
Fixed-Point Constraints for Nominal Equational
Unification
Mauricio Ayala-Rincón1

Departments of Mathematics and Computer Science, Universidade de Brasília, Brasília, Brazil

Maribel Fernández
Department of Informatics, King’s College London, London, UK

Daniele Nantes-Sobrinho2

Departments of Mathematics and Computer Science, Universidade de Brasília, Brasília, Brazil

Abstract
We propose a new axiomatisation of the alpha-equivalence relation for nominal terms, based on a
primitive notion of fixed-point constraint. We show that the standard freshness relation between
atoms and terms can be derived from the more primitive notion of permutation fixed-point, and
use this result to prove the correctness of the new alpha-equivalence axiomatisation. This gives
rise to a new notion of nominal unification, where solutions for unification problems are pairs of
a fixed-point context and a substitution. Although it may seem less natural than the standard
notion of nominal unifier based on freshness constraints, the notion of unifier based on fixed-
point constraints behaves better when equational theories are considered: for example, nominal
unification remains finitary in the presence of commutativity, whereas it becomes infinitary when
unifiers are expressed using freshness contexts.

2012 ACM Subject Classification Theory of computation → Equational logic and rewriting,
Theory of computation → Lambda calculus, Theory of computation → Algebraic semantics

Keywords and phrases nominal terms, fixed-point equations, nominal unification, equational
theories

Digital Object Identifier 10.4230/LIPIcs.FSCD.2018.7

1 Introduction

This paper presents a new axiomatisation of α-equivalence for nominal terms via permutation
fixed points, and revisits nominal unification in this setting.

In nominal syntax [16], atoms are used to represent object-level variables and atom
permutations to implement renamings, following the nominal-sets approach advocated by
Gabbay and Pitts [10, 12, 14]. Atoms can be abstracted over terms, the syntax [a]s represents
the abstraction of a in s. To rename an abstracted atom a to b, a swapping permutation
π = (a b) is applied. Thus, the action of π over [a]s, written as (a b) · [a]s, produces the
nominal term [b]s′, where s′ is the result of replacing all occurrences of a in s by b, and all
occurences of b in s by a. The α-equivalence relation between nominal terms is specified
using swappings together with a freshness relation between atoms and terms, written b#s,
which roughly corresponds to b not occurring free in s.

In this setting, checking α-equivalence requires another first-order specialised calculus to
check freshness constraints. For instance, checking whether [a]s ≈α [b]t reduces to checking

1 Author partially funded by CNPq 307672/2017-4.
2 Author partially supported by FAP-DF 0193.001381/2017.

© Mauricio Ayala-Rincón, Maribel Fernández, and Daniele Nantes-Sobrinho;
licensed under Creative Commons License CC-BY

3rd International Conference on Formal Structures for Computation and Deduction (FSCD 2018).
Editor: Hélène Kirchner; Article No. 7; pp. 7:1–7:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

7:2 Fixed-Point Constraints for Nominal Equational Unification

whether s ≈α (b a) · t and a#t. The action of a permutation propagates down the structure
of nominal terms, until a variable is reached: permutations suspend over variables. Thus,
π · s represents the action of a permutation over a nominal term, but is not itself a nominal
term unless s is a variable; for instance, π ·X is a suspension (also called moderated variable),
which is a nominal term.

The presence of moderated variables and atom-abstractions makes reasoning about
equality of nominal terms more involved than in standard first-order syntax. For example,
π ·X ≈?

α ρ ·X is only true when X ranges over nominal terms, say s, for which all atoms in
the difference set of π and ρ (i.e., the set {a : π(a) 6= ρ(a)}) are fresh in s.

If the support of a permutation π is fresh for X then π · X ≈α id · X. Thus a set of
freshness constraints (i.e., a freshness context) can be used to specify that a permutation will
have no effect on the instances of X. This is why in nominal unification [16], the solution for
a problem is a pair consisting of a freshness context and a substitution.

The use of freshness contexts is natural when dealing with “syntactic” nominal unification,
but in the presence of equational axioms (i.e., equational nominal unification) it is not
straightforward. For example, in the case of C-nominal unification (nominal unification
modulo commutativity), to specify that a permutation has no effect on the instances of
X modulo C, in other words, to specify that the permutation does not affect a given C-
equivalence class, we need something more than a freshness constraint (note that (a b)(a+b) =
b+ a =C a+ b, so the permutation (a b) fixes the term a+ b, despite the fact that a and b
are not fresh).

In this paper, we propose to axiomatise α-equivalence of nominal terms using permutation
fixed-point constraints: we write π f t (read “π fixes t”) if t is a fixed-point of π. We show
how to derive fixed-point constraints from primitive constraints of the form π fX, and show
the correctness of this approach by proving that the α-equivalence relation generated in
this way coincides with the one axiomatised via freshness constraints. We then show how
fixed-point constraints can be used to solve nominal unification problems modulo C.

In [4, 3, 2], the authors have proposed techniques to deal with α-equivalence modulo the
equational theories A, C and AC using the standard approach via freshness constraints. The
works [3, 2] show that despite the fact that C-unification problems have solutions generated
by a finite family of fixed-point equations, there is no finitary representation of the admissible
set of solutions using only freshness constraints and substitutions. Also, in [15] it is shown
how nominal unification problems in a language with recursive let operators gives rise to
solutions expressed in terms of freshness constraints and nominal fixed-point equations.

In this paper, we will develop an extension of fixed-point constraints modulo commutativity,
namely, fC , and provide a set of rules for checking fixed-point judgements and α-equivalence
judgements modulo C, which will provide a finitary representation of nominal C-unification
solutions, consisting only of primitive fixed-point constraints and substitutions.

Overview

Section 2 presents the required preliminaries on nominal syntax. Section 3 introduces
nominal α-equivalence using fixed-point constraints instead of freshness constraints. Section
4 introduces a sound and complete rule-based algorithm for nominal unification using fixed-
point constraints. Before concluding, Section 5 shows how fixed-point constraints are used to
finitely represent solutions of fixed-point equations, and so of nominal C-unification problems.

M. Ayala-Rincón, M. Fernández, and D. Nantes-Sobrinho 7:3

2 Preliminaries

We assume the reader is familiar with the notions of nominal set and nominal syntax. In this
section we recall the main concepts and notations that are needed in this paper; for more
details we refer the reader to [14, 16].

2.1 Nominal Terms
Let A be a fixed and countably infinite set of elements a, b, c, . . ., which will be called atoms
(atomic names). A permutation on A is a bijection on A with finite domain.

Fix a countably infinite set X = {X,Y, Z, . . .} of variables and a countable set F =
{f, g, . . .} of function symbols.

I Definition 1 (Nominal grammar). Nominal terms are generated by the following grammar.

s, t := a | [a]t | (t1, . . . , tn) | f t | π ·X

where a is an atom term, [a]t denotes the abstraction of the atom a over the term t, (t1, . . . , tn)
is a tuple, f t denotes the application of f to t and π ·X is a moderated variable or suspension,
where π is an atom permutation.

We follow the permutative convention [11, Convention 2.3] for atoms throughout the
paper, i.e., atoms a, b, c range permutatively over A so that they are always pairwise different,
unless stated otherwise.

Atom permutations are represented by finite lists of swappings, which are pairs of different
atoms (a b); hence, a permutation π is generated by the following grammar:

π := Id | (a b)π.

We call Id the identity permutation, which is usually omitted from the list of swappings
defining a permutation. Suspensions of the form Id ·X will be represented just by X. We
write π−1 for the inverse of π, and use ◦ to denote the composition of permutations. For
example, if π = (a b)(b c) then π(c) = a and c = π−1(a).

The difference set of two permutations π, π′ is ds(π, π′) = {a | π(a) 6= π′(a)}.
We write Var(t) for the set of variables occurring in t. Ground terms are terms without

variables, that is Var(t) = ∅. A ground term may still contain atoms, for example a is a
ground term and X is not.

I Definition 2 (Permutation action). The action of a permutation π on a term t is defined
by induction on the number of swappings in π:

Id · t = t and ((a b)π) · t = (a b) · (π · t), where

(a b) · a = b,

(a b) · b = a,

(a b) · c = c

(a b) · (π ·X) = ((a b) ◦ π) ·X,
(a b) · f t = f (a b) · t,

(a b) · [c]t = [(a b) · c](a b) · t
(a b) · (t1, . . . , tn) = ((a b) · t1, . . . , (a b) · tn)

I Definition 3 (Substitution). Substitutions are generated by the grammar

σ ::= id | [X 7→ s]σ.

Postfix notation is used for substitution application and ◦ for composition: t(σ ◦ σ′) = (tσ)σ′.
Substitutions act on terms elementwise in the natural way: t id = t, t[X 7→ s]σ = (t[X 7→ s])σ,
where

a[X 7→ s] = a

(f t)[X 7→ s] = f(t[X 7→ s])
([a]t)[X 7→ s] = [a](t[X 7→ s])

(t1, . . . , tn)[X 7→ s] = (t1[X 7→ s], . . . , tn[X 7→ s])
(π ·X)[X 7→ s] = π · s
(π · Y)[X 7→ s] = π · Y

FSCD 2018

7:4 Fixed-Point Constraints for Nominal Equational Unification

2.2 Nominal sets and support
Let S be a set equipped with an action of the group Perm(A) of finite permutations of A.

I Definition 4. A set A ⊂ A is a support for an element x ∈ S if for all π ∈ Perm(A), the
following holds

((∀a ∈ A) π(a) = a)⇒ π · x = x (1)

A nominal set is a set equipped with an action of the group Perm(A), that is, a Perm(A)-set,
all of whose elements have finite support.

As in [14], we denote by suppS(x) the least finite support of x, that is,

suppS(x) :=
⋂
{A ∈ P(A) | A is a finite support for x}.

We write supp(x) when S is clear from the context. Clearly, each a ∈ A is finitely supported
by {a}, therefore supp(a) = {a}.

3 Constraints

The native notion of equality on nominal terms is α-equivalence, written s ≈α t. This
relation is usually axiomatised using a freshness relation between atoms and terms, written
a#t – read “a fresh for t”, which, intuitively, corresponds to the idea of an atom not occurring
free in a term (see for instance [16, 8]). However, freshness is not a primitive notion in
nominal sets; it is derived using the quantifier Ncombined with a notion of fixed-point, as
shown by Pitts [14]:

a#X ⇔ Na′.(a a′) ·X = X.

In this work, instead of defining α-equivalence using freshness, we define it using the
more primitive notion of fixed-point under the action of permutations. We will denote this
relation f

≈α, and show that it coincides with ≈α on ground terms, i.e., the relation defined
using fixed-points of permutations corresponds to the relation defined using freshness. For
non-ground terms, there is also a correspondence, but under different kinds of assumptions
(fixed-point constraints vs. freshness constraints).

3.1 Fixed-points of permutations and term equality
We start by defining a binary relation that describes which elements of a nominal set S are
fixed-points of a permutation π ∈ Perm(A):

I Definition 5 (Fixed-point relation). Let S be a nominal set. The fixed-point relation
f ⊆ Perm(A)×S is defined as: π f x⇔ dom(π) ∩ supp(x) = ∅. Read “π f x” as “π fixes x”.

The fixed-point relation between permutations and terms will play an important role
in the definition of α-equality. Below we define the fixed-point constraints and equality
constraints using predicates f and f

≈α and then give deduction rules to derive fixed-point
and equality judgements. Intuitively,

s
f
≈α t will mean that s and t are α-equivalent, i.e., equivalent modulo renaming of

abstracted atoms.

M. Ayala-Rincón, M. Fernández, and D. Nantes-Sobrinho 7:5

π(a) = a
(fa)

Υ ` π f a

supp(ππ
′−1

) ⊆ supp(perm(Υ|X))
(fvar)

Υ ` π f π′ ·X

Υ ` π f t
(ff)

Υ ` π f f t

Υ ` π f t1 . . . Υ ` π f tn
(ftuple)

Υ ` π f (t1, . . . , tn)

Υ, (c1 c2) f Var(t) ` π f (a c1) · t
(fabs), c1 and c2

new namesΥ ` π f [a]t

Figure 1 Fixed-point rules.

π f t will mean that the permutation π fixes the nominal term t, that is, π · t f
≈α t. This

means that π has “no effect” on t except for the renaming of bound names, for instance,
(a b) f [a]a but not (a b) f f a.

I Definition 6 (Fixed-point and equality constraints). A fixed-point constraint is a pair π f t

of a permutation π and a term t. An α-equivalence constraint is a pair of the form s
f
≈α t.

We call a fixed-point constraint of the form πfX a primitive fixed-point constraint and a set
of such constraints is called a fixed-point context. Υ,Ψ, . . . range over fixed-point contexts.
We write π f Var(t) as an abbreviation for the set of constraints {π fX | X ∈ Var(t)}.

The set of variables Var(Υ) is defined as expected. The set of permutations of a fixed-point
context Υ with respect to the variable X ∈ Var(Υ), denoted by perm(Υ|X), is defined as
perm(Υ|X) := {π | π fX ∈ Υ}. For a substitution σ and a fixed-point context Υ we define
Υσ := {π fXσ |π fX ∈ Υ}.

To define the relation f, we rely on the notion of conjugation of permutations. The
conjugate of π with respect to ρ, denoted as πρ, is the result of the composition: ρ ◦ π ◦ ρ−1.

πρ : A
ρ−1

→ A
π→ A

ρ→ A

a 7→ ρ−1(a) 7→ π(ρ−1(a)) 7→ ρ(π(ρ−1(a)))

I Definition 7 (Judgements). A fixed-point judgement is a tuple Υ ` π f t of a fixed-point
context and a fixed-point constraint. An α-equivalence judgement is a tuple Ψ ` s f

≈α t of a
fixed-point context and an equality constraint. The derivable fixed-point and α-equivalence
judgements are defined by the rules in Figures 1 and 2.

I Example 8. The term [a]fa is a fixed-point for the permutation (a b), since (a b)[a]fa ≈α
[b]fb, therefore, (a b) f [a]fa. However, fa is not a fixed-point for (a b), since (a b) · fa ≈α/ fb.

Rule (fa) states that if a /∈ dom(π), then a is a fixed-point of π.
In rule (fvar), the condition supp(ππ′

−1
) ⊆ supp(perm(Υ|X)) means that the permuta-

tion can be generated from perm(Υ|X), hence it fixes X. Rules (ff) and (ftuple) are
straightforward. Rule (fabs) is the most interesting one. The intuition behind this rule is
the following: [a]t is a fixed-point of π if π · [a]t is α-equivalent to [a]t, that is, [π(a)]π · t is
α-equivalent to [a]t; the latter means that the only atom that could be affected by π is a,
hence, if we replace occurrences of a in t with another, new atom c1, π should have no effect.

The α-equality relation is defined in terms of fixed-point constraints. Rules (f≈α a),
(f≈α f), (f≈α [a]) and (f≈α tuple) are defined as expected, whereas the intuition behind rule
(f≈α var) is similar to the corresponding rule in Figure 1. The most interesting rule is (f≈α ab).

FSCD 2018

7:6 Fixed-Point Constraints for Nominal Equational Unification

(
f
≈αa)

Υ ` a
f
≈α a

supp((π′)−1 ◦ π) ⊆ supp(perm(Υ|X))
(
f
≈αvar)

Υ ` π ·X
f
≈α π′ ·X

Υ ` t
f
≈α t′

(
f
≈α f)

Υ ` f t
f
≈α f t′

Υ ` t1
f
≈α t′1 . . . Υ ` tn

f
≈α t′n (

f
≈α tuple)

Υ ` (t1, . . . , tn)
f
≈α (t′1, . . . , t′n)

Υ ` t
f
≈α t′

(
f
≈α [a])

Υ ` [a]t
f
≈α [a]t′

Υ ` s
f
≈α (a b) · t Υ, (c1 c2) f Var(t) ` (a c1) f t

(
f
≈α ab)

Υ ` [a]s
f
≈α [b]t

Figure 2 Rules for equality. In rule (
f
≈α ab), c1 and c2 are new names.

Intuitively, it states that for two abstractions [a]s and [b]t to be equivalent, we must obtain
equivalent terms if we rename in one of them, in our case t, the abstracted atom b to a, so
that they both use the same atom. Moreover, the atom a should not occur free in t, which is
checked by stating that (a c1) fixes t for some new atom c1 that is not in the support of the
variables occurring in t.

We prove below that f
≈α is indeed an equivalence relation, for which we need to study

the properties of the relations f
≈α and f, starting with inversion and equivariance.

I Lemma 9 (Inversion). The inference rules for f
≈α are invertible.

The notion of equivariance relies on the conjugation of the permutation π by ρ, πρ. The
following basic property is used in the proofs in this section.

I Lemma 10. Let ρ be a permutation in Perm(A) and a, b atoms in A. Then (a b)ρ =
(ρ(a) ρ(b)).

I Lemma 11.
i.) Υ ` π f t if and only if supp(π) ∩ supp(t) = ∅.
ii.) If Υ ` s f

≈α t then supp(s) = supp(t).

Proof. Both parts are proved by induction. In part (i), we analyse cases depending on the
last rule applied in the derivation of Υ ` π f t. We show the cases for rules (fvar) and
(fabs), the other cases follow directly by induction.

If the last rule applied is (fvar) then t = π′ ·X and Υ ` πfπ′ ·X if and only if (Inversion
Lemma) supp(ππ′

−1
) ⊆ supp(perm(Υ|X)), if and only if supp(π) ⊆ π′ · supp(perm(Υ|X)).

Since supp(X)∩supp(perm(Υ|X)) = ∅ by Definition 5, we deduce supp(π)∩supp(π′ ·X) = ∅
as required.

If the last rule applied is (fabs), then t = [a]t′ and Υ ` π f [a]t′ if and only if (Inversion
Lemma) Υ, (c1 c2)f Var(t′) ` πf (a c1) · t′. By induction, supp(π)∩ supp((a c1)t′) = ∅ and
since supp([a]t′) = supp((a c1) · t′)− {c1} (because c1 is a new atom and (c1 c2) f Var(t′)),
we obtain supp(π) ∩ supp([a]t′) = ∅ as required.

The proof for part (ii), by induction on the derivation of Υ ` s f
≈α t, is similar. In the

case of rule (f≈α var), the premise implies that ds(π, π′)∩supp(X) = ∅, hence supp(π ·X) =
supp(π′ ·X). In the case of rule (f≈α ab), by induction hypothesis supp(s) = supp((a b) · t)
and since we know that (a c1) f t, using part 1 we obtain the result. J

M. Ayala-Rincón, M. Fernández, and D. Nantes-Sobrinho 7:7

I Lemma 12 (Equivariance).
i.) Υ ` π f t iff Υ ` πρ f ρ · t, for any permutation ρ.
ii.) If Υ ` s f

≈α t then Υ ` π · s f
≈α π · t.

Proof. By induction on the rules of Figures 1 and 2. J

I Lemma 13 (f preservation under f
≈α). If Υ ` s f

≈α t and Υ ` π f s then Υ ` π f t.

Proof. Direct consequence of Lemma 11. J

I Proposition 14 (Strengthening for f). If Υ, πfX ` π′fs and supp(π) ⊆ supp(perm(Υ|X))
or X /∈ Var(s) then Υ ` π′ f s.

I Proposition 15 (Strengthening for f
≈α). If Υ, π fX ` s

f
≈α t and

supp(π) ⊆ supp(perm(Υ|X)) or X /∈ Var(s, t), then Υ ` s f
≈α t.

I Proposition 16 (Weakening). Suppose that Υ ` Υ′σ. Then,
1. Υ′ ` π f s =⇒ Υ ` π f sσ.
2. Υ′ ` s f

≈α t =⇒ Υ ` sσ f
≈α tσ.

Proof. By induction on the rules of Figures 1 and 2. J

I Example 17. Notice that (a c) fX ` (a b) f (b c) ·X, for

(a c) fX ` (a b)(b c) fX ⇔ (a c) fX ` (a c) fX (by Equivariance) (2)

The following correctness property states that f is indeed the fixed-point relation:

I Theorem 18. Let Υ, π and t be a fixed-point context, a permutation and a nominal term,
respectively. Υ ` π f t iff Υ ` π · t f

≈α t.

Sketch. In both directions the proof follows by induction on the structure of the term t and by
case analysis on the last rule applied in the derivation. We show only Υ ` πft⇒ Υ ` π·t f

≈α t.
Below we sketch the interesting cases, the other cases follow by induction hypothesis easily.
1. The last rule is (fvar). In this case, t = π′ ·X and supp((π′)−1◦π◦π′) ⊆ supp(perm(Υ|X))

and therefore, π · (π′ ·X) f
≈α π′ ·X, via rule (f≈α var).

2. The last rule is (fabs). In this case, t = [a]t′ and π f t has a derivation of the form:
Π

Υ, (c1 c2) f Var(t′) ` π f (a c1) · t′

Υ ` π f [a]t′
From Υ, (c1 c2) f Var(t′) ` π f (a c1) · t′ it follows, from Lemma 11:

supp(π) ∩ supp((a c1) · t′) = ∅. (3)

We need to prove that Υ ` [π(a)]π · t′ f
≈α [a]t′, that is, Υ ` π · t′ f

≈α (π(a) a) · t′ and also
Υ, (c1 c2) f Var(t′) ` (π(a) c1) f t′ for some new atoms c1, c2.
By IH, there exist a proof Π′ for Υ, (c1 c2) f Var(t′) ` π · ((a c1).t′) f

≈α (a c1) · t′. Let
Υ′ = Υ, (c1 c2) f Var(t′). The following equivalence holds:

Υ′ ` π.((a c1) · t′) f
≈α (a c1) · t′ ⇐⇒ Υ′ ` (π(a) c1) · (π · t′) f

≈α (a c1) · t′ (4)

Also, Υ′ ` (π · t′) f
≈α (π(a) c1) · ((a c1) · t′) by Equivariance. And since Υ′ ` (π(a) c1) ·

((a c1) · t′) f
≈α (π(a) a) · t′, we are done. J

FSCD 2018

7:8 Fixed-Point Constraints for Nominal Equational Unification

(#a)
∆ ` a#b

π−1(a)#X ∈ ∆
(#var)

∆ ` a#π′ ·X

∆ ` a#t
(#f)

∆ ` a#f t
∆ ` a#t1 . . . ∆ ` a#tn

(#tuple)
∆ ` a#(t1, . . . , tn)

(#[a])
∆ ` a#[a]t

∆ ` a#t
(#abs)

Υ ` a#[b]t

Figure 3 Rules for freshness.

(≈α a)
∆ ` a ≈α a

ds(π, π′)#X ⊆ ∆
(≈α var)

∆ ` π ·X ≈α π′ ·X

∆ ` t ≈α t′
(≈α f)

∆ ` f t ≈α f t′
∆ ` t1 ≈α t′1 . . . ∆ ` tn ≈α t′n (≈α tuple)

∆ ` (t1, . . . , tn) ≈α (t′1, . . . , t′n)

∆ ` t ≈α t′
(≈α [a])

∆ ` [a]t ≈α [a]t′
∆ ` s ≈α (a b).t ∆ ` a#t

(≈α ab)
Υ ` [a]s ≈α [b]t

Figure 4 Rules for α-equality via freshness.

3.2 From freshness to fixed-point constraints
In this section we show that the α-equivalence relation defined in terms of freshness constraints,
denoted as ≈α, is equivalent to f

≈α, given that a transformation [_]f from freshness to
fixed-point constraints and a transformation [_]# from fixed-point to freshness constraints
can be defined. In the standard approach [13, 8], the freshness relation (a#t) and the
α-equivalence relation s ≈α t (w.r.t. #), are axiomatised using the rules in Figures 3 and 4,
respectively.

To define ≈α we use the difference set of two permutations in rule (≈α var), and
ds(π, π′)#X = {a#X | a ∈ ds(π, π′)}.

The symbols ∆ and ∇ denote freshness contexts, that is, sets of freshness constraints of
the form a#X, meaning that a is fresh in X. The domain of a freshness context ∆, denoted
by dom(∆), consists of the atoms occurring in ∆; ∆|X consists of the restriction of ∆ to the
freshness constraints on variable X, that is, the set {a#X | a#X ∈ ∆}. Below we denote
by F# the family of freshness contexts, and by Ff the family of fixed-point contexts. The
mapping [_]f below associates each freshness constraint in ∆ with a fixed-point constraint:

[_]f : ∆ −→ Ff

a#X 7→ (a ca) fX where ca is a new name.

We denote by [∆]f the image of ∆ under [_]f.
The mapping [_]f below associates each fixed-point constraint in Υ with a freshness

constraint:
[_]# : Υ −→ F#

π fX 7→ supp(π)#X.

We denote by [Υ]# the image of Υ under [_]#.

M. Ayala-Rincón, M. Fernández, and D. Nantes-Sobrinho 7:9

I Lemma 19.
1. ∆ ` a#t⇔ [∆]f, (c2 c1) f Var(t) ` (a c1) f t.
2. Υ ` π f t⇔ [Υ]# ` supp(π)#t.

I Theorem 20. f
≈α coincides with ≈α on ground terms, that is, ` s ≈α t ⇐⇒ ` s

f
≈α t.

More generally,
1. ∆ ` s ≈α t⇒ [∆]f ` s

f
≈α t.

2. Υ ` s f
≈α t⇒ [Υ]# ` s ≈α t.

Sketch.
1. The proof is by induction on the derivation of ∆ ` s ≈α t. The interesting case is when

the derivation is an instance of (≈α var):
ds(π, π1)#X ⊆ ∆

(≈α var)
∆ ` π ·X ≈α π1 ·X
We want to show that [∆]f ` π ·X

f
≈α π1 ·X. To use rule (f≈α var), we need to show that

supp(π−1
1 ◦π) ⊆ supp(perm(([∆]f)|X)). Let b ∈ supp(π−1

1 ◦π) and suppose b /∈ ds(π, π1).
Then π(b) = π1(b) and π−1

1 (π(b)) = b, contradiction. Therefore, b ∈ ds(π, π1) and
(b cb) fX ∈ [∆]f (for cb a new name), and the result follows. J

As a corollary, since ≈α is an equivalence relation [16], we deduce that f
≈α is also an

equivalence relation.

I Theorem 21. f
≈α is an equivalence relation.

4 Nominal Unification via fixed-point constraints

In this section we define the notion of nominal unification in terms of fixed-point constraints.

I Definition 22. A unification problem Pr consists of a finite set of equations and fixed-point
constraints of the form s

f
≈

?
α t and π f? t, respectively.

We design a unification algorithm via the simplification rules presented in Table 1. These
rules act on unification problems Pr. We abbreviate (t1, . . . , tn) as (t̃)n, and for a set S,
π f S = {π fX | X ∈ S}.

We write Pr =⇒ Pr′, when Pr′ is obtained from Pr by applying a simplification rule from
Table 1 and we write ∗=⇒ for the reflexive and transitive closure of =⇒.

I Lemma 23. There is no infinite chain of reductions =⇒ starting from a problem Pr.

Proof. Termination of the simplification rules follows directly from the fact that the following
measure of the size of Pr is strictly decreasing:
[Pr] = (n1,M) where n1 is the number of different variables used in Pr, andM is the multiset
of sizes of equality constraints and non-primitive fixed-point constraints occurring in Pr.

Each simplification step either eliminates one variable (when an instantiation rule is
used) and therefore decreases the first component of the interpretation, or leaves the first
component unchanged but replaces a constraint with smaller ones and/or primitive ones. J

The normal form of Pr by =⇒ is defined as expected and denoted by 〈Pr〉nf.

We say that an equality constraint s f
≈

?
α t is reduced when one of the following holds:

1. s := a and t := b are distinct atoms;
2. s and t are headed with different function symbols, that is, s := f s′ and t := g t′;

FSCD 2018

7:10 Fixed-Point Constraints for Nominal Equational Unification

Table 1 Simplification Rules for Problems. In (fabs) and (
f
≈α abs2), c1 and c2 are new names.

(fat) Pr] {π f? a} =⇒ Pr, if π(a) = a

(ff) Pr] {π f? ft} =⇒ Pr ∪ {π f? t}
(ft) Pr] {π f? (t̃)n} =⇒ Pr ∪ {π f? t1, . . . , π f? tn}
(fabs) Pr] {π f? [a]t} =⇒ Pr ∪ {π f? (a c1) · t, (c1 c2) f? Var(t)}
(fvar) Pr] {π f? π′ ·X} =⇒ Pr ∪ {π(π′)−1

f? X}, if π′ 6= Id

(
f
≈α a) Pr] {a

f
≈

?
α a} =⇒ Pr

(
f
≈α f) Pr] {f t

f
≈

?
α f t′} =⇒ Pr ∪ {t ≈α? t′}

(
f
≈α t) Pr] {(t̃)n ≈α? (t̃′)n} =⇒ Pr ∪ {t1

f
≈

?
α t
′
1, . . . , tn

f
≈

?
α t
′
n}

(
f
≈α abs1) Pr] {[a]t

f
≈

?
α [a]t′} =⇒ Pr ∪ {t

f
≈

?
α t
′}

(
f
≈α abs2) Pr] {[a]t

f
≈

?
α [b]s} =⇒ Pr ∪ {t

f
≈

?
α (a b) · s, (a c1) f? s, (c1 c2) f? Var(s)}

(≈α var) Pr] {π ·X
f
≈

?
α π
′ ·X} =⇒ Pr ∪ {(π′)−1 ◦ π f? X}

(≈α inst1) Pr] {π ·X
f
≈

?
α t}

[X 7→π−1.t]=⇒ Pr{X 7→ π−1.t}, if X /∈ Var(t)

(≈α inst2) Pr] {t
f
≈

?
α π ·X}

[X 7→π−1.t]=⇒ Pr{X 7→ π−1.t}, if X /∈ Var(t)

3. s and t have different term constructors, that is, s = [a]s′ and t = f t′, for some term
former f, or s = π ·X and t = a, etc.

A fixed-point constraint π f? s is reduced when it is of the form π f? a and π(a) 6= a, or
π f? X, the former is called inconsistent whereas the latter is called consistent.

I Example 24. For Pr = [a]f(X, a) f
≈

?
α [b]f((b c) ·W, (a c) · Y), we obtain the following

derivation chain:

[a]f(X, a) f
≈

?
α [b]f((b c) ·W, (a c) · Y) =⇒


f(X, a) f

≈
?
α f((a b) ◦ (b c) ·W, (a b) ◦ (a c) · Y),

(a c1) f? f((b c) ·W, (a c) · Y),
(c2 c1) f? W, (c2 c1) f? Y


=⇒

{
X

f
≈

?
α (a b) ◦ (b c) ·W,a f

≈
?
α (a b) ◦ (a c) · Y,

(a c1) f? (b c) ·W, (a c1) f? (a c) · Y, (c2 c1) f? W, (c2 c1) f? Y

}
[Y 7→b]=⇒

{
X

f
≈

?
α (a b) ◦ (b c) ·W, (a c1)(b c) f? W, (a c1) f? b, (c2 c1) f? W, (c2 c1) f? b

}
∗=⇒
{
X

f
≈

?
α (a b) ◦ (b c) ·W, (a c1) f? W, (c2 c1) f? W

}
[X 7→(a b)◦(b c)·W]=⇒

{
(a c1) f? W, (c2 c1) f? W

}
= 〈Pr〉nf.

I Definition 25. Let Pr be a problem such that 〈Pr〉nf = Pr′. We say that 〈Pr〉nf is
reduced when it consists of reduced constraints, and successful when Pr′ = ∅ or contains only
consistent reduced fixed-point constraints; otherwise, 〈Pr〉nf fails.

I Definition 26. A solution for a problem Pr is a pair of the form 〈Φ, σ〉 where the following
conditions are satisfied:
1. Φ ` π f tσ, if π f? t ∈ Pr;

2. Φ ` sσ f
≈

?
α tσ, if s

f
≈

?
α t ∈ Pr.

3. Xσ = Xσσ for all X ∈ Var(Pr) (the substitution is idempotent).

M. Ayala-Rincón, M. Fernández, and D. Nantes-Sobrinho 7:11

The solution set for a problem Pr is denoted by U(Pr).
The simplification rules (Table 1) specify a unification algorithm: we apply the simplifica-

tion rules in a problem Pr until we reach a normal form 〈Pr〉nf. In the case 〈Pr〉nf fails or
contains reduced equational constraints, we say that Pr is unsolvable; otherwise, 〈Pr〉nf is
solvable and its solution consists of the composition σ of substitutions applied through the
simplification steps and the fixed-point context Φ = {π fX |π f? X ∈ 〈Pr〉nf}.

I Example 27 (Continuing example 24). Notice that 〈Ψ, σ〉, where Ψ = {(a c1)fW, (c2 c1)f
W} and σ = {Y 7→ b,X 7→ (a b) ◦ (b c) ·W}, is a solution for Pr.

I Theorem 28 (Correctness). Let Pr be a unification problem and 〈Pr〉nf = Pr′, then
1. U(Pr) = U(Pr′), and
2. if Pr′ contains equational or inconsistent reduced fixed-point constraints then U(Pr) = ∅.

Proof. The proof is by induction on the length of the derivation Pr n=⇒ Pr′.

Base Case. n = 0. Then Pr = Pr′ and the result is trivial.

Induction Step. Suppose, n > 0 and consider the reduction chain

Pr = Pr1 =⇒ . . . =⇒ Prn−1 =⇒ Prn = Pr′.

The proof follows by case analysis on the last rule applied in Prn−1.
1. The rule is (fat). In this case, Prn−1 = Pr′n−1]{πf? a} =⇒ Pr′n−1 = Prn, and π(a) = a.

Let 〈Ψ, σ〉 ∈ U(Prn−1), then
a. Ψ ` π′ f tσ, for all π′ f? t ∈ Pr′n−1

b. Ψ ` tσ f
≈α sσ, for all t

f
≈

?
α s ∈ Pr′n−1;

c. Xσ = Xσσ, for all X ∈ Var(Pr′n−1).
Therefore, 〈Ψ, σ〉 ∈ U(Prn) and U(Prn−1) ⊆ U(Prn). The other inclusion is trivial.

2. The rule is (fvar). In this case, Prn−1 = Pr′n−1]{πf?π′·X} =⇒ Pr′n−1∪{π(π′)−1
f?X} =

Prn, and π′ 6= Id.
Let 〈Ψ, σ〉 ∈ U(Prn−1), then
a. Ψ ` π′ f tσ, for all π′ f? t ∈ Pr′n−1, and Ψ ` π f π′ ·Xσ.

b. Ψ ` tσ f
≈α sσ, for all t

f
≈

?
α s ∈ Pr′n−1;

c. Xσ = Xσσ, for all X ∈ Var(Pr′n−1).
Notice that

Ψ ` π f π′ ·Xσ ⇒ Ψ ` π · (π′ ·Xσ) f
≈α (π′ ·Xσ), hence

Ψ ` (π′)−1 ◦ π ◦ π′ · (Xσ) f
≈α Xσ via Lemma 12

⇒ Ψ ` π(π′)−1
fXσ.

Therefore, 〈Ψ, σ〉 ∈ U(Prn) and U(Prn−1) ⊆ U(Prn). The other inclusion is similar.
3. The rule is (fabs). Then

Prn−1 = Pr′] {π f? [a]s} =⇒ Pr′ ∪ {(c1 c2) f? Var(s), π f? (a c1).s} = Prn.

where c1 and c2 are new names not occurring anywhere in the problem.
Let 〈Ψ, σ〉 ∈ U(Prn−1) be a solution for Prn−1:
a. Ψ ` π′ f tσ, for all π′ f? t ∈ Pr′ and Ψ ` π f ([a]s)σ.

b. Ψ ` tσ f
≈α sσ, for all t

f
≈

?
α s ∈ Pr′.

FSCD 2018

7:12 Fixed-Point Constraints for Nominal Equational Unification

Since Ψ ` π f ([a]s)σ and ([a]s)σ = [a]sσ, it follows that Ψ ` π f ([a]s)σ. From inversion
and rule (f[a]), this implies that there exists a proof for Ψ, (c1 c2)fVar(sσ) ` πf(a c1).sσ.
Notice that we can always choose c1 and c2 such that supp((c1 c2))∩ supp(sσ) = ∅, from
Lemma 11, it follows that Ψ ` (c1 c2) f sσ. Since Ψ, (c1 c2) f Var(sσ) ` π f (a c1).sσ, it
follows that Ψ ` π f (a c1).sσ, by Proposition 16. J

I Remark. Theorem 18 guarantees the equivalence between ≈α and f
≈α, therefore, we can

associate the unification algorithm proposed, with the standard nominal unification algorithm
proposed in [16]. The problem Pr introduced in Example 24, is equivalent to the nominal
unification problem P = {[a]f(X, a) ≈α? [b]f((b c) ·W, (a c) · Y }, and using the standard
simplification rules [16]:

P ∗=⇒[Y 7→b]=⇒ ∗=⇒ P ′ = {X ≈α? (a b) · ((b c) ·W), a#?W}
[X 7→(a b)◦(b c)·W]=⇒ {a#?W} = P ′

(5)

The pair 〈P〉sol = 〈{a#W}, δ〉, where δ = {Y/b,X 7→ (a b) ◦ (b c) ·W} is a solution for
P. Using the translation [_]f, we obtain [〈P〉sol]f = 〈{[a#W]f}, δ〉 = 〈(a ca) f W, δ〉,
where ca is a new name, which is equivalent to 〈(a ca) fW, (ca c1) fW, δ〉, for ca and c1

not occurring anywhere in P. Therefore, [〈Psol〉]f is a solution for Pr = {[a]f(X, a) f
≈

?
α

[b]f((b c) ·W, (a c) · Y }. Similarly, from the solution 〈Ψ, σ〉 proposed in Example 27, we
obtain 〈[Ψ]#, σ〉 = 〈a#W, c1#W, c2#W,σ〉, which is a solution for P.

In the theorem below Prf denotes a unification problem w.r.t. f
≈α and f, and P# denotes

a unification problem w.r.t. ≈α and #.

I Theorem 29. Let Prf and P# be unification problems such that [Prf]# = P# and
〈Ψ, σ〉 ∈ U(Prf) and 〈∆, δ〉 ∈ U(P#) be solutions for Prf and P#, respectively. Then
1. 〈[Ψ]#, σ〉 ∈ U(P#).
2. 〈[∆]f, δ〉 ∈ U(Prf).

5 Nominal C-unification via fixed-point constraints

In this section we propose an approach to nominal unification modulo commutativity via the
notion of fixed-point constraints.

For example, assuming + is commutative, i.e., X + Y = Y +X, a problem of the form

+〈(a b) ·X, a〉 f
≈

?
α +〈Y,X〉 (6)

can be solved by unifying (a b) ·X with Y and a with X, or (a b) ·X with X and a with Y .
In [2], a simplification algorithm for solving nominal C-unification was proposed. This

algorithm was based on the standard nominal unification algorithm [16] where α-equivalence
is defined w.r.t. the notion of freshness. Upon the input of a unification problem P, the
algorithm outputs a finite family of triples of the form 〈∇, σ, P 〉, where ∇ is a freshness
context, σ a substitution and P is a set of fixed-point constraints. In [3] we proved that even
a simple unification problem, as (a b) ·X ≈α X could produce an infinite and independent
set of solutions, whenever the signature contains commutative function symbols: {X/a +
b,X/f(a+ b), X/[e]〈a+ b, b+a〉, . . .}. Therefore, we could not provide a finite set of solutions
consisting only of freshness constraints and substitutions. However, we remark that the
problem +〈(a b) · X, a〉 f

≈
?
α 〈Y,X〉 mentioned above has in fact a finite number of most

general solutions (indeed, two) if we solve it using fixed-point constraints. The most general
unifiers are {X 7→ a, Y 7→ b} and {Y 7→ a, (a b) fX}.

M. Ayala-Rincón, M. Fernández, and D. Nantes-Sobrinho 7:13

π(a) = a
(fCa)

Υ ` π fC a

supp(ππ
′−1

) ⊆ supp(perm(Υ|X))
(fCvar)

Υ ` π fC π
′ ·X

Υ ` π fC t
f 6= + (fCf)

Υ ` π fC ft
Υ ` π · t0

f
≈α,C ti Υ ` π · t1

f
≈α,C t(i+1) mod 2

i = 0, 1(fC+)
Υ ` π fC +(t0, t1)

Υ ` π fC t1 . . . Υ ` π fC tn
(fCtuple)

Υ ` π fC (t1, . . . , tn)
Υ, (c1 c2) fC Var(t) ` π fC (a c1) · t

(fCabs)
Υ ` π fC [a]t

Figure 5 Fixed-point rules modulo commutativity.

(
f
≈α,C a)

Υ ` a
f
≈α,C a

Υ ` (π′)−1 ◦ π fC X
(
f
≈α,C var)

Υ ` π ·X
f
≈α,C π′ ·X

Υ ` t
f
≈α,C t′

(
f
≈α,C f, f 6= +)

Υ ` ft
f
≈α,C ft′

Υ ` t1
f
≈α,C t′1 . . . Υ ` tn

f
≈α,C t′n (

f
≈α,C tuple)

Υ ` (t1, . . . , tn)
f
≈α,C (t′1, . . . , t′n)

Υ ` t
f
≈α,C t′

(
f
≈α,C [a])

Υ ` [a]t
f
≈α,C [a]t′

Υ ` s
f
≈α,C (a b)t Υ, (c1 c2) fC Var(t) ` (a c1) fC t

(
f
≈α,C ab)

Υ ` [a]s
f
≈α,C [b]t

Υ ` s0
f
≈α,C ti s1

f
≈α,C t(i+1) mod 2

i = 0, 1 (
f
≈α,C +)

Υ ` +〈s0, s1〉
f
≈α,C +〈t0, t1〉

Figure 6 Rules for equality modulo commutativity.

I Definition 30 (C-constraints). A C-fixed-point constraint is a pair of the form π fC t, of a
permutation π and a term t. A C-α-equality constraint (for short, C-equality constraint) is a
pair of the form s

f
≈α,C t, for nominal terms s and t.

Intuitively, s f
≈α,C t will mean that s and t are α-equivalent modulo commutativity of some

function symbols, and π fC t will mean that the permutation π has no effect on term t

except for the commutativity of some subterms. For instance, (a c) fC +〈a, c〉, but not
(a c) fC f〈a, c〉, if f is not a commutative symbol

The notions of C-fixed-point contexts and C-judgements are defined as expected, and
derivable according to the rules in Figures 5 and 6.

Rule (fCvar) is similar to the previous one. Rule (f≈α,C var) relies on the primitive notion
of fixed-point constraints, it is equivalent to the rule given earlier. There is a branching rule
(fC+) for C-fixed-point constraints and a branching rule (f≈α,C +) for C-equality constraints
(more precisely, in the case of C operators, there are two possible rules to apply, but we have
written them in a compact way as one rule with parameter i). Technical results proven in
Section 3 can be extended to C-constraints.

I Theorem 31. Let Υ, π and t be a C-fixed-point context, a permutation and a nominal
term, respectively. Υ ` π fC t iff Υ ` π · t f

≈α,C t.

Proof. The proof is by induction on the structure of t, and follows the same lines of the
proof of Theorem 18. J

FSCD 2018

7:14 Fixed-Point Constraints for Nominal Equational Unification

∇ ` s ≈{α,C} t
, E 6= C or both s and t are not pairs (≈{α,C} app)

∇ ` fEk s ≈{α,C} fEk t

∇ ` s0 ≈{α,C} ti, ∇ ` s1 ≈{α,C} t(i+1)mod 2
, i = 0, 1 (≈{α,C} C)

∇ ` fCk 〈s0, s1〉 ≈{α,C} fCk 〈t0, t1〉

Figure 7 Additional rules for {α,C}-equivalence.

5.1 From freshness to C-fixed-point constraints
In [2] the relation ≈{α,C} was defined as an extension of ≈α (see the rules in Figures 3 and
4) with rules for commutative symbols:

Using the functions [_]f and [_]# defined in Section 3.2, we can obtain results that
extend Lemma 19 and Theorem 20.

I Lemma 32. ∆ ` a#t⇒ [∆]Cf, (c1 c2) fC Var(t) ` (a c1) fC t,
where [∆]Cf = {π fC X | π fX ∈ [∆]f}.

I Theorem 33.
1. Υ ` s f

≈α,C t⇒ [Υ]# ` s ≈{α,C} t.

2. ∆ ` s ≈{α,C} t⇒ [∆]Cf ` s
f
≈α,C t.

5.2 Solving nominal C-unification problems via fixed-point constraints
Similarly to Section 4, we define the notion of nominal C-unification in terms of C-fixed-point
constraints.

I Definition 34. A C-unification problem Pr consists of a finite set of C-equality and
C-fixed-point constraints of the form s

f?
≈C t and π f?

C t, respectively3.

We write Pr =⇒C Pr′ when Pr′ is obtained from Pr by applying a simplification rule
from Table 2 and we write ∗=⇒C for the reflexive and transitive closure of =⇒C . We omit
the subindex when it is clear from the context.

I Lemma 35. There is no infinite chain of reductions =⇒C starting from a C-unification
problem Pr.

The simplification rules (Table 2) specify a C-unification algorithm: we apply the simpli-
fication rules in a problem Pr until we reach a normal form 〈Pr〉nf. The notions of solution,
consistency, failure, correctness, etc. obtained in Section 4 can be extended to C-unification.

I Remark. As with standard nominal unification, one can use the functions [_]# and
[_]f to represent solutions 〈∇, σ, P 〉 of nominal C-unification problems w.r.t. freshness
constraints [2, 3] (where P is a set of fixed-point equations of the form π.X ≈?

{α,C} X) as
solutions 〈[∇]f ∪ {PfC

}, σ〉 of nominal C-unification problems via C-fixed-point constraints,
where PfC

= {π fC X | π.X ≈?
{α,C} X ∈ P}.

3 To ease the notation, we will denote s
f?
≈C t by s ≈? t.

M. Ayala-Rincón, M. Fernández, and D. Nantes-Sobrinho 7:15

Table 2 Simplification Rules for C-unification problems. In rules (fCabs) and (
f
≈α,C abs2), c1

and c2 are new names.

(fC at) Pr] {π f?
C a} =⇒ Pr, if π(a) = a

(fCf) Pr] {π f?
C ft} =⇒ Pr ∪ {π f?

C t}, f 6= +
(fC + 1) Pr] {π f?

C +〈t0, t1〉} =⇒ Pr ∪ {π · t0 ≈? t0, π · t1 ≈? t1}
(fC + 2) Pr] {π f?

C +〈t0, t1〉} =⇒ Pr ∪ {π · t0 ≈? t1, π · t1 ≈? t0}
(fC tuple) Pr] {π f?

C (t̃)n} =⇒ Pr ∪ {π f?
C t1, . . . , π f?

C tn}
(fCabs) Pr] {π f?

C [a]t} =⇒ Pr ∪ {π f?
C (a c1) · t, (c1 c2) f?

C Var(t)}
(fCvar) Pr] {π f?

C π
′ ·X} =⇒ Pr ∪ {π(π′)−1

f?
C X}, if π′ 6= Id

(
f
≈α,C a) Pr] {a ≈? a} =⇒ Pr

(
f
≈α,C f) Pr] {ft ≈? ft′} =⇒ Pr ∪ {t ≈? t′}, f 6= +

(
f
≈α,C +1) Pr] {+〈t0, t1〉 ≈? +〈s0, s1〉} =⇒ Pr ∪ {t0 ≈? s0, t1 ≈? s1}

(
f
≈α,C +2) Pr] {+〈t0, t1〉 ≈? +〈s0, s1〉} =⇒ Pr ∪ {t0 ≈? s1, t1 ≈? s0}

(
f
≈α,C t) Pr] {(t̃)n ≈? (t̃′)n} =⇒ Pr ∪ {t1 ≈? t′1, . . . , tn ≈? t′n}

(
f
≈α,C abs1) Pr] {[a]t ≈? [a]t′} =⇒ Pr ∪ {t ≈? t′}

(
f
≈α,C abs2) Pr] {[a]t ≈? [b]s} =⇒ Pr ∪ {t ≈? (a b) · s, (a c1) f?

C s,

(c1 c2) f?
C Var(s)}

(
f
≈α,C var) Pr] {π ·X ≈? π′ ·X} =⇒ Pr ∪ {(π′)−1 ◦ π f?

C X}

(
f
≈α,C inst1) Pr] {π ·X ≈? t} [X 7→π−1.t]=⇒ Pr{X 7→ π−1.t}, if X /∈ Var(t)

(≈α inst2) Pr] {t ≈? π ·X} [X 7→π−1.t]=⇒ Pr{X 7→ π−1.t}, if X /∈ Var(t)

6 Conclusions and Future Work

The notion of fixed-point constraints allowed us to obtain a finite representation of solutions
for nominal C-unification problems. This brings a novel alternative to standard nominal
unification approaches in which just the algebra of atom permutations and the logic of
freshness constraints are used to implement equational reasoning (e.g., [1, 5, 6, 7, 9]), and in
particular to their extensions modulo commutativity, for which only infinite representations
were possible in the standard approach. With the new proposed approach the development
of algorithms for the generation of solutions of nominal equational problems modulo theories
such as C, AC, etc would be simplified avoiding with the use of fixed-point constraints the
development of procedures for the generation of infinite independent sets of solutions.

In future work we plan to extend this approach to matching and unification modulo
different equational theories as well as to the treatment of equational problems in nominal
rewriting modulo.

References

1 T. Aoto and K. Kikuchi. A Rule-Based Procedure for Equivariant Nominal Unification. In
Pre-proc. of Higher-Order Rewriting (HOR), pages 1–5, 2016.

2 M. Ayala-Rincón, W. Carvalho-Segundo, M. Fernández, and D. Nantes-Sobrinho. Nominal
C-Unification. In Pre-proc. of the 27th Int. Symp. Logic-based Program Synthesis and Trans-
formation (LOPSTR), pages 1–15, 2017. URL: https://arxiv.org/abs/1709.05384.

3 M. Ayala-Rincón, W. Carvalho-Segundo, M. Fernández, and D. Nantes-Sobrinho. On Solv-
ing Nominal Fixpoint Equations. In Proc. of the 11th Int. Symp. on Frontiers of Combining

FSCD 2018

7:16 Fixed-Point Constraints for Nominal Equational Unification

Systems (FroCoS), volume 10483 of Lecture Notes in Computer Science, pages 209–226.
Springer, 2017. doi:10.1007/978-3-319-66167-4_12.

4 M. Ayala-Rincón, W. de Carvalho Segundo, M. Fernández, and D. Nantes-Sobrinho. A
formalisation of nominal α-equivalence with A and AC function symbols. Electronic Notes
in Theoretical Computer Science, 332:21–38, 2017. doi:10.1016/j.entcs.2017.04.003.

5 C. F. Calvès. Unifying Nominal Unification. In 24th International Conference on Rewriting
Techniques and Applications (RTA 2013), volume 21 of Leibniz International Proceedings
in Informatics (LIPIcs), pages 143–157, 2013. doi:10.4230/LIPIcs.RTA.2013.143.

6 C. F. Calvès and M. Fernández. A Polynomial Nominal Unification Algorithm. Theoretical
Computer Science, 403(2-3):285–306, 2008. doi:10.1016/j.tcs.2008.05.012.

7 J. Cheney. Equivariant unification. Journal of Automated Reasoning, 45(3):267–300, 2010.
doi:10.1007/s10817-009-9164-3.

8 M. Fernández and M. J. Gabbay. Nominal Rewriting. Information and Computation,
205(6):917–965, 2007. doi:10.1016/j.ic.2006.12.002.

9 M. Fernández, M. J. Gabbay, and I. Mackie. Nominal Rewriting Systems. In Proc. of
the 6th Int. Conf. on Principles and Practice of Declarative Programming (PPDP), pages
108–119. ACM Press, 2004. doi:10.1145/1013963.1013978.

10 M. J. Gabbay. A Theory of Inductive Definitions With α-equivalence. PhD thesis, DPMMS
and Trinity College, University of Cambridge, 2000.

11 M. J. Gabbay and A. Mathijssen. Capture-avoiding substitution as a nominal algebra.
Formal Aspects of Computing, 20(4-5):451–479, 2008. doi:10.1007/s00165-007-0056-1.

12 M. J. Gabbay and A. M. Pitts. A New Approach to Abstract Syntax with Variable Binding.
Formal Aspects of Computing, 13(3-5):341–363, 2002. doi:10.1007/s001650200016.

13 A. M. Pitts. Nominal Logic, a First Order Theory of Names and Binding. Information and
Computation, 186(2):165–193, 2003. doi:10.1016/S0890-5401(03)00138-X.

14 A. M. Pitts. Nominal Sets: Names and Symmetry in Computer Science. Cambridge
University Press, 2013.

15 M. Schmidt-Schauß, T. Kutsia, J. Levy, and M. Villaret. Nominal Unification of
Higher Order Expressions with Recursive Let. In 26th International Symposium on
Logic-Based Program Synthesis and Transformation (LOPSTR), Revised Selected Pa-
pers, volume 10184 of Lecture Notes in Computer Science, pages 328–344, 2016. doi:
10.1007/978-3-319-63139-4_19.

16 C. Urban, A. M. Pitts, and M. J. Gabbay. Nominal Unification. Theoretical Computer
Science, 323(1-3):473–497, 2004. doi:10.1016/j.tcs.2004.06.016.

