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Resumo 

A terapia fotodinâmica (TFD) é baseada na geração de espécies oxidantes que 

se segue à fotoativação de fotossensibilizantes (FS) em um tecido ou célula alvo. 

A TFD tem atraído muita atenção na área de tratamentos anticâncer 

principalmente por sua segurança superior em comparação à quimioterapia 

convencional. No entanto, mesmo levando-se em conta os resultados positivos 

obtidos com a TFD tanto nos níveis experimental e da prática clínica, um FS ideal 

ainda não foi desenvolvido. Enquanto alguns FS se acumulam em tecidos sadios 

superficiais, tais como a pele, levando à fotossensibilização de tecidos não alvo, 

outros FS não possuem propriedades fotofísicas e fotoquímicas satisfatórias. 

Assim, muitas pesquisas têm buscados desenvolver novas moléculas FS. No 

mesmo sentido, o desenvolvimento de nanocarreadores de FS tem se mostrado 

uma estratégia adequada para melhorar os resultados obtidos em TFD. Assim, 

este trabalho objetivou desenvolver e testar novos FS, de acordo com o artigo e 

manuscritos anexados ao presente documento. No anexo II é apresentada uma 

revisão sistemática realizada antes do início das pesquisas deste doutorado, 

abrangendo os FS clássicos e especialmente focada nos avanços mais recentes 

no desenvolvimento de FS para aplicação em TFD anticâncer. O primeiro FS 

testado foi o DHX-1 um derivado xanteno-indólico que absorve luz no vermelho 

e infravermelho próximo. Apesar de este composto já ter sido investigado para 

aplicação em imageamento por fluorescência, sua atividade como FS ainda não 

havia sido estudada. Assim, o manuscrito apresentado no anexo II descreve os 

testes in vitro acerca da atividade fotodinâmica do FS DHX-1. O DHX-1 também 

foi escolhido como um FS modelo para ser incorporado a um CLN. Os resultados 

mostram que o DHX-1, tanto na forma livre quanto associado ao CLN, apresenta 

uma banda larga de absorção de luz na janela óptica de tecidos biológicos (600-

800 nm), gera espécies reativas de oxigênio quando fotoativado, e é fototóxico 

contra células de adenocarcinoma mamário murino 4T1 e contra fibroblastos 

murinos NIH-3T3 in vitro. Vale ressaltar que o DHX-1 associado ao CLN, em 

relação à mesma molécula livre, apresentou maior atividade fotodinâmica em 

meio aquoso e ainda foi menos fototóxico contra a linhagem de células normais. 

Apesar de os resultados com o DHX-1 terem mostrado que esta molécula é um 

FS com potencial para ser usado na clínica oncológica, a sua atividade foi baixa 

frente a FS clássicos, como as ftalocianinas. Assim, além do DHX-1, foram 
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desenvolvidos outros cinco derivados de benzo[a]fenoxazínio (PS1 ao PS5) que 

demonstraram atividade fotodinâmica contra células de adenocarcinoma 

mamário murino 4T1, mas com intensidades de efeito fotodinâmico diferentes, 

conforme descrito no manuscrito que consta no anexo III. Destes compostos, o 

PS4 exibiu o maior rendimento quântico para geração de espécies reativas de 

oxigênio. Em ensaios in vitro com células, os compostos PS1 e PS4 não foram 

significativamente tóxicos no escuro, mas exibiram alta atividade contra ambas 

as linhagens celulares, fibroblastos murinos NIH-3T3 e 4T1, quando fotoativados. 

Ainda, o composto PS5 foi particularmente seletivo às células cancerosas 4T1, 

sendo altamente fototóxico contra estas células, e praticamente não fototóxico 

contra células NIH-3T3.  

 

Palavras-chaves: carreador lipídico nanoestruturado, benzo[a]fenoxazínio, DHX-

1, adenocarcinoma mamário, nanotecnologia, fototoxicidade 
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Abstract 

Photodynamic therapy (PDT) is based on the oxidative burst generated by the 

photoactivation of photosensitizers (PS) in a target tissue or cell. It has drawn 

much attention in the field of anticancer treatments mainly for its superior safety 

in comparison to conventional chemotherapy. Although many positive results 

have been reached with PDT, both at experimental and at clinical practice levels, 

an ideal PS does not exist. Some PS accumulate in superficial healthy  tissues, 

such as the skin, leading to prolonged photosensitization of non target tissues, 

while others do not present good photophysical and photochemical properties. 

Thus, many researches have been focused on the development of new PS 

molecules. In the same direction, the development of PS nanocarriers has proven 

to be a good approach to improve the outcomes with PS in PDT.  

The present work thus aimed at summarizing the development of new PS for 

anticancer PDT and developing and testing new photosensitizers, according to 

the article and manuscripts attached to the present document. 

In chapter 1, it presented an overview on the classical PS and specially 

focused on the most significant recent advances in the development of PS with 

regard to their potential application in oncology. In addition, the methods for the 

rational design of novel PS with desirable properties were highlighted. Based our 

experience in preparing the PS review paper, we begin to design and synthesize 

new PS and test their potential as PS in anticancer PDT study. 

First, I found the a novel NIR fluorescent sensors with xanthene-indolium 

framework which showed suitable light absorption window in red light zone. Lots 

of studies were conducted to investigate its imaging application function, however 

its potential PS activity has not been explored. Thus in chapter 2, DHX-1 as 

xanthene derivative was selected as one of the candidate PS molecules, which 

was also associated with a nanostructured lipid carrier (NLC). The results show 

that the DHX-1, both free and associated to NLC, presents a broad band of light 

absorption within the optical window of biological tissues (600-800 nm), 

generates reactive oxygen species when photoactivated, and is phototoxic 

against murine breast adenocarcinoma 4T1 cells and murine fibroblast NIH-3T3 

in vitro. Noteworthy, the association of DHX-1 to the NLC enhanced its activity in 

aqueous media and strongly reduced its phototoxicity against the normal cell line. 

Although DHX-1 showed interesting PDT activity, its potency of cytotoxicity 
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in PDT condition is still weak. So in the next step, we tried to design new PS with 

stronger anticancer PDT activity. During the literature survey, a group of 

benzo[a]phenoxazinium dyes came to our attention due to their good 

photostability, high molar absorption, long-wavelength absorption, and especially 

relatively low fluorescence quantum yield. Some benzo[a]phenoxazinium 

derivatives were reported to function as PS in antimicrobial PDT. However, the 

potential anticancer PDT of benzo[a]phenoxazinium dyes has been little 

investigated. Thus, based on ligand-mediated targeting strategy five 

benzo[a]phenoxazinium derivatives, PS1-PS5, were developed and evaluated for 

their in vitro anticancer photodynamic activities. Of these compounds, PS4 

exhibited a higher quantum yield for ROS generation. The assays with cells in 

vitro showed that PS1 and PS4 were not significantly toxic in the dark, but 

robustly reduced the viability of the tested cells under photoactivation. 

Interestingly, PS5 was particularly selective to 4T1 cells, being strongly phototoxic 

against these cells and nearly non-phototoxic to NIH3T3.  

 

Keywords: nanostructured lipid carrier, xanthene-indolium derivative, breast 

adenocarcinoma, nanotechnology, phototoxicity, benzo[a]phenoxazinium 

derivatives 

 

 

  



7 

 

 

Introdução 

 

O câncer figura entre as principais causas de morte e de morbidade 

no mundo. Os tratamentos clínicos mais utilizados contra esta doença incluem 

cirurgia, radioterapia, quimioterapia e, mais recentemente, imunoterapia (Lucky 

et al. 2015). Entretanto, essas terapias apresentam alguns inconvenientes 

importantes. Por exemplo, a quimioterapia convencional é muitas vezes 

associada com efeitos adversos sistêmicos severos, tais como mielossupressão, 

mucosites, alopecia, e outros (Lucky et al. 2015). Ainda, a ressecção cirúrgica de 

tumores é ineficaz em evitar a recorrência de certos tumores (Uramoto and 

Tanaka 2014), enquanto a radioterapia possui limitações de dose aplicável que 

reduzem a sua eficácia (Liu et al. 2016). Assim, além do aprimoramento das 

terapias convencionais, devem ser desenvolvidas novas alternativas para o 

tratamento do câncer que sejam, idealmente, seguras, eficazes e com baixa 

relação custo/benefício. 

Neste sentido, a terapia fotodinâmica (TFD) tem sido apontada na 

literatura como uma modalidade eficaz e segura de terapia do câncer (Kennedy 

et al. 1990). Apesar de ter sido descrita há mais de um século, seu uso clínico 

não tem sido extensivo. A TFD é baseada na fotoativação focal de 

fotossensibilizantes (FS) diretamente no tecido alvo, gerando reações 

fotoquímicas que produzem estresse oxidativo (Zhang et al. 2017). As principais 

consequências destes eventos são citotoxicidade direta, colapso da 

microvasculatura tumoral, a/ou ativação de resposta imunitária contra antígenos 

tumorais(Dougherty et al. 1998). Um ponto positivo importante da TFD enquanto 

terapia anticâncer é a possibilidade de restringir seus efeitos ao sítio irradiado, 

poupando tecidos sadios. Apesar de a TFD ter sido aplicada com sucesso no 

tratamento de diferentes cânceres, ainda há a necessidade de se aperfeiçoar as 

moléculas FS e os sistemas de entrega destas moléculas. A maioria das 

moléculas FS disponíveis para uso clínico apresentam baixa solubilidade em 

água, baixa absorção na região do infravermelho próximo, meia-vida 

inadequadamente longa, e intensa acumulação na pele(Yano et al. 2011). Muitos 

compostos têm sido propostos como novos candidatos a FS2. O derivado de 

xanteno rosa bengala, por exemplo, é um corante fluorescente fotoativo testado 
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como agente FS antimicrobiano (Costa et al. 2012) e anticâncer (Panzarini et al. 

2014). 

Idealmente, um FS deve apresentar (Sharman et al. 1999; DeRosa 

and Crutchley 2002; Detty et al. 2004; Yano et al. 2011; Zhang et al. 2017): 1) 

alto coeficiente de extinção molar na região espectral entre vermelho e 

infravermelho próximo, 2) energia suficiente no seu estado triplete excitado para 

promover a conversão do oxigênio molecular de triplete a singlete (ET ≥ 21,5 

kcal.mol-1), 3) alto rendimento quântico de produção de seu estado triplete (ФT > 

0,4), 4) estado triplete excitado com vida média longa (τT ≥ 1 µs), 5) 

fotoestabilidade que permita manter sua atividade durante todo o tempo de 

irradiação, 6) acúmulo seletivo no sítio alvo (e.g., câncer), 7) inocuidade no 

escuro, 8) rápida depuração no organismo após a aplicação da TFD, 9) não 

fotossensibilizar tecidos não alvo, como a pele, 10) alta atividade fotodinâmica 

em meios aquosos, e 11) pureza química.  

Nos últimos anos, nosso grupo de pesquisa tem continuamente 

buscado novas moléculas FS e novos sistemas de veiculação de FS 

(Muehlmann et al. 2014, 2015; Rodrigues 2015; Monge-Fuentes et al. 2017). 

Recentemente, diferentes moléculas desenvolvidas em colaboração com a 

Universidade de Jinan, China, dentre elas certos corantes do tipo 

benzo[a]fenoxazínio, foram incluídas em trabalhos de pesquisa de novas 

moléculas FS devido a sua alta fotoestabilidade, alto coeficiente de absortividade 

molar, e absorção em comprimentos de onda dentro do vermelho e do 

infravermelho próximo (Frade et al. 2007; Yuan et al. 2013; Leitão et al. 2016). 

Neste trabalho, portanto, são descritos as sínteses e os testes in vitro realizados 

para verificar o potencial fotossensibilizante de novas moléculas. No anexo I é 

apresentada uma revisão publicada na revista Acta Pharmaceutica Sinica B, 

detalhando características estruturais de FS clássicos bem como o estado da 

arte de desenvolvimento de novos FS. Durante o estudo da literatura chamou a 

atenção um fluoróforo derivado xantênico, DHX-1, que absorve luz na melhor 

janela biológica da TFD, ou seja, no vermelho e no infravermelho próximo, mas 

que ainda não havia sido testado como FS. Assim, os detalhes dos experimentos 

realizados com esta molécula afim de testar a sua atividade fotodinâmica in vitro 

podem ser encontrados no anexo II. O DHX-1 livre não apresentou atividade 

fotodinâmica in vitro comparável com FS clássicos, como as ftalocianinas, contra 
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células de adenocarcinoma mamário murino 4T1. Este mesmo FS foi 

encapsulado em nanopartículas lipídicas, apresentando, nesta forma, maior 

atividade contra células 4T1 em relação às células normais NIH-3T3. Como a 

atividade fotodinâmica do DHX-1 foi insatisfatória, outros cinco FS (PS1-PS5) 

foram desenvolvidos. Estes derivados benzo[a]fenoxazínicos apresentaram 

maior atividade fotodinâmica in vitro contra células 4T1, como descrito no 

manuscrito do anexo III, sendo assim considerados como potenciais FS para uso 

em TFD anticâncer. 
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Objetivos 

O objetivo deste estudo foi testar a atividade fotodinâmica in vitro de 

moléculas potencialmente fotossensibilizantes, tanto novas quanto já descritas 

na literatura. 

As metas traçadas para atingir este objetivo foram: 

 sintetizar compostos benzo[a]fenoxazínicos e derivados de 

xanteno; 

 verificar o espectro de absorção de luz e de fluorescência 

destes compostos; 

 testar a capacidade destes compostos em produzirem 

espécies reativas de oxigênio quando irradiados com luz 

vermelha (λ 660 nm); 

 associar um destes compostos a carreadores lipídicos 

nanoestruturados. 

 testar a capacidade destes compostos, livres ou 

nanoestruturados, em reduzir a viabilidade de células 

cancerosas (4T1) e não cancerosas (NIH-3T3) in vitro quando 

fotoativados 
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Abstract Photodynamic therapy (PDT), based on the photoactivation of photosensitizers (PSs), has
become a well-studied therapy for cancer. Photofrin®, belonging to the first generation of PS, is still
widely used for the treatment of different kinds of cancers; however, it has several drawbacks that
significantly limit its general clinical use. Consequently, there has been extensive research on the design of
PS molecules with optimized pharmaceutical properties, with aiming of overcoming the disadvantages of
traditional PS, such as poor chemical purity, long half-life, excessive accumulation into the skin, and low
attenuation coefficients. The rational design of novel PS with desirable properties has attracted
considerable research in the pharmaceutical field. This review presents an overview on the classical
photosensitizers and the most significant recent advances in the development of PS with regard to their
potential application in oncology.
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1. Introduction

Cancer is among the leading causes of morbidity and mortality
worldwide. In 2012, approximately 14 million cancer cases were
newly diagnosed, and the number of cancer-related deaths was
8.2 million, which is projected to rise by about 70% over the next
two decades.1 Currently, clinical treatments for cancer include
surgery, radiation therapy, chemotherapy and, more recently,
immunotherapy and other small-molecule targeted therapies, along
with a combination of these strategies.2 However, these treatments
present some important drawbacks. For instance, traditional
chemotherapy, as it interferes in cell division, is often associated
with severe systemic adverse effects, such as myelosuppression,
mucositis, alopecia, and others.3 Also, surgical resection of certain
tumors cannot avoid a high recurrence rate,4 while the cumulative
radiation dose extremely limits the radiotherapy.5 Thus, although
refinement of the conventional anticancer therapy is important,
development of new treatment approaches that are safe, potent,
and cost-effective seems especially urgent.

2. Photodynamic therapy

2.1. An accidental finding for cancer treatment

In the 1890s, Raab6 accidentally found that the irradiation with
visible light was lethal to paramecia previously exposed to
acridine, and postulated that the transfer of light energy to the
acridine red was the crucial event behind the cytotoxicity observed
in paramecia and that this effect was related to the fluorescence of
the dye.7 Then the first clinical observation of PDT with oral eosin
to treat epilepsy was reported by the neurologist Jean Prime in
1900.8 Later, von Tappeiner and Jesionek9 proposed the use of
topical eosin with light exposure to treat skin tumors. This was the
first published report on the use of PDT to treat tumors in human
patients. Subsequently, von Tappeiner10 observed that O2 was an
important component of the events found by Raab, and coined the
term “photodynamic action”.

The study of the anticancer potential of PDT was conducted by
few researchers up to the 1950s when the interest in this field
began to increase. The publication of some seminal reports on the
use of porphyrins as both PSs and fluorescence diagnostic tools11

in the 1950s and 1960s was followed by a series of works on the
anticancer activity of PDT against different tumors.12 Mainly over
the last three decades, several types of PSs have been developed
and applied in preclinical and clinical trials; some of these
molecules reached the market and have shown to be effective
against different kinds of cancers.13–15 The main advantage of
PDT over conventional anticancer therapies is the ability to limit
toxic effects to the biological tissues exposed to both the PS and
light, thus protecting normal tissues.

In addition, PDT has also been used successfully against non-
malignant disorders in diverse fields, such as urology,16 immunology,17

ophthalmology,18 dentistry,19 dermatology,20 and others.

2.2. Photodynamic therapy mechanisms

PDT is based on the excitation of PS with light at specific
wavelengths, culminating in type I and type II photochemical
reactions.21 As shown in Fig. 1, a PS can be activated from its
ground state to a short-lived excited singlet state (PSEs) by light.
Then, either the excited PS may decay back to the ground state by

emitting fluorescence, or it can undergo intersystem crossing
whereby the spin of its excited electron inverts to form a relatively
long-lived triplet state (PSEt). The triplet excited PS can also decay
back to the ground state by emitting phosphorescence, but most
importantly it can directly interact with surrounding substrates
(e.g., cell membrane or other biomolecules) to form radicals,
which then react with O2 to produce reactive oxygen species
(ROS), such as superoxide anion radicals (O2

-.), hydroxyl radicals (.
OH), and hydrogen peroxides (H2O2, type I reaction). Alterna-
tively, the energy of the excited PS can be directly transferred to
3O2 (itself a triplet in the ground state) to form 1O2 (type II
reaction). It is worth noting that both type I and type II reactions
can occur simultaneously, and the ratio between these processes is
affected by the nature of the PS, as well as by the concentrations of
3O2 and other substrates. However, most of the experimental
studies indicate that the photoactivated production of 1O2, namely
type II reaction, plays a dominant role in in vivo PDT.

In a biological medium the reactive species generated by the
photodynamic process can react with a large number of biomole-
cules, mainly proteins, nucleic acids, and lipids. The damage to
biomolecules may (i) irreversibly damage tumor cells resulting in
necrosis, apoptosis, or autophagy, (ii) cause tumor ischemia
following PDT-induced vascular injury, and (iii) activate the
immune response against tumor antigens.22–25 Therefore, the main
downstream targets of PDT include tumor cells, as well as tumor-
associated microvasculature, and, indirectly, the host immune
system.26 Moreover, the combination of PDT with other che-
motherapeutic drugs may help to achieve a long-term tumor
control, due to their possible synergistic effects resulting from
the combination of downstream responses in PDT and the
mechanisms of chemotherapeutic drugs.27

3. The photosensitizers for anticancer PDT

3.1. First generation PSs

Hematoporphyrin (Hp), a complex mixture of porphyrinic com-
pounds,28 was the first porphyrin used as PS. The purification and
chemical modification of Hp led to the discovery of a

Figure 1 Jablonski diagram showing the main events leading to type
I and type II photochemical reactions, which eventually may result in
oxidative cell damage. S0, ground state of the photosensitizer (PS); S1,
first excited singlet state of PS; S2, second excited singlet state of PS;
T1, first excited triplet state of PS; ISC, intersystem crossing; 3O2,
triplet oxygen; 1O2, singlet oxygen.
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hematoporphyrin derivative (HpD), which was shown to be more
selective for tumor tissues, inducing a less intense skin photo-
sensitization in comparison to Hp.29 Later, a mixture of porphyrin
dimers and oligomers isolated from HpD was marketed as
Photofrin.30 Despite Photofrin® was widely used for treating
different cancers, the clinical use was limited by its intrinsic
drawbacks, including I) poor chemical purity with a mixture of
more than 60 molecules; II) its long half-life and intense
accumulation in the skin, responsible for the induction of a
prolonged skin photosensitization, which sometimes persists for
2 or even 3 months after Photofrin® administration; III) its low
molar attenuation coefficient (1.17 × 103 mol/L cm); and IV) its
activation wavelengths being too short for a good tissue penetra-
tion.30–32

3.2. Second generation PSs

The disadvantages associated with first generation PSs have led to
extensive investigation aimed at improving the efficacy of PS
molecules via alteration of the peripheral functionality of the
porphyrin,33 or direct modification of the porphyrin core.34 The
following the seminal works on the first generation PS have resulted
in the production of several new non-porphyrinoid PS molecules
(Fig. 2). These have been developed over the decades, including
metalloporphyrins (Lutrin® and Lutex®),35,36 porphycenes,37,38 pheo-
phorbides (Tookad®),39,40 purpurins (Purlytin®),41 phthalocya-
nines,42–46 chlorins (Foscan®),47 protoporphyrin IX precursors
(Hexvix®, Metvix® and Levulan®),48,49 phenothiazines (methylene
blue, and toluidine blue),50–55 cyanines (merocyanine 540),56,57

dipyrromethenes,58,59 hypericin,60–62 and xanthenes (Rose Bengal).63

3.3. Strategies for designing new generation PSs

Despite the extensive research performed to develop new and
improved PS, only a few second generation PSs, such as
Levulan®, MetVix®, Photochlor®64 and NPe6,65 have been
approved for the clinical treatment of cancer.66 The rational design
of novel PS with desirable properties remains a big challenge for
the pharmaceutical industry. The latest review article related to the
design of PSs for photodynamic therapy, authored by Garland et
al.67, dates back to 2009. As stated before, the overall success of
PDT mainly depends on the 1O2 yield, molecule stability, the
penetration depth of absorbed light and distribution of PSs, so that:

1) The 1O2 generated in type II photoreaction is a key factor for
PDT, since it is considered as the major cytotoxic species in
PDT.68 Generally, the introduction of heavy atoms (such as Br,
and I) into the PS molecule or inhibition of the interaction
between triplet excited PS and native free radicals can increase
the 1O2 production;

2) A disadvantage of many of the current PSs is their tendency to
aggregate, resulting in short triplet state lifetimes and decreased
1O2 yields. Therefore, a structural modification that can sup-
press the aggregation tendency of a PS should be considered
carefully to improve the property of PS. Usually, the presence
of a central metal ion and the number of charges in the molecule
will have an important role for the stability of PSs;

3) The increased energy of light of longer wavelength is also a major
motivation for the development of new PSs. Generally, expanding
the molecular conjugate system by introducing an electron-rich
donor can improve the PS absorption efficiency of red light, and
enhance the penetration of light into human tissue;

4) Improving the target distribution of PS is also very important to
increase its efficacy and reduce adverse effects. The ligand-
mediated targeting strategy in PDT has been explored. Herein,
the targeted ligands, such as biotin, folate, peptide, etc., were
frequently used for delivery of PS to cancer tissues;

5) In addition, the positions and types of the substituent groups on
the molecule can influence the lipophilicity of the molecule,
which further influences the tissue location of PS.

4. Recent development in anticancer PSs

A literature survey indicates that there are quite a lot of review
articles about PSs and PDT,2,69–71 but few of them specifically
focus on the discovery and development of new PSs as anticancer
agents. With the rapid development in PS research area, a number
of new, more potent and tumor-specific PSs showing promising
clinic potential have been investigated. Herein, this section
summarizes the recently reported PSs mainly focusing on por-
phyrin, chlorin, phthalocyanine and BODIPY derivatives, aiming
to provide a better understanding of the factors affecting the
efficacy of PS molecules.

4.1. Porphyrin-type PSs

The porphyrin macrocyles were mainly developed and clinically
used in the last few decades. Side-chains containing functional

Figure 2 Structural skeletons of several anticancer PSs.
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groups, such as nitrogen atoms,72,73 carboxylic acid74 and sugar,75

are frequently incorporated into the porphyrin skeleton. For
example, a novel porphyrin-based PS (5,10,15,20-tetrakis[(5-
diethylamino)pentyl] porphyrin, TDPP, 1) with four diethylami-
nopentyl side-chains recently reported by Li et al.72 showed a high
1O2 yield with the ability to kill human esophageal cancer cell
lines (Eca-109) and significantly reduce the growth of Eca-109
xenograft tumors in BABL/c nude mice. Among a series of β-
alkylaminoprophyrins reported later by Chen's group,73 derivative
2 showed higher phototoxicity than Hp monomethyl ether and the
lowest toxicity in the dark. Another new porphyrin derivative 3
bearing ethylenediaminetetraacetic acid showed intense in vitro
phototoxicity on HepG2 and BGC823 cell lines, and further
inhibited the growth of BGC823 tumors in nude mice.74 Mechan-
ism studies indicated that 3 can induce cell death via the
mitochondrial apoptotic pathway mainly triggered by lysosomal
photodamage. Costa et al.76 recently reported a hydrophobic
porphyrin derivative 4 bearing four isoquinoline moieties, which
showed a high quantum yield of 1O2 generation, the absence of
toxicity in the dark, and significant in vitro phototoxicity against
HT29 cells with an IC50 in the micromolar range.

Horiuchi and co-workers77 studied the effect of a silyl group on
the photodynamic properties of tetraphenylporphyrin derivatives 5.
The results indicated that silylation could lead to an improvement in
the quantum yield of 1O2 sensitization for derivatives. In addition,
there has been recent growth in interest in the preparation of metal-
porphyrin conjugates as potential photocytotoxic agents. The
porphyrins functionalized with PtII were the first metal-porphyrin

derivatives developed for biomedical application.78 Later, examples
related to other metal-porphyrin conjugates have been described.
For example, the glucopyranoside-conjugated porphyrin 6 bearing
Inþ3 synthesized by Nakai et al.75 exhibited strong phototoxicity,
correlating with its high abilities of 1O2 yield and cell permeability.
Another Re-porphyrin conjugate 7, bearing four [1,4,7]-triazacyclo-
nonane units prepared by Mion et al.79, showed remarkable
phototoxicity on Hela cells with non-toxicity in the dark (Fig. 3).

4.2. Chlorin-type PSs

Compared with porphyrins, chlorin-type PSs attracted considerable
attention due to their intense absorption in relatively harmless NIR
region, which can penetrate deeply into biological tissues. How-
ever, the development of chlorin derivatives was significantly
limited by their poor water solubility. Therefore, chlorin-type PSs
have been modified by conjugation with amino acids, peptides,
and sugars to improve their solubility for PDT investigations. For
example, Meng et al.80 prepared a series of chlorin P6-based water-
soluble amino acid conjugates. Among these synthetic derivatives,
compound 8 showed strong absorption in the phototherapeutic
window, relatively high 1O2 quantum yield, and high phototoxicity
against melanoma cells with low toxicity in the dark. Also,
compound 8 exhibited better in vivo PDT antitumor efficacy than
verteporfin on mice bearing B16F10 tumors. Another photocyto-
toxic chlorin e6 bis(amino acid) conjugate 9 bearing two different
amino acids, lysine at 13 and aspartate at 15 was regioselectively
synthesized by Smith and co-workers.81 A water-soluble chlorin

Figure 3 Chemical structures of porphyrin-type PSs 1–7.
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derivative 10, which was surrounded by four perfluorinated
aromatic rings and conjugated with maltotriose (MaI3) molecules,
showed excellent biocompatibility, strong photoabsorption in the
longer wavelength regions and high photocytotoxicity.82

The use of boron-containing substances in the treatment of
cancer has received a great deal of attention due to their high
probability of producing particles and lithium-7 nuclei.83 Boron-
containing chlorin derivatives have also been explored in PDT
applications.84 Recently, a new chlorin derivative 11 containing
phenylboronic acid moieties was synthesized by Tai and co-
workers.84 This compound could significantly inhibit tumor
growth in vivo and showed rapid clearance from normal tissues.
To improve the cell permeability of chlorin-type PSs, Gushchina et
al.85 introduced hydrophobic carbon chains into chlorin e6 to yield
a series of new amide derivatives 12, which exhibited good
photoactivity and low toxicity in the dark against P388 and
K562 cancer cells. Chlorin and bacteriochlorin derivatives 1386

bearing chloro-5-sulfophenyl fragments showed promising photo-
therapeutic properties, such as high water solubility, high photo-
stability, high 1O2 quantum yields and negligible dark cytotoxicity.
Patel et al.87 recently reported an NIR bacteriochlorin analogue 14
to be a promising dual-function agent for fluorescence-guided
surgery with an option for treating cancer in PDT. This compound
exhibited higher tumor uptake and long-term cure in BALB/c mice
bearing Colon 26 tumors. Most of all, it showed low skin
phototoxicity, which provides a significant advantage over the
clinically approved HD as well as other porphyrin-based PSs
(Fig. 4).

4.3. Phthalocyanine-type PSs

Phthalocyanine derivatives were shown to be most promising PSs.
However, the low solubility and π–π stacking in these molecules

limited their further clinical application. Strategies to overcome
these disadvantages can involve incorporations of cationic88 or
anionic groups,89 peptides,90 β-cyclodextrins,91 crown ethers,92

glycerinum93 and so on. Recently, 2-(morpholin-4-yl)ethoxy-sub-
stituted phthalocyanine 15 was synthesized by Kucinska et al.94.
Biological test results indicated that 15 showed potent cytotoxicity
against PC3 and A375 under irradiation, while its cytotoxicity in
the dark was very low. Another novel Mg(II)-phthalocyanine 16,
bearing (2-methyl-5-nitro-1H-imidazol-1-yl)ethoxy substituent at a
non-peripheral position, was found to show strong photocytotoxi-
city at 1 mol/L with 100% photokilling of the human oral
squamous cell carcinoma cell lines, HSC-3.95

The development of multifunctional molecules has also been
considered for overcoming drug resistance and low therapeutic
efficacy. For example, Zhou et al.96 reported a derivative 17
bearing a cytostatic coumarin moiety, zinc(II) phthalocyanine and
a tri(ethyleneglycol) linkage showed dual photodynamic and
chemotherapeutic activities. These conjugates exhibit high photo-
cytotoxicity against HepG2 cells (IC50E14–44 nmol/L), low
aggregation tendency and high cellular uptake. Other similar
examples are the phthalocyanine-8-hydroxyquinoline conjugates
18.97 Ranyuk et al.98 reported a series of water-soluble zinc
phthalocyanine-peptide conjugates 19, which targeted the gastrin-
releasing peptide receptor. Novel far-red-absorbing Zn(II) phtha-
locyanine derivative 20 bearing [(triethylammonio)ethyl]sulfanyl
substituents in the peripheral or nonperipheral positions were
synthesized by Machacek et al.99. The bioassay results indicated
that the Zn complex exhibited photocytotoxicity against 3T3, Hela,
SK-MEL-28, and HCT116 cancer cell with IC50 values in a
submicromolar range, and low toxicity in the dark (TC50E1500
mol/L). Shen et al.100 reported a series of first silicon(IV)
phthalocyanine nucleoside (uridine, 5-methyluridine, cytidine,
and 5-N-cytidine) conjugates. Among them, the uridine-containing
complex 21 exhibited the highest photocytotoxicity against HepG2

Figure 4 Chemical structures of chlorin-type PSs 8–14.

Review on new photosensitizers for anticancer photodynamic therapy. 5

Please cite this article as: Zhang Juan, et al. An updated overview on the development of new photosensitizers for anticancer photodynamic therapy.
Acta Pharmaceutica Sinica B (2017), http://dx.doi.org/10.1016/j.apsb.2017.09.003

http://dx.doi.org/10.1016/j.apsb.2017.09.003
http://dx.doi.org/10.1016/j.apsb.2017.09.003
http://dx.doi.org/10.1016/j.apsb.2017.09.003


cells (IC50 ¼ 6 nmol/L), with high cellular uptake and non-
aggregated nature in the biological media. Bio et al.101 developed a
multifunctional prodrug 22 composed with Si phthalocyanine, a
SO-labile aminoacrylate linker and the cytotoxic drug combretas-
tatin A-4 (CA4). Once illuminated, 22 showed improved toxicity,
but reduced toxicity in the dark compared with CA4 (Fig. 5).

4.4. BODIPY-type PSs

Another promising class of PS suitable for PDT is the distyryl
boron dipyrromethene (BODIPY) dyes, which have proven to be a
valuable family of compounds with diverse applications rivaling
that of porphyrin. The BODIPY PSs are equipped with heavy
halogen atoms, such as Br and I, in the organic chromophore to
make compounds reach the triplet excited state by quenching the
fluorescence and facilitating intersystem crossing.

Erbas-Cakmak et al.102 designed a water-soluble pH and GSH
responsive distyryl-BODIPY PS 23, which could be activated by
protonation at neutral pH and reductive cleavage of the disulfide
linker at elevated GSH concentration. Recently, Lo and cow-
orkers103 reported another new class of pH/thiol responsive
BODPY PSs that contained either the ketal or disulfide linker.
Noteworthy, the unsymmetrical complex 24 exhibited the greatest
enhancement in the 1O2 generation and fluorescence intensity upon
activation, which was considered to be a promising theranostic
agent for targeted imaging and PDT of cancer. Platinum (II)
complex 25 synthesized by Mitra et al.104 could achieve mito-
chondria-targeted photocytotoxicity via disruption of the mito-
chondrial membrane potential and apoptosis. This complex

generated excellent photocytotoxicity against HaCaT cells but
remained non-toxic in the dark (IC504100 mol/L). A novel
photoactivatable bichromophoric conjugate 26 was developed by
Fraix and coworkers.105 This compound combined BODIPY and
aniline derivative as nitric oxide photodonor, which had an
amplified photomortality on melanoma cancer cells. Lincoln et
al.106 prepared two small meso-acetoxymethyl BODIPY dyes 27,
which showed improved photostability against singlet oxygen
compared to the BODIPY PSs lacking the acetoxymethyl group.
Compounds 27 can readily embed in the lipid membranes of Hela
cells and efficiently induced light-dependent apoptosis at nano-
molar concentration. An orthogonal BODIPY trimer 28 without
halogen atom substituent was shown to have strong absorption in
the visible region and high 1O2 generation capability107 (Fig. 6).

5. Conclusions

The discovery of novel PS molecules with desired pharmaceutical
properties and the application of novel PS in clinical trials are
challenging tasks. During the last several years, most research
work is based on the modification and optimization of old-style
PSs. Therefore, molecules considered as the second generation PS
mainly have been derived from porphyrin and porphyrin-related
structures. The most recent activity in the PS field for PDT of
cancer has been considerable, and the design of non-porphyrin
PSs, which possess shorter periods of photosensitization, longer
activation wavelengths and higher singlet oxygen yield, still
attracts more attention in the field of anticancer PDT.

Figure 5 Chemical structures of phthalocyanine-type PSs 15–22.
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Additional to the synthesis of new types of PS molecules, the
association of classical PSs to different carriers has also been
explored to improve their photophysical properties and/or their
targeting to tumors. On one hand, antibodies, receptor ligands, and
other targeting molecules have been used to actively increase the
accumulation of PSs in tumors. On the other hand, different
nanostructures have been used to enhance or to maintain the activity
of PSs in aqueous media, and to actively and/or passively deliver
these molecules to tumors. Both of these systems, and even
combinations of them, have been referred to as the third generation
PS, and some encouraging results have been reported in the literature
regarding the use of this strategy in anticancer PDT. With the
significant successes on the developments of new PSs for PDT, it is
expected that PDT will gain more widespread use in clinical practice.
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Abstract: The efficacy and safety of photodynamic therapy (PDT) have drawn much 

attention from clinicians and researchers in the field of anticancer treatments since the 

early 1900´s. Despite the numerous positive outcomes the works on PDT have brought 

to light over the last decades, much room remains for improvements in PDT tools, mainly 

on photosensitizer molecules. This works reports the first experiments evidencing the 

photosensitizing activity of DHX-1, a xanthene derivative-based near-infrared (NIR) 

probe recently described in the literature, both as a free molecule and associated to a 

nanostructured lipid carrier. The results show that the DHX-1 presents a broad band of 

light absorption within the optical window of biological tissues (600-800 nm), generates 

reactive oxygen species when photoactivated, and is phototoxic against murine breast 

adenocarcinoma 4T1 cells and murine fibroblast NIH-3T3 in vitro. Moreover, the 

association of DHX-1 to a nanostructured lipid carrier enhanced its activity against cancer 

cells in aqueous media and strongly reduced its phototoxicity against the normal cell line. 

 

Keywords: photodynamic therapy; xanthene derivative; nanostructured lipid carrier; 

breast adenocarcinoma; nanotechnology 
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1. Introduction 

The Photodynamic therapy (PDT) has long been pointed out as an effective and safe 

modality of cancer therapy [1]. Anticancer PDT is based on the focal photoactivation of 

photosensitizers (PS), directly on the target tissue, eliciting photochemical reactions that 

eventually lead to oxidative stress [2]. The main consequences of these events are the 

direct cytotoxicity, collapse of the tumor microvasculature, and/or activation of immune 

response against tumor antigens [3]. A particularly important benefit of PDT as a cancer 

therapy is the possibility to restrict its effects to the irradiated site, sparing the normal 

tissues. Although PDT has been successfully applied in the treatment of different 

cancers, still considerable room remains for the improvement of PS molecules and PS 

delivery systems. The majority of the clinically available PS molecules present poor 

water solubility, low absorption in near-infrared (NIR) region, inadequately long half-life, 

and intense accumulation into the skin [4]. 

Many different compounds have been proposed as new PS candidates [2], such as 

the xanthene derivatives. Rose Bengal, for example, is a photoactive fluorescent dye 

tested as a PS for antimicrobial [5] and anticancer [6] PDT. Despite the encouraging 

results obtained with xanthenes as PS, however, relatively few works have focused on 

obtaining xanthene derivatives for anticancer PDT. 

During our continued project for developing new PS systems based on 

nanostructured formulations [7–10], the dye DHX-1 (Fig. 1), with a xanthene-indolium 

framework and peak of light absorption at 698 nm, reported by Yuan et al in 2012 [11], 

came to our attention. This compound and its analogs were described as a new class of 

NIR dye for biological imaging applications in living animals. So far, this DHX-1 series of 

compounds were described as near-infrared fluorescent probe for imaging in vitro or in 

vivo small molecules or enzymes, such as H2O2 and thiols [11–13], alkaline phosphatase 

[14], β-galactosidase [15], nitroreductase [16], and hNQO1 [17]. To our knowledge, the 

potential PS activity of this series of compounds has not been investigated. Thus, in the 

present study, the xanthene-indolium derivative DHX-1 was prepared and evaluated for 

its in vitro activity as PS against cancer cells, both free and incorporated into 

nanostructured lipid carriers. 
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Figure 1. Structure of DHX-1. 

2. Materials and Methods 

Dimethyl sulfoxide (DMSO), 1,3-diphenylisobenzofuran (DPBF) and Kholiphor® HS 

were obtained from Sigma, USA. The Roswell Park Memorial Institute (RPMI) medium 

and Dulbecco's modified Eagle medium (DMEM) were obtained from Gibco, EUA. The 3-

(4,5-dimethylthiazol-2yl)-2,5-diphenyltetrazolium bromide (MTT) was purchased from 

Invitrogen, EUA. The phosphate buffered saline (PBS) was supplied by Laborclin, Brazil. 

The babassu oil was obtained from Amazon Oil, Brazil. Commercially available reagents 

were used without further purification. Organic solvents were evaporated with reduced 

pressure using Büchi evaporators. Reactions were monitored by TLC using Yantai 

JingYou (China) GF254 silica gel plates. Silica gel column chromatography was performed 

on silica gel (200-300 mesh) from Qingdao Hailang (China). NMR spectra were measured 

on Bruker Avance III 600 MHz spectrometer. Chemical shifts were expressed in δ (ppm) 

and coupling constants (J) in Hz using solvent signals as internal standards (CDCl3, δH 

7.26 ppm and δC 77.0 ppm). ESI-MS was recorded on an Agilent 1260-6460 Triple Quard 

LC/MS. 

2.1 Synthesis of 1a 

The compound 1a (Fig. 2) was prepared starting from 2,3,3-trimethyllindolenine 

and cyclohexanone according to the previously reported protocol [14]. 1H NMR (600 

MHz, CDCl3) δ 8.36 (d, J = 12.0 Hz, 2H), 7.41 (d, J = 6.0 Hz, 2H), 7.40 (t, J = 6.0 Hz, 2H), 

7.29 – 7.25 (m, 2H), 7.20 (d, J = 6.0 Hz, 2H), 6.21 (d, J = 12.0 Hz, 2H), 4.25 (d, J = 8.0 Hz, 

4H), 2.75 (s, 4H), 1.99 (s, 2H), 1.72 (s, 12H), 1.47 (t, J = 8.0 Hz, 6H). 13C NMR (600 MHz, 

CDCl3) 171.9, 150.7, 144.5, 141.7, 141.2, 128.9, 127.4, 125.4, 122.3, 110.8, 101.0, 49.4, 

40.1, 28.1, 26.8, 20.7, 12.5. ESI-MS calcd for C34H40ClN2
+ (M+): 511.2, Found 511.2. 

2.2 Synthesis of Compound DHX-1 
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The synthesis of DHX-1 was completed according to the previously reported 

protocol [11]. A solution of 4-chloro resorcin (1b, Fig. 2) (67 mg, 0.46 mmol) and 

triethylamine (0.15 mL) in 1.5 mL DMF was stirred at room temperature under nitrogen 

atmosphere for 10 min. Compound 1a (100 mg, 0.15 mmol) in DMF (1.5 mL) was added 

to the mixture, and the reaction mixture was heated at 75 °C for 4 h. The solution was 

then removed under reduced pressure. The crude product was purified by silica gel flash 

chromatography using CH2Cl2/EtOH (50:1) as eluent to give DHX-1 as a blue-green solid 

(25.5 mg, 12.6%). 1H NMR (600 MHz, CDCl3): δ 8.16 (d, J = 12.0 Hz, 2H), 7.40 (s, 1H), 7.28-

7.33 (m, 3H), 7.11 (t, J = 6.0 Hz, 2H), 6.90 (d, J = 6.0 Hz, 2H), 6.80 (s, 1H), 5.70 (d, J = 12.0 

Hz, 2H), 4.90 (q, J = 6.0 Hz, 2H), 2.67 (t, J = 6.0 Hz, 2H), 2.61 (t, J = 6 Hz, 2H), 1.92-1.86 

(m, 2H), 1.66 (s, 6H), 1.36 (t, J = 6.0 Hz, 3H). 13C NMR (600 MHz, CDCl3): 167.7, 161.3, 

157.2, 142.6, 140.3, 139.1, 136.1, 128.5, 127.4, 123.5, 122.4, 118.8, 115.6, 114.9, 108.8, 

103.9, 95.7, 48.3, 38.7, 28.6, 28.3, 24.5, 21.2, 11.8. ESI-MS calcd for C27H27ClNO2
+ (M+): 

432.1, Found 432.1. 

2.3 Nanostructured lipid carriers preparation 

Different nanostructured lipid carriers were prepared by a phase inversion 

temperature (PIT) method, and a final formulation was chosen based on its colloidal 

properties. Different proportions of babassu oil to Compritol® 888 ATO in the lipid mix, 

and different ratios of the surfactant Kolliphor® HS to the lipid mix were tested. 

In brief, the lipid mix and the Kolliphor® HS were mixed at 60 °C, under magnetic 

stirring (350 RPM) for 5 minutes. Then, this mixture was diluted with water (1:10, w:v), 

and the coarse emulsion formed was then heated to 75 °C. The transparent emulsion 

obtained in this temperature was kept under magnetic stirring for 10 minutes. Next, the 

emulsion was left to cool to room temperature, with the nanostructured lipid carriers 

being formed by the solidification of lipid/surfactant droplets. 

The nanostructured lipid carrier containing DHX-1 (NLC-DHX) used in the 

subsequent experiments was prepared by diluting DHX-1 to a concentration of 25 

mg/mL in a mixture of babassu oil, Compritol® 888 ATO and Kholiphor® HS (1:1:2, 

w:w:w) at 60 °C, under magnetic stirring (350 RPM) for 5 minutes. Then, the preparation 

of NLC-DHX proceeded as described in the general protocol above. Blank 
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nanostructured lipid carrier (NLC) was also prepared by this same method, without DHX-

1. 

2.4 Evaluation of colloidal properties. 

The mean particle size and polydispersity index (PDI) of NLC were evaluated at 25 

°C by photon correlation spectroscopy and electrophoretic laser Doppler velocimetry 

(ZetaSizer Nano ZS®, Malvern Instruments, Malvern, UK) with the angle of 90°. Prior to 

measurement, samples were diluted with distilled water (1:10, v:v). 

2.5 Spectroscopic analysis 

The DHX-1 and the NLC-DHX were diluted to 40 µM DHX-1in DMSO and water, 

respectively. Then, 200 μL of the DHX-1 solution or NLC-DHX dispersion were placed in 

96-well microplate in triplicate, and its absorption spectra was recorded in a 

spectrophotometer (Spectramax M2, Molecular Devices, USA) between 350 and 750 

nm. Blanks consisted of pure DMSO and water. 

2.6 Evaluation of ROS production 

To evaluate the capacity of DHX-1 to produce singlet oxygen under irradiation, the 

DPBF method was used, according to Spiller et al [18]. Briefly, 200 µL-aliquots of DHX-1 

in DMSO (40 µM) and NLC-DHX dispersed in water (40 µM DHX-1) were plated in 96-

well plates. Then, 10 μL of a solution of DPBF in ethanol (0.22 mg/mL) were added to 

each aliquot. Controls consisted of DHX-1 or NLC-DHX without DPBF, and DPBF alone. 

Then, the microplate was irradiated with a LED (λ 660 nm, XL001WP01NRC660, 

Shenzhen S. O. Co, China) at cumulative energy densities and read in a 

spectrophotometer (Spectramax M2, Molecular Devices, USA) at 414 mm. 

2.7 Biological assays 

2.7.1 Cell culture 

Murine breast adenocarcinoma cells (4T1) were maintained in RPMI medium 

supplemented with 10% (v:v) FBS and 1% (v:v) antibiotics solution (100 penicillin 

Units/mL and 100 µg streptomycin/mL). Murine fibroblasts (NIH-3T3) were maintained 
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in DMEM supplemented with 10% (v:v) FBS and 1% (v:v) antibiotic solution. Cells were 

kept in an incubator under a humidified atmosphere with 5% CO2 at 37 °C. 

2.7.2 In vitro treatment design 

The cells were culture for 24 h at an initial concentration of 1×104 cells per well, 

washed twice with PBS, and then exposed for 15 min to 200 µL of culture medium 

containing different concentrations of DHX, NLC-DHX or NLC. Then, the cells were 

washed twice with PBS, covered with 200 µL of culture medium, and: 1) maintained in 

the dark, or 2) irradiated with a light emitting diode (LED, λ 660 nm) at a final energy 

density of 25.8 J/cm2. The control consisted of cells that received only culture medium. 

Then the cells were washed with PBS, cultured for further 24 h, and their viability was 

measured. 

2.7.3 Cell viability assay 

The cells were treated as described above, then exposed to 200 µL of MTT solution 

(0.5 mg/mL in culture medium), as previously described [19]. Next, the MTT solution was 

removed, the cells were washed with PBS, and the formazan formed by viable cells was 

extracted with 200 µL DMSO. The absorption at λ 595 nm was then measured using a 

spectrophotometer (SpectramaxM2; Molecular Devices LLC). This experiment was 

performed in quintuplicate for each treatment, and the results were expressed as 

percentages relative to control. 

3. Results and Discussion 

3.1. Synthesis of DHX-1 

This compound was prepared according to a previously reported protocol [11], as 

shown in Fig. 2. Briefly, treatment of synthetic 1a [14] and commercially available 4-

chlorobenzene-1,3-diol (1b) in DMF with in the presence of Et3N at 75 °C for 4 h yielded 

DHX-1. The 1H and 13C NMR spectral data of DHX-1 were in agreement with the literature 

data [11]. The spectra can found be in the Supporting Information, which was attached 

at the end of this article.  
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Figure 2. The synthesis of DHX-1. 

3.2. Nanostructured lipid carriers 

Different compositions of lipid mix (babassu oil plus Compritol® 888 ATO), and 

different proportions of lipid mix to Kolliphor® HS were tested. As shown in Fig. 3, these 

parameters affected the colloidal properties of the formulation. Particularly, the 

nanoparticles obtained with a lipid mix containing babassu oil below 52.5% (w:w) 

showed low polydispersity index (PDI) values and hydrodynamic diameters from 30 to 

70 nm (Fig. 3A). Therefore, the concentration of babassu oil in the lipid mix used for the 

production of nanostructured lipid carrier containing DHX-1 (NLC-DHX) and NLC was set 

to 50% (w:w). The surfactant concentration, which was expressed as surfactant:lipids 

ratio (w:w), also affected the properties of the nanostructured lipid carrier. As shown in 

Fig. 3B, surfactant-to-lipids ratios (SLR) below 0.7 gave formulations with PDI of 0.3 or 

higher, showing wider size distributions than formulations produced with SLR above 0.8. 

Therefore, giving all these results, the final formulation of nanostructured lipid carriers 

(NLC) consisted of a lipid mix containing babassu oil/Compritol® 888 ATO (1:1), and a 

SLR of 1.0. The colloidal properties of both NLC and NLC containing DHX-1 (NLC-DHX) 

are shown in Table 1. 
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Figure 3. Influence of the concentration of babassu oil in the lipid mix (A), and of the 

surfactant-to-oil ratio (B), on the hydrodynamic diameter and polydispersity index (PDI) 

of nanostructured lipid carriers produced by phase inversion temperature. 

 

Table 1. Colloidal characteristics of NLC and NLC-DHX. 

 Hydrodynamic diameter (nm) Polydispersity index Zeta potential (mV) 

NLC 50.0 ± 0.4 0.119 ± 0.022 -3.30 ± 0.12 

NLC-DHX 92.1 ± 0.7 0.215 ± 0.030 -1.12 ± 0.09 

 

3.3 Light absorption spectra 

The DHX-1 presented a wide band of light absorption, ranging from about 550 to 

700 nm, with two main peaks at 612 and 665 nm, as shown in Fig. 4. This is an important 

feature of DHX-1 regarding its potential application as a PS for anticancer PDT. Here it 

was interesting to note that the peak of maximal absorption was at 698 nm in Yuan’s 

study [11], which was different in our result. The reason might be attributed to the 

different solvents used, which has a great impact on the spectroscopic test result of this 

group of xanthane derivatives. In Yuan’s experiment, the absorption spectra was 

accorded in the solvent of pH 7.4 PBS/MeOH (1:1) which showed maximal peak at 698 

and a shoulder peak at around 650; however in our experiment the absorption spectra 

were accorded in the solvent of DMSO or water, which possible make the absorption 

blue shift. Most of the biological tissues have an optical window, i.e., a particular range 

of electromagnetic wavelengths, mostly between 650 and 800 nm, that are poorly 

absorbed by the tissue components, such as water and hemoglobin [2]. Therefore, DHX-

1 can absorb light even at deep layers of the target tissue, a feature that favors its 

efficacy in anticancer PDT.  

Due to their hydrophobic structure, DHX-1 molecules aggregate in aqueous media, 

leading to quenching phenomena that significantly impair their PS activity. Thus, the 

DHX-1 was also tested as the NLC-DHX, a formulation consisting of DHX-1 dissolved into 

the lipid matrix of a nanostructured lipid carrier, as described above, a strategy that 
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allowed maintaining, in water, the characteristic peak of light absorption by DHX-1 (Fig. 

4). 

 

Figure 4. Absorption spectra of DHX-1 dissolved in DMSO (DHX-1 in DMSO) or in water 

(DHX-1 in water), nanostructured lipid carrier containing DHX-1 and dispersed in water 

(NLC-DHX in water), and nanostructured lipid carrier dispersed in water (NLC in water). 

The concentration of DHX-1 was 40 µM for DHX-1 in DMSO, DHX-1 in water and NLC-

DHX in water. The amounts of nanoparticles in NLC-DHX and NLC were the same. 

3.4 Photoactivated generation of ROS 

In PDT, the light excites the PS to a singlet state, which may then be converted to a 

more stable excited triplet state [2]. The excited triplet state of the PS may be involved 

in type I and type II photoreactions. The type I photoreactions are based on the 

interaction of the excited PS with different substrates, finally leading to the production 

of different reactive oxygen species (ROS) [20]. The type II photoreactions consist of the 

conversion, mediated by the excited triplet state PS, of ground triplet state molecular 

oxygen (3O2) to its excited singlet state (1O2) [2]. Thus, triggering photoreactions by the 

photoactivation of the PS is a crucial event in PDT. As shown in Fig. 5, the irradiated DHX-

1, both as the free molecule dissolved in DMSO and as the NLC-DHX dispersed in water, 

generated ROS in a light dose-dependent fashion. This result confirms that DHX-1 acts 

as a PS under irradiation. Moreover, the similar profiles of ROS generation presented by 

DHX-1 and NLC-DHX show that the association of this PS to the nanostructure maintains 

its activity in an aqueous medium. This means that NLC-DHX would be adequate for the 

use in PDT by parenteral routes. 
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Figure 5. Photoactivated production of reactive oxygen species (ROS) by DHX-1 

dissolved in DMSO (DHX-1 in DMSO), nanostructured lipid carrier containing DHX and 

dispersed in water (NLC-DHX in water), and nanostructured lipid carrier dispersed in 

water (NLC in water). The concentration of DHX-1 was 40 µM for DHX-1 in DMSO and 

NLC-DHX in water. The amount of nanoparticles in NLC-DHX and NLC was the same. 

Samples were irradiated with a light emitting diode, λ 660 nm. 

3.5 Cytotoxicity in vitro 

The production of ROS by the photoactivated PS in the target tissue eventually 

leads to oxidative stress, which can be lethal to the affected cells. As shown in Fig. 6, the 

compound DHX-1 presented evident, concentration-dependent phototoxicity in both 

4T1 and NIH-3T3 cells in vitro after photoactivation. Noteworthy, the toxicity exhibited 

by DHX-1 in the dark against both cells was negligible, with only the highest 

concentration tested, 20 µM, being significantly toxic to NIH-3T3. This result indicated 

that DHX-1 was a good potential PS by showing cytotoxicity only under lighting condition. 

More significantly, on one hand, NLC-DHX at low concentrations was more phototoxic 

than DHX-1 to 4T1 cells, while less cytotoxic at the highest concentration tested; on the 

other hand, NLC-DHX was not photocytotoxic against NIH-3T3 cells even at the highest 

concentration. These findings suggest that this nanostructured carrier changes the 

interaction of DHX-1 with these cells, which may be beneficial for anticancer PDT. 

However, to explain the selectivity of NLC-DHX towards cancerous 4T1 over NIH 3T3, a 

lot of experiment are conducted with molecular biological methods. 
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Figure 6. Viability of 4T1 and NIH-3T3 cells treated in vitro with DHX-1 (blue line), NLC-

DHX (nanostructured lipid carrier with DHX-1; purple line) and NLC (nanostructured lipid 

carrier; black line), and irradiated (PDT, 25.8 J/cm2) or not (dark). In A, p<0.05 for NLC-

DHX vs DHX-1 at all concentrations; p<0.05 for NLC vs NLC-DHX only at 2.6 and 5.0 µM. 

In B, p<0.05 for NLC-DHX vs DHX-1 at all concentrations, except at 10.0 µM; p<0.05 for 

NLC vs NLC-DHX at all concentrations, except at 0.3 µM. In C, no statistically significant 

differences were found for NLC-DHX vs DHX-1, and for NLC vs NLC-DHX, at all 

concentrations; p<0.05 for DHX-1 0.0 vs. 20.0 µM. In D, p<0.05 for NLC-DHX vs DHX-1 at 

concentrations ≥2.6 µM; no statistically significant differences were found for NLC vs 

NLC-DHX. 

4. Conclusions 

This work shows for the first time that DHX-1, a xanthene derivative first reported 

by Yuan and collaborators in 2012 [11], presents PS activity in vitro. Moreover, the 

association of DHX-1 to a nanostructured lipid carrier allowed maintaining its activity in 

aqueous media and reduced its in vitro phototoxicity towards NIH-3T3 cells, the normal 

cell line used in this work. These results and the previously reported data on DHX-1 

suggest that this xanthene derivative is a potential PS used in PDT application. 
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Abbreviations 

PDT photodynamic therapy 

PS photosensitizers 

NIR near-infrared 

H2O2 hydrogen peroxide 

hNQO1 human NAD(P)H:quinone oxidoreductase 1 

Et3N triethylamine 

DMF dimethyl formamide 

NMR Nuclear magnetic resonance 

PDI polydispersity index 

NLC nanostructured lipid carrier 

SLR surfactant-to-lipids ratios 

ROS reactive oxygen species 

3O2 triplet state oxygen 

1O2 singlet state oxygen 

DMSO dimethyl sulfoxide 

DPBF 1,3-diphenylisobenzofuran 

MTT 3-(4,5-dimethylthiazol-2yl)-2,5-diphenyltetrazolium bromide 

LC/MS liquid chromatography-mass spectrometry 
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PIT phase inversion temperature 
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Figure S1.  1H spectrum of 1a 

 

 

 

Figure S2.  13C spectrum of 1a 
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Figure S3.  MS spectrum of 1a 
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Figure S4.  1H spectrum of DHX-1 

 

 

 

Figure S5.  13C spectrum of DHX-1 
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Figure S6.  MS spectrum of DHX-1 
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Abstract: In the present work, five benzo[a]phenoxazinium derivatives were prepared 

and evaluated in vitro as for their photodynamic activities against two cell lines, 

normal murine fibroblasts cell NIH-3T3 and murine breast adenocarcinoma cell 4T1. 

Most of these compounds are water soluble and red light absorbers, showing low 

fluorescence quantum yield. Of these compounds, PS4 exhibited a higher quantum 

yield for ROS generation. The assays with cells in vitro showed that PS1 and PS4 were 

not significantly toxic in the dark, but robustly reduced the viability of the tested cells 

under photoactivation. Interestingly, PS5 was particularly selective to 4T1 cells, being 

strongly phototoxic against these cells and nearly non-phototoxic to NIH3T3. The 

results described in this report suggest that these new benzo[a]phenoxazinium 

derivatives are potential candidates to photosensitizers for anticancer photodynamic 

therapy.  

 

Keywords: Benzo[a]phenoxazinium chloride; Photosensitizer; Anticancer; red light; 

Photodynamic therapy  
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Introduction 

Photodynamic therapy (PDT) is a minimally invasive protocol used for anticancer 

therapy.1 PDT is based on the focal photoactivation of photosensitizers (PSs), which 

can directly act on the target tissues and then elicit photochemical reactions that 

eventually lead to oxidative stress.2 The main consequences of these events include 

direct cytotoxicity, collapse of the tumor microvasculature, and/or activation of 

immune response against tumor antigens.3 A particularly important benefit of PDT as 

a cancer therapy is the possibility to restrict its effects to the irradiated site, sparing 

the normal tissues. Although PDT has been successfully applied in the treatment of 

skin, gynecological, gastrointestinal, and some head and neck cancers, only a few PSs 

(e.g. porfimer sodium, temoporfin, aminolevulinic acid and photofrin) have been put 

into the market.4,5  Up to now, most current work focus on the improvement of 

porphhyrin or chlorin-type PS molecules and synthesis of new type of PSs with high 

water solubility, strong absorption in near-infrared (NIR) region, and long half-life.2,6 

During our continued project for developing new generation of PS7,8,9,10, the 

benzo[a]phenoxazinium dyes come to our attention due to their good photostability, 

high molar absorption, long-wavelength absorption, and relative low fluorescence 

quantum yield. 11 , 12 , 13  Literature survey indicated that benzo[a]phenoxazinium 

derivatives exhibited antifungal12,14, antimalarial activity,15 and also functioned as PSs 

in antimicrobial PDT.16,17 However, to our knowledge, the potential anticancer PDT of 

benzo[a]phenoxazinium dyes has been little-investigated.18 In this context, the main 

objective of the present work was to design and synthesize several new 

benzo[a]phenoxazinium chlorides PS1-PS5 (Fig. 1) and investigate their potential 

anticancer photodynamic activity. 
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Figure 1. Structures of new benzo[a]phenoxazinium chlorides PS1 to PS5. 

 

1. Experimental 

 

2.1. Materials and instruments 

Dimethyl sulfoxide (DMSO), 1,3-diphenylisobenzofuran (DPBF) and Kholiphor® HS 

were obtained from Sigma, USA. The Roswell Park Memorial Institute (RPMI) medium 

and Dulbecco's modified Eagle medium (DMEM) were obtained from Gibco, EUA. The 

3-(4,5-dimethylthiazol-2yl)-2,5-diphenyltetrazolium bromide (MTT) was purchased 

from Invitrogen, EUA. The phosphate buffered saline (PBS) was supplied by Laborclin, 

Brazil. Commercially available reagents were used without further purification. 

Organic solvents were evaporated with reduced pressure using Büchi evaporators. 

Reactions were monitored by TLC using Yantai JingYou (China) GF254 silica gel plates. 

Silica gel column chromatography was performed on silica gel (200-300 mesh) from 

Qingdao Hailang (China). NMR spectra were measured on Bruker Avance III 600 MHz 

spectrometer. Chemical shifts were expressed in δ (ppm) and coupling constants (J) in 

Hz using solvent signals as internal standards (CDCl3, δH 7.26 ppm and δC 77.2 ppm; 

CD3OD, δH 3.31 ppm and δC 49.0 ppm; d6-acetone, δH 2.05 ppm and δC 29.8 ppm). ESI-

MS was recorded on an Agilent 1260-6460 Triple Quard LC/MS, and HR-ESI-MS data 

were acquired on an Agilent Q-TOF 6520.  
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1.2. Synthesis of PS1 

Synthesis of compound 2: The mixture of naphthalen-1-amine 1 (2.00 g, 

14.0mmol), 3-bromopropanoic acid (2.14 g, 14.4 mmol) and Et3N (1.60 g, 14.4 mmol) 

in 10 ml EtOH was refluxed overnight. The solution was then removed under reduced 

pressure. The crude product was purified by silica gel flash chromatography using 

CH2Cl2/MeOH (10:1) as eluent to give compound 2 as a white solid (1.0g, 26%). 1H NMR 

(600 MHz, CD3OD):  7.95 (d, J = 7.9 Hz, 1H), 7.73 (d, J = 7.8 Hz, 1H), 7.41-7.37 (m, 2H), 

7.29 (dd, J = 7.6, 8.1 Hz, 1H), 7.17 (d, J = 8.1 Hz, 1H), 6.63 (d, J = 7.6 Hz, 1H), 3.56 (t, J = 

6.8 Hz, 2H), 2.74 (t, J = 6.8 Hz, 2H). 13C NMR (150 MHz, CD3OD):  176.3, 144.8, 135.9, 

129.3, 127.6, 126.6, 125.4, 125.3, 121.7, 118.2, 105.2, 40.8, 34.4. ESI-MS m/z [M+H]+ 

216.2. 

Synthesis of compound 4: The soltion of 3-diethylaminophenol 3 (3.3 g) in 

mixture of 7 mL of concentrated HCl and 7 ml of water was cooled to 0oC, and then a 

solution ofsodium nitrite (1.38 g) in 10 ml water was added dropwise to the above 

mixture. The reaction was stirred at 0-5 oC for 3.5 hour to give a brown slurry. The 

slurry was filtrate and washed with 6 ml of 4M aqueous HCl. The filter was to give 

compound 4 as a brown solid (3.0g, 26%). This compound was used in the next step 

without further purification. ESI-MS m/z [M+H]+ 195.2. 

Synthesis of compound PS1: To a cold solution (ice bath) of 4 (160mg, 0.6 mmol) 

in 10 ml MeOH was added 2(100mg, 0.5 mmol) and 5 drop of concentrated HCl. The 

mixture was refluxed for 4 h. The solution was evaporated and purified by silica gel 

flash chromatography using CH2Cl2/MeOH (10:1) as eluent to give PS1 as a blue solid 

(45 mg, 24%). 1H NMR (600 MHz, CD3OD):  8.83-8.80 (m, 1H), 8.29 (d, J = 8.0 Hz, 1H), 

7.88 (dd, J = 7.2, 8.0 Hz, 1H), 7.81 (dd, J = 5.0, 9.3 Hz, 1H), 7.77 (dd, J = 7.2, 8.2 Hz, 1H), 

7.28 (d, J = 9.3 Hz, 1H), 6.96 (s, 1H), 6.89 (s, 1H), 3.99 (t, J = 6.7 Hz, 2H), 3.75 (s, 3H), 

3.71 (q, J = 7.2 Hz, 4H), 2.96 (t, J = 6.7 Hz, 2H), 1.35 (t, J = 7.2 Hz, 6H). 13C NMR (150 

MHz, CD3OD):  173.2, 159.1, 155.9, 153.1, 149.9, 134.7, 134.2, 132.9, 132.6, 132.1, 

130.8, 125.2, 124.7, 123.8, 117.0, 97.0, 94.4, 52.5, 47.1, 41.4, 33.6, 13.0. ESI-MS m/z 

[M]+ 404.3.HR-ESIMS: [M]+ calcd for C24H26N3O3
+ 404.1969, found 404.1967. 
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1.3. Synthesis of PS2 

Synthesis of compound 5: The compound 2 (100 mg, 0.5 mmol) was solved in 10 

mL CH2Cl2, and then 2-morpholinoethanamine (120mg, 0.9 mmol), HATU (200 mg, 0.5 

mmol) and 0.2ml iPrNEt2 was added. The mixture was stirred overnight, and then 

concentrated. The residue was purified by silica gel chromatography with petroleum 

ether/acetone (1:1) as eluent to give compound 5 as a white solid (128 mg, 84%). 1H 

NMR (600 MHz, CDCl3):δ 7.83 (d, J = 8.0 Hz, 1H), 7.78 (d, J = 9.2 Hz, 1H), 7.45-7.41 (m, 

2H), 7.35 (dd, J = 7.5, 8.2 Hz, 1H), 7.25 (d, J = 8.2 Hz, 1H), 6.54 (d, J = 7.5 Hz, 1H), 6.27 

(brs, 1H), 5.07 (brs, 1H), 3.64 (t, J = 6.0 Hz, 2H), 3.50 (brs, 4H), 3.32 (t, J = 6.0 Hz, 2H), 

2.64 (d, J = 6.0 Hz, 2H), 2.38 (t, J = 6.0 Hz, 2H), 2.29 (brs, 4H). 13C NMR (150 MHz, 

CDCl3):δ 171.8, 142.9, 134.4, 128.6, 126.5, 125.8, 124.8, 123.7, 120.0, 117.7, 104.4, 

66.7, 56.8, 53.2, 40.3, 35.5, 35.3. ESI-MS m/z: 328.3 [M+H]+. 

Synthesis of compound PS2: To a cold solution of compound 4 (50mg, 0.2 mmol) 

in 5 ml EtOH was added compound 5 (60 mg, 0.2 mmol) and 5 drop of concentrated 

HCl. The mixture was refluxed for 4 h. The solution was evaporated and purified by 

silica gel flash chromatography using CH2Cl2/MeOH (10:1) as eluent to give compound 

PS2 as a blue solid (54 mg, 55%). 1H NMR (600 MHz, CD3OD): δ 8.72 (s, 1H), 8.39 (s, 

1H), 7.84 (s, 1H), 7.75 (s, 2H), 7.25 (s, 1H), 6.85 (s, 1H), 4.04-3.96 (m, 6H), 3.70-3.66 (m, 

8H), 3.34 (s, 2H), 3.18 (s, 2H), 2.91 (s, 2H), 1.35 (s, 6H). 13C NMR (150 MHz, CD3OD):  

174.1, 158.9, 155.8, 152.9, 149.7, 134.5, 134.2, 132.9, 132.3, 131.9, 130.8, 125.4, 

124.5, 124.2, 117.0, 96.9, 94.6, 64.8, 58.1, 53.4, 41.8, 35.1, 34.7, 13.0. ESI-MS m/z [M]+ 

502.2.HR-ESIMS: [M]+ calcd for C29H36N5O3
+ 502.2813, found 502.2812; [M+H]2+ calcd 

for C29H37N5O3
2+ 251.6442, found 251.6445. 

 

1.4. Synthesis of PS3 

Synthesis of compound 6: The compound 2 (100 mg, 0.5 mmol) was solved in 10 

mL CH2Cl2, and then tert-butyl (2-aminoethyl)carbamate (149 mg, 1.0 mmol), HATU 

(200 mg, 0.5 mmol) and 0.2ml iPrNEt2 was added. The mixture was stirred overnight, 

and then concentrated. The residue was purified by silica gel chromatography with 
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CH2Cl2/MeOH (10:1) as eluent to give compound 6 as a white solid (160 mg, 96%). 1H 

NMR (600 MHz, CDCl3):δ 7.91-7.89 (m, 1H), 7.79-7.77 (m, 1H), 7.45-7.41 (m, 2H), 7.46-

7.43 (m, 1H), 7.34 (dd, J = 7.6, 8.0 Hz, 1H), 7.27 (d, J = 7.0 Hz, 1H), 6.6 (d, J = 7.6 Hz, 

1H), 6.48 (brs, 1H), 4.85 (brs, 1H), 3.61 (t, J = 6.0 Hz, 2H), 3.37-3.34 (m, 2H), 3.26-3.24 

(m, 2H), 2.63 (t, J = 6.0 Hz, 2H), 1.41 (s, 9H). 13C NMR (150 MHz, CDCl3):δ 172.6, 157.2, 

142.9, 134.5, 128.7, 126.6, 126.0, 125.1, 124.0, 120.3, 118.2, 105.0, 80.0, 41.1, 40.8, 

40.3, 35.2, 28.4. ESI-MS m/z: 358.0 [M+H]+. 

Synthesis of compound 7: To a solution (ice bath) of 6 (120 mg, 0.34 mmol) in 5 

ml CH2Cl2 trifluoroacetic acid under 0oC. The mixture was stirred 

overnight, and then concentrated to give a residue, which was used in the next step 

without further purification. The obtained residue was solved in 5 mL CH3CN, and then 

172 mg Biotin-NHS, 0.2ml Et3N was added. The mixture was stirred overnight, and then 

concentrated. The residue was purified by silica gel chromatography with 

CH2Cl2/MeOH (10:1) as eluent to give compound 7 as a white solid (85 mg, 52%). 1H 

NMR (600 MHz, DMSO-d6):δ 8.08 (d, J = 8.3 Hz, 1H), 7.99 (brs, 1H), 7.81 (brs, 1H), 7.75 

(d, J = 8.3 Hz, 1H), 7.43 (ddd, J = 1.0, 6.7, 8.4 Hz, 1H), 7.39 (ddd, J =1.4, 6.8, 9.0 Hz, 1H), 

7.29 (dd, J = 7.8, 7.9 Hz, 1H), 7.11 (d, J = 8.2 Hz, 1H), 6.54 (d, J = 8.6 Hz, 1H), 6.42 (s, 

1H), 6.35 (s, 1H), 6.19 (dd, J = 5.4, 5.5 Hz, 1H), 4.28-4.26 (m, 1H), 4.11-4.09 (m, 1H), 

3.44-3.41 (m, 1H), 3.31 (m, 5H), 2.78 (dd, J = 5.1, 12.5 Hz, 1H), 2.56(d, J = 12.5 Hz, 1H), 

2.04 (t, J = 1.1 Hz, 1H), 1.61-1.57 (m, 1H), 1.53-1.43 (m, 3H), 1.32-1.23 (m, 2H), 1.17 (t, 

J = 7.3 Hz, 1H).13C NMR (150 MHz, DMSO-d6): δ 172.4, 171.1, 162.7, 143.8, 134.0, 127.9, 

126.8, 125.6, 124.0, 123.0, 121.4, 115.6, 102.9, 61.0, 59.2, 55.4, 45.7, 40.1, 38.5, 38.3, 

35.3, 34.8, 28.2, 28.0, 25.2. ESI-MS m/z: 484.3 [M+H]+.  

Synthesis of compound PS3: To a cold solution of 4 (50mg, 0.2 mmol) in 5 ml EtOH 

was added 7 (60 mg, 1.2 mmol) and 5 drop of concentrated HCl. The mixture was 

refluxed for 4 h. The solution was evaporated and purified by silica gel flash 

chromatography using CH2Cl2/MeOH (10:1) as eluent to give PS3 as a blue solid (53 

mg, 62%). 1H NMR (600 MHz, CD3OD): δ 8.89-8.83 (m, 1H), 8.37 (d, J = 7.5 Hz, 1H), 

7.89-7.79 (m, 2H), 7.75-7.55 (m, 2H), 7.29 (d, J = 9.0 Hz, 1H), 7.01 (s, 1H), 6.91 (s, 1H), 

4.46 (s, 1H), 4.28 (s, 1H), 4.01 (s, 1H), 3.72-3.71 (m, 4H), 3.56 (s, 1H), 3.15(s, 1H), 2.89-
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2.74 (m, 2H), 2.66 (s, 1H), 2.15 (s, 1H), 1.67-1.51 (m, 4H), 1.35 (t, J = 7.0 Hz, 1H), 1.17-

1.14 (m, 2H). 13C NMR (150 MHz, CD3OD): 176.4, 173.2, 159.1, 155.8, 153.2, 149.8, 

134.7, 134.3, 132.9, 132.6, 132.1, 130.9, 125.5, 124.7, 124.0, 121.7, 117.0, 97.0, 94.5, 

63.3, 61.6, 56.9, 47.1, 42.0, 41.0, 40.4, 39.9, 36.7, 35.5, 29.7, 29.4, 26.7, 13.0.ESI-MS 

m/z [M]+ 658.2.HR-ESIMS: [M]+ calcd for C35H44N7O4S+ 658.3170, found 658.3171. 

 

1.5. Synthesis of PS4 

Synthesis of compound 9: To a solution of compound 8 (300mg, 0.6 mmol) in 10 

ml CH2Cl2 trifluoroacetic acid under 0oC. The mixture was stirred 

overnight, and then concentrated to give a residue, which was used in the next step 

without further purification. The above residue was solved in 10 mL CH2Cl2, and then 

compound 2 (128 mg, 0.6 mmol), HATU (248mg, 1.1 equiv) and 0.2ml iPrNEt2 was 

added. The mixture was stirred overnight, and then concentrated. The residue was 

purified by silica gel chromatography with petroleum ether/acetone (1:1) as eluent to 

give compound 9 as a white solid (205 mg, 57%). 1H NMR (600 MHz, CDCl3): δ 7.87 (d, 

J = 7.5 Hz, 1H), 7.78 (m, 2H), 7.46-7.42 (m, 2H), 7.34 (dd, J = 7.9, 7.8 Hz, 1H), 7.25 (d, J 

= 8.2 Hz, 1H), 6.62 (d, J = 7.5 Hz, 1H), 5.34 (s, 1H), 5.15 (s, 1H), 4.95 (s, 1H), 3.62-3.60 

(m, 2H), 3.36 (d, J = 5.4 Hz, 1H), 2.62 (dd, J = 6.1, 6.1 Hz, 1H), 2.53 (dd, J = 9.1, 8.8 Hz, 

1H), 2.20-2.14 (m, 3H), 2.12 (s, 3H), 2.05-1.96 (m, 2H), 1.83-1.82 (m, 2H), 1.68-1.43 (m, 

9H), 1.25-1.21 (m, 1H), 1.15-1.09 (m, 1H), 0.98 (s, 3H), 0.62 (s, 3H). 13C NMR (150 MHz, 

CDCl3): δ 209.8, 172.7, 157.3, 143.6, 139.8, 134.5, 128.7, 126.6, 126.0, 125.0, 123.9, 

122.4, 120.3, 117.9, 104.6, 74.8, 63.8, 57.0, 50.0, 44.1, 40.9, 40.7, 40.5, 38.9, 38.6, 37.1, 

36.7, 35.4, 31.9, 31.9, 31.7, 28.2, 24.6, 23.0, 21.1, 19.4, 13.4. ESI-MS m/z: [M+H]+600.1. 

Synthesis of compound PS4: To a cold solution (ice bath) of compound 4 (30 mg, 

0.13 mmol) in 5 ml EtOH was added compound 9 (50 mg, 0.08 mmol) and 5 drop of 

concentrated HCl. The mixture was refluxed for 4 h. The solution was evaporated and 

purified by silica gel flash chromatography using CH2Cl2/MeOH (10:1) as eluent to give 

compound PS4 as a blue solid (45 mg).1H NMR (600 MHz, CD3OD): δ 8.82 (d, J = 11 Hz, 

1H), 8.31 (dd, J = 8.3, 8.4 Hz, 1H), 7.88 (dd, J = 7.4, 7.6 Hz, 1H), 7.82 (d, J = 9.2 Hz, 1H), 

7.79 (dd, J = 7.3, 7.6 Hz, 1H), 7.28 (d, J = 8.7 Hz, 1H), 6.99 (s, 1H), 6.89 (s, 1H), 5.02 (s, 
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1H), 4.23 (m, 1H), 3.99-3.97 (m, 2H), 3.72-3.69 (m, 4H), 2.79-2.77 (m, 2H), 2.55 (dd, J 

= 6.7, 7.0 Hz, 1H), 2.15-2.08 (m, 5H), 1.98 (d, J = 8.2 Hz, 1H), 1.73-1.60 (m, 6H), 1.83-

1.82 (m, 2H), 1.38 (d, J = 6.7 Hz, 1H), 1.35 (t, J = 7.2 Hz, 1H), 0.82 (s, 3H), 0.52 (s, 3H). 

13C NMR (150 MHz, CD3OD): δ 212.1, 173.4, 159.0, 158.9, 155.7, 153.0, 149.7, 141.1, 

141.1, 134.2, 132.9, 132.6, 130.9, 125.6, 125.5, 124.1, 124.0, 123.0, 116.8, 97.1, 94.7, 

75.3, 64.6, 57.9, 51.2, 47.1, 44.9, 41.1, 39.7, 38.0, 37.5, 36.1, 35.6, 35.5, 33.0, 32.9, 

32.6, 31.7, 29.1, 25.4, 23.7, 22.0, 19.6, 13.5, 13.0. ESI-MS m/z: [M]+ 774.4. HR-ESIMS: 

[M]+ calcd for C47H60N5O5
+ 774.4589, found 774.4595. 

 

1.6. Synthesis of PS5 

Synthesis of compound 10: To a solution (ice bath) of compound 6 (170mg, 0.5 

mmol) in 5 ml CH2Cl2 oC. The mixture was 

stirred overnight, and then concentrated to give a residue, which was used in the next 

step without further purification. The above residue was solved in 5 mL CH2Cl2, and 

then compound 2 (102 mg, 0.5 mmol), HATU (200 mg, 0.5 mmol) and 0.2 ml iPrNEt2 

was added. The mixture was stirred overnight, and then concentrated. The residue 

was purified by silica gel chromatography with CH2Cl2/MeOH (20:1) as eluent to give 

compound 10 as a white solid (185 mg, 87%). 1H NMR (600 MHz, d6-acetone): δ 8.40 

(d, J = 8.4 Hz, 1H), 7.76 (d, J = 8.4 Hz, 1H), 7.41-7.38 (m, 3H), 7.29 (dd, J = 7.9, 7.9 Hz, 

1H), 7.15 (d, J = 8.2 Hz, 1H), 6.59 (d, J = 7.4 Hz, 1H), 5.84 (s, 1H), 3.52 ( t, J = 6.4 Hz, 2H), 

3.30 (t, J = 2.6 Hz, 2H), 2.57 (d, J = 6.4 Hz, 2H). 13C NMR (150 MHz, d6-acetone): δ 172.9, 

144.9, 135.5, 129.1, 127.6, 126.4, 125.1, 124.6, 121.7, 117.2, 104.4, 41.1, 40.1, 35.7. 

ESI-MS m/z: [M+H]+ 455.1. 

Synthesis of compound PS5: To a cold solution of compound 4 (125mg, 0.5 mmol) 

in 5 ml EtOH was added compound 10 (100 mg, 0.2 mmol) and 5 drop of concentrated 

HCl. The mixture was refluxed for 4 h. The solution was evaporated and purified by 

silica gel flash chromatography using CH2Cl2/MeOH (10:1) as eluent to give compound 

PS5 as a purple solid (80 mg, 45%). 1H NMR (600 MHz, CD3OD): δ 8.29 (d, J = 7.9 Hz, 

1H), 8.26 (d, J = 8.0 Hz, 1H), 7.65 (dd, J = 7.3, 7.6 Hz, 1H), 7.57 (dd, J = 7.3, 9.3 Hz, 1H), 

7.47 (d, J = 9.3 Hz, 1H), 7.11 (d, J = 9.2 Hz, 1H), 6.61 (s, 1H), 6.58 (s, 1H), 3.74 (s, 2H), 
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3.64 (q, J = 7.1 Hz, 4H), 3.40 (s, 2H), 2.81 (s, 2H), 1.34 (t, J = 7.1 Hz, 6H). 13C NMR (150 

MHz, CD3OD): δ 173.5, 158.4, 155.6, 152.2, 149.1, 134.0, 133.9, 132.8, 131.9, 131.5, 

130.7, 125.1, 124.2, 124.2, 116.9, 96.9, 94.4, 47.2, 42.2, 40.3, 35.1, 13.1. ESI-MS m/z 

[M]2+ 402.3.HR-ESIMS: [M]2+ calcd for C48H52N8O4
2+ 402.2050, found 402.2049. 

 

1.7. General spectroscopic measurements 

Absorption spectra were recorded in a Shimadzu UV-2600spectrophotometer 

(Shimadzu, Japan). Fluorescence measurements were performed using anAgilent Cary 

Eclipse (Varian, USA). Fluorescence spectra were corrected for the instrumental 

response of the system.All solutions were prepared using Milli-Q grade water. The 

fluorescence quantum yields (φ) were determined according to the method (Eq. (1)) 

below. 

φu = φs × (Fu/ Fs) × (As / Au) × (ηu/ ηs)2    (1) 

Where φ is fluorescence quantum yield; F is integrated area under the corrected 

emission spectra; η is the refractive index of the solution; A is the absorbance at the 

excitation wavelength; the subscripts u and s refer to the unknown and the standard, 

respectively. We chose fluorescein in water as reference, φs = 0.98.19 

 

1.8.  ROS detection  

To evaluate the capacity of the compounds to produce singlet oxygen, the DPBF 

method was used. Briefly, 200 µL-aliquots of compounds in DMSO (40 µM) were plated 

in 96-well plates. Then, 10 μL of a solution of DPBF in ethanol (0.22 mg/mL) were 

added to each aliquot. Controls consisted of each compound without DPBF, and DPBF 

alone. Then, the microplate was irradiated every 10 seconds using 660 nm LED (Light 

Emitting Diode, XL001WP01NRC660, Shenzhen S. O. Co, CHI). The optical density of 

the DPBF solution at 414 nm was used as an index of ROS production, as the DPBF is 

degraded by ROS and its light absorption at this wavelength is thus decreased. 

 

1.9.  Cell viability assay 

The viability of 4T1 and NIH-3T3 cells were measured by MTT assay. Briefly, 4T1 e 
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NIH-3T3, 1x104 cells per well, were treated with different concentrations of the 

compounds for 30 minutes, in RPMI and DMEM, respectively, and then washed twice 

with PBS. After, the microplates were: 1) maintained in the dark, or 2) irradiated with 

a light emitting diode (LED, λ 660 nm) at a final energy density of 25.8 J/cm2. The 

control consisted of cells that received only culture medium. Next, the cells were 

washed with PBS, cultured for further 24 h, and then the culture medium was replaced 

by a 0.5 mg/mL MTT solution in culture medium. The cells were then incubated for 2.5 

h at 37 oC in a 5% CO2, humid atmosphere. The MTT solution was then discarded, the 

formazan produced by the viable cells was extracted with 200 µL DMSO, and the 

optical density was read at λ 595 nm with a microplate spectrophotometer. This 

experiment was performed in triplicate for each treatment, and the results were 

expressed as percentages relative to control. 

 

1.10. Statistical analysis 

Data were analyzed by one-way ANOVA, with Sidak's post-test (α = 0.05). Analyzes 

were performed with GraphPad Prism® 6.0 software. 

 

2. Results and discussion 

 

3.1 Design and Synthesis 

The ligand-mediated targeting strategy in PDT has been explored to increase the 

efficacy and reduce adverse effects of PSs.2 In the present work, five 

benzo[a]phenoxazinium chlorides possessing different functional fragments at 5-

amino positionwere prepared: PS1 was a simple previously 

reportedbenzo[a]phenoxazinium derivative with methyl propionate;13 PS2 possesses 

a morpholinoethylamine moiety, a ligand for targeting lysosomal;20 PS3 was equipped 

with a biotinmoiety, which serves as a well-known tumor-targeting molecule21and 

frequently used for delivery of PS to cancer tissues; PS4 was a conjugate of 

benzo[a]phenoxazinium and pregnenolone. Pregnenolone, animportant naturally 
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occurring endogenous steroid, is known as a precursor to most of hormones, and 

several groups of pregnenolone derivatives were reported to have anticancer 

activity;22,23 PS5 was synthesized as a dimer to determine superimposed effect of 

benzo[a]phenoxaziniumcore on anticancer PDT efficacy. 

The synthetic route for target compounds PS1-PS5 is depicted in Schemes 1-5, 

respectively. Briefly, compound 2 was synthesized by alkylation of 1-naphthylamine (1) 

with 3-bromopropanoic acid, and nitroso derivative 4 was prepared from the nitration 

reaction of 3-(diethylamino)phenol (3). Then reaction of compounds 2 and 4 (in 

refluxingmethanol) produced target compound PS1. The coupling reaction of 2with 2-

morpholinoethanamine, tert-butyl (2-aminoethyl)carbamatevtert-butyl (2-

aminoethyl)carbamate, and pregnenolone derivative 8 yielded intermediates 5, 6 and 

9, respectively. Deprotection of N-Boc in 6 followed by coupling with Biotin-NHS gave 

compound 7 or followed by reaction with 2 produced 10. Starting from intermediates 

5, 7, 9, 10 and using compound 4 once again, the target benzo[a]phenoxaziniums PS2 

to PS5 were finally obtained in the last step using a similar synthetic protocol as that 

of PS1. 

 

Scheme 1. The synthesis of PS1. Reagents and conditions: (a) 3-bromopropanoic acid, 

Et3N, MeOH, reflux, overnight; (b) Cocn. HCl, sodium nitrite, H2O, 0-5 oC, 3.5 h; (c) Cocn. 

HCl, MeOH, reflux, 4 h. 
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Scheme 2. The synthesis of PS2. Reagents and conditions: (a) 2-

morpholinoethanamine, HATU, iPrNEt2, CH2Cl2; (b) compound 4, Cocn. HCl, EtOH, 

reflux, 4 h. 

 

Scheme 3. The synthesis of PS3. Reagents and conditions: (a) tert-butyl (2-

aminoethyl)carbamate, HATU, iPrNEt2, CH2Cl2; (b) i. trifluoroacetic acid, CH2Cl2, 0oC, 

overnight; ii. Biotin-NHS, Et3N, CH3CN, r.t., overnight; (c) compounds 4, EtOH, 5 drop 

of Cocn. HCl, reflux, 4 h. 

 

Scheme 4. The synthesis of PS4. Reagents and conditions: (a) i. trifluoroacetic acid, 
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CH2Cl2, 0oC, overnight; ii. 2, HATU, iPrNEt2, CH2Cl2, overnight. 

 

Scheme 5. The synthesis of PS5. Reagents and conditions: (a) i. trifluoroacetic acid, 

CH2Cl2, 0oC, overnight; ii compound 2, HATU, iPrNEt2, CH2Cl2, overnight; (b) compounds 

4, EtOH, 5 drop of Cocn. HCl, reflux, 4 h. 

 

3.2 Absorption and emission studies 

UV-Vis absorption and emission spectra of 5 × 10-6M PS1 to PS5 in water were 

measured to investigate their optical properties (Table 1 and Fig. 1). In water, the 

absorption maxima (λmax) for compounds PS1 to PS4 located at about 650 nm with the 

molar extinction coefficients () between 22600 and 51800 M-1cm-1, which can be 

ascribed to the π-π* transition of the large π systems of the benzo[a]phenoxazinium 

core. PS5 showed a shoulder peak at 649 nm (= 35600 M-1cm-1) from the 

benzo[a]phenoxazinium fluorophore. Meanwhile, PS5 also showed a main absorption 

at 604 with a higher of 65000 M-1cm-1, which was probably resulted by the π-π 

interaction of the two intramolecular benzo[a]phenoxazinium fluorophores as a result 

of the flexibility of the amide linker.24  

Under the excitation at 600 nm, PS1 to PS5 exhibited near-infrared emissions at 

about 681 nm with the Stokes shifts of about 35 nm. In addition, the relative 

fluorescence quantum yields (φ) were measured using fluorescein in water as a 

standard (φs = 0.98).19 These compounds all showed low fluorescence quantum yield 

(0.025-0.116) which consists with that of previously reported benzo[a]phenoxazinium 

chlorides,12,13 indicating they might not tend to decay back to the ground state by 

emitting fluorescence after excitation, and could potentially act as desirable 

candidates for photodynamic therapy. 



50 
 

50 
 

 

Table 1 

Absorption and emission data of benzo[a]phenoxazinium chlorides PS1 to PS5 

Compounds λabs
a εb λem

a a φu 

PS1 648 47400 681 33 0.075 

PS2 649 35400 682 33 0.077 

PS3 650 51800 684 34 0.082 

PS4 651 22600 686 35 0.116 

PS5 649 (604) 35600 (65000) 686 37 0.025 

anm 

bM−1cm−1 

 

 

Figure 2. Absorption (A) and fluorescence (B) spectra of PS1-PS5 in water. 

 

 

3.3. ROS production 

The reactive oxygen species (ROS) generated in photoreaction is the key factor 

for PDT as it can induce cytotoxicity via damage to the biomolecules including proteins, 

nucleic acids and lipids. Therefore, compounds PS1 to PS5 were evaluated for their 

effects on the production of ROS by DPBF method. The figure 3 shows the results of 

ROS production by the compounds irradiated with different energy densities. All the 

PS molecules produced ROS in an energy-dependent fashion. Remarkably, the 
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photoactivated production of ROS was more intense with PS4, suggesting that this 

compound has a higher quantum yield for ROS generation. The PS3, on the contrary, 

showed a lower production of ROS. Based on these obsevation, it was clearly that the 

different attached ligands had a great impact on their ROS production, and the effect 

factors could mainly be the physicochemical property of the ligands. Given these 

results, it is possible to suggest that all of the PS molecules described in this study are 

potential candidates for anticancer PDT. 
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Figure 3. Photoactivated production of reactive oxygen species (ROS) by the candidate 

photosensitizers (PS1 to PS5) expressed as arbitrary units (AU). 

 

3.4. Photodynamic activity against cells in vitro 

Finally, photodynamic activities of PS1 to PS5 against two cell lines, including 

murine breast adenocarcinoma cell 4T1 and normal murine fibroblast cell NIH-3T3, 

were tested by irradiated (PDT) with 25.8 J/cm2 of light (λ 660 nm) or not (dark) in MTT 

bioassay. As shown in Fig. 4, all the tested compounds did not display significant 

toxicity towards both NIH-3T3 and 4T1 cells in the dark with inhibition ratio less than 

50% within the concentration of 2.5 to 40 M. The absence of toxicity in the dark is a 

requirement for a desirable PS, as it avoids that non-irradiated tissues become affected 

during a PDT protocol. Regarding the photodynamic activity, it is remarkable that both 

PS1 and PS4 robustly reduced the viability of 4T1 and NIH3T3 cells in a concentration-

dependent manner (p<0.05) when they were photoactivated. However, both 

compounds lack selectivity toward cancerous 4T1 compared with NIH-3T3, which 
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might to due to the attached ligands, methyl propionate and pregnenolone, are 

lipophilic groups making the compounds pass the cell member more easily. So both 

compounds can easily go inside of cell and works as PS in PDT condition. Compound 

PS3 presented no evident photodynamic activity against 4T1 cells. Interesting results 

were also obtained with PS5, which showed a significant antiproliferative activity 

against 4T1 cells but no activity against NIH-3T3 in PDT experiment, indicating that this 

compound might have a better selectivity towards the cancerous cells tested in this 

study. It was well-known that the surface of cancer cells are negetive charged, while 

the compound PS5 is more charged by positive charge, which means that this 

compound could be more tent to interact with cancerous cells. This was speculated to 

be the reason why PS5 dispyled selectivity toward cancerous 4T1 cells. Of course, more 

experiment should be conducted to check this speculation and confirm its clear action 

mechansim.  

In our opinion, the compounds PS1, PS4 and PS5 are more interesting and worth 

more further work to study their activity and PDT application. Alought PS1 and PS4 

lack selectivity towards cancerous cells, this drawback could be avolided by applying 

nanotechnoligy and limiting the light illumination to the patholigical tissues. With 

regards to PS5, some further structural modification works are need to make its 

activity more potent. For example, we can change the length of diamine linkage to 

make it longer or shorter to find the most optimal distance between two 

benzo[a]phenoxazinium fragment. Of course, execpt cancer cell models the activity of 

these compounds can be tested in other pharmacological model, such as antifugal or 

antibacterial models. 
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Figure 4. Viability of 4T1 and NIH-3T3 cells treated with different concentrations of 

compounds PS1 to PS5 in dark or PDT condition. 

 

4. Conclusions 

Four benzo[a]phenoxazinium chlorides PS1-PS4 bearing different functional 

groups in amino side chain and one dimmer PS5 were prepared. The investigation on 

optical properties of PS1 to PS5 in water indicated that they are red light absorbers, 

and exhibited emissions at about 681 nm with the Stokes shifts of about 35 nm after 

excited at 600 nm. Meanwhile, they showed low fluorescence quantum yield (0.025-

0.116), indicating their great potential in undergoing intersystem crossing to form a 

relatively long-lived triplet state. The ROS production study revealed that all these 

benzo[a]phenoxaziniums produced ROS in an energy-dependent fashion with PS4 

having a higher ROS quantum yield. Finally, the anticancer photodynamic therapy (PDT) 

activities of this series of benzo[a]phenoxaziniums were evaluated for their anticancer 

PDT activity for the first time. The bioassay results indicated that PS1 and PS4 showed 

significantly anticancer PDT activity against normal murine fibroblasts cell NIH-3T3 and 
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caner cell 4T1 but have no activity in the dark condition, and PS5 showed intriguing 

anticancer PDT activity by selectively targeting 4T1 cells. Together with the optical 

properties and photodynamic bioassay results, this series of benzo[a]phenoxazinium 

derivatives can be highlighted as new anticancer PS. 
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Figure 1. 1H spectrum of PS-1 
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Figure 2. 13C spectrum of PS-1 

 

 

 

Figure 3. LR-MS spectrum of PS-1 
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Figure 4. HR-MS spectrum of PS-1 

 

 

 

Figure 5. 1H spectrum of PS-2 
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Figure 6. 13C spectrum of PS-2 

 

 

 

 

Figure 7. LR-MS spectrum of PS-2 
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Figure 8. HR-MS spectrum of PS-2 

 

 

 

 

Figure 9. 1H spectrum of PS-3 
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Figure 10. 13C spectrum of PS-3 

 

 

 

 

Figure 11. LR-MS spectrum of PS-3 
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Figure 12. HR-MS spectrum of PS-3 

 

 

 

 

 

 

Figure 13. 1H spectrum of PS-4 
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Figure 14. 13C spectrum of PS-4 

 

 

 

 

Figure 15. LR-MS spectrum of PS-4 
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Figure 16. HR-MS spectrum of PS-4 

 

 

 

 

 

 

 

Figure 17. 1H spectrum of PS-5 
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Figure 18. 13C spectrum of PS-5 

 

 

 

 

Figure 19. LR-MS spectrum of PS-5 
 



68 
 

68 
 

 

 

 

Figure 20. HR-MS spectrum of PS-5 
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CONCLUSÃO 

Neste trabalho foram apresentados três artigos: 1) uma revisão que 

expôs a importância do desenvolvimento de novos fotossensibilizantes, bem 

como discutiu as estratégias utilizadas atualmente para atingir este objetivo; 2) 

um artigo de pesquisa, que descreveu a síntese, a caracterização e os testes 

in vitro de eficácia fotodinâmica do composto DHX-1 livre e incorporado a um 

carreador lipídico nanoestruturado; 3) um artigo de pesquisa que descreveu a 

síntese de cinco compostos derivados de benzo[a]fenoxazínio (PS1 ao PS5) 

que apresentaram atividade fotodinâmica contra células de adenocarcinoma 

mamário murino 4T1 in vitro. Os resultados destes estudos gerou moléculas 

com grande potencial para serem utilizadas como fotossensibilizantes para 

terapia fotodinâmica anticâncer. 
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