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Resumo Expandido

Engenharia de linha de produtos de software é uma forma de gerenciar sistematicamente

a variabilidade e a comunalidade em sistemas de software, possibilitando a síntese auto-

mática de programas relacionados (produtos) a partir de um conjunto de artefatos reuti-

lizáveis. No entanto, o número de produtos em uma linha de produtos de software pode

crescer exponencialmente em função de seu número de características. Mesmo linhas de

produtos com dezenas ou centenas de opções de con�guração (features) podem dar ori-

gem a milhões de produtos, tornando inviável veri�car a qualidade de cada um desses

produtos isoladamente. Não obstante, linhas de produtos de software crítico (por exem-

plo, nos domínios de aviação e sistemas médicos) necessitam garantir que seus produtos

são con�áveis.

Existem diversas abordagens cientes de variabilidade para análise de linha de produ-

tos, as quais adaptam técnicas de análise de produtos isolados para lidar com variabilidade

de forma e�ciente. Tais abordagens podem ser classi�cadas em três dimensões de aná-

lise: product-based (os objetos de análise são produtos ou modelos destes), family-based

(apenas artefatos de domínio e combinações válidas são veri�cados) e feature-based (arte-

fatos de domínio que implementam uma dada feature são analisados isoladamente) [85].

Mais de uma dimensão pode ser combinada em uma mesma técnica, dando origem a

análises feature-family-based (features são parcialmente analisadas isoladamente, depois

combinam-se os resultados intermediários de maneira family-based) ou family-product-

based (artefatos de domínio são parcialmente analisados considerando-se apenas con�-

gurações válidas, culminando em resultados que podem, então, ser submetidos a análise

enumerativa), por exemplo.

Essas estratégias combinadas possuem vantagens e desvantagens distintas, as quais

variam de acordo com a técnica de análise em questão. Por esse motivo, há estudos

empíricos que avaliam as relações de compromisso especí�cas a cada técnica [49, 54, 59, 92].

Além disso, a utilização correta e automática (ou mesmo sistemática) de técnicas para

análise de software consagradas em linhas de produtos ainda é uma questão de pesquisa

não respondida. Assim, a corretude de técnicas para análise de linhas de produtos precisa

ser demonstrada caso a caso.
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Abordagens existentes para análise de linhas de produtos frequentemente estendem

técnicas de análise de software tradicionais (ou seja, aplicáveis a produtos independentes)

para operar em linhas de produtos de maneira family-based [14, 19, 34, 62, 91]. Então,

demonstra-se a corretude de tais abordagens por comparação à estratégia product-based

correspondente. No contexto de análise de con�abilidade, particularmente, não existe uma

teoria que compreenda (a) uma especi�cação formal das três dimensões e das estratégias

de análise resultantes e (b) prova de que tais análises são equivalentes umas às outras. A

falta de uma teoria com essas propriedades di�culta que se raciocine formalmente sobre

o relacionamento entre as dimensões de análise e técnicas de análise derivadas.

De fato, é fundamental provar que um método de análise produz resultados corretos,

especialmente para sistemas críticos. Por exemplo, Lanna et al. [54] propuseram uma

estratégia feature-family-based para análise de con�abilidade de linhas de produtos sob o

ponto de vista do usuário. Essa abordagem foi avaliada empiricamente, e os resultados

indicam que possui melhor desempenho que as técnicas previamente existentes, tanto em

relação ao tempo quanto ao uso de memória. Particularmente no caso de uma linha de

produtos crítica de redes de sensores do corpo humano [70] (com 16 features e 298 con�-

gurações possíveis), observou-se que a maior parte das estratégias existentes seria inviável

se mais que 5 novas features fossem adicionadas em versões futuras [54]. Entretanto, a

falta de evidência de que as diferentes estratégias são mutuamente equivalentes limita os

resultados desses estudos empíricos existentes.

Para ajudar a preencher essa lacuna, este trabalho investiga a corretude das estratégias

de análise avaliadas por Lanna et al. [54]�ou seja, técnicas de análise de con�abilidade

orientada ao usuário, que operam a partir de técnicas de model checking aplicadas a mo-

delos baseados em cadeias de Markov de tempo discreto (Discrete-time Markov Chains�

DTMC). Correspondentemente, utilizamos uma de�nição de con�abilidade como a proba-

bilidade de execuções dos modelos em questão alcançarem estados que denotam sucesso.

Embora tais modelos não sejam genéricos a ponto de representar qualquer sistema, eles as-

sumem premissas que contemplam linhas de produtos de interesse, como redes de sensores

do corpo humano.

Nesse contexto, formalizamos sete abordagens para análise de con�abilidade em linhas

de produtos, cobrindo todas as três dimensões de análise e incluindo a primeira instância

de análise feature-family-product-based na literatura [15]. Provamos que as estratégias for-

malizadas são corretas em relação à abordagem para análise de con�abilidade de produtos

individuais, fortalecendo as comparações empíricas entre elas. Desse modo, engenheiros

podem escolher a estratégia mais apropriada à linha de produtos em questão, seguros de

sua corretude.
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A formalização aqui apresentada parte de uma caracterização matemática de mode-

los de linhas de produtos composicionais como um conjunto �nito de modelos de linhas

de produtos anotativas, o qual é dotado de uma estrutura conferida por uma relação

bem-fundada de dependência entre os modelos. Tendo modelos composicionais ou ano-

tativos, pode-se optar por derivar modelos sem variabilidade (representando produtos

individuais), cuja con�abilidade é, então, calculada por meio de model checking. Alter-

nativamente, pode-se aplicar model checking paramétrico, o que resulta em expressões

algébricas que representam a con�abilidade dos modelos em função das opções de con�-

guração. As expressões resultantes podem ser valoradas de forma enumerativa (ou seja,

para cada con�guração possível); como alternativa, podemos ressigni�car a semântica das

expressões (lifting) para trabalhar com diagramas de decisão algébricos (Algebraic De-

cision Diagrams�ADD). Utilizando ADD, é possível realizar e�cientemente operações

aritméticas cuja semântica equivale a enumerar todas as con�gurações possíveis.

DTMC
Modelo

composicional
Modelo
anotativo

Con�abilidade
Expressões

composicionais
Expressão
anotativa

ADD de
con�abilidade

Expressões
composicionais
ressigni�cadas

Expressão
anotativa

ressigni�cada

derivação derivação

codi�cação de variabilidade

model checking

paramétrico
model checking

paramétrico

model

checking

valoração valoração

codi�cação de
variabilidade

ressigni�cação
para ADDs

ressigni�cação
para ADDs

semântica
de ADD

valoração
usando
ADDs

valoração
usando
ADDs

feature-based

family-based

product-based

Figura 1: Diagrama comutativo de estratégias para análise de con�abilidade em linhas de
produtos (versão resumida)

Adicionalmente, apresentamos essas opções alternativas em um diagrama comutativo

de passos intermediários de análise (Figura 1), o qual relaciona estratégias diferentes e per-

mite reusar demonstrações de corretude entre elas. Tal diagrama representa gra�camente

as possíveis composições de funções, ilustrando objetivamente a dimensão de análise de

linha de produtos utilizada (por meio da cor e da forma das setas). Essa visão contribui

para uma compreensão mais abrangente sobre os princípios subjacentes às estratégias, o
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que visualiza-se poder ajudar outros pesquisadores a alçar técnicas de análise de software

para abordagens cientes de variabilidade ainda inexploradas.

Além disso, reduzimos o risco de erro humano por meio da mecanização da teoria resul-

tante no provador interativo de teoremas chamado PVS (Prototype Veri�cation System).

Essa ferramenta permite a especi�cação formal de de�nições, lemas e teoremas, além de

possibilitar automação e veri�cação das demonstrações. Como resultado do esforço de

mecanização, identi�camos erros e imprecisões na versão manualmente especi�cada de

nossa teoria, os quais foram consequentemente corrigidos.

Com isso, além de aumentar a con�ança na corretude de nossos resultados, disponi-

bilizamos uma teoria veri�cada por máquina potencialmente reutilizável. Em particular,

parte das especi�cações e teoremas desenvolvidos em PVS referem-se a tópicos de interesse

mais amplo, como DTMC, expressões algébricas, ADD, conjuntos e listas; portanto, estão

em processo de submissão para análise e integração à biblioteca PVS da NASA. Ademais,

documentamos as lições aprendidas durante o processo de mecanização, as quais serão

submetidas à apreciação da comunidade cientí�ca.

Em adição às contribuições aqui apresentadas, espera-se que este trabalho, em longo

prazo, apoie a construção do arcabouço para uma teoria geral de análise em linhas de

produtos. Dessa forma, almeja-se contribuir para o problema mais amplo de alçar téc-

nicas de análise de software para operar em linhas de produtos de maneira correta por

construção.

Palavras-chave: Linhas de produtos de software, Análise de con�abilidade, Model chec-

king, Veri�cação formal, Prova interativa de teoremas
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Abstract

Software product line engineering is a means to systematically manage variability and

commonality in software systems, enabling the automated synthesis of related programs

(products) from a set of reusable assets. However, the number of products in a software

product line may grow exponentially with the number of features, so it is practically

infeasible to quality-check each of these products in isolation. Nonetheless, product lines

of safety-critical software (e.g., in the domains of avionics and medical systems) need to

ensure that its products are reliable.

There are a number of variability-aware approaches to product-line analysis that adapt

single-product analysis techniques to cope with variability in an e�cient way. Such ap-

proaches can be classi�ed along three composable analysis dimensions (product-based,

family-based, and feature-based), but, particularly in the context of reliability analysis,

there is no theory comprising both (a) a formal speci�cation of the three dimensions and

resulting analysis strategies and (b) proof that such analyses are equivalent to one an-

other. The lack of such a theory hinders formal reasoning on the relationship between

the analysis dimensions and derived analysis techniques. Moreover, as long as there is

no evidence that the di�erent examined strategies are mutually equivalent, the existing

empirical studies comparing them will have limited results.

To address this issue, we formalize seven approaches to user-oriented reliability analysis

of product lines, covering all three analysis dimensions and including the �rst instance of a

feature-family-product-based analysis in the literature. We prove the formalized analysis

strategies to be sound with respect to reliability analysis of a single product, thereby

strengthening the existing empirical comparison between them.

Furthermore, we present a commuting diagram of intermediate analysis steps, which

relates di�erent strategies and enables the reuse of soundness proofs between them. Such

view contributes to a more comprehensive understanding of underlying principles used

in these strategies, which we envision could help other researchers to lift existing single-

product analysis techniques to yet under-explored variability-aware approaches.

Additionally, we reduce the risk of human error by mechanizing the resulting theory

in the PVS interactive theorem prover. As a result, we identi�ed and corrected errors and
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imprecisions of the handcrafted version. Hence, we document lessons learned throughout

the mechanization process and provide a potentially reusable machine-veri�ed theory.

Keywords: Software product lines, Reliability analysis, Model checking, Formal veri�ca-

tion, Interactive theorem proving
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Chapter 1

Introduction

Software product line engineering is a means to systematically manage variability and

commonality in software systems, enabling the automated synthesis (derivation) of related

programs (known as variants or simply products) from a set of reusable assets (known

as domain artifacts) [3, 25, 73]. In a product line, variability is modeled in terms of

features, which are distinguishable characteristics that are relevant to stakeholders of the

system [26]. This methodology improves productivity and time-to-market, and it eases

mass customization of software [73].

In recent years, product lines have been widely applied in both industry [8, 10, 45, 87,

89, 92, 94] and academia [3, 25, 35, 44, 73, 95], in particular to safety- and mission-critical

systems [32, 33, 53, 76, 94]. Model checking is of particular interest to quality assurance

of such systems. It is a veri�cation technique that explores all possible system states in

a systematic manner, e�ectively checking that a given system model satis�es a certain

property [7]. Among the existing quality properties, this work focuses on user-oriented

reliability, which is informally de�ned as the probability that the system will give the

correct output in response to a typical set of input data [18].

However, the number of products in a product line may grow exponentially with

the number of features, giving rise to an exponential blowup of the con�guration space

[3, 12, 22, 23]. The Linux kernel, for instance, has approximately 10,000 con�guration

options (i.e., features) [3]. Indeed, even smaller product lines, with tens to hundreds

of features, may have millions of possible con�gurations [54], so it is often infeasible to

quality-check each of these products in isolation. Nonetheless, product lines of safety-

critical software (e.g., in the domains of avionics and medical systems) need to ensure

that its products are reliable.

Since software veri�cation techniques for the single-product case are widely used by

the industry, it is bene�cial to exploit their maturity to increase quality while reducing

cost and risk [7]. Accordingly, a number of approaches to product-line analysis adapt
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established analysis techniques�e.g., type checking, data-�ow analysis, control-�ow anal-

ysis, and theorem proving�to cope with variability [85]. In particular, several model

checking techniques have been successfully lifted to operate on product lines [19, 21, 23,

24, 34, 51, 82, 85], some of which explicitly consider reliability as a probabilistic prop-

erty [36, 54, 64, 76].

Such product-line analyses can be classi�ed along three dimensions: product-based

(the analysis is performed on generated products or models thereof), family-based (only

domain artifacts and valid combinations thereof are checked), and feature-based (domain

artifacts implementing a given feature are analyzed in isolation, regardless of their valid

combinations) [85]. More than one dimension can be exploited in a given technique,

giving rise to feature-family-based analyses (features are partially analyzed in isolation

and then the intermediate results are combined in a family-based fashion) and family-

product-based analyses (domain artifacts are partially analyzed considering only valid

con�gurations, yielding a result that is prone to enumerative analysis), for instance.

These combined strategies have advantages and disadvantages, but the compromises

are speci�c to each technique. Thus, empirical studies assess the actual trade-o�s of

di�erent strategies in concrete usage scenarios [49, 54, 59, 92]. Moreover, it is still an

open research question to perform automated (or even systematic) lifting of standard

analysis techniques to correctly operate on product lines. Therefore, the soundness of

proposed techniques must be proved for each case.

1.1 Problem Statement

The existing approaches to product line analysis often lift standard (single-product) anal-

ysis techniques to work with product lines in a family-based fashion [14, 19, 34, 62, 82, 91].

Soundness of these approaches is then demonstrated by comparison to the corresponding

product-based strategy. In the context of reliability analysis, particularly, there is no

theory comprising both (a) a formal speci�cation of the three dimensions and resulting

analysis strategies and (b) proof that such analyses are equivalent to one another (i.e.,

they compute the same reliability). The lack of such a theory hinders formal reasoning

on the relationship between the dimensions and derived analyses.

Indeed, proving that an analysis method yields a correct result is a fundamental issue,

especially for critical systems. For instance, Lanna et al. [54] proposed a feature-family-

based strategy to user-oriented reliability analysis of product-lines. This approach was

empirically assessed, and the results indicate that the proposed technique outperforms

the existing ones with respect to both elapsed time and memory usage. Speci�cally for a

safety-critical product line of body-sensor networks [70] (with 16 features and 298 possible
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con�gurations), Lanna et al. [54] found that most existing strategies would not be feasible

if more than 5 new features were added in future versions. However, as long as there is no

evidence that the di�erent examined strategies are mutually equivalent, empirical studies

comparing them will have limited results.

Furthermore, this problem is also relevant in a broader context: is there a principle

and possibly automated way to lift a given speci�cation and analysis technique to product

lines [85]? Answers to that question may bring the ability to derive product-line analysis

techniques that are correct by construction. On the other hand, we believe that such a

broad investigation could bene�t from having a corpus of speci�c theories, each relating

all three analysis dimensions with regard to a single analysis technique.

1.2 Solution

In this work, we constrain our investigation to the analysis strategies assessed by Lanna

et al. [54]�that is, we examine the correctness of product-line analysis techniques that

are based on Discrete-time Markov Chain (DTMC) models of user-oriented reliability

analysis [18].1 This way, we aim to tackle the issue of not having correctness proofs about

a speci�c kind of analysis.

Research Question

In the context of user-oriented product-line reliability analysis speci�ed by means

of DTMC models, is it true that di�erent analysis strategies yield equivalent results

for any given product line?

This question was partially answered with our previous work [16], which formally

related di�erent strategies in the product-based and family-based dimensions of product-

line analysis, providing analytical evidence that they commute. Moreover, the formal-

ized strategies were implemented2 as a product line of product-line analysis tools, called

ReAna-SPL [54] (publicly available at https://github.com/SPLMC/reana-spl), which

also extended the set of supported strategies with one feature-product-based and one

feature-family-based. The latter work found empirical evidence that the strategies com-

mute.

This work leverages the aforementioned results to also cover the feature-based dimen-

sion, reusing de�nitions and theorems as much as possible. The key to achieving this reuse
1Such models are not general enough to represent any given system, but their assumptions are rea-

sonable for some product lines of interest (e.g, a body-sensor network) [18, 54].
2As of now, it is an open issue to formally relate the existing implementation to the mathematical

speci�cation. Nevertheless, such correspondence is outside the scope of this work.
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was to mathematically characterize a compositional model as a �nite set of annotative

models, along with an associated structure denoted by a well-founded dependency relation

(more details on this are presented in Section 3.1). Furthermore, we employ Algebraic

Decision Diagrams [6] to encode the variability in algebraic expressions in a way that

optimizes arithmetic operations.

Based on the product-line analysis taxonomy proposed by Thüm et al. [85], we now

present a formalization of a total of seven approaches to reliability analysis of product

lines: two product-based, a family-based, a family-product-based, a feature-family-based,

a feature-product-based, and a feature-family-product-based. In particular, the latter of

these is the �rst approach to combine all three dimensions in a single strategy.3 This

formalization, which covers all three product-line analysis dimensions, provides analytical

evidence that the strategies yield the same result for any product line within our context.

Thus, a practitioner can choose among the existing strategies the one that is more suitable

to the product line at hand.

DTMC
Compositional

model
Annotative

model

Reliability
Compositional
expressions

Annotative
expression

Reliability
ADD

Compositional
lifted expressions

Annotative
lifted expression

derivation derivation

variability encoding

parametric
model checking

parametric
model checking

model
checking

evaluation evaluation

variability
encoding

expression
lifting to ADDs

expression
lifting to ADDs

ADD
semantics

evaluation
using ADDs

evaluation
using ADDs

feature-based
family-based
product-based

Figure 1.1: Overview of the commutative diagram of product-line reliability analysis
strategies

3Thüm et al. [85] proposed that a feature-family-product-based analysis strategy would be possible,
but the survey performed in their work did not �nd an instance of such strategy in the literature. To the
best of our knowledge, no other work proposed a strategy in this category since then.
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Figure 1.1 provides an overview of our commutativity results. We consider DTMC

models of user-oriented software reliability with added support for either compositional

or annotative variability [3] (upper left and upper right corners, respectively). Given a

variability-enhanced reliability model of either kind, one can follow any of the outgoing

arrows while performing the respective analysis steps (abstracted as functions), until relia-

bilities are computed (either Real-valued reliabilities or an ADD representing all possible

values). These analysis steps can be feature-based (green solid arrows), product-based

(blue dotted arrows), or family-based (red dashed arrows), covering all three product-line

analysis dimensions. Thus, the arrows form an �analysis path� (a function composition)

which de�nes the employed analysis strategy.

To further increase the evidence on the soundness of our commutativity theory, we

mechanized our speci�cation using the PVS proof assistant [67]. Lemmas and theorems

were also speci�ed and proved using PVS, which checks proofs and provides commands

that automate some of their repetitive parts. This formalization of our theory in PVS

allowed us to identify and correct some errors and imprecisions of the handcrafted version.

At the present moment, all elements (de�nitions, lemmas, and theorems) of the manual

speci�cation are fully mechanized, but the machine-veri�ed proofs of 5 of the new auxiliary

lemmas are still un�nished. Their correctness is manually argued, however.

We also present a report on the mechanization process, with the twofold purpose

of getting feedback on the resulting PVS speci�cation and sharing acquired knowledge

with fellow researchers. Moreover, we believe that this report may contribute to future

empirical studies over refactoring patterns and best practices regarding PVS speci�cation

and proofs.

1.3 Summary of Contributions

This work formally speci�es a theory of reliability analysis of software product lines.

Although our speci�cations have been developed to model an existing implementation [54],

the contributions presented here are mainly analytical, abstracting implementation details

and empirical assessment. Nonetheless, the core contribution of this work is a machine-

veri�ed proof that analysis strategies which have been empirically compared [54] are

indeed sound.

We present the following peer-reviewed results [15]:

1. The formalization of seven strategies for reliability analysis of software product

lines, covering all three analysis dimensions in the classi�cation by Thüm et al. [85]

(Section 3.2).
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2. A novel feature-family-product-based strategy for model checking of product lines

(Section 3.2.5). To the best of our knowledge, this is the �rst technique to combine

all three product-line analysis dimensions.

3. Proofs of commutativity between di�erent strategies (Section 3.2). This improves

the current understanding on how analysis strategies for product lines relate to one

another and establishes their soundness.

4. A commuting diagram of intermediate analysis steps (Figure 3.7), which relates

di�erent strategies and enables the reuse of soundness proofs between them.

5. A general principle for lifting analyses to product lines using algebraic decision

diagrams (Section 3.2.2, Theorem 2).

Furthermore, we provide the following unpublished contributions:

6. A mechanized speci�cation of our analysis strategies (https://github.com/

thiagomael/rome-specs), increasing the con�dence on the soundness of the for-

malized theory.

7. A report on the process of mechanizing the theory in PVS (Chapter 4), with the

goal of aiding researchers in the interactive theorem proving community.

Overall, the commuting diagram resulting from this work (see Figure 3.7 for a more

detailed view) presents reliability analysis steps in a compositional manner at a conceptual

level, showing how the di�erent types of product-line analyses compose and inter-relate

in that context. Such view allows the organization and structuring of facts (e.g., commu-

tativity of intermediate analysis steps) in a concise and precise manner, facilitating the

communication of ideas. This contributes to a more comprehensive understanding of un-

derlying principles used in these strategies, which we envision could help other researchers

to lift existing single-product analysis techniques to yet under-explored variability-aware

approaches.

We expect that, in the long term, the aforementioned contributions will be useful to

lay a framework for a general theory of product-line analysis. Thus, this work indirectly

contributes to the broader problem of lifting software analysis techniques to product lines.

1.4 Outline

This work is organized as follows:
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� Chapter 2 presents fundamental concepts that are necessary for the discussion. It

introduces software product lines and the corresponding analysis taxonomy, as well

as the parametric behavioral models and decision diagrams leveraged by our analysis

techniques. Additionally, it gives an overview of the PVS veri�cation system [67].

� Chapter 3 corresponds to the published results of our research [15]. It presents

our formalization of behavioral models for software product lines (Section 3.1), our

analysis strategies (Section 3.2), and a formulation of the soundness of these strate-

gies as theorems, along with corresponding proofs. To better illustrate the formal

concepts, we also provide a running example.

� Chapter 4 shows the most relevant aspects of the mechanized version of our theory.

This chapter also presents a discussion about the lessons learned in the process

of PVS speci�cation and computer-aided theorem proving. Last, we argue about

threats to the validity of our mechanized theory.

� Chapter 5 discusses our conclusions and threats to their validity, along with related

and future work.

� Appendix A presents the details of proofs that were summarized to improve the

readability of Chapter 3.

� Appendix B contains the probabilistic models used in our running example in their

entirety.

� Appendix C presents the correspondence between each element in the manual spec-

i�cation (Chapter 3) and its mechanized counterpart (Chapter 4). This appendix

also presents a description of our PVS theories and a diagram depicting the depen-

dencies between them.

� Appendix D is a compilation of dependency graphs for the main theorems presented

in this work. These diagrams have been used throughout our research to assess the

impact of changes, but they are also useful to visualize the relationship between the

elements in our theory.

Table 1.1 relates contributions to their corresponding location within this work.
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Table 1.1: Research outline

Contribution Location
Item 1 Chapter 3
Item 2 Section 3.2.5
Item 3 Section 3.2
Item 4 Figure 3.7
Item 5 Section 3.2.2
Item 6 Chapter 4
Item 7 Chapter 4

8



Chapter 2

Background

To better understand the problem and the proposed solution, it is useful to bear in mind

concepts regarding software product lines (Section 2.1), particularly software analysis

applied to product-line engineering (Section 2.1.3). Within this domain, this work focuses

on user-oriented reliability analysis based on probabilistic behavioral models (Section 2.2).

This chapter lays these conceptual foundations for our research. Furthermore, we

provide background on Algebraic Decision Diagrams (Section 2.3), since this type of data

structure plays an important role in our analysis techniques. Last, we provide an overview

of PVS, the interactive theorem prover used to create the machine-veri�ed version of our

theory (Section 2.4).

2.1 Software Product Lines

In the software industry, there are cases in which programs have to be adapted to di�erent

platform requirements, such as hardware or operating systems. For instance, di�erent

versions of an operating system can be created to cope with di�erent processor instruction

sets. These program variants can be functionally equal, but that is not always the case.

No version of our operating system can provide an interface to a graphics card if the host

computer does not have one.

At times, the creation of di�erent versions of a software is motivated by variant require-

ments. As an example, enterprise software can be subject to company-speci�c business

processes or even platforms (e.g., di�erent enterprise databases). In general, this tailoring

of software to customer needs, known as customization, gives rise to as many coexisting

versions of a program as there are customers.

A possible approach to build such program variants is to develop each of them sep-

arately. Although this clone-and-own approach is sometimes used in practice [3], it is

time-consuming and error-prone. For instance, variants realized as separate copies of the
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source code can have inconsistent evolution of common functionalities, or a bug-�x in one

variant may not be propagated to the others.

An alternative approach is to view alternative programs that perform the same task,

or similar programs that perform similar tasks, as constituents of a program family [31].

Regarding similar programs as family members, instead of textual modi�cations of one

another, allows a view that they are modi�cations of a common ancestor. Such a view

has the goal to share code (and corresponding correctness proofs) between programs as

far as possible, and to ease their maintenance by isolating the parts that are inherently

di�erent.

A realization of the program family view, addressing the issues of the clone-and-own

approach, is the software product line approach: having a collection of reusable assets

from which variants are systematically (or even automatically) generated. The Linux

kernel, for instance, is managed according to this approach [80]. Its assets are C headers

and source �les, whose variability is handled by conditional compilation of certain code

regions�using CPP (C Preprocessor) directives. An utility tool is used to select the

desired functionality, from which corresponding CPP directives are evaluated and the

resulting processed source code is compiled, thereby yielding a custom Linux version.

Valid combinations of functionality are described in the Kcon�g language,1 to ensure

implementation consistency.

2.1.1 Main Concepts

A Software Product Line is de�ned as a set of software-intensive systems that share

a common, managed set of features satisfying the speci�c needs of a particular market

segment or mission and that are developed from a common set of core assets in a prescribed

way [25]. Thus, software product line engineering can be seen as the set of processes and

techniques used for systematically managing these common features, which provides for

improved quality, mass customization capability and reduced costs and time to market

[3, 73, 87].

The main concern in product-line engineering is managing variability, which is de�ned

by van Gurp et al. [88] as the ability to change or customize a system. To accomplish

this, it is useful to abstract variability in terms of features. The concept of a feature

encompasses both intentions of stakeholders and implementation-level concerns, and has

been subject to a number of de�nitions [3]. Synthetically, it can be seen as a characteristic

or end-user-visible behavior of a software system.

Features are used in product-line engineering to specify and communicate commonal-

ities and di�erences of the products between stakeholders, as well as to guide structure,
1https://www.kernel.org/doc/Documentation/kbuild/
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reuse, and variation across all phases of the software life cycle [3]. The features of a prod-

uct line and their relationships are documented in a feature model [26, 46], which can be

graphically represented as a feature diagram. Throughout this work, we focus on propo-

sitional feature models, that is, feature models whose semantics is based on propositional

logic. We also restrict our scope to �nite feature sets.

For a feature model FM , we denote its set of features by F . Each feature in this set has

a name; feature names are used as atomic propositions to express feature relationships

as propositional logic formulas. As an example, one can state f ⇒ g, meaning that,

whenever a product exhibits feature f, it must also provide feature g.

Figure 2.1 shows an example of propositional feature model, taken from the Body

Sensor Network (BSN) product line [76]. Each product of this product line is a network

of connected sensors that capture vital signs from an individual and send these signs to a

central system, which analyzes the data collected and identi�es critical health situations.

The Root feature is, by de�nition, present in all con�gurations. Its children are marked

as mandatory, meaning they must be present whenever its parent is selected. A child

feature could also be marked as optional, meaning it could be either present or absent in

any valid con�guration.

The domain-related features are grouped under Monitoring, which is further broken

down into mandatory features Sensor and SensorInformation. Sensor groups features

related to the available body sensors. These sensor-related features are OR-features,

meaning that at least one of them must be selected whenever their parent is selected,

but multiple selection is also allowed. The same happens for SensorInformation and its

children, but, since these features correspond to vital signs that result from processing

raw sensors data, we must be able to constrain their presence to the presence of the cor-

responding sensors. These crosscutting concerns are represented by cross-tree constraints

(below the feature model tree), which are propositional formulas relating features that

are not siblings in the diagram.

BSN's feature model also handles persistence of sensor data (Storage feature). The

supported media are SQLite or in-memory databases, represented by the features SQLite

and Memory, respectively. These features are marked as alternative, which means a BSN

system must support exactly one of them.

A given software system in a product line is referred to as a product and is speci�ed by

a con�guration, which is taken as input in the product generation process. A con�guration

is a selection of features respecting the constraints established by the feature model, and,

as such, is represented by a set of atoms: a positive atom denotes feature presence, whereas

a negative (or absent) atom denotes feature absence. We denote the set of con�gurations

over a feature set F as C. This set contains all 2|F | combinations of atomic propositions
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Figure 2.1: Feature model of the BSN product line [76]

regarding features, each of which must appear in either positive or negative form, but never

both. Valid con�gurations, that is, con�gurations that satisfy the constraints expressed

by the feature model FM , are denoted by JFM K ⊆ C. Each c ∈ JFM K speci�es the

features of a product of the product line.

In the BSN example, let c1 and c2 be such that:

c1 = {Root, Monitoring, Sensor, ACC, SensorInformation, Position, Storage, SQLite}

c2 = {Root, Monitoring, Sensor, EKG, SensorInformation, Position, Storage, SQLite}

Since both c1 and c2 are sets whose elements are in the feature set F , both are con�g-

urations (c1, c2 ∈ C). However, only c1 is a valid con�guration (c1 ∈ JFM K), since c2

does not satisfy the penultimate cross-tree constraint of the feature model in Figure 2.1

(c2 6|=
(
Position ⇒ ACC

)
). In other words, there is no use in generating a body sensor

network that is able to process accelerometer data to determine the patient's position,

and yet is not able to actually read the accelerometer.

In a product line, a product comprises a set of assets (e.g., source code �les, test cases,

documentation), which are derived from a common set known as the asset base. The

mapping between a given con�guration and the assets which compose the corresponding

product is called con�guration knowledge [26]. Such a con�guration knowledge may consist

of selecting source �les, for instance, but may also handle processing tasks over the selected

assets, such as running the C Preprocessor. The locations within the assets where variation

occurs are called variation points.

Given a con�guration, an asset base and a con�guration knowledge, the process by

which a product is built is called product derivation [3]. Actual behavior is included or

excluded from a generated product by means of presence conditions, which are proposi-

tional formulas over features [27]. For example, when variability is implemented by means

12



of CPP directives, as in the Linux kernel, such presence conditions may be realized using

Boolean logic operators over macros that correspond to features. The derivation process

then consists of mapping a con�guration to CPP macros, running CPP itself to test #if

and #ifdef directives against the given evaluation of macros, and then compiling the

preprocessed source code.

The use of arbitrary (not only atomic) propositions for presence conditions is a means

to switch behavior that is conditioned on more than one feature. To operationalize satis-

faction of presence conditions, we need to de�ne Boolean functions over feature selections.

Therefore, we de�ne an arbitrary (but �xed) total order of features by turning the set F

of features into a list. This way, we can unambiguously denote a con�guration c ∈ JFM K
as a Boolean tuple in B|F |, where B = {0, 1} is the set of Boolean values (where 0 and

1 denote the Boolean values FALSE and TRUE, respectively). Such Boolean tuples have a

�xed position for each feature, with the i-th position denoting presence or absence of the

i-th feature2 by the values 1 and 0, respectively. In the upcoming discussion, whenever

we refer to k-ary Boolean functions, we assume that Boolean k-tuples can be used as

arguments.

2.1.2 Variability Implementation

We have seen examples of variability handling by means of CPP directives. Other tech-

niques are also used to implement variability, and those techniques are classi�ed under

three dimensions [3]:

Binding time. This dimension refers to the phase during product derivation in which

the existing variability is resolved. This can happen before or during compilation

(compile-time or static variability), at program startup (load-time variability) or

during execution (run-time variability). The ability to perform each of those is

closely related to the other dimensions.

Technology. Variability can be realized by means of tools specially built for this pur-

pose (e.g., a preprocessor), but can also rely on programming language constructs

(e.g., run-time parameters and if-then-else blocks). These approaches are called

respectively tool-based and language-based.

Representation. The means by which variability is expressed in the assets.

Annotation-based (or annotative) approaches consist of annotating common assets

with tags corresponding to features, such that product derivation can be done by

removing the parts annotated with the features which are not selected.
2The actual order of features does not a�ect our results, since its only purpose is to consistently refer

to values in Boolean tuples.
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Composition-based (or compositional) approaches tackle the variability in a modular

way by segregating asset-parts that correspond to each feature in composable units.

The ones corresponding to selected features in a given con�guration are combined

to derive a product.

Other authors also identify a form of variability representation known as trans-

formation-based [39, 86], which relies on transformations over base assets. These

transformations are usually performed at the syntactic level, but this is not a formal

restriction of this category of techniques.

A usual annotative technique is the use of preprocessor directives, which is the vari-

ability representation mechanism in the Linux Kernel [69]. This choice of representation

naturally limits the possible technology and binding time to a compile-time tool-based

approach. Nonetheless, �ow-control directives allow a run-time annotation-based and

language-based variability implementation.

As for compositional methods, we can see a plug-in framework as an instance of

language-based load-time approach. In the realm of tool-based compile-time approaches,

there are two main composition mechanisms of interest to product line engineering:

Aspect-Oriented Programming [48]. This technique aims at the modularization of

cross-cutting concerns, i.e., concepts which are necessarily scattered across the im-

plementation of other concerns. These cross-cutting concerns are implemented in

modules named aspects, which are woven into the main program based on the spec-

i�cation of the points which they a�ect.

Feature-Oriented Programming [9, 75]. This is a technique by which the concepts

in a program are implemented in modules, each of which is associated to a feature.

Product derivation is thus carried out by incrementally composing these so called

feature modules into the result of the previous composition, yielding at each step

a program which increments the previous one with the re�nements in the given

feature. A feature module can add new classes and members, as well as override

existing methods.

Delta-Oriented Programming [78] is a well-known example of transformation-based

(or transformational) approach [38]. It is similar to Feature-Oriented Programming, but

the modules (deltas) are also capable of removing classes and members. Additionally, the

deltas are not mapped one-to-one into features. Instead, there is an explicit language con-

struct for specifying dependencies between them and predicates over the selected features

which must hold true for a given delta to be applicable.
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So far, we presented examples of source-code variability handling. However, these

implementation techniques can also be used to handle di�erent kinds of assets. For in-

stance, a compositional approach, similar to aspect-oriented programming, was used to

handle variability in use cases [1] and business processes [58]. Teixeira et al. [81] also

exploited compositional variability handling, in the context of a product line of theories

described using the speci�cation language of the Prototype Veri�cation System (PVS)

[67]. This work, in particular, uses both annotative and compositional approaches to

handle variability in probabilistic models of product lines.

2.1.3 Product-Line Analysis

Analysis of software product lines is a broad subject, in the sense that it can refer to

veri�cation of any of the product line artifacts, including the feature model and the

con�guration knowledge [3]. Hence, we focus on veri�cation of the possibly derivable

products. This does not necessarily mean generating all products in a product line and

analyzing each of them, as long as analyzed properties can be somehow generalized to the

product line as a whole. We refer to the latter case as variability-aware analysis.

There is a number of approaches to product-line analysis that adapt established analy-

sis techniques�e.g., type checking, data-�ow analysis, control-�ow analysis, and theorem

proving�to cope with variability [85]. In particular, several model checking techniques

have been successfully lifted to operate on product lines [19, 21, 23, 24, 34, 36, 51, 64, 76,

82, 85].

Thüm et al. [85] performed a survey on analysis strategies for software product lines

in which four main classes where identi�ed:

Type checking. Analysis of well-typedness of a program with respect to a given type

system [71]. It captures errors such as mismatched method signatures and unde-

clared types, which are prone to happen if features can add or remove methods and

classes.

Model checking. Consists of systematically exploring the possible states in a formal

model of the system, to �nd out whether it satis�es a given property [7]. Some model

checkers operate directly on source code, while others allow other abstractions of

the system's behavior (e.g., Markov chains).

Static analysis. Based on compile-time approximation of the run-time behavior of a

program, such as in data-�ow and control-�ow analyses. This type of analysis

usually involves the veri�cation of source code and can signal problems such as

access to uninitialized memory regions.
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Theorem proving. Relies on encoding system properties as theories and speci�cations

of its desired behavior as theorems. These theorems then need to be proved in order

to assert the modeled system is correct, i.e., it satis�es the speci�ed properties. The

theories and theorems may be speci�ed using the language of a proof assistant such

as PVS [67], or can be generated from invariant speci�cations declared in the source

code using the Java Modeling Language (JML) [55], for instance.

Among the studies regarding the application of these techniques to product-line anal-

yses, Thüm et al. [85] categorized three dimensions of analysis strategies for product

lines:

Product-based. Consists of analyzing derived products or models thereof. This can

be accomplished by generating all such products (the brute-force approach) or by

sampling them based on some coverage criteria (e.g., covering pair-wise or triple-wise

feature interaction). The main advantage of this strategy is that the analysis can

be performed exactly as in the single-system case by o�-the-shelf tools. However,

the time and processing cost can be prohibitively large (exponential blowup) if the

considered product line has a great number of products.

Feature-based. Analyzes all domain artifacts implementing a given feature in isolation,

not considering how they relate to other features. However, issues related to fea-

ture interactions are frequent, which renders false the premise that features can be

modularly analyzed. In spite of this, this approach is able to verify compositional

properties (e.g., syntactic correctness) and has the advantage of supporting open-

world scenarios � since a feature is analyzed in isolation, not all features must be

known in advance.

Family-based. Operates only in domain artifacts, usually merging all variability into

a single product simulator (also known as virtual product or metaproduct). This

simulator is then analyzed by considering only valid combinations of the features

as speci�ed in the feature model. It is possible, for instance, to compose feature

modules by encoding their variability as if-then-else blocks and dispatcher methods

and then apply o�-the-shelf software model checking [4].

There is also the possibility to employ more than one strategy simultaneously. In

this way, weaknesses resulting from one approach can be overcome by the application of

another. This is particularly useful for feature-based approaches, which are generally not

su�cient due to feature interactions.

For instance, Thüm et al. [83] propose formal veri�cation of design-by-contract prop-

erties [61] restricted to feature modules. This would be characterized as a feature-based
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strategy, but after product derivation the proof obligations that are veri�ed feature-wise

can be changed due to source code transformation. Hence, each product is derived to

generate the complete proof obligations. Nonetheless, most of the proofs obtained in the

feature-based phase can be reused, so this composite strategy can be seen as feature-

product-based.

Strategies that combine di�erent analysis dimensions are classi�ed as follows [85]:

Feature-product-based. Consists of a feature-based analysis followed by a product-

based analysis. This strategy leverages the feature-based phase to ease the analysis

e�ort necessary for the enumerative phase.

Feature-family-based. In this strategy, one performs a feature-based analysis to check

properties that apply individually for each feature, then the results are combined

to undergo a family-based analysis. This last phase considers the feature model

constraints and the interactions between features all at once, enabling the analysis

of properties that are not observable in the scope of a single feature.

Family-product-based. This strategy consists of a partial family-based analysis fol-

lowed by a product-based analysis that leverages the intermediate results. Such

an approach is useful when the available resources are not su�cient for a complete

family-based analysis, for instance.

Feature-family-product-based. In this strategy, we perform a feature-based analysis

followed by a family-product-based analysis that leverages the analysis e�ort of the

feature-based phase. According to the survey by Thüm et al. [85], there are no

concrete instances of this strategy in the literature.

Those di�erent analysis strategies have been applied in the context of di�erent analysis

techniques [85]. However, the trade-o�s involved cannot be inferred for the general case.

Empirical studies have to be performed to assess the actual advantages and disadvantages

of di�erent strategies in concrete usage scenarios [49, 54, 59, 92].

2.2 Reliability Analysis

The theory of reliability analysis strategies developed in this work formalizes and extends

the techniques presented by Lanna et al. [54]. Hence, we follow the same approach of

considering software reliability from a user's perspective.

Such user-oriented reliability of a software program in a given user environment is

de�ned as the probability that the program will give the correct output with a typical set
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of input data from that user environment [18]. Accordingly, we model software behav-

ior in a state-space-based fashion, by means of a Discrete-time Markov Chain (DTMC)

in which states represent (parts of) software modules and transitions represent either a

possible transfer of control between modules (with an associated probability) or a module

execution failure (with probability 1 − r, where r is the module reliability). We assume

that module reliabilities are independent from one another and that the transfer of con-

trol between modules depends only on the module currently executing (i.e., transfer of

control is a Markov process). Moreover, we constrain this model to have a single initial

state (representing the program entry point) and only two terminal (absorbing) states,

representing program success (i.e., correct execution) and program failure.

A model of software reliability built this way follows the principles presented by Cheung

[18]. Additionally, this type of model encodes the following assumptions of the work by

Lanna et al. [54]:

� Model states represent the execution of a function by some system component, as

described in UML behavioral diagrams [66]. As such, these states abstract actual

program states (e.g., variable values) and can be contained within a �nite set.

� Reliability models are time-homogeneous, meaning that each of the transition prob-

abilities is constant over time.

� As a scope limitation, we do not model parallelism or nondeterminism.

Constructing models with the aforementioned constraints, we view the reliability of

a system as the probability that, starting from the initial state, the system eventually

reaches the success state [18]. This reliability property is then computed as a reachability

probability in the DTMC that serves as the reliability model.

To perform this computation, we de�ne a DTMC as a tuple (S, s0,P, T ), where S is a

set of states, s0 ∈ S is the initial state, P is the transition probability matrix P : S×S →
[0, 1], and T ⊆ S is a (possibly singleton) set of target states that are to be reached as

a success measure.3 Moreover, each row of the transition probability matrix sums to 1,

that is, ∀s∈S ·P(s, S) = 1, where P(s, S) =
∑

s′∈S P(s, s′).

For every state s ∈ S, we say that a state s′ is a successor of s i� P(s, s′) > 0.

Accordingly, the set of successor states of s, Succ(s), is de�ned as Succ(s) = {s′ ∈
S |P(s, s′) > 0}. A DTMC induces an underlying digraph where states act as vertices

and edges link states to their successors. Every non-zero entry (s, s′) in the transition

probability matrix P is represented by a labeled transition s
p−→ s′ in this graph, where

3This de�nition departs from the one by Baier and Katoen [7] in two ways: (a) we abstract the possi-
bility of multiple initial states and the computation of other temporal properties (to focus on reliability
analysis) and (b) we incorporate target states in the model (to abbreviate model checking notation).
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p = P(s, s′). This way, we say that a state s′ of a DTMC is reachable from a state s,

denoted by s s′, i� s′ is reachable from s in the DTMC's underlying digraph. Likewise,

we write s 6 s′ to denote that s′ is unreachable from s. This notation is also used with

respect to a set T of states: s T i� there is at least one state s′ ∈ T such that s s′,

and s 6 T otherwise.

Given a DTMC D = (S, s0,P, T ), a state s ∈ S, and a set T ⊆ S of target states, the

probability of reaching a state t ∈ T starting from s (within any number of transitions)

is denoted by PrD(s, T ). Whenever T is a singleton set whose only member is a state t,

we write PrD(s, t) for brevity.

Figure 2.2 presents an example of DTMC viewed as a graph. In this view, the reacha-

bility probability is the sum of the probabilities along every possible path from the initial

state (blue node) to the success state (green node). The equation on the left-hand side

of this �gure depicts this summation, with each term corresponding to one of the three

possible paths (note the correspondence between the red highlighted term and the red

highlighted path, for instance).

Figure 2.2: Example graph view of a DTMC and the corresponding reachability proba-
bility

Reliability analysis in our setting can be summarized as the process through which we

determine the probability p for which the formula P=p[♦success ] holds, where success is

a proposition that only holds true for s ∈ T . This formula is speci�ed using Probabilistic

Computation Tree Logic (PCTL) [42] and states that p is the probability that success will

eventually hold. This property follows the probabilistic existence pattern of probabilistic

properties speci�cation, which is one recognized way of specifying reliability [37]. Other

possible views of reliability property include the probability that a system does not fail

within a given time interval, which can be speci�ed using probabilistic invariance, for

instance. Nevertheless, handling those alternative views is out of scope.

The reachability probability for a DTMC can be computed using probabilistic

model checking algorithms, implemented by o�-the-shelf tools such as PRISM [52] and

PARAM [40]. An intuitive and correct view of reachability probability, although not
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well-suited for e�cient implementation, is that a target state is reached either directly

or by �rst transitioning to a state that is able to recursively reach it. We present a

formalization of this property, adapted from Baier and Katoen [7], that suits the purpose

of this work.

Property 1 (Reachability probability for DTMCs). Given a DTMC D = (S, s0,P, T ), a

state s ∈ S, and a set T ⊆ S of target states, the probability of reaching a state t ∈ T
from s satis�es the following property:

PrD(s, T ) =


1 if s ∈ T

0 if s 6 T∑
s′∈S P(s, s′) · PrD(s′, T ) if s /∈ T ∧ s T

In a product line, di�erent products give rise to distinct behavioral models. To handle

the behavioral variability that is inherent to product lines, we resort to Parametric Markov

Chains [29].

2.2.1 Parametric Markov Chains

Parametric Markov Chains (PMC) extend DTMCs with the ability to represent variable

transition probabilities. Whereas probabilistic choices are �xed at modeling time and

represent possible behavior that is unknown until run time, variable transitions represent

behavior that is unknown already at modeling time. These variable transition probabilities

can be leveraged to represent product-line variability [19, 36, 76].

De�nition 1 (Parametric Markov Chain). A Parametric Markov Chain is de�ned by

Hahn et al. [41] as a tuple P = (S, s0, X,P, T ), where S is a set of states, s0 is the initial

state, X = {x1, . . . , xn} is a �nite set of parameters, P is the transition probability matrix

P : S×S → FX , and T ⊆ S is the set of target (or success) states. The set FX comprises

the rational expressions over R with variables in X, that is, fractions of polynomials with

Real coe�cients. This way, the semantics of a rational expression ε is a rational function

fε(x1, . . . , xn) = p1(x1,...,xn)
p2(x1,...,xn)

from Rn to R, where p1 and p2 are Real polynomials. For

brevity, we hereafter refer to rational expressions simply as expressions.

By attributing values to the variables, it is possible to obtain an ordinary (non-

parametric) DTMC. Parameters are given values by means of an evaluation, which is

a total function u : X → R for a set X of variables. For an expression ε ∈ FX and

an evaluation u : X ′ → R (where X ′ is a set of variables), we de�ne ε[X/u] to denote

the expression obtained by replacing every occurrence of x ∈ X ∩ X ′ in ε by u(x), also

denoted by ε[x1/u(x1), . . . , xn/u(xn)].
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For instance, suppose we have sets of variables X = {x, y} and X ′ = {x, y, z}, and an

evaluation u = {x 7→ 2, y 7→ 5, z 7→ 3}. If ε ∈ FX is the rational expression x− 2y, then

ε[X/u] = ε[x/2, y/5] = 2− 2 · 5 = −8. Note that, if u's domain, X ′, is di�erent from the

set X of variables in ε, then ε[X/u] = ε[(X ∩X ′)/u].

De�nition 2 (Expression evaluation). Given expressions ε1 and ε2 over variables sets X1

and X2, respectively, let X ⊇ X1 ∪X2 be a set of variables, x ∈ X be a variable, c ∈ R
and n ∈ N be constant values, and u : X → R be an evaluation. Expression evaluation is

de�ned inductively as follows:

ε1

ε2

[X/u] =
ε1[X/u]

ε2[X/u]
(ε1 × ε2)[X/u] = ε1[X/u]× ε2[X/u]

(ε1 + ε2)[X/u] = ε1[X/u] + ε2[X/u] (ε1 − ε2)[X/u] = ε1[X/u]− ε2[X/u]

x[X/u] = u(x) εn1 [X/u] = ε1[X/u]n

c[X/u] = c

This de�nition can be extended to substitutions by other expressions. Given two variable

sets X and X ′, their respective induced sets of expressions FX and FX′ , and an expression

ε ∈ FX , a generalized evaluation function u : X → FX′ substitutes each variable in X

for an expression in FX′ . The generalized evaluation ε[X/u] then yields an expression

ε′ ∈ FX′ . Moreover, successive expression evaluations can be thought of as rational

function compositions: for u : X → FX′ and u′ : X ′ → R,

ε[X/u][X ′/u′] = ε[x1/u(x1)[X ′/u′], . . . , xk/u(xk)[X
′/u′]] (2.1)

for x1, . . . , xk ∈ X (since u is a total function, we do not need to consider non-evaluated

variables).

The PMC induced by an evaluation u is denoted by Pu = (S, s0, ∅,Pu, T ) (alterna-

tively, P [X/u]), where Pu(s, s
′) = P(s, s′)[X/u] for all s, s′ ∈ S. To ensure the resulting

chain after evaluation is indeed a valid DTMC, one must use a well-de�ned evaluation.

De�nition 3 (Well-de�ned evaluation). An evaluation u : X → R is well-de�ned for a

PMC P = (S, s0, X,P, T ) i�, for all s, s′ ∈ S, it holds that

� Pu(s, s
′) ∈ [0, 1] (all transitions evaluate to valid probabilities)

� Pu(s, S) = 1 (stochastic property�the probability of disjoint events must add up

to 1)

In this de�nition, Succ(s) = {s′ ∈ S |Pu(s, s
′) 6= 0} is the set of successor states of s, and

P(s, S) =
∑

s′∈S P(s, s′).
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Hereafter, we drop explicit mentions to well-de�nedness whenever we consider an

evaluation or a DTMC induced by one, because we are only interested in this class of

evaluations.4 Nonetheless, we still need to prove that speci�c evaluations are indeed

well-de�ned.

2.2.2 Parametric Probabilistic Reachability

To compute the reachability probability in a model with variable transitions, we use a

parametric probabilistic reachability algorithm. A parametric model checking algorithm

for probabilistic reachability takes a PMC P as input and outputs a corresponding ex-

pression ε representing the probability of reaching its set T of target states. Figure 2.3

presents the intuition of computing such an expression, following the same mapping from

terms to paths that we used for DTMCs (Figure 2.2).

Figure 2.3: Example graph view of a PMC and the intuition for the corresponding reach-
ability probability expression

Hahn et al. [41] present a parametric probabilistic reachability algorithm (Algorithm 1)

and prove that evaluating the resulting expression ε with an evaluation u yields the

reachability probability for the DTMC induced in P by the same evaluation u. The main

idea is that, for a given state s, the probability of one of its predecessors (spre ∈ Pre(s))

reaching one of its successors (ssucc ∈ Succ(s)) is given by the sum of the probability of

transitioning through s and the probability of bypassing it.

For such a pair of predecessor and successor states, we update the transition probability

matrix with the newly computed value (Line 3):

P(spre , ssucc)︸ ︷︷ ︸
update

=

bypass︷ ︸︸ ︷
P(spre , ssucc) +

go through s︷ ︸︸ ︷
P(spre , s)︸ ︷︷ ︸

reach s

· 1

1−P(s, s)︸ ︷︷ ︸
stay at s

·P(s, ssucc)︸ ︷︷ ︸
leave s

4Hahn et al. [41] actually de�ne an evaluation in a more general way as a partial function. However,
since we only deal with well-de�ned evaluations (which are total by de�nition [41]), we are able to simplify
the de�nitions in this work by using total functions.
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Algorithm 1 Parametric Reachability Probability for PMCs [41]

Require: PMC P = (S, s0, X,P, T ). States s ∈ T are absorbing. For all s ∈ S, it holds
that s is reachable from s0 and T is reachable from s.

1: for all s ∈ S \ ({s0} ∪ T ) do
2: for all (spre , ssucc) ∈ Pre(s)× Succ(s) do
3: P(spre , ssucc) = P(spre , ssucc) + P(spre , s) · 1

1−P(s,s)
·P(s, ssucc)

4: end for
5: eliminate(s)
6: end for
7: return 1

1−P(s0,s0)
P(s0, T )

Once this computation has been performed for all predecessor (Pre(s)) and successor

states (Succ(s)), s itself is eliminated from the set S of states, and the process starts

again by arbitrarily picking another state.

Figure 2.4 [41] illustrates the update of the transition probability matrix for a given

state s and a single pair of predecessor and successor states. In this example, other states

and respective transitions are omitted. Note that, since there is a self-loop with probabil-

ity pc, there are in�nite possible paths going through s, each corresponding to a number

of times the loop transition is taken before transitioning to ssucc. Hence, the sum of prob-

abilities for these paths correspond to the in�nite sum
∑∞

i=0 pa(pc)
ipb = pa(

∑∞
i=0 p

i
c)pb =

pa
1

1−pcpb.
5

De�nition 4 (State elimination step). Given a PMC P = (S, s0, X,P, T ) and an arbitrary

state s ∈ S, a state elimination step of the algorithm by Hahn et al. [41] updates the

transition matrix P to P′, such that, for all states spre , ssucc ∈ S \ {s},

P′(spre , ssucc) = P(spre , ssucc) + P(spre , s) ·
1

1−P(s, s)
·P(s, ssucc)

spre s ssucc

spre ssucc

pa pb
pc

pd

pa
1

1−pcpb + pd

Figure 2.4: Elimination of state s in the parametric reachability probability algorithm
(adapted from Hahn et al. [41])

5Whenever 0 < x < 1, we have the following convergent sum:
∑∞

i=0 x
i = 1

1−x .
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The soundness of the parametric probabilistic reachability algorithm by Hahn et al.

[41] is expressed by the following lemma and summarized by the commuting diagram in

Figure 2.5.

Lemma 1 (Parametric probabilistic reachability soundness). Let P = (S, s0, X,P, T )

be a PMC, u be a well-de�ned evaluation for P, and ε be the output of the parametric

probabilistic reachability algorithm by Hahn et al. [41] (Algorithm 1) for P and T . Then,

PrPu(s0, T ) = ε[X/u].

Proof. The algorithm by Hahn et al. [41] is based on eliminating states until only the

initial and the target ones remain. Its proof consists of showing that each elimination

step preserves the reachability probability. We refer the reader to the work by Hahn et al.

[41] for more details on the algorithm itself and the proof mechanics.

DTMC

PMC

Probability

Expression

[X/u]

Hahn's algorithm

PrPu(s0, T )

[X/u]Lemma 1

Figure 2.5: Statement of Lemma 1

2.3 Algebraic Decision Diagrams

Thus far, we have introduced software product lines and the parametric model checking

technique that we employ to compute the reliability of a product line as a function of its

con�guration options�denoted by a rational expression. However, even though rational

expressions are conceptually simpler than Markov models, evaluating an expression for

every possible con�guration may still be infeasible for certain product lines. Hence, we

introduce ADDs as enablers of non-enumerative evaluation.

An Algebraic Decision Diagram (ADD) [6] is a data structure that encodes k-ary

Boolean functions Bk → R. As an example, Figure 2.6 depicts an ADD representing the

following binary function f :

f(x, y) =


0.9 if x ∧ y

0.8 if x ∧ ¬y

0 otherwise

(2.2)
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x

y

0.80.9 0

Figure 2.6: ADD Af representing the Boolean function f in Equation (2.2)

Each internal node in the ADD (one of the circular nodes) marks a decision over a

single parameter. Function application is achieved by walking the ADD along a path that

denotes this decision over the values of actual parameters: if the parameter represented

by the node at hand is 1 (true), we take the solid edge; otherwise, if the actual parameter

is 0 (false), we take the dashed edge. The evaluation ends when we reach a terminal node

(one of the square nodes at the bottom).

In the example, to evaluate f(1, 0), we start in the x node, take the solid edge to node

y (since the actual parameter x is 1), then take the dashed edge to the terminal 0.8. Thus,

f(1, 0) = 0.8. Henceforth, we will use a function application notation for ADDs, meaning

that, if A is an ADD that encodes function f , then A(b1, . . . , bk) denotes f(b1, . . . , bk).

For brevity, we also denote indexed parameters b1, . . . , bk as b̄, and the application A(b̄)

by JAKb̄.
ADDs have several applications, two of which are of direct interest to this work. The

�rst one is the e�cient application of arithmetics over Boolean functions. We employ

Boolean functions to represent mappings from product-line con�gurations (Boolean tu-

ples) to their respective reliabilities. An important aspect that motivated the use of ADDs

for this variability-aware arithmetics is that the enumeration of all con�gurations to per-

form Real arithmetics on the corresponding reliabilities is usually subject to exponential

blowup. ADD arithmetic operations are linear in the input size, which, in turn, can also

be exponential in the number of Boolean parameters (i.e., ADD variables), in the worst

case. However, given a suitable variable ordering, ADD sizes are often polynomial, or

even linear [6]. Thus, for most practical cases, ADD operations are more e�cient than

enumeration.

An arithmetic operation over ADDs is equivalent to performing the same operation

on corresponding terminals of the operands. Thus, we denote ADD arithmetics by corre-

sponding real arithmetics operators.

In Figure 2.7, we see two examples of ADD arithmetics. The �rst and simpler one

(Figure 2.7c) shows the multiplication of the ADD Af (Figure 2.7a) by the constant factor

2. This operation takes place by multiplying terminals by the given factor. The second

example (Figure 2.7d) shows the sum of ADDs Af and Ag (Figure 2.7b), yielding an

ADD Ah = Af +Ag such that Ah(x, y) = Af (x, y) +Ag(x, y). Such an operation is more

involved, and its details fall outside the scope of our work.
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As previously mentioned, ADD arithmetic operations are linear in the input size.

For instance, let us examine an arbitrary arithmetic operation � of ADDs Af and Ag,

both on k parameters. Enumerating all valid inputs to the operand functions would take

exponential time (O(2k)), whereas ADD arithmetics can be performed in O(|Af | · |Ag|)
(where |A| denotes the size of ADD A, that is, its number of internal nodes).

x

y

0.80.9 0

(a) Operand Af (the ADD encoding the
function f in Equation (2.2))

x

y y

0.5 0

(b) Operand Ag, encoding the function g
that yields 0.5 if x XOR y and 0 otherwise

x

y

1.61.8 0

(c) ADD corresponding to 2×Af (encoding
the function f ′(x, y) = 2× f(x, y))

x

y y

0.9 1.3 0.5 0

(d) ADD corresponding to Af +Ag (encod-
ing the function h(x, y) = f(x, y) + g(x, y))

Figure 2.7: Example of an arithmetic operation over ADDs

Formally, given a valuation for Boolean parameters b̄ = b1, . . . , bk ∈ Bk, it holds that:

1. ∀�∈{+,−,×,÷} · (A1 � A2)(b̄) = A1(b̄)� A2(b̄)

2. ∀i∈N · Ai1(b̄) = A1(b̄)i

The second application of interest is the algorithmic encoding of the result of an if-

then-else operation over ADDs again as another ADD. For the ADDs Acond , Atrue , and

Afalse , we de�ne the ternary operator ITE (if-then-else) as

ITE(Acond , Atrue , Afalse)(c) =

Atrue(c) if Acond(c) 6= 0

Afalse(c) if Acond(c) = 0

This operation, whose time complexity is O(|Acond| · |Atrue| · |Afalse), is illustrated by

Figure 2.8. This figure depicts an ADD resulting from ITE(Ac, Af , Ag) (Figure 2.8b),

where Ac (Figure 2.8a) encodes the function c(x, y) = ¬x, and the ADDs Af and Ag are

taken from Figures 2.7a and 2.7b. As with ADD arithmetics, the details of the ADD ITE

operation are omitted for being out of scope.

Note that we presented the time complexities for the ADD operations in terms of

the size of each operand. However, this number is itself dependent upon the ordering
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x

0 1

(a) ADD Ac encoding the condition ¬x

x

y y

0.9 0 0.5

(b) ITE(Ac, Af , Ag)

Figure 2.8: Example of an ITE operation over ADDs

of variables, that is, the level of the corresponding decision nodes in the binary tree.

Di�erent orderings may need a di�erent number of internal nodes, as depicted by the

ADD in Figure 2.9. This ADD encodes the same function f (Equation (2.2)) as the ADD

Af in Figure 2.6, but in this case we have chosen a di�erent ordering of variables�y as

the root and x in the second level. With the chosen ordering, the resulting ADD ended

up with 3 internal nodes, as opposed to 2 nodes in the original case.

y

x x

0.9 0

Figure 2.9: Alternative ordering for encoding the Boolean function f in Equation (2.2)
as an ADD

The absolute di�erence between these alternative orderings was negligible, because the

function at hand is only binary. In general, however, given the number k of parameters

of the encoded function, the size of an ADD may be O(k) with the best-case ordering,

but may also be O(2k) with the worst-case ordering. Note, however, that not all Boolean

functions are subject to exponential orderings, and the same applies to linear orderings.

For instance, any ordering of variables of the ADD Ag in Figure 2.7b yields an ADD with

3 internal nodes. More details on this matter and information on ADDs in general can

be found in the work of Bahar et al. [6].

2.4 PVS

To increase con�dence in the theory developed in this work, we developed a machine-

veri�ed theory using the PVS interactive theorem prover. Thus, we provide an overview of

some language constructs in PVS 6.0 that are used throughout our speci�cation. However,

this section is not a complete tutorial or reference guide to all features of PVS; for detailed

instructions on how to develop and verify a mechanized speci�cation using this tool, the

reader is referred to the o�cial documentation [67, 68, 79].6

6http://pvs.csl.sri.com/documentation.shtml
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The Prototype Veri�cation System (PVS) is a set of integrated tools that assist the

development and veri�cation of formal speci�cations [68]. PVS theories are de�ned using a

speci�cation language [67] that supports expressive features such as higher-order functions

and dependent types. Moreover, this language allows the de�nition of properties about the

speci�ed functions and types, in the form of theorems or axioms. To verify that theories

written in the speci�cation language are semantically consistent, PVS also provides a type

checker and an interactive theorem prover [79].

Whenever the type checker is not able to decide whether a given de�nition is consistent

or not, it generates a type-correctness condition (TCC)�a proof obligation that the user is

required to discharge. Both TCCs and user-de�ned theorems can be proved interactively

with PVS's theorem prover. Although PVS provides several strategies to automate proof

steps, its focus is not on automatic proving, but rather on interactive proof checking.

A speci�cation in PVS is a collection of theories, and a theory is composed of def-

initions of types and functions, plus the associated theorems and axioms. A type can

be interpreted (i.e., de�ned in terms of other types) or uninterpreted. For instance, we

can state that there exists a set of variables by using variable: TYPE+, whereby the only

assumptions made are that this type is nonempty and disjoint from other types (except

its own subtypes). An interpreted type, on the other hand, is de�ned in terms of other

types:

1 evaluation: TYPE = [variable -> real] % function type

2 complex: TYPE = [# r: real , im: real #] % record type

3 nzreal: TYPE = {x: real | x /= 0} % R∗

The latter example de�nes the type of non-zero Reals, R∗, using a notation that closely
resembles set comprehension. This PVS construct is called a predicate subtype, since it

de�nes a subtype of real (the base type) in terms of a predicate. Alternatively, this

de�nition could be given as follows:

1 nonzero ?(x: real): boolean = x /= 0 % predicate for x 6= 0

2 nzreal: TYPE = (nonzero ?) % syntactic sugar for {x: real | nonzero?(x)}

An interesting feature of PVS is that its standard library, called Prelude, represents

a set of elements of type T (set[T]) as a predicates of type [T -> boolean]. This way,

set membership is tested using function application, and we can de�ne types from set

elements using the predicate subtyping mechanism:

1 X: set[variable] % a constant declaration

2 v: (X) % another constant, of type {v: variable | X(v)}

This facility is extensively used throughout our mechanized speci�cation to declare

dependently-typed function parameters.

1 eval(X: finite_set[variable], u: [(X) -> real]): finite_set[real]
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The above line presents a higher-order function that takes two parameters: a �nite

set X of variables and a function u that maps elements of X to Real numbers. The type

of u is dependent on the value of X; in practice, u is de�ned as a partial function in the

domain of variables.

Moreover, eval in this example is an uninterpreted function (i.e., an uninterpreted

constant of a function type). To specify the semantics of this function, one can either use

an axiom or add a function de�nition (i.e., turn it into an interpreted function constant):

1 % Axiomatic style

2 eval(X: finite_set[variable], u: [(X) -> real]): finite_set[real]

3 eval_semantics: AXIOM

4 FORALL (X: finite_set[variable], u: [(X) -> real])):

5 eval(X, u) = {r: real | EXISTS (x: (X)): u(x) = r}

6

7 % Alternative using definition

8 eval_def(X: finite_set[variable], u: [(X) -> real]): finite_set[real] =

9 {r: real | EXISTS (x: (X)): u(x) = r}

The main di�erence is that PVS guarantees that de�nitions preserve the consistency

of a theory, whereas the user must manually verify that an axiom does not introduce

inconsistencies [67]. In the previous example, for instance, PVS generates a TCC for

eval_def, requiring us to prove that the set comprehension in Line 9 is indeed a �nite set

(because of the return type in Line 8). On the other hand, no proof obligation is created

for the axiomatic version of the same speci�cation, even though the return types (Lines 2

and 8) and the predicates (Lines 5 and 9) are the same for both speci�cation alternatives.

Since inconsistent speci�cations can be used to prove anything at all (i.e., they are useless

for proving soundness of theories), it is best to avoid introducing axioms.

The de�nition of eval_def in the last example uses a declarative style, whereby we

de�ne a predicate that the function output must satisfy. An alternative is to use an

operational style�i.e., to specify how the declared function produces that value. An

operational alternative to the eval function is the following recursive de�nition:

1 eval_op(X: finite_set[variable], u: [(X) -> real])

2 : RECURSIVE finite_set[real] =

3 IF empty?(X)

4 THEN emptyset

5 ELSE add(u(choose(X)),

6 eval_op(rest(X), restrict(u)))

7 ENDIF

8 MEASURE card(X)

In this de�nition, we pick any element of X (function choose in Line 5), apply the

function u to it, then add the result to set obtained by recursively applying eval_op to
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the remaining elements of X (function rest in Line 6). The base case of this recursion

occurs when X is empty (Line 4).

An interesting point to note is that PVS only allows the de�nition of terminating

functions. Thus, we have to provide a measure (Line 8) that decreases with each call

according to some well-founded relation. In this particular case, we use the cardinality of

X, and the well-founded relation that establishes the notion of decreasing is inferred to be

the �less-than� relation over the Natural numbers (<). The type checker then generates

a TCC requiring us to prove that this measure is indeed decreasing for any input X:

1 eval_op_TCC3: OBLIGATION

2 FORALL (X: finite_set[variable ]):

3 NOT empty?(X) IMPLIES card(rest(X)) < card(X)

The syntax for user-de�ned theorems follows the same pattern, but using other keywords�

THEOREM, LEMMA, and COROLLARY.

PVS also supports the de�nition of abstract datatypes, such as the following type that

we use to extended the Reals with an unde�ned value (R ∪ {⊥}).

1 maybe_real: DATATYPE

2 BEGIN

3 a_real(num: real): is_real?

4 undefined: undefined?

5 END maybe_real

Each line de�nes a constructor, a (possibly empty) set of accessors, and a recognizer�

a predicate that is true for elements built with the corresponding constructor. In this

particular case, an element v of the type maybe_real may be the constant undefined, or

a value obtained by applying the a_real constructor to a Real number. If the is_real?

recognizer returns true, the num accessor can be applied to obtain the encapsulated Real

value. In PVS language, we can state this fact as the following (trivial) theorem:

1 trivial_fact: THEOREM

2 FORALL (x: real): num(a_real(x)) = x

We can de�ne arithmetic operations over maybe_real by overloading PVS operators

already de�ned over real and specifying that any operation where at least one of the

operands is unde�ned yields undefined as a result.

1 % Overloading of the sum operator

2 ; +(a,b): maybe_real =

3 IF (undefined ?(a) OR undefined ?(b))

4 THEN undefined

5 ELSE a + b

6 ENDIF
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Whenever the result of an operation over maybe_real is used in a context where a

real is expected, PVS will generate an obligation to prove that this result satis�es the

predicate represented by the is_real? recognizer. To avoid the generation of such TCCs

when the operands are known to be is_real?, the PVS user can de�ne judgements to

make this property available to the type checker.

1 m, n: VAR (is_real ?) % logical variable to abbreviate declarations

2 sum_real: JUDGEMENT

3 FORALL (m, n): (m + n) HAS_TYPE (is_real ?)

4 sub_real: JUDGEMENT

5 FORALL (m, n): (m - n) HAS_TYPE (is_real ?)

6 mul_real: JUDGEMENT

7 FORALL (m, n): (m * n) HAS_TYPE (is_real ?)

PVS will require each judgement to be proved, by means of TCCs. To assist the design

and veri�cation of proofs for TCCs and user-de�ned theorems, PVS provides an interactive

theorem prover [79]. This prover is based on the sequent calculus framework and supports

a number of rules and proof strategies with di�erent degrees of automation. For instance,

there are rules for propositional simpli�cation, quanti�er instantiation, introduction of

Skolem constants, induction, term rewriting, and simpli�cation using decision procedures

for equality and linear arithmetics (e.g., the highly-automated grind).

As an example (taken from the NASA PVS tutorial7), suppose we want to prove the

following fact:

∀x, y ∈ R+ · x < y =⇒ x2 < y2

This theorem can be stated in PVS as follows:

1 squared_increasing: THEOREM

2 FORALL (x,y:posreal):

3 x < y IMPLIES x^2 < y^2

To prove that theorem, we start the interactive theorem prover by issuing the command

M-x prove.8 The prover starts with a sequent consisting of only the fact that we want to

prove as a consequent:

1 squared_increasing :

2

3 |-------

4 {1} FORALL (x, y: posreal): x < y IMPLIES x ^ 2 < y ^ 2

5

7https://shemesh.larc.nasa.gov/PVSClass2012/pvsclass2012/index.html
8The combination M-x is achieved by pressing the Alt and x keys simultaneously
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6 Rule?

We begin the proof by introducing Skolem constants for the universally quanti�ed

variables x and y, using the prover command skeep (Skolemize and keep the names of

variables for the introduced constants).

1 Rule? (skeep)

2 Skolemizing and keeping names of the universal formula in (+ -),

3 this simplifies to:

4 squared_increasing :

5

6 {-1} x < y

7 |-------

8 {1} x ^ 2 < y ^ 2

9

10 Rule?

Note that the implication was automatically �attened, so that the premise became an

antecedent formula with index [-1]. Now, we expand the de�nition of the � operator.

1 Rule? (expand "^")

2 Expanding the definition of �,

3 this simplifies to:

4 squared_increasing :

5

6 [-1] x < y

7 |-------

8 {1} expt(x, 2) < expt(y, 2)

9

10 Rule?

We see that � is actually syntactic sugar for the expt function. The next step is to

leverage lemma both_sides_expt_pos_lt_aux, which is part of the Prelude built-in PVS

library.

1 Rule? (lemma "both_sides_expt_pos_lt_aux")

2 Applying both_sides_expt_pos_lt_aux

3 this simplifies to:

4 squared_increasing :

5

6 {-1} FORALL (m: nat , px, py: posreal):

7 expt(px , m + 1) < expt(py, m + 1) IFF px < py

8 [-2] x < y

9 |-------

10 [1] expt(x, 2) < expt(y, 2)

11
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12 Rule?

The command lemma brings a lemma into the sequent as an antecedent formula with

index [-1]. Note, however, that the formula x < y, whose index was previously [-1], is

now at the position [-2].

The next proof step is to instantiate the lemma recently brought into the sequent:

1 Rule? (inst - "1" "x" "y")

2 Instantiating the top quantifier in - with the terms:

3 1, x, y,

4 this simplifies to:

5 squared_increasing :

6

7 {-1} expt(x, 1 + 1) < expt(y, 1 + 1) IFF x < y

8 [-2] x < y

9 |-------

10 [1] expt(x, 2) < expt(y, 2)

11

12 Rule?

Now, the antecedent contains all the information that is needed to prove the conse-

quent. Thus, issuing the command assert would apply decision procedures and �nish the

proof. However, we can also do it manually, by �rst simplifying the sum, then �attening

the equivalence in formula [-1] to get two implications.

1 Rule? (simplify)

2 Simplifying with decision procedures,

3 this simplifies to:

4 squared_increasing :

5

6 {-1} expt(x, 2) < expt(y, 2) IFF x < y

7 [-2] x < y

8 |-------

9 [1] expt(x, 2) < expt(y, 2)

10

11 Rule? (flatten)

12 Applying disjunctive simplification to flatten sequent,

13 this simplifies to:

14 squared_increasing :

15

16 {-1} expt(x, 2) < expt(y, 2) IMPLIES x < y

17 {-2} x < y IMPLIES expt(x, 2) < expt(y, 2)

18 [-3] x < y

19 |-------

20 [1] expt(x, 2) < expt(y, 2)
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21

22 Rule?

Last, we use prop to apply propositional simpli�cation (in this case, modus ponens)

using the implication at [-2] and the fact at [-3].

1 squared_increasing :

2

3 {-1} expt(x, 2) < expt(y, 2) IMPLIES x < y

4 {-2} x < y IMPLIES expt(x, 2) < expt(y, 2)

5 [-3] x < y

6 |-------

7 [1] expt(x, 2) < expt(y, 2)

8

9 Rule? (prop)

10 Applying propositional simplification ,

11 Q.E.D.

The theorem prover also has the ability to store and replay proofs, and there are also

facilities to report proof status and to perform proof chain analysis�i.e., check if all the

lemmas appearing in a given proof have themselves been proved or stated as axioms or

de�nitions, and if all TCCs have been discharged. Those capabilities are useful during the

development of a mechanized theory, since complete proofs can be re-checked in response

to changes in the speci�cation.

34



Chapter 3

Commuting Strategies for Product-line

Reliability Analysis

This chapter presents the formalization of our behavioral models for software product lines

(Section 3.1) and of our analysis strategies (Section 3.2). It also presents a formulation

of the soundness of our strategies as theorems, along with corresponding proofs. Last, we

conclude with remarks on the applicability of our mathematical theory to other analysis

strategies and to related domains (Section 3.3).

The contents presented hereafter are the purely mathematical results of the research,

and correspond to the journal article All roads lead to Rome: Commuting strategies for

product-line reliability analysis [15]. The discussion on annotative models (Section 3.1.1)

and analyses thereof (Section 3.2.2), that is, the family-based and family-product-based

strategies, is largely based on previous work [16]. Nonetheless, we include it here both

for the sake of completeness and because some of the notation has evolved during peer

review.

3.1 DTMC Models of Product Lines

Reliability analysis, in our setting, is the application of probabilistic model checking to

a probabilistic model of a software system. However, for a product line, it may not be

feasible to manually model each product (i.e., its probabilistic model) and then analyze

it, due to exponential blowup. Hence, we model the product line as a whole in terms

of its common and variable behavior, to enable the automatic derivation of probabilistic

models corresponding to the behavior of each product of the product line. Such variable

behavioral models have properties that allow them to be used with di�erent analysis

strategies, as we will show in Section 3.2. Although we show and use precise de�nitions of

the resulting models, it is outside the scope of this work to present modeling techniques to
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create them. Models can be produced, for example, by using behavioral UML diagrams

annotated with component reliabilities [36, 54, 65] or feature-oriented formalisms [19].

Since single-product analysis relies on DTMCs to model software behavior, we lever-

age the parameters in PMCs to represent DTMC variability in product-line analysis. To

illustrate our approaches to variability representation and product-line analysis, yet with-

out loss of generality, we rely on an example product line of beverage vending machines

(Figure 3.1), slightly modi�ed from the examples in the work by Ghezzi and Shari�oo

[36] and Classen et al. [22] for didactic purposes. This product line consists of models of

vending machines that are able to deliver tea or soda (but never both) and, for each case,

there is a beverage-speci�c optional behavior of adding a certain quantity of lemon juice.

The feature model for this product line is depicted in Figure 3.1a. Feature Vending

Machine is the root of the feature model, representing a product. Each of the valid

products has the functionality of serving a beverage, represented by the mandatory feature

Beverage. Its two child features, Soda and Tea, are alternative features (i.e., they cannot

be simultaneously present in a feature selection) representing the behaviors of serving

soda and tea, respectively. Since adding lemon to a beverage is an optional behavior,

it is modeled by the optional feature Lemon. If a product is generated with the feature

selection {Soda} (i.e., Lemon is not selected), a possible model of its probabilistic behavior

is depicted in Figure 3.1b. If the feature selection is {Tea, Lemon}, the derived product

has a probabilistic behavioral model as in Figure 3.1c.

(a) Feature model

c0 s0 s1 s2

serr

csuc

cerr

1 0.9 0.9 0.9

0.1
0.1

1

0.1

1

1

(b) Behavior for {Soda}

c0 t0 t1 t2 tl0 tl1

tlerr

t3

terr

csuc

cerr

1 0.9 0.9 0.9 0.9 0.9 0.9

0.1
0.1

0.1
0.1 0.1

1 1

0.1

1

1

(c) Behavior for {Tea, Lemon}

Figure 3.1: Vending machine product line example

In both DTMC examples, transitions indicate a change in the machine's execution

state, with probabilities representing the reliabilities of the corresponding execution steps.

These reliabilities are usually taken to be the probabilities that the software components
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responsible for each step will successfully produce the expected outcome. In this sense,

one can notice most states have two outgoing transitions: one representing success and

another representing failure. The states with only one outgoing transition may be seen as

execution control hand-o�s. Also, to help us identify variation points, states are labeled

according to the behavior they model and are correspondingly colored. Label c denotes

common behavior (present in all products), while s and t denote behaviors introduced

by features Soda, and Tea, respectively. States labeled tl correspond to the behavior of

adding lemon to tea, that is, they only exist in products derived by a feature selection

with both features Tea and Lemon.

We now discuss the modeling approaches we devised to leverage PMCs as representa-

tions of product-line reliability. These approaches build on the assumptions we made for

DTMC models of user-oriented software reliability, which are established in Section 2.2:

� Reliability of a software system can be interpreted in a binary fashion: either

the system outputs a correct result (success) or it fails (error).

� If the system is intended to perform an in�nite loop (e.g., the Body Sensor

Network [76]), one may consider the correctness of a single iteration.

� States in the model represent the execution of a function by some system module.

� Thus, the state space is �nite.

� Module failures do not propagate to one another.

� DTMCs are time-homogeneous�i.e., the transition probabilities do not change

over time.

� Parallelism and nondeterminism are not considered.

The way by which we represent variability as PMCs and generate products (i.e.,

DTMCs) from the resulting variable assets is classi�ed according to the current ac-

cepted taxonomy [3, 47] in two main categories: annotation-based (or annotative) and

composition-based (or compositional). Each of these kinds of models will play a role in

the analysis strategies presented in Section 3.2. We also present a correspondence between

compositional and annotative models in Section 3.2.4.
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3.1.1 Annotative Models

To represent the variable behavior of a product line in an annotative way, we use a PMC

in which variables are interpreted as con�guration-speci�c behavior selectors. Such a

PMC for the vending machine product line is shown in Figure 3.2, where we introduce

blue dashed states to represent con�guration-speci�c behavior selection. For instance, to

represent the variability for Tea-related behavior, we introduce a state labeled selt , which

transitions to t0 (not shown) with probability 1, if it is present, or transitions to the point

right after the same behavior (a state correspondingly labeled aftt) with probability 1,

if it is absent.1 This mutually exclusive selection is represented by labeling transitions

with the expressions t and 1− t, such that evaluating t as 1 yields the expected �present�

behavior, while evaluating it with 0 yields the �absent� behavior. The same approach is

also applied to the behavior corresponding to adding lemon to tea, using the variable tl.

Some states of the model for serving tea, as well as the behaviors corresponding to Soda

and its lemon-adding variant, are omitted for brevity. The whole model can be seen in

Figure B.1.

c0 sel t . . . t2 sel tl tl0 tl1

tlerr

aft tl t3

terr

aft t . . . csuc

cerr

t

1− t

tl

1− tl
1 1 110.9 0.9 0.9 0.9 0.9

0.1

0.1

0.1 0.1

1

1

0.1

1

1

Figure 3.2: Annotative PMC for the vending machine

We generalize and formally de�ne this annotative approach of variability representa-

tion as follows.

De�nition 5 (Annotative PMC). An annotative PMC is a PMC (S, s0, X,P, T ) such

that for all states s ∈ S, either:

1. ∀s′∈S ·P(s, s′) ∈ [0, 1] ∧P(s, S) = 1 (the probabilities of all outgoing transitions are

constants that add up to 1); or

2. ∃s0,afts∈S ∃x∈X ·Succ(s) = {s0, afts} ∧P(s, s0) = x ∧P(s, afts) = 1− x (there are ex-
actly two outgoing transitions, whose probabilities are expressed as a single variable

and its complement).
1The states selt and aftt are analogous to the #ifdef and #endif macros of the C preprocessor,

usually seen in preprocessor-based product lines.
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The states in Figure 3.2 that fall in the second case are sel t and sel tl (as well as sel s
and sel sl , which are not shown), while all others fall in the �rst case. Each variable of

an annotative PMC denotes the presence of a given behavior in a product. The intended

semantics is that the sets of states and transitions giving rise to the denoted behavior will

be reachable within the model if, and only if, its corresponding variable evaluates to 1.

For such an annotative PMC to represent the variable behavior of a product line with

feature model FM , we must be able to use it to derive the behavioral model of any product

generated by a con�guration c ∈ FM . However, the use of a PMC by itself does not

help with restricting the possible evaluations to achieve that. Evaluating the introduced

variables with values other than 0 and 1 may yield ill-formed DTMCs (i.e., ones whose

transitions have invalid probabilities or that violate the stochastic property). Also, a

variable should evaluate to 1 if, and only if, the presence condition of the subsystem whose

behavior is controlled by this variable is satis�ed. Hence, we need to constrain evaluations

of this annotative PMC to re�ect the corresponding feature model and presence conditions.

The �rst step towards this goal is to formalize what presence conditions mean in the

context of variable behavioral models. Thus, let px be the presence condition for the

behavior identi�ed by x. In our vending machine example, we would have pt = Tea,

ptl = Tea∧Lemon, ps = Soda, and psl = Soda∧Lemon. To precisely associate a variable to
a presence condition, we de�ne a higher-order function that maps a variable to a Boolean

function over the features (see Section 2.1), which we call presence function.

De�nition 6 (Presence function). Given a set X of variables and a feature model FM ,

a presence function is a function p : X → JFM K → B such that, for all x ∈ X and all

c ∈ JFM K,

p(x)(c) =

1 if c |= px (presence condition is satis�ed)

0 otherwise

where px is the presence condition associated with the variable x and c |= px means that

the con�guration c satis�es px.

Next, we must be able to use the feature model to de�ne evaluations. For instance,

the annotative PMC for the vending machine product line would allow serving both tea

and soda, if both t and s were evaluated to 1. However, this behavior is forbidden by the

feature model, which states that Tea and Soda are alternative features. By incorporating

knowledge of the feature model to evaluations, we can model all variant behavior as if it

were optional and enforce the constraints of alternative and OR features when evaluat-

ing the PMC. The solution to this problem are higher-order functions complying to the

following de�nition of an evaluation factory.
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De�nition 7 (Evaluation factory). Given a feature model FM and a set X of variables,

an evaluation factory w : JFM K → X → R is a function that, for a given con�guration

c ∈ JFM K, yields an evaluation w(c) ∈ X → R.

At this point we have de�ned what we mean by an annotative PMC as well as an

abstract means to constrain possible evaluations to the ones that make sense in the context

of a given product line. For the particular case of annotative PMCs, an evaluation factory

must generate evaluations that interpret variables as presence values and according to the

presence conditions. Thus, we need to interpret the set {0, 1} of numbers as the set B
of Boolean values and restrict the generated evaluations to have this set as image. With

this in mind, we de�ne an annotative probabilistic model as follows:

De�nition 8 (Annotative probabilistic model). An annotative probabilistic model is a

tuple (P , p, w,FM ) such that:

� P = (S, s0, X,P, T ) is an annotative PMC (De�nition 5);

� FM is a feature model;

� p : X → JFM K→ B is a presence function (De�nition 6); and

� w is an evaluation factory (De�nition 7) such that, for all c ∈ JFM K and x ∈ X,

w(c)(x) =

1 if p(x)(c) = 1

0 otherwise

Remark 1 (Pointwise de�nition of w). For practical purposes, it is worth noting that

the right-hand sides of the de�nitions of w (De�nition 8) and of the presence function

p (De�nition 6) are the same. That is, one can operationalize w as w(c)(x) = p(x)(c),

so the annotative evaluation factory could be uniquely determined from an annotative

PMC P , a presence function p, and a feature model FM . Nonetheless, we keep w as

part of the annotative model tuple for uniformity, since it is the annotative counterpart

of the composition factory w′ in a compositional probabilistic model (De�nition 18). The

de�nitions of the presence function and the annotative evaluation factory are only similar

because the set of Real values in the image of the possible evaluations (i.e., {0, 1}) in the

annotative case correspond to our Real encoding of Boolean values.

Starting with such an annotative model, the derivation of a speci�c behavioral model of

a product with con�guration c ∈ JFM K is then carried out by applying the evaluation w(c)

to the underlying PMC P . Since PMC evaluation is not restricted to annotative PMCs,

we de�ne this process of DTMC derivation (which is the basis for product derivation)

without resorting to the just de�ned concept of annotative models.
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De�nition 9 (DTMC derivation). Given a PMC (S, s0, X,P, T ), a feature model FM ,

and an evaluation factory w : JFM K → X → R, the DTMC derivation function π :

PMCX ×
(
JFM K→ X → R

)
× JFM K→ DTMC is such that

π(P , w, c) = Pw(c)

where PMCX is the set of PMCs with variables set X. For brevity, we can also note

JPKwc to mean π(P , w, c).

Note that the analysis methods we exploit in this work rely on evaluations being well-

de�ned (De�nition 3). This is where the restrictions we imposed on annotative models

come into play: the evaluation factory of an annotative model always yields well-de�ned

evaluations for the underlying annotative PMC.

Lemma 2 (Evaluation well-de�nedness for annotative models). For every annotative

model (P , p, w,FM ), w(c) is a well-de�ned evaluation for P, for all c ∈ JFM K.

Proof. By de�nition of well-de�ned evaluation for a PMC P = (S, s0, X,P, T ) (De�-

nition 3), an evaluation u is well-de�ned i� Pu obeys the stochastic property and Pu

assigns a valid probability value to each transition. That is, ∀s∈S ·Pu(s, Succ(s)) = 1 and

∀s,s′∈S ·Pu(s, s
′) ∈ [0, 1].

From De�nition 8, P is an annotative PMC (De�nition 5), so states with no variability

(case 1) satisfy the needed properties by de�nition. For states s with variability (case 2),

it holds that

∃s1,s2∈S ∃x∈X · Succ(s) = {s1, s2} ∧P(s, s1) = x ∧P(s, s2) = 1− x

Let us consider each property whenever u = w(c):

Stochastic property. By de�nition,∑
s′∈Succ(s)

Pw(c)(s, s
′) = Pw(c)(s, s1) + Pw(c)(s, s2)

= P(s, s1)[X/w(c)] + P(s, s2)[X/w(c)]

= x[X/w(c)] + (1− x)[X/w(c)]

= w(c)(x) + (1− w(c)(x))

= 1

Valid probabilities. From De�nition 8, we have that for every c ∈ JFM K, the im-

age of w(c) is {0, 1} ⊆ [0, 1]. Hence, either Pw(c)(s, s1) = 1 ∧ Pw(c)(s, s2) = 0 or
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Pw(c)(s, s1) = 0∧Pw(c)(s, s2) = 1. That is, all possible transition probabilities lie in

the [0, 1] interval.

As there is no other case to consider, Pw(c) satis�es the required properties. Thus, w(c)

is well-de�ned for P .

In summary, an annotative probabilistic model represents all products of the product

line, relying on presence conditions to de�ne which parts have to be removed to derive

a concrete product model. Because of that, this type of model is also known as 150%

model [39], metaproduct [84], variant simulator [91], or product simulator [2].

3.1.2 Compositional Models

A compositional representation of variable con�guration-speci�c behavior consists of a

hierarchy of PMCs whose variables represent variation points, such that they can be

composed with one another at prede�ned locations. To model a product line in this way,

we start with a PMC comprising all common behavior, while abstracting all variable

con�guration-speci�c behavior. We then model each abstracted behavior as a DTMC, if

it presents no further variability, or as another PMC, otherwise. In the latter case, we

follow the same procedure to abstract inner variation points, until all behavior is modeled.

Figure 3.3 illustrates this concept. For the vending machine example, the top-level

PMC P> would be as in Figure 3.3a. In this PMC, we introduce triples of dashed states

that act as placeholders for the abstracted behavior. We call these states and corre-

sponding transitions slots. For instance, the top-level PMC in Figure 3.3a has two slots,

abstracting the behaviors of serving tea and soda. The tea slot consists of two elements:

(a) the set of states ct0 , ctsuc , and cterr , representing the initial, success, and error states

in the abstracted behavior, respectively; and (b) two transitions, annotated with the ex-

pressions t and 1 − t, denoting the probabilities of success and failure of this behavior,

respectively. This way, we not only use the variable t as a slot identi�er, but give it the

possibility to be interpreted as the reliability of the tea behavior.

Note that, despite being alternatives, the behaviors of serving tea and soda are both

represented in this PMC. This parametric model, by itself, does not prohibit the behavior

of serving tea and soda subsequently. Like in the annotative representation of the vending

machine (Figure 3.2), we do not enforce the rules of the feature model in the PMC itself.

Instead, we ensure valid combinations of features during the composition process, as we

shall see later.

Figure 3.3b shows the PMC Pt for the tea behavior, in which we use a slot to abstract

the optional lemon-adding behavior, whose behavior is modeled by the PMC Ptl in Fig-

ure 3.3c. Since this tea-lemon PMC has no variability, it is in fact a regular DTMC. We
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(a) Top-level compositional PMC P> for the vending machine (common behavior and main
variation points)
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(b) Compositional PMC Pt for the behavior of serving tea
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(c) Compositional PMC Ptl for the behavior of adding lemon to tea

Figure 3.3: Compositional PMCs for the vending machine

omit the PMCs for serving soda (Ps) and for adding lemon to soda (Psl), for brevity, but
the complete example can be seen in Figure B.2 (Appendix B).

This example depicts compositional PMCs as being generated by extracting subgraphs

from a DTMC model of system reliability. The intuition about PMC composition is that

it represents the reverse process: �inlining� PMCs back into the slots from which they

were extracted in the �rst place. Although composition in the context of DTMCs and

transition systems may be interpreted as parallel composition (using operators such as

interleaving and handshaking), this is not the case. We use this concept here in the sense

of composition-based variability modeling.

Formally, we de�ne a compositional PMC as a PMC in which transition probabilities

depend on the value of some probabilistic reachability property of other PMCs. For a PMC

de�ned this way, possible evaluations map variables to real numbers within the interval

[0, 1], instead of the binary set {0, 1} used for an annotative model (see De�nition 7). To

compose PMCs modeled this way with one another, we augment the de�nition of a PMC
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with explicit mentions of success and error states.

De�nition 10 (Compositional PMC). A compositional PMC P is a tuple (S, s0, ssuc,

serr , X,P, T ), where:

� S is a set of states, s0 ∈ S is the initial state, X is a set of variables, and P is a

transition probability matrix, such that (S, s0, X,P, T ) is an annotative PMC (see

De�nition 5).

� States ssuc, serr ∈ S are called success and error states, respectively. Together

with the initial state, s0, they de�ne the interface of the compositional PMC:

interface(P) = {s0, ssuc, serr} (solid box around PMCs in Figure 3.3).

� T = {ssuc}. That is, ssuc is the only target state.

� The success and error states are the only bottom strongly connected components [7]

in P , that is:

� once one of them is reached, no other state is ever reachable; and

� they are the only states satisfying this property.

This restriction ensures that we model all executions as either successful (if the

success state is reached) or non-successful (if the error state is reached).

De�nition 10 builds on De�nition 5 to de�ne the structure of compositional PMCs, but

the intended semantics of variables in this type of parametric Markov chain is di�erent

from the corresponding semantics in an annotative PMC. In a compositional PMC, the

condition that the outgoing transitions of a given node are either all constant or all

variable (inherited from De�nition 5) relates to the concept of slots, whereas annotative

PMCs treat variable transitions as behavioral switches. Informally, a slot for the variable x

(dashed boxes in Figure 3.3) marks the part of a product's behavior where a con�guration-

speci�c behavior (identi�ed by x) takes place. Note that there can be more than one slot

for a given behavior.

De�nition 11 (Compositional PMC slot). For a compositional PMC P = (S, s0, ssuc,

serr , X,P, T ), a slot for x ∈ X is a triple (sx0 , sxsuc , sxerr ), where:

� sx0 , sxsuc , sxerr ∈ S;

� Succ(sx0) = {sxsuc , sxerr};

� P(sx0 , sxsuc) = x ∧P(sx0 , sxerr ) = 1− x.
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The set of slots for x in P is denoted by slotsP(x), and the set of states belonging to any

slot in slotsP(x) is given by slotStatesP(x) = {s ∈ S | ∃ς∈slotsP (x) ·s ∈ ς}. We extend these

de�nitions for the set of all slots in P for any variable in X (slotsP(X)) and the set of

states belonging to any slot in that set (slotStatesP(X)).

With compositional PMCs at hand, we need to be able to derive a DTMC, modeling

the behavior of a given product of the product line, as in Section 3.1.1. Before we can

handle the product-line aspect, we must de�ne the mechanics of PMC composition. The

intuition is that composition is achieved by connecting the interface (solid outer box) of

a compositional PMC P ′ to the slots (dashed boxes) in a compositional PMC P that are

meant to abstract the behavior in P ′, that is, slotsP(x) (see Figure 3.4).

De�nition 12 (Partial PMC composition). Given a compositional PMC P = (S, s0, ssuc,

serr , X,P, T ) and a variable x ∈ X, assume that x occurs only once in P , and let P ′ =

(S ′, s′0, s
′
suc, s

′
err , X

′,P′, T ′) be a compositional PMC to be composed on that single slot

marked by x. The partial PMC composition P [x/P ′] is a compositional PMC P ′′ = (S ′′,

s′′0, s
′′
suc, s

′′
err , X

′′,P′′, T ′′) such that:

� S ′′ = S ] S ′, where ] denotes the disjoint union operator (all states are disjointly

merged);

� s′′0 = s0, s′′suc = ssuc, and s′′err = serr (the interface of P is preserved);

� X ′′ = X \ {x}∪X ′ (the occurrence of x is replaced by a copy of P ′, whose variables
are those of X ′);

� T ′′ = T (target states of the base PMC are preserved);

� P′′ is such that

� P′′(sx0 , s
′
0) = 1 (new transition from a slot's initial state to the initial state of

the corresponding composed PMC)

� P′′(s′suc, sxsuc) = 1 (new transition from the success state of a composed PMC

to the success state of the corresponding slot)

� P′′(s′err , sxerr ) = 1 (new transition from the error state of a composed PMC to

the error state of the corresponding slot)

� P′′(sx0 , sxsuc) = 0 (slot's success transition is removed)

� P′′(sx0 , sxerr ) = 0 (slot's error transition is removed)

� P′′(s′suc, s
′
suc) = 0 (success loops from composed PMCs are removed)

� P′′(s′err , s
′
err) = 0 (error loops from composed PMCs are removed)
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� For all remaining combinations of s1, s2 ∈ S ′′:

P′′(s1, s2) =


P(s1, s2) if s1, s2 ∈ S \ slotStatesP(x)

P′(s1, s2) if s1, s2 ∈ S ′

0 otherwise

s0 ... sx0

sxsuc

sxerr

...

...

ssuc

serr

x

1− x

1

1

slot

(a) P

s ′0 ...

s′suc

s′err

1

1

(b) P ′

s0 ... sx0 s ′0 ...

s′suc

s′err

sxsuc

sxerr

...

...

ssuc

serr

1

1

1

1

1

x

1− x

1

1

(c) P[x/P ′]

Figure 3.4: Example of a partial composition of two PMCs

In summary, transitions among slot states of P are removed as well as the looping

transitions from success and error absorbing states of P ′. Then, slot states are connected
to respective interface states, yielding a partially composed PMC. This process is illus-

trated in Figure 3.4c, which depicts the partial composition of the compositional PMC P ′

(Figure 3.4b) into P (Figure 3.4a) from the perspective of a single slot. New transitions

are green bold, while red dashed transitions are the ones suppressed during composition.

We say this transformation is partial because slots for variables other than x are not

subject to composition.

Since there might be more than one slot for a given variable, we extend the concept

of partial composition to mean the composition of n renamings of a given compositional

PMC P ′ into each of the n slots for a single variable x in another compositional PMC P .
A full (total) composition is then obtained by composing PMCs over all slots in a given

base compositional PMC at once. Such a composition relies on a composition function�
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a function u′ : X → P that yields a compositional PMC P ∈ P to compose in the

corresponding slots for any given variable. The detailed de�nitions of PMC renaming

(De�nition 33) and total PMC composition (De�nition 34) are presented in Appendix A.3.

In a composition, slots mark locations where behavioral model fragments (i.e., other

compositional PMCs) can be inserted to expand the base behavior. However, nothing

so far prevents composition to happen at arbitrary slots (e.g., composing the behavior of

adding lemon to soda in the slot for t, which was meant to represent the behavior of serving

tea). Thus, we need a way to relate slots and the intended abstracted con�guration-speci�c

behaviors. We do so by naming compositional PMCs with the same variables that are

used in the slots that mark their places, by means of an identifying function.

De�nition 13 (Identifying function). Let P = {P1, . . . ,Pn} be a �nite set of compo-

sitional PMCs Pi, each with a set Xi of variables, where i ∈ {1, . . . , n}. An identifying

function is a bijection idt : P → I, where I ⊃
⋃
Pi
Xi is a set of variables that contains

all variables in the compositional PMCs Pi.

Since idt is a bijection, the set I of identi�ers must have the same cardinality as

P. In practical terms, we arbitrarily identify PMCs that do not directly correspond to

an abstracted behavior (i.e., those that are not directly referred by variables in other

PMCs). This is the case of top-level PMCs, which are mainly composed of states that

are shared between the behaviors of all products. For the vending machine product line

(Figure B.2, summarized in Figure 3.3), for which P = {P>,Pt,Ptl ,Ps,Psl}, we can

de�ne I = {>, t, tl, s, sl} and, correspondingly, idt = {P> 7→ >,Pt 7→ t,Ptl 7→ tl,Ps 7→
s,Psl 7→ sl}.

An identifying function induces a dependency relation over PMCs, based on their

names and the variables they employ to abstract behavior in slots. If we denote this

relation by ≺, in the vending machine example, we can say that Ptl ≺ Pt ≺ P>, meaning

P> depends on Pt, which, in turn, depends on Ptl . Also, Psl ≺ Ps ≺ P>. Figure 3.5a

illustrates this dependency relation as a dependency graph, in which edges are labeled

according to the variables identifying the respective dependencies. There should be no

in�nite descending chain under this relation, because otherwise one would in�nitely com-

pose PMCs and never get a DTMC as a result. This could happen as a modeling error, for

instance, as introduced by the hypothetical dashed red cyclic dependency in Figure 3.5b.

Hence, we require the dependency relation among compositional PMCs to be well-founded,

meaning there can be no in�nite sequence P1,P2,P3, . . . such that ∀i≥1 · Pi+1 ≺ Pi. This
also prohibits cyclic dependencies, since they would allow in�nite chains.

De�nition 14 (Dependency relation induced in compositional PMCs). Given a �nite

set P = {P1, . . . ,Pn} of compositional PMCs Pi, each with a set Xi of variables, and
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(a) Dependency relation ≺
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(b) Hypothetical cyclic dependency in ≺

Figure 3.5: Dependency relation induced in the vending machine

a corresponding identifying function idt : P → I, the binary relation ≺: P ×P is the

well-founded dependency relation induced by idt and by the use of variables in the Pi.
That is,

∀Pi,Pj∈P · idt(Pj) ∈ Xi ⇔ Pj ≺ Pi

We read Pj ≺ Pi as �Pi depends on Pj�.

A consequence of this de�nition is that, in a �nite set of compositional PMCs with an

identifying function, there must be, at least, one PMC that depends on no other and has

no variability whatsoever (a minimal PMC), and, at least, one PMC on which no other

depends (a maximal PMC). In the vending machine (Figure B.2), the minimal PMCs are

Ptl and Psl , while P> is the single maximal PMC.

De�nition 15 (Minimal and maximal compositional PMCs). Given a set P of compo-

sitional PMCs, an identifying function idt , and the corresponding induced well-founded

relation ≺, a compositional PMC P ∈P is called minimal i�

@P ′∈P · P ′ ≺ P

Conversely, P ∈P is called maximal i�

@P ′∈P · P ≺ P ′

Maximal PMCs can be seen as models of top-level behavior in a system, such as the

main tasks usually represented by UML activity diagrams. In an automation software

charged with managing di�erent work�ows, for instance, one could model each of the

work�ows as a separate behavior with internal variability, thus yielding as many maximal

PMCs as there are tasks to accomplish. The number of maximal PMCs in a compositional

model is mainly a modeling decision, and analyzing the whole product line amounts to
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analyzing each of these top-level behaviors. Thus, without loss of generality, we consider

models that have only one maximal PMC2, which we denote by P>.
After composition, the variability in a compositional PMC is replaced by the variabil-

ities of the PMCs composed into it. That is to say, the set of variables of the resulting

compositional PMC is given by
⋃k
i=1Xi, the set of variables in all composed PMCs. In the

vending machine (Figure 3.3), for instance, if we compose the tea PMC Pt (Figure 3.3b)
into the top-level PMC P> (Figure 3.3a) using the slot (ct0 , ctsuc , cterr ), the resulting com-

positional PMC P>[t/Pt] will no longer have variable t, but will have a new variable tl,

stemming from Pt. Consequently, to derive a product, one has to recursively perform the

composition operation until a plain DTMC is returned.

This recursive approach to derive a product by composition relies on an identifying

function idt to assign PMCs to slots corresponding to their identi�ers. This composition

depends upon satisfaction of a presence condition. Thus, before we can properly de�ne this

approach of derivation by composition, we must de�ne how to proceed with composition

in the case that the presence condition of a model to be composed is not satis�ed. We

achieve this result by composing the feature disabler compositional PMC, depicted in

Figure 3.6. This compositional PMC models an always successful behavior, so composing

it would not a�ect the overall reliability of the base model.

De�nition 16 (Feature disabler compositional PMC). The feature disabler compositional

PMC, P⊥ = (S, s0, ssuc, serr , X,P, T ), is a compositional PMC such that:

� S = {s0, ssuc, serr}

� X = ∅

� P(s0, ssuc) = 1, P(ssuc, ssuc) = 1, and P(serr , serr) = 1. Otherwise, for s, s′ ∈ S,

P(s, s′) = 0.

� T = {ssuc}

s0

ssuc

serr

1

0

1

1

Figure 3.6: Feature disabler compositional PMC P⊥
2The existence of minimal and maximal PMCs follows from the well-foundedness of ≺. More details

are available at Appendix A.1.
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Similar to what we have achieved with evaluation factories (De�nition 7), we need

to constrain the possible compositions to ones that respect both: (a) satisfying presence

conditions and (b) matching of slots and compositional PMCs via an identifying function.

To enable this, we de�ne a composition factory as a higher-order function that constrains

compositions based on possible con�gurations of the modeled product line. This is the

basis of product derivation.

De�nition 17 (Composition factory). Given a set P of compositional PMCs, a set I of

identi�ers that is a superset of the variables used in slots, and a feature model JFM K, a
composition factory w′ : JFM K→ I → DTMC is a function that, for a given con�guration

c ∈ JFM K, yields a composition function w′(c) : I → DTMC.

To populate this de�nition with concrete composition factories, we �x the set I of

identi�ers as well as an identifying function, thus inducing a dependency relation that

establishes which models should be composed to get a probabilistic model for a desired

product. This way, a compositional model of a product line is a set of compositional

PMCs closed under this dependency relation.

De�nition 18 (Compositional probabilistic model). A compositional probabilistic model

for a product line with feature model FM is a tuple (P,≺, I, idt, p, w′,FM ), where:

� P = {P1, . . . ,Pn} is a �nite set of compositional PMCs Pi = (Si, si0 , sisuc , sierr , Xi,

Pi, Ti) (De�nition 10).

� I is a set of variables, such that I ⊃
⋃
Pi
Xi and |I| = |P|. These variables are a

superset of all variables in the compositional PMCs in P.

� idt : P → I is an identifying function for P (De�nition 13).

� ≺: P ×P is the well-founded dependency relation induced by idt and by the use

of variables in the compositional PMCs Pi (De�nition 14).

� FM is a feature model.

� p : I → JFM K→ B is a presence function (De�nition 6) denoting presence conditions

satisfaction.

� w′ is a composition factory (De�nition 17) recursively de�ned as

w′(c)(x) =

Pi[x1/w
′(c)(x1), . . . , xk/w

′(c)(xk)] if p(x)(c) = 1

P⊥ otherwise

where Pi ∈P, idt(Pi) = x ∈ I, and Xi = {x1, . . . , xk}.
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This de�nition allows us to model the behavior of a product line in a compositional

way. To leverage this model for product-line analysis, we de�ne a way to derive a DTMC

that is consistent with the behavior of a product generated using the same con�guration.

De�nition 19 (Derivation by composition). Given a compositional model (P,≺, I, idt,
p, w′,FM ) and a compositional PMC P ∈ P with a set X of variables, the DTMC

derivation by composition π′(P , w′, c) is de�ned as

π′(P , w′, c) = P [X/w′(c)]

The notation is overloaded from PMC evaluation, since both are model transforma-

tions that operate on variables. Since w′ is de�ned recursively, we need to guarantee its

execution terminates, which is why we require ≺ to be well-founded. The termination

proof (Lemma 11) is presented in Appendix A.2.

3.2 Reliability Analysis Strategies

The scenario on which we focus is analyzing the reliability of all products of a product line

using model checking of a probabilistic reachability property of Markov-chain models. For

this task, one can choose a number of product-line analysis strategies [85]. Following the

taxonomy of Thüm et al. [85], we discussed possible strategies for each of the variability

representations (annotative and compositional) presented in Section 3.1.

Figure 3.7 depicts these choices. Starting with a compositional (upper left corner)

or an annotative model (upper right corner), one can follow any of the outgoing arrows

while performing the respective analysis steps (abstracted as functions), until reliabilities

are computed (either real-valued reliabilities or an ADD representing all possible values).

These analysis steps can be feature-based (green solid arrows), product-based (blue dotted

arrows), or family-based (red dashed arrows). Thus, the arrows form an �analysis path�

(a function composition), which de�nes the employed analysis strategy. Furthermore,

Figure 3.7 is a commuting diagram (as we will demonstrate later in this section), meaning

that di�erent analysis paths are equivalent (i.e., they yield equal results) if they share the

start and end points.

After choosing a variability representation, the analysis of any of the resulting models

presents another choice: either variability-free models (i.e., DTMC) are derived for each

con�guration (function π) and then analyzed (function α), or variability-aware analysis

is applied, using some form of parametric model checking (function α̂). The �rst choice

yields a product-based strategy (Section 3.2.1), whereby each variant is independently

analyzed. The second one leverages parametric model checking to produce expressions
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denoting the reliability of PMCs in terms of their variables (Section 2.2.2). These variables

carry the semantics they had in the model-checked PMC, so we correspondingly classify

the resulting expressions as annotative or compositional.

Evaluating these expressions provides another choice: to evaluate the expressions for

each valid con�guration (function σ), yielding feature-product-based (Section 3.2.3) and

family-product-based (Section 3.2.2) strategies; or to interpret the expressions in terms of

ADDs (function lift), e�ectively evaluating them for the whole family of models at once

(function σ̂)�a step we call expression lifting. The latter represents feature-family-based

(Section 3.2.3) and family-based (Section 3.2.2) strategies.

As an example of walking through the choices of Figure 3.7, suppose we start with

a compositional model (upper-left corner), perform parametric model checking (move

down), and then lift the resulting expressions (move down one more step) and evaluate

them (move right), reaching a reliability ADD for the family as a whole. The arrows in

this path are, respectively, green solid, red dashed, and red dashed, meaning the analysis

strategy is feature-family-based.

DTMC
Compositional

model
Annotative

model

Theorem 5 Theorem 1

Theorem 8

Reliability
Compositional
expressions

Annotative
expression

Theorem 9

Theorem 6 Theorem 3

Reliability
ADD

Compositional
lifted expressions

Annotative
lifted expression

π′ π

γ

α̂ α̂

α

σ σ

γ

lift lift
J_Kc

σ̂ σ̂

π derivation γ variability encoding
σ evaluation σ̂ evaluation with ADDs
α model checking α̂ parametric model

checkingJ_Kc ADD application

feature-based
family-based
product-based

Figure 3.7: Commutative diagram of product-line reliability analysis strategies

Note that the commuting diagram in Figure 3.7 presents links to the de�nitions of

models and analysis steps. Each section in this diagram also provide a pointer to the

theorem stating its commutativity. For instance, Theorem 5 states that the upper left

quadrant of the diagram commutes. The remaining theorems are omitted from that figure

to reduce visual clutter.
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In the remaining sections, we detail each of our strategies and analysis steps with

the goal of making statements about their commuting relations. Section 3.2.1 presents

product-based analysis strategies for both annotative and compositional models, with the

goal of establishing a baseline for the remaining soundness proofs. Section 3.2.2 discusses

family-product-based and family-based analyses of annotative models. Feature-product-

based and feature-family-based analysis strategies are the subject of Section 3.2.3, which

focuses on compositional models. Then, Section 3.2.4 bridges the gap between analyses

of annotative and compositional models (function γ in Figure 3.7), establishing their

commutativity. Finally, we leverage these results to present the novel feature-family-

product-based strategy in Section 3.2.5.

3.2.1 Product-based Strategies

Product-based analysis strategies are based on the analysis of generated products or mod-

els thereof [85]. In Section 3.1, we have discussed how to represent probabilistic behavioral

models of product lines as PMCs, using both annotative and compositional approaches.

There, we also described how to derive models of individual products, both for the anno-

tative and the compositional approaches. The generated models are plain DTMCs, that

is, their variability has been resolved at derivation time. Thus, to analyze the generated

models, one only needs to model-check the non-parametric probabilistic reachability for

every such model. We hereafter denote this non-parametric model checking analysis step

by the following function α.

De�nition 20 (Non-parametric model checking). The non-parametric model checking

step α : DTMC → [0, 1] consists of applying the algorithm by Hahn et al. [41]. For a

DTMC D = (S, s0,P, T ),

α(D) = PrD(s0, T )

Since a DTMC has no parameters, α yields constant functions, which we interpret as

plain Real numbers.

Although there are other algorithms for reliability model checking of regular (non-

parametric) DTMCs, we use the algorithm by Hahn et al. [41] in the above de�nition for

uniformity, which eases understanding. Since this algorithm is sound (Lemma 1), a work-

ing implementation of the presented theory is free to exploit another sound probabilistic

reachability algorithm for performance reasons.

Now we are able to de�ne product-based analysis for annotative and compositional

models.
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Strategy 1 (Product-based analysis of annotative models). Given an annotative model

(P , p, w,FM ), a product-based analysis yields, for all c ∈ JFM K,

α(π(P , w, c))

or, alternatively,

α(JPKwc )

Strategy 2 (Product-based analysis of compositional models). Given a compositional

model (P,≺, I, idt, p, w′,FM ), a product-based analysis yields, for all c ∈ JFM K,

α(π′(P>, w′, c))

where P> is the maximal PMC in P under ≺.

So, a product-based analysis results in a mapping from con�gurations to respective

reliability values, such as {c 7→ α(π(P , w, c)) | c ∈ JFM K} for annotative models, for

instance.

Both analysis strategies presented in this section derive models for individual prod-

ucts of a given product line and then apply a single-product analysis technique as is.

Since single-product analyses represent the base case upon which product-line analyses

are built, the product-based strategies establish a baseline for proving the soundness

of other strategies.

3.2.2 Family-based Strategies

According to Thüm et al. [85], a family-based analysis strategy is one that (a) operates

only on domain artifacts and that (b) incorporates the knowledge about valid feature

combinations. In this section, we explore this kind of strategy in the context of annotative

probabilistic models, because they encode the behavior of all products of a product line in a

single PMC. It is also possible to perform family-based analyses on a compositional model

by �rst transforming it into an annotative one, but this is discussed later in Section 3.2.4.

First, we show how to perform an analysis that yields a reliability expression, which can

in turn be evaluated for each valid con�guration of the product line. This characterizes

a family-product-based strategy (Section 3.2.2). Then, the aforementioned analysis is

leveraged to build a pure family-based (i.e., non-enumerative) strategy (Section 3.2.2). At

�rst, it may seem counterintuitive to present the family-product-based approach before

the family-based one. However, we shall see that our pure family-based approach builds
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upon concepts of the hybrid family-product-based approach, and that performing one or

the other is a matter of choosing product-based or family-based analysis steps after a

preliminary family-based step.

Family-product-based Strategy

A family-product-based strategy is a family-based strategy followed by a product-based

strategy over intermediate results [85]. The preliminary family-based step of our family-

product-based analysis consists of applying parametric model checking of probabilistic

reachability (Section 2.2.2) of the underlying PMC of the annotative model. This step

is abstracted as a function α̂, where the � symbol denotes that it is a variability-aware

version of the non-parametric model checking function α (De�nition 20).

De�nition 21 (Parametric model checking). The parametric model checking analysis

step α̂ : PMCX → FX consists of applying the algorithm by Hahn et al. [41] for proba-

bilistic reachability, which yields a rational expression ε ∈ FX for a PMC with variables

set X. For a PMC P = (S, s0, X,P, T ), the input target states of the algorithm are the

ones in T .

After performing parametric model checking, the result of reachability analysis is an

expression over the same variables as the annotative input PMC, denoting the PMC's

reliability as a function of these variables. Hence, we expect this annotative reliability

expression to be evaluated using the same evaluation functions that restricted the possible

behaviors in the original model. This expression evaluation, which can be seen as model

derivation applied to expressions, is captured in function σ.

De�nition 22 (Expression evaluation). Given an expression ε over a set X of variables,

an evaluation factory w, and a con�guration c ∈ JFM K, we de�ne the expression evaluation
function in a similar fashion as DTMC derivation:

σ(ε, w, c) = ε[X/w(c)]

Likewise, we can use JεKwc to denote σ(ε, w, c).

The function σ is applied to the reliability expression for all valid con�gurations of the

product line, yielding the �nal product-based step. The resulting family-product-based

approach for the analysis of annotative models is then de�ned as follows.

Strategy 3 (Family-product-based analysis). Given an annotative model (P , p, w,FM ),

the family-product-based analysis yields, for all c ∈ JFM K,

σ(α̂(P), w, c)
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or, alternatively,

Jα̂(P)Kwc

Figure 3.8 illustrates the family-product-based strategy in contrast with the product-

based one (Section 3.2.1), providing an intuition for why they commute. DTMC derivation

π and expression evaluation σ are both performed for a con�guration c such that c |= px.

This way, w(c)(x) = 1 and the reliability is 0.9801. If x was absent (i.e., c 6|= px), then

the reliability would be 0.99.

s0 s1 s2 ssuc

serr

0.99

0.01

x

1− x

0.99

0.01

1

1

s0 s1 s2 ssuc

serr

0.99

0.01

1

0

0.99

0.01

1

1

0.9801 · x+ 0.99 · (1− x)

0.9801

π

α̂

α

σ

Figure 3.8: Example of family-product-based analysis (α̂ followed by σ) in contrast to
a product-based analysis (π followed by α) of an annotative PMC, for a con�guration
satisfying x's presence condition

To be considered sound, a family-product-based analysis must be equivalent3 to per-

forming a product-based analysis of all products. This means that performing a para-

metric model checking step and then evaluating the resulting expression for each valid

product must yield the same result as �rst deriving the original annotative model for each

product and then performing non-parametric model checking on each resulting DTMC.

To prove that this equivalence holds, we can leverage a more general result about PMCs

and well-de�ned evaluations.

Lemma 3 (Commutativity of PMC and expression evaluations). Given any PMC P =

(S, s0, X,P, T ) and a well-de�ned evaluation u, it holds that

α(P [X/u]) = α̂(P)[X/u]

3Whenever two analysis strategies yield equal reliability values, we say they are r-equivalent.
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Proof.

α(P [X/u]) = α(Pu) (syntax change)

= PrPu(s0, T ) (De�nition 20)

and, since u is well-de�ned,

= α̂(P)[X/u] (Lemma 1 and De�nition 21)

Using this result, we are able to express the soundness of the family-product-based

approach in the following theorem.

Theorem 1 (Soundness of family-product-based analysis). Given an annotative model

(P , p, w,FM ), for all c ∈ JFM K

α(JPKwc ) = Jα̂(P)Kwc

Alternatively, α(π(P , w, c)) = σ(α̂(P), w, c).

Proof. Since w(c) is a well-de�ned evaluation (Lemma 2), we can use it to instantiate u

in Lemma 3. Thus, let P = (S, s0, X,P, T ).

α(JPKwc ) = α(P [X/w(c)]) (De�nition 9)

= α̂(P)[X/w(c)] (Lemmas 2 and 3)

= Jα̂(P)Kwc (De�nition 22)

As a major result, Theorem 1 states that the diagram in Figure 3.9 commutes.

This diagram corresponds to the upper right quadrant in Figure 3.7.

DTMC
Annotative

model

Reliability
Annotative
expression

π

α̂α

σ

Theorem 1

Figure 3.9: Statement of Theorem 1
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Family-based Strategy

The pure family-based strategy starts by applying parametric model checking to the

given annotative model, as in the family-based step of the family-product-based strategy.

However, instead of evaluating the resulting expression for each variant, we lift it to an

ADD-based reliability expression, which can be evaluated for all variants at once. While

an expression is evaluated with real values, a lifted expression is evaluated using ADDs,

which represent Boolean functions from features to real values. Each of these ADDs

encode the values that a variable can assume according to each possible con�guration,

also known as variational data [93]. Since this approach incorporates the knowledge of

valid feature combinations, it is a family-based strategy.

Let us take the vending machine product line (Figure B.1) as an example. Its reliability

expression after parametric model checking has 8 terms, one of which is 0.124659 · t · tl.
Starting from the evaluation factory w, we can derive functions ψx that, for each variable

x, take a con�guration c ∈ JFM K as input and output the corresponding value w(c)(x).

For t and tl, for instance, these functions would be as follows:

ψt(Tea,¬Soda,¬Lemon) = 1 ψtl(Tea,¬Soda,¬Lemon) = 0

ψt(Tea,¬Soda, Lemon) = 1 ψtl(Tea,¬Soda, Lemon) = 1

ψt(¬Tea, Soda,¬Lemon) = 0 ψtl(¬Tea, Soda,¬Lemon) = 0

ψt(¬Tea, Soda, Lemon) = 0 ψtl(¬Tea, Soda, Lemon) = 0

Having each of these functions represented by an ADD enables the e�cient computation

of the reliability expression as another ADD r̂, representing a Boolean function that could

be de�ned pointwise as r̂(c) = 0.124659 · ψt(c) · ψtl(c) (we omit the remaining terms for

simplicity).

We now formally de�ne expression lifting, as well as the mechanics of generating

ADD-based evaluations and evaluating lifted expressions.

De�nition 23 (Expression lifting). For a given rational expression ε ∈ FX , whose se-

mantics is a rational function R|X| → R, and a product line with k features, we de�ne the

lifted expression lift(ε) = ε̂ as an expression which is syntactically equal to ε, but whose

semantics is lifted to a rational function (Bk → R)|X| → (Bk → R), such that:

� The function's inputs are k-ary ADDs.

� Polynomial coe�cients are interpreted as constant ADDs (e.g., the number 5 be-

comes c ∈ Bk 7→ 5). We denote a constant a lifted to a constant ADD as â, so that

â(b̄) = a (where b̄ is a Boolean tuple).
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� Arithmetic operators are lifted to their ADD-based counterparts.

Hence, the admitted evaluations for ε̂ are of type u : X → (Bk → R), so that variables

are properly replaced by k-ary ADDs.

By the above de�nition, lifted expressions are syntactically equal to their original

(non-lifted) counterparts. However, instead of using Real arithmetics, we interpret oper-

ators, constants, and variables using ADDs and ADD arithmetics (Section 2.3). These

semantically lifted expressions are sound in the sense that they denote functions that,

when evaluated with a given con�guration, yield the same results as if the variables of the

original expressions would have been individually evaluated for the same con�guration.

Lemma 4 (Soundness of expression lifting). If ε is a rational expression over Real con-

stants and variables xi ∈ X, |X| = n, A1, . . . , An are ADDs, and ε̂ = lift(ε), then

ε̂[x1/A1, . . . , xn/An](b̄) = ε[x1/A1(b̄), . . . , xn/An(b̄)]

where b̄ is a vector of k Booleans, corresponding to a selection of the k features in a given

product line.

Proof. The proof is by induction on the structure of the rational expression ε. The

base cases are constant expressions and single variables, for which the lemma holds. We

then use induction and algebraic manipulation to prove for the arithmetic case (i.e.,

ε = ε1 � ε2, where � ∈ {+,−,×,÷}) and for exponentiation. Proof details can be found

in Appendix A.4.

Note how a lifted expression demands a di�erent type of evaluation, namely one that

replaces variables with ADDs. To handle this interdependency, we correspondingly lift

the evaluation factory.

De�nition 24 (Lifted evaluation factory). Given an evaluation factory w de�ned over a

feature model FM and a set X of variables, the factory's lifted counterpart is a function

ŵ : X → (B|FM | → R) that yields an ADD for a given variable. This function is such

that, for every variable x ∈ X and all c ∈ JFM K,

ŵ(x)(c) = w(c)(x)

With a lifted evaluation factory, one can evaluate a lifted expression over the same set

X in a variability-aware fashion. The intuition is that we valuate each variable with an

ADD that encodes all the real values it may assume for any con�guration of the product

line.
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De�nition 25 (Variability-aware expression evaluation). Let ŵ be a lifted evaluation

factory and ε̂ be a lifted expression. The variability-aware expression evaluation function,

σ̂, is de�ned as

σ̂(ε̂, ŵ) = ε̂[X/ŵ]

Remark 2. This de�nition of variability-aware evaluation is not restricted to reliability

analysis or to the speci�c de�nitions of probabilistic models presented in this text. Indeed,

one can notice that it relies on the de�nitions of an expression with rational function

semantics and of an evaluation factory with respect to a given feature model.

Thus, we are able to prove the following theorem, which applies to product line analysis

strategies that are based on expression evaluation.

Theorem 2 (Soundness of variability-aware expression evaluation). If ε is an expression

and w is an evaluation factory with respect to a feature model FM , let ε̂ and ŵ be their

respective lifted counterparts. Then, for all c ∈ JFM K,

σ̂(ε̂, ŵ)(c) = σ(ε, w, c)

In other words, ε̂[X/ŵ](c) = ε[X/w(c)].

Proof. Using ŵ as a substitution,

ε̂[X/ŵ] = ε̂[x1/ŵ(x1), . . . , xn/ŵ(xn)]

Thus, for all c ∈ JFM K,

σ̂(ε̂, ŵ)(c) = ε̂[X/ŵ](c) (De�nition 25)

= ε̂[x1/ŵ(x1), . . . , xn/ŵ(xn)](c)

= ε[x1/ŵ(x1)(c), . . . , xn/ŵ(xn)(c)] (Lemma 4)

= ε[x1/w(c)(x1), . . . , xn/w(c)(xn)] (De�nition 24)

= ε[X/w(c)]

= σ(ε, w, c) (De�nition 22)

We have seen that, in a product line with feature model FM , the presence function

p denotes a presence condition px as a Boolean function p(x) : JFM K → B. Since this

can be alternatively expressed as p(x) : B|FM | → B, the presence function can also be

encoded by ADDs, denoted by p̂(x). We now resort to the pointwise de�nition of w as
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w(c)(x) = p(x)(c) (Remark 1), to de�ne a lifted evaluation factory ŵ, for evaluating the

lifted version of expressions resulting from parametric model checking of an annotative

model.

Lemma 5 (Soundness of lifted annotative evaluation factory). Given an annotative model

(P , p, w,FM ) and a function p̂ : X → (B|FM | → B) that encodes presence conditions for

variables as ADDs, then ŵ = p̂ is a lifted evaluation factory for w.

Proof. From De�nition 8, we have that

w(c)(x) =

1 if p(x)(c) = 1

0 otherwise

Thus, from Remark 1, w(c)(x) = p(x)(c). Also, p(x)(c) = p̂(x)(c) by de�nition, so

w(c)(x) = p̂(x)(c).

Recalling the vending machine example, the presence conditions for the variables t and

tl are, respectively, Tea and Tea∧ Lemon. Then, the ADDs p̂(t) and p̂(tl) are given by the

Figures 3.10a and 3.10b, where we use the notation presented in Section 2.3. If we evaluate

a lifted version of the example expression ε = 0.124659 · t · tl + 0.3439 · t (2 terms from

the actual reliability expression for the vending machine annotative model in Figure B.1)

with p̂, the resulting ADD will be r̂ = 0.124659 · p̂(t) · p̂(tl) + 0.3439 · p̂(t), as depicted
in Figure 3.10c. Hence, for a given con�guration c ∈ JFM K, if both Tea and Lemon are

present (i.e., p̂(t)(c) = 1 and p̂(tl)(c) = 1), then r̂(c) = 0.124659·1·1+0.3439·1 = 0.468559;

if only Tea is present, then r̂(c) = 0.124659 · 1 · 0 + 0.3439 · 1 = 0.3439; and if both Tea

and Lemon are absent, then r̂(c) = 0.

Tea

01

(a) p̂(t)

Tea

Lemon

01

(b) p̂(tl)

Tea

Lemon

0.34390.468559 0

(c) lift(0.124659 · t · tl + 0.3439 · t)[t/p̂(t), tl/p̂(tl)]

Figure 3.10: Example of lifted expression evaluation using p̂

Using the result from Lemma 5, we can now express the soundness of this family-based

analysis step of evaluating lifted expressions.
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Theorem 3 (Soundness of expression evaluation using p̂). Given an annotative model

(P , p, w,FM ), ε = α̂(P), and ε̂ = lift(ε), let p̂ be the encoding of the presence condition

function p to yield ADDs. If we use p̂ as a lifted evaluation factory, then for all c ∈ JFM K

Jσ̂(ε̂, p̂)Kc = JεKwc

Alternatively, σ̂(lift(ε), p̂)(c) = σ(ε, w, c).

Proof. For a given annotative model, Lemma 5 states that p̂ is a sound lifted counterpart

of w. Hence, by Theorem 2, ε[X/w(c)] = ε̂[X/p̂](c). In other words, Jσ̂(ε̂, p̂)Kc = JεKwc .

Figure 3.11 illustrates the main result from Theorem 3. The depicted diagram,

which corresponds to the lower right quadrant in Figure 3.7, is commutative because

of this theorem.

Annotative
expression

Reliability

Reliability
ADD

Annotative
lifted expression

Theorem 3

σ

liftJ_Kc

σ̂

Figure 3.11: Statement of Theorem 3

Now that we have all analysis steps needed, we can formally de�ne the family-based

strategy.

Strategy 4 (Family-based analysis). Given an annotative model (P , p, w,FM ), a family-

based analysis yields

σ̂
(
lift(α̂(P)), p̂

)
The result of a family-based analysis is a Boolean function encoded as an ADD. Such

an analysis is sound if, and only if, it yields an ADD for which every valid con�guration

c ∈ JFM K results in the same probability as if the original annotative model had been

subject to product-based analysis for the same con�guration c.

Theorem 4 (Soundness of family-based analysis). Given an annotative model (P , p, w,
FM ), for all c ∈ JFM K it holds that

Jσ̂
(
lift(α̂(P)), p̂

)
Kc = α(JPKwc )
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Proof. Follows from the successive application of Theorems 3 and 1:

Jσ̂
(
lift(α̂(P)), p̂

)
Kc = Jα̂(P)Kwc (Theorem 3)

= α(JPKwc ) (Theorem 1)

As a key result, Theorem 4 states that the diagrams in Figure 3.12 commute. Both

diagrams correspond to the right half of the one in Figure 3.7.

DTMC
Annotative

model

Reliability
Annotative
expression

π

α̂α

σ

Theorem 1

Theorem 3

Reliability
ADD

Annotative
lifted expression

liftJ_Kc

σ̂

DTMC
Annotative

model

Reliability
Annotative
expression

π

α̂α Theorem 4

Reliability
ADD

Annotative
lifted expression

liftJ_Kc

σ̂

Figure 3.12: Alternative views of the statement of Theorem 4

3.2.3 Feature-based Strategies

A feature-based analysis strategy is one that (a) operates only on domain artifacts and

that (b) analyzes the artifacts belonging to each feature in isolation [85]. Compositional

models describe modular behaviors that represent units of variability. A given PMC within

a compositional model may represent the behavior associated with one or more features, or

even model part of a given feature's behavior (in case of behavior scattering). In this sense,

analyzing individual PMCs of a compositional model can be seen as analyzing features

in isolation, which is why we use this kind of probabilistic model to discuss feature-based

strategies. Moreover, since our focus is on reliability, which is highly in�uenced by feature

interactions, we cannot use a pure feature-based strategy [85]. Thus, we concentrate on

feature-product-based and feature-family-based analysis strategies.

Similar to what happens with family-based strategies (Section 3.2.2), the feature-

family-based approach builds upon concepts used by the feature-product-based strategy,

and performing one or the other is a matter of choosing product-based or family-based
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analysis steps after a preliminary feature-based step. Because of that, we �rst discuss the

feature-product-based strategy (Section 3.2.3), focusing on the feature-based step of ap-

plying parametric model checking to each compositional PMC to generate corresponding

compositional expressions. These reliability expressions can be evaluated for every possi-

ble con�guration, yielding a product-based step and giving rise to a feature-product-based

strategy. Alternatively, we can lift each expression and evaluate them using ADDs, in a

similar fashion to what we did for the family-based strategy (Section 3.2.2). This leads

to an overall feature-family-based strategy, which we discuss in Section 3.2.3.

Feature-product-based Strategy

A product-line analysis strategy is feature-product-based (a) if it consists of a feature-

based analysis followed by a product-based analysis and (b) if the analysis results of

the feature-based analysis are used in the product-based analysis [85]. The preliminary

feature-based analysis step consists of applying the parametric model checking function

α̂ to each PMC in a compositional model, yielding corresponding reliability expressions.

These resulting expressions preserve the dependency relation, since each of them is de�ned

in terms of the same variables as its originating PMC and can be assigned the same

identi�er.

As an example, the compositional model of the vending machine product line (Fig-

ure 3.3) yields the following expressions after the feature-based analysis step: α̂(P>) =

1 · t · s, α̂(Pt) = 0.6561 · tl, and α̂(Ptl) = 0.81. Also, α̂(Ps) = 0.729 · sl and α̂(Psl) = 0.81

for the remaining PMCs in Figure B.2.

A bottom-up evaluation of variables can be applied for each valid con�guration, giving

rise to the product-based analysis step. This procedure consists of compositional expres-

sion evaluation, that is, expression evaluation using a compositional evaluation factory

derived from the composition factory used for the corresponding PMCs.

De�nition 26 (Compositional evaluation factory). Given a compositional model (P,≺,
I, idt, p, w′,FM ), a compositional evaluation factory is de�ned as an evaluation factory

(De�nition 7) w : JFM K→ I → R, such that for all c ∈ JFM K and x ∈ I,

w(c)(x) =

σ(α̂(P), w, c) if p(x)(c) = 1

1 otherwise
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where idt(P) = x. Alternatively, we can write

w(c)(x) =

Jα̂(P)Kwc if p(x)(c) = 1

1 otherwise

In other words, whereas a composition factory composes a recursively derived version

of PMC P ′ into slots identi�ed by a variable x of a PMC P , a compositional evaluation

factory composes a recursively evaluated version of α̂(P ′) in every occurrence of the vari-

able x in α̂(P). This recursion always terminates, because ≺ is a well-founded relation

(see Lemma 12, in Appendix A.2).

We de�ne the feature-product-based analysis of compositional models as a recursive

evaluation of the expressions obtained from the feature-based step, using the composi-

tional evaluation factory shown above. This recursion starts from the maximal PMC in

the compositional model, traversing the dependency graph induced by ≺ (Figure 3.5a) in

a depth-�rst fashion.

For the vending machine product line (Figure 3.3), for instance, the computation for

con�guration c = {Tea, Lemon} would be as follows: Starting with α̂(P>), we evaluate

the presence conditions for its variables, t and s. Since ps = Soda is not satis�ed, s is

evaluated to 1, ending the computation for this branch. On the other hand, pt = Tea is

satis�ed, so we step into this branch to compute α̂(Pt) under c. The only variable in this

expression, tl, has its presence condition satis�ed by c, so we step further into this branch

to compute α̂(Ptl) under c. Since this expression denotes a constant value, we return this

value and the recursion terminates, yielding the following constant expression:

Jα̂(P>)Kc = 1 ·
(
0.6561 ·

Jα̂(Ptl
)Kc︷ ︸︸ ︷

(0.81)
)︸ ︷︷ ︸

Jα̂(Pt)Kc

· (1)︸︷︷︸
Jα̂(Ps)Kc

We generalize and formalize this procedure as follows.

Strategy 5 (Feature-product-based analysis). Given a compositional model (P,≺, I,
idt, p, w′,FM ) and the compositional evaluation factory w, derived from the composition

factory w′, the feature-product-based analysis yields, for all c ∈ JFM K,

σ(α̂(P>), w, c)

or, alternatively,

Jα̂(P>)Kwc

where P> is the maximal PMC in P under the dependency relation ≺.
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To establish the soundness of the feature-product-based strategy, we need to compare

it to the product-based strategy for compositional models. We state this result in the

following theorem.

Theorem 5 (Soundness of feature-product-based analysis). Given a compositional model

(P,≺, I, idt, p, w′,FM ), for all con�gurations c ∈ JFM K, it holds that

σ(α̂(P), w, c) = α(π′(P , w′, c))

or, alternatively,

Jα̂(P)Kwc = α(JPKw
′

c )

where P ∈P and w is the compositional evaluation factory (De�nition 26) derived from

the composition factory w′.

Proof. We use well-founded induction. The base of the induction is when P is minimal

with respect to ≺. Since minimal PMCs have empty sets of variables, π′(P , w′, c) = P
and α̂(P) = α(P). Thus, the statement holds for the base case.

The general case is proved by expanding de�nitions in the proof goal and applying the

induction hypothesis and Lemma 3. The complete proof is presented in Appendix A.3.

As a further major result, Theorem 5 states that the diagram in Figure 3.13 com-

mutes. This diagram relates to the upper left quadrant in Figure 3.7.

DTMC
Compositional

model

Reliability
Compositional
expressions

π′

α̂ α

σ

Theorem 5

Figure 3.13: Statement of Theorem 5

Feature-family-based Strategy

Similar to the family-based strategy (Section 3.2.2), the feature-family-based strategy

leverages ADDs to store and reason about variational data. Since the preceding feature-

based analysis yields expressions over reliabilities, this variational data is made of Real

values corresponding to the reliabilities of the products of a product line. Again, lifting
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expressions involves lifting the corresponding evaluation factory. In this process, the pres-

ence conditions are encoded in ADDs to represent the variability under feature selection.

This encoding is achieved by the ADD operator ITE (if-then-else).

Let us revisit expression evaluation in the vending machine example (Figure 3.3). We

have seen the expression for tl is the constant 0.81, so its lifted version is the constant

ADD 0̂.81 (according to the notation introduced in De�nition 23). The expression for t,

α̂(Pt) = 0.6561 · tl, has the variable tl. Thus, if the presence condition ptl = Tea ∧ Lemon
is satis�ed, this variable must be evaluated to the constant value 0.81, assuming the value

1 otherwise. Thus, the lifted expression ̂̂α(Pt) is evaluated with an ADD encoding this

choice, given by ϕ(tl) = ITE(p̂(tl), 0̂.81, 1̂) and depicted in Figure 3.14a. The evaluated

lifted expression ̂̂α(Pt)[tl/ϕ(tl)] is the ADD product of the constant 0̂.6561 and ϕ(tl),

shown in Figure 3.14b. The procedure is repeated for every composition, so that the

variable t in the expression ̂̂α(P>) would be replaced by the ADD in Figure 3.14c, which

already encodes the combined presence conditions for t and tl.

Tea

Lemon

0.81 1

(a) ϕ(tl) = ITE(p̂(tl), 0̂.81, 1̂)

Tea

Lemon

0.531441 0.6561

(b) ̂̂α(Pt)[tl/ϕ(tl)]
Tea

Lemon

0.65610.531441 1

(c) ϕ(t) = ITE(p̂(t),̂̂α(Pt), 1̂)

Figure 3.14: Example of lifted compositional expression evaluation

The function ϕ shown in the example is the lifted version of the compositional eval-

uation factory w. We �rst present a formal de�nition of ϕ and then proceed to proving

its soundness. Soundness of the feature-family-based strategy follows from this result and

from the soundness of the feature-product-based strategy (Section 3.2.3).

De�nition 27 (Lifted compositional evaluation factory). Given a compositional proba-

bilistic model (P,≺, I, idt, p, w′,FM ) and the compositional evaluation factory w, derived

from the composition factory w′, the lifted evaluation factory ϕ : I → (B|FM | → R) is a

function that, for any x ∈ I, yields an ADD ϕ(x) such that:

ϕ(x) = ITE(p̂(x), ̂̂α(P)[X/ϕ], 1̂)
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where P ∈P, idt(P) = x, ̂̂α(P) = lift(α̂(P)) and 1̂ is the constant ADD corresponding

to the function (c ∈ JFM K) 7→ 1.

The next lemma, which is the compositional counterpart of Lemma 5, states this

function ϕ is indeed a lifted version of w.

Lemma 6 (Soundness of lifted compositional evaluation factory). Given a compositional

model (P,≺, I, idt, p, w′,FM ) and the compositional evaluation factory w, derived from

the composition factory w′ (De�nition 26), for all x ∈ I and all c ∈ JFM K it holds that

ϕ(x)(c) = w(c)(x)

Proof. We �rst expand the de�nitions of ϕ (De�nition 27) and w (De�nition 26), then

proceed to compare corresponding cases. The cases in which the presence condition is

not satis�ed are trivially equal; for the complementary case, we use well-founded induc-

tion on the dependency relation ≺, along with the soundness result for expression lifting

(Lemma 4). The reader is invited to follow the complete proof in Appendix A.4.

This way, the ADDs yielded by function ϕ from De�nition 27 correctly encode the

variation in values returned by the compositional evaluation factory w. An immediate

consequence is that the expressions resulting from the feature-based analysis step can,

indeed, be lifted and then evaluated using ϕ, and this gives us the same results as the cor-

responding (i.e., for the same con�gurations) product-based evaluations. This is expressed

by the following theorem.

Theorem 6 (Soundness of expression evaluation using ϕ). Given a compositional prob-

abilistic model (P,≺, I, idt, p, w′,FM ), the compositional evaluation factory w, derived

from the composition factory w′, and x ∈ I, let P = (S, s0, ssuc, serr , X,P, T ) be such that

idt(P) = x, P ∈P. If ε = α̂(P), ε̂ = lift(ε), and ϕ is the lifted compositional evaluation

factory obtained from w (De�nition 27), then, for all c ∈ JFM K, it holds that

ε̂[X/ϕ](c) = ε[X/w(c)]

Proof. For the given compositional probabilistic model, Lemma 6 states ϕ is a sound

lifted counterpart of w. Hence, by Theorem 2, ε[X/w(c)] = ε̂[X/ϕ](c). In other words,

Jσ̂(ε̂, ϕ)Kc = JεKwc .

So, Theorem 6 states that the diagram in Figure 3.15 commutes. This diagram

corresponds to the lower left quadrant in Figure 3.7.
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Compositional
expressions

Reliability

Reliability
ADD

Compositional
lifted expressions

Theorem 6

σ

lift J−Kc

σ̂

Figure 3.15: Statement of Theorem 6

The feature-family-based analysis strategy leverages the preceding results to yield an

ADD encoding all reliabilities for valid con�gurations of the product line. This process is

formally de�ned as follows.

Strategy 6 (Feature-family-based analysis). Given a compositional model (P,≺, I, idt,
p, w′,FM ) and the lifted compositional evaluation factory ϕ, derived from w′, the feature-

family-based strategy yields

σ̂
(
lift(α̂(P>)), ϕ

)
where P> is the maximal PMC in P under the dependency relation ≺.

Similar to the family-based strategy, the feature-family-based strategy is sound if this

ADD is such that applying it to every valid con�guration c ∈ JFM K results in the same

probability as if the original compositional model had been derived for c and the resulting

DTMC had been model-checked for probabilistic reachability (product-based strategy).

The di�erence is that, in the feature-family-based case, this statement holds for every

PMC in the compositional model.

Theorem 7 (Soundness of feature-family-based analysis). Given a compositional model

(P,≺, I, idt, p, w′,FM ) and the lifted compositional evaluation factory ϕ, derived from

w′, for every PMC P ∈P and for all con�gurations c ∈ JFM K it holds that

Jσ̂
(
lift(α̂(P>)), ϕ

)
Kc = α(JPKw

′

c )

Proof. Let w be the compositional evaluation factory derived from the composition factory

w′. The proof follows from successive application of Theorems 5 and 6:

Jσ̂
(
lift(α̂(P)), ϕ

)
Kc = Jα̂(P)Kwc (Theorem 6)

= α(JPKw
′

c ) (Theorem 5)
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As a key result, Theorem 7 states that the diagrams in Figure 3.16 commute. Both

diagrams correspond to the left half of the one in Figure 3.7.

DTMC
Compositional

model

Reliability
Compositional
expressions

Theorem 5

π

α̂ α

σ

Reliability
ADD

Compositional
lifted expressions

Theorem 6lift J−Kc

σ̂

DTMC
Compositional

model

Reliability
Compositional
expressions

π

α̂ αTheorem 7

Reliability
ADD

Compositional
lifted expressions

lift J−Kc

σ̂

Figure 3.16: Alternative views of the statement of Theorem 7

3.2.4 Bridging Compositional and Annotative Models

Thus far, we have discussed family-based analysis strategies applied to annotative models

and feature-based analysis strategies applied to compositional models. We now present

a technique to transform any composition-based model into an r-equivalent annotation-

based model. This ability may be useful in the case that the reliability analysis of a

given product line is predictably more e�cient if performed using a strategy suited for

annotative models, such as our family-product-based and family-based approaches. This

transformation of models resembles variability encoding techniques, that is, the rewriting

of compile-time variability as load-time or run-time variability [2, 3, 74, 91].

Although the concepts of compilation and execution are not de�ned for Markov chains,

variability encoding, as established in the literature, has the main goal of creating artifacts

that can be analyzed by o�-the-shelf tools. Correspondingly, we are able to transform

a compositional model, which cannot be directly model-checked (because it is split into

a number of PMCs), into an annotative model, which can be immediately issued to a

parametric model checker. Thus, we address the transformation of compositional models

into annotative ones in terms of two variability encoding functions : one operating on

PMCs (Section 3.2.4) and the other for handling expressions (Section 3.2.4).

Variability Encoding of PMCs

In terms of Markov chains, variability encoding can be realized by turning compositional

models into annotative ones. This means transforming both the underlying compositional
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PMCs and the composition factory w′ into a single annotative PMC with a corresponding

evaluation factory. To accomplish this, we propose an if-then-else operator for PMCs that

switches between possible states with a Boolean variable.

s0 ...

ssuc

serr

1

1

(a) P

s ′0 ...

s′suc

s′err

1

1

(b) P ′

s ′′0

s0 ...

ssuc

serr

1

1

s ′0 ...

s′suc

s′err

1

1

s ′′suc

s ′′err

x

1− x

1

1

1

1

1

1

(c) ITE(x,P,P ′)

Figure 3.17: Example ITE operator for PMCs

For brevity, the formal de�nition of this operator (De�nition 35) is available in Ap-

pendix A.5.1. We rely on Figure 3.17 for intuition. Again, green bold arrows represent

new transitions, whereas red dashed ones are removed. Intuitively, an evaluation that

maps x to 1 yields a PMC with the same behavior as P (consequent), while an evaluation

that maps x to 0 yields a PMC with the same behavior as P ′ (alternative). We formalize

this behavioral switching in terms of r-equivalence.

Lemma 7 (r-equivalence for ITE). Given two compositional PMCs, P = (S, s0, ssuc, serr ,

X,P, T ) and P ′ = (S ′, s′0, s
′
suc, s

′
err , X

′,P′, T ′), and a variable x /∈ X ∪ X ′, let P ′′ =

ITE(x,P ,P ′). If (P ′′, p, w,FM ) is an annotative model with P ′′ as its underlying PMC4,

where p, w, and FM are arbitrarily chosen, then, for every c ∈ JFM K,

α(JITE(x,P ,P ′)Kwc ) =

α(JPKwc ) if p(x)(c) = 1

α(JP ′Kwc ) otherwise

Proof. We are interested in computing the probability of reaching s′′suc from s′′0 in P ′′ =

ITE(x,P ,P ′) under evaluation w(c). Using the formal de�nition of ITE (De�nition 35)

and Property 1, we are able to derive a reachability expression with only two terms, each

4By De�nition 10, any compositional PMC is also an annotative PMC (De�nition 5). Thus, a com-
positional PMC can be the underlying PMC of an annotative model.
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corresponding to the �activated� PMC (P or P ′). The complete proof can be found in

Appendix A.5.1.

The previous lemma establishes that the ITE operator has the e�ect of alternating

behaviors if the resulting PMC is evaluated by replacing the switching variable x with 0

or 1. With this result, we de�ne the variability encoding of PMCs as a composition of

PMCs using the ITE operator in a recursive way, with minimal PMCs as the base case.

The alternative choice (second argument to ITE) is always the feature disabler PMC

P⊥ (De�nition 16), meaning no probabilistic behavior is actually added if the presence

condition is not satis�ed. This is coherent with the corresponding case in a composition

factory (see De�nition 18).

De�nition 28 (Variability encoding function for PMCs). Given a compositional model

(P,≺, I, idt, p, w′,FM ) and P ,P1, . . . ,Pk ∈ P such that Pi ≺ P and xi = idt(Pi) for

i ∈ {1, . . . , k}, the variability encoding function γ is de�ned as the following derivation

by composition (De�nition 19):

γ(P) = P [x1/ITE(x1, γ(P1),P⊥), . . . , xk/ITE(xk, γ(Pk),P⊥)]

This recursion terminates, since the arguments to the recursive calls involved are less

than the input with respect to the well-founded relation ≺ (Lemma 11). Nonetheless, each

variable xi, which was meant as a slot marker, is replaced by a variable with the same

name, but di�erent meaning (i.e., intended to be evaluated with presence values). Since

all variables in the PMC yielded by γ have this issue, the composition factory from the

original compositional model will no longer be suitable. Thus, we must broaden the scope

of variability encoding to also transform the composition factory w′ into an annotative

evaluation factory.

De�nition 29 (Variability encoding of PMCs). Given a compositional model (P,≺, I,
idt, p, w′,FM ), let P ∈P be a PMC. Then, (γ(P), p, w,FM ) is an annotative model that

encodes P 's variability, where w is an evaluation factory as in De�nition 8.

The main goal of variability encoding is to transform a compositional model into an

annotative one, but this technique can only be exploited if the reliability analyses of both

the original and the transformed models yield the same results. This fact is established

by the following theorem.

Theorem 8 (r-equivalence of variability encoding and derivation by composition). Given

a compositional model (P,≺, I, idt, p, w′,FM ) and P ∈ P, let (γ(P), p, w,FM ) be its
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variability-encoded annotative model. Then, for all c ∈ JFM K,

α(Jγ(P)Kwc ) = α(π′(P , w′, c))

Proof. We use well-founded induction. For minimal PMCs (base of induction), γ(P) = P ,
so Jγ(P)Kwc = P . Likewise, π′(P , w′, c) = P , so the proposition holds trivially.

As induction hypothesis, we have that α(Jγ(Pi)Kwc ) = α(π′(Pi, w′, c)) for all Pi ∈ P

such that Pi ≺ P . Expanding α(Jγ(P)Kwc ) and using previous soundness and r-equivalence

results, we leverage this induction hypothesis to reach α(π′(P , w′, c)).
The detailed proof can be found in Appendix A.5.1.

In summary, Theorem 8 establishes the commuting diagram in Figure 3.18, which

corresponds to the upper arc in Figure 3.7. Note that the derived DTMCs are not

necessarily equal in a syntactic and structural sense�this theorem only states that α

computes the same reliability for both models.

DTMC
Compositional

model
Annotative

model

Reliability

π′ π

γ

α

Theorem 8

Figure 3.18: Statement of Theorem 8

The result from Theorem 8 indicates that, under the assumptions we made for user-

oriented reliability models, the compositional variability representation is at least as ex-

pressive as the annotation-based one. Hence, either compositional or annotative models

can be used to analyze a given product line. The decision on which one is more appropri-

ate for each situation is not in the scope of this research; nonetheless, we conjecture that

the modeling approach should follow the variability representation used in the system

being modeled, as a means to mitigate the risk of introducing errors.

Variability Encoding of Expressions

Aside from encoding variability in Markov chains, we can also encode variability in reli-

ability expressions (represented by the arc in the middle row of Figure 3.7). Expressions

derived from a compositional model can be combined to form a single larger expression (in
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terms of operands). Applying such a transformation can be useful in cases where parsing

and evaluating each compositional expression is less e�cient than doing so for the single

variability-encoded expression. As with PMCs, variability encoding of expressions can be

de�ned in terms of a dedicated if-then-else operator for expressions.

De�nition 30 (ITE operator for expressions). Given two expressions ε and ε′ over the

sets X and X ′ of variables, respectively, and a variable x, the if-then-else operator for

expressions is de�ned as

ITE(x, ε, ε′) = x · ε+ (1− x) · ε′

The set of variables of the resulting expression is X ′′ = X∪X ′∪{x}. Additionally, x is ex-
pected to be evaluated with a Boolean value, that is, 0 or 1. Procedures that do not a�ect

the semantics of expressions, such as distributing the terms over the switching variable x

and simplifying the resulting expression, can be leveraged in working implementations.

This if-then-else operator merges two expressions to form a third one that uses a new

variable to represent a choice and satis�es the following lemma.

Lemma 8 (Extensional equality for expression ITE). Given two expressions ε and ε′ over

the sets X and X ′ of variables, respectively, and a variable x, let X ′′ = X ∪X ′ ∪{x} and
u : X ′′ → [0, 1] be an evaluation function such that u(x) ∈ B. Then,

ITE(x, ε, ε′)[X ′′/u] =

ε[X/u] if u(x) = 1

ε′[X ′/u] if u(x) = 0

Proof. We prove this by expanding the de�nition of ITE and performing algebraic manip-

ulation. The complete proof can be found in Appendix A.5.2.

The above lemma establishes that the ITE operator has the e�ect of alternating the

semantics of the resulting expression between the ones of its arguments, but only if this

resulting expression is evaluated with an evaluation that replaces the switching variable

x by 0 or 1. Similar to the ITE operator for PMCs, we de�ne variability encoding of

expressions as a composition of expressions using the ITE operator in a recursive way,

with constant expressions (i.e., reliabilities of minimal PMCs) as the base case.

De�nition 31 (Variability encoding function for expressions). Given a compositional

model (P,≺, I, idt, p, w′,FM ) and P ,P1, . . . ,Pk ∈P such that Pi ≺ P and xi = idt(Pi)
for i ∈ {1, . . . , k}, let ε = α̂(P) and εi = α̂(Pi). The variability encoding function γ is

overloaded for expressions as

γ(ε) = ε[x1/ITE(x1, γ(ε1),1), . . . , xk/ITE(xk, γ(εk),1)]
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This recursion terminates, since the arguments to the recursive calls involved are less than

the input with respect to the well-founded relation ≺ (see Lemma 11).

Similar to variability encoding of PMCs, the new variables after encoding have the

same names as the previous ones, but di�erent meaning. Thus, we also transform the

compositional evaluation factory w (De�nition 26) into an annotative evaluation factory

(see De�nition 8). This way, we ensure variables, which have all been transformed into

conditionals, are evaluated as expected of the ITE semantics.

De�nition 32 (Variability encoding of expressions). Given a compositional model (P,

≺, I, idt, p, w′,FM ), and the compositional evaluation factory w, derived from the com-

position factory w′, let wp be an annotative evaluation factory (w in De�nition 8) with

the same presence conditions as w. That is, for all c ∈ JFM K,

wp(c)(x) =

1 if p(x)(c) = 1

0 otherwise

Then, for any P ∈P and ε = α̂(P), γ(ε) encodes ε's variability under the evaluation wp.

We state the soundness of variability encoding for expressions in terms of r-equivalence.

For any con�guration c ∈ JFM K, a variability-encoded expression and its corresponding

evaluation factory must yield the same reliabilities as the original compositional expres-

sions and the corresponding compositional evaluation factory.

Theorem 9 (Soundness of variability encoding for expressions). Given a compositional

model (P,≺, I, idt, p, w′,FM ) and P ,P1, . . . ,Pk ∈P such that Pi ≺ P and xi = idt(Pi)
for i ∈ {1, . . . , k}, let ε = α̂(P). Let also w be the compositional evaluation factory

derived from w′ (De�nition 26) and wp be the annotative evaluation factory obtained from

w (De�nition 32). Then, for all c ∈ JFM K it holds that

σ(γ(ε), wp, c) = σ(ε, w, c)

Proof. We use well-founded induction. For a minimal PMC P (base of induction), α̂(P) =

ε has no variables. This way, γ(ε) = ε and σ(ε, u) = ε for any evaluation u. Thus, both

sides of the equality evaluate to ε and the proposition holds trivially.

As induction hypothesis, we have that σ(γ(εi), wp, c) = σ(εi, w, c) for all εi = α̂(Pi)
such that Pi ≺ P . Expanding σ(γ(ε), wp, c) and using previous soundness and extensional

equality results, we leverage this induction hypothesis to reach σ(ε, w, c).

The detailed proof can be found in Appendix A.5.2.
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As a further key result, Theorem 9 establishes the commuting diagram in Fig-

ure 3.19. This diagram corresponds to the arc in the middle section of Figure 3.7.

Compositional
expressions

Reliability
Annotative
expression

Theorem 9

γ

σ σ

Figure 3.19: Statement of Theorem 9

Variability Encoding of Lifted Expressions

The symmetry exhibited by Figure 3.7 suggests that it makes sense to have arcs denoting

variability encoding in all three levels of that diagram�i.e., not only for PMCs and

expressions, but also for lifted expressions. However, lifting (De�nition 23) operates on

expression semantics, whereas variability encoding (De�nition 32) operates on expression

syntax. Because of that, variability encoding of lifted expressions is e�ectively the same

operation as variability encoding of regular (Real-valued) rational expressions. Thus, we

decided to represent this operation only once in our commuting diagram (Figure 3.7).

3.2.5 Feature-family-product-based Strategy

So far, we have proved that all compositions of analysis steps leading up to reliabilities

in Figure 3.7 are r-equivalent. That is, these analysis steps commute, and, consequently,

any path in this diagram can be equally taken to reach the same reliability value. By

re�ecting over the results condensed in this commuting diagram, we noticed a possible

path that had not yet been exploited. This �unbeaten path�, presented in Figure 3.20 as

an excerpt from Figure 3.7, led us to derive a novel feature-family-product-based analysis

strategy:

1. Starting from a compositional model (upper left corner), we apply parametric model

checking (α̂) to obtain compositional expressions (feature-based step);

2. The resulting compositional expressions (lower left corner) are variability-encoded

(γ) into a single annotative expression (family-based step); and

3. The annotative expression (lower right corner) is analyzed for each con�guration

c ∈ JFM K of the product line (product-based step).
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DTMC
Compositional

model

Theorem 5

Reliability
Compositional
expressions

Annotative
expression

Theorem 9

π′

α̂
α

σ σ

γ

Figure 3.20: Commuting diagram leading to the feature-family-product-based strategy

The existence of a feature-family-product-based class of analyses was foreshadowed in a

recent survey, but no instance has been found in the literature [85]. Thus, to the best of our

knowledge, this is the �rst feature-family-product-based analysis to be presented, either

formally or informally. The precise conditions under which this approach outperforms

the others still need to be characterized by empirical studies. However, we believe it is

an alternative to the family-product-based approach for cases in which (a) the model at

hand is compositional and (b) applying variability encoding to the PMCs themselves is

infeasible (e.g., the resulting annotative model is too big to be e�ciently analyzed).

The novel strategy can be formally described as follows:

Strategy 7 (Feature-family-product-based analysis). Given a compositional model (P,

≺, I, idt, p, w′,FM ) and the compositional evaluation factory w, derived from the compo-

sition factory w′, the feature-family-product-based analysis yields, for all c ∈ JFM K,

σ
(
γ(α̂(P>)), wp, c

)
or, alternatively,

J(γ ◦ α̂)(P>)Kwp
c

where P> is the maximal PMC in P under the dependency relation ≺, and wp is the

variability-encoded annotative evaluation factory obtained from w (De�nition 32).

Since the diagram in Figure 3.7 commutes, this analysis is sound with respect to the

product-based analysis of the same compositional model (Strategy 2). This soundness

property is established by the following theorem:

Theorem 10 (Soundness of feature-family-product-based analysis). Given a composi-

tional model (P,≺, I, idt, p, w′,FM ) and a compositional evaluation factory w, derived

from the composition factory w′, for every PMC P ∈ P and for all con�gurations

c ∈ JFM K it holds that

σ
(
γ(α̂(P)), wp, c

)
= α

(
π′(P , w′, c)

)
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where wp is the variability-encoded annotative evaluation factory obtained from w (De�-

nition 32).

Proof. The proof follows from successive application of other commutativity theorems.

σ
(
γ(α̂(P)), wp, c

)
= σ

(
α̂(P), w, c

)
(Theorem 9)

= α
(
π′(P , w′, c)

)
(Theorem 5)

In summary, Theorem 10 states that the diagram in Figure 3.21 commutes. This

diagram corresponds to the upper left quadrant and the middle arc in Figure 3.7.

DTMC
Compositional

model

Reliability
Compositional
expressions

Annotative
expression

π′

α̂
α

σ

γTheorem 10

Figure 3.21: Statement of Theorem 10

3.3 Concluding Remarks

Together, the theorems demonstrated in this chapter constitute the main contribution of

this work. Intermediate steps of the presented analysis techniques commute, making the

diagram in Figure 3.7 fully commutative. Thus, any path constructed by following the

arrows in that diagram yields an analysis that is r-equivalent to the one yielded by any

other path that shares the same starting and ending points. This way, we guarantee all

product-line reliability analysis techniques presented in this work yield the same results

if given the same input models.

Furthermore, we formally described the di�erent analysis strategies in terms of reusable

functions, making them comparable to one another. Such view, summarized by the com-

muting diagram in Figure 3.7, allows the organization and structuring of facts (e.g., com-

mutativity of intermediate analysis steps) in a concise and precise manner, facilitating the

communication of ideas. This contributes to a more comprehensive understanding of un-

derlying principles used in these strategies, which we envision could help other researchers
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to lift existing single-product analysis techniques to yet under-explored variability-aware

approaches.

In what follows, we discuss the generality of our results and their application to related

analysis strategies. We also discuss how this work relates to other topics of interest in

product-line analysis�namely sampling strategies and detection of feature interactions.

Generality: Our results indicate that there is a general principle of using ADDs to

encode variability in an e�cient way. In our speci�c case, we used Real-valued ADDs to

compute the values for the user-oriented reliability property of each possible product with-

out resorting to a fully enumerative approach. Such e�ciency comes from the algorithms

for ADD binary operations [6], which are not restricted to Real numbers.

Hence, we believe that this technique may be explored to analyze other properties of

product lines�especially numeric ones, such as performance and time-to-failure. In doing

so, the bottom half of our commuting diagram (Figure 3.7) may be useful as a starting

point, since it is dependent on rational expressions and evaluation factories, but not on

the speci�c models (and properties) considered here.

Besides the general nature of ADD operations, we also believe that the commuting

diagram itself may be used as a guide to specify similar theories for related domains. For

instance, we can identify in Figure 3.7 that the central node (Reliability) represents

the property under analysis, whereas the node just above that one (DTMC) represents the

model for which that property can be analyzed. The upper left and upper right nodes

(Compositional Model and Annotative Model) denote alternative ways to represent

variability in such models, with inward arrows representing the binding of variability

to derive a single product (in this case, a model thereof) and downward arrows denoting

variability-aware analysis. Future work shall investigate how to leverage this framework to

systematically generalize our results to other properties, models, and analysis techniques.

Feature interactions: When features of a product line are developed independently,

it is possible that their combination causes unexpected behavior. To ensure the quality

of products in a product line, such inadvertent feature interaction should be properly

identi�ed, managed, and resolved. Thus, the feature interaction problem is of particular

interest when dealing with product-line analysis.

The combination of di�erent dimensions of product-line analysis is, by itself, an ap-

proach to quality-checking in the presence of feature interactions [3]. In this particular

work, we deal with models of user-oriented reliability. Although modeling techniques

lie outside our scope, the analysis strategies formalized here assume that the reliability

models use DTMC states to denote transfer of control between software modules (cf.
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Section 2.2). Thus, whenever our analysis strategies combine models for valid product

con�gurations, the results take into account the interaction of the modeled behavior for

the di�erent features.

The validity of this approach is dependent on the accurate modeling of software behav-

ior. However, all resolutions of feature interactions can be abstracted as variants of a single

pattern: implementing individual features and providing additional coordination logic to

use them together [3]. Hence, we argue that the proper modeling of software behavior

to re�ect that implementation technique can lead to a sound feature-interaction-aware

reliability analysis of a product line using our strategies.

Sampling strategies: The commutativity theory presented here establishes that our

reliability analysis strategies yield the same results for any given valid con�guration.

This correspondence is enforced by the presence conditions encoded in evaluation and

composition factories, as a means to activate/deactivate equivalent model fragments.

Thus, considering that sampling is a matter of checking a (suitable) subset of all prod-

ucts of a product line with a single-product analysis [3], we can say that the semantics

of sampling strategies is contained in the semantics of the product-based strategy pre-

sented in Section 3.2.1. Therefore, sampling of valid con�gurations is covered by our

formalization.

However, sampling strategies that allow arbitrary feature selections are also possible.

Indeed, the bene�ts of such analysis strategies has been empirically assessed [59], especially

as a means to detect feature interactions. Although our formalization as-is does not

contemplate invalid con�gurations, doing so is a matter of extending the domains of

presence functions (De�nition 6) and evaluation factories (De�nition 7) from JFM K to 2F

(where F is a set of features and FM is a feature model de�ned over F ). Since JFM K ⊆ 2F

(by de�nition, cf. Section 2.1.1), it is possible to de�ne such an extension that preserves

the correspondence between model fragments for valid con�gurations and yet de�nes new

correspondences for other feature combinations.
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Chapter 4

Formalization in PVS

This chapter discusses the process of mechanizing the handcrafted version of our theory

of commuting reliability analysis strategies [15]. We present an overview of the adopted

speci�cation strategy (Section 4.1) and a guide to the structure of the resulting speci-

�cation (Section 4.2), whereby it is related to the original version. We also discuss the

machine-assisted proof e�ort (Section 4.3) and re�ect upon the mechanization process

as a whole and the impact of design decisions (Section 4.4). Last, we discuss current

limitations of the mechanized theory (Section 4.5).

Instead of a comprehensive description of every aspect of this mechanized theory, we

only present in detail the representative constructs�either those that are extensively

used throughout the speci�cation or ones that embody design decisions for problems that

are prone to more than one solution. Accordingly, we change some of the mechanized

de�nitions (with respect to the actually implemented version) to improve readability.

The result so far is that all de�nitions, lemmas, and theorems in the original spec-

i�cation have been fully mechanized, but the machine-veri�ed proofs of 5 of the new

auxiliary lemmas are still in progress (Section 4.5). Moreover, some of the inner work-

ings of discrete-time Markov chains are left unspeci�ed by design, since the soundness of

known facts about DTMCs is not debated and is also not the focus of this work.

The source code for the PVS speci�cation is available at https://github.com/

thiagomael/rome-specs. The top theory is in the PVS �le rome, and serves both as

a summary of the analysis strategies and as an entry point from which the whole spec-

i�cation can be checked (by issuing the command pvs -batch -q -l batch-prove.el

from the directory containing the �les). In this work, we use PVS version 6.0,1 extended

with the NASA PVS Library version 6.0.9.2 It takes approximately 20 minutes for PVS

to type-check and verify all proofs in the speci�cation.3 After this, the results will be

1http://pvs.csl.sri.com/
2https://shemesh.larc.nasa.gov/fm/ftp/larc/PVS-library/
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available in the �le batch-rome.log, including timing statistics and the status of all

theories (at the end of that �le).

4.1 Speci�cation Strategy

To mechanize the manually speci�ed theory, we followed the same order originally used

when de�ning the di�erent analysis strategies (Section 3.2). The reason for this choice is

twofold:

1. the family-based strategy is only possible once the intermediate result of a family-

product-based analysis (the family-based step) is available; and

2. all of our feature-based strategies (left half of Figure 3.7) rely on concepts that are

needed for the family-based ones (right half of Figure 3.7).

Additionally, we used a top-down approach, starting from a strategy and then specify-

ing the related concepts as needed. For instance, the product-based analysis of annotative

models makes use of annotative models themselves; these, in turn, depend on de�ning an-

notative PMCs, which depend on PMCs, expressions, and so on. With this approach,

we expected the resulting speci�cation to be as parsimonious as possible. This is the

inverse of the presentation sequence in each subsection of Section 3.2, where concepts are

presented in a bottom-up fashion as building blocks from which more complex de�nitions

are constructed.

Choice of Proof Assistant

We started the speci�cation work with a �dry-run�, whereby we speci�ed part of the

upper right quadrant of Figure 3.7 using two proof assistants: PVS [68] and Coq [11].

The goal was to experience both tools in our concrete setting, to decide on which would

be more helpful. This proof of concept, which consists of speci�cation and proofs up

to Lemma 2 (Evaluation well-de�nedness for annotative models), is available at https:

//github.com/thiagomael/proof-assistants-poc.

At the time of this proof of concept, we used introductory documentation and tuto-

rials. Based on that material, we did not �nd a way to specify type constraints in Coq,

especially for return-type predicates. For that reason, we were not capable of using sets as

types for function parameters, hindering the speci�cation of partial functions (which are

needed for expression evaluations, for instance). Contrastingly, Lemma 2 was automat-

ically generated by PVS as a type-correctness condition, based on our use of dependent
3Using as reference a dual core (4 threads) i7-4500U CPU with 1.8 GHz clock and 8 GB RAM running

Ubuntu 19.04.
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typing as a speci�cation technique. Moreover, our Coq proofs became considerably larger

than the corresponding ones in PVS (Figure 4.1).

Figure 4.1: Proof of Lemma 2 in PVS (left) and Coq (right)

Also, the PVS type checker identi�ed a corner case of our speci�cation: we did not

account for the possibility of divide-by-zero errors. Coq, on the other hand, does not

restrict the division operator to non-zero denominators.4 This capability of the PVS

type checker led us to believe that this tool would be more helpful to detect speci�cation

mistakes. One disadvantage of using PVS, however, is that Coq provides the ability to

extract certi�ed Haskell code from a working speci�cation�a feature that could be helpful

in future work, as a means to derive a certi�ed product-line reliability analysis tool.

Note, however, that we did not perform a thorough and systematic comparative in-

vestigation. Rather, we sought for an educated guess about what capabilities each tool

had to o�er. Indeed, both PVS and Coq allowed us to specify and prove our theory up

to the same point.

4This behavior is a sound design decision to simplify Coq speci�cations. Hence, division by zero (if
relevant to the speci�cation at hand) must be conciously introduced as a premise.
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Design Principles

During the mechanization process, we followed a number of guidelines to help us specify

a sound and readable theory.

Operational speci�cation style: The original theory started as a formalization of

techniques implemented in a tool designed to empirically compare user-oriented reliabil-

ity analysis strategies [54]. Aiming to eventually close the loop and implement a tool

based on the mechanized theory, we favored an operational speci�cation style (i.e., con-

crete de�nitions of functions and data structures), as opposed to a declarative style (i.e.,

uninterpreted de�nitions that are de�ned in terms of their desired properties).

Moreover, some results that we use (e.g., concerning DTMCs) are not mechanized in

PVS. To be able to specify our analysis strategies and prove their soundness, we created

PVS theories for these results. In contrast with our own work, however, we assume that

these third-party results are correct. Thus, we only specify their properties when (and

if) they are needed�what could be called a �lazy speci�cation� strategy. Also, when

specifying such properties, we employ a declarative style to abstract their inner workings.

Tuples as records: Whenever an element of our theory is de�ned as a tuple (e.g.,

De�nition 1 � Parametric Markov Chain), we specify this element in PVS using a record

type. Records provide named accessors, instead of the positional accessors available in

tuple types. This makes the speci�cation easier to read and to maintain.

Partial functions with predicate subtypes: PVS only supports total functions. To

implement partial functions in PVS, we must either restrict the domain to a set of valid

inputs, or specify some notion of invalid output to be returned whenever the function is

not de�ned [67]. We chose the former approach, that is, to limit the domain by means of

predicate subtypes. This way, we can leverage the type checker to enforce constraints on

input and avoid including additional restrictions on lemmas, theorems, and de�nitions.

Dependent typing: We use dependent typing to encode constraints over data and

function parameters. The rationale is the same as for predicate subtypes: since dependent

types embed restrictions within the type system, the type checker is able to generate type-

correctness conditions that must be proved.

Sets as types: Many de�nitions and operations within our theory rely on elements of

given sets. Examples are evaluation functions (de�ned over a speci�c set of variables)

and composition of PMCs (constrained to the PMC's set of states). Thus, we exploit
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PVS's ability to de�ne types from sets�which is possible because PVS represents sets as

predicates over a type. This can also be seen as a special case of predicate subtypes.

Existing libraries: Whenever possible, we leverage existing libraries to model auxiliary

concepts. In particular, we exploit a number of theories in the NASA PVS Library5 (cf.

Appendix C, Figure C.1). Given that this library is used in formal veri�cation of mission-

critical software, we assume that the risk of introducing inconsistencies is low.

4.2 Walk-through

In this section, we present the process of mechanizing our manually-speci�ed theory

(Chapter 3), focusing on the most relevant aspects and illustrating the design deci-

sions. We begin by laying out the fundamental de�nitions upon which the theory is built

(Section 4.2.1), then describe the construction of family-product-based and family-based

strategies (Sections 4.2.2 and 4.2.3). After that description, we discuss PMC composition

and the feature-product-based and feature-family-based strategies (Section 4.2.4). Last,

we bridge the two sides of our commuting diagram with a discussion on the mechanization

of variability encoding (Section 4.2.5).

4.2.1 Foundations

To mechanize our reliability analysis theory, we �rst need de�nitions and facts about the

underlying models and the corresponding operations. The most fundamental concepts

on which our theory relies are the ones related to discrete-time Markov chains and their

parametric counterpart. Accordingly, we searched for existing libraries that implemented

these concepts in PVS, but had no success.

A possible alternative would be to produce a new library building on de�nitions from

the sigma_set and probability libraries (distributed along the NASA libraries package)

and following the formalization presented by Baier and Katoen [7]. However, since the

soundness of facts concerning DTMCs and PMCs is not the focus of this work, a formal

speci�cation of these concepts is out of scope. Thus, we made a design choice to specify

only as much as needed, using an axiomatic style to abstract details that are not directly

needed to the speci�cation of commuting strategies.

For instance, since our de�nitions rely on the manipulation of states and transition

matrices of Markov chains, we de�ne a DTMC as a record type with these elements as

components:

5https://shemesh.larc.nasa.gov/fm/ftp/larc/PVS-library/
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1 DTMC: TYPE =

2 [# S : non_empty_finite_set[state],

3 s0: (S),

4 P : {m: real_transition_matrices.transition_matrix | dom(m) = S},

5 T : non_empty_finite_set [(S)] #]

In the above de�nition, we �x a �nite set S of states (according to the assumptions we

made for the reliability models) and establish that the initial state s0 and the set T of

target states are all taken from S�hence the use of (S), meaning the type of states s

such that s ∈ S. Furthermore, the transition matrix P is such that its domain is exactly

S (the image is the set of probabilities�i.e., the Real interval [0, 1]).

We de�ned the type state as an alias to PVS's own nat. The reason for not leaving

state uninterpreted is that we need the set of possible states to be in�nite in order to

allow arbitrary renamings (see De�nition 33). Although we could provide an axiomatic

de�nition for an in�nite state type, this would inevitably mimic the one already provided

in the NASA library sets_aux@infinite_nat_def. Hence, it was simpler to just label

states as Natural numbers, without loss of generality.

To avoid unneeded detail, our theory does not rely on any speci�c algorithm for

probabilistic model checking. Therefore, the probability of reaching the set of success

states in a DTMC (PrD(s, T ) in Property 1 � Reachability probability for DTMCs) is left

as an uninterpreted function type:

1 prob_set(d: DTMC , s: (d`S), T: non_empty_finite_set [(d`S)]): probability

2

3 % Definition 20 � Non-parametric model checking

4 alpha(d: DTMC): probability = prob_set(d, d`s0, d`T)

Properties of these models, such as Property 1 (Reachability probability for DTMCs),

are presented as axioms stated over the de�nitions we provide. These properties are

assumed from the results in the corresponding literature (in this particular case, the book

by Baier and Katoen [7]), to abstract details that are not directly needed in our theory

(cf. Section 4.2.1).

1 % Auxiliary definition - Reachability in a DTMC

2 reachable ?(d: DTMC , s1, s2: (d`S)): INDUCTIVE boolean =

3 s1 = s2

4 OR

5 EXISTS (s3: (successors(d, s1))): reachable ?(d, s3, s2)

6

7 reachable ?(d: DTMC , s: (d`S), T: non_empty_finite_set [(d`S)]): boolean =

8 EXISTS (ss: (T)): reachable ?(d, s, ss)
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9

10 % Property 1 � Reachability probability for DTMCs

11 reachability_probability_property: AXIOM

12 FORALL (d: DTMC , s: (d`S), T: non_empty_finite_set [(d`S)]):

13 prob_set(d, s, T) = COND

14 member(s, T) -> 1,

15 NOT reachable ?(d, s, T) -> 0,

16 ELSE -> sum[(d`S), real , 0, +](d`S,

17 LAMBDA (ss: (d`S)):

18 (trans(trans(d`P)(s))(ss) *

prob_set(d, ss, T)))

19 ENDCOND

Note that we needed to provide an explicit inductive de�nition for DTMC reachability

in Line 2, whereby reachable?(D, s1, s2) is true i� s1  s2. Also, the auxiliary function

sum in Line 16 is de�ned in the PVS library finite_sets_sum. This function is such that

sum(S, f) has the same semantics as
∑

s∈S f(s).

In the de�nitions so far, we use the predicate subtype (d`S) to enforce that states

belong to the set S of the DTMC record d. We also introduced the dom and trans

functions, which are accessors for the record types that denote transition matrices and

their corresponding rows. The dom accessor yields the matrix domain, whereas trans gives

us the actual transition function (i.e., a function that returns the transition probability

for a given pair of states).

1 transition_matrices [V: TYPE] : THEORY

2 BEGIN

3 IMPORTING states ,

4 finite_sets[state]

5

6 transition_row: TYPE =

7 [# dom : finite_set[state],

8 trans: [(dom) -> V] #]

9 transition_matrix: TYPE =

10 [# dom : finite_set[state],

11 trans: [(dom) -> {r: transition_row | r`dom = dom}] #]

12

13 image(r: transition_row): finite_set[V] =

14 image(r`trans , r`dom)

15

16 image(m: transition_matrix): finite_set[V] =

17 {v: V | EXISTS(s1: (m`dom)): image(m`trans(s1))(v)}

18

19 END transition_matrices
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An alternative representation would be to de�ne rows and matrices as functions:

1 alt_transition_matrices [S, V: TYPE] : THEORY

2 BEGIN

3 transition_row: TYPE = [S -> V]

4 transition_matrix: TYPE = [S -> transition_row]

5 END alt_transition_matrices

De�ning transition matrices as records has the goal to make it easier to reference their

domain. It is an open issue to compare these alternative representations with regard to

the complexity of generated proof obligations.

In the PVS theory for transition matrices, we de�ned the image of a transition matrix

(i.e., the set of all transition values for some pair of states) in a declarative way, using

set comprehension notation. This is not contrary to our design principle of favoring

operational speci�cations (Section 4.1), since this particular de�nition is only used to

specify the semantics of transition matrices, and not to state the behavior of analysis

strategies.

Moreover, we made the theory transition_matrices parametric on the type of

transition labels, since we must represent both Real transition matrices and para-

metric ones. This theory is further specialized in real_transition_matrices and

parametric_transition_matrices. The former is mostly an instance of the theory

transition_matrices[probability]; the latter, on the other hand, is more involved,

since it deals with facts about rational expressions. Also, to conform with our speci�cation

of DTMC, we used �nite sets of states for transition matrices.

An Interlude on Rational Expressions

To explain parametric transition matrices and PMCs, we must �rst cover another fun-

damental concept in our work: rational expressions. The manual version of our theory

establishes semantics and notation for expression evaluation (De�nition 2), but we did

not elaborate on this subject because it is a fairly intuitive notion to a human reader.

PVS, on the other hand, must be given precise de�nitions.

The NASA library for Bernstein polynomials provides a speci�cation of multi-variate

polynomials, which could be used to model rational expressions. However, this third-

party library represents polynomials as sequences of Real coe�cients, whereas we are

interested in manipulating variables as syntactic objects. So, we speci�ed a theory of

rational expressions and expression evaluation (rational_expressions):

1 variable: TYPE

2

3 rat_expr: DATATYPE

4 BEGIN
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5 const(r: real): const?

6 variable(x: variable): variable?

7 minus(a: rat_expr): minus?

8 sum(a,b: rat_expr): sum?

9 sub(a,b: rat_expr): sub?

10 mul(a,b: rat_expr): mul?

11 div(a,b: rat_expr): div?

12 exp(a: rat_expr , i: nat): exp?

13 END rat_expr

An expression is de�ned as an abstract datatype whose structure mimics the supported

algebraic operations (Line 3).6 In this de�nition, we consider variables to be members of

an uninterpreted type, since we are not interested in the syntactic aspects of expressions.

We then specify how to obtain the set X of variables in an expression as a function

vars: [rat_expr -> finite_set[variable]], de�ned recursively on the structure of

the expression. This is an algorithmic way to obtain the set X of variables such that an

expression ε belongs to FX (Section 2.2.1).

An evaluation function follows the original de�nition as a mapping from a given set of

variables to Real numbers. To approach an operational de�nition, we constrain the domain

of an evaluation to be a �nite set�that is, we return to the de�nition of evaluations as

partial functions, given by Hahn et al. [41] (cf. Section 2.2.1). The actual evaluation of

an expression e is then de�ned as a function that takes e and an evaluation function for

vars(e) as parameters and recursively performs arithmetics on e's structure.

1 evaluation(X: finite_set[variable ]): TYPE = [(X) -> real]

2

3 % Definition 2 � Expression evaluation

4 eval(e: rat_expr , u: evaluation(vars(e))): RECURSIVE maybe_real =

5 CASES e of

6 const(r) : a_real(r), % Lifts r to a maybe_real

7 variable(x) : a_real(u(x)),

8 minus(a) : - eval(a, u),

9 sum(a, b) : eval(a, restrict(u)) + eval(b, restrict(u)),

10 sub(a, b) : eval(a, restrict(u)) - eval(b, restrict(u)),

11 mul(a, b) : eval(a, restrict(u)) * eval(b, restrict(u)),

12 div(a, b) : eval(a, restrict(u)) / eval(b, restrict(u)),

13 exp(a, i) : eval(a, u) ^ i

14 ENDCASES

15 MEASURE e BY << % The termination measure ��� is the well-founded order

16 % that PVS automatically generates for an ADT

17

6Since we are dealing with rational expressions, we only model the operations needed by fractions of
polynomials�basic arithmetics and exponentiation to Natural powers.

89



18 real_evaluation ?(e: rat_expr)(u: evaluation(vars(e))): boolean =

is_real ?(eval(e, u))

When de�ning eval (Line 4), we had to specify a concept that was implicit in the

original version of our theory: expression evaluation does not yield Real values in general.

In the presence of the division operation (which is possible, since a rational expression

is a fraction of polynomials), there can be evaluations that cause a given expression to

divide by zero. Thus, we speci�ed that eval returns a value of type maybe_real, which

can be either a Real value or the constant undefined (see Section 2.4). Accordingly, we

de�ned a predicate over evaluation functions to be able to specify whether they evaluate

an expression to a valid Real number (Line 18). This is the foundation on which we later

build the concept of well-de�ned (or well-formed) evaluation (De�nition 3).

At this point, it is worth noting that the de�nition of eval uses the function restrict

from the PVS prelude�which is extensively used throughout our mechanization. This

function takes a function [S -> R] and restricts its domain S to a subtype T of S. In

this particular case, the imposed constraint turns an evaluation over vars(e) into an

evaluation operating only on vars(a) or vars(b) (for subexpressions a or b, which the

type checker is able to infer from the context). Without the calls to restrict, type

checking fails because eval's signature uses dependent types to constrain that we only

allow the evaluation of all variables of an expression.

Another detail that was overlooked in the manual speci�cation�but exposed by the

mechanization e�ort�is that we implicitly considered constant expressions (i.e., the ones

with an empty set of variables) as Reals. To overcome this issue, we speci�ed an inductive

predicate const_expr? that is true for constant expressions, along with a function that

explicitly converts such constants to the corresponding Real numbers. This conversion

relies on the fact that, since a constant expression does not have variables, it can be

evaluated to the same value by using any evaluation function.

1 real_const_expr ?(e: (const_expr ?)): boolean =

2 FORALL (X: finite_set[variable], u: evaluation(X)):

3 is_real ?(eval(e, restrict(u)))

4 const_expr_to_real(e: (real_const_expr ?)): real =

5 eval(e, LAMBDA (x:variable): 0)

6 % The next line tells PVS to apply the conversion function whenever needed.

7 CONVERSION+ const_expr_to_real

Parametric Markov Chains

Having handled the formerly implicit concepts regarding rational expressions, we return

to our discussion of parametric transition matrices. The corresponding theory required

a more involved speci�cation because it covers the evaluation of parametric matrices to
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yield regular (Real) ones. Hence, we had to provide predicates and judgements to handle

type checking issues that arise both from the possibility of divisions by zero and from the

need to convert degenerate parametric matrices that only have constant expressions as

transition labels.

For instance, we de�ne the evaluation of a row in a parametric transition matrix by

mapping the expression evaluation over each transition in the given row:

1 parametric_transition_row: TYPE = transition_row[rat_expr]

2 evaluation(r: parametric_transition_row): TYPE = evaluation(vars(r))

3 % First item of Definition 3 � Well-defined evaluation

4 pre_wf_evaluation(r: parametric_transition_row)

5 (u: evaluation(r))

6 : boolean =

7 FORALL (e: (image(r))):

8 LET v = eval(e, restrict(u)) IN

9 is_real ?(v) AND num(v) >= 0 AND num(v) <= 1

10

11 mapped_real_transition_row(r: parametric_transition_row): TYPE =

12 {rr: real_transition_row | dom(rr) = dom(r)}

13

14 eval(r: parametric_transition_row , u: (pre_wf_evaluation(r)))

15 : mapped_real_transition_row(r) =

16 map(r, LAMBDA (e: (image(r))): num(eval(e, restrict(u))))

Note that this de�nition establishes that the result is a Real transition row with the

same domain (i.e., the set of states is not changed). However, since the eval function

for rational expressions returns a maybe_real, the type checker generates proof obliga-

tions (TCCs) requiring that we show, for this particular case, that the results are not

undefined. To avoid the generation of such TCCs for all occurrences of eval, we prove

these facts once in the form of judgements, which then become available to the type

checker:

1 evaluated_expr_is_real: JUDGEMENT

2 FORALL(r: parametric_transition_row ,

3 u: (pre_wf_evaluation(r)),

4 e: (image(r))):

5 eval(e, restrict(u)) HAS_TYPE (is_real ?)

6

7 evaluated_expr_is_probability: JUDGEMENT

8 FORALL(r: parametric_transition_row ,

9 u: (pre_wf_evaluation(r)),

10 e: (image(r))):

11 num(eval(e, restrict(u))) HAS_TYPE probability
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Similar to the theory of rational expressions, our theory of parametric transition ma-

trices speci�es the predicates const_row? and const_matrix? (which are true for rows

and matrices whose transition labels are all constant expressions) and appropriate con-

versions to Real rows and matrices.7 Moreover, this theory also de�nes what it means for

an evaluation to be well-de�ned for transition rows and matrices:

1 wf_evaluation(r: parametric_transition_row)

2 (u: evaluation(r))

3 : boolean =

4 pre_wf_evaluation(r)(u) AND is_stochastic_row ?(eval(r, u))

5 % Overloading of the predicate for rows

6 wf_evaluation(m: parametric_transition_matrix)

7 (u: evaluation(m)): boolean =

8 FORALL (s: (dom(m))):

9 wf_evaluation(trans(m)(s))(restrict(u))

With these de�nitions, we are now able to specify PMCs and how to convert them to

DTMCs:

1 % Definition 1 � Parametric Markov Chain

2 PMC: TYPE = [# S : non_empty_finite_set[state],

3 s0: (S),

4 P : {m: parametric_transition_matrix | dom(m) = S},

5 X : {V: finite_set[variable] | V = vars(P)},

6 T : non_empty_finite_set [(S)] #]

7

8 % Definition 3 � Well-defined evaluation

9 well_defined_evaluation(p: PMC)(u: evaluation(p`P)): boolean =

wf_evaluation(p`P)(u)

10

11 eval(p: PMC , u: (well_defined_evaluation(p))): DTMC =

12 (# S := p`S,

13 s0 := p`s0,

14 P := eval(p`P, u),

15 T := p`T #)

Properties of these models, such as Lemma 1 (Parametric probabilistic reachability

soundness), are presented as axioms stated over the de�nitions we provide. Their proof

is assumed from the results in the corresponding literature (in this particular case, the

work by Hahn et al. [41]), to abstract details that are not directly needed in our theory

(cf. Section 4.2.1).

1 % Definition 21 � Parametric model checking

7These predicates also encode the stochastic property�i.e., every row must sum up to 1.
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2 alpha_v(p: PMC): {e: rat_expr | vars(e) = p`X} % uninterpreted

3 % A fact implied in the paper by Hahn et al. [41]:

4 alpha_v_eval_is_real: AXIOM

5 FORALL (p: PMC , u: (well_defined_evaluation(p))):

6 is_real ?(eval(alpha_v(p), u))

7

8 % Lemma 1 � Parametric probabilistic reachability soundness

9 parametric_reachability_soundness: AXIOM

10 FORALL (p: PMC , u: (well_defined_evaluation(p))):

11 prob_set(eval(p, u), p`s0, p`T) = num(eval(alpha_v(p), u))

With this axiomatic de�nition, we have speci�ed both parametric (α̂, denoted by

alpha_v in PVS) and non-parametric (α) model checking functions. This is the foundation

upon which we state our �rst commutativity lemma:

1 % Lemma 3 � Commutativity of PMC and expression evaluations

2 eval_commutativity: LEMMA

3 FORALL (p: PMC , u: (well_defined_evaluation(p))):

4 alpha(eval(p, u)) = eval(alpha_v(p), u)

Finally, we also declare a predicate and a conversion to deal with constant PMCs�i.e.,

the ones with constant transition matrices, which can be trivially represented as DTMCs.

This way, we can formally apply α to PMCs (as we informally did in Section 3.2) by using

an automatic PVS conversion that only works if the PMC at hand is really constant. This

�lls a gap in the hand-made speci�cations.

Software Product Lines

Before we can talk about the speci�cation of analysis strategies, it is important to mention

how we model SPL-related concepts. As with Markov chains, we chose a declarative style

of speci�cation for product lines, since our focus is the analysis of implementation assets.

1 SPL : THEORY

2 BEGIN

3 FM: TYPE+ % Feature Models

4 name: TYPE+ % Names of features

5 configuration: TYPE = finite_set[name] % Selection of features

6

7 % Set of features in the feature model

8 features(fm: FM): non_empty_finite_set[name]

9 % Cardinality of the set of features

10 ; ##(fm: FM): posnat = card(features(fm))

11 % FM semantics � JFM K
12 [||]( fm: FM): {C: non_empty_finite_set[configuration] |

13 FORALL (c: (C), f: (c)): features(fm)(f)}

14 END SPL
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The previous listing shows our theory of software product lines in its entirety. The

only properties of a product line that we actually need are that (a) it has a �nite set

of features (Line 8) and (b) it has a feature model that is consistent and has a �nite

set of possible con�gurations as its semantics (Lines 12 and 13). We only handle �nite

feature sets because the presence of each feature in a given con�guration must be mapped

to a variable in an ADD (which is a �nite data structure), which is also why we need

the cardinality of the feature set (Line 10). Accordingly, the set of possible con�gurations

must also be �nite.8 Moreover, since we do not manipulate feature expressions nor feature

model constraints, such concepts may be left unspeci�ed.

However, leaving the feature model semantics and the function features unspeci�ed

leads to existence TCCs. For instance, the following listing shows the obligation to prove

that there is at least one function that maps a feature model into a non-empty set of

feature names:

1 % Existence TCC generated (at line 9, column 2) for

2 % features(fm: FM): non_empty_finite_set[name]

3 % unfinished

4 features_TCC1: OBLIGATION

5 EXISTS (x: [FM -> non_empty_finite_set[name ]]): TRUE;

For that reason, we declare FM and name as non-empty types, using the keyword TYPE+.

Thus, we are able to provide a trivial witness for that obligation: LAMBDA (fm: FM):

singleton(choose({n: name | TRUE})) (i.e., we pick an arbitrary feature name, which re-

quires name to be non-empty).

We note that there are third-party PVS theories of software product lines available

for reuse [81]. However, these theories specify facts about product lines themselves, such

as well-formedness of feature expressions and validity of con�gurations. Our work, on the

other hand, abstracts such details of product line assets. Thus, importing existing SPL

theories would introduce an external dependency (along with the corresponding threats)

without perceived bene�ts.

4.2.2 Family-product-based Strategy

After establishing the foundations, we start the mechanized speci�cation with the upper

right quadrant of Figure 3.7.

8For scoping reasons, we do not support cardinality-based feature models [28], which would allow fea-
tures to �repeat� within a given con�guration. Hence, a �nite set of features implies that the con�guration
space must also be �nite.
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Annotative Models

To de�ne annotative models (De�nition 8), we �rst de�ne annotative PMCs by using a

predicate over the type PMC:

1 % Definition 5 � Annotative PMC

2 annotative_PMC(p: PMC): boolean =

3 FORALL (s: (p`S)):

4 const_row ?(trans(p`P)(s)) % First item

5 OR

6 is_switch_row ?(trans(p`P)(s), s) % Second item

The predicate is_switch_row? is true for states that act as behavior switches�i.e.,

states that fall in Item 2 of De�nition 5:

1 % A row in a parametric transition matrix such that there

2 % are only "switch" transitions (with probabilities x and 1-x).

3 is_switch_row ?(r: parametric_transition_row , s: (dom(r))): boolean =

4 EXISTS (s1 , s2: (dom(r)), x: variable):

5 s1 /= s2 AND s /= s1 AND s /= s2

6 AND

7 trans(r)(s1) = variable(x)

8 AND

9 trans(r)(s2) = sub(const (1), variable(x))

10 AND

11 FORALL (s3: (remove(s2 , remove(s1 , dom(r))))):

12 trans(r)(s3) = const (0)

Note that Line 5 assures that neither of the switch transitions is a loop. This constraint

is needed to prove some facts about slots and variability encoding later on, but this is not

part of the hand-made De�nition 5 (Annotative PMC). To �x this issue, the corresponding

item of that de�nition should read as follows:

∃
s0,afts∈ S \ s︸︷︷︸

this was missing

∃x∈X · Succ(s) = {s0, afts} ∧P(s, s0) = x ∧P(s, afts) = 1− x

Thus, we have another example of a gap in the original speci�cation that was detected

with the help of PVS.

The translation of other de�nitions needed to specify annotative models (e.g., presence

functions and π) is straightforward. Nonetheless, we found it useful to break De�nition 7

(Evaluation factory) in two:

1 pre_evaluation_factory(X: finite_set[variable ]): TYPE =

2 [([|fm|]) -> evaluation(X)]

3 % Definition 7 � Evaluation factory

4 evaluation_factory(p: PMC): TYPE =
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5 {w: pre_evaluation_factory(p`X) | FORALL (c: ([|fm|])):

well_defined_evaluation(p)(w(c))}

This change was due to the fact that evaluation_factory (Line 4) is more appropriate to

use in some function de�nitions (e.g., π), since it encodes the constraint that the produced

evaluations must be well-de�ned for the given PMC. This way, Lemma 2 (Evaluation

well-de�nedness for annotative models) turned into a proof obligation (TCC). On the

other hand, we cannot use evaluation_factory directly when de�ning data types or

some predicates. To do this, it would be necessary that all evaluation factories yielded

evaluations that are well-de�ned for all PMCs, which is not true. Thus, we use the

�intermediate� type pre_evaluation_factory (Line 1) whenever we need generalized

mappings from con�gurations to evaluation functions.

Annotative probabilistic models (De�nition 8) are de�ned as record types, as usual.

However, the feature model is not part of this record, but rather a theory parameter. The

reason is that many function and type parameters are dependently-typed on the actual

feature model, so it cannot be a regular PVS variable.

Product-based and Family-product-based Analyses

To instantiate the feature model in theory parameters, we de�ne a constant fm: FM9 in

our top-level theory, called rome because of our All roads lead to Rome paper [15]. This

theory, besides being the entry point to our mechanized speci�cation, is the place where

our reliability analysis strategies are de�ned and proved sound.

Building on the speci�cations we have so far, we de�ne the annotative product-based

and family-product-based strategies, as well as the theorem stating their equivalence.

1 fm: FM % Constant representing a given feature model FM

2 IMPORTING annotative_reliability_models[fm]

3

4 c: VAR ([|fm|]) % a variable ranging over the possible configurations

5 m: VAR annotative_reliability_model

6 % Strategy 1 � Product-based analysis of annotative models

7 product_based_analysis(m, c): probability =

8 alpha(pi(m`P, m`w, c))

9

10 % Strategy 3 � Family-product-based analysis

11 family_product_based_analysis(m, c): probability =

12 sigma(alpha_v(m`P), m`w, c)

13

14 % Theorem 1 � Soundness of family-product-based analysis

15 family_product_soundness: THEOREM

9In this de�nition, FM is the type of feature models de�ned in the SPL theory.
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16 FORALL (m, c):

17 family_product_based_analysis(m, c) = product_based_analysis(m, c)

4.2.3 Family-based Strategy

Following the speci�cation strategy, we proceed to the lower right quadrant of Figure 3.7.

However, at this point we need to take a step back and provide a speci�cation for the

remaining foundational data structure�ADDs.

Algebraic Decision Diagrams

As with Markov chains, we searched for reusable third-party libraries, to no avail. There-

fore, we had to provide our own speci�cation of ADDs. According to our design principles,

we followed a declarative style for this data structure, since it is not our focus to prove facts

about ADDs. Future work may seek to instantiate our ADD theories with operational

speci�cations.

Our declarative speci�cation views an ADD as an n-ary function of Boolean parameters

to a type T over which we have operations of interest.

1 ADD_def [n: posnat] : THEORY

2 BEGIN

3 IMPORTING structures@arrays[n] % NASA library

4 variables: TYPE = ArrayOf[boolean]

5 ADD[T: TYPE]: TYPE = [variables -> T]

6 END ADD_def

The actual operations on ADDs are then de�ned based on their denotational semantics:

1 ADD_ops [T: TYPE , n: posnat] : THEORY

2 BEGIN

3 IMPORTING ADD_def[n]

4 val: VAR variables

5 % Lifting of codomain value into constant ADD

6 constant(t: T): ADD[T] = LAMBDA(val): t

7 CONVERSION constant

8

9 f, g: VAR ADD[n][T]

10 op: VAR [T, T -> T]

11 unary_op: VAR [T -> T]

12

13 % ADD operations

14 apply(f, g, op): ADD[T] = LAMBDA val: op(f(val), g(val))

15 unary_apply(f, unary_op): ADD[T] = LAMBDA val: unary_op(f(val))

16
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17 test: VAR ADD[boolean]

18 % if-then-else operator

19 ite(test , f, g): ADD[T] = LAMBDA val:

20 IF test(val)

21 THEN f(val)

22 ELSE g(val)

23 ENDIF

24 END ADD_ops

Note that, although we provide actual de�nitions for ADD operations (Lines 6, 14, 15

and 19), these de�nitions do not correspond to the algorithms that make ADDs suitable

for e�cient computation with Boolean functions. They are just operational de�nitions of

the functions that denote their semantics.

Finally, since we use ADDs to denote functions from con�gurations to reliability val-

ues, we need a way to unambiguously map product-line con�gurations to ADD variables

(cf. last paragraph of Section 2.1.1), such that any given variable always corresponds

to the presence (or absence) of the same feature. In the following, we do this by �rst

creating a list with all members of the feature set (Line 5), e�ectively de�ning an arbi-

trary (but �xed) ordering among features. This is equivalent to indexing the features as

{F1, F2, ..., Fn}. Then we de�ne an injective mapping from con�gurations over n features

to n-ary Boolean arrays (to_ADD_variables). Conversely, we can invert this injection to

recover the con�guration that maps to a given instantiation of ADD variables (to_conf).

1 IMPORTING ADD_def[ ##(fm)],

2 structures@set2seq[SPL.name]

3

4 % Arbitrary (but fixed) feature order

5 feature_order: finite_sequence[SPL.name] = set2seq(features(fm))

6

7 % An injective function mapping a feature selection to ADD arguments

8 to_ADD_variables(c: ([|fm|])): ADD_def.variables =

9 LAMBDA (i: below( ##(fm))):

10 member(feature_order(i), c)

11 % ... and a way to recover the original selection

12 to_conf(val: variables): ([|fm|]) = inverse(to_ADD_variables)(val)

In this listing, inverse (Line 12) is a higher-order function from the PVS prelude that

takes a function f and produces a function that, given a value y, returns x such that

f(x) = y. Moreover, we use the cardinality of the set of features (##(fm)) to instantiate

the ADD_def theory, so that the input of ADDs consists of exactly one parameter for each

available feature.

98



Expression Lifting

We use ADDs to perform e�cient computations over lifted expressions. In the manual

version of our theory, we de�ned expression lifting as a semantic change, so that expres-

sions remained the same objects after lifting. Since our PVS speci�cation of expression

semantics is given by the function eval, we provide an ADD-based evaluation semantics

for lifted expressions:

1 % n is a theory parameter of type nat

2 ADD_evaluation(X: finite_set[variable ]): TYPE = [(X) -> ADD[n][real]]

3

4 % Definition 23 � Expression lifting

5 eval (e: rat_expr , u: ADD_evaluation(vars(e))): RECURSIVE

ADD[n][ maybe_real] =

6 CASES e of

7 const(r) : real_constant(r),

8 variable(x) : to_maybe(u(x)),

9 % The remaining cases are omitted for brevity

10 ENDCASES

11 MEASURE e BY <<

Thus, we do not de�ne a mechanized lift operator for expressions; instead, we use

the overloaded eval function and de�ne a predicate to assert whether an ADD_evaluation

is a lifted counterpart to a given evaluation factory.

1 lifted_evaluation_factory(X: finite_set[variable ]): TYPE =

ADD_evaluation(X)

2

3 % Definition 24 � Lifted evaluation factory

4 lifted(X: finite_set[variable], w: pre_evaluation_factory(X))

5 (lw: lifted_evaluation_factory(X))

6 : boolean =

7 FORALL (x: (X), val: variables):

8 lw(x)(val) = w(to_conf(val))(x)

Building on the de�nitions and lemmas so far, we are able to de�ne the lifted annotative

evaluation factory�p̂ in Lemma 5 (Soundness of lifted annotative evaluation factory).

Then, we proceed to de�ne the family-based analysis strategy and state its soundness.

1 lifted_annotative_evaluation_factory(X: finite_set[variable], pf:

presence_function(X))

2 : lifted_evaluation_factory(X) =

3 LAMBDA (x: (X)):

4 LAMBDA (c: ([|fm|])):

5 IF pf(x, c) THEN 1

6 ELSE 0
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7 ENDIF

8

9 % Strategy 4 � Family-based analysis

10 family_based_analysis(m): ADD[maybe_real] =

11 sigma_v(alpha_v(m`P), lp)

12 WHERE lp = lifted_annotative_evaluation_factory(m`P`X, m`pf)

13

14 % Theorem 4 � Soundness of family-based analysis

15 family_based_analysis_soundness: THEOREM

16 FORALL (m, c):

17 family_based_analysis(m)(c) = product_based_analysis(m, c)

4.2.4 Feature-based Strategies

Since our notion of compositional models relies on our de�nitions of annotative models,

we de�ne the upper left quadrant of Figure 3.7 by leveraging the mechanized speci�cation

produced so far.

Compositional PMC

From the manual version of our theory, we know that a compositional PMC is a special

case of annotative PMC (see De�nition 10). However, we have no documented way of

extending the record type PMC. Thus, we declare a new record type for compositional

PMC data (Line 2), along with a conversion to the regular PMC record type (Line 11)

and a predicate that reuses the predicate for annotative PMCs (Line 18):

1 % Definition 10 � Compositional PMC (tuple definition)

2 compositional_PMC_data: TYPE =

3 [# S : non_empty_finite_set[state],

4 s0 : (S),

5 s_suc: (S),

6 s_err: (S),

7 P : {m: parametric_transition_matrix | dom(m) = S},

8 X : {V: finite_set[variable] | V = vars(P)},

9 T : {T: (singleton ?[(S)]) | T(s_suc)} #]

10

11 pmc(p: compositional_PMC_data): PMC = (# S := p`S,

12 s0:= p`s0,

13 P := p`P,

14 X := p`X,

15 T := p`T #)

16

17 % Definition 10 � Compositional PMC (predicates)

18 compositional_PMC(p: compositional_PMC_data): boolean =
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19 annotative_PMC(pmc(p))

20 AND p`s0 /= p`s_suc

21 AND p`s0 /= p`s_err

22 AND p`s_suc /= p`s_err

23 AND bscc(p`P) = {s: state | (s = p`s_suc) OR (s = p`s_err)}

In the previous de�nition, function bscc in Line 23 returns the bottom strongly-

connected components of the compositional PMC. We follow our design principles and

specify this function in a declarative way, since we are not interested in operationalizing

an algorithm to �nd bottom strongly-connected components. However, we depart from

the de�nition given by Baier and Katoen [7] and specify that a BSCC is just an absorbing

state:

1 bscc?(m: parametric_transition_matrix)(s: (dom(m))): boolean =

2 trans(m)(s)`trans(s) = const (1)

3 AND

4 FORALL (s2: (dom(m))):

5 (s2 /= s IMPLIES trans(m)(s)`trans(s2) = const (0))

6

7 bscc(m: parametric_transition_matrix): finite_set [(dom(m))] =

8 {s: (dom(m)) | bscc?(m)(s)}

Every state that satis�es the predicate bscc? is a bottom strongly-connected component,

but not every BSCC satis�es this predicate. Nonetheless, this �narrow� de�nition is

su�cient for our purposes, since we are interested in PMCs whose only BSCCs are the

two singletons induced by their success and error states.

Dependency relation

To de�ne a compositional probabilistic model, we �rst de�ne a superset I of the variables

in its set P of PMCs and a bijection between P and I (De�nition 13 � Identifying

function).

1 P: VAR non_empty_finite_set [( compositional_PMC)]

2 % All variables in the compositional PMCs of set P.

3 vars(P): finite_set[variable] =

4 {x: variable | EXISTS (p: (P)): vars(p)(x)}

5 % Auxiliary type denoting all strict supersets of vars(P)

6 supervars(P): TYPE =

7 {I: finite_set[variable] | card(I) = card(P)

8 AND strict_subset ?(vars(P), I)}

9 % Definition 13 � Identifying function

10 identity_function(P, (I: supervars(P))): TYPE = (bijective ?[(P), (I)])

The induced dependency relation ≺ is then de�ned in a theory parameterized on

P, I, and identity_function (compositional_PMC_order). This theory also de�nes
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predicates for minimal and maximal PMCs (De�nition 15) and presents lemmas stat-

ing their existence. These de�nitions and lemmas come as a straightforward translation

from their manual counterparts. However, the manual proof of Lemma 10 (Existence

of maximal PMCs) consisted of about 6 lines of argumentation, whereas its mechanized

version required 4 auxiliary lemmas (well_founded_lemmas) that make use of 3 addi-

tional theories in the NASA library (monotone_sequences, finite_pointwise_orders,

and well_foundedness, all in the orders library).

PMC Composition

The last element that is needed to de�ne compositional reliability models is the notion

of PMC composition. The original de�nition (De�nition 34) relies on a disjoint union

operator, which, to the best of our knowledge, does not have a PVS speci�cation. Since

total PMC composition also depends on the concept of PMC renaming (De�nition 33),

we de�ned renaming in a way that allowed us to produce mutually disjoint PMCs that

are isomorphic to the original one. This solved the lack of a disjoint union concept and

spawned a new theory of its own (PMC_renaming).

Another challenge faced when specifying PMC composition was how to operationalize

the intuition of composing over all slots at once. The �rst idea that comes to mind in this

situation is to specify how to compose PMCs over a single slot, and then recursively de�ne

a composition over the remaining (partially composed) PMC. However, this approach fails

unless we take care to preserve slots that were introduced by previous composition steps.

We actually made this mistake when we �rst attempted to mechanize PMC composition,

but PVS helped us to identify the issue by reaching a dead-end in one of the proof

branches.

Moreover, there is a considerable amount of properties that must be preserved by com-

position. For instance, constant transitions in the original PMCs must remain that way,

and original variables must be replaced by the ones in the composed chains. Nonetheless,

original variables of the base chain may still belong to the resulting set of variables; in-

deed, although a PMC composed over a slot for a variable x must not contain x itself,10

it may contain another variable y that was also in the base chain.

Thus, we speci�ed PMC composition incrementally, so that we could state and prove

lemmas regarding the preservation of required properties throughout the process. First we

de�ned how to compose a transition matrix over a single slot of another matrix, provided

that their sets of states are already disjoint. This led to the de�nition of how to compose

two PMCs whose transition matrices satisfy those pre-conditions.

1 % Composes a PMC whose set of states is already disjoint with the base.

10This would violate the well-foundedness of the dependency relation.
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2 compose_single_slot_disj(p_base: (compositional_PMC),

3 p_comp: {p: (compositional_PMC) |

disjoint ?(p`S, p_base `S) },

4 sl: (slot?( p_base)))

5 : (compositional_PMC) =

6 LET P_ = compose_matrices(p_base `P,

7 p_comp `P,

8 sl,

9 interface(p_comp))

10 IN

11 p_base WITH [ `S := union(p_base `S, p_comp `S),

12 `P := P_ ,

13 `X := (vars(P_)) ]

Then we generalized this notion to compose arbitrary PMCs, but still restricted to utilize

a single slot:

1 % Composes an arbitrary PMC over another.

2 compose_single_slot(p_base: (compositional_PMC),

3 p_comp: (compositional_PMC),

4 sl: (slot?( p_base)))

5 : (compositional_PMC) =

6 LET p_comp_ = rename(p_comp , p_base `S) IN

7 compose_single_slot_disj(p_base , p_comp_ , sl)

The complexity increases when we generalize composition to operate on more than

one slot. In this case, we �x the set of slots on which to compose as a function parameter

(sls) and consume these slots in a recursive fashion:

1 compose_many_slots(p_base: (compositional_PMC),

2 p_comp: (compositional_PMC),

3 sls: finite_set [(slot?( p_base))])

4 : RECURSIVE {p: (compositional_PMC) |

5 subset ?(p_base `S, p`S)

6 % composed slots are no longer slots:

7 AND (FORALL (sl: (sls)): NOT slot?(p)(sl))

8 % non-composed slots are preserved:

9 AND (FORALL (x: (p_base `X), sl: (slot?(p_base , x))):

10 NOT sls(sl) IMPLIES slot?(p, x)(sl))

11 % all new slots are preserved:

12 AND (NOT empty?(sls) IMPLIES

13 FORALL (x: (p_comp `X), sl: (slot?(p_comp , x))):

14 EXISTS (sl_: (slot_renaming ?(p_comp , p_base `S, x,

sl))):

15 slot?(p, x)(sl_))

16 % slots are not created out of thin air:

17 AND (FORALL (x: variable ,
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18 sl: (slot?(p, x))):

19 slot?(p_base , x)(sl)

20 OR

21 (EXISTS (sl_: (slot?(p_comp , x))):

22 slot_renaming ?(p_comp , p_base `S, x, sl_)(sl)))

23 AND p`s0 = p_base `s0

24 AND p`s_suc = p_base `s_suc

25 AND p`s_err = p_base `s_err

26 AND p`T = p_base `T } =

27 IF empty?(sls)

28 THEN p_base

29 ELSE compose_many_slots(compose_single_slot(p_base ,

30 p_comp ,

31 choose(sls)),

32 p_comp ,

33 rest(sls))

34 ENDIF

35 MEASURE card(sls)

Notice the predicates in Lines 5 to 26. Each of these predicates specify a property

that must hold for the resulting PMC. Our �rst approach was to state these proper-

ties as separate lemmas, but the de�nition of compose_many_slots uses recursion on

dependently-typed variables, where the depended-upon value changes at each recursive

call (p_base takes the partially composed PMC at Line 29). In this case, the PVS prover

rule induct does not work, because the induction variable has free variables in it.

To overcome this issue, we stated the desired properties as predicates of the return

type, so that the type checker demands that these properties have to be preserved after

each recursive call. This way, each of the generated TCCs embed the result of the previous

call as a premise. In a sense, we can interpret that these proof obligations are themselves

functioning as induction principles.

The downside of this approach is that one must take care not to specify predicates that

hold at the end of the recursion but not after intermediate steps. That is, all predicates

of the return type must be recursion invariants. Otherwise, the theory type-checks, but

PVS generates TCCs that are impossible to prove.

Next, we re�ned the notion of composition over multiple slots, by grouping slots

according to their variables (compose_many_variables). In this step, we faced the same

issue of having properties that are complex to prove if stated afterwards. Accordingly, we

solved it in the same way.

The total composition of PMCs is then de�ned by leveraging the previous de�nition,

whereby the �xed set of slots is given by all slots with all variables in the base PMC:

1 % Definition 34 � Total PMC composition
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2 compose(p: (compositional_PMC), u: composition(p`X)): (composed ?(p, u))

=

3 compose_many_variables(p, p`X, u, LAMBDA (x: (p`X)): slots(p, x))

Feature-product-based Strategy

With the foundational speci�cations involving PMC composition, we were able to de�ne

composition factories (De�nition 17), compositional probabilistic models (De�nition 18),

and derivation by composition (De�nition 19). These de�nitions are close to the manual

speci�cation, so we omit them for brevity.

To specify the feature-product-based analysis strategy and prove its soundness, we

also de�ne the product-based strategy for compositional models. The rome PVS theory

was updated with these de�nitions:

1 cm: VAR compositional_reliability_model

2 % Strategy 2 � Product-based analysis of compositional models

3 product_based_analysis(cm , c): probability =

4 alpha(const_to_DTMC(pi(p, restrict(cm `w), c)))

5 WHERE p = root(cm)

6

7 % Strategy 5 � Feature-product-based analysis

8 feature_product_based_analysis(cm , c): probability =

9 sigma(alpha_v(p), restrict(w), c)

10 WHERE p = root(cm),

11 w = the_compositional_evaluation_factory(cm)

This speci�cation closely resembles that on the manual theory, with two visible excep-

tions. First, we once more rely on the PVS function restrict to conform dependently-

typed arguments. The second is that we needed to explicitly convert the PMC resulting

from derivation to a DTMC (Line 4), so that we can apply alpha to this result.

The interesting fact about this conversion is that it relies on a fact that was not part

of the original theory: derivation by composition (De�nition 19) exhausts all variables

that previously existed in the base PMC, and does not add other variables. Although

De�nition 19 speci�es that the return type of π′ is a DTMC, we did not prove this in the

manual version of the theory.11 This is a missing speci�cation that was detected with the

help of PVS.

Moreover, PVS generated an obligation to prove that the compositional evaluation

factory terminates. Di�erent from other recursive de�nitions in our manual speci�cation,

this one (De�nition 26) did not have an accompanying termination lemma.

11Nonetheless, the proof of termination (Lemma 11) implicitly uses this fact in the induction hypothesis.
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The soundness of the feature-product strategy is stated as expected, following the style

already used for other soundness theorems:

1 % Theorem 5 � Soundness of feature-product-based analysis

2 feature_product_soundness: THEOREM

3 FORALL (cm , c):

4 feature_product_based_analysis(cm , c) =

product_based_analysis(cm , c)

The mechanized proof of this theorem, similar to its manual counterpart, makes use of

Corollary 1 (r-equivalence of total composition with DTMCs and evaluation). However,

this corollary is a direct consequence of Lemma 13 (r-equivalence of total composition

and evaluation), which, in turn, depends on the inner workings of the parametric model

checking algorithm [41] and on a more detailed speci�cation of PMCs. Thus, we decided

to only state Corollary 1 and postpone its proof to a moment when we were able to specify

Lemma 13.

Feature-family-based Strategy

The de�nition of our feature-family-based strategy relied on specifying a compositional

counterpart to the theory of annotative_expressions_evaluation. The new theory, besides

having a similar structure to the one for annotative expressions, actually reuses some

results of that other theory�e.g., the result corresponding to Theorem 2 (Soundness

of variability-aware expression evaluation). Other than that, the translation from the

manual speci�cation follows the rules and patterns already described in previous sections:

1 % Strategy 6 � Feature-family-based analysis

2 feature_family_based_analysis(cm): ADD[maybe_real] =

3 sigma_v(alpha_v(p), restrict(phi))

4 WHERE p = root(cm),

5 phi = lifted_compositional_evaluation_factory(cm)

6

7 % Theorem 7 � Soundness of feature-family-based analysis

8 feature_family_soundness: THEOREM

9 FORALL (cm , c):

10 feature_family_based_analysis(cm)(c) =

product_based_analysis(cm , c)

4.2.5 Variability-encoding

After specifying both the right and left parts of Figure 3.7, we must bridge them by

means of variability encoding. We decided to pursue this goal before diving into the
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details needed to �ll the gap in the speci�cation of Corollary 1, to prioritize the overall

soundness of the analysis framework.

Moreover, we observe in the graphs of theory dependencies (Figure D.3) that the

soundness of variability encoding for PMCs (Theorem 9 � Soundness of variability encod-

ing for expressions) relies directly on Lemma 13. Since the speci�cation of this lemma

was postponed, we begun with the variability encoding of expressions.

Encoding of Expressions

To specify variability encoding of expressions, we �rst extended our theory of ratio-

nal_expressions to support the generalized notion of expression evaluation. The new

de�nitions follow the pattern of the other eval functions, whereby we perform a recur-

sion on the structure of expressions.

1 % Generalized evaluation function: maps variables to other rational expressions

2 generalized_evaluation(X: finite_set[variable ]): TYPE = [(X) ->

rat_expr]

3

4 % Generalized evaluation (i.e., replacing variables with other expressions,

5 % instead of real values)

6 gen_eval(e: rat_expr , u: generalized_evaluation(vars(e))): RECURSIVE

rat_expr =

7 CASES e of

8 const(r) : e,

9 variable(x) : u(x),

10 minus(a) : - gen_eval(a, u),

11 % Remaining cases omitted for brevity.

12 ENDCASES

13 MEASURE e BY <<

A signi�cant di�erence, however, is that the fact that we posed as Equation (2.1)

is not a de�nition or an immediate conclusion, as the manual speci�cations seem to

imply. Indeed, given an expression ε′ ∈ FX and a generalized evaluation u : X → FX′

(where X and X ′ are sets of variables), ε[X/u] is yet another rational expression. Thus,

Equation (2.1) is not a de�nition; on the contrary, this eq. corresponds to a proposition

about the (Real) evaluation of expressions resulting from generalized evaluations. For

that reason, we stated Equation (2.1) as a lemma in PVS and proved its correctness:

1 % Auxiliary definition - image of u under X

2 vars(X: finite_set[variable], u: generalized_evaluation(X)):

finite_set[variable] =

3 {x: variable | EXISTS (y: (X)): member(x, vars(u(y)))}

4

5 % Equation (2.1)
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6 evaluations_composition: LEMMA

7 FORALL (e: rat_expr ,

8 u1: generalized_evaluation(vars(e)),

9 u2: evaluation(vars(vars(e), u1))):

10 (FORALL (x: (vars(e))): real_evaluation ?(u1(x))(restrict(u2)))

11 IMPLIES

12 (eval(gen_eval(e, u1), restrict(u2))

13 =

14 eval(e, LAMBDA (x: (vars(e))): num(eval(u1(x), restrict(u2)))))

The if-then-else operator for expressions is de�ned as an almost literal transcription

of the original de�nition, thanks to the support for operator overloading in PVS:

1 % Definition 30 � ITE operator for expressions

2 ITE(x: variable , e1 , e2: rat_expr): rat_expr = x*e1 + (1 - x)*e2

Using generalized expression evaluation and the if-then-else operator for expressions,

we were able to specify the variability encoding function γ by translating its original

de�nition:

1 % Definition 31 � Variability encoding function for expressions

2 gamma(cm: compositional_reliability_model)

3 (e: {e: rat_expr | EXISTS (p: (cm `P)): e = alpha_v(p)})

4 : RECURSIVE rat_expr =

5 LET e_i = LAMBDA (x: (vars(e))): alpha_v(idt_inv(x))

6 IN

7 gen_eval(e, LAMBDA (x: (vars(e))): ITE(x,

8 gamma(cm)(e_i(x)),

9 const (1)))

10 MEASURE e BY expr_dep(cm)

In the above de�nition, idt_inv is the inverse of the identifying function (idt−1 ) and

expr_dep is the well-founded relation over expressions that is induced by the dependency

relation over corresponding PMCs:

1 expr_dep(cm: compositional_reliability_model)

2 (e1, e2: rat_expr): boolean =

3 EXISTS (p1 , p2: (cm `P)): (alpha_v(p1) = e1

4 AND alpha_v(p2) = e2

5 AND cm `dep(p1 , p2))

Feature-family-product-based Strategy

The remaining strategy�feature-family-product-based analysis�does not depend on vari-

ability encoding of PMCs. Thus, we were able to de�ne it and prove its soundness by

means of the already speci�ed elements. In this case, the PVS status for the soundness
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theorem is proved - incomplete, since it depends on the soundness theorem for the

feature-product-based analysis, which is itself marked as incomplete (see Section 4.2.4).

PMC Encoding

We de�ned the if-then-else (ITE) operator for PMCs using the same incremental strategy

that we used for PMC composition (Section 4.2.4): an ITE operator for disjoint transition

matrices, followed by an ITE for disjoint PMCs, and then ITE for arbitrary PMCs (making

use of PMC renaming). We also de�ned the variability encoding function for PMCs

(De�nition 28) and stated all of the related lemmas and theorems.

However, the main soundness theorem (Theorem 8 � r-equivalence of variability en-

coding and derivation by composition) required us to state and prove a number of lemmas

regarding the preservation of state reachability and of reachability probabilities under ITE

composition. For instance, we needed the following lemma, stating that probabilities in

the �consequent� part of the ITE (Line 10) remain the same after composition (Line 8):

1 ITE_disj_preserves_probabilities1: LEMMA

2 FORALL (x: variable ,

3 p1: (compositional_PMC),

4 p2: {p: (compositional_PMC) | disjoint ?(p`S, p1 `S)},

5 p: {p_: (compositional_PMC) | p_ = ite_disj(x, p1, p2)},

6 s1: (p1 `S),

7 u: (well_defined_evaluation(p))):

8 (prob_set(eval(p, u), s1, p`T)

9 =

10 prob_set(eval(p1 , restrict(u)), s1 , p1 `T))

Proving such additional lemmas was initially not possible, since we had left prob_set

uninterpreted (Section 4.2.1). This level of detail, which was abstracted during most of

the mechanization e�ort, needed to be speci�ed at this point. Hence, we also needed to

de�ne paths and path probabilities, as follows.

1 % We represent paths in DTMCs as lists of states.

2 % This way we can leverage induction to prove lemmas about paths.

3 path?(d: DTMC)(p: list[state]): INDUCTIVE boolean =

4 CASES p OF

5 null: FALSE , % The empty list is not a

path...

6 cons(s, tail): d`S(s) AND

7 IF null?(tail)

8 THEN TRUE % ... but the unary list is!

9 ELSE path?(d)(tail) AND successor ?(d,

s)(car(tail))

10 ENDIF
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11 ENDCASES

12

13 % A path such that the only state in T is the last one

14 path_to_reach ?(d: DTMC , first: (d`S), T:

non_empty_finite_set [(d`S)])(p: list[state ]): boolean =

15 EXISTS (t: (T)):

16 (path?(d, first , t)(p) % the path begins in first and ends in t ∈ T
17 AND

18 FORALL (i: below(length(p) -1)): NOT T(nth(p, i)))

19

20 % The probability of a path (state sequence)

21 prob_path(d: DTMC , p: (path?(d))): RECURSIVE probability =

22 CASES p OF

23 null: 0,

24 cons(s, tail): IF null?(tail)

25 THEN 1 % [7, Def. 10.10]

26 ELSE trans(trans(d`P)(s))(car(tail)) *

prob_path(d, tail)

27 ENDIF

28 ENDCASES

29 MEASURE length(p)

30

31 % Probability of reaching a set of states

32 prob_set(d: DTMC ,

33 s: (d`S),

34 T: non_empty_finite_set [(d`S)]): probability =

35 sigma(paths_to_reach(d, s, T),

36 LAMBDA (p: list[state]): IF path?(d)(p) THEN prob_path(d, p)

ELSE 0 ENDIF)

In this speci�cation, we de�ned paths as PVS lists, which means that we only model �nite

path fragments. This de�nition is stricter than the one given by Baier and Katoen [7], but

the probabilities of �nite paths are enough to compute reachability probabilities (�nite

paths are cylinder sets that abstract away a family of in�nite ones). Also, the function

sigma in Line 35 is the PVS speci�cation of sums over in�nite sets (i.e., the Σ operator).

This function is needed since the set of paths between two given states may be in�nite

(e.g., if there are any cycles).

The mechanized proof of Theorem 8 also required a speci�cation of Lemma 13, as in

the handcrafted version. This lemma had been postponed, since its manual proof relied

on the state elimination step of the algorithm by Hahn et al. [41] (De�nition 4). Moreover,

to state Lemma 13 in PVS, we needed to extend the de�nition of gen_eval to parametric

transition matrices and to PMCs.
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Similar to PMC composition (Section 4.2.4), state elimination was de�ned incremen-

tally, to ease the proving of facts about the resulting PMCs. The fundamental de�nition

regards the changes in parametric transition matrices after state elimination, which di-

rectly corresponds to De�nition 4 (State elimination step).

1 eliminate_state_from_matrix(m: parametric_transition_matrix ,

2 s: (dom(m))): parametric_transition_matrix =

3 (# dom := remove(s, dom(m)),

4 trans :=

5 LAMBDA (s1: (remove(s, dom(m)))):

6 (# dom := remove(s, dom(m)),

7 trans :=

8 LAMBDA (s2: (remove(s, dom(m)))):

9 IF (trans(trans(m)(s1))(s) /= const (0)

10 AND trans(trans(m)(s))(s2) /= const (0))

11 THEN (trans(trans(m)(s1))(s2)

12 + (trans(trans(m)(s1))(s)

13 * (trans(trans(m)(s))(s2)

14 * (const (1) /

(const (1)-trans(trans(m)(s))(s))))))

15 ELSE trans(trans(m)(s1))(s2)

16 ENDIF

17 #)

18 #)

Building on the above de�nition, we were able to de�ne state elimination on PMCs,

and then the progressive elimination of a �nite set of states. These de�nitions were

leveraged to state and prove lemmas regarding the preservation of properties after state

elimination, which were needed to prove Lemma 13.

However, such lemmas about preservation of properties required a notion of correctness

of the elimination step. To cope with that, we declared an axiom asserting that state

elimination preserves the overall reachability probabilities:

1 elimination_step_is_sound: AXIOM

2 FORALL (p: PMC ,

3 T: {T_: finite_set [(p`S)] | subset ?(p`T, T_)},

4 s: {s_: (p`S) | s_ /= p`s0

5 AND NOT T(s_)

6 AND not_sink(p, T, s_)},

7 u: (well_defined_evaluation(p))):

8 eval(alpha_v(p), u)

9 =

10 eval(alpha_v(eliminate_state(p, T, s)), restrict(u))
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This fact is a loop invariant of Algorithm 1 that is both proved and used within the proof

of Lemma 1 in the work by Hahn et al. [41].

Preservation of Variables and Revisited Decisions

During the speci�cation of lemmas about state elimination, we needed a result stating

that variables in the PMC are preserved:

1 % First attempt...

2 eliminate_state_from_matrix_preserves_vars: LEMMA

3 FORALL (m: parametric_transition_matrix ,

4 s: (dom(m))):

5 vars(eliminate_state_from_matrix(m, s)) = vars(m)

However, when proving this lemma, we reached a case in which variables are not preserved:

the elimination of sink states (i.e., states whose only outgoing transition is a loop, also

called absorbing states). An example of such case is depicted in Figure 4.2. If the only

occurrence of variable x is the transition s t−→ ssink , then eliminating ssink will also eliminate

that variable, since there is no successor to ssink other than itself.

s0 . . . s

ssink

. . . ssucc

x

1

Figure 4.2: Elimination of state ssink �loses� variable x

Hahn et al. [41] deal with this by �cropping��i.e., by making the target states ab-

sorbing and removing states (and corresponding edges) that are not reachable from s0

or that cannot reach the target. The problem with this approach is that it may induce

a sub-stochastic PMC, allowing outgoing transitions of any state to not sum up to 1.

Although the algorithm by Hahn et al. [41] is able to handle this, our PVS speci�cation

used a base de�nition of DTMCs that requires them to be stochastic at all times.

One possible solution was to change the de�nitions of PMC and DTMC to allow sub-

stochastic and super-stochastic chains, as in the reference work [41] (although such non-

stochastic chains are not covered by Baier and Katoen [7]). However, changing those def-

initions at this point would require extensive refactoring and would not be cost-e�ective.

Thus, we employed an alternative approach: to require (as a premise) that any input

compositional PMC is such that no state (other than the success and error states) is a

sink.
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1 % A state that is reachable from the source and from which the

2 % target states are also reachable.

3 % This definition relies on loop-free paths, but it should be safe to do so.

4 % (Because every loop can be eliminated by taking the loop-hole transition directly.)

5 not_sink(m: parametric_transition_matrix ,

6 s: (dom(m)),

7 source: (remove(s, dom(m))),

8 T: {S: finite_set [(dom(m))] | NOT S(s)}): boolean =

9 (EXISTS (p1: (non_repeating ?)): path?(m, source , s)(p1))

10 AND

11 (EXISTS (p2: (non_repeating ?)): path?(m, s, T)(p2))

12

13 not_sink(p: PMC ,

14 T: {T_: finite_set [(p`S)] | subset ?(p`T, T_)},

15 s: {s_: (p`S) | s_ /= p`s0 AND NOT T(s_)}): boolean =

16 not_sink(p`P, s, p`s0, T)

17

18 % Definition of state elimination with the new premise

19 eliminate_state_from_matrix_preserves_vars: LEMMA

20 FORALL (m: parametric_transition_matrix ,

21 s: (dom(m)),

22 source: (remove(s, dom(m))),

23 T: {S: finite_set [(dom(m))] | NOT S(s)}):

24 not_sink(m, s, source , T) % This new precondition was required!

25 IMPLIES vars(eliminate_state_from_matrix(m, s)) = vars(m)

We consider that this premise about non-sink states is consistent. In fact, the hand-

crafted version of our theory already posed a requirement for a PMC P to be considered

compositional: that the success and error states are P 's only bottom strongly connected

components. Since any sink state is, by de�nition, a bottom strongly connected compo-

nent, the existence of a sink state other than the success and error states would lead to a

contradiction.

Moreover, we use a notion of user-oriented software reliability whereby we only model

(and analyze) a success or a failure (cf. Section 2.2). Since we use transitions to represent

module failure and transfer of control between system modules [18], any group of states

that is unable to eventually reach either the success or error states represents a deadlock,

which can be itself considered a failure. In this case, one can add transitions from the

deadlocked states to the error one, making the resulting model free of sink states other

than its interface. Also, previous work employed model-driven approaches to generate

reliability models from UML behavioral diagrams [36, 54]. The resulting models satisfy

the assumption that the only sink states are the success and error states, which raises our

con�dence that this requirement is realistic (i.e., it does not constrain the generality of
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our analysis strategies).

Nonetheless, the handcrafted version of our theory implicitly relied on the state elim-

ination algorithm being executed for all states in a given PMC. In reality, however, the

algorithm by Hahn et al. [41] (Algorithm 1) assumes that all states are reachable from

the starting state and are able to reach at least one state in the target set T. Since our

de�nition of parametric reachability (α̂, De�nition 21) �xed the target set as the singleton

whose only element is ssuc, the reachability restriction meant that we could not eliminate

states that can reach the error state but not the success state.

s0 s1 ssuc

s2 serr

pt

pu

1

1

1

1

(a) Compositional PMC P = (S, s0, ssuc , serr , X,P, T )

s0 ssuc

s2 serr

PrP(s0, ssuc)

pu 1

1

1

(b) P after strict state elimination (T = {ssuc})

s0 ssuc

serr

PrP(s0, ssuc)

PrP(s0, serr )

1

1

(c) P after the corrected state elimination (T = {ssuc , serr})

Figure 4.3: Intuition for lemmas regarding state elimination

To illustrate the problem, consider Figure 4.3. The PMC depicted in Figure 4.3a is

a compositional PMC P = (S, s0, ssuc, serr , X,P, T ) according to De�nition 10. Using

Algorithm 1 and our de�nition of α̂ strictly, we can only eliminate state s1, since this

state reaches T = {ssuc}. However, we cannot eliminate state s2, since it only reaches

serr . Thus, we can state that the rational expression in the transition s0 → ssuc is

PrP(s0, ssuc), but we can make no further assumptions about the remaining transitions

(Figure 4.3b).

By the above reasoning, the manual proof of Lemma 13 (r-equivalence of total com-

position and evaluation) can be deemed wrong. Still, we can overcome this liability by

considering the set of target states to comprise both ssuc and serr for the execution of

Algorithm 1. Then, for a compositional PMC P = (S, s0, ssuc, serr , X,P, T ), after state

elimination is complete, there will be only two transitions left, as assumed in Lemma 13:
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s0
PrP (s0,ssuc)−−−−−−−→ ssuc and s0

PrP (s0,serr )−−−−−−−→ serr (e.g., Figure 4.3c). This approach is considered

safe, since we have required that ssuc and serr be the only bottom strongly connected

components, which means that all states in P are able to reach either one of them.

To sum up, we found out that the denotational semantics of α̂ (alpha_v in PVS)

remains the same�i.e., parametric reachability probability for the success state. On

the other hand, the operational semantics must change to be that of applying Algo-

rithm 1 using T = {ssuc, serr} as the input target set, and then selecting the transition

s0
PrP (s0,ssuc)−−−−−−−→ ssuc to comply with the denotational semantics. This way, we can guarantee

that the computation of α̂ performs the elimination of all states, aside from the interface

states s0, ssuc, and serr .

4.3 Mechanization E�ort

At the present moment, the mechanization of our theory of product-line reliability analysis

strategies amounts to 1,176 theorems/lemmas, 1,171 of which are proved. Of these, 782 are

TCCs�i.e., proof obligations that are automatically generated by the PVS type checker;

the remaining 394 theorems/lemmas were speci�ed by us. A total of 372 of the generated

TCCs (approximately half of them) were automatically discharged by the PVS prover.

The remaining TCCs, as well as the human-speci�ed theorems/lemmas, were proved

interactively using PVS's proof strategies [79]. These totals are summarized in Figure 4.4.

TCC
(automatically discharged)

372TCC
(manually proved)

410

User-de�ned
theorems/lemmas

394

Figure 4.4: Proportion of speci�cation and proof e�ort

Thus, we can say that PVS handled approximately 2/3 of the theorem speci�cation

e�ort, and automated about 1/3 of the proof e�ort. In particular, termination lemmas in
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the original theory were automatically generated by PVS as TCCs. Furthermore, the type

checker and the proof assistant allowed us to identify gaps in the manual speci�cation.

Such gaps represented details that were originally overlooked, either because concrete ex-

ample models mislead our manual speci�cation or because we considered some constraints

implicitly.

However, the total amount of machine-veri�ed lemmas is larger than the total of

handcrafted lemmas by a factor of 50. If TCCs are excluded, we still have 15 times

more statements proved in PVS than in the original theory. In the following sections, we

discuss the distribution (Section 4.3.1) and origin (Section 4.3.2) of such new facts. For

the sake of that discussion, we use lemmas to also refer to theorems and TCCs. Then,

we examine how such lemmas were proved using PVS prover commands (Section 4.3.3)

and the bene�ts of machine-veri�ed proofs through the evolution of our speci�cation

(Section 4.3.4).

4.3.1 Distribution of Lemmas

Our machine-veri�ed theory is composed of 40 PVS theories distributed throughout 33

�les. Every lemma or de�nition that has a counterpart in the original theory is annotated

accordingly, by means of PVS comments. This mapping from handcrafted artifacts to

PVS is presented in Table C.2. In Appendix C, we also provide a brief description of the

theories (Table C.1) and a map of their relationship (Figure C.1). In this section, we limit

the discussion to PVS theories that have more than 20 lemmas.

Figure 4.5 presents such theories, in descending order of size. This figure shows the

comparative size of each theory in terms of the overall percentage of lemmas (blue bars).

We also present the percentage of lemmas from the handcrafted version that are speci�ed

and proved in each theory (red bars). Absolute quantities are annotated besides each bar.

The �rst thing to notice is that the PMC_composition theory alone accounts for ap-

proximately 17% of the mechanized lemmas, despite not presenting any of the original

ones. Indeed, this theory presents only two concepts from the handcrafted version: the

de�nitions of total and partial PMC composition (De�nitions 12 and 34). The size of

this particular theory can be explained by two factors: the need for incremental speci�-

cation and the proliferation of type-correctness conditions (144 out of the 200 lemmas in

PMC_composition are TCCs).

The manual de�nition of total PMC composition (De�nition 34) abstracts away im-

portant details about the simultaneous composition over many di�erent slots. In Sec-

tion 4.2.4, we discuss this fact and describe our solution to the problem: incremental

speci�cation of composition over a single slot (for transition matrices, for disjoint PMCs,

and then for arbitrary PMCs), followed by composition over a set of di�erent slots for a
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Figure 4.5: Comparison of PVS theories regarding percentage of mechanized lemmas
versus percentage of the original lemmas

single variable, ending with the composition over sets of slots for di�erent variables. Fur-

thermore, each of these de�nitions is accompanied by lemmas that state the properties

of resulting structures. To ease the proof of these preservation lemmas, we also employed

predicate subtyping, which by itself causes proof obligations; nonetheless, most TCCs

are generated because we are required to prove that states still belong to the domain of

transition matrices (and rows within them) and that the set of variables in the resulting

parametric matrices corresponds to the one of the resulting PMC (cf. Section 4.4).

Similar issues occur with theory PMC_variability_encoding, which has the second

largest set of lemmas. This theory contains the speci�cation of the if-then-else operator

for PMCs, which is similar to PMC composition in that both manipulate transition ma-

trices. Accordingly, out of the 152 lemmas in that theory, 117 are TCCs. Moreover, an

incremental strategy of speci�cation and proof was also employed in this case.

Theory PMC, which ranks third in number of lemmas, formalizes both basic PMC

concepts and state elimination. Since the elimination of states manipulates transition

matrices, we also used incremental speci�cation and ended up with 88 TCCs among the

overall 118 lemmas.

Besides PMC_composition, other mechanized theories have no correspondence to lem-

mas in the manual version. Some of these theories are the formalization of de�nitions,
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such as PMC_composition itself and PMC_renaming (De�nition 33).

Other theories, like parametric_transition_matrices, rational_expressions,

DTMC, and ADD, represent the mechanization of third-party concepts. Such theories corre-

spond neither to lemmas nor to de�nitions of the original theory, but state a number of

lemmas and de�nitions that require explicit formalization in PVS. We believe that these

theories may be reused in the formal speci�cation of domains related to our own�using

either similar models or analyzing other probabilistic properties.

Last, we have theories that only represent results about foundational concepts such

as lists, �nite sets, and well-founded relations. These theories are completely agnostic to

our domain of interest, so they are the ones with larger reuse potential.

It is worth noting that the rome theory covers more than 20% of the original theory,

but accounts for approximately 2% of the mechanized lemmas. This is consistent with the

fact that rome only contains the de�nitions of analysis strategies and the corresponding

soundness lemmas, which are the key results presented in Chapter 3. Thus, this theory

mainly leverages lemmas that are proved elsewhere.

4.3.2 Origin of Lemmas

In Section 4.3.1 we brie�y discuss one source of lemmas that only exist in the mechanized

theory: proof obligations that arise from the manipulation of transition matrices in PMCs.

The use of dependent typing in record types accounts for some of such obligations (cf.

Section 4.4), but, in general, TCCs are generated as machine-checked conditions for the

consistency of the speci�cation. For instance, every speci�cation of recursive function

yields a corresponding termination TCC.

Other than automatically generated proof obligations, we have stated 394 lemmas.

Among these lemmas, 24 are the lemmas, theorems, and corollaries present in Chapter 3.

The others were created to support the mechanized proof of key results and to �ll gaps

in the handcrafted proofs.

As an example, the original theory assumed that the probabilistic reachability in the

feature disabler PMC (De�nition 16) is 1. Since this PMC is small (only 3 states and 4

transitions) and its initial state directly reaches the success state, the reader can safely

assume that statement to be true. Nonetheless, we had to specify and prove this as two

lemmas in PVS, the latter requiring 298 proof commands:

1 feature_disabler_is_const: LEMMA

2 FORALL (p: (feature_disabler_PMC ?)): const_PMC ?(p)

3

4 feature_disabler_reliability_is_1: LEMMA

5 FORALL (p: (feature_disabler_PMC ?)): alpha(const_to_DTMC(p)) = 1
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The previous listing highlights another source of additional lemmas. In the handcrafted

proofs, we treated constant rational expressions as Real numbers. However, they have

di�erent types and, for that reason, we had to specify conversions in PVS and prove that

PMCs can be converted to DTMCs whenever all transitions are constant. For instance:

1 constant_compositional_PMC_const_PMC: LEMMA

2 FORALL (p: (compositional_PMC)):

3 empty ?(vars(p)) IMPLIES const_PMC ?(p)

Besides the existing gaps in the manually proved theory, we also declared lemmas to

support the proof of other results. Some of those lemmas regard the properties of manip-

ulated structures, such as composed PMCs and transition matrices after state elimination

(cf. Section 4.3.1). Others refer to more fundamental facts, such as the emptiness of

the intersection of a set and its complement (S ∩ S̄ = ∅), speci�ed by the following PVS

lemma:

1 disjoint_complement: LEMMA

2 FORALL (S: set[T]): disjoint ?(S, complement(S))

To the best of our knowledge, the above fact (and others that we mechanized in theory

finite_sets_aux) is not available in the built-in PVS libraries (prelude) nor in the NASA

PVS library.

4.3.3 Proof Automation

Our PVS-assisted proofs followed the style of manual proofs as much as possible. However,

handcrafted mathematical reasoning is prone to a greater level of abstraction than allowed

by the rigor of proof assistants. For that reason, a single step in the original proof usually

required a number of proof commands to be ful�lled in PVS.

Lemma 3 (Commutativity of PMC and expression evaluations), for instance, is stated

in PVS as follows:

1 eval_commutativity: LEMMA

2 FORALL (p: PMC , u: (well_defined_evaluation(p))):

3 alpha(eval(p, u)) = eval(alpha_v(p), u)

and its mathematical proof consists of applying one lemma and two de�nitions:

α(P [X/u]) = α(Pu) (syntax change)

= PrPu(s0, T ) (De�nition 20)

= α̂(P)[X/u] (Lemma 1 and De�nition 21)

The interactive proof in PVS performs almost the same proof steps:
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1 eval_commutativity :

2

3 |-------

4 {1} FORALL (p: PMC , u: (well_defined_evaluation(p))):

5 alpha(eval(p, u)) = num(eval(alpha_v(p), u))

6

7 Rule? (skeep :preds? t) % introduction of Skolem constants

8 Skolemizing and keeping names of the universal formula in (+ -),

9 this simplifies to:

10 eval_commutativity :

11

12 {-1} well_defined_evaluation(p)(u) % type constraint preserved by :preds?

13 |-------

14 {1} alpha(eval(p, u)) = num(eval(alpha_v(p), u))

15

16 Rule? (expand "alpha") % Definition 20

17 Expanding the definition of alpha,

18 this simplifies to:

19 eval_commutativity :

20

21 [-1] well_defined_evaluation(p)(u) % this is a precondition of Lemma 1

22 |-------

23 {1} prob_set(eval(p, u), eval(p, u)`s0, eval(p, u)`T) =

24 num(eval(alpha_v(p), u))

25

26 Rule? (rewrite "parametric_reachability_soundness" :dir RL) %Lemma 1

27 Found matching substitution:

28 u: (well_defined_evaluation(p)) gets u,

29 p: PMC gets p,

30 Rewriting using parametric_reachability_soundness, matching in *,

31 this simplifies to:

32 eval_commutativity :

33

34 [-1] well_defined_evaluation(p)(u)

35 |-------

36 {1} prob_set(eval(p, u), eval(p, u)`s0, eval(p, u)`T) =

37 prob_set(eval(p, u), p`s0, p`T)

At this point we are required to perform syntactic manipulations to achieve the desired

equality, slightly departing from the manual proof:

1 Rule? (expand "eval" 1 (2 3))

2 Expanding the definition of eval,

3 this simplifies to:

4 eval_commutativity :

5
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6 [-1] well_defined_evaluation(p)(u)

7 |-------

8 {1} TRUE

9

10 which is trivially true.

11 Q.E.D.

In summary, the PVS proof uses the following commands, which resemble the manual

proof:

1 (skeep :preds? t) % Skolem constants

2 (expand "alpha") % Definition 20

3 (rewrite "parametric_reachability_soundness" :dir RL) % Lemma 1

4 (expand "eval" 1 (2 3)) % expand 2nd and 3rd

That is not the case for the proof of Theorem 7. The manual proof of this theorem

consists of two steps, as follows:

Jσ̂
(
lift(α̂(P)), ϕ

)
Kc = Jα̂(P)Kwc (Theorem 6)

= α(JPKw
′

c ) (Theorem 5)

The mechanized proof follows the same structure of the manual proof (modulo syntactic

manipulation) up to a certain point:

1 (skeep :preds? t)

2 (expand "feature_family_based_analysis")

3 (use "soundness_of_expression_evaluation_using_phi") % Theorem 6

4 (beta)

5 (expand restrict)

6 (rewrite -) % rewrites with Theorem 6

7 (use "feature_product_soundness") % Theorem 5

8 (expand "feature_product_based_analysis")

9 (expand restrict)

10 (expand restrict)

11 (rewrite - :dir RL) % rewrites with Theorem 5

At this point, we are left with the following sequent:

1 feature_family_soundness :

2

3 [-1] sink_free_reliability_model ?(scm)

4 [-2] is_finite(c)

5 [-3] [||](fm)(c)

6 |-------

7 {1} num(sigma(alpha_v(pmc(root(scm))),

8 LAMBDA (c: ([|fm|])):

9 LAMBDA (s: (vars(alpha_v(pmc(root(scm)))))):
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10 the_compositional_evaluation_factory(scm)(c)(s),

11 c))

12 =

13 num(sigma(alpha_v(pmc(root(scm))),

14 LAMBDA (c: ([|fm|])):

15 LAMBDA (s: (vars(root(scm)))):

16 the_compositional_evaluation_factory(scm)(c)(s),

17 c))

18

19 Rule?

Note that the two sides of the equality in the consequent are practically the same, except

for the types of the lambda abstractions (Lines 9 and 15). We have lemmas that help

us prove that those types are actually the same, but this requires us to apply functional

extensionality. That causes the proof to spawn 4 branches, one of which subdivides 3

times.

Overall, the machine-veri�ed proofs in our theory fall in the same case as the proof of

Theorem 7. That is, the main proof branch resembles the manual proof, with auxiliary

commands to perform syntactic manipulation and adjustment of types. Nonetheless,

there are usually parallel branches for proofs of functional extensionality (to conform

type parameters) and preconditions of instantiated lemmas.

Figure 4.6: Usage of prover commands per category

Figure 4.6 shows the total number of PVS proof commands used in our mecha-

nized theory, grouped by the categories in which they fall (according to the PVS Prover

Guide [79]).12According to that table, approximately 13% of all proof commands are re-
12The complete usage count per category and per command is shown in Tables C.3 and C.4.
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lated to introducing type constraints (typepred) and using them to rewrite other formulas

in the sequent (rewrite). Such rewriting is performed by direct use of equational type

constraints introduced by typepred or by �rst expanding the de�nitions of type predicates

already present in the sequent.

These pre-existing predicates are brought into the sequent by �ags that are passed to

the commands that introduce Skolem constants for universally quanti�ed variables (skeep

and skolem), which fall into the category of quanti�er rules (along with inst and similar

rules for elimination of existential quanti�ers). The expansion of (new or pre-existing)

predicates is handled by the commands expand and expand*, which comprise the category

of de�nition expansion. This category accounts for about 31% of the commands and also

covers the expansion of function de�nitions.

Together, quanti�er rules, expansion of de�nitions, and manipulation of type con-

straints account for more than half of the proof commands employed in our PVS theory

(around 61%). Furthermore, we also made extensive use of direct formula manipula-

tion using rules for equality and propositional logic (approximately 13% when combined).

In other words, roughly 74% of the commands we use in our mechanized proofs can

be directly related to proof steps that are (implicitly or explicitly) used in handcrafted

demonstrations.

The use of lemmas is another category of prover commands that correspond to a

manual proof technique. These commands consist of either direct rewriting (using the

rewrite rule) or by �rst instantiating a lemma (by means of use or lemma followed by

inst) and then applying rewrite or replace. Overall, around 9% of the commands

correspond to using lemmas as proof steps, which is approximately 1/5 of the amount of

explicit expansions of functions and type constraints.

Proof assistants are known to require more detailed speci�cation and proofs than

purely mathematical theories�the latter are assessed according to varying degrees of

rigor, depending on the reader. Nonetheless, such tools for machine veri�cation also pro-

vide appropriate abstractions to cope with some of the inherent complexity, like modules

of di�erent granularities (as lemmas and theories), parameterized theories, and automated

decision procedures. Thus, the lemma-to-expansion ratio of 1/5 suggests that our mecha-

nized proofs may not be leveraging PVS's strengths as much as it could. This may also be

the reason why our proofs often had to be refactored during the evolution of the theory:

these proofs relied mostly on direct manipulation of predicates and de�nitions, instead of

using lemmas to abstract such level of detail.

Still, about 9% of the commands used in our theory are automated decision procedures.

The most frequently used, assert, performs arithmetic and Boolean simpli�cation. This

command was employed in case analysis, to discard branches that would lead to con-
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tradictions. Besides assert, we used grind to automatically complete proof branches

by means of repeated rewrites and simpli�cations (leveraging assert, among other com-

mands). However, grind may leave the sequent in a state where all predicates and

functions are expanded to the most basic de�nitions, rendering the proof more di�cult

than it originally was. This command may also lead to non-terminating rewrites, which

requires a reset of PVS.

We also consider a separate category of automated decision procedures, which we call

TCC commands. These commands are the ones that PVS assigns as candidate proofs

of the type-correctness conditions automatically generated after type checking a theory.

Similar to grind, these commands either prove a TCC in a single step or enter an in�nite

chain of rewriting. Nonetheless, such TCC decision procedures were able to automatically

discharge almost half of the TCCs in our PVS theories.

Hence, although PVS has powerful built-in decision procedures, they do not apply

in every case. Nevertheless, this level of automation reduces the burden of mechanized

proofs.

4.3.4 Theory Evolution

One of the key goals of a mechanized speci�cation is to have a computer check that

theorem proofs are sound. Nonetheless, this goal is not static in time; once a theorem

is machine-veri�ed, it can be re-checked every time the corresponding speci�cation is

changed. Thus, mechanized proofs also aid along the evolution of the theory.

Throughout the mechanization e�ort, we followed a design principle to specify only

the concepts that were needed, and to do it as the need arises (Section 4.1). This decision

meant that our speci�cation su�ered frequent refactoring. Still, at every refactoring we

were able to use the PVS commands M-x prove-theory and M-x prove-importchain

to re-run the existing mechanized proofs in batch mode. If a proof passed, that meant it

was not a�ected by the change; otherwise, we manually inspected the proof to search for

prover rules that failed to apply.

Overall, proof failure after a refactoring meant that either (a) the refactoring was

incorrect, or (b) the refactoring changed the number or the ordering of type predicates

that were used as sequent formulas in the proof. In the former case, we did not �nd a

pattern to help on identifying a solution; that is object of future work. On the other hand,

the latter case could always be identi�ed by backtracking incomplete proof branches.

Such backtracking can be performed by opening a bu�er with the proof commands

(M-x show-proof) and running that proof along with a graphic representation of the

proof tree (M-x x-prove). For each incomplete proof branch, we start with the leaf node

and identify the proof command that led to that sequent. Then, we search for that same
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command in the proof commands bu�er, to establish a correspondence. Last, we follow

the chain of commands in the proof bu�er and the path towards the root node in the

proof tree in a pairwise fashion, until a mismatch is found.

This command that exists in the recorded proof steps but is not present in the current

proof tree has failed to apply. In our experience, this kind of failure is always caused

by a proof command that directly references a sequent formula, such as (rewrite -3);

if a refactoring changes the number or the ordering of a type constraint that appears as

a sequent formula, replaying that command will try to rewrite with a formula that is

di�erent from the intended one (despite being indeed at position [-3]).

Hence, the solution is to examine the failed command (which was found through

backtracking) and discover which formula was needed for this command to succeed. Then,

we continue to follow the path towards the root node, seeking for the sequent in which

that formula was removed. As mentioned above, this usually occurs at the closest group

of rewrites.

4.4 Lessons Learned

This section presents an experience report that we think may be useful to researchers

willing to perform mechanized speci�cation. In what follows, we discuss some of the

design decisions in hindsight, re�ecting about the perceived bene�ts, shortcomings, and

alternatives.

Corrections to the original theory: Overall, the mechanization e�ort helped us

raise the level of con�dence that our theory is sound. Using PVS, we were able to identify

and correct gaps in the original (manual) speci�cation. Although those gaps represented

liabilities for some of the handcrafted proofs, we were able to re�ne our theory and cor-

rect the detected �aws. Furthermore, solving these issues increased the precision of our

speci�cation, since some concepts (e.g., expression composition and simultaneous PMC

composition) were informally de�ned.

It is interesting to note, however, that errors in the original theory appeared in two

�avors during mechanization. The �rst one is that the handcrafted speci�cation may

be incomplete, in which case the mechanized version fails to type-check. This sort of

mistake is easier to detect, since the PVS type-checker points it out. A concrete example

that appeared in our mechanization e�ort was the need for de�ning a new generalized

expression evaluation function (function gen_eval, Section 4.2.5).

On the other hand, there are errors which prevent some proofs from being completed.

In such situations, it may not be clear whether a new lemma could enable the proof to
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be carried out or if there is indeed a speci�cation �aw. For that reason, these errors are

harder to recognize, and their solutions may require a non-localized refactoring.

Type-correctness conditions (TCC): PVS type checker was able to automatically

generate proof obligations for facts that are important to the soundness of the theory. For

instance, function termination may be easily overlooked in a manual speci�cation, but,

since PVS requires all functions to be terminating, the type checker forces us to prove

this fact. Indeed, our manual speci�cation did not provide a proof of termination for one

of the recursive functions.

Also, recursive de�nitions that make use of predicate subtypes give rise to TCCs

requiring that such predicates be preserved at each recursion step. For complex recursions,

like the ones that specify PMC composition (cf. Section 4.2.4), stating properties as

predicates of the return types may be easier than proving the same facts as independent

lemmas.

Partial functions with predicate subtypes: We were also able to leverage the type

system to mechanically enforce some pre-conditions. For instance, most of our de�nitions

require that evaluation functions be well-de�ned for the given PMCs. This concept is so

pervasive that we dropped explicit mentions to well-de�nedness whenever we talk about

evaluations (Section 2.2.1). Nevertheless, we still need to prove that custom evaluations

are indeed well-de�ned. Hence, we de�ned a predicate to model well-de�nedness and used

it in all function parameters related to evaluation of PMCs. This way, the type checker

generates obligations that prove evaluations to be well-de�ned. Similar to termination,

this also led us to �nd an evaluation function that was not proved to be well-de�ned in

the original theory.

However, these bene�ts come at the cost of more complex TCCs. Although PVS deci-

sion procedures were able to discharge a considerable proportion of the proof obligations

it generated, some of these obligations would not be necessary but for predicate subtypes.

Moreover, some TCCs that were not automatically discharged would become simpler (and

thus dischargeable by PVS) without predicate subtypes.

One approach to eliminate TCCs would be to specify appropriate judgements. How-

ever, the extensive use of dependent typing made it di�cult to specify useful judgements

in some cases. This happens because of a limitation of PVS, whereby constant judgements

do not support dependently-typed quanti�ed variables in the type expression (i.e., after

the HAS_TYPE keyword).

Sets as types: Using sets to de�ne predicate subtypes helped us to design readable

de�nitions, as expected. Nonetheless, one needs to proceed with caution when using this
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technique. In our case, we used set types to instantiate some third-party libraries, one

of which is NASA's finite_sets_sum (which we use to prove facts about �nite sums).

Because of that, we needed to de�ne auxiliary lemmas for seemingly trivial facts, like the

following:

1 finite_sum_of_subset: LEMMA

2 FORALL (S1: finite_set[T],

3 S2: {S: finite_set[T] | subset ?(S1 , S)},

4 f: [(S2) -> real]):

5 sum[(S2), real , 0, +]( restrict[T, (S1), boolean ](S1), f)

6 =

7 sum[(S1), real , 0, +]( restrict[T, (S1), boolean ](S1), restrict(f))

If we strip type parameters, we can see that this lemma is actually stating an identity of

the sum
∑

s∈S f(s). Thus, this is only needed because we used a predicate subtype to

instantiate the theory, instead of using the base type.

Overall, we can summarize that predicate subtypes are useful to de�ne partial func-

tions, but should be avoided when instantiating theory parameters. Another situation

where predicate subtyping should be avoided is when de�ning parameters of predicates;

this over-restricts the domain upon which the predicate can be tested, whereas the in-

tended result is usually that all elements of the base type can be tested.

Proof automation: Whenever possible, we used PVS facilities that automated part of

the hard work (e.g., the grind prover rule and the typecheck-prove command). Some

rules that try to infer an appropriate instantiation of quanti�ers�such as inst? and

use�are preferred instead of explicit instantiation; they require less references to names

and sequent formulas, thus making the proof more resilient to changes. However, some-

times the instantiation inference does not fail, but neither produces a useful result.

When working with partial functions, in particular, it is often the case that an appro-

priate instantiation needs a restricted version of some function f in the proof sequent. In

such cases, inst? usually uses f without restriction, yielding an impossible obligation

to prove that the di�erent domains are equal. Thus, even when applying rules with that

automation level, one must inspect the results before proceeding to the next command,

under risk of reaching a dead end. These rules alleviate the mental burden, but do not

eliminate it.

Speci�cation style: The design decision to favor the operational style of speci�cation

resulted in the need to expand de�nitions in proofs. However, some of our de�nitions�

especially the ones related to renaming and composition of matrices�involve multiple

conditionals (IF and COND). This led to proofs with many branches and case analyses,
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which can be di�cult to design and understand. An alternative strategy would be to

specify the overall framework using a declarative style, then specify operational de�nitions

and prove that they conform to the declarative ones. With this alternative approach, we

expect to have more de�nitions and lemmas than using the purely operational style.

However, we also expect the resulting proofs to be less involved.

Function overloading: Throughout the mechanization process, we used function over-

loading whenever possible, to group conceptually related functions. In our experience, this

led to shorter (but still meaningful) names and improved readability. However, TCCs are

named using incremental indices for entities with the same name within a given theory.

An overloaded function (such as rename, in PMC_renaming) may give rise to a handful of

TCCs (about 25, in this particular case), and a change in the de�nition of one overloaded

version of this function may cause the addition or suppression of some of them�causing

the following TCCs to change names in cascade.

Since PVS uses the name of a theorem to keep track of its proof (stored in a sep-

arate �le), this causes a mismatch between the existing proofs and the intended TCC

statements. This mismatch must be manually �xed, a task which is both tedious and

error-prone. Nonetheless, our view is that the improved readability pays o�. Then, we

recommend that the speci�er take a snapshot of the TCC statements and correspond-

ing proofs (using the commands M-x tcc and M-x show-proofs-theory) before making

changes to overloaded functions.

Lemmas versus brute-force proofs: Proof commands in PVS can give rise to a

number of proof branches, depending on the usage and context. For instance, at some

point an ongoing proof had branches for which the reasonable proof strategy was to use

induction. However, because of all predicates that applied to the induction variable in

that concrete case, issuing the command induct spawned 17 branches.

In this case, we removed the concrete context by stating the fact we were trying to

prove in that branch as a separate auxiliary lemma. This way, we were able to simplify

both the original (encompassing) proof and the new (extracted) one. This indicates

that lemmas are useful not only as a reuse technique, but also as a tool to tame proof

complexity.

Using lemmas as interface contracts: To prove lemmas in PVS, it is useful to

preserve type constraints when introducing Skolem constants for universally quanti�ed

variables.13 If the type at hand satis�es a conjunction of predicates, as in the return

13PVS quanti�er rules, like skolem, usually accept Boolean arguments for this purpose.
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type of compose_many_variables (Section 4.2.4), each of theses predicates turns into a

formula in the antecedent. This means that changes in the number (or in the order) of

predicates may impact proofs that use them.

Thus, when designing the proof to Lemma 13, we performed a top-down proof

approach�i.e., we �rst designed the lemmas that should be true and then stated these

lemmas and designed their proof. Speci�cation of new de�nitions was then postponed by

means of a number of lemmas stating the properties needed from them.

Using this approach, we were able to proceed with a proof as far as possible, then quit

the prover, specify a new property that was needed, and then resume the proof. If we had

chosen to specify these properties directly as predicate subtypes of the function of which

the lemma was about, we could have needed to change other proofs. That is, we ended

up needing less rework during the initial exploration phase.

The lesson here indicates that lemmas may be useful not only as a reuse technique,

but also as a tool to perform incremental speci�cation.

Limitations of uninterpreted elements: At several points in our mechanized speci-

�cation we employed uninterpreted constants and functions (Section 4.2). This technique

is useful to abstract details, especially for concepts that are not key to the theory being

speci�ed (e.g., propositional rules of feature models) or functions for which there may be

many possible de�nitions (e.g., the parametric model checking function alpha_v).

When leaving theory elements uninterpreted, however, one should care to also specify

its properties. In our experience, specifying properties of uninterpreted elements at a later

time may have a large refactoring impact, since new predicates on the type of a Skolem

constant may change the numbers of sequent formulas and many useful prover commands

(such as instantiate and rewrite) rely on them.

Hence, we recommend that every property envisioned for the uninterpreted element

be speci�ed using type predicates.

Limitations of record types: We used PVS RECORD types to specify de�nitions that

use tuples in the handcrafted version of our theory. For instance, we followed this approach

with De�nition 1 (Parametric Markov Chain), whose PVS counterpart is de�ned as a

direct translation (Section 4.2.1).

However, in a PMC P = (S, s0, X,P, T ), the set X of variables is dependent on the

actual variables of the parametric transition matrix P. The explicit mention to both X

and P in the handcrafted version is useful to the reader as variables to which proofs and

other de�nitions refer. In the mechanized version, on the other hand, the speci�cation of

both X and P and the encoding of their relationship as subtype predicates gives rise to
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a number of recurrent TCCs at every point where the theory manipulates PMCs. Those

TCCs that require us to prove that X = vars(P) are usually not hard to prove, but

neither do they contribute to the overall soundness of the theory.

So, we suggest that de�nitions that make use of dependent typing between record

members be thoroughly examined, to highlight such cases of over-speci�cation.

4.5 Limitations and Threats to Validity

The mechanized theory covers all original aspects of the handcrafted version presented in

Chapter 3. However, for scoping reasons, we did not provide machine-veri�ed proofs of

auxiliary results that could be traced to background literature. We divide such abstracted

results in two categories: axioms and un�nished mechanized proofs.

4.5.1 Axioms

Facts that could be referenced in a proof without further arguments (e.g., numbered the-

orems in books and papers), as well as third-party results, were stated as PVS axioms.

Since this type of construct is a potential threat to the consistency of mechanized speci-

�cations [67], we tried to avoid them as much as possible, favoring the use of de�nitions

and theorem premises.

Still, our PVS speci�cation uses a total of 7 axioms. Section 4.2 discusses 4 of them

in context:

� reachability_probability_property (DTMC.pvs, line 173), corresponding to

Property 1 (Reachability probability for DTMCs). This property is a result pre-

sented in the book by Baier and Katoen [7] at page 760.

� parametric_reachability_soundness (PMC.pvs, line 54), corresponding to

Lemma 1 (Parametric probabilistic reachability soundness). This lemma is a

result from the work by Hahn et al. [41] (Lemma 1).

� elimination_step_is_sound (PMC.pvs, line 306), corresponding to De�nition 4

(State elimination step). This also comes from the work by Hahn et al. [41], being

a loop invariant of Algorithm 1 that is both proved and used within the proof of

Lemma 1.

� alpha_v_eval_is_real (PMC.pvs, line 49), corresponding to an implied de�nition

in the work by Hahn et al. [41].
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The remaining 3 axioms are properties of cylinder sets and sigma algebras, and are

only needed in our formalization of DTMCs. These axioms can all be traced to Section

10.1.1 (Reachability Probabilities) of the book by Baier and Katoen [7], as follows.

finite_path_fragments_are_countable (DTMC.pvs, line 132). This axiom states

that, for any given DTMC, the set of path fragments going from a state s to a non-empty

�nite set T of states is countable:

1 IMPORTING sigma_set@sigma_countable[list[state ]]

2

3 finite_path_fragments_are_countable: AXIOM

4 FORALL (d: DTMC ,

5 s: (d`S),

6 T: non_empty_finite_set [(d`S)]):

7 is_countable(paths_to_reach(d, s, T))

Rationale. We de�ne DTMC paths as �nite lists of states, so such paths are guaranteed

to be �nite. Also, the set of �nite path fragments in a DTMC is countable [7], and the

set paths_to_reach(d, s, T) is a subset of such set. Since every subset of a countable

set is also countable, the stated axiom is safe.

alternative_paths_sum_up_to_1 (DTMC.pvs, line 144). This axiom states that

the sum of the (possibly in�nite) probabilities for all paths starting in a given state is also

a probability:

1 alternative_paths_sum_up_to_1: AXIOM

2 FORALL (d: DTMC ,

3 s: (d`S),

4 T: non_empty_finite_set [(d`S)]):

5 LET the_sum = sigma(paths_to_reach(d, s, T),

6 LAMBDA (p: list[state]):

7 IF path?(d)(p) THEN prob_path(d, p) ELSE 0

ENDIF)

8 IN the_sum >= 0 AND the_sum <= 1

Rationale. This in�nite sum corresponds to the one in the de�nition of the probability of

eventually reaching a set B of states in a DTMC [7]. By de�nition, this probability is a

number in the closed interval [0, 1] ∈ R.

prob_path_is_convergent (DTMC.pvs, line 138). This axiom is needed as a type-

correctness condition for the previous one, since the PVS theory of in�nite sums is only

de�ned for convergent series:
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1 prob_path_is_convergent: AXIOM

2 FORALL (d: DTMC ,

3 s: (d`S),

4 T: non_empty_finite_set [(d`S)]):

5 convergent ?( paths_to_reach(d, s, T))

6 (LAMBDA (p: list[state ]):

7 IF path?(d)(p) THEN prob_path(d, p) ELSE 0 ENDIF)

Rationale. Again, this result comes from the fact that path probabilities are a probability

measure over cylinder sets of the given DTMC, so their sum is convergent [7].

4.5.2 Un�nished Mechanized Proofs

Besides the previously discussed axioms, there are some auxiliary results that are intuitive,

but are not proved elsewhere. In these cases, we stated the results as �ve ordinary lemmas

in PVS, including them initially within the scope of mechanization. The corresponding

machine-veri�ed proofs, however, are work in progress.

Those un�nished lemmas were (indirectly) leveraged to prove results regarding r-equiv-

alence (Lemma 13 and Theorem 8). Still, in what follows, we provide non-mechanized

proofs of their correctness.

Sink States and PMC Composition

In the handcrafted version of our theory, we leverage the correctness of the algorithm by

Hahn et al. [41] (Lemma 1) to prove that PMC composition and evaluation are r-equiva-

lent (Lemma 13). As already discussed in Section 4.2 (Section 4.2.5), this argument was

incomplete and needed the notion of reachability to either the success or the error states.

Nonetheless, since we require that these particular states be the only bottom strongly

connected components, such reachability is guaranteed [7, Theorem 10.27]. However, we

still need to prove that this property is preserved under PMC composition:

1 % Auxiliary definition: a predicate stating that a PMC has

2 % no sink states besides the success and error states.

3 no_sink_besides_interface ?(p: (compositional_PMC)): boolean =

4 FORALL (s: {s_: (p`S) | s_ /= p`s0 AND NOT add(p`s_err , p`T)(s_)}):

5 not_sink(p, add(p`s_err , p`T), s)

6

7 % Auxiliary definition: a composition that only yields PMCs

8 % that satisfy the above predicate.

9 no_sink_besides_interface_composition ?(p: (compositional_PMC))

10 (u: composition(p`X)): boolean =
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11 FORALL (x: (p`X)):

12 no_sink_besides_interface ?(u(x))

13

14 composed_states_are_not_sink: LEMMA

15 FORALL (p: (no_sink_besides_interface ?),

16 u: (no_sink_besides_interface_composition ?(p))):

17 FORALL (s: {s_: (compose(p, u)`S) | s_ /= p`s0

18 AND NOT add(p`s_err ,

compose(p, u)`T)(s_)}):

19 not_sink(compose(p, u), add(p`s_err , p`T), s)

Lemma composed_states_are_not_sink (PMC_r_equivalence.pvs, line 24) states

that, if no state in the base PMC is a sink, and if no state in any composed PMC is a

sink, either, then we know that no state is a sink in the PMC resulting from composition.14

Proof sketch. Suppose that this statement is false. Then there is at least one state s in

the resulting PMC P that cannot reach either ssuc or serr. But s comes either from the

original (base) PMC Pbase or from one of the composed PMCs, say Pcomp. So, one of the

following must be true:

� If s ∈ Pcomp, then s reaches either the success or the error states in Pcomp. But, after
composition, these states are connected to a slot state from Pbase, which can reach

either ssuc or serr. Hence, we have a contradiction.

� Otherwise, if s ∈ Pbase, then it could reach the interface states before composition.

Since composition only changes transitions within a single slot (De�nition 12), the

interruption of reachability must have happened within a composed PMC Pcomp.

However, composition does not a�ect transitions within the composed PMC besides

the loops in the success and error states. Thus, path fragments belonging to com-

posed PMCs are preserved, which means that paths originally passing through the

slot are not interrupted. This is, again, a contradiction.

Since both possibilities lead to contradictions, the statement is true.

Similar reasoning applies to ITE_of_compositional_model_preserves_not_sink

(PMC_variability_encoding.pvs, line 478), which states that recursive composition us-

ing the PMC if-then-else operator (variability encoding) does not introduce sink states:

1 ITE_of_compositional_model_preserves_not_sink: LEMMA

2 FORALL (cm: (sink_free_reliability_model ?),

3 p: (cm `P)):

4 no_sink_besides_interface_composition ?(p)

14That description excludes interface states, since the success and error states are sinks by de�nition.
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5 (LAMBDA (x: (vars(p))): ite(x,

6 gamma(cm)(idt_inv[cm `P, cm `I,

cm`idt](x)),

7 feature_disabler_PMC))

Again, this lemma assumes that all compositional PMCs in the compositional proba-

bilistic model are free of sink states. Since we are interested in models of system reliability,

and since our notion of reliability is binary (i.e., the system either fails or succeeds), we

consider this assumption to be safe (cf. Section 4.2.5).

State Elimination

Lemma eliminate_composed_maps_slots_to_prob_sets (PMC_r_equivalence.pvs,

line 56) relates directly to the induction hypothesis used to prove Lemma 13:

1 eliminate_composed_maps_slots_to_prob_sets: LEMMA

2 FORALL (p: (no_sink_besides_interface ?),

3 x: (p`X),

4 sl: (slot?(p, x)),

5 u: (no_sink_besides_interface_composition ?(p)),

6 u_: (well_defined_evaluation(compose(p, u)))):

7 LET (sl_0 , sl_suc , sl_err) = sl IN

8 eval(trans(trans(eliminate_composed(p, u)`P)(sl_0))(sl_suc),

restrict(u_)) = eval(alpha_v(u(x)), restrict(u_))

9 AND

10 eval(trans(trans(eliminate_composed(p, u)`P)(sl_0))(sl_err),

restrict(u_)) = eval(const (1) - alpha_v(u(x)), restrict(u_))

This lemma establishes that, after applying the state elimination step of Hahn's algorithm

to all the states that were added to a PMC by a composition in a single slot, the remaining

transitions (between states in said slot) have expressions that are extensionally equal to

the reliability expression obtained by using Hahn's algorithm (α̂) in the composed PMC.

Note that the lemma declaration employs the pattern of specifying extensional equality

of rational expressions by comparing the results of applying the eval function to each of

them.

The non-mechanized proof of this statement is already present in the original theory

(Lemma 13) and is illustrated by Figure A.1. In Figure 4.7, we can see the evolution from

a base PMC P (Figure 4.7a), going through composition of a PMC P ′ (Figure 4.7b) until
the elimination of all composed states (Figure 4.7d).

Lemma eliminate_composed_preserves_non_slots (PMC_r_equivalence.pvs, line

67), on the other hand, states that transitions between states that are not members of

the same slot are preserved after eliminating all states resulting from composition:

1 eliminate_composed_maps_preserves_non_slots: LEMMA
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(d) Pc after eliminating all states s′ ∈ S′

Figure 4.7: Intuition for lemmas regarding state elimination

2 FORALL (p: (no_sink_besides_interface ?),

3 s1, s2: (p`S),

4 u: (no_sink_besides_interface_composition ?(p)),

5 u_: (well_defined_evaluation(compose(p, u)))):
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6 (NOT EXISTS (sl: (slot?(p))): (s1=sl `1 AND (s2=sl `2 OR

s2=sl `3)))

7 IMPLIES

8 eval(trans(trans(eliminate_composed(p, u)`P)(s1))(s2),

restrict(u_)) = eval(trans(trans(p`P)(s1))(s2), restrict(u_))

Proof sketch. By De�nition 12, PMC composition preserves transitions between composed

states and only creates transitions between the composed interface and the corresponding

states in the target slot. Composition itself does not a�ect any transition of the base

PMC that is not within a slot (as the transition s1
p−→ s2 in Figure 4.7a).

Lemma eliminate_state_from_matrix_preserves_wf_evaluations (PMC.pvs,

line 175) is the last one regarding state elimination. This lemma states that eliminat-

ing a single state preserves the stochasticity of the resulting PMC under well-de�ned

evaluations of the original one.

1 eliminate_state_from_matrix_preserves_wf_evaluations: LEMMA

2 FORALL (m: parametric_transition_matrix ,

3 s: (dom(m)),

4 source: (remove(s, dom(m))),

5 T: {S: finite_set [(dom(m))] | NOT S(s)},

6 u: (wf_evaluation(m))):

7 not_sink(m, s, source , T)

8 IMPLIES wf_evaluation(eliminate_state_from_matrix(m, s))(u)

Proof sketch. Let P = (S, s0, X,P, T ) be a PMC and let P ′ = (S \ {s}, s0, X,P
′, T ) be

the PMC resulting from the elimination of a state s ∈ S \ T \ {s0}. We want to prove

that, for all p ∈ PreP(s) and for all evaluation u that is well-de�ned for P , the following
holds:

∑
t∈S\{s}

P′[X/u](p, t) = 1

Let p ∈ S be such that p ∈ PreP(s) (i.e., p is a predecessor of s in P). Any successor of

p in P ′ must be a state that was previously a successor of both p and s, or a successor of

just one of them.
SuccP ′(p) = (SuccP(p) \ SuccP(s) \ {s})︸ ︷︷ ︸

Sp (successors of p alone)

∪ (SuccP(p) ∩ SuccP(s) \ {s})︸ ︷︷ ︸
Sp,s (successors of both p and s)

∪ (SuccP(s) \ SuccP(p) \ {s})︸ ︷︷ ︸
Ss (successors of s alone)
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Hence, ∑
t∈S\{s}

P′(p, t) =
∑

t∈SuccP′ (p)

P′(p, t)

=
∑
t∈Sp

P′(p, t) +
∑
t∈Sp,s

P′(p, t) +
∑
t∈Ss

P′(p, t)

But, for all t ∈ Sp, P′(p, t) = P(p, t), since these transitions are not a�ected by

state elimination. Thus,
∑
t∈Sp

P′(p, t) =
∑
t∈Sp

P(p, t). Moreover, by de�nition of the state

elimination step (De�nition 4), we have that

∑
t∈Sp,s

P′(p, t) = P(p, s) · 1

1−P(s, s)
·P(s, t0) + P(p, t0)

+ P(p, s) · 1

1−P(s, s)
·P(s, t1) + P(p, t1)

+ . . .

= P(p, s) · 1

1−P(s, s)
·
∑
t∈Sp,s

P(s, t) +
∑
t∈Sp,s

P(p, t)

and ∑
t∈Ss

P′(p, t) = P(p, s) · 1

1−P(s, s)
·P(s, t0) + ���

��P(p, t0)

+ P(p, s) · 1

1−P(s, s)
·P(s, t1) + ���

��P(p, t1)︸ ︷︷ ︸
these states are not successors of p

+ . . .

= P(p, s) · 1

1−P(s, s)
·
∑
t∈Ss

P(s, t)

Since P is stochastic under evaluation u, it holds that SuccP(s) = (SuccP(s) ∩
SuccP(p)) ∪ (SuccP(s) \ SuccP(p)) and

∑
t∈SuccP (s)

P(s, t) =
∑
t∈S

P(s, t) = 1 (omitting the

evaluation syntax for brevity). Hence, we have that∑
t∈Ss

P(s, t) +
∑
t∈Sp,s

P(s, t) + P(s, s) = 1

∑
t∈Ss

P(s, t) = 1−
∑
t∈Sp,s

P(s, t)−P(s, s)
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Thus, ∑
t∈Ss

P′(p, t) =
P(p, s)

1−P(s, s)
·

1−
∑
t∈Sp,s

P(s, t)−P(s, s)


and we have that∑

t∈S\{s}

P′(p, t) =
∑
t∈Sp

P(p, t) +
∑
t∈Sp,s

P′(p, t) +
∑
t∈Ss

P′(p, t)

=
∑
t∈Sp

P(p, t) +

���
���

���
���

�P(p, s)

1−P(s, s)
·
∑
t∈Sp,s

P(s, t) +
∑
t∈Sp,s

P(p, t)

+
P(p, s)

1−P(s, s)
·

1−
�
��

�
��
�∑

t∈Sp,s

P(s, t)−P(s, s)


=
∑
t∈Sp

P(p, t) +
∑
t∈Sp,s

P(p, t) +
P(p, s)

���
���1−P(s, s)

·(((((
(((1−P(s, s))

=
∑
t∈Sp

P(p, t) +
∑
t∈Sp,s

P(p, t) + P(p, s)

=
∑

t∈SuccP (p)

P(p, t)

= 1
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Chapter 5

Conclusions

In this work, we formally presented seven approaches to reliability analysis of product

lines, covering all strategies in the taxonomy by Thüm et al. [85]. In particular, we

formally extended previous work [16] with feature-based analysis strategies. To the best of

our knowledge, this is the �rst work to address all three dimensions of product-line analysis

(product-based, family-based, and feature-based) in the context of model checking, and

also the �rst to present an instance of feature-family-product-based analysis strategy.

The soundness of our analysis techniques is established by results on the commutativity

of their intermediate steps, summarized by the commuting diagram in Figure 3.7. This

constitutes formal evidence that, given a product line, each of the presented approaches

yields the same results as the others, enabling practitioners to choose among analysis

strategies based on their space and time trade-o�s. We had our proofs reviewed by fellow

researchers outside our group, and the resulting theory is published by a peer-reviewed

journal [15].

Moreover, we mechanized this theory in the PVS proof assistant [67]. The mapping

between the theory as presented in Chapter 3 and the mechanized speci�cation in Chap-

ter 4 is summarized in Table C.2, in Appendix C. By now, the mechanized speci�cation

(Chapter 4) consists of 1,176 theorems/lemmas, of which 5 auxiliary lemmas (needed in

the machine-veri�ed version) are not yet machine-veri�ed. All elements in the original

theory are speci�ed and proved. To the best of our knowledge, this is the �rst work to

present a mechanized speci�cation of product-line reliability analysis.

Although our theory is focused on reliability analysis, we were able to prove a general

result on lifting rational functions over the Real numbers to work with ADDs (Lemma 4).

This result can be leveraged to evaluate algebraic expressions in the context of product

lines.

In the remainder of this chapter, we discuss implications of the results (Section 5.1)

and limitations of our research (Section 5.2). Then, we discuss related work (Section 5.3)
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and conclude by proposing future work (Section 5.4), some of which is in progress.

5.1 Discussion of Results

The main contribution of this work relies on the proofs of commutativity and the associ-

ated theory. This theory may be leveraged as a starting point to formalize the veri�cation

of other quality properties that can be expressed using related Markov models, such as

Continuous-time Markov Chains (CTMC) and Markov Decision Processes (MDP). Such

leverage may be obtained from possible similarities in the handcrafted theory, but also

from refactorings of the mechanized version.

Moreover, the commutativity proofs increase the con�dence that the techniques whose

performance were empirically compared [54] are indeed alternatives to one another. As a

corollary, this proves that the feature-family-based analysis technique presented by Lanna

et al. [54] is correct.1 Hence, it is safe to assume that, according to current evidence, in

the context of user-oriented reliability analysis using DTMC models of product lines, the

feature-family-based strategy outperforms the others.

Still, the theory presented here also extends the analysis strategies assessed by Lanna

et al. [54], including a novel feature-family-product-based strategy. This motivates the

need for further empirical studies that also cover the variant strategies in this work.

The formalization of our theory in PVS allowed us to identify some errors and impre-

cisions of the handcrafted version. That is, some of the original results (Chapter 3) were

partially invalidated by the mechanization e�ort. Nonetheless, we were able to correct

the identi�ed issues and modify the parts of the theory depending on them. Thus, the

key results of the theories presented in Chapters 3 and 4 are slightly di�erent from one

another.

Furthermore, the mechanized version has signi�cantly more elements�speci�cally,

there are approximately 50 times more lemmas in PVS than there are in the handcrafted

theory. Even though roughly 2/3 of those lemmas were proof obligations automatically

generated by PVS, they still had to be proved. Approximately half of these proof obli-

gations were automatically discharged, but the absolute amount of interactive proving

exceeded by far the quantity of handcrafted proofs. Also, the process of manually spec-

ifying and proving the original theory took about 1 year, whereas the machine-assisted

version required 2.5 years so far (despite being based on existing knowledge).

Because the mechanization e�ort was signi�cantly higher than that of creating the

original theory, it is possible to see it as overkill. However, that endeavor brings the

1That work actually presents a model-driven method to compute the user-oriented reliability given
UML models of a system. However, the results presented here do not apply to the automatic extraction
of DTMC models from UML, but only to the analysis of the extracted Markov chains.
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bene�t of providing a foundation on which similar theories can be built. The process

of specifying and proving our theory of commuting strategies in PVS also gave rise to

auxiliary theories that can be used in more general contexts�for instance, theories about

ADDs, rational expressions, and DTMCs, besides additional lemmas on �nite sets and

lists. Such auxiliary theories are under evaluation for joining the NASA PVS Library.

Additionally, we believe that the experience report presented in Chapter 4 will be

helpful for researchers and practitioners working with interactive theorem proving. We

documented the design decisions, the main obstacles, and the mistakes we made, so

that the community may also bene�t from the lessons learned during the mechanization

process.

Overall, this work highlights the relationship between analysis steps in the context of

model-checking the user-oriented reliability of product lines. Figure 3.7 depicts the pat-

terns that were found during our research, relating annotative and compositional models

as well as the operations de�ned over them. Such view allows the organization and struc-

turing of facts (e.g., commutativity of intermediate analysis steps) in a concise and precise

manner, facilitating the communication of ideas and contributing to a more comprehensive

understanding of underlying principles used in these strategies.

Although we do not claim that our results are general enough to be immediately ap-

plied to other contexts, these results add up to the knowledge base of theoretical work

regarding the formal veri�cation of product lines. Moreover, we believe that the com-

muting diagram in Figure 3.7 may be leveraged as a guide to the formalization of related

theories. This conjecture is mentioned at the ending of Chapter 3 and is object of an

ongoing work within our research group. Hence, this work indirectly contributes to the

ongoing search for a principle and possibly automated way to lift a given speci�cation

and analysis technique to product lines [85].

5.2 Threats to Validity

The main contribution of this work is analytical, obtained in a deductive way. As such, the

validity of the conclusions is conditioned on the validity of the premises and on the correct

application of deduction principles. The former concerns whether the formal constructs

correspond to the practical ones (�do the implementation and the theory correspond to

one another?�). The latter concerns the consistency of speci�cations and correctness of

proofs.

To address the validity of the mapping between software constructs and formal de�ni-

tions, we created the original (manual) speci�cation by modeling the constructs that exist

in the ReAna product-line reliability analysis tool�implemented by our research group

141



to perform empirical studies [54]. Although this tool is implemented in an imperative

object-oriented programming language (Java), it employs a functional programming style

as much as possible. The assumption is that, by organizing the source code into small,

manageable modules, with limited presence of side-e�ects, it is easier to reason about the

correctness of de�nitions and speci�cations [5]. This programming discipline does not

guarantee a correct mapping between software and mathematical assets, but mitigates

the risk of mismatching.

To increase the con�dence in the consistency and soundness of our formal de�ni-

tions and proofs, we submitted the speci�cations for review by fellow researchers and by

anonymous reviewers of a scienti�c journal, resulting in the paper's acceptance [15]. The

publication venue was chosen because the members of its editorial board are experienced

in model checking and in the use of formal methods in general, and some of them do

research on software product lines.

Besides human scrutiny, we further increase the evidence on the soundness of our

commutativity theory by means of machine-based veri�cation. All of the key results are

speci�ed and machine-veri�ed, which already indicates that the original theory is probably

sound. Nonetheless, correspondence to the manual speci�cation still needs to be estab-

lished. We mitigate that risk by explicitly providing pointers from the mechanized to the

original elements of the theory (Appendix C), and by keeping the translation between both

as direct as possible (Section 4.1). In the cases where the mechanized de�nitions become

more involved, we discuss the di�erences and argue about their rationale (Section 4.2).

Also, our mechanized version relies on 7 axioms, and axiomatic speci�cation brings

the issue of whether the resulting theory is inconsistent. Indeed, there is evidence that

this may be the case even for experienced PVS practitioners [72]. To reduce that threat,

we provided a mapping from our axioms to results available in the literature (Section 4.5)

and sought to keep them as syntactically similar to their reference de�nition as possible.

Moreover, 5 of the lemmas in our mechanized theory have un�nished proofs, which hinders

their validity. This is indeed an open issue, which we mitigate by providing handcrafted

proofs and arguments of correctness.

Our approach to mitigate the risk of inconsistent axioms assumes that the literature

results on which we rely are indeed correct. These results are based on the book by Baier

and Katoen [7] and on the work by Hahn et al. [41]. Both works have in�uenced many

others, based on the number of citations reported by Google Scholar.2 The latter work, in

particular, laid the foundations for the PARAM model checker [40], whose model checking

techniques have been also incorporated in the PRISM model checker [52].

2As of November 2019, Baier and Katoen [7] had 4956 citations and Hahn et al. [41] was cited 126
times according to http://scholar.google.com.
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Another potential risk to the validity of our machine-veri�ed results is the use of

third-party theories. Such theories have axioms of their own, which could introduce

inconsistencies. However, all theories imported within our own are part of NASA PVS

library.3 Those speci�cation and proof artifacts are publicly available and are curated by

a research group (NASA Langley Formal Methods Team). As such, and given that this

library is used in formal veri�cation of mission-critical software, we assume that the risk

of introducing inconsistencies is low. For the same reason, we consider unlikely that any

of our mechanized proofs is falsely deemed correct due to an unnoticed bug in PVS itself.

Last, we must discuss to what extent our results can be generalized. By construction,

we limited our scope to user-oriented reliability analysis using model checking. Thus, we

do not claim that our results can be immediately generalized to other types of analysis. On

the contrary, we suggest that speci�c research might be conducted towards generalizing

our theory (cf. Section 5.4).

5.3 Related Work

E�cient analysis of software product lines is a relevant problem that has been tackled

from many di�erent perspectives, as pointed out by a recent survey [85]. In particular,

several model checking techniques have been successfully lifted to work with product

lines [4, 19, 21, 23, 24, 34, 36, 51, 64, 82]. In contrast to existing research, our work

presents di�erent analysis techniques, covering all groups identi�ed in the taxonomy by

Thüm et al. [85], and relates these techniques to one another. Moreover, we present what

is�to the best of our knowledge�the �rst feature-family-product-based analysis strategy

in the literature. Hence, we discuss the closest related work according to di�erent criteria.

PMC-based analysis of product lines: Ghezzi and Shari�oo [36] propose a model-

based approach to analyze non-functional properties of product lines, illustrated by relia-

bility and energy-consumption analysis. Their technique models probabilistic behavior by

organizing parametric Markov chains in a hierarchical data structure, derived from nested

UML sequence diagrams, annotated with the reliability of individual operations. Then,

they employ parametric model checking in a bottom-up fashion, yielding a hierarchy of

reliability expressions that are evaluated for each product con�guration of interest. Al-

though Ghezzi and Shari�oo also deal with modeling issues, their analysis technique can

be seen as an instance of the feature-product-based reliability analysis in our framework,

where the PMCs obtained from the nested sequence diagrams form the set P of compo-

3https://shemesh.larc.nasa.gov/fm/ftp/larc/PVS-library/
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sitional PMCs, and the decomposition tree induces the dependency relation ≺. For that
reason, our work provides formal evidence of the soundness of their approach.

Rodrigues et al. [76] introduced Featured Discrete-Time Markov Chains (FDTMC), an

extension of DTMCs to cope with variability and to represent the probabilistic behavior

of product lines. This formalism, which is not restricted to reliability, enables veri�cation

of any probabilistic property that can be expressed using Probabilistic Computation Tree

Logic (PCTL) [42]. The authors present three family-based approaches to conduct such

analyses, one of which relies on an encoding of an FDTMC as a PMC to leverage o�-

the-shelf model checkers. Our work, in contrast, relies on models speci�cally tailored

to reliability analysis (a probabilistic reachability property), but incorporates di�erent

strategies to perform this analysis, covering the currently accepted product-line analysis

taxonomy [85] in its entirety. Furthermore, Rodrigues et al. do not formally argue about

the soundness of their approaches.

The framework we present can be leveraged to represent FDTMCs, provided that the

reliability-speci�c constraints to PMCs are relaxed. We can say that any PMC (S, s0, X,

P, T ), along with an evaluation factory w and a feature model FM , represents an FDTMC

(S, ν,FM ,Π) such that, for all s, s′ ∈ S and c ∈ JFM K:

� Π(s, s′)(c) = P(s, s′)[X/w(c)]; and

� ν(s) =

1 if s = s0

0 otherwise

Rodrigues et al. [77] applied similar composition techniques to DTMC models of prob-

abilistic reachability analysis. That work also exploits the notion of interfaces to derive

a model of the whole system from models of its components. Moreover, the authors pro-

pose an algorithm to abstract inner (i.e., non-interface) transitions of component models,

such that the state-space explosion inherent to model checking techniques is reduced in

the �nal composite model. However, Rodrigues et al. [77] use this technique as a tool to

model a single component-based system closely to its intended architecture, whereas our

work leverages composition as a variability representation mechanism.

Feature-based model checking: Li et al. [56] and Liu et al. [57] have proposed feature-

based approaches to the analysis of non-probabilistic temporal properties of product lines.

Using models of feature behavior based on transition systems and required properties

expressed with Computation Tree Logic (CTL) [20], they analyze each feature in isolation

and generate partial results that can be later reused. The composition of features in

their proposed models relies on interface states, a concept that we leveraged to de�ne

PMC interfaces and slots. However, the interfaces de�ned by Li et al. [56] can have
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an arbitrary number of outgoing states, and Liu et al. [57] extended them to support

inter-feature cycles. Our use of interfaces, in contrast, is focused on reliability analysis (a

probabilistic existence property expressed in PCTL), allowing us to de�ne two outgoing

states to abstract success and error conditions, while also ruling out the existence of cycles.

Moreover, both Li et al. [56] and Liu et al. [57] treat feature modules as open systems, so

they aggregate partial analysis results and CTL obligations to the interfaces themselves.

Since we focus on a compositional model of a single product line, we use a separate model

for intermediate feature reliability expressions. Because of these di�erences in modeling

and in the nature of analyzed properties, we see their work and our own as complementary.

Family-based model checking: Dubsla� et al. [34] created a framework for modeling

probabilistic and nondeterministic properties of dynamic product lines. This framework

consists of modeling the behaviors of features in isolation, yielding models that are later

composed into a family-based model. The models and their compositions are established

in terms ofMarkov Decision Processes (MDP), enabling their representation in a way that

allows the composed model to be model-checked using o�-the-shelf tools [19]. The focus

of their work is on modeling probabilistic behavior of product lines in a way that existing

model checking techniques can be exploited. In contrast, our goal is to prove soundness of

alternative analysis strategies, leaving modeling issues out of scope. Although their mod-

eling and analysis technique is su�ciently general to enable reliability analysis of static

product lines, which is our focus, it only enables family-based and product-based strategies

(which the authors call, respectively, all-in-one and one-by-one [34]), whereas our work

also includes the feature-based dimension. Nonetheless, their family-based technique is

an alternative to ours, since it encodes the feature model constraints in the behavioral

model itself.

Kowal et al. [50] presented a formalism to describe performance models of product

lines in a compositional fashion, based on performance-annotated activity diagrams de-

scribed in a delta-oriented language. Similar to our work, they provide formal de�nitions

and provide theorems stating the soundness of their approach (although proofs are not

provided in the paper). However, similar to Dubsla� et al. [34], they only address family-

based analysis of a model derived from the delta modules. Another di�erence to our work

is that the semantics of their diagrams is expressed by continuous-time Markov chains

(CTMC), which are more appropriate to performance analysis than DTMCs. Because of

that, the two pieces of work complement each other. Future work could investigate the

feasibility of de�ning alternative analysis strategies using their models and an approach

similar to ours.
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Variability encoding: Previous research has exploited variability encoding (also called

con�guration lifting) as a technique to produce family-based model checking of product

lines [2, 4, 51, 74]. von Rhein et al. [91] formalize variability encoding in the context

of programming languages, that is, the transformation of compile-time variability into

load-time variability. This transformation is realized using if-then-else operations and

an encoding of features as control variables in the resulting program, which the authors

call a variant simulator. They prove their transformation preserves the behavior of vari-

ants in the variability-encoded program for corresponding con�gurations. The concept

of encoding variability in a simulator, as mentioned before, inspired our de�nitions of

variability encoding for PMCs and expressions. Furthermore, their overall proof strategy

resembles the one used throughout our work (i.e., comparison of results for corresponding

con�gurations). However, whereas von Rhein et al. [91] use trace semantics and a weak

bisimulation relation to correlate behaviors, we perform this task using structural analy-

sis of the behavioral models. Despite being less general, structural analysis is su�ciently

strong for the purpose of proving that reliability is preserved, which is the main focus of

our work.

Formal approaches to variability-aware analysis: The de�nition of product-line

analysis techniques that are sound by construction has been investigated recently [12,

14, 17, 62], although not speci�cally in the context of model checking. Midtgaard et al.

[62] presented a methodology to derive family-based static analyses from single-product

analyses based on abstract interpretation. This approach enables the lifting of existing

analyses to work with product lines, yielding variability-aware analyses that are correct

by construction. Although the authors only walked through a data-�ow analysis scenario,

they claim the methodology could be applied to other analyses, including model checking.

Similar to their work, we provide soundness proofs of product-line analyses, conditioned on

the soundness of a given single-product analysis. However, we do not provide a general

framework for derivation of analysis strategies; instead, we focus on providing formal

evidence that a set of alternative strategies for reliability analysis are sound, while also

highlighting the relations between their intermediate steps. Moreover, whereas Midtgaard

et al. handle only the family-based dimension of analysis, we also address the feature-

based dimension. In this sense, our work can also be seen as a preliminary investigation

on deriving alternative strategies to perform a given analysis.

Brabrand et al. [14] proposed a technique to automatically lift intraprocedural data-

�ow analyses to handle variability in product lines. Similar to our work, the authors

propose alternative analysis strategies, which are derived by gradually introducing vari-

ability awareness in di�erent components of an existing analysis. Brabrand et al. [14] also
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present a soundness proof for the proposed strategies, whereby all of them are guaranteed

to compute the same result as the base analysis. The presented simultaneous and consec-

utive analysis strategies are similar to our family-based and family-product-based ones,

respectively, even though di�erent properties are analyzed. However, Brabrand et al.

[14] do not consider feature-based analyses. Furthermore, our work breaks down analysis

strategies in intermediate steps that can be composed in di�erent ways, enabling reuse of

proofs.

Mechanized speci�cation of product lines: Other researchers have leveraged the-

orem provers and proof assistants in the context of software product lines (e.g., Borba

et al. [13], Delaware et al. [30], Neves et al. [63], Teixeira et al. [81], Thüm et al. [83]).

However, most of the existing work investigates the reuse of speci�cation and proofs to

assert soundness of di�erent products in a given product line (product lines of theorems).

Our work, in contrast, deals with properties of product lines in general.

Borba et al. [13] also speci�ed a PVS theory about properties of product lines�

in their case, for reasoning about safe product-line evolution. That work evolved into

a product line of theories [81], where products are theories of safe evolution based on

concrete product-line languages. Similar to our results, their work present PVS theories

about properties of product lines. Nonetheless, Neves et al. [63] and Teixeira et al. [81]

speci�ed concepts in the domain of product-line engineering, whereby the targets of their

theories are meta-models of product lines. Our work focuses on properties of product-

line reliability analysis strategies, instead. Future work may investigate how to map our

speci�cation to concrete product-line languages by leveraging the meta-theory by Teixeira

et al. [81].

Comparison of analysis dimensions: Kolesnikov et al. [49] empirically compared

family-based, feature-based, and product-based type checking of Java-based product lines.

Their work was the �rst empirical study covering all three dimensions of analysis, pro-

viding guidance to practitioners over which type checking strategy to apply for a given

product line. In a sense, their research and our own are complementary, since each one

deals with a di�erent analysis type (type checking and model checking). However, in con-

trast with their work, our focus is on the formal aspects of analysis�although we argue

that our techniques can be implemented in a tool to perform empirical studies. Further-

more, Kolesnikov et al. neither investigate combined strategies nor prove the soundness

of the implemented type checkers.

von Rhein et al. [90] proposed a model for classi�cation and comparison of product-line

analyses (the PLA model), whereby existing analyses are broken down into intermediate
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steps. This model abstracts possible steps as four operators for composing features,

encoding variability, resolving variability, and generic processing of artifacts. As stated by

the authors themselves, the PLA model is helpful when describing complex analyses and

designing new ones. Indeed, the PLA model was a source of inspiration for designing our

analysis techniques as reusable analysis steps. However, we found the proposed operators

to be too generic to be useful in our formal setup. In this sense, our work complements

the work by von Rhein et al. [90] with a formally de�ned relation among analyses and

intermediate steps, albeit restricted to reliability analysis.

Conceptual models and taxonomy: Thüm et al. [85] established the taxonomy for

product-line analyses upon which we based our work, that is, the classi�cation of analysis

techniques in three basic strategies (product-based, feature-based, and family-based) and

combinations thereof. von Rhein et al. [90] laid these strategies as dimensions in a cube,

meaning analysis strategies can be expressed as a combination of the number of analyzed

products (sampling dimension), the granularity of feature combinations (feature grouping

dimension), and the extent to which variability is preserved or resolved during analysis

(variability encoding dimension). Since our soundness proofs for variability encoding and

feature composition apply to single features (not necessarily maximal PMCs), our tech-

niques range over the PLA plane of feature grouping and variability encoding dimensions.

Furthermore, given that sampling is a matter of restricting possible con�gurations and

that we prove that our techniques are sound con�guration-wise, our work also covers the

sampling dimension.

Meinicke et al. [60] recently surveyed existing product-line analysis tools and cat-

egorized them along four criteria: product-line implementation technique (annotation-

based versus composition-based approach), analysis technique (e.g., testing, type check-

ing, model checking), strategies for product-line analysis (i.e., the analysis strategies tax-

onomy by Thüm et al. [85]), and strategy of the tool (product-based, variability-aware,

and variability-encoding). Using this taxonomy, an implementation of our techniques

would cover all possibilities on the dimensions of implementation technique, strategies for

product-line analysis, and strategy of the tool, while the dimension of analysis technique

would be �xed to reliability analysis.

5.4 Future Work

The research presented here provided a formal speci�cation of strategies for analyzing

software product lines. As such, we visualize that there are opportunities for both ex-
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tending the analytical reasoning of our theory and performing further empirical studies

that leverage the formal results.

Further handling of threats to validity: Although we have mechanized all aspects

of the original theory, there are still elements in our PVS code that can be further ex-

plored. First and foremost, we plan to fully mechanize the un�nished lemmas, despite the

mathematical reasoning that we presented to argue about their correctness (Section 4.5).

In a related issue, specifying and proving the work by Hahn et al. [41] and the approach

to DTMCs in the book by Baier and Katoen [7] could (a) reduce the need for axioms in

our theory and (b) be reused as a foundation on which to perform similar research.

Extensions to the current theory: In principle, our theory can be extended to

cover other aspects within the same domain (i.e., user-oriented reliability modeled using

DTMC). For instance, our commuting diagram could be expanded upwards by formalizing

the modeling approaches and the relation between the derivation processes for products

and for models thereof. Another possibility is to explore the inverse of variability en-

coding arrows�that is, how to decompose annotative models into compositional ones, to

leverage feature-based strategies in the analysis of existing annotative product lines.

Generalization of the mechanized theory: The mechanization of our theory in PVS

has led to bene�ts of its own, especially regarding the re�nement and correction of the

handcrafted version (Chapter 4) and the general purpose byproducts (e.g., PVS theories

for ADD, rational expressions, DTMC, and PMC). Nonetheless, we believe that there

are long-term bene�ts to be gained by generalizing the PVS mechanization of commuting

analysis steps to other kinds of quality properties and analysis techniques.

For instance, there are other software quality properties that are of practical interest

and can be analyzed using probabilistic models [37]. An alternative view of reliability, for

instance, is the probability that a system does not fail within a given time interval [43].

This property can be speci�ed using a probabilistic invariance formula, which is di�erent

from the probabilistic existence used in our speci�c case but can still be checked over

DTMC models [37]. On the other hand, one could extend our analysis of user-oriented

reliability in the face of nondeterminism by checking the same probabilistic existence

property but using Markov Decision Processes (MDP) instead of DTMC models.

The above suggestions of generalization either �x the property being checked and let

the model of system behavior vary, or �x the model and change the property. However, one

could also think about how di�erent models and properties can �t in the same product-

line commutative analysis framework. Indeed, the analysis dimensions covered by our

work belong to a taxonomy that was derived from an extensive survey [85]. Hence, it
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makes sense to investigate analysis commutativity in the context of type checking, data-

�ow analysis, theorem proving, or even other types of model checking (e.g., checking the

absence of deadlocks or race conditions and checking properties of Featured Transition

Systems [21]).

Accordingly, we intend to explore to what extent our theory can be generalized to

other types of product-line models and analyses thereof. To reach this goal, we plan to

iteratively refactor our speci�cation, seeking to abstract away details that are directly

related to reliability analysis. The resulting speci�cation will be compared with existing

related work, to consider whether the proposed generalization can be instantiated for

similar models.

Empirical studies over the mechanized theory: Throughout the mechanization

process, we encountered obstacles and had to progressively re�ne our speci�cations.

Nonetheless, some of the lessons from this process would require a deep refactoring of

the theory. Thus, future work could perform an exploratory study on alternative design

decisions and how to simplify the current PVS theory. With this study, we expect to

present a systematic assessment of the impact of di�erent speci�cation and proof styles.

Furthermore, it would be bene�cial to the PVS community to investigate and classify

speci�cation and proof smells as well as refactoring patterns. It is also of interest to ex-

plore how to best evolve the speci�cations and proofs while avoiding rework�particularly

because of explicit references to sequent formulas.

Empirical studies regarding the analysis strategies: Given that we provide an-

alytical evidence that the strategies presented here are equivalent to one another, there

is empirical evidence indicating that the feature-family-based strategy outperforms the

others [54]. However, the existing empirical study does not take our novel feature-family-

product-based strategy into account. Further experiments should be performed to assess

the additional strategy and to investigate how the characteristics of subject product-line

models impact analysis performance.

Moreover, there is an opportunity to evolve the existing implementation of the relia-

bility analysis strategies [54] to re�ect the machine-veri�ed theory. This way, there would

be increased con�dence that the existing product-line reliability analysis tool corresponds

to the strategies that were proven sound.
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Appendix A

Additional Proofs

This appendix contains formal de�nitions and proofs that were omitted from the main

body of the paper to avoid digressions.

A.1 Existence of Minimal and Maximal PMCs

Lemma 9 (Existence of minimal PMCs). Given a set P of compositional PMCs, an

identifying function idt , and the corresponding induced well-founded relation ≺, there

exists, at least, one minimal PMC P = (S, s0, ssuc, serr , X,P, T ). Furthermore, X = ∅,
that is, minimal PMCs are, in fact, DTMCs with de�ned interfaces and only two bottom

strongly connected components (cf. De�nition 10).

Proof. The existence of minimal PMCs follows directly from the fact that the induced

relation ≺ is well-founded: otherwise, all descending chains would be in�nite.

Now suppose X 6= ∅. Then, it has, at least, one element x. Since the set I of

identi�ers (image of idt) is a superset of all Xi, x ∈ I. By de�nition, function idt is

bijective, so there must be a compositional PMC P ′ ∈ P such that idt(P ′) = x. But

idt(P ′) ∈ X ⇒ P ′ ≺ P . Since P is minimal by hypothesis, this is a contradiction.

Lemma 10 (Existence of maximal PMCs). Given a set P of compositional PMCs, an

identifying function idt , and the corresponding induced well-founded relation ≺, there

exists, at least, one maximal PMC P = (S, s0, ssuc, serr , X,P, T ).

Proof. The proof is by contraposition. Nonexistence of such maximal PMC means there

are in�nite ascending chains P1 ≺ P2 ≺ P3 ≺ . . . for Pi ∈ P. Since P is �nite, such

in�nite chain implies the existence of cycles, that is, at least, one Pi transitively depending
on itself. But cycles imply both ascending and descending in�nite chains, contradicting

the well-foundedness of ≺. Hence, there are no in�nite ascending chains under ≺ and, by

contraposition, there is, at least, one maximal PMC.
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A.2 Termination Lemmas

The following lemma states the termination of the recursive de�nitions of the composition

factory w′ (De�nition 18).

Lemma 11 (Derivation by composition terminates). For a compositional model (P,≺,
I, idt, p, w′,FM ), for all con�gurations c ∈ JFM K, the composition function w′(c) termi-

nates.

Proof. Let idt−1 : I → P be the inverse function of idt. To prove w′(c) terminates,

we note that the arguments in the recursive calls in the de�nition of w′ (De�nition 18)

strictly decrease if we use idt−1 as a measure function into the well-founded set P.

Without loss of generality, let x = idt(P) for some P ∈ P with variables set X =

{x1, . . . , xk}. The right-hand side of w′(c)(x) evaluates to either P⊥ (the feature disabler

PMC) or P [x1/w
′(c)(x1), . . . , xk/w

′(c)(xk)]. In the �rst case, it trivially terminates, since

P⊥ have no slots; in the latter, the arguments to each recursive call are the variables

xi ∈ X. By de�nition, xi = idt(Pi) for some Pi ∈P such that Pi ≺ P . Thus, idt−1(xi) ≺
idt−1(x). Since ≺ is well-founded, w′(c) terminates.

The following lemma states that the recursion in De�nition 26 terminates.

Lemma 12 (Compositional evaluation terminates). For a compositional model (P,≺
, I, idt, p, w′,FM ), for all con�gurations c ∈ JFM K, the compositional evaluation w(c)

terminates.

Proof. Let idt−1 : I → P be the inverse function of idt. To prove w(c) terminates, we

note that the arguments in recursive calls to w(c) (De�nition 26) strictly decrease if we

use idt−1 as a measure function into the well-founded set P.

Indeed, without loss of generality, let x = idt(P) for some P ∈ P with variables set

X = {x1, . . . , xk}. By de�nition of σ, the right-hand side of w(c)(x) evaluates to either

1 or α̂(P)[x1/w(c)(x1), . . . , xk/w(c)(xk)]. In the �rst case, it trivially terminates; in the

second, the arguments to each recursive call are the variables xi ∈ X. By de�nition,

xi = idt(Pi) for some Pi ∈ P such that Pi ≺ P . Thus, idt−1(xi) ≺ idt−1(x). Since ≺ is

well-founded, w(c) terminates.

A.3 Soundness of Feature-product-based Analysis

We �rst state formally what we mean by PMC renaming, which is a key concept in PMC

composition.
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De�nition 33 (Compositional PMC renaming). Given a compositional PMC P = (S,

s0, ssuc, serr , X,P, T ), the i-th renaming of P , P i = (Si, si0, s
i
suc, s

i
err , X

i,Pi, T i), is an

isomorphic compositional PMC with renamed states. That is, P i is such that:

� Si ∩ S = ∅.

� ∀i,j∈N · i 6= j =⇒ Si ∩ Sj = ∅.

� There exists a bijective mapping _i : S → Si from each state sj ∈ S to a state

sij ∈ Si.

� X i = X.

� ∀s1,s2∈S ·Pi(si1, s
i
2) = P(s1, s2).

� T i = {si | s ∈ T}.

With the formal de�nition of PMC renaming, we are able to present a precise de�ni-

tion of a total composition, obtained by composing PMCs over all slots in a given base

compositional PMC at once.

De�nition 34 (Total PMC composition). Given a compositional PMC (S, s0, ssuc, serr ,

X,P, T ) with k variables x1, . . . , xk, and a set P of k compositional PMCs (Si, si0 , sisuc ,

sierr , Xi,Pi, Ti), i ∈ {1, . . . , k}, let u′ : X →P be a function that yields a compositional

PMC P ∈ P to compose in the corresponding slots for any given variable. Let also

ni = |slotsP(xi)| for i ∈ 1, . . . , k, and Pji = (Sji , s
j
i0
, sjisuc , s

j
ierr
, Xj

i ,P
j
i , T

j
i ) for j ∈ 1, . . . , ni

be the j-th renaming of Pi (De�nition 33). The total PMC composition P [X/u′], also

denoted by P [x1/u
′(x1), . . . , xk/u

′(xk)], is a compositional PMC P ′ = (S ′, s′0, s
′
suc, s

′
err , X

′,

P′, T ′) such that:

� S ′ = S ]
⊎n1

j=1 S
j
1 ] · · · ]

⊎nk

j=1 S
j
k, where ] denotes the disjoint union operator (all

states are disjointly merged);

� s′0 = s0, s′suc = ssuc, and s′err = serr (the interface of P is preserved);

� X ′ =
⋃k
i=1 Xi (each occurrence of xi is replaced by a copy of Pi, whose variables are

those of Xi);

� T ′ = T (target states of the base PMC are preserved);

� P′ is such that, for all slots (sxji0
, sxjisuc

, sxjierr
) of the base PMC P and interfaces

(sji0 , s
j
isuc
, sjierr ) of the renamed PMCs Pji (where i ∈ 1, . . . , k and j ∈ 1, . . . , ni),
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� P′(sxji0
, sji0) = 1 (new transition from a slot's initial state to the initial state of

the corresponding composed PMC)

� P′(sjisuc , sxjisuc
) = 1 (new transition from the success state of a composed PMC

to the success state of the corresponding slot)

� P′(sjierr , sxjierr
) = 1 (new transition from the error state of a composed PMC to

the error state of the corresponding slot)

� P′(sxji0
, sxjisuc

) = 0 (slot's success transition is removed)

� P′(sxji0
, sxjierr

) = 0 (slot's error transition is removed)

� P′(sjisuc , s
j
isuc

) = 0 (success loops from composed PMCs are removed)

� P′(sjierr , s
j
ierr

) = 0 (error loops from composed PMCs are removed)

� For all remaining combinations of s1, s2 ∈ S ′:

P′(s1, s2) =


P(s1, s2) if s1, s2 ∈ S \ slotStatesP(X)

Pj
i (s1, s2) if s1, s2 ∈ Sji

0 otherwise

The function u′ is called a composition function.

To establish the soundness of the feature-product-based strategy, we need to compare

it to the product-based strategy for compositional models. However, the latter relies on

PMC composition, while the former is based on compositional evaluation of expressions.

To bridge this gap, we �rst note that, as far as reliability analysis is concerned, composing

a PMC P ′ into a slot of another PMC P is equivalent to evaluating the corresponding

variable in P with the reliability expression of P ′ (i.e., α̂(P ′)).

Lemma 13 (r-equivalence of total composition and evaluation). Let P ,P1, . . . ,Pk be

compositional parametric Markov chains, and X = {x1, . . . , xk} be P's set of variables.

Then,

α̂(P [x1/P1, . . . , xk/Pk]) = α̂(P [x1/α̂(P1), . . . , xk/α̂(Pk)])

where the equals sign denotes extensional equality. In other words, the two expressions

(i.e., syntactic objects) are not necessarily equal in a syntactical sense, but their corre-

sponding rational functions (i.e., semantic objects) always yield equal values if given equal

inputs.

Proof. The main argument for this proof is the case where P has only one variable, that

is, X = {x}. This way, we start by proving that α̂(P [x/P ′]) = α̂(P [x/α̂(P ′)]) for a given
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compositional PMC P ′ = (S ′, s′0, s
′
suc, s

′
err , X

′,P′, T ′). Then, we extend this to the general

case where P has an arbitrary number of variables.

A generic illustration of P and P ′ is given by Figures 3.4a and 3.4b, respectively. Let

Pe = P [x/α̂(P ′)] be the PMC resulting from evaluation, denoted by (Se, se0 , sesuc , seerr ,

Xe,Pe, Te), and Pc = P [x/P ′] be the PMC obtained by composition, denoted by the tuple

(Sc, sc0 , scsuc , scerr , Xc,Pc, Tc). Figures A.1a and A.1b represent these PMCs and serve as

a visual aid to the proof.

s0 ... sx0

sxsuc

sxerr

...

...

ssuc

serr

PrP
′
(s′0, s

′
suc)

1− PrP
′
(s′0, s

′
suc)

1

1

(a) Pe = P[x/α̂(P ′)]

s0 ... sx0 s ′0 ...

s′suc

s′err

sxsuc

sxerr

...

...

ssuc

serr

1

1

1

1

1

(b) Pc = P[x/P ′]

s0 ... sx0 s ′0

s′suc

s′err

sxsuc

sxerr

...

...

ssuc

serr

1

PrP
′
(s′0, s

′
suc)

PrP
′
(s′0, s

′
err )

1

1

1

1

(c) Pc after eliminating states s′ ∈ S′ \ interface(P ′)

s0 ... sx0

sxsuc

sxerr

...

...

ssuc

serr

PrP
′
(s′0, s

′
suc)

PrP
′
(s′0, s

′
err )

1

1

(d) Pc after eliminating all states s′ ∈ S′

Figure A.1: Generic PMCs in Lemma 13

Since α̂ computes the probabilistic reachability property, we base this proof on the

algorithm by Hahn et al. [41]. This algorithm consists of successive eliminations of states,

with the transition probability matrix being updated at each step. A useful property,
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which Hahn et al. use to prove that the algorithm is sound, is that the probability of

reaching the target states in the input PMC is an invariant, that is, it remains the same

throughout elimination steps.

Let us apply the algorithm by Hahn et al. [41] to Pc. For brevity, we show the

composition via a single slot. In the case where more slots exist, the following argument

can be applied sequentially to each slot and corresponding renaming of P ′.
Since the order in which states are eliminated is not �xed, we �rst eliminate states

s′ ∈ S ′\interface(P ′). The intermediate PMC at this point is given by Figure A.1c. These

eliminations are restricted to states in S ′, because the only transitions in Pc between states

in S and states in S ′ are the ones connecting interface and slot (by construction�see

De�nition 34).

Now, we eliminate the interface states. Performing a single step of the algorithm by

Hahn et al. (De�nition 4), we eliminate s′0 and update Pc so that

Pc(sx0 , s
′
suc) = Pc(sx0 , s

′
suc) + Pc(sx0 , s

′
0) · 1

1−Pc(s′0, s
′
0)
·Pc(s

′
0, s
′
suc)

= 0 + 1 · 1

1− 0
· PrP ′

(s′0, s
′
suc)

= PrP
′
(s′0, s

′
suc)

Similarly, Pc(sx0 , s
′
err) = PrP

′
(s′0, s

′
err). Repeating these steps for s′suc and s′err , Pc is

updated to have Pc(sx0 , sxsuc) = PrP
′
(s′0, s

′
suc) and Pc(sx0 , sxerr ) = PrP

′
(s′0, s

′
err) (see

Figure A.1d).

At this stage, all states s′ ∈ S ′ have been eliminated, so that Sc = S = Se. Further-

more, for all s1, s2 ∈ S \ slotStatesP(x), the transition probability matrices are such that

Pc(s1, s2) = P(s1, s2) = Pe(s1, s2) (De�nition 34). Thus, the only di�erence between Pc
and Pe are the transitions for slot states: (sx0 , sxsuc) and (sx0 , sxerr ).

For the �success� slot, Pc(sx0 , sxsuc) = PrP
′
(s′0, s

′
suc), which is syntactically equal

to Pe(sx0 , sxsuc). So, we must prove that the �error� transitions, Pc(sx0 , sxerr ) and

Pe(sx0 , sxerr ), are extensionally equal. But s′suc and s
′
err are the only two bottom strongly

connected components of the underlying digraph of P ′ (De�nition 10). Thus, by Theorem

10.27 of Baier and Katoen [7], PrP
′
u(s′0, s

′
suc) +PrP

′
u(s′0, s

′
err) = 1, where P ′u is the DTMC

obtained by applying some well-de�ned evaluation u to P ′. Since the choice of u is

arbitrary, Pc(sx0 , sxerr ) is extensionally equal to Pe(sx0 , sxerr ).

This means that, at the current point of application of the probabilistic reachability

algorithm to Pc, Pc = Pe. Pe and the partially analyzed Pc have the same probability

of reaching the target state ssuc. Moreover, since the algorithm preserves this proba-

bility at each step, the probabilistic reachability in Pc is the same at this point as be-
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fore the algorithm started, and will remain the same until the algorithm stops. Hence,

α̂(P [x/P ′]) = α̂(P [x/α̂(P ′)]).
To extend this proof to the case where P has an arbitrary number of variables, we

repeat the argument that the choice of states for elimination is arbitrary. Let us as-

sume, as induction hypothesis, that the lemma holds for a PMC with n variables. If

P has n + 1 variables, we apply the same reasoning as in the single-variable case for

one of P 's slots, (sxn+10
, sxn+1suc

, sxn+1err
). After eliminating only the states correspond-

ing to a composition at the given slot, we have the following extensional equalities:

Pc(sxn+10
, sxn+1suc

) = Pe(sxn+10
, sxn+1suc

) and Pc(sxn+10
, sxn+1err

) = Pe(sxn+10
, sxn+1err

).

Also, the resulting PMC Pc has n remaining slots, one for each variable. By the in-

duction hypothesis, after eliminating the states corresponding to all compositions in Pc,

we have that Pc and Pe are extensionally equal. Hence, α̂(P [x1/P1, . . . , xn+1/Pn+1]) =

α̂(P [x1/α̂(P1), . . . , xn+1/α̂(Pn+1)]).

Furthermore, since a composition of only DTMCs into a PMC yields another DTMC,

both parametric and non-parametric model checking of this resulting chain (which has no

variability) produce the same result. Thus, we have the following corollary of Lemma 13.

Corollary 1 (r-equivalence of total composition with DTMCs and evaluation). Let P be

a compositional PMC, D1, . . . ,Dk be DTMCs, and X = {x1, . . . , xk} be P's variables set.
Then,

α(P [x1/D1, . . . , xk/Dk]) = α(P [x1/α(D1), . . . , xk/α(Dk)])

Now we have the tools to prove that our feature-product-based analysis is sound. We

recall Theorem 5:

Theorem 5 (Soundness of feature-product-based analysis). Given a compositional model

(P,≺, I, idt, p, w′,FM ), for all con�gurations c ∈ JFM K, it holds that

σ(α̂(P), w, c) = α(π′(P , w′, c))

or, alternatively,

Jα̂(P)Kwc = α(JPKw
′

c )

where P ∈P and w is the compositional evaluation factory (De�nition 26) derived from

the composition factory w′.

Complete proof. We use well-founded induction. The base of the induction is when

P is minimal with respect to ≺. In this case, X = ∅, so π′(P , w′, c) = P , that is,

α(π′(P , w′, c)) = α(P). Likewise, α̂(P) = α(P), so that σ(α̂(P), w, c) = σ(α(P), w, c) =

α(P). Thus, for the base case, σ(α̂(P), w, c) = α(π′(P , w′, c)).
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We now have to prove that σ(α̂(P), w, c) = α(π′(P , w′, c)) for an arbitrary P ∈ P.

Our induction hypothesis is that σ(α̂(Pi), w, c) = α(π′(Pi, w′, c)) for all Pi ∈P such that

Pi ≺ P . Thus, let xi = idt(Pi), i ∈ {1, . . . , k}. By De�nition 22, we have:

σ(α̂(P), w, c) = α̂(P)[x1/w(c)(x1), . . . , xk/w(c)(xk)]

For each xi, from the de�nition of the compositional evaluation factory w (De�nition 26),

w(c)(xi) =

σ(α̂(Pi), w, c) if p(xi)(c) = 1

1 otherwise

=

α(π′(Pi, w′, c)) if p(xi)(c) = 1 (by induction hypothesis)

1 otherwise

But, from the de�nition of the composition factory w′ (De�nition 18),

w′(c)(xi) =

Pi[Xi/w
′(c)] if p(xi)(c) = 1

P⊥ otherwise

=

π′(Pi, w′, c)) if p(xi)(c) = 1 (De�nition 19)

P⊥ otherwise

Applying α to both sides,

α(w′(c)(xi)) =

α(π′(Pi, w′, c)) if p(xi)(c) = 1

α(P⊥) otherwise

and, since α(P⊥) = 1,

=

α(π′(Pi, w′, c)) if p(xi)(c) = 1

1 otherwise

= w(c)(xi)

Thus, w(c)(xi) = α(w′(c)(xi)) and we have the following:

σ(α̂(P), w, c) = α̂(P)[x1/w(c)(x1), . . . , xk/w(c)(xk)]

= α̂(P)[x1/α(w′(c)(x1)), . . . , xk/α(w′(c)(xk))]

= α(P [x1/α(w′(c)(x1)), . . . , xk/α(w′(c)(xk))]) (Lemma 3)

= α(P [x1/w
′(c)(x1), . . . , xk/w

′(c)(xk)]) (Corollary 1)

= α(π′(P , w′, c)) (De�nition 19)
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A.4 Lifting Lemmas

This appendix covers details of lemmas related to lifting of expressions and of composi-

tional evaluation factories.

Lemma 4 (Soundness of expression lifting). If ε is a rational expression over Real con-

stants and variables xi ∈ X, |X| = n, A1, . . . , An are ADDs, and ε̂ = lift(ε), then

ε̂[x1/A1, . . . , xn/An](b̄) = ε[x1/A1(b̄), . . . , xn/An(b̄)]

where b̄ is a vector of k Booleans, corresponding to a selection of the k features in a given

product line.

Complete proof. The proof is by structural induction on the expression ε. The base cases

are constant expressions and single variables:

� ε = c, where c ∈ R:

In this case, ε̂ = ĉ. Since ε has no variables (and neither has ε̂), we apply the empty

evaluation [ ]. Thus, ε̂[ ](b̄) = ĉ(b̄) = c = ε = ε[ ].

� ε = x:

In this case, ε̂ = x. If A is an arbitrary ADD, then: ε̂[x/A](b̄) = A(b̄) = ε[x/A(b̄)].

Now we have to prove the statement holds for ε = ε1 � ε2 (where � ∈ {+,−,×,÷})
and for ε = εi1 (where i ∈ N). As induction hypothesis, assume that the following holds

for the expressions ε1 and ε2:

ε̂[x1/A1, . . . , xn/An](b̄) = ε[x1/A1(b̄), . . . , xn/An(b̄)] (I.H.)

Let u : X → (Bk → R) be a lifted evaluation such that u(xi) = Ai is an ADD. We then

have the following:

� ε = ε1 � ε2, where � ∈ {+,−,×,÷}:
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In this case, ε̂ = ε̂1 � ε̂2. Hence,

ε̂[X/u](b̄) =
(
ε̂1 � ε̂2

)
[X/u](b̄)

=
(
ε̂1[X/u]� ε̂2[X/u]

)
(b̄) (evaluation)

= ε̂1[X/u](b̄)� ε̂2[X/u](b̄) (ADD arithmetics)

= ε̂1[x1/A1, . . . , xn/An](b̄)

� ε̂2[x1/A1, . . . , xn/An](b̄) (expanding u)

= ε1[x1/A1(b̄), . . . , xn/An(b̄)]

� ε2[x1/A1(b̄), . . . , xn/An(b̄)] (induction hypothesis)

=
(
ε1 � ε2

)
[x1/A1(b̄), . . . , xn/An(b̄)] (evaluation)

= ε[x1/A1(b̄), . . . , xn/An(b̄)]

� ε = εi1, where i ∈ N:

In this case, ε̂ = ε̂1
i. Hence,

ε̂[X/u](b̄) = ε̂1
i[X/u](b̄)

= ε̂1[X/u]i(b̄) (evaluation)

= ε̂1[X/u](b̄)i (ADD arithmetics)

= ε̂1[x1/A1, . . . , xn/An](b̄)i (expanding u)

= ε1[x1/A1(b̄), . . . , xn/An(b̄)]i (induction hypothesis)

= εi1[x1/A1(b̄), . . . , xn/An(b̄)] (evaluation)

= ε[x1/A1(b̄), . . . , xn/An(b̄)]

The soundness of lifted compositional evaluation factories is now presented in its com-

plete form. First, we recall the corresponding lemma's statement.

Lemma 6 (Soundness of lifted compositional evaluation factory). Given a compositional

model (P,≺, I, idt, p, w′,FM ) and the compositional evaluation factory w, derived from

the composition factory w′ (De�nition 26), for all x ∈ I and all c ∈ JFM K it holds that

ϕ(x)(c) = w(c)(x)
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Complete proof. If P ∈P is such that idt(P) = x, then

ϕ(x)(c) = ITE(p̂(x), ̂̂α(P)[X/ϕ], 1̂)(c)

=

̂̂α(P)[X/ϕ](c) if p̂(x)(c) 6= 0

1̂(c) if p̂(x)(c) = 0

By Lemma 4, ̂̂α(P)[X/ϕ](c) = α̂(P)[x1/ϕ(x1)(c), . . . , xk/ϕ(xk)(c)]. Also, ∀c∈JFM K ·
1̂(c) = 1. Thus,

ϕ(x)(c) =

α̂(P)[x1/ϕ(x1)(c), . . . , xk/ϕ(xk)(c)] if p̂(x)(c) 6= 0

1 if p̂(x)(c) = 0
(A.1)

On the other hand, w is de�ned (De�nition 26) as

w(c)(x) =

Jα̂(P)Kwc if p(x)(c) 6= 0

1 if p(x)(c) = 0

Expanding the de�nition of Jα̂(P)Kwc , we have

w(c)(x) =

α̂(P)[x1/w(c)(x1), . . . , xk/w(c)(xk)] if p(x)(c) 6= 0

1 if p(x)(c) = 0
(A.2)

Since p̂(x)(c) = p(x)(c), we compare corresponding cases in the Equations (A.1)

and (A.2). The cases in which p(x)(c) = 0 are trivially equal. Otherwise, we use well-

founded induction.

The base of our induction are minimal PMCs. A minimal PMC P has no variables

(X = ∅), so α̂(P)[X/u] = α(P) for any evaluation u. Since w(c) is an evaluation, and

considering ϕ(x)(c) takes a variable x to a Real number (thus, also being an evaluation), we

have that ̂̂α(P)[X/ϕ](c) = α̂(P)[X/w(c)] in this case. For non-minimal PMCs, assume,

as induction hypothesis, that ̂̂α(Pj)[Xj/ϕ](c) = α̂(Pj)[Xj/w(c)] for all Pj ≺ P , where
j ∈ {1, . . . , k}. Then, for any xj ∈ X,

ϕ(xj)(c) =

̂̂α(Pj)[Xj/ϕ](c) if p̂(xj)(c) 6= 0

1 if p̂(xj)(c) = 0
(A.3)

w(c)(xj) =

α̂(Pj)[Xj/w(c)] if p(xj)(c) 6= 0

1 if p(xj)(c) = 0
(A.4)
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However, the induction hypothesis implies the right-hand sides of the Equations (A.3)

and (A.4) are equal. Thus, ϕ(xj)(c) = w(c)(xj) for all xj ∈ X, which means

α̂(P)[x1/ϕ(x1)(c), . . . , xk/ϕ(xk)(c)] = α̂(P)[x1/w(c)(x1), . . . , xk/w(c)(xk)]

and, by well-founded induction, the cases where p(x)(c) = 1 in the Equations (A.1)

and (A.2) are also equal. Hence, ϕ(x)(c) = w(c)(x).

A.5 Variability Encoding

This appendix deals with formal de�nitions and complete proofs related to variability

encoding of PMCs and of rational expressions.

A.5.1 Variability Encoding of PMCs

We start by formally de�ning the ITE operator for PMCs, which was only presented as

an intuition in the main body of the paper.

De�nition 35 (ITE operator for PMCs). Given two compositional PMCs, P = (S, s0,

ssuc, serr , X,P, T ) and P ′ = (S ′, s′0, s
′
suc, s

′
err , X

′,P′, T ′), and a variable x /∈ X ∪ X ′, the
if-then-else operator for PMCs is de�ned as

ITE(x,P ,P ′) = P ′′

where P ′′ = (S ′′, s′′0, s
′′
suc, s

′′
err , X

′′,P′′, T ′′) is a compositional PMC such that:

� S ′′ = S ∪ S ′ ∪ {s′′0, s′′suc, s′′err}

� The state s′′0 is the new initial one, s′′suc is the new success state, and s′′err is the new

error state.

� X ′′ = X ∪X ′ ∪ {x}

� T ′′ = {s′′suc}

� P′′ is such that:

� P′′(s′′0, s0) = x

� P′′(s′′0, s
′
0) = 1− x

� P′′(ssuc, s
′′
suc) = P′′(s′suc, s

′′
suc) = P′′(s′′suc, s

′′
suc) = 1

� P′′(ssuc, ssuc) = P′′(s′suc, s
′
suc) = 0
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� P′′(serr , s
′′
err) = P′′(s′err , s

′′
err) = P′′(s′′err , s

′′
err) = 1

� P′′(serr , serr) = P′′(s′err , s
′
err) = 0

� For all remaining combinations of s1, s2 ∈ S ′′:

P′′(s1, s2) =


P(s1, s2) if s1, s2 ∈ S

P′(s1, s2) if s1, s2 ∈ S ′

0 otherwise

This ITE operator is mainly useful because of its r-equivalence property. We recall

Lemma 7 and present its complete proof:

Lemma 7 (r-equivalence for ITE). Given two compositional PMCs, P = (S, s0, ssuc, serr ,

X,P, T ) and P ′ = (S ′, s′0, s
′
suc, s

′
err , X

′,P′, T ′), and a variable x /∈ X ∪ X ′, let P ′′ =

ITE(x,P ,P ′). If (P ′′, p, w,FM ) is an annotative model with P ′′ as its underlying PMC1,

where p, w, and FM are arbitrarily chosen, then, for every c ∈ JFM K,

α(JITE(x,P ,P ′)Kwc ) =

α(JPKwc ) if p(x)(c) = 1

α(JP ′Kwc ) otherwise

Complete proof. We are interested in computing the probability of reaching s′′suc from s′′0

in P ′′ = ITE(x,P ,P ′) under evaluation w(c). In P ′′, s′′0 6= s′′suc and s
′′
suc is reachable from

s′′0 (since s′′suc is, by de�nition, reachable from ssuc and s′suc). Hence, the reachability of

s′′suc from s′′0 satis�es Property 1, by which the probability of reaching state s2 from state

s1 in a DTMC D = (S, s0,P, T ) is given by

PrD(s1, s2) =
∑
s′∈S

P(s1, s
′) · PrD(s′, s2)

1By De�nition 10, any compositional PMC is also an annotative PMC (De�nition 5). Thus, a com-
positional PMC can be the underlying PMC of an annotative model.
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By De�nition 35, P′′(s′′0, s0) = x, P′′(s′′0, s
′
0) = 1 − x, and P′′(s′′0, s

′′) = 0 for all other

s′′ ∈ S ′′. Thus,

α(JP ′′Kwc ) = PrP
′′
w(c)(s′′0, s

′′
suc)

=
∑
s′′∈S′′

P′′w(c)(s
′′
0, s
′′) · PrP

′′
w(c)(s′′, s′′suc)

=
∑

s′′∈S′′\{s′′suc}

P′′w(c)(s
′′
0, s
′′) · PrP

′′
w(c)(s′′, s′′suc) + P′′w(c)(s

′′
0, s
′′
suc)

=
∑

s′′∈S′′\{s′′suc}

P′′w(c)(s
′′
0, s
′′) · PrP

′′
w(c)(s′′, s′′suc) + 0

= P′′w(c)(s
′′
0, s0) · PrP

′′
w(c)(s0, s

′′
suc) + P′′w(c)(s

′′
0, s
′
0) · PrP

′′
w(c)(s′0, s

′′
suc)

= w(c)(x) · PrP
′′
w(c)(s0, s

′′
suc) + (1− w(c)(x)) · PrP

′′
w(c)(s′0, s

′′
suc)

Since w(c)(x) equals 1 if p(x)(c) = 1 and 0 otherwise (De�nition 8),

α(JP ′′Kwc ) =

Pr
P ′′
w(c)(s0, s

′′
suc) if p(x)(c) = 1

PrP
′′
w(c)(s′0, s

′′
suc) otherwise

But, since s0 ∈ S and the only state in S that can reach s′′suc is ssuc (De�nition 35), the

probability of reaching s′′suc from s0 is the probability of reaching ssuc from s0 multiplied

by the transition probability from ssuc to s′′suc:

PrP
′′
w(c)(s0, s

′′
suc) = PrP

′′
w(c)(s0, ssuc) ·P′′w(c)(ssuc, s

′′
suc)

= PrPw(c)(s0, ssuc) · 1

= PrPw(c)(s0, ssuc)

= α(JPKwc )

Similar reasoning applied to S ′ leads to PrP
′′
w(c)(s′0, s

′′
suc) = α(JP ′Kc). Hence,

α(JP ′′Kwc ) =

α(JPKwc ) if p(x)(c) = 1

α(JP ′Kwc ) otherwise

The above lemma establishes the ITE operator has the e�ect of alternating behaviors if

the resulting PMC is evaluated by replacing the switching variable x with 0 or 1. However,

the PMC operands of ITE are part of a compositional model, so their own variables are

interpreted as placeholders to be used during composition, instead (see Section 3.1.2). To
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cope with this mismatch, we only use the ITE operator with PMCs that are either plain

DTMCs or that result themselves from variability encoding.

The resulting theorem stating the soundness of this variability encoding for PMCs is

recalled and proved next.

Theorem 8 (r-equivalence of variability encoding and derivation by composition). Given

a compositional model (P,≺, I, idt, p, w′,FM ) and P ∈ P, let (γ(P), p, w,FM ) be its

variability-encoded annotative model. Then, for all c ∈ JFM K,

α(Jγ(P)Kwc ) = α(π′(P , w′, c))

Complete proof. We use well-founded induction. For minimal PMCs (base of induction),

γ(P) = P , so Jγ(P)Kwc = P . Likewise, π′(P , w′, c) = P , so the proposition holds trivially.

As induction hypothesis, we have that α(Jγ(Pi)Kwc ) = α(π′(Pi, w′, c)) for all Pi ∈
P such that Pi ≺ P . For brevity, in the following equations, we use Λi to denote

ITE(xi, γ(Pi),P⊥).

α(Jγ(P)Kwc ) = Jα̂(γ(P))Kwc (Theorem 1)

= Jα̂(P [x1/Λ1, . . . , xk/Λk])Kwc (De�nition 28)

= Jα̂(P [x1/α̂(Λ1), . . . , xk/α̂(Λk)])Kwc (Lemma 13)

= Jα̂(P)[x1/α̂(Λ1), . . . , xk/α̂(Λk)]Kwc (Lemma 3)

= α̂(P)[x1/α̂(Λ1), . . . , xk/α̂(Λk)][X/w(c)] (De�nition 22)

= α̂(P)[x1/α̂(Λ1)[X/w(c)], . . . ,

. . . , xk/α̂(Λk)[X/w(c)]] (Equation (2.1))

= α̂(P)[x1/Jα̂(Λ1)Kwc , . . . , xk/Jα̂(Λk)Kwc ] (De�nition 22)

= α̂(P)[x1/α(JΛ1Kwc ), . . . , xk/α(JΛkKwc )] (Theorem 1)

= α(P [x1/α(JΛ1Kwc ), . . . , xk/α(JΛkKwc )]) (Lemma 3)

leaving us with the following partial result:

α(Jγ(P)Kwc ) = α(P [x1/α(JΛ1Kwc ), . . . , xk/α(JΛkKwc )]) (A.5)

Each variable substitution expands to two di�erent cases, corresponding to whether c

satis�es the presence condition associated with xi or not. Let us examine the substitution
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for a given xi:

α(JΛiKwc ) = α(JITE(xi, γ(Pi),P⊥)Kwc )

=

α(Jγ(Pi)Kwc ) if p(xi)(c) = 1

α(JP⊥Kwc ) otherwise
(Lemma 7)

=

α(π′(Pi, w′, c)) if p(xi)(c) = 1

α(JP⊥Kw
′

c ) otherwise
(by induction hypothesis)

= α(w′(c)(xi)) (De�nitions 18 and 19)

that is,

α(JΛiKwc ) = α(w′(c)(xi)) (A.6)

Hence, we can substitute Equation (A.6) into Equation (A.5):

α(Jγ(P)Kwc ) = α(P [x1/α(JΛ1Kwc ), . . . , xk/α(JΛkKwc )]) (Equation (A.5))

= α(P [x1/α(w′(c)(x1)), . . . , xk/α(w′(c)(xk))]) (Equation (A.6))

= α(P [x1/w
′(c)(x1), . . . , xk/w

′(c)(xk)]) (Corollary 1)

= α(π′(P , w′, c)) (De�nition 19)

A.5.2 Variability Encoding of Expressions

We start by proving that the ITE operator for expressions has the intended semantics.

This result is expressed by Lemma 8, which we now recall.

Lemma 8 (Extensional equality for expression ITE). Given two expressions ε and ε′ over

the sets X and X ′ of variables, respectively, and a variable x, let X ′′ = X ∪X ′ ∪{x} and
u : X ′′ → [0, 1] be an evaluation function such that u(x) ∈ B. Then,

ITE(x, ε, ε′)[X ′′/u] =

ε[X/u] if u(x) = 1

ε′[X ′/u] if u(x) = 0
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Complete proof. The proof is mainly algebraic. Expanding the de�nition of ITE, we have:

ITE(x, ε, ε′)[X ′′/u] = (x · ε+ (1− x) · ε′)[X ′′/u]

= (x · ε)[X ′′/u] + ((1− x) · ε′)[X ′′/u]

= x[X ′′/u] · ε[X ′′/u] + (1− x)[X ′′/u] · ε′[X ′′/u]

= u(x) · ε[X ′′/u] + (1− u(x)) · ε′[X ′′/u]

=

ε[X ′′/u] if u(x) = 1

ε′[X ′′/u] if u(x) = 0

which, considering that the sets of variables in ε and ε′ are X and X ′, respectively, and

that these sets are subsets of X ′′, leads to

ITE(x, ε, ε′)[X ′′/u] =

ε[X/u] if u(x) = 1

ε′[X ′/u] if u(x) = 0

Using this result and the de�nitions in the main body of the paper, we can prove that

variability encoding for expressions is sound.

Theorem 9 (Soundness of variability encoding for expressions). Given a compositional

model (P,≺, I, idt, p, w′,FM ) and P ,P1, . . . ,Pk ∈P such that Pi ≺ P and xi = idt(Pi)
for i ∈ {1, . . . , k}, let ε = α̂(P). Let also w be the compositional evaluation factory

derived from w′ (De�nition 26) and wp be the annotative evaluation factory obtained from

w (De�nition 32). Then, for all c ∈ JFM K it holds that

σ(γ(ε), wp, c) = σ(ε, w, c)

Complete proof. We use well-founded induction. For a minimal PMC P (base of induc-

tion), α̂(P) = ε has no variables. This way, γ(ε) = ε and σ(ε, u) = ε for any evaluation

u. Thus, both sides of the equality evaluate to ε and the proposition holds trivially.

As induction hypothesis, we have that σ(γ(εi), wp, c) = σ(εi, w, c) for all εi = α̂(Pi)
such that Pi ≺ P . For brevity, we use Λi to denote ITE(xi, γ(εi),1) in the following

equations.

σ(γ(ε), wp, c) = σ(ε[x1/Λ1, . . . , xk/Λk], wp, c) (De�nition 31)

= ε[x1/Λ1, . . . , xk/Λk][X/wp(c)] (De�nition 22)

= ε[x1/Λ1[X/wp(c)], . . . , xk/Λk[X/wp(c)]] (Equation (2.1))
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yielding the following equation:

σ(γ(ε), wp, c) = ε[x1/Λ1[X/wp(c)], . . . , xk/Λk[X/wp(c)]] (A.7)

Each variable substitution expands to two di�erent cases, corresponding to whether c

satis�es the presence condition associated with xi or not. Let us examine the substitution

for a given xi:

Λi[X/wp(c)] = ITE(xi, γ(εi),1)[X/wp(c)]

=

γ(εi)[X/wp(c)] if p(xi)(c) = 1 (wp(c)(xi) = 1) (Lemma 8)

1[X/wp(c)] otherwise (wp(c)(xi) = 0)

=

σ(γ(εi), wp, c) if p(xi)(c) = 1 (De�nition 22)

1 otherwise

=

σ(εi, w, c) if p(xi)(c) = 1 (by induction hypothesis)

1 otherwise

= w(c)(xi) (De�nition 26)

that is,

Λi[X/wp(c)] = w(c)(xi) (A.8)

Hence, substituting Equation (A.8) into Equation (A.7), we have

σ(γ(ε), wp, c) = ε[x1/Λ1[X/wp(c)], . . . , xk/Λk[X/wp(c)]] (Equation (A.7))

= ε[x1/w(c)(x1), . . . , xk/w(c)(xk)] (Equation (A.8))

= ε[X/w(c)]

= σ(ε, w, c) (De�nition 22)
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Appendix B

Probabilistic Models

This appendix presents the probabilistic models of the beverage machine product line

example (Section 3.1) in their entirety. Figure B.1 contains the annotative model, and

the compositional model is depicted by Figure B.2.
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Figure B.1: Complete annotative PMC for the vending machine
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Appendix C

Mechanization Mapping

This appendix presents the complete description of our PVS theories (Table C.1) and

the interdependencies between them (Figure C.1). We also present the correspondence

between elements of our manual speci�cation (Chapter 3) and its mechanization in PVS

(Chapter 4) in Table C.2. In this table, each entry for an element of the original theory is

linked to its de�nition in Chapter 3, whereas the corresponding PVS de�nition is also an

hyperlink to its speci�c line in the Github repository (https://github.com/thiagomael/

rome-specs). Last, we present the complete data set representing the count of proof

commands (Tables C.3 and C.4) and the distribution of theory elements throughout the

PVS mechanization (Table C.5).

Table C.1: Description of PVS theories

PVS Theory Description

ADD_def

(ADD.pvs, line 1)

De�nitions regarding ADDs with

terminals of a parameterized type T.

ADD_ops

(ADD.pvs, line 15)

Semantics of arithmetic operations

with ADDs.

real_ADD

(ADD.pvs, line 48)

Real-valued ADDs.

annotative_expressions_evaluation

(annotative_expressions_evaluation.pvs, line 1)

Evaluation of lifted expressions re-

sulting from an annotative model.

annotative_PMC

(annotative_PMC.pvs, line 1)

De�nition of annotative PMC and

corresponding predicates. This the-

ory also contains lemmas about the

evaluation of such PMCs.
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Table C.1: Description of PVS theories (continued)

PVS Theory Description

annotative_reliability_models

(annotative_reliability_models.pvs, line 1)

De�nition of annotative reliability

models and corresponding predi-

cates.

compositional_expressions_evaluation

(compositional_expressions_evaluation.pvs, line

1)

Evaluation of lifted expressions re-

sulting from a compositional model.

compositional_PMC_order

(compositional_PMC_order.pvs, line 1)

Well-founded order induced by the

dependency relation in composi-

tional reliability models.

compositional_PMC

(compositional_PMC.pvs, line 1)

De�nition of compositional PMC

and corresponding predicates. This

theory also contains the de�nition

and the main lemmas about slots.

compositional_PMC_sets

(compositional_PMC_sets.pvs, line 1)

De�nitions regarding identi�ers and

variables of a �nite set of PMCs.

compositional_reliability_models

(compositional_reliability_models.pvs, line 1)

De�nition of compositional reliabil-

ity models and corresponding pred-

icates.

compositional_factory_restrict

(compositional_reliability_models.pvs, line 112)

Auxiliary de�nitions to restrict the

higher-order compositional factories

(composition factory and composi-

tional evaluation factory).

compositional_reliability_models_lemmas

(compositional_reliability_models.pvs, line 132)

Auxiliary lemmas regarding the ex-

haustion of variables by composi-

tion.

DTMC

(DTMC.pvs, line 1)

DTMC and related concepts (paths,

reachability, and reachability prob-

ability). This theory also presents

lemmas about path probabilities

and morphisms between DTMCs.

expression_lifting

(expression_lifting.pvs, line 1)

Evaluation of rational expressions

using ADDs.
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Table C.1: Description of PVS theories (continued)

PVS Theory Description

expressions_variability_encoding

(expressions_variability_encoding.pvs, line 1)

Variability encoding of expressions.

This theory provides both the

domain-agnostic formalization of

the if-then-else operator and the

encoding of expressions that de-

note the reliability of compositional

models.

finite_set_lemmas

(�nite_set_lemmas.pvs, line 1)

Lemmas about functional mappings

between �nite sets of di�erent types.

finite_sets_aux

(�nite_set_lemmas.pvs, line 50)

Lemmas about �nite sets of the

same type and sums thereof.

infinite_set_lemmas

(in�nite_set_lemmas.pvs, line 1)

Lemmas about in�nite sums over in-

�nite sets.

list_aux

(list_aux.pvs, line 1)

Lemmas about list properties, espe-

cially of lists without repeated ele-

ments (sets as lists).

list_map_aux

(list_map_aux.pvs, line 6)

This theory is a means to resolve

the mismatch of type parameters

that arises from using the lemmas

in more_map_props (which require

the type of elements in the list to

be exactly the same as the domain

D of the mapped function). Here we

relax this constraint to allow any su-

pertype of D.

maybe_real

(maybe_real.pvs, line 1)

Datatype for optional Real num-

bers and the corresponding arith-

metic operators. This theory pro-

vides a mechanism to handle divi-

sion by zero and the propagation of

unde�ned results (similar to the be-

havior of the Maybe monad in the

Haskell programming language).
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Table C.1: Description of PVS theories (continued)

PVS Theory Description

parametric_transition_matrices

(parametric_transition_matrices.pvs, line 1)

Specialization of transition matri-

ces for which the cells (transitions)

are rational expressions. This the-

ory also provides the notions of vari-

ables of a matrix and of matrix eval-

uation, as well as related lemmas.

PMC_composition

(PMC_composition.pvs, line 1)

De�nition of partial and total PMC

composition, along with lemmas

stating the properties of the results.

PMC

(PMC.pvs, line 1)

Parametric DTMCs and related def-

initions, such as well-de�ned evalu-

ations and state elimination.

PMC_renaming

(PMC_renaming.pvs, line 2)

Renaming of PMCs, speci�cally de-

signed to provide a disjoint union of

the sets of states during PMC com-

position.

PMC_r_equivalence

(PMC_r_equivalence.pvs, line 1)

Lemmas regarding r-equivalence of

PMCs under state elimination.

PMC_variability_encoding

(PMC_variability_encoding.pvs, line 1)

If-then-else operator for transition

matrices and PMCs, along with the

notions speci�c to variability encod-

ing of compositional reliability mod-

els.

rational_expressions

(rational_expressions.pvs, line 1)

De�nitions and lemmas regarding a

datatype-oriented view of rational

expressions (prone to syntactic ma-

nipulation).

real_transition_matrices

(real_transition_matrices.pvs, line 1)

Specialization of transition matrices

whose cells (transitions) are prob-

abilities and whose rows obey the

stochastic property.

rome

(rome.pvs, line 1)

Top-level theory, containing the

de�nitions of our analysis strate-

gies and corresponding soundness

proofs.
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Table C.1: Description of PVS theories (continued)

PVS Theory Description

SPL_expression_evaluation

(SPL_expression_evaluation.pvs, line 1)

De�nition of expression evaluation

using evaluation factories.

SPL

(SPL.pvs, line 1)

Uninterpreted de�nitions of

product-line semantics.

SPL_reliability

(SPL_reliability.pvs, line 1)

De�nition of evaluation factory and

of evaluation-based derivation of

DTMCs from either compositional

or annotative PMCs.

states

(states.pvs, line 1)

Semantics of states as an in�nite

type.

transition_matrices

(transition_matrices.pvs, line 1)

Parameterized de�nition of transi-

tion matrices as a record type.

transition_matrices_map

(transition_matrices.pvs, line 26)

De�nition of function mappings

over transition matrices.

transition_matrices_sum

(transition_matrices.pvs, line 48)

De�nition of �nite sums of values in

transition matrices.

variability_aware_expression_evaluation

(variability_aware_expression_evaluation.pvs,

line 1)

Lifting of evaluation factories and

mapping between product line con-

�gurations and evaluations of ADD

arguments.

well_founded_lemmas

(well_founded_lemmas.pvs, line 1)

Auxiliary lemmas for well-founded

relations over �nite types.

Figure C.1 shows the mechanized theories used in our work and the dependencies

among them. In this figure, third-party theories (PVS prelude and NASA libraries) are

depicted as blue rectangles. Ellipses represent the theories created in the scope of this

work, according to the following color code:

� green denotes theories with additional lemmas for concepts that already exist in the

third-party libraries (high reuse potential);

� yellow is used for theories with concepts that are new to PVS, but exist in the

literature (medium to high reuse potential);

� white is used for theories that are speci�c to the user-oriented reliability analysis of

product lines presented in this work.

187

https://github.com/thiagomael/rome-specs/blob/master/SPL_expression_evaluation.pvs#L1
https://github.com/thiagomael/rome-specs/blob/master/SPL.pvs#L1
https://github.com/thiagomael/rome-specs/blob/master/SPL_reliability.pvs#L1
https://github.com/thiagomael/rome-specs/blob/master/states.pvs#L1
https://github.com/thiagomael/rome-specs/blob/master/transition_matrices.pvs#L1
https://github.com/thiagomael/rome-specs/blob/master/transition_matrices.pvs#L26
https://github.com/thiagomael/rome-specs/blob/master/transition_matrices.pvs#L48
https://github.com/thiagomael/rome-specs/blob/master/variability_aware_expression_evaluation.pvs#L1
https://github.com/thiagomael/rome-specs/blob/master/well_founded_lemmas.pvs#L1


SPL_expression_evaluation
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annotative_PMC
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sets_aux@in�nite_nat_def
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transition_matrices_map

compositional_reliability_models_lemmas �nite_sets@fs_constructors

ADD_def

orders@well_foundedness

DTMC

rome
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Figure C.1: Dependencies between PVS theories (direct dependencies that can be deduced
from transitivity are �ltered for readability)
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Table C.2: Mapping between the manual and the mechanized speci�cations

Manual Mechanized

Property 1 (Reachability probability for DTMCs) reachability_probability_property

(DTMC.pvs, line 41) � AXIOM

De�nition 1 (Parametric Markov Chain) PMC

(PMC.pvs, line 9)

De�nition 2 (Expression evaluation) eval

(rational_expressions.pvs, line 49)

De�nition 3 (Well-de�ned evaluation) well_defined_evaluation

(PMC.pvs, line 42)

De�nition 4 (State elimination step) eliminate_state

(PMC.pvs, line 195)

Lemma 1 (Parametric probabilistic reachability soundness) parametric_reachability_soundness

(PMC.pvs, line 54) � AXIOM

De�nition 5 (Annotative PMC) annotative_PMC

(annotative_PMC.pvs, line 29)

De�nition 6 (Presence function) presence_function

(SPL_reliability.pvs, line 11)

De�nition 7 (Evaluation factory) evaluation_factory

(SPL_reliability.pvs, line 14)

De�nition 8 (Annotative probabilistic model) annotative_reliability_model, interface

(annotative_reliability_models.pvs, line 34)

De�nition 9 (DTMC derivation) pi

(SPL_reliability.pvs, line 23)

189

https://github.com/thiagomael/rome-specs/blob/master/DTMC.pvs#L41
https://github.com/thiagomael/rome-specs/blob/master/PMC.pvs#L9
https://github.com/thiagomael/rome-specs/blob/master/rational_expressions.pvs#L49
https://github.com/thiagomael/rome-specs/blob/master/PMC.pvs#L42
https://github.com/thiagomael/rome-specs/blob/master/PMC.pvs#L195
https://github.com/thiagomael/rome-specs/blob/master/PMC.pvs#L54
https://github.com/thiagomael/rome-specs/blob/master/annotative_PMC.pvs#L29
https://github.com/thiagomael/rome-specs/blob/master/SPL_reliability.pvs#L11
https://github.com/thiagomael/rome-specs/blob/master/SPL_reliability.pvs#L14
https://github.com/thiagomael/rome-specs/blob/master/annotative_reliability_models.pvs#L34
https://github.com/thiagomael/rome-specs/blob/master/SPL_reliability.pvs#L23


Table C.2: Mapping between the manual and the mechanized speci�cations (continued)

Manual Mechanized

Lemma 2 (Evaluation well-de�nedness for annotative models) the_annotative_evaluation_factory_well_definedness

(annotative_reliability_models.pvs, line 27)

De�nition 10 (Compositional PMC) compositional_PMC

(compositional_PMC.pvs, line 44)

De�nition 11 (Compositional PMC slot) slot?, slots, slotStates

(compositional_PMC.pvs, line 44)

De�nition 12 (Partial PMC composition) compose_sigle_slot

(PMC_composition.pvs, line 325)

De�nition 13 (Identifying function) identity_function

(compositional_PMC_sets.pvs, line 16)

De�nition 14 (Dependency relation induced in compositional

PMCs)

<

(compositional_PMC_order.pvs, line 11)

De�nition 15 (Minimal and maximal compositional PMCs) minimal?, maximal?

(compositional_PMC_order.pvs, line 14)

De�nition 16 (Feature disabler compositional PMC) feature_disabler_PMC?

(PMC_composition.pvs, line 17)

De�nition 17 (Composition factory) composition_factory

(compositional_reliability_models.pvs, line 21)

De�nition 18 (Compositional probabilistic model) compositional_reliability_model

(compositional_reliability_models.pvs, line 90)

De�nition 19 (Derivation by composition) pi

(compositional_reliability_models.pvs, line 105)
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Table C.2: Mapping between the manual and the mechanized speci�cations (continued)

Manual Mechanized

De�nition 20 (Non-parametric model checking) alpha

(DTMC.pvs, line 17)

Strategy 1 (Product-based analysis of annotative models) product_based_analysis

(rome.pvs, line 21)

Strategy 2 (Product-based analysis of compositional models) product_based_analysis

(rome.pvs, line 58)

De�nition 21 (Parametric model checking) alpha_v

(PMC.pvs, line 46)

De�nition 22 (Expression evaluation) sigma

(SPL_expression_evaluation.pvs, line 11)

Strategy 3 (Family-product-based analysis) family_product_based_analysis

(rome.pvs, line 29)

Lemma 3 (Commutativity of PMC and expression evaluations) eval_commutativity

(PMC.pvs, line 79)

Theorem 1 (Soundness of family-product-based analysis) family_product_soundness

(rome.pvs, line 33)

De�nition 23 (Expression lifting) eval

(expression_lifting.pvs, line 20)

Lemma 4 (Soundness of expression lifting) expression_lifting_soundness

(expression_lifting.pvs, line 36)

De�nition 24 (Lifted evaluation factory) lifted

(variability_aware_expression_evaluation.pvs, line 27)
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Table C.2: Mapping between the manual and the mechanized speci�cations (continued)

Manual Mechanized

De�nition 25 (Variability-aware expression evaluation) sigma_v

(variability_aware_expression_evaluation.pvs, line 34)

Theorem 2 (Soundness of variability-aware expression evaluation) variability_aware_expression_evaluation_soundness

(variability_aware_expression_evaluation.pvs, line 37)

Lemma 5 (Soundness of lifted annotative evaluation factory) lifted_evaluation_factory_soundness

(annotative_expressions_evaluation.pvs, line 22)

Theorem 3 (Soundness of expression evaluation using p̂) lift_p_soundness

(annotative_expressions_evaluation.pvs, line 27)

Strategy 4 (Family-based analysis) family_based_analysis

(rome.pvs, line 39)

Theorem 4 (Soundness of family-based analysis) family_based_analysis_soundness

(rome.pvs, line 44)

De�nition 26 (Compositional evaluation factory) composition_evaluation_factory

(compositional_reliability_models.pvs, line 62)

Strategy 5 (Feature-product-based analysis) feature_product_based_analysis

(rome.pvs, line 64)

Theorem 5 (Soundness of feature-product-based analysis) feature_product_soundness

(rome.pvs, line 70)

De�nition 27 (Lifted compositional evaluation factory) lifted_compositional_evaluation_factory

(compositional_expressions_evaluation.pvs, line 13)

Lemma 6 (Soundness of lifted compositional evaluation factory) soundness_of_lifted_compositional_evaluation_factory

(compositional_expressions_evaluation.pvs, line 26)
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Table C.2: Mapping between the manual and the mechanized speci�cations (continued)

Manual Mechanized

Theorem 6 (Soundness of expression evaluation using ϕ) soundness_of_expression_evaluation_using_phi

(compositional_expressions_evaluation.pvs, line 33)

Strategy 6 (Feature-family-based analysis) feature_family_based_analysis

(rome.pvs, line 76)

Theorem 7 (Soundness of feature-family-based analysis) feature_family_soundness

(rome.pvs, line 84)

Lemma 7 (r-equivalence for ITE) ITE_r_equivalence

(PMC_variability_encoding.pvs, line 315)

De�nition 28 (Variability encoding function for PMCs) gamma

(PMC_variability_encoding.pvs, line 333)

De�nition 29 (Variability encoding of PMCs) encoded_reliability_model

(PMC_variability_encoding.pvs, line 349)

Theorem 8 (r-equivalence of variability encoding and derivation by

composition)

PMC_variability_encoding_soundness

(PMC_variability_encoding.pvs, line 360)

De�nition 30 (ITE operator for expressions) ITE

(expressions_variability_encoding.pvs, line 11)

Lemma 8 (Extensional equality for expression ITE) expression_ITE_extensionality

(expressions_variability_encoding.pvs, line 27)

De�nition 31 (Variability encoding function for expressions) gamma

(expressions_variability_encoding.pvs, line 62)

De�nition 32 (Variability encoding of expressions) var_encoded_annotative_evaluation_factory

(expressions_variability_encoding.pvs, line 91)
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Table C.2: Mapping between the manual and the mechanized speci�cations (continued)

Manual Mechanized

Theorem 9 (Soundness of variability encoding for expressions) expressions_variability_encoding_soundness

(expressions_variability_encoding.pvs, line 131)

Strategy 7 (Feature-family-product-based analysis) feature_family_product_based_analysis

(rome.pvs, line 95)

Theorem 10 (Soundness of feature-family-product-based analysis) feature_family_product_soundness

(rome.pvs, line 102)

Lemma 9 (Existence of minimal PMCs) minimal_exists, minimal_empty_vars

(compositional_PMC_order.pvs, line 21)

Lemma 10 (Existence of maximal PMCs) maximal_exists

(compositional_PMC_order.pvs, line 33)

Lemma 11 (Derivation by composition terminates) termination TCC for composition_factory

(compositional_reliability_models.pvs, line 23)

Lemma 12 (Compositional evaluation terminates) termination TCC for compositional_evaluation_factory

(compositional_reliability_models.pvs, line 57)

De�nition 33 (Compositional PMC renaming) renaming?

(PMC_renaming.pvs, line 45)

De�nition 34 (Total PMC composition) compose

(PMC_composition.pvs, line 542)

Lemma 13 (r-equivalence of total composition and evaluation) r_equivalence_composition_evaluation

(PMC_r_equivalence.pvs, line 123)

Corollary 1 (r-equivalence of total composition with DTMCs and

evaluation)

r_equivalence_composition_with_DTMC

(PMC_r_equivalence.pvs, line 147)
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Table C.2: Mapping between the manual and the mechanized speci�cations (continued)

Manual Mechanized

De�nition 35 (ITE operator for PMCs) ite

(PMC_variability_encoding.pvs, line 227)
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Table C.3: Categories of proof commands

Category Occurrences % of total
De�nitions 8,600 31.51
Quanti�er 4,527 16.59
Type Constraints 3,612 13.23
Propositional 2,872 10.52
Lemmas 2,532 9.28
Decision Procedures 2,347 8.60
Structural 1,425 5.22
Equality 584 2.14
TCC 372 1.36
Extensionality 313 1.15
Induction 66 0.24
Control 21 0.08
Annotation 17 0.06
Algebraic manipulation 3 0.01
Rewrite Rules 1 0.00

Table C.4: Proof commands

Command Occurrences Category

expand 7,300 De�nitions

skeep 3,130 Quanti�er

assert 2,115 Decision Procedures

typepred 1,564 Type Constraints

�atten 1,499 Propositional

expand* 1,300 De�nitions

use 1,144 Lemmas

inst 1,132 Quanti�er

rewrite (typepred) 997 Type Constraints

hide 979 Structural

split 979 Propositional

rewrite (sequent formula) 946 Type Constraints

rewrite (lemma) 789 Lemmas

hide-all-but 384 Structural

replace 377 Equality

subtype-tcc 286 TCC

lemma 285 Lemmas

inst (lemma) 278 Lemmas

grind 187 Decision Procedures
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Table C.4: Proof commands (continued)

Command Occurrences Category

inst-cp 179 Quanti�er

lift-if 172 Propositional

replace-extensionality 150 Extensionality

case 147 Propositional

decompose-equality 145 Extensionality

case-replace 129 Equality

replace (typepred) 105 Type Constraints

skolem 68 Quanti�er

beta 66 Equality

i� 63 Propositional

reveal 59 Structural

induct 51 Induction

termination-tcc 36 TCC

forward-chain 36 Lemmas

ground 27 Decision Procedures

judgement-tcc 21 TCC

postpone 21 Control

apply-extensionality 18 Extensionality

comment 17 Annotation

simplify 12 Decision Procedures

assuming-tcc 12 TCC

skosimp* 10 Quanti�er

prop 9 Propositional

measure-induct+ 8 Induction

tcc 8 TCC

rule-induct 6 Induction

name 6 Equality

name-replace 5 Equality

instantiate 4 Quanti�er

cond-coverage-tcc 4 TCC

case* 3 Propositional

smash 3 Decision Procedures

both-sides 3 Decision Procedures

copy 3 Structural

existence-tcc 3 TCC
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Table C.4: Proof commands (continued)

Command Occurrences Category

generalize 2 Quanti�er

swap-rel 2 Algebraic manipulation

cond-disjoint-tcc 2 TCC

generalize-skolem-constants 1 Quanti�er

skosimp 1 Quanti�er

install-rewrites 1 Rewrite Rules

replace* 1 Equality

induct-and-simplify 1 Induction

mult-ineq 1 Algebraic manipulation
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Table C.5: PVS speci�cation and coverage of the original theory

PVS Theory Mechanized
Theorems

Original
Theorems

Original
De�nitions

PMC_composition 200 0 2
PMC_variability_encoding 152 2 3
PMC 118 2 3
PMC_renaming 84 0 1
DTMC 81 0 1
compositional_PMC 62 0 2
rational_expressions 62 0 0
PMC_r_equivalence 59 2 0
parametric_transition_matrices 58 0 0
�nite_sets_aux 39 0 0
expressions_variability_encoding 27 2 3
rome 26 5 7
compositional_expressions_evaluation 22 2 1
expression_lifting 22 1 1
list_aux 20 0 0
annotative_PMC 14 0 1
annotative_expressions_evaluation 10 2 0
real_ADD 10 0 0
compositional_reliability_models 10 2 4
well_founded_lemmas 9 0 0
maybe_real 9 0 0
in�nite_set_lemmas 9 0 0
compositional_PMC_order 8 2 2
compositional_reliability_models_lemmas 6 0 0
list_map_aux 6 0 0
variability_aware_expression_evaluation 5 1 2
�nite_set_lemmas 5 0 0
annotative_reliability_models 4 1 1
transition_matrices_sum 4 0 0
SPL 3 0 0
compositional_PMC_sets 3 0 1
transition_matrices_map 3 0 0
compositional_factory_restrict 2 0 0
SPL_reliability 2 0 3
real_transition_matrices 2 0 0
transition_matrices 1 0 0
states 1 0 0
ADD_ops 0 0 0
ADD_def 0 0 0
SPL_expression_evaluation 0 0 1
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Appendix D

Theory Dependencies

This appendix is a compilation of dependency graphs for the main theorems presented

in this work. We believe that, alongside Figure 3.7, the diagrams presented here may be

useful to researchers seeking to adapt or generalize our theoretical results.

The dependency graphs are depicted in diagrams where nodes represent theory ele-

ments (i.e., theorems, lemmas and de�nitions), while edges denote the source element

depends on the target element. Dependencies indicate that the statement of the element

at hand makes use of other de�nitions, or that its proof (if it is a theorem or lemma)

relies on the element on which it depends. Element names are colored according to their

types: theorems are cyan, lemmas are green, and de�nitions and properties are red.
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Figure D.8: Dependencies for Theorem 10 (Soundness of feature-family-product-based analysis)
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