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ABSTRACT

This work presents several schemes for online identification, observation, and adaptive control of

uncertain nonlinear systems by using artificial neural networks in which the transient and resid-

ual errors can be independently adjusted. Based on Lyapunov theory, and using results already

available in adaptive control theory, schemes for identification, observation, and control are pro-

posed. However, unlike other works in the literature, the identification model, learning algorithm,

and control laws are designed to decouple the transient and residual state performance, which is

accomplished through the manipulation of independent design parameters.

Initially, the case of online identification is considered, since black-box systems can be pa-

rameterized by neural networks and these parameterizations are needed to tackle more complex

problems, such as observation and adaptive control. The proposed identifier has the following

peculiarities: 1) Possibility to control the size of residual state error from design matrices; 2) Pos-

sibility to adjust the duration of the transient regime from a design parameter regardless of the

size of the regime error. The identification of a chaotic system of three states was considered to

apply the scheme.

The result is then extended to the case where some states are not available for measurement.

To do so, it is only necessary to make some adjustments in the identification scheme. Basically,

the state error is placed as a function of the output error, which is available for measurement. The

main characteristic of the proposed observer is the preservation of the properties of the proposed

identifier. The observation of a Rössler system was implemented in order to exemplify this observer.

In the sequence, the case of control with state feedback is considered. For this, a controller was

proposed using the open loop identification case as analogue to it. The main peculiarities of the

identifier also occur in the controller. Finally, in order to emphasize the applicability and relevance

of the proposed algorithms, the identification and control of a welding system were performed.



IDENTIFICAÇÃO DE SISTEMAS NÃO LINEARES EM MALHA ABERTA

E FECHADA USANDO REDES NEURAIS ARTIFICIAIS

RESUMO ESTENDIDO

Este trabalho apresenta vários esquemas para identificação, observação e controle adaptativos em

tempo real de sistemas não lineares incertos usando redes neurais artificiais. Com base na teoria de

estabilidade de Lyapunov, e usando resultados já disponíveis na teoria de controle adaptativo, são

propostos esquemas para identificação, observação e controle nos quais os erros de identificação,

observação e rastreamento estão relacionados com parâmetros de projeto que podem ser ajustados

diretamente pelo usuário. Entretanto, ao contrário das propostas usuais na literatura, este trabalho

propõe algoritmos nos quais o desempenho transiente e em regime podem ser desacoplados e

ajustados independentemente através de parâmetros de projeto independentes.

Inicialmente, o caso de identificação em tempo real é considerado, uma vez que cada vez mais

a resolução de sistemas caixa preta tem sido demandados. O identificador proposto apresenta as

seguintes peculiaridades: 1) Possibilidade de controlar o tamanho do erro residual de estado a

partir de matrizes de projeto; 2) Possibilidade de ajustar a duração do regime transiente a partir

de um parâmetro de projeto que é independente do tamanho do erro em regime. A identificação

de um sistema caótico de três estados foi considerada para validar o esquema.

A seguir, o resultado é estendido para o caso nos quais alguns estados não estão disponíveis

para medida. Para tanto, é necessário apenas fazer alguns ajustes no esquema de identificação

proposto, para permitir agora estimar um ou mais estados não disponíveis para medição, a partir

das entradas e saídas ao sistema. O observador proposto apresenta as mesmas peculiaridades do

identificador. A observação de um sistema de Rössler foi implementada de forma a exemplificar

este observador.

Na sequência, considera-se o caso de controle com realimentação do estado. Para tanto, se

propôs o projeto do controlador empregando como base o caso de identificação de malha aberta.

As principais peculiaridades do identificador ocorrem também no controlador. Finalmente, de

modo a ressaltar a aplicabilidade e relevância dos algoritmos propostos, a identificação e controle

de um sistema de soldagem foram realizados.

A dissertação está organizada da seguinte forma. O capítulo 1 apresenta a introdução, moti-

vação, objetivo, possíveis contribuições e estrutura do trabalho proposto. No capítulo 2 é apresen-

tada uma revisão do estado da arte dos métodos de identificação, observação e controle baseados

em redes neurais artificiais.

No capítulo 3, usando a teoria de estabilidade de Lyapunov, propõe-se um esquema de identi-

ficação neural adaptativo em tempo real para uma classe de sistemas não lineares na presença de

distúrbios limitados. É importante ressaltar que nenhum conhecimento prévio sobre a dinâmica do

erro de aproximação, pesos ideais ou perturbações externas é necessário. Mostra-se que o algoritmo

de aprendizado baseado na teoria de estabilidade de Lyapunov leva o estado estimado a convergir



assintoticamente para o estado de sistemas não lineares. O algoritmo proposto permite: 1) reduzir

o erro residual de estimação de estado para valores pequenos por meio de matrizes de projeto;

2) controlar o tempo de transiente de maneira arbitraria a partir de um parâmetro de projeto.

Foram feitas simulações para um sistema caótico de 3 estados e para um sistema hipercaótico de

4 estados para demonstrar a eficácia e a eficiência do algoritmo de aprendizado proposto. Nessas

simulações foram feitas análises do tamanho do erro residual de estado e da escolha do tempo de

transiente. Finaliza-se o capítulo com uma aplicação: a identificação neural de um sistema caótico

de soldagem na qual se analisou o ajuste do tamanho do erro residual de estado.

Posteriormente, no capítulo 4, os resultados obtidos no capítulo anterior são estendidos para

um sistema de observação neural. O caso de observação ocorre quando nem todos os estados estão

disponíveis e um ou mais estados precisam ser estimados. A metodologia de projeto do algoritmo

de aprendizado é semelhante ao caso do capítulo 3, sendo necessário fazer algumas adaptações

próprias para um esquema de observação. Mais espepecificamente, a ideia principal consiste em

expressar o erro de estimação de estado, que não é mais disponível para medida, em função do erro

de estimação da saída. Para tanto, faz-se necessária a imposição de uma hipótese de detectabilidade

e de uma outra condição matricial que devem ser satisfeitas simultaneamente para que o esquema

de observação apresente características de estabilidade e convergência semelhantes ao esquema

de identificação proposto. Realiza-se no final do capítulo a observação de um sistema caótico de

Rössler sob a presença de distúrbios externos com controle do tempo de transiente.

No capítulo 5, os resultados do capítulo 3 são estendidos para controlar sistemas não lineares

afins no controle. O caso de controle ocorre quando se realiza uma identificação em malha fechada,

ou seja, há uma realimentação no sistema. Mais exatamente, através da realimentação objetiva-se

cancelar as não lineares desconhecidas no sistema que podem ser parametrizadas por uma rede

neural artificial. Dessa maneira, a equação de erro de restreamente pode ser reescrita com uma

estrutura similar à equação de erro de estimação do caso de identificação. Com a finalidade de

ressaltar a aplicabilidade do esquema de controle proposto, para situações de interesse industrial,

realiza-se a simulação do controle de um sistema de soldagem com tranferência globular-spray em

um processo GMAW (Soldagem por arco elétrico com gás de proteção). Finalmente, no capítulo 6

resume-se as contribuições da pesquisa, os resultados obtidos, e sugestões para pesquisas futuras

são discutidas.

A fundamentação teórica das redes neurais artificiais (incluindo suas propriedades), dos algo-

ritmos de aprendizado e da teoria de estabilidade de Lyapunov são descritas no apêndice 1, assim

como outras informações importantes que embasam os capítulos do trabalho. O apêndice 2 contém

os códigos utilizados para implementacçaão do identificador, observador e controlador propostos

nesta dissertação.
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Chapter 1

Introduction

1.1 Motivation of the Thesis

Many works in the area of control of uncertain dynamic systems have been made in terms

of linear models. However, this subject has already been extensively studied, and many of these

models are unsuitable for generalized applications since non-linearity is much more common in

nature. Furthermore, most linear models are simplifications or approximations that may have

applicability limitations. For this reason, non-linear models have been increasingly demanded.

Hence, the first motivation of this work is to study nonlinear models.

The models can be subdivided into white box, gray box, and black box. The white box models

are those in which the parameters of a model are known. In the gray box models, we do not know

all the parameters of the model. In the black box, we do not know any parameter. Historically,

the study of white box models has been extensively accomplished, but also, in a growing way, the

gray and black box models have been considered. The reason is that we do not normally have all

the information about a system, and then, the estimation of their parameters has been frequently

used. Hence, the area of systems identification has had great relevance and, in particular, the

identification based on neural networks as well. A case similar to the identification problem is the

observation problem, in which not all states are available for measurement, but can be estimated

by using estimation techniques. Another interesting case to study is the case of control, where

closed-loop identification is performed and, therefore, there is a feedback. All these cases have

interesting applications that needed to be investigated. So, the second motivation of this work lies

in the design of identification, observation, and control schemes.

NNs are used to approximate unknown nonlinearities in a system, since they satisfy the univer-

sal approximation condition on a compact domain, which allows unknown maps to be approximated

with an arbitrary degree of precision, if a suitable structure is provided for the neural model. Neu-

ral networks have the advantage of relatively fast implementation and auto-learning, that is, the

ability to rely on historical samples to learn. In addition, they are adaptive, since neural networks

can be used in online applications without needing to have their architecture changed with each

update. The problem in these applications lies in that the residual state error frequently depends

1



on the structure of the network and this can present a problem. However, Lyapunov’s stability

theory can be used to overcome this drawback, since weight adjustment laws based on Lyapunov’s

direct method allow to ensure the boundedness of the estimates. In addition, a suitable choice

for identification, observation, and control models, based on the Lyapunov analysis, ensures the

convergence of the residual state errors to an arbitrary neighborhood of the origin. The advantage

of this framework lies in that, irrespective of how the model is constructed, it is possible to have

small residual approximation errors, even in the presence of bounded disturbances. Which may

arise, for example, as a consequence of changes in dynamics due to faults or aging of equipment.

Therefore, the motivation for the use of artificial neural networks is this work is the fact that they

allow us to approximate unknown nonlinearities and via Lyapunov theory, and it is possible to

ensure that the errors are bounded, even in the presence of unknowns.

In the estimation process, there is a moment when the learning process of the neural network

occurs, called the transient regime, and a moment when the neural network has stabilized and there

are no significant changes in the residual state error, called the permanent regime. Controlling the

duration of the transient regime may be useful for practical purposes since certain controllers have

a very short transient regime and may have problems of chattering, other controllers have a very

long transient regime and may have bad performance. In literature, there have been few studies

on this subject, therefore there is much room for new academic studies. Hence, the last motivation

of this work lies in the manipulation of the transient duration, which, until now, is little explored

in literature.

1.2 Thesis Objectives

1.2.1 General objective

Based on Lyapunov stability theory, develop theoretical models of online adaptive identification,

observation, and control of non-linear systems using artificial neural networks, with the possibility

of adjusting the residual state error and the regime transient duration from design parameters.

1.2.2 Specific objectives

• Propose and validate a neural identification algorithm and its respective adaptive learning law

using Lyapunov’s stability theory. This algorithm has three properties desired: 1) the residual

state error is related to arbitrary design matrices, in order to allow arbitrary reduction of the

residual state error; 2) the duration of the transient regime is related to a design parameter

that is not related to the residual state error; 3) the model is applicable for complex non-linear

cases, such as chaotic systems, and even in the presence of bounded disturbances.

• Extend the identification algorithm to the observer case, maintaining the same properties of

the neural identification model.

• Extend the identification algorithm to the controller case, maintaining the same properties

2



of the neural identification model.

• Perform several simulations to validate the theoretical schemes. It is intended to make: 1)

the adaptive open-loop identification of a chaotic and a hyperchaotic systems; 2) the adaptive

observation of a Rössler chaotic system; and 3) the open and closed loop identification of a

welding system.

1.3 Thesis Contributions

1.3.1 Main Contribution

The main contribution of this work is the proposal of online identification, observation, and

control schemes that uses artificial neural networks that allows an adjustment of the duration of

the transient regime from a design parameter that is not related to the size of the residual state

error.

1.3.2 Other Contributions

• To perform an application of the proposed schemes in a welding system using these online

adaptive identification and control schemes that allow to reduce the size of the residual state

error based on Lyapunov stability theory.

• The application of the Lyapunov stability theory to find a neural identifier, observer, and

controller in which the residual state error relates to some design matrices, so as to allow its

convergence to a neighborhood of the origin, even if in presence of bounded disturbances.

Note that the scheme used allows the adjustment of the size of the residual state error and

the duration of the transient, since the neural scheme is the same.

• It is shown from simulations that it is possible to validate the estimation of states even for

chaotic and hyperchaotic systems, demonstrating the robustness of the proposed methods.

1.4 Thesis Overview

The Master’s thesis is organized as follows. This chapter presents the introduction, motivation,

objective, possible contributions and structure of the proposed work.In chapter 2 a review of

the state of the art of identification, observation, and control methods based on artificial neural

networks is presented.

In chapter 3, by using Lyapunov’s stability theory, an online adaptive neural identification

scheme is proposed for a class of non-linear systems in the presence of bounded disturbances. The

proposed algorithm allows: 1) to reduce the residual error of state estimation to small values by

means of design matrices; 2) to control the transient time arbitrarily from a design parameter.

Simulations were done to demonstrate the effectiveness and efficiency of the proposed learning
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algorithm. Simulations were performed for a chaotic and a hyperchaotic systems to demonstrate

the effectiveness and efficiency of the proposed learning algorithm. In these simulations, the size

of the residual state error and the choice of the transient time were analyzed. The chapter ends

with an application: the neural identification of a welding system with chaotic behavior where the

size of the residual state error was analyzed.

Subsequently, in chapter 4, the results obtained in the chapter 3 are extended to a neural

observation system. The observation of a chaotic Rössler system in the presence of external dis-

turbances with control of the transient time is realized at the end of the chapter. In Chapter 5,

the results of Chapter 3 are extended to a neural controller. A simulation of a chaotic welding

system is carried out as an application. Chapter 6 summarizes the theoretical contributions of the

research, the results obtained and suggestions for future research are also discussed.

The appendix 1 describes the theoretical basis of the artificial neural networks, learning al-

gorithms and Lyapunov stability theory, as well as other technical backgrounds that support

the chapters of this work. The appendix 2 contain the used codes for the simulations in MAT-

LAB/SIMULINK.
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Chapter 2

Literature Review

Modeling techniques are usually classified into two sets: the first is based on modeling by

process physics and the second is based on identification from data, also called system identification

methods [4]. The first set corresponds to a white-box modeling and the second to a black-box

identification. There is still gray-box identification, which are especially interesting because they

do not require the user to have a prior deep knowledge of the process, but allow the use of prior

knowledge. What differentiates these types of modeling is the amount of information we have of

the systems. If it is a white-box identification we can use any of the techniques, if it is a black-box

modeling or gray-box it uses the technique based on the system identification method [5]. That

is, in cases the parameters of a dynamic system are unknown, adaptive identifiers are designed to

estimate the parameters [6].

Since most of the time in the real world we do not have the exact information of the parameters,

the systems identification methods have an advantage over the traditionally used methods. The

gray-box identification has received great attention from the scientific community in recent decades

because of usually resulting in obtaining better models, since they use some prior knowledge, unlike

the black-box identification [7]. As the quality of the model generally determines the quality of a

problem resolution, thus allowing modeling a greater importance in the development of a design,

more sophisticated modeling techniques for problem solving have been demanded [8].

Identification of systems is the construction of mathematical models from the input and output

measurement of dynamic systems. This tool has been of great interest to several areas such as

engineering, economics, physics, and chemistry [9, 10]. Neural identification schemes are important

to predict the behavior of dynamic systems as well as to provide a parameterization when the model

is uncertain. Key applications include state estimation and control systems with nonlinearities. In

1956, the term system identification was first employed by Zadeh for the problem of identifying a

black-box model by its input-output relationship [11]. In sequence, many researches have shown

interest in system identification.

The study of Artificial Neural Networks (ANNs) belongs to the area of Artificial Intelligence

and was inspired by biological nerve cells [12]. The first studies on ANNs happened in 1943 with

the publication of [13]. The ANNs have allowed important advances in the intelligent systems
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development, being used to solve a set of problems such as prediction and pattern recognition [14].

Some characteristics of artificial neural networks have been shown to be desirable for nonlinear

systems models since they are structures adaptable to systems with great complexity, with good

learning capacity and generalization power [15, 16].

In nature, systems are normally nonlinear. Usually we use control methods that approximated

nonlinear systems to linear systems. In some cases linear approximations are sufficient for practical

applications. However, it has been noted that there is a disadvantage in using this method since

linearized systems can not fully represent some real nonlinear systems [17]. Identification systems

using dynamic neural networks were first introduced in [18], which is considered a mark in terms

of systems identification. Dynamic Neural Networks have the same structure as the plant, but

contains neural networks with weight adjustments [18].

This area has had an increased interest due to the ability of neural networks to learn complex

input-output mappings, since they are universal approximations, and by the inevitable presence of

uncertainties in modeling problems, due to the simplifications imposed by mathematical modeling,

unexpected failures, changes in operating conditions, aging of the material, and so on. In addition,

neural identification schemes are not only important to predict system behavior, but also to provide

an attractive parameterization system that can be used in the synthesis of control algorithms.

Thus, from [18], the use of neural networks as a powerful tool for identification of uncertain

nonlinear systems has led to several heuristic and theoretical studies as can be seen, for example, in

[19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30] and their references. The scope of the identification of

nonlinear systems using artificial neural networks is broad, and can be in continuous time [30, 31]

or in discrete time [32, 33]. Parameter identification can be done both offline and online. Online

identification has the great advantage of being able to be used for maps that have parameters that

vary in time, whereas in the offline identification it is only suitable for maps with parameters that

are invariant in time [10].

Over the years the discussion about the systems stability has become more important and

several concepts of stability, such as exponential stability, asymptotic stability, and global stability

have been defined [34]. Usually the study of systems stability theories lead to the second Lyapunov

method or one of its variants [35]. The Lyapunov Stability Theory emerged with his doctoral thesis

in 1892 [36].

In dynamic neural network models, their weights are adjusted using mostly backpropagation

and gradient algorithms or robust modifications of them [19, 20, 18, 21, 22, 23, 24, 37, 38, 39, 40].

In the last years, feedforward ANNs are most used for nonlinear system control and identification

[41, 42]. One of most popular feedforward ANNs is the multilayer perceptron (MLP), which is

utilized to identify the dynamic characteristics of a nonlinear system

The MLP network is a type of feedforward neural network, since each neuron of a layer receives

as input only the outputs of neurons from the previous layer. MLP networks are multilayered and

generally have nonlinear activation functions on the output. However, in identification problems,

these networks have usually been used with only three layers: an initial node layer, an intermediate

layer (hidden layer), and the output layer [2].
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The Multilayer Perceptron networks are one of the neural network architectures that stands

out for its fault tolerance and its capacity for generalization, adaptability and to approximate any

continuous function to almost any arbitrary value [2, 43]. In addition, another advantage is its fast

convergence speed, making it a great choice for problems involving nonlinear systems [44]. Several

works have made use of MLP networks in identification problems. In [45], for example, an MLP

network is employed to model a nonlinear discrete system in states space. Due to its great use it

has been very common in the literature to find structures derived from the MLP model.

In 1992, [30] did another approach developing a direct adaptive tracking control architecture

with Gaussian Radial Basis Function (RBF) networks to compensate for the model nonlinearities.

This process makes the weights of the neural networks bounded.

The most used robust modifications in neural identification present in the literature are σ,

switching-σ, ε1, parameter projection, and dead zone [19, 23, 21, 22, 20, 24], which avoid parameter

drift, common phenomenon in gradient-based adaptation laws. However, most learning algorithms

for neural identification now only ensure that the residual state error is proportional to the upper

bounds for approximation errors, ideal weights, and disturbances.

In [20], dynamic neural networks with a gradient algorithm for weight adjustment were used

to identify a general class of uncertain nonlinear systems. In this work it was assumed that: the

unknown system can be exactly modeled by a neural network model, that is, the approximation

errors and disturbances are identically null. This may not be verifiable because the uncertain

system and the neural model are not generally correlated, which would limit the generalization

capability of the algorithm. In [20], the identification of a general class of uncertain continuous

dynamic systems was proposed, and a σ-modification adaptive law was used to adjust the weights

of high-order recurrent neural networks in order to ensure that the state error converge to a

neighborhood of origin.

Others relevant works, such as [21, 46, 47, 48] show that dead-zone adaptation, δ-rule, σ-

modification, ε1-modification and other robust modifications can be used to make the entire iden-

tification process stable in the presence of approximation error and disturbances. Although the

mentioned works have had their relevance, the dependence between the design parameters and the

residual error of the state, in general, is not direct. This may end up preventing arbitrary small

residual state errors. In [49], the neural identification of an uncertain nonlinear system class is

proposed, it being demonstrated that the residual state error and the error of weight estimation

are bounded. The problem is that the upper limit of the residual state error norm and the design

parameters in the identification scheme are not related. Therefore, there is the possibility of not

obtaining small residual state errors.

In open loop identification, there are works like [50], in which it is possible to prove from the

Lyapunov Stability Theory that there is an estimator able to relate design parameters with the

residual error of state, even in the presence of disturbances. Differently from [46], the residual state

error can be arbitrarily reduced, being achieved through the scaling of unknown nonlinearities, prior

to the neural approximation, and selecting a neural identification model with feedback, which aims

to correlate the residual state error with estimated weights.
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However, the method used in [50] may have difficulties in the sense that certain parameters are

related to characteristics such as transient time. In this way it is not possible to decouple transient

and permanent regime performance. Thus, it would be desirable to find an identification scheme

having a parameter capable of controlling the duration of the transient regime independently of

the size of the residual state error, even in the presence of disturbances.

In all the previous mentioned works, we did not have the possibility to control the transient

time. For example, in [51] a proposal of an identifier practically immune to disturbances was made,

but the transient time was very short with no possibility of reducing this time.

On other hand, it is not always possible to measure all the states of a real system, since in real

systems it depends on sensors and possibly there will be physical limitations of the sensors or high

cost. Generally, it is desirable to have information of all states of a system in control applications.

It is known that an observable state can be estimated through an observer using system inputs

and outputs [52]. In most cases a reliable estimation of state variables that can not be measured

directly is required. For this kind of problem, state observers are usually employed [53].

The first work on the observers design in linear systems was introduced in [54]. For the good

functioning of the observer it is important to have a good accuracy of the states estimation. It has

been generally used as parameter to show the accuracy and reliability of the observer the estimated

state error [54, 55]. Observers can be used in different applications, such as [52, 56].

Luenberger Observer and Kalman Filter are the most popular linear observers [57]. An example

of Kalman Filter is [58]. However, there are many applications for nonlinear systems as extended

Kalman Filter [59, 60], Extended Luenberger [61], and sliding mode observers [60, 62, 63]. Most

of these works have the disadvantage of requiring prior knowledge of the system nonlinearities.

The literature for linear observers may be on a saturated level, but research on observers of

nonlinear systems is far from complete. One of the difficult properties to achieve in nonlinear

systems is the arbitrary increase in the attraction region of the observer’s stability [64]. Designing

observers for nonlinear systems is considered a difficult problem, since there is no single method

that works for all classes of nonlinear systems [52, 65]. Examples of observers using neural networks

in the literature are extensive [66, 67, 68, 69, 70].

Adaptive observers are computational tools that allow the simultaneous estimation of the state

and parameters of a dynamic system using its inputs and outputs. Its main applications include

fault detection [21, 71, 72], control of dynamic systems [73, 74, 75], and secure telecommunication

[76, 77, 78]. In this way, they have become an object of extensive research in the last decade. See,

for example [19, 79, 80, 81, 82, 83], and their references.

The design of adaptive observers is motivated by the knowledge of the dominant system dy-

namics. In this sense, there are at least two approaches. In the first approach, it is considered

that the model structure is known and only its parameters are unknown [84, 85, 86]. In the sec-

ond, most of the system model structure is assumed unknown and its associated state vector is

bounded in norm. Typical examples of the second approach are observers based on neural networks

[48, 87, 88, 89] and fuzzy systems [66, 90, 91]. It is worth noting that the last approach extends the
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application as it relaxes the need to accurately know the system model, which corresponds typically

to cases of practical application. For example, in [48, 87] Adaptive observers discontinuous were

proposed based on linearly parameterized neural networks and with activation functions defined

respectively by wavelets and sigmoid. Although the observers in [48, 87] ensure the existence of

an upper bound for the mean square error of observation, a preliminary stage of experimentation

is required to obtain an approximation of the nominal weight which are used in the algorithms,

a fact that complicates the implementation when prior experimental data of the system are not

available.

Aiming to ensure residual state errors asymptotically null, in [82] and [89] discontinuous adap-

tive observers were proposed. In [82] was considered a class of mechanical systems and proposed an

observer commuting between an adaptive neural mode for large values of error and a nonadaptive

sliding mode for small errors. However, the sliding mode operation requires prior knowledge of an

upper bound for the neural approximation error which is usually unknown in practice. Similarly, in

[89] was assured the asymptotic convergence of the estimated state for actual using a discontinuous

observer based on sliding mode and estimation of a bound for the approximation errors. However,

it is important to note that observers in [48, 82, 87, 89] show chattering because of delays and

imperfections of switching devices. The chattering due to the use of these observed may result in

poor control precision, high heat losses in electric power circuits, high wear of mechanical moving

parts and high frequency unmodeled dynamics excitation which degrades the system performance

and can cause the system instability [34].

Unknown input observers which decouple the residual signal from the unknown disturbances

were introduced by the pioneering work of Wuennenberg and Frank in [42] and then considerable

contribution was made in [7, 8, 30].

One way to prevent the chattering is using a continuous approximation of the discontinuity. In

this regard, in [83] a continuous observer was proposed for uncertain nonlinear systems based on

artificial neural networks which ensure the convergence of the observation residual error to zero

even in the presence of rounding errors, disturbances and time varying parameters. However, the

proposed observer assumes that bounds for the approximation error, disturbances, and nominal

weights are known in advance.

It should be noted that in [48, 82, 83, 87, 89] the dependence between the various design

parameters with the observer performance is not simple because the implementation requires,

among other hypotheses, that several linear matrix inequalities be satisfied.

In [92] an adaptive neural observer was designed, which does not present a chattering, does a

scaling of unknown nonlinearities, and is able to relate design parameters to the size of the residual

state error, even in the presence of disturbances. However, in this case it is not possible to control

the transient time duration without changing the design matrices so as not to modify the size of

the residual state error.

In the context of identification, it is important to say that sometimes it is desired to use a

feedback in the system, which is the case of control. Control cases occur when a closed-loop

identification is performed and has been extensively studied in the literature. Several areas of
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knowledge explore the use of controllers and one case that is worth emphasizing is the case of

synchronization of master and slave systems. Cases such as the chaotic synchronization, proposed

in 1990, emerged with the purpose of increasing the reliability of the area of communication with

security [93].

Many works in nonlinear control systems have been found in the literature [94, 95, 96]. Other

examples can be found using neural networks as [97, 98]. It is relevant to say that the control

systems using dynamic neural networks were first introduced in [18].

Some relevant works were found, for example [99, 100]. In [100] an adaptive controller design

is applied for nonlinear systems with parameter uncertainties and control constraints. In [99] the

author proposed to achieve stabilization and synchronization of a Chen–Lee control system. In

the area of nonlinear control many applications have been found, for example in welding case

[101, 102, 103, 104, 105] and in the financial case [106].

The works we found in control area focuses on the boundedness of the tracking error. However,

none of these works focused on transient duration, in order to relate this duration to a design

parameter.

Thus, in the previous works, manipulation of the duration of transient without changing the size

of residual state error was not considered. Motivated by this information, in the next chapters, we

propose an online identification, observation, and control scheme that uses artificial neural networks

that allows an adjustment of the duration of the transient regime from a design parameter that is

not related to the size of the residual state error.
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Chapter 3

Online Neuro Identification of Uncertain

Systems With Control of Residual Error

and Transient Time

This chapter focuses on the online identification problem of uncertain systems. By using a

neural identification model with feedback, scaling, and a weight law based on Lyapunov theory,

an online identification algorithm is proposed to make ultimately bounded the residual state error

and related to two design matrix. In addition, it is shown that the transient can be controlled by a

constant which is not related to the residual state error. In this way, it is shown that it is possible

to decouple the transient performance of the steady state error. In order to validate the theoretical

results, the identification of two chaotic systems was accomplished by comparing its performance

achieved while changing the design parameters. In this chapter, a neural identification of a welding

system with chaotic behavior was also done with a focus on the reduction of the residual state

error.

3.1 Problem Formulation

Consider the following nonlinear differential equation

ẋ = F (x, u, v, t) , x (0) = x0 (3.1)

where x ∈ X ⊂ ℜn is the n-dimensional state vector, u ∈ U ⊂ ℜm is a m-dimensional admissible

input vector, v ∈ V ⊂ ℜp is p-dimensional a vector of time varying uncertain variables, t is the

time, and F : X × U × V × [0,∞) 7→ ℜn is a continuous map. In order to have a well-posed

problem, we assume that X,U, V are compact sets and F is locally Lipschitzian with respect to x

in X × U × V × [0,∞), such that (3.1) has a unique solution through x0.

We assume that the following can be established:
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Assumption 1. On a region X × U × V × [0,∞)

‖h(x, u, v, t)‖ < h0 (3.2)

where

h (x, u, v, t) = F (x, u, v, t)− f (x, u) (3.3)

f is an unknown map, h are internal or external disturbances, and h̄0 , such that h̄0 > h0 ≥ 0,

is a unknown constant. Note that (3.2) is verified when x and u evolve on compact sets and the

temporal disturbances are bounded.

Thus, except for the Assumption 1, we say that F (x, u, v, t) is an unknown map and our aim

is to design a identifier based on neural networks for (3.1) to ensure the state error convergence,

which will be accomplished despite the presence of approximation error and disturbances.

3.2 Identification Model and State Estimate Error Equation

The following lines presented follow a pattern adopted in [50]

We start by presenting the identification model and the definition of the relevant errors asso-

ciated with the problem.

Let f̄ be the best known approximation of f , P ∈ ℜn×n a scaling matrix defined as P = P T > 0,

ḡ = P−1g, and g(x, u) = f(x, u) − f̄(x, u). Then, by adding and subtracting f̄(x, u), the system

(3.1) becomes

ẋ = f̄ (x, u) + P ḡ (x, u) + h (x, u, v, t) (3.4)

Remark 1. It should be noted that if the designer has no previous knowledge of f , so f̄ is simply

assumed as being the zero vector. From (3.4), by using LPNNs, the nonlinear mapping ḡ(x, u) can

be replaced by the neural parametrization W ∗σ(x, u) plus an approximation error term ε(x, u).

More exactly, (3.4) can be rewritten as

ẋ = f̄ (x, u) + PW ∗σ (x, u) + Pε (x, u) + h (x, u, v, t) (3.5)

where σ (x, u) is a nonlinear vector function whose arguments are preprocessed by a scalar sigmoidal

function s(·) and W ∗ ∈ ℜn×L is the “optimal” or ideal matrix, only required for analytical purposes,

which can be defined as

W ∗ := argmin
(Ŵ∈Γ)

{∥

∥

∥
ḡ (x, u)− Ŵσ (x, u)

∥

∥

∥

∞

}

(3.6)
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where x ∈ X, u ∈ U , Γ =
{

Ŵ ∈ ℜn×L : || Ŵ ||F < αŵ

}

, αŵ is a strictly positive constant, Ŵ is

an estimate of W ∗, and ε(x, u) is an approximation error term, corresponding to W ∗, which can

be defined as

ε (x, u) := ḡ (x, u)−W ∗σ (x, u) (3.7)

The approximation, reconstruction, or modeling error ε in (3.7) is a quantity that exists due

to the incapacity of LPNNs to match the unknown map ḡ(x, u). Since X, U are compact sets and

from (I.17), the following can be established.

Assumption 2. On a region X × U , the approximation error is upper bounded by

‖ε(x, u)‖ < ε0 (3.8)

where ε̄0, such that ε̄0 > ε0 ≥ 0 , is an unknown constant.

Remark 2. The assumption 1 is usual in identification literature. The assumption 2 is quite

natural since ḡ is continuous and their arguments evolve on compact sets and σ satisfies (I.17).

Remark 3. Note that any σ0, h0, and ε0 are the smallest constants such that (I.17), (3.2), and

(3.8) are satisfied.

Remark 4. It should be noted that W ∗ and ε(x, u) might be nonunique. However, the uniqueness

of ||ε(x, u)|| is ensured by (3.6).

Remark 5. It should be noted that W ∗ was defined as being the value of Ŵ that minimizes the

L∞-norm difference between ḡ(x, u) and Ŵσ(x, u). The scaling matrix P from (3.4) is introduced

to manipulate the magnitude of uncertainties and hence the magnitude of the approximation error.

This procedure improves the performance of the identification process.

Remark 6. Notice that the proposed neuro-identification scheme is a black-box methodology,

hence the external disturbances and approximation error are related. Based on the system input

and state measurements, the uncertain system (including the disturbances) is parametrized by a

neural network model plus an approximation error term. However, the parametrization (3.5) is

motivated by the fact that neural networks are not adequate for approximating external distur-

bances, since the basis function depends on the input and states, whereas the disturbances depend

on the time and external variables. The aim for presenting the uncertain system in the form (3.5),

where the disturbance h is explicitly considered, is also to highlight that the proposed scheme is in

addition valid in the presence of unexpected changes in the systems dynamics that can emerge, for

instance, due to environment change, aging of equipment or faults. We propose an identification

model of the form

˙̂x = −L (x̂− x)− γWγ0 (x̂− x) + PŴσ (x, u) (3.9)

where x̂ is the estimated state, γW > 0, γ0 > 0, and L ∈ ℜn×n is a positive definite feedback

gain matrix introduced to attenuate the effect of the uncertainties and disturbances. It will be
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demonstrated that the identification model (3.9) used in conjunction with a convenient adjustment

law for Ŵ , to be proposed in the next section, ensures the convergence of the state error to a

neighborhood of the origin, even in the presence of the approximation error and disturbances,

whose radius depends on the design parameters.

Remark 7. Note that the identification model requires states are available to measure. However,

the main relevance of the method is to provide a parametrization for the uncertain system (3.1)

that can be later used to project adaptive control and observation schemes.

Remark 8. It should be noted that in our formulation, the LPNNs is only required to approximate

P−1[f(x, u)− f̄(x, u)] (whose magnitude is often small) instead of the entire function P−1[f(x, u)].

Hence, standard identification methods (to obtain some previous f̄ ]) can be used together with the

proposed algorithm to improve performance. By defining the state estimation error as x̃ = x̂− x,

from (3.5) and (3.9), we obtain the state estimation error equation

˙̃x = −Lx̃− γWγ0x̃+ PW̃σ (x, u)− Pε (x, u)− h (x, u, v, t) (3.10)

where W̃ = Ŵ −W ∗ .

3.3 Adaptive Laws and Stability Analysis

Before presenting the main theorem, We state some facts, which will be used in the stability

analysis.

Fact 1. In our problem, the following equation is valid:

tr
(

W̃ T x̃σT
)

= x̃T W̃σ (3.11)

Fact 2. Let W ∗,W0, Ŵ , W̃ ∈ ℜn×L. Then, with the definition of W̃ = Ŵ − W ∗, the following

equations are true:

2tr
[

W̃ T
(

Ŵ −W0

)]

=
∥

∥

∥
W̃
∥

∥

∥

2

F
+
∥

∥

∥
Ŵ −W0

∥

∥

∥

2

F
− ‖W ∗ −W0‖2F (3.12)

Fact 3. Let A ∈ ℜc×d, b ∈ ℜc, where c > 0 and d > 0 are whole numbers. Then, the following

expressions are true:

tr
(

AT +A
)

= tr (2A) = 2tr (A) (3.13)

− bTAb ≤ −bTλmin (A) b (3.14)

where λ(A) is its eigenvalues

Fact 4. Whereas that a, b and c ∈ ℜ+, so

a ‖x̃‖2 − b ‖x̃‖ − c > 0 (3.15)
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‖x̃‖2 − b

a
‖x̃‖ >

c

a
(3.16)

‖x̃‖2 − b

a
‖x̃‖+ b2

4a2
>

c

a
+

b2

4a2
(3.17)

(

‖x̃‖ − b

2a

)2

>
4ac+ b2

4a2
(3.18)

‖x̃‖ − b

2a
>

±
√
4ac+ b2

2a
(3.19)

‖x̃‖ >
b±

√
4ac+ b2

2a
(3.20)

As b−
√
4ac+ b2 < 0 and ‖x̃‖ ≥ 0, this is an invalid solution, so

‖x̃‖ >
b+

√
4ac+ b2

2a
(3.21)

‖x̃‖ >

b
2 +

√

ac+
(

b
2

)2

a
(3.22)

Fact 5. Whereas that a, b, and c ∈ ℜ+, so

m (x̃) = −a ‖x̃‖2 + b ‖x̃‖+ c (3.23)

The derivative of equation (3.23) is equal to

ṁ = −2a ‖x̃‖+ b (3.24)

The maximum value of (3.23) occurs when ṁ = 0

‖x̃‖ =
b

2a
(3.25)

Replacing this value in (3.23)

m = −a

(

b

2a

)2

+ b

(

b

2a

)

+ c (3.26)

m = − b2

4a
+

2b2

4a
+ c (3.27)
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Thus, the maximum value of (3.23) is equal to

m (x̃) =
4ac+ b2

4a
(3.28)

We now state and prove the main theorem of this chapter.

Theorem 3.3.1. Consider the class of general nonlinear systems described by (3.1) which satisfies

Assumptions 1-2, the identification model (3.9). Let the weight law be given by

˙̂
W = −2γW

[

γ0

(

Ŵ −W0

)

+ x̃σT
]

(3.29)

where
˙̂
W = ˙̃

W , W0 is a constant matrix and P is arbitrary, since P = P T > 0, then the following

is valid

LTP−1 + P−1L = Q (3.30)

where L > 0 and Q > 0. So the errors x̃, W̃ are bounded and x̃ is uniformly ultimately bounded with

ultimate bound ρ2, where ρ2 =
b
2
+
√

λmin(Q)c+( b
2
)2

λmin(Q) , b = 2ε̄0+2
∥

∥P−1
∥

∥

F
h̄0, and c = γ0 ‖W ∗ −W0‖2F .

Proof. Consider the Lyapunov function candidate

V = x̃TP−1x̃+
tr
(

W̃ Tγ−1
W W̃

)

2
(3.31)

By Deriving (3.31), we obtain

V̇ = ˙̃xTP−1x̃+ x̃TP−1 ˙̃x+
γ−1
W tr

(

W̃ T ˙̃
W + ˙̃

W T W̃
)

2
(3.32)

V̇ = x̃TP−1 ˙̃x+
(

x̃TP−1 ˙̃x
)T

+

γ−1
W tr

[

W̃ T ˙̃
W +

(

W̃ T ˙̃
W
)T
]

2
(3.33)

Using equation (3.13), this results

V̇ = x̃TP−1 ˙̃x+ (x̃TP−1 ˙̃x)T + γ−1
W tr

(

W̃ T ˙̃
W
)

(3.34)

Replacing equations (3.10) and (3.29)
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V̇ = x̃TP−1
(

−Lx̃− γWγ0x̃+ PW̃σ − Pε− h
)

+
[

x̃TP−1
(

−Lx̃− γWγ0x̃+ PW̃σ − Pε− h
)]T

+ γ−1
W tr

{

W̃ T
[

−2γW

(

γ0

(

Ŵ −W0

)

+ x̃σT
)]}

(3.35)

V̇ = −x̃T
(

P−1L+ LTP−1
)

x̃− γWγ0

[

x̃TP−1x̃+
(

x̃TP−1x̃
)T
]

+ x̃T
(

W̃σ − ε− P−1h
)

+
(

x̃T
(

W̃σ − ε− P−1h
))T

− 2γ0tr
[

W̃ T
(

Ŵ −W0

)]

− 2tr
(

W̃ T x̃σT
)

(3.36)

Since x̃T
(

W̃σ − ε− P−1h
)

is a scalar number, so the transpose of this number is itself and

employing facts 1 and 2 and equation (3.30), it results

V̇ = −x̃TQx̃− 2γWγ0x̃
TP−1x̃+ 2x̃T

(

W̃σ − ε− P−1h
)

− γ0

(

∥

∥

∥
W̃
∥

∥

∥

2

F
+
∥

∥

∥
Ŵ −W0

∥

∥

∥

2

F
− ‖W ∗ −W0‖2F

)

− 2x̃T W̃σ
(3.37)

Turning to an inequality and taking into account (3.14)

V̇ ≤ −λmin (Q) ‖x̃‖2 − 2γWγ0x̃
TP−1x̃

+ 2 ‖x̃‖
(

‖ε‖+
∥

∥P−1
∥

∥

F
‖h‖
)

− γ0

(

∥

∥

∥
W̃
∥

∥

∥

2

F
+
∥

∥

∥
Ŵ −W0

∥

∥

∥

2

F
− ‖W ∗ −W0‖2F

) (3.38)

Considering that ‖ε‖ < ε̄0, ‖h‖ < h̄0, and rearranging (3.38) implies

V̇ ≤ −‖x̃‖2 [λmin (Q)] + ‖x̃‖
(

2ε̄0 + 2
∥

∥P−1
∥

∥

F
h̄0
)

+ γ0 ‖W ∗ −W0‖2F
− γ0

∥

∥

∥
W̃
∥

∥

∥

2

F
− γ0

∥

∥

∥
Ŵ −W0

∥

∥

∥

2

F
− 2γWγ0x̃

TP−1x̃
(3.39)

Considering that a = λmin (Q), b = 2ε̄0 + 2
∥

∥P−1
∥

∥

F
h̄0, c = γ0 ‖W ∗ −W0‖2F ,where a ≥ 0, b ≥ 0,

and c ≥ 0, then

V̇ ≤ −a ‖x̃‖2 + b ‖x̃‖+ c

− γ0

∥

∥

∥
W̃
∥

∥

∥

2

F
− γ0

∥

∥

∥
Ŵ −W0

∥

∥

∥

2

F
− 2γWγ0x̃

TP−1x̃
(3.40)

Case 1. For analysis of the limitation of W̃ , resuming (3.40) and disregarding some negative terms

V̇ ≤ −a ‖x̃‖2 + b ‖x̃‖+ c− γ0

∥

∥

∥
W̃
∥

∥

∥

2

F
(3.41)

Using fact 5, we have
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V̇ ≤ 4ac+ b2

4a
− γ0

∥

∥

∥
W̃
∥

∥

∥

2

F
(3.42)

Hence, V̇ < 0 as long as

γ0

∥

∥

∥
W̃
∥

∥

∥

2

F
>

4ac+ b2

4a
(3.43)

∥

∥

∥
W̃
∥

∥

∥

F
> ±

√

4ac+ b2

4aγ0
(3.44)

As −
√

4ac+b2

4aγ0
< 0 and

∥

∥

∥
W̃
∥

∥

∥

F
≥ 0, this is an invalid solution, so

∥

∥

∥
W̃
∥

∥

∥

F
>

√

4ac+ b2

4aγ0
(3.45)

∥

∥

∥
W̃
∥

∥

∥

F
>

√

ac
γ0

+ 1
γ0

(

b
2

)2

a
(3.46)

Replacing a,b, and c

∥

∥

∥
W̃
∥

∥

∥

F
>

√

√

√

√

λmin (Q) ‖W ∗ −W0‖2F + 1
γ0

(

ε̄0 + ‖P−1‖F h̄0
)2

λmin (Q)
= ρ1 (3.47)

Thus, since ρ1 is a constant, by using Lyapunov arguments [34], we concluded that W̃ is

uniformly ultimately bounded, with ultimate bound equal to ρ1 . Note that if, by any reason,
∥

∥

∥
W̃
∥

∥

∥

F
escapes of the residual set Ω1, where Ω1 =

{

W̃ :
∥

∥

∥
W̃
∥

∥

∥

F
≤ ρ1

}

, V̇ becomes negative definite

again, and it forces the convergence of the weight error to the residual set Ω1.

Case 2. For analysis of the limitation of x̃, resuming (3.40) and disregarding some negative terms

V̇ ≤ −a ‖x̃‖2 + b ‖x̃‖+ c (3.48)

Hence, V̇ < 0 as long as

a ‖x̃‖2 − b ‖x̃‖ − c > 0 (3.49)

Using fact 4, we have

‖x̃‖ >

b
2 +

√

ac+ ( b2)
2

a
(3.50)

Replacing a,b, and c
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‖x̃‖ >
ε̄0 +

∥

∥P−1
∥

∥

F
h̄0 +

√

λmin (Q) γ0 ‖W ∗ −W0‖2F +
(

ε̄0 + ‖P−1‖F h̄0
)2

λmin (Q)
= ρ2 (3.51)

Thus, since ρ2 is a constant, by using Lyapunov arguments [34], we concluded that x̃ is uni-

formly ultimately bounded, with ultimate bound equal to ρ2 . Note that if, by any reason, ‖x̃‖
escapes of the residual set Ω2, where Ω2 = {x̃ : ‖x̃‖ ≤ ρ2}, V̇ becomes negative definite again, and

it forces the convergence of the state error to the residual set Ω2.

Case 3. For analysis of the transient time, resuming (3.40) and doing some manipulations

V̇ ≤ −αV + αV − a ‖x̃‖2 + b ‖x̃‖+ c

− γ0

∥

∥

∥
W̃
∥

∥

∥

2

F
− γ0

∥

∥

∥
Ŵ −W0

∥

∥

∥

2

F
− 2γWγ0x̃

TP−1x̃
(3.52)

We analyze when −a ‖x̃‖2+ b ‖x̃‖+ c < 0. This consideration is necessary, since it is in this period

that the transient is occurring

V̇ ≤ −αV + α

(

x̃TP−1x̃+
γ−1
W

2

∥

∥

∥
W̃
∥

∥

∥

2

F

)

− γ0

∥

∥

∥
Ŵ −W0

∥

∥

∥

2

F

− γ0

∥

∥

∥
W̃
∥

∥

∥

2

F
− 2γWγ0x̃

TP−1x̃

(3.53)

V̇ ≤ −αV − γ0

∥

∥

∥
Ŵ −W0

∥

∥

∥

2

F

+
∥

∥

∥
W̃
∥

∥

∥

2

F

(

α

2γW
− γ0

)

+ x̃TP−1x̃ (α− 2γWγ0)
(3.54)

Considering that α = 2γWγ0, then

V̇ ≤ −αV − γ0

∥

∥

∥
Ŵ −W0

∥

∥

∥

2

F
(3.55)

V̇ ≤ −αV (3.56)

Using Lemma 3.2.4 [84]. It can be stated that:

V (t) ≤ e−α(t−t0)V (t0), ∀t ≥ t0 ≥ 0 (3.57)

Assuming that t0 = 0

V (t) ≤ V (0)e−αt (3.58)

ln [V (t)] ≤ −αt+ ln [V (0)] (3.59)
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ln

[

V (t)

V (0)

]

≤ −αt (3.60)

ln

[

V (0)

V (t)

]

≥ αt (3.61)

t ≤
ln
[

V (0)
V (t)

]

α
(3.62)

Remark 9. Note that the scaling of unknown nonlinearities has a positive impact on the per-

formance of the identification [50]. The scaling matrix P is introduced to attenuate the effect of

approximation errors and disturbances, as can be seen in (3.51).

Remark 10. It is perceived from (3.51), that the size of the residual state error is inversely

proportional to λmin(Q), where the eigenvalues of Q can be arbitrarily manipulated while changing

the values of matrices L and P . Thus, it is possible from these arbitrary design matrices to control

the residual state error size.

Remark 11. Note that the time t in (3.62)refers to the transient regime duration in relation to

the residual state error determined in (3.51). Thus, we can not say anything about the transient

duration for a residual state error smaller than that.

Remark 12. It is possible to verify in (3.62) that the maximum transient duration is inversely

proportional to the value of α. Since α is related to γ0 and γW , it is concluded that it is possible

to increase or decrease the transient time by changing these design parameters.

Remark 13. Note that the choice of different values of γW does not imply a new calculation of γ0
or the matrices P and L to maintain the desired allocation of the eigenvalues of Q. In addition, it

is verified in (3.51) that γW does not influence the size of the residual state error norm. Thus, it

can be stated that from γW it is possible to decouple the transient performance of the steady-state

error.

Remark 14. In the equation (3.51) in the numerator there is the term
∥

∥P−1
∥

∥

F
h̄0, thus the

external disturbances are present in that part. In this way, it can be stated that by changing

the eigenvalues of the matrix Q, the size of the residual state error is also adjusted, even in the

presence of limited disturbances.

Remark 15. In previous works, for example in [49, 50, 51], in spite of the residual state error is

bounded, they can not increase or reduce the transient duration independently of residual state

error size. To allow this, it is necessary to have a parameter related to the transient duration that

does change the residual state error. In this work this was possible because the identifier model and

the learning law were chosen in order to allow an independent control of the transient duration.
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3.4 Simulation

This section presents three examples to validate the theoretical results and to show the per-

formance in the presence of disturbances. In all simulations, Solver ode45(Dormand-Pince) of

Matlab/Simulinkr, with variable-step and a relative tolerance of 1e-10 was used to obtain the

numerical solutions. First, the identification of a chaotic three-dimensional system under distur-

bances has been proposed, second it is considered a hyperchaotic finance system in the presence

of disturbances. In both cases an analysis is made of the duration of the transient regime in re-

lation to the steady-error. Finally, the identification of a welding system with chaotic behavior is

performed.

3.4.1 Chaotic System

To illustrate the application of the proposed scheme, we consider the following example. Con-

sider the chaotic system described in [107]

ẋ1 = a(x1 − x2) + dx1

ẋ2 = −4ax2 + x1x3 +mx31 + dx2

ẋ3 = −adx3 + x31x2 + bx23 + dx3

(3.63)

where x1, x2, and x3 are state variables, dx1 , dx2 , and dx3 are unknown disturbances, and a, b,

d, and d are parameters, being chosen as a = 1.8, b = −0.07, d = 1.5, and m = 0.12. Note that

system (3.63) satisfies the Assumption 1, since the state variables evolve into compact sets.

To identify the uncertain system (3.63), the proposed identification model (3.9) and the adap-

tive law (3.29) were implemented. The initial conditions for the chaotic system and for the iden-

tification model were x1(0) = 2, x2(0) = 1, x3(0) = 2, x̂1(0) = 0, x̂2(0) = 0, x̂3(0) = 0, and

Ŵ (0) = 0 in order to evaluate the performance of the proposed algorithm under adverse initial

conditions. The design matrices were chosen as P = 5I and L = 2I, where I is the identity matrix.

The nonlinear vector function σ is equal to σ =
[

s(x1) s(x2) s(x3) s(x1)
2 s(x2)

2 s(x3)
2
]T

and the sigmoidal function used is a logistic function and is equal to s(.) = 5
1+e−0.5(.) . The design

parameter γ0 was chosen as γ0 = 1 and W0 was chosen as

W0 =







1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0






(3.64)

To verify the robustness of proposed method, it is considered the presence of the following

disturbances: dx1 = cos(2t), dx2 = 2sin(t), and dx3 = 2sin(2t). To better verify each part, the

disturbance was introduced from t = 5s.

From equation (3.62), it can be seen that the parameter α affects the transient time. We choose

the parameter γW to control the value of α because γW is not related to the size of the residual
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state error, as can be seen in (3.51). In all states we analyzed for two different values of γW . In

the first situation, a small γW was intentionally chosen to detect the transient and in the second

case a high value was chosen with the intention of reducing this transient time.

In this example, the two values chosen for γW are γW = 0.5 and γW = 15. Figures 3.1, 3.3,

and 3.5 show the performances obtained in the estimation of the three states when γW = 0.5.

Figures 3.2, 3.4, and 3.6 show the performances obtained in the estimation of the three states

when γW = 15. The Frobenius norm associated with the estimated weights matrix is shown in

Figure 3.7 when γW = 0.5 and is shown in Figure 3.8 when γW = 15.

Figure 3.1: Performance in the estimation of x1 when γW = 0.5
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Figure 3.2: Performance in the estimation of x1 when γW = 15

Figure 3.3: Performance in the estimation of x2 when γW = 0.5

23



Figure 3.4: Performance in the estimation of x2 when γW = 15

Figure 3.5: Performance in the estimation of x3 when γW = 0.5
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Figure 3.6: Performance in the estimation of x3 when γW = 15

Figure 3.7: Frobenius norm of the estimated weight matrix W when γW = 0.5
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Figure 3.8: Frobenius norm of the estimated weight matrix W when γW = 15

Note that there is a transient time and that the residual state error, after this transient, is

approximately zero. Figures 3.2, 3.4, and 3.6 show that there is a shorter transient time in relation

to Figures 3.1, 3.3, and 3.5, although the steady-state error behaves similarly in both cases. Figures

3.7 and 3.8 show that the Frobenius norm of the estimated weights performs are similar after the

transient, due to large initial uncertainty, and in both cases seems to converge to approximately

1.7,that is, it seems to converge to a constant. Thus, the algorithm is stable and the residual state

error converges to a neighborhood of the origin.

The result is as expected, since γW , which is directly proportional to α, was the only parameter

changed in the two cases. Consequently, it is expected that an increasing of γW does not affect

the residual state error, and the transient time will be reduced. As can be seen, in the simulations

Figures 3.2, 3.4, and 3.6, there is a shorter transient time than in the Figures 3.1, 3.3, and 3.5,

and the residual state error appears to be unchanged in a steady state. In this way, it can be said

that the results were as expected. In these simulations, L and P are chosen to reduce the residual

error to desired one. It would be possible to have changed these values if a minor residual error

is required. Note that the identification performed well even in the presence of disturbances from

t = 5s.
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3.4.2 Hyperchaotic Finance System

Consider the hyperchaotic finance system [108], which is described by

ẋ1 = x3 + (x2 − a)x1 + x4 + dx1

ẋ2 = 1− bx2 − x21 + dx2

ẋ3 = −x− cx3 + dx3

ẋ4 = −dx1x2 − kx4 + dx4

(3.65)

where x1, x2, x3, and x4 are state variables, where x1 is the interest rate, x2 investment demand, x3
price exponent, and x4 is the average profit margin.dx1 , dx2 , dx3 , and dx4 are unknown disturbances,

and a, b, d, and d are parameters, being chosen as a = 0.9, b = 0.2, c = 1.5, d = 0.2, and k = 0.17.

Note that system (3.65) satisfies the Assumption 1, since the state variables evolve into compact

sets.

To identify the uncertain system (3.65), the proposed identification model (3.9) and the adap-

tive law (3.29) were implemented. The initial conditions for the chaotic system and for the iden-

tification model were x1(0) = 1, x2(0) = 2, x3(0) = 0.5, x4(0) = 0.5, x̂1(0) = −2, x̂2(0) = −2,

x̂3(0) = −2, x̂4(0) = −2, and Ŵ (0) = 0 in order to evaluate the performance of the proposed

algorithm under adverse initial conditions. The design matrices were chosen as P = 20I and

L = 2I, where I is the identity matrix. The nonlinear vector function σ is equal to σ =
[

s(x1) s(x2) s(x3) s(x4) s(x1)
2 s(x2)

2 s(x3)
2 s(x4)

2
]T

and the sigmoidal function used

is a logistic function and is equal to s(.) = 5
1+e−0.5(.) . The design parameter γ0 was chosen as

γ0 = 1 and W0 was chosen as

W0 =













1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0













(3.66)

To verify the robustness of proposed method, it is considered the presence of the following

disturbances: dx1 = 2.8cos(6t), dx2 = 4cos(5t), dx3 = 3.6sin(4t), and dx4 = 3.2sin(3t). To better

verify each part, the disturbance was introduced from t = 5s.

From equation (3.62), it can be seen that the parameter α affects the transient time. We choose

the parameter γW to control the value of α because γW is not related to the size of the residual

state error, as can be seen in (3.51). In all states we analyzed for two different values of γW . In

the first situation, a small γW was intentionally chosen to detect the transient and in the second

case a high value was chosen with the intention of reducing this transient time.

In this example, the two values chosen for γW are γW = 0.5 and γW = 15. Figures 3.9, 3.11,

3.13, and 3.15 show the performances obtained in the estimation of the three states when γW = 0.5.

Figures 3.10, 3.12, 3.14, and 3.16 show the performances obtained in the estimation of the three

states when γW = 20. The Frobenius norm associated with the estimated weights matrix is shown

in Figure 3.17 when γW = 0.5 and is shown in Figure 3.18 when γW = 20.
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Figure 3.9: Performance in the estimation of x1 when γW = 0.5

Figure 3.10: Performance in the estimation of x1 when γW = 20
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Figure 3.11: Performance in the estimation of x2 when γW = 0.5

Figure 3.12: Performance in the estimation of x2 when γW = 20
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Figure 3.13: Performance in the estimation of x3 when γW = 0.5

Figure 3.14: Performance in the estimation of x3 when γW = 20
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Figure 3.15: Performance in the estimation of x4 when γW = 0.5

Figure 3.16: Performance in the estimation of x4 when γW = 20
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Figure 3.17: Frobenius norm of the estimated weight matrix W when γW = 0.5

Figure 3.18: Frobenius norm of the estimated weight matrix W when γW = 20

Note that there is a transient time and that the residual state error, after this transient, is

approximately zero. Figures 3.10, 3.12, 3.14, and 3.16 show that there is a minor transient time in

relation to Figures 3.9, 3.11, 3.13, and 3.15, although the steady-state error behaves similarly in

both cases. Figures 3.17 and 3.18 show that the Frobenius norm of the estimated weights performs
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are similar after the transient, due to large initial uncertainty, and in both cases seems to converge

to approximately 2,that is, it seems to converge to a constant. Thus, the algorithm is stable and

the residual state error converges to a neighborhood of the origin.

The result is as expected, since γW , which is directly proportional to α, was the only parameter

changed in the two cases. Consequently, it is expected that an increasing of γW does not affect

the residual state error, and the transient time will be reduced. As can be seen, in the simulations

Figures 3.10, 3.12, 3.14, and 3.16, there is a shorter transient time than in the Figures 3.9, 3.11,

3.13, and 3.15, and the residual state error appears to be unchanged in a steady state. In this

way, it can be said that the results were as expected. In these simulations, L and P are chosen

to reduce the residual error to desired one. It would be possible to have changed these values if a

minor residual error is required. Note that the identification performed well even in the presence

of disturbances from t = 5s.

3.4.3 Hyperchaotic Welding System

Consider the hyperchaotic welding system [109], which is described by

ẋ1 = x3 −
(

c1

πr2e
x2 +

c2ρ

πr2e
x1x

2
2

)

ẋ2 =
1

Ls
(u2 − (Ra +Rs + ρx1)x2 − V0 − Ea(lc − x1))

ẋ3 =
1

τm
(kmu1 − x3)

ẋ4 = Ra
1

Ls
(u2 − (Ra +Rs + ρx1)x2 − V0 − Ea(lc − x1))− Ea

(

x3 − (
c1x2

πr2e)
+

c2ρ

πr2e
)

)

(3.67)

where x1, x2, x3, and x4 are state variables, u1 and u2 are inputs, and c1, c2, re, ρ, Ls, Ra, Rs, V0,

Ea, lc, τm, and km are parameters, being chosen (according to [109]) as c1 = 3.3×10−10(m3s−1A−1),

c2 = 0.78×10−10(m3s−1Ω−1A−2), re = 0.6×10−3(m), ρ = 0.43(Ωm−1), Ls = 306×10−6(H), Ra =

0.0237(Ω), Rs = 6.8×10−3(Ω), V0 = 15.5(V ), Ea = 400(V m−1), lc = 0.025(m), τm = 50×10−3(s),

and km = 1(mV −1s−1). Note that system (3.67) satisfies the Assumption 1, since the state

variables evolve into compact sets.

The parameters and the state variables pf a welding system are: c1 is the melting rate constant

1; c2 is melting rate constant 2; re is the electrode radius; ρ is the resistivity of the electrode; Ls

is the total inductance; Ra is the arc resistance; Rs is the total wire resistance; V0 is the constant

charge zone; Ea is the arc length factor; lc is the contact tip to work piece distance; τm is the

motor time constant; km is the motor steady state gain; u1 is the motor armature voltage and u2

is the open circuit voltage; x1 is the stick out, x2 is the welding current; x3 is the welding wire

speed, and x4 is the arc voltage.

To identify the uncertain system (3.67), the proposed identification model (3.9) and the adap-

tive law (3.29) were implemented. The initial conditions for the chaotic system and for the iden-

tification model were x1(0) = 0.01, x2(0) = 0, x3(0) = 0, x4(0) = 0.01, x̂1(0) = 0, x̂2(0) = 0,
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x̂3(0) = 0, x̂4(0) = 0, and Ŵ (0) = 0 in order to evaluate the performance of the proposed algorithm

under adverse initial conditions. The design matrices were chosen as

L = 200
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
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


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(3.68)

P = 2000
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






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
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





(3.69)

The nonlinear vector function σ is equal to

σ =








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




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






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(3.70)

The sigmoidal function used is a logistic function and is equal to s(.) = 5
1+e−0.5(.) . The design

parameters γ0 and γW were chosen as γ0 = 0.001 and γW = 0.001. W0 was chosen as

W T
0 =
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
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
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






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(3.71)

Figures 3.19 and 3.20 show the inputs, figures 3.21 - 3.24 show the performances obtained in the

estimation of the four states, figures 3.25 - 3.28 show the performances obtained in the estimation

of the four states in monolog scale and Figure 3.28 shows the Frobenius norm associated with the

estimated weights matrix.
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Figure 3.19: Input 1

Figure 3.20: Input 2
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Figure 3.21: Performance in the estimation of x1

Figure 3.22: Performance in the estimation of x2
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Figure 3.23: Performance in the estimation of x3

Figure 3.24: Performance in the estimation of x4
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Figure 3.25: Performance in the estimation of x1 - Monolog graph

Figure 3.26: Performance in the estimation of x2 - Monolog graph
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Figure 3.27: Performance in the estimation of x3 - Monolog graph

Figure 3.28: Performance in the estimation of x4 - Monolog graph
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Figure 3.29: Frobenius norm of the estimated weight matrix W when γW = 0.5

It is observed that the simulations confirm the theoretical results: the algorithm is stable

and the residual error of state converges to a neighborhood of the origin. Figures 3.17 and 3.18

show that the Frobenius norm of the estimated weights after the transient, due to large initial

uncertainty, seems to converge to approximately 0.35,that is, it seems to converge to a constant.

The result is as expected, since L and P are chosen to reduce the residual error to desired one. It

would be possible to have changed these values if a minor residual error is required.

Remark 16. The identification of systems is important for welding since if there is a change of

variable, the behavior of the model can change drastically and the existence of algorithms that

allow to identify models of welding are denandaded.

3.5 Summary

In this chapter, by using neural networks and Lyapunov methods, a scheme was proposed to

identify uncertain nonlinear systems. The proposed scheme is based on explicit feedback to ensure

the convergence of the residual state error to a set defined from design parameters. The proposed

scheme allows controlling the transient time of the system identification. In other words, it is

possible to control the duration of the transient regime from one parameter and at the same time

it is possible to control the size of the residual state error from another parameter independently.

It was confirmed in the simulations that changes in some design parameters can be used to change

the transient independently of the residual state error. An application of the identifier was done

in a welding system with chaotic behavior. It is noteworthy that the proposed scheme can be used

in identificaition of uncertain systems with great benefits.
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Chapter 4

Adaptive Observer Design of Uncertain

Systems With Control of Residual Error

Some works based on neural networks have been proposed to estimate adaptively the states of

uncertain systems [48, 82, 89]. However, they are subject to several conditions such as previous

knowledge of upper bounds for the weight and approximation errors, ideal switching, and previous

sample data for an off-line learning phase, which difficult their application. In addition, no work was

found in which the duration of the transient time can be adjusted arbitrarily and independently of

the size of the steady-error. In this chapter, an adaptive observer for uncertain nonlinear systems in

the presence of disturbances is proposed in order to avoid the above mentioned limitations. Based

on a neural Luenberger-like observer, scaling, and Lyapunov theory, an adaptive scheme is proposed

to make ultimately bounded the on-line observer error and to allow the adjustment of the transient

duration from a design parameter. Besides, it is shown that the scaling of unknown nonlinearities,

previous to the neural approximation, has a positive impact on performance and application of

our algorithm, since it allows the residual state error manipulation without any additional linear

matrix inequality solution. To validate the theoretical results, the state estimation of the Rössler

oscillator system is performed.

4.1 Problem Formulation

Consider the following nonlinear differential equation

ẋ = Ax+B [f(x, u) + h(x, u, v, t)] (4.1)

y = Cx (4.2)

where x ∈ X ⊂ ℜn is the n-dimensional state vector, u ∈ U ⊂ ℜm is a m-dimensional admissible

inputs vector, y ∈ Y ⊂ ℜq is a q-dimensional outputs vector, v ∈ V ⊂ ℜp is a p-dimensional

vector of time varying uncertain variables, t is the time, f : X ×U 7→ ℜr is a continuous map and

F : X ×U × V × [0,∞) 7→ ℜr is a unknown disturbances vector. A ,B, and C are known matrices
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of appropriate dimensions. In order to have a well-posed problem, we assume that X,U, V are

compact sets and f is locally Lipschitzian with respect to x in X ×U ×V × [0,∞), such that (4.1)

has a unique solution through x0.

We assume that the following can be established:

Assumption 1. On a region X × U × V × [0,∞)

‖h(x, u, v, t)‖ < h0 (4.3)

where h0 is a positive constant

Assumption 2. There is a symmetric positive definite P ∈ ℜn×n matrix and a gain matrix

L ∈ ℜn×q such that

P (A− LC) + (A− LC)T P = −Q− 2γWγ0P (4.4)

δ−1BTP = C∗ (4.5)

where δ−1 = ‖K‖2F , K ∈ ℜr×r is a diagonal matrix with non-zero elements, Q is a positive definite

matrix, γW > 0, γ0 > 0, P = P T > 0, α > 0, and C∗ is in space generated by the lines of C [83].

Remark 1. The Assumption 1 imposes an upper bound on the disturbances norm. It is usual in

literature.

Remark 2. The Assumption 2 imposes that the pair (C,A) is detectable and the linear part of

the system is dissipative (strictly positive real [84]).

The objective is to design a continuous adaptive observer for (4.1), consequently free of chat-

tering that does not require an off-line learning phase, prior upper bound for disturbances or errors

and it is simple to apply as regards the adjustment of transient performance and steady error.

4.2 Adaptive Observer

The following lines presented follow a pattern adopted in [92]

We start by presenting the studied observer and then the observer error equation. For this,

note that the system (4.1) can be written using scaling as

ẋ = Ax+B [Kg (x, u) + h (x, u, v, t)] (4.6)

where g(x, u) = K−1f(x, u) and K ∈ ℜr×r is a diagonal matrix with elements other than zero

Once the mapping g(x, u) has unknown structure, it is replaced by the neural parametrization

W ∗σ(x, u) plus an approximation error ε(x, u). More exactly, (4.6) is rewritten as

ẋ = Ax+B [KW ∗σ (x, u) +Kε (x, u) + h (x, u, v, t)] (4.7)
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where σ (x, u) is a nonlinear vector function whose arguments are preprocessed by a scalar sigmoidal

function s(·) andW ∗ ∈ ℜn×L is the “optimal” or ideal matrix, only required for analytical purposes

,which can be defined as

W ∗ := argmin
(Ŵ∈Γ)

{∥

∥

∥
g (x, u)− Ŵσ (x, u)

∥

∥

∥

∞

}

(4.8)

where x ∈ X, u ∈ U , Γ =
{

Ŵ ∈ ℜn×L : || Ŵ ||F < αŵ

}

, αŵ is a strictly positive constant, Ŵ is

an estimate of W ∗ and ε(x, u) is an approximation error term, corresponding to W ∗, which can be

defined as

ε (x, u) := g (x, u)−W ∗σ (x, u) (4.9)

The approximation, reconstruction, or modeling error ε in (4.9) is a quantity that exists due

to the incapacity of LPNNs to match the unknown map g(x, u).

Assumption 3. On a region X × U , the approximation error is upper bounded by

‖ε(x, u)‖ < ε0 (4.10)

where ε0 ≥ 0.

Remark 3. The model (4.1) and the parametrization (4.7) are mainly motivated to emphasize

that the studied observer is also valid in the case of sudden changes in dynamics that may result

from failures, equipment wear or changes in operating conditions. If there are no such conditions,

the disturbance depends exclusively on t. The structure (4.7) suggests a Luenberger observer of

the form

˙̂x = Ax̂+BKŴσ (x̂, u)− LC (x̂− x) (4.11)

where x̂ is the estimated state and C (x̂− x) = Cx̃ = ỹ is the output estimation error.

Remark 4. Note in (4.11) that the scaling matrix K provides an additional degree of freedom for

adjustment of the transient x̂. In Section 4.4 will be shown that the matrix K is directly related

to the residual error of observation.

Remark 5. Aiming to establish a relationship between the estimated weights and the observation

error, the learning law is defined as ˙̂
W = ρ(x̂, u, C∗x̃), where x̃ = x̂ − x is the observation error.

Although the state error is not available for measurement, the feedback C∗x̃ can be determined in

function of which is available.

Remark 6. Note that there is a matrix T such that C∗ = TC because C∗ is constructed from

C. Then T = C∗C+, where C+ is the pseudo-inverse [89] of C because this matrix satisfies the

equation C∗ = TC and consequently C∗x̃ = TCx̃ = T ỹ [83, 89].
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Based on (4.7) and (4.11) we obtain the observation equation error

˙̃x = (A− LC) x̃+B
[

KW̃σ̂ +KW ∗σ̃ −Kε (x, u)− h (x, u, v, t)
]

(4.12)

where σ̂ = σ(x̂, u) and σ̃ = σ(x̂, u)− σ(x, u).

4.3 Adaptive Laws and Stability Analysis

Before presenting the main theorem, We state some facts, which will be used in the stability

analysis.

Fact 1. In our problem, the following equation is valid:

tr
(

W̃ TKTC∗x̃σ̂T
)

= x̃TPBKW̃ σ̂ (4.13)

Fact 2. Let W ∗,W0, Ŵ , W̃ ∈ ℜn×L. Then, with the definition of W̃ = Ŵ − W ∗, the following

equations are true:

2tr
[

W̃ T
(

Ŵ −W0

)]

=
∥

∥

∥
W̃
∥

∥

∥

2

F
+
∥

∥

∥
Ŵ −W0

∥

∥

∥

2

F
− ‖W ∗ −W0‖2F (4.14)

Fact 3. Let A ∈ ℜc×d, b ∈ ℜc, where c > 0 and d > 0 are whole numbers. Then, the following

expressions are true:

tr
(

AT +A
)

= tr (2A) = 2tr (A) (4.15)

− bTAb ≤ −bTλmin (A) b (4.16)

where λ(A) is its eigenvalues

Fact 4. Whereas that a, b, and c ∈ ℜ+, so

a ‖x̃‖2 − b ‖x̃‖ − c > 0 (4.17)

‖x̃‖2 − b

a
‖x̃‖ >

c

a
(4.18)

‖x̃‖2 − b

a
‖x̃‖+ b2

4a2
>

c

a
+

b2

4a2
(4.19)

(

‖x̃‖ − b

2a

)2

>
4ac+ b2

4a2
(4.20)

‖x̃‖ − b

2a
>

±
√
4ac+ b2

2a
(4.21)
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‖x̃‖ >
b±

√
4ac+ b2

2a
(4.22)

As b−
√
4ac+ b2 < 0 and ‖x̃‖ ≥ 0, this is an invalid solution, so

‖x̃‖ >
b+

√
4ac+ b2

2a
(4.23)

‖x̃‖ >

b
2 +

√

ac+
(

b
2

)2

a
(4.24)

Fact 5. Whereas that a, b, and c ∈ ℜ+, so

m (x̃) = −a ‖x̃‖2 + b ‖x̃‖+ c (4.25)

The derivative of equation (4.25) is equal to

ṁ = −2a ‖x̃‖+ b (4.26)

The maximum value of (4.25) occurs when ṁ = 0

‖x̃‖ =
b

2a
(4.27)

Replacing this value in (4.25)

m = −a

(

b

2a

)2

+ b

(

b

2a

)

+ c (4.28)

m) = − b2

4a
+

2b2

4a
+ c (4.29)

Thus, the maximum value of (4.25) is equal to

m (x̃) =
4ac+ b2

4a
(4.30)

We now state and prove the main theorem of this chapter.

Theorem 4.3.1. Consider the class of general nonlinear systems described by (4.1)-(4.2), which

satisfies Assumptions 1-3 and the learning law

˙̂
W = −2γW

[

γ0(Ŵ −W0) +KTC∗x̃σ(x̂, u)T
]

(4.31)
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Where W0 is a constant matrix

Then, the signals erros x̃, W̃ are bounded and x̃ is uniformly ultimately bounded with ultimate

bound ρ2, where ρ2 =
b
2
+
√

λmin(Q)c+( b
2
)2

λmin(Q) , b = 2 ‖K‖−1
F ‖C∗‖F

(

βσ ‖W ∗‖F + ε̄0 + ‖K‖−1
F h̄0

)

, and

c = γ0 ‖W ∗ −W0‖2F .

Proof. Consider the Lyapunov function candidate

V = x̃TPx̃+
tr
(

W̃ Tγ−1
W W̃

)

2
(4.32)

By Deriving (4.32), we obtain

V̇ = ˙̃xTPx̃+ x̃TP ˙̃x+
γ−1
W tr

(

W̃ T ˙̃
W + ˙̃

W T W̃
)

2
(4.33)

V̇ = x̃TP ˙̃x+ (x̃TP ˙̃x)T +

γ−1
W tr

[

W̃ T ˙̃
W +

(

W̃ T ˙̃
W
)T
]

2
(4.34)

Using equation (4.15), this results

V̇ = x̃TP ˙̃x+ (x̃TP ˙̃x)T + γ−1
W tr

(

W̃ T ˙̃
W
)

(4.35)

Replacing equations (4.12) and (4.31)

V̇ = x̃TP
[

(A− LC) x̃+B
(

KW̃σ̂ +KW ∗σ̃ −Kε− h
)]

+
{

x̃TP
[

(A− LC) x̃+B
(

KW̃σ̂ +KW ∗σ̃ −Kε− h
)]}T

+ γ−1
W tr

{

W̃ T
[

−2γW

(

γ0

(

Ŵ −W0

)

+KTC∗x̃σ̂T
)]}

(4.36)

V̇ = x̃T
[

(A− LC)T P + P (A− LC)
]

x̃

+ x̃T
[

PB
(

KW̃σ̂ +KW ∗σ̃ −Kε− h
)]

+
{

x̃T
[

PB
(

KW̃σ̂ +KW ∗σ̃ −Kε− h
)]}T

− 2γ0tr
[

W̃ T
(

Ŵ −W0

)]

− 2tr
(

W̃KTC∗x̃σ̂T
)

(4.37)

Since x̃T
[

PB
(

KW̃σ̂ +KW ∗σ̃ −Kε− h
)]

is a scalar number, so the transpose of this number is

itself and employing facts 1 and 2 and equation (4.4), it results

46



V̇ = −x̃T (Q− 2γWγ0P ) x̃

+ 2x̃TPB
(

KW̃σ̂ +KW ∗σ̃ −Kε− h
)

− γ0

(

∥

∥

∥
W̃
∥

∥

∥

2

F
+
∥

∥

∥
Ŵ −W0

∥

∥

∥

2

F
− ‖W ∗ −W0‖2F

)

− 2x̃TPBKW̃ σ̂

(4.38)

Using equation (4.5)

V̇ = −x̃TQx̃− 2γWγ0x̃
TPx̃+ 2δx̃TC∗T (KW ∗σ̃ −Kε− h)

− γ0

(

∥

∥

∥
W̃
∥

∥

∥

2

F
+
∥

∥

∥
Ŵ −W0

∥

∥

∥

2

F
− ‖W ∗ −W0‖2F

) (4.39)

Turning to an inequality, taking into account (4.16) and assuming that βσ = sup σ̃ (x̂(t), x(t), u(t)),

where t ≥ 0

V̇ ≤ −λmin (Q) ‖x̃‖2 − 2γWγ0x̃
TPx̃+ 2δ ‖C∗x̃‖ (βσ ‖K‖F ‖W ∗‖F + ‖K‖F ‖ε‖+ ‖h‖)

− γ0

(

∥

∥

∥
W̃
∥

∥

∥

2

F
+
∥

∥

∥
Ŵ −W0

∥

∥

∥

2

F
− ‖W ∗ −W0‖2F

) (4.40)

Considering that ‖C∗x̃‖ ≤ ‖C∗‖F ‖x̃‖, ‖ε‖ < ε̄0, ‖h‖ < h̄0, rembering that δ−1 = ‖K‖2F , and

rearranging (4.40) implies

V̇ ≤ −‖x̃‖2 [λmin (Q)] + ‖x̃‖
[

2 ‖K‖−1
F ‖C∗‖F

(

βσ ‖W ∗‖F + ε̄0 + ‖K‖−1
F h̄0

)]

+ γ0 ‖W ∗ −W0‖2F − γ0

∥

∥

∥
W̃
∥

∥

∥

2

F
− γ0

∥

∥

∥
Ŵ −W0

∥

∥

∥

2

F
− 2γWγ0x̃

TPx̃
(4.41)

Assuming that a = λmin (Q), b = 2 ‖K‖−1
F ‖C∗‖F

(

βσ ‖W ∗‖F + ε̄0 + ‖K‖−1
F h̄0

)

, c = γ0 ‖W ∗ −W0‖2F ,

where a ≥ 0, b ≥ 0, and c ≥ 0, then

V̇ ≤ −a ‖x̃‖2 + b ‖x̃‖+ c

− γ0

∥

∥

∥
W̃
∥

∥

∥

2

F
− γ0

∥

∥

∥
Ŵ −W0

∥

∥

∥

2

F
− 2γWγ0x̃

TPx̃
(4.42)

Case 1. For analysis of the limitation of W̃ , resuming (4.42) and disregarding some negative terms

V̇ ≤ −a ‖x̃‖2 + b ‖x̃‖+ c− γ0

∥

∥

∥
W̃
∥

∥

∥

2

F
(4.43)

Using fact 5, we have

V̇ ≤ 4ac+ b2

4a
− γ0

∥

∥

∥
W̃
∥

∥

∥

2

F
(4.44)

Hence, V̇ < 0 as long as
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γ0

∥

∥

∥
W̃
∥

∥

∥

2

F
>

4ac+ b2

4a
(4.45)

∥

∥

∥
W̃
∥

∥

∥

F
> ±

√

4ac+ b2

4aγ0
(4.46)

As −
√

4ac+b2

4aγ0
< 0 and

∥

∥

∥
W̃
∥

∥

∥

F
≥ 0, this is an invalid solution, so

∥

∥

∥
W̃
∥

∥

∥

F
>

√

4ac+ b2

4aγ0
(4.47)

∥

∥

∥
W̃
∥

∥

∥

F
>

√

c

γ0
+

1

aγ0

(

b

2

)2

(4.48)

Replacing a,b, and c

∥

∥

∥
W̃
∥

∥

∥

F
>

√

√

√

√

‖W ∗ −W0‖2F +

[

‖K‖−1
F ‖C∗‖F

(

βσ ‖W ∗‖F + ε̄0 + ‖K‖−1
F h̄0

)]2

γ0λmin (Q)
= ρ1 (4.49)

Thus, since ρ1 is a constant, by using Lyapunov arguments [34], we concluded that W̃ is

uniformly ultimately bounded, with ultimate bound equal to ρ1 . Note that if, by any reason,
∥

∥

∥
W̃
∥

∥

∥

F
escapes of the residual set Ω1, where Ω1 =

{

W̃ :
∥

∥

∥
W̃
∥

∥

∥

F
≤ ρ1

}

, V̇ becomes negative definite

again, and it forces the convergence of the weight error to the residual set Ω1.

Case 2. For analysis of the limitation of x̃, resuming (4.42) and disregarding some negative terms

V̇ ≤ −a ‖x̃‖2 + b ‖x̃‖+ c (4.50)

Hence, V̇ < 0 as long as

a ‖x̃‖2 − b ‖x̃‖ − c > 0 (4.51)

Using fact 4, we have

‖x̃‖ >

b
2 +

√

ac+ ( b2)
2

a
(4.52)

Replacing a,b, and c
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‖x̃‖ >
‖K‖−1

F ‖C∗‖F
(

βσ ‖W ∗‖F + ε̄0 + ‖K‖−1
F h̄0

)

λmin (Q)

+

√

λmin (Q) γ0 ‖W ∗ −W0‖2F +
[

‖K‖−1
F ‖C∗‖F

(

βσ ‖W ∗‖F + ε̄0 + ‖K‖−1
F h̄0

)]2

λmin (Q)
= ρ2

(4.53)

Thus, since ρ2 is a constant, by using Lyapunov arguments [34], we concluded that x̃ is uni-

formly ultimately bounded, with ultimate bound equal to ρ2 . Note that if, by any reason, ‖x̃‖
escapes of the residual set Ω2, where Ω2 = {x̃ : ‖x̃‖ ≤ ρ2}, V̇ becomes negative definite again, and

it forces the convergence of the state error to the residual set Ω2.

Case 3. For analysis of the transient time, resuming (4.42) and doing some manipulations

V̇ ≤ −αV + αV − a ‖x̃‖2 + b ‖x̃‖+ c

− γ0

∥

∥

∥
W̃
∥

∥

∥

2

F
− γ0

∥

∥

∥
Ŵ −W0

∥

∥

∥

2

F
− 2γWγ0x̃

TPx̃
(4.54)

We analyze when −a ‖x̃‖2+ b ‖x̃‖+ c < 0. This consideration is necessary, since it is in this period

that the transient is occurring

V̇ ≤ −αV + α

(

x̃TPx̃+
γ−1
W

2

∥

∥

∥
W̃
∥

∥

∥

2

F

)

− γ0

∥

∥

∥
Ŵ −W0

∥

∥

∥

2

F

− γ0

∥

∥

∥
W̃
∥

∥

∥

2

F
− 2γWγ0x̃

TPx̃

(4.55)

V̇ ≤ −αV − γ0

∥

∥

∥
Ŵ −W0

∥

∥

∥

2

F

+
∥

∥

∥
W̃
∥

∥

∥

2

F

(

α

2γW
− γ0

)

+ x̃TPx̃ (α− 2γWγ0)
(4.56)

Considering that α = 2γWγ0, then

V̇ ≤ −αV − γ0

∥

∥

∥
Ŵ −W0

∥

∥

∥

2

F
(4.57)

V̇ ≤ −αV (4.58)

Using Lemma 3.2.4 [84]. It can be stated that:

V (t) ≤ e−α(t−t0)V (t0), ∀t ≥ t0 ≥ 0 (4.59)

Assuming that t0 = 0
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V (t) ≤ V (0)e−αt (4.60)

ln [V (t)] ≤ −αt+ ln [V (0)] (4.61)

ln

[

V (t)

V (0)

]

≤ −αt (4.62)

ln

[

V (0)

V (t)

]

≥ αt (4.63)

t ≤
ln
[

V (0)
V (t)

]

α
(4.64)

Remark 7. Based on (4.53) it can be concluded that the observarion residual error can be adjusted

through the scaling matrix K, since it attenuates the errors of approximation and disturbances.

This is an important result as it facilitates arbitrary error of the stady-error without the need to

solve any matrix inequality linear, since the last term within the right-hand bracket of (4.53) can

be set via γ0 or W0 [92].

Remark 8. It is important to note that the choice of values of δ, and consequently of K, does not

imply a new calculation of the matrices P and L in (4.4)-(4.5) to maintain the desired allocation

of the eigenvalues of Q, since the matrix C∗ is freely chosen on the basis of C [92]. In this way it

is possible to change the residual status error value without affecting the transient duration.

Remark 9. Note that the time t in (4.64) refers to the transient regime duration in relation to

the residual state error determined in (4.53). Thus, we can not say anything about the transient

duration for a residual state error smaller than that.

Remark 10. It is possible to verify in (4.64) that the maximum transient duration is inversely

proportional to the value of α. Since α is related to γ0 and γW , it is concluded that it is possible

to increase or decrease the transient time by changing these design parameters.

Remark 11. Note in equation (4.4) that the choice of different values of γW leads to the change

of the matrices P , L, and Q. In most cases it is possible to choose matrices P and L in order to

keep the matrix Q unchanged. Thus, the choice of a different γW will not affect the size of the

residual state error and at the same time will affect the duration of the transient regime.

Remark 12. The matrix K controls the size of the residual state error and the parameter γW

controls the duration of the transient regime independently. Thus, it is possible to decouple the

steady-error of the transient performance.
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Remark 13. In the equation (4.53) in the numerators there is the term ‖K‖−1
F h̄0, thus the

external disturbances are present in that part. In this way, it can be stated that by changing the

value of the matrix L, the size of the residual state error is also adjusted, even in the presence of

limited disturbances.

Remark 14. In previous works, for example in [83, 89, 92], in spite of the residual state error is

bounded, they can not increase or reduce the transient duration independently of residual state

error size. To allow this, it is necessary to have a parameter related to the transient duration that

does change the residual state error. In this work this was possible because the observer model and

the learning law were chosen in order to allow an independent control of the transient duration.

4.4 Simulation

This section presents three examples to validate the theoretical results and to show the per-

formance in the presence of disturbances. In the simulation, Solver ode45(Dormand-Pince) of

Matlab/Simulinkr, with variable-step and a relative tolerance of 1e-10 was used to obtain the

numerical solutions. The observation of a chaotic system under disturbances has been proposed.

An analysis is made of the duration of the transient regime in relation to the steady-error.

4.4.1 Rösller oscillator system

Consider the following chaotic system [76], which is described by

ẋ1 = −(x2 + x3) + dx1

ẋ2 = x1 + ax2 + dx2

ẋ3 = b+ x3 (x1 − c) + dx3

y = Cx

(4.65)

where x1, x2, and x3 are state variables, A =







0 −1 −1

1 a 0

0 0 −c






, C =

[

1 0 0

0 0 1

]

, dx1 , dx2 , and dx3

are unknown disturbances, and a, b, and c are parameters, being chosen as a = 0.398, b = 2, and

c = 4.

To observe the uncertain system (4.65), the proposed observer model (4.11) and the adaptive

law (4.31) were implemented. The initial conditions for the chaotic system and for the identification

model were x1(0) = 2, x2(0) = 1, x3(0) = 2, x̂1(0) = 0, x̂2(0) = 0, x̂3(0) = 0, and Ŵ (0) = 0 in

order to evaluate the performance of the proposed algorithm under adverse initial conditions. The

nonlinear vector function σ is equal to
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σ =





































s(x1)

s(x̂2)

s(x3)

s(x1)s(x̂2)

s(x3)s(x̂2)

s(x1)s(x3)

s(x1)
2

s(x̂2)
2

s(x3)
2





































(4.66)

The sigmoidal function used is a logistic function and is equal to s(.) = 5
1+e−0.5(.) . The design

parameter γ0 was chosen as γ0 = 1, K was chosen as K = 3 and W0 was chosen as

W0 =
[

1 0 0 1 0 1 0 1 0
]

(4.67)

The matrix is chosen as Q = I, where I is the identity matrix. The matrices P and L have

different values depending on the γW value. When γW = 0.5

L =







−0.4429 −4

−2.3808 3.194

10.8409 0






(4.68)

P =







5.9544 1.398 1

1.398 1 0

1 0 1






(4.69)

when γW = 8

L =







34.9271 3.5

−247.046 −41.041

−32.0291 0






(4.70)

P =







83.1744 8.898 1

8.898 1 0

1 0 1






(4.71)

We found these matrix values from equations (4.4) and (4.5).A positive matrix defined P was

arbitrated and the values of the arguments of the matrix L were found.

To verify the robustness of proposed method, it is considered the presence of the following

disturbances: dx1 = cos(2t), dx2 = 2sin(t), and dx3 = 2sin(2t). To better verify each part, the

disturbance was introduced from t = 5s.
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From equation (4.62), it can be seen that the parameter α affects the transient time. We choose

the parameter γW to control the value of α because γW is not related to the size of the residual

state error, as can be seen in (4.53). In all states we analyzed for two different values of γW . In

the first situation, a small γW was intentionally chosen to detect the transient and in the second

case a high value was chosen with the intention of reducing this transient time.

In this example, the two values chosen for γW are γW = 0.5 and γW = 8. Figures 4.1, 4.3, and

4.4 show the performances obtained in the estimation of the three states when γW = 0.5. Figures

4.2, 4.4, and 4.6 show the performances obtained in the estimation of the three states when γW = 8.

The Frobenius norm associated with the estimated weights matrix is shown in Figure 4.7 when

γW = 0.5 and is shown in Figure 4.8 when γW = 8.

Note that the estimation of the state x2 is not available for measurement.

Figure 4.1: Performance in the estimation of x1 when γW = 0.5
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Figure 4.2: Performance in the estimation of x1 when γW = 8

Figure 4.3: Performance in the estimation of x2 when γW = 0.5
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Figure 4.4: Performance in the estimation of x2 when γW = 8

Figure 4.5: Performance in the estimation of x3 when γW = 0.5
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Figure 4.6: Performance in the estimation of x3 when γW = 8

Figure 4.7: Frobenius norm of the estimated weight matrix W when γW = 0.5

56



Figure 4.8: Frobenius norm of the estimated weight matrix W when γW = 8

Note that there is a transient time and that the residual state error, after this transient, is

approximately zero. Figures 4.2, 4.4, and 4.6 show that there is a minor transient time in relation

to Figures 4.1, 4.3, and 4.5, although the steady-state error behaves similarly in both cases. Figures

4.7 and 4.8 show that the Frobenius form of the estimated weights performs are similar after the

transient and in both cases seems to converge to approximately 1.7,that is, it seems to converge

to a constant.

The result is as expected, since γW , which is directly proportional to α, was the only parameter

changed in the two cases. Consequently, it is expected that an increasing of γW does not affect

the residual state error, and the transient time will be reduced. As can be seen, in the simulations

Figures 4.2, 4.4, and 4.6, there is a shorter transient time than in the Figures 4.1, 4.3, and 4.5,

and the residual state error appears to be unchanged in a steady state. In this way, it can be said

that the results were as expected. In these simulations, L and P are chosen to reduce the residual

error to desired one. It would be possible to have changed these values if a minor residual error

is required. Note that the identification performed well even in the presence of disturbances from

t = 5s.

4.5 Summary

In this chapter we studied a continuous neural adaptive observer based on Lyapunov stability

theory and scaling for a class of uncertain nonlinear systems. Using the direct Lyapunov method

it has been shown that the estimation errors are limited and the observation error converges to

a residual set around zero, whose size is directly related to a parameter δ−1. In addition, from
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the values chosen for the paramenter γw and for matrices L and P , the transient regime duration

can be adjusted. The main peculiarities of the observer are : 1) it does not present a chattering,

2) it does not require a previous off-line phase, 3) it allows the adjustment of the transient and

steady-error independently, and 4) it does not need the resolution of linear matrix inequalities

to adjust the residual observation error . To verify the performance of the studied observer, the

estimation of the states of a Rössler oscillator was considered.
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Chapter 5

Neural Controller in Closed Loop with

Control of Residual Error and Transient

Time: An application in Welding

Many works have been done in the control [101, 102, 103, 104, 105] and identification [110,

111, 112] area of welding systems. Thus, algorithms involving welding processes have been an

explored subject in the literature, but the dynamic nonlinear control subject has still been little

investigated. The systems identification is useful for modeling a process or a plant of unknown

parameters, which usually occurs in welding systems. It is important to note that the welding

process usually is a time-variant system and nonlinear such as in [113], therefore, they are systems

in which modeling tends to be more challenging. The online identification has as advantages with

regard to offline identification the lack of need to store a large amount of data and the possibility

of tracking time-variant parameters in time without the need to know the model structure [114].

Note that in these works [101, 102, 103, 104, 105, 112] no artificial neural networks were used

for the control or identification algorithms. In [110] and [111] artificial neural networks were used,

but in [110] a predictive control was proposed, not an adaptive control, and in [111] a discrete

Hammerstein model was used and linear approximations were made. Thus, in none of the previous

works an adaptive controller using artificial neural networks was designed to control in continuous

time a non-linear welding system with an arbitrarily small tracking error. In addition, none of the

previous works explored the possibility of adjusting the transient duration from a design parameter.

Therefore, based on a neural controller model with feedback, scaling, and Lyapunov based

weight adjustment law, a control algorithm is proposed to make ultimately bounded the tracking

error. In addition, it is desired that in this algorithm: at least one designed matrix is related to the

size of the tracking error, even in the presence of bounded disturbances; and a designed parameter

not related to the tracking error size is related to the transient duration. In this chapter the control

of a GMAW welding system is performed to validate the theoretical results. It is interesting to

note that according [115] GMAW welding processes have a chaotic behavior.
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5.1 Problem Formulation

Consider the following nonlinear differential equation

ẋ = F (x, v, t) + u(e, x, xr), x (0) = x0 (5.1)

where x ∈ X ⊂ ℜn is the n-dimensional state vector, v ∈ V ⊂ ℜp is p-dimensional a vector of

time varying uncertain variables, t is the time and F : X × U × V × [0,∞) 7→ ℜn is a continuous

map, e(xr, x) = xr − x and xr is an arbitrary reference line . In order to have a well-posed

problem, we assume that X,U, V are compact sets and F is locally Lipschitzian with respect to x

in X × U × V × [0,∞), such that (5.1) has a unique solution through x0.

We assume that the following can be established:

Assumption 1. On a region X × U × V × [0,∞)

‖h(x, v, t)‖ ≤ h0 (5.2)

where

h (x, v, t) = F (x, v, t)− f (x) (5.3)

f is an unknown map, h are internal or external disturbances, and h̄0 , such that h̄0 > h0 ≥ 0,

is a unknown constant. Note that (5.2) is verified when x and u evolve on compact sets and the

temporal disturbances are bounded.

Thus, except for the Assumption 1, we say that F (x, u, v, t) is an unknown map and our aim

is to design a controller based on NNs for (5.1) to ensure the state error convergence, which will

be accomplished despite the presence of approximation error and disturbances.

5.2 Controller Model and Tracking Equation

We start by presenting the controller model and the definition of the relevant errors associated

with the problem.

Let f̄ be the best known approximation of f , P ∈ ℜn×n a scaling matrix defined as P = P T > 0,

ḡ = P−1g, and g(x) = f(x)−f̄(x).Then, by adding and subtracting f̄(x), the system (5.1) becomes

ẋ = f̄ (x) + P ḡ (x) + h (x, v, t) + u (5.4)

Remark 1. It should be noted that if the designer has no previous knowledge of f , so f̄ is simply

assumed as being the zero vector. From (5.4), by using LPNNs, the nonlinear mapping ḡ(x) can
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be replaced by the neural parametrization W ∗σ(x) plus an approximation error term ε(x). More

exactly, (5.4) can be rewritten as

ẋ = f̄ (x) + PW ∗σ (x) + Pε (x) + h (x, v, t) + u(e, x, xr) (5.5)

where σ (x, u) is a nonlinear vector function whose arguments are preprocessed by a scalar sigmoidal

function s(·) and W ∗ ∈ ℜn×L is the “optimal” or ideal matrix, only required for analytically

purposes, which can be defined as

W ∗ := argmin
(Ŵ∈Γ)

{∥

∥

∥
ḡ (x)− Ŵσ (x)

∥

∥

∥

∞

}

(5.6)

where x ∈ X, u ∈ U , Γ =
{

Ŵ ∈ ℜn×L : || Ŵ ||F ≤ αŵ

}

, αŵ is a strictly positive constant, Ŵ is

an estimate of W ∗ and ε(x, u) is an approximation error term, corresponding to W ∗, which can be

defined as

ε (x) := ḡ (x)−W ∗σ (x) (5.7)

The approximation, reconstruction, or modeling error ε in (5.7) is a quantity that exists due

to the incapacity of LPNNs to match the unknown map ḡ(x, u). Since X, U are compact sets and

from (2.2), the following can be established.

Assumption 2. On a region X × U , the approximation error is upper bounded by

‖ε(x, u)‖ ≤ ε0 (5.8)

where ε̄0, such that ε̄0 > ε0 ≥ 0 , is an unknown constant.

Remark 2. The assumption 1 is usual in robust control literature. The assumption 2 is quite

natural since ḡ is continuous and their arguments evolve on compact sets and σ satisfies (I.17).

Remark 3. Note that any σ0, h0, and ε0 are the smallest constants such that (I.17), (5.2), and

(5.8) are satisfied.

Remark 4. It should be noted that W ∗ and ε(x, u) might be nonunique. However, the uniqueness

of ||ε(x, u)|| is ensured by (5.6).

Remark 5. It should be noted that W ∗ was defined as being the value of Ŵ that minimizes the

L∞- norm difference between ḡ(x) and Ŵσ(x). The scaling matrix P from (5.4) is introduced to

manipulate the magnitude of uncertainties and hence the magnitude of the approximation error.

This procedure improves the performance of the control process.

Remark 6. Notice that the proposed neuro-control scheme is a black-box methodology, hence

the external disturbances and approximation error are related. Based on the system input and

state measurements, the uncertain system (including the disturbances) is parametrized by a neural
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network model plus an approximation error term. However, the parametrization (5.5) is motivated

by the fact that neural networks are not adequate for approximating external disturbances, since

the basis function depends on the input and states, whereas the disturbances depend on the time

and external variables. The aim for presenting the uncertain system in the form (5.5), where the

disturbance h is explicitly considered, is also to highlight that the proposed scheme is in addition

valid in the presence of unexpected changes in the systems dynamics that can emerge, for instance,

due to environment change, aging of equipment or faults. We propose

u(Ŵ , x, xr, ẋr) = −
[

−Le− γWγ0e+ PŴσ (x)− ẋr

]

(5.9)

where e is the tracking error, γW > 0, γ0 > 0, and L ∈ ℜn×n is a positive definite feedback

gain matrix introduced to attenuate the effect of the uncertainties and disturbances. It will be

demonstrated that the control model (5.9) used in conjunction with a convenient adjustment

law for Ŵ , to be proposed in the next section, ensures the convergence of the state error to a

neighborhood of the origin, even in the presence of the approximation error and disturbances,

whose radius depends on the design parameters. Note that from equations (5.5) and (5.9), and

assuming that f̄ (x) = 0 we can obtain

ẋ = PW ∗σ (x) + Pε (x) + h (x, v, t)

−
[

−Le− γWγ0e+ PŴσ (x)− ẋr

] (5.10)

by using the definition of W̃ = Ŵ −W ∗, thus the system becomes

ẋ = −PW̃σ (x) + Pε (x) + h (x, v, t) + Le (xr, x) + γWγ0e (xr, x) + ẋr (5.11)

Remark 7. Note that the identification model requires states are available to measure. However,

the main relevance of the method is to provide a parametrization for the uncertain system (5.1)

that can be later used to project adaptive control and observation schemes.

Remark 8. It should be noted that in our formulation, the LPNN is only required to approximate

P−1[f(x)− f̄(x)] (whose magnitude is often small) instead of the entire function P−1[f(x)]. Hence,

standard control methods (to obtain some previous f̄ ]) can be used together with the proposed

algorithm to improve performance. The estimation of loop error can be defined as

ė = ẋr − ẋ (5.12)

so

ė = PW̃σ (x)− Pε (x)− h (x, v, t)− Le (xr, x)− γWγ0e (xr, x) (5.13)
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5.3 Adaptive Laws and Stability Analysis

Before presenting the main theorem, We state some facts, which will be used in the stability

analysis.

Fact 1. In our problem, the following equation is valid:

tr
(

W̃ T eσT
)

= eT W̃σ (5.14)

Fact 2. Let W ∗,W0, Ŵ , W̃ ∈ ℜn×L. Then, with the definition of W̃ = Ŵ − W ∗, the following

equations are true:

2tr
[

W̃ T
(

Ŵ −W0

)]

=
∥

∥

∥
W̃
∥

∥

∥

2

F
+
∥

∥

∥
Ŵ −W0

∥

∥

∥

2

F
− ‖W ∗ −W0‖2F (5.15)

Fact 3. Let A ∈ ℜc×d, b ∈ ℜc, where c > 0 and d > 0 are whole numbers. Then, the following

expressions are true:

tr
(

AT +A
)

= tr (2A) = 2tr (A) (5.16)

− bTAb ≤ −bTλmin (A) b (5.17)

where λ(A) is its eigenvalues

Fact 4. Whereas that a, b, and c ∈ ℜ+, so

a ‖e‖2 − b ‖e‖ − c > 0 (5.18)

‖e‖2 − b

a
‖e‖ >

c

a
(5.19)

‖e‖2 − b

a
‖e‖+ b2

4a2
>

c

a
+

b2

4a2
(5.20)

(

‖e‖ − b

2a

)2

>
4ac+ b2

4a2
(5.21)

‖e‖ − b

2a
>

±
√
4ac+ b2

2a
(5.22)

‖e‖ >
b±

√
4ac+ b2

2a
(5.23)

As b−
√
4ac+ b2 < 0 and ‖e‖ ≥ 0, this is an invalid solution, so

‖e‖ >
b+

√
4ac+ b2

2a
(5.24)
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‖e‖ >

b
2 +

√

ac+
(

b
2

)2

a
(5.25)

Fact 5. Whereas that a, b, and c ∈ ℜ+, so

m (e) = −a ‖e‖2 + b ‖e‖+ c (5.26)

The derivative of equation (5.26) is equal to

ṁ = −2a ‖e‖+ b (5.27)

The maximum value of (5.26) occurs when ṁ = 0

‖e‖ =
b

2a
(5.28)

Replacing this value in (5.26)

m = −a

(

b

2a

)2

+ b

(

b

2a

)

+ c (5.29)

m = − b2

4a
+

2b2

4a
+ c (5.30)

Thus, the maximum value of (5.26) is equal to

m (e) =
4ac+ b2

4a
(5.31)

We now state and prove the main theorem of this chapter.

Theorem 5.3.1. Consider the class of general nonlinear systems described by (5.1) which satisfies

Assumptions 1-2 and the control model (5.9). Let the weight law be given by

˙̂
W = −2γW

[

γ0

(

Ŵ −W0

)

+ eσT
]

(5.32)

where γt > 0,
˙̂
W = ˙̃

W , W0 is a constant matrix and P is arbitrary, since P = P T > 0, then the

following is valid

LTP−1 + P−1L = Q (5.33)

where L > 0 and Q > 0. So the errors e, W̃ are bounded and e is uniformly ultimately bounded with

ultimate bound ρ2, where ρ2 =
b
2
+
√

λmin(Q)c+( b
2
)2

λmin(Q) , b = 2ε̄0+2
∥

∥P−1
∥

∥

F
h̄0, and c = γ0 ‖W ∗ −W0‖2F .
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Proof. Consider the Lyapunov function candidate

V = eTP−1e+
tr
(

W̃ Tγ−1
W W̃

)

2
(5.34)

By Deriving (5.34), we obtain

V̇ = ėTP−1e+ eTP−1ė+
γ−1
W tr

(

W̃ T ˙̃
W + ˙̃

W T W̃
)

2
(5.35)

V̇ = eTP−1ė+
(

eTP−1ė
)T

+

γ−1
W tr

[

W̃ T ˙̃
W +

(

W̃ T ˙̃
W
)T
]

2
(5.36)

Using equation (5.16), this results

V̇ = eTP−1ė+ (eTP−1ė)T + γ−1
W tr

(

W̃ T ˙̃
W
)

(5.37)

Replacing equations (5.13) and (5.32)

V̇ = eTP−1
(

−Le− γWγ0e+ PW̃σ − Pε− h
)

+
[

eTP−1
(

−Le− γWγ0e+ PW̃σ − Pε− h
)]T

+ γ−1
W tr

{

W̃ T
[

−2γW

(

γ0

(

Ŵ −W0

)

+ eσT
)]}

(5.38)

V̇ = −eT
(

P−1L+ LTP−1
)

e− γWγ0

[

eTP−1e+
(

eTP−1e
)T
]

eT
(

W̃σ − ε− P−1h
)

+
(

eT
(

W̃σ − ε− P−1h
))T

− 2γ0tr
[

W̃ T
(

Ŵ −W0

)]

− 2tr
(

W̃ T eσT
)

(5.39)

Since eT
(

W̃σ − ε− P−1h
)

is a scalar number, so the transpose of this number is itself and em-

ploying facts 1 and 2 and equation (5.33), it results

V̇ = −eTQe− 2γWγ0e
TP−1e+ 2eT

(

W̃σ − ε− P−1h
)

− γ0

(

∥

∥

∥
W̃
∥

∥

∥

2

F
+
∥

∥

∥
Ŵ −W0

∥

∥

∥

2

F
− ‖W ∗ −W0‖2F

)

− 2eT W̃σ

(5.40)

Turning to an inequality and taking into account (5.17)

V̇ ≤ −λmin (Q) ‖e‖2 − 2γWγ0e
TP−1e+ 2 ‖e‖

(

‖ε‖+
∥

∥P−1
∥

∥

F
‖h‖
)

− γ0

(

∥

∥

∥
W̃
∥

∥

∥

2

F
+
∥

∥

∥
Ŵ −W0

∥

∥

∥

2

F
− ‖W ∗ −W0‖2F

) (5.41)
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Considering that ‖ε‖ < ε̄0, ‖h‖ < h̄0, and rearranging (5.41) implies

V̇ ≤ −‖e‖2 [λmin (Q)] + ‖e‖
(

2ε̄0 + 2
∥

∥P−1
∥

∥

F
h̄0
)

+ γ0 ‖W ∗ −W0‖2F
− γ0

∥

∥

∥
W̃
∥

∥

∥

2

F
− γ0

∥

∥

∥
Ŵ −W0

∥

∥

∥

2

F
− 2γWγ0e

TP−1e
(5.42)

Considering that a = λmin (Q), b = 2ε̄0 + 2
∥

∥P−1
∥

∥

F
h̄0, c = γ0 ‖W ∗ −W0‖2F ,where a ≥ 0, b ≥ 0,

and c ≥ 0, then

V̇ ≤ −a ‖e‖2 + b ‖e‖+ c

− γ0

∥

∥

∥
W̃
∥

∥

∥

2

F
− γ0

∥

∥

∥
Ŵ −W0

∥

∥

∥

2

F
− 2γWγ0e

TP−1e
(5.43)

Case 1. For analysis of the limitation of W̃ , resuming (5.44) and disregarding some negative terms

V̇ ≤ −a ‖e‖2 + b ‖e‖+ c− γ0

∥

∥

∥
W̃
∥

∥

∥

2

F
(5.44)

Using fact 5, we have

V̇ ≤ 4ac+ b2

4a
− γ0

∥

∥

∥
W̃
∥

∥

∥

2

F
(5.45)

Hence, V̇ < 0 as long as

γ0

∥

∥

∥
W̃
∥

∥

∥

2

F
>

4ac+ b2

4a
(5.46)

∥

∥

∥
W̃
∥

∥

∥

F
> ±

√

4ac+ b2

4aγ0
(5.47)

As −
√

4ac+b2

4aγ0
< 0 and

∥

∥

∥
W̃
∥

∥

∥

F
≥ 0, this is an invalid solution, so

∥

∥

∥
W̃
∥

∥

∥

F
>

√

4ac+ b2

4aγ0
(5.48)

∥

∥

∥
W̃
∥

∥

∥

F
>

√

ac
γ0

+ 1
γ0

(

b
2

)2

a
(5.49)

Replacing a,b, and c

∥

∥

∥
W̃
∥

∥

∥

F
>

√

√

√

√

λmin (Q) ‖W ∗ −W0‖2F + 1
γ0

(

ε̄0 + ‖P−1‖F h̄0
)2

λmin (Q)
= ρ1 (5.50)

Thus, since ρ1 is a constant, by using Lyapunov arguments [34], we concluded that W̃ is

uniformly ultimately bounded, with ultimate bound equal to ρ1 . Note that if, by any reason,
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∥

∥

∥
W̃
∥

∥

∥

F
escapes of the residual set Ω1, where Ω1 =

{

W̃ :
∥

∥

∥
W̃
∥

∥

∥

F
≤ ρ1

}

, V̇ becomes negative definite

again, and it forces the convergence of the weight error to the residual set Ω1.

Case 2. For analysis of the limitation of e, resuming (5.43) and disregarding some negative terms

V̇ ≤ −a ‖e‖2 + b ‖e‖+ c (5.51)

Hence, V̇ < 0 as long as

a ‖e‖2 − b ‖e‖ − c > 0 (5.52)

Using fact 4, we have

‖e‖ >

b
2 +

√

ac+ ( b2)
2

a
(5.53)

Replacing a,b, and c

‖e‖ >
ε̄0 +

∥

∥P−1
∥

∥

F
h̄0 +

√

λmin (Q) γ0 ‖W ∗ −W0‖2F +
(

ε̄0 + ‖P−1‖F h̄0
)2

λmin (Q)
= ρ2 (5.54)

Thus, since ρ2 is a constant, by using Lyapunov arguments [34], we concluded that e is uniformly

ultimately bounded, with ultimate bound equal to ρ2 . Note that if, by any reason, ‖e‖ escapes of

the residual set Ω2, where Ω2 = {e : ‖e‖ ≤ ρ2}, V̇ becomes negative definite again, and it forces

the convergence of the state error to the residual set Ω2.

Case 3. For analysis of the transient time, resuming (5.43) and doing some manipulations

V̇ ≤ −αV + αV − a ‖e‖2 + b ‖e‖+ c

− γ0

∥

∥

∥
W̃
∥

∥

∥

2

F
− γ0

∥

∥

∥
Ŵ −W0

∥

∥

∥

2

F
− 2γWγ0e

TP−1e
(5.55)

We analyze when −a ‖e‖2+ b ‖e‖+ c < 0. This consideration is necessary, since it is in this period

that the transient is occurring

V̇ ≤ −αV + α

(

eTP−1e+
γ−1
W

2

∥

∥

∥
W̃
∥

∥

∥

2

F

)

− γ0

∥

∥

∥
W̃
∥

∥

∥

2

F
− γ0

∥

∥

∥
Ŵ −W0

∥

∥

∥

2

F
− 2γWγ0e

TP−1e

(5.56)

V̇ ≤ −αV − γ0

∥

∥

∥
Ŵ −W0

∥

∥

∥

2

F

+
∥

∥

∥
W̃
∥

∥

∥

2

F

(

α

2γW
− γ0

)

+ eTP−1e (α− 2γWγ0)
(5.57)
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Considering that α = 2γWγ0, then

V̇ ≤ −αV − γ0

∥

∥

∥
Ŵ −W0

∥

∥

∥

2

F
(5.58)

V̇ ≤ −αV (5.59)

Using Lemma 3.2.4 [84]. It can be stated that:

V (t) ≤ e−α(t−t0)V (t0), ∀t ≥ t0 ≥ 0 (5.60)

Assuming that t0 = 0

V (t) ≤ V (0)e−αt (5.61)

ln [V (t)] ≤ −αt+ ln [V (0)] (5.62)

ln

[

V (t)

V (0)

]

≤ −αt (5.63)

ln

[

V (0)

V (t)

]

≥ αt (5.64)

t ≤
ln
[

V (0)
V (t)

]

α
(5.65)

Remark 9. Note that the scaling of unknown nonlinearities has a positive impact on the per-

formance of the identification. The scaling matrix P is introduced to attenuate the effect of

approximation errors and disturbances, as can be seen in (5.54).

Remark 10. It is perceived from (5.54), that the size of the residual state error is inversely

proportional to λmin(Q), where the eigenvalues of Q can be arbitrarily manipulated while changing

the values of matrices L and P . Thus, it is possible from these arbitrary design matrices to control

the residual state error size.

Remark 11. Note that the time t in (5.65) refers to the maximum transient regime duration in

relation to the residual state error determined in (5.54). Thus, we can not say anything about the

transient duration for a residual state error smaller than that.

Remark 12. It is possible to verify in (5.65) that the transient regime duration is inversely

proportional to the value of α. Since α is related to γ0 and γW , it is concluded that it is possible

to increase or decrease the transient time by changing these design parameters.
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Remark 13. Note that the choice of different values of γW does not imply a new calculation of γ0
or the matrices P and L to maintain the desired allocation of the eigenvalues of Q. In addition, it

is verified in (5.54) that γW does not influence the size of the residual state error norm. Thus, it

can be stated that from γW it is possible to decouple the transient performance of the steady-state

error.

Remark 14. In the equation (5.54) in the numerator there is the term
∥

∥P−1
∥

∥

F
h̄0, thus the

external disturbances are present in that part. In this way, it can be stated that by changing

the eigenvalues of the matrix Q, the size of the residual state error is also adjusted, even in the

presence of limited disturbances.

Remark 15. In previous works, in spite of the parameters related to the residual state, we can

not increase or reduce the transient duration independently of residual state error size. To allow

this, it is necessary to have a parameter related to the transient duration that does change the

residual state error. In this work this was possible because the controller model and the learning

law were chosen in order to allow an independent adjust of the transient duration.

Remark 16. In previous works, for example in [99, 100], in spite of the residual state error is

bounded, they can not increase or reduce the transient duration independently of residual state

error size. To allow this, it is necessary to have a parameter related to the transient duration that

does change the residual state error. In this work this was possible because the controller model

and the learning law were chosen in order to allow an independent adjustment of the transient

duration.

5.4 Simulation

This section presents an example to validate the theoretical results. In the simulation, Solver

ode113(Adams) of Matlab/Simulinkr, with variable-step and a relative tolerance of 1e-10 was

used to obtain the numerical solutions. The identification of a chaotic three-dimensional welding

system with chaotic behavior has been proposed. An analysis is made to estimate the size of the

steady-error.

5.4.1 Welding System

Consider the chaotic welding system [109], which is described by

ẋ1 = x3 −
(

c1

πr2e
x2 +

c2ρ

πr2e
x1x

2
2

)

+ u1

ẋ2 =
1

Ls
(u2 − (Ra +Rs + ρx1)x2 − V0 − Ea(lc − x1))

ẋ3 =
1

τm
(kmu3 − x3)

(5.66)

where x1, x2, and x3 are state variables, u1, u2, and u3 are inputs, and c1, c2, re, ρ, Ls, Ra, Rs, V0,

Ea, lc, τm, and km are parameters, being chosen (according to [109]) as c1 = 3.3×10−10(m3s−1A−1),
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c2 = 0.78×10−10(m3s−1Ω−1A−2), re = 0.6×10−3(m), ρ = 0.43(Ωm−1), Ls = 306×10−6(H), Ra =

0.0237(Ω), Rs = 6.8×10−3(Ω), V0 = 15.5(V ), Ea = 400(V m−1), lc = 0.025(m), τm = 50×10−3(s),

and km = 1(mV −1s−1). Note that system (5.66) satisfies the Assumption 1, since the state

variables evolve into compact sets.

The parameters and the state variables of a welding system are: c1 is the melting rate constant

1; c2 is melting rate constant 2; re is the electrode radius; ρ is the resistivity of the electrode; Ls

is the total inductance; Ra is the arc resistance; Rs is the total wire resistance; V0 is the constant

charge zone; Ea is the arc length factor; lc is the contact tip to work piece distance; τm is the motor

time constant; km is the motor steady state gain;u1 is the motor armature voltage associated to

welding speed, u2 is the open circuit voltage and u3 is the motor armature voltage associated to

wire feeder; x1 is the stick out, x2 is the welding current and x3 is the welding wire speed.

To control the uncertain system (5.66), the proposed control model (5.9) and the adaptive law

(5.32) were implemented. The initial conditions for the chaotic system and for the identification

model were x1(0) = 0.01, x2(0) = 0, x3(0) = 0, x̂1(0) = 0, x̂2(0) = 0, x̂3(0) = 0, and Ŵ (0) = 0 in

order to evaluate the performance of the proposed algorithm under adverse initial conditions. The

design matrices were chosen as

L = 10







50 0 0

0 5 0

0 0 5






(5.67)

P = 20







50 0 0

0 5 0

0 0 5






(5.68)

The nonlinear vector function σ is equal to

σ =

















s(x1)

s(x2)

s(x3)

s(x1)s(x2)

s(x1)s(x2)
2

















(5.69)

The sigmoidal function used is a logistic function and is equal to s(.) = 10
1+e−0.5(.) . The design

parameters γ0 and γW were chosen as γ0 = 0.005 and γW = 0.005. W0 was chosen as

W T
0 =

















1 0 0

0 1 0

0 0 1

0 0 0

0 0 0

















(5.70)
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Figures 5.2, 5.3, and 5.4 show the reference lines, where xnref is the reference unfiltered and

xref is the reference filtered. The filter used is of second order and is shown below:

Figure 5.1: Filter

Figures 5.5 - 5.7 show the performances obtained in the estimation of the three states, figures

5.8 - 5.10 show the performances obtained in the estimation of the three states in monolog scale

and figures 5.11 - 5.14 shows the control inputs.

Figure 5.2: Filtered Reference 1
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Figure 5.3: Filtered Reference 2

Figure 5.4: Filtered Reference 3
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Figure 5.5: Performance in the estimation of x1

Figure 5.6: Performance in the estimation of x2

73



Figure 5.7: Performance in the estimation of x3

Figure 5.8: Performance in the estimation of x1 - Monolog graph
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Figure 5.9: Performance in the estimation of x2 - Monolog graph

Figure 5.10: Performance in the estimation of x3 - Monolog graph
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Figure 5.11: Control Input 1

Figure 5.12: Control Input 1 - time varying between [0.5,8]

76



Figure 5.13: Control Input 2

Figure 5.14: Control Input 3

Figures 5.5 - 5.10 show that the state converges to reference signal and the algorithm is stable.

Figures 5.11 - 5.14 show that the control inputs seem to converge to constant values. The result

is as expected, since L and P are chosen to reduce the residual error to desired one. It would be

possible to have changed these values if a minor residual error is required.
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Remark 17. The control of systems is important for welding since if there is a change of variable,

the behavior of the model can change drastically and the existence of algorithms that allow to

identify models of welding are demanded.

5.5 Summary

In this chapter, by using neural networks and Lyapunov methods, a scheme was proposed to

control uncertain nonlinear systems. The proposed scheme is based on explicit feedback to ensure

the convergence of the residual state error to a set defined from design parameters. The proposed

scheme allows the states to converge to reference signals. It was verified in the simulations that

changes in some design parameters can be done to make the residual state error converges to a

neighborhood of the origin. An application of the controller was done in a welding system with

chaotic behavior. It is observed that the simulations confirm the theoretical results.
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Chapter 6

Conclusions

In this work, identification, observation, and control schemes of uncertain nonlinear systems

based on neural networks and Lyapunov theory have been studied. Initially, all issues related to

identification, observation, and adaptive control based on neural networks and Lyapunov methods

that are relevant to our work have been considered.

In the sequence, three schemes about the above-mentioned issues based on Lyapunov arguments

have been proposed in order to relate the state, observation, and tracking errors to independent

design parameters with the aim to decouple the transient and steady-error performances. Although

there are several works in literature which consider the identification and control based on neural

networks, it is noteworthy that the decoupling of the transient and steady-error performances in

these problems has rarely been investigated. In particular, secure communication based on analog

chaos and control of welding systems are two topics which have motivated enormous technological

and scientific interest in the last years. Hence, in this work, chaotic and welding systems have been

employed to validate our approaches.

On the other hand, the presence of disturbances in all simulation has also been considered

to evaluate the robustness of the proposed algorithms. Several classes of disturbances have been

used to show that the proposed schemes corroborate the theoretical results, which are, that the

algorithms are stable and the residual errors converge to an arbitrary neighborhood of the origin,

where the transient and steady-error performances can be adjusted in an irrespective way.

Exhaustive simulations were carried out in order to evaluate the influence of the design param-

eters in the performance of the algorithms. The independence of the transient and steady-error

performances has been fully confirmed. In particular, the identification and control of a welding

system have been accomplished, which showed that the proposed schemes can be used success-

fully in this case, where the transient and steady-state can be adjusted according to any desired

geometric parameters of the weld bead.

For future work, the following research lines are suggested:

• It is well-known that linearly parameterized neural networks, as the considered in this work,

suffer from the “curse of dimensionality”. Therefore, a natural sequence to alleviate the afore-
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mentioned drawback lies in the use of nonlinearly parameterized neural networks. In this

sense, the identifier in [116] can be used as a starting point.

• The choice of the design matrices in the adaptive observer in Chapter 4 is not trivial since

both the detectability and geometric conditions must be satisfied. Hence, another interesting

research line lies in the development of numerical procedures based on linear matrix inequali-

ties (LMI) [117] to alleviate the selection of the design matrices. Hence, more complex cases,

such as the observation of hyperchaotic systems [118] should be easily addressed.

• The control of underactuated nonlinear systems is another way of extension. In this case,

nonlinear techniques, such as integrator backstepping [85], can be applied.

• Last, but not least, there is much room in the control area with restrictions based on neural

networks. For instance, the control with prescribed performance and saturation is a topic

which deserves investigation [100, 119].
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I. TECHNICAL BACKGROUND

I.1 Motivation

In this chapter, technical background about Lyapunov Stability Theory, neural networks, their

properties and the notation that will be used throughout this Master’s thesis will be introduced.

Our aim is to provide basic information about the contents used in this dissertation.

I.2 Mathematical Preliminaries

This section provides some fundamental mathematical concepts that are necessary for the

remaining chapters.

I.2.1 Vector Norms

Definition 1. Let x ∈ X ⊂ ℜn be a n−dimensionalvector. The p-norm of f is defined by

‖x‖p =

(

∑

i

|xi|p
)1/p

, for p ∈ [1,∞) (I.1)

Thus, by denoting p = 1, 2,∞, the corresponding normed spaces are called L1, L2, L∞, respec-

tively. In this dissertation we usually use the case where p = 2:

‖x‖ = ‖x‖2 =

√

∑

i

|xi|2 (I.2)

‖x‖2 = xTx, x ∈ ℜ1×n (I.3)

More information can be obtained in [19, 120]

I.2.2 Matrix Norms

Definition 2. Let A,B ∈ ℜn×n be n− dimensional matrices. Then, the following properties are

valid

‖A‖ > 0 (I.4)

‖cA‖ = ‖c‖|A‖ c ∈ ℜ (I.5)
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‖cA‖ = ‖c‖|A‖ c ∈ ℜ (I.6)

‖A+B‖ ≤ ‖A‖ + ‖B‖ (I.7)

The Frobenius norm can be defined as:

‖A‖2F = tr(ATA) (I.8)

Where tr(A) is the trace function. This function returns the sum of diagonal entries of a square

matrix. More information can be obtained in [120]

I.2.3 Lyapunov Stability Theory

We present in this section some concepts about Lyapunov stability theory. The following

definitions and theorem were extracted from [84].

I.2.3.1 Concepts of Stability

We consider systems described by ordinary differential equations of the form

ẋ = f (t, x) , x (t0) = x0 (I.9)

where x ∈ ℜn, f : τ × B (r), τ = [t0,∞), and B (r) = {x ∈ ℜn| ‖x‖ < r} . We assume that f is

of such nature that for every x0 ∈ B (r) and every t0 ∈ ℜ+, (I.9) have one and only one solution

x (t; t0;x0).

Definition 3. A state xe is said to be an equilibrium state of the system described by (I.9) if

f (t, xe) ≡ 0 for all t ≥ t0 (I.10)

Definition 4. An equilibrium state xe is called an isolated equilibrium state if there exists a

constant r > 0 such that B (xe, r) := {x| ‖x− xe‖ < r} contains no equilibrium state of (I.9) other

than xe.

Definition 5. The equilibrium state xe is said to be stable(in the sense of Lyapunov) if for

arbitrary t0 and ε > 0 there exists a δ (ε, t0) such that ‖x0 − xe‖ < δ implies ‖x (t; t0;x0)− xe‖ for

all t ≥ t0.

Definition 6. The equilibrium state xe is said to be uniformly stable (u.s) if it is stable and if

δ (ε, t0) in Definition 5 does not depend on t0.
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Definition 7. The equilibrium state xe is said to be asymptotically stable (a.s) if (i) it is stable,

and (ii) there exists a δ (t0) such that ‖x0 − xe‖ < δ (t0) implies limn→∞ ‖x (t; t0;x0)− xe‖ = 0 .

If condition (ii) is satisfied, then the equilibrium state xe is said to be attractive.

Definition 8. The set of all x0 ∈ ℜn such that x (t; t0;x0) → xe as t → ∞ for some t0 ≥ 0 is

called the region of attraction of the equilibrium state xe.

Definition 9. The equilibrium state xe is said to be uniformly asymptotically stable (u.a.s)

if (i) it is uniformly stable, (ii) for every ε > 0 and any t0 ∈ ℜ+, there exist a δ > 0, independent

of t0 and ε and T (ε) > 0, independent of t0, such that ‖x (t; t0;x0)− xe‖ < ε for all t > t0 + T (ε)

whenever ‖x0 − xe‖ < δ0.

Definition 10. The equilibrium state xe is exponentially stable (e.s) if there exists an α > 0,

and for every ε > 0 there exists a δ (ε) > 0 such that

‖x (t; t0;x0)− xe‖ < εe−α(t−t0) for all t ≥ t0 (I.11)

whenever ‖x0 − xe‖ < δ (ε) .

Definition 11. The equilibrium state xe is said to be unstable if it is not stable. When (I.9) have

a unique solution for each x0 ∈ ℜn and t0 ∈ ℜ+, we need the following definitions for the global

characterization of solutions.

Definition 12. A solution x (t; t0;x0) of (I.9) is bounded if there exists a β > 0 such that

‖x (t; t0;x0)− xe‖ < β for all t > t0, where β may depend on each solution.

Definition 13. The solutions of (I.9) are uniformly bounded (u.b) if for any α > 0 and t0 ∈
ℜ+, there exists a β = β(α), independent of t0 , such that if ‖x0‖ < α , then ‖x (t; t0;x0)− xe‖ < β

for all t > t0.

Definition 14. The solutions of (I.9) are uniformly ultimately bounded (u.u.b) (with bound

B) if there exists a B > 0 and if corresponding to any α ≥ 0 and t0 ∈ ℜ+, there exists a T =

T (α) > 0 (independent of t0) such that ‖x0‖ < α implies ‖x (t; t0;x0)‖ < B for all t > t0 + T .

Definition 15. If x (t; t0;x0) is a solution of ẋ = f(t, x), then the trajectory x (t; t0;x0) is said to

be stable (u.s., a.s., u.a.s., e.s., unstable) if the equilibrium point ze = 0 of the differential

equation

ż = f (t, z + x (t; t0;x0))− f (t, x (t; t0;x0)) (I.12)

is stable (u.s., a.s., u.a.s., e.s., unstable, respectively).

I.2.3.2 Lyapunov’s Direct Method

The stability properties of the equilibrium state or solution of (I.9) can be studied by using

the direct method of Lyapunov (also known as Lyapunov’s second method). The objective of this
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method is to answer questions of stability by using the form of f (t, x) in (I.9) rather than the

explicit knowledge of the solutions. We start with the following definitions.

Definition 16. A continuous function ϕ : [0, r] → ℜ+ (or a continuous function ϕ : [0,∞) → ℜ+)

is said to belong to class K, ϕ ∈ K, if

(i) ϕ (0) = 0.

(ii) ϕ is strictly increasing on [0, r] (or on [0,∞)).

Definition 17. A continuous function ϕ : [0,∞) → ℜ+ is said to belong to class KR, ϕ ∈ KR,

if

(i) ϕ (0) = 0.

(ii) ϕ is strictly increasing on [0,∞).

(iii) limr→∞ϕ(r) = ∞.

Definition 18. Two functions ϕ1, ϕ2 ∈ K defined on [0, r] (or on [0,∞]) are said to be of the

same order of magnitude if there exist positive constants k1, k2, such that

k1ϕ1 (r1) ≤ ϕ2 (r1) ≤ k2ϕ2 (r1) , ∀r1 ∈ [0, r] (ou∀r1 ∈ [0,∞]) (I.13)

Definition 19. A function V (t, x) : ℜ+ × B(r) → ℜ with V (t, 0) = 0, ∀t ∈ ℜ+ is positive

definite if there exists a continuous function such that V (t, x) ≥ ϕ(x), ∀t ∈ ℜ+, x ∈ B(r) and

some r > 0. V (t, x) is called negative-definite if −V (t, x)is positive definite.

Definition 20. A function V (t, x) : ℜ+ × B(r) → ℜ with V (t, 0) = 0, ∀t ∈ ℜ+ is said to

be positive(negative) semidefinite if V (t, x) ≥ 0(V (t, x) ≤ 0), ∀t ∈ ℜ+ for all t ∈ ℜ+ and

x ∈ B(r) for some r > 0.

Definition 21. A function V (t, x) : ℜ+×B(r) → ℜ, V (t, 0) = 0, ∀t ∈ ℜ+ is said to be decreasing

if there exists ϕ ∈ K such that V (t, x) ≤ ϕ (x) , ∀t ≥ 0 and ∀x ∈ B (r) for some r > 0.

Definition 22. A function V (t, x) : ℜ+×ℜr → ℜ with V (t, 0) = 0, ∀t ∈ ℜ+ is said to be radially

unbounded if there exists ϕ ∈ KR such that for all.

It is clear from the Definition (22) that if V (t, x) is radially unbounded, it is also positive

definite for all x ∈ ℜn, but the converse is not true.

Let us assume (without loss of generality) that xe = 0 is an equilibrium point of (I.9) and

define V̇ to be the time derivative of the function V (t, x) along the solution of (I.9), so

V̇ =
∂V

∂t
+ (∇V )T f (t, x) (I.14)

where ∇V =
[

∂V
∂x1

, ∂V
∂x2

, ..., ∂V
∂xn

]

is the gradient of V with respect to x. The second method of

Lyapunov is summarized by the following theorem.
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Theorem I.2.1. Suppose there exists a positive definite function V (t, x) : ℜ+×B(r) → ℜ for some

r > 0 with continuous first-order partial derivatives with respect to x, t, and V (t, 0) = 0, ∀t ∈ ℜ+.

Then, the following statements are true:

(i) If V̇ ≤ 0, then xe is stable.

(ii) If V is decreasing and V̇ ≤ 0, then xe is uniformly stable.

(iii) If V is decreasing and V̇ < 0, then xe is uniformly asymptotically stable.

(iv) If V is decreasing and there exist ϕ1, ϕ2, ϕ3 ∈ K of the same order of magnitude such that

ϕ1 (|x|) ≤ V (t, x) ≤ ϕ2 (|x|) , V (t, x) ≤ −ϕ3 (|x|) (I.15)

for all x ∈ B(r) and t ∈ ℜ+, then xe = 0 is exponentially stable.

In the above theorem, the state is restricted to be inside the ball B(r) for some r > 0 .

Therefore, the results (i) to (iv) of Theorem I.2.1 are referred to as local results.

Theorem I.2.2. Assume that (I.9) possesses unique solutions for all x0 ∈ ℜn. If there exists a

function V (t, x) defined on |x| ≥ R and t ∈ [0,∞) with continuous first-order partial derivatives

with respect to x, t and if there exist ϕ1, ϕ2 ∈ KR such that

(i) ϕ1 (|x|) ≤ V (t, x) ≤ ϕ2 (|x|)

(ii) V̇ (t, x) ≤ 0 for all |x| ≥ R and t ∈ [0,∞), then, the solutions of (I.9) are uniformly

bounded. If in addition there exists ϕ3 ∈ K defined on [0,∞) and

(iii) V̇ (t, x) ≤ ϕ3 (|x|) for all |x| ≥ R and t ∈ [0,∞) then, the solutions of (I.9) are uniformly

ultimately bounded.

I.3 Artificial Neural Networks

Initially will be shown some concepts about neural networks biological that will ultimately

serve as motivation for artificial neural network which will be discussed next. The concepts and

figures used in this section were taken from [1].

I.3.1 Biological Neural Networks

Neurons, or nerve cells, are the building blocks of the nervous system. Neurons have unique

features and structures that differentiate them from other cells. The neuron has three distinct

regions:

• Cell body (or soma): provides the support functions and structure of the cell, it collects and

process information received from other neurons.
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• Dendrites: are tube like extensions that branch repeatedly and form a bushy tree around the

cell body. They provide the main path on which the neuron receives coming information.

• Axon: the part of the neuron that extends away from the cell body and provides the path

over which information travel to other neurons.

The figure I.1 shows a biological neuron.

Figure I.1: Biological Neuron Scheme [1]

A nerve impulse is triggered, at the origin of the axon, by the cell body in response to received

information. The impulse sweeps along the axon until it reaches the end. The junction point of

an axon with a dendrite of another neuron is called a synapse.

I.3.2 Artificial Neural Models

An artificial neural network (ANN) is a massively parallel distributed processor, inspired from

biological neural networks, which can store experimental knowledge and makes it available for use.

The similarities with the brain are:

• Knowledge is acquired through a learning process.

• Interneuron connectivity named as synaptic weights are used to store this knowledge.

The procedure for the learning process is known as a learning algorithm. Its function is to

modify the synaptic weights of the networks in order to attain a prespecified goal. The weights

modification provides the traditional method for neural networks design and implementation. The

neuron is the fundamental information-processing unit for the operation of a neural network [1, 2].

The figure I.2 shows the model of a neuron.

This model has three basic elements:

• A set of synapses links, each element being characterized by its own weight or strength.
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Figure I.2: Nonlinear model of a neuron [2]

• An adder for summing the inputs signal components, multiplied by the respective synapsis

weight.

• A nonlinear activation function transforming the adder output into the output of the neuron.

The neuron scheme presented in figure I.2 also includes an externally applied bias or threshold,

denoted by b. Bias can increase or decrease the input of the activation function, depending on

whether it is positive or negative, respectively.

I.3.3 Linearly Parameterized Neural Networks

Linearly parameterized neural networks (LPNNs) can be expressed mathematically as

ρnn

(

Ŵ , ζ
)

= Ŵσ (ζ) (I.16)

where ρnn : ℜLnn 7→ ℜn is a function, Ŵ ∈ ℜn×Lρ is a weight matrix, ζ ∈ ℜLζ are the inputs

of the neural network and σ : ℜLζ 7→ ℜLρ is the basis function vector, which can be considered

as a nonlinear vector function whose arguments are preprocessed by a scalar function s(·), and

n, Lρ, Lζ , Lnn are integers strictly positive. Commonly used scalar functions include sigmoid (used

in this work), hyperbolic tangent, gaussian, Hardy’s, inverse Hardy’s multiquadratic [19]. However,

here we are only interested in the class of LPNNs for which σ(·) is bounded, since in this case we

have,

‖σ (ζ)‖ ≤ σ0 (I.17)

being σ0 a strictly positive constant.

The class of LPNNs considered in this work includes radial basis function neural networks

(RBFs), wavelet networks, high order neural nertworks (HONNs) [19, 20, 121], and also others lin-
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early parameterized approximators as Takagi-Sugeno fuzzy systems [122]. Universal approximation

results in [19, 20, 121, 122] indicate that:

Property 1. Given a constant ε0 > 0 and a continuous function f : ℜLζ 7→ ℜn there exists a

weight matrix Ŵ = W ∗ and a Lρ is big enough such that

∥

∥

∥
f (ζ)− Ŵσ (ζ)

∥

∥

∥

∞

≤ ε0 (I.18)

where Ŵ ∈ Γ, ζ ∈ Ω, Γ =
{

Ŵ |
∥

∥

∥
Ŵ
∥

∥

∥
≤ αŴ

}

, αŴ is a positive constant, Ŵ is the estimation of

W ∗, which is an "optimum" matrix, and ε0 is an approximation, reconstruction or modeling error.

Property 2. The Output of LPNNs is continuous with respect to their arguments and satisfies the

condition of Lipschitz [84], for all ζ ∈ Ω (ζ), where Ω is a compact set.

I.3.4 Neural Network Structures

The way in which the neurons of a neural network are interconnected determines its struc-

ture. The commonly used static neural network structures for system identification are multilayer

perceptron, fuzzy sytems, radial basis function and wavelet networks.

I.3.4.1 Multilayer Feedforward Neural Network

They distinguish themselves by the presence of one or more hidden layer whose computation

nodes are called hidden neurons. Typically the neurons in each layer have as their inputs the output

signals of the preceding layer. If each neuron in each layer is connected to every neurone in the

adjacent forward layer, then the neural network is named as fully connected, on the opposite case,

it is called partly connected. A multilayer perceptron (MLP) has three distinctive characteristics:

• The activation function of each neuron is smooth as opposed to the hard limit used in the

single layer perceptron. Usually, this nonlinear function is a sigmoidal.

• The network contains one or more layers of hidden neurons.

• The network exhibits a high degree of connectivity.
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Figure I.3: Multilayer Perceptron [1]

In this dissertation we use systems with one hidden layer.

I.3.5 Sigmoidal functions

In this section we extract some informations from [123]. The activation functions usually

employed in multilayer perceptron are the sigmoidals.

Some Sigmoidal functions

Name Formula

Logistic
1

1 + e−γx
, γ > 0

Hyperbolic Tangent
ex − e−x

ex + e−x

Arc-tangent arctan x

Table I.1: Common Sigmoidal Activation Functions for MLP Networks

In this work, all activation functions are logistic type.

I.4 Systems Identification

Initially will be shown some concepts about systems identification. The concepts and figures

used in this section were taken from [3].

I.4.1 Theoretical and Experimental Modeling

In the following figure there are the different kinds of mathematical models.
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Figure I.4: Different kinds of mathematical models [3]

Despite the fact that the theoretical analysis can in principle deliver more information about

the system, provided that the internal behavior is known and can be described mathematically,

experimental analysis has found ever increasing attention over the past 50 years. The main reasons

are the following:

• Theoretical analysis can become quite complex even for simple systems.

• Mostly, model coefficients derived from the theoretical considerations are not precise enough.

• Not all actions taking place inside the system are known.

• The actions taking place cannot be described mathematically with the required accuracy.

• Some systems are very complex, making the theoretical analysis too time consuming.

• Identified models can be obtained in shorter time with less effort compared to theoretical

modeling

The experimental analysis allows the development of mathematical models by measurement of

the input and output of systems of arbitrary composition. One major advantage is the fact that the
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same experimental analysis methods can be applied to diverse and arbitrarily complex systems. By

measuring the input and output only, one does however only obtain models governing the input-

output behavior of the system, i.e. the models will in general not describe the precise internal

structure of the system. These input-output models are approximations and are still sufficient for

many areas of application. If the system also allows the measurement of internal states, one can

obviously also gather information about the internal structure of the system. With the advent

of digital computers starting in the 1960s, the development of capable identification methods has

started.

I.4.2 Offline and Online Identification

If digital computers are utilized for the identification, then one differentiates between two types

of coupling between process and computer, see figure I.5:

• Offline (indirect coupling)

• Online (direct coupling)

For the offline identification, the measured data are first stored (e.g. data storage) and are

later transferred to the computer utilized for data evaluation and are processed there.

The online identification is performed parallelly to the experiment. The computer is coupled

with the process and the data points are operated on as they become available. All algorithms

used in this work are of online type.
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Figure I.5: Different setups for the data processing as part of the identification [3]

I.5 Transient State, Steady-State, and Unsteady-State Response

The following definition were extracted from [124].

Two parts compose a system response in the time domain, transient, steady-state or unsteady-

state. Transient is the immediate system response to an input from an equilibrium state. After

the transient state, a system response can assume a steady-state or unsteady-state. In a stable

system, the output tends to a constant value when t → ∞. When the system response enters and

stays in the threshold around the constant value the system reached the steady-state . The time

the stable system takes to reach the steady-state is the settling time, ts. On the other hand, if

the response never reaches a final value or oscillates surpassing the threshold when t → ∞ the

system is then at unsteady-state. Consequently, the system outputs at unsteady-state vary with

time during the on-time interval even induced by an invariable input.
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II. CODES

II.1 Simulink plant used for simulations corresponding to Figures

3.1 - 3.18

II.2 Code for plant model corresponding to Figures 3.1-3.8

function [sys,x0,str,ts] = Plant(t,x,u,flag)

%System extract from Akgul, A., Hussain, S. and Pehlivan, I., "A new ...

three−dimensional

%chaotic system, its dynamical analysis and electronic circuit

%applications", Optik, Volume 127, Issue 18, Pages 7062−7071, 2016.

a=1.8; %Constants

b=−0.07;

d=1.5;

m=0.12;

switch flag,

%%%%%%%%%%%%%%%%%%

% Initialization %

%%%%%%%%%%%%%%%%%%

case 0,

sizes = simsizes;

sizes.NumContStates = 3; %Number of Constant States

sizes.NumDiscStates = 0; %Number of Discret States

sizes.NumOutputs = 3; %Number of Outputs

sizes.NumInputs = 0; %Number of Inputs

sizes.DirFeedthrough = 1;

sizes.NumSampleTimes = 1;

103



sys = simsizes(sizes);

x0=[2 2 2]; %Initial Conditions

str=[];

ts=[0 0];

%%%%%%%%%%%%%%%

% Directives %

%%%%%%%%%%%%%%%

case 1, %Chaotic System

sys = [a*(x(1) − x(2));

−4*a*x(2) + x(1)*x(3) + m*x(1)^3;

−a*d*x(3) + (x(1)^3)*x(2) + b*x(3)^2] + disturb(x,u,t);

%%%%%%%%%%%

% Outputs %

%%%%%%%%%%%

case 3,

sys = x;

%%%%%%%%%

% End %

%%%%%%%%%

case {2,4,9},

sys = []; % do nothing

otherwise

error(['unhandled flag = ',num2str(flag)]);

end

function disturb = disturb(x,u,t) %disturb

if t>=5

n=2;

disturb=[0.5*n*cos(2*t); n*sin(t); n*sin(2*t)];

else

disturb=[0; 0; 0];

end

II.3 Code for identifier corresponding to Figures 3.1, 3.3, 3.5 and

3.7

function [sys,x0,str,ts] = Identifier(t,x,u,flag)

%Controller and its parameters

L = 2*[1 0 0; 0 1 0; 0 0 1];

P = 5*[1 0 0; 0 1 0; 0 0 1];

GAMAW=0.5;

GAMA0=1;

G=1;

W01=G*[1 0 0 0 0 0]'; %W zero

W02=G*[0 1 0 0 0 0]';

W03=G*[0 0 1 0 0 0]';
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switch flag,

%%%%%%%%%%%%%%%%%%%

% Initialization %

%%%%%%%%%%%%%%%%%%%

case 0,

sizes = simsizes;

sizes.NumContStates = 21; %Number of Constant States

sizes.NumDiscStates = 0; %Number of Discret States

sizes.NumOutputs = 4; %Number of Outputs

sizes.NumInputs = 3; %Number of Inputs

sizes.DirFeedthrough = 1;

sizes.NumSampleTimes = 1;

sys = simsizes(sizes);

x0=zeros(21,1); %

x0(1)=−2;

x0(2)=−3;

x0(3)=−4;

str=[];

ts=[0 0];

%%%%%%%%%%%%%%%

% Directives %

%%%%%%%%%%%%%%%

case 1,

%Identification Model

sys = [−L*[x(1)−u(1);x(2)−u(2);x(3)−u(3)] − ...

GAMAW*GAMA0*[x(1)−u(1);x(2)−u(2);x(3)−u(3)] + ...

P*[x(4:9)';x(10:15)';x(16:21)']*S(x,u);

%Learning Law

−2*GAMAW*(GAMA0*(x(4:9)−W01) + (x(1)−u(1))*S(x,u));

−2*GAMAW*(GAMA0*(x(10:15)−W02) + (x(2)−u(2))*S(x,u));

−2*GAMAW*(GAMA0*(x(16:21)−W03) + (x(3)−u(3))*S(x,u))];

%%%%%%%%%%%

% Outputs %

%%%%%%%%%%%

case 3,

sys = [x(1:3);

norm([x(4:9)';x(10:15)';x(16:21)'],'fro')];

case {2,4,9},

sys = [];

otherwise

error(['unhandled flag = ',num2str(flag)]);

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function S = S(x,u) %Regressors

S=[1*(z(u(1)));

1*(z(u(2)));

1*(z(u(3)));

1*(z(u(1))^2);
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1*(z(u(2))^2);

1*(z(u(3))^2)];

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function z = z(uu) %Sigmoidal Function

lambda=0;

alfa=5;

beta=.5;

z=alfa/(exp(−beta*uu)+1)+lambda;

II.4 Code for identifier corresponding to Figures 3.2, 3.4, 3.6 and

3.8

function [sys,x0,str,ts] = Identifier(t,x,u,flag)

%Controller and its parameters

L = 2*[1 0 0; 0 1 0; 0 0 1];

P = 5*[1 0 0; 0 1 0; 0 0 1];

GAMAW=15;

GAMA0=1;

G=1;

W01=G*[1 0 0 0 0 0]'; %W zero

W02=G*[0 1 0 0 0 0]';

W03=G*[0 0 1 0 0 0]';

switch flag,

%%%%%%%%%%%%%%%%%%%

% Initialization %

%%%%%%%%%%%%%%%%%%%

case 0,

sizes = simsizes;

sizes.NumContStates = 21; %Number of Constant States

sizes.NumDiscStates = 0; %Number of Discret States

sizes.NumOutputs = 4; %Number of Outputs

sizes.NumInputs = 3; %Number of Inputs

sizes.DirFeedthrough = 1;

sizes.NumSampleTimes = 1;

sys = simsizes(sizes);

x0=zeros(21,1); %

x0(1)=−2;

x0(2)=−3;

x0(3)=−4;

str=[];

ts=[0 0];

%%%%%%%%%%%%%%%

% Directives %
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%%%%%%%%%%%%%%%

case 1,

%Identification Model

sys = [−L*[x(1)−u(1);x(2)−u(2);x(3)−u(3)] − ...

GAMAW*GAMA0*[x(1)−u(1);x(2)−u(2);x(3)−u(3)] + ...

P*[x(4:9)';x(10:15)';x(16:21)']*S(x,u);

%Learning Law

−2*GAMAW*(GAMA0*(x(4:9)−W01) + (x(1)−u(1))*S(x,u));

−2*GAMAW*(GAMA0*(x(10:15)−W02) + (x(2)−u(2))*S(x,u));

−2*GAMAW*(GAMA0*(x(16:21)−W03) + (x(3)−u(3))*S(x,u))];

%%%%%%%%%%%

% Outputs %

%%%%%%%%%%%

case 3,

sys = [x(1:3);

norm([x(4:9)';x(10:15)';x(16:21)'],'fro')];

case {2,4,9},

sys = [];

otherwise

error(['unhandled flag = ',num2str(flag)]);

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function S = S(x,u) %Regressors

S=[1*(z(u(1)));

1*(z(u(2)));

1*(z(u(3)));

1*(z(u(1))^2);

1*(z(u(2))^2);

1*(z(u(3))^2)];

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function z = z(uu) %Sigmoidal Function

lambda=0;

alfa=5;

beta=.5;

z=alfa/(exp(−beta*uu)+1)+lambda;

II.5 Code to plot the Figures 3.1, 3.3, 3.5 and 3.7

%Shown the graphs of the simulation

clc

fsize=20;

%Figure 1

fig=figure;

plot(t,x(:,1),t, Xestimated(:,1),':','LineWidth',2);set(0,'DefaultAxesFontSize',16);

grid on

grid minor
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h=legend('Actual','Estimated','Location','southeast');

set(h,'FontSize',fsize);

set(0,'DefaultAxesFontSize', 16);

xlabel('Time (s)','Fontsize',fsize);

ylabel('$$x_{1}(t), \hat{x}_{1}(t)$$','Interpreter','Latex','Fontsize',fsize)

YL = get(gca, 'ylim'); %plot the vertical line

YR = YL(2) − YL(1);

YL = [YL(1) − 1000 * YR, YL(2) + 1000 * YR];

line([5, 5], YL, 'YLimInclude', 'off', 'Color','k','LineWidth',2);

pa = annotation('arrow'); % store the arrow information in pa

pa.Parent = gca; % associate the arrow the the current axes

pa.X = [5 6.6]; % the location of arrow

pa.Y = [3 3];

pa.LineWidth = 2; % make the arrow bolder for the figure

pa.HeadWidth = 20;

pa.HeadLength = 20;

text(5.05,3.8,'disturbance','Fontsize',fsize) % write a text on top of the arrow

text(5.2,3.3,'in action','Fontsize',fsize) % write a text on top of the arrow

set(gcf,'units','normalized','outerposition',[0 0 1 1]);

saveas(gcf,'FIG31.png');

close(fig)

%Figure 2

fig=figure;

plot(t,x(:,2),t, Xestimated(:,2),':','LineWidth',2);set(0,'DefaultAxesFontSize',16);

grid on

grid minor

h=legend('Actual','Estimated','Location','southeast');

set(h,'FontSize',fsize);

set(0,'DefaultAxesFontSize', 16);

xlabel('Time (s)','Fontsize',fsize);

YL = get(gca, 'ylim'); %plot the vertical line

YR = YL(2) − YL(1);

YL = [YL(1) − 1000 * YR, YL(2) + 1000 * YR];

line([5, 5], YL, 'YLimInclude', 'off', 'Color','k','LineWidth',2);

pa = annotation('arrow'); % store the arrow information in pa

pa.Parent = gca; % associate the arrow the the current axes

pa.X = [5 6.6]; % the location of arrow

pa.Y = [5 5];

pa.LineWidth = 2; % make the arrow bolder for the figure

pa.HeadWidth = 20;

pa.HeadLength = 20;

text(5.05,7.1,'disturbance','Fontsize',fsize) % write a text on top of the arrow

text(5.2,5.8,'in action','Fontsize',fsize) % write a text on top of the arrow
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ylabel('$$x_{2}(t), \hat{x}_{2}(t)$$','Interpreter','Latex','Fontsize',fsize)

set(gcf,'units','normalized','outerposition',[0 0 1 1]);

saveas(gcf,'FIG33.png');

close(fig)

%Figure 3

fig=figure;

plot(t,x(:,3),t, Xestimated(:,3),':','LineWidth',2);set(0,'DefaultAxesFontSize',16);

grid on

grid minor

h=legend('Actual','Estimated','Location','northeast');

set(h,'FontSize',fsize);

set(0,'DefaultAxesFontSize', 16);

xlabel('Time (s)','Fontsize',fsize);

YL = get(gca, 'ylim'); %plot the vertical line

YR = YL(2) − YL(1);

YL = [YL(1) − 1000 * YR, YL(2) + 1000 * YR];

line([5, 5], YL, 'YLimInclude', 'off', 'Color','k','LineWidth',2);

pa = annotation('arrow'); % store the arrow information in pa

pa.Parent = gca; % associate the arrow the the current axes

pa.X = [5 6.6]; % the location of arrow

pa.Y = [25 25];

pa.LineWidth = 2; % make the arrow bolder for the figure

pa.HeadWidth = 20;

pa.HeadLength = 20;

text(5.05,28.5,'disturbance','Fontsize',fsize) % write a text on top of the arrow

text(5.2,26.5,'in action','Fontsize',fsize) % write a text on top of the arrow

ylabel('$$x_{3}(t), \hat{x}_{3}(t)$$','Interpreter','Latex','Fontsize',fsize)

set(gcf,'units','normalized','outerposition',[0 0 1 1]);

saveas(gcf,'FIG35.png');

close(fig)

%Figure 4

fig=figure;

plot(t,Xestimated(:,4),'LineWidth',2);set(0,'DefaultAxesFontSize',16);

grid on

grid minor

set(0,'DefaultAxesFontSize', 16);

xlabel('Time (s)','Fontsize',fsize);

ylabel('Estimated Weight Norm','Fontsize',fsize)

YL = get(gca, 'ylim'); %plot the vertical line

YR = YL(2) − YL(1);

YL = [YL(1) − 1000 * YR, YL(2) + 1000 * YR];

line([5, 5], YL, 'YLimInclude', 'off', 'Color','k','LineWidth',2);

pa = annotation('arrow'); % store the arrow information in pa

pa.Parent = gca; % associate the arrow the the current axes
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pa.X = [5 6.6]; % the location of arrow

pa.Y = [3 3];

pa.LineWidth = 2; % make the arrow bolder for the figure

pa.HeadWidth = 20;

pa.HeadLength = 20;

text(5.05,3.35,'disturbance','Fontsize',fsize) % write a text on top of the arrow

text(5.2,3.15,'in action','Fontsize',fsize) % write a text on top of the arrow

set(gcf,'units','normalized','outerposition',[0 0 1 1]);

saveas(gcf,'FIG37.png');

close(fig)

II.6 Code to plot the Figures 3.2, 3.4, 3.6 and 3.8

%Shown the graphs of the simulation

clc

fsize=20;

%Figure 1

fig=figure;

plot(t,x(:,1),t, Xestimated(:,1),':','LineWidth',2);set(0,'DefaultAxesFontSize',16);

grid on

grid minor

h=legend('Actual','Estimated','Location','southeast');

set(h,'FontSize',fsize);

set(0,'DefaultAxesFontSize', 16);

xlabel('Time (s)','Fontsize',fsize);

ylabel('$$x_{1}(t), \hat{x}_{1}(t)$$','Interpreter','Latex','Fontsize',fsize)

YL = get(gca, 'ylim'); %plot the vertical line

YR = YL(2) − YL(1);

YL = [YL(1) − 1000 * YR, YL(2) + 1000 * YR];

line([5, 5], YL, 'YLimInclude', 'off', 'Color','k','LineWidth',2);

pa = annotation('arrow'); % store the arrow information in pa

pa.Parent = gca; % associate the arrow the the current axes

pa.X = [5 6.6]; % the location of arrow

pa.Y = [3 3];

pa.LineWidth = 2; % make the arrow bolder for the figure

pa.HeadWidth = 20;

pa.HeadLength = 20;

text(5.05,3.75,'disturbance','Fontsize',fsize) % write a text on top of the arrow

text(5.2,3.3,'in action','Fontsize',fsize) % write a text on top of the arrow

set(gcf,'units','normalized','outerposition',[0 0 1 1]);

saveas(gcf,'FIG32.png');
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close(fig)

%Figure 2

fig=figure;

plot(t,x(:,2),t, Xestimated(:,2),':','LineWidth',2);set(0,'DefaultAxesFontSize',16);

grid on

grid minor

h=legend('Actual','Estimated','Location','southeast');

set(h,'FontSize',fsize);

set(0,'DefaultAxesFontSize', 16);

xlabel('Time (s)','Fontsize',fsize);

YL = get(gca, 'ylim'); %plot the vertical line

YR = YL(2) − YL(1);

YL = [YL(1) − 1000 * YR, YL(2) + 1000 * YR];

line([5, 5], YL, 'YLimInclude', 'off', 'Color','k','LineWidth',2);

pa = annotation('arrow'); % store the arrow information in pa

pa.Parent = gca; % associate the arrow the the current axes

pa.X = [5 6.6]; % the location of arrow

pa.Y = [5 5];

pa.LineWidth = 2; % make the arrow bolder for the figure

pa.HeadWidth = 20;

pa.HeadLength = 20;

text(5.05,6.8,'disturbance','Fontsize',fsize) % write a text on top of the arrow

text(5.2,5.8,'in action','Fontsize',fsize) % write a text on top of the arrow

ylabel('$$x_{2}(t), \hat{x}_{2}(t)$$','Interpreter','Latex','Fontsize',fsize)

set(gcf,'units','normalized','outerposition',[0 0 1 1]);

saveas(gcf,'FIG34.png');

close(fig)

%Figure 3

fig=figure;

plot(t,x(:,3),t, Xestimated(:,3),':','LineWidth',2);set(0,'DefaultAxesFontSize',16);

grid on

grid minor

h=legend('Actual','Estimated','Location','northeast');

set(h,'FontSize',fsize);

set(0,'DefaultAxesFontSize', 16);

xlabel('Time (s)','Fontsize',fsize);

YL = get(gca, 'ylim'); %plot the vertical line

YR = YL(2) − YL(1);

YL = [YL(1) − 1000 * YR, YL(2) + 1000 * YR];

line([5, 5], YL, 'YLimInclude', 'off', 'Color','k','LineWidth',2);

pa = annotation('arrow'); % store the arrow information in pa

pa.Parent = gca; % associate the arrow the the current axes

pa.X = [5 6.6]; % the location of arrow

pa.Y = [25 25];
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pa.LineWidth = 2; % make the arrow bolder for the figure

pa.HeadWidth = 20;

pa.HeadLength = 20;

text(5.05,28.5,'disturbance','Fontsize',fsize) % write a text on top of the arrow

text(5.2,26.5,'in action','Fontsize',fsize) % write a text on top of the arrow

ylabel('$$x_{3}(t), \hat{x}_{3}(t)$$','Interpreter','Latex','Fontsize',fsize)

set(gcf,'units','normalized','outerposition',[0 0 1 1]);

saveas(gcf,'FIG36.png');

close(fig)

%Figure 4

fig=figure;

plot(t,Xestimated(:,4),'LineWidth',2);set(0,'DefaultAxesFontSize',16);

grid on

grid minor

set(0,'DefaultAxesFontSize', 16);

xlabel('Time (s)','Fontsize',fsize);

ylabel('Estimated Weight Norm','Fontsize',fsize)

YL = get(gca, 'ylim'); %plot the vertical line

YR = YL(2) − YL(1);

YL = [YL(1) − 1000 * YR, YL(2) + 1000 * YR];

line([5, 5], YL, 'YLimInclude', 'off', 'Color','k','LineWidth',2);

pa = annotation('arrow'); % store the arrow information in pa

pa.Parent = gca; % associate the arrow the the current axes

pa.X = [5 6.6]; % the location of arrow

pa.Y = [3 3];

pa.LineWidth = 2; % make the arrow bolder for the figure

pa.HeadWidth = 20;

pa.HeadLength = 20;

text(5.05,4.5,'disturbance','Fontsize',fsize) % write a text on top of the arrow

text(5.2,3.6,'in action','Fontsize',fsize) % write a text on top of the arrow

set(gcf,'units','normalized','outerposition',[0 0 1 1]);

saveas(gcf,'FIG38.png');

close(fig)

II.7 Code for plant model corresponding to Figures 3.9 - 3.18

function [sys,x0,str,ts] = Plant(t,x,u,flag)

%System extract from Yu, H., Cai, G. and Li, Y., "Dynamic analysis and

%control of a new hyperchaotic ?nance control system", Nonlinear Dyn,

%Volume 67, Issue 3, Pages 2171−2182, 2012.
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a=0.9; %Constants

b=0.2;

c=1.5;

d=0.2;

k=0.17;

switch flag,

%%%%%%%%%%%%%%%%%%

% Initialization %

%%%%%%%%%%%%%%%%%%

case 0,

sizes = simsizes;

sizes.NumContStates = 4; %Number of Constant States

sizes.NumDiscStates = 0; %Number of Discret States

sizes.NumOutputs = 4; %Number of Outputs

sizes.NumInputs = 0; %Number of Inputs

sizes.DirFeedthrough = 1;

sizes.NumSampleTimes = 1;

sys = simsizes(sizes);

x0=[1 2 0.5 0.5]; %Initial Conditions

str=[];

ts=[0 0];

%%%%%%%%%%%%%%%

% Directives %

%%%%%%%%%%%%%%%

case 1, %Hyperchaotic System

sys= [ x(3)+(x(2)−a)*x(1)+x(4);

1−b*x(2)−(x(1))^2;

−x(1)−c*x(3);

−d*x(1)*x(2)−k*x(4)]+disturb(x,u,t);

%%%%%%%%%%%

% Outputs %

%%%%%%%%%%%

case 3,

sys = x;

%%%%%%%%

% End %

%%%%%%%%

case {2,4,9},

sys = []; % do nothing

otherwise

error(['unhandled flag = ',num2str(flag)]);

end

function disturb = disturb(x,u,t) %disturb

if t>=5

n=4;

disturb=n*[0.7*cos(6*t);cos(5*t);0.9*cos(4*t);0.8*sin(3*t)];

else

disturb=[0 ; 0; 0; 0];

end
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II.8 Code for identifier corresponding to Figures 3.9, 3.11, 3.13,

3.15 and 3.17

function [sys,x0,str,ts] = Identifier(t,x,u,flag)

%Controller and its parameters

L = 2*[1 0 0 0; 0 1 0 0;0 0 1 0; 0 0 0 1];

P = 20*[1 0 0 0; 0 1 0 0;0 0 1 0; 0 0 0 1];

GAMAW=0.5;

GAMA0=1;

G=1;

W01=G*[1 0 0 0 0 0 0 0]'; %W zero

W02=G*[0 1 0 0 0 0 0 0]';

W03=G*[0 0 1 0 0 0 0 0]';

W04=G*[0 0 0 1 0 0 0 0]';

switch flag,

%%%%%%%%%%%%%%%%%%%

% Initialization %

%%%%%%%%%%%%%%%%%%%

case 0,

sizes = simsizes;

sizes.NumContStates = 36; %Number of Constant States

sizes.NumDiscStates = 0; %Number of Discret States

sizes.NumOutputs = 5; %Number of Outputs

sizes.NumInputs = 4; %Number of Inputs

sizes.DirFeedthrough = 1;

sizes.NumSampleTimes = 1;

sys = simsizes(sizes);

x0=zeros(36,1); %

x0(1)=−2;

x0(2)=−2;

x0(3)=−2;

x0(4)=−2;

str=[];

ts=[0 0];

%%%%%%%%%%%%%%%

% Directives %

%%%%%%%%%%%%%%%

case 1,

%Identification Model

sys = [−L*[x(1)−u(1);x(2)−u(2);x(3)−u(3);x(4)−u(4)] − ...

GAMAW*GAMA0*[x(1)−u(1);x(2)−u(2);x(3)−u(3);x(4)−u(4)] + ...

P*[x(5:12)';x(13:20)';x(21:28)';x(29:36)']*S(x,u);
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%Learning Law

−2*GAMAW*(GAMA0*(x(5:12)−W01) + (x(1)−u(1))*S(x,u));

−2*GAMAW*(GAMA0*(x(13:20)−W02) + (x(2)−u(2))*S(x,u));

−2*GAMAW*(GAMA0*(x(21:28)−W03) + (x(3)−u(3))*S(x,u));

−2*GAMAW*(GAMA0*(x(29:36)−W04) + (x(4)−u(4))*S(x,u))];

%%%%%%%%%%%

% Outputs %

%%%%%%%%%%%

case 3,

sys = [x(1:4);

norm([x(5:12)';x(13:20)';x(21:28)';x(29:36)'],'fro')];

case {2,4,9},

sys = [];

otherwise

error(['unhandled flag = ',num2str(flag)]);

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function S = S(x,u) %Regressors

S=[1*(z(u(1)));

1*(z(u(2)));

1*(z(u(3)));

1*(z(u(4)));

1*(z(u(1))^2);

1*(z(u(2))^2);

1*(z(u(3))^2);

1*(z(u(4))^2)];

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function z = z(uu) %Sigmoidal Function

lambda=0;

alfa=5;

beta=.5;

z=alfa/(exp(−beta*uu)+1)+lambda;

II.9 Code for identifier corresponding to Figures 3.10, 3.12, 3.14,

3.16 and 3.18

function [sys,x0,str,ts] = Identifier(t,x,u,flag)

%Controller and its parameters

L = 2*[1 0 0 0; 0 1 0 0;0 0 1 0; 0 0 0 1];

P = 20*[1 0 0 0; 0 1 0 0;0 0 1 0; 0 0 0 1];

GAMAW=20;

GAMA0=1;

G=1;

W01=G*[1 0 0 0 0 0 0 0]'; %W zero

W02=G*[0 1 0 0 0 0 0 0]';
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W03=G*[0 0 1 0 0 0 0 0]';

W04=G*[0 0 0 1 0 0 0 0]';

switch flag,

%%%%%%%%%%%%%%%%%%%

% Initialization %

%%%%%%%%%%%%%%%%%%%

case 0,

sizes = simsizes;

sizes.NumContStates = 36; %Number of Constant States

sizes.NumDiscStates = 0; %Number of Discret States

sizes.NumOutputs = 5; %Number of Outputs

sizes.NumInputs = 4; %Number of Inputs

sizes.DirFeedthrough = 1;

sizes.NumSampleTimes = 1;

sys = simsizes(sizes);

x0=zeros(36,1); %

x0(1)=−2;

x0(2)=−2;

x0(3)=−2;

x0(4)=−2;

str=[];

ts=[0 0];

%%%%%%%%%%%%%%%

% Directives %

%%%%%%%%%%%%%%%

case 1,

%Identification Model

sys = [−L*[x(1)−u(1);x(2)−u(2);x(3)−u(3);x(4)−u(4)] − ...

GAMAW*GAMA0*[x(1)−u(1);x(2)−u(2);x(3)−u(3);x(4)−u(4)] + ...

P*[x(5:12)';x(13:20)';x(21:28)';x(29:36)']*S(x,u);

%Learning Law

−2*GAMAW*(GAMA0*(x(5:12)−W01) + (x(1)−u(1))*S(x,u));

−2*GAMAW*(GAMA0*(x(13:20)−W02) + (x(2)−u(2))*S(x,u));

−2*GAMAW*(GAMA0*(x(21:28)−W03) + (x(3)−u(3))*S(x,u));

−2*GAMAW*(GAMA0*(x(29:36)−W04) + (x(4)−u(4))*S(x,u))];

%%%%%%%%%%%

% Outputs %

%%%%%%%%%%%

case 3,

sys = [x(1:4);

norm([x(5:12)';x(13:20)';x(21:28)';x(29:36)'],'fro')];

case {2,4,9},

sys = [];

otherwise

error(['unhandled flag = ',num2str(flag)]);

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function S = S(x,u) %Regressors
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S=[1*(z(u(1)));

1*(z(u(2)));

1*(z(u(3)));

1*(z(u(4)));

1*(z(u(1))^2);

1*(z(u(2))^2);

1*(z(u(3))^2);

1*(z(u(4))^2)];

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function z = z(uu) %Sigmoidal Function

lambda=0;

alfa=5;

beta=.5;

z=alfa/(exp(−beta*uu)+1)+lambda;

II.10 Code to plot the Figures 3.9, 3.11, 3.13, 3.15 and 3.17

%Shown the graphs of the simulation

clc

fsize=20;

%Figure 1

fig=figure;

plot(t,x(:,1),t, Xestimated(:,1),':','LineWidth',2);set(0,'DefaultAxesFontSize',16);

grid on

grid minor

h=legend('Actual','Estimated','Location','southeast');

set(h,'FontSize',fsize);

set(0,'DefaultAxesFontSize', 16);

xlabel('Time (s)','Fontsize',fsize);

ylabel('$$x_{1}(t), \hat{x}_{1}(t)$$','Interpreter','Latex','Fontsize',fsize)

YL = get(gca, 'ylim'); %plot the vertical line

YR = YL(2) − YL(1);

YL = [YL(1) − 1000 * YR, YL(2) + 1000 * YR];

line([5, 5], YL, 'YLimInclude', 'off', 'Color','k','LineWidth',2);

pa = annotation('arrow'); % store the arrow information in pa

pa.Parent = gca; % associate the arrow the the current axes

pa.X = [5 6.6]; % the location of arrow

pa.Y = [3 3];

pa.LineWidth = 2; % make the arrow bolder for the figure

pa.HeadWidth = 20;

pa.HeadLength = 20;

text(5.05,3.54,'disturbance','Fontsize',fsize) % write a text on top of the arrow

text(5.2,3.25,'in action','Fontsize',fsize) % write a text on top of the arrow
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set(gcf,'units','normalized','outerposition',[0 0 1 1]);

saveas(gcf,'FIG39.png');

close(fig)

%Figure 2

fig=figure;

plot(t,x(:,2),t, Xestimated(:,2),':','LineWidth',2);set(0,'DefaultAxesFontSize',16);

grid on

grid minor

h=legend('Actual','Estimated','Location','southeast');

set(h,'FontSize',fsize);

set(0,'DefaultAxesFontSize', 16);

xlabel('Time (s)','Fontsize',fsize);

YL = get(gca, 'ylim'); %plot the vertical line

YR = YL(2) − YL(1);

YL = [YL(1) − 1000 * YR, YL(2) + 1000 * YR];

line([5, 5], YL, 'YLimInclude', 'off', 'Color','k','LineWidth',2);

pa = annotation('arrow'); % store the arrow information in pa

pa.Parent = gca; % associate the arrow the the current axes

pa.X = [5 6.6]; % the location of arrow

pa.Y = [5 5];

pa.LineWidth = 2; % make the arrow bolder for the figure

pa.HeadWidth = 20;

pa.HeadLength = 20;

text(5.05,5.65,'disturbance','Fontsize',fsize) % write a text on top of the arrow

text(5.2,5.3,'in action','Fontsize',fsize) % write a text on top of the arrow

ylabel('$$x_{2}(t), \hat{x}_{2}(t)$$','Interpreter','Latex','Fontsize',fsize)

set(gcf,'units','normalized','outerposition',[0 0 1 1]);

saveas(gcf,'FIG311.png');

close(fig)

%Figure 3

fig=figure;

plot(t,x(:,3),t, Xestimated(:,3),':','LineWidth',2);set(0,'DefaultAxesFontSize',16);

grid on

grid minor

h=legend('Actual','Estimated','Location','southeast');

set(h,'FontSize',fsize);

set(0,'DefaultAxesFontSize', 16);

xlabel('Time (s)','Fontsize',fsize);

YL = get(gca, 'ylim'); %plot the vertical line

YR = YL(2) − YL(1);

YL = [YL(1) − 1000 * YR, YL(2) + 1000 * YR];

line([5, 5], YL, 'YLimInclude', 'off', 'Color','k','LineWidth',2);

pa = annotation('arrow'); % store the arrow information in pa

pa.Parent = gca; % associate the arrow the the current axes
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pa.X = [5 6.6]; % the location of arrow

pa.Y = [2 2];

pa.LineWidth = 2; % make the arrow bolder for the figure

pa.HeadWidth = 20;

pa.HeadLength = 20;

text(5.05,2.4,'disturbance','Fontsize',fsize) % write a text on top of the arrow

text(5.2,2.2,'in action','Fontsize',fsize) % write a text on top of the arrow

ylabel('$$x_{3}(t), \hat{x}_{3}(t)$$','Interpreter','Latex','Fontsize',fsize)

set(gcf,'units','normalized','outerposition',[0 0 1 1]);

saveas(gcf,'FIG313.png');

close(fig)

%Figure 4

fig=figure;

plot(t,x(:,4),t, Xestimated(:,4),':','LineWidth',2);set(0,'DefaultAxesFontSize',16);

grid on

grid minor

h=legend('Actual','Estimated','Location','southeast');

set(h,'FontSize',fsize);

set(0,'DefaultAxesFontSize', 16);

xlabel('Time (s)','Fontsize',fsize);

YL = get(gca, 'ylim'); %plot the vertical line

YR = YL(2) − YL(1);

YL = [YL(1) − 1000 * YR, YL(2) + 1000 * YR];

line([5, 5], YL, 'YLimInclude', 'off', 'Color','k','LineWidth',2);

pa = annotation('arrow'); % store the arrow information in pa

pa.Parent = gca; % associate the arrow the the current axes

pa.X = [5 6.6]; % the location of arrow

pa.Y = [2 2];

pa.LineWidth = 2; % make the arrow bolder for the figure

pa.HeadWidth = 20;

pa.HeadLength = 20;

text(5.05,2.45,'disturbance','Fontsize',fsize) % write a text on top of the arrow

text(5.2,2.2,'in action','Fontsize',fsize) % write a text on top of the arrow

ylabel('$$x_{4}(t), \hat{x}_{4}(t)$$','Interpreter','Latex','Fontsize',fsize)

set(gcf,'units','normalized','outerposition',[0 0 1 1]);

saveas(gcf,'FIG315.png');

close(fig)

%Figure 5

fig=figure;

plot(t,Xestimated(:,5),'LineWidth',2);set(0,'DefaultAxesFontSize',16);

grid on

grid minor

set(0,'DefaultAxesFontSize', 16);

ylim([0 2.5]);
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xlabel('Time (s)','Fontsize',fsize);

ylabel('Estimated Weight Norm','Fontsize',fsize)

YL = get(gca, 'ylim'); %plot the vertical line

YR = YL(2) − YL(1);

YL = [YL(1) − 1000 * YR, YL(2) + 1000 * YR];

line([5, 5], YL, 'YLimInclude', 'off', 'Color','k','LineWidth',2);

pa = annotation('arrow'); % store the arrow information in pa

pa.Parent = gca; % associate the arrow the the current axes

pa.X = [5 6.6]; % the location of arrow

pa.Y = [1 1];

pa.LineWidth = 2; % make the arrow bolder for the figure

pa.HeadWidth = 20;

pa.HeadLength = 20;

text(5.05,1.19,'disturbance','Fontsize',fsize) % write a text on top of the arrow

text(5.2,1.08,'in action','Fontsize',fsize) % write a text on top of the arrow

set(gcf,'units','normalized','outerposition',[0 0 1 1]);

saveas(gcf,'FIG317.png');

close(fig)

II.11 Code to plot the Figures 3.10, 3.12, 3.14, 3.16 and 3.18

%Shown the graphs of the simulation

clc

fsize=20;

%Figure 1

fig=figure;

plot(t,x(:,1),t, Xestimated(:,1),':','LineWidth',2);set(0,'DefaultAxesFontSize',16);

grid on

grid minor

h=legend('Actual','Estimated','Location','southeast');

set(h,'FontSize',fsize);

set(0,'DefaultAxesFontSize', 16);

xlabel('Time (s)','Fontsize',fsize);

ylabel('$$x_{1}(t), \hat{x}_{1}(t)$$','Interpreter','Latex','Fontsize',fsize)

YL = get(gca, 'ylim'); %plot the vertical line

YR = YL(2) − YL(1);

YL = [YL(1) − 1000 * YR, YL(2) + 1000 * YR];

line([5, 5], YL, 'YLimInclude', 'off', 'Color','k','LineWidth',2);

pa = annotation('arrow'); % store the arrow information in pa

pa.Parent = gca; % associate the arrow the the current axes

pa.X = [5 6.6]; % the location of arrow
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pa.Y = [3 3];

pa.LineWidth = 2; % make the arrow bolder for the figure

pa.HeadWidth = 20;

pa.HeadLength = 20;

text(5.05,3.54,'disturbance','Fontsize',fsize) % write a text on top of the arrow

text(5.2,3.25,'in action','Fontsize',fsize) % write a text on top of the arrow

set(gcf,'units','normalized','outerposition',[0 0 1 1]);

saveas(gcf,'FIG310.png');

close(fig)

%Figure 2

fig=figure;

plot(t,x(:,2),t, Xestimated(:,2),':','LineWidth',2);set(0,'DefaultAxesFontSize',16);

grid on

grid minor

h=legend('Actual','Estimated','Location','southeast');

set(h,'FontSize',fsize);

set(0,'DefaultAxesFontSize', 16);

xlabel('Time (s)','Fontsize',fsize);

YL = get(gca, 'ylim'); %plot the vertical line

YR = YL(2) − YL(1);

YL = [YL(1) − 1000 * YR, YL(2) + 1000 * YR];

line([5, 5], YL, 'YLimInclude', 'off', 'Color','k','LineWidth',2);

pa = annotation('arrow'); % store the arrow information in pa

pa.Parent = gca; % associate the arrow the the current axes

pa.X = [5 6.6]; % the location of arrow

pa.Y = [5 5];

pa.LineWidth = 2; % make the arrow bolder for the figure

pa.HeadWidth = 20;

pa.HeadLength = 20;

text(5.05,5.65,'disturbance','Fontsize',fsize) % write a text on top of the arrow

text(5.2,5.3,'in action','Fontsize',fsize) % write a text on top of the arrow

ylabel('$$x_{2}(t), \hat{x}_{2}(t)$$','Interpreter','Latex','Fontsize',fsize)

set(gcf,'units','normalized','outerposition',[0 0 1 1]);

saveas(gcf,'FIG312.png');

close(fig)

%Figure 3

fig=figure;

plot(t,x(:,3),t, Xestimated(:,3),':','LineWidth',2);set(0,'DefaultAxesFontSize',16);

grid on

grid minor

h=legend('Actual','Estimated','Location','southeast');

set(h,'FontSize',fsize);

set(0,'DefaultAxesFontSize', 16);

xlabel('Time (s)','Fontsize',fsize);
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YL = get(gca, 'ylim'); %plot the vertical line

YR = YL(2) − YL(1);

YL = [YL(1) − 1000 * YR, YL(2) + 1000 * YR];

line([5, 5], YL, 'YLimInclude', 'off', 'Color','k','LineWidth',2);

pa = annotation('arrow'); % store the arrow information in pa

pa.Parent = gca; % associate the arrow the the current axes

pa.X = [5 6.6]; % the location of arrow

pa.Y = [2 2];

pa.LineWidth = 2; % make the arrow bolder for the figure

pa.HeadWidth = 20;

pa.HeadLength = 20;

text(5.05,2.4,'disturbance','Fontsize',fsize) % write a text on top of the arrow

text(5.2,2.2,'in action','Fontsize',fsize) % write a text on top of the arrow

ylabel('$$x_{3}(t), \hat{x}_{3}(t)$$','Interpreter','Latex','Fontsize',fsize)

set(gcf,'units','normalized','outerposition',[0 0 1 1]);

saveas(gcf,'FIG314.png');

close(fig)

%Figure 4

fig=figure;

plot(t,x(:,4),t, Xestimated(:,4),':','LineWidth',2);set(0,'DefaultAxesFontSize',16);

grid on

grid minor

h=legend('Actual','Estimated','Location','southeast');

set(h,'FontSize',fsize);

set(0,'DefaultAxesFontSize', 16);

xlabel('Time (s)','Fontsize',fsize);

YL = get(gca, 'ylim'); %plot the vertical line

YR = YL(2) − YL(1);

YL = [YL(1) − 1000 * YR, YL(2) + 1000 * YR];

line([5, 5], YL, 'YLimInclude', 'off', 'Color','k','LineWidth',2);

pa = annotation('arrow'); % store the arrow information in pa

pa.Parent = gca; % associate the arrow the the current axes

pa.X = [5 6.6]; % the location of arrow

pa.Y = [2 2];

pa.LineWidth = 2; % make the arrow bolder for the figure

pa.HeadWidth = 20;

pa.HeadLength = 20;

text(5.05,2.45,'disturbance','Fontsize',fsize) % write a text on top of the arrow

text(5.2,2.2,'in action','Fontsize',fsize) % write a text on top of the arrow

ylabel('$$x_{4}(t), \hat{x}_{4}(t)$$','Interpreter','Latex','Fontsize',fsize)

set(gcf,'units','normalized','outerposition',[0 0 1 1]);

saveas(gcf,'FIG316.png');

close(fig)
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%Figure 5

fig=figure;

plot(t,Xestimated(:,5),'LineWidth',2);set(0,'DefaultAxesFontSize',16);

grid on

grid minor

set(0,'DefaultAxesFontSize', 16);

xlabel('Time (s)','Fontsize',fsize);

ylabel('Estimated Weight Norm','Fontsize',fsize)

YL = get(gca, 'ylim'); %plot the vertical line

YR = YL(2) − YL(1);

YL = [YL(1) − 1000 * YR, YL(2) + 1000 * YR];

line([5, 5], YL, 'YLimInclude', 'off', 'Color','k','LineWidth',2);

pa = annotation('arrow'); % store the arrow information in pa

pa.Parent = gca; % associate the arrow the the current axes

pa.X = [5 6.6]; % the location of arrow

pa.Y = [4 4];

pa.LineWidth = 2; % make the arrow bolder for the figure

pa.HeadWidth = 20;

pa.HeadLength = 20;

text(5.05,4.65,'disturbance','Fontsize',fsize) % write a text on top of the arrow

text(5.2,4.3,'in action','Fontsize',fsize) % write a text on top of the arrow

set(gcf,'units','normalized','outerposition',[0 0 1 1]);

saveas(gcf,'FIG318.png');

close(fig)

II.12 Simulink plant used for simulations corresponding to Figures

3.19 - 3.29

II.13 Code for the welding system plant corresponding to Figures

3.19-3.29
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[frame=single]

ffunction [sys,x0,str,ts] = Plant(t,x,u,flag)

%System extract from Anzehaee, M. M., Haeri, M. "Welding current and arc voltage ...

control in a

%GMAW process using ARMarkov based MPC", Control Engineering Practice, Volume 19,

%Issue 12, Pages 1408−1422, 2011.

pi=3.14159265;

c1=3.3*10^−10; %Constants

c2=0.78*10^−10;

re=0.6*10^−3;

Ls=306*10^−6;

tm=50*10^−3;

Ra=0.0237;

Rs=6.8*10^−3;

p=0.43;

V0=15.5;

Ea=400;

lc=0.025;

km=1;

switch flag,

%%%%%%%%%%%%%%%%%%

% Initialization %

%%%%%%%%%%%%%%%%%%

case 0,

sizes = simsizes;

sizes.NumContStates = 4; %Number of Constant States

sizes.NumDiscStates = 0; %Number of Discret States

sizes.NumOutputs = 6; %Number of Outputs

sizes.NumInputs = 2; %Number of Inputs

sizes.DirFeedthrough = 1;

sizes.NumSampleTimes = 1;

sys = simsizes(sizes);

x0=[0.01; 0; 0; 0.01]; %Initial Conditions

str=[];

ts=[0 0];

%%%%%%%%%%%%%%%

% Directives % % Welding System

%%%%%%%%%%%%%%%

case 1,

sys(1) = x(3)−( c1*x(2)/(pi*re^2) + c2*p*x(1)*x(2)^2/(pi*re^2) ); %% ...

stick out

sys(2) = (1/Ls)*(u(2)−(Ra+Rs+p*x(1))*x(2)−V0−Ea*(lc−x(1))); %% ...

welding current

sys(3) = (1/tm)*(km*u(1)−x(3)); %% ...

welding wire speed

sys(4) = Ra*(1/Ls)*(u(2)−(Ra+Rs+p*x(1))*x(2)−V0−Ea*(lc−x(1))) − Ea*(x(3)−( ...

c1*x(2)/(pi*re^2) + c2*p*x(1)*x(2)^2/(pi*re^2) )); %% arc voltage

%%%%%%%%%%

% Output %
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%%%%%%%%%%

case 3,

sys = [x;u];

%%%%%%%%%%%%%

% Terminate %

%%%%%%%%%%%%%

case {2,4,9},

sys = [];

otherwise

error(['unhandled flag = ',num2str(flag)]);

end

II.14 Code for identifier corresponding to Figures 3.19 - 3.29

function [sys,x0,str,ts] = Identifier(t,x,u,flag)

%Identifier and its parameters

L = 200*[20 0 0 0; 0 10 0 0; 0 0 2 0; 0 0 0 3];

P = 2000*[20 0 0 0; 0 10 0 0; 0 0 6 0; 0 0 0 4];

GAMAW=0.001;

GAMA0=0.001;

G=1;

W01=G*[1 0 0 0 0 0 0 0]'; %W zero

W02=G*[0 1 0 0 0 0 0 0]';

W03=G*[0 0 1 0 0 0 0 0]';

W04=G*[0 0 0 1 0 0 0 0]';

switch flag,

%%%%%%%%%%%%%%%%%%

% Initialization %

%%%%%%%%%%%%%%%%%%

case 0,

sizes = simsizes;

sizes.NumContStates = 36; %Number of Constant States

sizes.NumDiscStates = 0; %Number of Discret States

sizes.NumOutputs = 5; %Number of Outputs

sizes.NumInputs = 6; %Number of Inputs

sizes.DirFeedthrough = 1;

sizes.NumSampleTimes = 1;

sys = simsizes(sizes);

x0=zeros(36,1); %Initial Conditions

x0(1)=0;

x0(2)=0;

x0(3)=0;

str=[];

ts=[0 0];
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%%%%%%%%%%%%%%%

% Directives %

%%%%%%%%%%%%%%%

case 1,

%Identifier Model

sys = [−L*[x(1)−u(1);x(2)−u(2);x(3)−u(3);x(4)−u(4)] − ...

GAMAW*GAMA0*[x(1)−u(1);x(2)−u(2);x(3)−u(3);x(4)−u(4)] + ...

P*[x(5:12)';x(13:20)';x(21:28)';x(29:36)']*S(x,u);

%Learning Law

−2*GAMAW*(GAMA0*(x(5:12)−W01) + (x(1)−u(1))*S(x,u));

−2*GAMAW*(GAMA0*(x(13:20)−W02) + (x(2)−u(2))*S(x,u));

−2*GAMAW*(GAMA0*(x(21:28)−W03) + (x(3)−u(3))*S(x,u));

−2*GAMAW*(GAMA0*(x(29:36)−W04) + (x(4)−u(4))*S(x,u))];

%%%%%%%%%%%

% Outputs %

%%%%%%%%%%%

case 3,

sys = [x(1:4);

norm([x(5:12)';x(13:20)';x(21:28)';x(29:36)'],'fro')];

case {2,4,9},

sys = [];

otherwise

error(['unhandled flag = ',num2str(flag)]);

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function S = S(x,u) %Regressors

S=[1*(z(u(1)));

1*(z(u(2)));

1*(z(u(3)));

1*(z(u(4)));

1*(z(u(1)))*(z(u(2)));

1*(z(u(2))^2);

(z(u(5)))

(z(u(6)))];

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function z = z(uu) %Sigmoidal Function

lamda=0;

alfa=5;

beta=.5;

z=alfa/(exp(−beta*uu)+1)+lamda;

II.15 Code to plot the Figures 3.19 - 3.29

%Shown the graphs of the simulation

clc

fsize=20;
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%Figure 1

fig=figure;

plot(t,x(:,5),'LineWidth',2);set(0,'DefaultAxesFontSize',16);

grid on

grid minor

h=legend('Input 1','Location','southeast');

set(h,'FontSize',fsize);

set(0,'DefaultAxesFontSize', 16);

ylim([−0.01 0.19]);

xlabel('Time (s)','Fontsize',fsize);

ylabel('$$u_{1}(t)$$','Interpreter','Latex','Fontsize',fsize);

set(gcf,'units','normalized','outerposition',[0 0 1 1]);

saveas(gcf,'FIG319.png');

close(fig)

%Figure 2

fig=figure;

plot(t,x(:,6),'LineWidth',2);set(0,'DefaultAxesFontSize',16);

grid on

grid minor

h=legend('Input 2','Location','southeast');

set(h,'FontSize',fsize);

set(0,'DefaultAxesFontSize', 16);

ylim([−2 40]);

xlabel('Time (s)','Fontsize',fsize);

ylabel('$$u_{2}(t)$$','Interpreter','Latex','Fontsize',fsize);

set(gcf,'units','normalized','outerposition',[0 0 1 1]);

saveas(gcf,'FIG320.png');

close(fig)

%Figure 3

fig=figure;

plot(t,x(:,1),t,Xestimated(:,1),':','LineWidth',2);set(0,'DefaultAxesFontSize',16);

grid on

grid minor

h=legend('Actual','Estimated','Location','southeast');

set(h,'FontSize',fsize);

set(0,'DefaultAxesFontSize', 16);

ylim([0 0.026]);

xlabel('Time (s)','Fontsize',fsize);

ylabel('$$x_{1}(t), \hat{x}_{1}(t)$$','Interpreter','Latex','Fontsize',fsize)

set(gcf,'units','normalized','outerposition',[0 0 1 1]);

saveas(gcf,'FIG321.png');

close(fig)

%Figure 4

fig=figure;

plot(t,x(:,2),t,Xestimated(:,2),':','LineWidth',2);set(0,'DefaultAxesFontSize',16);

grid on

grid minor

h=legend('Actual','Estimated','Location','southeast');

set(h,'FontSize',fsize);
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set(0,'DefaultAxesFontSize', 16);

ylim([−600 550]);

xlabel('Time (s)','Fontsize',fsize);

ylabel('$$x_{2}(t), \hat{x}_{2}(t)$$','Interpreter','Latex','Fontsize',fsize)

set(gcf,'units','normalized','outerposition',[0 0 1 1]);

saveas(gcf,'FIG322.png');

close(fig)

%Figure 5

fig=figure;

plot(t,x(:,3),t,Xestimated(:,3),':','LineWidth',2);set(0,'DefaultAxesFontSize',16);

grid on

grid minor

h=legend('Actual','Estimated','Location','southeast');

set(h,'FontSize',fsize);

set(0,'DefaultAxesFontSize', 16);

ylim([−0.01 0.19]);

xlabel('Time (s)','Fontsize',fsize);

ylabel('$$x_{3}(t), \hat{x}_{3}(t)$$','Interpreter','Latex','Fontsize',fsize)

set(gcf,'units','normalized','outerposition',[0 0 1 1]);

saveas(gcf,'FIG323.png');

close(fig)

%Figure 6

fig=figure;

plot(t,x(:,4),t,Xestimated(:,4),':','LineWidth',2);set(0,'DefaultAxesFontSize',16);

grid on

grid minor

h=legend('Actual','Estimated','Location','southeast');

set(h,'FontSize',fsize);

set(0,'DefaultAxesFontSize', 16);

ylim([−16 14]);

xlabel('Time (s)','Fontsize',fsize);

ylabel('$$x_{4}(t), \hat{x}_{4}(t)$$','Interpreter','Latex','Fontsize',fsize)

set(gcf,'units','normalized','outerposition',[0 0 1 1]);

saveas(gcf,'FIG324.png');

close(fig)

%Figure 7

fig=figure;

semilogx(t,x(:,1),t,Xestimated(:,1),':','LineWidth',2);

set(0,'DefaultAxesFontSize',16);

grid on

grid minor

h=legend('Actual','Estimated','Location','northwest');

set(h,'FontSize',fsize);

set(0,'DefaultAxesFontSize', 16);

xlim([0.00007 8]);

ylim([0 0.026]);

xlabel('Time (s)','Fontsize',fsize);

ylabel('$$x_{1}(t), \hat{x}_{1}(t)$$','Interpreter','Latex','Fontsize',fsize)

set(gcf,'units','normalized','outerposition',[0 0 1 1]);
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saveas(gcf,'FIG325.png');

close(fig)

%Figure 8

fig=figure;

semilogx(t,x(:,2),t,Xestimated(:,2),':','LineWidth',2);

set(0,'DefaultAxesFontSize',16);

grid on

grid minor

h=legend('Actual','Estimated','Location','northwest');

set(h,'FontSize',fsize);

set(0,'DefaultAxesFontSize', 16);

xlim([0.00007 8]);

ylim([−600 550]);

xlabel('Time (s)','Fontsize',fsize);

ylabel('$$x_{2}(t), \hat{x}_{2}(t)$$','Interpreter','Latex','Fontsize',fsize)

set(gcf,'units','normalized','outerposition',[0 0 1 1]);

saveas(gcf,'FIG326.png');

close(fig)

%Figure 9

fig=figure;

semilogx(t,x(:,3),t,Xestimated(:,3),':','LineWidth',2);

set(0,'DefaultAxesFontSize',16);

grid on

grid minor

h=legend('Actual','Estimated','Location','northwest');

set(h,'FontSize',fsize);

set(0,'DefaultAxesFontSize', 16);

xlim([0.00007 8]);

ylim([−0.01 0.19]);

xlabel('Time (s)','Fontsize',fsize);

ylabel('$$x_{3}(t), \hat{x}_{3}(t)$$','Interpreter','Latex','Fontsize',fsize)

set(gcf,'units','normalized','outerposition',[0 0 1 1]);

saveas(gcf,'FIG327.png');

close(fig)

%Figure 10

fig=figure;

semilogx(t,x(:,4),t,Xestimated(:,4),':','LineWidth',2);

set(0,'DefaultAxesFontSize',16);

grid on

grid minor

h=legend('Actual','Estimated','Location','northwest');

set(h,'FontSize',fsize);

set(0,'DefaultAxesFontSize', 16);

xlim([0.00007 8]);

ylim([−16 14]);

xlabel('Time (s)','Fontsize',fsize);

ylabel('$$x_{4}(t), \hat{x}_{4}(t)$$','Interpreter','Latex','Fontsize',fsize)

set(gcf,'units','normalized','outerposition',[0 0 1 1]);

saveas(gcf,'FIG328.png');
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close(fig)

%Figure 11

fig=figure;

plot(t,Xestimated(:,5),'LineWidth',2);set(0,'DefaultAxesFontSize',16);

grid on

grid minor

set(0,'DefaultAxesFontSize', 16);

ylim([0 0.013]);

xlabel('Time (s)','Fontsize',fsize);

ylabel('Estimated Weight Norm','Fontsize',fsize)

set(gcf,'units','normalized','outerposition',[0 0 1 1]);

saveas(gcf,'FIG329.png');

close(fig)

II.16 Simulink plant used for simulations corresponding to Figures

4.1 - 4.8

II.17 Code for plant model corresponding to Figures 4.1 - 4.8

[frame=single]

function [sys,x0,str,ts] = Plant(t,x,u,flag)

%System extract from Dimassi, H. "Adaptive Unknown−Input Observers−Based ...

Synchronization

%of Chaotic Systems for Telecommunication", IEEE TRANSACTIONS ON CIRCUITS AND ...

SYSTEMS,

%Volume 58, Issue 4, Pages 800−812, 2011.

% Rossler System

a=0.398; %Constants

b=2;
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c=4;

switch flag,

%%%%%%%%%%%%%%%%%%

% Initialization %

%%%%%%%%%%%%%%%%%%

case 0,

sizes = simsizes;

sizes.NumContStates = 3; %Number of Constant States

sizes.NumDiscStates = 0; %Number of Discret States

sizes.NumOutputs = 3; %Number of Outputs

sizes.NumInputs = 0; %Number of Inputs

sizes.DirFeedthrough = 1;

sizes.NumSampleTimes = 1;

sys = simsizes(sizes);

x0=[2 1 2]; %Initial Conditions

str=[];

ts=[0 0];

%%%%%%%%%%%%%%%

% Derivatives %

%%%%%%%%%%%%%%%

case 1,

sys(1) = −(x(2) + x(3));

sys(2) = x(1) + a*x(2);

sys(3) = b + x(3)*(x(1)−c) + disturb(x,u,t);

%%%%%%%%%%

% Output %

%%%%%%%%%%

case 3,

sys = x;

%%%%%%%%

% End %

%%%%%%%%

case {2,4,9},

sys = [];

otherwise

error(['unhandled flag = ',num2str(flag)]);

end

function disturb = disturb(x,u,t) %disturb

if t>=5

disturb=0.5*sqrt(x(2)^2 + x(1)^2 + x(3)^2)+ 0.5*(sin(4*t) + cos(2*t));

else

disturb=0;

end
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II.18 Code for observer corresponding to Figures 4.1, 4.3, 4.5 and

4.7

function [sys,x0,str,ts] = Observer(t,x,u,flag)

%Observer and its parameters

K=3;

W0=1*[1 0 0 1 0 1 0 1 0]'; %W zero

A=[0 −1 −1;1 0.398 0; 0 0 −4];

B=[0;0;1];

T=[1 1];

GAMA0=1;

GAMAW=0.5;

alfa=2*GAMA0*GAMAW;

P12 = 449/500 + alfa/2;

P11 = 4 + P12^2;

P=[P11 P12 1; P12 1 0;1 0 1];

Lsolver1 = [2*P11 0 2*P12 0 2 0 (1 + P11*alfa + 2*P12);

P12 0 1 0 0 0 (P12*(199/500) − P11 + P12*alfa + 1);

1 P11 0 P12 1 1 (alfa − P11 − 4);

0 P12 0 1 0 0 (−1 − P12);

0 2 0 0 0 2 (alfa − 10 + 1)];

Lsolver2 = rref(Lsolver1);

L11=Lsolver2(1,7);

L12=Lsolver2(2,7);

L21=Lsolver2(3,7);

L22=Lsolver2(4,7);

L31=Lsolver2(5,7);

L32=0;

L = [L11 L12; L21 L22; L31 L32];

switch flag,

%%%%%%%%%%%%%%%%%%

% Initialization %

%%%%%%%%%%%%%%%%%%

case 0,

sizes = simsizes;

sizes.NumContStates = 12; %Number of Constant States

sizes.NumDiscStates = 0; %Number of Discret States

sizes.NumOutputs = 5; %Number of Outputs

sizes.NumInputs = 3; %Number of Inputs

sizes.DirFeedthrough = 1;

sizes.NumSampleTimes = 1;

sys = simsizes(sizes);

x0=zeros(12,1); %

x0(1)=0;
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x0(2)=0;

x0(3)=0;

str=[];

ts=[0 0];

%%%%%%%%%%%%%%%

% Directives %

%%%%%%%%%%%%%%%

case 1,

%Observer model

sys = [A*x(1:3)−L*[x(1)−u(1);x(3)−u(3)]+B*K*x(4:12)'*S(x,u);

%Learning Law

−2*GAMAW*(GAMA0*(x(4:12)−W0) + K*T*[x(1)−u(1);x(3)−u(3)]*S(x,u))];

%%%%%%%%%%%

% Outputs %

%%%%%%%%%%%

case 3,

sys = [x(1:3);

norm([x(4:12)'],'fro');norm(x(1:3)−u(1:3))];

case {2,4,9},

sys = [];

otherwise

error(['unhandled flag = ',num2str(flag)]);

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function S = S(x,u) %Regressors

S=[1*(z(u(1)));

1*(z(x(2)));

1*(z(u(3)));

1*(z(x(2)))*(z(u(1)));

1*(z(x(2)))*(z(u(3)));

1*(z(u(1)))*(z(u(3)));

1*(z(u(1))^2);

1*(z(x(2))^2);

1*(z(u(3))^2)];

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function z = z(uu) %Sigmoidal Function

lambda=0;

alfa=5;

beta=.5;

z=alfa/(exp(−beta*uu)+1)+lambda;

II.19 Code for observer corresponding to Figures 4.1, 4.3, 4.5 and

4.7

function [sys,x0,str,ts] = Observer(t,x,u,flag)
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%Observer and its parameters

K=3;

W0=1*[1 0 0 1 0 1 0 1 0]'; %W zero

A=[0 −1 −1;1 0.398 0; 0 0 −4];

B=[0;0;1];

T=[1 1];

GAMA0=1;

GAMAW=8;

alfa=2*GAMA0*GAMAW;

P12 = 449/500 + alfa/2;

P11 = 4 + P12^2;

P=[P11 P12 1; P12 1 0;1 0 1];

Lsolver1 = [2*P11 0 2*P12 0 2 0 (1 + P11*alfa + 2*P12);

P12 0 1 0 0 0 (P12*(199/500) − P11 + P12*alfa + 1);

1 P11 0 P12 1 1 (alfa − P11 − 4);

0 P12 0 1 0 0 (−1 − P12);

0 2 0 0 0 2 (alfa − 10 + 1)];

Lsolver2 = rref(Lsolver1);

L11=Lsolver2(1,7);

L12=Lsolver2(2,7);

L21=Lsolver2(3,7);

L22=Lsolver2(4,7);

L31=Lsolver2(5,7);

L32=0;

L = [L11 L12; L21 L22; L31 L32];

switch flag,

%%%%%%%%%%%%%%%%%%

% Initialization %

%%%%%%%%%%%%%%%%%%

case 0,

sizes = simsizes;

sizes.NumContStates = 12; %Number of Constant States

sizes.NumDiscStates = 0; %Number of Discret States

sizes.NumOutputs = 5; %Number of Outputs

sizes.NumInputs = 3; %Number of Inputs

sizes.DirFeedthrough = 1;

sizes.NumSampleTimes = 1;

sys = simsizes(sizes);

x0=zeros(12,1); %

x0(1)=0;

x0(2)=0;

x0(3)=0;

str=[];

ts=[0 0];

%%%%%%%%%%%%%%%

% Directives %

%%%%%%%%%%%%%%%

case 1,
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%Observer model

sys = [A*x(1:3)−L*[x(1)−u(1);x(3)−u(3)]+B*K*x(4:12)'*S(x,u);

%Learning Law

−2*GAMAW*(GAMA0*(x(4:12)−W0) + K*T*[x(1)−u(1);x(3)−u(3)]*S(x,u))];

%%%%%%%%%%%

% Outputs %

%%%%%%%%%%%

case 3,

sys = [x(1:3);

norm([x(4:12)'],'fro');norm(x(1:3)−u(1:3))];

case {2,4,9},

sys = [];

otherwise

error(['unhandled flag = ',num2str(flag)]);

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function S = S(x,u) %Regressors

S=[1*(z(u(1)));

1*(z(x(2)));

1*(z(u(3)));

1*(z(x(2)))*(z(u(1)));

1*(z(x(2)))*(z(u(3)));

1*(z(u(1)))*(z(u(3)));

1*(z(u(1))^2);

1*(z(x(2))^2);

1*(z(u(3))^2)];

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function z = z(uu) %Sigmoidal Function

lambda=0;

alfa=5;

beta=.5;

z=alfa/(exp(−beta*uu)+1)+lambda;

II.20 Code to plot the Figures 4.1, 4.3, 4.5 and 4.7

%Shown the graphs of the simulation

clc

fsize=20;

%Figure 1

fig=figure;

plot(t,x(:,1),t, Xestimated(:,1),':','LineWidth',2);set(0,'DefaultAxesFontSize',16);

grid on

grid minor

h=legend('Actual','Estimated','Location','southeast');

set(h,'FontSize',fsize);

set(0,'DefaultAxesFontSize', 16);
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xlabel('Time (s)','Fontsize',fsize);

ylabel('$$x_{1}(t), \hat{x}_{1}(t)$$','Interpreter','Latex','Fontsize',fsize)

YL = get(gca, 'ylim'); %plot the vertical line

YR = YL(2) − YL(1);

YL = [YL(1) − 1000 * YR, YL(2) + 1000 * YR];

line([5, 5], YL, 'YLimInclude', 'off', 'Color','k','LineWidth',2);

pa = annotation('arrow'); % store the arrow information in pa

pa.Parent = gca; % associate the arrow the the current axes

pa.X = [5 6.6]; % the location of arrow

pa.Y = [−3 −3];

pa.LineWidth = 2; % make the arrow bolder for the figure

pa.HeadWidth = 20;

pa.HeadLength = 20;

text(5.05,−2.3,'disturbance','Fontsize',fsize) % write a text on top of the arrow

text(5.2,−2.7,'in action','Fontsize',fsize) % write a text on top of the arrow

set(gcf,'units','normalized','outerposition',[0 0 1 1]);

saveas(gcf,'FIG41.png');

close(fig)

%Figure 2

fig=figure;

plot(t,x(:,2),t, Xestimated(:,2),':','LineWidth',2);set(0,'DefaultAxesFontSize',16);

grid on

grid minor

h=legend('Actual','Estimated','Location','southeast');

set(h,'FontSize',fsize);

set(0,'DefaultAxesFontSize', 16);

xlabel('Time (s)','Fontsize',fsize);

YL = get(gca, 'ylim'); %plot the vertical line

YR = YL(2) − YL(1);

YL = [YL(1) − 1000 * YR, YL(2) + 1000 * YR];

line([5, 5], YL, 'YLimInclude', 'off', 'Color','k','LineWidth',2);

pa = annotation('arrow'); % store the arrow information in pa

pa.Parent = gca; % associate the arrow the the current axes

pa.X = [5 6.6]; % the location of arrow

pa.Y = [0 0];

pa.LineWidth = 2; % make the arrow bolder for the figure

pa.HeadWidth = 20;

pa.HeadLength = 20;

text(5.05,0.68,'disturbance','Fontsize',fsize) % write a text on top of the arrow

text(5.2,0.3,'in action','Fontsize',fsize) % write a text on top of the arrow

ylabel('$$x_{2}(t), \hat{x}_{2}(t)$$','Interpreter','Latex','Fontsize',fsize)

set(gcf,'units','normalized','outerposition',[0 0 1 1]);

saveas(gcf,'FIG43.png');

136



close(fig)

%Figure 3

fig=figure;

plot(t,x(:,3),t, Xestimated(:,3),':','LineWidth',2);set(0,'DefaultAxesFontSize',16);

grid on

grid minor

h=legend('Actual','Estimated','Location','southeast');

set(h,'FontSize',fsize);

set(0,'DefaultAxesFontSize', 16);

xlabel('Time (s)','Fontsize',fsize);

YL = get(gca, 'ylim'); %plot the vertical line

YR = YL(2) − YL(1);

YL = [YL(1) − 1000 * YR, YL(2) + 1000 * YR];

line([5, 5], YL, 'YLimInclude', 'off', 'Color','k','LineWidth',2);

pa = annotation('arrow'); % store the arrow information in pa

pa.Parent = gca; % associate the arrow the the current axes

pa.X = [5 6.6]; % the location of arrow

pa.Y = [−2 −2];

pa.LineWidth = 2; % make the arrow bolder for the figure

pa.HeadWidth = 20;

pa.HeadLength = 20;

text(5.05,−1.12,'disturbance','Fontsize',fsize) % write a text on top of the arrow

text(5.2,−1.6,'in action','Fontsize',fsize) % write a text on top of the arrow

ylabel('$$x_{3}(t), \hat{x}_{3}(t)$$','Interpreter','Latex','Fontsize',fsize)

set(gcf,'units','normalized','outerposition',[0 0 1 1]);

saveas(gcf,'FIG45.png');

close(fig)

%Figure 4

fig=figure;

plot(t,Xestimated(:,4),'LineWidth',2);set(0,'DefaultAxesFontSize',16);

grid on

grid minor

set(0,'DefaultAxesFontSize', 16);

xlabel('Time (s)','Fontsize',fsize);

ylabel('Estimated Weight Norm','Fontsize',fsize)

YL = get(gca, 'ylim'); %plot the vertical line

YR = YL(2) − YL(1);

YL = [YL(1) − 1000 * YR, YL(2) + 1000 * YR];

line([5, 5], YL, 'YLimInclude', 'off', 'Color','k','LineWidth',2);

pa = annotation('arrow'); % store the arrow information in pa

pa.Parent = gca; % associate the arrow the the current axes

pa.X = [5 6.6]; % the location of arrow

pa.Y = [3 3];

pa.LineWidth = 2; % make the arrow bolder for the figure
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pa.HeadWidth = 20;

pa.HeadLength = 20;

text(5.05,3.33,'disturbance','Fontsize',fsize) % write a text on top of the arrow

text(5.2,3.15,'in action','Fontsize',fsize) % write a text on top of the arrow

set(gcf,'units','normalized','outerposition',[0 0 1 1]);

saveas(gcf,'FIG47.png');

close(fig)

II.21 Code to plot the Figures 4.2, 4.4, 4.6 and 4.8

%Shown the graphs of the simulation

clc

fsize=20;

%Figure 1

fig=figure;

plot(t,x(:,1),t, Xestimated(:,1),':','LineWidth',2);set(0,'DefaultAxesFontSize',16);

grid on

grid minor

h=legend('Actual','Estimated','Location','southeast');

set(h,'FontSize',fsize);

set(0,'DefaultAxesFontSize', 16);

xlabel('Time (s)','Fontsize',fsize);

ylabel('$$x_{1}(t), \hat{x}_{1}(t)$$','Interpreter','Latex','Fontsize',fsize)

YL = get(gca, 'ylim'); %plot the vertical line

YR = YL(2) − YL(1);

YL = [YL(1) − 1000 * YR, YL(2) + 1000 * YR];

line([5, 5], YL, 'YLimInclude', 'off', 'Color','k','LineWidth',2);

pa = annotation('arrow'); % store the arrow information in pa

pa.Parent = gca; % associate the arrow the the current axes

pa.X = [5 6.6]; % the location of arrow

pa.Y = [−3 −3];

pa.LineWidth = 2; % make the arrow bolder for the figure

pa.HeadWidth = 20;

pa.HeadLength = 20;

text(5.05,−2.3,'disturbance','Fontsize',fsize) % write a text on top of the arrow

text(5.2,−2.7,'in action','Fontsize',fsize) % write a text on top of the arrow

set(gcf,'units','normalized','outerposition',[0 0 1 1]);

saveas(gcf,'FIG42.png');

close(fig)

%Figure 2
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fig=figure;

plot(t,x(:,2),t, Xestimated(:,2),':','LineWidth',2);set(0,'DefaultAxesFontSize',16);

grid on

grid minor

h=legend('Actual','Estimated','Location','southeast');

set(h,'FontSize',fsize);

set(0,'DefaultAxesFontSize', 16);

xlabel('Time (s)','Fontsize',fsize);

YL = get(gca, 'ylim'); %plot the vertical line

YR = YL(2) − YL(1);

YL = [YL(1) − 1000 * YR, YL(2) + 1000 * YR];

line([5, 5], YL, 'YLimInclude', 'off', 'Color','k','LineWidth',2);

pa = annotation('arrow'); % store the arrow information in pa

pa.Parent = gca; % associate the arrow the the current axes

pa.X = [5 6.6]; % the location of arrow

pa.Y = [0 0];

pa.LineWidth = 2; % make the arrow bolder for the figure

pa.HeadWidth = 20;

pa.HeadLength = 20;

text(5.05,1.2,'disturbance','Fontsize',fsize) % write a text on top of the arrow

text(5.2,0.5,'in action','Fontsize',fsize) % write a text on top of the arrow

ylabel('$$x_{2}(t), \hat{x}_{2}(t)$$','Interpreter','Latex','Fontsize',fsize)

set(gcf,'units','normalized','outerposition',[0 0 1 1]);

saveas(gcf,'FIG44.png');

close(fig)

%Figure 3

fig=figure;

plot(t,x(:,3),t, Xestimated(:,3),':','LineWidth',2);set(0,'DefaultAxesFontSize',16);

grid on

grid minor

h=legend('Actual','Estimated','Location','southeast');

set(h,'FontSize',fsize);

set(0,'DefaultAxesFontSize', 16);

xlabel('Time (s)','Fontsize',fsize);

YL = get(gca, 'ylim'); %plot the vertical line

YR = YL(2) − YL(1);

YL = [YL(1) − 1000 * YR, YL(2) + 1000 * YR];

line([5, 5], YL, 'YLimInclude', 'off', 'Color','k','LineWidth',2);

pa = annotation('arrow'); % store the arrow information in pa

pa.Parent = gca; % associate the arrow the the current axes

pa.X = [5 6.6]; % the location of arrow

pa.Y = [0 0];

pa.LineWidth = 2; % make the arrow bolder for the figure

pa.HeadWidth = 20;

pa.HeadLength = 20;
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text(5.05,0.7,'disturbance','Fontsize',fsize) % write a text on top of the arrow

text(5.2,0.3,'in action','Fontsize',fsize) % write a text on top of the arrow

ylabel('$$x_{3}(t), \hat{x}_{3}(t)$$','Interpreter','Latex','Fontsize',fsize)

set(gcf,'units','normalized','outerposition',[0 0 1 1]);

saveas(gcf,'FIG46.png');

close(fig)

%Figure 4

fig=figure;

plot(t,Xestimated(:,4),'LineWidth',2);set(0,'DefaultAxesFontSize',16);

grid on

grid minor

set(0,'DefaultAxesFontSize', 16);

xlabel('Time (s)','Fontsize',fsize);

ylabel('Estimated Weight Norm','Fontsize',fsize)

YL = get(gca, 'ylim'); %plot the vertical line

YR = YL(2) − YL(1);

YL = [YL(1) − 1000 * YR, YL(2) + 1000 * YR];

line([5, 5], YL, 'YLimInclude', 'off', 'Color','k','LineWidth',2);

pa = annotation('arrow'); % store the arrow information in pa

pa.Parent = gca; % associate the arrow the the current axes

pa.X = [5 6.6]; % the location of arrow

pa.Y = [4 4];

pa.LineWidth = 2; % make the arrow bolder for the figure

pa.HeadWidth = 20;

pa.HeadLength = 20;

text(5.05,5.2,'disturbance','Fontsize',fsize) % write a text on top of the arrow

text(5.2,4.5,'in action','Fontsize',fsize) % write a text on top of the arrow

set(gcf,'units','normalized','outerposition',[0 0 1 1]);

saveas(gcf,'FIG48.png');

close(fig)
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II.22 Simulink plant used for simulations corresponding to Figures

5.2 - 5.14

II.23 Code for the welding system plant corresponding to Figures

5.2-5.14

[frame=single]

function [sys,x0,str,ts] = Map_Welding(t,x,u,flag)

%System extract from Anzehaee, M. M., Haeri, M. "Welding current and arc voltage ...

control in a

%GMAW process using ARMarkov based MPC", Control Engineering Practice, Volume 19,

%Issue 12, Pages 1408−1422, 2011.

pi=3.14159265;

c1=3.3*10^−10; %Constants

c2=0.78*10^−10;

re=0.6*10^−3;

Ls=306*10^−6;

tm=50*10^−3;

Ra=0.0237;

Rs=6.8*10^−3;

p=0.43;

V0=15.5;

Ea=400;

lc=0.025;
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km=1;

switch flag,

%%%%%%%%%%%%%%%%%%

% Initialization %

%%%%%%%%%%%%%%%%%%

case 0,

sizes = simsizes;

sizes.NumContStates = 3; %Number of Constant States

sizes.NumDiscStates = 0; %Number of Discret States

sizes.NumOutputs = 3; %Number of Outputs

sizes.NumInputs = 3; %Number of Inputs

sizes.DirFeedthrough = 1;

sizes.NumSampleTimes = 1;

sys = simsizes(sizes);

x0=[0.01; 0; 0]; %Initial Conditions

str=[];

ts=[0 0];

%%%%%%%%%%%%%%%

% Directives % % Welding System

%%%%%%%%%%%%%%%

case 1,

sys(1) = x(3)−( c1*x(2)/(pi*re^2) + c2*p*x(1)*x(2)^2/(pi*re^2) )+u(1); %% ...

stick out

sys(2) =(1/Ls)*(u(2)−(Ra+Rs+p*x(1))*x(2)−V0−Ea*(lc−x(1))); %% ...

welding current

sys(3) =(1/tm)*(km*u(3)−x(3)); %% ...

welding wire speed

%%%%%%%%%%

% Output %

%%%%%%%%%%

case 3,

sys = [x];

%%%%%%%%%%%%%

% Terminate %

%%%%%%%%%%%%%

case {2,4,9},

sys = [];

otherwise

error(['unhandled flag = ',num2str(flag)]);

end

II.24 Code for controller corresponding to Figures 5.2 - 5.14

function [sys,x0,str,ts] = Controller(t,x,u,flag)

%Controller and its parameters
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L = 10*[50 0 0; 0 5 0; 0 0 5];

P = 20*[50 0 0; 0 5 0; 0 0 5];

GAMAW=0.005;

GAMA0=0.005;

G=1;

W01=G*[1 0 0 0 0]';

W02=G*[0 1 0 0 0]';

W03=G*[0 0 1 0 0]';

switch flag,

%%%%%%%%%%%%%%%%%%

% Initialization %

%%%%%%%%%%%%%%%%%%

case 0,

sizes = simsizes;

sizes.NumContStates = 15; %Number of Constant States

sizes.NumDiscStates = 0; %Number of Discret States

sizes.NumOutputs = 3; %Number of Outputs

sizes.NumInputs = 9; %Number of Inputs

sizes.DirFeedthrough = 1;

sizes.NumSampleTimes = 1;

sys = simsizes(sizes);

x0=zeros(15,1); %Initial Conditions

x0(1)=0;

x0(2)=0;

x0(3)=0;

str=[];

ts=[0 0];

%%%%%%%%%%%%%%%

% Directives %

%%%%%%%%%%%%%%%

case 1,

sys = [−2*GAMAW*(GAMA0*(x(1:5)−W01) + (u(4) − u(1))*S(x,u));

−2*GAMAW*(GAMA0*(x(6:10)−W02) + (u(5) − u(2))*S(x,u));

−2*GAMAW*(GAMA0*(x(11:15)−W03) + (u(6) − u(3))*S(x,u))];

%%%%%%%%%%%

% Output %

%%%%%%%%%%%

case 3,

sys = L*[u(4)−u(1);u(5)−u(2);u(6)−u(3)] + ...

GAMAW*GAMA0*[u(4)−u(1);u(5)−u(2);u(6)−u(3)] − ...

P*[x(1:5)';x(6:10)';x(11:15)']*S(x,u)+u(7:9);

case {2,4,9},

sys = [];

otherwise

error(['unhandled flag = ',num2str(flag)]);

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function S = S(x,u) %Regressors

S=[1*(z(u(1)));
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1*(z(u(2)));

1*(z(u(3)));

1*(z(u(1)))*(z(u(2)));

1*(z(u(1)))*(z(u(2)))^2];

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function z = z(uu) %Sigmoidal Function

lamda=0;

alfa=10;

beta=.5;

z=alfa/(exp(−beta*uu)+1)+lamda;

II.25 Code for derivative

function [sys,x0,str,ts] = Derivative(t,x,u,flag)

Wn = 100;

eta = 1;

switch flag,

%%%%%%%%%%%%%%%%%%

% Initialization %

%%%%%%%%%%%%%%%%%%

case 0,

sizes = simsizes;

sizes.NumContStates = 6; %Number of Constant States

sizes.NumDiscStates = 0; %Number of Discret States

sizes.NumOutputs = 3; %Number of Outputs

sizes.NumInputs = 3; %Number of Inputs

sizes.DirFeedthrough = 1;

sizes.NumSampleTimes = 1;

sys = simsizes(sizes);

x0=zeros(6,1); %Initial Conditions

str=[];

ts=[0 0];

%%%%%%%%%%%%%%%

% Directives %

%%%%%%%%%%%%%%%

case 1,

sys = [x(2);

−x(1)*Wn^2 − 2*x(2)*eta*Wn + u(1)*Wn^2;

x(4);

−x(3)*Wn^2 − 2*x(4)*eta*Wn + u(2)*Wn^2;

x(6);

−x(5)*Wn^2 − 2*x(6)*eta*Wn + u(3)*Wn^2;];

%%%%%%%%%%%

% Output %

%%%%%%%%%%%

144



case 3,

sys = [x(2); x(4); x(6)];

case {2,4,9},

sys = [];

otherwise

error(['unhandled flag = ',num2str(flag)]);

end

II.26 Code to plot the Figures 5.2 - 5.14

%Shown the graphs of the simulation

clc

fsize=20;

%Figure 1

fig=figure;

plot(t,Xnref(:,1),t,Xref(:,1),':','LineWidth',2);set(0,'DefaultAxesFontSize',16);

grid on

grid minor

h=legend('$x_{nref_{1}}(t)$', '$x_{ref_{1}}(t)$','Location','southeast');

set(h,'Interpreter','Latex','FontSize',fsize);

set(0,'DefaultAxesFontSize', 16);

ylim([0 0.025]);

xlabel('Time (s)','Fontsize',fsize);

ylabel('$$x_{nref_{1}}(t), x_{ref_{1}}(t)$$','Interpreter','Latex','Fontsize',fsize)

set(gcf,'units','normalized','outerposition',[0 0 1 1]);

saveas(gcf,'FIG51.png');

close(fig)

%Figure 2

fig=figure;

plot(t,Xnref(:,2),t,Xref(:,2),':','LineWidth',2);set(0,'DefaultAxesFontSize',16);

grid on

grid minor

h=legend('$x_{nref_{2}}(t)$', '$x_{ref_{2}}(t)$','Location','southeast');

set(h,'Interpreter','Latex','FontSize',fsize);

set(0,'DefaultAxesFontSize', 16);

ylim([0 450]);

xlabel('Time (s)','Fontsize',fsize);

ylabel('$$x_{nref_{2}}(t), x_{ref_{2}}(t)$$','Interpreter','Latex','Fontsize',fsize);

set(gcf,'units','normalized','outerposition',[0 0 1 1]);

saveas(gcf,'FIG52.png');

close(fig)

%Figure 3

fig=figure;

plot(t,Xnref(:,3),t,Xref(:,3),':','LineWidth',2);set(0,'DefaultAxesFontSize',16);
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grid on

grid minor

h=legend('$x_{nref_{3}}(t)$', '$x_{ref_{3}}(t)$','Location','southeast');

set(h,'Interpreter','Latex','FontSize',fsize);

set(0,'DefaultAxesFontSize', 16);

xlabel('Time (s)','Fontsize',fsize);

ylabel('$$x_{nref_{3}}(t), x_{ref_{3}}(t)$$','Interpreter','Latex', ...

'Fontsize',fsize);

set(gcf,'units','normalized','outerposition',[0 0 1 1]);

saveas(gcf,'FIG53.png');

close(fig)

%Figure 4

fig=figure;

plot(t,Xref(:,1),t,x(:,1),':','LineWidth',2);set(0,'DefaultAxesFontSize',16);

grid on

grid minor

h=legend('$x_{ref_{1}}(t)$','$x_{1}(t)$','Location','southeast');

set(h,'Interpreter','Latex','FontSize',fsize);

set(0,'DefaultAxesFontSize', 16);

xlabel('Time (s)','Fontsize',fsize);

ylabel('$$x_{ref_{1}}(t), x_{1}(t)$$','Interpreter','Latex','Fontsize',fsize);

set(gcf,'units','normalized','outerposition',[0 0 1 1]);

saveas(gcf,'FIG54.png');

close(fig)

%Figure 5

fig=figure;

plot(t,Xref(:,2),t,x(:,2),':','LineWidth',2);set(0,'DefaultAxesFontSize',16);

grid on

grid minor

h=legend('$x_{ref_{2}}(t)$','$x_{2}(t)$','Location','southeast');

set(h,'Interpreter','Latex','FontSize',fsize);

set(0,'DefaultAxesFontSize', 16);

xlabel('Time (s)','Fontsize',fsize);

ylabel('$$x_{ref_{2}}(t), x_{2}(t)$$','Interpreter','Latex','Fontsize',fsize);

set(gcf,'units','normalized','outerposition',[0 0 1 1]);

saveas(gcf,'FIG55.png');

close(fig)

%Figure 6

fig=figure;

plot(t,Xref(:,3),t,x(:,3),':','LineWidth',2);set(0,'DefaultAxesFontSize',16);

grid on

grid minor

h=legend('$x_{ref_{3}}(t)$','$x_{3}(t)$','Location','southeast');

set(h,'Interpreter','Latex','FontSize',fsize);

set(0,'DefaultAxesFontSize', 16);

xlabel('Time (s)','Fontsize',fsize);

ylabel('$$x_{ref_{3}}(t), x_{3}(t)$$','Interpreter','Latex','Fontsize',fsize);

set(gcf,'units','normalized','outerposition',[0 0 1 1]);

saveas(gcf,'FIG56.png');
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close(fig)

%Figure 7

fig=figure;

semilogx(t,Xref(:,1),t,x(:,1),':','LineWidth',2);set(0,'DefaultAxesFontSize',16);

grid on

grid minor

h=legend('$x_{ref_{1}}(t)$','$x_{1}(t)$','Location','southeast');

set(h,'Interpreter','Latex','FontSize',fsize);

set(0,'DefaultAxesFontSize', 16);

xlim([0.001 8]);

xlabel('Time (s)','Fontsize',fsize);

ylabel('$$x_{ref_{1}}(t), x_{1}(t)$$','Interpreter','Latex','Fontsize',fsize);

set(gcf,'units','normalized','outerposition',[0 0 1 1]);

saveas(gcf,'FIG57.png');

close(fig)

%Figure 8

fig=figure;

semilogx(t,Xref(:,2),t,x(:,2),':','LineWidth',2);set(0,'DefaultAxesFontSize',16);

grid on

grid minor

h=legend('$x_{ref_{2}}(t)$','$x_{2}(t)$','Location','southeast');

set(h,'Interpreter','Latex','FontSize',fsize);

set(0,'DefaultAxesFontSize', 16);

xlim([0.001 8]);

ylim([−50 450]);

xlabel('Time (s)','Fontsize',fsize);

ylabel('$$x_{ref_{2}}(t), x_{2}(t)$$','Interpreter','Latex','Fontsize',fsize);

set(gcf,'units','normalized','outerposition',[0 0 1 1]);

saveas(gcf,'FIG58.png');

close(fig)

%Figure 9

fig=figure;

semilogx(t,Xref(:,3),t,x(:,3),':','LineWidth',2);set(0,'DefaultAxesFontSize',16);

grid on

grid minor

h=legend('$x_{ref_{3}}(t)$','$x_{3}(t)$','Location','southeast');

set(h,'Interpreter','Latex','FontSize',fsize);

set(0,'DefaultAxesFontSize', 16);

xlim([0.001 8]);

ylim([−0.02 0.18]);

xlabel('Time (s)','Fontsize',fsize);

ylabel('$$x_{ref_{3}}(t), x_{3}(t)$$','Interpreter','Latex','Fontsize',fsize);

set(gcf,'units','normalized','outerposition',[0 0 1 1]);

saveas(gcf,'FIG59.png');

close(fig)

%Figure 10

fig=figure;

plot(t,Control(:,1),'LineWidth',2);set(0,'DefaultAxesFontSize',16);
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grid on

grid minor

h=legend('$u_{1}(t)$','Location','southeast');

set(h,'Interpreter','Latex','FontSize',fsize);

set(0,'DefaultAxesFontSize', 16);

xlabel('Time (s)','Fontsize',fsize);

ylabel('Control Input 1','Fontsize',fsize);

set(gcf,'units','normalized','outerposition',[0 0 1 1]);

saveas(gcf,'FIG510.png');

close(fig)

%Figure 11

fig=figure;

plot(t,Control(:,1),'LineWidth',2);set(0,'DefaultAxesFontSize',16);

grid on

grid minor

h=legend('$u_{1}(t)$','Location','northeast');

set(h,'Interpreter','Latex','FontSize',fsize);

set(0,'DefaultAxesFontSize', 16);

xlabel('Time (s)','Fontsize',fsize);

ylabel('Control Input 1','Fontsize',fsize);

xlim([0.5 8]);

ylim([−0.25 0.2]);

set(gcf,'units','normalized','outerposition',[0 0 1 1]);

saveas(gcf,'FIG511.png');

close(fig)

%Figure 12

fig=figure;

plot(t,Control(:,2),'LineWidth',2);set(0,'DefaultAxesFontSize',16);

grid on

grid minor

h=legend('$u_{2}(t)$','Location','southeast');

set(h,'Interpreter','Latex','FontSize',fsize);

set(0,'DefaultAxesFontSize', 16);

ylim([0 35]);

xlabel('Time (s)','Fontsize',fsize);

ylabel('Control Input 2','Fontsize',fsize);

set(gcf,'units','normalized','outerposition',[0 0 1 1]);

saveas(gcf,'FIG512.png');

close(fig)

%Figure 13

fig=figure;

plot(t,Control(:,3),'LineWidth',2);set(0,'DefaultAxesFontSize',16);

grid on

grid minor

h=legend('$u_{3}(t)$','Location','southeast');

set(h,'Interpreter','Latex','FontSize',fsize);

ylim([0 0.22]);

set(0,'DefaultAxesFontSize', 16);

xlabel('Time (s)','Fontsize',fsize);
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ylabel('Control Input 3','Fontsize',fsize);

set(gcf,'units','normalized','outerposition',[0 0 1 1]);

saveas(gcf,'FIG513.png');

close(fig)
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