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RESUMO

A Metaheuristic and Simheuristic Approach for the p-Hub Median Problem

from a Telecommunication Perspective

Autor: Stephanie Milena Alvarez Fernandez

Orientador: Daniel Guerreiro e Silva

Orientador: Daniel Riera i Terrén

Co-orientadora: Jésica de Armas Adrián

Programa de Pós-graduação em Engenharia Elétrica

Brasília, Dezembro de 2018

Avanços recentes no setor das telecomunicações oferecem grandes oportunidades para cidadãos

e organizações em um mundo globalmente conectado, ao mesmo tempo em que surge um vasto

número de desa�os complexos que os engenheiros devem enfrentar. Alguns desses desa�os podem

ser modelados como problemas de otimização. Alguns exemplos incluem o problema de alocação

de recursos em redes de comunicações, desenho de topologias de rede que satisfaça determinadas

propriedades associadas a requisitos de qualidade de serviço, sobreposição de redes multicast e

outros recursos importantes para comunicação de origem a destino.

O primeiro objetivo desta tese é fornecer uma revisão sobre como as metaheurísticas têm sido

usadas até agora para lidar com os problemas de otimização associados aos sistemas de teleco-

municações, detectando as principais tendências e desa�os. Particularmente, a análise enfoca os

problemas de desenho, roteamento e alocação de recursos. Além disso, devido á natureza desses

desa�os, o presente trabalho discute como a hibridização de metaheurísticas com metodologias

como simulação pode ser empregada para ampliar as capacidades das metaheurísticas na resolução

de problemas de otimização estocásticos na indústria de telecomunicações.

Logo, é analisado um problema de otimização com aplicações práticas para redes de teleco-

municações: o problema das p medianas não capacitado em que um número �xo de hubs tem

capacidade ilimitada, cada nó não-hub é alocado para um único hub e o número de hubs é conhe-

cido de antemão, sendo analisado em cenários determinísticos e estocásticos. Dada a sua variedade

e importância prática, o problema das p medianas vem sendo aplicado e estudado em vários con-

textos.

Seguidamente, propõem-se dois algoritmos imune-inspirados e uma metaheurística de dois es-

tágios, que se baseia na combinação de técnicas tendenciosas e aleatórias com uma estrutura de

busca local iterada, além de sua integração com a técnica de simulação de Monte Carlo para resol-

ver o problema das p medianas. Para demonstrar a e�ciência dos algoritmos, uma série de testes

computacionais é realizada, utilizando instâncias de grande porte da literatura. Estes resulta-

dos contribuem para uma compreensão mais profunda da e�cácia das metaheurísticas empregadas

para resolver o problema das p medianas em redes pequenas e grandes. Por último, uma aplica-



ção ilustrativa do problema das p medianas é apresentada, bem como alguns insights sobre novas

possibilidades para ele, estendendo a metodologia proposta para ambientes da vida real.

Palavras Chave: Metaheurísticas, Sistemas de Telecomunicações, Problema de Localização de

Hubs, Algoritmos de Aleatorização, Busca Local Iterada, Simheurístics.
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Recent advances in the telecommunication industry o�er great opportunities to citizens and

organizations in a globally-connected world, but they also arise a vast number of complex chal-

lenges that decision makers must face. Some of these challenges can be modeled as optimization

problems. Examples include the framework of network utility maximization for resource allocation

in communication networks, �nding a network topology that satis�es certain properties associated

with quality of service requirements, overlay multicast networks, and other important features for

source to destination communication.

First, this thesis provides a review on how metaheuristics have been used so far to deal with

optimization problems associated with telecommunication systems, detecting the main trends and

challenges. Particularly the analysis focuses on the network design, routing, and allocation prob-

lems. In addition, due to the nature of these challenges, this work discusses how the hybridization

of metaheuristics with methodologies such as simulation can be employed to extend the capabilities

of metaheuristics when solving stochastic optimization problems.

Then, a popular optimization problem with practical applications to the design of telecommuni-

cation networks: the Uncapacitated Single Allocation p-Hub Median Problem (USApHMP) where

a �xed number of hubs have unlimited capacity, each non-hub node is allocated to a single hub

and the number of hubs is known in advance is analyzed in deterministic and stochastic scenarios.

p-hub median problems are concerned with optimality of telecommunication and transshipment

networks, and seek to minimize the cost of transportation or establishing.

Next, two immune inspired metaheuristics are proposed to solve the USApHMP, besides that,

a two-stage metaheuristic which relies on the combination of biased-randomized techniques with

an iterated local search framework and its integration with simulation Monte Carlo technique for

solving the same problem is proposed. In order to show their e�ciency, a series of computational

tests are carried out using small and large size instances from the literature. These results con-

tribute to a deeper understanding of the e�ectiveness of the employed metaheuristics for solving



the USApHMP in small and large networks. Finally, an illustrative application of the USApHMP

is presented as well as some insights about some new possibilities for it, extending the proposed

methodology to real-life environments.

Keywords: Metaheuristics, Telecommunication Systems, Hub Location Problem, Randomiza-

tion Algorithms, Iterated Local Search, Simheuristics.



RESUMEN

A Metaheuristic and Simheuristic Approach for the p-Hub Median Problem

from a Telecommunication Perspective

Autor: Stephanie Milena Alvarez Fernandez

Director: Daniel Guerreiro e Silva

Director: Daniel Riera i Terrén

Co-directora: Jésica de Armas Adrián

Programa de Pós-graduação em Engenharia Elétrica

Brasília, Diciembre de 2018

Los recientes avances en la industria de las telecomunicaciones ofrecen grandes oportunidades

para ciudadanos y organizaciones en un mundo globalmente conectado, pero también presentan

una gran cantidad de desafíos complejos que son diariamente enfrentados por técnicos e ingenieros.

Algunos de estos desafíos se pueden modelar como problemas de optimización. Algunos ejemplos

incluyen la asignación de recursos en redes de comunicación, la búsqueda de una topología de

red que satisfaga ciertas propiedades asociadas con los requisitos de calidad de servicio, redes de

multidifusión superpuestas y otras características importantes para la comunicación de origen a

destino.

El primer objetivo de esta tesis es proporcionar una revisión de la literatura de cómo se han

utilizado estas técnicas, tradicionalmente, para tratar los problemas de optimización asociados a

sistemas de telecomunicaciones, detectando las principales tendencias y desafíos. En particular, el

estudio se centra en los problemas de diseño de red, enrutamiento y problemas de asignación de

recursos. Debido a la naturaleza de estos problemas, este trabajo también analiza cómo se pueden

combinar las técnicas metaheurísticas con metodologías de simulación para ampliar las capacidades

de resolver problemas de optimización estocásticos.

En seguida, se trata un popular problema de optimización con aplicaciones prácticas para redes

de telecomunicaciones, el problema de la p mediana no capacitado, analizándolo desde escenarios

deterministas y estocásticos. Este problema consiste en determinar el número de instalaciones

(medianas) en una red, minimizando la suma de todos los costes o distancias desde un punto de

demanda a la instalación más cercana. En general, el problema de la p mediana está ligado con

la optimización de redes de telecomunicaciones y de transporte, y buscan minimizar el costo de

transporte o establecimiento.

Luego, para resolverlo se proponen dos algoritmos inmunológicos y una metodología metaheu-

rística de dos etapas basado en la combinación de técnicas aleatorias sesgadas con un marco de

búsqueda local iterado y su integración con la técnica de simulación de Monte Carlo. La e�ciencia



de los algoritmos se prueba realizando una serie de test computacionales utilizando algunas de las

instancias más empleadas en la literatura, obteniendo unos resultados que demostraron el óptimo

desempeño de los algoritmos propuestos en instancias pequeñas y grandes al resolverlas en cuestión

de segundos y a un bajo costo computacional. Finalmente, se presenta una aplicación ilustrativa

del problema de la p mediana, así como algunas ideas sobre nuevas posibilidades para ello, que

extienden la metodología propuesta a problemas de la vida real.

Palabras clave: Metaheurísticas, Sistemas de Telecomunicaciones, Problema de Localización

de Concentradores, Algoritmos de Aleatorización, Búsqueda Local Iterada, Simheuristics.
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Els últims avenços en la industria de les telecomunicacions ofereixen grans oportunitats per

ciutadans i organitzacions en un món globalment connectat, però a la vegada, presenten reptes als

que s'enfronten tècnics i enginyers que prenen decisions. Alguns d'aquests reptes es poden mode-

litzar com problemes d'optimització. Exemples inclouen l'assignació de recursos a les xarxes de

comunicació, trobant una topologia de xarxa que satisfà certes propietats associades a requisits de

qualitat de servei, xarxes multicast superposades i altres funcions importants per a la comunicació

origen a destinació.

El primer objectiu d'aquest treball és proporcionar un revisió de la literatura sobre com s'han

utilitzat aquestes tècniques, tradicionalment, per tractar els problemes d'optimització associats a

sistemes de telecomunicació, detectant les principals tendències i desa�aments. Particularment,

l'estudi es centra en els problemes de disseny de xarxes, enrutament i problemes d'assignació de

recursos. Degut a la naturalesa d'aquests problemes, aquest treball també analitza com es poden

combinar les tècniques metaheurístiques amb metodologies de simulació per ampliar les capacitats

de resoldre problemes d'optimització estocàstics.

A més, es tracta un popular problema d'optimització amb aplicacions pràctiques per xarxes de

telecomunicació, el problema de la p mediana no capacitat, analitzant-lo des d'escenaris determinis-

tes i estocàstics. Aquest problema consisteix en determinar el nombre d'instal·lacions (medianes)

en una xarxa, minimitzant la suma de tots els costs o distàncies des d'un punt de demanda a la

instal·lació més propera. En general, el problema de la p mediana està lligat amb l'optimització de

xarxes de telecomunicacions i de transport, i busquen minimitzar el cost de transport o establiment

de la xarxa.

Es proposa dos algoritmes immunològics i un algoritme metaheurístic de dues etapes basat en

la combinació de tècniques aleatòries amb simulacions Monte Carlo. L'e�ciència de les algoritmes

es posa a prova mitjançant alguns dels test computacionals més utilitzats a la literatura, obtenint

uns resultats molt satisfactoris, ja que es capaç de resoldre casos petits i grans en qüestió de segons



i amb un baix cost computacional. Finalment, es presenta una aplicació il·lustrativa del problema

de la p mediana, així com algunes noves idees sobre aquest, que estenen la metodologia proposta

a problemes de la vida real.

Paraules clau: Metaheuristiques, Sistemes de Telecomunicacions, Hub Location Problem, Al-

goritmes de Randomització, Cerca Local Iterada, Simheuristics.
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Sumário

No mundo complexo de hoje há uma tendência visível na implementação de tecnologias in-

teligentes para o planejamento e gerenciamento das cidades, levando a uma maior otimização de

tempo e recursos e resultando em mais e�ciência. Em seu uso como um adjetivo, no contexto da

tecnologia moderna, inteligente implica que seguindo os processos de programação ou orientação

de computadores, algum nível de autonomia inteligente ou automação está envolvido.

Como consequência do constante desenvolvimento e pesquisa sobre novas tecnologias, tem sido

feitos enormes avanços em tecnologia de computadores e redes de comunicação. Esses avanços

tecnologicos geram muitos desa�os para a comunidade cientí�ca na área de otimização. Alguns

desses desa�os podem ser formulados como problemas de otimização combinatorial (COPs do inglês

combinatorial optimization problems), como no caso do problema de atribuição de frequência em

redes de rádio, o problema de desenho de redes, o problema de roteamento ou a otimização de

alocação de canais.

Além disso, a diversidade de redes implantadas e, acima de tudo, o ritmo acelerado das mu-

danças tecnológicas aumentam a necessidade de novas abordagens de otimização que apoiem a

tomada de decisão inteligente. Algumas das principais forças motrizes por trás desses requisitos

são a necessidade de garantias de qualidade de serviço (QoS do inglês Quality of Service) e o cresci-

mento explosivo no tamanho e uso da rede. A demanda por comunicações móveis aumentou, no

entanto, há um espectro �nito alocado para esses serviços, o que levanta o problema de alocação

de canal em sistemas de rádio móvel.

Devido à grande aplicabilidade desses problemas e da sua di�culdade de solução por métodos

exatos de forma e�ciente, diversos trabalhos tem sido dedicados ao desenvolvimento de algorit-

mos heurísticos e metaheurísticos. Nos últimos anos, diversas heurísticas foram apresentadas

onde metaheurísticas clássicas são combinadas entre si ou são utilizadas em conjunto com outros

métodos não-metaheurísticos. Estas abordagens são conhecidas como metaheurísticas híbridas.

A hibridização possui um papel importante para a resolução desses problemas, uma vez que os

algoritmos resultantes de hibridização, em geral, apresentam comportamento mais e�ciente do que

as metaheurísticas individualmente. Isto se deve ao fato de que hibridizações de metaheurísticas

combinam as características mais promissoras de cada técnica utilizada, fortalecendo a estratégia

como um todo.

A primeira parte desta tese apresenta como as metaheurísticas vêm ganhando atenção nos

últimos anos e as principais áreas onde foram aplicadas. Também introduz a metodologia exis-
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tente empregada ao longo da tese. Em particular, metaheurísticas e outras metodologias empre-

gadas para a resolução de COPs são apresentadas, descrevendo seu contexto, revendo as principais

de�nições e classi�cações. Logo, uma revisão detalhada da literatura sobre como as metaheurísticas

têm sido usadas até agora para lidar com os COPs associados aos sistemas de telecomunicações.

Particularmente, a análise enfoca os problemas de design, roteamento e alocação de redes. Através

da extensa análise da literatura, são identi�cadas diferentes técnicas metaheurísticas utilizadas na

resolução de problemas, bem como são apresentadas diferentes tendências quanto à solução dos

problemas identi�cados.

Em seguida, é apresentado um problema de localização-alocação: o problema das p medianas

não capacitado e com alocação única (USApHMP do inglês Uncapacitated Single Allocation p Hub

Median Problem), em que um número prede�nido de hubs tem capacidade ilimitada, cada nó não

hub é alocado a um hub exclusivo e o número de hubs é fornecido antecipadamente. Ao mesmo

tempo que o problema é apresentado, é proposto um algoritmo rápido e fácil de implementar,

baseado na integração de técnicas de randomização tendenciosa em uma estrutura de busca local

iterativa que permite gerar soluções "boas" para o USApHMP em apenas milisegundos. Uma séria

de experimentos numéricos, realizados em um benchmark bem conhecido, contribuem para validar

a metodologia proposta. Também, são apresentadas duas abordagens baseadas em metaheuristicas

imuno-inspiradas para a resolução do mesmo problema, o CLONALG e o optAiNet.

Posteriormente, uma abordagem simheurística que combina metodologias metaheurísticas com

técnicas de simulação Monte Carlo para lidar com o USApHMP sob pressupostos de incerteza é

apresentada. Em todos os casos, o objetivo foi avaliar o desempenho dos algoritmos propostos em

redes pequenas e grandes levando-se em consideração a solução e o tempo de resolução. Finalmente,

são apresentadas as conclusões e recomendações para trabalhos futuros.

2



Chapter 1

Introduction

1.1 Motivation

In today's complex world, there is a visible trend in the implementation of smart technologies

to city planning and management, leading to greater optimization of time and resources, and re-

sulting in more e�ciency. In its usage as an adjective and in the context of modern technology,

smart implies that following processes of computer programming or guidance, some level of in-

telligent autonomy or automation in action is involved1. In e�ect, innovative projects comprising

information and communication technologies (ICT) have been included in the political agenda of

many governments as a key program to enable a vision where municipalities can use technology to

meet sustainability goals, boost local economies and improve urban services.

Thus, technological advancements and changes in the social and political sector have had great

e�ect on telecommunication growth. The word telecommunication is derived from the Greek word

tele, which means over a distance, while communication simply means the sharing of information

or messages between two or more entities (Sapolsky et al. 2018), putting the two words together

gives telecommunication. Telecommunication includes voice, video and internet communication

services and telecommunication services involve voice communication, video streaming, graphics

and television services at high speed. Telecommunication services always improve in their quality of

connectivity as technologies advances. As e�ect, in recent years, the world have seen a tremendous

growth in mobile telecommunication networks, so much so that the number of mobile phone users

are now greater than the number of land-line phone numbers.

As a consequence of the evident increase in mobile communications and services, the world is

widely connected. Cellular phone networks, power grids, and the Internet are examples of vital

infrastructures that connect everything on this planet. These crucial systems share one striking

feature: they are composed of subsystems that make local decisions and coordinate with other

subsystems to accomplish their tasks. Such systems can be denominated as networked systems.

Networked systems are not limited to telecommunications, they are also present, for example, in

modern cars and aircraft where several controllers are working together to make the operations

1Sources: Collins Dictionary, 2017, Smart, adj.; Merriam-Webster Dictionary, 2017, Smart.
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more �exible and easier.

Furthermore, due to the immense appetite for communication and bandwidth, the demand

seems to only increase. At the same time, the physical resources are limited, for instance, there is

only a limited spectrum available for wireless communications. Therefore, there are �nancial incen-

tives to use current and future communications hardware and the available resources as e�ciently

as possible. If it were entirely known which services are going to make use of the network resources

in term of duration, location, and required capacity, the resources could of course be used and

adapted accordingly. All these form a series of very challenging problems. One of the main aims

of when designing communication networks is to transmit signals with the minimum noise, least

energy consumption, and optimal transmission quality. Thus, there is a need for designing such

large scale systems and networks so that costs and resources are optimized. Hence, in this thesis,

decision problems that are posed as optimization problems and where there is a natural commu-

nication structure imposed on the disparate parts of the systems are considered. A particular

application motivates this thesis: resource location-allocation in communication networks.

An optimization problem is always associated with a set of decision variables, i.e., a set of

variables should be chosen such that the solution is feasible and optimal. An important step

when approaching optimization problems is to identify the type of problem we are handling with,

since algorithms for solving optimization problems are tailored to a particular type of problem.

Thus, optimization problems can be divided in continuous and discrete. Models with continuous

variables are continuous optimization problems and problems with discrete variables are discrete

optimization problems.

Network design problems considered in this thesis can be �tted into combinatorial optimization

problems (COPs). A formal de�nition of COPs can be stated as follows (Aarts et al. 2003).

De�nition 1.1 A COP is speci�ed by a set of problem instances and is either a minimization

problem or a maximization problem.

Unless stated otherwise, we consider in this chapter only minimization problems.

De�nition 1.2 An instance of a COP is a pair (S, f), where the solution set S is the set of feasible

solutions and the cost function f is a mapping f : S → R. The problem is to �nd a globally optimal

solution, i.e., an s′ ∈ S such that f(s′) ≤ f(s) for all s ∈ S. Furthermore, f ′ = f(s′) denotes the

optimal cost, and S ′ = {s ∈ S|f(s) = f ′} denotes the set of optimal solutions.

The space of possible solutions is typically too large to search exhaustively using pure brute force.

In some cases, problems can be solved exactly using Branch and Bound techniques. However in

other cases no exact algorithms are feasible, and the implementation of other methodologies such as

metaheuristics results more appealing. Several studies have been dedicated to global optimization

techniques and most of them are useful for solving COPs (Gray et al. 1997, Mahdavi et al. 2015,

Ronellen�tsch and Katifori 2016). When solving these problems, the main objective is to �nd the

best possible solution, from among a usually vast set of feasible combinations. Thus, for instance,

we might be interested in: (i) minimizing the cost or energy consumption of some activity or system;
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or (ii) maximizing the pro�t, output, performance, or e�ciency of some activity or system. The

variables, the constraints and the objective function of a COP de�ne its combinatorial structure.

This is a semi-formal way to indicate the main characteristics of the problem that a�ect the

e�ectiveness of di�erent solutions procedures.

COPs are not limited to networked systems and ICT and can be found anywhere, from logistics

and transportation to health care, production, and �nance. Although COPs have been studies so

many decades ago, they have received special attention in the last decades, mainly due to the

strong connection between this type of problems and the problems found in real world and its

complexity in the resolution by exact methods. Real-life COPs commonly found in telecommuni-

cation systems demands real-time information as is the case of real-time streaming, which means

that the transmission must be quickly relayed by all nodes. Besides, those problems are usually

NP-hard and large scale, which means that they cannot be solved exclusively using exact methods

unless a considerable amount of computing time and e�orts are invested. Some examples of COPs

belonging to the NP-hard class are the Traveling Salesman Problem (Lawler 1985, Cook 2011) and

Quadratic Assignment Problem (Finke et al. 1987, Drezner 2015), among others. In these cases,

heuristics and metaheuristics reveal themselves as good alternatives to exact methods, since they

can �nd high-quality or even near-optimal solutions in low computing times.

On the one hand, the term heuristic is derived from the Greek word heuriskein, which means

"the art of discovering new strategies to solve problems" and is typically employed to describe

procedures that make use of the problem characteristics to generate reasonably good solutions

sometimes in just a few milliseconds (Romanycia and Pelletier 1985). On the other hand, meta-

heuristics would be considered as higher level algorithms that coordinate simple heuristics and

rules to �nd near-optimal solutions to COPs, typically after some seconds (Glover and Kochen-

berger 2006). A review of several metaheuristics applied to COPs is presented by Glover et. al.

(Glover and Kochenberger 2006).

Due to the rapid deployment of smart technologies, telecommunication industry is one of the

main area where metaheuristics are applied and a large number of routing and network design

technologies have been developed and updated. The related optimization problems found in the

literature cover many types of networks. A generic network design infrastructure and a routing

method must ensure that data can travel through the network between arbitrary end points. The

resulting network should be able to support some of many scenarios, among others: heavily and

loaded networks, tra�c patterns, multicast, or point-to-point tra�c. Likewise, the rapid growth of

telecommunication capacity �driven in part by the wide ranging deployment of optic �ber as well

as the expansion of wireless technologies� has led to the increasing concern regarding the tra�c

characteristics and di�erent quality of service (QoS) demands.

The aforementioned demands that the design of communication networks and routing schemes

should guarantee some subset of the following requirements: (i) all-time connectivity, providing

at the same time the required robustness, high reliability, and availability; (ii) e�cient energy

management and other issues at the lowest possible cost; (iii) QoS guarantees or, at least, a

high probability of good service; (iv) prevention of routing oscillations, loops, and overloaded
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network situations. In this sense, the use of metaheuristic algorithms in many COPs found in

telecommunication area o�ers an alternative solution.

Although, metaheuristics constitute a powerful tool to tackle complex optimization problems in

telecommunication area, some of these methodologies have been developed considering determin-

istic problems when, real-world communication scenarios are plenty of uncertainty. Unfortunately,

the simpli�cation of scenarios, i.e., assuming no uncertainty, can lead to poor-quality solutions.

Simheuristics (Juan et al. 2015a) combine metaheuristics and simulation specially designed to

tackle COP instances that contain stochastic components. This hybrid method not only can deal

with uncertainty and real-time decision making but they can also consider another aspects such

as richer objective functions, dynamism, etc.

With this in mind, this thesis presents an analysis of some research challenges related to meta-

heuristics and its applications to optimization problems in telecommunication networks design

issues. Also, it studies and integrates powerful and well-known methodologies such as metaheuris-

tics and simulation techniques and its applications for solving an speci�c network design problem

relevant on the design of communication networks.

1.2 Research Questions

The present thesis intends to answer the following overarching questions, hereafter referred to

as the main research questions.

First, the emergence of trends such of new Internet-based applications, video streaming, and

content distribution have generated a great demand for the design and development of the network

infrastructure. The continued growth of problems in term of size has led researchers to propose

alternatives to traditional exact methods to solve complex problems in "real time". In this context,

several heuristics have been applied to the problem of designing reliable communication networks.

This brings us the next question:

Which are the most used methodologies found in the literature by researchers when

solving optimization problems related to telecommunications systems?

Second, the main concern when thinking on telecommunication problems is to provide new

fast and e�cient methodologies or improve the methodologies already existing that allow decision

makers and engineers to �nd approximate solutions to big problems in a short period of time. This

concern led us to the following question:

Are those referred methodologies fast enough and e�cient when applied to prob-

lems related to the design of the communication networks that engineers and decision

makers face?

Finally, new heuristics need to be developed to solve associated problems in telecommunication

systems. Especially, those that require an e�ective solution approach to handle a larger problem

in practice in a considerable small amount of time. The point of real-time decisions is that the

environment is full of stochastic variables such as weather, energy failure and natural events which
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usually we have not control of and, today's world demands fast solutions every day, which make

us think about the last question:

How the hybridization of metaheuristic-based methodologies with simulation tech-

niques (simheuristics) can help to solve "real world" problems commonly found in

telecommunication systems?

Within this context and taking into account the previous questions, this thesis study the

application of metaheuristics and simheurisitcs for the Uncapacitated Single Assignment p-Hub

Median Problem (USApHMP), this problem have the characteristic that is suitable for modeling

real-life telecommunications problems, such as the frequency assignment problem and antenna

positioning problem.

1.3 Research Objectives

As already introduced, the main goal of this research is to study the application of metaheuris-

tics and to explore its combination with simulation techniques in order to deal with stochastic

version of optimization problems such as the USApHMP which is related to telecommunication

systems. In order to reach this goal, the following speci�c objectives with is corresponding speci�c

research question should be achieved.

I Which are the most used methodologies found in the literature by researchers

when solving optimization problems related to telecommunications systems?

1 Identifying the main challenges related to the implementation of the metaheuristic method-

ologies in assessing their suitability for using in telecommunication systems.

II Are those referred methodologies fast enough and e�cient when applied to prob-

lems related to the design of the communication networks that engineers and de-

cision makers face?

2 Investigating the potential heuristics approaches for a classic problem of combinatorial

optimization commonly applied to the design of communication networks, speci�cally,

the USApHMP.

III How the hybridization of metaheuristic-based methodologies with simulation tech-

niques (simheuristics) can help to solve "real world" problems commonly found

in telecommunication systems?

3 Designing new and e�cient approach that combines metaheuristic methodologies with

simulation techniques as a promising strategy for solving the aforementioned problem

under uncertainty scenarios.

4 Implementing such algorithms, test them in some data available in literature and compare

them with existing ones, concluding on the contribution.
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The main contributions of this dissertation will be on one hand, a review and analyses of some of

the most common challenges found when solving COPs related to telecommunication systems and,

on the other hand, due the importance of p-hub median problems in real world applications, the

implementation of metaheuristics and of hybrid techniques such as simheuristics (metaheuristics

and simulation) to deal with deterministic and stochastic versions of the USApHMP.

1.4 Research Strategy

Two research strategies have been used in order to structure the thesis. Once we have identi�ed

the challenges in the context of telecommunications, in order to ful�ll the second, third and fourth

objectives, it is applied Design and Creation and Experiment methodologies (Oates 2005).

1.4.1 Design and Creation Strategy

The problem solving approach associated to this strategy employs an iterative procedure that

can be summarized in �ve steps:

• Awareness

Most of the existing methodologies to solve real-life COPs consider scenarios with a reduced

size and supposing all information is known, which is usually a quite unrealistic assumption.

• Suggestion

The suggestion is to explore the application of metaheuristics to solve an identi�ed chal-

lenge related to telecommunication systems: the USApHMP, and to study the application of

simheuristics for solving the identi�ed problem in a stochastic scenario.

• Development

Algorithms for solving the identi�ed problem commonly found in the telecommunication �eld

relying on the application of metaheuristics and simheuristics are designed.

• Evaluation

Initially, the algorithms are tested. Then, they are used to solve the identi�ed challenge, and

a comparison between the obtained results and those from other authors is performed.

• Conclusion

The quality of the proposed algorithms is assessed by examining the results. Main advantages

and disadvantages are described. Finally, results also enable the identi�cation of areas for

future research.

1.4.2 Experiment Strategy

Another strategy considered in this thesis is related to experiments. Accordingly, researchers

start by developing a theory about their topic of interest, which leads to a statement based on
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the theory that can be tested empirically via an experiment. In the context of this thesis, af-

ter reviewing the literature on metaheuristics applied for solving telecommunication problems,

and elaborating a speci�c proposal (algorithm) for solving an identi�ed problem, the hypothesis

associated will be one or several among the following:

• The proposed algorithm should be able to achieve better objective solutions than other state-

of-the-art algorithms.

• The proposed algorithm should be able to achieve better or similar objective solutions than

other state-of-the-art algorithms, requiring less time.

• The algorithm should be capable of dealing with more rich and realistic challenges and/or

even new problems not previously mentioned.

The main algorithm outcomes of interest will be the objective solution and the computational

time. However, some other desirable characteristics will be also taken into account: �exible,

simplicity, and ease of implement, for instance.

1.5 Thesis Structure

The diagram in Figure 1.1 provides guidance for readers to access the contents of this thesis.

A brief description of each chapter is as follows.

This chapter introduced important concepts to the care and justi�cation of this work and pre-

sented the motivation, the research questions and objectives and strategy as well as the meaningful

of the thesis. Considering the proposal of this thesis, the remainder of this text is organized as

follows:

Figure 1.1: The structure of the thesis
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In the �rst part, Chapter 2, presents how metaheuristics have been gaining attention over the

last years and the main areas where have been applied. It also introduces the existing methodology

employed throughout the thesis. In particular, metaheuristics and other methodologies employed

for solving COPs are presented, describing their context, reviewing the main de�nitions and clas-

si�cations.

Supported by the concepts already introduced on the previous chapter, Chapter 3 gives a

detailed literature review on how metaheuristics have been used so far to deal with COPs associated

with telecommunications systems. Particularly, the analysis focuses on the network design, routing

and allocation problems. Through the extensive analysis of the literature, di�erent metaheuristic

techniques employed for solving problems are identi�ed as well as di�erent trends are presented

regarding the solution of those identi�ed problems.

In the second part, Chapter 4 presents three di�erent approaches for solving a common op-

timization problem when considering the design of telecommunication networks: the USApHMP.

First, a two-stage metaheuristic based on the combination of biased-randomized technique with

an iterated local search framework is presented . Following, two arti�cial immune systems are

employed in order to address the same problem. In all cases computational results that validate

the methodology for small and large-size instances from the literature are presented.

Chapter 5 analyzes the USApHMP under uncertainty assumptions with the purpose of extend-

ing the methodology presented in the previous chapter to a simheuristic algorithm. Additionally,

an extensive numerical experiment is included with the purpose of analyzing the e�ciency of the

described methodology under uncertainty scenarios.

Finally, in the third part, Chapter 6, presents the �nal remarks about the work, the publica-

tions associated to the thesis as well as the research impact and future perspectives. The chapter

discusses how the hybridization of metaheuristics with methodologies such as simulation and ma-

chine learning can be employed to extend the capabilities of metaheuristics when solving stochastic

and dynamic COPs in telecommunications.
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Chapter 2

Theoretical Background

Usually, when designing COP algorithms, one can choose between complete or incomplete

algorithms. Complete algorithms are guaranteed to �nd for every �nite size instance of a COP an

optimal solution in bounded time, however, for NP-hard problems, complete methods might need

exponential computational time in the worst case. In incomplete methods, such as metaheuristics,

they may fail to �nd an optimal solution but in compensation, such methods are able to �nd

"good" solutions in a signi�cantly reduced amount of time. The last fact makes these methods

e�ective solution strategies for solving COPs found in a very large variety of areas and situations.

Particularly, real-life telecommunication systems are subject to a large set of environmental

conditions, and many factors and parameters may a�ect the performance of these systems. Usu-

ally, processes in telecommunication systems can be slow and expensive. Thus, any savings in

terms of time and resources will make network designs more sustainable. One important issue to

be addressed while designing the right optimization algorithm for solving a COP in the telecom-

munication �eld is the balance between the algorithm's performance and the computational time

it requires.

Since there are so many optimization problems in the �eld of telecommunication systems and

due the constant necessity for greater optimization of time and resources, it is not surprising that

the use of metaheuristics has been gaining attention over the last years. This is evidenced in Figure

2.1, which shows a time series chart of the number of indexed journal articles (both in Scopus and

in Web of Science) during the last decades. Notice the increase in the number of published articles

since the early 2000s.

The data for the previous time series was obtained by running a search procedure including

the following logical condition: ((*heuristic) OR "genetic algorithm") AND telecommunication).

Note that, the term genetic algorithm is included in the logical condition due to the vast amount

of works proposing such algorithms for solving optimization problems in telecommunications and

related areas. Using the same search criteria, Figure 2.2 shows a Pareto chart of Scopus-indexed

articles by subject area. Here, it is clear that the areas of Computer Science and Engineering are

the predominant ones in terms of number of publications related to applications of heuristic opti-

mization in telecommunication systems. Finally, Table 2.1 summarizes the number of publications
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Figure 2.1: Time series of journal articles indexed in Scopus and Web of Science

on these topics in each Scopus-indexed journal. Observe that most of these journals belong to the

areas of Telecommunication (including wireless and computer networks), Computer Science, and

Operations Research.

Figure 2.2: Pareto chart for Scopus-indexed articles by subject area

A huge number of optimization algorithms have been devised through the years, and the idea

is not to make any attempt at all to provide a survey here. However, some of the most standard

algorithms for solving optimization problems that are relevant for this thesis are presented. With

this in mind, this chapter summarizes the theoretical background of metaheuristics algorithms

commonly found when solving COPs in telecommunications. Additionally, a detailed description

of the main metaheuristics and techniques applied in the latter chapters, including, Iterated Local

Search, Arti�cial Immune Systems and Biased Randomization is included. Despite here is presented

a relatively small group, a vast variety of metaheuristic methodologies exist, especially through

hybridization. Thus, an insight of hybrid metaheuristics is also presented. Finally, this chapter
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outlines simheuristics as general simulation-optimization approach to solve complex COPs under

uncertainty.

Table 2.1: Articles on heuristics in telecommunication by journal

Journal Articles
Computer Communications 121
Computer Networks 100
European Journal Of Operational Research 88
IEEE ACM Transactions On Networking 85
IEEE Journal On Selected Areas In
Communications

85

IEEE Transactions On Vehicular Technology 73
IEEE Transactions On Wireless
Communications

72

Computers And Operations Research 61
IEICE Transactions On Communications 58
Photonic Network Communications 54
IEEE Transactions On Communications 46
Journal Of Lightwave Technology 44
Wireless Networks 43
IEEE Transactions On Mobile Computing 41
Journal Of China Universities Of Posts
And Telecommunications

41

Telecommunication Systems 41
IEEE Transactions On Parallel And
Distributed Systems

37

Wireless Personal Communications 36
Ad Hoc Networks 32
IEEE Communications Letters 31
Applied Soft Computing Journal 30
Eurasip Journal On Wireless
Communications And Networking

30

Expert Systems With Applications 30
Networks 30
Journal Of Beijing University Of Posts
And Telecommunications

29

Wireless Communications And Mobile
Computing

29

Electronics Letters 28
International Journal Of Communication
Systems

27

Journal Of Heuristics 25
Journal Of Optical Communications And
Networking

20

Iet Communications 19
Operations Research 18
Ruan Jian Xue Bao Journal Of Software 18
IEEE Transactions On Computers 17
Journal Of Parallel And Distributed
Computing

17

Information Sciences 16
Journal Of The Operational Research
Society

16

Mobile Networks And Applications 15
Optical Switching And Networking 15
IEEE Transactions On Reliability 14
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2.1 A Brief Overview on Metaheuristics

Metaheuristics can be de�ned as general high-level methodologies that can be used as guiding

strategies in the design of heuristics to solve speci�c optimization problems (Talbi 2009). The

term metaheuristic was �rst introduced by Glover (1986). Exact methods are guaranteed to �nd

an optimal solution and to prove its optimality for every instance of a COP. The run-time, however,

often increases dramatically with a problem instance's size, and often only small or moderately-

sized instances can be practically solved to proven optimality. Thus, for larger instances, one

attractive possibility is usually to turn to metaheuristic algorithms that trade optimality for run-

time since, they allow the resolution of large-scale instances of a speci�c problem by providing

satisfactory solutions in a reasonable execution time. Metaheuristics o�er many advantages over

conventional algorithms (Konak and Smith 1999, Yang et al. 2013). They are among the most

promising and successful techniques and have gained popularity in the last few decades, with many

conferences, journals and books especially dedicated to them. Blum and Roli (2003) outline nine

properties of metaheuristics, as follows:

• Metaheuristics are strategies that guide a search process.

• The goal is to e�ciently explore the search space in order to �nd (near-)optimal solutions.

• Techniques which constitute metaheuristic algorithms range from simple local search proce-

dures to complex learning processes.

• Metaheuristic algorithms are approximate.

• They may incorporate mechanisms to avoid getting trapped in con�ned areas of the search

space.

• The basic concepts of metaheuristics permit an abstract level description.

• Metaheuristics are not problem-speci�c

• Metaheuristics may make use of domain-speci�c knowledge in the form of heuristics that are

controlled by the upper level strategy.

Metaheuristics are particularly suited for solving highly complex optimization problems includ-

ing many decision variables with non-linear interactions among them, multiple objectives and/or

constraints, and ill-understood structures. Many classi�cation criteria have been proposed to dif-

ferentiate metaheuristics (Talbi 2009). In our case we employ the classi�cation that label them as

single-solution metaheuristics �which maintain a single solution�, population-based metaheuristics

�which work with a set of individual solutions� and hybrid metaheuristics. The most important

commonly employed are highlighted next.
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Algorithm 1: LocalSearch

Generate an initial solution so
s ← so

N ← neighborhood operator

while (Stop condition is not met) do

s′ ← Improve(N(s)) such that f(s′) ≤ f(s)

s← s′

end

Return s

2.1.1 Single-Solution Metaheuristics

These metaheuristics operate with a single solution per iteration and one or more neighborhood

structures. Algorithms working on single solutions are also known as trajectory methods, which

consider a single search point at a time during the search process. Single-solution metaheuristics

focus on exploitation (intensi�cation), applying local search within a limited region. Local Search

procedures (LS) are optimization methods that maintain a solution, known as current solution,

and explore the search space by steps within its neighborhood. They usually go from the current

solution to a better close solution, which is used, in the next iteration, as current solution. This

process is repeated until a stop condition is ful�lled, e.g. there is no better solution within the

neighborhood of the current solution.

The pseudo-code of a basic LS is detailed in Algorithm 1. Given a �nite set of neighborhood

structures Nk(k = 1, · · · , kmax), with Nk(s) the set of solutions in the k−th neighborhood of

s ∈ S, and an objective function f , the LS works as follows. If a better solution s′ ∈ N (s) is

found, s′ becomes the new current solution and the neighborhood search starts again. If no further

improvement can be made, then, a local or global optimum which minimizes f has been found.

Most local search heuristics use only one neighborhood structure, i.e., kmax = 1. This being said,

the k−th neighborhood in the LS described below is ignored.

Particularly, in the area of telecommunication systems, the most frequently-used single-solution

metaheuristics are Tabu Search, Iterated Local Search, Greedy Randomized Adaptive Search Pro-

cedure, Variable Neighborhood Search and Simulated Annealing. Following, we present the basis

of those methods. Additionally, a detailed description of Biased Randomization is presented,

which serve as underlying engine of a developed methodology presented in Chapter 4. Despite the

methodologies presented here seem relatively simple, many state-of-the-art optimization methods

are based on them.

Tabu Search

Tabu Search (TS) is a local search procedure that also includes a "tabu" list of recently-visited

solutions to increase e�ciency (Glover 1997). Contrary to memoryless metaheuristics, which make
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Algorithm 2: TabuSearch

Generate an initial solution so
s ← so

s′ ← so

f(s′) ← f(so)

T ← [ ] // the tabu list is null

while (Stop condition is not met) do

select the best candidate s

if f(s) < f(s′) then

f(s′)← f(s)

s′ ← s

end

update T
end

Return s′

use of the search experience (memory, in the widest sense) to in�uence the future search direction

(Birattari et al. 2001, Arin and Rabadi 2013), TS makes use of �exible and adaptive memory

designs.

Tabus are one of the distinctive elements of TS when compared to LS. This procedure uses

a selection rule based on the concept of best improvement, where the best solution in the neigh-

borhood is chosen to replace the current reference solution. This acceptance criterion allows the

search to avoid getting trapped into a local optimum, although a cyclic search could happen. To

avoid this undesirable behavior, recently-visited solutions are forbidden from being visited during

a certain number of iterations, thus avoiding cyclical paths in the neighborhood set.

The basic steps of a simple TS heuristic for minimization are described in Algorithm 2. It

begins in the same way as ordinary LS, proceeding iteratively from one point (s) to another until

chosen termination criteria is satis�ed. Each solution s has associated neighborhood N(s), and

each solution s′ is reached from s by an operation called "move". To carry out the exploration

process, recently visited solutions should be avoided. To this aim a tabu list T is maintained.

Therefore once a solution is visited, the move from which it was obtained is considered tabu. A

more detailed explanation of TS can be found in the works presented by Glover (1989, 1990).

The TS procedure above described is certainly an e�ective approach for solving hard COPs.

However, in most cases, additional elements have to be included in the search strategy to make it

full e�ective. The most important of these are intensi�cation, diversi�cation, allowing infeasible

solutions, surrogate and auxiliary objectives.
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Algorithm 3: IteratedLocalSearch

Generate an initial solution so
s ← LocalSearch(so)

while (Stop condition is not met) do

s′ ← Perturbate(s)

s′∗ ← LocalSearch(s′)

end

Return s′∗

Iterated Local Search

The Iterated Local Search (ILS) (Lourenço et al. 2010) is another possible approach for solving

COPs in the area of telecommunications. ILS algorithm is based on the so called Hill Climbing

algorithm (Langley et al. 1987). It tries to search for local optima but in a more intelligent way

by using the hill climbing technique. ILS explores a sequence of solutions created as perturbations

of the current best solution, the result of which is re�ned using an embedded heuristic.

In practice, the ILS algorithm consists of a sequence of local queries interspersed by pertur-

bations. Its pseudo-code is given by Algorithm 3. Let f be the cost function on our COP; f is

to be minimized. For a given input s, it always outputs the same solution s′ whose cost is less

than or equal to f(s). Given the current s, we �rst apply a change or perturbation that leads to

an intermediate state s′, which belongs to S. Then LocalSearch is applied to s′ and we reach a

solution s′∗ in S∗. If s′∗ passes an acceptance test, it becomes the next element of the walk in

S∗; otherwise, we return to s. Perturbations are functions that modify the solution in order to

generate neighboring solutions that are not so close that they can fall into the same local optimum

nor as far away as they can behave as random, generating a traditional local search from a new

initial random solution. The stopping criterion is de�ned by the number of iterations without

improvement. When a large sequence of iterations fails to reduce the cost of the solution, the

algorithm is interrupted and returns the best solution obtained during its execution.

Greedy Randomized Adaptive Search Procedure

The Greedy Randomized Adaptive Search Procedure (GRASP) (Feo and Resende 1995) is

another single-location metaheuristic, originally proposed for the Operations Research practitioners

and have been employed in the optimization of telecommunication systems. It is an iterative

procedure, where each iteration consists of two phases: construction and local search. The objective

of GRASP is to repeatedly sample stochastically-greedy solutions, and then use a local search to

re�ne them to a local optimum. The procedure is centered on a stochastic and greedy step-wise

construction mechanism, which drives the selection of the components of a solution based on a

given sorting criteria.

The basic steps of this procedure are shown in Algorithm 4. First a candidate solution s is
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Algorithm 4: GreedyRandomizedAdaptiveSearchProcedure

Generate an initial solution so
s ← LocalSearch(so)

while (Stop condition is not met) do

s ← GreedyRandomizedConstruction(s) // construction phase

s′ ← LocalSearch(s)

if f(s′) < f(s) then

f(s′)← f(s)

s← s′

end

end

Return s′

generated using a randomised construction search procedure. Then, a local search procedure is

applied, yielding an improved candidate solution s′. This two-phase process is iterated until a

termination condition is satis�ed.

In the construction phase, a feasible solution is iteratively constructed, one element at a time.

At each construction iteration, the choice of the next element to be added is determined by order-

ing all elements in a restricted candidate list (RCL) formed by the best elements, i.e. those whose

incorporation to the current partial solution results in the smallest incremental cost (this is the

greedy aspect of the algorithm). The element to be incorporated into the partial solution is ran-

domly selected from those in the RCL (this is the probabilistic aspect of the algorithm) according

to a uniform distribution. Once the selected element is incorporated into the partial solution, the

candidate list is updated and the incremental costs are reevaluated (this is the adaptive aspect of

the heuristic). The above steps are repeated while there exists at least one candidate element.

In the search phase, a local search is implemented to try to improve the performance of the

current solution by searching better solutions in its neighborhood. Once the termination condition

is met, the best overall solution is kept as the result. The e�ectiveness of this procedure depends

of some aspects, such as the initial solution. The construction phase plays an important role with

respect to this aspect. Therefore, it is important to construct a number of good initial solutions

before employing it.

Variable Neighborhood Search

The Variable Neighborhood Search (VNS) (Mladenovi¢ and Hansen 1997, Hansen and Mladen-

ovi¢ 1999, 2002, Hansen et al. 2010) is a local search method that consists of exploring the solution

space through systematic exchanges of neighborhood structures. The VNS exploits systematically

the idea of neighborhood change, both in the descent to local optima and in the escape from the

valleys which contain them. Contrary to other metaheuristics based on local search methods, the
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VNS method does not follow a trajectory, but instead explores increasingly di�erent neighborhoods

of the current solution.

The method also includes a local search procedure to be applied over the current solution.

This local search routine can also use di�erent neighborhood structures. The pseudo-code of the

metaheuristic is presented in Algorithm 5. Additional details can be found in Mladenovi¢ and

Hansen (1997).

Algorithm 5: VariableNeighborhoodSearch

Generate an initial solution so
s ← so

k ← 1

while (Stop condition is not met) do

s′ ∈ N (k)(s)

s
′∗ ← LocalSearch(s′)

if f(s
′∗) ≤ f(s′) then

s ← s
′∗

k ← 1

else

k ← k + 1

end

end

Return s

Let us denote N (k)(k = 1, · · · , kmax), a �nite set of pre-selected neighborhood, in this meta-

heuristic, part of a solution is chosen and, at each iteration, s′ is randomly selected within the

neighborhood N (k)(s) of the current solution s. This neighbor is then subjected to a local search

procedure. If s
′∗ is better than the current solution, the search continues from s

′∗ starting from

the �rst neighborhood structure N (1)(s). Otherwise, the search continues from the next neighbor-

hood structure N (k+1)(s). This procedure is terminated when a stop condition is reached, such

as the maximum allowed CPU time, the maximum number of iterations, or maximum number of

consecutive iterations without improvements.

Simulated Annealing

Simulating Annealing (SA) is another single-solution metaheuristic. It has its origin in the anal-

ogy between the physical process of cooling a metal in a fusion state and an optimization problem.

Based on ideas of statistical mechanics proposed by Metropolis et al. (1953), and simulation tech-

niques. SA was initially presented as a combinatorial optimization technique by Kirkpatrick et al.

(1983), who used it in the design of electronic systems.

SA consists of �rst "melting" the system to be optimized at an elevated temperature and

then reducing the temperature until the system "freezes" and no improvement in the value of
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the objective function occurs. The temperature sequence and the number of rearrangements xo
attempted at each temperature for equilibrium represents the SA annealing scheme. The pseudo-

code of SA is presented in Algorithm 6. In this algorithm, for each neighbor s′ of s, ∆ = (f(s′)−
f(s)) is calculated. In Case ∆ < 0, the algorithm makes the solution s′ the current solution,

because there was an improvement. If ∆ ≥ 0, the solution s′ can be accepted with a probability

of acceptance x ∈ [0, 1). T is a parameter of the method, called temperature which regulates

the probability of acceptance of solutions with worse cost than the current solution and α is the

Boltzmann constant.

Algorithm 6: SimulatedAnnealing

Generate an initial solution so
s ← so

s∗ ← so

T ← To // selecting an initial temperature

while (T > 0) do

while (Stop condition is not met) do

Built s
′ ∈ N(s)

∆ = f(s
′
)− f(s)

if (∆ < 0) then

s ← s
′

if f(s
′
) < f(s∗) then

s∗ ← s
′

end

else

x ∈ [0, 1)

if x < e
−∆
T then

s← s
′

end

end

T ← α× T
s← s∗

Update Solution

end

end

Each con�guration of a solution in the search space represents a di�erent internal energy of the

system. Heating the system results in a relaxation of the acceptance criteria of the samples taken

from the search space. As the system is cooled, the acceptance criteria of samples is narrowed to

focus on improving movements. Once the system has cooled, the con�guration will represent a

sample at or close to a global optimum. The advantage of this technique is its property of using a

descent strategy, but allowing random ascending movements, thus, avoiding local optima.
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Figure 2.3: Use of Geometric distribution in Biased Randomization. Retrieved from Grasas et al.

(2017)

Biased Randomization Techniques

Any constructive heuristic can be seen as an iterative greedy procedure, which builds a feasible

good solution to the problem at hand by selecting, at each iteration, the best option from a list,

sorted according to some logical criterion. Biased randomization (BR) techniques refer to the in-

troduction of randomization in the construction phase and/or neighborhood search of optimization

algorithms (Grasas et al. 2017). The application of BR techniques guides the search process by

selecting a candidate other than the next option. BR makes use of probability distributions, other

than uniform, which do not distribute probabilities in a symmetric shape but in a non-symmetric

or skewed one. An example of sorted solution elements can be seen in Figure 2.3. Each potentially

eligible element of the candidate list is represented on the x-axis. They are ranked according to

some criteria (e.g., priority rule, heuristic value), which de�nes the selection probability according

to some theoretical skewed probability function. The speci�c distribution to employ will depend

upon the speci�c COP being considered. Some candidate distributions to be considered are the

geometric and a discrete version of the descent triangular. These distributions can also be used to

induce biased randomness into an algorithm.

Algorithm 7 describes the steps required to implement biased randomization, where CL is a

set of all elements potentially eligible. First, a constructive heuristic is selected, once the base

heuristic is selected, the algorithm should follow some kind of iterative process. At each round of

this iterative process, a new complete solution is generated. For the construction of this solution,

the base heuristic is randomized applying a non-symmetric probability distribution to the elements

of the CL. Optionally, a local search process can be added to the algorithm in order to improve

the solution provided at each round of the iterative process.

As mentioned before, GRASP proposes to consider a restricted list and then apply a uniform

randomization in the order the elements of the RCL are selected. BR techniques goes one step

further, and instead of restricting the list of candidates, it assigns di�erent probabilities of being
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Algorithm 7: BiasedRandomizationProcedure

Generate an initial solution so
s ← so

CL ← initialize candidate set

µ← get random number uniformly distributed in [0, 1) given a speci�c seed

ρ← get random number from a distribution Dis(parameter, µ)

while (Stop condition is not met) do

l← get the ρ element of the CL // construction phase

s← s ∪ {CL}[l]
CL ← CL {CL}[l]
Reorder CL

LocalSearch(s)

end

Return s

selected to each potential movement in the sorted list. In this way the elements at the top of the

list, but potentially all elements could be selected.

2.1.2 Population-Based Metaheuristics

The popularity of population-based metaheuristics has grown rapidly among both the scienti�c

community and practitioners. Research �elds in which they are commonly and highly successfully

employed include logistics and transportation, computer vision, cryptography and telecommunica-

tions.

Particularly, due to the increasing complexity of communication infrastructures, many problems

presented in the telecommunication area have become extremely complex. Such problems have to

deal with a variety of complicated side constraints, for instance, the presence of noise, multiple

objectives, dynamically changing parameters, large solution space and others, that in many cases

cannot be handled e�ectively by the existing single-solution based optimization techniques.

Population-based metaheuristics operate with a set of solutions per iteration, and may have

di�erent denominations, such as colony, cloud, swarm or even population, depending on the case.

They make use of learning factors as they attempt to understand the correlation between the

design variables in order to identify the regions of the search space in high-quality solutions.

Most of the population-based algorithms are nature-inspired. Natural computing algorithms

is a process of extracting ideas from nature to develop arti�cial computational systems, or using

natural media to perform computation. They are also referred as nature-inspired algorithms or

clever algorithms. They have proved themselves to provide optimal solutions in reasonable time

for a broad range of optimization problems (Yang 2014).
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According to the No Free Lunch theorem (Wolpert and Macready 1997), not all optimization

problems can be solved by a single algorithm. As a result, di�erent researchers have developed

di�erent natural computing algorithms and their variations. Natural computing algorithms en-

compass a variety of Evolutionary Algorithms (EAs) that share a common underlying idea of

survival-of-the-�ttest.

Nature-inspired algorithms are usually well-suited for applications like planning, design, control,

classi�cation and clustering, time series modeling, music composing, etc. Unlike most optimization

techniques, these algorithms maintain a population of tentative solutions that are manipulated

competitively by applying some variation operators to �nd a global optimum (Brabazon et al.

2015). The following subsections describe the main natural computing paradigms that have being

identi�ed as the most applied for solving COPs related to the design of communication networks

and other related problems.

Genetic Algorithms

The most common evolutionary computing implementations are Genetic Algorithms (GAs),

which model genetic evolution (Goldberg 2006). GA is inspired by Darwin's theory of evolution.

It mimics the process of natural selection for survival of the �ttest individual. GA applies various

operators such as selection, crossover and mutation.

Therefore, a GA is based on the generation of an initial population, which is evolved by means of

the application of evolutionary mechanisms implemented in a loop process. Algorithm 8 describes

the pseudo-code for the GA. The initialization phase generates the individuals and it estimates the

grade of adaptability to the environment, that is, it calculates the �tness function value of each

individual. Once the initialization phase ends, the process enters into the evolutionary loop, where

the evolution operators are applied to the individuals in a iterative way until a stop condition is

met.

In the case of GAs, a population of strings is used, and these strings are often referred to

Algorithm 8: GeneticAlgorithm

S ← Generate an initial population of chromosomes

�tness(S)

while (Stop condition is not met) do

Sp ← selectParents(S)

Sr ← reproduction(Sp)

crossover(Sr)

mutate(Sr)

�tness(Sr)

Update Solution

end
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in the GA literature as chromosomes. The recombination of strings is carried out using simple

analogies of genetic crossover and mutation, and the search is guided by the results of evaluating

the objective function for each string in the population. Based on this evaluation, strings that

have higher �tness (i.e., represent better solutions) can be identi�ed, and these are given more

opportunities to breed. Crossover is a matter of replacing some of the genes in one parent by

corresponding genes of the other. The other common operator is mutation in which a gene is

chosen randomly and the value of the chose gene is changed.

Swarm Intelligence

Another bioinspired approach is Swarm Intelligence (SI). The term is used to describe any

attempt to design algorithms or problem-solving devices inspired by the collective behavior of

social organisms, from insect colonies to human societies. SI has two main areas: algorithms based

on the collective behavior of social insects �such as Ant Colony (ACO) (Dorigo and Birattari 2011),

Termite Colony (TCO)(Hedayatzadeh et al. 2010) or Bee Colony (BCO) (Karaboga and Basturk

2007) Optimization�, and algorithms based on cultures of socio-cognition as the Particle Swarm

Optimization (PSO) (Kennedy and Shi 2001).

On one hand, ACO is inspired by a foraging behavior of real ants. Ants posses a natural ability

to �nd the shortest tour between the food source and their nest. If a problem can be converted to

a graph, ACO can be applied to �nd the optimal solution. On the other hand, BCO is inspired

by the behavior of the social insect population. A colony of honey bees can extend itself over long

distances and in multiple directions simultaneously to exploit a large number of food sources. A

colony prospers by deploying its foragers to good �elds.

Additionally, TCO is inspired from intelligent behaviors of termites. Termites moves randomly

in the search space, but their trajectories are biased towards regions with more pheromones. Fi-

nally, PSO is inspired by the �ocking behavior of birds. It applies an iterative approach, where, in

each iteration, a candidate solution (referred as particle) is moved around the search space based

on its position and velocity.

The Algorithm 9 shows the basic structure of SI procedures. In this algorithm, S denotes

the population of individuals. These individuals are not necessarily solutions to the considered

Algorithm 9: SwarmIntelligenceAlgorithm

S ← Generate an initial population of individuals

while (Stop condition is not met) do

S′ ← evaluate(S)

S′′ ← constructionPhase(S′)

S′′ ← evaluate(S′′)

end

Return best individual s′′
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problem. They may be partial solutions, or set of solutions, or any object which can be transformed

into one or more solutions in a structured way. Then, at each iteration of the algorithm, the

following three major operations are performed. First, a set of individuals S′ are selected from the

current population S by applying an evaluation function. Second, a population S′′ is generated

from S′ by the application of a construction phase. Finally, the current population is evaluated.

The process is repeated until certain termination criteria are satis�ed.

Arti�cial Immune Systems

Arti�cial Immune Systems (AIS) (De Castro and Timmis 2002) are algorithms and systems

that use the human immune system as inspiration. The human immune system is robust, error

tolerant and extremely adaptive. Such properties are highly desirable for the development of novel

computer systems. All AIS algorithms mimic the behavior and properties of immunological cells,

speci�cally B-cells (a particular type of lymphocyte, white blood cell), T-cells (a type of white

blood cell that plays a central role in cell-mediated immunity) and dendritic cells (DCs), but the

resultant algorithms exhibit di�erent levels of complexity and can perform a wide range of tasks.

A general procedure of AIS is shown in Algorithm 10. At each step (iteration) an antibody's

concentration is increased by an amount dependent on its matching to each antigen. In absence of

matching, an antibody's concentration will slowly decrease over time. An important characteristic

of AIS is its memory-based detection system which is based on the adaptive response of the

natural immune systems that enables it to learn protein structures that characterize pathogens it

encounters, and "remember" those structures so that future responses to the same pathogens will

be very rapid and e�cient.

Unlike some other bio-inspired techniques, such as genetic algorithms, the �eld of AIS en-

compasses a spectrum of algorithms that exist because di�erent algorithms implement di�erent

properties of di�erent cells. Modern AIS are inspired by one of three sub-�elds:

Clonal selection: The theory suggests that starting with an initial repertoire of general immune

cells, the system is able to change itself (the compositions and densities of cells and their receptors)

in response to experience with the environment. The information processing principles of the

Algorithm 10: Arti�cialImmuneSystem

Ab ← Generate an initial population of antibodies

Solve fit← a�nity(Ab)

while (Stop condition is not met) do

C ← clone(Ab)

C∗ ← apply genetic operator to (C,fit)

fit′ ← a�nity(C∗)

Ab ← select(C∗,fit′)

end

Return Ab
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clonal selection theory describe a general learning strategy. This strategy involves a population

of adaptive information units (each representing a problem-solution or component) subjected to

a competitive processes for selection, which together with the resultant duplication and variation

ultimately improves the adaptive �t of the information units to their environment.

Negative selection: The focus of the negative selection algorithm is on anomaly detection

problems such as computer and network intrusion detection. The information processing principles

of the self-nonself discrimination process via negative selection are that of a anomaly and change

detection systems that model the anticipation of variation from what is known. The principle is

achieved by building a model of changes, anomalies or unknown data by generating patterns that

do not match an existing corpus of available patterns.

Immune network algorithms: The objective of the immune network process is to prepare a

repertoire of discrete pattern detectors for a given problem domain, where better performing cells

suppress low-a�nity (similar) cells in the network. This principle is achieved through an interactive

process of exposing the population to external information.

2.1.3 Hybrid Metaheuristics

Over the last few years, an expressive number of algorithms that do not follow purely the

paradigm of traditional metaheuristics have been reported. This has been done, specially through

hybridization of metaheuristics with other methodologies. The motivation behind implementing

hybrid algorithms is usually to obtain better performance approaches that take advantages of

each of the single strategies (Raidl 2006). In fact, choosing an adequate combination of multiple

algorithmic concepts is often the key for achieving state-of-the-art performance in solving most

di�cult COPs.

One can distinguish three types of hybridization following Blum's taxonomy (Blum et al. 2011):

The �rst consists of introducing concepts or strategies from either class of algorithms into the

other. For example, some population-based metaheuristics make use of this kind of hybridization

by incorporating local search procedures. The second is based on the exchange of information of

two or more algorithms which are typically run in parallel, helping each other to cover the search

space. Finally, the last approach integrates metaheuristics with exact methods (Boschetti et al.

2009), simulation (Juan et al. 2015a), and even machine learning techniques (Calvet et al. 2017).

Hybridization of metaheuristics has got an important role for optimization, since a hybrid algo-

rithm often presents a more e�cient performance than algorithms based on plain metaheuristics.

This is because when hybridizing, the most promising characteristics of each metaheuristic are

combined, strengthening the strategy as a whole. In fact, the idea of hybridizing metaheuristics

is not new, but dates back to the origins of metaheuristics themselves. Another di�erent taxon-

omy with various types of hybrid metaheuristics is presented by Talbi (2002) and Raidl (2006).

Following Talbi's hybrid metaheuristics classi�cations, one can distinguish two di�erent groups

illustrated in Figure 2.4: the hierarchical and the �at hybrid metaheuristics.
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Figure 2.4: Classi�cation of hybrids metaheuristics following Talbi's taxonomy (Talbi 2002)

Hierarchical Hybrid Metaheuristics

The hierarchical component captures the structure of the algorithm implementation. In high-

level combinations, at �rst the algorithms identities are maintained and there is a well-de�ned

form of cooperation between them, but there is no strong direct relationship between the internal

mechanisms of the algorithms. The algorithms that participate in low-level combinations strongly

depend on each other, since individual component or function of a metaheuristic is replaced from

components of the other metaheuristic.

Flat Hybrid Metaheuristics

The �at component speci�es the features involved in the algorithm and several dichotomies are

de�ned:

• Homogeneous vs Heterogeneous: The �rst involves the use of di�erent instances of the same

algorithm, while the second involves di�erent algorithms.

• General vs Specialist: All the hybridization mentioned in the hierarchical classes are con-

sidered as general, since all the algorithms solve the same optimization problem. Specialist

hybridization combine algorithms that solve di�erent problems.

• Global vs Partial: In the global form, all algorithms search the entire search space, that
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is, they all try to solve the optimization problem globally. In partial mode each algorithm

searches a di�erent portion of the search space and can provide a local solution.

The hybrid metaheuristics community has now became notorious, and has its own set of sci-

enti�c events and journals such as the Workshop on Hybrid Metaheuristics (Blesa et al. 2016) and

the International Journal of Applied Metaheuristics Computing. Moreover, many well-established

hybrid search techniques, that can bene�t from the complementary capabilities of a wide range of

algorithms, have been developed, such as the incorporation of exact algorithms in metaheuristics

or viceversa. For a survey dedicated to combinations of metaheuristics with integer linear program-

ming techniques see (Raidl and Puchinger 2008), for an overview on combinations of local search

methods with constraint programming see (Focacci et al. 2003), and for a review on combinations

of local search methods with exact techniques see (Dumitrescu and Stützle 2003).

2.2 Optimization under Uncertainty and Simheuristics

Despite the fact that metaheuristics are able to e�ciently solve large-scale COPs in short

computing times, they frequently assume that the problem inputs, the underlying objective func-

tion(s), and the set of optimization constraints are deterministic. However, real-life is plenty

of uncertainty, which often makes deterministic models to be oversimpli�ed versions of the real

stochastic problems faced by decision makers. There are several consolidated methodologies to deal

with optimization problems under uncertainties. Among the most used are: sensitivity analysis,

stochastic programming and robust optimization.

Sensitivity analysis (Gal 1997) is well known for its application on �nancial modeling and have

be extended to a wide range of �elds. Many attempts are made to investigate the problem's

behavior when the input data changes. Sensitivity analysis is carried out after the optimum

solution of a given problem is obtained. In most problems the variations occur in the right side

of the constraints and/or the objective function coe�cients, a new constraint may be added,

constraints may not be rigid or data are not known exactly. The objective of sensitivity analysis is

to �nd a new optimal solution for a given problem when some of the problem data changes without

resolving the problem from scratch.

Stochastic programming (Charnes and Cooper 1959, Dantzig 2010) is another methodology

commonly employed for solving COPs when uncertainty matters. When some of the data ele-

ments in a linear program are most appropriately described using random variables, a stochastic

linear program results. In this sense, stochastic programs involve an artful blend of traditional

deterministic mathematical programs and stochastic model.

Also, robust optimization (Mulvey et al. 1995) deals with uncertain data in decision making

processes. Robust optimization addresses the uncertain nature of an optimization problem without

making speci�c assumptions on probability distributions: the uncertain parameters are assumed

to belong to a deterministic uncertainty set. Robust optimization adopts a min-max approach

that addresses uncertainty by guaranteeing the feasibility and optimality of the solution against

all instances of the parameters within the uncertainty set.
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In sum, every one of these methodologies have their markable characteristics. Sensitivity anal-

ysis is a post-optimality study to determine the impact that perturbations cause on the nominal

problem. In stochastic programming, for example, it is assumed that the probability distribution

of the uncertain parameters (random variables) is known or can be reasonably well estimated.

Finally, robust optimization is concerned with developing models and methods so that solutions

are feasible for any realizations of a convex, previously given set of random variables and violations

of constraints are not tolerated. A very clear di�erence between the methodology and stochastic

programming is that the �rst one does not require knowledge of the probability distribution of the

uncertain parameter, while the second one needs (Ben-Tal and Nemirovski 2000, Bertsimas and

Sim 2003).

However, some of the methodologies mentioned above usually assume a Normal or Exponential

behavior under the presence of historical data. An emerging methodology called simheuristics

combining metaheuristics with simulation techniques have been applied to solve complex COPs

in di�erent areas (Juan et al. 2011, 2014a, Michalak and Knowles 2016, de Armas et al. 2017,

Gonzalez-Martin et al. 2018). It allows for developing accurate and �exible models. Speci�cally,

randomness can be modeled throughout a best-�t probability distribution -either theoretical or

empirical. The combination of metaheuristics with simulation also promotes the use of risk-analysis

criteria during the evaluation of alternative solutions to stochastic COPs.

Simheuristic algorithms belong to the simulation-optimization techniques (Chica et al. 2017),

which have been used for some decades. These algorithms are the result of the e�cient combination

of simulation techniques with already existing metaheuristics to e�ciently solve complex stochastic

COPs. It is clear that the results are not expected to be optimal. However, simheuristics provide

high-quality solutions to complex real-life problems in reasonable computing times. It is better to

obtain an approximate solution to an accurate model than the optimal solution for an oversimpli�ed

model (Juan et al. 2015a). In particular, the simheuristic approach is aimed at solving COPs of

the form:

minimize f(s) = E[C(s)] (2.1a)

maximize f(s) = E[B(s)] (2.1b)

subject to: P (qi(s) ≥ li) ≥ ki for all i = 1, 2, · · · , n, (2.1c)

hj(s) ≤ rj for all j = 1, 2 · · · ,m, (2.1d)

s ∈ S, (2.1e)

where S represents a discrete space of possible solutions s, C(s) represents a stochastic cost func-

tion and conversely, B(s) represents a stochastic pro�t or income function. E[C(s)] represents

a probabilistic measure of interest associated with the cost function (e.g., the expected value of

C(s)). Also, Eq. 2.1c represents probabilistic constraints related to the problem and Eq. 2.1d

represents typical deterministic constraints in COPs.

Simheuristic approaches assume that, in scenarios with moderate uncertainty, good quality

solutions for the deterministic version of a COP are also likely to be good quality solutions for
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the stochastic version of the same problem. A general overview of simheuristics is presented in

Figure 2.5. Given a stochastic COP, the idea is to obtain the corresponding deterministic version.

This can be done, for example, by replacing the stochastic variables by their expected values.

Random variables can be modeled by means of probability distributions of the historical data.

Then a metaheuristic-based algorithm is used to �nd a set of high quality feasible solutions for the

deterministic COP. After that, a fast simulation is applied to these solutions to see if they are also

good solutions for the stochastic COP. At this step we do not need intensive simulation, which

will require a great amount of time. The estimated values generated by simulation can be used to

rank the elite solutions for the stochastic COP. Then we can execute intensive simulation on the

top simulations found with the fast simulation. It must be noticed that these �nal simulations can

also be used to obtain information on the probability distribution of the quality of each solution.

According to Juan et al. (2015a) the most relevant advantage of applying simheuristics are

that (i) they allow the construction and study of valid complex system models; (ii) the outputs of

the simulation can be employed to generate information about the probability distribution of the

quality of each solution and (iii) an analysis of the input/output variables space of a model may

strengthen trust in the solving approach.

2.3 Concluding Remarks

Due to the increasing number of users and new technologies, telecommunication systems and

their associated COPs have received much attention during the last two decades. Taking into

account the complexity and dimension of this kind of issues, this chapter presented the main

metaheuristics mostly applied when solving those problems. After introducing the most popular

metaheuristics, the main classi�cation criteria were discussed and other emerging methodologies

such as hybrid metaheuristics and simheuristics were presented. Actually, a part of this thesis

focused on integrating BR techniques into search metaheuristic to reduce running time will be

presented in Chapter 4. Moreover, a brief but useful taxonomy of search methods for combinatorial

optimization which will be useful on the context of this thesis was provided. In the next chapter,

a literature review of metaheuristics in telecommunication systems is presented.
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Figure 2.5: Overview of the Simheuristic framework. Retrieved from Juan et al. (2015a)
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Chapter 3

Metaheuristics in Telecommunication

Systems: network design, routing and

allocation problems

As stated before, in the information era, telecommunication systems are all around us. Showing

an increasing number of users, telecommunication services raise many challenges to the optimiza-

tion research community (Resende and Pardalos 2008, Donoso and Fabregat 2016, Evans 2017).

In e�ect, some of these challenges can be formulated as COPs, as in the case of the frequency-

assignment problem in radio networks, the network design problem, the routing problem, or the

optimization of allocation channels (Martins and Ribeiro 2006, Ahmad et al. 2015, Soua and Minet

2015, Medhi and Ramasamy 2017). Since most of these problems are NP-hard and large scale,

heuristics and metaheuristics have been increasingly used to deal with them. Often, these meta-

heuristic approaches have been combined with other soft computing methods, thus generating

hybrid algorithms (Blum and Roli 2003)

Network design decisions also a�ect other managerial decisions, such as repository (or hub)

location and routing paths. In recent years, a large number of routing and network design tech-

nologies have been developed and updated (Pióro and Medhi 2004, Bidgoli 2016). The diversity of

deployed networks and the rapid pace of technological change rise the need for new optimization

approaches that support smart decision making. Some of the major driving forces behind these

requirements are the need for QoS guarantees and the explosive growth in network size and usage.

Likewise, the demand for mobile communication has increased. However, there is a �nite spectrum

allocated to such services, which raises the question of channel allocation in mobile radio systems

(Martins and Ribeiro 2006, Soua and Minet 2015, Yin et al. 2016).

Additionally, since architectural re-design e�orts are time consuming and hence expensive,

there is a critical need for e�cient approaches to support the proper design decisions. Thus, the

use of metaheuristic algorithms is required in solving COPs in the telecommunication area.

Table 3.1 gives a general overview over the discussed application �elds. For the scope of this

work, we focus on the challenges and properties of the optimization problems previously mentioned.
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Hence, this chapter presents an analysis of some research challenges related to metaheuristics and

their applications to optimization problems in telecommunication network design, routing and

allocation of resources.

3.1 Network Design

As mentioned before, telecommunication network-design problems have gained attention over

the last decades. The classical version of this problem consists in �nding a network design that

minimizes total costs while satisfying users' demands, providing a minimum QoS, and respecting

the capacity constraints of each link. In the past, the design of communication networks was solved

as a single objective optimization problem, using the cost of the network as the objective to be

minimized and considering constraints such as reliability, maximum delay, etc (Dengiz et al. 1997).

However, there is a clear trend to consider the design of a telecommunication network as

a multi-objective optimization problem. A typical architecture for such a network consists of

tributary networks �which connect nodes to hubs� and a backbone network �which interconnects

the hubs. Depending on the application, hub nodes are called by various names, including gates,

concentrators, switches, control points, or even access points (Klincewicz 1998). Tributary networks

are also called local or access networks, while backbone networks may be referred sometimes as

hub-level networks.

Frequently, due to the size of the problem, the design of the backbone network is considered

independently from that of the tributary networks. Thus, a solution approach proposed by Cham-

berland et al. (2000) for the integrated design was based on a TS algorithm. The authors dealt with

the problem of how to expand a Metropolitan Area Network in a cost e�ective way. The proposed

model considered the update of the access network with a star topology and the expansion of the

backbone network with various types of topologies. Results proved that the TS approach presents

a relatively stable behavior in terms of closeness to the optimal solution. The results were obtained

on instances up to 500 users in a reasonable amount of time. As the authors concluded based on

the results they obtained, the limitation to the application of their methodology if the di�cult of

evaluating the lower bound since such evaluation becomes time-consuming as the problem increases

in size.

Another COP that arises in the design of telecommunication networks is the star ring problem:

the aim is to locate a simple cycle through a subset of vertices of a graph with the objective

of minimizing the total cost of all connections in a ring star topology. A hybrid metaheuristic

approach to solve this problem was proposed by Dias et al. (2006). The approach combined a

VNS with a GRASP algorithm. The hybrid metaheuristic was tested on the Traveling Salesman

Problem library (Reinelt 1991), with instances involving between 50 and 100 vertices.

Even though the star topology is a distinct choice for many types of access networks, there

are situations where other layouts might be more appropriate, as the tree topology. Girard et al.

(2001) presented a fast TS algorithm for the design of access tree networks. They described in

detail the parameters used for the data structure and indicated how that could lead to substantial
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Table 3.1: Overview of optimization challenges in telecommunications

Optimization Problem Challenges and requirements

Network Design

• Location of hosts, servers, terminals, and other end

nodes

• Projected tra�c for the network

• Projected costs for delivering di�erent service levels

• Limitation of hardware resources

• Security

• QoS requirements

• Reliability and availability

Routing

• E�cient routing with mesh infrastructure

• Scalability

• Robustness

• Guarantee security

• Overloaded situations

Channel Allocation

• Adaptability

• Channel utilization

• QoS support

• Fault tolerance

• Self-con�gurability

• Packet �ow assignments

37



Figure 3.1: Example of a backbone/tributary network problem, in which the backbone network is

fully connected while the tributary networks are star networks (Carello et al. 2004a)

improvements of the overall computational time while providing costs lower than those obtained

using traditional methods. The authors evaluated the proposed methodology on arti�cial networks

varying from 20 to 100 nodes and on a real network with 46 users represented as nodes and 4

switches.

Another structure that have received attention is the minimal spanning tree (MST). MST

problems are considered to lie in the core of network systems design. Few years ago, Ruiz et al.

(2015) proposed a biased randomization genetic algorithm which evolves a population of random

vectors that encode solutions to the capacitated minimum spanning tree problem. The authors

used the sets of instances with a number of terminals n ∈ {80, 120, 160}.

The work presented by Carello et al. (2004a) dealt with a hub location problem (HLP) in which

the topologies of the backbone and the tributary networks are given. The locations of the hubs

must be chosen among the terminal nodes, and each terminal node must be assigned to exactly one

hub. The authors addressed the problem of planning a two-level network as illustrated in Figure

3.1, i.e.: a network in which the tra�c collected by the access nodes must be routed through a

backbone network, whose nodes are called transit nodes. In order to solve the problem, the authors

proposed a TS-based algorithm. The proposed algorithm was tested on 19 instances with up to 49

nodes.

The importance of telecommunication networks has dramatically increased over the past few

years. Today's networks require a signi�cant amount of investment in order to guarantee QoS

and performance. Network design and planning in engineering systems requires policy decisions,

analysis of investment strategies, and technical development plans. The multi-level network opti-

mization problem (MNOP) is a network design model that raises optimization aspects of dimension,

topological design, and facility location.

MNOPs appear in many contexts such as telecommunication, logistics, transportation, and

electric power systems. Flores et al. (2003) proposed parallel asynchronous versions of promising
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multi-objective EAs, with the aim of designing an optimal telecommunication network in the

presence of multiple con�icting objectives as cost and performance. The test problem chosen for

testing the proposed algorithms it is a simpli�ed version of a real network design problem conceived

to link, using distinct types of �ber, 19 universities and research centers located in 9 di�erent cities

of Turkey.

As already mentioned, the topological design problem is NP-hard, and thus it becomes in-

tractable using exact methods as the number of nodes increases. With the emergence of some

applications �such as teleconferencing, interactive simulation, or distributed content systems and

multi-games�, the number of people demanding multi-cast services is growing. Multi-cast commu-

nication refers to the delivery of information to many receivers simultaneously. This information

may come just from one source (one-to-many multi-cast) or many sources as well (many-to-many

multi-cast).

In general, there are several potential applications of multi-cast, e.g.: news delivery, stock quotes

distribution, software updates, audio and video streaming, etc. Li and Pan (2011) formulated this

problem and then solve it using a parallel GA. In their computational experiments the algorithm

was tested in a network with 25 nodes. The GA-based solution could generate a lower link cost to

achieve multi-cast. An issue regarding multi-cast is how to provide a reliable service.

The provisioning of reliable multi-cast service deals with how to handle packet re-transmissions.

Santos et al. (2006) focused on the server replication method, wherein data is replicated over a

subset of the multi-cast-capable relaying hosts and re-transmission request from receivers which

are handled by the nearest replicated server. They proposed a hybrid metaheuristic to �nd near-

optimal solutions to this problem. Experiments were conducted on multi-cast scenarios with 2000

transit nodes and 200 servers created with the Georgia Tech Internetwork Topology Models (GT-

ITM) toolkit (Calvert et al. 1997).

As an alternative of connecting each pair of demand nodes with a direct connection, a hub-and-

spoke topology is used in a number of networks. In this type of networks, direct communication

between pairs of demand nodes is usually pricey. The �ow of information, goods, or passengers from

di�erent origins can be obtained at hub nodes before transmission to their destination. Performance

of these networks relies mainly on the use of consolidation, switching, or transshipment points,

knows as the hub facilities, where the �ows from several origins are consolidated and rerouted to

their destinations, sometimes via another hub. Since HLP involves the movement of commodities,

information and people, it is not surprising that the design of hub-and-spoke networks is widely

applied in telecommunication industry, logistical systems, airline industry and postal companies.

Today, there are many other areas that can take advantage of the hub concept like maritime

industry, freight transportation companies, public transit and message delivery networks (Farahani

et al. 2013). The design of hub-and-spoke networks is known to be also an NP-hard problem, and

it has recently been tackled by approaches based on metaheuristics. Thus, Gomes et al. (2013)

proposed an e�cient GA for the design of hub-and-spoke with single allocation, where the creation

of the initial population is based on a GRASP metaheuristic. The authors tested the proposed

GA on the Civil Aeronautics Board (CAB) and Australian Post (AP) data sets. Likewise, Sun
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Figure 3.2: Example of a network with relays

(2012) considered a capacitated asymmetric allocation hub problem. The approach determined

the number of hubs, their location, and the asymmetric allocation of non-hubs nodes to hub with

the objective of minimizing total transportation costs while satisfying the required service level.

The proposed solution method is based on combining ACO and GA.

Another hub location related problem that arises in telecommunication systems is the directed

network design problem with relays (DNDR). The problem is illustrated in Figure 3.2. Given a

directed network and a set of commodities, the DNDR consists of introducing a subset of arcs and

locating relays on a subset of nodes such that in the resulting network, the total cost is minimized.

Recently, Li et al. (2017) presented an ILS algorithm in order to solve the aforementioned problem.

The algorithm was tested on a set of instances with nodes up to 160.

On the other hand, networks may become partially disconnected due to catastrophic component

failures, and it is important for network users to be able to access some network services even under

such circumstances. Availability of network services can be increased by strategically allocating

servers over a network. In that sense, Kulturel-Konak and Konak (2010) developed a simulation-

optimization approach combining Monte Carlo simulation with PSO to solve the reliable server

assignment problem (RSAP). The proposed approach was tested using random problems ranging

from 30 to 100 nodes. Then, the same authors de�ned this problem as determining a deployment of

identical servers to maximize a measure of service availability, and solved it using nature-inspired

metaheuristic approaches such as ACO and PSO (Konak and Kulturel-Konak 2011).

The RSAP in networks has been addressed by a limited number of works presented in the
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literature. This is closely related to the p−median problem (Hakimi 1964), and is concerned

with locating p identical servers at p distinct nodes of a network to minimize the total weighted

distance between the nodes and the closest servers. Most network reliability problems are NP-hard

and, because of its di�culty, the p−median problem has been usually studied under simplifying

assumptions. Few years ago, Konak et al. (2015) introduced the RSAP considering attacks, which

seeks to choose the locations of servers on a network in order to maximize the network reliability

that results from a worst-case attack on the edges of the network. They introduced a GA that

embeds the game-theoretic structure of the problem into the algorithm. The GA-based algorithm

was tested on problems size with 11, 25 and 30 nodes.

Moreover, telecommunication service operators are increasing their investment in solving the

network design problem in order to deal with any tra�c requirement under certain bounds and

physical network conditions. Diaz-Baez et al. (2013) proposed a GA to solve the RNDP with

optimal capacity of links, considering a stable routing with uncertain tra�c that can be divided

into k sub-routes. However, raising the k value implies an increase in the number of viable solutions.

Thus, a trade-o� between k and the quality of the solutions obtained by the proposed algorithm

was detected. The authors presented the results obtained with a network with 14 nodes and 21

links using the National Science Foundation topology (NSF)(Chinoy and Braun 1992).

Likewise, given the importance and complexity of the robust network design problem (RNDP),

Arteta and Pinto-Roa (2015) studied the RNDP subject to guarantee certain QoS level. By

reserving an adjustable bandwidth for each node, the network is not negatively in�uenced by

tra�c from the rest of the network. Hence, a multi-objective EA was proposed to solve and �nd

a robust network design, which also minimizes the cost of the network, minimizes the inequity of

tra�c, and maximizes the tra�c service in the worst-case scenario. The experiments were carried

using the NSF topology.

Pressure to reduce costs is also adding new urgency to the search of practical communication

network design and optimization algorithms that can pack tra�c into fewer or less expensive

facilities without requiring new technology or capital purchases. Thus, Cox and Sanchez (2000)

presented in their work a metaheuristic algorithm based on a short term TS approach for designing

least-cost telecommunication networks that carry cell site tra�c to wireless switches while meeting

survivability, capacity, and technical compatibility constraints.

With an explosive increase in data tra�c over recent years, it has become increasingly di�cult to

rely on outdoor base stations to support the tra�c generated indoors mainly due to the penetration

issue of wireless signals. In the past, outdoor cellular networks had been very successful to provide

wide coverage area. However due to physical barriers of buildings such as walls and windows, it

becomes very di�cult for wireless signal to penetrate buildings and achieve the required signal

strength for the indoor mobile users. Shakya et al. (2018) proposed a GA for designing an in-

building distributed antenna system based on the real world requirements of a telecommunication

service provider. The algorithm was tested on a instance of a building with 12, 25, 48 and 60 �oors.

Also, many research works have been done for optimizing average network delay and, thereby,

designing either minimal-cost reliable networks or maximal-reliable economic networks. A hybrid
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PSO algorithm was implemented by Papagianni et al. (2008) to design a network infrastructure

including decisions concerning the locations and sizes of the links. The authors presented the

results from a network with 16 nodes and 120 edges. The results indicated an improvement in the

optimization process in comparison to GA. Similarly, Dasgupta et al. (2012), the authors proposed

a modeling of data networks with delay and packet loss ratio. They minimized network cost using

GA. For that, three objective functions were de�ned. The proposed solution was tested with a

5-node network.

Tables 3.2 and 3.3 summarize the main articles that have proposed metaheuristics applied to

network design problems in telecommunications. The �rst column indicates the article in which

the metaheuristic-based methodology was employed. The next two columns (Single-solution and

Population-based) indicates the classi�cation of the metaheuristic in hand. The last column intro-

duces some notes regarding the limitations of the presented methodologies. The average running

time is indicated in seconds (s), minutes (m) or hours (h). Notice that TS is the most popular

single-solution search metaheuristic to approach network design problems. However, population-

based metaheuristics, especially GAs, are the most employed methodologies. As a matter of fact,

we can see that the majority of studies have dealt with small and medium large-size problems.

3.2 Routing

In the last decades, we have seen dramatic changes in the telecommunication industry that

have far-reaching implications for our life-styles. There are many drivers for those changes: there

is a continuing and relentless need for more capacity in the network and, at the same time, business

today rely on high-speed networks to conduct their business. Not too many years ago, wire and

radio technologies were the choices to send messages e�ectively.

Today, optical �ber has been displacing wire in many applications and, with wireless, is emerg-

ing as one of the dominant transmission technologies. The aforementioned factors have driven the

development of high-capacity optical-�ber networks and their remarkably rapid transition from

the research laboratories into commercial deployment. Optical-�ber networks o�er the promise to

solve many of the problems we have mentioned.

In addition to providing enormous capacities in the network, an optical-�ber network provides

a common infrastructure over which a variety of services can be delivered. In the �rst generation of

these networks, optical �ber was essentially used for transmission, and simply to provide capacity.

The second-generation of optical-�ber networks has also routing and switching capabilities, as well

as intelligence in the optical layer (Ramaswami et al. 2009). In both generations, multiplexing

techniques provide an increase in transmission capacity. The need for multiplexing is driven by

the fact that, in most applications, it is much less expensive to transmit data at higher rates over

a single �ber than to transmit at lower rates over multiple �bers. There are basically two ways of

increasing the capacity transmission on a �ber as depicted in Figure 3.3 the Wavelegth Division

Multiplexing (WDM) and the Time Division Multiplexing (TDM).

The idea of WDM is to transmit data simultaneously at multiple carrier wavelength (or equiv-
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Figure 3.3: Di�erent multiplexing techniques for increasing the transmission capacity on an optical

�ber. Both multiplexing techniques take in N data streams, each of B b/s, and multiplex into a

single �ber with a total aggregate rate of NB b/s

alently, frequencies or colors) over a �ber. In a wavelength-routed WDM network, end users

communicate with one another via all-optical WDM channels, which are referred to as light-paths

(Chlamtac et al. 1992). A light-path is viewed as a point-to-point light connection from a source

to its destination. The concept of light-path can be extended to a light-tree, where a point-to-

multipoint connection is set up using a single or multiple wavelengths (Sahasrabuddhe and Mukher-

jee 1999). Siregar et al. (2005), considered the Multi-cast Routing Problem (MRP) in large-scale

WDM optical-�ber networks, where transmission requests are established by point-to-multipoint

connections. The authors proposed a GA that exploits the combination of alternative shortest

paths for the given multi-cast requests in order to minimize the number of required split-capable

nodes.

Given a set of connections, the problem of setting up light-paths by routing and assigning a

wavelength to each connection is called the Routing and Wavelength Assignment Problem (RWAP)

(Figure 3.4). An algorithm to solve the dynamic RWAP in a distributed manner was proposed by

Aragón et al. (2007). It uses ACO to obtain updated information about the network state, which is

then employed to �nd the routes and wavelength that allow to establish new connections through

an adaptive process able to deal with dynamic changes in the network state. Hassan and Phillips

(2008) proposed a PSO metaheuristic approach for solving the static RWAP. To help the particles to

converge towards an optimal solution quickly, a novel scheme is devised for route selection during

the particles search. Later, the same authors addressed the dynamic RWAP in WDM optical

networks (Hassan and Phillips 2009). For solving this variant, they proposed a Chaotic PSO. The

static RWAP is often referred to as the Virtual Topology Design Problem (Dutta and Rouskas

2002). Ghose et al. (2005), the authors considered the problem of designing virtual topologies for

multi-hop optical WDM networks. To analyze this problem, two metaheuristic algorithms were

introduced: GRASP and EA. An ACO routing algorithm was proposed by Pavani and Waldman

(2006) for transparent optical-�ber networks. It took into consideration the bit error rate of the

connections that is derived from ampli�ed spontaneous emission noise accumulated along the light-

path.

In order to maximize the usage of the light-paths, telecommunication carriers adopt a technique
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Figure 3.4: Wavelength-routed optical WDM network with light-path connections (Hassan and

Phillips 2008)

that consists in grooming low speed tra�c streams into high capacity channels. This technique is

referred to as the RWAP with tra�c grooming. Few years ago, Wu et al. (2015) proposed a GRASP

algorithm for solving the tra�c grooming and routing problem with simple path constraints in

WDM mesh networks, and introduced a mechanism to tackle the interaction between the grooming

problem and the routing problem. In addition, tra�c demands in WDM optical-�ber networks can

be classi�ed into three categories (Gagnaire et al. 2007): permanent or static lightpath demands

(PLDs), scheduled lightpath demands (SLDs), and random lightpath demands (RLDs). SLDs are

known in advance, and are supposed to be active only for a limited period of time (hours, days,

or weeks). In this regard, Markovi¢ et al. (2012) studied the RWAP of SLDs in all-optical WDM

networks with no wavelength conversion capability. They proposed an algorithm based on the BCO

metaheuristic. It was shown that, by applying the proposed algorithm, signi�cant improvements in

terms of the number of established light-paths could be achieved by taking into account temporal

information of light-path demands compared to the case when this information is not considered.

Authors agree that optimizing information exchange and routing is a challenging problem with

implications of many aspects of the network: determining the required paths while minimizing the

cost, minimizing the delay or maximizing the reliability, etc. A commodity represents a certain de-

mand of telecommunication tra�c between two nodes. If multiple pairs of source and destinations

have to be managed, the problem is de�ned as a multi-commodity �ow problem (MCFP). Masri et

al. (2011) extended the MCFP by considering multiple sources for each �ow, and a solving ACO

metaheuristic was proposed.

Orthogonal Frequency Division Multiplexing (OFDM) was proposed as a modulation technique

for optical networks due to its good spectral e�ciency. Optical OFDM is more �exible compared

to traditional WDM systems, enabling elastic bandwidth transmissions. Christodoulopoulos et al.

(2010) introduced the routing and spectrum allocation problem in OFDM-based optical networks,
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as opposed to the typical RWAP in traditional WDM networks. The objective is to serve the con-

nections through adequate spectrum allocation, with the constraint that no spectrum overlapping

is allowed among those connections, and minimize the utilized spectrum. These authors proposed

a SA metaheuristic to �nd good orderings that yield near optimal performance.

In addition, many researches have proposed metaheuristics for solving di�erent variants of

network routing problems. Thus, Sim and Sun (2002) introduced an algorithm based on ACO

for solving various types of routing and congestion problems in computer networking. Likewise,

Vaezpour and Dehghan (2014) addressed the joint channel and routing problem for multi-cast

applications. In their work, a technique based on a multi-objective GAs was proposed to build a

delay-constrained multi-cast tree with minimum interference. Similarly, Kusetogullari et al. (2011)

proposed a GA and a PSO metaheuristic algorithms to maximize utilization and improve QoS in

expanding networks.

In a data communication network, nodes and arcs represent routers and transmission links,

respectively. Intra-domain tra�c engineering aims at making a more e�cient use of network

resources within autonomous systems (Buriol et al. 2005). Interior gateway protocols, such as the

Open Shortest Path First (OSPF) and the Intermediate System-Intermediate System (IS-IS) are

commonly used to select the paths along which tra�c is routed within an autonomous system.

Given a set of tra�c demands between origin-destination pairs, the OSPF weight-setting problem

consists on determining weights to be assigned to the links so as to optimize a cost function,

typically associated with a network congestion measure. The work presented by Fortz and Thorup

(2004) was one of the �rst considering even tra�c splitting in OSPF weight setting. Later, Buriol

et al. (2005) proposed a GA with a local search procedure for the OSPF weight-setting problem.

Ad hoc networks are a type of wireless networks that do not require any infrastructure such as a

backbone or con�gured access points. The great advantage of ad hoc networks is the high �exibility

they o�er, even when there is no �xed communication infrastructure, there are high installation

costs, or the reliability levels are lower than used to be in other networks. Other advantage of ad

hoc networks is their robustness. Due to these characteristics, there are several applications of ad

hoc networks: they can be used in places where rapid installation is required.

A mobile ad hoc network (MANET) is a collection of mobile nodes which communicate over

radio. In a MANET, no infrastructure is required to allow the exchange of information between

mobile device users. Since the nodes are mobile, the network topology may change rapidly and

in an unpredictable way over time. The major challenge found in this kind of networks is to �nd

a path between the communication end points satisfying QoS requirements. The di�culty of this

challenge is increased due to the mobility of the nodes. Gunes et al. (2002) introduced an ACO

metaheuristic to handle the routing problem in a multi-hop MANET. This approach consisted of

three phases: route discovery, route maintenance, and handling of route failures.

Multi-cast routing is one type of data transmission service in MANET where the data are sent

from source node to many destination nodes through more than on path. In the MRP, QoS mainly

depends on cost, delay, jitter and bandwidth. Recently, Wei et al. (2018) proposed a multi-objective

multi-cast routing optimization GA-based algorithm
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Likewise, Deepalakshmi and Radhakrishnan (2009) proposed years ago an ACO-based routing

protocol for a MANET supporting multimedia communications. In fact, Multi-casting plays and

important role in the ad hoc wireless networks. Mangai et al. (2008) introduced an ACO meta-

heuristic for multi-cast routing in ad hoc wireless networks. A vehicular ad hoc network (VANET)

is a subclass of a MANET frequently employed in intelligent transportation systems. Multi-casting

provides di�erent tra�c information to a limited number of vehicle drivers by a parallel transmis-

sion. However, it represents a very important challenge in the application of VANETs, especially in

the case of the network scalability. Bitam and Mellouk (2013) proposed a BCO algorithm to solve

the QoS MRP for VANETs with multiple constraints. A few years ago, Nancharaiah and Mohan

(2014) proposed a hybrid routing intelligent algorithm that combines a PSO approach and an ACO

approach with the goal of improving various performance metrics in MANET routing, including:

end-to-end delay, power consumption, and communication costs. Also, Kim (2014) introduced a

multi-path routing scheme employing SA to deal with a hostile dynamic real-world situation into

the con�ict MANET routing problem.

Advances in sensor technology and computer networks have enabled distributed sensor networks

(DSN) to evolve from static network topology to dynamically changing topology. In such dynamic

environment design and development of e�cient routing protocol remain a challenge for researches.

Mann et al. (2016) presented a population-based metaheuristic based on swarm intelligence for

energy-e�cient hierarchical routing protocol for WSN. The proposed protocol was simulated on

the Nature Inspired Tool for Sensor Simulation (NITSS) with a network up to 285 nodes. Similarly,

Das et al. (2016) proposed a GA-based model to further maximize the network lifetime. The

proposed model implements a multihop routing mechanism for data dissemination from source to

the sink. The algorithm was evaluated in the range of 20 to 60 sensor nodes.

Tables 3.4, 3.5 and 3.6 summarize the articles that have proposed metaheuristics applied to

routing network design problems. The �rst column indicates the article in which the metaheuristic-

based methodology was employed. The next two columns (Single-solution and Population-based)

indicates the classi�cation of the metaheuristic in hand. And the last column, denoted by "Notes"

gives a brief description of the limitations found on the analyzed article. Up to now, population-

based metaheuristics like GAs and ACOs are the most employed ones in these routing problems.

3.3 Channel Allocation and other Problems

Another relevant problem is the channel allocation in mobile radio system. The rapid growth of

cellphone users brought the need for e�cient reuse of the limited frequency spectrum allocated to

cellular mobile communications (Lee 1995, Tragos et al. 2013). The e�cient reuse of this spectrum

is also important from the �nancial point of view, since less spectrum required to o�er services to

the same number of users means a lower cost. In the current scenario of cellular mobile services,

the transmission frequencies are grouped into bands which are usually codi�ed in a set of channels.

Thus, each base station receives a portion of the total number of channels available to the entire

system.
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The channel allocation task in wireless communication deals with the allocation of available

communication channels to any mobile host within its network coverage. A base station is respon-

sible for controlling the allocation of channels in a cell. Communication between base stations

enables unused channels to be temporarily transferred from one cell to another. Suliman et al.

(2016) proposed an AIS-based Algorithm for bandwidth spectrum allocation in wireless commu-

nication. Their model works by allocating the unused channels from the cells with less demand to

overloaded cells. The proposed algorithm was tested on networks with 50 and 100 mobile hosts.

Tackling interference is an essential issue in wireless communications to which interference

alignment provides a promising solution. Interference alignment aligns, at each receiver, the in-

terference in the smallest possible part of the space formed by available signaling dimensions; the

remaining part will contain the useful signal that will be recovered using a decoding matrix. Re-

cently, Messaoud et al. (2017) performed an interference alignment optimization using PSO and

BCO algorithms. The proposed algorithms were tested on di�erent scenarios in which transmitters

and receivers were equipped with 5 antennas each.

For various reasons and especially because of user's mobility, the signals between the mobile

unit and the base station may become weaker while interference from adjacent cells increases.

When a user in communication crosses the line between adjacent cells, occurs a hando�, i.e.,

the mobile network automatically supports the transferring of a communication from one cell to

another adjacent cell. E�cient assigning of cells to switches can have a signi�cant impact on

hando� and cable costing. In order to solve the assignment of cell to switches problems, Mirsaleh

and Meybodi (2018) proposed a hybrid metaheuristic obtained from the combination of learning

automation and local search. The experiments for testing the proposed algorithm were carried out

on a cellular network with the number of cells up to 100 and the number of switches up to 5.

Keeping the required hardware investments to a minimal level while achieving a high QoS is

the basic principle of network planning; the planning process can be split into two main steps:

dimensioning and frequency assignment. Bedoui et al. (2014) proposed a hybrid metaheuristic

for solving the multi-objective frequency assignment problem in broadcasting. They employed a

variant of TS, which uses a probabilistic aspiration criterion, the probabilistic TS combined with

a GA and SA algorithms. Similarly, Chen et al. (2016), designed a GA-based resource allocation

scheme under di�erent frequency bands and in the OFDM system for the downlink of Long Term

Evolution advanced. The results were obtained by testing the proposed algorithm on a scenario

with 64 user equipment.

To provide �awless services, managing a stable network bandwidth is a major concern in wire-

less network. In this sense, wireless mesh network (WMN) is an initial step towards providing

cost e�ective, dynamic, high bandwidth networks over a speci�c coverage area. However, minimiz-

ing the in�uence of interference is a prime challenge. The multichannel-multiradio concept have

been introduced to alleviate this problem with the help of e�cient channel allocation algorithms.

Chakraborty and Debbarma (2017) proposed a GA-based algorithm in order to solve the MRP

and channel assignment in multichannel multiradio wireless mesh network. The analysis of the

algorithm performance was based on a 14 available channel network. Likewise, in Ohatkar and
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Bormane (2014) a GA is introduced for hybrid channel allocation. It focuses on reducing the

interference in cellular networks.

Therefore, it is important to establish a strategy in order to reduce the total use of the available

frequencies. Unfortunately, when it comes to wireless communication there is the interference

problem �a phenomenon that represents the superposition of two or more electromagnetic waves

at the same point. Some approaches have been developed in order to solve it. Soo-Hyun et al.

(2000) considered the channel allocation problem. In such problem, the goal is to minimize the

weighted average blocking probability subject to co-channel interference constraints in a cellular

mobile system. These authors simpli�ed the problem using the concept of pattern, and applied

a SA procedure to deal with it. Similarly, He et al. (2018) proposed a GA-based algorithm to

solve the channel allocation and power control problem for cognitive radio networks with multiple

constraints and get the optimal channel allocation strategy. The proposed algorithm was tested

on a network with number of users up to 6.

Cellular networks are at the center of this expansion. With the growing of the number of users

and services provided by cellular networks, the cellular network should be highly e�cient to satisfy

the users' needs. The radio network design is a key step in the life cycle of a network. It involves

many sub-problems, like frequency assignment problem and antenna positioning problem. The

latter consists in �nding the locations for the base stations to ensure a maximum radio coverage,

while minimizing the number of the used base stations. Recently, Benmezal et al. (2017) an hybrid

metaheuristic framework based on ILS and Breakout Local Search (BLS) . The proposed algorithm

was tested on a realistic instance with a total of 135000 points, among which 1000 points are chosen

to be potential transmitter locations.

Along with the fast-increasing in mobile cellular networks, wireless sensor networks (WSN)

have been evolving. A WSN is usually described as a network of nodes that track physical or

environmental conditions, enabling interactions between persons or computers and the enclosing

environment (Bröring et al. 2011). During the deployment of a WSN, one key objective is the

full coverage of the monitoring region with a minimal number of sensors and a minimal energy-

consumption of the network. Fidanova et al. (2014) proposed a multi-objective ACO to solve this

problem. Later, Das et al. (2015) proposed a similar algorithm to minimize the number of required

sensors while covering a maximum area. They developed an algorithm based on TCO.

Due to spectrum scarcity and the high demand for services, the same problem that is presented

in mobile networks is also a problem in satellite communication networks. The challenge of as-

signing telecommunication services to satellite spectrum resources have been modeled as a packing

problem. Thus, Wille et al. (2005) introduced a packet network design methodology to assign �ow

and capacities under end-to-end QoS constraints. The solving approach is based on the use of a

GA and a TS. Likewise, Kutucu et al. (2016) consider the band collocation problem which may �nd

an application in telecommunication networks, to design an optimal packing of information �ows

on di�erent wavelengths into groups for obtaining the highest available cost reduction using WDM

technology. The authors proposed a SA algorithm tested on a set of instances with a network up

to 96 base stations.
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With the development of new technologies, Internet-distributed computing has become increas-

ingly popular, which has brought new emergent paradigms. However, the scarce availability level

of non-dedicated resources constitutes an important challenge to the range of possible applica-

tions of these systems. Cabrera et al. (2014) proposed a simulation-optimization approach for

cost-e�ective and availability-aware service deployment. Likewise, Mazza et al. (2016) dealt with

the resource allocation problem for supporting fast access of mobile devices. They presented a

BR-based heuristic to support e�cient and fast link selection.

Table 3.7 summarizes the information reviewed in this section. The �rst column indicates

the article in which the metaheuristic-based methodology was employed. The next two columns

(Single-solution and Population-based) indicates the classi�cation of the metaheuristic in hand.

And the last column, denoted by "Notes" gives a brief description of the limitations found on the

analyzed article. Notice the diversity of metaheuristics that have been used to deal with these

problems, including hybrid ones.

3.4 Concluding Remarks

This chapter o�ered a review of recent works proposing di�erent metaheuristic approaches to

e�ciently deal with the aforementioned challenges. Three main telecommunication �elds have

been the focus of this chapter: networks design, routing, and allocation. Inside these �elds several

sub-problems have been identi�ed, since the design of telecommunication systems comprises many

di�erent aspects, including: topologies, location of resources in links and nodes, uni-cast vs. multi-

cast routing, reliability and availability of networks, etc. From the literature review, it can be

concluded that, so far, population-based metaheuristics �such as Genetic Algorithms, Ant Colony

Optimization, and Particle Swarm Optimization� have been more popular than single-solution ones

�such as Tabu Search, GRASP, or Simulated Annealing. However, this also o�ers a good chance

to researchers in other �elds �e.g., Operations Research or Industrial Engineering� to propose new

single-solution approaches that typically require less parameters and might be easier to implement

in real-life scenarios.

Moreover, it should be noted that studies have been done on a considerable range of HLPs,

however, some of the novel formulations and their solution techniques are not pertinent to real-

world problems since they consider small size instances. In the following, a hub location related

problem: the USApHMP is subject of study.
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(II) APPLICATIONS
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Chapter 4

Deterministic Version of the

Uncapacitated Single-Allocation p-Hub

Median Problem

Hub location related problems have gained attention over the last decades. In general, the

HLP can be stated as follows: given a set of nodes, their locations, an origin-destination pair

tra�c requirements matrix specifying the level of interaction between each pair of nodes, and the

number of hubs that are to be employed, p, determine the location of hubs and the assignment

of the non-hub nodes to them to enable the interaction of the non-hub nodes at minimum cost.

Non-hub nodes are connected directly to hubs, and hubs are directly connected to one another.

Links between non-hub nodes are not allowed, so all tra�c must be routed via, at least, one hub.

In telecommunication networks, a hub is a place of concurrence where the work of the network

is centralized with the purpose of delivering out the data that arrives from one or more directions

to other destinations. In this sense, hubs are applied to decrease the number of transportation

links between origin and destination nodes. For example, a fully interconnected network with n

nodes and without hub nodes has n(n− 1) origin-destination links as illustrated in Figure 4.1(a).

However, if a hub node is selected to connect all other nodes (i.e., non-hub nodes also known as

spokes) with each other, there will be only 2(n − 1) connections to serve all origin-destinations

pairs. This idea can be extended to a network with more than a unique hub node, sometimes

referred as a multiple-hub network, such as the one shown in Figure 4.1(b). Note that by using

fewer resources, demand pairs can be served more e�ciently with a hub network than with a fully

connected structure.

Costs of a hub network depend on its proper structure. The total distances of links (known as

arcs) connecting the whole pairs of origin-destination points might be less in a hub network, but

the total travel distance may be larger since the number of people, commodities, merchandise, or

information moving on the hub-to-hub connections could be greater than those moving between

hub and spokes. It seems that the telecommunication industry is originally one of the oldest user

of hub network concept. However, logistics systems, airline industry, and postal companies are
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(a) A fully interconnected network with n nodes (b) A multiple-hub network

Figure 4.1: Comparison between a fully interconnected network with non-hub nodes and a multiple-

hub network

main users of this concept on these days.

There are many variants of HLP (O'kelly 1987): the p-hub median problem, the p-hub center

problem, the capacitated/uncapacitated hub location problem, and the hub covering problem. In

the p-hub median problem, which has applications on telecommunication networks and transporta-

tion, the objective is to minimize the total cost of movement �ow (data, packets, passengers, etc.).

In the p-hub center problem the main objective is to minimize the maximum cost (or distance)

between each pair of requested points. The capacitated/uncapacitated hub location problem di�ers

from the p-hub median one in that the number of hubs is not known beforehand, and a �xed cost

is associated with each potential hub location. The covering hub problems are particularly applied

to the delivery of time-sensitive items.

Moreover, hub location problems may be classi�ed by the way in which the requested points are

assigned or allocated to hubs. In this sense, they can assume one of the two allocation schemes: (i)

single allocation scheme, where each node must be assigned to exactly one hub node (i.e., all �ows

from/to each node go only via assigned hub); and (ii) multiple allocation scheme, where nodes are

allowed to communicate with more than one hub. Furthermore, di�erent constraints may arise,

including capacities restrictions on the volume of tra�c a hub can concentrate. A straightforward

version of this problem is the uncapacitated hub location problem, which assumes that the capacity

of each hub is virtually unlimited or, at least, far beyond the expected demand. In these types of

con�gurations, the hubs serve as connection points between two installations, allowing to replace

a large amount of direct connections between all pair of the nodes, hence, minimizing the total

transportation cost of the network. As expressed on Chapter 3, since network design problems are

time consuming and hence expensive, there is a critical need for e�cient approaches to support

the proper design decisions in short times.
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By relying on the above explanations, in this chapter, the USApHMP is addressed by a two-

stage metaheuristic. The developed metaheuristic will be referred as the Biased Randomization

Iterated Local Search, or BRILS as an abbreviation. Additionally, two algorithms inspired by

AIS are proposed to solve the same problem, namely CLONALG and optAiNet. In short, the

most signi�cant contributions of this chapter to the literature are: (i) developing an e�cient

metaheuristic algorithm by including BR techniques into the framework of ILS; (ii) putting forward

two promising algorithms based on AIS methodology, and (iii) providing numerous experiments

to show the quality of these proposals and pointing out several promising directions to future

research.

4.1 Literature Review

The USApHMP was initially presented by O'kelly (1987) in order to study airline passenger

�ow in which overall transportation cost between origin and destination points is minimized. The

authors were the �rst to introduce the CAB data set, which is based on airline passengers inter-

actions between 25 US cities in 1970. This data has become the most used by the hub location

researchers, although nowadays can be considered as medium-size network.

Few years later, the multiple allocation p-hub median problem was introduced by Campbell

(1992). Later, the same author presented a linear model approach for solving the single allocation

p-hub median problem (Campbell 1994). He also formulated the problem with �ow thresholds,

which is de�ned as the minimum �ow value needed to allow service on a link. When �ow thresholds

are set to their maximum values, each demand node is assigned to a single hub and the formulation

reduces to the single allocation p-hub median problem. After that, Skorin-Kapov et al. (1996)

proposed new very tight linear programming formulations for the multiple and single allocation p-

hub median problem. The authors showed that the LP relaxation of Campbell (1994) formulation

resulted in highly fractional solutions. They presented the optimal solutions for the CAB data set

by using CPLEX solver (IBM inc.). Ernst and Krishnamoorthy (1998) presented an integer linear

formulation for single allocation p-hub median problem with fewer variables and constraints in an

attempt to solve larger problems, the authors employed SA algorithm for solving problem up to

50 nodes. They were the �rst authors to use the AP data set, which is based on a postal delivery

in Sydney, Australia, and consists of 200 nodes representing the postal districts.

Ebery (2001) investigated the single allocation p-hub median problem in the presence of two or

three hubs where the locations of hubs are �xed. Authors solved these problems using new mixed

integer linear programming formulations with the AP data set up to 200 nodes. However, the

computational time required to solve their new formulation was greater than the required to solve

the formulation in Ernst and Krishnamoorthy (1998). Also, the formulation was only e�ective at

solving problems with at most three hubs. In the heuristic side, Chen and Wu (2008) dealt with

the USApHMP by adapting a hybrid heuristic from previous research which was designed mainly

for the multiple allocation version. The adapted heuristic used a tabu list in its SA algorithm to

overcome the problem which was tested using the AP data set.
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Likewise, Ili¢ et al. (2010) introduced a General VNS (GVNS) algorithm to solve the USApHMP

which is tested in instances with up to 400 nodes and reported new results for a few problems

with up to 1000 nodes. Similarly, Kratica (2013) solved this problem by an electromagnetism-

like metaheuristic, which can solve nonlinear global optimization problems converging rapidly to

an optimum. The author demonstrated this approach is capable to solve the problem up to

1000 nodes. Alternatively, Peiró et al. (2014) proposed a heuristic approach based on GRASP

metaheuristic that employs three local search procedures to solve the uncapacitated r -allocation

p-hub median problem, in which every node is assigned to r of the selected p hubs (r ≤ p). The

proposed algorithm was tested in instances with up to 200 nodes. They introduced a mechanism

to eliminate low-quality solutions during the greedy phase. Therefore, they selectively apply local

search to promising solutions. The authors tested their algorithm in the USA423 data set, which

is based on real airline data with up to 423 nodes.

Furthermore, Martí et al. (2015) demonstrated that their Scatter Search-based methodology

was superior compared to GRASP methodology when solving uncapacitated r -allocation p-hub

median problem. They also enhanced their algorithm by hybridization with Path Relinking. They

presented solutions with the CAB, AP and USA423 data sets. The later, is based on real airline

data concerning 423 cities in the United States. Later, Amin-Naseri et al. (2016) introduced a

robust bi-objective USApHMP in which travel time has non-deterministic nature. They developed

a hybrid metaheuristic based on Scatter Search and Variable Neighborhood Descent tested in

problems up to 50 nodes. Rostami et al. (2015) addressed a new version of the USApHMP in

which transportation costs of each edge are given by piecewise constant cost functions. Authors

proposed an exact Branch-and-Bound algorithm applied in instances with up to 50 nodes.

Recently, Sun et al. (2017) presented an evaluation of di�erent methods from the state-of-

the-art for solving �ve problems belonging to the hub location problem, among them the single

and multiple allocation p-hub median problem. The techniques authors chose for studying the

scalability and solution qualities were GA, Lagrangian Relaxation (LR) and Restricted Clustering

(RC) based methods were applied. The authors used as case studies three data sets: Turkish Postal

System, AP and CAB. Authors concluded that GA provides good solution to single allocation

problems as LR to multiple allocation problems. RC methodology provided solutions within a

shorter time than the others, however, the optimality of the solution could not be guaranteed.

Recent successful approaches using exact methods are Meier and Clausen (2015) and Meier

et al. (2016). In these works, linearizations from the Euclidean structure presented in famous

instances of hub location problems are constructed, leading to compact formulations with few

variables. The authors presented results for instances with up to 200 nodes. For a more extensive

literature review on the HLP, the reader is addressed to Alumur and Kara (2008), in where the

authors reviewed over 70 articles on hub network optimization, and more recently to Farahani et

al. (2013), in which the authors review models, classi�cations, solution techniques and applications

of hub location problems. In order to provide an overview of the literature review related to the

p-hub median problem, the paramount feature of each studies mentioned above are encapsulated

in Table 4.1.
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Although the USApHMP has received various attention from the heuristics and exact methods

community, and ILS has been applied to other variants of HLP, no BR techniques implementation

exists for the USApHMP investigated here. This chapter aims to bridge this gap by proposing the

BRILS approach to solve USApHMP. The algorithms designed applying BR of classical heuris-

tics allows to obtain "high-quality" solutions to realistic problems in reasonable computing times.

Moreover, they tend to use a reduced number of parameters, which make them simple to imple-

ment and set up in most practical applications. Also, CLONALG and optAiNet are proposed to

solve the same problem. In contrast with standard GA and other bioinspired proposals which have

been applied to solve other variants of the problem, immune inspired algorithms such as CLON-

ALG and optAiNet present an intrinsic capacity of maintaining diversity of solutions during the

execution, which can be decisive to increase the probability that the global optimum or a good

local optimum be reached. Although it is known that there is an speci�c global search strategy

with superior performance for a wide class of problems, these arguments support the application

of such metaheuristics in the context of USApHMP.

4.2 Formal Problem Description

The USApHMP consists in selecting p nodes of a given network as hubs and allocating the

remaining nodes to them, such that each non-hub node is allocated to a single hub and the overall

transportation cost is minimized. The number of required hubs to locate is given in advance. The

mixed integer linear programming formulation proposed by O'kelly (1987) is used in this work,

since it has been widely applied for solving from small to large instances of the problem.

According to this formulation, N = {1, · · · , n} is a set of n distinct nodes in the network, where

each node refers to origin/destination points or possible hub location. The distance between each

origin node i and destination node j is Cij , and wij is the amount of �ow from node i to node j.

A variable Hij ∈ {0, 1} has value 1 if node i is allocated to a hub node j and 0 otherwise. The

condition Hkk = 1 implies that the node k is a hub. Given that hub nodes are fully interconnected,

every link between an origin node and a destination node will contain at least one hub (in case

a mail is sent from postcode district to itself) and at most two hubs (in case the origin and

destination nodes belong to di�erent postcode districts). Thus, parameters X , τ and δ represent

the unit rates (costs) for collection (origin-to-hub), transfer (hub-to-hub) and distribution (hub-to-

destination) along the path. Generally, τ is used as a discount factor to provide reduced unit costs

on arcs between hubs to re�ect scale savings, so τ < X and τ < δ. The factor τ was originally

proposed by O'kelly (1987) to represent scale savings on the transportation cost between hubs;

the two remaining factors, X and δ were later introduced by Ernst and Krishnamoorthy (1998) to

represent the reality of postal service costs. Given the notation above, the problem is formulated

as follows:
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minimize
∑

i,j,k,l∈N
wij(XCikHik + τCklHikHlj + δCljHlj) (4.1a)

subject to:
n∑
k=1

Hkk = p, (4.1b)

n∑
k=1

Hik = 1, for all i = 1, · · · , n, (4.1c)

Hik ≤ Hkk for all i, k = 1, · · · , n, (4.1d)

Hik ∈ {0, 1} for all i, k = 1, · · · , n, (4.1e)

The objective function 4.1a guides the search for the minimum total cost of origin-to-hub, hub-

to-hub, and hub-to-destination �ow costs multiplied by X , τ and δ factors respectively. Constraint
4.1b speci�es that the exactly given number of p hubs are found. Constraint 4.1c ensures that the

�ow from any node i is sent through exactly one hub node in which the node i is allocated. By

constraint 4.1d we prevent nodes being allocated to hubs that are not being activated. Constraint

4.1e enforces that the �ow is sent only via activated hubs, thus avoiding direct transfer between

non-hub nodes. Figure 4.2 illustrates the problem given a network of n = 20 nodes and p = 4

hubs. In the example, origin node i sends the �ow wij to the destination node j through the hubs

every node is allocated.

X

τ

δ

i

j
Hub nodes

Non-hub nodes

k

l

wij

Figure 4.2: Illustrative example of the USApHMP with a network of n = 20 and p = 4

65



4.3 A Two-Stage Biased Randomized Iterated Local Search for

Solving the USApHMP

4.3.1 Solving Methodology

Two main ideas are the basis of our approach. Firstly, using a simple (with few parameters to

avoid long �ne-tuning processes) and fast heuristic that allows the generation of feasible solutions

and selection of the most promising ones. Secondly, considering all decisions together at each

phase of the algorithm, i.e., tackling the p hubs location taking into account assignment costs

when deciding the nodes allocated to the p hubs, as well as the transportation costs of sending

the �ow tra�c from the origin node to its destination (or at least an estimated cost). As a result

of combining these two ideas, we have developed an e�ective algorithm that can be repeatedly

executed without consuming too much computational time.

The use of BR techniques inside a constructive heuristic to obtain new solutions is an appealing

aspect of our approach. It means that some bias is introduced into the random process in order

to guide the selection of a movement, in such a way that the basic logic behind the deterministic

heuristic is conserved (Grasas et al. 2017, Juan et al. 2013). If higher probabilities of selection are

assigned to the most promising movements during the constructive phase of the heuristic, the logic

of the original procedure is respected. Indeed, asymmetric probability distributions, for instance,

the geometric distribution or the decreasing-triangular one, are preferred (Juan et al. 2015b,c).

Furthermore, if we execute it several times, we can obtain di�erent solutions with similar costs.

Several authors have successfully applied this methodology in literature (Dominguez et al. 2014,

2016a,b, Juan et al. 2014b, Quintero-Araujo et al. 2017). This is the �rst time that a BR technique

is implemented into a solution procedure for the USApHMP.

Additionally, the choice of ILS as building block to tackle USApHMP is motivated by the large

number of studies adopting ILS in hub location-like problems (Carello et al. 2004b, Teymourian et

al. 2011, Davari and Fazel Zarandi 2013, Fazel Zarandi et al. 2015). As explained before in Section

2, ILS is a single-solution metaheuristic that starts applying a local search to an initial solution.

Then, a loop starts where at each iteration a perturbation phase is applied to the current local

optima, followed by a local search phase.

Algorithm 11 depicts our integration of BR into the ILS scheme. This allows us to take advan-

tage of BR features to improve the search space generated by the ILS and, thus, to complement the

search. The algorithm receives the following input parameters: (i) the number of nodes as well as

the number of hubs of the problem; (ii) the limit percentage of hubs to be deleted from the current

base solution during the perturbation phase; (iii) the stopping criterion, i.e., the maximum number

of iterations to be executed; (iv) the parameter β for the geometric distribution. The procedure

starts generating an initial solution from function genRandSol (line 1). Figure 4.3 illustrates this

function. Firstly, a set of initial hubs are randomly chosen, using a uniform probability distribution

as shown in Figure 4.3a. Let k be a candidate location for a hub and that any node i could be

assigned to k, then, we consider that all the �ow transferred from node i to any node j has to be

sent through k. The cost associated with such a �ow is given by wij multiplied by the distance
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Algorithm 11: BRILS(nodes, pHubs, per, maxIterations, beta)

1 initialSolution ← genRandSolution(nodes, pHubs, connectionCostMatrix, beta)

2 baseSolution ← initSolution

3 solutionSet ← {}

4 numberOfIterations ← 0

5 credit ← 0

6 while (numberOfIterations ≤ maxIterations) do

7 newSolution ← perturb(baseSolution, connectionCostMatrix, beta, per)

8 newSolution ← localSearch(newSolution, connectionCostMatrix)

9 delta ← cost(newSolution) � cost(baseSolution)

10 if (newSolution in the best n solutions) then

11 add(newSolution, solutionSet)

end

12 if (delta ≥ 0) then

13 credit ← delta

14 baseSolution ← newSolution

15 if (cost(newSolution) < cost(bestSolution)) then

16 bestSolution ← newSolution

end

else

17 if -(delta) ≤ 0 then

18 credit ← 0

19 baseSolution ← newSolution

end

end

end

20 numberOfIterations ← numberOfIterations + 1

21 bestSolution ← null

22 for (solution in solutionSet) do

23 solution ← fullLocalSearch(solution)

24 if (bestSol = null or cost(solution) ≤ cost(bestSolution)) then

25 bestSolution ← solution

end

end

26 return bestSolution

Cik from node i to the assigned hub k. Accordingly, we have the calculation of this assignment,

a(i, k), as

a(i, k) = Cik

n∑
j=1

wij . (4.2)
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(a) Initial distribution of hubs

and nodes after Eq. 4.2 is com-

puted for every node i

(b) The biased randomization is

applied

(c) Network after the total

transportation cost is minimized

Figure 4.3: Generation of the initial solution using BRILS algorithm

In order to evaluate the potential of k as a possible hub, we compute (4.2) for every node i in the

graph. Then, for each non-hub node we add the selected hubs in a list which is sorted according to

the a(i, k) by allocating the non-hub node to the chosen hubs. Then, the BR technique is applied

by using the geometric distribution to give higher probabilities to the non-hub node with less

connection cost, as illustrated in Figure 4.3b. The geometric distribution has only one parameter,

β, which in our case represents the probability given to the �rst element of the list. Consequently,

when β becomes closer to 1, the greedy behavior of the heuristic is retrieved. This way, at each

step, instead of inserting the "best candidate node for being a hub", all candidates are considered

with nodes having better odds of being selected. Notice that no time-costly �ne-tuning process is

needed here. Then, an array as the bunch of nodes allocated to the same hub is found. Note that

for each node j that receives �ow from any node i, this �ow has to be transferred through their

assigned hub. That is, to transport the wij �ow, a path i → ki → kj → j will be used. Then, the

transportation cost of routing all �ows is minimized (see Figure 4.3c).

Once the initial solution has been generated, the ILS main loop starts (lines 6-23). Inside it,

the current base solution is disturbed in order to improve the non-hub nodes allocations obtained

so far, thus generating a new candidate solution (line 7). As it can be seen from Algorithm 12, a

percentage per of the current base solution is destroyed and then reconstructed to generate a new

solution during this stage. In order to do that, we generate a new assignment of nodes to hubs

searching into the neighborhood of the current solution. This new assignment is constructed as

follows. A random number of r di�erent hubs are chosen. The number of r hubs to be removed
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Algorithm 12: perturb(baseSolution, connectionCostMatrix, beta, per)

newSolution ← baseSolution

// destruction phase

hubs ← randSelect(newSolution, per)

newSolution ← delete(newSolution,hubs)

hubs ← randSelect(nodes(newSolution - hubs(newSolution)), per)

newSolution ← add(newSolution, hubs)

// construction phase

for (node in nodes) do

hubs(node) ← sortByConnectionCost(node, hubs, connectionCostMatrix)

hub(node) ← biasedRandSelect(hubs(node), beta)

newSolution ← add(newSolution, hub(node))

end

estimatedCost(newSolution) ← estimateCost(newSolution, connectionCostMatrix)

return newSolution

is determined by the perturbation operator per. These hubs are excluded from the current base

solution. Then, the same number r of hubs are randomly chosen to be included in the current new

solution. Finally, in order to reconstruct the solution, the same logic used to generate the initial

solution is applied, i.e., the non-hub nodes are sorted in a list depending of the connection cost,

the nodes in the list are randomized, and the array of nodes allocated to every hub is found. The

use of BR techniques in this phase results appealing because it enhances the performance of the

heuristic.

A deterministic heuristic provides one possible quality solution . However, as discussed by

Grasas et al. (2016), by randomizing the deterministic approach using a skewed probability distri-

bution, we can go further and obtain di�erent quality solutions while keeping the logic behind it

(Figure 4.4). As already stated in Chapter 2, in other approaches such as the GRASP (Feo and

Resende 1995), the "best next" elements to choose in each step are collected in a RCL, and then the

next element to include in the partial solution is randomly selected using a uniform distribution.

However, this approach requires to determine the proper size of the RCL and it is not necessary

if we use the BR technique, that seems to perform equal or even better than GRASP, as depicted

in (Grasas et al. 2016).

Then, a local search process is carried out (line 8). This procedure is described in Algorithm

13. It is a simple and easy-to-implement procedure. By following the steps in the procedure the

solution is moved approaching the closest local optima by using a neighborhood search scheme.

The local search tries to improve the solution with a one-trade in each iteration. During the one-

trade step the procedure tries to alternate the selected hub k with one of the remaining hubs in

the current new solution. After that, the estimated cost of the solution containing the new hub

con�guration is compared to the solution that contains the original hub. Notice that the concept

of savings is proposed, which is associated with the estimated cost of sending �ow from the origin

69



Algorithm 13: localSearch(newSolution, connectionCostMatrix)

for (node in nodes(newSolution)) do

for hub in hubs(newSolution - hub(node)) do
savings ← distance(node, hub)*(collectionCost*totalOutFlow(node) +

distributionCost*totalInFlow(node))

savings ← savings - distance(node, hub(node)) *(collectionCost*totalOutFlow(node)

+ distributionCost*totalInFlow(node))

if (savings < 0) then

hubs(node) ← hub

estimatedCost(newSolution) ← estimatedCost(newSolution) + savings
end

end

end

return newSolution

node i to the destination node j through their hubs yet ignoring the transfer (hub-to-hub) cost

τ (by ignoring the transfer cost the strategy becomes much less computational expensive). If

Figure 4.4: Use of skewed distributions to generate alternative solutions
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the savings value is smaller than 0, one-trade is performed, otherwise a new hub con�guration

is tested. Within the proposed local search procedure, every time an improvement is detected,

this is rapidly performed and the procedure continues. If, for each node, one-trade produces a

savings value greater than zero, the local search procedure concludes with no improvements. Next,

the new solution obtained is compared against the current base solution. Notice that, at any

time the newSolution is found, this is saved in solutionSet (line 9-11). The acceptance criterion

(line 12-19) uses the credit strategy, which means that, whenever an improvement in the current

solution is performed, a credit is assigned by the algorithm. This credit has the same value of the

improvement and limits the total length that the current base solution gets worse in the following

iteration. Then, for every solution contained in solutionSet, a local search procedure denoted as

fullLocalSearch and presented in Algorithm 14 is applied. This procedure di�ers from the one

carried out in line 8 in that the fullLocalSearch takes into account the objective function value as

in 4.1a, i.e., the sum of origin-to-hub, hub-to-hub and hub-to-destination �ow costs multiplied by

X , τ and δ factors respectively. Finally, if the former solution is better than the bestSolution, then

the latter is updated to proceed with the search from a more likely point within the solution space.

At any time, the best solution found is updated and saved, thus, this is the solution returned at

the end. Note that by running the algorithm multiple times or until a limited computation time,

each run will produce di�erent solutions in a fast way and one can take the best from the set of

solutions generated.

Algorithm 14: fullLocalSearch(newSolution)

for (node in nodes(newSolution)) do

for hub in hubs(newSolution - hub(node)) do

oldHub ← hubs(node)

oldCost ← cost(newSolution)

hubs(node) ← hub

if (cost(newSolution) > oldCost) then

hubs(node) ← oldHub

end

end

end

return newSolution

4.3.2 Experiments and Results

In this section, the computational experiments to test the performance of the proposed BRILS

algorithm are illustrated. The procedures in this method have been implemented as Java R© 7SE

applications. The present �nal results were obtained with an Intel R© Xeon E5-2630 v4 at 2.20 GHz

running the Ubuntu 14.04 operating system.

In order to investigate the e�ciency of the BRILS algorithm, the AP data set has been used.

As mentioned before, the AP data set was �rst introduced by Ernst and Krishnamoorthy (1998)
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and is derived from a postal delivery system in Australia. Accordingly, an evaluation involving

nodes (representing postcode districts), as well as their coordinates and �ow volumes is performed.

The size of the original data �le is 200 nodes. Smaller instances can be obtained using a C R©

program from ORLIB. According to previous works, the values of the collection (node-to-hub),

transfer (hub-to-hub), and distribution (hub-to-node) costs have been set to X = 3, τ = 0.75 and

δ = 2, which holds X > δ > τ . The AP data set problems have asymmetric �ows (wij 6= wji) and

a mail can be sent from postcode district to itself, i.e., wii 6= 0.

For each instance, 20 di�erent seeds generated randomly were employed in order to execute

the test of the BRILS algorithm. Before starting the complete analysis of our algorithm, we run

several executions so we could empirically de�ne appropriate values for the following parameters in

terms of solutions quality and time consumed: (i) Maximum number of iterations (maxIterations)

= 10000; (ii) Geometric distribution parameter for biased randomized allocation of the nodes to

the hubs (β) = 0.1 ≤ β ≤ 0.3; (iii) Percentage of hubs to remove (per) = 0.05 ≤ per ≤ 0.1; and

(iv) Maximum number of best solutions (solutionSet) = 50.

The computational results of the proposed BRILS on small and large instances are presented

in Tables 4.2 and 4.3. On one hand, Table 4.2 shows a comparison of BRILS with state-of-the-art

heuristics methods: SA method proposed by Ernst and Krishnamoorthy (1998), a SA and TL

hybrid heuristic SATL considered by Chen and Wu (2008), and a GVNS heuristic presented by

Ili¢ et al. (2010). This table is organized as follows: (i) The �rst two columns show the number of

nodes represented with n and the number of hubs p to be selected; (ii) The third column, denoted

by Cost (1) gives the best known solutions (BKS) for the given instances. Bold values represent

the optimal solutions of the current solution, if it is previously known, if they are not optimal,

is is not highlighted; (iii) The next three columns (Cost (2), Time and Gap (1)-(2)) contain the

best solution value obtained by SA algorithm, its average running time and the percentage gap

with respect to the BKS given in column Cost(1), respectively; (iv) The following seventh, eighth

and ninth columns denoted by Cost(3), Time and Gap (1)-(3) show the reported best solutions

and average running time from the SATL algorithm as well as the percentage gap with respect to

the BKS; (v) The next three columns (Cost (4), Time and Gap (1)-(4)) indicate the solutions,

average running time and percentage gap of the GVNS with respect to the BKS; (vi) The last three

columns denoted by Cost (5), Time and Gap (1)-(5) give the found solution, time needed to obtain

the corresponding solution and the corresponding percentage gap with respect to the BKS found

when applying our proposed BRILS heuristic for the aforementioned sets of benchmark instances.

On the other hand, Table 4.3 presents the solution found by the BRILS algorithm in terms of the

hubs found. Regarding the size of the instances, they have been classi�ed as small (10 ≤ n ≤ 50)

and large (100 ≤ n ≤ 200). The elapsed times for each heuristic are shown in seconds and we

calculate the percentage gaps as follows:

Gap (Cost, CostBKS) = 100×
(
Cost− CostBKS

CostBKS

)
. (4.3)

From the results presented in the �rst part of Table 4.2, it follows that BRILS is capable
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of obtaining the optimal solutions for every small-size AP problems, while the SA solutions are

almost always optimal but for the instance with sizes n = 40 and p = 5. Furthermore, regarding

the running time, the results with BRILS are signi�cantly better than those obtained by SA and

SATL. In this regard, the results obtained by BRILS have a similar behavior with respect to the

ones provided by GVNS.

Figure 4.5: Visual comparison among the SA, SATL, GVNS and BRILS heuristics for instances

with n = 100 and p = {5, 10, 15, 20}

The second part of Table 4.2 shows the computational results for large instances. From the

results, one can see that BRILS obtains high-quality solutions. The results provided by the GVNS,

which were slightly superior than those obtained by BRILS, were based on running the algorithm

20 times each with di�erent random numbers. Moreover, the GVNS used a shaking parameter

kmax = p, the stopped rule were de�ned as n/2 iterations, and also three local search procedures

lmax were implemented: (i) allocate which randomly change the clusters; (ii) alternate which

change the hub in the cluster and (iii) locate which split clusters adding a new hub. By contrast,

BRILS uses only one local search procedure and the parameter settings were exactly the same as

solving the small size AP instances. On average terms, one can conclude that the best solutions

obtained by SA and SATL are improved by BRILS and its runtime is signi�cantly smaller than

GVNS, at the cost of an a�ordable small solution gap with respect to BKS (see Figures 4.5 and

4.6).

In order to further demonstrate the attractiveness of the BRILS algorithm, Table 4.3 reports

the nodes that were selected as hub nodes in the network. For the small instances the hubs given
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Figure 4.6: Visual comparison among the SA, SATL, GVNS and BRILS heuristics for instances

with n = 200 and p = {5, 10, 15, 20}

by the solution correspond to the optimal ones. Moreover, for illustration purposes, Figure 4.7a

displays the distribution of the nodes in the network for the instance with n = 50 and p = 5. In

Figure 4.7b each set of nodes assigned to a hub has been represented with a form. The nodes

selected as hubs and its assignments given by the solution are illustrated in Figure 4.7c. The

position of the nodes in the latter have been changed to better depict the assignments.

To discuss the convergence of the BRILS algorithm under diverse random number seeds, Figures

4.8 and 4.9 show the time evolution of the gaps with respect to the BKS for the instances with

n = {50, 100, 200} and p = {5, 10}. The seeds were randomly selected and the results correspond

to the procedure explained in Algorithm 14, Section 4.3.1. After reaching the maximum number

of iterations the best solutions are submitted through a local search. Notice that BRILS algorithm

quickly diminishes the gap in a few computational seconds.

Finally, Figure 4.10 shows a multiple boxplot which allows an alternative comparison of the

algorithms performance for the AP data set. Notice again that the computing times of the proposed

BRILS algorithm were much shorter than the ones spent by SA, SATL and GVNS, which con�rm

that the usage of skewed probability distributions in the randomization process within heuristics

can provide state-of-the-art results in terms of quality and runtime.
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(a) Initial distribution of nodes for the instance n = 50

and p = 5
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(b) Distribution of nodes after BRILS �nds the best as-

sigments

(c) Network fully interconneted after BRILS �nd the best assignments

Figure 4.7: Network with 50 nodes and its structure for p = 5
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Figure 4.8: Visual performance of BRILS among di�erent seeds for the instance with n = {50, 200}
and p = 5

4.3.3 Discussion

The proposed algorithm was implemented as a Java R© 7SE application. Even though Java is a

programming language executed in virtual machine (JVM) and we are aware it may show poorer

performance like others than C, C++ or Python, the vast amount of tools available in the standard

API and its object-orientation eased the development process. In addition, the execution on the

JVM o�ers better replicability and repeatability than other languages.

To test the e�ciency of the proposed algorithm, the AP data set was chosen with the criteria

of testing the algorithm against instances of small and large size in terms of number of hubs and

nodes included in the graph. In addition, most of the BKS found in the literature employed the

aforementioned data set. So that we can compare our results against those published results.

The results con�rm the e�ciency of the BRILS algorithm, since our proposed methodology

found the BKS for most of the instances. Although for the larger instances the BRILS algorithm

did not reach all of the BKS reported using GVNS, the results shown in Table 4.2 can be considered
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Figure 4.9: Visual performance of BRILS among di�erent seeds for the instance with n = {100, 200}
and p = {5, 10}

very satisfactory. Besides, BRILS is designed to obtain good quality solutions (in some cases the

optimal solution) in all variants of this problem (i.e., for di�erent values of n and p). Moreover,

the average computation time is 0.64 seconds which is 36% of the average time consumed provided

by the GVNS.

With all the shown instances, we can conclude our methodology outperforms the existing state-

of-the-art heuristics in small size and some large size instances in terms of time and solutions.

Furthermore, it is worth mentioning that our algorithm is relatively simple: it has been applied to

the tested instances without requiring any special �ne-tuning or set-up process, which makes BRILS

an appealing tool to support the solution of the USApHMP. We expect to apply the presented

methodology to larger network instances and to study its application in real system deployments.

Finally, the proposed algorithm can be divided among multiple processors in a natural way

with the objective of running it in less time. This is due to the nature of the BRILS framework,

which ILS stage can be easily parallelizable. With parallelization the results obtained so far by

BRILS can be improved by decreasing the required execution time when having a machine with
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Figure 4.10: Visual comparison among the SA, SATL, GVNS and BRILS heuristics

multiple execution cores.

4.4 Arti�cial Immune Systems for Solving the USApHMP

4.4.1 Solving Methodology

As mentioned in Chapter 2, AIS are a class of algorithms inspired by the natural immune

system. Applied in the context of engineering and computing, the immunological principles of de-

centralization and maintenance of diversity are often useful in solving problems with large solutions

spaces, such as the USApHMP.

Immune system features have seen increased interest from the research community. Features

such as: recognition of antigen characteristics, pattern memorization capabilities, self-organizing

memory, adaptation ability, immune response shaping, learning from examples, distributed and

parallel data processing, multilayer structure and generalization capability (Dudek 2012) have

been applied to solve problems with large solutions spaces, such as the USApHMP. AIS are not

limited for solving optimization problems, in fact, AIS-based algorithms have been applied for

solving identi�cation of non-linear systems and (Silva et al. 2015, Fernandez et al. 2018), and

machine learning related problems (Aydin et al. 2011).

In the context of USApHMP, the cells and their antibodies are analogous to a candidate solution

for the problem. Thus, it is possible to immunologically simulate such problem, seeking solutions

e�ectively.

With this in mind, two immune-inspired metaheuristics are proposed for solving the USApHMP:

(i) the CLONALG algorithm, which simulates the rapid response of immune systems when pre-

sented with a pathogenic agent, and (ii) the optAiNet algorithm inspired by the theory of the

immune network, which simulates a self-regulatory network of antibodies where each member has

the capacity to a�ect the whole.
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4.4.1.1 CLONALG Algorithm

The clonal selection principle was initially based on works carried in the seventies by Burnet

(1978). This work served as inspiration for CLONALG (de Castro and Von Zuben 2002), a popular

AIS algorithm involving an abstract version of the cloning and hypermutation process. All clonal

selection-based algorithms essentially gravitate around a repeated cycle of match, clone, mutate

and replace, and numerous parameters can be tuned, including the cloning rate, the initial number

of antibodies, and the mutation rate for the clones.

In particular, CLONALG has the intrinsic ability of balancing the exploitation of the best

solutions with the exploration of the search space, which can be very important to increase the

probability of �nding the global optimum or a good solution. The key steps of CLONALG are

selection and mutation process. The selection process is expressed as selecting a number of best

a�nity elements from the population. During the mutation process, a common mutation rate is

applied to the antibodies that are selected.

For solving the USApHMP, the CLONALG algorithm, described in Algorithm 15 receives the

following input parameters: (i) the number of nodes as well as the number of hubs given by the

problem; (ii) the clonal factor β; (iii) parameter ρ which controls the shape of the mutation rate;

(iv) the size of the antibody pool Ninitial; (v) the number of clones nC; and (vi) the parameter

range for selecting the number of Ab that will replace the lowest a�nity Ab. The procedure

starts generating a pool of antibodies1 with �xed size Ninitial, in which every Abi representing an

element from the parameter space. de Castro and Von Zuben (2002) proposed that the generation

of those antibodies occurs randomly in order to have a great diversity of population.

In the case of the USApHMP, every Ab represents a solution for the problem. First, the given

number of p hubs are randomly chosen following a uniform probability distribution, then, the

remaining nodes are allocating to their nearest hubs. Next, every antibody Ab is evaluated by the

�tness function fAg(Abi), in which Ag represents the antigens, and the �tness is the cost function

given by Eq. 4.1a. This way, the Ab (solutions) with highest a�nity will survive during the next

1For simplicity, the terms "cell" / "antibody" will be considered equivalent within AISs.

Algorithm 15: CLONALG(nodes, pHubs, β, ρ, Ninitial, nC, b, range)

Ab← random(Ninitial, range)

while Stop condition is not met do

Solve fit← a�nity(Ab)

C ← clone(Ab, nC, β)

C∗ ← mutate(C, fit, ρ)

Fit′ ← a�nity(C∗)

R← select(C∗, F it′)

Ab← replace(R, random(b, range))

end

return Ab
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step. Following, the amount of clones nC to be generated for each individual is calculated as

follows:

nC = round(β ·Ninitial), (4.4)

where β is the clonal factor. Then, the new set of nC clones performs an a�nity maturation

process. The parameter ρ controls the shape of the mutation rate with respect to the following

equation:

α = e(−ρ·fit), (4.5)

where α represents the mutation rate, and fit is the �tness function fAg(Abi) value normalized

in [0, 1]. Note that the mutation rate is inversely proportional to their parent's a�nity, i.e., the

greater the a�nity, the lower the mutation intensity. After that, the a�nity of every clone is

calculated. Next, a new set of R individuals is formed. In this process, which represents the

implementation of the immune memory of the system, the individuals (solutions) with the highest

a�nities and diversity are kept. Finally, the main loop is concluded with a random generation of

b new antibodies that will replace the lowest a�nity individuals in the current population. The

process repeats itself until a pre-established stopping criteria is met.

As already stated, the CLONALG is highly a�ected by the parameter mutation. The aim

of this operator is to increase the diversity of the candidate solutions and the exploration of the

search space. It is based on a slightly modi�cation of a individual's speci�c characteristic, and

it occurs with a very low probability, around 1%. Considering that an antibody will represent

an allocation matrix of the hubs and nodes, i.e., the matrix H in Equation 4.1a, Algorithm 16

presents the pseudo-code for this operator. The procedure, selects between pHubs or node mode,

by doing so, local regions are explored, helping the algorithm escape out of local minima. Once

the set of clones have been generated, each clone is then mutated. This ensures that the current

solutions generated after the clone step have, on average, higher a�nities than those of the early

primary response. Random changes are introduced and cause structurally di�erent solutions. One

such event or change will lead to an increment in the a�nity of the antibody.

It is worth stressing that the mutation operator explained above follows the restrictions imposed

by the problem formulation, seen in Equation 4.1a.

4.4.1.2 optAiNet Algorithm

The immunological network theory (which serves as an inspiration to the AiNet family of

algorithms) di�ers from the clonal selection theory by proposing antibodies capable of identifying

and interacting with each other, continually stimulating and suppressing other individuals. The set

of antibodies forms a decentralized and autonomous immunological network in which each member

is able to in�uence what will happen to the network. Thus, in addition of being able to react to

the antigens, the antibodies here also react to themselves (De França et al. 2010).

Antibody-antibody relations depend only on the individual performance and degree of similarity

between them, occurring as follows: (i) being su�ciently similar, the worst performing antibody

is deleted; (ii) otherwise, clones are generated with a mutation inversely proportional to their
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Algorithm 16: mutate(Ab,pHubs,nodes)

initialSolution ← genRandSol(nodes, pHubs)

greatpHub← randSelect(pHub from initialSolution)

while Stop condition is not met do

select mode pHubs or nodes

if pHubs then

pHub∗ ← select one pHub randomly

disconnect all nodes allocated to pHub∗

greatpHub← nodes

newpHub← select one of the nodes allocated to the greatpHub

connect the non allocated nodes to newpHub

else

node← select one node randomly

disconnect node from its corresponding pHub

connect node to a new randomly selected pHub

end

end

return Ab∗

performance, removing those that do not have bene�cial mutations, i.e., the theory of clonal

selection applies. Finally, in order to maintain the cellular diversity analogous to that seen in the

immune system, a percentage amount of random antibodies is added to the set. With this, the

algorithm encourages aspects of global space exploration while avoiding premature convergences

to a local optimum.

Keeping that in mind, optAiNet is a variation of the immunological network algorithm with

a special focus on optimizing functions, where the main characteristics lie on the way in which

new antibodies are introduced to the system and in the mechanisms of mutation and evaluation of

antibodies. The pseudo-code is presented in Algorithm 17. The input parameters are the following:

(i) the number of nodes as well as the number of hubs given by the problem; (ii) the parameter

elite that controls the similarity operator; (iii) the clonal factor β; (iv) the parameter σ that works

as a suppression threshold; (v) parameter ρ which controls the shape of the mutation rate; (vi)

the size of the antibody pool Ninitial; (vii) the number of clones nC; and (viii) the parameter

range for selecting the number of Ab that will replace the lowest a�nity Ab.

The logic behind the optAiNet algorithm is somehow similar to the one developed in CLON-

ALG, i.e., a pool of size Ninitial of initial solutions Ab is generated and every Ab is evaluated

following the a�nity function. A remarkable di�erence with respect to CLONALG is the similarity

operator. Before cloning the antibodies with highest a�nity, the optAiNet algorithm applies the

similarity operator and removes the antibodies with less a�nity in a subset of antibodies su�-

ciently similar, then, a number of clones nC are generated and an a�nity process is performed,

the clones with highest a�nity remain and the similarity operator is applied to them, following,
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Algorithm 17: optAiNet(nodes, pHubs, elite, β, σ, ρ, Ninitial, nC, b, range)

Ab← random(Ninitial, range)

while Stopping criteria not met do

Solve fit← a�nity(Ab)

Ab← remove(Ab, elite)

C ← clone(Ab, nC)

C∗ ← mutate(C, fit, β)

Fit′ ← a�nity(C∗)

R← select(C∗, F it′)

R∗ ← remove(R, σ)

Ab← replace(R∗, random(b, range))

end

return Ab

the clones highly similar are removed taking into account the a�nity function and �nally, the

removed individuals are replaced with new antibodies. Another di�erence between the optAiNet

with respect to CLONALG is that the number of antibodies depends on the similarity operator,

the algorithm starts with the pool of antibodies of size Ninitial but it changes during execution.

Some important points should be taking into account when implementing the optAiNet algo-

rithm: (i) The �tness function, which is the one being optimized, is in fact, a measure of a�nity

between antibody and antigen; (ii) Each solution corresponds to the information contained in a

given receptor (network cell); and (iii) The a�nity between cells is measured by a simple Euclidean

distance.

It is worth mentioning that, because USApHMP is a combinatorial problem, it is not appro-

priate to use a typical approach such as Euclidean distance to measure the degree of similarity

between solutions. Thus, the similarity operator must be customized accordingly, operating as fol-

lows. For each p hub of a given candidate solution (Ab), the unweighted geometric center between

its connections is calculated. Then, with all the centers obtained, we add the distance between the

centers closest to both solutions. This way, the operator is expected to return a measure where

similar solutions are in fact similar in terms of the problem, i.e., hubs and nodes similarly allocated.

Algorithm 18 presents the pseudo-code for this operator.

In general, the performance of AIS is mainly a�ected by the variations of critical parameters.

In particular for CLONALG and optAiNet algorithms, the crucial parameters that control the

exploration capacity of the algorithms are: (i) The antibody population size; (ii) The number

of clones; (iii) The remainder replacement size; and (iv) The termination condition. Besides

these parameters, optAiNet can be highly a�ected by two more key parameters, the threshold of

performance and threshold of similarity. Thus, the consequences of changing the settings of each

parameter are presented.

• Antibody population size, Ninitial : Speci�es the total amount of individuals. Note that
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Algorithm 18: calcDistance(Ab1, Ab2)

totalDistance ← 0 ;

for every hub in Ab1 do

calculate geometric center between interhub connections ;

end

for every hub in Ab2 do

calculate geometric center between interhub connections ;

end

for every geometric center of Ab1 do

calculate geometric center of the closest Ab2 ;

sum distances between centers to totalDistance ;

end

Update totalDistance ;

return totalDistance;

each candidate antibody must satisfy the constraint conditions of the speci�c problem. If

excessive, an overloaded number of redundant antibodies can be generated, which will be

eliminated by the threshold of similarity in the case of optAiNet algorithm.

• Number of clones, nC : It is a set of antibodies which are selected from a whole antibody

pool that has the highest a�nity with the antigen. In the cloning phase, antibodies with

higher a�nity should be more reproductive than those with lower a�nity. Many clones may

be redundant, while few clones may be ine�ective in the search for a favorable mutation.

• Remainder replacement size, b: Speci�es the total number of lowest a�nity antibodies to

replace with random antibodies on each antigen exposure. As mentioned before, after the

mutation operator, some candidate antibodies may become better in a�nity while the others

may become worse in a�nity. Therefore, it is essential to update the antibody spaces and

to allow those better/worse antibodies to upgrade/degrade. Excessive addition of antibodies

increases the computational time without bringing equivalent bene�ts; on the other hand,

adding few antibodies impairs the search for the optimal overall.

• Termination condition, maxIt : Speci�es the total number of algorithm iterations to perform.

The parameter controls the amount of learning the system will perform on the problem

domain. The entire process is completed after a number of iterations is executed.

• Threshold of performance, elite: It is the minimum threshold for the relative performance of

an antibody before it is eliminated; high values decrease the ability to restart the algorithm,

putting possible solutions at risk; low values allow the existence of unfeasible solutions.

• Threshold of similarity, σ: This parameter determines the maximum limit of similarity so

that two antibodies can coexist in the solution set without being eliminated; if too small,

computational power is lost in solutions around the same local optimum and if excessively

large, the local optimum would be ignored.
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4.4.2 Experiments and Results

In this section, some numerical experiments are considered to check the performance of the pro-

posed CLONALG and optAiNet algorithms to solve the USApHMP. For the sake of examination,

four benchmark problems are selected from the AP data set. The problems generated from the AP

data set are of size n = {10, 20, 50} and p = {2, 3, 5}. As reported previously, the details for the

AP data set are described in (Ernst and Krishnamoorthy 1998). All computational experiments

were performed on an Intel R© Xeon E5-2630 v4 at 2.20 GHz running the Ubuntu 14.04 operating

system. The procedures in our method have been implemented as Python R©applications.

The crucial parameters mentioned in the last section were de�ned with the aid of a �ne-

tuning process, which comprised 10 trials of both algorithms for each possible con�guration of

Ninitial ∈ {10, 20, 30, 40}, b ∈ {0.1, 0.2, 0.3, 0.4}, nC ∈ {2, 4, 6, 8}, maxIt ∈ {100, 150, 200, 250},
elite ∈ {0.01, 0.03, 0.05, 0.07} and σ ∈ {1, 3, 5, 7}. The �ne-tuning tests were executed in the

scenario where n = 10 and p = 5. The average cost of the solution was calculated for each

instance, and the parameters which led to the best results are displayed in Table 4.4. After set

the values for each parameter, we have run each algorithm 10 times as in the �ne-tuning process

due to computational time consumed by each algorithm execution. That way we can collect the

information regarding the performance of both algorithms for solving the USApHMP using the

AP data set. The quality of each solution is evaluated as a percentage gap between the BKS and

the solution found by the algorithm in hand using Eq. 4.3.2. In addition, run time information

has been used to compare the e�ciency of the methods presented above.

Table 4.4: CLONALG and optAiNet parameters

Parameter Value

Ninitial 20

nC 4

b 0.1

maxIt 200

elite 0.05

σ 5

With this in mind, the analysis starts with Figure 4.11, which depicts the cost curve for the

best solution in a test simulation with an instance of the problem of size n = 50, p = 5 and

100 iterations until met the stop condition. Notice that, as expected, there are steps in the cost

curve. This phenomenon occurs when the search is able to locate a new optimum point, either

by mutation or by restarting. Also, it can be seen that the width of the steps increases with

the current execution time, meaning a longer search time between �nding new ones and a great

di�cult level for �nding them. It is a consequence of the exploration of search space process by

the populations of the two methods.

Following, results obtained for the set of instances are summarized in Table 4.5. The �rst
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Figure 4.11: Cost of the best solution compared along the iterations by the CLONALG and

optAiNet algorithms

column presents the algorithm tested. The following two columns, "n" and "p" indicates the

number of nodes and hubs, respectively. The last three columns present the percentage gaps

regarding the BKSs. Particularly, the average gap column shows the average of the gaps found

for each instance using the optAiNet and CLONALG algorithms. The best gap presents the gap

between the best solution found by the proposed algorithms with respect to the BKS. The max gap

indicates the gap between the worst solution found by the algorithm and the BKS and Time shows

the average running time needed to obtain the corresponding solution among the 10 executions.

Table 4.5: Solutions found by optAiNet and CLONALG for the AP instances

n p Average gap (%) Best gap (%) Max gap (%) CPU time (s)

optAiNet 10 2 0 0 0 4.20

optAiNet 20 3 0 0 0 9.90

optAiNet 50 3 0 0 0 61.47

optAiNet 50 5 1.05 0.22 3.51 210.97

CLONALG 10 2 0 0 0 1.16

CLONALG 20 3 0.03 0 0.34 3.48

CLONALG 50 3 0.68 0 1.71 18.13

CLONALG 50 5 3.92 2.62 5.99 18.44

Considering the e�ectiveness of the technique, the optimization quality of optAiNet is better

with respect to the CLONALG, in spite of the higher computational time presented by optAiNet.

Furthermore, it is clear that CLONALG, although less e�ective, has signi�cantly lower execu-

tion times. Failing to embrace more solutions space to optimize the problem, CLONALG has
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encountered adversity to get out of local optima. Such di�culties were expected (de Morais et al.

2011), since the algorithm does not have population control capacity like optAiNet and depends

exclusively on the cloning/selection/mutation processes to escape from search regions already ex-

ploited, but in compensation, the amount of computational time consumed for the execution of

the technique was superior when compared to optAiNet.

Furthermore, a detailed comparison of the proposed AIS metaheuristics with the results ob-

tained when applying BRILS for solving the USApHMP is presented in Table 4.6. The best

CLONALG and optAiNet results on the AP data set were compared with results obtained by the

BRILS algorithm introduced in Section 4.3. As it can be seen from Table 4.6, BRILS method

obtained optimal solutions for all instances while AIS metaheuristics methods obtain optimal solu-

tions for the �rst three instances. Regarding the running times, the CLONALG and optAiNet are

several times slower in comparison with BRILS method. Those results simply manifest the high

performance of the proposed BRILS method on AP instances. Although AIS did not reach optimal

solutions for all instances, both methods are a valuable addition to the repertoire of algorithms for

solving the USApHMP, and the empirical results point out the need for a future investigation on

the application of such methodologies in order to seek further improvements of the algorithms.

Table 4.6: Solutions found by optAiNet and CLONALG compared to BRILS for the AP instances

Instance CLONALG optAiNet BRILS

n p Gap (%) Time (s) Gap (%) Time (s) Gap (%) Time (s)

10 2 0.00 1.16 0.00 4.20 0.00 0.00

20 3 0.00 3.48 0.00 9.90 0.00 0.00

50
3 0.00 18.13 0.00 61.47 0.00 0.00

5 2.62 18.44 0.22 210.97 0.00 0.00

Average 10.30 71.64 0.00

4.4.3 Discussion

As a result of the experiments carried out in the last section, some questions can be derived.

The performances illustrated in Figure 4.11 can be considered typical due to the nature of the

algorithm. In both cases, the number of iterations performed until the algorithms were capable of

locating the best solution is also depicted. Note that the CLONALG requires a higher number of

iterations than optAiNet. Nevertheless, the CLONALG is still capable of locating feasible solutions

and in some cases the optimal solutions.

Furthermore, it is important to evaluate the average performance of each algorithm. Table

4.5 provides the average value obtained over 10 runs of the algorithm for each of the generated

instances from the AP data set. With greater capacity of search and exploration of the diversity of

solutions, optAiNet achieved superior results, although, higher computational times were observed

with respect to CLONALG. In this regard, CLONALG shows itself as superior since the average
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time spent by optAiNet for solving the four instances was 6 times greater than the one spent by

CLONALG for solving the same instances.

Finally, one can note that CLONALG it is not too sensitive when the number of p hubs is

increased from 3 to 5. In the case involving 50 nodes the situation changes, since the algorithm

has a limit parameter for the size of the population. That particular situation can be bypassed

by adjusting such parameter and does not characterize a theoretical limitation of the algorithm.

Additionally, there is evidence to suggest that both, CLONALG and optAiNet algorithms are

stochastic in nature. Each time they are run a di�erent result is obtained.

In sum, by looking at the results presented above, we can conclude that AIS can operate

e�ciently for solving the presented problem as long as the proper parameters are set. In other

words, the performance of the algorithm is essentially limited by tuning of parameters process. The

last, is a disadvantage when comparing to BRILS method, which does not need time-costly �ne-

tuning process. As it is implied throughout this section, the work developed is germinal and thus, it

provides several perspectives for future studies, such as the details of the experiments for scenarios

with more nodes and hubs. Additionally, the algorithm sensitive to its tuning parameters must be

assessed. Second, the present �ndings might have important implications for solving variations of

the USApHMP.

4.5 Concluding Remarks

In this chapter we have proposed three di�erent methodologies for solving the USApHMP: (i)

a Biased Randomized Iterated Local Search algorithm denominated as BRILS, which combines

Biased Randomization techniques with an Iterated Local Search approach, and (ii) two Arti�cial

Immune Systems CLONALG and optAiNet. The most popular benchmark problem found in the

literature, the AP data set was considered. A series of tests were carried out, which highlighted in

particular the performance of the BRILS algorithm in the 28 instances that were evaluated.

On the one hand, the particular characteristic of the BRILS approach is its robustness in terms

of solution quality and time consumed. Additionally, it is worth mentioning that it is easy to

implement and it does not require any complex or extensive parameter calibration in order to

reach good quality solutions. On the other hand, after comparing the proposed method with the

best known solutions and other state-of-the-art methods, the results show that the use of the BRILS

algorithm allows to obtain signi�cant quality solutions within a reasonably short computational

e�ort across the USApHMP.

Regarding the AIS algorithms, despite the immune inspiration of both algorithms, optAiNet

and CLONALG are very similar to evolutionary algorithms, as the main steps of Clonal Selections

(cloning, hypermutation and selection) correspond to a micro-evolution that occurs in the immune

system and, so, they are modeled in optAiNet and CLONALG with operators similar to those

already present in evolutionary computing. The Clonal Selection theory for acquired immunity

has been shown to be a useful metaphor for solutions for complex engineering problems such

as pattern recognition, identi�cation of non-linear systems and classi�cation. The methodology
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presented in this chapter has demonstrated that the powerful Darwinian-like metaphor can be used

to solve design network related problems. Regarding this matter, it was demonstrated that the

USApHMP can be approached e�ciently via optAiNet and CLONALG given its NP-hard nature.

Standing out for being able to �nd feasible solutions, the optAiNet algorithm was able to optimally

solve 3 of the 4 analyzed instances of the AP data set. In turn, the CLONALG presented a singular

capacity to converge with speed, however �nding worse quality solutions with respect to optAiNet

for the same instances. In general, both techniques proved to be viable in solving the smaller

instances of the AP data set, and the perspective of deepening the experimental analyzes for the

larger instances of the problem is open.

In summary, the �ndings presented in this chapter add to a growing body of literature on the

USApHMP. Comprehensive results showed that the ILS metaheuristic may signi�cantly bene�t

from the integration of BR into its framework. Furthermore, AIS metaheuristics employed, reveal

themselves as potential techniques for solving the USApHMP. Regarding the AIS implementations,

the proposed algorithms clearly have some limitations when comparing to the BRILS algorithm

since requires the cross-validation of several parameters. The parameter �ne-tuning of a meta-

heuristic may be a time-consuming and complex, but may have a high e�ect on the quality of the

solutions found. In the next chapter the same problem is considered under uncertainty conditions

and a simheuristic methodology is proposed.
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Chapter 5

Stochastic Version of the Uncapacitated

Single-Allocation p-Hub Median

Problem

As already introduced in previous chapters, hub location related problems are of great impor-

tance due to the necessity of design low cost and high e�ciency networks in multiple applications

such as telecommunication and computer networks (Resende and Pardalos 2008). In recent years,

a large increase in the tra�c �ow have been experienced. The massive use of video on demand to

the countless number of mobile devices exchanging text and video, the huge impact of companies

such as Amazon with air transportation and trucking and the increased number of network tech-

nologies for vehicular transportation, have in�uenced the fact that tra�c has reached a scale that

can exceed the capacity of today's networks. In order to �nd solutions to those realistic scenarios,

it is crucial to consider the stochastic behavior of the main parameters. Thus, companies around

the world that make use of design network techniques have been forced to increase the capacity of

their networks to serve this growing demands as well of the inclusion of stochasticity on the key

parameters which foresees the behavior of the users' demands. As the cost of installing a network

infrastructure is usually very large, network design heavily use optimization tools to keep costs as

low as possible. This process is usually conducted using hub localization problems.

The design of hub networks has its advantages, because depending on the context of the appli-

cation can reduce infrastructure costs and enable economies of scale through the consolidation of

tra�c �ows with the use of technologies for the transportation or transmission of large volumes.

Hub-and-spoke networks represented by hub location problems are commonly studied in loca-

tion theory. The characteristic of these networks rely on the use of hub facilities. Rather than

connecting each demand point by a direct link, a hub network replace those direct connections

by setting a group of hubs (Kara and Tansel 2001). The hubs allow that the tra�c �ow among

many points being concentrated and conducted through a small number of links achieving scale

economies. Moreover, depending on the applications, the use of hub-and-spoke networks can reduce

infrastructure costs.
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The most common HLP is the p-hub median problem. As already introduced in Chapter 4, in

such problems, the objective is to minimize the total cost of movement �ow. Furthermore, these

problems may be classi�ed by the way in which demand points are assigned or allocated to hubs

(single and multiple schemes) and also by the objective cost functions. An example of these type

of problems is the USApHMP.

It is common to �nd in the literature studies considering the deterministic version of HLPs,

leaving behind the study considering the uncertainty present on real-world problems. In this paper,

in order to overcome this gap, a formulation for the USApHMP under uncertainty assumptions

is proposed, where a �xed number of hubs have unlimited capacity and each non-hub node is

allocated to a single hub. In the USApHMP every node is a potential hub and the number of hubs

is known a priori. Instead of considering that the demands are deterministic values, the demand

is modeled as a random variable.

Additionally, in order to make more realistic the stochastic scenario, a QoS thresholds related to

all nodes (potential hubs) of the network is included. Thus, every node has a transmission capacity.

Consequently, given a threshold, if a node is selected as hub, the total amount of �ow passing

through such hub because the �ow every origin node i sends and receive to/from the network is

calculated, if this total �ow surpass the given threshold, the �ow may be directed through the

hub that supports the transmission, otherwise, a penalty cost is added. Figure 5.1, illustrate this

scenario, the squares represent the hubs, the circles represent the origin and destination points

(a same point has the two roles) and the lines between hubs represent the links which have scale

economics. Note, that depending of the given thresholds, a node i can be allocated to a hub that

support the total amount of �ow. That way, the network may no longer be limited by the amount of

�ow every node wants to transmit. A realistic scenario application could be that of video delivery.

Up to a given amount of video, each hub can work in a linear way without any penalty. When the

number of videos (i.e., the demands) exceed the hub transmission capacity, their quality will be

reduced. This is model through the use of a penalty that corresponds to manage all the demanded

videos while with a lower quality.

With this in mind, a fast, easy to implement simheuristic algorithm (Juan et al. 2015b) to

solve the stochastic version of the aforementioned problem is developed, based on the integration

of simulation techniques and a two-stage metaheuristic methodology. Simherusitics belong to the

optimization-simulation techniques, and have been applied to a considerable range of optimization

problems that consider uncertainty on the inputs parameters. Accordingly, the main contributions

of this chapter are (i) extending the formulation of the USApHMP to a stochastic model; (ii) com-

ing up with a metaheuristic framework which implement the simulation and (iii) discussing under

a set of computational experiments the promising results of our proposed simheuristic algorithm

to the USApHMP.
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Figure 5.1: Illustrative example of hub network with single assignment and QoS thresholds. In

such example, node i can be allocated to di�erent hubs depending on the ammount of stochastic

�ow that hubs support

5.1 Literature Review

This section presents a review of di�erent variants of the stochastic p-hub median problem.

As mentioned before, hub location related problems are receiving increased attention in telecom-

munications, transportation and logistics and the values the inputs can take in such problems are

usually not deterministic. For example, a common scenario in telecommunications is the user's

request of data packets (voice, image, video, etc.), thus, the service costs and even the requests

are constantly changing which can be represented by random variables instead of constant values.

This scenario is also feasible for logistics and transportation, where vehicles have to be dispatched

in response to real-time requests.

There are few published papers addressing the uncertainty issue in the context of hub location

related problems, with respect to the number of publications considering the same problems and its

deterministic versions. In this context, Marianov and Serra (2003) modeled hub location problem

as an M/D/c queuing network for airline transportation. In this approach, the authors established

a probabilistic capacity constraint in order to limit the number of airplanes waiting on queue. They

formulated a mixed integer programming and proposed a heuristic based on TS tested on di�erent

networks up to 30 nodes. Sim et al. (2009) focused on the stochastic p-hub center problem in which

the authors incorporated stochastic travel times to model the minimum service level required. The

authors proposed a linear mixed integer programming formulation for the problem assuming that

travel times are independent variables with normal distribution. They proposed three di�erent

heuristics; a radio-based heuristic, a randomized local search heuristic and a combination of both

to obtain feasible solution for test solving the CAB instances.

Later, Yang (2009) analyzed the air freight hub location problem and �ight routes planning

under seasonal demand variations. Author presented a mixed integer programming formulation
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for the problem considering the demand as a discrete random variable, also, the model permitted

direct connection between non-hub nodes. The solver GAMS was employed to solve one case study

from the air freight market in Taiwan and China up to 10 nodes (airports). In the same way, Con-

treras et al. (2011) studied stochastic uncapacitated multiple allocation HLPs in which uncertainty

is present in the transportation costs and demands. It is shown that with uncertain demands or

dependent transportation costs, stochastic problems are equivalent to their corresponding deter-

ministic expected value problem, in which random variables are replaced by their expectations.

In the case of uncertain independent transportation costs, they suggested an algorithm based on

Monte Carlo simulation and Benders decomposition to solve instances up to 50 nodes.

Alternatively, Alumur et al. (2012) addressed single and multiple HLP under uncertainty. The

authors presented a modeling framework in which the uncertainty associated with set-up costs

and the demands is represented by a �nite set of scenarios. They tested the model on the CAB

instances by using CPLEX. Mohammadi et al. (2013) proposed a stochastic multi-objective model

considering risk for solving the p-hub covering problem. The authors assumed that every path

of origin-destination nodes had a risk factor and presented an imperialist competitive algorithm

inspired by imperialistic competition. The results were obtaining by using their own data set

including a risk factor and number of nodes up to 100.

Hult et al. (2014) considered the single allocation p-hub center problem taking into considera-

tion the stochastic nature of travel times. The authors proposed an exact computation approach

to solve it. It was tested on the standard AP and CAB data sets and assuming the distance as

normally distributed. Furthermore, Sadeghi et al. (2015) proposed a chance-constraint approach

for a p-hub covering location problem. They considered stochastic degradation on the link capac-

ities by following a truncated Erlang distribution function. They proposed a mixed integer linear

programming formulation, and to solve it, a metaheuristic algorithm tested on generated instances

up to 200 nodes was developed.

Recently, Adibi and Razmi (2015) proposed a two-stage stochastic programming approach for

solving the uncapacitated multiple allocation hub problem. The authors proposed a formulation

assuming that demands and transportation costs were independent. The proposed formulations

and methodology were used to design a 10-nodes network of air passengers in Iran. Zhai et al.

(2016) considered as well a two-stage uncapacitated HLP in which uncertain demands follows

Normal distributions. The authors proposed a hybrid metaheuristic which combined GA, VNS

and fuzzy simulation. The results were presented using a data set they generated with instances

from 20 to 50 nodes and 5 to 10 hubs.

Rahimi et al. (2016) presented on their work a multi-objective HLP modeling the congestion

as stochastic. The authors developed a hybrid metaheuristic as a result of the integration of SA

with di�erential EA methods. The proposed framework was tested using generated data sets with

problems containing up to 200 nodes.

Also, Merakl� and Yaman (2017) proposed a special polyhedral uncertainty model known as

the hose model, and two di�erent Benders decomposition algorithms for solving the capacitated

hub location with uncertain demand. Authors tested the algorithms on the AP and CAB data sets
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using the instances with 25, 40 and 50 nodes, and generated the tra�c bounds for the hose model.

Recently, Correia et al. (2018) investigated the capacitated multiple HLP assuming stochasticity

on the �ow to be sent from the origin node to the destination node. The authors proposed a two-

stage stochastic modeling framework. The computational tests were performed using the CAB

data set which allow the authors to generate instances with 15, 20 and 25 nodes. Regarding

the stochastic �ows, the authors considered 5 scenarios representing in this way an evolution

trend for the �ows and assuming that each scenario occurred with probability of 1/5. Likewise,

Azizi et al. (2018) considered the problem of designing hub-and-spoke networks with stochastic

demands and congestion. The authors proposed an exact method and a GA. The computational

experiments were performed using the CAB and Turkish data sets. The congestion on the network

was represented using the number of users as number of hubs.

In particular, regarding the USApHMP, the quantity of works found in the literature addressing

uncertainty is very limited. Ahmadi et al. (2015) formulated the USApHMP as a two-stage stochas-

tic programming framework in which uncertainty is associated with �ows between the nodes. The

authors integrated a basic �nancial risk measure into the model framework to make robust deci-

sions, and a practical case study of a distribution system of automobile parts in Iran up to 10 nodes

was tested using GAMS. Although the problem was stated as USApHMP, authors considered set

up costs of opening hub facilities at potential nodes which is not a faithful model of the problem.

Likewise, Ghaderi and Rahmaniani (2016) addressed the USApHMP under uncertainty in which

demands and travel times are assumed to be stochastic. The authors proposed a hybrid heuristics

based on VNS, PSO and TS to properly resolve the uncertainty in the parameters. They tested the

proposed approach on extra scenarios generated by multiplying random numbers which followed

uniform function distribution to the AP and CAB data sets.

Recently, Amin-Naseri et al. (2016) came up with a robust bi-objective model for the USApHMP.

The authors considered uncertainty on the travel times. They oriented the problem to the telecom-

munication area and assumed that uncertainty was caused by noise factors. In order to solve the

problem, the authors proposed a hybrid heuristic based on the integration of Scatter Search and

VNS. The proposed methodology was tested using the CAB and AP data sets.

Later, Qin and Gao (2017) considered the USApHMP with stochastic �ows and took into

account �xed costs. The authors designed a GA and tested it on their own instances consisting on

a network with 10 nodes and the amount of �ow between origin node and destination node were

described by uncertain variables.

To provide an overview of the literature review related to HLPs when taking into consider-

ation uncertainty on some components, the paramount feature of each studies mentioned above

are encapsulated in Table 5.1. Although uncertainty has been addressed in the context of the

USApHMP, the aforementioned works do not give an overview of how a multiple-hub network can

be a�ected by the stochasticity represented in the users' demands, since they only take into ac-

count pre-established scenarios where uncertainty is represented by a �nite set of cases which does

not represent real-world situations. Moreover, such assumptions can �nd good solutions for some

scenarios but poor for others. Furthermore, some authors make e�ective use of robust optimization
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and/or stochastic programming. In robust optimization, the aim is to �nd near-optimal solutions

for any set of scenarios no matter which of them are realized, leading us to consider feeble solutions

from a scenario that may be unlikely to occur. On the other hand, stochastic programming mostly

seek to �nd close or almost optimal solutions across all scenarios.

With this in mind, this study is motivated by the fact that there exists a lower number of works

dealing with uncertainty in HLPs. To partially close this gap, a simheuristic algorithm in order to

deal with the USApHMP under uncertainty assumptions is proposed. This is the �rst time that

BR methodology in combination with Monte Carlo techniques are implemented into a procedure

for solving the problem. In this regard, service quality thresholds are introduced, by doing so, the

in�uence of variations in the �ow and how this impact the decision making process is considered,

which was neglected in the previous studies.

5.2 Formal Problem Description

As mentioned before in Chapter 4, (Ernst and Krishnamoorthy 1998) proposed a mixed integer

linear programming formulation for the USApHMP, which requires fewer constraints and variables.

They also published the popular AP dataset, which is based on the postal delivery in Sydney. Their

formulation is still the best formulation in terms of computation time requirements. Hence in this

chapter, we use the same formulation and propose an extension taking into consideration data

uncertainty. For the sake of clarity, the variables regarding the formulation are given in Table 5.2.

Table 5.2: Set of indexes and input variables

Symbol Description

N Set of potential nodes; i, j, k, l ∈ {1, 2, · · · , |N |}

Cij The transportation cost per unit �ow between nodes i and j

Wij Stochastic amount of �ow between nodes i and j

p Number of hubs to be located

X Cost multiplier in the collection

τ Cost multiplier in the transfer

δ Cost multiplier in the distribution
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And the involved decision variables are presented as follows:
n∑
k=1

Hkk = p, (5.1a)

n∑
k=1

Hik = 1, for every i = 1, · · · , n, (5.1b)

Hik ≤ Hkk for every i, k = 1, · · · , n, (5.1c)

Hik ∈ {0, 1} for every i, k = 1, · · · , n, (5.1d)

As introduced before in Chapter 4, constraint 5.1a ensures that the number of given hubs p are

chosen, constraint 5.1b establishes that a node is allocated to only one hub. By constraint 5.1c

we prevent non-hub nodes being allocated to other non-hub nodes. Constraint 5.1d enforces that

the �ow is sent only via the selected hubs, thus, preventing direct transmission between non-hub

nodes.

The distance from the origin node i to its destination node j is Cij , and the cost of the

route i → k → l → j is decomposed by three segments, XCik which is the transport cost from

origin node i to its hub k, τCkl which represents the transport cost from hub k to hub l and

δClj which is the transport cost from hub l to the destination node j. Generally, τ is used as

a discount factor between hubs k and l which aims to represent economy of scale between hubs.

If only one hub is used, this means that k = l and no discount factor is applied. The two

remaining factors, X which represents the unit rates (costs) for collection (origin-hub) and δ which

represent the costs for distribution (hub-destination) along the path were introduced by Ernst and

Krishnamoorthy (1998) to represent the reality on postal service costs, and can also represent the

reality in telecommunication applications, since the amount of �ow a node i sends to node j does

not mean that is the same amount node i will receive.

In order to introduce stochasticity to the aforementioned problem, now it is assumed that the

�ow sent from one node i to node j follows a known probability distribution represented by a

random variable Wij instead of assuming a deterministic demand parameter wij . Thus, the �ow

Wij sent through the path i→ k → l→ j is considered as a distributed random variable with media

E[Wij ] = wij . Notice that, in the basic stochastic USApHMP with a linear objective function,

the solution minimizing the total expected cost will be the same as the optimal solution for the

deterministic USApHMP, this property will not hold if, for instance, a nonlinear penalty cost is

added in the stochastic USApHMP objective function to account for the �ow passing through hubs

knowing the �ow from an origin node to an end node, is higher than a threshold. Such assumption

also represents a real world application, such as the design of a hub-and-spoke communication

network during social events. In this type of events, we cannot assure the behavior of the assistants,

so, sending �ow from one origin node to a destination node through the hub network may vary,

in some cases, exceeding a given transmission capacity. To prevent some overloaded situations,

companies penalizes users that exceed the transmission capacity.

With this in mind, a vector of QoS thresholds is also generated, so that every potential hub has

a given threshold regarding the quantity of �ow is collected and transmitted, and every time this

threshold is surpassed, a penalty cost is added. Notice that, this does not mean capacity in terms
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of allocation, indeed, a hub can still allocate unlimited number of nodes, however, the penalization

costs related to every time the total amount of �ow going trough a potential hub is surpassed will

impact the total transportation cost.

As mentioned before, tra�c volume and unforeseen factors have a great impact on the transmis-

sion. Thus, the transmission of �ow from origin node i to destination node j is a�ected by service

quality thresholds. Based on these assumptions and notations, Eq. 4.1b can be reformulated as

follows:

minimize
∑

i,j,k,l∈N
Wij(XCikHik + τCklHikHlj + δCljHlj) + φ (5.2)

φ =

{
0 if Fk ≤ F 0

k

(Fk − F 0
k )2 otherwise

(5.3a)

(5.3b)

In the above formulation, the second part of the objective function given by Eq. 5.2 is regarding

the penalty cost φ, where Fk represents the total amount of stochastic �ow passing through hub k

due to the �ow every node i allocated to k sends and receives from the rest of the network and is

given by:

Fk =
∑
k∈N

(WijHik +Wk′jHk′j) (5.4)

The penalty cost can assume two values: 0 if Fk ≤ F 0
k , where F

0
k is the given threshold at hub k

and (Fk −F 0
k )2, otherwise, that is, if the total amount of �ow Fk is greater than a given threshold

F 0
k . Accordingly, value φ given by Eq. 5.3 represents the penalty cost per unit �ow between

nodes i and j at hubs that surpass the QoS threshold. Note that, when φ = 0, that means

that the variation on the stochastic �ow is too small, then, the problem becomes equivalent to a

deterministic USApHMP.

5.3 Solving Methodology

In this chapter, the fast algorithm based on BR techniques and ILS is extended to a simheuristic

algorithm to jointly solve the USApHMP under uncertainty assumptions. Due to the successful

results presented by BRILS - already introduced in Chapter 4 - for solving the deterministic version

of the USApHMP, this work aims to follow the same methodology. Now, instead of considering a

deterministic demand wij , this parameter is modeled as a random variable Wij . Our approach is

motivated by the fact that, frequently most of HLPs are assumed that all inputs are deterministic,

however, reality imposes that many input variables are of stochastic nature, which requires the

implementation of heuristics to deal with such randomness. In this context, simheuristics integrates

simulation techniques into metaheuristic driven frameworks to tackle COPs under uncertainty.

In general, the concept of simheuristic is based on the integration of simulation in any of its

forms into metaheuristic optimization methodologies to account for stochasticity in di�erent COPs.

The general framework of simheuristics, already introduced in Chapter 2 can be summarized as

given in the pseudocode presented in Algorithm 19. First, a deterministic counterpart of the

instance is obtained. Then, an iterative process is started, where a metaheuristic-driven algorithm
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to perform an e�cient search inside the solution space associated with the deterministic COP is run.

Once a stopping criteria is met, estimation of the quality or feasibility of each of the promising

solutions when considered as solutions of the stochastic COP, are computed using simulation

techniques.

Algorithm 19: generalSimheuristicProcedure(stochastic COP, parameters metaheuristic,

objF, statistics)

1 Transform stochastic COP into deterministic counterpart

2 baseSol ← GenerateSolution

3 baseSol ← ConstructiveHeuristic(baseSol)

4 (baseSol, objF(baseSol), statistics) ← simulation(baseSol, fast)

5 eliteSolutions ← {}

6 while (metaheuristic stopping criterion not reached) do

7 newSol ← GenerateSolution

8 newSol ← SearchProcedure(newSol)

9 (newSol, objF(newSol), statistics) ← simulation(newSol, fast)

10 if (objF(newSol) < objF(baseSol)) then

11 eliteSolutions ← add(newSol)

12 baseSol ← newSol

end

end

13 foreach (solution in eliteSolutions) do

14 (solution, objF(solution), statistics) ← simulation(solution, long)

end

15 return set of stochastic solutions

The �owchart illustrated in Figure 5.2 presents how the proposed simheuristic methodology

works for the USApHMP. First, a USApHMP instance de�ned by a set of n nodes and p hubs is

considered. Each node i has associated a �ow Wij(1 ≤ i ≤ n)) that follows a known probability

distribution with an existing mean E[Wij ] = wij where E[Wij ] represents the mean or expected

value of each random �ow, in fact, one of the potential bene�ts of the present approach is that

the methodology is valid for any statistical distribution with a known mean, either theoretical or

experimental and also with a given variance (Juan et al. 2015a). In particular, if the variances

associated with node �ows are not too large, it seems natural to expect a deterministic behavior.

In order to make more realistic the stochastic scenario, we have included a penalty cost every time

a given QoS threshold at hubs is surpassed. The inclusion of this penalty cost also breaks the

lineal property of the objective function. So if the transportation cost of sending �ow from the

origin node i to the end node j through their respective hubs is met given a prede�ned threshold,

the transportation cost remains and the allocation of the non-hubs to the chosen hub is done,

otherwise this allocation will be penalized by adding a penalty cost φ to the transportation cost

in hand. Following that statement, for the stochastic scenario, in the case where the �ow exceeds

the threshold Fk, the penalty φ is attributed as given in Eq. 5.2.
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Stochastic USApHMP instance with E[Wij ] = wij

Generate initial solution initSol

baseSol ← initSol

bestSol ← initSol

newSol ← perturbate(baseSol)

insert (newSol, solutionSet)

repeat

until stop

criteria

is met

is ILS

procedure

com-

pleted?

for every newSol in solutionSet do

fullLocalSearch(newSol,solutionSet)

currentStochCost ← longSimulation(newSol)

currentDetCost ← detCost(newSol)

explore

the next

solution

currentDetCost ≤
detCost(bestDetSol)

and

currentStochCost <

stochCost(stochSol)

bestDetSol ← newSol

stochSol ← newSol

insert (bestDetSol,stochSol,poolBestSol)

is stop

criteria

met?

Return poolBestSol

yes

no

yes

no

yes

no

Figure 5.2: Flow-chart diagram of the stochastic USApHMP simheuristic algorithm
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In the following, the USApHMP with deterministic �ow is considered and solved by applying

any e�cient methodology. Note that the solution for the deterministic USApHMP is an aprioristic

solution for the stochastic version of the same problem. In our case, we apply the aforementioned

BRILS algorithm in order to generate an initial solution. In the �rst part of the BRILS algorithm,

we use BR to select the p hubs based on an assignment cost criterion. In the second phase, we

perturb the selected p hubs of the promising solutions and re�ne the non-hub nodes allocations

obtained so far allowing the generation of feasible solutions. Once an initial solution is generated

the ILS loop starts. Inside it, the current base solution is disturbed in order to improve the non-hub

nodes allocations obtained so far, thus generating a new candidate solution. During this stage,

a percentage per of the current base solution is destroyed and then reconstructed to generate a

new solution. Then, in order to reconstruct the solution, the same logic used to generate the

initial solution is applied, i.e., the non-hub nodes are sorted in a list depending of the connection

cost, the sequence of elements on the list is randomized, and the array of nodes allocated to every

hub is found. The use of BR techniques in this phase results appealing because it enhances the

performance of the heuristic.

After considering that a new solution is better than the current base solution with deltaDet

indicating the di�erence, the current base solution is updated an a credit is �xed and any time a

newSol is found, this is saved in a pool of best solutions in order to analyze them in the future.

Finally, larger simulations are executed over the reduced set of best found solutions. At this stage

Monte Carlo simulations over every current solution contained in the solutionSet are performed.

After run the simulations, every solution would be a candidate solution for the stochastic problem.

Thus, sample observations for the deterministic as well for the stochastic problem are obtained

and, the best solution of each scenario will be set. Notice, that the methodology presented here

can be applied to USApHMP instances of virtually any size (e.g. problems with hundreds or even

thousands of nodes) since complexity due to size can be managed by e�cient meta-heuristics and

Monte Carlo simulation.

5.4 Experiments and Results

This section describes the computation experiments performed to test the e�ciency of the pro-

posed simheuristic algorithm. The procedures in our method have been implemented as Java R©

7SE applications. The results presented in this section were obtained with a standard desktop com-

puter with a 2.7 GHz Intel R© CoreTM i5 processor. There was no processing to parallel execution,

without GPU inclusion in any part of the process.

The test problem used is the AP set of instances (Ernst and Krishnamoorthy 1998). This

is the �rst study that has implemented simheuristic approach for solving the USApHMP with

stochastic demands and service quality thresholds, and consequently, no comparison with other

literature studies is possible. By fully mimic USApHMP, the AP data set provides the following

information: (i) location of each node; (ii) �ow between all nodes; (iii) collection cost; (iv) transfer

cost and (v) distribution cost.
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In order to test our simheuristic approach in the USApHMP under uncertainty, we have ex-

tended the AP instances by employing the Log-normal probability distribution function for mod-

eling the stochastic �ow. In a real world application, historical data could be used to model each

�ow from one node to other by a di�erent probability distribution function. As discussed by Juan

et al. (2011), the Log-normal distribution is a more natural choice than the Normal distribution

when modeling non-negative random variables. In particular, in the scenario already mentioned

at the beginning of this chapter, the aim is to model the �ow as a non-negative variable since

it is supposed that users are always demanding content. The Log-normal has two parameters

namely; the location parameter, µij and the scale parameter σij . These parameters are given by

the following expressions:

µij = ln(E[Wij ])−
1

2
· ln
(

1 +
V ar[Wij ]

E[Wij ]2

)
(5.5)

σij =

∣∣∣∣∣
√

ln

(
1 +

V ar[Wij ]

E[Wij ]2

)∣∣∣∣∣ (5.6)

Furthermore, the QoS thresholds are generated as follows: Given the best known solutions

(BKS) reported in Alvarez Fernandez et al. (2018), we take the hub locations and calculate the

total �ow going through every hub of the solution due to the quantity of �ow every node assigned to

them, sends and receives, that is, if nodes i and j are allocated to hub k, we sum the amount of �ow

that goes through k taking into account the �ow that nodes i and j send and receive to/from the

remaining nodes of the network. After we calculate this total �ow for every hub from the BKS, we

set those total �ows as thresholds for the given hubs. In order to generate the vector of thresholds,

we set for every node (non-hub nodes) of the network the maximum values we calculated before.

Before providing and discussing the results for all instances from the AP dataset, the parameters

and input values used on the implementation of our methodology are given. For each instance,

10 di�erent seeds generated randomly were employed in order to execute the test of the proposed

algorithm. As presented previously in Chapter 4, the maximum number of iterations on the �rst

50 55 60 65 70 75 80
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

V ar[Wij ] = 5wij

V ar[Wij ] = 10wij

V ar[Wij ] = 15wij

Figure 5.3: The stochastic �ow on the AP instance with n = 10 and p = 2 modeled with the

Log-normal probability distribution function for di�erent kinds of variance levels k, speci�cally

k = {5, 10, 15}.
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part is set at (maxIterations) = 5000; the Geometric distribution parameter for biased randomized

allocation of the nodes to the hubs (β) = 0.1 ≤ β ≤ 0.3; the percentage of hubs to remove (per) =

0.05 ≤ per ≤ 0.1; the maximum number of best solutions (solutionSet) = 20. Besides, the number

of run employed in the simulation phase (longSimulation) = 10000.

We considered three di�erent scenarios regarding the variance levels k of each instance as-

suming relatively low, medium and high variances. The variances were set at the following values

V ar[Wij ] = {5, 10, 20}[wij ]. In order to see the variation on the �ow when the three di�erent levels

mentioned before were applied, we made a test employing the AP instance with n = 10 nodes and

p = 2 hubs and the results are depicted in Figure 5.3. It is observed that as variance decreases the

curve rises more sharply.

The computational analysis are summarized in Table 5.3 which report the results for both the

deterministic and the stochastic USApHMP with low, medium and high variance level. The �rst

three columns indicate the size of the instances which are classi�ed as small and large instances,

speci�cally small includes networks with size up to 50 nodes and large consider networks with

nodes from 100 to 200 nodes. In the following, the number of nodes "n" and the number of hubs

"p" given by each instance are given. Next, in the column "Cost (1)", the best deterministic

solution for the deterministic version of the USApHMP is given, these solutions are also referred

as best deterministic solution - deterministic scenario, "BDS-D". Next, the four following columns

are the obtained results with low variance scenario, i.e., k = 5. The column "Cost(2)" includes

the best expected deterministic costs obtained by Monte Carlo simulation. Also, the percentage

gap when compared against the BKS of the deterministic USApHMP is given in the column "(2) -

(1)". The results related to expected costs obtained when applied simulation to the deterministic

scenario (columns Cost(2) and (2) - (1)) are referred as best deterministic solution - stochastic

scenario "BDS-S". Following, the total expected costs "Cost (3)" when considering that �ows are

stochastic instead of deterministic and the percentage gap are reported (column (3) - (1)). This

gap is with respect to the best found solution given in Cost (1) that is, the real gap between our

best solution obtained when applied the simheuristic algorithm on the stochastic scenario and the

deterministic USApHMP BKS. These results (columns Cost (3) and (3) - (1)) are referred as best

stochastic solution - stochastic scenario "BSS-S". The following columns report the BDS-S and

BSS-S for medium and high variance level scenarios with their referred gaps, respectively.

The Figure 5.4 presents a multiple boxplot comparison of the results obtained when applied the

proposed simheuristic methodology for solving the AP dataset instances among di�erent variance

level scenarios. The multiple boxplot comparison summarizes the BSS-S from Table 5.3. This

boxplot gives a general perspective of how the di�erent level of variance presented in �ows impact

the choice of the most reliable p-hub design network.

Moreover, for illustration purposes, Figure 5.5 displays the con�guration of the network when

the algorithm is applied for solving the instance with n = 20 and p = 3. On one hand, 5.5a displays

the distribution of the nodes in the network for the instance when the variance presented on the

�ow is very small, that is, are considered as deterministic. Figure 5.5b shows the distribution of

the nodes for the same network but in that case, the �ow is stochastic with a low-level variance,
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Figure 5.4: Boxplot comparing the BSS-S solution of all AP instances among di�erent level variance

scenarios

each set of nodes assigned to a hub has been represented with a circle and hubs are the squared

ones, additionally, the nodes selected as hubs and its assignments are also depicted. The position

of the nodes in the plots have been truly maintained as given in the AP instances to better depict

the assignments. On the other hand, Figure 5.6 depicts the con�guration of the same network

when the variance presented on the �ow is medium and high level. Note that both con�gurations

are slightly di�erent from the ones reported in Figure 5.5. In Figure 5.6a the selected hubs are

nodes 13, 10 and 1, however, this con�guration changes when variance increase from k = 16 to

k = 20, precisely, the nodes selected as hubs in the last scenario are 14, 13 and 5.

5.5 Discussion

As the results indicate, the algorithm is able to �nd all optimal solutions for small size

problems considering n = {10, 20, 25} and all BKS for medium and large size problems (n =

{40, 50, 100, 200}) when the demand is deterministic. This was expected since the simheuristic

algorithm was built upon the BRILS methodology presented in Chapter 4. The solutions for the

deterministic version of the problem were obtained in order to test the e�ciency of the simheuristic

algorithm to �nd the deterministic solution under the stochastic scenario.

The solutions obtained when considered the demand as stochastic with low, medium and high

level variance scenarios were also compared. As seen in Table 5.3, the results show that assuming

a problem being deterministic can lead to solutions with poor performance even in scenarios with

a relatively low variance. In all experiments, the expected total costs obtained with the BSS-S

are better that ones obtained with the BDS-S. The reason is that the deterministic solution is not

balanced, and a high variance results in an increasing of the expected total cost. Furthermore,
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(a) Network con�guration of the BDS-D with no vari-

ance. Cost = 151533.08

(b) Network con�guration of the BSS-S with k = 10.

Cost = 168700.12

Figure 5.5: Comparison between solutions for the deterministic and stochastic USApHMP, respec-

tively, on a network with 20 nodes and its structure for p = 3.

(a) Network con�guration of the BSS-S with k = 15

Cost = 178691.05

(b) Network con�guration of the BSS-S with k = 20

Cost = 181664.12

Figure 5.6: Comparison between solutions stochastic USApHMP with di�erent variance levels,

respectively, on a network with 20 nodes and its structure for p = 3.

Figures 5.5 and 5.6 illustrate the case of the instance with 20 nodes and 3 hubs without and

with variance. In Figure 5.5 the left and right plots represent the best deterministic and the best

stochastic solution, respectively. Note that, the variance presented on the �ow transited among
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the network impact the hubs location and the allocation of the nodes to them. Moreover, in Figure

5.6 the di�erences in the con�guration when variance levels increased is observed.

5.6 Concluding Remarks

This chapter considered the USApHMP under uncertainty assumptions. A simheuristic ap-

proach, which combines BRILS with Monte Carlo simulation was proposed. The proposed method-

ology seeks location of p-hubs among nodes in a network and the allocation of the remaining nodes

to them so that the overall transportation cost and uncertainty presented in �ow are minimized.

The mentioned uncertainty comes from incoming tra�c to hubs. Also, QoS thresholds are pro-

posed so to mimic a communication network design problem. The simheuristic approach provides

the decision maker with a set of alternative solutions considering levels of variance presented on

�ows. Each of the solutions, characterized by their total estimated costs re�ecting the possibility

of that solution being a feasible one. Although other previous works have proposed to bene�t

from the stochastic programming and/or robust optimization, they usually consider a limited set

of scenarios no matter which of them are realized. On the contrary, the simheuristic approach

presented in this chapter relaxes most on the assumptions and, therefore, it allows for considering

more realistic user demand scenarios. Thus, the simheuristic approach is valid for virtually any

statistical distribution - the one that best �ts historical data on user demands. A complete set of

tests have been performed to illustrate the methodology and analyze its e�ciency as well as its

potential bene�ts.
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(III) CONCLUSIONS AND FUTURE

RESEARCH
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Chapter 6

Conclusions

Due to the increasing amount of new optimization challenges in the telecommunication industry,

metaheuristic algorithms have received an increasing attention during the last two decades. This

thesis o�ers a review of recent works proposing di�erent metaheuristic approaches to e�ciently

deal with most of the recent challenges. Three main telecommunication �elds have been the focus

of this work: networks design, routing, and allocation. Inside these �elds several sub-problems have

been identi�ed, since the design of telecommunication systems comprises many di�erent aspects,

including: topologies, location of resources in links and nodes, uni-cast vs. multi-cast routing,

reliability or availability of networks.

After the introduction chapter, Chapter 2 presents a description of the main metaheuristics

cited throughout the dissertation, and later Chapter 3 presented a literature review. From this

literature review, it can be concluded that, so far, population-based metaheuristics �such as Genetic

Algorithms, Ant Colony Optimization, and Particle Swarm Optimization� have been more popular

than single-solution ones �such as Tabu Search, GRASP, or Simulated Annealing. This is probably

due to the fact that most authors belong to Computer Science area, where the use of population-

based metaheuristics is widely extended. However, this also o�ers a good chance to researchers in

other �elds �e.g., Operations Research or Industrial Engineering� to propose new single-solution

approaches that typically require less parameters and might be easier to implement in real-life

scenarios.

Besides telecommunications and computing networks, hub location problems are receiving in-

creased attention in transportation and logistics. In the literature review presented in the previous

chapter one can �nd many types of hub location related problems and they di�er from each other

depending by the way in which the requested points are assigned or allocated to hubs. In Chapter

4, we consider a well-known optimization problem when it comes to designing telecommunica-

tion networks: the USApHMP, where a prede�ned number of hubs have unlimited capacity, each

non-hub node is allocated to a unique hub and the number of hubs is given in advance. In order

to solve the USApHMP three methodologies where proposed. The �rst one consisted on a two-

stage metaheuristic based on the combination of biased-randomization technique with an iterated

local search framework and the other two methodologies were based on the arti�cial immune sys-
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tems, the CLONALG and the optAiNet algorithms. The proposed algorithms were tested using a

well-known benchmark, the AP data set, which contribute to validate the proposed methodologies.

Finally, Chapter 5 presents an algorithm which combines the algorithm designed for the deter-

ministic version of the USApHMP, the BRILS, with ideas from the simheuristic framework, in order

to evaluate the performance of the resulted algorithm when applied for solving the USApHMP un-

der uncertainty scenarios. The performance of the algorithm is evaluated with a set of benchmarks

available on the literature adapted for the uncertainty scenario, using statistical techniques for

evaluate the performance of the designed solution.

6.1 Accomplishments and Main Contributions

The main objective of this thesis was to study the application of metaheuristics and simheuris-

tics methodologies in order to deal with deterministic and stochastic versions of combinatorial

optimization problems related to telecommunication systems. In the course of accomplishing the

research questions and its related research objectives introduced in Chapter 1, a series of original

contributions were generated.

Which are the most used methodologies found in the literature by researchers when

solving problems related to telecommunications systems?

The use of metaheuristics has increased during the last two decades to address many telecom-

munication problems, such as hub location, topology design, reliable server assignment, frequency

assignment and wavelength allocation, routing, etc. Chapter 3 is a contribution to the literature of

the application and development of metaheuristics for solving current optimization problems in the

telecommunication �eld. Although many network design models reviewed addressed construction

of a better system in terms of network topology and routing schemes, the models are often created

under simple assumptions that ignore the substantial aspects of current communication networks.

The literature review showed the need for developing faster heuristic and metaheuristic algorithms,

which might be able to provide good solutions in almost real time for large-sized instances with

thousands or even millions of nodes. On the other hand, it is clear the high level of dynamism

around the telecommunication problems reviewed. However, there is a lack of proposals to solve

these problems considering the dynamism that appear in real-world telecommunication problems.

Are those referred methodologies fast enough and e�cient when applied to prob-

lems related to the design of the communication networks that engineers and decision

makers face?

From the literature review one can conclude that the location of resources in telecommunica-

tions has been identi�ed as a signi�cant operational and defense strategy because the performance

of current networks is highly reliant of resources locations and any malfunction at a resource may

cause degradation of the entire network's ability to transfer �ow. In particular, Hubs are crit-

ical elements of telecommunication and transportation networks since they play a vital role as

a switching or transshipment point, allowing mass tra�c movement. In this regard, Chapter 4
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is a computational contribution applied on the deterministic version of the Uncapacitated Single

Allocation p-Hub Median Problem. The contributions are highlighted in three ways. Accordingly:

• the development of a fast and easy-to-implement algorithm, based on biased randomiza-

tion techniques (Grasas et al. 2017) and iterated local search methodology, which allows to

generate "good" solutions to the USApHMP in just a few milliseconds;

• the demonstration of the potential advantage of the proposed methodology by �nding optimal

solutions for a networks up to 100 nodes in size and near-optimal solutions to 200 nodes

network, in all cases in low computing times; and

• the development of two algorithms based on the arti�cial immune systems framework. The

CLONALG and the optAiNet heuristics with a series of numerical experiments on a well-

known benchmark, which contribute to validate the proposed methodologies and highlight

future research lines.

How the hybridization of metaheuristic-based methodologies with simulation tech-

niques (simheuristics) can help to solve "real world" problems commonly found in

telecommunication systems?

With the emergence of new mobile and decentralized telecommunication systems, aspects such

as uncertainty and dynamism are more relevant than ever. For this reason, Chapter 5 is a com-

putational contribution applied on a stochastic Uncapacitated Single Assignment p-Hub Median

Problem. The problem considers the stochastic nature of the demand of sending �ow from origin

nodes to destination nodes and a simheuristic method to �nd approximate solutions to networks up

to 200 nodes in size is developed. Additionally, the bene�ts of accounting for stochastic demands

are presented.

In the following, we include a list containing the publications generated during the development

of this thesis:

Published JCR Indexed Papers

• S. Alvarez Fernandez, A. A. Perez, J. de Armas, D. G. Silva, and D. Ferone, "A Two-Stage

Biased-Randomized Iterated Local Search for the Uncapacitated Single Allocation p-Hub

Median Problem", published in Transactions on Emerging Telecommunications Technologies,

ISSN: 2161-3915, 2018.

• S. Alvarez Fernandez, A. A. Perez, J. de Armas, D. G. Silva, and D. Riera, "Metaheuristics

in Telecommunication Systems: network design, routing and allocation problems", published

in IEEE Systems Journal, ISSN: 1932-8184, 2018.

Under review Journal Papers

• S. Alvarez Fernandez, D. Ferone, A. A. Perez, and D. Tarchi, "Single Allocation p-Hub

Median Problem with Stochastic Demands and Service Quality Thresholds". 2018.
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Conference Papers Indexed in ISI-WoS or Scopus

• S. Alvarez Fernandez, R. F. Attux, D. G. Fantinato, J. R. Montalvão, D. G. Silva,

"Immune-Inspired Optimization with Autocorrentropy Function for Blind Inversion of Wiener

Systems," Proceedings of the 2018 IEEE Congress on Evolutionary Computation (CEC),

2018.

Conference Papers/Abstracts with Peer-reviewing Process

• S. Alvarez Fernandez, A. A. Perez, D. Riera, J. de Armas and D. G. Silva, "A Simheuristic

Algorithm for the Uncapacitated and Stochastic Hub Location Problem", presented in 12th

Metaheuristics International Conference, (MIC'17), Barcelona, Spain, 2017.

• G. L. Nobrega, V. J. Tasso, A. Souza, S. Alvarez Fernandez, D. G. Silva, "Arti�cial

Immune Systems for Solving the Uncapacitated Single-Allocation p-Hub Median Problem",

presented in Encontro Nacional de Inteligência Arti�cial e Computacional (ENIAC) 2018,

2018.

6.2 Research Impact

The results presented in this thesis impacts a wide range of applications. In particular, with the

results and �ndings presented, this thesis impacts the �eld of combinatorial optimization problems

related to telecommunication systems by contributing a methodology which combines a biased

randomization technique with an iterated local search approach to solve the USApHMP as well

as the combination of the proposed methodology with Monte Carlo simulation techniques which

yields signi�cant gains in solution quality and computational times as compared to related works.

Moreover, two AIS-based metaheuristics are presented revealing themselves as e�cient approaches

for solving the same problem.

Besides, this thesis allows the telecommunication research community to know the current

state of art, the possibilities and trends related to the application of new methodologies involving

metaheuristics in order to solve optimization related problems. The hope is that future research

will continue developing stochastic optimization models and methods building on, among others,

the model designs and methodologies proposed in the preceding chapters. In this respect, there

are a number of possible work to be done, and some of them are introduced below.

6.3 Emerging Trends and Future Work

After the work done in the thesis, some trends in the �eld have been detected. One trend in

the area of telecommunication networks is the search for more e�ective designs. On one hand,

in the resource allocation problem for robust network design, a mis-allocation of capacities could

have two side e�ects: (i) signi�cant data loss for certain tra�c �i.e., a non-robust design; and (ii)
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over-sizing of installed capacities �i.e., a robust design at a high investment cost. On the other

hand, Regarding the test cases and performance evaluation of the proposed algorithms found in the

literature review, one can notice the predominance of small- and medium-sized instances. This is

probably due to the computing time required to solve large-sized instances. However, in most real-

life telecommunication systems a solution might be required after a few seconds or milliseconds. In

this context, the use of fast metaheuristic algorithms becomes necessary to deal with the associated

design communication issues.

Another observed trend is the current predominance of population-based metaheuristics over

single-solution ones. In our view, both are valid approaches and, therefore, much research can

be done yet regarding the use of single-solution metaheuristics in the telecommunication �eld. In

fact, single-solution metaheuristics might o�er some advantages over population-based approaches,

since the former typically employ less parameters and might be easier to implement in practical

applications.

Also, due the growing developments in metering and digital technologies, the amount of di�er-

ent electronic mobile devices around us is increasing. This mobile technology is massively being

used today, which arises several challenges related to the use of 5G communication technologies,

cloud computing services, security, trust and privacy, etc. During the next years, new challenging

problems will emerge in the telecommunication industry. For instance, we observe an expansion

of the wireless technologies, an increasing demand for higher QoS, a continuous raising in tra�c

�ow, and a strong growth in the use of mobile ad hoc and peer-to-peer networks. These emerging

challenges raise new COPs characterized by uncertainty and dynamic conditions, since this way

the modeling of the problems is more realistic and solutions are more �exible when the environ-

ment changes. While hybridization of simulation and optimization has recently been developed

and gained popularity in solving stochastic COPs (Juan et al. 2015a), the majority of telecommu-

nications problems mentioned above have not yet been extensively addressed by simheuristics.

Recently, an interesting methodology for addressing dynamic COPs has been formally proposed

in (Calvet et al. 2017). The authors explain how the combined used of machine learning techniques

and metaheuristics � i.e., learnheuristics � can be useful to deal with the dynamism that appears

in many realistic COPs. Therefore, the application of these hybrid methodologies opens new

possibilities when solving real-world telecommunication problems.

After identifying the emerging trends and challenges, there are yet a number of possible future

work to be done, and below some of them are listed.

• The algorithms proposed in chapters 4 are not limited to the USApHMP and can be extended

to di�erent directions. First, by considering larger problems than those solved in this thesis.

Secondly, by applying the algorithm to other hub location related problems, for instance, the

multiple as well as the capacitated allocation hub-and-spoke location problems. Figure 6.1 is

an example of a multiple allocation hub-and-spoke network where collection and distribution

for any node may be performed using di�erent hubs in order to minimize costs.

• Moreover, the application of USApHMP can be evaluated as a decision-making tool for
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Figure 6.1: Multiple allocation hub-and-spoke network

Software-De�ned Network (SDN) projects (Lange et al. 2015), where the network engineer

is involved with crucial aspects like de�ning the number and position of each SDN controller

� which plays a role equivalent to a hub in USApHMP� such that throughput and quality

of service metrics must be optimized. Figure 6.2 illustrates the SDN context.

• In addition, thinking about strategies to decrease execution time for optAiNet and implement

e�ective restarts without signi�cant increase in the execution cost of CLONALG are issues

to be discussed in future work, which may bring even more growth to the metaheuristics

discussed and the application itself. Finally, the results still need to be compared with those

obtained from other approaches in the literature.

• There are two types of channel allocation; �xed and dynamic. When the demand is known,

�xed channel allocation is the best option. However, in the real world, demand is unlikely

to be known a priori. Demand changes on a daily basis, therefore it is impractical to limit

the number of available channels within a cell. Figure 6.3 illustrates a dynamic channel

allocation, in which channels are dynamically assigned to cells are used. In dynamic channel

(a) Traditional network
(b) Software-De�ned network

Figure 6.2: Comparison between a traditional network and a software de�ned network (Maleki et

al. 2017)

116



allocation, the trends of past allocations are examined and used. The supply of future

channels is done based on the analysis, and at the same time extra channels are provided to

deal with unexpected scenarios such as network breakdown and a sudden surge of demand.

This is another problem in which the application of simheuristics have a visible potential.

Figure 6.3: Channel allocation in base station scenario (Mishra and Saxena 2012)

• Likewise, in order to include dynamic inputs in the optimization models, learnheuristic al-

gorithms combining metaheuristics with machine learning techniques can be studied in the

�eld of hub location problems as well as other network design problems since some problems

in the telecommunication �eld are characterized by inputs that are not �xed in advance

(e.g., the performance of transmission devices). Summarizing, the development of e�ective

metaheuristics methods which include the analysis of dynamic and uncertainty inputs seems

to be necessary for the future cases (Figure 6.4). In this context, the simheuristic algorithm

proposed in Chapter 5 may be also extended in several directions.
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Figure 6.4: Hybridization of metaheuristics with simulation and machine learning techniques
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