlo simulation study

is performed to assess the behavior of the parameter estimation method. Two real data sets are

analyzed to illustrate the proposed approach.

Keywords: Generalized Heckman models, symmetric distributions, variable dispersion,

variable correlation.
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Chapter 1

Symmetric generalized Heckman models

1.1 Introduction

It is common in the areas of economics, statistics, sociology, among others, that in the sampling

process there is a relationship between a variable of interest and a latent variable, in which the

former is observable only in a subset of the population under study. This problem is called sam-

ple selection bias and was studied by Heckman (1976). The author proposed a sample selection

model by joint modeling the variable of interest and the latent variable. The classical Heckman

sample selection (classical Heckman-normal model) model received several criticisms, due to

the need to assume bivariate normality and the difficulty in estimating the parameters using

the maximum likelihood (ML) method, which led to the introduction of an alternative estima-

tion method known as the two-step method; see Heckman (1979). Some studies on Heckman

models have been done by Nelson (1984), Paarsch (1984), Manning, Duan, and Rogers (1987),

Stolzenberg and Relles (1990) and Leung and Yu (1996). These works suggested that the Heck-

man sample selection model can reduce or eliminate selection bias when the assumptions hold,

but deviation from normality assumption may distort the results.

The normality assumption of the classical Heckman-normal model (Heckman, 1976) has

been relaxed by more flexible models such as the Student-t distribution (Marchenko and Gen-
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ton, 2012; Ding, 2014; Lachos, Prates, and Dey, 2021) and the skew-normal distribution

(Ogundimu and Hutton, 2016). Moreover, the classical Heckman-normal model assumes that

the dispersion and correlation (sample selection bias parameter) are constant, which may not

be adequate. In this context, the present work aims to propose generalized Heckman sample

selection models based on symmetric distributions (Fang, Kotz, and Ng, 1990). In the proposed

model, covariates are added to the dispersion and correlation parameters, then we have covari-

ates explaining possible heteroscedasticity and sample selection bias, respectively. Our pro-

posed methodology can be seen as a generalization of the generalized Heckman-normal model

with varying sample selection bias and dispersion parameters by Bastos, Barreto-Souza, and

Genton (2021), which is based on the bivariate normal distribution as the classical Heckman-

normal model.

The rest of this work proceeds as follows. In Section 1.2, we briefly describe the bivariate

symmetric distributions. We then introduce the symmetric generalized Heckman models. In this

section, we also describe the maximum likelihood (ML) estimation of the model parameters. In

Section 1.3, we derive the generalized Heckman-Student-t model, which is a special case of the

symmetric generalized Heckman models. In Section 1.4, we carry out a Monte Carlo simulation

study for evaluating the performance of the estimators. In Section 1.5, we apply the generalized

Heckman-Student-t to two real data sets to demonstrate the usefulness of the proposed model,

and finally in Section 1.6, we provide some concluding remarks.

1.2 Symmetric generalized Heckman models

Let Y = (Y1, Y2)
⊤ be a random vector following a bivariate symmetric (BSY) distribution

(Fang, Kotz, and Ng, 1990) with location (mean) vector µ = (µ1, µ2)
⊤, covariance matrix

Σ =

 σ2
1 ρσ1σ2

ρσ1σ2 σ2
2

 ,

2



§1.2. Symmetric generalized Heckman models

and density generator gc, with µi ∈ R, σi > 0, for i = 1, 2. We use the notation Y ∼

BSY(µ,Σ, gc). Then, the probability density function (PDF) of Y ∼ BSY(µ,Σ, gc) is given

by

fY (y;µ,Σ, gc) =
1

|Σ|1/2
gc
(
(y − µ)⊤Σ−1(y − µ)

)
, y ∈ R2. (1.1)

The density generator gc in (1.1) leads to different bivariate symmetric distributions, which may

contain an extra parameter (or extra parameter vector).

We propose a generalization of the classical Heckman-normal model (Heckman, 1976) by

considering independent errors terms following a BSY distribution with regression structures

for the sample selection bias (0 < ρ < 1) and dispersion (σ > 0) parameters:

(
Y ∗
i

U∗
i

)
∼ BSY

(
µ =

(
µ1i

µ2i

)
,Σ =

 σ2
i ρiσi

ρiσi 1

 , gc

)
, i = 1, . . . , n. (1.2)

In the above equation µ1i, µ2i, σi and ρi are are the mean, dispersion and correlation parameters,

respectively, with the following regression structure g1(µ1i) = x⊤
i β, g2(µ2i) = w⊤

i γ, h1(σi) =

z⊤
i λ and h2(ρi) = v⊤

i κ, where β = (β1, . . . , βk)
⊤ ∈ Rk, γ = (γ1, . . . , γl)

⊤ ∈ Rl, λ =

(λ1, . . . , λp)
⊤ ∈ Rp and κ = (κ1, . . . , κq)

⊤ ∈ Rq are vectors of regression coefficients, xi =

(xi1, . . . , xik)
⊤, wi = (wi1, . . . , wil)

⊤, zi = (zi1, . . . , zip)
⊤ and vi = (vi1, . . . , viq)

⊤ are the

values of k, l, p and q covariates, and k + l + p + q < n. The links g1(·), g2(·), h1(·) and h2(·)

are strictly monotone and twice differentiable. The link functions g1 : R → R, g2 : R → R,

h1 : R+ → R and h2 : [−1, 1] → R must be strictly monotone, and at least twice differentiable,

with g−1
1 (·), g−1

2 (·), h−1
1 (·), and h−1

2 (·) being the inverse functions of g1(·), g2(·), h1(·), and

h2(·), respectively. For g1(·) and g2(·) the most common choice is the identity link, whereas

for h1(·) and h2(·) the most common choices are logarithm and arctanh (inverse hyperbolic

tangent) links, respectively.

We can agglutinate the information from U∗
i in the following indicator function Ui =

1{U∗
i >0}. Let Yi = Y ∗

i Ui be the observed outcome, for i = 1, . . . , n. Only n1 out of n ob-

3
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servations Y ∗
i for which U∗

i > 0 are observed. This model is known as “Type 2 tobit model”

in the econometrics literature. Notice that Ui ∼ Bernoulli(P(U∗
i > 0)). By using law of total

probability, for θ = (β⊤,γ⊤, σ, ρ)⊤, the random variable Yi has distribution function

FYi
(yi;θ) = P(Yi ≤ yi|U∗

i > 0)P(U∗
i > 0) + P(Yi ≤ yi|U∗

i > 0)P(U∗
i ≤ 0)

=


P(Y ∗

i ≤ yi|U∗
i > 0)P(U∗

i > 0), if yi < 0,

P(Y ∗
i ≤ yi|U∗

i > 0)P(U∗
i > 0) + P(U∗

i ≤ 0), if yi ≥ 0.

The function FYi
has only one jump, at yi = 0, and P(Yi = 0) = P(U∗

i ≤ 0). Therefore, Yi

is a random variable that is neither discrete nor absolutely continuous, but a mixture of the two

types. In other words,

FYi
(yi;θ) = P(U∗

i ≤ 0)Fd(yi) + P(U∗
i > 0)Fac(yi),

where Fd(yi) = 1[0,+∞)(yi) and Fac(yi) = P(Y ∗
i ≤ yi|U∗

i > 0). Hence, the PDF of Yi is given

by

fYi
(yi;θ) = P(U∗

i ≤ 0)δ0(yi) + P(U∗
i > 0)fY ∗

i |U∗
i >0(yi;θ)

= (P(U∗
i ≤ 0))1−ui(P(U∗

i > 0))ui(fY ∗
i |U∗

i >0(yi;θ))
ui (1.3)

= P(Ui = ui)(fY ∗
i |U∗

i >0(yi;θ))
ui , ui = 0, 1,

wherein P(Ui = 0) = 1 − P(Ui = 1) = P(U∗
i ≤ 0) for i = 1, . . . , n, and δ0 is the Dirac delta

function. That is, the density of Yi is composed of a discrete component described by the probit

model P(Ui = ui) = (P(U∗
i ≤ 0))1−ui(P(U∗

i > 0))ui , for ui = 0, 1, and a continuous part given

by the conditional PDF fY ∗
i |U∗

i >0(yi;θ).

Based on Arellano Valle, Branco, and Genton (2006), we know that if (Y ∗
i , U

∗
i )

⊤ ∼ BSY(µ,Σ, gc),

4
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then the PDF of Y ∗
i |U∗

i > 0 is given by

fY ∗
i |U∗

i >0(yi;θ) =
1

σi

fZ1i

(
yi − µ1i

σi

) Gi

(
1√
1−ρ2i

µ2i +
ρi√
1−ρ2i

(yi−µ1i

σi
)
)

Hi(µ2i)
, (1.4)

where

Gi(x) =

∫ ∞

−x

fZ2i|Z1i

(
wi

∣∣∣ yi − µ1i

σi

)
dwi, Hi(x) =

∫ ∞

−x

f
ρiZ1i+

√
1−ρ2i Z2i

(ui) dui,

with Z1i = RDV1i and Z2i = R
√
1−D2V2i. Here, fZ1i,Z2i

is the joint PDF of Z1i and

Z2i, and fX denotes the PDF corresponding to a random variable X . Moreover, the random

variables V1i, V2i, R, and D are mutually independent and P(Vki = −1) = P(Vki = 1) = 1/2,

k = 1, 2. The random variable D is positive and has PDF fD(d) =
2

π
√
1−d2

, d ∈ (0, 1). On the

other hand, the random variable R is positive and is called the generator of the random vector

(Y ∗
i , U

∗
i )

⊤. Particularly, R has PDF given by fR(r) =
2rgc(r2)∫∞

0 gc(u) du
, r > 0, where gc is the density

generator in (1.1).

By combining Equations (1.3) and (1.4), the following formula for the PDF of Yi is valid:

fYi
(yi;θ) = (1−Hi(µ2i))

1−ui(Hi(µ2i))
ui

[
1

σi

fZ1i

(
yi − µ1i

σi

)
Gi

(
τi + αi(

yi−µ1i

σi
)
)

Hi(µ2i)

]ui

,

where αi = ρi/
√
1− ρ2i , τi = µ2i/

√
1− ρ2i , ui = 1 if u∗

i > 0 and ui = 0 otherwise, g1(µ1i) =

x⊤
i β, g2(µ2i) = w⊤

i γ, h1(σi) = z⊤
i λ and h2(ρi) = v⊤

i κ.

The log-likelihood of the symmetric generalized Heckman model for θ = (β⊤,γ⊤,λ⊤,κ⊤)⊤

5
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is given by

ℓ(θ) =
n∑

i=1

log fYi
(yi;θ)

=
n∑

i=1

ui

[
− log(σi) + log fZ1i

(
yi − µ1i

σi

)
+ logGi

(
τi + αi

(
yi − µ1i

σi

))]

+
n∑

i=1

(1− ui) log(1−Hi(µ2i)). (1.5)

To obtain the ML estimate of θ, we maximize the log-likelihood function (1.5) by equating

the score vector ℓ̇(θ) to zero, providing the likelihood equations. They are solved by means

of an iterative procedure for non-linear optimization, such as the Broyden-Fletcher-Goldfarb-

Shanno (BFGS) quasi-Newton method.

The likelihood equations are given by

0 =
∂ℓ(θ)

∂βj
=

n∑
i=1

ui
σi

[
−
f ′
Z1i

(yi−µ1i

σi
)

fZ1i(
yi−µ1i

σi
)
−

αifZ2i|Z1i

(
αi (

yi−µ1i

σi
) + τi

∣∣ yi−µ1i

σi

)
Gi

(
αi (

yi−µ1i

σi
) + τi

) ]
∂µ1i

∂βj
;

0 =
∂ℓ(θ)

∂γr
=

n∑
i=1

 ui√
1− ρ2i

fZ2i|Z1i

(
αi (

yi−µ1i

σi
) + τi

∣∣ yi−µ1i

σi

)
Gi

(
αi (

yi−µ1i

σi
) + τi

) +
f
ρiZ1i+

√
1−ρ2i Z2i

(−µ2i)

1−Hi(µ2i)

 ∂µ2i

∂γr
;

0 =
∂ℓ(θ)

∂λs
=

n∑
i=1

ui
σi

[
−1− (yi − µ1i)

σi

f ′
Z1i

(yi−µ1i

σi
)

fZ1i(
yi−µ1i

σi
)
− αi

(yi − µ1i)

σi

fZ2i|Z1i

(
αi (

yi−µ1i

σi
) + τi

∣∣ yi−µ1i

σi

)
Gi

(
αi (

yi−µ1i

σi
) + τi

) ]
∂σi
∂λs

;

0 =
∂ℓ(θ)

∂κm
=

n∑
i=1

ui√
1− ρ2i

[
(yi−µ1i

σi
)

1− ρ2i
− µ2iρi

]
fZ2i|Z1i

(
αi (

yi−µ1i

σi
) + τi

∣∣ yi−µ1i

σi

)
Gi

(
αi (

yi−µ1i

σi
) + τi

) ∂ρi
∂κm

;

6



§1.3. Generalized Heckman-Student-t model

where

∂µ1i

∂βj

=
xij

g′1(µ1i)
, j = 1, . . . , k; i = 1, . . . , n;

∂µ2i

∂γr
=

wir

g′2(µ2i)
, r = 1, . . . , l; i = 1, . . . , n;

∂σi

∂λs

=
zis

h′
1(σi)

, s = 1, . . . , p; i = 1, . . . , n;

∂ρi
∂κm

=
vim

h′
2(ρi)

, m = 1, . . . , q; i = 1, . . . , n.

1.3 Generalized Heckman-Student-t model

The generalized Heckman-normal model proposed by Bastos, Barreto-Souza, and Genton (2021)

is a special case of (1.2) when the underlying distribution is bivariate normal. In this work, we

focus on the generalized Heckman-t model, which is based on the bivariate Student-t (Bt) distri-

bution. This distribution is a good alternative in the symmetric family of distributions because it

possesses has heavier tails than the bivariate normal distribution. From (1.1), if Y = (Y1, Y2)
⊤

follows a Bt distribution, then the associated PDF is given by

f(y;µ;Σ, ν) = |Σ|−1/2

{
1 +

(y − µ)⊤Σ(y − µ)

ν

}−(ν+2)/2

, (1.6)

where ν is the number of degrees of freedom. Here, the density generator of the Bt distribution

is given by gc(x) = (1 + x/ν)−(ν+2)/2. Therefore, if (Y ∗
i , U

∗
i ) follow a Bt distribution, then, by

Equation (1.4), the PDF of Y ∗
i |U∗

i > 0 is written as

fY ∗
i |U∗

i >0(yi;µ1i, σ
2
i , αi, τi, ν) =

1

σi

fν

(
yi − µ1i

σi

) Fν+1

(√
(ν+1)

ν+(
yi−µ1i

σi
)2

(
τi + αi(

yi−µ1i

σi
)
))

Fν

(
τi/
√
1 + α2

i

) ,

where fν and Fν are the PDF and CDF, respectively, of a univariate Student-t distribution with

ν degrees of freedom, αi = ρi/
√
1− ρ2i and τi = µ2i/

√
1− ρ2i . The log-likelihood for θ =

7
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(β⊤,γ⊤,λ⊤,κ⊤, ν)⊤ is given by

ℓ(θ) =
n∑

i=1

log fYi
(yi;θ)

=
n∑

i=1

log
{
(Fν(−µ2i))

1−ui(Fν(µ2i))
ui(fY ∗

i |U∗
i >0(yi;µ1i, σ

2
i , αi, τi, ν))

ui
}

=
n∑

i=1

ui

[
− log(σi) + log fν

(
yi − µ1i

σi

)
+ logFν+1

(√
(ν + 1)

ν + (yi−µ1i

σi
)2

(
τi + αi

(yi − µ1i

σi

)))]

+
n∑

i=1

(1− ui) logFν(−µ2i), (1.7)

where ui = 1 if u∗
i > 0 and ui = 0 otherwise, µ1i, µ2i, σi and ρi are as in (1.2). The ML

estimate of θ is obtained by maximizing the log-likelihood function (1.7), that is, by equating

the score vector ℓ̇(θ) (given in Section 1.2) to zero, providing the likelihood equations. They are

solved using an iterative procedure for non-linear optimization, such as the BFGS quasi-Newton

method.

1.4 Monte Carlo simulation

In this section, we carry out Monte Carlo simulation studies to evaluate the performance of the

ML estimators under the symmetric generalized Heckman model. We focus on the generalized

Heckman-t model and consider three different set of true parameter value, which leads to sce-

narios covering moderate to high censoring percentages. The studies consider simulated data

generated from each scenario according to

µ1i = β1 + β2x1i + β3x2i (1.8)

µ2i = γ1 + γ2x1i + γ3x2i + γ4x3i (1.9)

8
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log σi = λ1 + λ2x1i (1.10)

arctanh ρi = κ1 + κ2x1i (1.11)

for i = 1, . . . , n, x1i, x2i and x3i are covariates obtained from a normal distribution in the

interval (0,1). Moreover, the simulation scenarios consider sample size n ∈ {500, 1000, 2000}

and ν = 4, with NREP = 1000 Monte Carlo replicates for each sample size. In the structure

presented in (1.8) - (1.11), µ1i is the primary interest equation, while µ2i represents the selection

equation. The R software has been used to do all numerical calculations; see R Core Team

(2022).

The performance of the ML estimators are evaluated through the bias and mean squared

error (MSE), computed from the Monte Carlo replicas as

B̂ias(θ̂) =
1

NREP

NREP∑
i=1

θ̂(i) − θ and M̂SE(θ̂) =
1

NREP

NREP∑
i=1

(θ̂(i) − θ)2, (1.12)

where θ and θ̂(i) are the true parameter value and its respective i-th ML estimate, and NREP is

the number of Monte Carlo replicas.

We consider the following sets of true parameter values for the regression structure in (1.8)-

(1.11):

• Scenario 1) β = (1.1, 0.7, 0.1)⊤, γ = (0.9, 0.5, 1.1, 0.6)⊤, and λ = (−0.4, 0.7)⊤ and

κ = (0.3, 0.5)⊤.

• Scenario 2) β = (1.0, 0.7, 1.1)⊤, γ = (0.9, 0.5, 1.1, 0.6)⊤, λ = (−0.2, 1.2)⊤, and κ =

(0.7, 0.3)⊤ or κ = (−0.7, 0.3)⊤.

• Scenario 3) β = (1.1, 0.7, 0.1)⊤, γ = (0, 0.5, 1.1, 0.6)⊤, λ = (−0.4, 1.2)⊤, and κ =

(−0.3,−0.3)⊤ (moderate correlation) or κ = (−0.7,−0.7)⊤ (strong correlation).

To preserve the parameters and maintain a censoring rate around 50%, in Scenario 1 a

threshold greater than zero was used, so U∗
i > a, according to Bastos, Barreto-Souza, and

9
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Genton (2021) in general the value of a is zero, as any other value would be absorbed by the

intercept, so considering another value does not cause problems for the model. In Scenario 2

the dispersion and correlation parameters were changed and the censoring rate was maintained

around 30%. In Scenario 3, the censoring rate around 50% was obtained by changing the

parameter the selection equation µ2i.

The ML estimation results for the Scenarios 1), 2) and 3) are presented in Tables 1.1-1.3, re-

spectively, wherein the bias and MSE are all reported. As the ML estimators are consistent and

asymptotically normally distributed, we expect the bias and MSE to approach zero as n grows.

Moreover, we expect that the performances of the estimates deteriorate as the censoring propor-

tion (%) grows. A look at the results in Tables 1.1-1.3 allows us to conclude that, as the sample

size increases, the bias and MSE both decrease, as expected. In addition, the performances of

the estimates decrease when the censoring proportion increases.

10
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Table 1.1: Bias and MSE for the indicated ML estimates of the generalized Heckman-t model
parameters (Scenario 1).

Generalized Heckman-t Generalized Heckman-t
Parameters n Censoring Bias MSE Censoring Bias MSE

β1 1.1
500 30.8878 0.0034 0.0053 54.0284 0.0082 0.0148

1000 30.9352 0.0019 0.0025 53.421 0.0016 0.0060
2000 31.0035 0.0021 0.0011 52.8706 0.0058 0.0030

β2 0.7
500 30.8878 0.0037 0.0014 54.0284 0.0060 0.0034

1000 30.9352 0.0020 0.0007 53.421 0.0033 0.0013
2000 31.0035 0.0016 0.0003 52.8706 0.0020 0.0005

β3 0.1
500 30.8878 0.0009 0.002 54.0284 -0.0014 0.0045

1000 30.9352 -0.0003 0.0008 53.421 0.0003 0.0017
2000 31.0035 0.0008 0.0004 52.8706 -0.0022 0.0008

γ1 0.9
500 30.8878 0.0163 0.0137 54.0284 -1.0167 1.0443

1000 30.9352 0.0055 0.0065 53.421 -1.0095 1.0246
2000 31.0035 -0.0008 0.0032 52.8706 -0.9981 0.9980

γ2 0.5
500 30.8878 0.0066 0.0091 54.0284 0.0071 0.0077

1000 30.9352 0.0064 0.0044 53.421 0.0026 0.0039
2000 31.0035 0.0025 0.0021 52.8706 0.0021 0.0019

γ3 1.1
500 30.8878 0.0177 0.0194 54.0284 0.0131 0.0170

1000 30.9352 0.0081 0.0085 53.421 0.0090 0.0074
2000 31.0035 0.0032 0.0041 52.8706 0.0044 0.0038

γ4 0.6
500 30.8878 0.0091 0.0110 54.0284 0.0076 0.0089

1000 30.9352 0.0081 0.0085 53.421 0.0043 0.0045
2000 31.0035 0.0028 0.0026 52.8706 0.0020 0.0020

κ1 0.3
500 30.8878 0.0139 0.0564 54.0284 0.0034 0.0467

1000 30.9352 0.0048 0.0048 53.421 0.0080 0.0207
2000 31.0035 -0.0005 0.0102 52.8706 -0.0029 0.0097

κ2 0.5
500 30.8878 0.0589 0.0554 54.0284 0.0416 0.0383

1000 30.9352 0.0054 0.0225 53.421 0.0202 0.0157
2000 31.0035 0.0120 0.0083 52.8706 0.0136 0.0064

λ1 -0.4
500 30.8878 0.0011 0.0049 54.0284 -0.0029 0.0075

1000 30.9352 0.0210 0.018 53.421 0.0009 0.0035
2000 31.0035 0.0018 0.0011 52.8706 -0.0014 0.0018

λ2 0.7
500 30.8878 0.0017 0.0031 54.0284 0.0037 0.0046

1000 30.9352 0.0006 0.0023 53.421 0.0026 0.0021
2000 31.0035 0.0007 0.0007 52.8706 0.0006 0.0010

ν 4
500 30.8878 0.3633 2.3387 54.0284 0.6463 8.4442

1000 30.9352 0.1506 0.5565 53.421 0.2221 0.8141
2000 31.0035 0.0833 0.2377 52.8706 0.0820 0.3078
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Table 1.2: Bias and MSE for the indicated ML estimates of the generalized Heckman-t model
parameters (Scenario 2).

Generalized Heckman-t Generalized Heckman-t
n Parameters Censoring Bias MSE Parameters Censoring Bias MSE
500

β1 1.0
31.017 0.0048 0.0045

β1 1.0
30.9268 0.0052 0.0039

1000 30.9395 0.0031 0.0022 30.8644 -0.0002 0.0016
2000 30.9098 0.0013 0.0009 30.9734 0.0005 0.0009
500

β2 0.7
31.017 0.0013 0.0009

β2 0.7
30.9268 0.0045 0.0008

1000 30.9395 -0.0002 0.0046 30.8644 0.0010 0.0003
2000 30.9098 0.0002 0.0001 30.9734 0.0006 0.0001
500

β3 1.1
31.017 -0.001 0.0011

β3 1.1
30.9268 0.0001 0.0007

1000 30.9395 0.0015 0.0008 30.8644 0.0009 0.0003
2000 30.9098 -0.0007 0.0002 30.9734 0.0003 0.0001
500

γ1 0.9
31.017 0.0071 0.0141

γ1 0.9
30.9268 0.0108 0.0153

1000 30.9395 0.0165 0.0814 30.8644 0.0205 0.0555
2000 30.9098 0.0036 0.0031 30.9734 0.0027 0.0034
500

γ2 0.5
31.017 0.0072 0.0090

γ2 0.5
30.9268 0.0111 0.0096

1000 30.9395 0.0076 0.0101 30.8644 0.0115 0.0270
2000 30.9098 -0.0005 0.0020 30.9734 0.0016 0.0035
500

γ3 1.1
31.017 0.013 0 0.0180

γ3 1.1
30.9268 0.0143 0.0175

1000 30.9395 0.0151 0.0254 30.8644 0.0170 0.0450
2000 30.9098 0.0020 0.0041 30.9734 0.0028 0.0051
500

γ4 0.6
31.017 0.0067 0.0102

γ4 0.6
30.9268 -0.0003 0.0094

1000 30.9395 0.0064 0.0195 30.8644 0.0077 0.0139
2000 30.9098 0.001 0.0023 30.9734 0.0023 0.0024
500

κ1 0.7
31.017 0.0299 0.0560

κ1 -0.7
30.9268 -0.0449 0.0662

1000 30.9395 0.0197 0.0628 30.8644 -0.0198 0.033
2000 30.9098 0.0031 0.0089 30.9734 -0.0058 0.0218
500

κ2 0.3
31.017 0.052 0.0702

κ2 0.3
30.9268 0.0363 0.067

1000 30.9395 0.0197 0.0576 30.8644 0.0141 0.0632
2000 30.9098 0.0097 0.0097 30.9734 0.0108 0.0345
500

λ1 -0.2
31.017 0.0004 0.0053

λ1 -0.2
30.9268 0.0043 0.0054

1000 30.9395 -0.0018 0.0041 30.8644 -0.0031 0.0039
2000 30.9098 0.0019 0.0012 30.9734 -0.0004 0.0013
500

λ2 1.2
31.017 0.0032 0.0038

λ2 1.2
30.9268 0.0096 0.0035

1000 30.9395 0.0018 0.0020 30.8644 0.0058 0.0016
2000 30.9098 -0.0001 0.0007 30.9734 0.0024 0.0010
500

ν 4
31.017 0.4404 2.3837

ν 4
30.9268 0.5096 17.9132

1000 30.9395 0.1418 0.6321 30.8644 0.1619 0.6922
2000 30.9098 0.1234 0.2899 30.9734 0.0789 0.2731
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Table 1.3: Bias and MSE for the indicated ML estimates of the generalized Heckman-t model
parameters (Scenario 3).

Generalized Heckman-t Generalized Heckman-t
n Parameters Censoring Bias MSE Parameters Censoring Bias MSE
500

β1 1.1
49.8604 -0.0037 0.0094

β1 1.1
49.9824 -0.0109 0.0072

1000 49.9469 -0.0008 0.0035 49.9075 -0.0049 0.003
2000 50.0265 -0.0012 0.0017 49.925 -0.0046 0.0011
500

β2 0.7
49.8604 -0.0025 0.0016

β2 0.7
49.9824 -0.0057 0.0014

1000 49.9469 -0.0006 0.0005 49.9075 -0.0026 0.0005
2000 50.0265 -0.0009 0.0002 49.925 -0.0025 0.0002
500

β3 0.1
49.8604 0.0001 0.0014

β3 0.1
49.9824 0.0017 0.0011

1000 49.9469 <0.0001 0.0005 49.9075 0.0004 0.0004
2000 50.0265 0.0005 0.0002 49.925 -0.0002 0.0002
500

γ1 0
49.8604 0.0025 0.0065

γ1 0
49.9824 0.0012 0.0063

1000 49.9469 0.0036 0.003 49.9075 0.0029 0.004
2000 50.0265 -0.0023 0.0015 49.925 0.0022 0.0014
500

γ2 0.5
49.8604 0.0067 0.0078

γ2 0.5
49.9824 0.0051 0.0071

1000 49.9469 0.0061 0.0035 49.9075 0.0036 0.0051
2000 50.0265 0.0009 0.0019 49.925 0.0003 0.0015
500

γ3 1.1
49.8604 0.009 0.0161

γ3 1.1
49.9824 0.0095 0.0155

1000 49.9469 0.0047 0.008 49.9075 0.0116 0.0185
2000 50.0265 0.0024 0.0037 49.925 0.0046 0.0035
500

γ4 0.6
49.8604 0.0010 0.0091

γ4 0.6
49.9824 0.0048 0.0083

1000 49.9469 0.0014 0.0042 49.9075 0.0056 0.0086
2000 50.0265 -0.001 0.0023 49.925 0.0038 0.002
500

κ1 -0.3
49.8604 -0.0105 0.04

κ1 -0.7
49.9824 -0.0166 0.0437

1000 49.9469 -0.0107 0.0173 49.9075 -0.0061 0.0183
2000 50.0265 -0.0015 0.0085 49.925 -0.0034 0.0078
500

κ2 -0.3
49.8604 -0.0302 0.0394

κ2 -0.7
49.9824 -0.0831 0.0609

1000 49.9469 -0.0189 0.0163 49.9075 -0.0317 0.0195
2000 50.0265 -0.0053 0.007 49.925 -0.0214 0.0086
500

λ1 -0.4
49.8604 0.0032 0.0067

λ1 -0.4
49.9824 -0.0041 0.0072

1000 49.9469 -0.0003 0.0035 49.9075 -0.006 0.0034
2000 50.0265 0.0005 0.0016 49.925 -0.0033 0.0018
500

λ2 1.2
49.8604 0.0062 0.004

λ2 1.2
49.9824 0.0039 0.0038

1000 49.9469 0.0057 0.0019 49.9075 0.0029 0.0018
2000 50.0265 0.0026 0.0009 49.925 0.0016 0.0008
500

ν 4
49.8604 0.5755 3.9653

ν 4
49.9824 0.546 8.083

1000 49.9469 0.2316 0.8686 49.9075 0.1677 0.793
2000 50.0265 0.1139 0.3197 49.925 0.0841 0.4107
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1.5 Application to real data

In this section, two real data sets, corresponding to outpatient expense and investments in ed-

ucation, are analyzed. The outpatient expense data data set has already been analyzed in the

literature by Heckman models Marchenko and Genton (2012), whereas the education invest-

ment data in education is new and is analyzed for the first time here.

1.5.1 Outpatient expense

In this subsection, a real data set corresponding to outpatient expense from the Medical Expen-

diture Panel Survey 2001 (MEPS) database is used to illustrate the proposed methodology. This

data set has information about the cost and provision of outpatient services, and is the most

complete coverage about health insurance in the United States, according to the Agency for

Healthcare Research and Quality (AHRQ).

The MEPS data set contains information collected from 3328 individuals between 21 and

64 years. The variable of interest is the expenditure on medical services in the logarithm scale

(Y ∗
i = lnambx), while the latent variable (U∗

i = dambexp) is the willingness of the individual

to spend; Ui = I{U∗
i >0}i corresponds the decision of the individual to spend. It was verified that

526 (15.8%) of the outpatient costs are identified as zero (censored). The covariates considered

in the are: age is the age measured in tens of years; fem is a dummy variable that assumed

value 1 for women and 0 for men; educ is the years of education; blhisp is a dummy variable

for ethnicity (1 for black or Hispanic and 0 if non-black and non-Hispanic); totcr is the total

number of chronic diseases; ins is the insurance status; and income denotes the individual

income.

Table 1.4 reports descriptive statistics of the observed medical expenditures, including the

minimum, mean, median, maximum, standard deviation (SD), coefficient of variation (CV),

coefficient of skewness (CS) and coefficient of (excess) kurtosis (CK) values. From this table,

we note the following: the mean is almost equal to the median; a very small negative skewness
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value; and a very small kurtosis value. The symmetric nature of the data is confirmed by

the histogram shown in Figure Figure 1.1(a). The boxplot shown in Figure 1.1(b) indicates

some potential outliers. Therefore, we observe that a symmetric distribution is a reasonable

assumption, more specifically a Student-t model, since since we have to accommodate outliers.

Table 1.4: Summary statistics for the medical expenditure data.

minimum Mean Median maximum SD CV CS CK n
0.693 6.557 6.659 10.819 1.406 21.434% -0.315 0.006 2801
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Figure 1.1: Histogram (a) and boxplots (b) for the medical expenditure data.

We then analyze the medical expenditure data using the generalized Heckman-t model,

expressed as

lnambx = β0 + β1 agei + β2 femi + β3 educi + β4 blhispi + β5 totchri + β6 insi, (1.13)

dambexp = γ0+γ1 agei+γ2 femi+γ3 educi+γ4 blhispi+γ5 totchri+γ6 insi+γ7 incomei,

(1.14)
log σi = λ0 + λ1 agei + λ2 totchri + λ3 insi, (1.15)

arctanh ρi = κ0 + κ1 femi + κ2 totchri. (1.16)
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We initially compare the adjustments of the generalized Heckman-t (GHt) model, in terms

of Akaike (AIC) and Bayesian information (BIC), with the adjustments of the classical Heckman-

normal (CHN) (Heckman, 1976) and generalized Heckman-normal (GHN) (Bastos, Barreto-

Souza, and Genton, 2021) models; see Table 1.5. The AIC and BIC values reveal that the GHt

model provides the best adjustment, followed by the GHN model.

Table 1.5: AIC and BIC of the indicated Heckman models.
CHN GHN GHt

AIC 11706.44 11660.29 11635.05
BIC 11810.31 11794.71 11775.59

Table 1.6 presents the estimation results of the GHN and GHt models. From this table, we

observe the following results for both models: the parameters associated with the covariates

totchr and ins that model the dispersion are significant, in both models, indicating the presence

of heteroscedasticity in the data, which justifies biased estimates in the estimators.

Statistical evidence displayed from Table 1.6 is sufficient to reject the absence of selection

bias, when applying the test of Wald to evaluate H0 : ρ = 0 vs H1 : ρ ̸= 0, we observed suffi-

cient evidence to reject H0 at the 5% significance level. Correlation parameter are significant to

covariates fem and totchr.

In Table 1.6, the positive estimated parameters indicate an increase in the response variable,

the interpretation of parameters is related to the log of outpatient expenses. In the outcome

equation age, fem, totchr are significant at any level and blhisp is significant in the level at

5%, educ is not significant and ins is not significant in the level at 5%. We can, for example,

affirm, based on the result of this model, that keeping the other parameters fixed, changing a unit

in age represents an increase of exp(0.1838) = 1.2018 and exp(0.1895) = 1.2086, i.e 20.18%

and 20.86% of increase in ambulatory expenses for the models GHN and GHt respectively. In

a similar way, the other parameters of the model can be interpreted, so that keeping the other

parameters fixed, changing a unit in totchr represents an increase of exp(0.4306) = 1.5383

and exp(0.4464) = 1.5627, i.e 53.83% and 56.27% of increase in ambulatory expenses for the
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models GHN and GHt respectively.

To the selection equation, in the Table 1.6, the covariates age, fem, educ, blhisp, totchr, ins

are significant at any level and income is significant in the level at 5%. The interpretation

which representing willingness to spend with health, is made by the odds ratio. The chances of

investing in medical expenses increase by exp(0.0931) = 1.0976, i.e, 9% when the age increase

one unit, and considering the model GHt. For the other parameters the analyzes are similar.

Table 1.6: Estimation results of the GHN and GHt models.
Probit selection equation

Variables Estimates Std. Error t Value p-value
GHN GHt GHN GHt GHN GHt GHN GHt

(Intercept) -0.5903 -0.6406 0.1867 0.2014 -3.1620 -3.1800 <0.001 <0.001
age 0.0863 0.0930 0.0264 0.0288 3.2610 3.2230 <0.001 <0.001
fem 0.6299 0.7087 0.0597 0.0681 1.0543 1.0395 <0.001 <0.001
educ 0.0569 0.0590 0.0114 0.0122 4.9830 4.8110 <0.001 <0.001
blhisp -0.3368 -0.3726 0.0596 0.0647 -5.6430 -5.7590 <0.001 <0.001
totchr 0.7585 0.8728 0.0686 0.0858 1.1043 1.0168 <0.001 <0.001
ins 0.1727 0.1863 0.0611 0.0665 2.8240 2.7990 <0.001 <0.001
income 0.0022 0.0025 0.0012 0.0013 1.8380 1.8750 0.0661. 0.061.

Outcome equation

Variables Estimates Std. Error t Value p-value
GHN GHt GHN GHt GHN GHt GHN GHt

(Intercept) 5.7041 5.6078 0.1930 0.1912 2.9553 2.9316 <0.001 <0.001
age 0.1838 0.1895 0.0234 0.0230 7.8460 8.2350 <0.001 <0.001
fem 0.2498 0.2555 0.0587 0.0580 4.2530 4.4000 <0.001 <0.001
educ 0.0013 0.0062 0.0101 0.0100 0.1290 0.6240 0.8970 0.5329
blhisp -0.1283 -0.1344 0.0577 0.0569 -2.2210 -2.3630 0.0264* 0.0182*
totchr 0.4306 0.4464 0.0305 0.0297 1.4115 1.5002 <0.001 <0.001
ins -0.1027 -0.0976 0.0513 0.0501 -2.000 -1.9470 0.0456* 0.0516.

Dispersion

Variables Estimates Std. Error t Value p-value
GHN GHt GHN GHt GHN GHt GHN GHt

Intercept) 0.5081 0.4172 0.0573 0.0643 8.8550 6.4820 <0.001 <0.001
age -0.0249 -0.0209 0.0125 0.0136 -1.9870 -1.5360 0.0469* 0.1246
totchr -0.1046 -0.1118 0.0191 0.0208 -5.4760 -5.3720 <0.001 <0.001
ins -0.1070 -0.1117 0.0277 0.0303 -3.8630 -3.6810 <0.001 <0.001

Correlation

Variables Estimates Std. Error t Value p-value
GHN GHt GHN GHt GHN GHt GHN GHt

Intercept -0.6475 -0.6051 0.1143 0.1118 -5.666 -5.413 <0.001 <0.001
fem -0.4040 -0.4220 0.1356 0.1489 -2.978 -2.835 <0.001 <0.001
totchr -0.4379 -0.4999 0.1862 0.2102 -2.351 -2.378 0.0187* 0.0174*
df - 12.3230 - 2.7570 - 4.4690 - <0.001

Figure 1.2 displays the quantile versus quantile (QQ) plots of the martingale-type (MT)

residuals for the GHN and GHt models. This residual is given by
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rMT
i = sign(rMi )

√
−2 (rMi + ui log(ui − rMi )), i = 1, . . . , n. (1.17)

where rMi = ui + log(Ŝ(ti)), Ŝ(ti) is the fitted survival function, and ui = 0 or 1 indicating

that case i is censored or not, respectively; see Therneau, Grambsch, and Fleming (1990). The

MT residual is asymptotically standard normal, if the model is correctly specified whatever the

specification of the model is. From Figure 1.2, we see clearly that the GHt model provides

better fit than GHN model.

Figure 1.2: QQ plot for the MT residuals for the GHN and GHt models.
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1.5.2 Investments in education

The Investments in Education database (IE 2018) made by municipalities goes back to the Fund

for Maintenance and Development of Basic Education and Valuing Education Professionals

(FUNDEB) . The resources correspond to the set redistributed of 27 federative units (26 states

and 1 from the Federal District), which are redistributed according to the number of students

who are enrolled in its basic education network. This rule is established to school census data

from the previous year (example: 2018 resources were based on the number of students from

2017). This method helps to better distribute resources across the country as it takes into account

account the size education networks.

IE database consists in data of two states Sao Paulo (SP) and Minas Gerais (MG) and your

respective municipalities. The variable of interest, education investments 1 with 1503 observa-

tions, in which 102 (7%) values are not observed and are identified as zero for the models. The

explanatory variables are: income 3 represents per capita income collected by the municipality;

gnp 3 is the Gross National Product ; distribute 2 is an dummy variable represents Financial

Compensation for the Exploration of Minerals (CFEM), this resource must be destined for in-

vestments in the areas of health, education and infrastructure for the community, 0 - distributed,

1 - not distributed; sp is an indicator variable for state (sp receives value 1); enrollment 4 is the

school census enrollment numbers.

As in the previous study, the response variable investment in education is in the logarithm

scale Y ∗
i = lninvest represents the logarithm of the response variable, the latent variable (U∗

i =

dinvest) denotes the willingness of the ith municipality to invested; Ui = I{U∗
i >0}i corresponds

the decision the ith municipality to invested.

1https://repositorio.shinyapps.io/plataforma_de_dados_municipais
2https://dados.gov.br/dataset/sistema-arrecadacao
3http://www.ipeadata.gov.br/Default.aspx
3https://www.ibge.gov.br/estatisticas/sociais/populacao/9103-estimativas-de-populacao.html?=&t=resultados
4https://www.gov.br/inep/pt-br/areas-de-atuacao/pesquisas-estatisticas-e-indicadores/censo-escolar
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The descriptive statistics for the investments in education are presents in Table 1.7. From

this table, we note the following: the mean is almost equal to the median; a very small negative

skewness value, and a high kurtosis value. The symmetric nature of the data is confirmed by the

histogram shown in Figure Figure 1.3(a). The boxplot shown in Figure 1.3(b) indicates potential

outliers. To the data education investments, as well in the expenditure on medical services,

symmetric distribution is a reasonable assumption, more specifically a Student-t model, since

since we have to accommodate outliers.

Table 1.7: Summary statistics for the education investment data.

minimum Mean Median maximum SD CV CS CK n
4.271 12.212 12.575 18.511 1.903 15.587% -0.5864 3.70 1401
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Figure 1.3: Histogram (a) and boxplots (b) for the education investments data.

The equation in model about de variables in study

dinvest = β0 + β1 incomei + β2 spi + β3 enrollmenti (1.18)

lninvest = γ0 + γ1 incomei + γ2 spi + γ3 enrollmenti + γ4 gnpi (1.19)

log σi = λ0 + λ1 incomei + λ2 spi (1.20)
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arctanh ρi = κ0 + κ1 incomei + κ2 distributei (1.21)

Was also compared adjustments of the GHt model, in terms of AIC and BIC, with the

adjustments of the CHN (Heckman, 1976) and GHN (Bastos, Barreto-Souza, and Genton, 2021)

models; see Table 1.8. The AIC and BIC values reveal that the GHt model provides the best

adjustment, followed by the GHN model.

Table 1.8: AIC and BIC of the indicated Heckman models.
CHN GHN GHt

AIC 8269.058 5873.579 5719.590
BIC 8306.147 5953.055 5804.365

In Table 1.9 the parameters associated with the covariates income and sp shows that the dis-

persion is significant, in both models, indicating the presence of heteroscedasticity. Correlation

parameter are significant in the level at 5% to covariate income in the GHN and GHt models,

while the sp covariate is significant to any level in the GHt model.

In the outcome equation income, sp, enrollment and gnp are significant at any level to

the GHN and GHt models. For the interpretation of parameters, keeping the other covari-

ates fixed, change a unit in income represents an reduce of exp(−0.2683) = 0.7647 and

exp(−0.2167) = 0.8052, i.e 23.53% and 19.48% of reduction of investments in education

for the GHN and GHt models, respectively. For the parameter gnp, change a unit represents an

increase of exp(0.0202) = 1.020 and exp(0.0151) = 1.0152, i.e 2% and 1.5% of increase of

investments in education expenses for the models GHN and GHt, respectively. The expressive

increase in the variable investment in education occurs with the variable state, here sp has an

average investment in education approximately exp(1.0063) = 2.7355 (exp(1.0714) = 2.9195)

3 (three) times higher than the state of mg for the model GHt (GHN).

In the selection equation, which representing willingness to spend with education, the GHt

model presented all significant covariates, while the GHN model only enrollment is signif-

icant. The interpretation is made by the odds ratio, for example the chances of investing in

education increase by exp(0.3674) = 1.4439, i.e, 44% when the state is sp, keeping other vari-
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ables constant and considering the estimated parameter with significant p-value GHt. Note the

negative sign of the income covariate here, for each unit increase the chances of investing in

education decrease by 5%, keeping the other covariates constants.

Table 1.9: Estimation results of the GHN and GHt models..
Probit selection equation

Variables Estimate Std. Error t Value p-Value
GHN GHt GHN GHt GHN GHt GHN GHt

(intercept) 1.0523 1.4222 0.1013 0.0955 10.3870 14.8880 <0.01 <0.001
income -0.0058 -0.0530 0.0223 0.0164 -0.2630 -3.2330 0.7920 <0.001
sp 0.1065 0.3674 0.0990 0.1032 1.0750 3.5600 0.2820 <0.001
enrollment 0.0311 0.0537 0.0032 0.0026 9.6380 20.6150 <0.001 <0.001

Outcome equation

Variables Estimate Std. Error t Value p-Value
GHN GHt GHN GHt GHN GHt GHN GHt

(intercept) 12.4789 12.4058 0.1252 0.1208 99.6480 102.6960 <0.001 <0.001
income -0.2683 -0.2167 0.0332 0.0274 -8.0640 -7.9030 <0.001 <0.001
sp 1.0714 1.0063 0.1003 0.0881 10.6810 11.4190 <0.001 <0.001
enrollment 0.0031 0.0226 0.0005 0.0025 5.6670 8.8410 <0.001 <0.001
gnp 0.0202 0.0151 0.0023 0.0005 8.4630 27.4250 <0.001 <0.001

Dispersion

Variables Estimate Std. Error t Value p-Value
GHN GHt GHN GHt GHN GHt GHN GHt

(intercept) 0.5921 0.2947 0.0503 0.0623 11.7560 4.7250 <0.001 <0.001
income 0.0382 0.0546 0.0130 0.0146 2.9330 3.7180 <0.001 <0.001
sp -0.3142 -0.4745 0.0416 0.0534 -7.5470 -8.8800 <0.001 <0.001

Correlation

Variables Estimate Std. Error t Value p-Value
GHN GHt GHN GHt GHN GHt GHN GHt

(intercept) -3.7263 -6.7669 0.5463 0.9682 -6.8210 -6.9890 <0.001 <0.001
income 0.1686 0.2274 0.0839 0.1161 2.0080 -6.9890 0.0448* 0.050.
distribute 0.8298 3.1118 0.4411 0.6867 1.8810 1.9580 0.0602. <0.001
df - 3.6240 - 0.4320 - 8.3900 - <0.001

The Figure 1.4 displays the QQ plots of the MT residuals. This figure indicates that the MT

residuals in the GHt model shows better agreement with the reference distribution.
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Figure 1.4: QQ plot for the MT residuals for the GHN and GHt models.
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1.6 Concluding Remarks

In this paper, a class of Heckman sample selection models were proposed based symmetric

distributions. In such models, covariates were added to the dispersion and correlation param-

eters, allowing the accommodation of heteroscedasticity and a varying sample selection bias,

respectively. A Monte Carlo simulation study has showed good results of the parameter esti-

mation method. We have considered high/low censoring rates and the presence of strong/weak

correlation. We have applied the proposed model along with some other two existing mod-

els to two data sets corresponding to outpatient expense and investments in education. The

applications favored the use of the proposed generalized Heckman-t model over the classical

Heckman-normal and generalized Heckman-normal models. As part of future research, it will

be of interest to propose sample selection models based on skew-symmetric distributions. Fur-

thermore, the behavior of the Wald, score, likelihood ratio and gradient tests can be investigated.

Work on these problems is currently in progress and we hope to report these findings in future.
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