N

Universidade de Brasilia

Instituto de Ciéncias Exatas
Departamento de Ciéncia da Computagao

A Machine-Verified Theory of Commuting Strategies
for Product-Line Reliability Analysis

Thiago Mael de Castro

Brasilia
2019

~
Universidade de Brasilia

Instituto de Ciéncias Exatas
Departamento de Ciéncia da Computagao

A Machine-Verified Theory of Commuting Strategies
for Product-Line Reliability Analysis

Thiago Mael de Castro

Tese apresentada como requisito parcial

para conclusao do Doutorado em Informaética

Orientador
Prof. Dr. Vander Ramos Alves

Brasilia
2019

Ficha catalografica elaborada automaticamente,
com os dados fornecidos pelo(a) autor(a)

CC355m

Castro, Thiago Mael de

A Machi ne-Verified Theory of Comuting Strategies for
Product-Line Reliability Analysis / Thiago Mael de Castro;
ori entador Vander Ranps Alves. -- Brasilia, 2019.

230 p.

Tese (Doutorado - Doutorado em |nformatica) --
Uni ver si dade de Brasilia, 2019.

1. Software product lines. 2. Reliability analysis. 3.
Model checking. 4. Formal verification. 5. Interactive
theorem proving. |. Alves, Vander Ranps, orient. |l. Titulo.

~
Universidade de Brasilia

Instituto de Ciéncias Exatas
Departamento de Ciéncia da Computagao

A Machine-Verified Theory of Commuting Strategies
for Product-Line Reliability Analysis

Thiago Mael de Castro

Tese apresentada como requisito parcial

para conclusao do Doutorado em Informatica

Prof. Dr. Vander Ramos Alves (Orientador)

Universidade de Brasilia

Prof2 Dr.2 Genaina Nunes Rodrigues Dr. Maurice H. ter Beek

Universidade de Brasilia Consiglio Nazionale delle Ricerche

Prof. Dr. Rohit Gheyi

Universidade Federal de Campina Grande

Prof2 Dr.2 Genaina Nunes Rodrigues

Coordenadora do Doutorado em Informéatica

Brasilia, 13 de dezembro de 2019

To all the people who (indirectly) supported this research.

Acknowledgements

To my beloved wife, Isabela, who is able to spot frying neurons from a distance. Thank
you for supporting me whenever I stumbled and for helping me drop the keyboard when
I needed some fresh air. This work is yours as much as it is mine.

Thanks to all my families—by birth and by choice (not mutually exclusive)—for all
the inspiration and support throughout this amazing journey of life and work.

Thanks to my supervisors, Vander and Leopoldo, for trusting me and for understan-
ding my limitations. This research would not be possible without your precise and reliable
guidance, and this researcher would not be possible without your respect and the example
you set. I am really proud of having you as mentors, and I will make sure to carry on the
lessons I learned from you.

Thanks to all the present and past generations of students within our product-line
research group, for being the shoulders on which I stand. In particular, I will be forever
grateful to André Lanna and our discussions in the lab, which eventually led to a certain
theory of commuting strategies for product-line analysis.

Thanks to Sven Apel and Pierre-Yves Schobbens for the rigorous and precise con-
tributions that established the foundations of this work. T would also like to thank the
members of the qualifying and defense examination boards—Genaina Rodrigues, Mau-
rice ter Beek, Rohit Gheyi, and Alexandre Mota—for the detailed feedback and for the
extremely interesting discussions about related and future work.

Last, but not least, I would like to thank my coworkers from the past 12 years. You
all contributed in some way to myself as a person and as an engineer; by induction, you
also contributed to me as a researcher. Special thanks to the C2 development team:;
your autonomy, expertise, and selfless dedication assured me that our mission would be

accomplished no matter what, so that I could focus my out-of-office time in this research.

“It is hard to claim that you know what you are doing,
unless you can present your act as a deliberate choice

out of a possible set of things you could have done as well.”
(Edsger W. Digkstra, On Program Families)

Resumo Expandido

Engenharia de linha de produtos de software é uma forma de gerenciar sistematicamente
a variabilidade e a comunalidade em sistemas de software, possibilitando a sintese auto-
matica de programas relacionados (produtos) a partir de um conjunto de artefatos reuti-
lizaveis. No entanto, o nimero de produtos em uma linha de produtos de software pode
crescer exponencialmente em funcao de seu niimero de caracteristicas. Mesmo linhas de
produtos com dezenas ou centenas de op¢oes de configuragao (features) podem dar ori-
gem a milhoes de produtos, tornando invidvel verificar a qualidade de cada um desses
produtos isoladamente. Nao obstante, linhas de produtos de software critico (por exem-
plo, nos dominios de aviacao e sistemas médicos) necessitam garantir que seus produtos
sao confidveis.

Existem diversas abordagens cientes de variabilidade para analise de linha de produ-
tos, as quais adaptam técnicas de anélise de produtos isolados para lidar com variabilidade
de forma eficiente. Tais abordagens podem ser classificadas em trés dimensoes de ana-
lise: product-based (os objetos de anélise sdo produtos ou modelos destes), family-based
(apenas artefatos de dominio e combinagoes véalidas sao verificados) e feature-based (arte-
fatos de dominio que implementam uma dada feature sdo analisados isoladamente) [85].
Mais de uma dimensao pode ser combinada em uma mesma técnica, dando origem a
analises feature-family-based (features sao parcialmente analisadas isoladamente, depois
combinam-se os resultados intermediarios de maneira family-based) ou family-product-
based (artefatos de dominio sdo parcialmente analisados considerando-se apenas confi-
guracoes validas, culminando em resultados que podem, entao, ser submetidos a analise
enumerativa), por exemplo.

Essas estratégias combinadas possuem vantagens e desvantagens distintas, as quais
variam de acordo com a técnica de andlise em questao. Por esse motivo, h& estudos
empiricos que avaliam as rela¢oes de compromisso especificas a cada técnica [49, 54, 59, 92].
Além disso, a utilizagdo correta e automatica (ou mesmo sistematica) de técnicas para
analise de software consagradas em linhas de produtos ainda é uma questao de pesquisa
nao respondida. Assim, a corretude de técnicas para analise de linhas de produtos precisa

ser demonstrada caso a caso.

Vil

Abordagens existentes para analise de linhas de produtos frequentemente estendem
técnicas de andlise de software tradicionais (ou seja, aplicaveis a produtos independentes)
para operar em linhas de produtos de maneira family-based [14, 19, 34, 62, 91|. Entao,
demonstra-se a corretude de tais abordagens por comparagao a estratégia product-based
correspondente. No contexto de analise de confiabilidade, particularmente, nao existe uma
teoria que compreenda (a) uma especificagdo formal das trés dimensoes e das estratégias
de andlise resultantes e (b) prova de que tais analises sao equivalentes umas as outras. A
falta de uma teoria com essas propriedades dificulta que se raciocine formalmente sobre
o relacionamento entre as dimensoes de andlise e técnicas de anélise derivadas.

De fato, é fundamental provar que um método de analise produz resultados corretos,
especialmente para sistemas criticos. Por exemplo, Lanna et al. [54] propuseram uma
estratégia feature-family-based para anélise de confiabilidade de linhas de produtos sob o
ponto de vista do usuario. Essa abordagem foi avaliada empiricamente, e os resultados
indicam que possui melhor desempenho que as técnicas previamente existentes, tanto em
relacao ao tempo quanto ao uso de memoria. Particularmente no caso de uma linha de
produtos critica de redes de sensores do corpo humano [70]| (com 16 features e 298 confi-
guragoes possiveis), observou-se que a maior parte das estratégias existentes seria inviavel
se mais que b5 novas features fossem adicionadas em versoes futuras [54]. Entretanto, a
falta de evidéncia de que as diferentes estratégias sao mutuamente equivalentes limita os
resultados desses estudos empiricos existentes.

Para ajudar a preencher essa lacuna, este trabalho investiga a corretude das estratégias
de andlise avaliadas por Lanna et al. [54]—ou seja, técnicas de andlise de confiabilidade
orientada ao usudrio, que operam a partir de técnicas de model checking aplicadas a mo-
delos baseados em cadeias de Markov de tempo discreto (Discrete-time Markov Chains—
DTMC). Correspondentemente, utilizamos uma defini¢ao de confiabilidade como a proba-
bilidade de execugoes dos modelos em questao alcancarem estados que denotam sucesso.
Embora tais modelos nao sejam genéricos a ponto de representar qualquer sistema, eles as-
sumem premissas que contemplam linhas de produtos de interesse, como redes de sensores
do corpo humano.

Nesse contexto, formalizamos sete abordagens para analise de confiabilidade em linhas
de produtos, cobrindo todas as trés dimensoes de analise e incluindo a primeira instancia
de anélise feature-family-product-based na literatura [15]. Provamos que as estratégias for-
malizadas sao corretas em relacao a abordagem para anélise de confiabilidade de produtos
individuais, fortalecendo as comparagoes empiricas entre elas. Desse modo, engenheiros
podem escolher a estratégia mais apropriada a linha de produtos em questao, seguros de

sua corretude.

viil

A formalizacao aqui apresentada parte de uma caracterizagdo matemética de mode-
los de linhas de produtos composicionais como um conjunto finito de modelos de linhas
de produtos anotativas, o qual é dotado de uma estrutura conferida por uma relacao
bem-fundada de dependéncia entre os modelos. Tendo modelos composicionais ou ano-
tativos, pode-se optar por derivar modelos sem variabilidade (representando produtos
individuais), cuja confiabilidade é, entao, calculada por meio de model checking. Alter-
nativamente, pode-se aplicar model checking paramétrico, o que resulta em expressoes
algébricas que representam a confiabilidade dos modelos em funcao das opcoes de confi-
guracao. As expressoes resultantes podem ser valoradas de forma enumerativa (ou seja,
para cada configuracao possivel); como alternativa, podemos ressignificar a semantica das
expressoes (lifting) para trabalhar com diagramas de decisao algébricos (Algebraic De-
cision Diagrams—ADD). Utilizando ADD, é possivel realizar eficientemente operagoes

aritméticas cuja semantica equivale a enumerar todas as configuracoes possiveis.

codificacao de variabilidade

Modelo derivagao derivacao Modelo
.. > <
composicional DIMC anotativo
model |
model checking checking codificagao de model checking

paramétrico U -Wltlab}hdﬂd(‘ paramétrico
- T ¥

Expressoes valoragio < valoragio ~ ~
y » Confiabilidade < Expressao

composicionais anotativa
! semantica |
. er ~” | ! . e ~
ressignificagio ! de ADD ' ressignificagao
para ADDs | . - | para ADDs
! valoracao valoracao !
Ex r(:,ss()es usando usando Ex rvessao
PDIEssO®S ADDs ADD de ADDs Dres
composicionais ---------- > - D anotativa
. confiabilidade .
ressignificadas ressignificada

—— feature-based
--= family-based
> product-based

Figura 1: Diagrama comutativo de estratégias para analise de confiabilidade em linhas de
produtos (versao resumida)

Adicionalmente, apresentamos essas opc¢oes alternativas em um diagrama comutativo
de passos intermediarios de analise (Figura 1), o qual relaciona estratégias diferentes e per-
mite reusar demonstracoes de corretude entre elas. Tal diagrama representa graficamente
as possiveis composicoes de funcoes, ilustrando objetivamente a dimensao de analise de
linha de produtos utilizada (por meio da cor e da forma das setas). Essa visdo contribui

para uma compreensao mais abrangente sobre os principios subjacentes as estratégias, o

X

que visualiza-se poder ajudar outros pesquisadores a alcar técnicas de anélise de software
para abordagens cientes de variabilidade ainda inexploradas.

Além disso, reduzimos o risco de erro humano por meio da mecanizacao da teoria resul-
tante no provador interativo de teoremas chamado PVS (Prototype Verification System).
Essa ferramenta permite a especificacao formal de defini¢oes, lemas e teoremas, além de
possibilitar automagao e verificacao das demonstracoes. Como resultado do esforco de
mecanizagao, identificamos erros e imprecisoes na versao manualmente especificada de
nossa teoria, os quais foram consequentemente corrigidos.

Com isso, além de aumentar a confianca na corretude de nossos resultados, disponi-
bilizamos uma teoria verificada por maquina potencialmente reutilizavel. Em particular,
parte das especificagoes e teoremas desenvolvidos em PVS referem-se a topicos de interesse
mais amplo, como DTMC, expressoes algébricas, ADD, conjuntos e listas; portanto, estao
e processo de submissao para analise e integracao a biblioteca PVS da NASA. Ademais,
documentamos as licoes aprendidas durante o processo de mecanizacao, as quais serao
submetidas a apreciacao da comunidade cientifica.

Em adicao as contribuigoes aqui apresentadas, espera-se que este trabalho, em longo
prazo, apoie a construcao do arcabougo para uma teoria geral de andlise em linhas de
produtos. Dessa forma, almeja-se contribuir para o problema mais amplo de alcar téc-
nicas de analise de software para operar em linhas de produtos de maneira correta por

construgao.

Palavras-chave: Linhas de produtos de software, Analise de confiabilidade, Model chec-

king, Verificagao formal, Prova interativa de teoremas

Abstract

Software product line engineering is a means to systematically manage variability and
commonality in software systems, enabling the automated synthesis of related programs
(products) from a set of reusable assets. However, the number of products in a software
product line may grow exponentially with the number of features, so it is practically
infeasible to quality-check each of these products in isolation. Nonetheless, product lines
of safety-critical software (e.g., in the domains of avionics and medical systems) need to
ensure that its products are reliable.

There are a number of variability-aware approaches to product-line analysis that adapt
single-product analysis techniques to cope with variability in an efficient way. Such ap-
proaches can be classified along three composable analysis dimensions (product-based,
family-based, and feature-based), but, particularly in the context of reliability analysis,
there is no theory comprising both (a) a formal specification of the three dimensions and
resulting analysis strategies and (b) proof that such analyses are equivalent to one an-
other. The lack of such a theory hinders formal reasoning on the relationship between
the analysis dimensions and derived analysis techniques. Moreover, as long as there is
no evidence that the different examined strategies are mutually equivalent, the existing
empirical studies comparing them will have limited results.

To address this issue, we formalize seven approaches to user-oriented reliability analysis
of product lines, covering all three analysis dimensions and including the first instance of a
feature-family-product-based analysis in the literature. We prove the formalized analysis
strategies to be sound with respect to reliability analysis of a single product, thereby
strengthening the existing empirical comparison between them.

Furthermore, we present a commuting diagram of intermediate analysis steps, which
relates different strategies and enables the reuse of soundness proofs between them. Such
view contributes to a more comprehensive understanding of underlying principles used
in these strategies, which we envision could help other researchers to lift existing single-
product analysis techniques to yet under-explored variability-aware approaches.

Additionally, we reduce the risk of human error by mechanizing the resulting theory

in the PVS interactive theorem prover. As a result, we identified and corrected errors and

xi

imprecisions of the handcrafted version. Hence, we document lessons learned throughout

the mechanization process and provide a potentially reusable machine-verified theory.

Keywords: Software product lines, Reliability analysis, Model checking, Formal verifica-

tion, Interactive theorem proving

xil

1.1

2.1
2.2

2.3

2.4

2.5
2.6
2.7
2.8
2.9

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8

List of Figures

Diagrama comutativo de estratégias para analise de confiabilidade em li-

nhas de produtos (versao resumida) L.

Overview of the commutative diagram of product-line reliability analysis

strategies L L L e e e

Feature model of the BSN product line [76]
Example graph view of a DTMC and the corresponding reachability prob-
ability
Example graph view of a PMC and the intuition for the corresponding
reachability probability expression,
Elimination of state s in the parametric reachability probability algorithm
(adapted from Hahn et al. [41])
Statement of Lemma 1 L o000 oo
ADD Ay representing the Boolean function f in Equation (2.2)
Example of an arithmetic operation over ADDs
Example of an ITE operation over ADDs
Alternative ordering for encoding the Boolean function f in Equation (2.2)
asan ADD . . .

Vending machine product line example
Annotative PMC for the vending machine
Compositional PMCs for the vending machine
Example of a partial composition of two PMCs
Dependency relation induced in the vending machine
Feature disabler compositional PMC P,
Commutative diagram of product-line reliability analysis strategies.
Example of family-product-based analysis (& followed by o) in contrast to

a product-based analysis (7 followed by «) of an annotative PMC, for a

configuration satisfying x’s presence condition,

xiil

3.9

3.10
3.11
3.12
3.13
3.14
3.15
3.16
3.17
3.18
3.19
3.20
3.21

4.1
4.2
4.3
4.4
4.5

4.6
4.7

Al

B.1
B.2

C.1

D.1
D.2
D.3
D4
D.5
D.6
D.7

Statement of Theorem 1 57

Example of lifted expression evaluation using p. 61
Statement of Theorem 3 62
Alternative views of the statement of Theorem 4 63
Statement of Theorem 5, 66
Example of lifted compositional expression evaluation 67
Statement of Theorem 6, 69
Alternative views of the statement of Theorem 7. 70
Example ITE operator for PMCs. 71
Statement of Theorem 8 73
Statement of Theorem 9 76
Commuting diagram leading to the feature-family-product-based strategy . 77
Statement of Theorem 10., 78
Proof of Lemma 2 in PVS (left) and Coq (right) 83
Elimination of state sy, “loses” variable x 112
Intuition for lemmas regarding state elimination 114
Proportion of specification and proof effort 115

Comparison of PVS theories regarding percentage of mechanized lemmas

versus percentage of the original lemmas 117
Usage of prover commands per category 122
Intuition for lemmas regarding state elimination 135
Generic PMCs in Lemma 13 o o 0oL 166
Complete annotative PMC for the vending machine 181
Compositional PMCs for the vending machine 182

Dependencies between PVS theories (direct dependencies that can be de-

duced from transitivity are filtered for readability) 188
Overall theory structure L o oo 201
Overall theory structure (only definitions) 202
Overall theory structure (only theorems and lemmas) 203

Dependencies for Theorem 1 (Soundness of family-product-based analysis) 204

Dependencies for Theorem 4 (Soundness of family-based analysis) 205

Dependencies for Theorem 5 (Soundness of feature-product-based analysis) 206
(

Dependencies for Theorem 7 (Soundness of feature-family-based analysis) . 207

Xiv

D.8 Dependencies for Theorem 10 (Soundness of feature-family-product-based

analysis) e e e

XV

1.1

C.1
C.1
C.1
C.1
C.1
C.2
C.2
C.2
C.2
C.2
C.2
C.2
C.3
C.4
C4
C4
C.5

List of Tables

Research outline L 8
Description of PVS theories, 183
Description of PVS theories (continued) 184
Description of PVS theories (continued) 185
Description of PVS theories (continued) 186
Description of PVS theories (continued) 187
Mapping between the manual and the mechanized specifications 189

Mapping between the manual and the mechanized specifications (continued)190
Mapping between the manual and the mechanized specifications (continued)191
Mapping between the manual and the mechanized specifications (continued)192
1193
)
)

Mapping between the manual and the mechanized specifications (continued)194

Mapping between the manual and the mechanized specifications (continued

Mapping between the manual and the mechanized specifications (continued)195

Categories of proof commands L o000 196
Proof commandso 196
Proof commands (continued) Lo oo 197
Proof commands (continued) Lo oL oL 198
PVS specification and coverage of the original theory 199

XVl

List of Definitions

Property (Reachability probability for DTMCs) 20
Definition (Parametric Markov Chain) 20
Definition (Expression evaluation) 21
Definition (Well-defined evaluation) 21
Definition (State elimination step)o L. 23
Definition (Annotative PMC) o o 38
Definition (Presence function) L. 39
Definition (Evaluation factory) oL 40
Definition (Annotative probabilistic model)o 40
Definition (DTMC derivation) 41
Definition (Compositional PMC) 0L 44
Definition (Compositional PMCslot) 44
Definition (Partial PMC composition) 45
Definition (Identifying function) L. 47
Definition (Dependency relation induced in compositional PMCs) 47
Definition (Minimal and maximal compositional PMCs) 48
Definition (Feature disabler compositional PMC) 49
Definition (Composition factory) 50
Definition (Compositional probabilistic model) 50
Definition (Derivation by composition) 51
Definition (Non-parametric model checking) 53
Definition (Parametric model checking) L. 55
Definition (Expression evaluation) 55
Definition (Expression lifting), 58
Definition (Lifted evaluation factory) 59
Definition (Variability-aware expression evaluation) 60
Definition (Compositional evaluation factory) 64
Definition (Lifted compositional evaluation factory) 67
Definition (Variability encoding function for PMCs) 72

xvii

29
30
31
32

33
34
35

Definition (Variability encoding of PMCs) 72
Definition (ITE operator for expressions) 74
Definition (Variability encoding function for expressions) 74
Definition (Variability encoding of expressions) 75
Definition (Compositional PMC renaming) 164
Definition (Total PMC composition) 164
Definition (ITE operator for PMCs) 173

XVI1il

—_

O =~ =1 O O Ut i W U N = = W N

10

10
11
12

S = Ot

List of Theorems

Lemma (Parametric probabilistic reachability soundness) 24
Lemma (Evaluation well-definedness for annotative models). 41
Lemma (Commutativity of PMC and expression evaluations) 56
Theorem (Soundness of family-product-based analysis) 57
Lemma (Soundness of expression lifting) 59
Theorem (Soundness of variability-aware expression evaluation) 60
Lemma (Soundness of lifted annotative evaluation factory) 61
Theorem (Soundness of expression evaluation using p) 61
Theorem (Soundness of family-based analysis) 62
Theorem (Soundness of feature-product-based analysis) 66
Lemma (Soundness of lifted compositional evaluation factory) 68
Theorem (Soundness of expression evaluation using ¢) 68
Theorem (Soundness of feature-family-based analysis) 69
Lemma (r-equivalence for ITE)o oo 71

Theorem (r-equivalence of variability encoding and derivation by composi-

BION) v v e e e e e 72
Lemma (Extensional equality for expression ITE) 74
Theorem (Soundness of variability encoding for expressions) 75
Theorem (Soundness of feature-family-product-based analysis) 77
Lemma (Existence of minimal PMCs) 162
Lemma (Existence of maximal PMCs) 162
Lemma (Derivation by composition terminates) 163
Lemma (Compositional evaluation terminates) 163
Lemma (r-equivalence of total composition and evaluation) 165

Corollary (r-equivalence of total composition with DTMCs and evaluation) 168

Theorem (Soundness of feature-product-based analysis) 168
Lemma (Soundness of expression lifting) 170
Lemma (Soundness of lifted compositional evaluation factory) 171

Xix

Lemma (r-equivalence for ITE) 174

Theorem (r-equivalence of variability encoding and derivation by composi-

BION) . e e 176
Lemma (Extensional equality for expression ITE) 177
Theorem (Soundness of variability encoding for expressions) 178

XX

Acronyms

ADD Algebraic Decision Diagram.

CTL Computation Tree Logic.

CTMC Continuous-Time Markov Chain.
DTMC Discrete-Time Markov Chain.
JML Java Modeling Language.

MDP Markov Decision Process.

PCTL Probabilistic Computation Tree Logic.
PMC Parametric Markov Chain.

PVS Prototype Verification System.

SPL Software Product Line.
TCC Type-correctness Condition.

UML Unified Modeling Language.

xx1

Contents

List of Figures xiii
List of Tables xvi
List of Definitions xvii
List of Theorems xix
Acronyms xxi
1 Introduction 1
1.1 Problem Statement oo 2
1.2 Solution e e e e e 3
1.3 Summary of Contributions 5
1.4 Outline.o 6

2 Background 9
2.1 Software Product Lines o o 9
2.1.1 Main Concepts o i i e e e 10

2.1.2 Variability Implementation0 0oL 13

2.1.3 Product-Line Analysis 15

2.2 Reliability Analysis 17
2.2.1 Parametric Markov Chains 20

2.2.2 Parametric Probabilistic Reachability 22

2.3 Algebraic Decision Diagrams 24
24 PVS e 27

3 Commuting Strategies for Product-line Reliability Analysis 35
3.1 DTMC Models of Product Lines 35
3.1.1 Annotative Models oo 38

3.1.2 Compositional Models o oL, 42

3.2 Reliability Analysis Strategies L. 51

3.2.1 Product-based Strategies oL 53

3.2.2 Family-based Strategies 54

3.2.3 Feature-based Strategies 0. 63

3.2.4 Bridging Compositional and Annotative Models 70

3.2.5 Feature-family-product-based Strategy 76

3.3 Concluding Remarks o 78

4 Formalization in PVS 81
4.1 Specification Strategyo e 82
4.2 Walk-through 85
4.2.1 Foundations Lo e 85

4.2.2 Family-product-based Strategy 94

4.2.3 Family-based Strategy o0 97

4.2.4 Feature-based Strategieso o L oL, 100

4.2.5 Variability-encoding Lo 0oL 106

4.3 Mechanization Effort o oo 115
4.3.1 Distribution of Lemmas, 116

4.3.2 Originof Lemmas o 118

4.3.3 Proof Automation0 0. 119

4.3.4 Theory Evolution o o 124

4.4 Lessons Learned L oL 125
4.5 Limitations and Threats to Validity 130
4.5.1 AXIOMS e e e e e 130

4.5.2 Unfinished Mechanized Proofs 132

5 Conclusions 139
5.1 Discussion of Results o oo 140
5.2 Threats to Validity o 141
5.3 Related Work e 143
5.4 Future Work o e 148
Bibliography 151
Acronyms 161
A Additional Proofs 162
A.1 Existence of Minimal and Maximal PMCs 162
A.2 Termination Lemmas 163

A.3 Soundness of Feature-product-based Analysis 163

A4 Lifting Lemmas e e e e 170
A.5 Variability Encoding o 173
A.5.1 Variability Encoding of PMCs L. 173

A.5.2 Variability Encoding of Expressions 177

B Probabilistic Models 180
C Mechanization Mapping 183
D Theory Dependencies 200

XX1V

Chapter 1
Introduction

Software product line engineering is a means to systematically manage variability and
commonality in software systems, enabling the automated synthesis (derivation) of related
programs (known as wvariants or simply products) from a set of reusable assets (known
as domain artifacts) |3, 25, 73]. In a product line, variability is modeled in terms of
features, which are distinguishable characteristics that are relevant to stakeholders of the
system |26]. This methodology improves productivity and time-to-market, and it eases
mass customization of software |[73]|.

In recent years, product lines have been widely applied in both industry 8, 10, 45, 87,
89, 92, 94| and academia |3, 25, 35, 44, 73, 95|, in particular to safety- and mission-critical
systems [32, 33, 53, 76, 94]. Model checking is of particular interest to quality assurance
of such systems. It is a verification technique that explores all possible system states in
a systematic manner, effectively checking that a given system model satisfies a certain
property [7]. Among the existing quality properties, this work focuses on user-oriented
reltability, which is informally defined as the probability that the system will give the
correct output in response to a typical set of input data [18].

However, the number of products in a product line may grow exponentially with
the number of features, giving rise to an exponential blowup of the configuration space
[3, 12, 22, 23|. The Linux kernel, for instance, has approximately 10,000 configuration
options (i.e., features) |3|. Indeed, even smaller product lines, with tens to hundreds
of features, may have millions of possible configurations [54|, so it is often infeasible to
quality-check each of these products in isolation. Nonetheless, product lines of safety-
critical software (e.g., in the domains of avionics and medical systems) need to ensure
that its products are reliable.

Since software verification techniques for the single-product case are widely used by
the industry, it is beneficial to exploit their maturity to increase quality while reducing

cost and risk [7]. Accordingly, a number of approaches to product-line analysis adapt

established analysis techniques—e.g., type checking, data-flow analysis, control-flow anal-
ysis, and theorem proving—to cope with variability [85]. In particular, several model
checking techniques have been successfully lifted to operate on product lines [19, 21, 23,
24, 34, 51, 82, 85|, some of which explicitly consider reliability as a probabilistic prop-
erty [36, 54, 64, 76].

Such product-line analyses can be classified along three dimensions: product-based
(the analysis is performed on generated products or models thereof), family-based (only
domain artifacts and valid combinations thereof are checked), and feature-based (domain
artifacts implementing a given feature are analyzed in isolation, regardless of their valid
combinations) [85]. More than one dimension can be exploited in a given technique,
giving rise to feature-family-based analyses (features are partially analyzed in isolation
and then the intermediate results are combined in a family-based fashion) and family-
product-based analyses (domain artifacts are partially analyzed considering only valid
configurations, yielding a result that is prone to enumerative analysis), for instance.

These combined strategies have advantages and disadvantages, but the compromises
are specific to each technique. Thus, empirical studies assess the actual trade-offs of
different strategies in concrete usage scenarios [49, 54, 59, 92]. Moreover, it is still an
open research question to perform automated (or even systematic) lifting of standard
analysis techniques to correctly operate on product lines. Therefore, the soundness of

proposed techniques must be proved for each case.

1.1 Problem Statement

The existing approaches to product line analysis often lift standard (single-product) anal-
ysis techniques to work with product lines in a family-based fashion [14, 19, 34, 62, 82, 91].
Soundness of these approaches is then demonstrated by comparison to the corresponding
product-based strategy. In the context of reliability analysis, particularly, there is no
theory comprising both (a) a formal specification of the three dimensions and resulting
analysis strategies and (b) proof that such analyses are equivalent to one another (i.e.,
they compute the same reliability). The lack of such a theory hinders formal reasoning
on the relationship between the dimensions and derived analyses.

Indeed, proving that an analysis method yields a correct result is a fundamental issue,
especially for critical systems. For instance, Lanna et al. |54] proposed a feature-family-
based strategy to user-oriented reliability analysis of product-lines. This approach was
empirically assessed, and the results indicate that the proposed technique outperforms
the existing ones with respect to both elapsed time and memory usage. Specifically for a

safety-critical product line of body-sensor networks [70] (with 16 features and 298 possible

configurations), Lanna et al. [54| found that most existing strategies would not be feasible
if more than 5 new features were added in future versions. However, as long as there is no
evidence that the different examined strategies are mutually equivalent, empirical studies
comparing them will have limited results.

Furthermore, this problem is also relevant in a broader context: is there a principle
and possibly automated way to lift a given specification and analysis technique to product
lines [85]7 Answers to that question may bring the ability to derive product-line analysis
techniques that are correct by construction. On the other hand, we believe that such a
broad investigation could benefit from having a corpus of specific theories, each relating

all three analysis dimensions with regard to a single analysis technique.

1.2 Solution

In this work, we constrain our investigation to the analysis strategies assessed by Lanna
et al. [54]—that is, we examine the correctness of product-line analysis techniques that
are based on Discrete-time Markov Chain (DTMC) models of user-oriented reliability
analysis [18]." This way, we aim to tackle the issue of not having correctness proofs about

a specific kind of analysis.

Research Question

In the context of user-oriented product-line reliability analysis specified by means
of DTMC models, is it true that different analysis strategies yield equivalent results

for any given product line?

This question was partially answered with our previous work [16], which formally
related different strategies in the product-based and family-based dimensions of product-
line analysis, providing analytical evidence that they commute. Moreover, the formal-
ized strategies were implemented” as a product line of product-line analysis tools, called
ReAna-SPL [54] (publicly available at https://github.com/SPLMC/reana-spl), which
also extended the set of supported strategies with one feature-product-based and one
feature-family-based. The latter work found empirical evidence that the strategies com-
mute.

This work leverages the aforementioned results to also cover the feature-based dimen-

sion, reusing definitions and theorems as much as possible. The key to achieving this reuse

1Such models are not general enough to represent any given system, but their assumptions are rea-
sonable for some product lines of interest (e.g, a body-sensor network) [18, 54].

2As of now, it is an open issue to formally relate the existing implementation to the mathematical
specification. Nevertheless, such correspondence is outside the scope of this work.

https://github.com/SPLMC/reana-spl

was to mathematically characterize a compositional model as a finite set of annotative
models, along with an associated structure denoted by a well-founded dependency relation
(more details on this are presented in Section 3.1). Furthermore, we employ Algebraic
Decision Diagrams [6] to encode the variability in algebraic expressions in a way that
optimizes arithmetic operations.

Based on the product-line analysis taxonomy proposed by Thiim et al. [85], we now
present a formalization of a total of seven approaches to reliability analysis of product
lines: two product-based, a family-based, a family-product-based, a feature-family-based,
a feature-product-based, and a feature-family-product-based. In particular, the latter of
these is the first approach to combine all three dimensions in a single strategy.” This
formalization, which covers all three product-line analysis dimensions, provides analytical
evidence that the strategies yield the same result for any product line within our context.
Thus, a practitioner can choose among the existing strategies the one that is more suitable
to the product line at hand.

variability encoding

Compositional derivation derivation Annotative
I » DTMC < ‘
model model
model
checking
parametric R
variability

model checking

Compositional evaluation

expressions

expression

lifting to ADDs

N

,,,,,, _encoding

, Reliability « CYauation

ADD

semantics

evaluation evaluation

Compositional using ADDs Reliability using ADDs

lifted expressions

,,,,,,,,,, > mm e

ADD

feature-based
family-based
> product-based

—

-—>

|

|

|

1

| parametric
! .
rmodel checking
|
|
|
|

< N
Annotative
expression

expression

lifting to ADDs

Annotative

lifted expression

Figure 1.1: Overview of the commutative diagram of product-line reliability analysis
strategies

3Thiim et al. [85] proposed that a feature-family-product-based analysis strategy would be possible,
but the survey performed in their work did not find an instance of such strategy in the literature. To the
best of our knowledge, no other work proposed a strategy in this category since then.

Figure 1.1 provides an overview of our commutativity results. We consider DTMC
models of user-oriented software reliability with added support for either compositional
or annotative variability [3] (upper left and upper right corners, respectively). Given a
variability-enhanced reliability model of either kind, one can follow any of the outgoing
arrows while performing the respective analysis steps (abstracted as functions), until relia-
bilities are computed (either Real-valued reliabilities or an ADD representing all possible
values). These analysis steps can be feature-based (green solid arrows), product-based
(blue dotted arrows), or family-based (red dashed arrows), covering all three product-line
analysis dimensions. Thus, the arrows form an “analysis path” (a function composition)
which defines the employed analysis strategy.

To further increase the evidence on the soundness of our commutativity theory, we
mechanized our specification using the PVS proof assistant [67]. Lemmas and theorems
were also specified and proved using PVS, which checks proofs and provides commands
that automate some of their repetitive parts. This formalization of our theory in PVS
allowed us to identify and correct some errors and imprecisions of the handcrafted version.

At the present moment, all elements (definitions, lemmas, and theorems) of the manual
specification are fully mechanized, but the machine-verified proofs of 5 of the new auxiliary
lemmas are still unfinished. Their correctness is manually argued, however.

We also present a report on the mechanization process, with the twofold purpose
of getting feedback on the resulting PVS specification and sharing acquired knowledge
with fellow researchers. Moreover, we believe that this report may contribute to future
empirical studies over refactoring patterns and best practices regarding PVS specification

and proofs.

1.3 Summary of Contributions

This work formally specifies a theory of reliability analysis of software product lines.
Although our specifications have been developed to model an existing implementation [54],
the contributions presented here are mainly analytical, abstracting implementation details
and empirical assessment. Nonetheless, the core contribution of this work is a machine-
verified proof that analysis strategies which have been empirically compared [54] are
indeed sound.

We present the following peer-reviewed results [15]:

1. The formalization of seven strategies for reliability analysis of software product
lines, covering all three analysis dimensions in the classification by Thiim et al. [85]
(Section 3.2).

2. A novel feature-family-product-based strategy for model checking of product lines
(Section 3.2.5). To the best of our knowledge, this is the first technique to combine

all three product-line analysis dimensions.

3. Proofs of commutativity between different strategies (Section 3.2). This improves
the current understanding on how analysis strategies for product lines relate to one

another and establishes their soundness.

4. A commuting diagram of intermediate analysis steps (Figure 3.7), which relates

different strategies and enables the reuse of soundness proofs between them.

5. A general principle for lifting analyses to product lines using algebraic decision

diagrams (Section 3.2.2, Theorem 2).
Furthermore, we provide the following unpublished contributions:

6. A mechanized specification of our analysis strategies (https://github.com/
thiagomael/rome-specs), increasing the confidence on the soundness of the for-

malized theory.

7. A report on the process of mechanizing the theory in PVS (Chapter 4), with the

goal of aiding researchers in the interactive theorem proving community.

Overall, the commuting diagram resulting from this work (see Figure 3.7 for a more
detailed view) presents reliability analysis steps in a compositional manner at a conceptual
level, showing how the different types of product-line analyses compose and inter-relate
in that context. Such view allows the organization and structuring of facts (e.g., commu-
tativity of intermediate analysis steps) in a concise and precise manner, facilitating the
communication of ideas. This contributes to a more comprehensive understanding of un-
derlying principles used in these strategies, which we envision could help other researchers
to lift existing single-product analysis techniques to yet under-explored variability-aware
approaches.

We expect that, in the long term, the aforementioned contributions will be useful to
lay a framework for a general theory of product-line analysis. Thus, this work indirectly

contributes to the broader problem of lifting software analysis techniques to product lines.

1.4 Outline

This work is organized as follows:

https://github.com/thiagomael/rome-specs
https://github.com/thiagomael/rome-specs

Chapter 2 presents fundamental concepts that are necessary for the discussion. It
introduces software product lines and the corresponding analysis taxonomy, as well
as the parametric behavioral models and decision diagrams leveraged by our analysis

techniques. Additionally, it gives an overview of the PVS verification system [67].

Chapter 3 corresponds to the published results of our research [15]. Tt presents
our formalization of behavioral models for software product lines (Section 3.1), our
analysis strategies (Section 3.2), and a formulation of the soundness of these strate-
gies as theorems, along with corresponding proofs. To better illustrate the formal

concepts, we also provide a running example.

Chapter 4 shows the most relevant aspects of the mechanized version of our theory.
This chapter also presents a discussion about the lessons learned in the process
of PVS specification and computer-aided theorem proving. Last, we argue about

threats to the validity of our mechanized theory.

Chapter 5 discusses our conclusions and threats to their validity, along with related

and future work.

Appendix A presents the details of proofs that were summarized to improve the
readability of Chapter 3.

Appendix B contains the probabilistic models used in our running example in their

entirety.

Appendix C presents the correspondence between each element in the manual spec-
ification (Chapter 3) and its mechanized counterpart (Chapter 4). This appendix
also presents a description of our PVS theories and a diagram depicting the depen-

dencies between them.

Appendix D is a compilation of dependency graphs for the main theorems presented
in this work. These diagrams have been used throughout our research to assess the
impact of changes, but they are also useful to visualize the relationship between the

elements in our theory.

Table 1.1 relates contributions to their corresponding location within this work.

Table 1.1: Research outline

Contribution Location

Item 1 Chapter 3
Item 2 Section 3.2.5
Item 3 Section 3.2
Item 4 Figure 3.7
Item 5 Section 3.2.2
Item 6 Chapter 4
Item 7 Chapter 4

Chapter 2
Background

To better understand the problem and the proposed solution, it is useful to bear in mind
concepts regarding software product lines (Section 2.1), particularly software analysis
applied to product-line engineering (Section 2.1.3). Within this domain, this work focuses
on user-oriented reliability analysis based on probabilistic behavioral models (Section 2.2).

This chapter lays these conceptual foundations for our research. Furthermore, we
provide background on Algebraic Decision Diagrams (Section 2.3), since this type of data
structure plays an important role in our analysis techniques. Last, we provide an overview
of PVS, the interactive theorem prover used to create the machine-verified version of our
theory (Section 2.4).

2.1 Software Product Lines

In the software industry, there are cases in which programs have to be adapted to different
platform requirements, such as hardware or operating systems. For instance, different
versions of an operating system can be created to cope with different processor instruction
sets. These program variants can be functionally equal, but that is not always the case.
No version of our operating system can provide an interface to a graphics card if the host
computer does not have one.

At times, the creation of different versions of a software is motivated by variant require-
ments. As an example, enterprise software can be subject to company-specific business
processes or even platforms (e.g., different enterprise databases). In general, this tailoring
of software to customer needs, known as customization, gives rise to as many coexisting
versions of a program as there are customers.

A possible approach to build such program variants is to develop each of them sep-
arately. Although this clone-and-own approach is sometimes used in practice [3], it is

time-consuming and error-prone. For instance, variants realized as separate copies of the

source code can have inconsistent evolution of common functionalities, or a bug-fix in one
variant may not be propagated to the others.

An alternative approach is to view alternative programs that perform the same task,
or similar programs that perform similar tasks, as constituents of a program family [31].
Regarding similar programs as family members, instead of textual modifications of one
another, allows a view that they are modifications of a common ancestor. Such a view
has the goal to share code (and corresponding correctness proofs) between programs as
far as possible, and to ease their maintenance by isolating the parts that are inherently
different.

A realization of the program family view, addressing the issues of the clone-and-own
approach, is the software product line approach: having a collection of reusable assets
from which variants are systematically (or even automatically) generated. The Linux
kernel, for instance, is managed according to this approach [80]. Its assets are C headers
and source files, whose variability is handled by conditional compilation of certain code
regions—using CPP (C Preprocessor) directives. An utility tool is used to select the
desired functionality, from which corresponding CPP directives are evaluated and the
resulting processed source code is compiled, thereby yielding a custom Linux version.
Valid combinations of functionality are described in the Kconfig language,’ to ensure

implementation consistency.

2.1.1 Main Concepts

A Software Product Line is defined as a set of software-intensive systems that share
a common, managed set of features satisfying the specific needs of a particular market
segment or mission and that are developed from a common set of core assets in a prescribed
way [25]. Thus, software product line engineering can be seen as the set of processes and
techniques used for systematically managing these common features, which provides for
improved quality, mass customization capability and reduced costs and time to market
[3, 73, 87].

The main concern in product-line engineering is managing variability, which is defined
by van Gurp et al. [88] as the ability to change or customize a system. To accomplish
this, it is useful to abstract variability in terms of features. The concept of a feature
encompasses both intentions of stakeholders and implementation-level concerns, and has
been subject to a number of definitions [3]. Synthetically, it can be seen as a characteristic
or end-user-visible behavior of a software system.

Features are used in product-line engineering to specify and communicate commonal-

ities and differences of the products between stakeholders, as well as to guide structure,

lhttps://www.kernel .org/doc/Documentation/kbuild/

10

https://www.kernel.org/doc/Documentation/kbuild/

reuse, and variation across all phases of the software life cycle [3]. The features of a prod-
uct line and their relationships are documented in a feature model [26, 46|, which can be
graphically represented as a feature diagram. Throughout this work, we focus on propo-
sitional feature models, that is, feature models whose semantics is based on propositional
logic. We also restrict our scope to finite feature sets.

For a feature model FM, we denote its set of features by F'. Each feature in this set has
a name; feature names are used as atomic propositions to express feature relationships
as propositional logic formulas. As an example, one can state f = g, meaning that,
whenever a product exhibits feature £, it must also provide feature g.

Figure 2.1 shows an example of propositional feature model, taken from the Body
Sensor Network (BSN) product line [76|. Each product of this product line is a network
of connected sensors that capture vital signs from an individual and send these signs to a
central system, which analyzes the data collected and identifies critical health situations.
The Root feature is, by definition, present in all configurations. Its children are marked
as mandatory, meaning they must be present whenever its parent is selected. A child
feature could also be marked as optional, meaning it could be either present or absent in
any valid configuration.

The domain-related features are grouped under Monitoring, which is further broken
down into mandatory features Sensor and SensorInformation. Sensor groups features
related to the available body sensors. These sensor-related features are OR-features,
meaning that at least one of them must be selected whenever their parent is selected,
but multiple selection is also allowed. The same happens for SensorInformation and its
children, but, since these features correspond to vital signs that result from processing
raw sensors data, we must be able to constrain their presence to the presence of the cor-
responding sensors. These crosscutting concerns are represented by cross-tree constraints
(below the feature model tree), which are propositional formulas relating features that
are not siblings in the diagram.

BSN’s feature model also handles persistence of sensor data (Storage feature). The
supported media are SQLite or in-memory databases, represented by the features SQLite
and Memory, respectively. These features are marked as alternative, which means a BSN
system must support exactly one of them.

A given software system in a product line is referred to as a product and is specified by
a configuration, which is taken as input in the product generation process. A configuration
is a selection of features respecting the constraints established by the feature model, and,
as such, is represented by a set of atoms: a positive atom denotes feature presence, whereas
a negative (or absent) atom denotes feature absence. We denote the set of configurations

over a feature set F as C. This set contains all 2/¥| combinations of atomic propositions

11

Roaot Legend:
_ & Mandatory
o e /‘\ Or)
Moritoring Storage f-’i\ Aternative
—— ", Abstract
Concrete

| 5 —& < -
Sensorinformation Sensor | | SQLite | | Memory

Omfge;aﬁnn P‘LIlSvE:HﬂtB Tﬂnp-érature P{}.;itinn F_al SPbZ EP"CG TEMP A{:,“C
(Cpoygenation = SPO2
PulseRate = SPO2 v EKG
Fall = ACC
Position = ACC
Temperature = TEMP

Figure 2.1: Feature model of the BSN product line [76]

regarding features, each of which must appear in either positive or negative form, but never
both. Valid configurations, that is, configurations that satisfy the constraints expressed
by the feature model FM, are denoted by [FM] C C. Each ¢ € [FM] specifies the
features of a product of the product line.

In the BSN example, let ¢; and ¢y be such that:

¢; = {Root,Monitoring, Sensor, ,3ensorInformation, ,Storage, SQLite}

co = {Root,Monitoring, Sensor, EKG, SensorInformation, Position, Storage, SQLite}

Since both ¢; and ¢y are sets whose elements are in the feature set F', both are config-
urations (c1,co € C). However, only ¢ is a wvalid configuration (¢; € [FM]), since ¢y
does not satisfy the penultimate cross-tree constraint of the feature model in Figure 2.1
(co (Position = ACC)). In other words, there is no use in generating a body sensor
network that is able to process accelerometer data to determine the patient’s position,
and yet is not able to actually read the accelerometer.

In a product line, a product comprises a set of assets (e.g., source code files, test cases,
documentation), which are derived from a common set known as the asset base. The
mapping between a given configuration and the assets which compose the corresponding
product is called configuration knowledge [26]. Such a configuration knowledge may consist
of selecting source files, for instance, but may also handle processing tasks over the selected
assets, such as running the C Preprocessor. The locations within the assets where variation
occurs are called variation points.

Given a configuration, an asset base and a configuration knowledge, the process by
which a product is built is called product derivation [3|. Actual behavior is included or
excluded from a generated product by means of presence conditions, which are proposi-

tional formulas over features [27]. For example, when variability is implemented by means

12

of CPP directives, as in the Linux kernel, such presence conditions may be realized using
Boolean logic operators over macros that correspond to features. The derivation process
then consists of mapping a configuration to CPP macros, running CPP itself to test #if
and #ifdef directives against the given evaluation of macros, and then compiling the
preprocessed source code.

The use of arbitrary (not only atomic) propositions for presence conditions is a means
to switch behavior that is conditioned on more than one feature. To operationalize satis-
faction of presence conditions, we need to define Boolean functions over feature selections.
Therefore, we define an arbitrary (but fixed) total order of features by turning the set F’
of features into a list. This way, we can unambiguously denote a configuration ¢ € [FM]
as a Boolean tuple in B!, where B = {0,1} is the set of Boolean values (where 0 and
1 denote the Boolean values FALSE and TRUE, respectively). Such Boolean tuples have a
fixed position for each feature, with the i-th position denoting presence or absence of the
i-th feature’ by the values 1 and 0, respectively. In the upcoming discussion, whenever
we refer to k-ary Boolean functions, we assume that Boolean k-tuples can be used as

arguments.

2.1.2 Variability Implementation

We have seen examples of variability handling by means of CPP directives. Other tech-
niques are also used to implement variability, and those techniques are classified under

three dimensions [3]:

Binding time. This dimension refers to the phase during product derivation in which
the existing variability is resolved. This can happen before or during compilation
(compile-time or static variability), at program startup (load-time variability) or
during execution (run-time variability). The ability to perform each of those is

closely related to the other dimensions.

Technology. Variability can be realized by means of tools specially built for this pur-
pose (e.g., a preprocessor), but can also rely on programming language constructs
(e.g., run-time parameters and if-then-else blocks). These approaches are called

respectively tool-based and language-based.

Representation. The means by which variability is expressed in the assets.

Annotation-based (or annotative) approaches consist of annotating common assets
with tags corresponding to features, such that product derivation can be done by

removing the parts annotated with the features which are not selected.

2The actual order of features does not affect our results, since its only purpose is to consistently refer
to values in Boolean tuples.

13

Composition-based (or compositional) approaches tackle the variability in a modular
way by segregating asset-parts that correspond to each feature in composable units.
The ones corresponding to selected features in a given configuration are combined

to derive a product.

Other authors also identify a form of variability representation known as trans-
formation-based |39, 86|, which relies on transformations over base assets. These
transformations are usually performed at the syntactic level, but this is not a formal

restriction of this category of techniques.

A usual annotative technique is the use of preprocessor directives, which is the vari-
ability representation mechanism in the Linux Kernel [69]. This choice of representation
naturally limits the possible technology and binding time to a compile-time tool-based
approach. Nonetheless, flow-control directives allow a run-time annotation-based and
language-based variability implementation.

As for compositional methods, we can see a plug-in framework as an instance of
language-based load-time approach. In the realm of tool-based compile-time approaches,

there are two main composition mechanisms of interest to product line engineering:

Aspect-Oriented Programming [48]. This technique aims at the modularization of
cross-cutting concerns, i.e., concepts which are necessarily scattered across the im-
plementation of other concerns. These cross-cutting concerns are implemented in
modules named aspects, which are woven into the main program based on the spec-

ification of the points which they affect.

Feature-Oriented Programming [9, 75]. This is a technique by which the concepts
in a program are implemented in modules, each of which is associated to a feature.
Product derivation is thus carried out by incrementally composing these so called
feature modules into the result of the previous composition, yielding at each step
a program which increments the previous one with the refinements in the given
feature. A feature module can add new classes and members, as well as override

existing methods.

Delta-Oriented Programming |78 is a well-known example of transformation-based
(or transformational) approach [38|. It is similar to Feature-Oriented Programming, but
the modules (deltas) are also capable of removing classes and members. Additionally, the
deltas are not mapped one-to-one into features. Instead, there is an explicit language con-
struct for specifying dependencies between them and predicates over the selected features

which must hold true for a given delta to be applicable.

14

So far, we presented examples of source-code variability handling. However, these
implementation techniques can also be used to handle different kinds of assets. For in-
stance, a compositional approach, similar to aspect-oriented programming, was used to
handle variability in use cases [1| and business processes [58]. Teixeira et al. [81] also
exploited compositional variability handling, in the context of a product line of theories
described using the specification language of the Prototype Verification System (PVS)
[67]. This work, in particular, uses both annotative and compositional approaches to

handle variability in probabilistic models of product lines.

2.1.3 Product-Line Analysis

Analysis of software product lines is a broad subject, in the sense that it can refer to
verification of any of the product line artifacts, including the feature model and the
configuration knowledge [3]. Hence, we focus on verification of the possibly derivable
products. This does not necessarily mean generating all products in a product line and
analyzing each of them, as long as analyzed properties can be somehow generalized to the
product line as a whole. We refer to the latter case as variability-aware analysis.

There is a number of approaches to product-line analysis that adapt established analy-
sis techniques—e.g., type checking, data-flow analysis, control-flow analysis, and theorem
proving—to cope with variability [85]. In particular, several model checking techniques
have been successfully lifted to operate on product lines [19, 21, 23, 24, 34, 36, 51, 64, 76,
82, 85|.

Thiim et al. [85] performed a survey on analysis strategies for software product lines

in which four main classes where identified:

Type checking. Analysis of well-typedness of a program with respect to a given type
system [71]. It captures errors such as mismatched method signatures and unde-
clared types, which are prone to happen if features can add or remove methods and

classes.

Model checking. Consists of systematically exploring the possible states in a formal
model of the system, to find out whether it satisfies a given property [7]. Some model
checkers operate directly on source code, while others allow other abstractions of

the system’s behavior (e.g., Markov chains).

Static analysis. Based on compile-time approximation of the run-time behavior of a
program, such as in data-flow and control-flow analyses. This type of analysis
usually involves the verification of source code and can signal problems such as

access to uninitialized memory regions.

15

Theorem proving. Relies on encoding system properties as theories and specifications
of its desired behavior as theorems. These theorems then need to be proved in order
to assert the modeled system is correct, i.e., it satisfies the specified properties. The
theories and theorems may be specified using the language of a proof assistant such
as PVS [67], or can be generated from invariant specifications declared in the source

code using the Java Modeling Language (JML) [55], for instance.

Among the studies regarding the application of these techniques to product-line anal-
yses, Thiim et al. [85] categorized three dimensions of analysis strategies for product

lines:

Product-based. Consists of analyzing derived products or models thereof. This can
be accomplished by generating all such products (the brute-force approach) or by
sampling them based on some coverage criteria (e.g., covering pair-wise or triple-wise
feature interaction). The main advantage of this strategy is that the analysis can
be performed exactly as in the single-system case by off-the-shelf tools. However,
the time and processing cost can be prohibitively large (exponential blowup) if the

considered product line has a great number of products.

Feature-based. Analyzes all domain artifacts implementing a given feature in isolation,
not considering how they relate to other features. However, issues related to fea-
ture interactions are frequent, which renders false the premise that features can be
modularly analyzed. In spite of this, this approach is able to verify compositional
properties (e.g., syntactic correctness) and has the advantage of supporting open-
world scenarios — since a feature is analyzed in isolation, not all features must be

known in advance.

Family-based. Operates only in domain artifacts, usually merging all variability into
a single product simulator (also known as wvirtual product or metaproduct). This
simulator is then analyzed by considering only valid combinations of the features
as specified in the feature model. It is possible, for instance, to compose feature
modules by encoding their variability as if-then-else blocks and dispatcher methods

and then apply off-the-shelf software model checking [4].

There is also the possibility to employ more than one strategy simultaneously. In
this way, weaknesses resulting from one approach can be overcome by the application of
another. This is particularly useful for feature-based approaches, which are generally not
sufficient due to feature interactions.

For instance, Thiim et al. [83] propose formal verification of design-by-contract prop-

erties [61] restricted to feature modules. This would be characterized as a feature-based

16

strategy, but after product derivation the proof obligations that are verified feature-wise
can be changed due to source code transformation. Hence, each product is derived to
generate the complete proof obligations. Nonetheless, most of the proofs obtained in the
feature-based phase can be reused, so this composite strategy can be seen as feature-
product-based.

Strategies that combine different analysis dimensions are classified as follows [85]:

Feature-product-based. Consists of a feature-based analysis followed by a product-
based analysis. This strategy leverages the feature-based phase to ease the analysis

effort necessary for the enumerative phase.

Feature-family-based. In this strategy, one performs a feature-based analysis to check
properties that apply individually for each feature, then the results are combined
to undergo a family-based analysis. This last phase considers the feature model
constraints and the interactions between features all at once, enabling the analysis

of properties that are not observable in the scope of a single feature.

Family-product-based. This strategy consists of a partial family-based analysis fol-
lowed by a product-based analysis that leverages the intermediate results. Such
an approach is useful when the available resources are not sufficient for a complete

family-based analysis, for instance.

Feature-family-product-based. In this strategy, we perform a feature-based analysis
followed by a family-product-based analysis that leverages the analysis effort of the
feature-based phase. According to the survey by Thiim et al. [85], there are no

concrete instances of this strategy in the literature.

Those different analysis strategies have been applied in the context of different analysis
techniques [85]. However, the trade-offs involved cannot be inferred for the general case.
Empirical studies have to be performed to assess the actual advantages and disadvantages

of different strategies in concrete usage scenarios |49, 54, 59, 92].

2.2 Reliability Analysis

The theory of reliability analysis strategies developed in this work formalizes and extends
the techniques presented by Lanna et al. [54]. Hence, we follow the same approach of
considering software reliability from a user’s perspective.

Such user-oriented reliability of a software program in a given user environment is

defined as the probability that the program will give the correct output with a typical set

17

of input data from that user environment [18]. Accordingly, we model software behav-
ior in a state-space-based fashion, by means of a Discrete-time Markov Chain (DTMC)
in which states represent (parts of) software modules and transitions represent either a
possible transfer of control between modules (with an associated probability) or a module
execution failure (with probability 1 — r, where r is the module reliability). We assume
that module reliabilities are independent from one another and that the transfer of con-
trol between modules depends only on the module currently executing (i.e., transfer of
control is a Markov process). Moreover, we constrain this model to have a single initial
state (representing the program entry point) and only two terminal (absorbing) states,
representing program success (i.e., correct execution) and program failure.

A model of software reliability built this way follows the principles presented by Cheung
[18]. Additionally, this type of model encodes the following assumptions of the work by

Lanna et al. [54]:

e Model states represent the execution of a function by some system component, as
described in UML behavioral diagrams [66]. As such, these states abstract actual

program states (e.g., variable values) and can be contained within a finite set.

e Reliability models are time-homogeneous, meaning that each of the transition prob-

abilities is constant over time.
e As a scope limitation, we do not model parallelism or nondeterminism.

Constructing models with the aforementioned constraints, we view the reliability of
a system as the probability that, starting from the initial state, the system eventually
reaches the success state [18|. This reliability property is then computed as a reachability
probability in the DTMC that serves as the reliability model.

To perform this computation, we define a DTMC as a tuple (S, sg, P, T), where S is a
set of states, sg € S is the initial state, P is the transition probability matrix P : S x S —
[0,1], and T" C S is a (possibly singleton) set of target states that are to be reached as
a success measure.” Moreover, each row of the transition probability matrix sums to 1,
that is, Ves - P(s,5) = 1, where P(s,5) =>4 P(s,5).

For every state s € S, we say that a state s’ is a successor of s iff P(s,s’) > 0.
Accordingly, the set of successor states of s, Succ(s), is defined as Succ(s) = {s' €
S|P(s,s’) > 0}. A DTMC induces an underlying digraph where states act as vertices
and edges link states to their successors. Every non-zero entry (s,s’) in the transition

probability matrix P is represented by a labeled transition s < s’ in this graph, where

3This definition departs from the one by Baier and Katoen [7] in two ways: (a) we abstract the possi-
bility of multiple initial states and the computation of other temporal properties (to focus on reliability
analysis) and (b) we incorporate target states in the model (to abbreviate model checking notation).

18

p = P(s,s'). This way, we say that a state s’ of a DTMC is reachable from a state s,
denoted by s ~ ¢, iff &’ is reachable from s in the DTMC’s underlying digraph. Likewise,
we write s v s’ to denote that s’ is unreachable from s. This notation is also used with
respect to a set T of states: s ~» T iff there is at least one state ' € T such that s ~ &,
and s » T otherwise.

Given a DTMC D = (S, 59, P, T), a state s € S, and a set T' C S of target states, the
probability of reaching a state ¢ € T starting from s (within any number of transitions)
is denoted by PrP(s,T). Whenever T is a singleton set whose only member is a state t,
we write PrP(s,t) for brevity.

Figure 2.2 presents an example of DTMC viewed as a graph. In this view, the reacha-
bility probability is the sum of the probabilities along every possible path from the initial
state (blue node) to the success state (green node). The equation on the left-hand side
of this figure depicts this summation, with each term corresponding to one of the three
possible paths (note the correspondence between the red highlighted term and the red
highlighted path, for instance).

i ()06 07 "\-‘, 1
\r\j ,«' _/
R=06"0.7 O}__d,\‘k,/\, b8
+ 06703708 A
+ 04+09+*0.8 AR WA

. Discrete-Time Markov Chain

Figure 2.2: Example graph view of a DTMC and the corresponding reachability proba-
bility

Reliability analysis in our setting can be summarized as the process through which we
determine the probability p for which the formula P_,[Qsuccess] holds, where success is
a proposition that only holds true for s € T'. This formula is specified using Probabilistic
Computation Tree Logic (PCTL) [42] and states that p is the probability that success will
eventually hold. This property follows the probabilistic existence pattern of probabilistic
properties specification, which is one recognized way of specifying reliability [37]. Other
possible views of reliability property include the probability that a system does not fail
within a given time interval, which can be specified using probabilistic invariance, for
instance. Nevertheless, handling those alternative views is out of scope.

The reachability probability for a DTMC can be computed using probabilistic
model checking algorithms, implemented by off-the-shelf tools such as PRISM [52] and
PARAM [40]. An intuitive and correct view of reachability probability, although not

19

well-suited for efficient implementation, is that a target state is reached either directly
or by first transitioning to a state that is able to recursively reach it. We present a
formalization of this property, adapted from Baier and Katoen [7], that suits the purpose

of this work.

Property 1 (Reachability probability for DTMCs). Given a DTMC D = (S, so, P, T), a
state s € S, and a set T" C S of target states, the probability of reaching a state t € T

from s satisfies the following property:

1 ifseT
PrP(s,T) =140 if s o4 T
YwesP(s,s) - PrP(s'\T) ifs¢TAs~T

In a product line, different products give rise to distinct behavioral models. To handle

the behavioral variability that is inherent to product lines, we resort to Parametric Markov
Chains [29].

2.2.1 Parametric Markov Chains

Parametric Markov Chains (PMC) extend DTMCs with the ability to represent variable
transition probabilities. Whereas probabilistic choices are fixed at modeling time and
represent possible behavior that is unknown until run time, variable transitions represent
behavior that is unknown already at modeling time. These variable transition probabilities

can be leveraged to represent product-line variability [19, 36, 76].

Definition 1 (Parametric Markov Chain). A Parametric Markov Chain is defined by
Hahn et al. [41] as a tuple P = (5, 59, X, P, T'), where S is a set of states, sq is the initial
state, X = {x1,...,z,} is a finite set of parameters, P is the transition probability matrix
P:SxS— Fx,and T C S is the set of target (or success) states. The set Fx comprises
the rational expressions over R with variables in X, that is, fractions of polynomials with
Real coefficients. This way, the semantics of a rational expression ¢ is a rational function
fe(xy, ... xy) = ;% from R™ to R, where p; and py are Real polynomials. For
brevity, we hereafter refer to rational expressions simply as expressions.

By attributing values to the variables, it is possible to obtain an ordinary (non-
parametric) DTMC. Parameters are given values by means of an evaluation, which is
a total function v : X — R for a set X of variables. For an expression ¢ € Fx and
an evaluation u : X’ — R (where X’ is a set of variables), we define £[X/u| to denote
the expression obtained by replacing every occurrence of z € X N X’ in ¢ by u(z), also
denoted by e[z /u(xy),. ..,z /u(z,)].

20

For instance, suppose we have sets of variables X = {z,y} and X' = {z,y, z}, and an
evaluation u = {x — 2,y — 5,z — 3}. If ¢ € Fx is the rational expression x — 2y, then
el X/u| = ¢elz/2,y/5] =2 —2-5 = —8. Note that, if u’s domain, X', is different from the
set X of variables in ¢, then e[X/u] = ¢[(X N X")/ul.

Definition 2 (Expression evaluation). Given expressions £; and e over variables sets X
and Xs, respectively, let X O X; U X5 be a set of variables, x € X be a variable, ¢ € R
and n € N be constant values, and u : X — R be an evaluation. Expression evaluation is

defined inductively as follows:

LX) = iﬁ% (e1 X e2)[X/u] = e1[X/u) x e[X/u]
(e1 +ea)[X/u) = e1[X/u] +ealX/u] (a1 — e2)[X/u] = &1 [X/u] — 2 X/
o[X/u] = u(z) e[X/u] = e[X/u]"
c[X/u]l =c

This definition can be extended to substitutions by other expressions. Given two variable
sets X and X', their respective induced sets of expressions Fy and Fx-, and an expression
e € Fx, a generalized evaluation function u : X — Fx substitutes each variable in X
for an expression in Fx/. The generalized evaluation £[X/u| then yields an expression
e’ € Fx. Moreover, successive expression evaluations can be thought of as rational

function compositions: for v : X — Fy and v/ : X’ — R,
e[X /u][X' /u] = elayJul(z) [X /], ... xp/ulzg) [X /4] (2.1)
for z1,..., 2, € X (since u is a total function, we do not need to consider non-evaluated

variables).

The PMC induced by an evaluation u is denoted by P, = (5, so, 0, P,,T) (alterna-
tively, P[X/u]), where P,(s,s") = P(s,s')[X/u] for all s,s" € S. To ensure the resulting

chain after evaluation is indeed a valid DTMC, one must use a well-defined evaluation.

Definition 3 (Well-defined evaluation). An evaluation u : X — R is well-defined for a
PMC P = (S, s, X, P, T) iff, for all s, € S, it holds that

e P,(s,5) €[0,1] (all transitions evaluate to valid probabilities)

e P,(s,5) = 1 (stochastic property—the probability of disjoint events must add up
to 1)

In this definition, Succ(s) = {s' € S|P.(s,s") # 0} is the set of successor states of s, and
P(s,5) = Yyes P(s. o).

21

Hereafter, we drop explicit mentions to well-definedness whenever we consider an
evaluation or a DTMC induced by one, because we are only interested in this class of

evaluations.” Nonetheless, we still need to prove that specific evaluations are indeed
well-defined.

2.2.2 Parametric Probabilistic Reachability

To compute the reachability probability in a model with variable transitions, we use a
parametric probabilistic reachability algorithm. A parametric model checking algorithm
for probabilistic reachability takes a PMC P as input and outputs a corresponding ex-
pression ¢ representing the probability of reaching its set T' of target states. Figure 2.3
presents the intuition of computing such an expression, following the same mapping from
terms to paths that we used for DTMCs (Figure 2.2).

|)06 ') X d_\-:, 1
~ _/
— 1-
R=0.6"*x I __d,,\kf\ {s

+ 0.6*(1-x)* 0.8 o p
+ 04*09*0.8 NG 0-2\-’_/;1

Parametric Markov Chain

Figure 2.3: Example graph view of a PMC and the intuition for the corresponding reach-
ability probability expression

Hahn et al. [41] present a parametric probabilistic reachability algorithm (Algorithm 1)
and prove that evaluating the resulting expression € with an evaluation wu yields the
reachability probability for the DTMC induced in P by the same evaluation u. The main
idea is that, for a given state s, the probability of one of its predecessors (s, € Pre(s))
reaching one of its successors (sgu.. € Succ(s)) is given by the sum of the probability of
transitioning through s and the probability of bypassing it.

For such a pair of predecessor and successor states, we update the transition probability

matrix with the newly computed value (Line 3):

go through s
7\

bypass ~ ~
——N—
P<3prea Ssucc) = P(SpT‘€7 Ssucc) + P<8prea 3) T(S,S) : P($> Ssucc)
update reach s ~~—— leave s
stay at s

“Hahn et al. [41] actually define an evaluation in a more general way as a partial function. However,
since we only deal with well-defined evaluations (which are total by definition [41]), we are able to simplify
the definitions in this work by using total functions.

22

Algorithm 1 Parametric Reachability Probability for PMCs [41]

Require: PMC P = (5, s9, X, P, T). States s € T" are absorbing. For all s € S, it holds
that s is reachable from sy and T is reachable from s.
1: for all s S\ ({so} UT) do

2. for all (s, Ssuce) € Pre(s) x Succ(s) do

3: P(Sprea Ssucc) = P(Sp’l’€7 Ssucc) + P(Sp’l’€7 S) ’ #(5’3) ’ P(Sv Ssucc)
4: end for

5. eliminate(s)

6: end for

7: return mP(so, T)

Once this computation has been performed for all predecessor (Pre(s)) and successor
states (Succ(s)), s itself is eliminated from the set S of states, and the process starts
again by arbitrarily picking another state.

Figure 2.4 [41] illustrates the update of the transition probability matrix for a given
state s and a single pair of predecessor and successor states. In this example, other states
and respective transitions are omitted. Note that, since there is a self-loop with probabil-
ity pe, there are infinite possible paths going through s, each corresponding to a number
of times the loop transition is taken before transitioning to ss.... Hence, the sum of prob-

abilities for these paths correspond to the infinite sum > "> pa(pe)Po = pa(> s PL)P =

1 5
Pa 1_pcpb-)

Definition 4 (State elimination step). Given a PMC P = (S, s, X, P, T) and an arbitrary
state s € S, a state elimination step of the algorithm by Hahn et al. [41] updates the

transition matrix P to P’, such that, for all states spre, Ssuee € S\ {5},

1

P succ
1—P(s,s) (5, Souce)

P/(Sprea Ssucc) = P(Sprea Ssucc) + P(Sprea 3)

@ Pat=5 P + Pa Q
SPTe Ssuce

Figure 2.4: Elimination of state s in the parametric reachability probability algorithm
(adapted from Hahn et al. [41])

1

>Whenever 0 < x < 1, we have the following convergent sum: Yco zt = T

23

The soundness of the parametric probabilistic reachability algorithm by Hahn et al.
[41] is expressed by the following lemma and summarized by the commuting diagram in

Figure 2.5.

Lemma 1 (Parametric probabilistic reachability soundness). Let P = (5,59, X, P, T)
be a PMC, u be a well-defined evaluation for P, and e be the output of the parametric
probabilistic reachability algorithm by Hahn et al. [{1] (Algorithm 1) for P and T. Then,
PrPu(so,T) = e[X/u].

Proof. The algorithm by Hahn et al. [41] is based on eliminating states until only the
initial and the target ones remain. Its proof consists of showing that each elimination
step preserves the reachability probability. We refer the reader to the work by Hahn et al.

[41] for more details on the algorithm itself and the proof mechanics. O

Hahn’s algorithm

PMC ------------- > Expression

[X/u] Lemma 1 [X/u)

DTMC > PArobability
PrP(sy,T)

Figure 2.5: Statement of Lemma |

2.3 Algebraic Decision Diagrams

Thus far, we have introduced software product lines and the parametric model checking
technique that we employ to compute the reliability of a product line as a function of its
configuration options—denoted by a rational expression. However, even though rational
expressions are conceptually simpler than Markov models, evaluating an expression for
every possible configuration may still be infeasible for certain product lines. Hence, we
introduce ADDs as enablers of non-enumerative evaluation.

An Algebraic Decision Diagram (ADD) [6] is a data structure that encodes k-ary
Boolean functions B* — R. As an example, Figure 2.6 depicts an ADD representing the

following binary function f:

09 ifzAy
flz,y) =408 ifzA—y (2.2)

0 otherwise

24

N
\
\
\
N \

Figure 2.6: ADD Ay representing the Boolean function f in Equation (2.2)

Each internal node in the ADD (one of the circular nodes) marks a decision over a
single parameter. Function application is achieved by walking the ADD along a path that
denotes this decision over the values of actual parameters: if the parameter represented
by the node at hand is 1 (true), we take the solid edge; otherwise, if the actual parameter
is 0 (false), we take the dashed edge. The evaluation ends when we reach a terminal node
(one of the square nodes at the bottom).

In the example, to evaluate f(1,0), we start in the x node, take the solid edge to node
y (since the actual parameter x is 1), then take the dashed edge to the terminal 0.8. Thus,
f(1,0) = 0.8. Henceforth, we will use a function application notation for ADDs, meaning
that, if A is an ADD that encodes function f, then A(by,...,b;) denotes f(by,...,0bx).
For brevity, we also denote indexed parameters by, ..., by as b, and the application A(b)
by [Alz-

ADDs have several applications, two of which are of direct interest to this work. The
first one is the efficient application of arithmetics over Boolean functions. We employ
Boolean functions to represent mappings from product-line configurations (Boolean tu-
ples) to their respective reliabilities. An important aspect that motivated the use of ADDs
for this variability-aware arithmetics is that the enumeration of all configurations to per-
form Real arithmetics on the corresponding reliabilities is usually subject to exponential
blowup. ADD arithmetic operations are linear in the input size, which, in turn, can also
be exponential in the number of Boolean parameters (i.e., ADD variables), in the worst
case. However, given a suitable variable ordering, ADD sizes are often polynomial, or
even linear [6]. Thus, for most practical cases, ADD operations are more efficient than
enumeration.

An arithmetic operation over ADDs is equivalent to performing the same operation
on corresponding terminals of the operands. Thus, we denote ADD arithmetics by corre-
sponding real arithmetics operators.

In Figure 2.7, we see two examples of ADD arithmetics. The first and simpler one
(Figure 2.7¢) shows the multiplication of the ADD A, (Figure 2.7a) by the constant factor
2. This operation takes place by multiplying terminals by the given factor. The second
example (Figure 2.7d) shows the sum of ADDs Ay and A, (Figure 2.7b), yielding an
ADD Ay = Ay + A, such that Ay(z,y) = Af(x,y) + Ay(z,y). Such an operation is more

involved, and its details fall outside the scope of our work.

25

As previously mentioned, ADD arithmetic operations are linear in the input size.
For instance, let us examine an arbitrary arithmetic operation ® of ADDs Ay and A,,
both on k parameters. Enumerating all valid inputs to the operand functions would take
exponential time (O(2%)), whereas ADD arithmetics can be performed in O(|A;| - |A,]|)
(where |A| denotes the size of ADD A, that is, its number of internal nodes).

(a) Operand Ay (the ADD encoding the (b) Operand Ay, encoding the function g
function f in Equation (2.2)) that yields 0.5 if « XOR y and 0 otherwise

~
~

N ~
~

0] os] (13 b5 [0
(c) ADD corresponding to 2 x A¢ (encoding (d) ADD corresponding to Ay + A, (encod-
the function f'(z,y) =2 x f(z,y)) ing the function h(z,y) = f(z,y) + g9(z,v))

Figure 2.7: Example of an arithmetic operation over ADDs

Formally, given a valuation for Boolean parameters b = by, ..., b, € B*, it holds that:

L. Voe(r,—x 2y - (A1 © Ag)(b) = A1(b) ® As(b)

2. VieN : AZ1 (b) = Al (b)z

The second application of interest is the algorithmic encoding of the result of an if-
then-else operation over ADDs again as another ADD. For the ADDs A4, Atrue, and
Afuse, we define the ternary operator ITE (if-then-else) as

Atrue(c) if Acond<c) 7é 0

ITE(Acond7 Atruea Afalse)<c) -
Afalse (C> if Acond(c) =0

This operation, whose time complexity is O(|Aconal = |Atrue| - |Afaise), is illustrated by
Figure 2.8. This figure depicts an ADD resulting from ITE(A., As, A;) (Figure 2.8b),
where A, (Figure 2.82) encodes the function ¢(z,y) = -z, and the ADDs Ay and A, are
taken from Figures 2.7a and 2.7b. As with ADD arithmetics, the details of the ADD ITE
operation are omitted for being out of scope.

Note that we presented the time complexities for the ADD operations in terms of

the size of each operand. However, this number is itself dependent upon the ordering

26

o
(a) ADD A, encoding the condition —z (b) ITE(Ac, Ay, Ag)

Figure 2.8: Example of an ITE operation over ADDs

of variables, that is, the level of the corresponding decision nodes in the binary tree.
Different orderings may need a different number of internal nodes, as depicted by the
ADD in Figure 2.9. This ADD encodes the same function f (Equation (2.2)) as the ADD
Ay in Figure 2.6, but in this case we have chosen a different ordering of variables—y as
the root and x in the second level. With the chosen ordering, the resulting ADD ended

up with 3 internal nodes, as opposed to 2 nodes in the original case.

N
N
’

m /

Figure 2.9: Alternative ordering for encoding the Boolean function f in Equation (2.2)
as an ADD

The absolute difference between these alternative orderings was negligible, because the
function at hand is only binary. In general, however, given the number k of parameters
of the encoded function, the size of an ADD may be O(k) with the best-case ordering,
but may also be O(2%) with the worst-case ordering. Note, however, that not all Boolean
functions are subject to exponential orderings, and the same applies to linear orderings.
For instance, any ordering of variables of the ADD A, in Figure 2.7b yields an ADD with
3 internal nodes. More details on this matter and information on ADDs in general can
be found in the work of Bahar et al. [6].

2.4 PVS

To increase confidence in the theory developed in this work, we developed a machine-
verified theory using the PVS interactive theorem prover. Thus, we provide an overview of
some language constructs in PVS 6.0 that are used throughout our specification. However,
this section is not a complete tutorial or reference guide to all features of PVS; for detailed
instructions on how to develop and verify a mechanized specification using this tool, the

reader is referred to the official documentation [67, 68, 79].°

Shttp://pvs.csl.sri.com/documentation.shtml

27

http://pvs.csl.sri.com/documentation.shtml

The Prototype Verification System (PVS) is a set of integrated tools that assist the
development and verification of formal specifications [68]. PVS theories are defined using a
specification language [67] that supports expressive features such as higher-order functions
and dependent types. Moreover, this language allows the definition of properties about the
specified functions and types, in the form of theorems or axioms. To verify that theories
written in the specification language are semantically consistent, PVS also provides a type
checker and an interactive theorem prover [79].

Whenever the type checker is not able to decide whether a given definition is consistent
or not, it generates a type-correctness condition (TCC)—a proof obligation that the user is
required to discharge. Both TCCs and user-defined theorems can be proved interactively
with PVS’s theorem prover. Although PVS provides several strategies to automate proof
steps, its focus is not on automatic proving, but rather on interactive proof checking.

A specification in PVS is a collection of theories, and a theory is composed of def-
initions of types and functions, plus the associated theorems and axioms. A type can
be interpreted (i.e., defined in terms of other types) or uninterpreted. For instance, we
can state that there exists a set of variables by using variable: TYPE+, whereby the only
assumptions made are that this type is nonempty and disjoint from other types (except

its own subtypes). An interpreted type, on the other hand, is defined in terms of other
types:

evaluation: TYPE = [variable -> reall % function type
complex: TYPE = [# r: real, im: real #] % record type
nzreal: TYPE = {x: real | x /= 0} % R*

The latter example defines the type of non-zero Reals, R*, using a notation that closely
resembles set comprehension. This PVS construct is called a predicate subtype, since it
defines a subtype of real (the base type) in terms of a predicate. Alternatively, this
definition could be given as follows:
nonzero?(x: real): boolean = x /= 0 % predicate for z #0
nzreal: TYPE = (nonzero?) % syntactic sugar for {x: real | nonzero?(x)}

An interesting feature of PVS is that its standard library, called Prelude, represents
a set of elements of type T (set[T]) as a predicates of type [T -> boolean]. This way,
set membership is tested using function application, and we can define types from set
elements using the predicate subtyping mechanism:

X: set[variablel] % a constant declaration

v: (X) % another constant, of type {v: variable | X(v)}

This facility is extensively used throughout our mechanized specification to declare

dependently-typed function parameters.

eval (X: finite_set[variable], u: [(X) -> reall]): finite_set[reall]

28

The above line presents a higher-order function that takes two parameters: a finite
set X of variables and a function u that maps elements of X to Real numbers. The type
of u is dependent on the value of X; in practice, u is defined as a partial function in the
domain of variables.

Moreover, eval in this example is an uninterpreted function (i.e., an uninterpreted
constant of a function type). To specify the semantics of this function, one can either use
an axiom or add a function definition (i.e., turn it into an interpreted function constant):
% Axiomatic style
eval (X: finite_set[variable]l, u: [(X) -> reall): finite_set[reall
eval_semantics: AXIOM

FORALL (X: finite_set[variablel, u: [(X) -> reall)):
eval(X, u) = {r: real | EXISTS (x: (X)): u(x) = r}

% Alternative using definition
eval_def (X: finite_set[variable]l, u: [(X) -> reall): finite_set[real] =
{r: real | EXISTS (x: (X)): u(x) = r}

The main difference is that PVS guarantees that definitions preserve the consistency
of a theory, whereas the user must manually verify that an axiom does not introduce
inconsistencies [67]. In the previous example, for instance, PVS generates a TCC for
eval_def, requiring us to prove that the set comprehension in Line 9 is indeed a finite set
(because of the return type in Line 8). On the other hand, no proof obligation is created
for the axiomatic version of the same specification, even though the return types (Lines 2
and 8) and the predicates (Lines 5 and 9) are the same for both specification alternatives.
Since inconsistent specifications can be used to prove anything at all (i.e., they are useless
for proving soundness of theories), it is best to avoid introducing axioms.

The definition of eval_def in the last example uses a declarative style, whereby we
define a predicate that the function output must satisfy. An alternative is to use an
operational style—i.e., to specify how the declared function produces that value. An
operational alternative to the eval function is the following recursive definition:
eval_op(X: finite_set[variable], u: [(X) -> reall)

RECURSIVE finite_set[real] =
IF empty?(X)
THEN emptyset
ELSE add(u(choose (X)),
eval_op(rest(X), restrict(u)))

ENDIF
MEASURE card(X)

In this definition, we pick any element of X (function choose in Line 5), apply the

function u to it, then add the result to set obtained by recursively applying eval_op to

29

the remaining elements of X (function rest in Line 6). The base case of this recursion
occurs when X is empty (Line 1).

An interesting point to note is that PVS only allows the definition of terminating
functions. Thus, we have to provide a measure (Line 8) that decreases with each call
according to some well-founded relation. In this particular case, we use the cardinality of
X, and the well-founded relation that establishes the notion of decreasing is inferred to be
the “less-than” relation over the Natural numbers (<). The type checker then generates
a TCC requiring us to prove that this measure is indeed decreasing for any input X:
eval_op_TCC3: OBLIGATION

FORALL (X: finite_set[variable]):
NOT empty?(X) IMPLIES card(rest (X)) < card(X)

The syntax for user-defined theorems follows the same pattern, but using other keywords—
THEOREM,LEMMA,aD(1CORULLARY.
PVS also supports the definition of abstract datatypes, such as the following type that
we use to extended the Reals with an undefined value (RU {L}).
maybe_real: DATATYPE
BEGIN
a_real(num: real): is_real?
undefined: undefined?

END maybe_real

Each line defines a constructor, a (possibly empty) set of accessors, and a recognizer—
a predicate that is true for elements built with the corresponding constructor. In this
particular case, an element v of the type maybe_real may be the constant undefined, or
a value obtained by applying the a_real constructor to a Real number. If the is_real?
recognizer returns true, the num accessor can be applied to obtain the encapsulated Real
value. In PVS language, we can state this fact as the following (trivial) theorem:

trivial_fact: THEOREM
FORALL (x: real): num(a_real(x)) = x

We can define arithmetic operations over maybe_real by overloading PVS operators
already defined over real and specifying that any operation where at least one of the

operands is undefined yields undefined as a result.

% Overloading of the sum operator
; +(a,b): maybe_real =
IF (undefined?(a) OR undefined?(b))
THEN undefined
ELSE a + b
ENDIF

30

1

Whenever the result of an operation over maybe_real is used in a context where a
real is expected, PVS will generate an obligation to prove that this result satisfies the
predicate represented by the is_real? recognizer. To avoid the generation of such TCCs
when the operands are known to be is_real?, the PVS user can define judgements to
make this property available to the type checker.

m, n: VAR (is_real?) % logical variable to abbreviate declarations
sum_real: JUDGEMENT
FORALL (m, n): (m + n) HAS_TYPE (is_real?)
sub_real: JUDGEMENT
FORALL (m, n): (m - n) HAS_TYPE (is_real?)
mul _real: JUDGEMENT
FORALL (m, n): (m * n) HAS_TYPE (is_real?)

PVS will require each judgement to be proved, by means of TCCs. To assist the design
and verification of proofs for TCCs and user-defined theorems, PVS provides an interactive
theorem prover [79]. This prover is based on the sequent calculus framework and supports
a number of rules and proof strategies with different degrees of automation. For instance,
there are rules for propositional simplification, quantifier instantiation, introduction of
Skolem constants, induction, term rewriting, and simplification using decision procedures
for equality and linear arithmetics (e.g., the highly-automated grind).

As an example (taken from the NASA PVS tutorial”), suppose we want to prove the
following fact:

Vo, y e R -2 <y = 2% < y?

This theorem can be stated in PVS as follows:

squared_increasing: THEOREM
FORALL (x,y:posreal):
x < y IMPLIES x~2 < y~2

To prove that theorem, we start the interactive theorem prover by issuing the command
M-x prove.® The prover starts with a sequent consisting of only the fact that we want to

prove as a consequent:

squared_increasing

{1} FORALL (x, y: posreal): x < y IMPLIES x ~ 2 <y =~ 2

"https://shemesh.larc.nasa.gov/PVSClass2012/pvsclass2012/index.html
8The combination M-x is achieved by pressing the Alt and x keys simultaneously

31

https://shemesh.larc.nasa.gov/PVSClass2012/pvsclass2012/index.html

o

10

Rule?

We begin the proof by introducing Skolem constants for the universally quantified
variables x and y, using the prover command skeep (Skolemize and keep the names of

variables for the introduced constants).

Rule? (skeep)
Skolemizing and keeping names of the universal formula in (+ -),
this simplifies to:

squared_increasing

Rule?

Note that the implication was automatically flattened, so that the premise became an
antecedent formula with index [-1]. Now, we expand the definition of the ~ operator.
Rule? (expand "~")

Expanding the definition of 3
this simplifies to:

squared_increasing

{1} expt(x, 2) < expt(y, 2)

Rule?

We see that ~ is actually syntactic sugar for the expt function. The next step is to
leverage lemma both_sides_expt_pos_lt_aux, which is part of the Prelude built-in PVS
library.

Rule? (lemma "both_sides_expt_pos_lt_aux")
Applying both_sides_expt_pos_lt_aux
this simplifies to:

squared_increasing
{-1} FORALL (m: nat, px, py: posreal):
expt(px, m + 1) < expt(py, m + 1) IFF px < py

[-2] x < y

[1] expt(x, 2) < expt(y, 2)

32

Rule?

The command lemma brings a lemma into the sequent as an antecedent formula with
index [-1]. Note, however, that the formula x < y, whose index was previously [-1], is
now at the position [-2].

The next proof step is to instantiate the lemma recently brought into the sequent:
Rule? (inst - "1m" '"x" "y")

Instantiating the top quantifier in - with the terms:

L, x 9,
this simplifies to:

squared_increasing

{-1} expt(x, 1 + 1) < expt(y, 1 + 1) IFF x < y
[-2] x < y

[1] expt(x, 2) < expt(y, 2)

Rule?

Now, the antecedent contains all the information that is needed to prove the conse-
quent. Thus, issuing the command assert would apply decision procedures and finish the
proof. However, we can also do it manually, by first simplifying the sum, then flattening

the equivalence in formula [-1] to get two implications.

Rule? (simplify)
Simplifying with decision procedures,
this simplifies to:

squared_increasing

{-1} expt(x, 2) < expt(y, 2) IFF x < y
[-2] x <y

[1] expt(x, 2) < expt(y, 2)

Rule? (flatten)

Applying disjunctive simplification to flatten sequent,
this simplifies to:

squared_increasing

{-1} expt(x, 2) < expt(y, 2) IMPLIES x < y
{-2} x < y IMPLIES expt(x, 2) < expt(y, 2)

[1] expt(x, 2) < expt(y, 2)

33

Rule?

Last, we use prop to apply propositional simplification (in this case, modus ponens)

using the implication at [-2] and the fact at [-3].

squared_increasing

{-1} expt(x, 2) < expt(y, 2) IMPLIES x < y
{-2} x < y IMPLIES expt(x, 2) < expt(y, 2)
[-3] x <y

[1] expt(x, 2) < expt(y, 2)

Rule? (prop)
Applying propositional simplification,
Q.E.D.

The theorem prover also has the ability to store and replay proofs, and there are also
facilities to report proof status and to perform proof chain analysis—i.e., check if all the
lemmas appearing in a given proof have themselves been proved or stated as axioms or
definitions, and if all TCCs have been discharged. Those capabilities are useful during the
development of a mechanized theory, since complete proofs can be re-checked in response

to changes in the specification.

34

Chapter 3

Commuting Strategies for Product-line

Reliability Analysis

This chapter presents the formalization of our behavioral models for software product lines
(Section 3.1) and of our analysis strategies (Section 3.2). It also presents a formulation
of the soundness of our strategies as theorems, along with corresponding proofs. Last, we
conclude with remarks on the applicability of our mathematical theory to other analysis
strategies and to related domains (Section 3.3).

The contents presented hereafter are the purely mathematical results of the research,
and correspond to the journal article All roads lead to Rome: Commuting strategies for
product-line reliability analysis [15]. The discussion on annotative models (Section 3.1.1)
and analyses thereof (Section 3.2.2), that is, the family-based and family-product-based
strategies, is largely based on previous work [16]. Nonetheless, we include it here both
for the sake of completeness and because some of the notation has evolved during peer

review.

3.1 DTMC Models of Product Lines

Reliability analysis, in our setting, is the application of probabilistic model checking to
a probabilistic model of a software system. However, for a product line, it may not be
feasible to manually model each product (i.e., its probabilistic model) and then analyze
it, due to exponential blowup. Hence, we model the product line as a whole in terms
of its common and variable behavior, to enable the automatic derivation of probabilistic
models corresponding to the behavior of each product of the product line. Such variable
behavioral models have properties that allow them to be used with different analysis
strategies, as we will show in Section 3.2. Although we show and use precise definitions of

the resulting models, it is outside the scope of this work to present modeling techniques to

35

create them. Models can be produced, for example, by using behavioral UML diagrams
annotated with component reliabilities [36, 54, 65| or feature-oriented formalisms [19].
Since single-product analysis relies on D'TMCs to model software behavior, we lever-
age the parameters in PMCs to represent DTMC variability in product-line analysis. To
illustrate our approaches to variability representation and product-line analysis, yet with-
out loss of generality, we rely on an example product line of beverage vending machines
(Figure 3.1), slightly modified from the examples in the work by Ghezzi and Sharifloo
[36] and Classen et al. [22] for didactic purposes. This product line consists of models of
vending machines that are able to deliver tea or soda (but never both) and, for each case,
there is a beverage-specific optional behavior of adding a certain quantity of lemon juice.
The feature model for this product line is depicted in Figure 3.1a. Feature Vending
Machine is the root of the feature model, representing a product. Each of the valid
products has the functionality of serving a beverage, represented by the mandatory feature
Beverage. Its two child features, Soda and Tea, are alternative features (i.e., they cannot
be simultaneously present in a feature selection) representing the behaviors of serving
soda and tea, respectively. Since adding lemon to a beverage is an optional behavior,
it is modeled by the optional feature Lemon. If a product is generated with the feature
selection {Soda} (i.e., Lemon is not selected), a possible model of its probabilistic behavior
is depicted in Figure 3.1b. If the feature selection is {Tea, Lemon}, the derived product

has a probabilistic behavioral model as in Figure 3.1c.

Vending Machine

@1),
S0)) 52)
\ \ \,,

Beverage Lemon - N0l
FaN L 1 L~
F Legend: Y o

Soda|[Tea| | ® Mandatory
7 Optional
M Alternative

(a) Feature model (b) Behavior for {Soda}
e 1 0.9 0.9 0.9 /7 \\{% 0.9 @ 1

(c) Behavior for {Tea, Lemon}

Figure 3.1: Vending machine product line example

In both DTMC examples, transitions indicate a change in the machine’s execution
state, with probabilities representing the reliabilities of the corresponding execution steps.

These reliabilities are usually taken to be the probabilities that the software components

36

responsible for each step will successfully produce the expected outcome. In this sense,
one can notice most states have two outgoing transitions: one representing success and
another representing failure. The states with only one outgoing transition may be seen as
execution control hand-offs. Also, to help us identify variation points, states are labeled
according to the behavior they model and are correspondingly colored. Label ¢ denotes
common behavior (present in all products), while s and ¢ denote behaviors introduced
by features Soda, and Tea, respectively. States labeled t; correspond to the behavior of
adding lemon to tea, that is, they only exist in products derived by a feature selection
with both features Tea and Lemon.

We now discuss the modeling approaches we devised to leverage PMCs as representa-
tions of product-line reliability. These approaches build on the assumptions we made for

DTMC models of user-oriented software reliability, which are established in Section 2.2:

e Reliability of a software system can be interpreted in a binary fashion: either

the system outputs a correct result (success) or it fails (error).

— If the system is intended to perform an infinite loop (e.g., the Body Sensor

Network [76]), one may consider the correctness of a single iteration.
e States in the model represent the execution of a function by some system module.
— Thus, the state space is finite.
e Module failures do not propagate to one another.

e DTMCs are time-homogeneous—i.e., the transition probabilities do not change

over time.

e Parallelism and nondeterminism are not considered.

The way by which we represent variability as PMCs and generate products (i.e.,
DTMCs) from the resulting variable assets is classified according to the current ac-
cepted taxonomy [3, 47| in two main categories: annotation-based (or annotative) and
composition-based (or compositional). Each of these kinds of models will play a role in
the analysis strategies presented in Section 3.2. We also present a correspondence between

compositional and annotative models in Section 3.2.4.

37

3.1.1 Annotative Models

To represent the variable behavior of a product line in an annotative way, we use a PMC
in which variables are interpreted as configuration-specific behavior selectors. Such a
PMC for the vending machine product line is shown in Figure 3.2, where we introduce
blue dashed states to represent configuration-specific behavior selection. For instance, to
represent the variability for Tea-related behavior, we introduce a state labeled sel;, which
transitions to to (not shown) with probability 1, if it is present, or transitions to the point
right after the same behavior (a state correspondingly labeled aft;) with probability 1,
if it is absent.! This mutually exclusive selection is represented by labeling transitions
with the expressions ¢ and 1 — ¢, such that evaluating ¢ as 1 yields the expected “present”
behavior, while evaluating it with 0 yields the “absent” behavior. The same approach is
also applied to the behavior corresponding to adding lemon to tea, using the variable ;.
Some states of the model for serving tea, as well as the behaviors corresponding to Soda
and its lemon-adding variant, are omitted for brevity. The whole model can be seen in
Figure B.1.

Figure 3.2: Annotative PMC for the vending machine

We generalize and formally define this annotative approach of variability representa-

tion as follows.

Definition 5 (Annotative PMC). An annotative PMC is a PMC (S5, so, X, P, T) such
that for all states s € .9, either:

1. Vyes-P(s,s) € [0,1] AP(s,S) =1 (the probabilities of all outgoing transitions are
constants that add up to 1); or

2. Jgy,aft,e5 Faex-Succ(s) = {s0, aft,} ANP(s,s0) = AP(s, aft,) =1 — x (there are ex-
actly two outgoing transitions, whose probabilities are expressed as a single variable

and its complement).

IThe states sel, and aft, are analogous to the #ifdef and #endif macros of the C preprocessor,
usually seen in preprocessor-based product lines.

38

The states in Figure 3.2 that fall in the second case are sel, and sel;, (as well as sel,
and sels,, which are not shown), while all others fall in the first case. Each variable of
an annotative PMC denotes the presence of a given behavior in a product. The intended
semantics is that the sets of states and transitions giving rise to the denoted behavior will
be reachable within the model if, and only if, its corresponding variable evaluates to 1.

For such an annotative PMC to represent the variable behavior of a product line with
feature model FM, we must be able to use it to derive the behavioral model of any product
generated by a configuration ¢ € FM. However, the use of a PMC by itself does not
help with restricting the possible evaluations to achieve that. Evaluating the introduced
variables with values other than 0 and 1 may yield ill-formed DTMCs (i.e., ones whose
transitions have invalid probabilities or that violate the stochastic property). Also, a
variable should evaluate to 1 if, and only if, the presence condition of the subsystem whose
behavior is controlled by this variable is satisfied. Hence, we need to constrain evaluations
of this annotative PMC to reflect the corresponding feature model and presence conditions.

The first step towards this goal is to formalize what presence conditions mean in the
context of variable behavioral models. Thus, let p, be the presence condition for the
behavior identified by x. In our vending machine example, we would have p, = Tea,
py, = Tea/ALemon, p; = Soda, and ps;, = SodaALemon. To precisely associate a variable to
a presence condition, we define a higher-order function that maps a variable to a Boolean

function over the features (see Section 2.1), which we call presence function.

Definition 6 (Presence function). Given a set X of variables and a feature model FM,
a presence function is a function p : X — [FM] — B such that, for all x € X and all
c e [FM],

1 ifckEp, (presence condition is satisfied)
p(z)(c) = _
0 otherwise

where p, is the presence condition associated with the variable and ¢ |= p, means that

the configuration c satisfies p,.

Next, we must be able to use the feature model to define evaluations. For instance,
the annotative PMC for the vending machine product line would allow serving both tea
and soda, if both t and s were evaluated to 1. However, this behavior is forbidden by the
feature model, which states that Tea and Soda are alternative features. By incorporating
knowledge of the feature model to evaluations, we can model all variant behavior as if it
were optional and enforce the constraints of alternative and OR features when evaluat-
ing the PMC. The solution to this problem are higher-order functions complying to the

following definition of an evaluation factory.

39

Definition 7 (Evaluation factory). Given a feature model FM and a set X of variables,
an evaluation factory w : [FM] — X — R is a function that, for a given configuration

¢ € [FM], yields an evaluation w(c) € X — R.

At this point we have defined what we mean by an annotative PMC as well as an
abstract means to constrain possible evaluations to the ones that make sense in the context
of a given product line. For the particular case of annotative PMCs, an evaluation factory
must generate evaluations that interpret variables as presence values and according to the
presence conditions. Thus, we need to interpret the set {0,1} of numbers as the set B
of Boolean values and restrict the generated evaluations to have this set as image. With

this in mind, we define an annotative probabilistic model as follows:

Definition 8 (Annotative probabilistic model). An annotative probabilistic model is a
tuple (P, p,w, FM) such that:

e P = (S, s9,X,P,T) is an annotative PMC (Definition 5);
e FM is a feature model;
e p: X — [FM] — B is a presence function (Definition 6); and

e w is an evaluation factory (Definition 7) such that, for all ¢ € [FM] and x € X,

w()(@) = 1 ifp(x)(c) =1

0 otherwise

Remark 1 (Pointwise definition of w). For practical purposes, it is worth noting that
the right-hand sides of the definitions of w (Definition &) and of the presence function
p (Definition 6) are the same. That is, one can operationalize w as w(c)(x) = p(z)(c),
so the annotative evaluation factory could be uniquely determined from an annotative
PMC P, a presence function p, and a feature model FM. Nonetheless, we keep w as
part of the annotative model tuple for uniformity, since it is the annotative counterpart
of the composition factory w’ in a compositional probabilistic model (Definition 18). The
definitions of the presence function and the annotative evaluation factory are only similar
because the set of Real values in the image of the possible evaluations (i.e., {0,1}) in the
annotative case correspond to our Real encoding of Boolean values.

Starting with such an annotative model, the derivation of a specific behavioral model of
a product with configuration ¢ € [F'M] is then carried out by applying the evaluation w(c)
to the underlying PMC P. Since PMC evaluation is not restricted to annotative PMCs,
we define this process of DTMC derivation (which is the basis for product derivation)

without resorting to the just defined concept of annotative models.

40

Definition 9 (DTMC derivation). Given a PMC (S, s9, X, P, T), a feature model FM,
and an evaluation factory w : [FM] — X — R, the DTMC derivation function 7 :
PMCyx x ([FM] — X — R) x [FM] — DTMC is such that

7T(7D, w, C) = Pw(c)

where PMC'y is the set of PMCs with variables set X. For brevity, we can also note
[P]¥ to mean 7(P,w,c).

Note that the analysis methods we exploit in this work rely on evaluations being well-
defined (Definition 3). This is where the restrictions we imposed on annotative models
come into play: the evaluation factory of an annotative model always yields well-defined

evaluations for the underlying annotative PMC.

Lemma 2 (Evaluation well-definedness for annotative models). For every annotative
model (P,p,w, FM), w(c) is a well-defined evaluation for P, for all ¢ € [FM].

Proof. By definition of well-defined evaluation for a PMC P = (S,so, X,P,T) (Defi-
nition 3), an evaluation u is well-defined iff P, obeys the stochastic property and P,
assigns a valid probability value to each transition. That is, Vseg - Py (s, Suce(s)) = 1 and
Vsses - Pu(s,s’) €10, 1].

From Definition 8, P is an annotative PMC (Definition 5), so states with no variability
(case 1) satisfy the needed properties by definition. For states s with variability (case 2),
it holds that

g, spes Tuex - Suce(s) = {s1,52} AP(s,51) =2 AP(s,8)=1—2x

Let us consider each property whenever u = w(c):

Stochastic property. By definition,

Z Pw(c)(s> Sl) = Pw(c)(S, 81) + Pw(C)(S> 52)

s'eSucc(s)
= P(s,51)[X/w(e)] + P(s, 52)[X/w(c)]
= z[X/w(e)] + (1 = z)[X/w(c)]
= w(c)(z) + (1 —w(c)(2))
~1

Valid probabilities. From Definition 8, we have that for every ¢ € [FM], the im-
age of w(c) is {0,1} C [0,1]. Hence, either Py)(s,51) = 1 A Pyye(s,s2) = 0 or

41

Py (s,51) = 0A Py (s,52) = 1. That is, all possible transition probabilities lie in
the [0, 1] interval.

As there is no other case to consider, P, satisfies the required properties. Thus, w(c)
is well-defined for P. O]

In summary, an annotative probabilistic model represents all products of the product
line, relying on presence conditions to define which parts have to be removed to derive
a concrete product model. Because of that, this type of model is also known as 150%

model [39], metaproduct [84], variant simulator [91], or product simulator [2].

3.1.2 Compositional Models

A compositional representation of variable configuration-specific behavior consists of a
hierarchy of PMCs whose variables represent variation points, such that they can be
composed with one another at predefined locations. To model a product line in this way,
we start with a PMC comprising all common behavior, while abstracting all variable
configuration-specific behavior. We then model each abstracted behavior as a DTMC, if
it presents no further variability, or as another PMC, otherwise. In the latter case, we
follow the same procedure to abstract inner variation points, until all behavior is modeled.

Figure 3.3 illustrates this concept. For the vending machine example, the top-level
PMC P+ would be as in Figure 3.3a. In this PMC, we introduce triples of dashed states
that act as placeholders for the abstracted behavior. We call these states and corre-
sponding transitions slots. For instance, the top-level PMC in Figure 3.3a has two slots,
abstracting the behaviors of serving tea and soda. The tea slot consists of two elements:
(a) the set of states ¢, ¢.,., and ¢, representing the initial, success, and error states
in the abstracted behavior, respectively; and (b) two transitions, annotated with the ex-
pressions t and 1 — ¢, denoting the probabilities of success and failure of this behavior,
respectively. This way, we not only use the variable ¢ as a slot identifier, but give it the
possibility to be interpreted as the reliability of the tea behavior.

Note that, despite being alternatives, the behaviors of serving tea and soda are both
represented in this PMC. This parametric model, by itself, does not prohibit the behavior
of serving tea and soda subsequently. Like in the annotative representation of the vending
machine (Figure 3.2), we do not enforce the rules of the feature model in the PMC itself.
Instead, we ensure valid combinations of features during the composition process, as we
shall see later.

Figure 3.3b shows the PMC P; for the tea behavior, in which we use a slot to abstract
the optional lemon-adding behavior, whose behavior is modeled by the PMC P, in Fig-
ure 3.3c. Since this tea-lemon PMC has no variability, it is in fact a regular DTMC. We

42

(a) Top-level compositional PMC P+ for the vending machine (common behavior and main
variation points)

=2 slots
] interfaces

(c) Compositional PMC P, for the behavior of adding lemon to tea

Figure 3.3: Compositional PMCs for the vending machine

omit the PMCs for serving soda (Ps) and for adding lemon to soda (Ps,), for brevity, but
the complete example can be seen in Figure B.2 (Appendix B).

This example depicts compositional PMCs as being generated by extracting subgraphs
from a DTMC model of system reliability. The intuition about PMC composition is that
it represents the reverse process: “inlining” PMCs back into the slots from which they
were extracted in the first place. Although composition in the context of DTMCs and
transition systems may be interpreted as parallel composition (using operators such as
interleaving and handshaking), this is not the case. We use this concept here in the sense
of composition-based variability modeling.

Formally, we define a compositional PMC as a PMC in which transition probabilities
depend on the value of some probabilistic reachability property of other PMCs. For a PMC
defined this way, possible evaluations map variables to real numbers within the interval
[0, 1], instead of the binary set {0,1} used for an annotative model (see Definition 7). To

compose PMCs modeled this way with one another, we augment the definition of a PMC

43

with explicit mentions of success and error states.

Definition 10 (Compositional PMC). A compositional PMC P is a tuple (.5, so, Ssuc,
Serrs X, P, T), where:

e S is a set of states, so € S is the initial state, X is a set of variables, and P is a
transition probability matrix, such that (5, sg, X, P,T) is an annotative PMC (see
Definition 5).

o States Sgue, Serr € S are called success and error states, respectively. Together
with the initial state, sg, they define the interface of the compositional PMC:
interface(P) = {50, Ssuc, Serr } (s0lid box around PMCs in Figure 3.3).

o T = {ssc}. That is, sg. is the only target state.

e The success and error states are the only bottom strongly connected components |7|
in P, that is:

— once one of them is reached, no other state is ever reachable; and

— they are the only states satisfying this property.

This restriction ensures that we model all executions as either successful (if the

success state is reached) or non-successful (if the error state is reached).

Definition 10 builds on Definition 5 to define the structure of compositional PMCs, but
the intended semantics of variables in this type of parametric Markov chain is different
from the corresponding semantics in an annotative PMC. In a compositional PMC, the
condition that the outgoing transitions of a given node are either all constant or all
variable (inherited from Definition 5) relates to the concept of slots, whereas annotative
PMCs treat variable transitions as behavioral switches. Informally, a slot for the variable x
(dashed boxes in Figure 3.3) marks the part of a product’s behavior where a configuration-
specific behavior (identified by x) takes place. Note that there can be more than one slot

for a given behavior.

Definition 11 (Compositional PMC slot). For a compositional PMC P = (S, so, Ssuc,
Serrs X, P, T), a slot for x € X is a triple (Suy, Sz, Sz,), Where:

L4 Sacov Sﬁsu(:? S-Z’err e S’
b Succ(s$(l) = {Sl’suc7 Sxer’r'};

b P(SIO7 stuc) A P<sx07 Sxer'r‘) = 1 - .

44

The set of slots for « in P is denoted by slots” (), and the set of states belonging to any
slot in slots” (z) is given by slotStates” (z) = {s € S | JestorsP ()" € s} We extend these
definitions for the set of all slots in P for any variable in X (slots” (X)) and the set of
states belonging to any slot in that set (slotStates” (X)).

With compositional PMCs at hand, we need to be able to derive a DTMC, modeling
the behavior of a given product of the product line, as in Section 3.1.1. Before we can
handle the product-line aspect, we must define the mechanics of PMC composition. The
intuition is that composition is achieved by connecting the interface (solid outer box) of
a compositional PMC P’ to the slots (dashed boxes) in a compositional PMC P that are

meant to abstract the behavior in 7', that is, slots” () (see Figure 3.4).

Definition 12 (Partial PMC composition). Given a compositional PMC P = (S, s¢, Ssuc,
Serrs X, P, T) and a variable z € X, assume that x occurs only once in P, and let P’ =
(57,50, Shues Sopes X', P, T") be a compositional PMC to be composed on that single slot
marked by x. The partial PMC composition P[x/P’] is a compositional PMC P” = (5",
Sq, St X", P",T") such that:

suc? 67‘7‘)

e S =545 where W denotes the disjoint union operator (all states are disjointly

merged);

® s = So, St = Ssuc, and s = s, (the interface of P is preserved);

o X" = X \{z}UX’ (the occurrence of z is replaced by a copy of P’, whose variables
are those of X');

o 7" =T (target states of the base PMC are preserved);
e P” is such that
— P"(s4,,5)) =1 (new transition from a slot’s initial state to the initial state of

the corresponding composed PMC)

— P"(8)0s Sz..) = 1 (new transition from the success state of a composed PMC

to the success state of the corresponding slot)

— P"(s,.,Sz...) =1 (new transition from the error state of a composed PMC to

the error state of the corresponding slot)
Szos Szae) = 0 (slot’s success transition is removed)

slot’s error transition is removed)

OCD

(
(success loops from composed PMCs are removed)
(

error loops from composed PMCs are removed)

45

— For all remaining combinations of s, s, € S”:

P(s1,sy) if 51,80 € S\ slotStates” (x)
P"(s1,89) = P'(s1,s0) ifsy,s0€ 8

0 otherwise
1
o Slot !
| T
: .z R
QO — | 1 e_>
e ﬁ
(a) P (b) P’

(c) Pla/P']
Figure 3.4: Example of a partial composition of two PMCs

In summary, transitions among slot states of P are removed as well as the looping
transitions from success and error absorbing states of P’. Then, slot states are connected
to respective interface states, yielding a partially composed PMC. This process is illus-
trated in Figure 3.4c, which depicts the partial composition of the compositional PMC P’
(Figure 3.4b) into P (Figure 3.4a) from the perspective of a single slot. New transitions
are green bold, while red dashed transitions are the ones suppressed during composition.
We say this transformation is partial because slots for variables other than x are not
subject to composition.

Since there might be more than one slot for a given variable, we extend the concept
of partial composition to mean the composition of n renamings of a given compositional
PMC P’ into each of the n slots for a single variable = in another compositional PMC P.
A full (total) composition is then obtained by composing PMCs over all slots in a given

base compositional PMC at once. Such a composition relies on a composition function—

46

a function v’ : X — & that yields a compositional PMC P € £ to compose in the
corresponding slots for any given variable. The detailed definitions of PMC renaming
(Definition 33) and total PMC composition (Definition 34) are presented in Appendix A.3.

In a composition, slots mark locations where behavioral model fragments (i.e., other
compositional PMCs) can be inserted to expand the base behavior. However, nothing
so far prevents composition to happen at arbitrary slots (e.g., composing the behavior of
adding lemon to soda in the slot for ¢, which was meant to represent the behavior of serving
tea). Thus, we need a way to relate slots and the intended abstracted configuration-specific
behaviors. We do so by naming compositional PMCs with the same variables that are

used in the slots that mark their places, by means of an identifying function.

Definition 13 (Identifying function). Let & = {P,...,P,} be a finite set of compo-
sitional PMCs P;, each with a set X; of variables, where i € {1,...,n}. An identifying
function is a bijection 4dt : & — I, where I D [Jp X; is a set of variables that contains

all variables in the compositional PMCs P;.

Since idt is a bijection, the set I of identifiers must have the same cardinality as
. In practical terms, we arbitrarily identify PMCs that do not directly correspond to
an abstracted behavior (i.e., those that are not directly referred by variables in other
PMCs). This is the case of top-level PMCs, which are mainly composed of states that
are shared between the behaviors of all products. For the vending machine product line
(Figure B.2, summarized in Figure 3.3), for which & = {Pr,P;, Py, Ps, Ps, }, we can
define I = {T,t,1;,s,5} and, correspondingly, idt = {Pt — T,P; — t, P, — t;,Ps —
s, Ps, > s}

An identifying function induces a dependency relation over PMCs, based on their
names and the variables they employ to abstract behavior in slots. If we denote this
relation by <, in the vending machine example, we can say that P;, < P; < P, meaning
Pt depends on Py, which, in turn, depends on P;,. Also, P, < Ps < Pr. Figure 3.5a
illustrates this dependency relation as a dependency graph, in which edges are labeled
according to the variables identifying the respective dependencies. There should be no
infinite descending chain under this relation, because otherwise one would infinitely com-
pose PMCs and never get a DTMC as a result. This could happen as a modeling error, for
instance, as introduced by the hypothetical dashed red cyclic dependency in Figure 3.5b.
Hence, we require the dependency relation among compositional PMCs to be well-founded,
meaning there can be no infinite sequence Py, Pa, Ps, ... such that V>, - Pip; < P;. This

also prohibits cyclic dependencies, since they would allow infinite chains.

Definition 14 (Dependency relation induced in compositional PMCs). Given a finite
set & = {P1,...,Pn} of compositional PMCs P;, each with a set X; of variables, and

47

I

a) Dependency relation < (b) Hypothetical cyclic dependency in <

Figure 3.5: Dependency relation induced in the vending machine

a corresponding identifying function idt : & — I, the binary relation <: & x & is the
well-founded dependency relation induced by idt and by the use of variables in the P;.
That is,

Vp, piew - 1dt(P)) € X; < P; < P;

We read P; < 'P; as “P; depends on P;”.

A consequence of this definition is that, in a finite set of compositional PMCs with an
identifying function, there must be, at least, one PMC that depends on no other and has
no variability whatsoever (a minimal PMC), and, at least, one PMC on which no other
depends (a mazimal PMC). In the vending machine (Figure B.2), the minimal PMCs are
Py, and Ps,, while Pt is the single maximal PMC.

Definition 15 (Minimal and maximal compositional PMCs). Given a set & of compo-
sitional PMCs, an identifying function idt, and the corresponding induced well-founded

relation <, a compositional PMC P € &2 is called minimal iff
Bpcw P <P
Conversely, P € & is called mazimal iff
Pprcrn P <P

Maximal PMCs can be seen as models of top-level behavior in a system, such as the
main tasks usually represented by UML activity diagrams. In an automation software
charged with managing different workflows, for instance, one could model each of the
workflows as a separate behavior with internal variability, thus yielding as many maximal
PMCs as there are tasks to accomplish. The number of maximal PMCs in a compositional

model is mainly a modeling decision, and analyzing the whole product line amounts to

48

analyzing each of these top-level behaviors. Thus, without loss of generality, we consider
models that have only one maximal PMC?, which we denote by Pr.

After composition, the variability in a compositional PMC is replaced by the variabil-
ities of the PMCs composed into it. That is to say, the set of variables of the resulting
compositional PMC is given by Ule X, the set of variables in all composed PMCs. In the
vending machine (Figure 3.3), for instance, if we compose the tea PMC P, (Figure 3.3b)
into the top-level PMC Pt (Figure 3.3a) using the slot (¢, ¢1.,., ¢t...), the resulting com-
positional PMC Pr[t/P;] will no longer have variable ¢, but will have a new variable t;,
stemming from P,. Consequently, to derive a product, one has to recursively perform the
composition operation until a plain DTMC is returned.

This recursive approach to derive a product by composition relies on an identifying
function idt to assign PMCs to slots corresponding to their identifiers. This composition
depends upon satisfaction of a presence condition. Thus, before we can properly define this
approach of derivation by composition, we must define how to proceed with composition
in the case that the presence condition of a model to be composed is not satisfied. We
achieve this result by composing the feature disabler compositional PMC, depicted in
Figure 3.6. This compositional PMC models an always successful behavior, so composing

it would not affect the overall reliability of the base model.

Definition 16 (Feature disabler compositional PMC). The feature disabler compositional
PMC, P, = (S, 50, Ssucs Serr, X, P, T), is a compositional PMC such that:

o S5 = {80735u67$err}
[] X :@

e P(so,55uc) = 1, P(Ssuc, Ssuc) = 1, and P(Sepr, Serr) = 1. Otherwise, for s,s" € S,
P(s,s') =0.

o ['= {Ssuc}

Figure 3.6: Feature disabler compositional PMC P

2The existence of minimal and maximal PMCs follows from the well-foundedness of <. More details
are available at Appendix A.1.

49

Similar to what we have achieved with evaluation factories (Definition 7), we need
to constrain the possible compositions to ones that respect both: (a) satisfying presence
conditions and (b) matching of slots and compositional PMCs via an identifying function.
To enable this, we define a composition factory as a higher-order function that constrains
compositions based on possible configurations of the modeled product line. This is the

basis of product derivation.

Definition 17 (Composition factory). Given a set &2 of compositional PMCs, a set I of
identifiers that is a superset of the variables used in slots, and a feature model [FM], a
composition factory w’ : [FM] — I — DTMC is a function that, for a given configuration
c € [FM], yields a composition function w'(c): I — DTMC.

To populate this definition with concrete composition factories, we fix the set I of
identifiers as well as an identifying function, thus inducing a dependency relation that
establishes which models should be composed to get a probabilistic model for a desired
product. This way, a compositional model of a product line is a set of compositional

PMCs closed under this dependency relation.

Definition 18 (Compositional probabilistic model). A compositional probabilistic model
for a product line with feature model FM is a tuple (£, <, I,idt,p,w’', FM), where:

o & ={Py,...,P,} is a finite set of compositional PMCs P; = (S;, Siy, Sices Sierrs Xis
P;, T;) (Definition 10).

e [is a set of variables, such that I O (J, X; and |I| = [#?|. These variables are a

superset of all variables in the compositional PMCs in &2.
e idt : & — I is an identifying function for &7 (Definition 13).

o <. X x & is the well-founded dependency relation induced by idt and by the use
of variables in the compositional PMCs P; (Definition 14).

e ['M is a feature model.

e p: [— [FM] — Bis apresence function (Definition 6) denoting presence conditions

satisfaction.

e w' is a composition factory (Definition 17) recursively defined as

Pz /w' (c)(z1), ..., xp/w (c)(xy)] if p(x)(c) =1

P otherwise

w'(e)(x) =

where P; € & idt(P;) =z € I, and X; = {z1,..., 2%}

20

This definition allows us to model the behavior of a product line in a compositional
way. To leverage this model for product-line analysis, we define a way to derive a DTMC

that is consistent with the behavior of a product generated using the same configuration.

Definition 19 (Derivation by composition). Given a compositional model (£, <, I, idt,
p,w', FM) and a compositional PMC P € & with a set X of variables, the DTMC

derivation by composition 7'(P,w’, ¢) is defined as
' (P,w', c) = P[X/w'(c)]

The notation is overloaded from PMC evaluation, since both are model transforma-
tions that operate on variables. Since w’ is defined recursively, we need to guarantee its
execution terminates, which is why we require < to be well-founded. The termination

proof (Lemma 11) is presented in Appendix A.2.

3.2 Reliability Analysis Strategies

The scenario on which we focus is analyzing the reliability of all products of a product line
using model checking of a probabilistic reachability property of Markov-chain models. For
this task, one can choose a number of product-line analysis strategies [85]. Following the
taxonomy of Thiim et al. [85], we discussed possible strategies for each of the variability
representations (annotative and compositional) presented in Section 3.1.

Figure 3.7 depicts these choices. Starting with a compositional (upper left corner)
or an annotative model (upper right corner), one can follow any of the outgoing arrows
while performing the respective analysis steps (abstracted as functions), until reliabilities
are computed (either real-valued reliabilities or an ADD representing all possible values).
These analysis steps can be feature-based (green solid arrows), product-based (blue dotted
arrows), or family-based (red dashed arrows). Thus, the arrows form an “analysis path”
(a function composition), which defines the employed analysis strategy. Furthermore,
Figure 3.7 is a commuting diagram (as we will demonstrate later in this section), meaning
that different analysis paths are equivalent (i.e., they yield equal results) if they share the
start and end points.

After choosing a variability representation, the analysis of any of the resulting models
presents another choice: either variability-free models (i.e., DTMC) are derived for each
configuration (function 7) and then analyzed (function «), or variability-aware analysis
is applied, using some form of parametric model checking (function &). The first choice
yields a product-based strategy (Section 3.2.1), whereby each variant is independently

analyzed. The second one leverages parametric model checking to produce expressions

o1

denoting the reliability of PMCs in terms of their variables (Section 2.2.2). These variables
carry the semantics they had in the model-checked PMC, so we correspondingly classify
the resulting expressions as annotative or compositional.

Evaluating these expressions provides another choice: to evaluate the expressions for
each valid configuration (function o), yielding feature-product-based (Section 3.2.3) and
family-product-based (Section 3.2.2) strategies; or to interpret the expressions in terms of
ADDs (function lift), effectively evaluating them for the whole family of models at once
(function 6)—a step we call expression lifting. The latter represents feature-family-based
(Section 3.2.3) and family-based (Section 3.2.2) strategies.

As an example of walking through the choices of Figure 3.7, suppose we start with
a compositional model (upper-left corner), perform parametric model checking (move
down), and then lift the resulting expressions (move down one more step) and evaluate
them (move right), reaching a reliability ADD for the family as a whole. The arrows in
this path are, respectively, green solid, red dashed, and red dashed, meaning the analysis

strategy is feature-family-based.

.. . / .
Compositional T T Annotative
! » DTMC <

model model

|
|
- Q |
Theorem 5 Theorem 1 !
a e
|
|
|

T Theorem 9 sl

~4 v

Compositional o R o Annotative
oS » Reliability « .
expressions N expression
| |
| |
l l
P . o [
lift Theorem 6 Theorem 3 ' lift
| [_Ie |
| |
Compositional 7 , Reliability 0 Annotative
lifted expressions ADD lifted expression
— s feature-based ™ derivation v variability encoding
~—~ family-based o evaluation . [Z evaluatim.l with ADDs
e model checking & parametric model
> product-based [lc ADD application checking

Figure 3.7: Commutative diagram of product-line reliability analysis strategies

Note that the commuting diagram in Figure 3.7 presents links to the definitions of
models and analysis steps. Each section in this diagram also provide a pointer to the
theorem stating its commutativity. For instance, Theorem 5 states that the upper left
quadrant of the diagram commutes. The remaining theorems are omitted from that figure

to reduce visual clutter.

02

In the remaining sections, we detail each of our strategies and analysis steps with
the goal of making statements about their commuting relations. Section 3.2.1 presents
product-based analysis strategies for both annotative and compositional models, with the
goal of establishing a baseline for the remaining soundness proofs. Section 3.2.2 discusses
family-product-based and family-based analyses of annotative models. Feature-product-
based and feature-family-based analysis strategies are the subject of Section 3.2.3, which

focuses on compositional models. Then, Section 3.2.4 bridges the gap between analyses

of annotative and compositional models (function v in Figure 3.7), establishing their
commutativity. Finally, we leverage these results to present the novel feature-family-

product-based strategy in Section 3.2.5.

3.2.1 Product-based Strategies

Product-based analysis strategies are based on the analysis of generated products or mod-
els thereof [85]. In Section 3.1, we have discussed how to represent probabilistic behavioral
models of product lines as PMCs, using both annotative and compositional approaches.
There, we also described how to derive models of individual products, both for the anno-
tative and the compositional approaches. The generated models are plain DTMCs, that
is, their variability has been resolved at derivation time. Thus, to analyze the generated
models, one only needs to model-check the non-parametric probabilistic reachability for
every such model. We hereafter denote this non-parametric model checking analysis step

by the following function «.

Definition 20 (Non-parametric model checking). The non-parametric model checking
step a : DTMC — [0,1] consists of applying the algorithm by Hahn et al. [41]. For a
DTMC D = (5,50, P, T),

a(D) = PrP (s, T)

Since a DTMC has no parameters, « yields constant functions, which we interpret as

plain Real numbers.

Although there are other algorithms for reliability model checking of regular (non-
parametric) DTMCs, we use the algorithm by Hahn et al. [41] in the above definition for
uniformity, which eases understanding. Since this algorithm is sound (Lemma 1), a work-
ing implementation of the presented theory is free to exploit another sound probabilistic
reachability algorithm for performance reasons.

Now we are able to define product-based analysis for annotative and compositional

models.

23

Strategy 1 (Product-based analysis of annotative models). Given an annotative model
(P, p,w, FM), a product-based analysis yields, for all ¢ € [FM],

a(m(P,w,c))

or, alternatively,
a([PIe)
Strategy 2 (Product-based analysis of compositional models). Given a compositional
model (£, <, 1,idt,p,w', FM), a product-based analysis yields, for all ¢ € [FM],
a(r'(Pr,w', c))

where P~ is the maximal PMC in &2 under <.

So, a product-based analysis results in a mapping from configurations to respective
reliability values, such as {¢ — a(n(P,w,c)) | ¢ € [FM]} for annotative models, for

instance.

Both analysis strategies presented in this section derive models for individual prod-
ucts of a given product line and then apply a single-product analysis technique as is.
Since single-product analyses represent the base case upon which product-line analyses
are built, the product-based strategies establish a baseline for proving the soundness

of other strategies.

3.2.2 Family-based Strategies

According to Thiim et al. [85], a family-based analysis strategy is one that (a) operates
only on domain artifacts and that (b) incorporates the knowledge about valid feature
combinations. In this section, we explore this kind of strategy in the context of annotative
probabilistic models, because they encode the behavior of all products of a product line in a
single PMC. Tt is also possible to perform family-based analyses on a compositional model
by first transforming it into an annotative one, but this is discussed later in Section 3.2.4.

First, we show how to perform an analysis that yields a reliability expression, which can
in turn be evaluated for each valid configuration of the product line. This characterizes
a family-product-based strategy (Section 3.2.2). Then, the aforementioned analysis is
leveraged to build a pure family-based (i.e., non-enumerative) strategy (Section 3.2.2). At
first, it may seem counterintuitive to present the family-product-based approach before

the family-based one. However, we shall see that our pure family-based approach builds

o4

upon concepts of the hybrid family-product-based approach, and that performing one or
the other is a matter of choosing product-based or family-based analysis steps after a

preliminary family-based step.

Family-product-based Strategy

A family-product-based strategy is a family-based strategy followed by a product-based
strategy over intermediate results [85]. The preliminary family-based step of our family-
product-based analysis consists of applying parametric model checking of probabilistic
reachability (Section 2.2.2) of the underlying PMC of the annotative model. This step

~

is abstracted as a function &, where the ~ symbol denotes that it is a variability-aware

version of the non-parametric model checking function « (Definition 20).

Definition 21 (Parametric model checking). The parametric model checking analysis
step & : PMCy — Fx consists of applying the algorithm by Hahn et al. [41] for proba-
bilistic reachability, which yields a rational expression ¢ € Fx for a PMC with variables
set X. For a PMC P = (S, s0, X, P, T), the input target states of the algorithm are the

ones in 7.

After performing parametric model checking, the result of reachability analysis is an
expression over the same variables as the annotative input PMC, denoting the PMC’s
reliability as a function of these variables. Hence, we expect this annotative reliability
expression to be evaluated using the same evaluation functions that restricted the possible
behaviors in the original model. This ezpression evaluation, which can be seen as model

derivation applied to expressions, is captured in function o.

Definition 22 (Expression evaluation). Given an expression ¢ over a set X of variables,
an evaluation factory w, and a configuration ¢ € [FM], we define the expression evaluation

function in a similar fashion as DTMC derivation:
o(e,w,c) = e[X/w(c)]

Likewise, we can use [¢]¥ to denote o(e,w,c).

The function o is applied to the reliability expression for all valid configurations of the
product line, yielding the final product-based step. The resulting family-product-based

approach for the analysis of annotative models is then defined as follows.

Strategy 3 (Family-product-based analysis). Given an annotative model (P, p,w, FM),
the family-product-based analysis yields, for all ¢ € [FM],

o(&(P),w,c)

25

or, alternatively,
[a (P

Figure 3.8 illustrates the family-product-based strategy in contrast with the product-
based one (Section 3.2.1), providing an intuition for why they commute. DTMC derivation
7 and expression evaluation o are both performed for a configuration ¢ such that ¢ |= p,.
This way, w(c)(x) = 1 and the reliability is 0.9801. If x was absent (i.e., ¢ = p,), then
the reliability would be 0.99.

1—x

0.99 S1 x @099 Ssuc 1

N

7777777777 2 0.9801 -z + 0.99 - (1 — z)

. 0.9801

(@

Figure 3.8: Example of family-product-based analysis (& followed by o) in contrast to
a product-based analysis (7 followed by «) of an annotative PMC, for a configuration
satisfying x’s presence condition

To be considered sound, a family-product-based analysis must be equivalent® to per-
forming a product-based analysis of all products. This means that performing a para-
metric model checking step and then evaluating the resulting expression for each valid
product must yield the same result as first deriving the original annotative model for each
product and then performing non-parametric model checking on each resulting DTMC.
To prove that this equivalence holds, we can leverage a more general result about PMCs

and well-defined evaluations.

Lemma 3 (Commutativity of PMC and expression evaluations). Given any PMC P =
(S, 50, X, P, T) and a well-defined evaluation wu, it holds that

a(P[X/u]) = a(P)[X/u]

3Whenever two analysis strategies yield equal reliability values, we say they are r-equivalent.

o6

Proof.

a(P[X/u]) = a(Py) (syntax change)
= Pr"u(s0,T) (Definition 20)
and, since u is well-defined,
= &(P)[X/ul (Lemma | and Definition 21)
[

Using this result, we are able to express the soundness of the family-product-based

approach in the following theorem.

Theorem 1 (Soundness of family-product-based analysis). Given an annotative model
(P,p,w, FM), for all c € [FM]

a([P1) = [a(P)]

Alternatively, o(m(P,w,c)) = o(&(P),w,c).

Proof. Since w(c) is a well-defined evaluation (Lemma 2), we can use it to instantiate u
in Lemma 3. Thus, let P = (5,59, X, P, T).

a([P]Y) = a(P[X/w(c)]) (Definition 9)
= &(P)[X/w(c)] (Lemmas 2 and 3)
= [a(P)] (Definition 22)

As a major result, Theorem 1 states that the diagram in Figure 3.9 commutes.

This diagram corresponds to the upper right quadrant in Figure 3.7.

T Annotative
DTMC ¢ o
model
|
L
Q Theorem 1 Xe
+
A Annotative
Reliability « .
o expression

Figure 3.9: Statement of Theorem 1

57

Family-based Strategy

The pure family-based strategy starts by applying parametric model checking to the
given annotative model, as in the family-based step of the family-product-based strategy.
However, instead of evaluating the resulting expression for each variant, we [ift it to an
ADD-based reliability expression, which can be evaluated for all variants at once. While
an expression is evaluated with real values, a lifted expression is evaluated using ADDs,
which represent Boolean functions from features to real values. Each of these ADDs
encode the values that a variable can assume according to each possible configuration,
also known as wvariational data [93|. Since this approach incorporates the knowledge of
valid feature combinations, it is a family-based strategy.

Let us take the vending machine product line (Figure B.1) as an example. Tts reliability
expression after parametric model checking has 8 terms, one of which is 0.124659 - ¢ - ¢;.
Starting from the evaluation factory w, we can derive functions v, that, for each variable
z, take a configuration ¢ € [FM] as input and output the corresponding value w(c)(x).

For t and ¢, for instance, these functions would be as follows:

Y;(Tea, —Soda, ~Lemon) = Yy, (Tea, ~Soda, ~Lemon) =

)
1(Tea, ~Soda, Lemon) =
Y (—Tea, Soda, ~Lemon)

)

1)=0
1 ¢y, (Tea, ~Soda, Lemon) = 1
=0)y, (—Tea, Soda, "Lemon) = 0
0) =0

Py, (ﬂTea, Soda, Lemon

Y (—Tea, Soda, Lemon

Having each of these functions represented by an ADD enables the efficient computation
of the reliability expression as another ADD 7, representing a Boolean function that could
be defined pointwise as 7(c) = 0.124659 - ¢,(c) - ¢, (¢) (we omit the remaining terms for
simplicity).

We now formally define expression lifting, as well as the mechanics of generating

ADD-based evaluations and evaluating lifted expressions.

Definition 23 (Expression lifting). For a given rational expression ¢ € Fx, whose se-
mantics is a rational function Rl — R, and a product line with k features, we define the
lifted expression lift(¢) = ¢ as an expression which is syntactically equal to &, but whose

semantics is lifted to a rational function (B* — R)XI — (B¥ — R), such that:

e The function’s inputs are k-ary ADDs.

e Polynomial coefficients are interpreted as constant ADDs (e.g., the number 5 be-
comes ¢ € B* s 5). We denote a constant a lifted to a constant ADD as a, so that

a(b) = a (where b is a Boolean tuple).

o8

e Arithmetic operators are lifted to their ADD-based counterparts.

Hence, the admitted evaluations for € are of type u : X — (B*¥ — R), so that variables
are properly replaced by k-ary ADDs.

By the above definition, lifted expressions are syntactically equal to their original
(non-lifted) counterparts. However, instead of using Real arithmetics, we interpret oper-
ators, constants, and variables using ADDs and ADD arithmetics (Section 2.3). These
semantically lifted expressions are sound in the sense that they denote functions that,
when evaluated with a given configuration, yield the same results as if the variables of the

original expressions would have been individually evaluated for the same configuration.

Lemma 4 (Soundness of expression lifting). If € is a rational expression over Real con-
stants and variables v; € X, | X| =n, Ay,..., A, are ADDs, and é = lift(¢), then

Elw1 /AL, ... 20 /AL () = elx1 /AL(D), ..., 2,/ A0 (D))

where b is a vector of k Booleans, corresponding to a selection of the k features in a given

product line.

Proof. The proof is by induction on the structure of the rational expression €. The
base cases are constant expressions and single variables, for which the lemma holds. We
then use induction and algebraic manipulation to prove for the arithmetic case (i.e.,
£ =¢e1 ® ey, where ® € {+, —, X, +}) and for exponentiation. Proof details can be found
in Appendix A .4. O

Note how a lifted expression demands a different type of evaluation, namely one that
replaces variables with ADDs. To handle this interdependency, we correspondingly lift

the evaluation factory.

Definition 24 (Lifted evaluation factory). Given an evaluation factory w defined over a
feature model FM and a set X of variables, the factory’s lifted counterpart is a function
W : X — (BIFMl — R) that yields an ADD for a given variable. This function is such
that, for every variable z € X and all ¢ € [FM],

w(z)(c) = w(c)(z)

With a lifted evaluation factory, one can evaluate a lifted expression over the same set
X in a variability-aware fashion. The intuition is that we valuate each variable with an
ADD that encodes all the real values it may assume for any configuration of the product

line.

29

Definition 25 (Variability-aware expression evaluation). Let w be a lifted evaluation
factory and € be a lifted expression. The variability-aware expression evaluation function,
0, is defined as

o(&,w) = é[X/w]

Remark 2. This definition of variability-aware evaluation is not restricted to reliability
analysis or to the specific definitions of probabilistic models presented in this text. Indeed,
one can notice that it relies on the definitions of an expression with rational function

semantics and of an evaluation factory with respect to a given feature model.

Thus, we are able to prove the following theorem, which applies to product line analysis

strategies that are based on expression evaluation.

Theorem 2 (Soundness of variability-aware expression evaluation). If € is an expression
and w 1s an evaluation factory with respect to a feature model FM, let € and w be their

respective lifted counterparts. Then, for all ¢ € [FM],
(&, w)(c) =o(e,w,c)
In other words, é[X/w](c) = e[X/w(c)].
Proof. Using w as a substitution,
E[X/w] = Elxy [(xr), ..., Tn /0 (2n)]

Thus, for all ¢ € [FM],

a(é,w)(c) = é[X/w](c) (Definition 25)
=[xy Jw(x1),. .., Tn/W0(Ty)](C)
= e[z /w(x1)(c), ..., xn/0(z,)(c)] (Lemma 4)
= elz1/w(c)(x1),. .., xn/w(c)(z,)] (Definition 24)
= e[X/w(c)]

[
-8
o
E
AP

(Definition 22)

]

We have seen that, in a product line with feature model FM, the presence function
p denotes a presence condition p, as a Boolean function p(z) : [FM] — B. Since this
can be alternatively expressed as p(z) : B¥™l — B, the presence function can also be

encoded by ADDs, denoted by p(x). We now resort to the pointwise definition of w as

60

w(c)(z) = p(x)(c) (Remark 1), to define a lifted evaluation factory w, for evaluating the
lifted version of expressions resulting from parametric model checking of an annotative

model.

Lemma 5 (Soundness of lifted annotative evaluation factory). Given an annotative model
(P,p,w, FM) and a function p : X — (BFMl — B) that encodes presence conditions for

variables as ADDs, then w = p is a lifted evaluation factory for w.

Proof. From Definition 8, we have that

w(e)(x) = 1 ifp(x)(c) =1

0 otherwise

Thus, from Remark 1, w(c)(z) = p(z)(c). Also, p(xz)(c) = p(x)(c) by definition, so
w(c)(x) = p(z)(c). O

Recalling the vending machine example, the presence conditions for the variables t and
t, are, respectively, Tea and Tea A Lemon. Then, the ADDs p(t) and p(t;) are given by the
Figures 3.10a and 3.10b, where we use the notation presented in Section 2.3. If we evaluate
a lifted version of the example expression € = 0.124659 - ¢ - t;, + 0.3439 - ¢ (2 terms from
the actual reliability expression for the vending machine annotative model in Figure B.1)
with p, the resulting ADD will be 7 = 0.124659 - p(¢) - p(t;) + 0.3439 - p(t), as depicted
in Figure 3.10c. Hence, for a given configuration ¢ € [FM], if both Tea and Lemon are
present (i.e., p(t)(c) = 1 and p(t;)(c) = 1), then 7(c) = 0.124659-1-1+0.3439-1 = 0.468559;
if only Tea is present, then 7(c) = 0.124659 - 1 - 0 4 0.3439 - 1 = 0.3439; and if both Tea

0.

and Lemon are absent, then 7(c) =

0.468559 |]0\.3439\ @
(c) lift(0.124659 - ¢ - t; + 0.3439 - t)[t/(t), t:/P(t1)]

Figure 3.10: Example of lifted expression evaluation using p

Using the result from Lemma 5, we can now express the soundness of this family-based

analysis step of evaluating lifted expressions.

61

Theorem 3 (Soundness of expression evaluation using p). Given an annotative model
(P,p,w, FM), € = &(P), and é = lift(e), let p be the encoding of the presence condition
function p to yield ADDs. If we use p as a lifted evaluation factory, then for all ¢ € [FM]

[6(6,D)]c = [e]¥
Alternatively, o(lift(),p)(c) = (e, w,c).

Proof. For a given annotative model, Lemma 5 states that p is a sound lifted counterpart
of w. Hence, by Theorem 2, e[X/w(c)] = £[X/p](c). In other words, [6(¢,p)]. = [e]¥. O

Figure 3.11 illustrates the main result from Theorem 3. The depicted diagram,

which corresponds to the lower right quadrant in Figure 3.7, is commutative because

of this theorem.

Reliability « Annotative
. expression
[_Ie Theorem 3 i luft
Reliability =~ Annotative
ADD 5 lifted expression

Figure 3.11: Statement of Theorem 3

Now that we have all analysis steps needed, we can formally define the family-based

strategy.

Strategy 4 (Family-based analysis). Given an annotative model (P, p,w, FM), a family-

based analysis yields

& (lift(a(P)),p)

The result of a family-based analysis is a Boolean function encoded as an ADD. Such
an analysis is sound if, and only if, it yields an ADD for which every valid configuration
¢ € [FM] results in the same probability as if the original annotative model had been

subject to product-based analysis for the same configuration c.

Theorem 4 (Soundness of family-based analysis). Given an annotative model (P, p,w,
FM), for all ¢ € [FM] it holds that

[6 (lift(&(P)), p)]e = a([P]¥)

62

Proof. Follows from the successive application of Theorems 3 and 1:

[o (tift(a(P)),p)]e = [a(P)]¥ (Theorem 3)
= a([P]Y) (Theorem 1)

¢

As a key result, Theorem 4 states that the diagrams in Figure 3.12 commute. Both

diagrams correspond to the right half of the one in Figure 3.7.

DTMC « m Annotative DTMC « T Annotative

model model

| |

| _ |
- [- [N
a Theorem 1 e @ Theorem 4 | @
| - |

+ - +

Reliability <~ Annotative Reliability Annotative
N expression N expression
1 1
[_le Theorem 3 i lift [_]e i hift
| |
Reliability =~ Annotative Reliability Annotative
ADD & lifted expression ADD & lifted expression

Figure 3.12: Alternative views of the statement of Theorem 4

3.2.3 Feature-based Strategies

A feature-based analysis strategy is one that (a) operates only on domain artifacts and
that (b) analyzes the artifacts belonging to each feature in isolation [85]. Compositional
models describe modular behaviors that represent units of variability. A given PMC within
a compositional model may represent the behavior associated with one or more features, or
even model part of a given feature’s behavior (in case of behavior scattering). In this sense,
analyzing individual PMCs of a compositional model can be seen as analyzing features
in isolation, which is why we use this kind of probabilistic model to discuss feature-based
strategies. Moreover, since our focus is on reliability, which is highly influenced by feature
interactions, we cannot use a pure feature-based strategy [85]. Thus, we concentrate on
feature-product-based and feature-family-based analysis strategies.

Similar to what happens with family-based strategies (Section 3.2.2), the feature-
family-based approach builds upon concepts used by the feature-product-based strategy,

and performing one or the other is a matter of choosing product-based or family-based

63

analysis steps after a preliminary feature-based step. Because of that, we first discuss the
feature-product-based strategy (Section 3.2.3), focusing on the feature-based step of ap-
plying parametric model checking to each compositional PMC to generate corresponding
compositional expressions. These reliability expressions can be evaluated for every possi-
ble configuration, yielding a product-based step and giving rise to a feature-product-based
strategy. Alternatively, we can lift each expression and evaluate them using ADDs, in a
similar fashion to what we did for the family-based strategy (Section 3.2.2). This leads

to an overall feature-family-based strategy, which we discuss in Section 3.2.3.

Feature-product-based Strategy

A product-line analysis strategy is feature-product-based (a) if it consists of a feature-
based analysis followed by a product-based analysis and (b) if the analysis results of
the feature-based analysis are used in the product-based analysis [85]. The preliminary
feature-based analysis step consists of applying the parametric model checking function
& to each PMC in a compositional model, yielding corresponding reliability expressions.
These resulting expressions preserve the dependency relation, since each of them is defined
in terms of the same variables as its originating PMC and can be assigned the same
identifier.

As an example, the compositional model of the vending machine product line (Fig-
ure 3.3) yields the following expressions after the feature-based analysis step: &(Pr) =
1-t-s, &(P;) =0.6561-t;, and &(P;,) = 0.81. Also, &(Ps) = 0.729 - s; and &(Py,) = 0.81
for the remaining PMCs in Figure B.2.

A bottom-up evaluation of variables can be applied for each valid configuration, giving
rise to the product-based analysis step. This procedure consists of compositional expres-
ston evaluation, that is, expression evaluation using a compositional evaluation factory

derived from the composition factory used for the corresponding PMCs.

Definition 26 (Compositional evaluation factory). Given a compositional model (£, <,
I,idt,p,w', FM), a compositional evaluation factory is defined as an evaluation factory
(Definition 7) w : [FM] — I — R, such that for all ¢ € [FM] and z € I,

w(c)(z) = a(a(P),w,c) if p(x)(c) =1

1 otherwise

64

where idt(P) = x. Alternatively, we can write

[a(P)]e if p(x)(c) =1

1 otherwise

w(e)(x) =

In other words, whereas a composition factory composes a recursively derived version
of PMC P’ into slots identified by a variable x of a PMC P, a compositional evaluation
factory composes a recursively evaluated version of &(P’) in every occurrence of the vari-
able x in &(P). This recursion always terminates, because < is a well-founded relation
(see Lemma 12, in Appendix A.2).

We define the feature-product-based analysis of compositional models as a recursive
evaluation of the expressions obtained from the feature-based step, using the composi-
tional evaluation factory shown above. This recursion starts from the maximal PMC in
the compositional model, traversing the dependency graph induced by < (Figure 3.5a) in
a depth-first fashion.

For the vending machine product line (Figure 3.3), for instance, the computation for
configuration ¢ = {Tea,Lemon} would be as follows: Starting with &(Pv), we evaluate
the presence conditions for its variables, ¢ and s. Since p, = Soda is not satisfied, s is
evaluated to 1, ending the computation for this branch. On the other hand, p; = Tea is
satisfied, so we step into this branch to compute &(P;) under c. The only variable in this
expression, t;, has its presence condition satisfied by ¢, so we step further into this branch
to compute &(P,) under c. Since this expression denotes a constant value, we return this

value and the recursion terminates, yielding the following constant expression:

[&(Pe)]e
[a(Pr)]e=1-(0.6561- (0.81))- (1)
N A

a(Po)l. [a(P)le
We generalize and formalize this procedure as follows.

Strategy 5 (Feature-product-based analysis). Given a compositional model (£, <1,
idt, p,w’, FM) and the compositional evaluation factory w, derived from the composition

factory w’, the feature-product-based analysis yields, for all ¢ € [FM],
O_(d(PT)7 w, C)

or, alternatively,

[a(Pr)]e

where Pt is the maximal PMC in &2 under the dependency relation <.

65

To establish the soundness of the feature-product-based strategy, we need to compare
it to the product-based strategy for compositional models. We state this result in the

following theorem.

Theorem 5 (Soundness of feature-product-based analysis). Given a compositional model
(2, =<, 1,idt,p,w', FM), for all configurations ¢ € [FM], it holds that

a(&(P),w,c) = a(x'(P,w', c))

or, alternatively,
[a(P)]¢ = a([P]Y)

where P € & and w is the compositional evaluation factory (Definition 26) derived from

the composition factory w'.

Proof. We use well-founded induction. The base of the induction is when P is minimal
with respect to <. Since minimal PMCs have empty sets of variables, 7'(P,w’,c) = P
and &(P) = «(P). Thus, the statement holds for the base case.

The general case is proved by expanding definitions in the proof goal and applying the

induction hypothesis and Lemma 3. The complete proof is presented in Appendix A.3. [

As a further major result, Theorem 5 states that the diagram in Figure 3.13 com-

mutes. This diagram relates to the upper left quadrant in Figure 3.7.

Compositional

o ' DTMC
Q J Theorem 5 Q
Compositional . Reliability
expressions

Figure 3.13: Statement of Theorem 5

Feature-family-based Strategy

Similar to the family-based strategy (Section 3.2.2), the feature-family-based strategy
leverages ADDs to store and reason about variational data. Since the preceding feature-
based analysis yields expressions over reliabilities, this variational data is made of Real

values corresponding to the reliabilities of the products of a product line. Again, lifting

66

expressions involves lifting the corresponding evaluation factory. In this process, the pres-
ence conditions are encoded in ADDs to represent the variability under feature selection.
This encoding is achieved by the ADD operator ITE (if-then-else).

Let us revisit expression evaluation in the vending machine example (Figure 3.3). We
have seen the expression for ¢; is the constant 0.81, so its lifted version is the constant
ADD 0.81 (according to the notation introduced in Definition 23). The expression for ¢,
&(Py) = 0.6561 - ¢;, has the variable ¢;. Thus, if the presence condition p; = Tea A Lemon
is satisfied, this variable must be evaluated to the constant value 0.81, assuming the value
1 otherwise. Thus, the lifted expression @ is evaluated with an ADD encoding this
choice, given by ¢(t;) = ITE(p(#;),0.81,1) and depicted in Figure 3.14a. The evaluated
lifted expression d/(@[tl/ga(tl)] is the ADD product of the constant 0.6561 and o(t),
shown in Figure 3.141b. The/pﬁ)cedure is repeated for every composition, so that the

variable ¢ in the expression &(Pt) would be replaced by the ADD in Figure 3.14¢, which

already encodes the combined presence conditions for ¢ and t;.

\
I
@ !

[0.531441 || 0.6561 \

— —

0.81,1) (b) &(Pe)[ti/¢(t)]

\
\
\

0.531441 |[0.6561 |

—

(¢) p(t) = ITE(D(t), &(Py), 1)

Figure 3.14: Example of lifted compositional expression evaluation

The function ¢ shown in the example is the lifted version of the compositional eval-
uation factory w. We first present a formal definition of ¢ and then proceed to proving
its soundness. Soundness of the feature-family-based strategy follows from this result and

from the soundness of the feature-product-based strategy (Section 3.2.3).

Definition 27 (Lifted compositional evaluation factory). Given a compositional proba-
bilistic model (£, <, I,idt, p,w’, FM) and the compositional evaluation factory w, derived
from the composition factory w’, the lifted evaluation factory ¢ : I — (BFMl — R) is a
function that, for any x € I, yields an ADD ¢(z) such that:

o~ ~

() = ITE(p(x), &(P)[X/¢], 1)

67

where P € &, idt(P) = z, 67(5) = lift(&(P)) and 1 is the constant ADD corresponding
to the function (c € [FM]) — 1.

The next lemma, which is the compositional counterpart of Lemma 5, states this

function ¢ is indeed a lifted version of w.

Lemma 6 (Soundness of lifted compositional evaluation factory). Given a compositional
model (22, <, 1,idt,p,w';, FM) and the compositional evaluation factory w, derived from
the composition factory w' (Definition 26), for all x € I and all ¢ € [FM] it holds that

p(z)(c) = w(c)(x)

Proof. We first expand the definitions of ¢ (Definition 27) and w (Definition 26), then
proceed to compare corresponding cases. The cases in which the presence condition is
not satisfied are trivially equal; for the complementary case, we use well-founded induc-
tion on the dependency relation <, along with the soundness result for expression lifting

(Lemma 41). The reader is invited to follow the complete proof in Appendix A 1.]

This way, the ADDs yielded by function ¢ from Definition 27 correctly encode the
variation in values returned by the compositional evaluation factory w. An immediate
consequence is that the expressions resulting from the feature-based analysis step can,
indeed, be lifted and then evaluated using ¢, and this gives us the same results as the cor-
responding (i.e., for the same configurations) product-based evaluations. This is expressed

by the following theorem.

Theorem 6 (Soundness of expression evaluation using). Given a compositional prob-
abilistic model (22, =<, 1,idt,p,w', FM), the compositional evaluation factory w, derived
from the composition factory w', and x € I, let P = (S, S0, Ssuc, Serrs X, P, T) be such that
idt(P) =z, Pe P. If e =a&(P), € = lift(e), and p is the lifted compositional evaluation
factory obtained from w (Definition 27), then, for all ¢ € [FM], it holds that

X/ ¢l(e) = e[X/w(c)]

Proof. For the given compositional probabilistic model, Lemma € states ¢ is a sound

lifted counterpart of w. Hence, by Theorem 2, ¢[X/w(c)] = é[X/¢](c). In other words,
[6(2, o)l = [e]2" O

So, Theorem 6 states that the diagram in Figure 3.15 commutes. This diagram

corresponds to the lower left quadrant in Figure 3.7.

68

Compositional o

. » Reliability
expressions N
lift i Theorem 6 [
Compositional . Reliability
lifted expressions & ADD

Figure 3.15: Statement of Theorem 6

The feature-family-based analysis strategy leverages the preceding results to yield an
ADD encoding all reliabilities for valid configurations of the product line. This process is

formally defined as follows.

Strategy 6 (Feature-family-based analysis). Given a compositional model (£, <, I,idt,
p,w', FM) and the lifted compositional evaluation factory ¢, derived from w’, the feature-

family-based strategy yields
& (lift(6(Pr)), ©)

where Pt is the maximal PMC in & under the dependency relation <.

Similar to the family-based strategy, the feature-family-based strategy is sound if this
ADD is such that applying it to every valid configuration ¢ € [FM] results in the same
probability as if the original compositional model had been derived for ¢ and the resulting
DTMC had been model-checked for probabilistic reachability (product-based strategy).
The difference is that, in the feature-family-based case, this statement holds for every

PMC in the compositional model.

Theorem 7 (Soundness of feature-family-based analysis). Given a compositional model
(2, =<, 1,idt,p,w', FM) and the lifted compositional evaluation factory p, derived from
w', for every PMC P € & and for all configurations ¢ € [FM] it holds that

[6(lift(a(P7)),)] = a([P]Y)

Proof. Let w be the compositional evaluation factory derived from the composition factory

w’. The proof follows from successive application of Theorems 5 and 6:

[o (lift(a(P)),)] = [a(P)]Y (Theorem ©)
= a([P]*) (Theorem 5)

69

As a key result, Theorem 7 states that the diagrams in Figure 3.16 commute. Both

diagrams correspond to the left half of the one in Figure 3.7.

Compositional T Compositional T

» DTMC > DTMC
model model
a Theorem 5 Q a J \Tim-:mt-rn 7 “
itional R itional V
Compos@ona . Reliability Compoerlona Reliability
expressions N expressions .
lift i Theorem 6 H_ﬂc Lift i [[_]]C
Compositional Reliability Compositional Reliability
lifted expressions & ADD lifted expressions & ADD

Figure 3.16: Alternative views of the statement of Theorem 7

3.2.4 Bridging Compositional and Annotative Models

Thus far, we have discussed family-based analysis strategies applied to annotative models
and feature-based analysis strategies applied to compositional models. We now present
a technique to transform any composition-based model into an r-equivalent annotation-
based model. This ability may be useful in the case that the reliability analysis of a
given product line is predictably more efficient if performed using a strategy suited for
annotative models, such as our family-product-based and family-based approaches. This
transformation of models resembles variability encoding techniques, that is, the rewriting
of compile-time variability as load-time or run-time variability [2, 3, 74, 91].

Although the concepts of compilation and execution are not defined for Markov chains,
variability encoding, as established in the literature, has the main goal of creating artifacts
that can be analyzed by off-the-shelf tools. Correspondingly, we are able to transform
a compositional model, which cannot be directly model-checked (because it is split into
a number of PMCs), into an annotative model, which can be immediately issued to a
parametric model checker. Thus, we address the transformation of compositional models
into annotative ones in terms of two wvariability encoding functions: one operating on
PMCs (Section 3.2.4) and the other for handling expressions (Section 3.2.4).

Variability Encoding of PMCs

In terms of Markov chains, variability encoding can be realized by turning compositional

models into annotative ones. This means transforming both the underlying compositional

70

PMCs and the composition factory w’ into a single annotative PMC with a corresponding
evaluation factory. To accomplish this, we propose an if-then-else operator for PMCs that

switches between possible states with a Boolean variable.

/
k&
(a) P

()

(b) P’

Figure 3.17: Example ITE operator for PMCs

For brevity, the formal definition of this operator (Definition 35) is available in Ap-
pendix A.5.1. We rely on Figure 3.17 for intuition. Again, green bold arrows represent
new transitions, whereas red dashed ones are removed. Intuitively, an evaluation that
maps x to 1 yields a PMC with the same behavior as P (consequent), while an evaluation
that maps x to 0 yields a PMC with the same behavior as P’ (alternative). We formalize

this behavioral switching in terms of r-equivalence.

Lemma 7 (r-equivalence for ITE). Given two compositional PMCs, P = (S, S0, Ssuc, Serr
X, P, T) and P = (5,50, Sper Sorrs X, P, T), and a variable x ¢ X U X', let P" =
ITE(z, P, P"). If (P",p,w, FM) is an annotative model with P as its underlying PMC",
where p, w, and FM are arbitrarily chosen, then, for every c € [FM],

a([PI?) ifpx)(c) =1
a([P']Y) otherwise

a([ITE(z, P, P)]Y) =

Proof. We are interested in computing the probability of reaching s”,. from s{ in P” =
ITE(z, P,P’) under evaluation w(c). Using the formal definition of ITE (Definition 35)

and Property |, we are able to derive a reachability expression with only two terms, each

4By Definition 10, any compositional PMC is also an annotative PMC (Definition 5). Thus, a com-
positional PMC can be the underlying PMC of an annotative model.

71

corresponding to the “activated” PMC (P or P’). The complete proof can be found in
Appendix A5 1. O

The previous lemma establishes that the ITE operator has the effect of alternating
behaviors if the resulting PMC is evaluated by replacing the switching variable x with 0
or 1. With this result, we define the variability encoding of PMCs as a composition of
PMCs using the ITE operator in a recursive way, with minimal PMCs as the base case.
The alternative choice (second argument to ITE) is always the feature disabler PMC
P, (Definition 16), meaning no probabilistic behavior is actually added if the presence
condition is not satisfied. This is coherent with the corresponding case in a composition

factory (see Definition 18).

Definition 28 (Variability encoding function for PMCs). Given a compositional model
(2,=<,1,idt,p,w', FM) and P, Py,...,Pr € & such that P; < P and z; = idt(P;) for
i € {1,...,k}, the variability encoding function ~ is defined as the following derivation

by composition (Definition 19):
V(P) = Pl /ITE(x1, ¥(P1), PL), - - -, T/ TTE(zk, Y(Pr), PL)]

This recursion terminates, since the arguments to the recursive calls involved are less
than the input with respect to the well-founded relation < (Lemma 11). Nonetheless, each
variable x;, which was meant as a slot marker, is replaced by a variable with the same
name, but different meaning (i.e., intended to be evaluated with presence values). Since
all variables in the PMC yielded by ~ have this issue, the composition factory from the
original compositional model will no longer be suitable. Thus, we must broaden the scope
of variability encoding to also transform the composition factory w’ into an annotative

evaluation factory.

Definition 29 (Variability encoding of PMCs). Given a compositional model (£, <, I,
idt,p,w', FM), let P € & be a PMC. Then, (v(P),p,w, FM) is an annotative model that

encodes P’s variability, where w is an evaluation factory as in Definition 8.

The main goal of variability encoding is to transform a compositional model into an
annotative one, but this technique can only be exploited if the reliability analyses of both
the original and the transformed models yield the same results. This fact is established

by the following theorem.

Theorem 8 (r-equivalence of variability encoding and derivation by composition). Given
a compositional model (P, =<, I, idt,p,w', FM) and P € 2, let (v(P),p,w, FM) be its

72

variability-encoded annotative model. Then, for all ¢ € [FM],

a([v(P)]Y) = a(x'(P, v, c))

Proof. We use well-founded induction. For minimal PMCs (base of induction), v(P) = P,
so [v(P)]¥ = P. Likewise, 7'(P,w’, c) = P, so the proposition holds trivially.

As induction hypothesis, we have that a([v(P;)]¥) = a(x'(Pi,w',¢)) for all P, € &
such that P; < P. Expanding a([v(P)]¥) and using previous soundness and r-equivalence
results, we leverage this induction hypothesis to reach a(7'(P,w’, ¢)).

The detailed proof can be found in Appendix A.5.1. O]

In summary, Theorem & establishes the commuting diagram in Figure 3.18, which
corresponds to the upper arc in Figure 3.7. Note that the derived DTMCs are not
necessarily equal in a syntactic and structural sense—this theorem only states that «

computes the same reliability for both models.

-7 Theorem & Ty
Compositional 7’ ™ Annotative
: ‘ - DTMC - ‘
model model

Q
Reliability

Figure 3.18: Statement of Theorem &

The result from Theorem & indicates that, under the assumptions we made for user-
oriented reliability models, the compositional variability representation is at least as ex-
pressive as the annotation-based one. Hence, either compositional or annotative models
can be used to analyze a given product line. The decision on which one is more appropri-
ate for each situation is not in the scope of this research; nonetheless, we conjecture that
the modeling approach should follow the variability representation used in the system

being modeled, as a means to mitigate the risk of introducing errors.

Variability Encoding of Expressions

Aside from encoding variability in Markov chains, we can also encode variability in reli-
ability expressions (represented by the arc in the middle row of Figure 3.7). Expressions

derived from a compositional model can be combined to form a single larger expression (in

73

terms of operands). Applying such a transformation can be useful in cases where parsing
and evaluating each compositional expression is less efficient than doing so for the single
variability-encoded expression. As with PMCs, variability encoding of expressions can be

defined in terms of a dedicated if-then-else operator for expressions.

Definition 30 (ITE operator for expressions). Given two expressions ¢ and &' over the
sets X and X’ of variables, respectively, and a variable x, the if-then-else operator for

expressions is defined as
ITE(x,e,e') =a-e+(1—2x)- &

The set of variables of the resulting expression is X” = X UX'U{z}. Additionally, = is ex-
pected to be evaluated with a Boolean value, that is, 0 or 1. Procedures that do not affect
the semantics of expressions, such as distributing the terms over the switching variable x

and simplifying the resulting expression, can be leveraged in working implementations.

This ¢f-then-else operator merges two expressions to form a third one that uses a new

variable to represent a choice and satisfies the following lemma.

Lemma 8 (Extensional equality for expression ITE). Given two expressions € and &' over
the sets X and X' of variables, respectively, and a variable x, let X" = X U X' U{x} and
u: X" —[0,1] be an evaluation function such that u(z) € B. Then,

elX/u] ifu(x)=1
e'Xu] ifu(x)=0

ITE(z,¢,e")[X" /u] =

Proof. We prove this by expanding the definition of ITE and performing algebraic manip-
ulation. The complete proof can be found in Appendix A.5.2. O]

The above lemma establishes that the ITE operator has the effect of alternating the
semantics of the resulting expression between the ones of its arguments, but only if this
resulting expression is evaluated with an evaluation that replaces the switching variable
x by 0 or 1. Similar to the ITE operator for PMCs, we define variability encoding of
expressions as a composition of expressions using the ITE operator in a recursive way,

with constant expressions (i.e., reliabilities of minimal PMCs) as the base case.

Definition 31 (Variability encoding function for expressions). Given a compositional
model (2, <, I,idt,p,w', FM) and P, Py, ..., Py € & such that P; < P and x; = idt(P;)
fori € {1,...,k}, let ¢ = &(P) and ¢; = &(P;). The variability encoding function ~ is

overloaded for expressions as

v(e) = elz1/ITE(xy, v(e1), 1), ..., 2k /ITE(zk, Y(€k), 1)]

74

This recursion terminates, since the arguments to the recursive calls involved are less than

the input with respect to the well-founded relation < (see Lemma 11).

Similar to variability encoding of PMCs, the new variables after encoding have the
same names as the previous ones, but different meaning. Thus, we also transform the
compositional evaluation factory w (Definition 26) into an annotative evaluation factory
(see Definition 8). This way, we ensure variables, which have all been transformed into

conditionals, are evaluated as expected of the ITE semantics.

Definition 32 (Variability encoding of expressions). Given a compositional model (2,
=<, 1,idt,p,w', FM), and the compositional evaluation factory w, derived from the com-
position factory w’, let w, be an annotative evaluation factory (w in Definition 8) with

the same presence conditions as w. That is, for all ¢ € [FM],

1 ifp(z)(c) =1

0 otherwise

wy(e)(x) =

Then, for any P € & and € = &(P), v(e) encodes ¢’s variability under the evaluation w,,.

We state the soundness of variability encoding for expressions in terms of r-equivalence.
For any configuration ¢ € [FM], a variability-encoded expression and its corresponding
evaluation factory must yield the same reliabilities as the original compositional expres-

sions and the corresponding compositional evaluation factory.

Theorem 9 (Soundness of variability encoding for expressions). Given a compositional
model (P, =<, 1,idt,p,w', FM) and P, P1,...,Pr € & such that P; < P and x; = idt(P;)
fori € {1,...,k}, let ¢ = &(P). Let also w be the compositional evaluation factory

derived from w' (Definition 20) and w, be the annotative evaluation factory obtained from

w (Definition 32). Then, for all ¢ € [FM] it holds that

o (1(e), wp,¢) = ole, w,c)

Proof. We use well-founded induction. For a minimal PMC P (base of induction), &(P) =
e has no variables. This way, v(¢) = ¢ and o(e,u) = € for any evaluation u. Thus, both
sides of the equality evaluate to € and the proposition holds trivially.

As induction hypothesis, we have that o(y(s;), wp, c) = o(e;, w, c) for all ¢; = a(P;)
such that P; < P. Expanding o(y(¢), wp, ¢) and using previous soundness and extensional
equality results, we leverage this induction hypothesis to reach o(e,w, ¢).

The detailed proof can be found in Appendix A.5.2. O]

75

As a further key result, Theorem 9 establishes the commuting diagram in Fig-

ure 3.19. This diagram corresponds to the arc in the middle section of Figure 3.7.

. 7 Theorem 9 ~ '
Compositional o o Annotative

. » Reliability « X
expressions expression

Figure 3.19: Statement of Theorem 9

Variability Encoding of Lifted Expressions

The symmetry exhibited by Figure 3.7 suggests that it makes sense to have arcs denoting
variability encoding in all three levels of that diagram—i.e., not only for PMCs and
expressions, but also for lifted expressions. However, lifting (Definition 23) operates on
expression semantics, whereas variability encoding (Definition 32) operates on expression
syntar. Because of that, variability encoding of lifted expressions is effectively the same
operation as variability encoding of regular (Real-valued) rational expressions. Thus, we

decided to represent this operation only once in our commuting diagram (Figure 3.7).

3.2.5 Feature-family-product-based Strategy

So far, we have proved that all compositions of analysis steps leading up to reliabilities
in Figure 3.7 are r-equivalent. That is, these analysis steps commute, and, consequently,
any path in this diagram can be equally taken to reach the same reliability value. By
reflecting over the results condensed in this commuting diagram, we noticed a possible
path that had not yet been exploited. This “unbeaten path”, presented in Figure 3.20 as
an excerpt from Figure 3.7, led us to derive a novel feature-family-product-based analysis

strategy:

1. Starting from a compositional model (upper left corner), we apply parametric model

checking (&) to obtain compositional expressions (feature-based step);

2. The resulting compositional expressions (lower left corner) are variability-encoded

(7) into a single annotative expression (family-based step); and

3. The annotative expression (lower right corner) is analyzed for each configuration
¢ € [FM] of the product line (product-based step).

76

. !
Compositional 7
model

A Theorem 5 A
Q [S _ /

- Theotem 9 -~
itional . Annotati
Compositional o . Reliability - o nnotative

expressions expression

Figure 3.20: Commuting diagram leading to the feature-family-product-based strategy

The existence of a feature-family-product-based class of analyses was foreshadowed in a
recent survey, but no instance has been found in the literature [85]. Thus, to the best of our
knowledge, this is the first feature-family-product-based analysis to be presented, either
formally or informally. The precise conditions under which this approach outperforms
the others still need to be characterized by empirical studies. However, we believe it is
an alternative to the family-product-based approach for cases in which (a) the model at
hand is compositional and (b) applying variability encoding to the PMCs themselves is
infeasible (e.g., the resulting annotative model is too big to be efficiently analyzed).

The novel strategy can be formally described as follows:

Strategy 7 (Feature-family-product-based analysis). Given a compositional model (2,
=<, 1,idt,p,w', FM) and the compositional evaluation factory w, derived from the compo-

sition factory w’, the feature-family-product-based analysis yields, for all ¢ € [FM],

o (Y(&(Pr)), wp, c)

or, alternatively,

[(y o @) (Pr)le”

where P+ is the maximal PMC in & under the dependency relation <, and w, is the

variability-encoded annotative evaluation factory obtained from w (Definition 32).

Since the diagram in Figure 3.7 commutes, this analysis is sound with respect to the
product-based analysis of the same compositional model (Strategy 2). This soundness

property is established by the following theorem:

Theorem 10 (Soundness of feature-family-product-based analysis). Given a composi-
tional model (2, =<, 1,idt,p,w', FM) and a compositional evaluation factory w, derived
from the composition factory w', for every PMC P € £ and for all configurations
c € [FM] it holds that

o (Y(&(P)), wp,) = a(r'(P,w',c))

77

where w, is the variability-encoded annotative evaluation factory obtained from w (Defi-

nition 32).
Proof. The proof follows from successive application of other commutativity theorems.

o (v(&(P)), wp,) = o(a(P (Theorem 9)
= a(' (P, v, c)) (Theorem 5)

~—
&
o

~—

In summary, Theorem 10 states that the diagram in Figure 3.21 commutes. This

diagram corresponds to the upper left quadrant and the middle arc in Figure 3.7.

Compositional 7’

o » DTMC
model
S Q
Q l Theorem 10 __ 7
Compositional = P\{eliavbili by < o~ Annotative
expressions expression

Figure 3.21: Statement of Theorem 10

3.3 Concluding Remarks

Together, the theorems demonstrated in this chapter constitute the main contribution of
this work. Intermediate steps of the presented analysis techniques commute, making the
diagram in Figure 3.7 fully commutative. Thus, any path constructed by following the
arrows in that diagram yields an analysis that is r-equivalent to the one yielded by any
other path that shares the same starting and ending points. This way, we guarantee all
product-line reliability analysis techniques presented in this work yield the same results
if given the same input models.

Furthermore, we formally described the different analysis strategies in terms of reusable
functions, making them comparable to one another. Such view, summarized by the com-
muting diagram in Figure 3.7, allows the organization and structuring of facts (e.g., com-
mutativity of intermediate analysis steps) in a concise and precise manner, facilitating the
communication of ideas. This contributes to a more comprehensive understanding of un-

derlying principles used in these strategies, which we envision could help other researchers

78

to lift existing single-product analysis techniques to yet under-explored variability-aware
approaches.

In what follows, we discuss the generality of our results and their application to related
analysis strategies. We also discuss how this work relates to other topics of interest in

product-line analysis—namely sampling strategies and detection of feature interactions.

Generality: Our results indicate that there is a general principle of using ADDs to
encode variability in an efficient way. In our specific case, we used Real-valued ADDs to
compute the values for the user-oriented reliability property of each possible product with-
out resorting to a fully enumerative approach. Such efficiency comes from the algorithms
for ADD binary operations [6|, which are not restricted to Real numbers.

Hence, we believe that this technique may be explored to analyze other properties of
product lines—especially numeric ones, such as performance and time-to-failure. In doing
so, the bottom half of our commuting diagram (Figure 3.7) may be useful as a starting
point, since it is dependent on rational expressions and evaluation factories, but not on
the specific models (and properties) considered here.

Besides the general nature of ADD operations, we also believe that the commuting
diagram itself may be used as a guide to specify similar theories for related domains. For
instance, we can identify in Figure 3.7 that the central node (Reliability) represents
the property under analysis, whereas the node just above that one (DTMC) represents the
model for which that property can be analyzed. The upper left and upper right nodes
(Compositional Model and Annotative Model) denote alternative ways to represent
vartability in such models, with inward arrows representing the binding of variability
to derive a single product (in this case, a model thereof) and downward arrows denoting
variability-aware analysis. Future work shall investigate how to leverage this framework to

systematically generalize our results to other properties, models, and analysis techniques.

Feature interactions: When features of a product line are developed independently,
it is possible that their combination causes unexpected behavior. To ensure the quality
of products in a product line, such inadvertent feature interaction should be properly
identified, managed, and resolved. Thus, the feature interaction problem is of particular
interest when dealing with product-line analysis.

The combination of different dimensions of product-line analysis is, by itself, an ap-
proach to quality-checking in the presence of feature interactions [3|. In this particular
work, we deal with models of user-oriented reliability. Although modeling techniques
lie outside our scope, the analysis strategies formalized here assume that the reliability

models use DTMC states to denote transfer of control between software modules (cf.

79

Section 2.2). Thus, whenever our analysis strategies combine models for valid product
configurations, the results take into account the interaction of the modeled behavior for
the different features.

The validity of this approach is dependent on the accurate modeling of software behav-
ior. However, all resolutions of feature interactions can be abstracted as variants of a single
pattern: implementing individual features and providing additional coordination logic to
use them together [3]. Hence, we argue that the proper modeling of software behavior
to reflect that implementation technique can lead to a sound feature-interaction-aware

reliability analysis of a product line using our strategies.

Sampling strategies: The commutativity theory presented here establishes that our
reliability analysis strategies yield the same results for any given wvalid configuration.
This correspondence is enforced by the presence conditions encoded in evaluation and
composition factories, as a means to activate/deactivate equivalent model fragments.

Thus, considering that sampling is a matter of checking a (suitable) subset of all prod-
ucts of a product line with a single-product analysis [3]|, we can say that the semantics
of sampling strategies is contained in the semantics of the product-based strategy pre-
sented in Section 3.2.1. Therefore, sampling of valid configurations is covered by our
formalization.

However, sampling strategies that allow arbitrary feature selections are also possible.
Indeed, the benefits of such analysis strategies has been empirically assessed [59], especially
as a means to detect feature interactions. Although our formalization as-is does not
contemplate invalid configurations, doing so is a matter of extending the domains of
presence functions (Definition 6) and evaluation factories (Definition 7) from [FM] to 2%
(where F is a set of features and F'M is a feature model defined over F'). Since [FM] C 2F
(by definition, cf. Section 2.1.1), it is possible to define such an extension that preserves
the correspondence between model fragments for valid configurations and yet defines new

correspondences for other feature combinations.

80

Chapter 4
Formalization in PVS

This chapter discusses the process of mechanizing the handcrafted version of our theory
of commuting reliability analysis strategies [15]. We present an overview of the adopted
specification strategy (Section 4.1) and a guide to the structure of the resulting speci-
fication (Section 4.2), whereby it is related to the original version. We also discuss the
machine-assisted proof effort (Section 4.3) and reflect upon the mechanization process
as a whole and the impact of design decisions (Section 4.1). Last, we discuss current
limitations of the mechanized theory (Section 1.5).

Instead of a comprehensive description of every aspect of this mechanized theory, we
only present in detail the representative constructs—either those that are extensively
used throughout the specification or ones that embody design decisions for problems that
are prone to more than one solution. Accordingly, we change some of the mechanized
definitions (with respect to the actually implemented version) to improve readability.

The result so far is that all definitions, lemmas, and theorems in the original spec-
ification have been fully mechanized, but the machine-verified proofs of 5 of the new
auxiliary lemmas are still in progress (Section 4.5). Moreover, some of the inner work-
ings of discrete-time Markov chains are left unspecified by design, since the soundness of
known facts about DTMCs is not debated and is also not the focus of this work.

The source code for the PVS specification is available at https://github.com/
thiagomael/rome-specs. The top theory is in the PVS file rome, and serves both as
a summary of the analysis strategies and as an entry point from which the whole spec-
ification can be checked (by issuing the command pvs -batch -q -1 batch-prove.el
from the directory containing the files). In this work, we use PVS version 6.0," extended
with the NASA PVS Library version 6.0.9.° It takes approximately 20 minutes for PVS
to type-check and verify all proofs in the specification.” After this, the results will be

http://pvs.csl.sri.com/
’https://shemesh.larc.nasa.gov/fm/ftp/larc/PVS-1library/

81

https://github.com/thiagomael/rome-specs
https://github.com/thiagomael/rome-specs
https://github.com/thiagomael/rome-specs/blob/master/rome.pvs
http://pvs.csl.sri.com/
https://shemesh.larc.nasa.gov/fm/ftp/larc/PVS-library/

available in the file batch-rome.log, including timing statistics and the status of all
theories (at the end of that file).

4.1 Specification Strategy

To mechanize the manually specified theory, we followed the same order originally used
when defining the different analysis strategies (Section 3.2). The reason for this choice is
twofold:

1. the family-based strategy is only possible once the intermediate result of a family-

product-based analysis (the family-based step) is available; and

2. all of our feature-based strategies (left half of Figure 3.7) rely on concepts that are

needed for the family-based ones (right half of Figure 3.7).

Additionally, we used a top-down approach, starting from a strategy and then specify-
ing the related concepts as needed. For instance, the product-based analysis of annotative
models makes use of annotative models themselves; these, in turn, depend on defining an-
notative PMCs, which depend on PMCs, expressions, and so on. With this approach,
we expected the resulting specification to be as parsimonious as possible. This is the
inverse of the presentation sequence in each subsection of Section 3.2, where concepts are
presented in a bottom-up fashion as building blocks from which more complex definitions

are constructed.

Choice of Proof Assistant

We started the specification work with a “dry-run”, whereby we specified part of the
upper right quadrant of Figure 3.7 using two proof assistants: PVS [68] and Coq [11].
The goal was to experience both tools in our concrete setting, to decide on which would
be more helpful. This proof of concept, which consists of specification and proofs up
to Lemma 2 (Evaluation well-definedness for annotative models), is available at https:
//github.com/thiagomael/proof-assistants-poc.

At the time of this proof of concept, we used introductory documentation and tuto-
rials. Based on that material, we did not find a way to specify type constraints in Coq,
especially for return-type predicates. For that reason, we were not capable of using sets as
types for function parameters, hindering the specification of partial functions (which are
needed for expression evaluations, for instance). Contrastingly, Lemma 2 was automat-

ically generated by PVS as a type-correctness condition, based on our use of dependent

3Using as reference a dual core (4 threads) i7-4500U CPU with 1.8 GHz clock and 8 GB RAM running
Ubuntu 19.04.

82

https://github.com/thiagomael/proof-assistants-poc
https://github.com/thiagomael/proof-assistants-poc

typing as a specification technique. Moreover, our Coq proofs became considerably larger

than the corresponding ones in PVS (Figure 41.1).

(** Lemma 2 (Evaluation well-definedness for annotative models) *)

Lemma evaluation_well_definedness:
Y apm: AnnotativeProbModel, wf_annot_prob_model apm —

Y c: SPL.Configuration,
In c [|apm.(FM)|] — well_defined_evaluation apm.(pmc) (apm.(w) c).

Proof.
intros.
destruct H as [[Hsg [HTinS [HSinP HXinP]]] [HannotPMC HannotEvalFactory]].
unfold well_defined_evaluation.
remember (eval_pmc (pmc apm) (w apm c)) as d.
unfold wf_DTMC.
intuition. (* Break each proposition in the conjunction into a separate goal. *)
- (* sB in S *)

rewrite — Heqd. simpl. apply Hsg.
- (*Tins*)
rewrite — Heqd. simpl. apply HTinS.
- (* StateMaps.In s (P d) *)
¥ rewrite Heqd in H. unfold eval_pmc in H. unfold S in H.
(skolem ...) rewrite Heqd. unfold eval_pmc. unfold P.
1 apply HSinP in H. apply eval_matrix_in. apply H.

. fepl . S (*Ins (5 d) %)
(expand "annotative_PMC") (expand "well_defined_evaluation") rewrite Heqd in H. unfold eval_pmc in H. unfold P in H.
rewrite Heqd. unfold eval_pmc. unfold S.
(expand "w_evaluation®) (propax) apply HSinP. apply eval_matrix_in in H. apply H.

(skolem ...) - (* all transitions are valid probabilities *)

1 unfold is_stochastic_matrix. intros s r H_mapsto.
(inst? -) rewrite Heqd in H_mapsto. unfold eval_pmc in H_mapsto. unfold P in H_mapsto.
apply eval_matrix_evaluated_expr in H_mapsto. elim H_mapsto.

(split -2) (typepred "p’P") intros e [H_mapsto_e H_r]. rewrite H_r.
(expand “is_stochastic_row?") (expand "wi_evaluation") (rewrite -1-2) apply eval_annotative_state_is_stochastic with (m:=P (pmc apm)) (s:=s).
L + (* MapsTo s e (P apm) ? *)
(inst?) (split) assumption.

(grind) (expand *is_stochastic_row?")
(use "switch_row_sums_1")

(grind)

+ (* annotative_state ? *)
unfold annotative_pmc in HannotPMC.
apply mapsto_in in H_mapsto_e.
rewrite < HSinP in H_mapsto_e. apply HannotPMC in H_mapsto_e.

assumption.
(* w is a stochastic evaluation? *)
unfold stochastic_evaluation. intros.
apply HannotEvalFactory with (x:=x) in Hg.
{ (* is valid probability? *)
rewrite Hp.
unfold AnnotativeEvaluationFactory.
induction (pf apm x c).
- unfold is_valid_prob. split.
+ apply Rle_0_1.
+ apply Rle_refl.
- unfold is_valid_prob. split.
+ apply Rle_refl.
+ apply Rle_0_1.

I+

3
{ (* is x in X2 *)
rewrite HXinP. assumption.

Qed.ll

Figure 4.1: Proof of Lemma 2 in PVS (left) and Coq (right)

Also, the PVS type checker identified a corner case of our specification: we did not
account, for the possibility of divide-by-zero errors. Coq, on the other hand, does not
restrict the division operator to non-zero denominators.” This capability of the PVS
type checker led us to believe that this tool would be more helpful to detect specification
mistakes. One disadvantage of using PVS, however, is that Coq provides the ability to
extract certified Haskell code from a working specification—a feature that could be helpful
in future work, as a means to derive a certified product-line reliability analysis tool.

Note, however, that we did not perform a thorough and systematic comparative in-
vestigation. Rather, we sought for an educated guess about what capabilities each tool
had to offer. Indeed, both PVS and Coq allowed us to specify and prove our theory up

to the same point.

4This behavior is a sound design decision to simplify Coq specifications. Hence, division by zero (if
relevant to the specification at hand) must be conciously introduced as a premise.

83

Design Principles

During the mechanization process, we followed a number of guidelines to help us specify

a sound and readable theory.

Operational specification style: The original theory started as a formalization of
techniques implemented in a tool designed to empirically compare user-oriented reliabil-
ity analysis strategies [54]. Aiming to eventually close the loop and implement a tool
based on the mechanized theory, we favored an operational specification style (i.e., con-
crete definitions of functions and data structures), as opposed to a declarative style (i.e.,
uninterpreted definitions that are defined in terms of their desired properties).
Moreover, some results that we use (e.g., concerning DTMCs) are not mechanized in
PVS. To be able to specify our analysis strategies and prove their soundness, we created
PVS theories for these results. In contrast with our own work, however, we assume that
these third-party results are correct. Thus, we only specify their properties when (and
if) they are needed—what could be called a “lazy specification” strategy. Also, when

specifying such properties, we employ a declarative style to abstract their inner workings.

Tuples as records: Whenever an element of our theory is defined as a tuple (e.g.,
Definition 1 — Parametric Markov Chain), we specify this element in PVS using a record
type. Records provide named accessors, instead of the positional accessors available in

tuple types. This makes the specification easier to read and to maintain.

Partial functions with predicate subtypes: PVS only supports total functions. To
implement partial functions in PVS, we must either restrict the domain to a set of valid
inputs, or specify some notion of invalid output to be returned whenever the function is
not defined [67]. We chose the former approach, that is, to limit the domain by means of
predicate subtypes. This way, we can leverage the type checker to enforce constraints on

input and avoid including additional restrictions on lemmas, theorems, and definitions.

Dependent typing: We use dependent typing to encode constraints over data and
function parameters. The rationale is the same as for predicate subtypes: since dependent
types embed restrictions within the type system, the type checker is able to generate type-

correctness conditions that must be proved.

Sets as types: Many definitions and operations within our theory rely on elements of
given sets. Examples are evaluation functions (defined over a specific set of variables)

and composition of PMCs (constrained to the PMC’s set of states). Thus, we exploit

84

PVS’s ability to define types from sets—which is possible because PVS represents sets as

predicates over a type. This can also be seen as a special case of predicate subtypes.

Existing libraries: Whenever possible, we leverage existing libraries to model auxiliary
concepts. In particular, we exploit a number of theories in the NASA PVS Library” (cf.
Appendix C, Figure C.1). Given that this library is used in formal verification of mission-

critical software, we assume that the risk of introducing inconsistencies is low.

4.2 Walk-through

In this section, we present the process of mechanizing our manually-specified theory
(Chapter 3), focusing on the most relevant aspects and illustrating the design deci-
sions. We begin by laying out the fundamental definitions upon which the theory is built
(Section 4.2.1), then describe the construction of family-product-based and family-based
strategies (Sections 1.2.2 and 4.2.3). After that description, we discuss PMC composition
and the feature-product-based and feature-family-based strategies (Section 4.2.1). Last,
we bridge the two sides of our commuting diagram with a discussion on the mechanization

of variability encoding (Section 1.2.5).

4.2.1 Foundations

To mechanize our reliability analysis theory, we first need definitions and facts about the
underlying models and the corresponding operations. The most fundamental concepts
on which our theory relies are the ones related to discrete-time Markov chains and their
parametric counterpart. Accordingly, we searched for existing libraries that implemented
these concepts in PVS, but had no success.

A possible alternative would be to produce a new library building on definitions from
the sigma_set and probability libraries (distributed along the NASA libraries package)
and following the formalization presented by Baier and Katoen [7]. However, since the
soundness of facts concerning DTMCs and PMCs is not the focus of this work, a formal
specification of these concepts is out of scope. Thus, we made a design choice to specify
only as much as needed, using an axiomatic style to abstract details that are not directly
needed to the specification of commuting strategies.

For instance, since our definitions rely on the manipulation of states and transition
matrices of Markov chains, we define a DTMC as a record type with these elements as

components:

Shttps://shemesh.larc.nasa.gov/fm/ftp/larc/PVS-1library/

85

https://shemesh.larc.nasa.gov/fm/ftp/larc/PVS-library/

8

DTMC: TYPE =
[# S : non_empty_finite_set[statel,
s0: (8S),
P : {m: real_transition_matrices.transition_matrix | dom(m) = S},

T : non_empty_finite_set[(S)] #]

In the above definition, we fix a finite set S of states (according to the assumptions we
made for the reliability models) and establish that the initial state s, and the set T of
target states are all taken from S—hence the use of (S), meaning the type of states s
such that s € S. Furthermore, the transition matrix P is such that its domain is exactly
S (the image is the set of probabilities—i.e., the Real interval [0, 1]).

We defined the type state as an alias to PVS’s own nat. The reason for not leaving
state uninterpreted is that we need the set of possible states to be infinite in order to
allow arbitrary renamings (see Definition 33). Although we could provide an axiomatic
definition for an infinite state type, this would inevitably mimic the one already provided
in the NASA library sets_aux@infinite_nat_def. Hence, it was simpler to just label
states as Natural numbers, without loss of generality.

To avoid unneeded detail, our theory does not rely on any specific algorithm for
probabilistic model checking. Therefore, the probability of reaching the set of success
states in a DTMC (PrP(s,T) in Property 1 — Reachability probability for DTMCs) is left

as an uninterpreted function type:

prob_set(d: DTMC, s: (d°S), T: non_empty_finite_set[(d S)]): probability

% Definition 20 - Non-parametric model checking
alpha(d: DTMC): probability = prob_set(d, d s0, d°T)

Properties of these models, such as Property 1 (Reachability probability for DTMCs),
are presented as axioms stated over the definitions we provide. These properties are
assumed from the results in the corresponding literature (in this particular case, the book
by Baier and Katoen [7]), to abstract details that are not directly needed in our theory
(cf. Section 1.2.1).

% Auxiliary definition - Reachability in a DTMC

reachable?(d: DTMC, si1, s2: (d°S)): INDUCTIVE boolean =
sl = s2
OR
EXISTS (s3: (successors(d, s1))): reachable?(d, s3, s2)

reachable?(d: DTMC, s: (d°S), T: non_empty_finite_set[(d S)]): boolean =
EXISTS (ss: (T)): reachable?(d, s, ss)

86

% Property 1 - Reachability probability for DTMCs
reachability_probability_property: AXIOM
FORALL (d: DTMC, s: (d°S), T: non_empty_finite_set[(d~S)]):
prob_set(d, s, T) = COND
member (s, T) -> 1,
NOT reachable?(d, s, T) -> O,
ELSE -> sum[(d~S), real, 0, +]1(d4°S,
LAMBDA (ss: (d°S8)):
(trans(trans(d P) (s)) (ss) *
prob_set(d, ss, T)))
ENDCOND

Note that we needed to provide an explicit inductive definition for DTMC reachability
in Line 2, whereby reachable?(D, sy, s,) is true iff s; ~» s5. Also, the auxiliary function
sum in Line 16 is defined in the PVS library finite_sets_sum. This function is such that
sum(S, f) has the same semantics as) ¢ f(s).

In the definitions so far, we use the predicate subtype (d‘S) to enforce that states
belong to the set S of the DTMC record d. We also introduced the dom and trans
functions, which are accessors for the record types that denote transition matrices and
their corresponding rows. The dom accessor yields the matrix domain, whereas trans gives
us the actual transition function (i.e., a function that returns the transition probability

for a given pair of states).

transition_matrices [V: TYPE] : THEORY
BEGIN
IMPORTING states,

finite_sets[statel

transition_row: TYPE =
[# dom : finite_set[state],
trans: [(dom) -> V] #]
transition_matrix: TYPE =
[# dom : finite_setl[state],

trans: [(dom) -> {r: transition_row | r dom = dom}] #]

image(r: transition_row): finite_set[V] =

image (r~ trans, r dom)

image(m: transition_matrix): finite_set[V] =
{v: V | EXISTS(sl: (m dom)): image(m trans(sl))(v)}

END transition_matrices

87

4

An alternative representation would be to define rows and matrices as functions:

alt_transition_matrices [S, V: TYPE] : THEORY

BEGIN
transition_row: TYPE = [S -> V]
transition_matrix: TYPE = [S -> transition_row]

END alt_transition_matrices

Defining transition matrices as records has the goal to make it easier to reference their
domain. It is an open issue to compare these alternative representations with regard to
the complexity of generated proof obligations.

In the PVS theory for transition matrices, we defined the image of a transition matrix
(i.e., the set of all transition values for some pair of states) in a declarative way, using
set comprehension notation. This is not contrary to our design principle of favoring
operational specifications (Section 4.1), since this particular definition is only used to
specify the semantics of transition matrices, and not to state the behavior of analysis
strategies.

Moreover, we made the theory transition_matrices parametric on the type of
transition labels, since we must represent both Real transition matrices and para-
metric ones. This theory is further specialized in real_transition_matrices and
parametric_transition_matrices. The former is mostly an instance of the theory
transition_matrices[probability]; the latter, on the other hand, is more involved,
since it deals with facts about rational expressions. Also, to conform with our specification

of DTMC, we used finite sets of states for transition matrices.

An Interlude on Rational Expressions

To explain parametric transition matrices and PMCs, we must first cover another fun-
damental concept in our work: rational expressions. The manual version of our theory
establishes semantics and notation for expression evaluation (Definition 2), but we did
not elaborate on this subject because it is a fairly intuitive notion to a human reader.
PVS, on the other hand, must be given precise definitions.

The NASA library for Bernstein polynomials provides a specification of multi-variate
polynomials, which could be used to model rational expressions. However, this third-
party library represents polynomials as sequences of Real coefficients, whereas we are
interested in manipulating variables as syntactic objects. So, we specified a theory of

rational expressions and expression evaluation (rational expressions):

variable: TYPE

rat_expr: DATATYPE
BEGIN

38

https://github.com/thiagomael/rome-specs/blob/master/rational_expressions.pvs

const(r: real): const?

variable(x: variable): variable?

minus (a: rat_expr): minus?

sum(a,b: rat_expr): sum?

sub(a,b: rat_expr): sub?

mul (a,b: rat_expr): mul?

div(a,b: rat_expr): div?

exp(a: rat_expr, i: nat): exp?
END rat_expr

An expression is defined as an abstract datatype whose structure mimics the supported
algebraic operations (Line 3).° In this definition, we consider variables to be members of
an uninterpreted type, since we are not interested in the syntactic aspects of expressions.
We then specify how to obtain the set X of variables in an expression as a function
vars: [rat_expr -> finite_set[variable]], defined recursively on the structure of
the expression. This is an algorithmic way to obtain the set X of variables such that an
expression € belongs to Fx (Section 2.2.1).

An evaluation function follows the original definition as a mapping from a given set of
variables to Real numbers. To approach an operational definition, we constrain the domain
of an evaluation to be a finite set—that is, we return to the definition of evaluations as
partial functions, given by Hahn et al. [41] (cf. Section 2.2.1). The actual evaluation of
an expression e is then defined as a function that takes e and an evaluation function for

vars(e) as parameters and recursively performs arithmetics on e’s structure.

evaluation(X: finite_set[variable]): TYPE = [(X) -> reall

% Definition 2 - Expression evaluation
eval (e: rat_expr, u: evaluation(vars(e))): RECURSIVE maybe_real =
CASES e of

const (r) : a_real(r), 7 Lifts r to a maybe_real
variable(x) : a_real(u(x)),
minus (a) : - eval(a, u),
sum(a, b) : eval(a, restrict(u)) + eval(b, restrict(u)),
sub(a, b) : eval(a, restrict(u)) - eval(b, restrict(u)),
mul (a, b) : eval(a, restrict(u)) * eval(b, restrict(u)),
div(a, b) : eval(a, restrict(u)) / eval(b, restrict(u)),
exp(a, i) : eval(a, u) -~ 1

ENDCASES

MEASURE e BY << % The termination measure ‘“«’’ is the well-founded order

% that PVS automatically generates for an ADT

6Since we are dealing with rational expressions, we only model the operations needed by fractions of
polynomials—basic arithmetics and exponentiation to Natural powers.

89

real_evaluation?(e: rat_expr)(u: evaluation(vars(e))): boolean =
is_real?(eval(e, u))

When defining eval (Line 4), we had to specify a concept that was implicit in the
original version of our theory: expression evaluation does not yield Real values in general.
In the presence of the division operation (which is possible, since a rational expression
is a fraction of polynomials), there can be evaluations that cause a given expression to
divide by zero. Thus, we specified that eval returns a value of type maybe_real, which
can be either a Real value or the constant undefined (see Section 2.1). Accordingly, we
defined a predicate over evaluation functions to be able to specify whether they evaluate
an expression to a valid Real number (Line 18). This is the foundation on which we later
build the concept of well-defined (or well-formed) evaluation (Definition 3).

At this point, it is worth noting that the definition of eval uses the function restrict
from the PVS prelude—which is extensively used throughout our mechanization. This
function takes a function [S -> R] and restricts its domain S to a subtype T of S. In
this particular case, the imposed constraint turns an evaluation over vars(e) into an
evaluation operating only on vars(a) or vars(b) (for subexpressions a or b, which the
type checker is able to infer from the context). Without the calls to restrict, type
checking fails because eval’s signature uses dependent types to constrain that we only
allow the evaluation of all variables of an expression.

Another detail that was overlooked in the manual specification—but exposed by the
mechanization effort—is that we implicitly considered constant expressions (i.e., the ones
with an empty set of variables) as Reals. To overcome this issue, we specified an inductive
predicate const_expr? that is true for constant expressions, along with a function that
explicitly converts such constants to the corresponding Real numbers. This conversion
relies on the fact that, since a constant expression does not have variables, it can be
evaluated to the same value by using any evaluation function.
real_const_expr?(e: (const_expr?)): boolean =

FORALL (X: finite_set[variable]l, u: evaluation(X)):
is_real?(eval(e, restrict(u)))
const_expr_to_real(e: (real_const_expr?)): real =
eval (e, LAMBDA (x:variable): 0)

% The next line tells PVS to apply the conversion function whenever needed.

CONVERSION+ const_expr_to_real

Parametric Markov Chains

Having handled the formerly implicit concepts regarding rational expressions, we return
to our discussion of parametric transition matrices. The corresponding theory required

a more involved specification because it covers the evaluation of parametric matrices to

90

yield regular (Real) ones. Hence, we had to provide predicates and judgements to handle
type checking issues that arise both from the possibility of divisions by zero and from the
need to convert degenerate parametric matrices that only have constant expressions as
transition labels.

For instance, we define the evaluation of a row in a parametric transition matrix by

mapping the expression evaluation over each transition in the given row:

parametric_transition_row: TYPE = transition_row[rat_expr]
evaluation(r: parametric_transition_row): TYPE = evaluation(vars(r))
% First item of Definition 3 - Well-defined evaluation

pre_wf_evaluation(r: parametric_transition_row)
(u: evaluation(r))
boolean =
FORALL (e: (image(r))):
LET v = eval(e, restrict(u)) IN
is_real?(v) AND num(v) >= 0 AND num(v) <= 1

mapped_real_transition_row(r: parametric_transition_row): TYPE =

{rr: real_transition_row | dom(rr) = dom(r)}

eval (r: parametric_transition_row, u: (pre_wf_evaluation(r)))
mapped_real_transition_row(r) =

map (r, LAMBDA (e: (image(r))): num(eval(e, restrict(u))))

Note that this definition establishes that the result is a Real transition row with the
same domain (i.e., the set of states is not changed). However, since the eval function
for rational expressions returns a maybe_real, the type checker generates proof obliga-
tions (TCCs) requiring that we show, for this particular case, that the results are not
undefined. To avoid the generation of such TCCs for all occurrences of eval, we prove
these facts once in the form of judgements, which then become available to the type
checker:
evaluated_expr_is_real: JUDGEMENT

FORALL(r: parametric_transition_row,
u: (pre_wf_evaluation(r)),

e: (image(r))):
eval(e, restrict(u)) HAS_TYPE (is_real?)

evaluated_expr_is_probability: JUDGEMENT
FORALL(r: parametric_transition_row,
u: (pre_wf_evaluation(r)),
e: (image(r))):
num(eval (e, restrict(u))) HAS_TYPE probability

91

Similar to the theory of rational expressions, our theory of parametric transition ma-
trices specifies the predicates const_row? and const_matrix? (which are true for rows
and matrices whose transition labels are all constant expressions) and appropriate con-
versions to Real rows and matrices.” Moreover, this theory also defines what it means for

an evaluation to be well-defined for transition rows and matrices:

wf_evaluation(r: parametric_transition_row)
(u: evaluation(r))
boolean =
pre_wf_evaluation(r) (u) AND is_stochastic_row?(eval(r, u))
% Overloading of the predicate for rows
wf_evaluation(m: parametric_transition_matrix)
(u: evaluation(m)): boolean =
FORALL (s: (dom(m))):

wf_evaluation(trans(m) (s)) (restrict (u))

With these definitions, we are now able to specify PMCs and how to convert them to
DTMCs:

% Definition 1 - Parametric Markov Chain
PMC: TYPE = [# S : non_empty_finite_set[statel],
s0: (8S),
{m: parametric_transition_matrix | dom(m)
{V: finite_set[variable] | V = vars(P)},
T : non_empty_finite_set[(S)] #]

S},

% Definition 3 - Well-defined evaluation

well_defined_evaluation(p: PMC) (u: evaluation(p P)): boolean
wf_evaluation(p P) (u)

eval(p: PMC, u: (well_defined_evaluation(p))): DTMC =

(# S =p°S,
sO := p°s0,
P := eval(p P, u),
T := p T #)

Properties of these models, such as Lemma 1 (Parametric probabilistic reachability
soundness), are presented as axioms stated over the definitions we provide. Their proof
is assumed from the results in the corresponding literature (in this particular case, the
work by Hahn et al. [41]), to abstract details that are not directly needed in our theory
(cf. Section 1.2.1).

% Definition 21 - Parametric model checking

"These predicates also encode the stochastic property—i.e., every row must sum up to 1.

92

w

alpha_v(p: PMC): {e: rat_expr | vars(e) = p X} U uninterpreted
% A fact implied in the paper by Hahn et al. [41]:
alpha_v_eval_is_real: AXIOM
FORALL (p: PMC, u: (well_defined_evaluation(p))):
is_real?(eval (alpha_v(p), u))

% Lemma 1 - Parametric probabilistic reachability soundness
parametric_reachability_soundness: AXIOM
FORALL (p: PMC, u: (well_defined_evaluation(p))):
prob_set(eval(p, u), p s0O, p'T) = num(eval(alpha_v(p), u))
With this axiomatic definition, we have specified both parametric (&, denoted by
alpha_v in PVS) and non-parametric (o)) model checking functions. This is the foundation

upon which we state our first commutativity lemma:

% Lemma 3 - Commutativity of PMC and expression evaluations
eval_commutativity: LEMMA
FORALL (p: PMC, u: (well_defined_evaluation(p))):
alpha(eval(p, u)) = eval(alpha_v(p), u)

Finally, we also declare a predicate and a conversion to deal with constant PMCs—i.e.,
the ones with constant transition matrices, which can be trivially represented as DTMCs.
This way, we can formally apply a to PMCs (as we informally did in Section 3.2) by using
an automatic PVS conversion that only works if the PMC at hand is really constant. This

fills a gap in the hand-made specifications.

Software Product Lines

Before we can talk about the specification of analysis strategies, it is important to mention
how we model SPL-related concepts. As with Markov chains, we chose a declarative style

of specification for product lines, since our focus is the analysis of implementation assets.

SPL : THEORY

BEGIN
FM: TYPE+ % Feature Models
name: TYPE+ % Names of features
configuration: TYPE = finite_set[name] 7 Selection of features

% Set of features in the feature model

features(fm: FM): non_empty_finite_set[name]

% Cardinality of the set of features

; ##(fm: FM): posnat = card(features(fm))

% FM semantics - [FM]

[11]1(fm: FM): {C: non_empty_finite_set[configuration] |

FORALL (c: (C), f: (c)): features(fm) (f)}

END SPL

93

The previous listing shows our theory of software product lines in its entirety. The
only properties of a product line that we actually need are that (a) it has a finite set
of features (Line 8) and (b) it has a feature model that is consistent and has a finite
set of possible configurations as its semantics (Lines 12 and 13). We only handle finite
feature sets because the presence of each feature in a given configuration must be mapped
to a variable in an ADD (which is a finite data structure), which is also why we need
the cardinality of the feature set (Line 10). Accordingly, the set of possible configurations
must also be finite.® Moreover, since we do not manipulate feature expressions nor feature
model constraints, such concepts may be left unspecified.

However, leaving the feature model semantics and the function features unspecified
leads to existence TCCs. For instance, the following listing shows the obligation to prove
that there is at least one function that maps a feature model into a non-empty set of
feature names:

% Existence TCC generated (at line 9, column 2) for
% features(fm: FM): non_empty_finite_set[name]
% unfinished

features_TCC1l: OBLIGATION
EXISTS (x: [FM -> non_empty_finite_set[name]]): TRUE;

For that reason, we declare FM and name as non-empty types, using the keyword TYPE+.
Thus, we are able to provide a trivial witness for that obligation: LAMBDA (fm: FM):
singleton(choose({n: name | TRUE})) (i.e., we pick an arbitrary feature name, which re-
quires name to be non-empty).

We note that there are third-party PVS theories of software product lines available
for reuse [81|. However, these theories specify facts about product lines themselves, such
as well-formedness of feature expressions and validity of configurations. Our work, on the
other hand, abstracts such details of product line assets. Thus, importing existing SPL
theories would introduce an external dependency (along with the corresponding threats)

without perceived benefits.

4.2.2 Family-product-based Strategy

After establishing the foundations, we start the mechanized specification with the upper

right quadrant of Figure 3.7.

8For scoping reasons, we do not support cardinality-based feature models [28], which would allow fea-
tures to “repeat” within a given configuration. Hence, a finite set of features implies that the configuration
space must also be finite.

94

Annotative Models

To define annotative models (Definition 8), we first define annotative PMCs by using a

predicate over the type PMC:

% Definition 5 - Annotative PMC
annotative_PMC(p: PMC): boolean =
FORALL (s: (p~S)):
const_row?(trans (p P) (s)) % First item
OR

is_switch_row?(trans(p P)(s), s) 7 Second item

The predicate is_switch_row? is true for states that act as behavior switches—i.e.,
states that fall in Item 2 of Definition 5:

% A row in a parametric transition matrix such that there
% are only "switch" transitions (with probabilities x and 1-x).
is_switch_row?(r: parametric_transition_row, s: (dom(r))): boolean =
EXISTS (s1, s2: (dom(r)), x: variable):
sl /= s2 AND s /= s1 AND s /= s2

AND
trans(r)(sl) = variable(x)
AND
trans(r) (s2) = sub(const (1), variable(x))
AND
FORALL (s3: (remove(s2, remove(sl, dom(r))))):

trans (r) (s3) = const (0)

Note that Line 5 assures that neither of the switch transitions is a loop. This constraint
is needed to prove some facts about slots and variability encoding later on, but this is not
part of the hand-made Definition 5 (Annotative PMC). To fix this issue, the corresponding
item of that definition should read as follows:

3507aftse G\ g Teex - Succ(s) = {so,aft,} ANP(s,80) = x AP(s,aft,) =1—x

——

this was missing

Thus, we have another example of a gap in the original specification that was detected
with the help of PVS.

The translation of other definitions needed to specify annotative models (e.g., presence
functions and) is straightforward. Nonetheless, we found it useful to break Definition 7
(Evaluation factory) in two:
pre_evaluation_factory(X: finite_set[variable]): TYPE =

[([lfm]]) -> evaluation(X)]

% Definition 7 - Evaluation factory

evaluation_factory(p: PMC): TYPE =

95

{w: pre_evaluation_factory(p X) | FORALL (c: ([lfm|[]1)):
well _defined_evaluation(p) (w(c))}

This change was due to the fact that evaluation_factory (Line 1) is more appropriate to
use in some function definitions (e.g., 7), since it encodes the constraint that the produced
evaluations must be well-defined for the given PMC. This way, Lemma 2 (Evaluation
well-definedness for annotative models) turned into a proof obligation (TCC). On the
other hand, we cannot use evaluation_factory directly when defining data types or
some predicates. To do this, it would be necessary that all evaluation factories yielded
evaluations that are well-defined for all PMCs, which is not true. Thus, we use the
“Intermediate” type pre_evaluation_factory (Line 1) whenever we need generalized
mappings from configurations to evaluation functions.

Annotative probabilistic models (Definition 8) are defined as record types, as usual.
However, the feature model is not part of this record, but rather a theory parameter. The
reason is that many function and type parameters are dependently-typed on the actual

feature model, so it cannot be a regular PVS variable.

Product-based and Family-product-based Analyses

To instantiate the feature model in theory parameters, we define a constant fm: FM’ in
our top-level theory, called rome because of our All roads lead to Rome paper [15]. This
theory, besides being the entry point to our mechanized specification, is the place where
our reliability analysis strategies are defined and proved sound.

Building on the specifications we have so far, we define the annotative product-based
and family-product-based strategies, as well as the theorem stating their equivalence.

fm: FM 7 Constant representing a given feature model FM

IMPORTING annotative_reliability_models [fm]

c: VAR ([lfml|]) % a variable ranging over the possible configurations
m: VAR annotative_reliability_model
% Strategy 1 - Product-based analysis of annotative models
product_based_analysis(m, c): probability =

alpha(pi(m P, m w, c))

% Strategy 3 - Family-product-based analysis
family_product_based_analysis(m, c): probability =

sigma (alpha_v(m P), m w, c)

% Theorem 1 - Soundness of family-product-based analysis

family_product_soundness: THEOREM

In this definition, FM is the type of feature models defined in the SPL theory.

96

https://github.com/thiagomael/rome-specs/blob/master/SPL.pvs

16

FORALL (m, c):

family_product_based_analysis(m, c¢) = product_based_analysis(m, c)

4.2.3 Family-based Strategy

Following the specification strategy, we proceed to the lower right quadrant of Figure 3.7.
However, at this point we need to take a step back and provide a specification for the

remaining foundational data structure—ADDs.

Algebraic Decision Diagrams

As with Markov chains, we searched for reusable third-party libraries, to no avail. There-
fore, we had to provide our own specification of ADDs. According to our design principles,
we followed a declarative style for this data structure, since it is not our focus to prove facts
about ADDs. Future work may seek to instantiate our ADD theories with operational
specifications.

Our declarative specification views an ADD as an n-ary function of Boolean parameters

to a type T over which we have operations of interest.

ADD_def [n: posmnat] : THEORY

BEGIN
IMPORTING structures@arrays[n] % NASA library
variables: TYPE = Array0f[boolean]
ADD[T: TYPE]: TYPE = [variables -> T]

END ADD_def

The actual operations on ADDs are then defined based on their denotational semantics:

ADD_ops [T: TYPE, n: posnat] : THEORY
BEGIN
IMPORTING ADD_def [n]
val: VAR variables
% Lifting of codomain value into constant ADD
constant (t: T): ADD[T] = LAMBDA(val): t
CONVERSION constant

f, g: VAR ADD[n][T]
op: VAR [T, T -> T]
unary_op: VAR [T -> T]

% ADD operations

apply(f, g, op): ADD[T] = LAMBDA val: op(f(val), g(val))
unary_apply (f, unary_op): ADD[T] = LAMBDA val: unary_op(f(val))

97

test: VAR ADD[boolean]
% if-then-else operator
ite(test, f, g): ADD[T] = LAMBDA val:
IF test(val)
THEN f(val)
ELSE g(val)
ENDIF
END ADD_ops

Note that, although we provide actual definitions for ADD operations (Lines 6, 14, 15
and 19), these definitions do not correspond to the algorithms that make ADDs suitable
for efficient computation with Boolean functions. They are just operational definitions of
the functions that denote their semantics.

Finally, since we use ADDs to denote functions from configurations to reliability val-
ues, we need a way to unambiguously map product-line configurations to ADD variables
(cf. last paragraph of Section 2.1.1), such that any given variable always corresponds
to the presence (or absence) of the same feature. In the following, we do this by first
creating a list with all members of the feature set (Line 5), effectively defining an arbi-
trary (but fixed) ordering among features. This is equivalent to indexing the features as
{F|, F,...,F,}. Then we define an injective mapping from configurations over n features
to n-ary Boolean arrays (to_ADD_variables). Conversely, we can invert this injection to
recover the configuration that maps to a given instantiation of ADD variables (to_conf).

IMPORTING ADD_def[##(fm)],

structures@set2seq[SPL.name]

% Arbitrary (but fixed) feature order

feature_order: finite_sequence[SPL.name] = set2seq(features(fm))

% An injective function mapping a feature selection to ADD arguments
to_ADD_variables(c: ([|fm|])): ADD_def.variables =
LAMBDA (i: below(##(fm))):
member (feature_order (i), c)
% ... and a way to recover the original selection

to_conf(val: variables): ([|fm|]) = inverse(to_ADD_variables) (val)

In this listing, inverse (Line 12) is a higher-order function from the PVS prelude that
takes a function f and produces a function that, given a value y, returns x such that
f(z) = y. Moreover, we use the cardinality of the set of features (##(fm)) to instantiate
the ADD_def theory, so that the input of ADDs consists of exactly one parameter for each

available feature.

98

Expression Lifting

We use ADDs to perform efficient computations over lifted expressions. In the manual
version of our theory, we defined expression lifting as a semantic change, so that expres-
sions remained the same objects after lifting. Since our PVS specification of expression
semantics is given by the function eval, we provide an ADD-based evaluation semantics
for lifted expressions:

1 % n is a theory parameter of type nat
ADD_evaluation(X: finite_set[variable]): TYPE = [(X) -> ADD[n][realll

o

4 % Definition 23 - Expression lifting
5 eval (e: rat_expr, u: ADD_evaluation(vars(e))): RECURSIVE
ADD[n] [maybe_real] =

6 CASES e of
7 const (r) : real_constant (r),
8 variable(x) : to_maybe (u(x)),

9 % The remaining cases are omitted for brevity
10 ENDCASES
11 MEASURE e BY <<

Thus, we do not define a mechanized 1ift operator for expressions; instead, we use
the overloaded eval function and define a predicate to assert whether an ADD_evaluation
is a lifted counterpart to a given evaluation factory.

lifted_evaluation_factory(X: finite_set[variable]): TYPE =
ADD_evaluation (X)

3 % Definition 24 - Lifted evaluation factory
+ lifted(X: finite_set[variable], w: pre_evaluation_factory (X))
(lw: lifted_evaluation_factory (X))

6 : boolean =
7 FORALL (x: (X), val: variables):
8 lw(x)(val) = w(to_conf(val)) (x)

Building on the definitions and lemmas so far, we are able to define the lifted annotative
evaluation factory—p in Lemma 5 (Soundness of lifted annotative evaluation factory).
Then, we proceed to define the family-based analysis strategy and state its soundness.

1 lifted_annotative_evaluation_factory(X: finite_set[variable], pf:

presence_function (X))

lifted_evaluation_factory(X) =
LAMBDA (x: (X)):
4 LAMBDA (c: ([lfml]1)):
IF pf(x, c¢) THEN 1
6 ELSE O

99

ENDIF

% Strategy 4 - Family-based analysis
family_based_analysis (m): ADD[maybe_real] =
sigma_v (alpha_v(m P), 1p)
WHERE 1p = lifted_annotative_evaluation_factory(m P X, m” pf)

% Theorem 4 - Soundness of family-based analysis
family_based_analysis_soundness: THEOREM
FORALL (m, c):

family_based_analysis(m) (c) = product_based_analysis(m, c)

4.2.4 Feature-based Strategies

Since our notion of compositional models relies on our definitions of annotative models,
we define the upper left quadrant of Figure 3.7 by leveraging the mechanized specification

produced so far.

Compositional PMC

From the manual version of our theory, we know that a compositional PMC is a special
case of annotative PMC (see Definition 10). However, we have no documented way of
extending the record type PMC. Thus, we declare a new record type for compositional
PMC data (Line 2), along with a conversion to the regular PMC record type (Line 11)
and a predicate that reuses the predicate for annotative PMCs (Line 18):
% Definition 10 - Compositional PMC (tuple definition)
compositional_PMC_data: TYPE =
[# S : non_empty_finite_set[statel],
s0 : (8),
s_suc: (8),

s_err: (8),

P : {m: parametric_transition_matrix | dom(m) = S},
X : {V: finite_set[variable] | V = vars(P)},
T : {T: (singleton?[(S)]1) | T(s_suc)} #]
pmc(p: compositional_PMC_data): PMC = (# S := p~S§,
sO0:= p~s0,
=pP,
=p X,
T := p°T #)

% Definition 10 - Compositional PMC (predicates)

compositional _PMC(p: compositional_PMC_data): boolean =

100

10

annotative_PMC (pmc (p))

AND p sO /= p”s_suc

AND p*sO /= p s_err

AND p s_suc /= p s_err

AND bscc(p P) = {s: state | (s = p s_suc) OR (s = p s_err)}

In the previous definition, function bscc in Line 23 returns the bottom strongly-
connected components of the compositional PMC. We follow our design principles and
specify this function in a declarative way, since we are not interested in operationalizing
an algorithm to find bottom strongly-connected components. However, we depart from
the definition given by Baier and Katoen [7] and specify that a BSCC is just an absorbing
state:
bscc?(m: parametric_transition_matrix)(s: (dom(m))): boolean =

trans (m) (s) "trans(s) = const (1)
AND

FORALL (s2: (dom(m))):
(s2 /= s IMPLIES trans(m)(s) trans(s2) = const(0))

bscc(m: parametric_transition_matrix): finite_set[(dom(m))] =

{s: (dom(m)) | bscc?(m)(s)}
Every state that satisfies the predicate bscc? is a bottom strongly-connected component,
but not every BSCC satisfies this predicate. Nonetheless, this “narrow” definition is
sufficient for our purposes, since we are interested in PMCs whose only BSCCs are the

two singletons induced by their success and error states.

Dependency relation

To define a compositional probabilistic model, we first define a superset I of the variables
in its set & of PMCs and a bijection between &2 and I (Definition 13 — Identifying
function).

P: VAR non_empty_finite_set[(compositional_PMC)]
% All variables in the compositional PMCs of set P.
vars(P): finite_set[variable] =

{x: variable | EXISTS (p: (P)): vars(p)(x)}
% Auxiliary type denoting all strict supersets of vars(P)
supervars (P): TYPE =

{I: finite_set[variable] | card(I) = card(P)

AND strict_subset?(vars(P), I)}

% Definition 13 - Identifying function

identity_function(P, (I: supervars(P))): TYPE = (bijective?[(P), (I)I1)

The induced dependency relation < is then defined in a theory parameterized on

P, I, and identity_function (compositional PMC order). This theory also defines

101

https://github.com/thiagomael/rome-specs/blob/master/compositional_PMC_order.pvs

predicates for minimal and maximal PMCs (Definition 15) and presents lemmas stat-
ing their existence. These definitions and lemmas come as a straightforward translation
from their manual counterparts. However, the manual proof of Lemma 10 (Existence
of maximal PMCs) consisted of about 6 lines of argumentation, whereas its mechanized
version required 4 auxiliary lemmas (well founded lemmas) that make use of 3 addi-
tional theories in the NASA library (monotone_sequences, finite_pointwise_orders,

and well_foundedness, all in the orders library).

PMC Composition

The last element that is needed to define compositional reliability models is the notion
of PMC composition. The original definition (Definition 34) relies on a disjoint union
operator, which, to the best of our knowledge, does not have a PVS specification. Since
total PMC composition also depends on the concept of PMC renaming (Definition 33),
we defined renaming in a way that allowed us to produce mutually disjoint PMCs that
are isomorphic to the original one. This solved the lack of a disjoint union concept and
spawned a new theory of its own (PMC renaming).

Another challenge faced when specifying PMC composition was how to operationalize
the intuition of composing over all slots at once. The first idea that comes to mind in this
situation is to specify how to compose PMCs over a single slot, and then recursively define
a composition over the remaining (partially composed) PMC. However, this approach fails
unless we take care to preserve slots that were introduced by previous composition steps.
We actually made this mistake when we first attempted to mechanize PMC composition,
but PVS helped us to identify the issue by reaching a dead-end in one of the proof
branches.

Moreover, there is a considerable amount of properties that must be preserved by com-
position. For instance, constant transitions in the original PMCs must remain that way,
and original variables must be replaced by the ones in the composed chains. Nonetheless,
original variables of the base chain may still belong to the resulting set of variables; in-
deed, although a PMC composed over a slot for a variable must not contain x itself,"”
it may contain another variable y that was also in the base chain.

Thus, we specified PMC composition incrementally, so that we could state and prove
lemmas regarding the preservation of required properties throughout the process. First we
defined how to compose a transition matrix over a single slot of another matrix, provided
that their sets of states are already disjoint. This led to the definition of how to compose

two PMCs whose transition matrices satisfy those pre-conditions.

% Composes a PMC whose set of states is already disjoint with the base.

10This would violate the well-foundedness of the dependency relation.

102

https://github.com/thiagomael/rome-specs/blob/master/well_founded_lemmas.pvs
https://github.com/thiagomael/rome-specs/blob/master/PMC_renaming.pvs

compose_single_slot_disj(p_base: (compositional_PMC),
p_comp: {p: (compositional_ PMC) |
disjoint?(p°S, p_base’S) 1,

sl: (slot?(p_base)))
(compositional _PMC) =

LET P_ = compose_matrices(p_base P,
p_comp P,
sl,
interface(p_comp))
IN
p_base WITH [°S := union(p_base™S, p_comp S),
P := P_,
X := (vars(P_)) 1

Then we generalized this notion to compose arbitrary PMCs, but still restricted to utilize

a single slot:

% Composes an arbitrary PMC over another.
compose_single_slot (p_base: (compositional_PMC),
p_comp: (compositional_PMC),
sl: (slot?(p_base)))
(compositional _PMC) =
LET p_comp_ = rename(p_comp, p_base~S) IN

compose_single_slot_disj(p_base, p_comp_, sl)

The complexity increases when we generalize composition to operate on more than

one slot. In this case, we fix the set of slots on which to compose as a function parameter

(s1ls) and consume these slots in a recursive fashion:

compose_many_slots(p_base: (compositional_PMC),
p_comp: (compositional_PMC),
sls: finite_set[(slot?(p_base))])
RECURSIVE {p: (compositional_ PMC) |
subset?(p_base™S, p~S)

% composed slots are no longer slots:

AND (FORALL (sl: (sls)): NOT slot?(p)(sl))

% non-composed slots are preserved:

AND (FORALL (x: (p_base X), sl: (slot?(p_base,
NOT sls(sl) IMPLIES slot?(p, x)(sl))

% all new slots are preserved:
AND (NOT empty?(sls) IMPLIES

FORALL (x: (p_comp X), sl: (slot?(p_comp, x))):
EXISTS (sl_: (slot_renaming?(p_comp,

s1))):
slot?(p, x)(sl_))
% slots are not created out of thin air:
AND (FORALL (x: variable,

103

p_base’S,

sl: (slot?(p, x))):
slot?(p_base, x)(sl)
OR
(EXISTS (sl_: (slot?(p_comp, x))):
slot_renaming?(p_comp, p_base” S, x, sl_)(sl)))
AND p°sO = p_base ™ s0
AND p~s_suc = p_base s_suc
AND p
AND p T = p_base T } =
IF empty7?(sls)
THEN p_base

"s_err = p_base s_err

ELSE compose_many_slots (compose_single_slot (p_base,

p_comp,

choose(sls)),
p_comp,
rest (sls))
ENDIF
MEASURE card(sls)

Notice the predicates in Lines 5 to 26. Each of these predicates specify a property
that must hold for the resulting PMC. Our first approach was to state these proper-
ties as separate lemmas, but the definition of compose_many_slots uses recursion on
dependently-typed variables, where the depended-upon value changes at each recursive
call (p_base takes the partially composed PMC at Line 29). In this case, the PVS prover
rule induct does not work, because the induction variable has free variables in it.

To overcome this issue, we stated the desired properties as predicates of the return
type, so that the type checker demands that these properties have to be preserved after
each recursive call. This way, each of the generated TCCs embed the result of the previous
call as a premise. In a sense, we can interpret that these proof obligations are themselves
functioning as induction principles.

The downside of this approach is that one must take care not to specify predicates that
hold at the end of the recursion but not after intermediate steps. That is, all predicates
of the return type must be recursion invariants. Otherwise, the theory type-checks, but
PVS generates TCCs that are impossible to prove.

Next, we refined the notion of composition over multiple slots, by grouping slots
according to their variables (compose_many_variables). In this step, we faced the same
issue of having properties that are complex to prove if stated afterwards. Accordingly, we
solved it in the same way.

The total composition of PMCs is then defined by leveraging the previous definition,
whereby the fixed set of slots is given by all slots with all variables in the base PMC:

M

104

compose (p: (compositional_PMC), u: composition(p X)): (composed?(p, u))

compose_many_variables(p, p X, u, LAMBDA (x: (p X)): slots(p, x))

Feature-product-based Strategy

With the foundational specifications involving PMC composition, we were able to define
composition factories (Definition 17), compositional probabilistic models (Definition 18),
and derivation by composition (Definition 19). These definitions are close to the manual
specification, so we omit them for brevity.

To specify the feature-product-based analysis strategy and prove its soundness, we
also define the product-based strategy for compositional models. The rome PVS theory
was updated with these definitions:
cm: VAR compositional_reliability_model
% Strategy 2 - Product-based analysis of compositional models
product_based_analysis(cm, c): probability =

alpha(const_to_DTMC(pi(p, restrict(cm w), c)))
WHERE p = root(cm)

% Strategy 5 - Feature-product-based analysis
feature_product_based_analysis(cm, c): probability =
sigma (alpha_v(p), restrict(w), c)
WHERE p = root(cm),

w = the_compositional_evaluation_factory(cm)

This specification closely resembles that on the manual theory, with two visible excep-
tions. First, we once more rely on the PVS function restrict to conform dependently-
typed arguments. The second is that we needed to explicitly convert the PMC resulting
from derivation to a DTMC (Line 1), so that we can apply alpha to this result.

The interesting fact about this conversion is that it relies on a fact that was not part
of the original theory: derivation by composition (Definition 19) exhausts all variables
that previously existed in the base PMC, and does not add other variables. Although
Definition 19 specifies that the return type of 7’ is a DTMC, we did not prove this in the
manual version of the theory.'' This is a missing specification that was detected with the
help of PVS.

Moreover, PVS generated an obligation to prove that the compositional evaluation
factory terminates. Different from other recursive definitions in our manual specification,

this one (Definition 26) did not have an accompanying termination lemma.

1'Nonetheless, the proof of termination (Lemma 11) implicitly uses this fact in the induction hypothesis.

105

https://github.com/thiagomael/rome-specs/blob/master/rome.pvs

o

The soundness of the feature-product strategy is stated as expected, following the style
already used for other soundness theorems:
% Theorem 5 - Soundness of feature-product-based analysis
feature_product_soundness: THEOREM
FORALL (cm, c):
feature_product_based_analysis(cm, c) =

product_based_analysis(cm, c)

The mechanized proof of this theorem, similar to its manual counterpart, makes use of
Corollary 1 (r-equivalence of total composition with DTMCs and evaluation). However,
this corollary is a direct consequence of Lemma 13 (r-equivalence of total composition
and evaluation), which, in turn, depends on the inner workings of the parametric model
checking algorithm [41] and on a more detailed specification of PMCs. Thus, we decided
to only state Corollary 1 and postpone its proof to a moment when we were able to specify

Lemma 13.

Feature-family-based Strategy

The definition of our feature-family-based strategy relied on specifying a compositional
counterpart to the theory of annotative expressions evaluation. The new theory, besides
having a similar structure to the one for annotative expressions, actually reuses some
results of that other theory—e.g., the result corresponding to Theorem 2 (Soundness
of variability-aware expression evaluation). Other than that, the translation from the
manual specification follows the rules and patterns already described in previous sections:
% Strategy 6 - Feature-family-based analysis
feature_family_based_analysis(cm): ADD[maybe_real] =

sigma_v (alpha_v(p), restrict (phi))

WHERE p = root(cm),

phi = lifted_compositional_evaluation_factory(cm)

% Theorem 7 - Soundness of feature-family-based analysis
feature_family_soundness: THEOREM
FORALL (cm, c):
feature_family_based_analysis(cm) (c) =

product_based_analysis(cm, c)
4.2.5 Variability-encoding

After specifying both the right and left parts of Figure 3.7, we must bridge them by

means of variability encoding. We decided to pursue this goal before diving into the

106

https://github.com/thiagomael/rome-specs/blob/master/annotative_expressions_evaluation.pvs

details needed to fill the gap in the specification of Corollary 1, to prioritize the overall
soundness of the analysis framework.

Moreover, we observe in the graphs of theory dependencies (Figure D.3) that the
soundness of variability encoding for PMCs (Theorem 9 — Soundness of variability encod-
ing for expressions) relies directly on Lemma 13. Since the specification of this lemma

was postponed, we begun with the variability encoding of expressions.

Encoding of Expressions

To specify variability encoding of expressions, we first extended our theory of ratio-
nal expressions to support the generalized notion of expression evaluation. The new
definitions follow the pattern of the other eval functions, whereby we perform a recur-
sion on the structure of expressions.

% Generalized evaluation function: maps variables to other rational expressions

generalized_evaluation(X: finite_set[variable]): TYPE = [(X) ->

rat_expr]

% Generalized evaluation (i.e., replacing variables with other expressions,
% instead of real values)
gen_eval(e: rat_expr, u: generalized_evaluation(vars(e))): RECURSIVE

rat_expr =

CASES e of
const (1) t e,
variable(x) : u(x),
minus (a) : - gen_eval(a, u),

% Remaining cases omitted for brevity.
ENDCASES
MEASURE e BY <K<

A significant difference, however, is that the fact that we posed as Equation (2.1)
is not a definition or an immediate conclusion, as the manual specifications seem to
imply. Indeed, given an expression ¢ € Fyx and a generalized evaluation u : X — Fx
(where X and X’ are sets of variables), €[X/u] is yet another rational expression. Thus,
Equation (2.1) is not a definition; on the contrary, this eq. corresponds to a proposition
about the (Real) evaluation of expressions resulting from generalized evaluations. For
that reason, we stated Equation (2.1) as a lemma in PVS and proved its correctness:

% Auxiliary definition - image of u under X
vars (X: finite_set[variable], u: generalized_evaluation(X)):

finite_set [variable] =
{x: variable | EXISTS (y: (X)): member (x, vars(u(y)))}

% Equation (2.1)

107

https://github.com/thiagomael/rome-specs/blob/master/rational_expressions.pvs
https://github.com/thiagomael/rome-specs/blob/master/rational_expressions.pvs

evaluations_composition: LEMMA
FORALL (e: rat_expr,
ul: generalized_evaluation(vars(e)),
u2: evaluation(vars(vars(e), ul))):
(FORALL (x: (vars(e))): real_evaluation?(ul(x)) (restrict(u2)))
IMPLIES

(eval(gen_eval(e, ul), restrict(u2))

eval (e, LAMBDA (x: (vars(e))): num(eval(ul(x), restrict(u2)))))

The if-then-else operator for expressions is defined as an almost literal transcription
of the original definition, thanks to the support for operator overloading in PVS:

% Definition 30 - ITE operator for expressions

ITE(x: variable, el, e2: rat_expr): rat_expr = x*el + (1 - x)*e2

Using generalized expression evaluation and the if-then-else operator for expressions,
we were able to specify the variability encoding function v by translating its original

definition:

% Definition 31 - Variability encoding function for expressions
gamma (cm: compositional_reliability_model)
(e: {e: rat_expr | EXISTS (p: (cm P)): e = alpha_v(p)})
RECURSIVE rat_expr =
LET e_i = LAMBDA (x: (vars(e))): alpha_v(idt_inv(x))
IN
gen_eval (e, LAMBDA (x: (vars(e))): ITE(x,
gamma (cm) (e_i(x)),
const (1)))
MEASURE e BY expr_dep(cm)

In the above definition, idt_inv is the inverse of the identifying function (idt~7) and
expr_dep is the well-founded relation over expressions that is induced by the dependency
relation over corresponding PMCs:
expr_dep(cm: compositional_reliability_model)

(el, e2: rat_expr): boolean =
EXISTS (pl, p2: (cm P)): (alpha_v(pl) = el
AND alpha_v(p2) = e2
AND cm dep(pl, p2))

Feature-family-product-based Strategy

The remaining strategy—feature-family-product-based analysis—does not depend on vari-
ability encoding of PMCs. Thus, we were able to define it and prove its soundness by

means of the already specified elements. In this case, the PVS status for the soundness

108

10

theorem is proved - incomplete, since it depends on the soundness theorem for the

feature-product-based analysis, which is itself marked as incomplete (see Section 4.2.1).

PMC Encoding

We defined the if-then-else (ITE) operator for PMCs using the same incremental strategy
that we used for PMC composition (Section 1.2.1): an ITE operator for disjoint transition
matrices, followed by an ITE for disjoint PMCs, and then ITE for arbitrary PMCs (making
use of PMC renaming). We also defined the variability encoding function for PMCs
(Definition 28) and stated all of the related lemmas and theorems.

However, the main soundness theorem (Theorem 8 — r-equivalence of variability en-
coding and derivation by composition) required us to state and prove a number of lemmas
regarding the preservation of state reachability and of reachability probabilities under ITE
composition. For instance, we needed the following lemma, stating that probabilities in

the “consequent” part of the ITE (Line 10) remain the same after composition (Line 8):

ITE_disj_preserves_probabilitiesl: LEMMA

FORALL (x: variable,
pl: (compositional_PMC),
p2: {p: (compositional PMC) | disjoint?(p°S, pl1°S)},
p: {p_: (compositional_PMC) | p_ = ite_disj(x, pl, p2)},
si: (p1°9),
u: (well_defined_evaluation(p))):

(prob_set (eval(p, u), si, p T)

prob_set (eval(pl, restrict(u)), si1, p1 T))

Proving such additional lemmas was initially not possible, since we had left prob_set
uninterpreted (Section 1.2.1). This level of detail, which was abstracted during most of
the mechanization effort, needed to be specified at this point. Hence, we also needed to

define paths and path probabilities, as follows.

% We represent paths in DTMCs as lists of states.
% This way we can leverage induction to prove lemmas about paths.
path?(d: DTMC) (p: list[state]): INDUCTIVE boolean =
CASES p OF
null: FALSE, % The empty list is not a
path...
cons(s, tail): d S(s) AND
IF null?(tail)
THEN TRUE % ... but the unary list is!
ELSE path?7(d) (tail) AND successor?(d,
s) (car (tail))
ENDIF

109

ENDCASES

% A path such that the only state in T is the last one
path_to_reach?(d: DTMC, first: (d°S), T:
non_empty_finite_set[(d S)]) (p: list[statel]): boolean =
EXISTS (t: (T)):
(path?(d, first, t)(p) 7’ the path begins in first and ends in t €T
AND
FORALL (i: below(length(p)-1)): NOT T(nth(p, 1i)))

% The probability of a path (state sequence)
prob_path(d: DTMC, p: (path?(d))): RECURSIVE probability =

CASES p OF
null: O,
cons(s, tail): IF null?(tail)
THEN 1 % [7, Def. 10.10]
ELSE trans(trans(d P)(s)) (car(tail)) =*
prob_path(d, tail)
ENDIF
ENDCASES

MEASURE length(p)

% Probability of reaching a set of states
prob_set (d: DTMC,
s: (d°s),
T: non_empty_finite_set[(d S)]): probability =
sigma (paths_to_reach(d, s, T),
LAMBDA (p: list[state]): IF path?(d)(p) THEN prob_path(d, p)
ELSE 0 ENDIF)

In this specification, we defined paths as PVS lists, which means that we only model finite
path fragments. This definition is stricter than the one given by Baier and Katoen |7], but
the probabilities of finite paths are enough to compute reachability probabilities (finite
paths are cylinder sets that abstract away a family of infinite ones). Also, the function
sigma in Line 35 is the PVS specification of sums over infinite sets (i.e., the ¥ operator).
This function is needed since the set of paths between two given states may be infinite
(e.g., if there are any cycles).

The mechanized proof of Theorem 8 also required a specification of Lemma 13, as in
the handcrafted version. This lemma had been postponed, since its manual proof relied
on the state elimination step of the algorithm by Hahn et al. [41] (Definition 4). Moreover,
to state Lemma 13 in PVS, we needed to extend the definition of gen_eval to parametric

transition matrices and to PMCs.

110

Similar to PMC composition (Section 4.2.4), state elimination was defined incremen-
tally, to ease the proving of facts about the resulting PMCs. The fundamental definition
regards the changes in parametric transition matrices after state elimination, which di-

rectly corresponds to Definition 4 (State elimination step).

eliminate_state_from_matrix(m: parametric_transition_matrix,

s: (dom(m))): parametric_transition_matrix =

(# dom := remove(s, dom(m)),
trans :=
LAMBDA (sl1: (remove(s, dom(m)))):
(# dom := remove(s, dom(m)),
trans :=

LAMBDA (s2: (remove(s, dom(m)))):
IF (trans(trans(m)(s1))(s) /= const (0)
AND trans (trans(m) (s))(s2) /= const(0))
THEN (trans(trans(m) (s1)) (s2)

+ (trans (trans(m) (s1))(s)
* (trans(trans(m) (s)) (s2)
* (const (1) /

(const (1) -trans(trans(m) (s))(s))))))

ELSE trans(trans(m) (s1))(s2)
ENDIF
#)
#)

Building on the above definition, we were able to define state elimination on PMCs,
and then the progressive elimination of a finite set of states. These definitions were
leveraged to state and prove lemmas regarding the preservation of properties after state
elimination, which were needed to prove Lemma 13.

However, such lemmas about preservation of properties required a notion of correctness
of the elimination step. To cope with that, we declared an axiom asserting that state

elimination preserves the overall reachability probabilities:

elimination_step_is_sound: AXIOM
FORALL (p: PMC,

T: {T_: finite_set[(p°S)] | subset?(p T, T_)},

s: {s_: (p°S) | s_ /= p~sO
AND NOT T(s_)
AND not_sink(p, T, s_)},

u: (well_defined_evaluation(p))):

eval (alpha_v(p), u)

eval (alpha_v(eliminate_state(p, T, s)), restrict(u))

111

This fact is a loop invariant of Algorithm 1 that is both proved and used within the proof
of Lemma 1 in the work by Hahn et al. [41].

Preservation of Variables and Revisited Decisions

During the specification of lemmas about state elimination, we needed a result stating
that variables in the PMC are preserved:
% First attempt...
eliminate_state_from_matrix_preserves_vars: LEMMA
FORALL (m: parametric_transition_matrix,
s: (dom(m))):

vars(eliminate_state_from_matrix(m, s)) = vars(m)

However, when proving this lemma, we reached a case in which variables are not preserved:
the elimination of sink states (i.e., states whose only outgoing transition is a loop, also
called absorbing states). An example of such case is depicted in Figure 4.2. If the only
occurrence of variable z is the transition s - Ssink, then eliminating sg;,x will also eliminate

that variable, since there is no successor to sg,r other than itself.

x
(]
Figure 4.2: Elimination of state sy, “loses” variable x

Hahn et al. [41] deal with this by “cropping”—i.e., by making the target states ab-
sorbing and removing states (and corresponding edges) that are not reachable from s
or that cannot reach the target. The problem with this approach is that it may induce
a sub-stochastic PMC, allowing outgoing transitions of any state to not sum up to 1.
Although the algorithm by Hahn et al. [41] is able to handle this, our PVS specification
used a base definition of DTMCs that requires them to be stochastic at all times.

One possible solution was to change the definitions of PMC and DTMC to allow sub-
stochastic and super-stochastic chains, as in the reference work [41] (although such non-
stochastic chains are not covered by Baier and Katoen [7]). However, changing those def-
initions at this point would require extensive refactoring and would not be cost-effective.
Thus, we employed an alternative approach: to require (as a premise) that any input
compositional PMC is such that no state (other than the success and error states) is a

sink.

112

% A state that is reachable from the source and from which the
% target states are also reachable.
% This definition relies on loop-free paths, but it should be safe to do so.
% (Because every loop can be eliminated by taking the loop-hole transition directly.)
not_sink(m: parametric_transition_matrix,
s: (dom(m)),
source: (remove(s, dom(m))),
T: {S: finite_set[(dom(m))] | NOT S(s)}): boolean =
(EXISTS (pl: (non_repeating?)): path?(m, source, s)(pl))
AND
(EXISTS (p2: (non_repeating?)): path?(m, s, T)(p2))

not_sink(p: PMC,
T: {T_: finite_set[(p S)] | subset?(p T, T_)},
s: {s_: (p°S) | s_ /= p>sO0O AND NOT T(s_)}): boolean =

not_sink(p P, s, p s0, T)

% Definition of state elimination with the new premise
eliminate_state_from_matrix_preserves_vars: LEMMA
FORALL (m: parametric_transition_matrix,
s: (dom(m)),
source: (remove(s, dom(m))),
T: {S: finite_set[(dom(m))] | NOT S(s)}):
not_sink(m, s, source, T) % This new precondition was required!

IMPLIES vars(eliminate_state_from_matrix(m, s)) = vars(m)

We consider that this premise about non-sink states is consistent. In fact, the hand-
crafted version of our theory already posed a requirement for a PMC P to be considered
compositional: that the success and error states are P’s only bottom strongly connected
components. Since any sink state is, by definition, a bottom strongly connected compo-
nent, the existence of a sink state other than the success and error states would lead to a
contradiction.

Moreover, we use a notion of user-oriented software reliability whereby we only model
(and analyze) a success or a failure (cf. Section 2.2). Since we use transitions to represent
module failure and transfer of control between system modules [18|, any group of states
that is unable to eventually reach either the success or error states represents a deadlock,
which can be itself considered a failure. In this case, one can add transitions from the
deadlocked states to the error one, making the resulting model free of sink states other
than its interface. Also, previous work employed model-driven approaches to generate
reliability models from UML behavioral diagrams [36, 54]. The resulting models satisfy
the assumption that the only sink states are the success and error states, which raises our

confidence that this requirement is realistic (i.e., it does not constrain the generality of

113

our analysis strategies).

Nonetheless, the handcrafted version of our theory implicitly relied on the state elim-
ination algorithm being executed for all states in a given PMC. In reality, however, the
algorithm by Hahn et al. [41] (Algorithm 1) assumes that all states are reachable from
the starting state and are able to reach at least one state in the target set T. Since our
definition of parametric reachability (&, Definition 21) fixed the target set as the singleton
whose only element is s,,., the reachability restriction meant that we could not eliminate

states that can reach the error state but not the success state.

(a) Compositional PMC P = (S, 50, Ssuc, Serr, X, P, T)

PT’P(So, Ssuc)

(b) P after strict state elimination (' = {Ssuc})

PTP(SO; Ssuc)

PTP(507 Serr)

(c) P after the corrected state elimination (T = {Ssuc, Serr})

Figure 4.3: Intuition for lemmas regarding state elimination

To illustrate the problem, consider Figure 1.3. The PMC depicted in Figure 4.3a is
a compositional PMC P = (S, s, Ssuc, Serr, X, P, T) according to Definition 10. Using
Algorithm 1 and our definition of & strictly, we can only eliminate state s, since this
state reaches T = {s4,.}. However, we cannot eliminate state s, since it only reaches
Serr- Thus, we can state that the rational expression in the transition sy — S iS
Prp(so, Ssuc), but we can make no further assumptions about the remaining transitions
(Figure 1.3b).

By the above reasoning, the manual proof of Lemma 13 (r-equivalence of total com-
position and evaluation) can be deemed wrong. Still, we can overcome this liability by
considering the set of target states to comprise both s, and s, for the execution of
Algorithm 1. Then, for a compositional PMC P = (S, so, Ssuc, Serr, X, P, T'), after state

elimination is complete, there will be only two transitions left, as assumed in Lemma 13:

114

PrP (s0,55uc) PrP(so,serr) . . . : :
Sg — > Sque and sg ————— S¢p (€.8., Figure 4.3¢). This approach is considered

safe, since we have required that s, and s.., be the only bottom strongly connected
components, which means that all states in P are able to reach either one of them.

To sum up, we found out that the denotational semantics of & (alpha_v in PVS)
remains the same—i.e., parametric reachability probability for the success state. On
the other hand, the operational semantics must change to be that of applying Algo-
rithm 1 using 7' = {Sguc, Serr} as the input target set, and then selecting the transition
So m Ssue t0 comply with the denotational semantics. This way, we can guarantee
that the computation of & performs the elimination of all states, aside from the interface

states Sg, Sguec, and Sep.

4.3 Mechanization Effort

At the present moment, the mechanization of our theory of product-line reliability analysis
strategies amounts to 1,176 theorems/lemmas, 1,171 of which are proved. Of these, 782 are
TCCs—i.e., proof obligations that are automatically generated by the PVS type checker;
the remaining 394 theorems/lemmas were specified by us. A total of 372 of the generated
TCCs (approximately half of them) were automatically discharged by the PVS prover.
The remaining TCCs, as well as the human-specified theorems/lemmas, were proved

interactively using PVS’s proof strategies [79]. These totals are summarized in Figure 41.4.

TCC
(automatically discharged)

TCC
(manually proved)

User-defined

theorems/lemmas

Figure 4.4: Proportion of specification and proof effort

Thus, we can say that PVS handled approximately 2/3 of the theorem specification

effort, and automated about 1/3 of the proof effort. In particular, termination lemmas in

115

the original theory were automatically generated by PVS as TCCs. Furthermore, the type
checker and the proof assistant allowed us to identify gaps in the manual specification.
Such gaps represented details that were originally overlooked, either because concrete ex-
ample models mislead our manual specification or because we considered some constraints
implicitly.

However, the total amount of machine-verified lemmas is larger than the total of
handcrafted lemmas by a factor of 50. If TCCs are excluded, we still have 15 times
more statements proved in PVS than in the original theory. In the following sections, we
discuss the distribution (Section 4.3.1) and origin (Section 1.3.2) of such new facts. For
the sake of that discussion, we use lemmas to also refer to theorems and TCCs. Then,
we examine how such lemmas were proved using PVS prover commands (Section 4.3.3)
and the benefits of machine-verified proofs through the evolution of our specification
(Section 4.3.4).

4.3.1 Distribution of Lemmas

Our machine-verified theory is composed of 40 PVS theories distributed throughout 33
files. Every lemma or definition that has a counterpart in the original theory is annotated
accordingly, by means of PVS comments. This mapping from handcrafted artifacts to
PVS is presented in Table C.2. In Appendix C, we also provide a brief description of the
theories (Table C.1) and a map of their relationship (Figure C.1). In this section, we limit
the discussion to PVS theories that have more than 20 lemmas.

Figure 4.5 presents such theories, in descending order of size. This figure shows the
comparative size of each theory in terms of the overall percentage of lemmas (blue bars).
We also present the percentage of lemmas from the handcrafted version that are specified
and proved in each theory (red bars). Absolute quantities are annotated besides each bar.

The first thing to notice is that the PMC_composition theory alone accounts for ap-
proximately 17% of the mechanized lemmas, despite not presenting any of the original
ones. Indeed, this theory presents only two concepts from the handcrafted version: the
definitions of total and partial PMC composition (Definitions 12 and 31). The size of
this particular theory can be explained by two factors: the need for incremental specifi-
cation and the proliferation of type-correctness conditions (144 out of the 200 lemmas in
PMC_composition are TCCs).

The manual definition of total PMC composition (Definition 31) abstracts away im-
portant details about the simultaneous composition over many different slots. In Sec-
tion 4.2.4, we discuss this fact and describe our solution to the problem: incremental
specification of composition over a single slot (for transition matrices, for disjoint PMCs,

and then for arbitrary PMCs), followed by composition over a set of different slots for a

116

B =prPvs B % Original

PMC_composition
PMC_variability_encading

PMC

PRC_renaming

DTMC

compositional_PMC
rational_expressions
PMC_r_equivalence
parametric_transition_matrices
finite_sets_aux

expressions_variability_encoding

rome 5
compositional_expressions_evaluation
expression_lifting

0% 5% 10% 15% 20% 25%

Figure 4.5: Comparison of PVS theories regarding percentage of mechanized lemmas
versus percentage of the original lemmas

single variable, ending with the composition over sets of slots for different variables. Fur-
thermore, each of these definitions is accompanied by lemmas that state the properties
of resulting structures. To ease the proof of these preservation lemmas, we also employed
predicate subtyping, which by itself causes proof obligations; nonetheless, most TCCs
are generated because we are required to prove that states still belong to the domain of
transition matrices (and rows within them) and that the set of variables in the resulting
parametric matrices corresponds to the one of the resulting PMC (cf. Section 1.1).

Similar issues occur with theory PMC_variability_encoding, which has the second
largest set of lemmas. This theory contains the specification of the if-then-else operator
for PMCs, which is similar to PMC composition in that both manipulate transition ma-
trices. Accordingly, out of the 152 lemmas in that theory, 117 are TCCs. Moreover, an
incremental strategy of specification and proof was also employed in this case.

Theory PMC, which ranks third in number of lemmas, formalizes both basic PMC
concepts and state elimination. Since the elimination of states manipulates transition
matrices, we also used incremental specification and ended up with 88 TCCs among the
overall 118 lemmas.

Besides PMC_composition, other mechanized theories have no correspondence to lem-

mas in the manual version. Some of these theories are the formalization of definitions,

117

4

such as PMC_composition itself and PMC_renaming (Definition 33).

Other theories, like parametric_transition_matrices, rational_expressions,
DTMC, and ADD, represent the mechanization of third-party concepts. Such theories corre-
spond neither to lemmas nor to definitions of the original theory, but state a number of
lemmas and definitions that require explicit formalization in PVS. We believe that these
theories may be reused in the formal specification of domains related to our own—using
either similar models or analyzing other probabilistic properties.

Last, we have theories that only represent results about foundational concepts such
as lists, finite sets, and well-founded relations. These theories are completely agnostic to
our domain of interest, so they are the ones with larger reuse potential.

It is worth noting that the rome theory covers more than 20% of the original theory,
but accounts for approximately 2% of the mechanized lemmas. This is consistent with the
fact that rome only contains the definitions of analysis strategies and the corresponding
soundness lemmas, which are the key results presented in Chapter 3. Thus, this theory

mainly leverages lemmas that are proved elsewhere.

4.3.2 Origin of Lemmas

In Section 4.3.1 we briefly discuss one source of lemmas that only exist in the mechanized
theory: proof obligations that arise from the manipulation of transition matrices in PMCs.
The use of dependent typing in record types accounts for some of such obligations (cf.
Section 4.4), but, in general, TCCs are generated as machine-checked conditions for the
consistency of the specification. For instance, every specification of recursive function
yields a corresponding termination TCC.

Other than automatically generated proof obligations, we have stated 394 lemmas.
Among these lemmas, 24 are the lemmas, theorems, and corollaries present in Chapter 3.
The others were created to support the mechanized proof of key results and to fill gaps
in the handcrafted proofs.

As an example, the original theory assumed that the probabilistic reachability in the
feature disabler PMC (Definition 16) is 1. Since this PMC is small (only 3 states and 4
transitions) and its initial state directly reaches the success state, the reader can safely
assume that statement to be true. Nonetheless, we had to specify and prove this as two
lemmas in PVS, the latter requiring 298 proof commands:

feature_disabler_is_const: LEMMA
FORALL (p: (feature_disabler_PMC?)): const_PMC7(p)

feature_disabler_reliability_is_1: LEMMA
FORALL (p: (feature_disabler_PMC?)): alpha(const_to_DTMC(p)) = 1

118

The previous listing highlights another source of additional lemmas. In the handcrafted
proofs, we treated constant rational expressions as Real numbers. However, they have
different types and, for that reason, we had to specify conversions in PVS and prove that
PMCs can be converted to DTMCs whenever all transitions are constant. For instance:
constant_compositional _PMC_const_PMC: LEMMA

FORALL (p: (compositional_PMC)):
empty?(vars(p)) IMPLIES const_PMC?7(p)

Besides the existing gaps in the manually proved theory, we also declared lemmas to
support the proof of other results. Some of those lemmas regard the properties of manip-
ulated structures, such as composed PMCs and transition matrices after state elimination
(cf. Section 4.3.1). Others refer to more fundamental facts, such as the emptiness of
the intersection of a set and its complement (S N .S = (}), specified by the following PVS
lemma:

disjoint_complement: LEMMA
FORALL (S: set[T]): disjoint?(S, complement(S))

To the best of our knowledge, the above fact (and others that we mechanized in theory
finite_sets_aux) is not available in the built-in PVS libraries (prelude) nor in the NASA
PVS library.

4.3.3 Proof Automation

Our PVS-assisted proofs followed the style of manual proofs as much as possible. However,
handcrafted mathematical reasoning is prone to a greater level of abstraction than allowed
by the rigor of proof assistants. For that reason, a single step in the original proof usually
required a number of proof commands to be fulfilled in PVS.

Lemma 3 (Commutativity of PMC and expression evaluations), for instance, is stated
in PVS as follows:
eval_commutativity: LEMMA

FORALL (p: PMC, u: (well_defined_evaluation(p))):
alpha(eval(p, u)) = eval(alpha_v(p), u)

and its mathematical proof consists of applying one lemma and two definitions:

a(P[X/u]) = a(P,) (syntax change)
= Pr’u(so,T) (Definition 20)
= a(P)[X/u (Lemma | and Definition 21)

The interactive proof in PVS performs almost the same proof steps:

119

w

ot

eval_commutativity

{1} FORALL (p: PMC, u: (well_defined_evaluation(p))):
alpha(eval(p, u)) = num(eval (alpha_v(p), u))

Rule? (skeep :preds? t) % introduction of Skolem constants
Skolemizing and keeping names of the universal formula in (+ -),
this simplifies to:

eval_commutativity
{-1} well_defined_evaluation(p) (u) % type constraint preserved by :preds?
{1} alpha(eval(p, u)) = num(eval(alpha_v(p), u))

Rule? (expand "alpha') % Definition 20
Expanding the definition of alpha,
this simplifies to:

eval_commutativity
[-1] well_defined_evaluation (p) (u) % this is a precondition of Lemma 1

{1} prob_set (eval(p, u), eval(p, u) s0, eval(p, u) 'T) =
num(eval (alpha_v(p), u))

Rule? (rewrite "parametric_reachability_soundness" :dir RL) JLemma 1
Found matching substitution:

u: (well_defined_evaluation(p)) gets u,

p: PMC gets p,

Rewriting using parametric_reachability_soundness, matching in *,

this simplifies to:

eval_commutativity

{1} prob_set (eval(p, u), eval(p, u) s0, eval(p, u)'T) =
prob_set (eval(p, u), p s0, p T)

At this point we are required to perform syntactic manipulations to achieve the desired
equality, slightly departing from the manual proof:

Rule? (expand "eval" 1 (2 3))

Expanding the definition of eval,

this simplifies to:

eval_commutativity

120

o

w

which is trivially true.
Q.E.D.

In summary, the PVS proof uses the following commands, which resemble the manual

proof:

(skeep :preds? t) % Skolem constants
(expand "alpha") % Definition 20
(rewrite "parametric_reachability_soundness" :dir RL) % Lemma 1

(expand "eval" 1 (2 3)) % expand 2nd and 3rd

That is not the case for the proof of Theorem 7. The manual proof of this theorem

consists of two steps, as follows:

[(tift(a(P)),)] = [a(P)IY (Theorem ©)
= o([P]*) (Theorem 5)

The mechanized proof follows the same structure of the manual proof (modulo syntactic

manipulation) up to a certain point:

(skeep :preds? t)

(expand "feature_family_based_analysis")

(use "soundness_of_expression_evaluation_using_phi") J Theorem 6

(beta)

(expand restrict)

(rewrite -) % rewrites with Theorem 6
(use "feature_product_soundness") % Theorem 5

(expand "feature_product_based_analysis")

(expand restrict)

(expand restrict)

(rewrite - :dir RL) % rewrites with Theorem 5

At this point, we are left with the following sequent:

feature_family_soundness

[-1] sink_free_reliability_model?(scm)
[-2] is_finite(c)
[-31 [I11(fm) ()

{1} num(sigma (alpha_v (pmc(root(scm))),
LAMBDA (c: ([lfm[])):

LAMBDA (s: (vars(alpha_v(pmc(root(scm)))))):

121

10

11

12

16

18

19

the_compositional_evaluation_factory(scm) (c) (s),

c))

num(sigma (alpha_v (pmc(root(scm))),
LAMBDA (c: ([lfm[])):
LAMBDA (s: (vars(root(scm)))):
the_compositional_evaluation_factory(scm) (c) (s),

c))

Rule?

Note that the two sides of the equality in the consequent are practically the same, except
for the types of the lambda abstractions (Lines 9 and 15). We have lemmas that help
us prove that those types are actually the same, but this requires us to apply functional
extensionality. That causes the proof to spawn 4 branches, one of which subdivides 3
times.

Overall, the machine-verified proofs in our theory fall in the same case as the proof of
Theorem 7. That is, the main proof branch resembles the manual proof, with auxiliary
commands to perform syntactic manipulation and adjustment of types. Nonetheless,
there are usually parallel branches for proofs of functional extensionality (to conform

type parameters) and preconditions of instantiated lemmas.

Definitions
Quantifier

Type Constraints
Propositional
Lemmas
Decision Procedures
Structural
Equality

TCC
Extensionality
Induction
Contral

10.52%
9.28%

8.60%

2.14%
1.36%
1.15%
0.24%
0.08%
0.06%
0.01%
0.00%

Annotation
Algebraic manipulation
Rewrite Rules

0 2500 5000 7500 10000

Figure 4.6: Usage of prover commands per category

Figure 1.6 shows the total number of PVS proof commands used in our mecha-
nized theory, grouped by the categories in which they fall (according to the PVS Prover
Guide [79])."? According to that table, approximately 13% of all proof commands are re-

12The complete usage count per category and per command is shown in Tables C.3 and C.4.

122

lated to introducing type constraints (typepred) and using them to rewrite other formulas
in the sequent (rewrite). Such rewriting is performed by direct use of equational type
constraints introduced by typepred or by first expanding the definitions of type predicates
already present in the sequent.

These pre-existing predicates are brought into the sequent by flags that are passed to
the commands that introduce Skolem constants for universally quantified variables (skeep
and skolem), which fall into the category of quantifier rules (along with inst and similar
rules for elimination of existential quantifiers). The expansion of (new or pre-existing)
predicates is handled by the commands expand and expand#*, which comprise the category
of definition expansion. This category accounts for about 31% of the commands and also
covers the expansion of function definitions.

Together, quantifier rules, expansion of definitions, and manipulation of type con-
straints account for more than half of the proof commands employed in our PVS theory
(around 61%). Furthermore, we also made extensive use of direct formula manipula-
tion using rules for equality and propositional logic (approximately 13% when combined).
In other words, roughly 74% of the commands we use in our mechanized proofs can
be directly related to proof steps that are (implicitly or explicitly) used in handcrafted
demonstrations.

The use of lemmas is another category of prover commands that correspond to a
manual proof technique. These commands consist of either direct rewriting (using the
rewrite rule) or by first instantiating a lemma (by means of use or lemma followed by
inst) and then applying rewrite or replace. Overall, around 9% of the commands
correspond to using lemmas as proof steps, which is approximately 1/5 of the amount of
explicit expansions of functions and type constraints.

Proof assistants are known to require more detailed specification and proofs than
purely mathematical theories—the latter are assessed according to varying degrees of
rigor, depending on the reader. Nonetheless, such tools for machine verification also pro-
vide appropriate abstractions to cope with some of the inherent complexity, like modules
of different granularities (as lemmas and theories), parameterized theories, and automated
decision procedures. Thus, the lemma-to-expansion ratio of 1/5 suggests that our mecha-
nized proofs may not be leveraging PVS’s strengths as much as it could. This may also be
the reason why our proofs often had to be refactored during the evolution of the theory:
these proofs relied mostly on direct manipulation of predicates and definitions, instead of
using lemmas to abstract such level of detail.

Still, about 9% of the commands used in our theory are automated decision procedures.
The most frequently used, assert, performs arithmetic and Boolean simplification. This

command was employed in case analysis, to discard branches that would lead to con-

123

tradictions. Besides assert, we used grind to automatically complete proof branches
by means of repeated rewrites and simplifications (leveraging assert, among other com-
mands). However, grind may leave the sequent in a state where all predicates and
functions are expanded to the most basic definitions, rendering the proof more difficult
than it originally was. This command may also lead to non-terminating rewrites, which
requires a reset of PVS.

We also consider a separate category of automated decision procedures, which we call
TCC commands. These commands are the ones that PVS assigns as candidate proofs
of the type-correctness conditions automatically generated after type checking a theory.
Similar to grind, these commands either prove a TCC in a single step or enter an infinite
chain of rewriting. Nonetheless, such TCC decision procedures were able to automatically
discharge almost half of the TCCs in our PVS theories.

Hence, although PVS has powerful built-in decision procedures, they do not apply
in every case. Nevertheless, this level of automation reduces the burden of mechanized

proofs.

4.3.4 Theory Evolution

One of the key goals of a mechanized specification is to have a computer check that
theorem proofs are sound. Nonetheless, this goal is not static in time; once a theorem
is machine-verified, it can be re-checked every time the corresponding specification is
changed. Thus, mechanized proofs also aid along the evolution of the theory.

Throughout the mechanization effort, we followed a design principle to specify only
the concepts that were needed, and to do it as the need arises (Section 1.1). This decision
meant that our specification suffered frequent refactoring. Still, at every refactoring we
were able to use the PVS commands M-x prove-theory and M-x prove-importchain
to re-run the existing mechanized proofs in batch mode. If a proof passed, that meant it
was not affected by the change; otherwise, we manually inspected the proof to search for
prover rules that failed to apply.

Overall, proof failure after a refactoring meant that either (a) the refactoring was
incorrect, or (b) the refactoring changed the number or the ordering of type predicates
that were used as sequent formulas in the proof. In the former case, we did not find a
pattern to help on identifying a solution; that is object of future work. On the other hand,
the latter case could always be identified by backtracking incomplete proof branches.

Such backtracking can be performed by opening a buffer with the proof commands
(M-x show-proof) and running that proof along with a graphic representation of the
proof tree (M-x x-prove). For each incomplete proof branch, we start with the leaf node

and identify the proof command that led to that sequent. Then, we search for that same

124

command in the proof commands buffer, to establish a correspondence. Last, we follow
the chain of commands in the proof buffer and the path towards the root node in the
proof tree in a pairwise fashion, until a mismatch is found.

This command that exists in the recorded proof steps but is not present in the current
proof tree has failed to apply. In our experience, this kind of failure is always caused
by a proof command that directly references a sequent formula, such as (rewrite -3);
if a refactoring changes the number or the ordering of a type constraint that appears as
a sequent formula, replaying that command will try to rewrite with a formula that is
different from the intended one (despite being indeed at position [-3]).

Hence, the solution is to examine the failed command (which was found through
backtracking) and discover which formula was needed for this command to succeed. Then,
we continue to follow the path towards the root node, seeking for the sequent in which
that formula was removed. As mentioned above, this usually occurs at the closest group

of rewrites.

4.4 Lessons Learned

This section presents an experience report that we think may be useful to researchers
willing to perform mechanized specification. In what follows, we discuss some of the
design decisions in hindsight, reflecting about the perceived benefits, shortcomings, and

alternatives.

Corrections to the original theory: Overall, the mechanization effort helped us
raise the level of confidence that our theory is sound. Using PVS, we were able to identify
and correct gaps in the original (manual) specification. Although those gaps represented
liabilities for some of the handcrafted proofs, we were able to refine our theory and cor-
rect the detected flaws. Furthermore, solving these issues increased the precision of our
specification, since some concepts (e.g., expression composition and simultaneous PMC
composition) were informally defined.

It is interesting to note, however, that errors in the original theory appeared in two
flavors during mechanization. The first one is that the handcrafted specification may
be incomplete, in which case the mechanized version fails to type-check. This sort of
mistake is easier to detect, since the PVS type-checker points it out. A concrete example
that appeared in our mechanization effort was the need for defining a new generalized
expression evaluation function (function gen_eval, Section 4.2.5).

On the other hand, there are errors which prevent some proofs from being completed.

In such situations, it may not be clear whether a new lemma could enable the proof to

125

be carried out or if there is indeed a specification flaw. For that reason, these errors are

harder to recognize, and their solutions may require a non-localized refactoring.

Type-correctness conditions (TCC): PVS type checker was able to automatically
generate proof obligations for facts that are important to the soundness of the theory. For
instance, function termination may be easily overlooked in a manual specification, but,
since PVS requires all functions to be terminating, the type checker forces us to prove
this fact. Indeed, our manual specification did not provide a proof of termination for one
of the recursive functions.

Also, recursive definitions that make use of predicate subtypes give rise to TCCs
requiring that such predicates be preserved at each recursion step. For complex recursions,
like the ones that specify PMC composition (cf. Section 4.2.1), stating properties as
predicates of the return types may be easier than proving the same facts as independent

lemmas.

Partial functions with predicate subtypes: We were also able to leverage the type
system to mechanically enforce some pre-conditions. For instance, most of our definitions
require that evaluation functions be well-defined for the given PMCs. This concept is so
pervasive that we dropped explicit mentions to well-definedness whenever we talk about
evaluations (Section 2.2.1). Nevertheless, we still need to prove that custom evaluations
are indeed well-defined. Hence, we defined a predicate to model well-definedness and used
it in all function parameters related to evaluation of PMCs. This way, the type checker
generates obligations that prove evaluations to be well-defined. Similar to termination,
this also led us to find an evaluation function that was not proved to be well-defined in
the original theory.

However, these benefits come at the cost of more complex TCCs. Although PVS deci-
sion procedures were able to discharge a considerable proportion of the proof obligations
it generated, some of these obligations would not be necessary but for predicate subtypes.
Moreover, some TCCs that were not automatically discharged would become simpler (and
thus dischargeable by PVS) without predicate subtypes.

One approach to eliminate TCCs would be to specify appropriate judgements. How-
ever, the extensive use of dependent typing made it difficult to specify useful judgements
in some cases. This happens because of a limitation of PVS, whereby constant judgements
do not support dependently-typed quantified variables in the type expression (i.e., after
the HAS_TYPE keyword).

Sets as types: Using sets to define predicate subtypes helped us to design readable

definitions, as expected. Nonetheless, one needs to proceed with caution when using this

126

technique. In our case, we used set types to instantiate some third-party libraries, one
of which is NASA’s finite_sets_sum (which we use to prove facts about finite sums).
Because of that, we needed to define auxiliary lemmas for seemingly trivial facts, like the
following:
finite_sum_of_subset: LEMMA
FORALL (S1: finite_set[T],
S2: {S: finite_set[T] | subset?(S1, S)},

f: [(S2) -> reall):
sum[(S2), real, 0, +](restrict[T, (S1), boolean](S1), f)

sum[(S1), real, 0, +](restrict[T, (S1), boolean](S1), restrict(f))

If we strip type parameters, we can see that this lemma is actually stating an identity of
the sum) _¢ f(s). Thus, this is only needed because we used a predicate subtype to
instantiate the theory, instead of using the base type.

Overall, we can summarize that predicate subtypes are useful to define partial func-
tions, but should be avoided when instantiating theory parameters. Another situation
where predicate subtyping should be avoided is when defining parameters of predicates;
this over-restricts the domain upon which the predicate can be tested, whereas the in-

tended result is usually that all elements of the base type can be tested.

Proof automation: Whenever possible, we used PVS facilities that automated part of
the hard work (e.g., the grind prover rule and the typecheck-prove command). Some
rules that try to infer an appropriate instantiation of quantifiers—such as inst? and
use—are preferred instead of explicit instantiation; they require less references to names
and sequent formulas, thus making the proof more resilient to changes. However, some-
times the instantiation inference does not fail, but neither produces a useful result.
When working with partial functions, in particular, it is often the case that an appro-
priate instantiation needs a restricted version of some function f in the proof sequent. In
such cases, inst? usually uses f without restriction, yielding an impossible obligation
to prove that the different domains are equal. Thus, even when applying rules with that
automation level, one must inspect the results before proceeding to the next command,
under risk of reaching a dead end. These rules alleviate the mental burden, but do not

eliminate it.

Specification style: The design decision to favor the operational style of specification
resulted in the need to expand definitions in proofs. However, some of our definitions—
especially the ones related to renaming and composition of matrices—involve multiple

conditionals (IF and COND). This led to proofs with many branches and case analyses,

127

which can be difficult to design and understand. An alternative strategy would be to
specify the overall framework using a declarative style, then specify operational definitions
and prove that they conform to the declarative ones. With this alternative approach, we
expect to have more definitions and lemmas than using the purely operational style.

However, we also expect the resulting proofs to be less involved.

Function overloading: Throughout the mechanization process, we used function over-
loading whenever possible, to group conceptually related functions. In our experience, this
led to shorter (but still meaningful) names and improved readability. However, TCCs are
named using incremental indices for entities with the same name within a given theory.
An overloaded function (such as rename, in PMC renaming) may give rise to a handful of
TCCs (about 25, in this particular case), and a change in the definition of one overloaded
version of this function may cause the addition or suppression of some of them—causing
the following TCCs to change names in cascade.

Since PVS uses the name of a theorem to keep track of its proof (stored in a sep-
arate file), this causes a mismatch between the existing proofs and the intended TCC
statements. This mismatch must be manually fixed, a task which is both tedious and
error-prone. Nonetheless, our view is that the improved readability pays off. Then, we
recommend that the specifier take a snapshot of the TCC statements and correspond-
ing proofs (using the commands M-x tcc and M-x show-proofs-theory) before making

changes to overloaded functions.

Lemmas versus brute-force proofs: Proof commands in PVS can give rise to a
number of proof branches, depending on the usage and context. For instance, at some
point an ongoing proof had branches for which the reasonable proof strategy was to use
induction. However, because of all predicates that applied to the induction variable in
that concrete case, issuing the command induct spawned 17 branches.

In this case, we removed the concrete context by stating the fact we were trying to
prove in that branch as a separate auxiliary lemma. This way, we were able to simplify
both the original (encompassing) proof and the new (extracted) one. This indicates
that lemmas are useful not only as a reuse technique, but also as a tool to tame proof

complexity.

Using lemmas as interface contracts: To prove lemmas in PVS, it is useful to
preserve type constraints when introducing Skolem constants for universally quantified

variables.'® If the type at hand satisfies a conjunction of predicates, as in the return

13PVS quantifier rules, like skolem, usually accept Boolean arguments for this purpose.

128

https://github.com/thiagomael/rome-specs/blob/master/PMC_renaming.pvs

type of compose_many_variables (Section 4.2.4), each of theses predicates turns into a
formula in the antecedent. This means that changes in the number (or in the order) of
predicates may impact proofs that use them.

Thus, when designing the proof to Lemma 13, we performed a top-down proof
approach—i.e., we first designed the lemmas that should be true and then stated these
lemmas and designed their proof. Specification of new definitions was then postponed by
means of a number of lemmas stating the properties needed from them.

Using this approach, we were able to proceed with a proof as far as possible, then quit
the prover, specify a new property that was needed, and then resume the proof. If we had
chosen to specify these properties directly as predicate subtypes of the function of which
the lemma was about, we could have needed to change other proofs. That is, we ended
up needing less rework during the initial exploration phase.

The lesson here indicates that lemmas may be useful not only as a reuse technique,

but also as a tool to perform incremental specification.

Limitations of uninterpreted elements: At several points in our mechanized speci-
fication we employed uninterpreted constants and functions (Section 4.2). This technique
is useful to abstract details, especially for concepts that are not key to the theory being
specified (e.g., propositional rules of feature models) or functions for which there may be
many possible definitions (e.g., the parametric model checking function alpha_v).

When leaving theory elements uninterpreted, however, one should care to also specify
its properties. In our experience, specifying properties of uninterpreted elements at a later
time may have a large refactoring impact, since new predicates on the type of a Skolem
constant may change the numbers of sequent formulas and many useful prover commands
(such as instantiate and rewrite) rely on them.

Hence, we recommend that every property envisioned for the uninterpreted element

be specified using type predicates.

Limitations of record types: We used PVS RECORD types to specify definitions that
use tuples in the handcrafted version of our theory. For instance, we followed this approach
with Definition 1 (Parametric Markov Chain), whose PVS counterpart is defined as a
direct translation (Section 41.2.1).

However, in a PMC P = (5, s9, X, P, T), the set X of variables is dependent on the
actual variables of the parametric transition matrix P. The explicit mention to both X
and P in the handcrafted version is useful to the reader as variables to which proofs and
other definitions refer. In the mechanized version, on the other hand, the specification of

both X and P and the encoding of their relationship as subtype predicates gives rise to

129

a number of recurrent TCCs at every point where the theory manipulates PMCs. Those
TCCs that require us to prove that X = vars(P) are usually not hard to prove, but
neither do they contribute to the overall soundness of the theory.

So, we suggest that definitions that make use of dependent typing between record

members be thoroughly examined, to highlight such cases of over-specification.

4.5 Limitations and Threats to Validity

The mechanized theory covers all original aspects of the handcrafted version presented in
Chapter 3. However, for scoping reasons, we did not provide machine-verified proofs of
auxiliary results that could be traced to background literature. We divide such abstracted

results in two categories: axioms and unfinished mechanized proofs.

4.5.1 Axioms

Facts that could be referenced in a proof without further arguments (e.g., numbered the-
orems in books and papers), as well as third-party results, were stated as PVS axioms.
Since this type of construct is a potential threat to the consistency of mechanized speci-
fications [67], we tried to avoid them as much as possible, favoring the use of definitions
and theorem premises.

Still, our PVS specification uses a total of 7 axioms. Section 4.2 discusses 4 of them

in context:

e reachability_probability_property (DTMC.pvs, line 173), corresponding to
Property 1 (Reachability probability for DTMCs). This property is a result pre-
sented in the book by Baier and Katoen [7] at page 760.

e parametric_reachability_soundness (PMC.pvs, line 54), corresponding to
Lemma 1 (Parametric probabilistic reachability soundness). This lemma is a
result from the work by Hahn et al. [41] (Lemma 1).

e climination_step_is_sound (PMC.pvs, line 306), corresponding to Definition 4
(State elimination step). This also comes from the work by Hahn et al. [41], being
a loop invariant of Algorithm 1 that is both proved and used within the proof of

Lemma 1.

e alpha_v_eval_is_real (PMC.pvs, line 49), corresponding to an implied definition
in the work by Hahn et al. [41].

130

https://github.com/thiagomael/rome-specs/blob/master/DTMC.pvs#L173
https://github.com/thiagomael/rome-specs/blob/master/PMC.pvs#L54
https://github.com/thiagomael/rome-specs/blob/master/PMC.pvs#L306
https://github.com/thiagomael/rome-specs/blob/master/PMC.pvs#L49

The remaining 3 axioms are properties of cylinder sets and sigma algebras, and are
only needed in our formalization of D'TMCs. These axioms can all be traced to Section
10.1.1 (Reachability Probabilities) of the book by Baier and Katoen [7], as follows.

finite_path_fragments_are_countable (DTMC.pvs, line 132). This axiom states
that, for any given DTMC, the set of path fragments going from a state s to a non-empty

finite set T of states is countable:

IMPORTING sigma_set@sigma_countable[list[state]]

finite_path_fragments_are_countable: AXIOM
FORALL (d: DTMC,
s: (d°8),
T: non_empty_finite_set[(d S)]):
is_countable (paths_to_reach(d, s, T))

Rationale. We define DTMC paths as finite lists of states, so such paths are guaranteed
to be finite. Also, the set of finite path fragments in a DTMC is countable [7], and the
set paths_to_reach(d, s, T) is a subset of such set. Since every subset of a countable

set is also countable, the stated axiom is safe. O

alternative_paths_sum_up_to_1 (DTMC.pvs, line 144). This axiom states that
the sum of the (possibly infinite) probabilities for all paths starting in a given state is also
a probability:
alternative_paths_sum_up_to_1: AXIOM
FORALL (4: DTMC,
s: (d°8),
T: non_empty_finite_set[(d S)]):
LET the_sum = sigma(paths_to_reach(d, s, T),
LAMBDA (p: list[state]):
IF path?(d) (p) THEN prob_path(d, p) ELSE 0
ENDIF)
IN the_sum >= 0 AND the_sum <= 1

Rationale. This infinite sum corresponds to the one in the definition of the probability of
eventually reaching a set B of states in a DTMC [7]. By definition, this probability is a
number in the closed interval [0, 1] € R. O

prob_path_is_convergent (DTMC.pvs, line 138). This axiom is needed as a type-
correctness condition for the previous one, since the PVS theory of infinite sums is only

defined for convergent series:

131

https://github.com/thiagomael/rome-specs/blob/master/DTMC.pvs#L132
https://github.com/thiagomael/rome-specs/blob/master/DTMC.pvs#L144
https://github.com/thiagomael/rome-specs/blob/master/DTMC.pvs#L138

prob_path_is_convergent: AXIOM
FORALL (d4: DTMC,
s: (d4°8),
T: non_empty_finite_set[(d S)]):
convergent?7(paths_to_reach(d, s, T))
(LAMBDA (p: list[statel]):
IF path?7(d) (p) THEN prob_path(d, p) ELSE O ENDIF)

Rationale. Again, this result comes from the fact that path probabilities are a probability

measure over cylinder sets of the given DTMC, so their sum is convergent [7]. O

4.5.2 Unfinished Mechanized Proofs

Besides the previously discussed axioms, there are some auxiliary results that are intuitive,
but are not proved elsewhere. In these cases, we stated the results as five ordinary lemmas
in PVS, including them initially within the scope of mechanization. The corresponding
machine-verified proofs, however, are work in progress.

Those unfinished lemmas were (indirectly) leveraged to prove results regarding r-equiv-
alence (Lemma 13 and Theorem 8). Still, in what follows, we provide non-mechanized

proofs of their correctness.

Sink States and PMC Composition

In the handcrafted version of our theory, we leverage the correctness of the algorithm by
Hahn et al. [41] (Lemma 1) to prove that PMC composition and evaluation are r-equiva-
lent (Lemma 13). As already discussed in Section 1.2 (Section 1.2.5), this argument was
incomplete and needed the notion of reachability to either the success or the error states.
Nonetheless, since we require that these particular states be the only bottom strongly
connected components, such reachability is guaranteed |7, Theorem 10.27]. However, we

still need to prove that this property is preserved under PMC composition:

% Auxiliary definition: a predicate stating that a PMC has
% no sink states besides the success and error states.
no_sink_besides_interface?(p: (compositional _PMC)): boolean =
FORALL (s: {s_: (p°S) | s_ /= p sO AND NOT add(p s_err, p T)(s_)}):
not_sink(p, add(p s_err, p T), s)

% Auxiliary definition: a composition that only yields PMCs
% that satisfy the above predicate.
no_sink_besides_interface_composition?(p: (compositional_PMC))

(u: composition(p X)): boolean =

132

FORALL (x: (p " X)):

no_sink_besides_interface?(u(x))

14 composed_states_are_not_sink: LEMMA
FORALL (p: (no_sink_besides_interface?),
16 u: (no_sink_besides_interface_composition?(p))):
17 FORALL (s: {s_: (compose(p, u) S) | s_ /= p~s0
18 AND NOT add(p s_err,
compose (p, uw) T)(s_)1}):
19 not_sink (compose(p, u), add(p s_err, p T), s)
Lemma composed_states_are_not_sink (PMC_ r equivalence.pvs, line 24) states
that, if no state in the base PMC is a sink, and if no state in any composed PMC is a

sink, either, then we know that no state is a sink in the PMC resulting from composition.'*

Proof sketch. Suppose that this statement is false. Then there is at least one state s in
the resulting PMC P that cannot reach either sg,. or s.... But s comes either from the
original (base) PMC By or from one of the composed PMCs, say Peomp. S0, one of the

following must be true:

o If s € Pomp, then s reaches either the success or the error states in Pe,,. But, after
composition, these states are connected to a slot state from P,,s., which can reach

either sg,. or s.... Hence, we have a contradiction.

e Otherwise, if s € Py, then it could reach the interface states before composition.
Since composition only changes transitions within a single slot (Definition 12), the
interruption of reachability must have happened within a composed PMC F,y,p.
However, composition does not affect transitions within the composed PMC besides
the loops in the success and error states. Thus, path fragments belonging to com-
posed PMCs are preserved, which means that paths originally passing through the

slot are not interrupted. This is, again, a contradiction.
Since both possibilities lead to contradictions, the statement is true. O

Similar reasoning applies to ITE_of_compositional_model_preserves_not_sink
(PMC _ variability _encoding.pvs, line 478), which states that recursive composition us-
ing the PMC if-then-else operator (variability encoding) does not introduce sink states:
ITE_of _compositional_model_preserves_not_sink: LEMMA

FORALL (cm: (sink_free_reliability_model?),
p: (cm™P)):

no_sink_besides_interface_composition?(p)

M That description excludes interface states, since the success and error states are sinks by definition.

133

https://github.com/thiagomael/rome-specs/blob/master/PMC_r_equivalence.pvs#L24
https://github.com/thiagomael/rome-specs/blob/master/PMC_variability_encoding.pvs#L478

(LAMBDA (x: (vars(p))): ite(x,
gamma (cm) (idt_inv[cm P, cm I,
cm”idt](x)),
feature_disabler_PMC))
Again, this lemma assumes that all compositional PMCs in the compositional proba-
bilistic model are free of sink states. Since we are interested in models of system reliability,
and since our notion of reliability is binary (i.e., the system either fails or succeeds), we

consider this assumption to be safe (cf. Section 1.2.5).

State Elimination

Lemma eliminate_composed_maps_slots_to_prob_sets (PMC r equivalence.pvs,
line 56) relates directly to the induction hypothesis used to prove Lemma 13:
eliminate_composed_maps_slots_to_prob_sets: LEMMA
FORALL (p: (no_sink_besides_interface?),
x: (p°X),
sl: (slot?(p, x)),
u: (no_sink_besides_interface_composition?(p)),
u_: (well_defined_evaluation(compose(p, u)))):
LET (s1_0, sl_suc, sl_err) = sl IN
eval (trans (trans (eliminate_composed(p, u) "P)(sl_0))(sl_suc),
restrict(u_)) = eval(alpha_v(u(x)), restrict(u_))
AND
eval (trans (trans (eliminate_composed(p, u) "P)(sl_0))(sl_err),
restrict(u_)) = eval(const(1l) - alpha_v(u(x)), restrict(u_))
This lemma establishes that, after applying the state elimination step of Hahn’s algorithm
to all the states that were added to a PMC by a composition in a single slot, the remaining
transitions (between states in said slot) have expressions that are extensionally equal to
the reliability expression obtained by using Hahn’s algorithm (&) in the composed PMC.
Note that the lemma declaration employs the pattern of specifying extensional equality
of rational expressions by comparing the results of applying the eval function to each of
them.

The non-mechanized proof of this statement is already present in the original theory
(Lemma 13) and is illustrated by Figure A.1. In Figure 4.7, we can see the evolution from
a base PMC P (Figure 4.7a), going through composition of a PMC P’ (Figure 4.7b) until
the elimination of all composed states (Figure 4.7d).

Lemma eliminate_composed_preserves_non_slots (PMC_r equivalence.pvs, line
67), on the other hand, states that transitions between states that are not members of

the same slot are preserved after eliminating all states resulting from composition:

eliminate_composed_maps_preserves_non_slots: LEMMA

134

https://github.com/thiagomael/rome-specs/blob/master/PMC_r_equivalence.pvs#L56
https://github.com/thiagomael/rome-specs/blob/master/PMC_r_equivalence.pvs#L67

Pt ot
(807Serr

(d) P. after eliminating all states s’ € S’
Figure 4.7: Intuition for lemmas regarding state elimination
FORALL (p: (no_sink_besides_interface?),
s1, s2: (p~8),

u: (no_sink_besides_interface_composition?(p)),

u_: (well_defined_evaluation(compose(p, u)))):

135

(NOT EXISTS (sl: (slot?(p))): (sl=sl-1 AND (s2=s1"2 OR
s2=s8173)))
IMPLIES
eval (trans (trans (eliminate_composed(p, u) "P)(s1)) (s2),

restrict(u_)) = eval(trans(trans(p P)(s1))(s2), restrict(u_))

Proof sketch. By Definition 12, PMC composition preserves transitions between composed
states and only creates transitions between the composed interface and the corresponding
states in the target slot. Composition itself does not affect any transition of the base

PMC that is not within a slot (as the transition s; 2 s, in Figure 4.7a). O

Lemma eliminate_state_from_matrix_preserves_wf_evaluations (PMC.pvs,
line 175) is the last one regarding state elimination. This lemma states that eliminat-
ing a single state preserves the stochasticity of the resulting PMC under well-defined
evaluations of the original one.
eliminate_state_from_matrix_preserves_wf_evaluations: LEMMA

FORALL (m: parametric_transition_matrix,
s: (dom(m)),
source: (remove(s, dom(m))),
T: {S: finite_set[(dom(m))] | NOT S(s)},
u: (wf_evaluation(m))):
not_sink(m, s, source, T)

IMPLIES wf_evaluation(eliminate_state_from_matrix(m, s)) (u)

Proof sketch. Let P = (5,50, X,P,T) be a PMC and let P = (S\ {s}, s0, X, P’,T) be
the PMC resulting from the elimination of a state s € S\ T\ {so}. We want to prove
that, for all p € Prep(s) and for all evaluation u that is well-defined for P, the following
holds:

> PX/u(pt) =1
teS\{s}
Let p € S be such that p € Prep(s) (i.e., p is a predecessor of s in P). Any successor of
p in P’ must be a state that was previously a successor of both p and s, or a successor of

just one of them.
Sucepi(p) = (Sucep(p) \ Suces(s) \ {s})

N J/

Vv
Sp (successors of p alone)

U (Sucep(p) N Sucep(s) \ {s})

N

TV
Sp,s (successors of both p and s)

U (Sucep(s) \ Sucep(p) \ {s})

- J

~
Ss (successors of s alone)

136

https://github.com/thiagomael/rome-specs/blob/master/PMC.pvs#L175

Hence,

Y. Plpty= > Pl

teS\{s} teSuccpr (p)
=> Ppt)+ > Phpt)+> Plpt)
tes, teSp,s teSs

But, for all t € S,, P'(p,t) = P(p,t), since these transitions are not affected by
state elimination. Thus, Z P'(p,t) = Z P(p,t). Moreover, by definition of the state

teSy tes,
elimination step (Definition 4), we have that

1

P'(p,t)= P e P(s,t P(p,t
Z (pa) (pa 8) 1 —P(S,S) (Sa 0) + (pa O)
t€S,.4
1
P e P(s,t P(p,t
+ (pv S) 1 —P(S,S) (Sa 1) + (pa 1)
+ ...
1
= P — P(s,t P(p,t
(0:9) =g 2= PO+ 2 PRY)
tESp,s teSp,s
and
S Pt = Pls) g Plot) + Pyt
Y Y 1 . P(S’ 8) Y 7
teSs
1
P . P(s,t P
+ (p7 S) 1— P(S, S) (87 1) + y U1
these states are not successors of p
+ .
1
= Pps) ————- P(s,t)
1—-P(s,s) teZS
Since P is stochastic under evaluation w, it holds that Succp(s) = (Sucep(s) N

Sucep(p)) U (Sucep(s) \ Sucep(p)) and Z P(s,t) = ZP(s,t) = 1 (omitting the

teSucep(s) tesS
evaluation syntax for brevity). Hence, we have that

ZP(s,t) + Z P(s,t) + P(s,s) =1

tes, tESp.s

Y P(s,it)=1- > P(s,t)—P(s,s)

teS, teSy.s

137

Thus,

ZP’(p,t) = % 1-— Z P(s,t) — P(s,s)

teSs teSp,s

and we have that

Y Plt)=> Ppt)+ Y Ppt)+) Plpt)

teS\{s} teSp t€Sp,s teSs
P(p,s)
tes, tESp.s tESy s
P(p,s)
1 Pt)— P
T P(s.s) tZ f) = P(s,9)

P(p, s)
CY PO+ Y P+ pps
tesS, teSp,s %

=) P(pt)+ Y P(pt)+P(ps)

tes, t€Sp.s
= >, PO
teSucep (p)

=1

138

Chapter 5
Conclusions

In this work, we formally presented seven approaches to reliability analysis of product
lines, covering all strategies in the taxonomy by Thiim et al. [85]. In particular, we
formally extended previous work [16] with feature-based analysis strategies. To the best of
our knowledge, this is the first work to address all three dimensions of product-line analysis
(product-based, family-based, and feature-based) in the context of model checking, and
also the first to present an instance of feature-family-product-based analysis strategy.

The soundness of our analysis techniques is established by results on the commutativity
of their intermediate steps, summarized by the commuting diagram in Figure 3.7. This
constitutes formal evidence that, given a product line, each of the presented approaches
yields the same results as the others, enabling practitioners to choose among analysis
strategies based on their space and time trade-offs. We had our proofs reviewed by fellow
researchers outside our group, and the resulting theory is published by a peer-reviewed
journal [15].

Moreover, we mechanized this theory in the PVS proof assistant [67]. The mapping
between the theory as presented in Chapter 3 and the mechanized specification in Chap-
ter 4 is summarized in Table C.2, in Appendix C. By now, the mechanized specification
(Chapter 1) consists of 1,176 theorems/lemmas, of which 5 auxiliary lemmas (needed in
the machine-verified version) are not yet machine-verified. All elements in the original
theory are specified and proved. To the best of our knowledge, this is the first work to
present a mechanized specification of product-line reliability analysis.

Although our theory is focused on reliability analysis, we were able to prove a general
result on lifting rational functions over the Real numbers to work with ADDs (Lemma 4).
This result can be leveraged to evaluate algebraic expressions in the context of product
lines.

In the remainder of this chapter, we discuss implications of the results (Section 5.1)

and limitations of our research (Section 5.2). Then, we discuss related work (Section 5.3)

139

and conclude by proposing future work (Section 5.4), some of which is in progress.

5.1 Discussion of Results

The main contribution of this work relies on the proofs of commutativity and the associ-
ated theory. This theory may be leveraged as a starting point to formalize the verification
of other quality properties that can be expressed using related Markov models, such as
Continuous-time Markov Chains (CTMC) and Markov Decision Processes (MDP). Such
leverage may be obtained from possible similarities in the handcrafted theory, but also
from refactorings of the mechanized version.

Moreover, the commutativity proofs increase the confidence that the techniques whose
performance were empirically compared [54| are indeed alternatives to one another. As a
corollary, this proves that the feature-family-based analysis technique presented by Lanna
et al. [54] is correct." Hence, it is safe to assume that, according to current evidence, in
the context of user-oriented reliability analysis using DTMC models of product lines, the
feature-family-based strategy outperforms the others.

Still, the theory presented here also extends the analysis strategies assessed by Lanna
et al. [54], including a novel feature-family-product-based strategy. This motivates the
need for further empirical studies that also cover the variant strategies in this work.

The formalization of our theory in PVS allowed us to identify some errors and impre-
cisions of the handcrafted version. That is, some of the original results (Chapter 3) were
partially invalidated by the mechanization effort. Nonetheless, we were able to correct
the identified issues and modify the parts of the theory depending on them. Thus, the
key results of the theories presented in Chapters 3 and 4 are slightly different from one
another.

Furthermore, the mechanized version has significantly more elements—specifically,
there are approximately 50 times more lemmas in PVS than there are in the handcrafted
theory. Even though roughly 2/3 of those lemmas were proof obligations automatically
generated by PVS, they still had to be proved. Approximately half of these proof obli-
gations were automatically discharged, but the absolute amount of interactive proving
exceeded by far the quantity of handcrafted proofs. Also, the process of manually spec-
ifying and proving the original theory took about 1 year, whereas the machine-assisted
version required 2.5 years so far (despite being based on existing knowledge).

Because the mechanization effort was significantly higher than that of creating the

original theory, it is possible to see it as overkill. However, that endeavor brings the

!That work actually presents a model-driven method to compute the user-oriented reliability given
UML models of a system. However, the results presented here do not apply to the automatic extraction
of DTMC models from UML, but only to the analysis of the extracted Markov chains.

140

benefit of providing a foundation on which similar theories can be built. The process
of specifying and proving our theory of commuting strategies in PVS also gave rise to
auxiliary theories that can be used in more general contexts—for instance, theories about
ADDs, rational expressions, and DTMCs, besides additional lemmas on finite sets and
lists. Such auxiliary theories are under evaluation for joining the NASA PVS Library.

Additionally, we believe that the experience report presented in Chapter 4 will be
helpful for researchers and practitioners working with interactive theorem proving. We
documented the design decisions, the main obstacles, and the mistakes we made, so
that the community may also benefit from the lessons learned during the mechanization
process.

Overall, this work highlights the relationship between analysis steps in the context of
model-checking the user-oriented reliability of product lines. Figure 3.7 depicts the pat-
terns that were found during our research, relating annotative and compositional models
as well as the operations defined over them. Such view allows the organization and struc-
turing of facts (e.g., commutativity of intermediate analysis steps) in a concise and precise
manner, facilitating the communication of ideas and contributing to a more comprehensive
understanding of underlying principles used in these strategies.

Although we do not claim that our results are general enough to be immediately ap-
plied to other contexts, these results add up to the knowledge base of theoretical work
regarding the formal verification of product lines. Moreover, we believe that the com-
muting diagram in Figure 3.7 may be leveraged as a guide to the formalization of related
theories. This conjecture is mentioned at the ending of Chapter 3 and is object of an
ongoing work within our research group. Hence, this work indirectly contributes to the
ongoing search for a principle and possibly automated way to lift a given specification

and analysis technique to product lines [85].

5.2 Threats to Validity

The main contribution of this work is analytical, obtained in a deductive way. As such, the
validity of the conclusions is conditioned on the validity of the premises and on the correct
application of deduction principles. The former concerns whether the formal constructs
correspond to the practical ones (“do the implementation and the theory correspond to
one another?”). The latter concerns the consistency of specifications and correctness of
proofs.

To address the validity of the mapping between software constructs and formal defini-
tions, we created the original (manual) specification by modeling the constructs that exist

in the ReAna product-line reliability analysis tool—implemented by our research group

141

to perform empirical studies [54]. Although this tool is implemented in an imperative
object-oriented programming language (Java), it employs a functional programming style
as much as possible. The assumption is that, by organizing the source code into small,
manageable modules, with limited presence of side-effects, it is easier to reason about the
correctness of definitions and specifications [5]. This programming discipline does not
guarantee a correct mapping between software and mathematical assets, but mitigates
the risk of mismatching.

To increase the confidence in the consistency and soundness of our formal defini-
tions and proofs, we submitted the specifications for review by fellow researchers and by
anonymous reviewers of a scientific journal, resulting in the paper’s acceptance [15]. The
publication venue was chosen because the members of its editorial board are experienced
in model checking and in the use of formal methods in general, and some of them do
research on software product lines.

Besides human scrutiny, we further increase the evidence on the soundness of our
commutativity theory by means of machine-based verification. All of the key results are
specified and machine-verified, which already indicates that the original theory is probably
sound. Nonetheless, correspondence to the manual specification still needs to be estab-
lished. We mitigate that risk by explicitly providing pointers from the mechanized to the
original elements of the theory (Appendix ('), and by keeping the translation between both
as direct as possible (Section 4.1). In the cases where the mechanized definitions become
more involved, we discuss the differences and argue about their rationale (Section 4.2).

Also, our mechanized version relies on 7 axioms, and axiomatic specification brings
the issue of whether the resulting theory is inconsistent. Indeed, there is evidence that
this may be the case even for experienced PVS practitioners [72]. To reduce that threat,
we provided a mapping from our axioms to results available in the literature (Section 4.5)
and sought to keep them as syntactically similar to their reference definition as possible.
Moreover, 5 of the lemmas in our mechanized theory have unfinished proofs, which hinders
their validity. This is indeed an open issue, which we mitigate by providing handcrafted
proofs and arguments of correctness.

Our approach to mitigate the risk of inconsistent axioms assumes that the literature
results on which we rely are indeed correct. These results are based on the book by Baier
and Katoen [7] and on the work by Hahn et al. [11]. Both works have influenced many
others, based on the number of citations reported by Google Scholar.? The latter work, in
particular, laid the foundations for the PARAM model checker [40], whose model checking
techniques have been also incorporated in the PRISM model checker [52].

2As of November 2019, Baier and Katoen [7] had 4956 citations and Hahn et al. [41] was cited 126
times according to http://scholar.google.com.

142

http://scholar.google.com
http://scholar.google.com

Another potential risk to the validity of our machine-verified results is the use of
third-party theories. Such theories have axioms of their own, which could introduce
inconsistencies. However, all theories imported within our own are part of NASA PVS
library.” Those specification and proof artifacts are publicly available and are curated by
a research group (NASA Langley Formal Methods Team). As such, and given that this
library is used in formal verification of mission-critical software, we assume that the risk
of introducing inconsistencies is low. For the same reason, we consider unlikely that any

of our mechanized proofs is falsely deemed correct due to an unnoticed bug in PVS itself.

Last, we must discuss to what extent our results can be generalized. By construction,
we limited our scope to user-oriented reliability analysis using model checking. Thus, we
do not claim that our results can be immediately generalized to other types of analysis. On
the contrary, we suggest that specific research might be conducted towards generalizing

our theory (cf. Section 5.4).

5.3 Related Work

Efficient analysis of software product lines is a relevant problem that has been tackled
from many different perspectives, as pointed out by a recent survey [85]. In particular,
several model checking techniques have been successfully lifted to work with product
lines [4, 19, 21, 23, 24, 34, 36, 51, 64, 82|. In contrast to existing research, our work
presents different analysis techniques, covering all groups identified in the taxonomy by
Thiim et al. [85], and relates these techniques to one another. Moreover, we present what
is—to the best of our knowledge—the first feature-family-product-based analysis strategy

in the literature. Hence, we discuss the closest related work according to different criteria.

PMC-based analysis of product lines: Ghezzi and Sharifloo [36] propose a model-
based approach to analyze non-functional properties of product lines, illustrated by relia-
bility and energy-consumption analysis. Their technique models probabilistic behavior by
organizing parametric Markov chains in a hierarchical data structure, derived from nested
UML sequence diagrams, annotated with the reliability of individual operations. Then,
they employ parametric model checking in a bottom-up fashion, yielding a hierarchy of
reliability expressions that are evaluated for each product configuration of interest. Al-
though Ghezzi and Sharifloo also deal with modeling issues, their analysis technique can
be seen as an instance of the feature-product-based reliability analysis in our framework,

where the PMCs obtained from the nested sequence diagrams form the set & of compo-

Shttps://shemesh.larc.nasa.gov/fm/ftp/larc/PVS-1library/

143

https://shemesh.larc.nasa.gov/fm/ftp/larc/PVS-library/

sitional PMCs, and the decomposition tree induces the dependency relation <. For that
reason, our work provides formal evidence of the soundness of their approach.

Rodrigues et al. [76] introduced Featured Discrete-Time Markov Chains (FDTMC), an
extension of DTMCs to cope with variability and to represent the probabilistic behavior
of product lines. This formalism, which is not restricted to reliability, enables verification
of any probabilistic property that can be expressed using Probabilistic Computation Tree
Logic (PCTL) [42]. The authors present three family-based approaches to conduct such
analyses, one of which relies on an encoding of an FDTMC as a PMC to leverage off-
the-shelf model checkers. Our work, in contrast, relies on models specifically tailored
to reliability analysis (a probabilistic reachability property), but incorporates different
strategies to perform this analysis, covering the currently accepted product-line analysis
taxonomy [85] in its entirety. Furthermore, Rodrigues et al. do not formally argue about
the soundness of their approaches.

The framework we present can be leveraged to represent FDTMCs, provided that the
reliability-specific constraints to PMCs are relaxed. We can say that any PMC (S, sg, X,
P, T), along with an evaluation factory w and a feature model F'M, represents an FDTMC
(S, v, FM ,11) such that, for all s,s" € S and ¢ € [FM]:

e Il(s,5")(c) = P(s,s)[X/w(c)]; and

1 if s = s
o U(s) =
0 otherwise
Rodrigues et al. [77] applied similar composition techniques to DTMC models of prob-
abilistic reachability analysis. That work also exploits the notion of interfaces to derive
a model of the whole system from models of its components. Moreover, the authors pro-
pose an algorithm to abstract inner (i.e., non-interface) transitions of component models,
such that the state-space explosion inherent to model checking techniques is reduced in
the final composite model. However, Rodrigues et al. [77] use this technique as a tool to
model a single component-based system closely to its intended architecture, whereas our

work leverages composition as a variability representation mechanism.

Feature-based model checking: Li et al. [56] and Liu et al. [57] have proposed feature-
based approaches to the analysis of non-probabilistic temporal properties of product lines.
Using models of feature behavior based on transition systems and required properties
expressed with Computation Tree Logic (CTL) |20], they analyze each feature in isolation
and generate partial results that can be later reused. The composition of features in
their proposed models relies on interface states, a concept that we leveraged to define

PMC interfaces and slots. However, the interfaces defined by Li et al. [56] can have

144

an arbitrary number of outgoing states, and Liu et al. [57] extended them to support
inter-feature cycles. Our use of interfaces, in contrast, is focused on reliability analysis (a
probabilistic existence property expressed in PCTL), allowing us to define two outgoing
states to abstract success and error conditions, while also ruling out the existence of cycles.
Moreover, both Li et al. [56] and Liu et al. [57] treat feature modules as open systems, so
they aggregate partial analysis results and CTL obligations to the interfaces themselves.
Since we focus on a compositional model of a single product line, we use a separate model
for intermediate feature reliability expressions. Because of these differences in modeling

and in the nature of analyzed properties, we see their work and our own as complementary.

Family-based model checking: Dubslaff et al. |34] created a framework for modeling
probabilistic and nondeterministic properties of dynamic product lines. This framework
consists of modeling the behaviors of features in isolation, yielding models that are later
composed into a family-based model. The models and their compositions are established
in terms of Markov Decision Processes (MDP), enabling their representation in a way that
allows the composed model to be model-checked using off-the-shelf tools [19]. The focus
of their work is on modeling probabilistic behavior of product lines in a way that existing
model checking techniques can be exploited. In contrast, our goal is to prove soundness of
alternative analysis strategies, leaving modeling issues out of scope. Although their mod-
eling and analysis technique is sufficiently general to enable reliability analysis of static
product lines, which is our focus, it only enables family-based and product-based strategies
(which the authors call, respectively, all-in-one and one-by-one [34]), whereas our work
also includes the feature-based dimension. Nonetheless, their family-based technique is
an alternative to ours, since it encodes the feature model constraints in the behavioral
model itself.

Kowal et al. [50] presented a formalism to describe performance models of product
lines in a compositional fashion, based on performance-annotated activity diagrams de-
scribed in a delta-oriented language. Similar to our work, they provide formal definitions
and provide theorems stating the soundness of their approach (although proofs are not
provided in the paper). However, similar to Dubslaff et al. [34], they only address family-
based analysis of a model derived from the delta modules. Another difference to our work
is that the semantics of their diagrams is expressed by continuous-time Markov chains
(CTMC), which are more appropriate to performance analysis than DTMCs. Because of
that, the two pieces of work complement each other. Future work could investigate the
feasibility of defining alternative analysis strategies using their models and an approach

similar to ours.

145

Variability encoding: Previous research has exploited variability encoding (also called
configuration lifting) as a technique to produce family-based model checking of product
lines [2, 4, 51, 74]. von Rhein et al. [91] formalize variability encoding in the context
of programming languages, that is, the transformation of compile-time variability into
load-time variability. This transformation is realized using if-then-else operations and
an encoding of features as control variables in the resulting program, which the authors
call a variant simulator. They prove their transformation preserves the behavior of vari-
ants in the variability-encoded program for corresponding configurations. The concept
of encoding variability in a simulator, as mentioned before, inspired our definitions of
variability encoding for PMCs and expressions. Furthermore, their overall proof strategy
resembles the one used throughout our work (i.e., comparison of results for corresponding
configurations). However, whereas von Rhein et al. [91] use trace semantics and a weak
bisimulation relation to correlate behaviors, we perform this task using structural analy-
sis of the behavioral models. Despite being less general, structural analysis is sufficiently
strong for the purpose of proving that reliability is preserved, which is the main focus of

our work.

Formal approaches to variability-aware analysis: The definition of product-line
analysis techniques that are sound by construction has been investigated recently [12,
14, 17, 62], although not specifically in the context of model checking. Midtgaard et al.
|62 presented a methodology to derive family-based static analyses from single-product
analyses based on abstract interpretation. This approach enables the lifting of existing
analyses to work with product lines, yielding variability-aware analyses that are correct
by construction. Although the authors only walked through a data-flow analysis scenario,
they claim the methodology could be applied to other analyses, including model checking.
Similar to their work, we provide soundness proofs of product-line analyses, conditioned on
the soundness of a given single-product analysis. However, we do not provide a general
framework for derivation of analysis strategies; instead, we focus on providing formal
evidence that a set of alternative strategies for reliability analysis are sound, while also
highlighting the relations between their intermediate steps. Moreover, whereas Midtgaard
et al. handle only the family-based dimension of analysis, we also address the feature-
based dimension. In this sense, our work can also be seen as a preliminary investigation
on deriving alternative strategies to perform a given analysis.

Brabrand et al. [14] proposed a technique to automatically lift intraprocedural data-
flow analyses to handle variability in product lines. Similar to our work, the authors
propose alternative analysis strategies, which are derived by gradually introducing vari-

ability awareness in different components of an existing analysis. Brabrand et al. [14] also

146

present a soundness proof for the proposed strategies, whereby all of them are guaranteed
to compute the same result as the base analysis. The presented simultaneous and consec-
utive analysis strategies are similar to our family-based and family-product-based ones,
respectively, even though different properties are analyzed. However, Brabrand et al.
[14] do not consider feature-based analyses. Furthermore, our work breaks down analysis
strategies in intermediate steps that can be composed in different ways, enabling reuse of

proofs.

Mechanized specification of product lines: Other researchers have leveraged the-
orem provers and proof assistants in the context of software product lines (e.g., Borba
et al. [13], Delaware et al. [30], Neves et al. [63], Teixeira et al. 81|, Thiim et al. |83]).
However, most of the existing work investigates the reuse of specification and proofs to
assert soundness of different products in a given product line (product lines of theorems).
Our work, in contrast, deals with properties of product lines in general.

Borba et al. [13] also specified a PVS theory about properties of product lines—
in their case, for reasoning about safe product-line evolution. That work evolved into
a product line of theories [81], where products are theories of safe evolution based on
concrete product-line languages. Similar to our results, their work present PVS theories
about properties of product lines. Nonetheless, Neves et al. [63] and Teixeira et al. [81]
specified concepts in the domain of product-line engineering, whereby the targets of their
theories are meta-models of product lines. Our work focuses on properties of product-
line reliability analysis strategies, instead. Future work may investigate how to map our
specification to concrete product-line languages by leveraging the meta-theory by Teixeira
et al. [81].

Comparison of analysis dimensions: Kolesnikov et al. [49] empirically compared
family-based, feature-based, and product-based type checking of Java-based product lines.
Their work was the first empirical study covering all three dimensions of analysis, pro-
viding guidance to practitioners over which type checking strategy to apply for a given
product line. In a sense, their research and our own are complementary, since each one
deals with a different analysis type (type checking and model checking). However, in con-
trast with their work, our focus is on the formal aspects of analysis—although we argue
that our techniques can be implemented in a tool to perform empirical studies. Further-
more, Kolesnikov et al. neither investigate combined strategies nor prove the soundness
of the implemented type checkers.

von Rhein et al. [90] proposed a model for classification and comparison of product-line

analyses (the PLA model), whereby existing analyses are broken down into intermediate

147

steps. This model abstracts possible steps as four operators for composing features,
encoding variability, resolving variability, and generic processing of artifacts. As stated by
the authors themselves, the PLA model is helpful when describing complex analyses and
designing new ones. Indeed, the PLA model was a source of inspiration for designing our
analysis techniques as reusable analysis steps. However, we found the proposed operators
to be too generic to be useful in our formal setup. In this sense, our work complements
the work by von Rhein et al. [90] with a formally defined relation among analyses and

intermediate steps, albeit restricted to reliability analysis.

Conceptual models and taxonomy: Thiim et al. [85] established the taxonomy for
product-line analyses upon which we based our work, that is, the classification of analysis
techniques in three basic strategies (product-based, feature-based, and family-based) and
combinations thereof. von Rhein et al. [90] laid these strategies as dimensions in a cube,
meaning analysis strategies can be expressed as a combination of the number of analyzed
products (sampling dimension), the granularity of feature combinations (feature grouping
dimension), and the extent to which variability is preserved or resolved during analysis
(variability encoding dimension). Since our soundness proofs for variability encoding and
feature composition apply to single features (not necessarily maximal PMCs), our tech-
niques range over the PLA plane of feature grouping and variability encoding dimensions.
Furthermore, given that sampling is a matter of restricting possible configurations and
that we prove that our techniques are sound configuration-wise, our work also covers the
sampling dimension.

Meinicke et al. [60] recently surveyed existing product-line analysis tools and cat-
egorized them along four criteria: product-line implementation technique (annotation-
based wversus composition-based approach), analysis technique (e.g., testing, type check-
ing, model checking), strategies for product-line analysis (i.e., the analysis strategies tax-
onomy by Thiim et al. [85]), and strategy of the tool (product-based, variability-aware,
and variability-encoding). Using this taxonomy, an implementation of our techniques
would cover all possibilities on the dimensions of implementation technique, strategies for
product-line analysis, and strategy of the tool, while the dimension of analysis technique

would be fixed to reliability analysis.

5.4 Future Work

The research presented here provided a formal specification of strategies for analyzing

software product lines. As such, we visualize that there are opportunities for both ex-

148

tending the analytical reasoning of our theory and performing further empirical studies

that leverage the formal results.

Further handling of threats to validity: Although we have mechanized all aspects
of the original theory, there are still elements in our PVS code that can be further ex-
plored. First and foremost, we plan to fully mechanize the unfinished lemmas, despite the
mathematical reasoning that we presented to argue about their correctness (Section 4.5).
In a related issue, specifying and proving the work by Hahn et al. [41] and the approach
to DTMCs in the book by Baier and Katoen [7] could (a) reduce the need for axioms in

our theory and (b) be reused as a foundation on which to perform similar research.

Extensions to the current theory: In principle, our theory can be extended to
cover other aspects within the same domain (i.e., user-oriented reliability modeled using
DTMC). For instance, our commuting diagram could be expanded upwards by formalizing
the modeling approaches and the relation between the derivation processes for products
and for models thereof. Another possibility is to explore the inverse of variability en-
coding arrows—that is, how to decompose annotative models into compositional ones, to

leverage feature-based strategies in the analysis of existing annotative product lines.

Generalization of the mechanized theory: The mechanization of our theory in PVS
has led to benefits of its own, especially regarding the refinement and correction of the
handcrafted version (Chapter 4) and the general purpose byproducts (e.g., PVS theories
for ADD, rational expressions, DTMC, and PMC). Nonetheless, we believe that there
are long-term benefits to be gained by generalizing the PVS mechanization of commuting
analysis steps to other kinds of quality properties and analysis techniques.

For instance, there are other software quality properties that are of practical interest
and can be analyzed using probabilistic models [37]. An alternative view of reliability, for
instance, is the probability that a system does not fail within a given time interval [43].
This property can be specified using a probabilistic invariance formula, which is different
from the probabilistic existence used in our specific case but can still be checked over
DTMC models [37]. On the other hand, one could extend our analysis of user-oriented
reliability in the face of nondeterminism by checking the same probabilistic existence
property but using Markov Decision Processes (MDP) instead of DTMC models.

The above suggestions of generalization either fix the property being checked and let
the model of system behavior vary, or fix the model and change the property. However, one
could also think about how different models and properties can fit in the same product-
line commutative analysis framework. Indeed, the analysis dimensions covered by our

work belong to a taxonomy that was derived from an extensive survey [85]. Hence, it

149

makes sense to investigate analysis commutativity in the context of type checking, data-
flow analysis, theorem proving, or even other types of model checking (e.g., checking the
absence of deadlocks or race conditions and checking properties of Featured Transition
Systems [21]).

Accordingly, we intend to explore to what extent our theory can be generalized to
other types of product-line models and analyses thereof. To reach this goal, we plan to
iteratively refactor our specification, seeking to abstract away details that are directly
related to reliability analysis. The resulting specification will be compared with existing
related work, to consider whether the proposed generalization can be instantiated for

similar models.

Empirical studies over the mechanized theory: Throughout the mechanization
process, we encountered obstacles and had to progressively refine our specifications.
Nonetheless, some of the lessons from this process would require a deep refactoring of
the theory. Thus, future work could perform an exploratory study on alternative design
decisions and how to simplify the current PVS theory. With this study, we expect to
present a systematic assessment of the impact of different specification and proof styles.

Furthermore, it would be beneficial to the PVS community to investigate and classify
specification and proof smells as well as refactoring patterns. It is also of interest to ex-
plore how to best evolve the specifications and proofs while avoiding rework—particularly

because of explicit references to sequent formulas.

Empirical studies regarding the analysis strategies: Given that we provide an-
alytical evidence that the strategies presented here are equivalent to one another, there
is empirical evidence indicating that the feature-family-based strategy outperforms the
others [54]. However, the existing empirical study does not take our novel feature-family-
product-based strategy into account. Further experiments should be performed to assess
the additional strategy and to investigate how the characteristics of subject product-line
models impact analysis performance.

Moreover, there is an opportunity to evolve the existing implementation of the relia-
bility analysis strategies |54] to reflect the machine-verified theory. This way, there would
be increased confidence that the existing product-line reliability analysis tool corresponds

to the strategies that were proven sound.

150

1]

2]

131

4]

[5]

6]

17l

18]

Bibliography

Rodrigo B Almeida and Paulo Borba. Modeling scenario variability as crosscutting
mechanisms. In Proceedings of the 8th ACM international conference on Aspect-
oriented software development (AOSD), pages 125-136, 2009. ISBN 1605584428.
doi: 10.1145/1509239.1509258. 15

Sven Apel, Hendrik Speidel, Philipp Wendler, Alexander von Rhein, and Dirk Beyer.
Detection of feature interactions using feature-aware verification. In Proceedings of
the 26th IEEE/ACM International Conference on Automated Software Engineering
(ASE), pages 372-375. IEEE Computer Society, 2011. ISBN 978-1-4577-1638-6. doi:
10.1109/ASE.2011.6100075. 42, 70, 116

Sven Apel, Don S. Batory, Christian Kéastner, and Gunter Saake. Feature-Oriented
Software Product Lines — Concepts and Implementation. Springer, 2013. ISBN 978-
3-642-37520-0. doi: 10.1007/978-3-642-37521-7. 1, 5, 9, 10, 11, 12, 13, 15, 37, 70,
79, 80

Sven Apel, Alexander Von Rhein, Philipp Wendler, Armin Groslinger, and Dirk
Beyer. Strategies for product-line verification: Case studies and experiments. In
Proceedings of the International Conference on Software Engineering (ICSE), pages
482-491. IEEE Press, 2013. ISBN 9781467330763. doi: 10.1109/ICSE.2013.6606594.
16, 143, 146

John Backus and John. Can programming be liberated from the von Neumann style?:
a functional style and its algebra of programs. Communications of the ACM, 21(8):
613-641, August 1978. ISSN 00010782. doi: 10.1145/359576.359579. 142

R. Iris Bahar, Erica A. Frohm, Charles M. Gaona, Gary D. Hachtel, Enrico Macii,
Abelardo Pardo, and Fabio Somenzi. Algebraic decision diagrams and their appli-
cations. Formal Methods in System Design, 10(2/3):171-206, 1997. doi: 10.1023/A:
1008699807402. 4, 24, 25, 27, 79

Christel Baier and Joost-Pieter Katoen. Principles of Model Checking (Representa-
tion and Mind Series). The MIT Press, 2008. ISBN 026202649X, 9780262026499. 1,
15, 18, 20, 44, 85, 86, 101, 110, 112, 130, 131, 132, 142, 149, 167

Jonatas Ferreira Bastos, Paulo Anselmo da Mota Silveira Neto, Padraig O’Leary,
Eduardo Santana de Almeida, and Silvio Romero de Lemos Meira. Software product
lines adoption in small organizations. Journal of Systems and Software, 131:112 —
128, 2017. ISSN 0164-1212. doi: 10.1016/j.jss.2017.05.052. 1

151

19]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

18]

[19]

D. Batory, J.N. Sarvela, and A. Rauschmayer. Scaling step-wise refinement. [EEFE
Transactions on Software Engineering, 30(6):355-371, June 2004. ISSN 0098-5589.
doi: 10.1109/TSE.2004.23. 141

Thorsten Berger, Ralf Rublack, Divya Nair, Joanne M. Atlee, Martin Becker,
Krzysztof Czarnecki, and Andrzej Wasowski. A survey of variability modeling in
industrial practice. In Proceedings of the Seventh International Workshop on Variabil-
ity Modelling of Software-intensive Systems (VaMoS), pages 7:1-7:8, United States,
January 2013. Association for Computing Machinery. ISBN 978-1-4503-1541-8. 1

Yves Bertot and Pierre Castéran. Interactive Theorem Proving and Program De-
velopment. Coq’Art: The Calculus of Inductive Constructions. Texts in Theoretical
Computer Science. An EATCS series. Springer Verlag, 2004. 82

Eric Bodden, Tarsis Tolédo, Mércio Ribeiro, Claus Brabrand, Paulo Borba, and Mira
Mezini. SPLYFT: statically analyzing software product lines in minutes instead
of years. In Proceedings of the 34th ACM SIGPLAN conference on Programming
language design and implementation (PLDI), pages 355-364, 2013. doi: 10.1145/
2491956.2491976. 1, 146

Paulo Borba, Leopoldo Teixeira, and Rohit Gheyi. A theory of software product line
refinement. Theoretical Computer Science, 455:2-30, October 2012. ISSN 03043975.
doi: 10.1016/j.t¢s.2012.01.031. 147

Claus Brabrand, Marcio Ribeiro, Tarsis Tolédo, Johnni Winther, and Paulo Borba.
Intraprocedural dataflow analysis for software product lines. In Transactions on
Aspect-Oriented Software Development X, pages 73—108. Springer, 2013. ISBN 978-
3-642-36964-3. doi: 10.1007,/978-3-642-36964-3 3. viii, 2, 146, 147

Thiago Castro, André Lanna, Vander Alves, Leopoldo Teixeira, Sven Apel, and
Pierre-Yves Schobbens. All roads lead to Rome: Commuting strategies for product-
line reliability analysis. Science of Computer Programming, 152:116 — 160, 2018.
ISSN 0167-6423. doi: 10.1016/j.s¢ic0.2017.10.013. viii, 5, 7, 35, 81, 96, 139, 142

Thiago Mael de Castro. Fstratégias Comutativas para Andlise de Confiabilidade em
Linhas de Produtos de Software. Dissertation, Universidade de Brasilia, 2016. URL
http://repositorio.unb.br/handle/10482/22680. 3, 35, 139

Sheng Chen and Martin Erwig. Type-based parametric analysis of program families.
ACM SIGPLAN Notices, 49(9):39-51, August 2014. ISSN 03621340. doi: 10.1145/
2692915.2628155. 146

R. Cheung. A user-oriented software reliability model. IEEE Transactions on Soft-
ware Engineering, 6(02):118-125, March 1980. ISSN 1939-3520. doi: 10.1109/TSE.
1980.234477. 1, 3, 18, 113

Philipp Chrszon, Clemens Dubslaff, Sascha Kliippelholz, and Christel Baier. Family-
based modeling and analysis for probabilistic systems - featuring ProFeat. In Proceed-
ings of the 19th International Conference on Fundamental Approaches to Software

152

http://repositorio.unb.br/handle/10482/22680

20]

[21]

[22]

23]

[24]

[25]

[26]

27]

28]

[29]

Engineering (FASE), volume 9633 of Lecture Notes in Computer Science, pages 287—
304. Springer, 2016. doi: 10.1007/978-3-662-49665-7 17. wviii, 2, 15, 20, 36, 143,
145

Edmund M. Clarke and E. Allen Emerson. Design and synthesis of synchronization
skeletons using branching-time temporal logic. In Logic of Programs, Workshop,
pages 52-71. Springer, 1982. ISBN 3-540-11212-X. doi: 10.1007/BFb0025774. 144

A. Classen, M. Cordy, P.-Y. Schobbens, P. Heymans, A. Legay, and J.-F. Raskin.
Featured transition systems: Foundations for verifying variability-intensive systems
and their application to LTL model checking. IEEE Transactions on Software Engi-
neering, 39(8):1069-1089, 2013. ISSN 0098-5589. doi: 10.1109/TSE.2012.86. 2, 15,
143, 150

Andreas Classen, Patrick Heymans, Pierre-Yves Schobbens, Axel Legay, and Jean-
Francois Raskin. Model checking lots of systems. In Proceedings of the 32nd
ACM/IEEE International Conference on Software Engineering (ICSE), volume 1,
page 335. ACM Press, 2010. ISBN 9781605587196. doi: 10.1145/1806799.1806850.
1, 36

Andreas Classen, Patrick Heymans, Pierre-Yves Schobbens, and Axel Legay. Sym-
bolic model checking of software product lines. In Proceedings of the 33rd Interna-
tional Conference on Software Engineering (ICSE), pages 321-330. ACM, 2011. doi:
10.1145/1985793.1985838. 1, 2, 15, 143

Andreas Classen, Maxime Cordy, Patrick Heymans, Axel Legay, and Pierre-Yves
Schobbens. Formal semantics, modular specification, and symbolic verification of
product-line behaviour. Science of Computer Programming, 80, Part B:416-439,
February 2014. ISSN 0167-6423. doi: 10.1016/j.scic0.2013.09.019. 2, 15, 143

Paul Clements and Linda Northrop. Software Product Lines: Practices and Patterns.
Addison-Wesley Professional, 2001. 1, 10

Krzysztof Czarnecki and Ulrich W. Eisenecker. Generative Programming: Methods,
Tools, and Applications. ACM Press/Addison-Wesley Publishing Co., 2000. ISBN
0-201-30977-7. 1, 11, 12

Krzysztof Czarnecki and Krzysztof Pietroszek. Verifying feature-based model tem-
plates against well-formedness OCL constraints. In Proceedings of the 5th Interna-
tional Conference on Generative Programming and Component Engineering (GPCE),
pages 211-220. ACM, 2006. doi: 10.1145/1173706.1173738. 12

Krzysztof Czarnecki, Simon Helsen, and Ulrich Eisenecker. Staged configuration us-
ing feature models. In Proceedings of the Third International Conference on Software
Product Lines (SPLC), pages 162-164. Springer, July 2004. ISBN 978-3-540-28630-1.
doi: 10.1007/978-3-540-28630-1_17. 94

Conrado Daws. Symbolic and parametric model checking of discrete-time Markov
chains. In Proceedings of the First International Conference on Theoretical Aspects
of Computing (ICTAC), volume 3407 of Lecture Notes in Computer Science, pages

153

130]

[31]

32|

[33]

[34]

35]

[36]

37]

38

[39]

280-294. Springer, September 2005. ISBN 978-3-540-25304-4. doi: 10.1007/b107116.
20

Benjamin Delaware, William Cook, and Don Batory. Product lines of theorems.
ACM SIGPLAN Notices, 46(10):595, October 2011. ISSN 03621340. doi: 10.1145/
2076021.2048113. 147

E W Dijkstra. On program families. In Notes on Structured Programming. Academic
Press, 1971. 10

Dominik Domis, Rasmus Adler, and Martin Becker. Integrating variability and safety
analysis models using commercial UMIL-based tools. In Proceedings of the 19th In-
ternational Software Product Line Conference (SPLC), pages 225-234. ACM, 2015.
ISBN 978-1-4503-3613-0. doi: 10.1145/2791060.2791088. 1

Frank Dordowsky, Richard Bridges, and Holger Tschope. Implementing a software
product line for a complex avionics system. In Proceedings of the 15th International
Conference on Software Product Lines (SPLC), pages 241-250. IEEE, 2011. ISBN
978-1-4577-1029-2. doi: 10.1109/SPLC.2011.11. 1

Clemens Dubslaff, Christel Baier, and Sascha Kluppelholz. Probabilistic model
checking for feature-oriented systems. In Transactions on Aspect-Oriented Soft-
ware Development XII, number 8989 in Lecture Notes in Computer Science, pages
180-220. Springer, 2015. ISBN 978-3-662-46733-6 978-3-662-46734-3. doi: 10.1007/
978-3-662-46734-3 5. viii, 2, 15, 143, 145

Sascha El-Sharkawy, Nozomi Yamagishi-Eichler, and Klaus Schmid. Metrics for an-
alyzing variability and its implementation in software product lines: A systematic
literature review. Information and Software Technology, 106:1 — 30, 2019. ISSN
0950-5849. doi: 10.1016/j.infsof.2018.08.015. 1

Carlo Ghezzi and Amir Molzam Sharifloo. Model-based verification of quantitative
non-functional properties for software product lines. Information and Software Tech-
nology, 55(3):508-524, March 2013. ISSN 09505849. doi: 10.1016/j.infsof.2012.07.017.
2, 15, 20, 36, 113, 143

Lars Grunske. Specification patterns for probabilistic quality properties. In Proceed-
ings of the International Conference on Software Engineering (ICSE), pages 31-40.
ACM, 2008. doi: 10.1145/1368088.1368094. 19, 149

Arne Haber, Holger Rendel, Bernhard Rumpe, and Ina Schaefer. Delta modeling for
software architectures. In Proceedings of the 7th Dagstuhl workshop on Model-based
Development of Embedded Systems (MBEES), pages 1-10, 2011. 141

Arne Haber, Katrin Hoélldobler, Carsten Kolassa, Markus Look, Bernhard Rumpe,
Klaus Miiller, and Ina Schaefer. Engineering delta modeling languages. In Proceedings
of the 17th International Software Product Line Conference (SPLC), page 22. ACM
Press, 2013. ISBN 9781450319683. doi: 10.1145/2491627.2491632. 14, 412

154

[40]

[41]

[42]

[43]

[44]

[45]

|46]

[47]

48]

[49)]

Ernst Moritz Hahn, Holger Hermanns, Bjorn Wachter, and Lijun Zhang. Param: A
model checker for parametric Markov models. In Proceedings of the 22nd Interna-
tional Conference on Computer Aided Verification (CAV), pages 660—664. Springer,
2010. doi: 10.1007/978-3-642-14295-6_56. 19, 112

Ernst Moritz Hahn, Holger Hermanns, and Lijun Zhang. Probabilistic reachability for
parametric Markov models. International Journal on Software Tools for Technology
Transfer (STTT), 13(1):3-19, 2011. doi: 10.1007/s10009-010-0146-x. xiii, 20, 22, 23
24, 53, 55, 89, 92, 93, 106, 110, 112, 114, 130, 132, 142, 149, 166, 167

Hans Hansson and Bengt Jonsson. A logic for reasoning about time and reliability.
Formal Aspects of Computing, 6(5):512-535, 1994. ISSN 1433-299X. doi: 10.1007/
BF01211866. 19, 144

David I. Heimann, Nitin Mittal, and Kishor S. Trivedi. Availability and reliability
modeling for computer systems. volume 31 of Advances in Computers, pages 175 —
233. Elsevier, 1990. doi: 10.1016/S0065-2458(08)60154-0. 149

Ruben Heradio, Hector Perez-Morago, David Fernandez-Amoros, Fran-
cisco Cabrerizo Javier, and Enrique Herrera-Viedma. A bibliometric analysis
of 20 years of research on software product lines. Information and Software
Technology, 72:1-15, April 2016. doi: 10.1016/j.infsof.2015.11.004. 1

Karam Ignaim and Joao M. Fernandes. An industrial case study for adopting soft-
ware product lines in automotive industry: an evolution-based approach for software
product lines (EVOA-SPL). In Proceedings of the 23rd International Systems and
Software Product Line Conference (SPLC) - Volume B, pages 183-190, new york, ny,
usa, 2019. acm. ISBN 978-1-4503-6668-7. doi: 10.1145/3307630.3342409. 1

K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, and A. S. Peterson. Feature-
oriented domain analysis (FODA) feasibility study. Technical report, Carnegie-
Mellon University Software Engineering Institute, November 1990. 11

Christian Késtner, Sven Apel, and Martin Kuhlemann. Granularity in software
product lines. In Proceedings of the 13th international Conference on Software
Engineering (ICSE), page 311. ACM Press, 2008. ISBN 9781605580791. doi:
10.1145/1368088.1368131. 37

Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda, Cristina Videira
Lopes, Jean-Marc Loingtier, and John Irwin. Aspect-oriented programming. In
ECOOP, pages 220-242, 1997. doi: 10.1007/BFb0053381. 14

Sergiy Kolesnikov, Alexander von Rhein, Claus Hunsen, and Sven Apel. A compari-
son of product-based, feature-based, and family-based type checking. In Proceedings
of the 12th International Conference on Generative Programming (GPCE), pages
115-124. ACM, 2013. ISBN 978-1-4503-2373-4. doi: 10.1145/2517208.2517213. vii,
92,17, 147

155

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

Matthias Kowal, Ina Schaefer, and Mirco Tribastone. Family-based performance anal-
ysis of variant-rich software systems. In Proceedings of the 17th International Con-
ference on Fundamental Approaches to Software Engineering - Volume 8411, pages
94-108. Springer, 2014. ISBN 978-3-642-54803-1. doi: 10.1007/978-3-642-54804-8 7.
145

Matthias Kowal, Max Tschaikowski, Mirco Tribastone, and Ina Schaefer. Scaling
size and parameter spaces in variability-aware software performance models. In Pro-
ceedings of the 30th IEEE/ACM International Conference on Automated Software
Engineering (ASE), pages 407-417, November 2015. doi: 10.1109/ASE.2015.16. 2,
15, 143, 146

M. Kwiatkowska, G. Norman, and D. Parker. PRISM 4.0: Verification of probabilistic
real-time systems. In Proceedings of the 25rd International Conference on Computer
Aided Verification (CAV), volume 6806 of Lecture Notes in Computer Science, pages
585-591. Springer, 2011. doi: 10.1007/978-3-642-22110-1_47. 19, 142

Jeremy T. Lanman, Rowland Darbin, Jorge Rivera, Paul C. Clements, and
Charles W. Krueger. The challenges of applying service orientation to the U.S.
army’s live training software product line. In Proceedings of the 17th International
Software Product Line Conference (SPLC), pages 244-253. ACM, 2013. ISBN 978-
1-4503-1968-3. doi: 10.1145/2491627.2491649. 1

André Lanna, Thiago Castro, Vander Alves, Genaina Rodrigues, Pierre-Yves
Schobbens, and Sven Apel. Feature-family-based reliability analysis of software prod-
uct lines. Information and Software Technology, 94:59 — 81, 2018. ISSN 0950-5849.
doi: 10.1016//j.infsof.2017.10.001. vii, viii, 1, 2, 3, 5, 17, 18, 36, 84, 113, 140, 142, 150

Gary T. Leavens and Yoonsik Cheon. Design by contract with JML. Available at
http://www. jmlspecs.org, 2006. 16

Harry C. Li, Shriram Krishnamurthi, and Kathi Fisler. Modular verification of open
features using three-valued model checking. Automated Software Engineering, 12(3):
349-382, July 2005. ISSN 0928-8910. doi: 10.1007/s10515-005-2643-9. 144, 145

Jing Liu, Samik Basu, and Robyn R. Lutz. Compositional model checking of software
product lines using variation point obligations. Automated Software Engineering, 18
(1):39-76, December 2010. ISSN 0928-8910. doi: 10.1007/s10515-010-0075-7. 144,
145

Idarlan Machado, Rodrigo Bonificio, Vander Alves, Lucinéia Turnes, and Giselle
Machado. Managing variability in business processes: An aspect-oriented approach.
In Proceedings of the 2011 International Workshop on FEarly Aspects, EA ’11, pages
25-30, New York, NY, USA, 2011. ACM. ISBN 978-1-4503-0645-4. doi: 10.1145/
1960502.1960508. 15

Flavio Medeiros, Christian Késtner, Marcio Ribeiro, Rohit Gheyi, and Sven Apel.
A comparison of 10 sampling algorithms for configurable systems. In Proceedings
of the 38th International Conference on Software Engineering (ICSE), ICSE 16,

156

http://www.jmlspecs.org

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

pages 643654, New York, NY, USA, 2016. ACM. ISBN 978-1-4503-3900-1. doi:
10.1145/2884781.2884793. vii, 2, 17, 80

Jens Meinicke, Thomas Thiim, Reimar Schréter, Fabian Benduhn, and Gunter Saake.
An overview on analysis tools for software product lines. In Proceedings of the 18th
International Software Product Line Conference (SPLC), pages 94-101. ACM Press,
September 2014. ISBN 9781450327398. doi: 10.1145/2647908.2655972. 148

Bertrand Meyer. Applying "design by contract". Computer, 25(10):40-51, October
1992. ISSN 0018-9162. doi: 10.1109/2.161279. 16

Jan Midtgaard, Aleksandar S. Dimovski, Claus Brabrand, and Andrzej Wasowski.
Systematic derivation of correct variability-aware program analyses. Science of Com-
puter Programming, 105:145-170, July 2015. ISSN 01676423. doi: 10.1016/j.scico.
2015.04.005. viii, 2, 146

Lais Neves, Leopoldo Teixeira, Demostenes Sena, Vander Alves, Uird Kulezsa, and
Paulo Borba. Investigating the safe evolution of software product lines. In Proceedings
of the 10th ACM international conference on Generative programming and component
engineering - GPCE ’11, volume 47, page 33, New York, New York, USA, October
2011. ACM Press. ISBN 9781450306898. doi: 10.1145/2047862.2047869. 117

V. Nunes, P. Fernandes, V. Alves, and G. Rodrigues. Variability management of relia-
bility models in software product lines: An expressiveness and scalability analysis. In
Proceedings of the Sizth Brazilian Symposium on Software Components Architectures
and Reuse (SBCARS), pages 51-60, September 2012. doi: 10.1109/SBCARS.2012.23.
2, 15, 143

V. Nunes, D. Mendonca, G. Rodrigues, and V. Alves. Towards compositional ap-
proach for parametric model checking in software product lines. In Proceedings of the
International Workshop on Architecting Dependable Systems (WDAS), pages 19-22.
SBC, April 2013. ISBN 978-85-7669-274-4. 36

Object Management Group. Unified Modeling Language. Available at https://www.
omg.org/spec/UML/2.5/PDF, 2015. Version 2.5. 18

S. Owre, N. Shankar, J. M. Rushby, and D. W. J. Stringer-Calvert. PVS Lan-
guage Reference. Computer Science Laboratory, SRI International, Menlo Park, CA,
November 2001. URL http://pvs.csl.sri.com/doc/pvs-language-reference.
pdf. 5, 7, 15, 16, 27, 28, 29, 84, 130, 139

S. Owre, N. Shankar, J. M. Rushby, and D. W. J. Stringer-Calvert. PVS System
Guide. Computer Science Laboratory, SRI International, Menlo Park, CA, November
2001. URL http://pvs.csl.sri.com/doc/pvs-system-guide.pdf. 27, 28, 82

Leonardo Passos, Jianmei Guo, Leopoldo Teixeira, Krzysztof Czarnecki, Andrzej
Wasowski, and Paulo Borba. Coevolution of variability models and related artifacts:
A case study from the Linux kernel. In Proceedings of the 17th International Software
Product Line Conference (SPLC), pages 91-100. ACM, 2013. ISBN 978-1-4503-1968-
3. doi: 10.1145/2491627.2491628. 141

157

https://www.omg.org/spec/UML/2.5/PDF
https://www.omg.org/spec/UML/2.5/PDF
http://pvs.csl.sri.com/doc/pvs-language-reference.pdf
http://pvs.csl.sri.com/doc/pvs-language-reference.pdf
http://pvs.csl.sri.com/doc/pvs-system-guide.pdf

[70]

[71]

[72]

73]

[74]

[75]

|76]

7]

78]

[79]

Leonardo Pessoa, Paula Fernandes, Thiago Castro, Vander Alves, Genaina N. Ro-
drigues, and Hervaldo Carvalho. Building reliable and maintainable dynamic soft-
ware product lines: An investigation in the body sensor network domain. In-
formation and Software Technology, 86:54 — 70, 2017. ISSN 0950-5849. doi:
10.1016/j.infsof.2017.02.002. viii, 2

Benjamin C. Pierce. Types and Programming Languages. MIT Press, 2002. ISBN
0-262-16209-1. 15

Lee Pike. A note on inconsistent axioms in Rushby’s “systematic formal verifica-
tion for fault-tolerant time-triggered algorithms”. IEEE Transactions on Software
Engineering, 32(5):347-348, May 2006. ISSN 00985589. doi: 10.1109/TSE.2006.41.
142

Klaus Pohl, Giinter Bockle, and Frank J. van der Linden. Software Product Line Engi-
neering: Foundations, Principles and Techniques. Springer, 2005. ISBN 3540243720.
1, 10

Hendrik Post and Carsten Sinz. Configuration lifting: Verification meets software
configuration. In Proceedings of the 23rd IEEE/ACM International Conference on
Automated Software Engineering (ASE), pages 347-350. IEEE Computer Society,
2008. doi: 10.1109/ASE.2008.45. 70, 116

Christian Prehofer. Feature-oriented programming: A fresh look at objects. In
ECOOP, pages 419-443, 1997. doi: 10.1007/BFb0053389. 14

Genaina Nunes Rodrigues, Vander Alves, Vinicius Nunes, André Lanna, Maxime
Cordy, Pierre-Yves Schobbens, Amir Molzam Sharifloo, and Axel Legay. Modeling
and verification for probabilistic properties in software product lines. In Proceedings
of the 16th IEEFE International Symposium on High Assurance Systems Engineering
(HASE), pages 173-180. IEEE Computer Society, 2015. doi: 10.1109/HASE.2015.34.
xiii, 1, 2, 11, 12, 15, 20, 37, 144

Pedro Rodrigues, Emil Lupu, and Jeff Kramer. Compositional reliability analysis
for probabilistic component automata. In Proceedings of the Seventh International
Workshop on Modeling in Software Engineering, MiSE ’15, pages 19-24, Piscataway,
NJ, USA, 2015. IEEE Press. 144

Ina Schaefer, Lorenzo Bettini, Ferruccio Damiani, and Nico Tanzarella. Delta-
oriented programming of software product lines. In Proceedings of the 14th Interna-
tional Conference on Software Product Lines (SPLC), pages 77-91. Springer, 2010.
ISBN 3-642-15578-2, 978-3-642-15578-9. 141

N. Shankar, S. Owre, J. M. Rushby, and D. W. J. Stringer-Calvert. PVS Prover
Guide. Computer Science Laboratory, SRI International, Menlo Park, CA, November

2001. URL http://pvs.csl.sri.com/doc/pvs-prover-guide.pdf. 27, 28, 31, 115,
122

158

http://pvs.csl.sri.com/doc/pvs-prover-guide.pdf

[80]

[81]

82]

83

[84]

[85]

[86]

87]

83

[89]

Julio Sincero, Horst Schirmeier, Wolfgang Schroder-Preikschat, and Olaf Spinczyk.
Is the Linux kernel a software product line? In Proceedings of the International
Workshop on Open Source Software and Product Lines (SPLC-OSSPL), 2007. 10

Leopoldo Teixeira, Vander Alves, Paulo Borba, and Rohit Gheyi. A product line
of theories for reasoning about safe evolution of product lines. In Proceedings of
the 19th International Conference on Software Product Line (SPLC), pages 161-170.
ACM Press, July 2015. ISBN 9781450336130. doi: 10.1145/2791060.2791105. 15, 94,
147

Maurice H. ter Beek and Erik P. de Vink. Towards modular verification of soft-
ware product lines with mCRL2. In Proceedings of the 6th International Sym-
posium On Leveraging Applications of Formal Methods, Verification and Valida-
tion (ISoLA), pages 368-385. Springer, 2014. ISBN 978-3-662-45234-9. doi:
10.1007/978-3-662-45234-9 26. 2, 15, 143

Thomas Thiim, Ina Schaefer, Martin Kuhlemann, and Sven Apel. Proof composition
for deductive verification of software product lines. In 2011 IEEE Fourth Interna-
tional Conference on Software Testing, Verification and Validation Workshops, pages
270-277. IEEE, March 2011. ISBN 978-1-4577-0019-4. doi: 10.1109/ICSTW.2011.48.
16, 147

Thomas Thiim, Ina Schaefer, Sven Apel, and Martin Hentschel. Family-based de-
ductive verification of software product lines. ACM SIGPLAN Notices, 48(3):11-11—
2020, April 2013. ISSN 0362-1340. doi: 10.1145/2480361.2371404. 42

Thomas Thiim, Sven Apel, Christian Kéastner, Ina Schaefer, and Gunter Saake. A
classification and survey of analysis strategies for software product lines. ACM Com-
puting Surveys, 47(1):1-45, June 2014. ISSN 03600300. doi: 10.1145/2580950. vii,
2, 3,4, 5,15, 16, 17, 51, 53, 54, 55, 63, 64, 77, 139, 141, 143, 144, 148, 149

Lucineia Turnes, Rodrigo Bonifacio, Vander Alves, and Ralf Lammel. Techniques for
developing a product line of product line tools: A comparative study. In 2011 Fifth
Brazilian Symposium on Software Components, Architectures and Reuse, pages 11—
20. IEEE, September 2011. ISBN 978-0-7695-4626-1. doi: 10.1109/SBCARS.2011.13.
14

Frank J. van der Linden, Klaus Schmid, and Eelco Rommes. Software Product Lines
in Action: The Best Industrial Practice in Product Line Engineering. Springer, 2007.
ISBN 3540714367. 1, 10

J. van Gurp, J. Bosch, and M. Svahnberg. On the notion of variability in software
product lines. In Proceedings Working IEEE/IFIP Conference on Software Archi-
tecture, pages 45-54. IEEE Comput. Soc, August 2001. ISBN 0-7695-1360-3. doi:
10.1109/WICSA.2001.948406. 10

Karina Villela, Adeline Silva, Tassio Vale, and Eduardo Santana de Almeida. A
survey on software variability management approaches. In Proceedings of the 18th
International Software Product Line Conference (SPLC) - Volume 1, pages 147-156,

159

190]

[91]

92]

193]

[94]

[95]

New York, NY, USA, 2014. ACM. ISBN 978-1-4503-2740-4. doi: 10.1145/2648511.
2648527. 1

Alexander von Rhein, Sven Apel, Christian Késtner, Thomas Thiim, and Ina Schae-
fer. The PLA model: on the combination of product-line analyses. In Proceedings
of the Seventh International Workshop on Variability Modelling of Software-intensive
Systems (VaMoS), pages 14:1-14:8. ACM Press, January 2013. ISBN 9781450315418.
doi: 10.1145/2430502.2430522. 147, 148

Alexander von Rhein, Thomas Thiim, Ina Schaefer, Jorg Liebig, and Sven Apel. Vari-
ability encoding: From compile-time to load-time variability. Journal of Logical and
Algebraic Methods in Programming, 85(1):125-145, January 2016. ISSN 23522208.
doi: 10.1016/j.jlamp.2015.06.007. viii, 2, 42, 70, 116

Alexander von Rhein, Jorg Liebig, Andreas Janker, Christian Késtner, and Sven
Apel. Variability-aware static analysis at scale: An empirical study. ACM Transac-
tions on Software Engineering and Methodology (TOSEM), 27(4):18:1-18:33, Novem-
ber 2018. ISSN 1049-331X. doi: 10.1145/3280986. vii, 1, 2, 17

Eric Walkingshaw, Christian Késtner, Martin Erwig, Sven Apel, and Eric Bodden.
Variational data structures. In Proceedings of the ACM International Symposium on
New Ideas, New Paradigms, and Reflections on Programming & Software (Onward!),
pages 213-226. ACM Press, October 2014. ISBN 9781450332101. doi: 10.1145/
2661136.2661143. 58

David M. Weiss. The product line hall of fame. In Proceedings of the 12th Interna-
tional Software Product Line Conference (SPLC), page 395. IEEE Computer Society,
2008. ISBN 978-0-7695-3303-2. doi: 10.1109/SPLC.2008.56. 1

Jonas Akesson, Sebastian Nilsson, Jacob Kriiger, and Thorsten Berger. Migrating the
Android Apo-Games into an annotation-based software product line. In Proceedings
of the 23rd International Systems and Software Product Line Conference (SPLC) -
Volume A, pages 103-107, New York, NY, USA, 2019. ACM. ISBN 978-1-4503-7138-
4. doi: 10.1145/3336294.3342362. 1

160

Acronyms

ADD Algebraic Decision Diagram.

CTL Computation Tree Logic.

CTMC Continuous-Time Markov Chain.
DTMC Discrete-Time Markov Chain.
JML Java Modeling Language.

MDP Markov Decision Process.

PCTL Probabilistic Computation Tree Logic.
PMC Parametric Markov Chain.

PVS Prototype Verification System.

SPL Software Product Line.
TCC Type-correctness Condition.

UML Unified Modeling Language.

161

Appendix A

Additional Proofs

This appendix contains formal definitions and proofs that were omitted from the main

body of the paper to avoid digressions.

A.1 Existence of Minimal and Maximal PMCs

Lemma 9 (Existence of minimal PMCs). Given a set & of compositional PMCs, an
wdentifying function idt, and the corresponding induced well-founded relation <, there
exists, at least, one minimal PMC P = (S, 8o, Ssuc, Serrs X, P, T). Furthermore, X = 0,
that is, minimal PMCs are, in fact, DTMCs with defined interfaces and only two bottom
strongly connected components (cf. Definition 10).

Proof. The existence of minimal PMCs follows directly from the fact that the induced
relation < is well-founded: otherwise, all descending chains would be infinite.

Now suppose X # (). Then, it has, at least, one element z. Since the set I of
identifiers (image of idt) is a superset of all X;, x € I. By definition, function idt is
bijective, so there must be a compositional PMC P" € & such that idt(P’) = x. But
idt(P') € X = P’ < P. Since P is minimal by hypothesis, this is a contradiction. O

Lemma 10 (Existence of maximal PMCs). Given a set &2 of compositional PMCs, an
wdentifying function idt, and the corresponding induced well-founded relation <, there
exists, at least, one maximal PMC P = (S5, 5o, Ssuc, Serrs X, P, T).

Proof. The proof is by contraposition. Nonexistence of such maximal PMC means there
are infinite ascending chains P; < Py < Py < ... for P; € &. Since & is finite, such
infinite chain implies the existence of cycles, that is, at least, one P; transitively depending
on itself. But cycles imply both ascending and descending infinite chains, contradicting
the well-foundedness of <. Hence, there are no infinite ascending chains under < and, by

contraposition, there is, at least, one maximal PMC. O

162

A.2 Termination Lemmas

The following lemma states the termination of the recursive definitions of the composition
factory w’ (Definition 18).

Lemma 11 (Derivation by composition terminates). For a compositional model (£, <,
I idt,p,w', FM), for all configurations ¢ € [FM], the composition function w'(c) termi-

nates.

Proof. Let idt™ : I — & be the inverse function of idt. To prove w'(c) terminates,
we note that the arguments in the recursive calls in the definition of w’ (Definition 18)
strictly decrease if we use idt~! as a measure function into the well-founded set 2.
Without loss of generality, let © = idt(P) for some P € & with variables set X =
{z1,...,2}. The right-hand side of w'(c)(z) evaluates to either P, (the feature disabler
PMC) or Pz /w'(¢)(x1),. .., zx/w'(c)(zx)]. In the first case, it trivially terminates, since
P, have no slots; in the latter, the arguments to each recursive call are the variables
x; € X. By definition, z; = idt(P;) for some P; € & such that P; < P. Thus, idt~!(z;) <

idt~'(z). Since < is well-founded, w’(c) terminates. O
The following lemma states that the recursion in Definition 26 terminates.

Lemma 12 (Compositional evaluation terminates). For a compositional model (£, <
L adt, p,w', FM), for all configurations ¢ € [FM], the compositional evaluation w(c)

terminates.

Proof. Let idt™' : I — £ be the inverse function of idt. To prove w(c) terminates, we
note that the arguments in recursive calls to w(c) (Definition 26) strictly decrease if we
use idt~! as a measure function into the well-founded set 2.

Indeed, without loss of generality, let © = idt(P) for some P € & with variables set
X ={xy,...,z}. By definition of o, the right-hand side of w(c)(z) evaluates to either
L or &(P)x1/w(c)(xy), ..., xx/w(c)(zy)]. In the first case, it trivially terminates; in the
second, the arguments to each recursive call are the variables x; € X. By definition,
z; = idt(P;) for some P; € & such that P; < P. Thus, idt*(z;) < idt~'(x). Since < is

well-founded, w(c) terminates. O

A.3 Soundness of Feature-product-based Analysis

We first state formally what we mean by PMC renaming, which is a key concept in PMC

composition.

163

Definition 33 (Compositional PMC renaming). Given a compositional PMC P = (S,
50, Ssuc, Serrs X, P, T), the i-th renaming of P, P' = (S s), s’ X P T, is an

807 suc? err’

isomorphic compositional PMC with renamed states. That is, P’ is such that:

e S'NS=0.

vi,jeN'i%j — SZHSJZQ

There exists a bijective mapping *: S — S’ from each state s; € S to a state
s§ e S

o X=X,

v81,5265 ’ Pi(‘gi? 512) = P(Sh 52)-
o T'={s"|seT}.

With the formal definition of PMC renaming, we are able to present a precise defini-
tion of a total composition, obtained by composing PMCs over all slots in a given base

compositional PMC at once.

Definition 34 (Total PMC composition). Given a compositional PMC (S, so, Ssuc, Serr,
X,P,T) with k variables x1, ..., 2y, and a set &2 of k compositional PMCs (S, Sig, Sione,
Sives Xis Piy Ti), i € {1,... k}, let v/ : X — & be a function that yields a compositional
PMC P € & to compose in the corresponding slots for any given variable. Let also

= |slots” (z;)| for i € 1,...,k, and P} = (57, ZAO, zm,sfm X/ Pl T forjel,...,n
be the j-th renaming of 791- (Deﬁnltlon 33). The total PMC composition P[X/u’}, also
denoted by Plzy/u'(x1), ...,z /u (xy)], is a compositional PMC P' = (57, s, 840, Sty X,
P’,T") such that:

o S'=SuwlL, Siy.- WL, S, where W denotes the disjoint union operator (all

states are disjointly merged);

® 5, = 5, S.

e = Ssuc, and s, =S¢ (the interface of P is preserved);

o X' = Ule X; (each occurrence of x; is replaced by a copy of P;, whose variables are
those of X;);

o 1" =T (target states of the base PMC are preserved);

e P’ is such that, for all slots (s ,s,; ,s,) of the base PMC P and interfaces

) tsuc ierr

(s],s! .s!) of the renamed PMCs P/ (wherei € 1,....kand j € 1,...,n;),

207 Tlsuc? “lerr 1

164

— P'(s, ,sfo) =1 (new transition from a slot’s initial state to the initial state of
L0

the corresponding composed PMC)

— P'(s]_,s;) =1 (new transition from the success state of a composed PMC

74@7;(’ T3 suc

to the success state of the corresponding slot)

- P’(o Sl) = 1 (new transition from the error state of a composed PMC to

the error state of the corresponding slot)

X
tsuc

— P'(s,; ,5,;) =0 (slot’s success transition is removed)
0

— P'(s, 583) = 0 (slot’s error transition is removed)
— P/(s] . Z) = 0 (success loops from composed PMCs are removed)
— P/(s! s Z'W) = 0 (error loops from composed PMCs are removed)

— For all remaining combinations of s;, s, € S":

P(s1,s0) if 51,55 € S\ slotStates” (X)
P'(s1,52) = ¢ Pl(sy,50) if 51,50 € S

0 otherwise

The function v’ is called a composition function.

To establish the soundness of the feature-product-based strategy, we need to compare
it to the product-based strategy for compositional models. However, the latter relies on
PMC composition, while the former is based on compositional evaluation of expressions.
To bridge this gap, we first note that, as far as reliability analysis is concerned, composing
a PMC P’ into a slot of another PMC P is equivalent to evaluating the corresponding
variable in P with the reliability expression of P’ (i.e., &(P’)).

Lemma 13 (r-equivalence of total composition and evaluation). Let P, Py, ..., Py be
compositional parametric Markov chains, and X = {x1,...,x} be P’s set of variables.
Then,

a(Pley/Py, .. an/Pr]) = &(Pler/a(Py), . .., wr/&(Pr)])

where the equals sign denotes extensional equality. In other words, the two expressions
(i.e., syntactic objects) are not necessarily equal in a syntactical sense, but their corre-
sponding rational functions (i.e., semantic objects) always yield equal values if given equal

mnpuls.

Proof. The main argument for this proof is the case where P has only one variable, that
is, X = {x}. This way, we start by proving that &(P[x/P’]) = &(P[z/a(P")]) for a given

165

compositional PMC P’ = (5, X', P’,T"). Then, we extend this to the general

case where P has an arbitrary number of variables.

807 suc’ 67"7"7

A generic illustration of P and P’ is given by Figures 3.4a and 3.4b, respectively. Let
P. = Plx/a(P')] be the PMC resulting from evaluation, denoted by (Se, Seqs Seanes Seors
X, P.,T.), and P. = P[x/P'] be the PMC obtained by composition, denoted by the tuple
(Sey Seys Seanes Scorns Xes Pey). Figures A.la and A.1b represent these PMCs and serve as

a visual aid to the proof.
</l S %&

//7
/ (Szm *)&
1— PrP -

(807 Ssuc -

(a) Pe = Plz/a(P")]

prP (805 Shrr)

err

(c) P, after eliminating states s’ € S’ \ interface(P’)

!
PTP (867S;u6) PR

/
/\ SToue) ot >
N .

e—) *}’\//Srzo /‘
Pr P (sp, S,)

err T

(d) P, after eliminating all states s’ € S’

Figure A.1: Generic PMCs in Lemma 13

Since & computes the probabilistic reachability property, we base this proof on the
algorithm by Hahn et al. [41]. This algorithm consists of successive eliminations of states,

with the transition probability matrix being updated at each step. A useful property,

166

which Hahn et al. use to prove that the algorithm is sound, is that the probability of
reaching the target states in the input PMC is an invariant, that is, it remains the same
throughout elimination steps.

Let us apply the algorithm by Hahn et al. [41| to P.. For brevity, we show the
composition via a single slot. In the case where more slots exist, the following argument
can be applied sequentially to each slot and corresponding renaming of P’.

Since the order in which states are eliminated is not fixed, we first eliminate states
s’ € S'\ interface(P’). The intermediate PMC at this point is given by Figure A.1c. These
eliminations are restricted to states in S’, because the only transitions in P, between states
in S and states in S’ are the ones connecting interface and slot (by construction—see
Definition 34).

Now, we eliminate the interface states. Performing a single step of the algorithm by

Hahn et al. (Definition 4), we eliminate s, and update P. so that

1

Po(sap: Se) = Pelsans She) + Pelans 80 T—prr 373

’ PC(367 ')

suc

1 /
=0+1-— PTP(S(M ;uc)

1-0

- PTP/(SO’ Ssuc)
Similarly, P,(sy,,5..,) = Pr’ (s}, ’W) Repeating these steps for s, . and s, .., P, is
updated to have P,(sq,,50...) = Prr (s),s.,,) and P(sq,, S0,) = Prr (sh,s..) (see

Figure A.1d).

At this stage, all states s’ € S’ have been eliminated, so that S. = S = S.. Further-
more, for all s1,s, € S\ slotStates” (), the transition probability matrices are such that
P.(s1,82) = P(s1,52) = Pec(s1,52) (Definition 31). Thus, the only difference between P,
and P, are the transitions for slot states: (s, szw) and (Sz,, Sz.p)-

For the “success” slot, P.(su,,50..) = Prr (s),s.,), which is syntactically equal
to Po(Sugs Sz)- S0, we must prove that the “error” transitions, P.(Suy, Sz,) and
P.(Szy, Sz,), are extensionally equal. But s/, and s.,, are the only two bottom strongly
connected components of the underlying digraph of P’ (Definition 10). Thus, by Theorem
10.27 of Baier and Katoen [7], Pr¥u(s}, s.,.) + Pr¥=(s}, s.,.) = 1, where P’ is the DTMC
obtained by applying some well-defined evaluation u to P’. Since the choice of u is
arbitrary, P.(s,, Sz,,..) is extensionally equal to P.(s.,, Sz,)-

This means that, at the current point of application of the probabilistic reachability
algorithm to P., P. = P.. P. and the partially analyzed P. have the same probability
of reaching the target state sg,.. Moreover, since the algorithm preserves this proba-

bility at each step, the probabilistic reachability in P, is the same at this point as be-

167

fore the algorithm started, and will remain the same until the algorithm stops. Hence,
a(Plz/P')) = a(Pla/a(P)).

To extend this proof to the case where P has an arbitrary number of variables, we
repeat the argument that the choice of states for elimination is arbitrary. Let us as-
sume, as induction hypothesis, that the lemma holds for a PMC with n variables. If
P has n + 1 variables, we apply the same reasoning as in the single-variable case for
one of P’s slots, (Sz,,1, Seasra, s Sznsa,,) After eliminating only the states correspond-
ing to a composition at the given slot, we have the following extensional equalities:
Po(Stni105Stn110.) = Pe(SapinysSeairy,) and Po(se, 5 Se,,.) = PelSeninys Senin,,)-
Also, the resulting PMC P, has n remaining slots, one for each variable. By the in-
duction hypothesis, after eliminating the states corresponding to all compositions in P,
we have that P, and P, are extensionally equal. Hence, &(P[x1/P1,. .., Tpni1/Pni1]) =
&(Plz1/a(Pr), ... Tps1/&(Pata)])- 0

Furthermore, since a composition of only DTMCs into a PMC yields another DTMC,
both parametric and non-parametric model checking of this resulting chain (which has no

variability) produce the same result. Thus, we have the following corollary of Lemma 13.

Corollary 1 (r-equivalence of total composition with DTMCs and evaluation). Let P be
a compositional PMC, Dy, ..., Dy be DTMCs, and X = {x1,...,x} be P’s variables set.
Then,

a(Plz1/Dy, ..., x1/Dy]) = a(Plx1/a(Dy), ...,z /a(Dy)])

Now we have the tools to prove that our feature-product-based analysis is sound. We

recall Theorem 5:

Theorem 5 (Soundness of feature-product-based analysis). Given a compositional model
(2, =<, 1,idt,p,w', FM), for all configurations ¢ € [FM], it holds that

o(a(P),w,c) = a(r'(P,w, c))
or, alternatively,

[&(P)]¥ = ([P]¥)

where P € & and w is the compositional evaluation factory (Definition 26) derived from

the composition factory w'.

Complete proof. We use well-founded induction. The base of the induction is when
P is minimal with respect to <. In this case, X = 0, so ©'(P,w’,¢c) = P, that is,
a(m'(P,w',c)) = a(P). Likewise, &(P) = a(P), so that o(&(P),w,c) = o(a(P),w,c) =
a(P). Thus, for the base case, o(&(P),w,c) = a(n'(P,w', c)).

168

We now have to prove that o(&(P),w,c) = a(r'(P,w’,c)) for an arbitrary P € Z.
Our induction hypothesis is that o(&(P;), w, ¢) = a(n'(P;,w', ¢)) for all P; € & such that
P; < P. Thus, let x; = idt(P;), i € {1,...,k}. By Definition 22, we have:

o(&(P),w,c) = a(P)[z1/w(c)(xy), ..., zx/w(c)(xy)]

For each x;, from the definition of the compositional evaluation factory w (Definition 26),

w(e)(z:) =

1 otherwise

{am(m,w, &) it ple)(e) =1

a(m'(Pi,w',c)) if p(x;)(c) =1 (by induction hypothesis)
1 otherwise

But, from the definition of the composition factory w’ (Definition 18),

w/(C)(wi) _ {PZ[Xz/’LU/(C>] lfp(:pz)(c) =1
P otherwise
m(Pi,w'c)) i p(zi)(c) =1 (Definition 19)

P otherwise

a(Py) otherwise

a(m'(Pi,w',c)) if p(x;)(c) =1

1 otherwise

B {a(ﬂ’(ﬂ-,w’,c)) if p(z;)(c) =1

o(&(P),w,c) = &(P)[x1/w(c)(x1), ...,z /w(c)(zy)]

(1)), -,z /a(w(c)(zx))]
)(zx))]) (Lemma 3)
) (Corollary 1)

(Definition 19)

x1)), .. a/a(w (c

T1), ..., x/w (c)(x)]

169

A.4 Lifting Lemmas

This appendix covers details of lemmas related to lifting of expressions and of composi-

tional evaluation factories.

Lemma 4 (Soundness of expression lifting). If € is a rational expression over Real con-
stants and variables v; € X, | X| =n, Ay,..., A, are ADDs, and é = lift(e), then

Elar/Ar, .20/ A(B) = ey JAL (D), - . ., 2n/An(D)]

where b is a vector of k Booleans, corresponding to a selection of the k features in a given

product line.

Complete proof. The proof is by structural induction on the expression . The base cases

are constant expressions and single variables:

e ¢ = ¢, where c € R:

In this case, £ = ¢. Since € has no variables (and neither has &), we apply the empty

evaluation []. Thus, &[](b) = ¢(b) =c=¢e=¢[].

® & =1

In this case, £ = z. If A is an arbitrary ADD, then: &[z/A](b) = A(b) = e[z /A(D)].

Now we have to prove the statement holds for € = 1 ® g5 (where ® € {+, —, X, +})
and for e = £ (where 7 € N). As induction hypothesis, assume that the following holds

for the expressions €; and e:
Elor/Av,. 20 AL)(B) = elor /A (D), .., An(D)] (LH.)

Let u: X — (B*¥ — R) be a lifted evaluation such that u(z;) = A; is an ADD. We then

have the following:

e £ =g ®ey, where ® € {+, —, X, +}:

170

In this case, € = €1 ® €. Hence,

ELX/u](b) = (&1 ®) [X/u](b)
= (&1[X/u] ® £[X/u]) (b) (evaluation)
= &1 [X/u](b) ® &[X /u](b) (ADD arithmetics)
=&l /AL, ... 2,/ A,)(D)
O &w /AL ... 20 /A (D) (expanding u)
=e1r1/AL(D), ..., 2, /A0 (D)]
® ea[21/A1(D), ..., 20 /AL (D)) (induction hypothesis)
= (21 @ &) [21 /A1 (D), . .., 2/ An(D)] (evaluation)
= clw1/A1(b), ..., 2 /An(D)]
o c =¢i, wherei e N:
In this case, £ = £,°. Hence,
E[X/u(b) = 1" [X/u](b)
= &1[X/u]'(b) (evaluation)
= & [X/u)(D) (ADD arithmetics)
=&l /AL, ... 2,/ A (D) (expanding u)
= e[z /AL (b), ..., 2,/ An(D)] (induction hypothesis)
= cl[z/AL(b), ..., 2,/ AL (D)] (evaluation)
= elz1/Ai(b), .- Tn/An(D)]

]

The soundness of lifted compositional evaluation factories is now presented in its com-

plete form. First, we recall the corresponding lemma’s statement.

Lemma 6 (Soundness of lifted compositional evaluation factory). Given a compositional
model (2, =<, 1,idt,p,w', FM) and the compositional evaluation factory w, derived from
the composition factory w' (Definition 26), for all x € I and all ¢ € [FM] it holds that

p(z)(c) = w(c)(z)

171

Complete proof. If P € & is such that idt(P) = z, then

() (c) = TTE(p(x), &(P)[X/¢], 1)(c)
aP)X/¢l(0) if ple)(c)
(c) if () (c) =

RN

0
0

By Lemma 4, 64/(7?)[X/g0](c) = a(P)[z1/e(x1)(c), ..., xx/p(xr)(c)]. Also, Vecprmy -
1(c) = 1. Thus,

sy < [FPIRS O mfelm(@] it F0
1 if p(z)(c) =0
On the other hand, w is defined (Definition 26) as
o) - BP0 %0
1 if p(z)(c) =0
Expanding the definition of [&(P)]¥, we have
a r1/w(c)(xr), ..., x/w(c)(zy)] if p(z)(c
o) = { AP O] @0
1 if p(x)(c) =0
Since p(z)(c) = p(z)(c), we compare corresponding cases in the Equations (A.1)

and (A.2). The cases in which p(x)(c) = 0 are trivially equal. Otherwise, we use well-
founded induction.

The base of our induction are minimal PMCs. A minimal PMC P has no variables
(X = 0), so &(P)[X/u] = a(P) for any evaluation u. Since w(c) is an evaluation, and
considering ¢(x)(c) takes a variable x to a Real number (thus, also being an evaluation), we
have that (57(7?)[)(/@}(0) = &(P)[X/w(c)] in this case. For non-minimal PMCs, assume,
as induction hypothesis, that @[Xj/go](c) = a(P;)[X;/w(c)] for all P; < P, where
j€{1,...,k}. Then, for any z; € X,

o) = | AP iE0(a)E) #0 s
1 if p(x;)(c) =0

ey = {FPIE] 0020 "
1 if p(x;)(c) =0

172

However, the induction hypothesis implies the right-hand sides of the Equations (A.3)
and (A1) are equal. Thus, ¢(z;)(c) = w(c)(z;) for all x; € X, which means

a(P)lzr/ep(z1)(c), o xn/plax) ()] = a(P)[zi/w(e)(x1), .. ., wp/w(c)(wr)]

and, by well-founded induction, the cases where p(z)(c) = 1 in the Equations (A.1)
and (A.2) are also equal. Hence, ¢(x)(c) = w(c)(x). O

A.5 Variability Encoding

This appendix deals with formal definitions and complete proofs related to variability

encoding of PMCs and of rational expressions.

A.5.1 Variability Encoding of PMCs

We start by formally defining the ITE operator for PMCs, which was only presented as

an intuition in the main body of the paper.

Definition 35 (ITE operator for PMCS) Given two compositional PMCs;, P = (S, sy,
Ssucs Serry X, P, T) and P' = (5, X',P’,T"), and a variable z ¢ X U X', the
if-then-else operator for PMCs is defined as

507 suc? err?

ITE(z, P,P') = P"

where P” = (5", X", P",T") is a compositional PMC such that:

807 suc’ erﬂ

o S"=5SUS U{sj, st s

err

The state s; is the new initial one, s7,. is the new success state, and s7,. is the new

error state.

X"=XUX' U{z}

{SSUC

e P” is such that:

Ssuc75,/) — PII(S/) P//(//) — 1

suc? suc suc) SUC

=0

Ssuc>ssu0) P”(Ssucs suc)

173

_ P,/(Serr,sﬁ) — PN<$/) P/l(/l) — 1

err errs Serr Serry Serr
" R s Y/ZON _
- P (867"7"7 SETT) =P (Serﬂ err) 0

— For all remaining combinations of s, s5 € S”:

P(Sl,Sg) ifSl,SQ S S
P"(s1,50) = P'(s1,80) ifsy;,s0€ 8

0 otherwise

This ITE operator is mainly useful because of its r-equivalence property. We recall

Lemma 7 and present its complete proof:

Lemma 7 (r-equivalence for ITE). Given two compositional PMCs, P = (S, S0, Ssuc, Serr
X,P.T) and P' = (5,80, Sper Sy X', P, T), and a variable x ¢ X U X', let P" =
ITE(z, P, P"). If (P",p,w, FM) is an annotative model with P" as its underlying PMC",
where p, w, and FM are arbitrarily chosen, then, for every c € [FM],

a([PIe) ifplx)(c) =1
a([P]¥) otherwise

a([ITE(x, P, P)]Y) =

Complete proof. We are interested in computing the probabﬂlty of reaching s7,. from sj
in P” = ITE(z, P, P’) under evaluation w(c). In P", si # s” . and s” . is reachable from

36’ (since s7,. is, by definition, reachable from sy, and s Hence, the reachability of

C suc)

st .. from s satisfies Property 1, by which the probability of reaching state s, from state
spin a DTMC D = (S, 59, P, T) is given by

81732 ZP 51,8 (8/782)

s'esS

!By Definition 10, any compositional PMC is also an annotative PMC (Definition 5). Thus, a com-
positional PMC can be the underlying PMC of an annotative model.

174

By Definition 35, P"(s{, so) = =, P"(s(, sp) = 1 — x, and P"(sf,s”) = 0 for all other
s" € S”. Thus,

a([P"]¥) = PrPee sy, s" >

suc

- Z P” 80’ - Pr w(c)(7Sguc)

lleS//

§ : " " Pl M " "
= P (807) - Prw)(S 7ssuc> + Pw(c)(‘SO? Ssuc)
€5\ (e}

" noon 4 "o
= E Pw(C)(507 s) - Pr w(c>(5 755uc) +0
IIES,/\{S‘NLC

= PZ)(C)(SWSO) Pr w(c)(s[)? suc) PZ(@(S/O/,S/O) Pr w(c>(807 suc)
= w(e)(x) - PrPe (s, s4,0) + (1 — w(e)(@)) - Priue (sf, s1,.)

Since w(c)(z) equals 1 if p(z)(c) = 1 and 0 otherwise (Definition 8),

PrPio(so,st,) i pla)(c) = 1

P
Priee (s, s

a([P]Y) =

") otherwise

But, since sy € S and the only state in S that can reach s”,, is sg,. (Definition 35), the
probability of reaching s” . from s is the probability of reaching sg,. from sy multiplied

by the transition probability from sg,. to s7,.:

1
PrPue (s, 80,0) = Prioe (so, ssue) - Plhe) (Ssucs $te)
= PrPuee (sg, sguc) - 1

(
= Pr’w©(sg, Seuc)
= o([P]?)

Similar reasoning applied to S’ leads to Pr7w@ (s}, s”) = a([P'].). Hence,

a([PI) if p(z)(c) =1

o([P']2) =
a([P']¥) otherwise

]

The above lemma establishes the ITE operator has the effect of alternating behaviors if
the resulting PMC is evaluated by replacing the switching variable x with 0 or 1. However,
the PMC operands of ITE are part of a compositional model, so their own variables are

interpreted as placeholders to be used during composition, instead (see Section 3.1.2). To

175

cope with this mismatch, we only use the ITE operator with PMCs that are either plain
DTMCs or that result themselves from variability encoding.
The resulting theorem stating the soundness of this variability encoding for PMCs is

recalled and proved next.

Theorem 8 (r-equivalence of variability encoding and derivation by composition). Given
a compositional model (2, =<, 1,idt,p,w', FM) and P € 2, let (v(P),p,w, FM) be its
variability-encoded annotative model. Then, for all ¢ € [FM],

a([v(P)Y) = alx'(P,w',)

Complete proof. We use well-founded induction. For minimal PMCs (base of induction),
v(P) =P, so [y(P)]¥ = P. Likewise, ©'(P,w’,c) = P, so the proposition holds trivially.

As induction hypothesis, we have that o([y(P)]¥) = a(x'(P;,w',c)) for all P; €
& such that P; < P. For brevity, in the following equations, we use A; to denote
ITE(z;, y(Pi), PL)-

a([v(P)]e) = [atx(P)IE (Theorem 1)

[a(Plxr/A1, ..z /A])]Y (Definition 28)

= [a(Plzi/a(Ay), .. xn/a(Ae))] (Lemma, 13)

= [a&(P)[x1/&(A1), ..., xr/&(Ap)]]Y (Lemma 3)

= &(P)[x1/a(A1),. .., xx/a(Ap)][X/w(c)] (Definition 22)

= &(P)[z1/a(M)[X/w(c)],.. .,

kA ()] (Equation (2.1)

= &(P)[x1/[a(A)]Y, ... zx/[a(Ap)]Y] (Definition 22)

= &(P)[x1/a([A]Y), .. ze/a([Ae]Y)] (Theorem 1)

= a(Plry/e([M]E), - zn/a([Ax])]) (Lemma 3)

leaving us with the following partial result:

o LHPIY) = ol fa([M]Y), . a/a([AY) (A5)

Each variable substitution expands to two different cases, corresponding to whether ¢

satisfies the presence condition associated with x; or not. Let us examine the substitution

176

for a given x;:

a([v(P)]e) if p(z:)(c) =1
a([PL]¥) otherwise
(
(

(Lemma 7)

a(m'(Pi,w' c)) if p(a;)(c) =1
a([PL]
a(w'(c) ()

(by induction hypothesis)
otherwise

a([A]Y) = a([ITE(zi, v(Pi), L))
(P

)
) (Definitions 18 and 19)
that is,

a([Al) = aw'(c)(x:)) (A.6)

Hence, we can substitute Equation (A.6) into Equation (A.5):

o([v(P)]E) = a(Plzi/a([A]2), - -, 2/ [Ae])]) (Equation (A.5)
Plzy/a(w'(c)(x1)), ..., 2 /a(w'(c)(x))]) (Equation (A.0)
Plzi/w'(c)(xy),. .., 2 /w' (c)(xx)]) (Corollary 1

)
)
)
' (P,w', c)) (Definition 19)

A.5.2 Variability Encoding of Expressions

We start by proving that the ITE operator for expressions has the intended semantics.

This result is expressed by Lemma 8, which we now recall.

Lemma 8 (Extensional equality for expression ITE). Given two erpressions ¢ and €' over
the sets X and X' of variables, respectively, and a variable z, let X" = X UX'U{z} and
u: X" —[0,1] be an evaluation function such that u(z) € B. Then,

e[X/u] ifu(x) =

ITE(z,¢,e")[X" /u] =
{6’[X’/u} if u(x) =

177

Complete proof. The proof is mainly algebraic. Expanding the definition of ITE, we have:

ITE(z,&,&)[X"/u] = (x - e+ (1 —z) - &")[X" /u]
(z - &)[X"/u] + (1 — z) - £)[X"/u]
= o[X"/u] - e[X" /u] + (1 — 2)[X" /u] - €'[X" /0]
=u(z) - e[X"/u] + (1 — u(x)) - '[X"/u]
elX"/u] ifu(r)=1
X" Ju] ifu(z)=0
which, considering that the sets of variables in ¢ and ¢’ are X and X', respectively, and

that these sets are subsets of X", leads to
e[X/u] ifu(z)
e[X"u] if u(z)

1
ITE(z,¢,e")[X" /Ju] =
0

]

Using this result and the definitions in the main body of the paper, we can prove that

variability encoding for expressions is sound.

Theorem 9 (Soundness of variability encoding for expressions). Given a compositional
model (P, =<, 1,idt,p,w', FM) and P, P1,...,Pr € & such that P; < P and x; = idt(P;)
fori € {1,... k}, let ¢ = &(P). Let also w be the compositional evaluation factory
derived from w' (Definition 20) and w, be the annotative evaluation factory obtained from

w (Definition 32). Then, for all ¢ € [FM] it holds that

a(y(e),wp, c) = o(e,w,c)

Complete proof. We use well-founded induction. For a minimal PMC P (base of induc-
tion), &(P) = € has no variables. This way, v(¢) = ¢ and o(e,u) = ¢ for any evaluation
u. Thus, both sides of the equality evaluate to £ and the proposition holds trivially.

As induction hypothesis, we have that o(y(s;), wp, c) = o(e;, w, c) for all ¢; = a(P;)
such that P; < P. For brevity, we use A; to denote ITE(z;,7y(g;),1) in the following

equations.

o(y(e),wy, c) = o(e[r1 /Ay, ..., 2/ Ag], wp, €) (Definition 31)
=clx1/M, ...z /A][X w,(0)] (Definition 22)
= el /M [X/wy(c)], ...,z /Ak[X/ wy(c)]] (Equation (2.1))

178

yielding the following equation:
o(y(e), wp, ¢) = elwr/M[X/wp ()], . ., wi/ M [X/wp(c)] (A7)

Each variable substitution expands to two different cases, corresponding to whether ¢
satisfies the presence condition associated with x; or not. Let us examine the substitution

for a given x;:

Ai[X/ wp(c)] = ITE(z;, y(&:), 1)[X/wp(c)]

V(€)X wp(c)] if p(zi)(c) = 1 (wp(c)(;) = 1) (Lemma 8)
1[X/w,(c)] otherwise (w,(c)(z;) = 0)

_Jo(v(e) wp,0) if pla)(c) =1 (Definition 22)
N {1 otherwise
_Jolew,e) ifp(z)(c) =1 (by induction hypothesis)
N {1 otherwise
= w(c)(x;) (Definition 26)
that is,
Ai[X wy(e)] = w(e)(w:) (A.8)

Hence, substituting Equation (A.8) into Equation (A.7), we have

o(y(e),wy, ¢) = e[z /A [X/wy(c)], ..., 2k /A [X /w,(c)]] (Equation (A.7))

= e[z /w(c)(xy), ...,z /w(c)(zg)] (Equation (A.8))
= e[X/w(c)]
=o(e,w,c) (Definition 22)

179

Appendix B

Probabilistic Models

This appendix presents the probabilistic models of the beverage machine product line
example (Section 3.1) in their entirety. Figure B.1 contains the annotative model, and

the compositional model is depicted by Figure B.2.

180

0.9, 0.9

s
A S

1,

N
i sel

1,

Figure B.1: Complete annotative PMC for the vending machine

0.9
0 {51 se

by 0 q

—
S,
-
G
=
—

181

— | — JE—
1w, "~ t 77~ 1,77 s o071
| |
@_ﬁ(\ CtO /H\ Clsuc /\I—)'\ CSO)—)/\ Csgyc P 1
N ~___~- - - ~_ _
| 1\\1\::$f
! 7
|
| N

(a) Top-level compositional PMC for the vending machine (common behavior and main variation
points)

Lemon

Lemon Soda

Lemon

=2 slots
] interfaces

(e) Compositional PMC for the behavior of adding lemon to soda

Figure B.2: Compositional PMCs for the vending machine

182

Appendix C

Mechanization Mapping

This appendix presents the complete description of our PVS theories (Table C.1) and
the interdependencies between them (Figure C.1). We also present the correspondence
between elements of our manual specification (Chapter 3) and its mechanization in PVS
(Chapter 1) in Table C.2. In this table, each entry for an element of the original theory is
linked to its definition in Chapter 3, whereas the corresponding PVS definition is also an
hyperlink to its specific line in the Github repository (https://github.com/thiagomael/
rome-specs). Last, we present the complete data set representing the count of proof
commands (Tables C.3 and C.4) and the distribution of theory elements throughout the
PVS mechanization (Table C.5).

Table C.1: Description of PVS theories

PVS Theory Description

ADD_def Definitions regarding ADDs with
(ADD.pvs, line 1) terminals of a parameterized type T.
ADD_ops Semantics of arithmetic operations
(ADD.pvs, line 15) with ADDs.

real_ADD Real-valued ADDs.

(ADD.pvs, line 48)

annotative_expressions_evaluation Evaluation of lifted expressions re-

(annotative expressions evaluation.pvs, line 1) sulting from an annotative model.

annotative_PMC Definition of annotative PMC and

(annotative_ PMC.pvs, line 1) corresponding predicates. This the-
ory also contains lemmas about the

evaluation of such PMCs.

183

https://github.com/thiagomael/rome-specs
https://github.com/thiagomael/rome-specs
https://github.com/thiagomael/rome-specs/blob/master/ADD.pvs#L1
https://github.com/thiagomael/rome-specs/blob/master/ADD.pvs#L15
https://github.com/thiagomael/rome-specs/blob/master/ADD.pvs#L48
https://github.com/thiagomael/rome-specs/blob/master/annotative_expressions_evaluation.pvs#L1
https://github.com/thiagomael/rome-specs/blob/master/annotative_PMC.pvs#L1

Table C.1: Description of PVS theories (continued)

PVS Theory

Description

annotative_reliability_models

(annotative reliability models.pvs, line 1)

compositional_expressions_evaluation

(compositional expressions evaluation.pvs, line

1)

compositional _PMC_order

(compositional PMC _order.pvs, line 1)

compositional_PMC

(compositional PMC.pvs, line 1)

compositional_ PMC_sets

(compositional PMC _sets.pvs, line 1)
compositional_reliability_models

(compositional reliability models.pvs, line 1)

compositional_factory_restrict

(compositional reliability models.pvs, line 112)

compositional_reliability_models_lemmas

(compositional reliability models.pvs, line 132)

DTMC
(DTMC.pvs, line 1)

expression_lifting

(expression _lifting.pvs, line 1)

184

Definition of annotative reliability
models and corresponding predi-
cates.

Evaluation of lifted expressions re-

sulting from a compositional model.

Well-founded order induced by the
dependency relation in composi-
tional reliability models.

Definition of compositional PMC
and corresponding predicates. This
theory also contains the definition
and the main lemmas about slots.
Definitions regarding identifiers and
variables of a finite set of PMCs.
Definition of compositional reliabil-
ity models and corresponding pred-
icates.

Auxiliary definitions to restrict the
higher-order compositional factories
(composition factory and composi-
tional evaluation factory).
Auxiliary lemmas regarding the ex-
haustion of variables by composi-
tion.

DTMC and related concepts (paths,
reachability, and reachability prob-
ability). This theory also presents
lemmas about path probabilities
and morphisms between DTMCs.
Evaluation of rational expressions
using ADDs.

https://github.com/thiagomael/rome-specs/blob/master/annotative_reliability_models.pvs#L1
https://github.com/thiagomael/rome-specs/blob/master/compositional_expressions_evaluation.pvs#L1
https://github.com/thiagomael/rome-specs/blob/master/compositional_PMC_order.pvs#L1
https://github.com/thiagomael/rome-specs/blob/master/compositional_PMC.pvs#L1
https://github.com/thiagomael/rome-specs/blob/master/compositional_PMC_sets.pvs#L1
https://github.com/thiagomael/rome-specs/blob/master/compositional_reliability_models.pvs#L1
https://github.com/thiagomael/rome-specs/blob/master/compositional_reliability_models.pvs#L112
https://github.com/thiagomael/rome-specs/blob/master/compositional_reliability_models.pvs#L132
https://github.com/thiagomael/rome-specs/blob/master/DTMC.pvs#L1
https://github.com/thiagomael/rome-specs/blob/master/expression_lifting.pvs#L1

Table C.1: Description of PVS theories (continued)

PVS Theory

Description

expressions_variability_encoding

(expressions_ variability encoding.pvs, line 1)

finite_set_lemmas
(finite_set_lemmas.pvs, line 1)
finite_sets_aux
(finite_set_lemmas.pvs, line 50)
infinite_set_lemmas

(infinite _set_lemmas.pvs, line 1)
list_aux

(list_aux.pvs, line 1)

list_map_aux

(list_map aux.pvs, line 6)

maybe_real

(maybe_real.pvs, line 1)

185

Variability encoding of expressions.
This theory provides both the
domain-agnostic formalization of
the if-then-else operator and the
encoding of expressions that de-
note the reliability of compositional
models.

Lemmas about functional mappings
between finite sets of different types.
Lemmas about finite sets of the
same type and sums thereof.
Lemmas about infinite sums over in-
finite sets.

Lemmas about list properties, espe-
cially of lists without repeated ele-
ments (sets as lists).

This theory is a means to resolve
the mismatch of type parameters
that arises from using the lemmas
in more_map_props (which require
the type of elements in the list to
be exactly the same as the domain
D of the mapped function). Here we
relax this constraint to allow any su-
pertype of D.

Datatype for optional Real num-
bers and the corresponding arith-
metic operators. This theory pro-
vides a mechanism to handle divi-
sion by zero and the propagation of
undefined results (similar to the be-
havior of the Maybe monad in the

Haskell programming language).

https://github.com/thiagomael/rome-specs/blob/master/expressions_variability_encoding.pvs#L1
https://github.com/thiagomael/rome-specs/blob/master/finite_set_lemmas.pvs#L1
https://github.com/thiagomael/rome-specs/blob/master/finite_set_lemmas.pvs#L50
https://github.com/thiagomael/rome-specs/blob/master/infinite_set_lemmas.pvs#L1
https://github.com/thiagomael/rome-specs/blob/master/list_aux.pvs#L1
https://github.com/thiagomael/rome-specs/blob/master/list_map_aux.pvs#L6
https://github.com/thiagomael/rome-specs/blob/master/maybe_real.pvs#L1

Table C.1: Description of PVS theories (continued)

PVS Theory

Description

parametric_transition_matrices

(parametric_transition matrices.pvs, line 1)

PMC_composition

(PMC _composition.pvs, line 1)

PMC
(PMC.pvs, line 1)

PMC_renaming

(PMC_renaming.pvs, line 2)

PMC_r_equivalence

(PMC _r_equivalence.pvs, line 1)
PMC_variability_encoding

(PMC _ variability encoding.pvs, line 1)

rational_expressions

(rational _expressions.pvs, line 1)

real_transition_matrices

(real _transition matrices.pvs, line 1)

rome

(rome.pvs, line 1)

186

Specialization of transition matri-
ces for which the cells (transitions)
are rational expressions. This the-
ory also provides the notions of vari-
ables of a matrix and of matrix eval-
uation, as well as related lemmas.
Definition of partial and total PMC
composition, along with lemmas
stating the properties of the results.
Parametric DTMCs and related def-
initions, such as well-defined evalu-
ations and state elimination.
Renaming of PMCs, specifically de-
signed to provide a disjoint union of
the sets of states during PMC com-
position.

Lemmas regarding r-equivalence of
PMCs under state elimination.
If-then-else operator for transition
matrices and PMCs, along with the
notions specific to variability encod-
ing of compositional reliability mod-
els.

Definitions and lemmas regarding a
datatype-oriented view of rational
expressions (prone to syntactic ma-
nipulation).

Specialization of transition matrices
whose cells (transitions) are prob-
abilities and whose rows obey the
stochastic property.
Top-level theory, containing the
definitions of our analysis strate-
gies and corresponding soundness

proofs.

https://github.com/thiagomael/rome-specs/blob/master/parametric_transition_matrices.pvs#L1
https://github.com/thiagomael/rome-specs/blob/master/PMC_composition.pvs#L1
https://github.com/thiagomael/rome-specs/blob/master/PMC.pvs#L1
https://github.com/thiagomael/rome-specs/blob/master/PMC_renaming.pvs#L2
https://github.com/thiagomael/rome-specs/blob/master/PMC_r_equivalence.pvs#L1
https://github.com/thiagomael/rome-specs/blob/master/PMC_variability_encoding.pvs#L1
https://github.com/thiagomael/rome-specs/blob/master/rational_expressions.pvs#L1
https://github.com/thiagomael/rome-specs/blob/master/real_transition_matrices.pvs#L1
https://github.com/thiagomael/rome-specs/blob/master/rome.pvs#L1

Table C.1: Description of PVS theories (continued)

PVS Theory

Description

SPL_expression_evaluation

(SPL_ expression _evaluation.pvs, line 1)
SPL

(SPL.pvs, line 1)

SPL_reliability

(SPL_ reliability.pvs, line 1)

states

(states.pvs, line 1)

transition_matrices

(transition matrices.pvs, line 1)
transition_matrices_map

(transition _matrices.pvs, line 26)
transition_matrices_sum

(transition matrices.pvs, line 48)
variability_aware_expression_evaluation
(variability aware expression evaluation.pvs,
line 1)

well_founded_lemmas

(well _founded lemmas.pvs, line 1)

Definition of expression evaluation
using evaluation factories.
Uninterpreted definitions of
product-line semantics.

Definition of evaluation factory and
of evaluation-based derivation of
DTMCs from either compositional
or annotative PMCs.

Semantics of states as an infinite
type.

Parameterized definition of transi-
tion matrices as a record type.
Definition of function mappings
over transition matrices.

Definition of finite sums of values in
transition matrices.

Lifting of evaluation factories and
mapping between product line con-
figurations and evaluations of ADD
arguments.

Auxiliary lemmas for well-founded

relations over finite types.

Figure C.1 shows the mechanized theories used in our work and the dependencies
among them. In this figure, third-party theories (PVS prelude and NASA libraries) are
depicted as blue rectangles. Ellipses represent the theories created in the scope of this

work, according to the following color code:

e green denotes theories with additional lemmas for concepts that already exist in the

third-party libraries (high reuse potential);

e yellow is used for theories with concepts that are new to PVS, but exist in the

literature (medium to high reuse potential);

e white is used for theories that are specific to the user-oriented reliability analysis of

product lines presented in this work.

187

https://github.com/thiagomael/rome-specs/blob/master/SPL_expression_evaluation.pvs#L1
https://github.com/thiagomael/rome-specs/blob/master/SPL.pvs#L1
https://github.com/thiagomael/rome-specs/blob/master/SPL_reliability.pvs#L1
https://github.com/thiagomael/rome-specs/blob/master/states.pvs#L1
https://github.com/thiagomael/rome-specs/blob/master/transition_matrices.pvs#L1
https://github.com/thiagomael/rome-specs/blob/master/transition_matrices.pvs#L26
https://github.com/thiagomael/rome-specs/blob/master/transition_matrices.pvs#L48
https://github.com/thiagomael/rome-specs/blob/master/variability_aware_expression_evaluation.pvs#L1
https://github.com/thiagomael/rome-specs/blob/master/well_founded_lemmas.pvs#L1

rome

compositional _expressios _evaluation expressions _variability_encoding PMC_variabilty _encoding

compositional_reliability_models_lemmas finite_setsOfs_constructors structuresGmore_list_props

compositional_factory _restrict

compositional _reliability_models PMC_r_equivalence

compositional PMC_order PMC_composition

annotative_expressions_evaluation well_founded_lemmas compositional PMC_sets

.

ordensOmonotone_sequences ondersGfinite_pointwise_orders ordensGwell_foundedness

PMC_renaming

compositional_PMC

anmotative_reliability_models

variability_aware_expression_evaluation SPL_reliabiity finite_setsGfinite_cross
structures Oset2seq function_inverse SPL_expression_evaluation PMC fuite_setsGfinite_sets sum_teal
\\
expression_liting SPL, Darametric_transition_matrices DTMC list_aux sefs_lemmas
/
teal_ADD rational_expressions transition_matrices_map real _transition_matrices st list_map_aux infinite_set_lemmas mote_map_props structures et _as_list
ADD_ops maybe_real transition_matrices_sum list_props realssigma fnite_setsfinite sets card eq sets_auxOinfinite card sigma_setGsigma_countable fnite_sets_aux
[N
ADD_def transition_matices finite_setsGfinite_sets_sum structutesGfunction_image_bis
/\
structures Garrays finite_set_lemmas states

sets_anxOinfinite_nat_def fiute_sets

Figure C.1: Dependencies between PVS theories (direct dependencies that can be deduced
from transitivity are filtered for readability)

188

68T

Table C.2: Mapping between the manual and the mechanized specifications

Manual

Mechanized

Property 1 (Reachability probability for DTMCs)
Definition 1 (Parametric Markov Chain)

Definition 2 (Expression evaluation)

Definition 3 (Well-defined evaluation)

Definition 4 (State elimination step)

Lemma 1 (Parametric probabilistic reachability soundness)
Definition 5 (Annotative PMC)

Definition 6 (Presence function)

Definition 7 (Evaluation factory)

Definition 8 (Annotative probabilistic model)

Definition 9 (DTMC derivation)

reachability_probability_property
(DTMC.pvs, line 41) — AXIOM

PMC

(PMC.pvs, line 9)

eval

(rational _expressions.pvs, line 49)
well_defined_evaluation

(PMC.pvs, line 42)

eliminate_state

(PMC.pvs, line 195)
parametric_reachability_soundness
(PMC.pvs, line 54) — AXIOM
annotative_PMC

(annotative_ PMC.pvs, line 29)
presence_function
(SPL_reliability.pvs, line 11)
evaluation_factory

(SPL _ reliability.pvs, line 14)
annotative_reliability_model, interface
(annotative reliability models.pvs, line 34)
pi

(SPL_ reliability.pvs, line 23)

https://github.com/thiagomael/rome-specs/blob/master/DTMC.pvs#L41
https://github.com/thiagomael/rome-specs/blob/master/PMC.pvs#L9
https://github.com/thiagomael/rome-specs/blob/master/rational_expressions.pvs#L49
https://github.com/thiagomael/rome-specs/blob/master/PMC.pvs#L42
https://github.com/thiagomael/rome-specs/blob/master/PMC.pvs#L195
https://github.com/thiagomael/rome-specs/blob/master/PMC.pvs#L54
https://github.com/thiagomael/rome-specs/blob/master/annotative_PMC.pvs#L29
https://github.com/thiagomael/rome-specs/blob/master/SPL_reliability.pvs#L11
https://github.com/thiagomael/rome-specs/blob/master/SPL_reliability.pvs#L14
https://github.com/thiagomael/rome-specs/blob/master/annotative_reliability_models.pvs#L34
https://github.com/thiagomael/rome-specs/blob/master/SPL_reliability.pvs#L23

06T

Table C.2: Mapping between the manual and the mechanized specifications (continued)

Manual

Mechanized

Lemma 2 (Evaluation well-definedness for annotative models)
Definition 10 (Compositional PMC)

Definition 11 (Compositional PMC slot)

Definition 12 (Partial PMC composition)

Definition 13 (Identifying function)

Definition 14 (Dependency relation induced in compositional
PMCs)

Definition 15 (Minimal and maximal compositional PMCs)
Definition 16 (Feature disabler compositional PMC)

Definition 17 (Composition factory)

Definition 18 (Compositional probabilistic model)

Definition 19 (Derivation by composition)

the_annotative_evaluation_factory_well_definedness
(annotative reliability models.pvs, line 27)
compositional_PMC

(compositional PMC.pvs, line 44)

slot?, slots, slotStates

(compositional PMC.pvs, line 44)
compose_sigle_slot

(PMC_ composition.pvs, line 325)
identity_function
(compositional PMC _sets.pvs, line 16)

<

(compositional PMC order.pvs, line 11)
minimal?, maximal?
(compositional PMC order.pvs, line 14)
feature_disabler_PMC?

(PMC _composition.pvs, line 17)
composition_factory

(compositional reliability models.pvs, line 21)
compositional_reliability_model
(compositional reliability models.pvs, line 90)
pi

(compositional reliability models.pvs, line 105)

https://github.com/thiagomael/rome-specs/blob/master/annotative_reliability_models.pvs#L27
https://github.com/thiagomael/rome-specs/blob/master/compositional_PMC.pvs#L44
https://github.com/thiagomael/rome-specs/blob/master/compositional_PMC.pvs#L44
https://github.com/thiagomael/rome-specs/blob/master/PMC_composition.pvs#L325
https://github.com/thiagomael/rome-specs/blob/master/compositional_PMC_sets.pvs#L16
https://github.com/thiagomael/rome-specs/blob/master/compositional_PMC_order.pvs#L11
https://github.com/thiagomael/rome-specs/blob/master/compositional_PMC_order.pvs#L14
https://github.com/thiagomael/rome-specs/blob/master/PMC_composition.pvs#L17
https://github.com/thiagomael/rome-specs/blob/master/compositional_reliability_models.pvs#L21
https://github.com/thiagomael/rome-specs/blob/master/compositional_reliability_models.pvs#L90
https://github.com/thiagomael/rome-specs/blob/master/compositional_reliability_models.pvs#L105

161

Table C.2: Mapping between the manual and the mechanized specifications (continued)

Manual

Mechanized

Definition 20 (Non-parametric model checking)

Strategy 1 (Product-based analysis of annotative models)
Strategy 2 (Product-based analysis of compositional models)
Definition 21 (Parametric model checking)

Definition 22 (Expression evaluation)

Strategy 3 (Family-product-based analysis)

Lemma 3 (Commutativity of PMC and expression evaluations)
Theorem 1 (Soundness of family-product-based analysis)
Definition 23 (Expression lifting)

Lemma 4 (Soundness of expression lifting)

Definition 24 (Lifted evaluation factory)

alpha

(DTMC.pvs, line 17)
product_based_analysis
(rome.pvs, line 21)
product_based_analysis
(rome.pvs, line 58)

alpha_v

(PMC.pvs, line 46)

sigma

(SPL_expression _evaluation.pvs, line 11)
family_product_based_analysis
(rome.pvs, line 29)
eval_commutativity

(PMC.pvs, line 79)
family_product_soundness
(rome.pvs, line 33)

eval

(expression_ lifting.pvs, line 20)
expression_lifting_soundness
(expression_ lifting.pvs, line 36)
lifted

(variability aware expression evaluation.pvs, line 27)

https://github.com/thiagomael/rome-specs/blob/master/DTMC.pvs#L17
https://github.com/thiagomael/rome-specs/blob/master/rome.pvs#L21
https://github.com/thiagomael/rome-specs/blob/master/rome.pvs#L58
https://github.com/thiagomael/rome-specs/blob/master/PMC.pvs#L46
https://github.com/thiagomael/rome-specs/blob/master/SPL_expression_evaluation.pvs#L11
https://github.com/thiagomael/rome-specs/blob/master/rome.pvs#L29
https://github.com/thiagomael/rome-specs/blob/master/PMC.pvs#L79
https://github.com/thiagomael/rome-specs/blob/master/rome.pvs#L33
https://github.com/thiagomael/rome-specs/blob/master/expression_lifting.pvs#L20
https://github.com/thiagomael/rome-specs/blob/master/expression_lifting.pvs#L36
https://github.com/thiagomael/rome-specs/blob/master/variability_aware_expression_evaluation.pvs#L27

4!

Table C.2: Mapping between the manual and the mechanized specifications (continued)

Manual

Mechanized

Definition 25 (Variability-aware expression evaluation)

Theorem 2 (Soundness of variability-aware expression evaluation)
Lemma 5 (Soundness of lifted annotative evaluation factory)
Theorem 3 (Soundness of expression evaluation using p)

Strategy 4 (Family-based analysis)

Theorem 4 (Soundness of family-based analysis)

Definition 26 (Compositional evaluation factory)

Strategy 5 (Feature-product-based analysis)

Theorem 5 (Soundness of feature-product-based analysis)
Definition 27 (Lifted compositional evaluation factory)

Lemma 6 (Soundness of lifted compositional evaluation factory)

sigma_v

(variability aware expression evaluation.pvs, line 34)
variability_aware_expression_evaluation_soundness
(variability aware expression evaluation.pvs, line 37)
lifted_evaluation_factory_soundness

(annotative expressions_evaluation.pvs, line 22)
lift_p_soundness

(annotative expressions evaluation.pvs, line 27)
family_based_analysis

(rome.pvs, line 39)
family_based_analysis_soundness

(rome.pvs, line 44)
composition_evaluation_factory

(compositional reliability models.pvs, line 62)
feature_product_based_analysis

(rome.pvs, line 64)

feature_product_soundness

(rome.pvs, line 70)
lifted_compositional_evaluation_factory
(compositional expressions evaluation.pvs, line 13)
soundness_of_lifted_compositional_evaluation_factory

(compositional expressions evaluation.pvs, line 26)

https://github.com/thiagomael/rome-specs/blob/master/variability_aware_expression_evaluation.pvs#L34
https://github.com/thiagomael/rome-specs/blob/master/variability_aware_expression_evaluation.pvs#L37
https://github.com/thiagomael/rome-specs/blob/master/annotative_expressions_evaluation.pvs#L22
https://github.com/thiagomael/rome-specs/blob/master/annotative_expressions_evaluation.pvs#L27
https://github.com/thiagomael/rome-specs/blob/master/rome.pvs#L39
https://github.com/thiagomael/rome-specs/blob/master/rome.pvs#L44
https://github.com/thiagomael/rome-specs/blob/master/compositional_reliability_models.pvs#L62
https://github.com/thiagomael/rome-specs/blob/master/rome.pvs#L64
https://github.com/thiagomael/rome-specs/blob/master/rome.pvs#L70
https://github.com/thiagomael/rome-specs/blob/master/compositional_expressions_evaluation.pvs#L13
https://github.com/thiagomael/rome-specs/blob/master/compositional_expressions_evaluation.pvs#L26

Table C.2: Mapping between the manual and the mechanized specifications (continued)

Manual Mechanized

e6T

Theorem 6 (Soundness of expression evaluation using ¢) soundness_of_expression_evaluation_using_phi

(compositional expressions evaluation.pvs, line 33)
Strategy 6 (Feature-family-based analysis) feature_family_based_analysis

(rome.pvs, line 76)
Theorem 7 (Soundness of feature-family-based analysis) feature_family_soundness

(rome.pvs, line 84)
Lemma 7 (r-equivalence for ITE) ITE_r_equivalence

(PMC _ variability encoding.pvs, line 315)
Definition 28 (Variability encoding function for PMCs) gamma

(PMC _ variability encoding.pvs, line 333)
Definition 29 (Variability encoding of PMCs) encoded_reliability_model

(PMC_ variability encoding.pvs, line 349)
Theorem 8 (r-equivalence of variability encoding and derivation by PMC_variability_encoding_soundness
composition) (PMC _ variability encoding.pvs, line 360)
Definition 30 (ITE operator for expressions) ITE

(expressions_ variability encoding.pvs, line 11)
Lemma 8 (Extensional equality for expression ITE) expression_ITE_extensionality

(expressions_ variability encoding.pvs, line 27)
Definition 31 (Variability encoding function for expressions) gamma

(expressions_ variability encoding.pvs, line 62)
Definition 32 (Variability encoding of expressions) var_encoded_annotative_evaluation_factory

(expressions_ variability encoding.pvs, line 91)

https://github.com/thiagomael/rome-specs/blob/master/compositional_expressions_evaluation.pvs#L33
https://github.com/thiagomael/rome-specs/blob/master/rome.pvs#L76
https://github.com/thiagomael/rome-specs/blob/master/rome.pvs#L84
https://github.com/thiagomael/rome-specs/blob/master/PMC_variability_encoding.pvs#L315
https://github.com/thiagomael/rome-specs/blob/master/PMC_variability_encoding.pvs#L333
https://github.com/thiagomael/rome-specs/blob/master/PMC_variability_encoding.pvs#L349
https://github.com/thiagomael/rome-specs/blob/master/PMC_variability_encoding.pvs#L360
https://github.com/thiagomael/rome-specs/blob/master/expressions_variability_encoding.pvs#L11
https://github.com/thiagomael/rome-specs/blob/master/expressions_variability_encoding.pvs#L27
https://github.com/thiagomael/rome-specs/blob/master/expressions_variability_encoding.pvs#L62
https://github.com/thiagomael/rome-specs/blob/master/expressions_variability_encoding.pvs#L91

V61

Table C.2: Mapping between the manual and the mechanized specifications (continued)

Manual

Mechanized

Theorem 9 (Soundness of variability encoding for expressions)
Strategy 7 (Feature-family-product-based analysis)

Theorem 10 (Soundness of feature-family-product-based analysis)
Lemma 9 (Existence of minimal PMCs)

Lemma 10 (Existence of maximal PMCs)

Lemma 11 (Derivation by composition terminates)

Lemma 12 (Compositional evaluation terminates)

Definition 33 (Compositional PMC renaming)

Definition 34 (Total PMC composition)

Lemma 13 (r-equivalence of total composition and evaluation)

Corollary 1 (r-equivalence of total composition with DTMCs and

evaluation)

expressions_variability_encoding_soundness
(expressions_ variability encoding.pvs, line 131)
feature_family_product_based_analysis
(rome.pvs, line 95)
feature_family_product_soundness
(rome.pvs, line 102)

minimal_exists, minimal_empty_vars
(compositional PMC order.pvs, line 21)
maximal_exists
(compositional PMC order.pvs, line 33)
termination TCC for composition_factory
(compositional reliability models.pvs, line 23)
termination TCC for compositional_evaluation_factory
(compositional reliability models.pvs, line 57)
renaming?

(PMC _renaming.pvs, line 45)

compose

(PMC _ composition.pvs, line 542)
r_equivalence_composition_evaluation
(PMC _r_equivalence.pvs, line 123)
r_equivalence_composition_with_DTMC

(PMC _r_equivalence.pvs, line 147)

https://github.com/thiagomael/rome-specs/blob/master/expressions_variability_encoding.pvs#L131
https://github.com/thiagomael/rome-specs/blob/master/rome.pvs#L95
https://github.com/thiagomael/rome-specs/blob/master/rome.pvs#L102
https://github.com/thiagomael/rome-specs/blob/master/compositional_PMC_order.pvs#L21
https://github.com/thiagomael/rome-specs/blob/master/compositional_PMC_order.pvs#L33
https://github.com/thiagomael/rome-specs/blob/master/compositional_reliability_models.pvs#L23
https://github.com/thiagomael/rome-specs/blob/master/compositional_reliability_models.pvs#L57
https://github.com/thiagomael/rome-specs/blob/master/PMC_renaming.pvs#L45
https://github.com/thiagomael/rome-specs/blob/master/PMC_composition.pvs#L542
https://github.com/thiagomael/rome-specs/blob/master/PMC_r_equivalence.pvs#L123
https://github.com/thiagomael/rome-specs/blob/master/PMC_r_equivalence.pvs#L147

G6T

Table C.2: Mapping between the manual and the mechanized specifications (continued)

Manual Mechanized

Definition 35 (ITE operator for PMCs) ite
(PMC _ variability encoding.pvs, line 227)

https://github.com/thiagomael/rome-specs/blob/master/PMC_variability_encoding.pvs#L227

Table C.3: Categories of proof commands

Category Occurrences | % of total
Definitions 8,600 31.51
Quantifier 4,527 16.59
Type Constraints 3,612 13.23
Propositional 2,872 10.52
Lemmas 2,032 9.28
Decision Procedures 2,347 8.60
Structural 1,425 5.22
Equality 584 2.14
TCC 372 1.36
Extensionality 313 1.15
Induction 66 0.24
Control 21 0.08
Annotation 17 0.06
Algebraic manipulation 3 0.01
Rewrite Rules 1 0.00
Table C.4: Proof commands

Command Occurrences | Category

expand 7,300 | Definitions

skeep 3,130 | Quantifier

assert 2,115 | Decision Procedures

typepred 1,564 | Type Constraints

flatten 1,499 | Propositional

expand*® 1,300 | Definitions

use 1,144 | Lemmas

inst 1,132 | Quantifier

rewrite (typepred) 997 | Type Constraints

hide 979 | Structural

split 979 | Propositional

rewrite (sequent formula) 946 | Type Constraints

rewrite (lemma) 789 | Lemmas

hide-all-but 384 | Structural

replace 377 | Equality

subtype-tcc 286 | TCC

lemma 285 | Lemmas

inst (lemma) 278 | Lemmas

grind 187 | Decision Procedures

196

Table C.4: Proof commands (continued)

Command Occurrences | Category

inst-cp 179 | Quantifier

lift-if 172 | Propositional
replace-extensionality 150 | Extensionality

case 147 | Propositional
decompose-equality 145 | Extensionality
case-replace 129 | Equality

replace (typepred) 105 | Type Constraints
skolem 68 | Quantifier

beta 66 | Equality

iff 63 | Propositional

reveal 59 | Structural

induct 51 | Induction
termination-tcc 36 | TCC

forward-chain 36 | Lemmas

ground 27 | Decision Procedures
judgement-tce 21 | TCC

postpone 21 | Control
apply-extensionality 18 | Extensionality
comment 17 | Annotation

simplify 12 | Decision Procedures
assuming-tcc 12 | TCC

skosimp* 10 | Quantifier

prop 9 | Propositional
measure-induct-+ 8 | Induction

tce 8 | TCC

rule-induct 6 | Induction

name 6 | Equality
name-replace 5 | Equality

instantiate 4 | Quantifier
cond-coverage-tcc 4 | TCC

case™ 3 | Propositional

smash 3 | Decision Procedures
both-sides 3 | Decision Procedures
copy 3 | Structural
existence-tcc 3| TCC

197

Table C.4: Proof commands (continued)

Command Occurrences | Category

generalize 2 | Quantifier

swap-rel 2 | Algebraic manipulation
cond-disjoint-tcc 2| TCC
generalize-skolem-constants 1 | Quantifier

skosimp 1 | Quantifier
install-rewrites 1 | Rewrite Rules

replace™ 1 | Equality
induct-and-simplify 1 | Induction

mult-ineq 1 | Algebraic manipulation

198

Table C.5: PVS specification and coverage of the original theory

PVS Theory Mechanized | Original | Original
Theorems Theorems| Definitions
PMC _composition 200 0 2
PMC _variability _encoding 152 2 3
PMC 118 2 3
PMC _renaming 84 0 1
DTMC 81 0 1
compositional PMC 62 0 2
rational expressions 62 0 0
PMC _r_equivalence 59 2 0
parametric_transition matrices 28 0 0
finite sets aux 39 0 0
expressions_ variability encoding 27 2 3
rome 26 5) 7
compositional expressions evaluation 22 2 1
expression _ lifting 22 1 1
list aux 20 0 0
annotative PMC 14 0 1
annotative expressions evaluation 10 2 0
real ADD 10 0 0
compositional reliability models 10 2 4
well founded lemmas 9 0 0
maybe real 9 0 0
infinite set lemmas 9 0 0
compositional PMC order 8 2 2
compositional reliability models lemmas 6 0 0
list map aux 6 0 0
variability aware expression evaluation bt 1 2
finite set lemmas D 0 0
annotative reliability models 4 1 1
transition matrices sum 4 0 0
SPL 3 0 0
compositional PMC sets 3 0 1
transition matrices map 3 0 0
compositional factory restrict 2 0 0
SPL _reliability 2 0 3
real transition matrices 2 0 0
transition matrices 1 0 0
states 1 0 0
ADD_ops 0 0 0
ADD _def 0 0 0
SPL_expression _evaluation 0 0 1

199

Appendix D

Theory Dependencies

This appendix is a compilation of dependency graphs for the main theorems presented
in this work. We believe that, alongside Figure 3.7, the diagrams presented here may be
useful to researchers seeking to adapt or generalize our theoretical results.

The dependency graphs are depicted in diagrams where nodes represent theory ele-
ments (i.e., theorems, lemmas and definitions), while edges denote the source element
depends on the target element. Dependencies indicate that the statement of the element
at hand makes use of other definitions, or that its proof (if it is a theorem or lemma)
relies on the element on which it depends. Element names are colored according to their

types: theorems are cyan, are green, and definitions and properties are red.

200

10¢

Soundness o

frature family-
product-based

Variability en-
coding of PMICs

based analysi
ature family- Sounduess of
- product-based varability encodin

for expressions

analysis

Varialility en-

coding func-
tion for PMICs

Product-based
analysis of com-

positional mod

Sonndues of Sonndues of
expesson evab expresion eval
wation g
\“ I Feature-product-
ils
equivalence o

Fauily-product-
based avalysis

TTE operator

Sounduess of
e Product-based o Faniy-based . Feature-family- ‘H ialil e
based analysis 0 8 aualysis of an- S analysis based analysis S X
l nuotat 10 dels notative models terminat o factor
Y < »—4"
Derivation by ‘fﬁ;;‘:’;'\;”“““;y i " Nou-parametric Expression I
for PMCs composition 8 fun ¥ ‘model checking evahuation
. for expressions

Parametric
‘moded checking

State elimi- Tot
uation step

G

composition

Aunotative
ITE operater

for oxpressions

g Variabily-

Compositiona) 3 Lified evau-

probabifstic modebaluation fctory PTNC detvation Expression ing - avare expres 5, 1ty
sion evauation

Reachabiy

‘pmobabiiy

for DTMCs

Lifted conpo-
sitioml evd

ation factory
Compositona
PAC renaming

=
Evalustion fctory

Compositional
probabistic model

Expression
evabuation

Dependency re-
ation indueed
i composi-

tional PMCs

Well-defined

evaluation

Kentifying function. 0P8
s factory

Compositional
PMC

Presence function

Amnotative PMC

N

Parametric
Markov Chain

Figure D.1: Overall theory structure

¢0¢

ITE operator
for PMCs

Variability en-

Variability en- State elimi-
coding of PMCs nation step

Product-based
coding func- analysis of com-

tion for PMCs positional models

N

Feature-family-
product-based
analysis

Derivation by
composition

Total PMC
composition

Variability encod-
ing of expressions

Variability en-
coding function
for expressions

Product-based
analysis of an-
notative models

Compositional
PMC renaming

Feature-product- Family-product- Family-based ~ Feature-family-
based analysis based analysis analysis based analysis

AN i —T
~_— /V 7L
Compositional ITE operator Expression Parametric Annotative Lifted evalu-
probabilistic model for expressions evaluation model checking probabilistic model ation factory

Lifted compo-
sitional evalu-
ation factory

Variability-
aware expres- Expression lifting,
sion evaluation

Compositional
evaluation factory

Dependency re-
ation induce o . Composition
lation induced pqqpieving function v
in compo factory
tional PMC:s

Presence function Evaluation factory

Compositional
PMC

evaluation

‘Well-defined

Annotative PMC N
evaluation

Parametri
Markov

Figure D.2: Overall theory structure (only definitions)

Non-parametric

DTMG derivation ;461 checking

Reachability
probability
for DTMCs

€0¢

r-equivalence of Soundness of .
variability encoding somnlness Soundness of Compositional

feature-family- " Derivation by com- Existence of
oL of family- feature-family- evaluation N . o
and derivation product-based) position terminates minimal PMCs
. based anal; sis based analysis
by composition

terminates
M ana ‘ Sls

. Soundness of Soundness of ~ Soundness of Soundness of Soundness of
| r-eq}m TTE family-product- feature-product- expression eval- expression eval- variability encoding
e based analysis based analysis uation using p uation using ¢ for expressions

N

Soundness of Soundness of lifted Extensional
variability-
compositional equality for

r-equivalence of

.. Commutativity of Soundness of
total composition :

PMC and expres- lifted annotative

Evaluation well-
definedness for

annotative models ik DTM_CS sion evaluations evaluation factory ;.;Lware EXPIS- o valuation factory expression ITE
and evaluation sion evaluation /
r-equivalence of Parametric
. e Soundness of
total composition probabilistic reach- R
_ o expression lifting
and evaluation ability soundness

Figure D.3: Overall theory structure (only theorems and lemmas)

70¢

Soundness of
family-product-
based analysis

Evaluation well-
definedness for
annotative models

N

Expression Annotative

Product-based
analysis of an-
notative models

Commutativity of
PMC and expres-
sion evaluations

Family-product-
based analysis

Parametric
probabilistic reach-
ability soundness

Parametric
model checking

Non-parametric

model checking DTMC derivation

\ evaluation probabilistic model

Reachability
probability Evaluation factoryPresence function Annotative PMC Well—deﬁned
for DTMCs evaluation

Expression Parametric
evaluation Markov Chain

Figure D.4: Dependencies for Theorem | (Soundness of family-product-based analysis)

¢0¢

Soundness
of family-
based analysis

Soundness of
family-product-
based analysis

an

Commutativity of Evaluation well- Product-based
PMC and expres- definedness for analysis of an-
sion evaluations annotative models notative models

Soundness of
expression eval-
uation using p

Soundness of
variability-

Soundness of
lifted annotative

Family-product-

Family-based
based analysis

analysis aware expres-
o evaluation factory WVar® eXP!

RV ““‘ A 5 / \\

Parametric
model checking

. Parametric . Variability-
Non-parametric probabilistic reach Annotative Expression V N
model checking

DTMC derivation probabilistic model evaluation Expression lifting

Soundness of Lifted evalu-

bility sound expression lifting ation factory
ability soundness

aware expres-
sion evaluation

Reachability

probability Well-defined

provaniity evaluation Annotative PMC

Parametric
Markov Chain

\

Presence function Evaluation factory

Expression
evaluation

Figure D.5: Dependencies for Theorem 4 (Soundness of family-based analysis)

902

Soundness of
feature-product-
based analysis

Commutativity of Product-based
analysis of com-
positional models

Feature-product-
based analysis

Compositional
evaluation factory

Derivation by
composition

Non-parametric
" model checking

Expression Parametric
model checking

Evaluation factory

tal
Rnaiha'l?lﬂ:,\' Total PMC State elimi- Expression
probabili composition nation step evaluation
for DT

Compositional
PMC renaming

Compositional
probabilistic model

Dependency re-
lation induced
in composi-
tional PMCs

Composition

ioddentifying function
Presence functiod g factory

I

Compositional
PMC

Annotative PMC

/

Parametric
Markov Chain

Figure D.6: Dependencies for Theorem 5 (Soundness of feature-product-based analysis)

20¢

Tatal PMC
compasition

State climi-

nation step

Presence function

Annotative PMC

Figure D.7: Dependencies for Theorem 7 (Soundness of feature-family-based analysis)

802

probability
for DTMCs

Figure D.8: Dependencies for Theorem 10 (Soundness of feature-family-product-based analysis)

	Dedication
	Acknowledgements
	Epigraph
	Resumo Expandido
	Abstract
	List of Figures
	List of Tables
	List of Definitions
	List of Theorems
	Acronyms
	Introduction
	Problem Statement
	Solution
	Summary of Contributions
	Outline

	Background
	Software Product Lines
	Main Concepts
	Variability Implementation
	Product-Line Analysis

	Reliability Analysis
	Parametric Markov Chains
	Parametric Probabilistic Reachability

	Algebraic Decision Diagrams
	PVS

	Commuting Strategies for Product-line Reliability Analysis
	DTMC Models of Product Lines
	Annotative Models
	Compositional Models

	Reliability Analysis Strategies
	Product-based Strategies
	Family-based Strategies
	Feature-based Strategies
	Bridging Compositional and Annotative Models
	Feature-family-product-based Strategy

	Concluding Remarks

	Formalization in PVS
	Specification Strategy
	Walk-through
	Foundations
	Family-product-based Strategy
	Family-based Strategy
	Feature-based Strategies
	Variability-encoding

	Mechanization Effort
	Distribution of Lemmas
	Origin of Lemmas
	Proof Automation
	Theory Evolution

	Lessons Learned
	Limitations and Threats to Validity
	Axioms
	Unfinished Mechanized Proofs

	Conclusions
	Discussion of Results
	Threats to Validity
	Related Work
	Future Work

	Bibliography
	Acronyms
	Additional Proofs
	Existence of Minimal and Maximal PMCs
	Termination Lemmas
	Soundness of Feature-product-based Analysis
	Lifting Lemmas
	Variability Encoding
	Variability Encoding of PMCs
	Variability Encoding of Expressions

	Probabilistic Models
	Mechanization Mapping
	Theory Dependencies

