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Resumo

Desenvolvem-se e avaliam-se neste trabalho modelos constitutivos não-lineares in-
cluindo o estudo de grandes deformações com o objetivo de modelar células biológicas
representadas por elementos de cascas finas. É utilizada como ponto de partida a formu-
lação clássica de elementos de cascas finas, considerando as hipóteses de Kirchhoff que
apresentam como mais importante característica a redução dimensional. Esta é atingida
derivando tensões 2D como médias das tensões 3D pela integração direta sob a espes-
sura da casca. Para a definição da deformação do continuo é utilizada uma descrição
Lagrangiana. As células biológicas não podem ser modeladas de forma correta utilizando
modelos constitutivos lineares. Especificamente no estudo dos glóbulos vermelhos devem
ser considerados: o comportamento elástico não linear e o aporte da viscosidade da parede
da célula. Consequentemente, neste trabalho, modelos hiperelasticos são implementados
junto ao modelo de Kelvin-Voigth para obter um modelo viscoelástico. Na implemen-
tação computacional Funções de Esféricos Harmônicos são utilizadas para sintetizar as
principais variáveis, esforços e deslocamentos. Isto se deve a que a geometria dos glóbulos
vermelhos pode ser descrita de forma simples utilizando coordenadas esféricas. Resul-
tando numa implementação de baixo custo computacional que consegue lidar com altas
não linearidades.

Este trabalho apresenta uma formulação de um método indireto pois consiste no cál-
culo de coeficientes da expansão de Esféricos Harmônicos, sendo que estes coeficientes não
têm sentido físico. É importante mencionar que o projeto se encontra num estágio inicial
e não foi encontrado na literatura uma aplicação utilizando teoria de cascas, Harmônicos
Esféricos junto com modelos constitutivos lidando com grandes deformações. Finalmente
o método é validado e estudado suas possíveis aplicações.

Palavras-chave: Glóbulos Vermelhos, Relações Constitutivas, Harmônicos Esféricos
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Abstract

In this work, constitutive models are developed and evaluated with the aim of mod-
eling biological cells represented by thin shell elements in a second-order analysis. The
classical formulation of thin shell elements is used while considering dimensional reduc-
tion, which is the main feature of the Kirchhoff hypotheses. This reduction is achieved
by deriving two-dimensional stresses as averages of the true three-dimensional stresses by
means of direct integration through the shell thickness. A Lagrangian description is used
to define the deformation of the continuum. Biological cells cannot be correctly mod-
eled using linear constitutive relations. Specifically, in the study of red blood cells, one
should consider both their nonlinear elastic behavior and the contribution of the cell wall
viscosity. Consequently, hyperelastic constitutive equations are implemented using the
Kelvin-Voigt approach to obtain a viscoelastic model. In the computational implemen-
tation, spherical harmonic functions are used to synthesize the main variables, resultant
forces and displacements since the geometry of red blood cells can be simply described
using spherical coordinates. As a result, a low-cost computational implementation for
highly nonlinear analyses is obtained. This work presents a formulation of an indirect
method since consists on the calculation of the expansion coefficients of a Spherical Har-
monic Analysis, these coefficients have no physical meaning. It is important to mention
that this work is part of a project that is at an early stage. In the literature no applica-
tion was found using shell theory, Spherical Harmonics with constitutive models dealing
with large deformations. Finally, the method is validated and its possible applications
are discussed.

Keywords: Red Blood Cells, Contitutive Relations, Spherical Harmonics
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Nomenclature

(·)α (·) in surface coordinates, α = 1, 2

(·)i (·) in ambient coordinates, i = 1, 2, 3

δij Kronecker delta

εαβ strain tensor

καβ bending tensor

σ true stress tensor

aα contravariant basis of the middle surface

aα covariant basis of the middle surface

C right Cauchy-Green tensor

E Green-Lagrange strain tensor

e strain rate tensor

F deformation gradient

gi contravariant basis of a point in the shell continuum

gi covariant basis of a point in the shell continuum

n normal vector to a surface

r position vector

S second Piola-Kirchhoff stress tensor

Sα contravariant basis of a surface

Sα covariant basis of a surface
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v velocity field

Zi contravariant basis

Zi covariant basis

µs surface viscosity

∇α covariant derivative

Ψ strain-energy function

aαβ contravariant metric tensor of the middle surface

aα coordinates of the middle surface

aαβ covariant metric tensor of the middle surface

am,n, bm,n coefficients of the spherical harmonics function

bαβ second fundamental tensor of the middle surface

gij contravariant metric tensor of a point in the shell continuum

gij covariant metric tensor of a point in the shell continuum

h shell thickness

Ii invariants of a matrix

mαβ bending stress tensor

nαβ membrane stress tensor

pi resultant force on a shell

qα shear force vector

uα surface coordinates

xi Cartesian coordinates

Zα
i shift tensor

Zij contravariant metric tensor

Zij covariant metric tensor

x



Contents

1 Introduction 1
1.1 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Document structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Literature Review 6
2.1 Modeling of RBCs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Constitutive behavior of RBCs . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3 Harmonic analysis approach . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3.1 Spherical harmonics research in "Web of Science" . . . . . . . . . . 10

3 Shell Theory 23
3.1 Basic notions of tensor calculus . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2 The geometry of the middle surface . . . . . . . . . . . . . . . . . . . . . . 26
3.3 Shell continuum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.4 Kinematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4 Constitutive Relations 31
4.1 Hyperelastic model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.1.1 Strain-energy functions . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.2 Membrane viscosity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.3 Statics of a shell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5 Numerical Technique: Spherical Harmonics Functions 38
5.1 Spectral methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.2 Spherical harmonics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.3 Implementation of the harmonic analysis . . . . . . . . . . . . . . . . . . . 43

6 Numerical applications 45
6.1 Spherical balloon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
6.2 RBC simulations in an infinite shear flow . . . . . . . . . . . . . . . . . . . 51

xi



7 Conclusions 62
7.1 General conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
7.2 Future Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

Bibliography 65

Annex 72

I Surface properties: Sphere 73

xii



List of Figures

1.1 Sketch of a RBC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1 Keywords for spherical harmonics in Civil Engineering. Original image
from VOSviewer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Result Analysis for authors for spherical harmonics in Civil Engineering.
Original image from web of science . . . . . . . . . . . . . . . . . . . . . . 12

2.3 Citation report for spherical harmonics in Civil Engineering. Original im-
age from web of science . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.4 Keywords for spherical harmonics in Engineering Biomedical. Original im-
age from VOSviewer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.5 Result Analysis for authors for spherical harmonics in Engineering Biomed-
ical. Original image from web of science . . . . . . . . . . . . . . . . . . . 14

2.6 Citation report for spherical harmonics in Engineering Biomedical. Origi-
nal image from web of science . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.7 Keywords for spherical harmonics in Applied Mathematics. Original image
from VOSviewer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.8 Result Analysis for authors for spherical harmonics in Applied Mathemat-
ics. Original image from web of science . . . . . . . . . . . . . . . . . . . . 17

2.9 Citation report for spherical harmonics in Applied Mathematics. Original
image from web of science . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.10 Keywords for spherical harmonics in Mechanical Engineering. Original
image from VOSviewer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.11 Result Analysis for authors for spherical harmonics in Mechanical Engi-
neering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.12 Citation report for spherical harmonics in Mechanical Engineering . Orig-
inal image from web of science . . . . . . . . . . . . . . . . . . . . . . . . 20

2.13 Keywords for spherical harmonics in Mechanics. Original image from
VOSviewer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.14 Result Analysis for authors for spherical harmonics in Mechanics. Original
image from web of science . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

xiii



2.15 Citation report for spherical harmonics in Mechanics. Original image from
web of science . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.1 Representation of the middle surface . . . . . . . . . . . . . . . . . . . . . 24

4.1 Spring-dashpot models. a) Maxwell b)Kelvin-Voigth. Lakes (2009) . . . . . 35

5.1 Gauss points distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.2 Gauss points of a 10 radius sphere . . . . . . . . . . . . . . . . . . . . . . . 43

6.1 Internal pressure p . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
6.2 Inflation of a balloon: stretch-pressure curve . . . . . . . . . . . . . . . . . 47
6.3 Inflation of a balloon: stretch-pressure curve . . . . . . . . . . . . . . . . . 48
6.4 Inflation of a balloon: undeformed and deformed geometries . . . . . . . . 48
6.5 Inflation of a balloon: stretch-stress curve . . . . . . . . . . . . . . . . . . 49
6.6 Inflation of a balloon: stretch-stress curve . . . . . . . . . . . . . . . . . . 50
6.7 Inflation of a balloon: stretch-stress curves varying nlat . . . . . . . . . . . 50
6.8 Undeformed RBC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
6.9 Sketch of an undeformed RBC . . . . . . . . . . . . . . . . . . . . . . . . . 52
6.10 Sketch of an undeformed RBC suspended in a simple shear flow . . . . . . 53
6.11 From Pozrikidis (2005). A suspension of human RBCs moving through

glass tubes with approximate diameters 4.5 µm (top), 7 µm (middle), and
15 µm (bottom); the flow direction is from left to right. . . . . . . . . . . . 54

6.12 Snapshots of a RBC in a simple shear flow . . . . . . . . . . . . . . . . . . 54
6.13 Snapshots of a RBC in a simple shear flow . . . . . . . . . . . . . . . . . . 55
6.14 Resultant traction vs. Stretch for the viscoelastic and hyperelastic models . 55
6.15 Position of the Gauss points for the resting RBC . . . . . . . . . . . . . . . 56
6.16 Snapshot of a RBC in a simple shear flow. step = 1 . . . . . . . . . . . . . 56
6.17 Snapshot of a RBC in a simple shear flow. step = 1000 . . . . . . . . . . . 57
6.18 Snapshot of a RBC in a simple shear flow. step = 2000 . . . . . . . . . . . 57
6.19 Snapshot of a RBC in a simple shear flow. step = 3000 . . . . . . . . . . . 58
6.20 Snapshot of a RBC in a simple shear flow. step = 4000 . . . . . . . . . . . 58
6.21 Snapshot of a RBC in a simple shear flow. step = 5000 . . . . . . . . . . . 59
6.22 Snapshot of a RBC in a simple shear flow. step = 6000 . . . . . . . . . . . 59
6.23 Snapshot of a RBC in a simple shear flow. step = 7000 . . . . . . . . . . . 60
6.24 Snapshot of a RBC in a simple shear flow. step = 8000 . . . . . . . . . . . 60
6.25 Snapshot of a RBC in a simple shear flow. step = 9000 . . . . . . . . . . . 61
6.26 Snapshot of a RBC in a simple shear flow. step = 10000 . . . . . . . . . . 61

xiv



Chapter 1

Introduction

The main goal of engineering research is to develop tools for analyzing various complex
problems. With the continuing advance of new digital technologies, all kinds of research
are entering a new era that is rapidly evolving.

For nonlinear analysis, the finite element method (FEM) has enabled the treatment of
a wide range of structural problems in civil, aerospace, and aeronautic engineering as well
as other fields. Nonetheless, for some problems, some of which are highly complex, other
numerical methods must be applied to avoid numerical instabilities that will prevent the
problem from being solved or to lower the computational cost.

In the past two decades, applications involving biological materials such as bones (Ere-
meyev et al., 2017), muscles (Karami and Eghtesad, 2018), and arteries (Dolgov et al.,
2019) have been thoroughly studied based on fundamental concepts of continuum me-
chanics, and such applications have emerged as an important field of study.

The boundary element method (BEM), the smoothed particle hydrodynamics (SPH)
method and the FEM itself have all been implemented for problems of this type, resulting
in important contributions.

This work was performed as part of a research project led by Dr. Mettupalayam Siva-
selvan, Associate Professor in the Department of Civil, Structural and Environmental
Engineering at the University at Buffalo, with the aim of simulating the behavior of red
blood cells (RBCs) passing through microcapillaries. Specifically, this work focused on
modeling the shell mechanics of the RBC membrane.
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Blood is a fluid connective tissue that circulates through the cardiovascular system
which consists of a suspension of various elements (erythrocytes, leukocytes, and platelets)
in plasma. Total blood volume in the average adult is about 6 L or 7% to 8% of total
body weight. The functions of the blood are: to transport nutrients, oxygen, wastes and
carbon dioxide to and from the tissues; to convert hormones, cytokines, chemokines and
other solubleregulatory molecules; and to transport leukocytes and antibodies through
the tissues Ross and Pawlina (2011).

The volume of the erythrocytes (RBCs) in a sample of blood is called the hematocrit.
The hematocrit is typically approximately 45% of the total blood volume. The viscosity
of blood is directly related to the number of RBCs. Hence, understanding the behavior
of the RBCs is very important.

RBC are anucleate cells devoid of typical organelles. The function of red blood cells
(RBCs) is to carry haemoglobin around the body in high concentrations such that oxygen
is taken up in the lungs and delivered to the tissue Gordon-Smith (2007). Their shape is
a biconcave disk, 8µm diameter, 2µm at thickest point, 1µm at thinnest maintained by
a cytoskeletal complex inside the plasma membrane (involving spectrin, actin and other
components) as shown in Figure 1.1. The life span of erythrocytes is approximately 120
days.

RBC are extremely flexible cells which normally bend to pass through small capillaries.
They pass easily through the narrowest capillaries by folding over on themselves. They
stain uniformly with eosin. The shape of the erythrocyte is maintained by membrane
proteins. The cell membrane of an erythrocyte is composed of a typical lipid bilayer and
contains two functionally significant groups of proteins:

• Integral membrane proteins represent most of the proteins in the lipid bilayer

• Peripheral membrane proteins reside on the inner surface of the cell membrane.
They are organized into a two-dimensional hexagonal lattice network that laminates
the inner layer of the membrane.

. Consequently, simulations of this behavior might be very useful in the study of blood
flow, its properties and membrane characterization. In combination with laboratory mon-
itoring, this could be beneficial for the diagnosis of diseases such as anemia, malaria and
diabetes.

2



Figure 1.1: Sketch of a RBC

Since the cross-sectional area of a microscale capillary vessel can often be smaller than
the diameter of an RBC, RBCs typically undergo significant structural deformation to
pass through such vessels (Meyers et al., 2008). Therefore, the cells respond to external
stimuli, changing their shape or mechanical properties, which could lead to membrane
damage under extreme conditions. This work does not address biological or chemical
processes inside the cell but rather focuses on the whole-cell scale.

Due to changes in its composition (caused by lack of proteins, aging of the cells, etc.),
the RBC membranes lose their ability to deform and show a more rigid behavior, hindering
passage through the capillaries. The research group led by Dr. Mettupalayam Sivaselvan
is proposing a new methodology for leading with the numerical implementation of the
RBC membrane behavior.

The research group is introducing the use of spherical harmonics for a numerical
treatment of the problem. Spherical harmonics are a natural basis for representing func-
tions defined over spherical and hemispherical domains. Swarztrauber (1993) presented a
method of solving either steady or time-dependent partial differential equations expressed
in spherical coordinates. This introduced the harmonic transform solution method, which
belongs to the category of spectral transform methods.

3



The code developed by Dr. Sivaselvan group it’s written in Matlab and serves as a tool
to obtain the stresses of a shell element using a spherical harmonics technique by means of
a Fortran routines for the calculation of the variables needed in this particular application.

As a novel contribution, this work studied and implemented the nonlinear constitutive
behavior of the RBC membrane using the spherical harmonics technique. As a result, a
compact and low-cost code for modeling RBCs is developed. Taking advantage of the
fact that the geometry of an RBC can be expressed in spherical coordinates, spherical
harmonic functions can be used to express the variables of the problem (such as, stresses
and strains) in a global manner. It is important to note that the project is still in its
early stages.

1.1 Objectives

General Objective

To model the shell mechanics of the Red Blood Cells membrane which can be applied
in the simulation of RBC behaviour passing through microcapillaries.

Specific Objectives

• To study the nonlinear behaviour of RBC and the numerical methods used in its
modelling.

• To study the kinematics assumptions of the shell theory necessary to the simulation
of RBC membrane.

• To implement the spherical harmonics technique on modelling RBC membrane.

• To evaluate the implementation of spherical harmonics using a validation example
and comparing with analytical and numerical results.

1.2 Document structure

The outline of this work is as follows.

• Chapter 2 a brief review of the literature is presented below. A few works are
mentioned in which the study of nonlinear RBC and capsule behavior was treated.
It is shown that various numerical methods have been applied.

4



• Chapter 3 contains a general overview of the relevant shell theory, which serves as
the basis of this work. Some essential kinematics concepts and the fundamentals of
structural mechanics are presented.

• In Chapter 4, the nonlinear constitutive equations used for the modeling of RBCs
are formulated. First, hyperelastic models and some strain-energy functions are
described. Then, the Kelvin-Voigt model is applied.

• The spherical harmonics technique is studied in Chapter 5. The SPHEREPACK
suite, which is used in the computations of the nonlinear response of the shell
continuum, is introduced.

• A validation example is presented in Chapter 6, for which analytical and numerical
results are shown and compared. Simulations of an RBC in an infinite shear flow
are discussed.

• The final chapter gives a summary of the conclusions and outlooks. Ideas for future
research are proposed.

5



Chapter 2

Literature Review

For the development of this research some important topics were studied prior to the
implementation of the RBCs membrane model. Initially, we investigated the different
approaches on modeling RBCs membrane, where shell elements have been predominantly
used for numerical applications. In regards to the mechanical model, the cell was treated
as comprising material with certain continuum material properties. In order to define the
constitutive behavior of RBCs, some researches were explored, including MEF approaches.

The following are the main articles related to the topics of: Modeling of RBCs, con-
stitutive behavior of RBCs and finally Harmonic analysis approach.

2.1 Modeling of RBCs

In the modeling of biological membranes as RBCs, shell elements have been pre-
dominantly used for numerical implementations. 3D elements in which one dimension is
considerably smaller than the other two are known as shells. These elements have a wide
range of applications in structural mechanics.

Dimensional reduction lies at the core of shell theory and is usually achieved by re-
placing dependent variables, such as deformations and stresses, with their averages or
weighted averages calculated over the thickness of the shell (Niordson, 1985). These
structural elements have many useful properties; even thin shells can support large loads.
Therefore, shells are utilized in structures in which a light weight is essential.

There have been several publications on the modeling of biological cells. Lim et al.
(2006) presents a review of several mechanical models used for the study of living cells.
For example, Rand and Burton (1964) can be highlighted as the first study in which the
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micropipette aspiration technique was used to measure the mechanical properties of the
RBC membrane, whereas the optical tweezers method was used in Hénon et al. (1999),
Dao et al. (2003), Lim et al. (2004) and Mills et al. (2004).

The mechanical modeling approaches used for living cells can be divided into two cate-
gories. The micro-nanostructural approach focuses on the cytoskeleton. The cytoskeleton
is a stable and dynamic network of protein fibers that gives a cell its shape and struc-
ture; it is the main structural component of the cell. An study of the cytoskeleton is
presented in Satcher and Dewey (1996). In the continuum approach, the cell is treated
as comprising materials with certain continuum material properties. This work falls into
this category. The use of viscoelastic models has been well documented in the continuum
approach. Such models can be divided into solid models and liquid drop models.

Liquid drop models are based on the fact that many cells exhibit liquid-like responses.
The Newtonian liquid drop model and the Maxwell liquid drop model belong to this cat-
egory (Lim et al., 2006). White blood cells (Evans and Yeung, 1989) and eukaryotic cells
(Dong et al., 1991), among others, have been studied using liquid drop models.

In solid models, the cell is usually assumed to consist of a homogeneous material, either
an incompressible elastic solid or a viscoelastic solid. An elastic model is a simplification
of a viscoelastic model in which the time factor is neglected.

Unfortunately, a linear elastic model is usually not adequate to describe the mechanics
of living cells. This is because the elastic part of a viscoelastic material will depend on
its loading rate and loading history. In Mijailovich et al. (2002), an FEM model was
implemented for magnetic twisting cytometry (MTC) considering a homogeneous, incom-
pressible, linear elastic material.

Schmid-Schönbein et al. (1981) proposed a viscoelastic model for studying the small-
strain deformation of human leukocytes, which was later modified in Sato et al. (1990),
Cheng et al. (2000) and Koay et al. (2003) using several types of functions for creep com-
pliance.
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2.2 Constitutive behavior of RBCs

It has been shown that an RBC behaves as a two-dimensional, anisotropic material
that is isotropic in the plane of the membrane. Stresses in the plane of the membrane are
not coupled to the direction normal to the surface. Thus, the membrane cannot change
thickness in response to an in-plane stress; therefore, applied forces are considered to be
distributed in a per-unit-length manner (Evans and Hochmuth, 1976).

Coulumb The first studies of nonlinear elastic materials were Mooney (1940) and
Rivlin and Rideal (1948). In these works, the theory of large elastic deformation was
introduced based on the concept of a stored energy function for the derivation of the
stress-strain relations. Rubber-like materials were the principal target of studies using
such hyperelastic models.

Recently, these models have been applied in the modeling of RBCs. In Chee et al.
(2008), using the commercially available finite element code ADINA, a three-dimensional
fluid–structure interaction model of an RBC was presented that consists of a deformable
liquid capsule modeled as a Newtonian fluid enclosed by a hyperelastic membrane with
viscoelastic properties.

Also using an FEM code, Doddi and Bagchi (2008) modeled the motion of a deformable
capsule undergoing large deformation following a neo-Hookean law. The membrane was
discretized using flat triangular elements. In Peng et al. (2011), a computational model
was developed by coupling a multiscale approach to the RBC membrane with a boundary
element method for the surrounding Stokes flows, and the membrane was modeled using
FEM; thus, an algorithm for coupling both methods was needed.

Yoon and You (2016) presented a study of the nonlinear elasticity of an RBC using
the Yeoh hyperelastic material model in a framework of continuum mechanics based on
a finite element approximation. Casquero et al. (2017) used a nonuniform rational B-
splines (NURBS)-based approach to study the behavior of hyperelastic capsules in shear
and parabolic flows.

Soleimani et al. (2018) developed a 3D numerical method for simulating RBCs based
purely on the SPH method, in which the membrane was treated as a nonlinear deformable
elastic shell, using several numerical remedies for the implementation instabilities.
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In regards to membrane viscosity, the first related work was presented in Barthes-Biesel
and Sgaier (1985). Until that time, all models had considered only cells surrounded by
purely elastic sheets, inconsistent with numerous experimental studies showing that the
membrane of an RBC exhibits a measurable viscosity (Evans and Hochmuth, 1976), for
example. The authors of that study assessed the importance of the viscoelastic properties
of the membrane by means of a regular perturbation analysis for the case in which the
deformation is small.

After that, most numerical studies ignored the role of the membrane viscosity in the
case of large deformations. Diaz et al. (2001) extended the study to capsules with hy-
perelastic membranes to account for the membrane viscosity. Yazdani and Bagchi (2013)
presented a numerical method for the large deformation of capsules using a Kevin-Voigt
viscoelastic model of the membrane; this is the same model used in this work. They noted
wrinkles appearing in the cell membrane in a shear flow at a moderate rate, similar to
those reported in experimental measurements.

Tang et al. (2017) presented a particle model for extracting RBC properties. How-
ever, it is computationally demanding, if not prohibitive, to simulate the large number of
particles required for modeling the membrane of an entire RBC.

2.3 Harmonic analysis approach

Harmonic analysis has been applied in several relevant interdisciplinary areas, includ-
ing signal and image processing, learning theory, big data analysis, and data recovery. As
a numerical technique, a harmonic analysis was performed in this work based on spherical
harmonic functions.

Spherical harmonic functions have been extensively studied and applied to solve a wide
range of problems in mathematical science with the aim of solving problems involving par-
tial differential equations on a unit sphere. In the same way that Fourier transforms are
used on a rectangle in Cartesian coordinates, harmonic transforms are used on a sphere,
with Fourier transforms being used in the longitudinal direction and Legendre transforms
being used in the latitudinal direction.

Recent contributions in engineering such as Erdoğan (2016), several approaches involv-
ing computed tomography and spherical harmonic analysis have been compared in terms
of their success in estimating the surface areas of micrometer-sized to centimeter-sized
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particles. Kozłowski et al. (2018) proposed a solution for water consumption forecasting
in a water supply system, wherein hourly water consumption is determined through trend
analysis and harmonic analysis.

In Cheng and Shi (2018), the authors introduced a novel multidimensional composite
periodic foundation for seismic isolation, for which harmonic analysis and time-history
analysis results showed that the proposed foundation can effectively reduce the vibrations
of the upper structure in both the horizontal and vertical directions.

Sarkar et al. (2018) proposed the use of machine learning techniques for the prediction
of tidal currents using kernel functions to capture structures in the data. Han and Cao
(2018) implemented a numerical model for the drainage and deformation of intercalated
confining layers due to internal stress changes (the discharge/recharge cycle) in an aquifer-
aquitard system with the help of harmonic analysis.

To the best of the author’s knowledge, there has not yet been any application of the
modeling of RBCs using a technique based on spherical harmonics. However, spherical
harmonics has been employed in the development of important science fields. In order to
present these applications a multidisciplinary research was performed using the scientific
citation indexing service "Web of Science".

2.3.1 Spherical harmonics research in "Web of Science"

Employing the multiple database of "Web of Science" a multidisciplinary search was
performed. The areas studied were: Civil Engineering, Engineering Biomedical, Mechan-
ical Engineering, Applied Mathematics and Mechanics.

Applications of Spherical harmonics in Civil Engineering

The published articles related to spherical harmonics applied to Civil Engineering were
consulted using the website "Web of Science". Considering as a search filter the parame-
ters presented in Table 2.1. Then a "txt" format file was downloaded with the keywords
extracted from the selected articles. Based on this file and with the help of the VOSviewer
software the Figure 2.1 was created.

Keywords are located on a circle (Figure 2.1), which will be larger or smaller depend-
ing on how many times it is repeated in the selected articles. In addition, using lines and
groups of colors (cluster) the keywords that are listed in the articles are linked. Therefore,
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Table 2.1: Search criteria for spherical harmonics in Civil Engineering.

Keywords spherical harmonics
Publication years 2011 – 2019
Cathegories Engineering civil
Document type Paper
Total papers 7

Figure 2.1: Keywords for spherical harmonics in Civil Engineering. Original image from VOSviewer

some observations may be made, allowing the reader to make other annotations according
to their topic of interest. The keywords found in the area of Civil Engineering in this
case are water balance, earth, system, rock, sample and zone, specifically related to ge-
ology, geotechnics, hydrology and structures. Currently authors such as Garboczi, Ahn,
Bhanja, Cong, among others are pioneers in the use of SH in civil engineering (Figure 2.2).

In the geotechnical area, for example, Kutay et al. (2017) presented a micromechanical
model to develop digital microstructures of asphalt mastics and crumb rubber-modified
binders, using the dissipative particle dynamics (DPD) model and Xray tomography im-
ages of particles to create microstructure. Once the 3D images were generated for individ-
ual particle shapes, a series of spherical harmonic (SH) functions were fitted to the surface
of the particles and SH coefficients were determined, which allowed effective numerical
simulations of DPD to generate microstructures. Moreover, in hydrogeology Liu et al.
(2012) used the spherical harmonics to express the speed potential in the study of wave
diffraction and radiation of a submerged sphere in deep water.

As it can be observed, the use of SH applied to Civil Engineering is small however,
its recent use in such diverse and complex subjects reflects its high potential for future
research so it is expected that in the coming years the number of publications will increase
as shown in Figure 2.3.

Guzas and Earls (2011) for example, implemented the formulation of a beam-column
element within a code of explicit non-linear dynamic finite elements to simulate explosive
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Figure 2.2: Result Analysis for authors for spherical harmonics in Civil Engineering. Original image from
web of science

effects in steel skeletal structures composed of wide-flange members. Using the spherical
harmonics, they defined a bounding surface in a stress-resultant space, adjusting the nu-
merical failure data to a basis of a real-valued of SH.

Figure 2.3: Citation report for spherical harmonics in Civil Engineering. Original image from web of
science

Applications of Spherical harmonics in Engineering Biomedical

Performing the same procedure explained above and using this time the criteria of
Table 2.2, some works were found in the category of biomedical engineering. The key-
words found in this review include inverse problem, cell, harmonic, optical tomography
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and simulation, gathered in the areas of medicine, biology and engineering (Figure 2.4).

Table 2.2: Search criteria for spherical harmonics in Engineering Biomedical

Keywords spherical harmonics
Publication years 1991 – 2019
Cathegories Engineering Biomedical
Document type Paper
Total papers 67

Figure 2.4: Keywords for spherical harmonics in Engineering Biomedical. Original image from VOSviewer

Figure 2.5 presents the main authors in this field and their publications. For example,
Tutar et al. (2006) proposed a new method to identify three-dimensional (3-D) prostate
boundaries in postimplant ultrasound images in a fast and robust fashion. In this method
the segmentation is defined in an optimization framework as fitting the best surface to the
underlying images under shape constraints. To derive these constraints, a model of the
shape of the prostate was performed using spherical harmonics of degree eight with a sta-
tistical analysis on the shape parameters. Xu and Patterson (2006) applied the modified
spherical harmonics method to some problems in biomedical optics because is a fast and
rigorous solution for the radiative transport equation in an infinite medium containing an
isotropic source.

Ayari et al. (2014) presented a method to analyze the regional deformation of the heart
left ventricle (LV). It consists of two steps. First, a global analysis is carried out in order to
detect any pathological cases using 3D spherical harmonic (SPHARM) shape description
process. The computed invariant SPHARM shape descriptors are used to compute the
distance between the LV anatomical structures namely the endocardium and epicardium.
Secondly, to accurately determine the site and the extent of the disease, a regional analysis
is achieved. This method has been validated on deformable surfaces synthesized using an
ellipsoidal model and real data obtained from myocardial scintigraphy imaging techniques.
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Figure 2.5: Result Analysis for authors for spherical harmonics in Engineering Biomedical. Original
image from web of science

Chen et al. (2015) proposed a hybrid simplified spherical harmonics with diffusion
equation (HSDE) based on a diffuse light transport model, in order to reduce the limita-
tions of the simplified spherical harmonics approximation (SPN) and diffusion equation
(DE) in describing the light propagation in tissues. The accuracy and efficiency of the
HSDE are validated with both regular geometries and digital mouse model-based simula-
tions. Corresponding results reveal that a comparable accuracy and much less computa-
tion time are achieved compared with the SPN model as well as a much better accuracy
compared with the DE one.

Eck et al. (2016) developed a spherical harmonics intensity model for 3D segmenta-
tion and 3D shape analysis of heterochromatin foci. The model analytically describes the
shape and intensities of the foci, and the parameters are determined by fitting the model
to the image intensities using least-squares minimization. Chu et al. (2009) developed
a light transport model based upon the three-dimensional frequency-domain simplified
spherical harmonics (SPN) approximation to improve the accuracy of the commonly used
diffusion approximation as used in diffuse optical tomography, because there limits in
cases involving strong absorption.

In medicine, Abdolali et al. (2017) presents a novel framework for maxillofacial cysts
detection. A hybrid methodology based on surface and texture information is introduced.
Contourlet and spherical harmonics (SPHARM) coefficients are utilized as texture and
shape features which are fed into the classifier. Generally, SPHARM coefficients are
estimated by the iterative residual fitting (IRF) algorithm which is based on stepwise
regression method. They demonstrated that the proposed methodology can improve the
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computer assisted diagnosis (CAD) performance by incorporating more discriminative
features. Using orthogonalized SPHARM is promising in computerized cyst detection
and may have a significant impact in future CAD systems.

Yang et al. (2018) theoretically developed a filtered maximum likelihood expectation
maximization (fMLEM) method for bioluminescence tomography (BLT). The method can
avoid predefining the permissible source region (PSR) and provide a robust and accurate
result for global reconstruction. In the method, the simplified spherical harmonics approx-
imation (SPN) was applied to characterize diffuse light propagation in medium, and the
statistical estimation-based MLEM algorithm combined with a filter function was used to
solve the inverse problem.

With a significant number of researches using SHs in biomedical engineering, it is
possible to observe that each year the number of articles published increases and that
their applications tend to expand as the studies advance (Figure 2.6).

Figure 2.6: Citation report for spherical harmonics in Engineering Biomedical. Original image from web
of science

Applications of Spherical harmonics in Applied Mathematics

The spherical harmonics Expansion (SHE) model is a common topic in the Applied
Mathematics academic field. Table 2.3 shows the criteria search employed in "Web of
Science" service.
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Table 2.3: Search criteria for spherical harmonics in Applied Mathematics

Keywords spherical harmonics
Publication years 1962 – 2019
Cathegories Applied Mathematics
Document type Paper
Total papers 367

Figure 2.7 shows the keywords related to spherical harmonics in Applied Mathematics.
The publications include: Fourier analysis, inverse problem, between others.

Figure 2.7: Keywords for spherical harmonics in Applied Mathematics. Original image from VOSviewer

Some publications summarizes the state of the art in this area. Figure 2.8 shows the
main authors in this field. Potts et al. (1998) were one of the firsts ones that mentioned
the SHE model as an algorithm for the stable computation of Fourier expansions of square
integrable functions on a unit sphere. Whereas, Degond and Schmeiser (1999) established
kinetic boundary layers for the SH model boundary conditions semiconductors medium
through the semiconductor Boltzmann equation with elastic collisions, and applied the
SHE model into a diffusion equation for electron transport in a superlattice (Degond and
Zhang, 2002). Abdallah et al. (2001) presented an asymptotic analysis of the SHE model
for semiconductors considering the mobility and the diffusivity fields.

Kener and Potts (2008) established a new process in order to improve the fast al-
gorithm for the evaluation of spherical harmonic expansions through quadrature rules.
Potts et al. (2009) introduced a fast algorithm for Fourier transform applied into the
nonequispaced nodes on the three-dimensional torus. Graf and Potts (2009) developed
a complementary procedure to improve the fast algorithm for Fourier transform on the
rotation group. Menegatto and Piantella (2011) provided an overview on the Laplace-
Beltrami derivate used in the SHE models. Haskovec et al. (2011) proved that SHE model
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Figure 2.8: Result Analysis for authors for spherical harmonics in Applied Mathematics. Original image
from web of science

can be coupled with the poisson equation for a strong convergence to equilibrium in the
analysis.

More recently, Jordão and Menegatto (2014) studied the action of the weighted Fourier-
Laplace transform on the functions in the kernel Hilbert space (RKHS) taking into account
the smoothness of the SHE model generated elements. Cammarota et al. (2016) presented
a second-order Gaussian kinematic formula for the excursion set of random spherical har-
monics through the asymptotic variance of the Euler-Poincare characteristic. Dai et al.
(2016) determined the sharp asymptotic order of some Holder inequality for Spherical
Harmonics in order to improve the inequalities for the Fourier transform. Campese et al.
(2018) worked with high-energy hyperspherical eigenfunctions applied to the She model
through non-Gaussian models. Leweke et al. (2018) applied the SHE model to find Slepian
functions that are at least optimally spatio-spectrally localized on a representation of a
real-valued vector fields on a three dimensional ball.

Figure 2.9 shows the citation report for Applied Mathematics. It is possible to iden-
tify a great number of publications, around 367 as well as the increase in citations per year.

Applications of Spherical harmonics in Mechanical Engineering

Approaching the Mechanical Engineering field, the search was performed using the
information shown in Table 2.4.

Regarding the Mechanic Engineering field, a number of studies have explored the usage
of the spherical harmonic analysis as an alternative approach to solve different types of
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Figure 2.9: Citation report for spherical harmonics in Applied Mathematics. Original image from web of
science

Table 2.4: Search criteria for spherical harmonics in Mechanical Engineering

Keywords spherical harmonics
Publication years 1989 – 2019
Cathegories Mechanical Engineering
Document type Paper
Total papers 62

problems, more specifically, modeling different phenomena at a relative low computational
effort without a significant impact on the accuracy (Allu and Mazumder, 2018; Ge et al.,
2015; Pal and Modest, 2015). As shown in Figure 2.10, spherical harmonics has been ap-
plied in studies of noise, displacement function, heat transfer applications, between others.

Figure 2.10: Keywords for spherical harmonics in Mechanical Engineering. Original image from
VOSviewer

According to Figure 2.11, Modest, MF (Modest et al., 2014) and Mazumder S (Sankar
and Mazumder, 2012) appear as the main authors in this area. Modest and Cai Mod-
est et al. (2014) used a Simplified Spherical Harmonics method (SPn) for radiative heat
transfer applications. This resulted in the reduction of the ruling set of equations to a

18



small set of second-order, elliptic PDEs, almost similar to a simple legendre polynomial
(P1 approximation). The method presents considerable savings in terms of computational
effort when compared to a Pn model. Allu and Mazumder (2016) modeled the transport
of heat in semiconductor materials using the lowest order spherical harmonics method (P1

approximation).

Figure 2.11: Result Analysis for authors for spherical harmonics in Mechanical Engineering

Overall, it is clear that a spherical harmonics approach represents an appealing al-
ternative to model phenomena in which the computational effort and accuracy are key
factors. The adaptability of this type of approach is certainly an important feature that
makes it useful in different research areas.

Finally, Figure 2.12 is shown as a report of all articles published in this field. 62
publications were analyzed. It is possible to assume the increase interest in the spherical
harmonics study in recent years.

Applications of Spherical harmonics in Mechanics

In the field of Mechanics, spherical harmonics are also a very important tool for mod-
eling purposes. As in most of the previous cases, its ease of implementation and the
reasonable computational efficiency are considered important features. The search crite-
ria are presented in Table 2.5.

Some Keywords in this field related to spherical harmonics are shown in Figure 2.13.
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Figure 2.12: Citation report for spherical harmonics in Mechanical Engineering . Original image from
web of science

Table 2.5: Search criteria for spherical harmonics in Mathematics applied

Keywords spherical harmonics
Publication years 1962 – 2019
Cathegories Mechanics
Document type Paper
Total papers 160

Figure 2.13: Keywords for spherical harmonics in Mechanics. Original image from VOSviewer

In Chen (2000), the author expands three displacement functions in terms of spher-
ical harmonics in order to simplify its basics equations. This procedure is performed in
order to model a steadily rotating spherical shell. Furthermore, Cambon et al. Mons
et al. (2016) models the homogenous shear-driven anisotropic turbulence using spherical
harmonics to expand the spectral two-point velocity correlation. A detailed analysis of
Cambon’s work is presented in Briard et al. (2018). Crouch and Kushch Kushch et al.
(2013) studied elastics fields and presented a representative unit cell model (RUC) of
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nanocomposite. Using local expansions of the displacement and stressed fields in terms of
spherical harmonics, they managed to reduce the problem to an infinity system of linear
equations, which are then truncated and solved numerically.

The main authors in Mechanics applications are presented in Figure 2.14. Risso,
Chebel, and Masbernat Lalanne et al. (2015) analyzed the shape-oscillations of a gas
bubble or a liquid drop rising in a different liquid. The bubble (drop) is attached to a
capillary and eventually released, which results in the rising of the bubble (drop) plus the
oscillation of its shape. A decomposition of the shape of the bubble (drop) into a series
of spherical harmonics permits to compare experimental observations and numerical sim-
ulations. As an extended work, a similar approach is used to study the effect of the rising
motion on the dynamics of shape oscillations of drops and bubbles Lalanne et al. (2013).

Figure 2.14: Result Analysis for authors for spherical harmonics in Mechanics. Original image from web
of science

Based on these few examples, it is possible to notice the importance of spherical har-
monics at different stages of the modelling process. It is also clear that further studies
are required in order to determine new areas of application.
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Figure 2.15: Citation report for spherical harmonics in Mechanics. Original image from web of science
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Chapter 3

Shell Theory

In a continuum model, an RBC is treated as a thin shell. A shell element is described
by an inner surface and two outer surfaces such that a normal to the inner (middle)
surface intersects with both outer surfaces at the same distance as shown in Figure 3.1.
Shells can be modeled appropriately by means of classical Kirchhoff kinematics, based on
the following assumptions:

• The shell formulation is derived as a two-dimensional surface instead of a three-
dimensional continuum.

• The director describes the thickness extension.

• Points that lie on one and the same normal to the undeformed middle surface also
lie on one and the same normal to the deformed middle surface.

• The displacements in the direction of the normal to the middle surface are equal for
all points on the same normal.

In this work, matrix and tensor notation are used. Italic letters a and A indicate
scalars, lower case bold letters a indicate vectors, and upper case bold letters A indicate
second-order tensors.

3.1 Basic notions of tensor calculus

Tensor calculus will be used widely throughout this work. This section introduces
some important aspects that will be used in the formulations presented in this chapter.
The use of tensors may be justified by the main properties of tensors equations. As stated
in Niordson (1985), a tensor equation does not refer to any particular coordinate system;
if the equation holds in one system, it holds in all.
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Figure 3.1: Representation of the middle surface

Any formulation expressed in Cartesian coordinates using tensor analysis holds for
surface coordinates, and the reverse also applies. Thus, one can preserve the geometric
perspective while taking advantage of different coordinate systems. Also, tensor notation
often helps to systematize calculations due to its compactness, and despite this charac-
teristic, tensor notation also offers robust and explicit expressions.

To achieve invariance, coordinate transformations must be defined to form expressions
that result in the same value in all coordinate systems. Latin letters are used to describe
variables in the ambient three-dimensional space, e.g., components of a vector position xi

(i = 1, 2, 3), whereas Greek letters are used for two-dimensional surface embedded in the
ambient space, e.g., uα (α = 1, 2).

Using the definition in Grinfeld (2010), the position vector r is a function of coordinates
xi that uniquely determine a point in space.

r = r
(
xi
)

(3.1)

The covariant basis zi is obtained from the position vector by differentiation with re-
spect to each of the coordinates:

zi = ∂r
∂xi

(3.2)

Then, any other vector v can be expressed as

v = vizi (3.3)
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The values vi are called the contravariant components of the vector. The components
of the covariant metric tensor Zij are defined as

Zij = zi · zj (3.4)

It is often referred to as the fundamental tensor because information can be retrieved from
it regarding the fundamental properties of the space. The contravariant metric tensor Zij

is the matrix inverse of Zij, and the contravariant basis zi is defined as follows:

zi = Zijzj (3.5)

The covariant and contravariant bases are related by the following condition:

zi · zj = δij =

 0 i 6= j

1 i = j
(3.6)

A tensor M can be expressed using two different covariant bases, sα ⊗ sβ and zi ⊗ zj,
as follows:

M = Mαβsα ⊗ sβ = M ijzi ⊗ zj (3.7)

where ⊗ is the tensorial (dyadic) product. Likewise, for contravariant bases,

M = Mαβsα ⊗ sβ = Mijzi ⊗ zj (3.8)

Using the shift tensor, the components in the ambient surface are obtained by

M ij = ziαz
j
βM

αβ (3.9)

and
Mij = zαi z

β
jmαβ (3.10)

The last two equations provide the transformation rules needed in the following sec-
tions. As stated in Niordson (1985), one must not restrict oneself to Cartesian coordinates
only, especially in shell theory, in which two-dimensional coordinate systems should be
used since the shape of a shell is described by the middle surface and the shell thickness h.
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3.2 The geometry of the middle surface

The middle surface is a surface such that any normal to it intersects the two free
surfaces of the shell. A two-dimensional surface embedded in a three-dimensional space
is defined by the tangent and normal spaces that exist at all points on the surface. The
tangent space is two-dimensional, and the normal space is one-dimensional and is repre-
sented by the unit normal vector n.

The surface is described parametrically by aα = (θ, φ) (3.1) and the Cartesian coordi-
nates xi = (x, y, z), which depend on aα by three independent, single-valued, continuously
differentiable functions. Consider the position vector r as a function of surface coordi-
nates:

r(xi(aα)) (3.11)

In this case, the covariant basis aα is expressed as

aα = ∂r
∂aα

(3.12)

Applying the chain rule, one obtains

aα = ∂r
∂xi

∂xi

∂aα
= Zi

αZi (3.13)

Zi
α = ∂xi/∂aα relates the surface and Cartesian bases and represents the tangent

space. It is known as the shift tensor because it translate or ‘shifts’ components of the
tangent vector from the surface coordinates into Cartesian space. That is, for any t
tangent to the surface,

ti = tαZi
α, t

α = tiZα
i (3.14)

The expression for obtaining the surface covariant metric coefficients of the fundamen-
tal tensor is

aαβ = aα· aβ (3.15)

The lengths of arcs and angles between curves can be expressed in terms of aαβ. The
Cartesian basis and the surface covariant fundamental tensor are related as follows:

aαβ = ZijZ
i
αZ

j
β (3.16)

The contravariant basis vectors are

aα = aαβaβ (3.17)
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with [
aαβ

]
= [aαβ]−1 (3.18)

The normal direction is captured by the normal n, with components ni. A normal to
the surface is perpendicular to the tangent plane and hence to both vectors a1 and a2. A
unit normal vector of the middle surface is expressed as follows:

n = a1 × a2

|a1 × a2|
(3.19)

Another important property that describes the middle surface is the second fundamen-
tal or curvature tensor of the surface, bαβ, which is symmetrical, as is the first fundamental
tensor. The curvature tensor serves to define extrinsic invariants of the surface. The coef-
ficients are obtained from the definition of the covariant derivative of the covariant basis,
as follows:

bαβ = −Zi
α∇βn

i (3.20)

where ∇α(·) is the covariant derivative of (·).

3.3 Shell continuum

A point in the shell continuum can be uniquely identified by the coordinates aα and
the distance z from the middle surface as measured along a normal to that point. In
Cartesian coordinates, the point is given by

x = r(a1, a2) + zn = f i(a1, a2, a3) (3.21)

In particular, z = ±1
2h represents the free surfaces of the shell. The covariant basis at

a point in the shell continuum is defined by

gα = ∂r
∂aα

+ z
∂n
∂aα

= aα + z∇αn (3.22)

g3 = n (3.23)

The components of the three-dimensional covariant metric tensor in the shell contin-
uum are given by the dot product of the covariant bases:

gij = gi · gj = ∂fk

∂ai
· ∂f

k

∂aj
(3.24)
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Since n and aα are orthogonal, one can use expression (3.18) for the curvature tensor
to obtain

g33 = g33 = 1, gα3 = gα3 = 0 (3.25)

gαβ = ∂fk

∂aα
· ∂f

k

∂aβ
= aαβ − 2bαβz + bγαbγβ(z)2 (3.26)

For a thin shell, the quadratic term can be neglected under the assumption of a linear
distribution throughout the thickness. Then,

gαβ = aαβ − 2bαβz (3.27)

Finally, the contravariant metric tensor at a point in the shell continuum is obtained
as follows:

gαβ = [gαβ]−1 (3.28)

3.4 Kinematics

Everything stated up to this point holds for both undeformed and deformed config-
urations. In the following formulation, the Lagrangian description is used to define the
modes of deformation. Thus, the deformation is described using the coordinates of a
typical point in the initial state.

The Cartesian components of the displacement vector of a point on the middle surface
after deformation are

vi = f i,αv
α +N iv3 (3.29)

where vα is a vector field defining the tangential displacements and v3 is a scalar field
defining the normal displacements; here, partial derivatives are denoted by (·),i = ∂(·)/∂xi.

Usually, the motion behavior in the neighborhood of a point is expressed as a func-
tion of geometric quantities in the deformed and undeformed configurations. Variables
denoted by (·)o refer to the undeformed configuration.

The deformation of a shell is described by the stretching and bending of the middle
surface. A measure of the change in the distance between two neighboring points on the
middle surface may be expressed in terms of the strain tensor εαβ, defined by

εαβ = 1
2 (aαβ − a0αβ) (3.30)
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and similarly, the bending tensor καβ, given by

καβ = bαβ − b0αβ (3.31)

can be used to describe changes in curvature.

For a point in the shell continuum, the deformation gradient F, a primary measure
of deformation, characterizes the motion behavior in the neighborhood of that point,
including rigid-body motions. The deformation gradient is defined as

F = dx
dx0

(3.32)

For curvilinear coordinates,
F = gi ⊗ gi0 (3.33)

F−1 = g0i ⊗ gi (3.34)

Another measure of strain is the right Cauchy-Green tensor C:

C = FTF = Cijgi0 ⊗ gj0 (3.35)

This tensor is a measure of the strain in the material coordinates, where

Cij =


a11 a12 0
a21 a22 0
0 0 C33

 (3.36)

For an incompressible hyperelastic material, the following expression for C33 is found
in Kiendl et al. (2015):

C33 = J−2
0 (3.37)

where J0 is defined as the in-plane determinant, expressed as

J0 =

√√√√ |aαβ|
|a0αβ|

(3.38)

C can be used to obtain an expression for the Green-Lagrange strain tensor E as
follows:

E = 1
2 (C− I) (3.39)

E enables the evaluation of changes in length relative to the undeformed state; thus,
I is the identity tensor in the undeformed state. Accordingly, the components Eij of the
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strain tensor are defined by
Eij = 1

2 (Cij − g0ij) (3.40)

Thus,
E = Eijgi0 ⊗ gj0 (3.41)

Only the in-plane strain components, Eαβ, are considered for shell kinematics:

Eαβ = 1
2 ((aαβ − a0αβ)− 2z(bαβ − b0αβ)) (3.42)

Finally, the strain in the shell continuum is expressed as

Eαβ = εαβ + zκαβ (3.43)
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Chapter 4

Constitutive Relations

The relationships between strains and stresses are described by constitutive equations.
The kinematics and formulations presented in the previous chapter are valid for a shell el-
ement of any type of material. In this section, constitutive equations for hyperelastic and
viscoelastic materials are presented that are applicable for large-strain analyses. Consti-
tutive models of this kind are commonly used for the simulation of biological membranes
such as RBCs.

For the hyperelastic model, the second Piola-Kirchhoff stress tensor S is used to derive
the constitutive equations. For the viscoelastic constitutive equations, the Kelvin-Voigt
model is used, and an explicit method of implementation is described.

In Skalak et al. (1973), it was shown that an RBC membrane cannot change thickness
in response to an in-plane stress, but rather, only the shape of a surface element can
change; that is, it is isotropic in the plane of the membrane. Because of the fixed thickness,
applied forces are considered to be distributed in a per-unit-length manner. Therefore, the
constitutive relations will be expressed in the form of resultant quantities vs. deformation
(Evans and Hochmuth, 1976).

4.1 Hyperelastic model

The material of an RBC is able to recover to its original undeformed state after un-
dergoing high-order deformations; thus, it falls within the definition of a hyperelastic
material. For an isotropic hyperelastic material, the existence of a strain-energy function
Ψ is postulated, which describes the strain energy per unit volume under deformation.
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Ψ is a scalar-valued function of one tensor variable, such as F, C or E, and is assumed
to be continuous. To express the internal energy of a body, any stress measure can be
used. However, this variable cannot be selected arbitrarily. Each stress tensor is related
to a defined strain tensor through the rate of change in the internal energy. The second
Piola-Kirchhoff stress tensor S is expressed as

S = Sijgi0 ⊗ gj0 (4.1)

and is energetically conjugate to the Green-Lagrange strain tensor. Therefore, it is used
to define the constitutive equation for a hyperelastic material, in the so-called ‘Green
elastic material model’. The constitutive equation considered to describe this model is
(Holzapfel, 2000)

Sij = ∂Ψ
∂Eij

= 2 ∂Ψ
∂Cij

(4.2)

The relation
σ = J−1FSFT (4.3)

is the explicit expression for calculating the symmetric Cauchy or true stress tensor σ,
where J is the determinant of the deformation gradient and can be computed as follows:

J = detF =
√
detC (4.4)

The second Piola-Kirchhoff stress tensor relates the forces to the deformed area,
whereas the Cauchy stress tensor relates them to the original configuration. The in-
variants of C are needed for some hyperelastic models. In terms of the components of C,
the invariants are expressed as follows:

I1 = tr(C) = C11 + C22 + C33

I2 = C11C22 + C22C33 + C33C11 − C12C21 − C23C32 − C13C31

I3 = detC = C11C22C33 + 2C12C23C13 − C11C23C32 − C22C13C31 − C33C12C21

(4.5)

Ψ is assumed to have continuous derivatives with respect to the principal invariants
Ii of the tensor C. Using the chain rule, it is possible to find that

∂I1

∂C
= I (4.6)

∂I2

∂C
= I1I−C (4.7)

∂I3

∂C
= I3C−1 (4.8)
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Thus, the most general form of a stress relation in terms of the invariants of C for an
isotropic hyperelastic material at finite strain is

S = 2∂Ψ
∂C

= 2
[(

∂Ψ
∂I1

+ I1
∂Ψ
∂I2

)
I− ∂Ψ

∂I2
C + I3

∂Ψ
∂I3

C−1
]

(4.9)

An RBC is a very thin bilayer lined with a protein network. It behaves as a two-
dimensional incompressible elastic sheet with nonlinear constitutive behavior.

For the study of materials that maintain a constant volume throughout their motion,
the incompressibility constraint, J = 1, must be considered. Therefore, the strain-energy
function is defined as follows:

Ψ = Ψ(C)− p(J − 1) (4.10)

where the scalar p is a Lagrange multiplier, identified as a hydrostatic pressure. Thus, for
the constitutive equation, one has

Sij = 2 ∂Ψ
∂Cij

= 2
(
∂Ψ
∂Cij

− ∂p

∂Cij
(J − 1)− p ∂J

∂Cij

)
(4.11)

According to Equation (4.4) and with the application of the chain rule, the derivative
of the Jacobian determinant is obtained as follows:

∂J

∂Cij
= 1

2JC
ij (4.12)

Then, for incompressible hyperelasticity,

Sij = 2 ∂Ψ
∂Cij

− pCij (4.13)

For the shell model, to satisfy the plane stress conditions, C33 needs to be determined
such that S33 = 0. Applying this restriction results in the following expression for p:

p = 2 ∂Ψ
∂C33

C33 (4.14)

Then, using Equation (3.35), the in-plane components of the second Piola-Kirchhoff
stress tensor are obtained as follows:

Sαβ = 2 ∂Ψ
∂Cαβ

− 2 ∂Ψ
∂C33

(J0)−2gαβ (4.15)
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Finally, the components of the resultant membrane and bending stresses for the hy-
perelastic incompressible model, in local coordinates, are obtained via integration through
the thickness:

tαβ =
∫ h/2

−h/2
Sαβdz (4.16)

mαβ =
∫ h/2

−h/2
Sαβzdz (4.17)

4.1.1 Strain-energy functions

Several attempts have been made to describe the nonlinear stress–strain behaviors
of complex materials such as rubbers, polymers, and biological tissues. A combination
of strain invariants can be used to mathematically define the strain-energy function to
represent the mechanical behavior of so-called rubber-like materials.

The strain-energy function for the Mooney-Rivlin model (Mooney, 1940) is

Ψ = c1 (I1 − 3) + c2 (I2 − 3) (4.18)

where I1 and I2 are the invariants of the right Cauchy-Green tensor C. The authors of
this model stated that just as two constants, the modulus of rigidity and the Poisson ratio,
are required to characterize the infinitesimal deformation of an elastic material, so are two
constants, c1 and c2, required to characterize the moderate deformation of a superelastic
material. c1 and c2 are empirically determined and are related to the linear elastic shear
modulus G.

In Rivlin and Rideal (1948), further developments in the general theory of highly
elastic materials were presented, and a model similar to Hooke’s law was introduced,
called the neo-Hookean model. The strain-energy function takes the following form:

Ψ = c1 (I1 − 3) (4.19)

where c1 is a material constant. Using (3.9) for the partial derivatives of Ψ and (3.15) for
the in-plane components, one obtains the following stress-strain relations for the Mooney-
Rivlin model:

Sαβ = 2c1
(
gαβ0 − J−2

0 gαβ
)

+ 2c2J
−2
0

(
gαβ0 − gαβg

αβ
0 gαβ

)
(4.20)
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Figure 4.1: Spring-dashpot models. a) Maxwell b)Kelvin-Voigth. Lakes (2009)

Similarly, the following relations are obtained for the neo-Hookean model:

Sαβ = 2c1
(
gαβ0 − J−2

0 gαβ
)

(4.21)

The equations described above considered a material description. In practice, the
Cauchy stresses are of engineering significance. A spatial description can be found in
Bonet et al. (2016)

4.2 Membrane viscosity

In modeling an RBC, it is important to consider that the membrane has a finite viscos-
ity. Viscoelastic behavior is understood as the capacity to return to the initial geometry
when the load is removed; however, this state is reached only after a certain amount of
time. Thus, any deformation depends on time.

Viscoelastic materials are those for which the relationship between stress and strain
depends on time. The spring-dashpot models are commonly used with an acceptable out-
come, represented by a perfectly elastic spring with an elastic modulus E and a perfectly
viscous dashpot, with η as viscosity. The Maxwell model consists of a spring and dashpot
in series. The total deformation, or strain, is the sum of the strains in both elements.
The Kelvin-Voigt model consist of a spring and dashpot in parallel so that they both
experience the same deformation or strain. The total stress is also the sum of the stresses
in each element. Both models are shown in Figure 4.1 (Lakes, 2009).

35



When an RBC is suspended in a shear flow, it deforms under the influence of the
viscous stresses exerted by the suspending medium. In this work, the Kelvin-Voigt model
is assumed. This model consists of a spring and a dashpot in parallel such that both
experience the same deformation or strain and the total stress is the sum of the stresses
on each element.

According to Yazdani and Bagchi (2013), the membrane response is likely to be more
complicated than that of the Kelvin-Voigt model; however, this model has the advantages
of being simple and introducing a single constant parameter. The stress tensor is the sum
of the elastic and viscous contributions:

σ = σe + σv (4.22)

If the shell is incompressible, as is the case for many biological membranes with a
bilayer structure, only the pure shear components of the strain rate are relevant. For a two-
dimensional membrane with a surface viscosity µs, the viscous contribution is (Barthes-
Biesel and Sgaier, 1985)

σv = 2µse (4.23)

where e is the strain rate tensor and depends on the velocity field v. Then, the Cartesian
components of e are defined as

eij = 1
2

[
∂vi
∂xj

+ ∂vj
∂xi

]
(4.24)

Following Barthes-Biesel and Sgaier (1985), one of the approaches to coupling the fluid
and solid mechanics is to ensure the continuity of velocities between the liquid and the
membrane, i.e.,

vf = vm (4.25)

where
vm = dx

dt
(4.26)

and vf represents the fluid velocity on the surface.

Under the assumption of a constant velocity throughout the thickness, the total stress
σ is also constant; however, the deformation gradient must be calculated at each Gauss
point throughout the thickness. Thus,

S = JF−1σF−T (4.27)
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Finally, the resultant stresses are obtained via integration through the thickness using
Equations (4.16) and (4.17).

4.3 Statics of a shell

All external loads are statically equivalent to a distributed resultant force and a re-
sultant moment per unit area of the middle surface. The Cartesian components f i of the
resultant force are

f i = Zi
βf

β + f 3N i (4.28)

where f 3 is the component in the normal direction of the resultant force. One requirement
for obtaining the equations of equilibrium of a shell element is that the resultant force
vanishes. Using the divergence theorem, one obtains, for the tangent plane,

∇αt
αβ − bβαqα + fβ = 0 (4.29)

where qα is the shear force vector. For the normal direction,

∇αq
α + bαβt

αβ + f 3 = 0 (4.30)

These are the equations of equilibrium in the tangent plane (Equation (4.29)) and
in the normal direction (Equation (4.30)). Another requirement is that the resultant
moment vanishes. Finally, the equilibrium condition for the resultant moment is

∇αm
αβ − qβ = 0 (4.31)

Then, from the resultant bending effort mαβ and the last equation, one can find the
shear force vector qα. Next, from the internal resultant forces tαβ and Equations (4.29)
and (4.30), the final step is to find the Cartesian components of the resultant traction
acting on the membrane, f i.
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Chapter 5

Numerical Technique: Spherical
Harmonics Functions

Numerical methods for solving problems defined by partial differential equations can
be classified into two categories: local and global. The widely used FEM is formulated
in local terms, while the spectral method has global characteristics (Shen et al., 2011).
For complex geometries, FEM results are more suitable, while if the domain is flexible,
spectral methods can provide better precision.

There are methods that combine the advantages of both approaches, e.g., the spectral-
element method. In Wang and Dimitrakopoulos (2006), for example, a three-dimensional
spectral boundary element algorithm for interfacial dynamics in a Stokes flow and/or
gravity was presented. This approach exploits all the benefits of spectral methods along
with the versatility of the FEM.

This work uses spherical harmonic functions to describe the strain and stress fields
over the RBC surface. Using the formulations in the previous chapters, displacements and
resultant efforts are calculated for the Gauss points. Then, by using spherical harmonic
functions, these variables can be computed at any point on the surface. Therefore, it is an
indirect method because it consists in calculating the coefficients of the harmonic analysis
despite these coefficients not having any physical meaning.

5.1 Spectral methods

In the context of the numerical processes developed to solve partial differential equa-
tions, spectral methods belong to the class of weighted residual methods (WRMs). WRMs
are based on a general method of obtaining solutions to equations of change (e.g., the en-
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ergy balance equations for an incompressible fluid). The unknown solution is expanded
in a set of trial functions, which are prespecified but are weighted by adjustable constants
(or functions), which are chosen to yield the best solution to the differential equations
(Finlayson, 1972).

The trial/test functions are a major feature that distinguishes spectral methods from
the FEM or the finite difference method. In applications of spectral methods, global func-
tions are used; trigonometric functions or orthogonal polynomials are commonly chosen.

5.2 Spherical harmonics

For smooth geometries, spectral methods can be used with great accuracy based on
global arguments. In mathematics and the physical sciences, spherical harmonics are spe-
cial functions defined on the surface of a sphere. They are often employed when solving
partial differential equations that commonly occur in science. It is defined as a Galerkin
formulation because the test functions are the same as the trial ones and it assumes that
the boundary conditions are periodic or homogeneous.

Given a discrete function f(θi, φj) defined on a grid with N latitudinal points (θi,
i = 1, ..., N) and 2N − 2 longitudinal points (φj, j = 1, ..., 2N − 2), a harmonic analysis
consists of determining the coefficients am,n and bm,n such that f(θi, φj) can be synthesized
as follows (Swarztrauber and Spotz, 2000):

f(θi, φj) =
N−1∑
n=0

n∑
m=0

P̄m
n (θi) (am,n cosmφj + bm,n sinmφj) (5.1)

where the P̄m
n (θi) are tabulations of the normalized associated Legendre functions, defined

as:

P̄m
n (θ) = 1

2nn!

[
2n+ 1

2
(n−m)!
(n+m!)

]1/2

cosm θ d
n+m

dxn+m

(
x2 − 1

)n
;x = sin θ (5.2)

Such an analysis consists of two phases. First, the fast Fourier transform is applied to
compute

am (θi) = 1
2N − 2

2N−2∑
j=1

f(θi, φj) cosmφj (5.3)

and
bm (θi) = 1

2N − 2

2N−2∑
j=1

f(θi, φj) sinmφj (5.4)
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Using a Gaussian distribution for θi, the coefficients are then given in the second phase
by

am,n =
N∑
i=1

wiam (θi) P̄m
n (θi) (5.5)

and
bm,n =

N∑
i=1

wibm (θi) P̄m
n (θi) (5.6)

where the wi are Gaussian weights. Once the coefficients are calculated the value of the
function f can be computed at any point in the sphere surface using Equation (5.1)

The Gauss points are computed as the eigenvalues of a symmetric tridiagonal matrix,
as described in Adams and Swarztrauber (1999), where the SPHEREPACK suite, which
was used in this work, was introduced. SPHEREPACK is a collection of FORTRAN
programs for harmonic transforms on Gaussian and equally spaced grids that can assist
in the development of models for geophysical processes.

SPHEREPACK contains programs for computing certain common differential opera-
tors, such as divergence, vorticity, gradients, and the Laplacians of both scalar and vector
functions. It can also be used to solve time-dependent partial differential equations. The
accuracy is uniform on a sphere.

The subroutine shagcm computes the coefficients am,n and bm,n to synthesize a given
field. In this work, the subroutine shagcm was used to synthesize the following fields:

• normal vectors to the middle surface,

• strains (stretching and curvature),

• resultant moments and membrane efforts, and

• shear forces and traction on the middle surface.

These coefficients contain all the information of the given field; i.e., given am,n and
bm,n, one can calculate the value of any of the mentioned fields at any point on the sur-
face. For example, if Xi represents the geometry of an arbitrary state of the surface in
Cartesian coordinates, then:

[am,n(Xi), bm,n(Xi)] = shagcm(Xi) (5.7)

synthesizes the field Xi. The subroutine gradgcm uses the coefficients am,n and bm,n
to calculate the basis of the middle surface a1 and a1 for both initial and deformed con-
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figuration, i.e.

[
∂Xi

∂θ
,
∂Xi

∂φ

]
= gradcm(am,n(Xi), bm,n(Xi)) (5.8)

The subroutine gaqdm is used to determine the latitudinal Gauss points and their
respective weights for the desired latitudinal divisions. In Swarztrauber (2003), a full de-
scription of the calculation of the points and weights for Gauss-Legendre quadrature using
double-precision computations is presented; thus, software implementations are highly ro-
bust.

Then, for a given latitude spacing of any surface that can be parameterized in spherical
coordinates the subroutine gaqdm gives the distribution on the θi axis and their respective
weights wi. For a better understanding, take a number of latitudinal divisions of 21,
nlat = 21, the distribution for a unit radius sphere on one longitudinal division is presented
in Figure 5.1 and the values of θi with their respective weights wi in Table 5.1
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Table 5.1: Gauss points and weights

θi wi

0.1118 0.0160
0.2567 0.0370
0.4025 0.0571
0.5484 0.0761
0.6944 0.0934
0.8404 0.1088
0.9865 0.1218
1.1326 0.1323
1.2786 0.1399
1.4247 0.1445
1.5708 0.1461
1.7169 0.1445
1.8630 0.1399
2.0090 0.1323
2.1551 0.1218
2.3012 0.1088
2.4472 0.0934
2.5932 0.0761
2.7391 0.0571
2.8849 0.0370
3.0298 0.0160
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5.3 Implementation of the harmonic analysis

The computational implementation of the problem is as follow:

1. define the degree of the spherical harmonic expansion N in Equation (5.1);

2. define the latitude nlat and longitude nlon = 2(nlat−1) spacing that will determine
the distribution of the Gauss points in the middle surface;

3. use the gaqdm routine to calculate the location of the Gauss points and create a
mesh of this points;

4. get the initial sphere geometry using the parametric equations in Annex I for the
mesh created. For a 10 radius sphere the Gauss points are shown in Figure 5.2;

5. get the deformed sphere geometry. For the inflation of a balloon example, the de-
formation is induced increasing the radius of the sphere. For the RBC the deformed
geometry is flow induced;

6. calculate the basis vectors at each Gauss point using the gradgcm routine, then the
normal vector is obtained as the cross product of the basis. This is done for the
middle surface at the initial and deformed configuration;

43



7. get the metric aαβ and curvature bαβ tensors defined by Equation (3.15) and (3.20),
respectively;

8. in this step the formulation described in section 3.4 is used, and the strain εαβ and
bending tensor καβ of the motion are obtained;

9. integrate through the thickness direction, get the resultant membrane tαβ and bend-
ing mαβ stresses defined by Equation (4.16) and Equation (4.17) for each model
described in section 4.1.1;

10. finally, get the resultant force f i on each Gauss point of the middle surface using
section 4.3.
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Chapter 6

Numerical applications

In this chapter, the shell formulation presented in Chapter 3 is tested for the constitu-
tive equations described in Chapter 4. Geometrically nonlinear analyses are performed.

6.1 Spherical balloon

With the aim of validating the code and evaluating shell deformations, in this example,
the two strain functions defined in Equation (4.18) and Equation (4.19) are used to obtain
the internal pressure defined in Equation (4.28). The inflation of a balloon consisting of an
incompressible rubber is analyzed. A sketch of the internal pressure is shown in Figure 6.1.

The results are compared with Holzapfel (2000), in which the internal pressure and
the circumferential stretch λ are given analytically. The initial radius of the rubber bal-
loon is R = 10.0, and the wall thickness is H = 0.1. The shear modulus considered is
µ = 4.225 · 105 N/m2. For the Mooney-Rivlin model, c1 = 0.4375µ and c2 = 0.0625µ. For
the neo-Hookean model, c1 = µ/2.

The analytical expression

p = 2H
R

M∑
p=1

µp
(
λαp−3 − λ−2αp−3

)
(6.1)

gives the relation between the inflation pressure pi and the circumferential stretch λ at
any point on the rubber balloon for various constitutive models, here p is dimensionless.
For the Mooney-Rivlin model, α1 = 2, α2 = −2 and M = 2; for the neo-Hookean model,
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Figure 6.2: Inflation of a balloon: stretch-pressure curve

α1 = 2 and M = 1. That is, for the Mooney-Rivlin model:

p = 2H
R

(
µ1
(
λ−1 − λ−7

)
+ µ2

(
λ−5 − λ

))
(6.2)

and for the neo-Hookean:

p = 2H
R
µ
(
λ−1 − λ−7

)
(6.3)

Figure 6.2 shows the stretch-pressure curves for the Mooney-Rivlin model and figure
6.3 for the neo-Hookean model. Perfect agreement with the analytical solution is ob-
served. The degree of the spherical harmonic expansion for undeformed and deformed
shapes, used to compute the coefficients defined by Equation (5.5) and Equation (5.6),
is N = 10. The implemented formulations result in low-cost and robust computations.
Figure 6.4 shows the undeformed geometry as a full spheroid and the deformed geometries
at every other load step as half-spheroids.

The analytical expression

σ =
M∑
p=1

µp
(
λαp − λ−2αp

)
(6.4)

gives the expression for the true axial stress σ as function of the stretch. Good agreement
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Figure 6.4: Inflation of a balloon: undeformed and deformed geometries
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Figure 6.5: Inflation of a balloon: stretch-stress curve

is shown in figure 6.5 and figure 6.6 for the Mooney-Rivlin and Neo-Hookean models,
respectively.

To determine the proper grid for the simulation, an analysis of convergence was per-
formed as shown in Figure 6.7, therefore, the value of nlat = 41 was used for the analysis
made in this example.

This numerical test is largely studied, in addition to the cited references it also was per-
formed and can be found in Needleman (1977), Wriggers and Taylor (1990), Gruttmann
and Taylor (1992), Ibrahimbegović and Gruttmann (1993) and Moita (1994). The latter
used a three-dimensional non-linear membrane element, deriving the finite element equa-
tions for the element using a total Lagrangian formulation. As the problem exhibits a
Snap-through and to pass this limit-point an arc-length procedure was applied in addi-
tion to the full Newton-Raphson method to determine the complete solution path. Using
approximately six iterations per step with a quadratic convergence behaviour.

More recently, Kiendl et al. (2015) studied the same problem using a Non-Uniform
Rational B-Splines discretization of the sphere geometry and they found a perfect agree-
ment with the analytical solutions. Since this example has been widely studied it is a
benchmark problem in the study of hyperelastic materials. In this work, with the formu-
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Figure 6.6: Inflation of a balloon: stretch-stress curve
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lation presented and using a spherical harmonic analysis, not found in literature a perfect
agreement with the analytical expressions are found. The code developed deals whit high
nonlinearities without any convergence problem.

6.2 RBC simulations in an infinite shear flow

For this implementation, the deformation of a solitary RBC suspended in an infinite
shear flow along the x-axis is analyzed. The study of the flow was not part of this work;
the main focus was the kinematics, the constitutive relations for a second-order analysis
and the use of spherical harmonic functions.

The fluid and solid mechanics is coupled from the continuity of velocities between
the liquids and the membrane. The fluid mechanics is described by the Stokes equations
because the size of the particle is very small. Thus, the inertial effects may be neglected.
To calculate the velocity on a point that lies in the cell membrane, the boundary-integral
formulation for Stokes flow must be solved (Pozrikidis, 1992).

Under the assumption of an unstressed initial state, a normal RBC has the shape of
a biconcave disk. The following parametric equations are used to describe a resting RBC
Pozrikidis (2005):

x1 = α sinφ cos θ
x2 = α sinφ sin θ

x3 = aα2 (0.207 + 2.003 sin2 φ− 1.123 sin4 φ) cosφ
0 ≤ θ ≤ 2π
0 ≤ φ ≤ π

(6.5)

where the dimensionless coefficient α = 1.3858189 is the ratio of the maximum radius of
the biconcave disk to the equivalent cell radius a; for a normal RBC, a ≈ 2.82 µm. The
resting shape is shown in Figure 6.8 and Figure 6.9

A sketch of an undeformed biconcave red cell suspended in a simple shear flow is shown
in Figure 6.10. The Kelvin-Voigth model is used. The elastic part of the stress tensor is
modeled as a neo-Hookean material with µ = 3x10−3dyn/µm (Pozrikidis, 2005) and for
the membrane viscosity µs = 5x10−4dyn/µm (Barthes-Biesel and Sgaier, 1985).

51



Figure 6.8: Undeformed RBC
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Figure 6.9: Sketch of an undeformed RBC
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Figure 6.10: Sketch of an undeformed RBC suspended in a simple shear flow

Experimental data have shown that a suspension of human RBCs moving through
glass tubes deform into a parachute shape as shown in Pozrikidis (2005) (Figure 6.11).
Figure 6.12 and Figure 6.13 shows the evolution of the RBC from a resting shape rotated
π/2 ending in a parachute shape por n = 200 steps each of ∆t = 1e− 2.

In order to evaluate the contribution of the viscous part, two analysis of 10000 steps
with ∆t = 1e − 3 are made from a resting shape rotated π/4. In the first one only the
elastic contribution is considered using the neo-Hooken model. Then, the viscous part
is added to the elastic part for the Kelvin-Voigth model. The evolution of the resultant
traction vs. the stretch of a Gauss point is shown in Figure 6.14. The contribution of the
viscous part seems not to be significant. This could be for the chosen parameters, a deeper
study of the parameters must be done in further works. The position of the Gauss points
for the resting shape is shown in Figure 6.15 where the Gauss point analyzed is highlighted.

From Figure 6.16 to Figure 6.26 the evolution of a RBC from a unstressed state n = 1
to n = 10000 for a ∆t = 1e − 3 is shown as well as the resultant traction in the surface
for the flow-induced deformation. Showing the capacity of the developed algorithm in
leading with flow-structure interaction for large strains.
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Figure 6.11: From Pozrikidis (2005). A suspension of human RBCs moving through glass tubes with
approximate diameters 4.5 µm (top), 7 µm (middle), and 15 µm (bottom); the flow direction is from left
to right.
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Figure 6.12: Snapshots of a RBC in a simple shear flow
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Figure 6.16: Snapshot of a RBC in a simple shear flow. step = 1
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Figure 6.17: Snapshot of a RBC in a simple shear flow. step = 1000
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Figure 6.18: Snapshot of a RBC in a simple shear flow. step = 2000
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Figure 6.19: Snapshot of a RBC in a simple shear flow. step = 3000
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Figure 6.20: Snapshot of a RBC in a simple shear flow. step = 4000
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Figure 6.21: Snapshot of a RBC in a simple shear flow. step = 5000
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Figure 6.22: Snapshot of a RBC in a simple shear flow. step = 6000
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Figure 6.23: Snapshot of a RBC in a simple shear flow. step = 7000
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Figure 6.24: Snapshot of a RBC in a simple shear flow. step = 8000
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Figure 6.25: Snapshot of a RBC in a simple shear flow. step = 9000
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Figure 6.26: Snapshot of a RBC in a simple shear flow. step = 10000
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Chapter 7

Conclusions

7.1 General conclusions

This work focused on the study of second-order analyses with the aim of modeling bi-
ological cells. The ultimate goal is to use the classical shell theory to study the nonlinear
behavior of the RBC membrane. There are several difficulties that can arise when dealing
with highly nonlinear analyses. Large deformations and nonlinear constitutive relations
can lead to numerical instabilities, depending on the numerical method used.

The use of tensor calculus facilitated the kinematic description and the formulation of
the constitutive relations of the material, allowing calculations to be performed in several
coordinate systems via simple transformations. Thus, by means of the dimensional re-
duction achieved through the Kirchhoff hypotheses, the stresses, deformations, etc. were
calculated in 2D space, and using the fundamental tensors and the shift tensor, these
values were simply transformed into Cartesian coordinates.

The neo-Hookean and Rivlin-Mooney hyperelastic constitutive models were consid-
ered for simulating large elastic deformations, and no problems were observed. The in-
compressibility condition was imposed, and the resultant membrane and bending efforts
were calculated. In the development of the thin shell elements, a Lagrangian description
was used, and when this description was implemented, the results showed excellent con-
gruence with analytical expressions found in the literature.

Because the geometry of RBCs can be described in spherical coordinates, spherical
harmonic functions were used to synthesize the main analysis variables. Fields of resultant
efforts such as traction and bending, strains, curvature, fundamental tensors, and normal

62



vectors at the surface were synthesized based on the coefficients an,m and bn,m.

These coefficients store the information of any tensor fields, allowing their values at
any location on the surface to be known. This is the main reason why the developed code
has a low computational cost, even when dealing with large nonlinearities. It is important
to note that this work was based on a indirect method because it consists in calculating
the coefficients of the harmonic analysis despite these coefficients not having any physical
meaning.

The main advantage found during the development of this work is the fact that there
is no need for an iteration process in the calculation of the fields (stresses, strains) because
it is a semi-analytical method. Thus, using the classical shell theory, these fields can be
computed in a grid of Gauss points.

Whereas it is established that the RBC membrane do have a viscous component, in
the comparison made between the purely hyperelastic models and the model considering
a viscous contribution, no significant contribution of the membrane viscosity was noted.
This may come about as a result of the parameters adopted both for the membrane and
for the fluid. So a parametric analysis is highly recommended as next step, besides the
Kelvin-Voigth model, considered in this work, is likely not able to reproduce the exact
behavior of the RBC membrane.

As mentioned before, this work belongs to a project that is still in its early stages thus,
many limitations can be mentioned so far. In the development of this work the following
were some of the major findings

• The geometry must be closed and should be described in spherical coordinates. This
is also the main feature of the method used in this work, because that is exactly why
this approach was studied as the geometry of the RBCs can be defined in spherical
coordinates even though this restricts its applications to other geometries.

• The study of contact between several RBCs should be more challenging than the
simulations presented in this work due to the nonlinearity result of the friction
between cells.

• Given that the harmonic analysis synthesizes a field over a sphere, the formulation
presented here only considers surface loads.
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7.2 Future Works

This work was part of the beginning of a research project with a very ambitious goal:
the modeling of RBCs passing through microcapillaries. Thus, the need for further work
corresponds to the continuation of the project itself. The following may be mentioned as
suggestions for future work:

• in this work the deformed configuration was imposed in order to obtain the resulting
efforts. Thus, implement the calculation of the deformed configuration given an
specific field of traction over the surface is a natural next step;

• modeling specific experiments such as the optical tweezers method, with the aim of
numerically validating the presented viscoelastic model;

• studying the interaction of several RBCs in a confined blood flow;

• implementing the tank-treading motion in a shear flow;

• implementing the contact between the cells and the walls of the microcapillaries;

• studying other methods of introducing the viscous part of the Kelvin-Voigt model,
for example, through a time-dependent function for the relaxation of the membrane
shear viscosity. Also, a spatial formulation can be developed to study if there is any
difference with the formulation presented ;

• studying the behavior of unhealthy RBCs; and

• studying the influence of the parameters from the constitutive models proposed in
this work.
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Annex I

Surface properties: Sphere

Coordinates transformation

x(θ, φ) = R sin θ cosφ, y(θ, φ) = R sin θ sinφ, z(θ, φ) = R cos θ (I.1)

Cartesian metric tensor

Zij =


1 0 0
0 1 0
0 0 1

 (I.2)

Shift tensor

Zi
α =


R cos θ cosφ −R sin θ sinφ
R cos θ sinφ R sin θ cosφ
−R sin θ 0

 (I.3)

metric tensor

aαβ =
 R cos θ cosφ R cos θ sinφ −R sin θ
−R sin θ sinφ R sin θ cosφ 0



R cos θ cosφ −R sin θ sinφ
R cos θ sinφ R sin θ cosφ
−R sin θ 0

 =

 R2 0
0 R2 sin2 θ


(I.4)
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normal vector n

n =
dx
dθ

||dx
dθ
||

=

∣∣∣∣∣∣∣∣∣
i j k

R cos θ cosφ R cos θ sin θ −R sin θ
−R sin θ sinφ R sin θ cosφ 0

∣∣∣∣∣∣∣∣∣ =


R2 sin2 θ cosφ
R2 sin2 θ sin2 φ

R2 sin θ cos θ

 =


sin θ cos θ
sinφ cosφ

cos θ


(I.5)

covariant derivative of the normal vector

∇αN
i = ∂N i

∂Sα
=


cos θ cosφ − sin θ sinφ
cos θ sin θ sin θ cosφ
− sin θ 0

 (I.6)

curvature tensor

bαβ = −Zi
α∇βN

i = −
 R 0

0 R sin2 θ

 (I.7)
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