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RESUMO

O presente assunto desta tese se trata de simulações numéricas e novas considerações na

modelagem física do ruído gerado por interação do rotor e estator em turbofans aeronáuti-

cos. É feito um estudo teórico preliminar de propagação acústica em dutos com escoamento

uniforme, onde é modelada a fonte acústica a partir de preceitos cíclicos da interação rotor

e estator. Então são avaliada as características de propagação desses ditos modos de inter-

ação, juntamente com a aproximação de dutos anulares finos a ser utilizada nas simulações

numéricas, simplificando o grau de liberdade radial do problema de geração e propagação

acústica. É feito um estudo teórico da hipótese de escoamento fora do equilíbrio termod-

inâmico, quando são envolvidas altas frequências características no escoamento e elevadas

amplitudes de oscilação. A partir de um modelo pré-existente de viscosidade expansional,

é feito um estudo teórico unidimensional no domínio da frequência para baixas amplitudes,

em que todos os grupos adimensionais identificados são avaliados na sensibilidade de seus

parâmetros. Para o estudo numérico preliminar da viscosidade expansional em condições

de propagação unidimensional e no domínio do tempo, é proposto um esquema numérico

baseado em diferenças finitas compactas e passo temporal do tipo Runge-Kutta, ambos

de alta ordem de precisão numérica. A validação desse esquema numérico é feita com a

modificação das equações governantes para se adequar a equação de Burgers viscosa, onde

a solução do caso de um salto de descontinuidade é comparada com os valores numéri-

cos obtidos. Modificações também são propostas para o já existente código de simulação

numérica VAT (Virtual Aeroacoustic Tunnel), onde um novo esquema de interpolação das

faces dos volumes de controle é proposto com argumentos espectrais, visando melhorar as

características de propagação do código. Também são propostas modificações no esquema

de viscosidade artificial para melhorar sua estabilidade numérica e é feita uma nova im-

plementação do código em CUDA Fortran para utilização de GPUs (Graphical Processing

Units) para o cálculo numérico. No estudo unidimensional numérico da viscosidade expan-

sional, é feita a análise de sensibilidade dos parâmetros sobre a dissipação da amplitude da

onda estudada. Também é feita uma comparação do decaimento de amplitude de onda para

vários valores iniciais de amplitude, em que são comparados os valores numéricos e teóricos

e identificada a barreira de linearidade do regime de propagação. São feitas simulações
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bidimensionais de interação rotor e estator com a fronteira imersa móvel que equivalem a

aproximação anular e seus resultados são comparados com a teoria desenvolvida nos regimes

de escoamento subsônico, transônico e supersônico. Todos os regimes apresentaram exce-

lente concordância teórica no quesito geração e propagação modal e ainda na propagação

de ondas de choque em variadas condições geométricas de geração, incluindo a condição

realista de ruído de serra elétrica. Uma modificação do modelo de viscosidade expansional

é proposta para a sua aplicação em métodos numéricos que efetuem a marcha temporal.

Uma primeira aplicação é feita e seus parâmetros testados para o caso supersônico, de ele-

vada amplitude de onda. Os resultados indicaram que o modelo atuou somente no conteúdo

relacionado ao divergente do campo de velocidade do escoamento, onde foi mantida a car-

acterística dos outros fatores do escoamento, como a vorticidade e a definição dos corpos

no escoamento com a metodologia de fronteira imersa móvel.

ABSTRACT

The subject of this thesis is about numerical simulation and new physical considerations on

the noise generated by rotor and stator interaction in aeronautic turbofans. A preliminary

theoretical study on noise propagation in ducts with uniform flow was carried, where the

acoustic noise source is characterized after cyclic conditions in time and space of the rotor

and stator interaction. Then the propagation characteristics of these modes from the noise

sources were assessed with the thin duct approximation, simplifications that are used in

the numerical simulations, resulting in a reduction of the radial degree of freedom from

the noise generation and propagation. A theoretical study of the sound propagation out

of the thermodynamic equilibrium was carried out for cases with high frequency and large

amplitude waves. A one dimensional theoretical study in frequency domain for waves with

infinitesimal amplitude was carried from an already existent expansional viscosity model,

where the nondimensional parameters ware identified and their influence on the flow was

assessed. For the numerical study of the expansional viscosity in one dimensional flows, a

numerical scheme based on compact finite difference for space derivatives and Runge-Kutta

time stepping was proposed, both with high order of numerical precision. The validation
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of this numerical scheme was done with some simplifications on the governing equations

to result in the viscous Burgers’ equation. An exact solution of traveling discontinuity on

velocity is compared with the obtained numerical solution. Scheme modifications were pro-

posed for the already existent numerical code VAT (Virtual Aeroacoustic Tunnel), where a

new control volume face interpolation based on spectral characteristics to improve the code

propagating capabilities was used. Modifications in the artificial viscosity were also pro-

posed to achieve a better numerical stability condition. A code implementation in CUDA

Fortran was done to use GPUs (Graphical Processing Unit) in the numerical calculations.

On the one dimensional numerical study of the expansional viscosity, a sensitivity analysis

of the physical parameters is carried to assess its influence on the wave amplitude decay.

Also the decay of several initial wave amplitudes of the numerical results were compared

with the theoretical values, and the barrier of the linear propagation regime of initial wave

amplitude was identified. Two dimensional cases of rotor and stator interaction were sim-

ulated with the moving immersed boundary methodology, where its results were compared

with the theoretical ones with the thin duct approximation for the subsonic, transonic and

supersonic flow regimes. All the flow regimes were in excellent agreement with the gen-

eration and propagation theory of the interaction modes, including shock-wave generation

and propagation in several rotor geometric conditions, resulting in the buzz-saw noise. A

modification of the expansional viscosity for numerical codes in time domain was proposed.

Simulations were carried out and its physical parameters were tested for the supersonic

rotor case. Preliminary results indicated that the expansional viscosity model acted only

on the velocity divergence related content, where other flow features, such as vorticity and

the immersed boundary were kept intact.
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V Volume or number of stator vanes

v y direction velocity component

w z direction velocity component

ω Time solution argument

Ω Rotor shaft angular frequency

x First space coordinate

X Separated function of the axial coordinate

⊗ Tensor product operator

xi i space coordinate

ξ General thermodynamic quantity

y Second space coordinate

z Third space coordinate or pressure jump across shock-wave

Subscript

B Rotor blade

ref Refernce value

n Normal direction or numerical value

t Tangential direction or theoretical value

0 Mean value or inside thermodynamic equilibrium

bp Related to rotor passing frequency

∞ Value outside the thermodynamic equilibrium

i Initial value

m Shock-wave jump mean value

rel Relative value

u Related to the propagation duct wall

b Boundary volume

exp Expansional viscosity
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Pb Rotor pitch

T Related to the temperature

a Related to the wave amplitude

c Critical value

Superscript

∗ Non-dimensional value
′ Variable fluctuation or function derivative

n Time step

b Boundary volume

− Mean value of the control volume

∼ Favre mean of the control volume

· Instant time variation

T Tensor transpose
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Chapter 1

Introduction

1.1 Economic and Environmental Impact of

Aircraft Noise

Noise has been an omnipresent pollution, though often underestimated. Even for small

exposure periods, several effects on human health may appear such as: increase in blood

pressure, sleep disturbances [1], cognitive skills development problems in small children [2]

and several other psychiatric problems [3]. A broad range of machines produce noise that

can affect in a serious way the human health, including airplanes and helicopters.

An increase in noise causing health issues comes from the technological and economic

development that took place from the 1960’s. After the successful introduction of the jet

engines in commercial aviation; transport and passengers aircraft, air transport became

cheaper, increasing the flight volume and thus the areas affect by aircraft noise.

Aware of this problem, national and international regulation agencies began to impose

rules and restrictions on airports that were located close to residential areas. Since these

restrictions were not enough to control the noise levels, the models of aircraft that can

operate at a given airport were restricted. Certification processes were implemented on

new models of aircraft, where a maximum permissible noise level was allowed for a given

class of aircraft.

In addiction, some regions with nearby airports suffered economic and social impacts,
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including airspace reconfiguration, operating hours restrictions for some airports and even

relocating housing complexes.

1.2 Aircraft Certification

Aircraft noise certification is basically a process in which aircraft manufacturers are

required by regulating agencies to prove that their products fulfill some noise specification

requirements. Noise levels are specified by measuring the noise radiated from the aircraft

with microphones located at certain positions on the ground. The measurement process

takes place with the aircraft flying through reference points and under certain conditions.

The certification process is made in three rating points [4] that simulate the aircraft oper-

ating conditions:

1. Approach measurements: landing conditions, measurement points located through

the center line of the runway located at two kilometers from the runway end and 120

meters of altitude with an approach angle of 3 degrees.

2. Lateral measurements: take-off operating condition, with engines at full power and

flying altitude defined by the noise level measured at the previous stage. The noise

measurement is made with an array of microphones located through two lines in

parallel and at each side of the runway, at 450 meters from its center line. The noise

level to be considered is from the microphone pair that measured the maximum noise

level from both lines. The final certification noise level is the mean value from these

two microphones.

3. Flyover measurement: climbing conditions right after the take off. The noise mea-

surement is made at a distance of 6500 meters from the point where the aircraft was

airborne.

After the measurements are made, the measured noise levels at the three stages are

compared with the regulations according to the aircraft type. If at any of the certification

points the aircraft has higher a noise level than the allowed one, the aircraft fails the

certification process and it cannot operate at civilian airports.
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Figure 1.1: Certification flying path and the measurement distances of each certification

stages [5].

It is worth to note that regularly, both International Civil Aviation Organization (ICAO)

and the Federal Aviation Administration (FAA) are reducing the allowed noise levels from

the certification process, putting aircraft manufactures at even more difficult conditions, as

observed in figure 1.2. For this reason, it is estimated that one billion dollars are spent

annually [6] to research new technologies that may reduce aircraft noise, not only by the

aerospace industry, but by several government agencies as well, such as NASA [7], DLR [8],

ONERA [9] and JAXA [10].

1.3 Aircraft Noise Sources

Aircraft noise sources can be categorized into two major groups: noise generated by

propulsion systems and noise generated by the aircraft airframe. In propulsion systems

that make use of turbofan engines the main noise sources are the fan, the jet and the

engine core (composed of the compressor, the turbine and the combustion chamber). The
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Figure 1.2: Certification noise level reduction history and future requirement levels for the

future generation of aircraft [11].

airframe main noise sources are the landing gear, the high-lift devices (flaps and slats) and

the induced noise from the wing trailing edge.

Estimatives [12] were made of the noise sources contribution to the overall noise level for

the next generation of aircraft (N+1 generation) that are planned for certification process

in 10 years [13]. These estimates are shown in figure 1.3 for the three noise certification

points. It is worth to mention that it is expected that for the future generation of aircraft,

the fan noise will have the highest noise level for all the three certification points. The

causes are many: reduction from airframe noise due to new conceptual ideas, as shown in

figure 1.4, and by the increase of the turbofan bypass ratio [14] in modern engines, where

bypass ratios bigger of 10:1 will be common in the near future.
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Figure 1.3: Berton et al. [12] estimates for the N+1 aircraft generation noise sources. It

can be noted that the fan would be the major noise source for the three noise certification

stages (approach, sideline (lateral) and flyover).

Figure 1.4: NASA conceptual sketch for a N+1 generation aircraft [17].

1.4 Turbofan Noise Sources

Figure 1.5 shows a Pratt & Whitney PW1900G [15] turbofan engine cross section, with

a ultra-high bypass ratio of 12:1, that will be used on the second generation of the Embraer

E-Jets 190 and 195 [16]. This turbofan engine is also used in the Bombardier CSeries,
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Airbus A320neo and Irkut MC-21.

Figure 1.5: Cross section of the Pratt & Whitney PW1900G turbofan engine, with a high-

bypass ratio of 12:1, that will be used on the second generation of the Embraer E-Jets 190

and 195 [15].

In figure 1.5, from the fan inlet to the fan exhaust, i.e., along the flow direction, the

engine components can be seen: the fan, the core components; the three low pressure

compressor stages, the eight stages of high pressure from the turbine. Outside the core, the

stator vanes can be seen, located at the same axial position as the low-pressure compressor

second stage.

It is worth mentioning that both the turbine and the low pressure compressor of this

turbofan engine spin at the same angular speed, but the fan rotor spins at a third of this,

due to a gearbox located between the fan rotor and the low pressure compressor. The main

function of the rotor is to perform work over the fluid that passes through it, raising the

air pressure and its circumferential speed.

After its passage through the fan, the air flow is divided into a 1/13 (7,7%) that passes

to the core to be used in the combustion process, allowing power to be generated by the

turbines and used by the compressors. The remaining 12/13 (92,3%) of the air flow goes
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through the bypass stator vanes, where the circumferential speed component induced by

the rotor blades is transformed into pressure, that will finally be transformed into axial

speed component, and therefore, generating most of the engine total thrust.

As can be observed in figure 1.5, the rotor blades and the stator vanes sizes are much

bigger than the stator vanes and rotor blades from the compression stages of the core. This

difference, along with the 12:1 air mass proportion that passes through the rotor blades

and the core, explains the fact that the fan noise tends to rise with the increase of the fan

bypass ratio. The increase of this ratio also helps the noise dominance of the fan noise over

the jet noise, because with a higher bypass ratio, the jet speed will be smaller, making the

turbofan more propulsion efficient and lowering the overall generated noise.

The noise sources with the highest noise level in high-bypass turbofan engines are, in

decreasing order of importance, the following:

• Rotor blades and stator vanes interaction: pressure, wake and vorticity fields gener-

ated by the rotor blades interact with the stator vanes, generating noise that has both

broadband and tonal content in the spectrum. The generated tonal noise is directly

associated with the cyclic nature of the interaction, at the blade passing frequency

and its harmonics. The broadband noise spectrum is associated with the non cyclic

component of this interaction.

• Buzzsaw noise: at the full power condition of a turbofan engine, found in the sideline

noise certification stage, the rotor blade tips are at supersonic flow regime, resulting

in a system of shock-waves that propagates through the nacelle duct to the inlet direc-

tion. Slight differences occur from blade to blade geometric manufacturing tolerances

and due to extended use, generating tonal noise and its harmonics at sub-harmonics

of the rotor passing frequency (shaft orders). Also called multiple pure tone (MPT)

noise.

• Rotor self induced noise: the physical mechanism responsible for the self induced noise

in airfoils is the same for rotor blades, with the mixing boundary layers of the suction

and pressure sides of the rotor sides. At the turbofan engine operating conditions this

noise has a broadband like spectrum.
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• Interaction between the nacelle boundary layer and the rotor blades tip. The gener-

ated noise has a broadband like spectrum, given its non cyclic nature.

• Turbulence ingestion: atmospheric turbulent eddies are ingested by the fan and in-

teract with the rotor blades, resulting in broadband noise content, due to the wide

spectrum of the Kolmogorov cascade turbulence scales.

For a high bypass turbofan engine, the broadband noise produced by the rotor blades

and stator vanes interaction is typically 10 dB higher than the other sources of broadband

noise described above. Given by the decibel scale, it means that the acoustic power (sound

power level) associated with the noise generated by the rotor-stator interaction is at least

10 times bigger than the acoustic power of the other fan noise sources.

1.5 The Expansional Viscosity

There are cases in which the acoustic propagation phenomena does not necessarily oc-

cur in thermodynamic equilibrium. In processes at a molecular level that have not achieve

homogeneity, the molecular relaxation cannot go at the same pace as flows with high gradi-

ents. At non equilibrium states the thermodynamic characteristics of the environment may

differ significantly from the state of equilibrium.

The acoustic generation, propagation and radiation phenomena may be concerned with

high frequencies, propagation at huge distance or high amplitude interactions. It is inferred

that such conditions of the fluid are not totally in thermodynamic equilibrium or that

its effects are not negligible either. Physically speaking, the non equilibrium effects of

such phenomena implies that the relaxation time of the fluid is much higher than the

characteristic time of the flow, or that even when only small effects are considered, the

period or field of influence is relatively large enough.

An important case of large expansion and compression gradients is in the rotor blades

and stator vanes in a turbofan. A good case to be compared with is the compression and

expansion of a given gas inside a chamber with a sliding piston in it. The gas internal energy

increases as the piston transmits energy by means of a work done by compression of the

fluid. The collision of the air molecules with the piston distributes the energy through the
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different modes of translation, rotation and vibration, where in some modes this transfer is

faster than in others, like in the translating mode parallel to the piston moving direction.

The energy transfer to the modes of the other two direction takes more time, characterizing

the thermodynamic equilibrium when the modes have statistically the same energy. The

vibrating and rotational modes also have their characteristic time to achieve equilibrium

[18]. These relaxation times may differ significantly when fluids of several species are

considered. Relaxation effects related with the translation, vibration and rotation modes

of molecules of a gas are important and may not be neglected in situations that the gas

is under severe changes of pressure, like in cases where there are high frequency waves or

shock-waves over the flow [19]. Those flow conditions are easily found in the rotor and

stator interaction region of turbofan engines during some flight stages.

Figure 1.6: Degeneracy of the sonic-boom wave shape from a supersonic aircraft related to

the long distance traveled by the same shock-wave [6].

Figure 1.6 shows the change of the sonic-boom shock-wave pressure signature generated

by a supersonic aircraft with the generated noise propagating at a long distance. The non

equilibrium thermodynamic condition of the high amplitude propagating wave implies that

the high frequency part of the noise spectrum has a much higher acoustic dissipation rate

than the lower frequency noise spectrum.

High frequency diffusive effects at non thermodynamic equilibrium due to the expan-

sional viscosity, their modeling and computational applications have not been studied. Only

some theoretical models were proposed, like the ones by Landau [20], Emanuel [21] and
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Hoover et al. [22]

1.6 Work Background

Computational Fluid Dynamics (CFD) have developed rapidly over the last four decades.

Computing entire flow fields influenced the aerospace engineering in a positive way. New

algorithms and numerical schemes were developed and created during these decades to be

used from a general point of view to a more refined analysis for application. The level

of physical modeling in the first days of CFD was limited to potential flows, where severe

simplifications of the governing equations were made to be able to run the simulation on the

available computational capacity at that time. With the quick growth of the computational

capacity, the level of sophistication not only increased for the physical models but also

for the numerical algorithms. Two dimensional potential flows were replaced by three

dimensional simulations with non-linear governing equations. Finally methods that could

calculate the underlying physics, such as compressibility and turbulence effects, could be

applied to realistic cases. The industry achieved great savings both in time and in number

of experimental runs needed for a given investigation.

Nowadays the dynamics levels of approximation of the computational codes used in

the industry are the same ones used in the 1980’s; turbulence modeling of the whole tur-

bulence spectrum and mean valued governing equations (RANS equations). This level of

sophistication did not change much over the years, a good range of simple flows can be cor-

rectly calculated this way. However, with the increase of the flow complexity that faces the

aerospace industry, the need of high fidelity simulations with even smaller numerical and

modeling errors imposes some serious restrictions on what numerical methods are available

for solving these problems. More precise models, such as the subgrid scale modeling of the

turbulent eddies (large eddy simulation), or even the simulations of all the turbulent scales

(direct numerical simulation) are not yet feasible for large scale deployment in the aerospace

industry. Their prohibitive computational cost makes them impractical, being restricted to

academia, or government.

CFD codes application has been the same for over ten years. Nowadays, available CFD

technology used in industry cannot describe with sufficient capability important phenom-
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Figure 1.7: Graphic showing the capabilities and capacity of computational fluid dynamics

[23].

ena [24]: flow detachment, complex turbulence transition, turbomachinery flow (moving

elements), mixing of different species of fluids, flows with combustion and other chemically

reacting flows, noise generated from several vehicle parts, highly compressible complex flows,

among others. There is a need for development of new physical models and computational

algorithms to achieve a satisfactory description of these kinds of solutions both in space

and in time, as can be seen in figure 1.7.

The desirable characteristics of a computational code that is able to compute a solution

with the desired requirements and that provides the needed physical insight are the following

[24]:

• The solution of the CFD code must rely on modeling and physical aspects only.

• Must include error and uncertainties management.

• Expected level of automatic features in all usage levels.

• Be able to use in an efficient way the available HPC (High Performance Computing)

architectures.
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• Must be flexible enough to be used both in large scale applications (capacity) and in

high computational demanding cases (capability).

• Must be able to work with other applications type, including CAD, CAM and finite

element structural solvers.

1.6.1 Computational Fluid Dynamics Applied to Aeracoustics

Composed of an extensive array of physical phenomena, if the physical modeling aims

for a complete description of the noise generation, propagation, and radiation mechanisms

with good precision, high computational costs will be highly demanding even for efficient

computational algorithms. The act of separating the problem into smaller pieces and the use

of linearized (simplified) sets of governing equations have been the main choices. Regarding

more complex aeroacoustic problems, the adaptation and use of traditional CFD codes have

been the most common way to numerically predict the generated noise of a given case. The

natural limits of these traditional codes, in terms of their numerical methods and algorithm

implementation make their use impractical for more complex cases.

New computational algorithms have been developed in the last years to bridge the gaps

where traditional CFD methods do not have the needed precision to describe the under-

lying aeroacoustic physical processes correctly. The development of these new algorithms

and numerical methods has created a new branch of the computational fluid dynamics:

computational aeroacoustics (CAA). The new CAA methods try to describe phenomena

with high temporal gradients, where wave propagation is the main issue to be solved. Some

CAA methods must have the following characteristics to be able to describe correctly the

needed aeroacoustic and aerodynamic phenomena [25]:

• Must describe with a minimum of precision the largest possible range of frequencies.

The calculation of waves with the highest frequency or wavenumber is one of the main

objectives of computational aeroacoustics.

• The acoustic wave amplitudes are very low when compared with the aerodynamics

content. A CAA numerical scheme must be able to predict these acoustic wave am-

plitudes with a minimum level of numerical noise.
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• Aeroacoustic problems concerns the noise calculation at long distances from the noise

source. The solution must be valid from the noise source up to the radiated po-

sition, usually multiple wavelengths. CAA numerical schemes must have minimum

numerical dissipation and diffusion to do so; they must be able to calculate the wave

propagation and radiation at the correct physical speed regardless the computational

grid orientation and with a minimum distortion of the wave content.

• Due to computational grid limitation available to describe an aeroacoustic numerical

solution, the acoustic waves may present undesirable behavior at the mesh outer limits.

Acoustic waves do not decay like, for example, like hydrodynamic ones, since they

show reflections at the mesh boundaries. Numeric boundary conditions or filtering

strategies must be used to avoid waves reflecting at these boundaries and traveling

back to the source region, contaminating the computed solution.

• Aeroacoustic phenomena are typically multiscale problems. The characteristic length

of an acoustic source may differ in several orders of magnitude from the characteristic

wavelength. CAA methods must be able to deal with all the flow scales that may

appear in the computational domain.

Besides the numerical schemes development that is necessary to solve aeroacoustic prob-

lems, new types of numerical analyses are needed to assess the numerical error. An error

assessment methodology is needed to predict at a certain confidence bound the numerical

error of a given numerical solution. Numerical stability is also an issue that also must be

addressed, which is not only necessary to stabilize the numerical scheme, it cannot have a

major influence on the numerical precision and therefore, the numerical solution.

1.6.2 Computational Efficiency

The use of new architectures of HPC in CFD and CAA have been a growing subject of

discussions. According to Moore’s Law [26], that tells that indirectly the computing capac-

ity from CPU’s doubles every two years, enabling a continuous evolution of the processing

power available, and consequently, reducing the time needed for numerical simulations.

Wheter this law is realistic or not, the computational capacity available from new HPC ar-
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chitectures has established a new milestone in numerical simulation capacity and capability.

The increased use of Beowulf Clusters supercomputers type, which are several computers

(nodes) linked together in a high-speed network and with distributed memory, makes avail-

able to any research group access to large computational power regardless of their size, by

using only commodity computer parts. Another remarkable factor is on the software side;

the development of libraries and language extensions that makes certain types of computing

graphics units (GPU), like CUDA C/C++ [27], Open-CL [28], Open-ACC [29], CUDA For-

tran [30], Matlab [31] and co-processors [32] able to perform heavy numerical computations.

The use of alternative computational architectures to perform numerical computations in

the last few years allowed a significant rise in computational power, sometimes hundreds

times of speedup when compared with traditional CPU serial executions.

Figure 1.8: Use of GPUS and co-processors on the world’s largest supercomputers [37].

Unfortunately in spite of the high speedup, results have not yet been achieved in

CAA/CFD codes implemented in new HPC architectures. The type of numerical algo-

rithm and the level of usage of the hardware will ultimately provide the implementation

success and viability of the numerical code for a given HPC architecture. The actual trend

of HPC shows that massively parallel codes are the ones that take full advantage of the ac-

tual cluster supercomputer’s architecture. Computational codes that use implicit methods,
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and that depend upon solving of linear systems of equations, such as the ones widely used

in industry: Fluent [33], CFX [34] and CFD++ [35], rely on a great part of their execution

algorithms on purely serial computations. Their numerical parallel implementation is based

on older computer architectures, where the computer nodes of a cluster had only one CPU

core, making the calculation purely memory distributed, where their node to node commu-

nication is done by message passing interface (MPI) libraries. These aerodynamic codes are

mostly used for calculation of permanent flowfield solutions, while new computational codes

takes advantage of parallel strategies from multicore CPUs and use fully explicit temporal

calculations are being developed, such as PowerFLOW [36].

Figure 1.9: Proportion of HPC architectures used in the world’s largest supercomputers

[37].

With the availability of multicore CPUs, the necessity of shared memory language ex-

tensions to make full use of these type of hardware arised. For use in Beowulf cluster mainly

at the academic level, there was the development of hybrid computational codes in regard

to the parallel levels: at thread levels of execution for the shared memory parallel level and

at distributed memory level processes distributed over the cluster nodes. The use of GPUs

and co-processors goes along with the shared memory parallel execution level and is totally

compatible with distributed memory parallel levels of execution. As a consequence of that
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and according to the trends shown in figures 1.8 and 1.9, the types of algorithms that will

prevail in such computational environments are the massively parallel ones, where most

of the execution time is spent on the numerical calculation per se with minimum time as

possible with communication between the distributed memory processes.

1.6.3 State of the Art of Prediction on Rotor and Stator Interac-

tion Generated Noise

Huge efforts have been made by industry and academia through the last years to develop

numerical tools for prediction of noise generated by aeronautic turbofans. The codes of

choice had been the ones used traditionally for aerodynamic calculation, where the main

type of solutions of these codes are the resulting mean flows. The development of numerical

methodologies that calculate the fluctuations (acoustic field) associated with the given mean

flow are currently the main road followed.

The main path followed to noise prediction has been primarily on subsonic flow regimes

where these types of flows may be regarded as linear, if the flow characteristic Mach number

indicates such linearity. On most rotor and stator interaction noise calculation methodolo-

gies, the aerodynamic field around the rotor blades is calculated and then the outlet flow

results are directly imposed as inlet flow conditions on the stator vanes region, where the

instantaneous response is simulated through the use of sliding meshes or where the results

are later imposed unilaterally on the stator mesh. In some cases the governing equations

are not even the same for the rotor blades and stator vanes domains.

In subsonic flow calculations for the rotor blades and stator vanes interaction in axial

turbomachinery, the use of traditional methods for CFD have been the primarily followed:

mean permanent flows using RANS equations [38] [39] [40] [41], the use of non-permanent

flows with URANS equations [42] [43] [44] [45], and yet LES simulations [46]. The linearized

Euler equations are typically used when the rotor outlet flow field is unilaterally imposed

on the stator vanes domain [40] [47]. The perturbations that are calculated by the rotor

and stator interaction are then propagated by using linear governing equations, like the

linearized Euler equations [41] [42] or the Pridmore-Brown equations [49] for sheared flows.

The use of these equations has reduced computational requirements. Different discretization

33



methods have been used for noise propagation in ducts when the linearized Euler equations

are used, like the boundary element methods [48], the finite element methods [42] [49] [39],

finite volumes method [50] and yet finite difference methods [41]. Analytical methods may

be used for the noise generation and propagation in ducts like the use of Green’s functions

[42]. For the calculation the radiated noise from the nacelle lips, analytic methods may be

used when simplified conditions are implied [51], or by the use of integration of the flow

field by using acoustic analogies, like the use of the Ffowcs-Williams equation [52] [39] [44]

[53].

Very little attention has been given for noise prediction where the rotor blade tip speed

is transonic, only a few theoretical studies are available [54].

Attention has also been given in a lesser extent to more realistic flows, where the rotor

blade tip speed is supersonic. Several methodologies were developed to predict the noise

generated and propagated by supersonic rotor blades. CFD has been the main methodology

used to predict the buzz-saw noise produced by rotor blades with geometric non-conformity,

both in two and three dimension flows [55] [56]. Other methods not based on CFD were

proposed in the time domain [57] [58], and also in the frequency domain [59] [60]. For the

calculation of the radiated buzz-saw noise frequency domain linearized governing equation

are commonly used, where the buzz-saw noise is treated as a classical linear wave [56], where

the governing equation in this case is the Helmholtz equation with convective effects.

1.7 Work Scope

Most of the noise prediction methodologies previously presented in section 1.6.3 have

some limitations concerning their numerical methodology or the model itself. Some tonal

noise predictions simulate the interaction noise unilaterally, where the rotor influence is im-

posed as the inlet flow field on the stator domain, and where linearized governing equations

are used. The use of linearized equations and the way that the interaction is calculated

imposes severe restrictions on the allowed flow regimes. For higher Mach numbers (based

on the rotor blades velocity) the non-linearity directly related with compressibility effects

are not taken into account when linear governing equations are used. Realistic flows where

shock-waves are the main phenomenon of the fluid flow were not considered for the rotor
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and stator interaction case. In some methods for the prediction of rotor and stator inter-

action noise, sliding meshes are used for the rotor blades movement and cyclic conditions

are applied to emulate a complete assembly of the rotor blades and stator vanes sets. Some

issues of the interpolation schemes used for the calculation of the interfaces between the

meshes impose limitations when applied to flows with steep gradients, like the ones where

there are shock-waves in the sliding mesh region. Considering all that was discussed above,

it is important to consider a numerical methodology where the effects of mesh interface are

negligible and that calculates in the most natural way the rotor blades and stator vanes

interaction noise, preferably with the same governing equations in the interaction region

and in any desired flow regime.

When dealing with modern aeronautic turbofans, the frequency range and propagating

distances may reach high values. The thermodynamic equilibrium condition considered in

the traditional governing equations for these types of flows may be doubtful and therefore

the study of cases with thermodynamic non-equilibrium are proposed with the use of an

already existent expansional viscosity model.

The proposed methodology of this work is about all that was discussed previously. Two

main research lines will be followed; a numerical methodology that predicts the generation

and propagation noise from rotor blades and stator vanes interaction by using the moving

immersed boundary method, and the study and development of an existing expansional

viscosity model to be applied in computational fluid dynamics cases with high frequency

phenomena.

The main objectives in this work follow:

1. Develop a fully compressible numerical model based on the moving immersed bound-

ary method that is able to predict the rotor and stator interaction noise in several

compressibility flow regimes.

2. Implement and optimize the moving immersed boundary method in CUDA architec-

ture.

3. Study the behavior of the expansional viscosity model and to adapt it to be used in

computational fluid dynamics methods.
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4. Develop a numerical methodology for a first numerical study of the expansional vis-

cosity model.

5. Validate the numerical prediction methodology of rotor and stator noise interaction

for specific compressibility flow regimes and study the the behavior of the expansional

viscosity under non-linear conditions through the immersed boundary method.

Concerning the rotor and stator interaction cases, an analytical theory is developed that

describes the noise generation behavior from flow regimes spanning subsonic, transonic and

supersonic rotor velocities. Next, propagated with the thin duct approximation, using the

classical wave propagation theory and the non-linear finite shock-waves amplitude decay.

This defines the tonal noise interaction modes characteristics. The results of this analysis

will be used for the validation of the obtained numerical results.

On the expansional viscosity modeling, a stability analysis is done to establish the

behavior of the model in linearized flows, then a first application in CFD is made so it can

later be applied in more realistic aeroacoustic cases.

This work is divided in the following chapters:

• Analytical relations for noise propagation in ducts.

• The expansional viscosity model.

• Numerical methodologies.

• Numerical Results.

• Conclusions and future work.

Chapter 2 is about the mathematical simplifications applied to the governing equations,

where according to the flow and boundary conditions, it is possible to obtain analytical

solutions to the propagation problem compared with the numerical solutions from the rotor

and stator interaction cases. For the rotor and stator interaction noise generated and

propagated in subsonic and transonic rotor velocities flow regimes, the wave equation with

convection effects and its solution in cylindrical coordinates is obtained. The tonal noise

sources characteristics are assumed and applied along with the classical wave equation
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solution for thin annular ducts cases. In the rotor and stator interaction cases with rotor

supersonic speeds, a mathematical relation for the shock-waves amplitude decay in the axial

direction in the inlet direction is used and an algorithm that describes the pressure field for

the buzz-saw noise case is proposed.

Chapter 3 presents the expansional viscosity model at a non-Stokesian condition, where

after the linearization of the governing equation the stability analysis is made. The damp-

ing coefficient of the wave amplitude is assessed for a wide range of wavenumbers as a

preliminary result for the numerical results.

Chapter 4 presents the discretization process based on the finite volume method that is

applied on the moving immersed boundary method along with the Euler governing equations

in the compressible form. An error analysis associated with the discretization process is

made to assess its effects on the wave propagation phenomenon, at reference values of the

human hearing upper threshold frequency. A modification of the already existing numerical

viscosity is proposed to make the moving immersed boundary method even more stable.

The non-penetrating and slipping boundary conditions are then obtained to be applied

in the immersed boundary method for moving and static body volumes. A high formal

and spectral order of precision for the space and time numerical scheme is used for the

discretization of the governing equations used where the expansional viscosity model is

applied. A high order wavenumber filter is used in this numerical scheme for the removal

of the poorly resolved frequencies of the numerical solution.

On chapter 5 the validation of the proposed numerical schemes is presented and com-

pared to the results obtained from the analytical solution. The modal response and the

shock-waves behavior in the annular duct, predicted by the analytical theory, is compared

with the results from the rotor and stator interaction cases. The numerical scheme proposed

for the first study of the expansional viscosity is for a one dimensional wave propagation

case in non-linear regime, where the effects of its physical parameters are assessed. A first

implementation and testing of the expansional viscosity is made with the moving immersed

boundary method for some already validated rotor and stator interaction cases.

Chapter 6 presents the conclusions regarding the results of this work, and ideas for

future research are thoroughly discussed.
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Chapter 2

Fundamentals of Noise Generation and

Propagation in Ducts

This chapter describes the analytical theory of noise generation and propagation in thin

annular ducts. Such theory is developed from the fluid mechanics governing equations; the

Navier-Stokes equations in the compressible form.

Mathematical and physical simplifications are made on the governing equations accord-

ing to the type of mean flow in annular ducts. It is considered a priori that the flow regime

is subsonic, linear and isentropic. From this consideration the simplifications made on the

governing equations and by the type of mean flow, a general analytic solution is obtained.

In this solution certain types of fundamental waves may be identified, called acoustic modes.

The implicit boundary conditions of the angular coordinates, the type of walls considered

for the radial coordinate and the imposed mean flow dictates the shape and propagating

conditions of these modes and how they compose the solution of the noise at a certain

frequency.

Other assumptions are made to characterize the source of noise induced by the rotor

and stator interaction in subsonic flow conditions. It is not possible to fully predict the

source of noise, but making some assumptions it is possible to describe in a way the modal

behavior of this interaction. The simplification of thin annular ducts is used to restrict the

modal set from the noise source, making it possible to predict all the generated modes and

their consequence in the propagation theory.
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A theory of the noise generation and propagation with the rotor at supersonic speeds,

where the flow characteristics are different from the ones made for the subsonic and transonic

rotor flow regimes, is developed. A one dimensional and transient solution of the decay of a

propagating shock-wave though a moving media is used on the thin annular duct with axial

subsonic uniform flow. Considering a system of coordinates moving with a base shock-wave,

the decay and interaction of the system of supersonic rotor generated shock-waves can be

totally predicted through the duct.

Two types of noise sources conditions are used for the rotor alone at supersonic speeds:

the ideal and the realistic. In the ideal condition the rotor to rotor shock-waves are identical

in intensity and propagation angles. For the realistic rotor conditions the system of shock-

waves is not homogeneous. Small geometric differences between the rotor blades makes

each shock-wave have its own propagating angle and intensity, resulting in different shock-

wave to shock-wave decay and propagation velocities and thus, occurring shock coalescence

depending on the flow and geometric conditions. A methodology that predicts these shock-

waves propagation, decay and coalescence through the duct is developed with ideas already

available on the literature.

With the analytical solutions developed in this chapter for all the flow regimes of a

turbofan engine: subsonic, transonic and supersonic, it is possible to establishment a base

of analytical theory for comparison with the numerical results of the rotor and stator in-

teraction noise, and thus, validating one of the numeric methodologies proposed in this

work.

2.1 Governing Equations

Three physical principles are used to represent the generation and propagation of noise

in the rotor and stator interaction:

• Mass conservation (or continuity): the system mass is conserved.

• Newton’s second law: the resulting forces acting on a body result in a change of

momentum on that body.
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• First law of thermodynamics: the change of internal energy of a given system is due

to macroscopic (work) and microscopic (heat transfer) phenomena.

The fluid is considered continuous, i.e., the characteristic length scales are large enough

that a given material point of the flow has enough molecules to not have any property

fluctuations related to molecular dynamics. The changes of these properties at a given

material point are due to the flow dynamics only; the individual fluctuations of molecular

orders of magnitude are not considered here.

The mathematical derivation of the physical laws described above are be obtained start-

ing from the Reynolds transport theorem. For a given generic quantity f , where f may be

a scalar, vector or tensor quantity, such quantity is conserved in a control volume V with

boundary S from the given relation [61]:

d

dt

∫
V (t)

fdV =

∫
V (t)

∂f

∂t
dV +

∮
S(t)

(u · n) fdS, (2.1)

where u is the velocity vector, n represents the surface normal vector at an infinitesimal

surface dS. The vector direction convention used here is that the positive value is directed

outwards from the surface S.

The idea behind the Reynolds transport theorem is to establish an integral relation

between any conserved quantity of a control volume, where the flux of this quantity is

accounted for in the surface as well as its transformation by a given phenomenon-inside

this control volume. By applying the Reynolds transport theorem on the physical laws

described above, it is possible to obtain the integral equations that mathematically describe

these physical laws on a given control volume fixed in time:

• Conservation of mass: ∫
V

∂ρ

∂t
dV +

∮
S

ρu · dS = 0. (2.2)

• Newton’s second law:∫
V

∂

∂t
(ρu) dV +

∮
S

ρu (u · dS) = −
∮
S

p · dS +

∮
S

τ · dS +

∫
V

ρfedV. (2.3)
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• First law of thermodynamics:∫
V

∂

∂t
(ρet) dV +

∮
S

ρetu · dS =

−
∮
S

q · dS +

∫
V

(ρfe · u) dV +

∮
S

[(−pI + τ) · u] · dS, (2.4)

where ρ is the fluid density, p is the fluid pressure, τ is the shear stress tensor, fe are the

external body forces applied on the fluid, et is the fluid total energy, q is the heat conduction

vector, T is the fluid temperature and I is the identity tensor.

By applying the divergence theorem in the previous set of equations, the surface integrals

are transformed into volume integrals. One can now put all the integrating terms in a single

volume integral.

• Mass conservation: ∫
V

(
∂ρ

∂t
+∇ · (ρu)

)
dV = 0. (2.5)

• Newton’s second law:∫
V

(
∂

∂t
(ρu) +∇ · (ρu⊗ u + pI− τ)− fe

)
dV = 0. (2.6)

• First law of thermodynamics:∫
V

(
∂

∂t
(ρet) +∇ · (ρuet + q− τ · u + pI · u)− fe · u

)
= 0, (2.7)

where ⊗ denotes the tensor product of the velocity vector with itself.

This integral form of the governing equations may be simplified using the localization

theorem, which states that if a volume integral equals zero for any integration volume, then

the arguments are zero. As a consequence, we have the following form of the governing

equations:

• Mass conservation:
∂ρ

∂t
+∇ · (ρu) = 0. (2.8)

• Newton’s second law:

∂

∂t
(ρu) +∇ · (ρu⊗ u) = −∇ · (pI) +∇ · τ + fe. (2.9)
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• First law of thermodynamics:

∂

∂t
(ρet) +∇ · (ρuet) = ∇ · (−q + τ · u− pI · u) + fe · u. (2.10)

Equations 2.8 to 2.10 show the governing equations in the differential conservative form.

The conservative form is evident in the way convective terms are grouped together under

the divergent operator. The use of governing equations under the conservative form is more

convenient for numeric applications, where in their discretization process numerical sources

do not appear [23].

The fluid used here is air; compressible and calorically perfect, Newtonian viscous and

Stokesian, if not stated otherwise. The deviatoric part of the stress tensor is Newtonian

and compressible:

τ = µ

[(
∇u + (∇u)T

)
− 2

3
(∇ · u) I

]
, (2.11)

where µ is the dynamic viscosity coefficient.

Fourier’s law of heat conductivity is applied with a constant conductivity coefficient:

q = −k∇T. (2.12)

The closure constitutive equations are the ideal gas law equation:

p = ρRT, (2.13)

where R is the ideal gas constant. Sutherland’s viscosity law is also used:

µ = µ0
T0 + C

T + C

(
T

T0

)3/2

, (2.14)

where the constants for the air are the following: C = 120K, T0 = 291.15K e µ0 =

18.27 · 10−6Pa · s. The thermodynamic relation for the internal energy used here is:

e = cvT, (2.15)

where cv is the specific heat at constant volume.
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2.2 Noise Generation and Propagation in Ducts with

Subsonic Noise Sources

One of the main parts of the modern aeronautic turbofans is the duct in which the

turbofan is enclosed. The duct inner wall is the hub and the outer wall is the nacelle.

The duct can be modeled as circular (tipically inlet) or annular (tipically outlet) and this

choice affects the propagation. The noise may propagate in upstream and downstream

directions, where the flow conditions may affect the propagation. As a consequence, that

defines the mathematical behavior of the solution concerning these propagating waves that

will be compared with the numeric solutions. The mathematical conditions found in the

propagating region may be regarded as linear and the classical wave theory may be used to

define the flow field.

2.2.1 Wave Equation with Convective Effects Derivation

In this section the linear acoustic phenomena equation is related to a mean subsonic flow

is derived. The first few assumptions are related to the diffusivity effects, such as momentum

diffusion and heat conduction, which are neglected in the propagation mechanics (τ = 0,

q = 0 ), as well as the body forces like gravity are also neglected here. We then obtain

some simplifications for the governing equations:

• Mass conservation:
∂ρ

∂t
+∇ · (ρu) = 0. (2.16)

• Newton’s second law:

∂

∂t
(ρu) +∇ · (ρu⊗ u) = −∇ · (pI) . (2.17)

• First law of thermodynamics:

∂

∂t
(ρet) +∇ · (ρuet) = −∇ · (pI · u) . (2.18)

Taking the first term from the left hand side of equation 2.18 and applying the product rule

for derivatives:
∂

∂t
(ρet) = ρ

∂et
∂t

+ et
∂ρ

∂t
, (2.19)
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applying the following vector identity on the second term:

∇ · (ρetu) = et∇ · (ρu) + ρu · ∇et. (2.20)

Equation 2.18 is then rewritten as:

∂

∂t
(ρet)− et

(
∂ρ

∂t
+∇ · (ρu)

)
+∇ · (ρetu) = ρ

∂e

∂t
+ ρu · ∇et. (2.21)

The term in parenthesis on the right hand side of equation 2.21 is equal zero according to

continuity equation 2.16:

∂

∂t
(ρet) +∇ · (ρetu) = ρ

∂e

∂t
+ ρu · ∇et. (2.22)

The material derivative is defined as:

D

Dt
≡ ∂

∂t
+ u · ∇, (2.23)

and represents the variation of the applied quantity related to the transport of it. The first

term represents the local change of this quantity, the second term represents the change of

this quantity that is moving with the flow. As a consequence:

ρ
Det
Dt

=
∂ρet
∂t

+∇ · (ρuet) . (2.24)

By applying the material derivative definition on the Newton’s second law equation 2.17

we have:

ρ
Du

Dt
=
∂ρu

∂t
+∇ · (ρu⊗ u) . (2.25)

In the continuity equation, the transformation of the conservative form into the non-

conservative is simpler. Taking the vector identity 2.20 and taking the second term from

equation 2.16 we have:

∇ · (ρu) = ρ∇ · u + u · ∇ρ, (2.26)

we arrive at the following form:

∂ρ

∂t
+ u · ∇ρ+ ρ∇ · u = 0. (2.27)

With the material derivative definition being applied into equation 2.27, we can obtain the

other governing equations into the non-conservative form:
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• Mass conservation:
Dρ

Dt
= −ρ∇ · u. (2.28)

• Newton’s second law:

ρ
Du

Dt
= −∇ · pI. (2.29)

• First law of thermodynamics:

ρ
Det
Dt

= −∇ · (pI · u) (2.30)

The first law of thermodynamics equation does not present a convenient form for the

linearization process that will be applied later on. Using the total energy definition, the

following equation is obtained:

et = e+
1

2
u · u, (2.31)

where the first term of the right hand side is the fluid internal energy and the second term is

the fluid kinetic energy. The internal energy represents a purely thermodynamic property,

whereas the kinetic energy represents a relation in common for both the kinematic and

thermodynamic fields.

Introducing now the index notation, that implies the summation convention of the terms

with repeated indexes, thus simplifying the mathematical notation. Now by applying the

summation convention into equation 2.30 and combining it with equation 2.31:

ρ
D

Dt

(
e+

1

2
uiujδij

)
= ρ

D

Dt

(
e+

1

2
uiui

)
= − ∂

∂xi
(pδijukδjk) = − ∂

∂xi
(pui) , (2.32)

where δij is the Kronecker’s delta function:

δij =

1 if i = j,

0 if i 6= j.

(2.33)

Expanding the terms from both sides of equation 2.32:

ρ

(
De

Dt
+

1

2

(
ui
Dui
Dt

+ ui
Dui
Dt

))
= ρ

(
De

Dt
+ ui

Dui
Dt

)
= −ui

∂p

∂xi
− p∂ui

∂xi
. (2.34)

Rearranging equation 2.29 where the material derivative is the only term on the left hand

side yields:
Dui
Dt

= −1

ρ

∂p

∂xi
(2.35)
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and now substituting the above equation in the left hand side of equation 2.34, we have:

ρ

(
De

Dt
− ui
ρ

∂p

∂xi

)
= −ui

∂p

∂xi
− p∂ui

∂xi
. (2.36)

Simplifying equation 2.36:

ρ
De

Dt
= −p∂ui

∂xi
. (2.37)

Besides dissipation effects on momentum due to viscosity, and on the energy due to

heat conduction, other phenomena such as shock-waves, that are discontinuities on the flow

variables, including entropy, will all be neglected in this section. The flow is solely subsonic

and at low levels of compressibility. To translate this idea mathematically, the following

form of the first law of thermodynamics for an infinitesimal closed system into a reversible

process is introduced:

Tds = de+ pd
(
ρ−1
)
, (2.38)

where ds is an infinitesimal change in entropy. Developing the second term of the right

hand side of the equation above:

d
(
ρ−1
)

= − 1

ρ2
dρ. (2.39)

By combining equations 2.38 and 2.39 with the material derivative definition, isolating the

internal energy term and multiplying both sides by the fluid density:

ρ
De

Dt
= ρT

Ds

Dt
+
p

ρ

Dρ

Dt
. (2.40)

By combining equation 2.40 with equation 2.37:

ρT
Ds

Dt
+
p

ρ

Dρ

Dt
= −p∂ui

∂xi
. (2.41)

Rearranging the terms of equation 2.41:

ρT
Ds

Dt
= −p

(
1

ρ

Dρ

Dt
+ ρ

∂ui
∂xi

)
. (2.42)

The term in parenthesis on the right hand side from equation 2.42 is the continuity equation,

i.e., equation 2.28 and as a consequence:

Ds

Dt
= 0, (2.43)
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which implies that the entropy s is constant along a streamline. Flows in which the entropy

is constant through the streamline are called isentropic flows.

Equation 2.43 represents an important physical and mathematical consequence. With

dissipation phenomena being neglected, such as viscous diffusion of momentum, heat con-

duction and nonlinear compressibility effects such as shock-waves, the energy equation is

decoupled from the other governing equations and it is not dependent anymore on the other

physical principles of the other equations.

A decomposition of the variables of the system of governing equations 2.28 and 2.29

based on mean values and acoustic perturbations is proposed. The following decomposition

is very much like the Reynolds decomposition in turbulence, where the fluctuations of

turbulent processes are smaller than their hydrodynamic permanent counterpart. This

perturbation relation is applied on the system of governing equation in the following manner:

f = f0 + f ′, (2.44)

where the subscript 0 is the reference or mean value of the fluid and the superscript ′ is

relative to the acoustic fluctuations of the flow for a given general variable f . By applying

this perturbations relation in the governing equations we have:

• Mass conservation:

∂

∂t
(ρ0 + ρ′) + (u0 + u′) · ∇ (ρ0 + ρ′) + (ρ0 + ρ′)∇ · (u0 + u′) = 0. (2.45)

• Newton’s second law:

(ρ0 + ρ′)

(
∂

∂t
(u0 + u′) + (u0 + u′) · ∇ (u0 + u′)

)
+∇ (p0 + p′) = 0. (2.46)

Sound intensity values are assumed to satisfy the following relation:

p0 � p′. (2.47)

Applying the perturbation relation from equation 2.44 into the continuity equation 2.28 and

Newton’s second law 2.29, and neglecting second order fluctuation terms in all variables

according with equation 2.47, we have:
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• Mass conservation:

∂ρ′

∂t
+ u0 · ∇ρ0 + u′ · ∇ρ0 + u0 · ∇ρ′ + ρ0∇ · u0 + ρ′∇ · u0 + ρ0∇ · u′ = 0. (2.48)

• Newton’s second law:

ρ0
∂u′

∂t
+ ρ0u0 · ∇u0 + ρ0u0 · ∇u′ + ρ′u0 · ∇u0 + ρ0u

′ · ∇u0 +∇p0 +∇p′ = 0. (2.49)

By applying the variables decomposition into equations 2.28 and 2.29 for a permanent flow

field without fluctuations, i.e., mean flow only, we have:

• Mass conservation:

∇ · (ρ0u0) = ρ0∇ · u0 + u0 · ∇ρ0 = 0. (2.50)

• Newton’s second law:

ρ0u0 · ∇u0 = −∇p0. (2.51)

Now substituting equations 2.50 and 2.51 into their respective equations 2.48 and 2.49,

we have:

• Mass conservation:

∂ρ′

∂t
+ u′ · ∇ρ0 + u0 · ∇ρ′ + ρ′∇ · u0 + ρ0∇ · u′ = 0. (2.52)

• Newton’s second law:

ρ0
∂u′

∂t
+ ρ0u0 · ∇u′ + ρ′u0 · ∇u0 + ρ0u

′ · ∇u0 +∇p′ = 0. (2.53)

The next simplification is related to the mean flow. The space and time derivatives of

the mean variables are equal zero, resulting into a free stream solution for the mean flow:

• Mass conservation:
∂ρ′

∂t
+ u0 · ∇ρ′ + ρ0∇ · u′ = 0. (2.54)

• Newton’s second law:

ρ0
∂u′

∂t
+ ρ0u0 · ∇u′ +∇p′ = 0. (2.55)
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Taking the derivative of equation 2.54 in time and taking the divergence of equation 2.55,

we have:

• Mass conservation:

∂2ρ′

∂t2
+ u0 ·

∂

∂t
(∇ρ′) + ρ0

∂

∂t
(∇ · u′) = 0. (2.56)

• Newton’s second law:

ρ0
∂

∂t
(∇ · u′) + ρ0u0 · ∇2u′ +∇2p′ = 0. (2.57)

Subtracting equation 2.57 from equation 2.56 we have:

∂2ρ′

∂t2
+ u0 ·

∂

∂t
(∇ρ′)− ρ0u0 · ∇2u′ −∇2p′ = 0. (2.58)

From the following vector identity:

∇× (∇× f) = ∇ (∇ · f)−∇ · (∇f) , (2.59)

we substitute it on the third term of equation 2.58:

ρ0u0 · ∇2u′ = ρ0u0 · (∇ · ∇u′) = ρ0u0 · (∇ (∇ · u′)−∇× (∇× u′)) . (2.60)

Since the velocity fluctuation terms of the acoustic field are irrotational [63] ( ∇× u′ = 0),

we have:

ρ0u0 · ∇2u′ = ρ0u0 · (∇ (∇ · u′)) . (2.61)

Now, isolating the term ∇ · u′ on equation 2.54 and substituting it on equation 2.58:

∂2ρ′

∂t2
+ u0 ·

∂

∂t
(∇ρ′) + u0 · ∇

(
∂ρ′

∂t
+ u0 · ∇ρ′

)
−∇2p′ = 0. (2.62)

Rearranging equation 2.62 we have:

∂2ρ′

∂t2
+ 2u0 ·

∂

∂t
(∇ρ′) + u0 · ∇ (u0 · ∇ρ′)−∇2p′ = 0. (2.63)

On the third term of equation 2.63, we apply the following vector relation:

∇ (f · g) = (f · ∇)g + (g · ∇) f + f × (∇× g) + g × (∇× f) . (2.64)
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Again, we consider that the flow is irrotational (∇×u′ = 0) and that the curl of a gradient

is always equal zero (∇× (∇f) = 0), then combining equation 2.64 with equation 2.63 we

have:
∂2ρ′

∂t2
+ 2u0 ·

∂

∂t
(∇ρ′) + u0 · (∇ρ′ · ∇u0 + (u0 · ∇)∇ρ′)−∇2p′ = 0. (2.65)

Considering the mean flow as constant over time and space (∇u0 = 0):

∂2ρ′

∂t2
+ 2u0 ·

∂

∂t
(∇ρ′) + u0 · (u0 · ∇)∇ρ′ −∇2p′ = 0. (2.66)

Applying the Taylor series for the pressure fluctuations as a function of density and entropy,

we have:

p0 + p′ = p (ρ0 + ρ′, s) = p (ρ0, s) + ρ′
∂p (ρ, s)

∂ρ

∣∣∣∣
0

+O
(
ρ′2
)
, (2.67)

with the terms related to entropy equal zero since the flow is isentropic.

The derivative of equation 2.67 is done under the mean values of pressure and den-

sity (p0, ρ0), which its units are in the square of velocity. We then define the velocity of

propagation of the isentropic perturbations on the mean flow, or common called sound

velocity:

c0 =

√(
∂p

∂ρ

)
s

, (2.68)

or in the more common form used for variable change of the wave equation:

p′ = c0
2ρ′. (2.69)

Combining equation 2.69 with equation 2.66 we may obtain the wave equation with only

one variable, where it may be expressed as function of pressure or density only:

1

c0
2

∂2p′

∂t2
+

2u0

c0
2
· ∂
∂t

(∇p′) +
u0

c0
2
· (u0 · ∇)∇p′ −∇2p′ = 0, (2.70)

Equation 2.70 is the more general form for the classical wave equation with constant mean

flow over space and time.

2.2.2 Wave Equation Solution Development

In the following approximation for a turbofan engine duct, the coordinate system that

better suits the nacelle-hub geometry is the cylindrical coordinates, where its rotation axis
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Figure 2.1: Cylindrical coordinate system used on the wave equation solution of a duct

with the nacelle and the hub. CAD model of the NASA’s Active Noise Control Fan rig.

is defined at the rotation axis of the rotor blades and with the constant flow parallel to the

x axis. For the sake of simplicity the origin of the system of coordinates is positioned at the

same axial position of the rotor blades and stator vanes, also defined as a compact source

on the axial direction [64]. Now defining the mean flow vector u0 = U î on equation 2.70,

we may obtain the final form of the wave equation that the solution will be obtained. By

analyzing this solution, conclusions about the modal behavior of the propagated noise in

aeronautical turbofans may be obtained analytically at the considered flow regime:

1

c0
2

∂2p′

∂t2
+

2U

c0
2

∂

∂t
(∇p′) +

U2

c0
2

∂2p′

∂x2
−∇2p′ = 0. (2.71)

Reducing the first three terms of equation 2.71:

1

c0
2

(
∂

∂t
+ U

∂

∂x

)2

p′ −∇2p′ = 0. (2.72)

Defining the ∇ operator in cylindrical coordinates:

∇ =
∂

∂r
r +

1

r

∂

∂θ
θ +

∂

∂x
x. (2.73)

Taking the divergent of equation 2.73 to obtain the laplacian differential operator:

∇ · ∇ = ∇2 =
∂2

∂x2
+

∂2

∂r2
+

1

r

∂

∂r
+

1

r2

∂2

∂θ2
. (2.74)

Applying the laplacian in the wave equation 2.71, we have:

1

c0
2

(
∂

∂t
+ U

∂

∂x

)2

p′ −
(
∂2

∂x2
+

∂2

∂r2
+

1

r

∂

∂r
+

1

r2

∂2

∂θ2

)
p′ = 0. (2.75)
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Equation 2.75 is the wave equation in its more general form that its general solution will be

obtained and its behavior assessed. The Mach number on the axial direction of the mean

velocity flow field is defined as:

M0 =
U

c0

. (2.76)

Expanding equation 2.75 and rearranging its terms in the following way:

1

c0
2

∂2p′

∂t2
+

2M0

c0

∂

∂t

(
∂p′

∂x

)
+M2

0

∂2p′

∂x2
=
∂2p′

∂x2
+
∂2p′

∂r2
+

1

r

∂p′

∂r
+

1

r2

∂2p′

∂θ2
. (2.77)

To obtain the solution of equation 2.77, the method of separation of variables [62] will be

used, where the solution will have the following form:

p′ (x, r, θ, t) = X (x)R (r) Θ (θ)T (t) . (2.78)

Applying the above solution in equation 2.77, we obtain:

1

c0
2
XRΘT ′′ +

2M0

c0

X ′RΘT ′ +M0
2X ′′RΘT

= X ′′RΘT +XR′′ΘT +
1

r
XR′Θt+

1

r2
XRΘ′′T, (2.79)

where the apostrophe (′) indicates the function derivative in respect to its variable. Dividing

equation 2.79 by XRΘT and rearranging its terms:

1

c0
2

T ′′

T
+

2M0

c0

X ′T ′

XT
+
(
M0

2 − 1
) X ′′
X

=
R′′

R
+

1

r

R′

R
+

1

r2

Θ′′

Θ
. (2.80)

The equations of each variable will be separated by its own variable, which implies that

the terms of equation with the same variable, will be a separated equation. To obtain the

general solutions by separation of variables, the mean flow will be firstly considered equal to

zero, then we will assess the mean flow effect on the resulting solution. By making M0 = 0,

we have:
1

c0
2

T ′′

T
− X ′′

X
=
R′′

R
+

1

r

R′

R
+

1

r2

Θ′′

Θ
, (2.81)

by doing this way we have four linear differential equations, where the solution of three of

them is trivial:

• X (x):
X ′′

X
= −Kx

2. (2.82)
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• Θ (θ):
Θ′′

Θ
= −Kθ

2. (2.83)

• T (t):
T ′′

T
= −Kt

2. (2.84)

• R (r):
R′′

R
+

1

r

R′

R
+

1

r2

Θ′′

Θ
= −Kr

2, (2.85)

where −K2 is the separation constant, or wave number of each of the differential equations.

The general solution of the three first differential equations is:

F (f) = AeiKff +Be−iKff , (2.86)

where A and B are constants evaluated based on the initial and boundary conditions of the

problem.

There are other types of solutions, but their nature is not an oscillatory one [62], where

the oscillatory type of solution is the one desired due to cyclic and wave like phenomena

found in turbofan ducts. The other types of solutions refer to exponential decay or ampli-

fication only of the pressure fluctuation or the linear solution. Each term of the solution

represents the wave signal traveling in each direction of its independent variable. Naturally

the decay and amplification solutions will appear later on with the oscillatory solution that

will dictate the modal propagation along the duct.

The mathematical relation for the wave number in the axial direction will be the last

to be obtained because it is a function of the wave numbers from the other separable

differential equations. Boundary conditions and source characterization allow relations for

the wave numbers of the angular coordinate θ and the time coordinate t. The simplest wave

number relation to be obtained is the angular coordinate for it is an intrinsic condition of

the coordinate, where continuity between the angles θ = 0 and θ = 2π is needed, since

physically these points are on the same position:

p′ (x, θ = 0, r, t) = p′ (x, θ = 2π, r, t) or Θ (θ = 0) = Θ (θ = 2π) . (2.87)

subsituting equation 2.87 into equation of the general solution 2.86:

Θ1e
iKθ0 + Θ2e

−iKθ0 = Θ1e
iKθ2π + Θ2e

−iKθ2π, (2.88)
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taking only the real part of the solution and substituting it in Euler’s formula:

Aeif = A cos (f) + Ai sen (f) , (2.89)

we then obtain the implicit boundary condition of the angular coordinates:

Θ1 cos (Kθ0) + Θ2 cos (Kθ0) + i (Θ1 sen (Kθ0)−Θ2 sen (Kθ0)) =

Θ1 cos (Kθ2π) + Θ2 cos (Kθ2π) + i (Θ1 sen (Kθ2π)−Θ2 sen (Kθ2π)) . (2.90)

Arranging the equations according to the integration constant Θ and with their real or

imaginary condition:

Θ1 ( cos (Kθ0)− cos (Kθ2π)) = 0,

Θ2 ( cos (Kθ0)− cos (Kθ2π)) = 0,

iΘ1 ( sen (Kθ0)− sen (Kθ2π)) = 0,

iΘ2 ( sen (Kθ0)− sen (Kθ2π)) = 0. (2.91)

The permissible values for the wave numberKθ are integersm, positive or not. The physical

representation of this restriction of the allowed set of solutions is about the kind of wave

that will take part in these solutions of the θ coordinate. Only waves of integer periods are

allowed in these solutions, making the first modal characteristic of the noise propagated in

turbofan ducts. We then define these integer values modes m as the circumferential modes,

which will have great importance in the noise generation and propagation along the duct.

We then obtain the general solution of equation 2.83 in the circumferential direction:

Θ (θ) = Θ1e
imθ + Θ2e

−imθ. (2.92)

Another solution that is simply obtained is of the temporal coordinate (equation 2.84).

Similar to the angular coordinate differential equation, we have the following solution for

the temporal coordinate:

T (t) = T1e
iωt + T2e

−iωt, (2.93)

where the exponential argument ω is basically the angular frequency of the time oscillation

of the noise generated by the rotor blades.

The solution from equation 2.85 comes from the Frobenius’ series, where the Bessel and

Neumann equations are derived [62] and are directly related to the circumferential mode m
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which given by the solution of the angular coordinate differential equation. By combining

equation 2.85 with equation 2.83 we have:

R′′

R
+

1

r

R′

R
+

(
Kr

2 − m2

r2

)
= 0. (2.94)

Equation 2.94 is the characteristic equation with eigenvalues Kr to be obtained from the

boundary conditions on the duct walls at the r coordinate. These eigenvalues may be

supressed by the substitution [62] x = Krr and R (r) = y
(

x
Kr

)
:

d2y

d
(

x
Kr

)2 +
1(
x
Kr

) dy

d
(

x
Kr

) +

Kr
2 − m2(

x
Kr

)2

 y = 0, (2.95)

we then obtain the Bessel differential equation of order m:

d2y

dx2
+

1

x

dy

dx
+

(
1− m2

x2

)
y = 0. (2.96)

Its general solution is given by:

R (r) = R1Jm (Krr) +R2Nm (Krr) , (2.97)

that is basically the linear combination of the Bessel and Neumann function of order m

with their respective integration constants R1 and R2. The order m of these functions is

the same integer that represens the circumferential mode m from the solution of the angular

coordinate.

The boundary conditions to be applied now are related to the wall characteristics from

the hub and the nacelle when an acoustic wave interacts with its surface. The most usual

boundary condition is the hardwall condition, where its mathematical representation is

the pressure fluctuation derivative equal zero at the wall locations (Neumann boundary

condition):
dp′

dr

∣∣∣∣
r=Ri

=
dp′

dr

∣∣∣∣
r=Ro

= 0, (2.98)

where Ri and Ro are the hub and nacelle radius respectively. Now defining the following

relation between the eigenvalueKr and the relative positions where the boundary conditions

are applied:

σmn = KrRo. (2.99)
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Also defining the ratio between the internal and external radii of the geometry:

σ =
Ri

Ro

, (2.100)

where σ = 1 at the nacelle wall.

Substitutingg the general solution 2.97 and equations 2.99 and 2.100 into equation of

the boundary condition 2.98, we have:R1J
′
m (σmnσ) +R2N

′
m (σmnσ) = 0,

R1J
′
m (σmn) +R2N

′
m (σmn) = 0.

(2.101)

By solving the obtained linear system, the following relation is obtained:
d
dr

(Nm (σmnσ))
d
dr

(Jm (σmnσ))
−

d
dr

(Nm (σmn))
d
dr

(Jm (σmn))
= 0. (2.102)

Unfortunately the roots of equation 2.102 cannot be obtained analytically and their eigen-

values must be obtained numerically. For each circumferential mode m there will be more

than one root, according to the oscillatory behavior of the Bessel and Neumann equations.

As a consequence, we define the radial modes n, that are the roots of equation 2.97 numer-

ically obtained. By taking equation 2.97 in the following form that relates R1 and R2 from

equation 2.101:

R (r) = R1

[
Jm (Krr)−

J ′m (KrRo)

N ′m (KrRi)
Nm (Krr)

]
. (2.103)

Up to this point the obtained analytical solution is the following:

p′ (x, r, θ, t) =
(
X1e

iKxx +X2e
−iKxx

) (
Θ1e

imθ + Θ2e
−imθ) (T1e

iωt + T2e
−iωt)(

R1

[
Jm (Krr)−

J ′m (KrRo)

N ′m (KrRi)
Nm (Krr)

])
. (2.104)

p′ (x, r, θ, t) = XΘTei(−ωt+Kxx+mθ)R1

[
Jm (Krr)−

J ′m (KrRo)

N ′m (KrRi)
Nm (Krr)

]
. (2.105)

All the needed relations for the wave number Kx were obtained for the case with no

axial flow. Substituting on equation 2.81 the obtained solutions for all the coordinates:

• T (t):
1

c0
2

T ′′

T
=

(−iω)2

c0
2

= − ω
2

c0
2

= −kt2. (2.106)
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• X (x):
X ′′

X
= (−iKx)

2 = −Kx
2. (2.107)

• R (r):
R′′

R
+

1

r

R′

R
+

1

r2

Θ′′

Θ
= −Kr

2. (2.108)

By combining the equations and isolating the term Kx, the relation that defines the

wave number in the axial direction is obtained:

Kx =

√
ω2

c0
2
−Kr

2 =
√
kt

2 − kr2. (2.109)

For the case where there is uniform flow in the axial direction, and with the same idea of

substituting the solutions in the separable variables equations, the following expression for

the remaining terms of equation 2.80 is obtained:

2M0

c0

X ′T ′

XT
=

2M0

c0

(−iωiKx) =
2M0

c0

ωKx, (2.110)(
M0

2 − 1
) X ′′
X

=
(
M0

2 − 1
)

(iKx)
2 =

(
1−M0

2
)
Kx

2. (2.111)

Finally, we combine all the terms from the solutions of each coordinate to obtain the wave

number Kx for the case with axial uniform flow:

K2
r +K2

x =

(
ω

c0

)2

− 2M0
ω

c0

Kx +M2
0K

2
x =

(
ω

c0

−M0Kx

)2

. (2.112)

By isolating the wave number term Kx and by applying the sign convention from the

solutions exponential arguments X (x) [65]:

±Kx =
ω/c0(

1−M0
2
)
−M0 ±

√
1−

(
1−M0

2
)(Krc0

ω

)2
 . (2.113)

The wave number sign from equation 2.113 refers to the causality condition; the positive

sign of Kx refers to the wave propagation in the positive axial direction and the negative

sign refers to the wave propagation on the negative axial direction. From equation 2.105

we then define the general solution of the wave equation in cylindrical coordinates as the

sum of all the particular solutions:

p′ (x, r, θ, t) =
+∞∑

m=−∞

+∞∑
n=1

Pm,n

Jm(σmnr
R0

)
− J ′m (σmn)

N ′m

(
σmnRi
R0

)Nm

(
σmnr

R0

) ei(−ωt+Kxx+mθ),

(2.114)

where Pm,n is the product of all the single coordinates solutions amplitudes, related to the

circumferential and radial modes m and n respectively.
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2.2.3 Subsonic Acoustic Source Characterization

One of the largest noise sources of an aircraft, the fan noise, is essentially aerodynam-

ically generated noise. Appendix II presents the derivation of the Ffowcs-Williams and

Hawkings equation for the mathematical interpretation of the noise sources in volume and

surfaces integrals through the polar expansion applied to the free field propagation solu-

tion. The resulting noise source terms are due to fluid displacement, pressure distribution

and other consequences on the fluid of an immersed solid body moving through it. Such

interpretation may be also applied to the noise of the rotor itself and its interaction with

the stator [66, 67].

2.2.3.1 Rotor Blades and Stator Vanes Interaction Generated Noise

The turbofan rotor and stator interaction noise sources characterized in the appendix II

are valid for the flight regimes of a subsonic aircraft. An intense aerodynamic interaction

occurs between both parts apart from the rotor and stator themselves generating noise

separately.

The aerodynamic noise generated by the rotor blades is mainly of a fundamental fre-

quency and its harmonics, defined by the rotor passing frequency, super-imposed on the

broadband content. Among the main noise sources, the most important are the blade

thickness associated noise (monopole), blade loading noise (dipole) and the turbulent con-

tent associated noise (quadrupole). Operating conditions also contribute to generated noise,

like noise due to ingestion of atmospheric turbulence. Different operating conditions, among

others may modify the turbofan acoustic signature [66, 67].

The rotor and stator interaction noise is one of the largest noise sources of the turbofan.

All the terms of equation II.15 are responsible for noise generated inside the engine duct; the

interaction of the flow generated pressure fields produced by the rotor and stator induces

loading noise on both. Vorticity wakes produced by the rotor blades impinges on the stator

vanes in a cyclic way, modifies the stator surface loading, influencing the monopole and

dipole kind noise sources. The main result of the aerodynamic interaction between the

rotor and stator is the production of the radial and circumferential (Tyler and Sofrin)

modes [69] composing the tonal noise. Directly related to the blade passing fundamental
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frequency and its harmonics, the interaction of the rotor and stator will produce a set of

modes, that under certain conditions, will propagate in the upstream and the downstream

axial direction.

By modeling the pressure field generated by a rotor alone configuration and making

use of the general solution of the wave equation developed in section 2.2.2, the following

equation is obtained:

p′ (x, r, θ, t) =
+∞∑

m=−∞

+∞∑
n=1

Pm,n

Jm(σmnr
R0

)
− J ′m (σmn)

N ′m

(
σmnRi
R0

)Nm

(
σmnr

R0

) ei(−ωt+Kxx+mθ).

(2.115)

Regarding the generated modes, we now consider only the temporal, radial, and angular

parts of the particular solution, where the temporal angular velocity ω and the circumfer-

ential mode m are the values to be obtained due to the rotor and stator interaction and the

rotor blade passage fundamental frequency:

p′ (x, r, θ, t) = P ′ (r, x)Pm,ne
i(−ωt+mθ), (2.116)

where P ′ (r, x) is the oscillatory functions of the radial and axial directions. Consider now

the passage of several rotor blades through a fixed point, for example, next to a stator vane.

Near this point the rotor passage will produce perturbations of the pressure field, where

in certain conditions, remains constant if the same point rotates together with the rotor

blades. According to the wave equation solution, the value of the pressure fluctuations

amplitude is not calculated, because it depends on more complex factors, like the rotor

blades and stator vanes geometry description and the flow around them, which occurs in

a cyclic way every time a rotor blade passes by a single stator vane. Taking these things

into consideration, we may characterize the time term of the exponential argument from

the wave equation solution for a fixed point in space:

ω = hBΩ, (2.117)

where h is the harmonics of the blade passing frequency, B is the number of rotor blades of

the turbofan and Ω is the angular rotation rate of the rotor shaft, also given by Ω = 2πf ,

where f is the rotation frequency in complete turns per second of the rotor shaft. Consider

that the time pressure field solution of the wave equation may be given by the sum of all
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of its harmonics of the rotor turning frequency:

p′ (x, r, θ, t) =
+∞∑
h=1

P ′ (r, x)Pm,n,he
i(−hBΩt+mθ+φm,h), (2.118)

where φm,h is the exponential phase related to the rotor position and their respective har-

monic.

In the general wave equation solution, any values form are considered according with the

angular coordinate implicit boundary condition. Consider that at a given time t the rotor

position θ relative to the stator vanes produces a pressure field from their interaction that

is equivalent to equation 2.118. Following the same line of thought, the rotor blades and

stator vanes are positioned at the same angular distance from its neighbors. Considering

that the angular distance between two consecutive stator vanes is given by:

∆θ =
2π

V
, (2.119)

where V is the number of stator vanes of the turbofan. The needed amount of time for

a pressure state from a particular rotor position to repeat again, when the following rotor

blade occupies the same position of its predecessor is given by:

∆t =
2π

V Ω
. (2.120)

From the solution of equation 2.118 the pressure field between the reference angular position

θ, at the reference time t and after the rotor assumed the angular position θ + ∆θ at the

given time t+ ∆t, the pressure field will be the same at t and t+ ∆t:
+∞∑
h=1

P ′ (r, x)Pm,n,he
i(−hBΩt+mθ+φm,h) =

+∞∑
h=1

P ′ (r, x)Pm,n,he
i(−hBΩ(t+∆t)+m(θ+∆θ)+φm,h).

(2.121)

Rearranging the variation terms ∆θ and ∆t:
+∞∑
h=1

P ′ (r, x)Pm,n,he
i(−hBΩt+mθ+φm,h) =

+∞∑
h=1

P ′ (r, x)Pm,n,he
i(−hBΩt+mθ+φm,h)ei(−hBΩ∆t+m∆θ),

(2.122)

as a consequence, the second exponential term of the right hand side must be equal to one:

ei(−hBΩ∆t+m∆θ) = 1. (2.123)

The possible solutions are:

ei2πk = 1, (2.124)
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where k is any integer value, positive or negative. Substituting the definitions of ∆θ and

∆t into the equations above:

i (−hBΩ∆t+m∆θ) = i

(
−hBΩ

2π

V Ω
+m

2π

V

)
= i2πk, (2.125)

and finally isolating the m term:

m = hB + kV where k = −∞, ...,−1, 0, 1, ...,+∞ | k ∈ Z. (2.126)

The values obtained for m from equation 2.126 are the possible values for the circumferen-

tial mode m related to the ∆θ and ∆t cyclic conditions. Such circumferential modes are

commonly known as the Tyler and Sofrin interaction modes. These are all the modes ob-

tained by the interaction between the rotor blades and the stator vanes associated with their

fundamental frequency and its harmonics. There are special cases for the equation 2.126,

for example, when there are no stator vanes, where the generated modes are solely multiples

of the number of rotor blades and a single mode per harmonic (m = Bh). Another example

is the case where there are no rotor blades and only stator vanes, where mathematically

circumferential modes may exist according to equation 2.126, but physically inconsistent

because no frequency is associated with the stator vanes only configuration.

Substituting equation 2.126 into the wave equation general solution 2.2.2, it is obtained:

p′ (x, r, θ, t) =

+∞∑
h=1

+∞∑
n=1

+∞∑
k=−∞

Pm,n

Jm(σmnr
R0

)
− J ′m (σmn)

N ′m

(
σmnRi
R0

)Nm

(
σmnr

R0

) ei(−hBΩt+Kxx+θ(hB+kV )).

(2.127)

Equation 2.127 is the general solution for the case where the tonal noise is generated

by the rotor and stator interaction at the axial coordinate origin, where the acoustic waves

propagate in the positive and negative axial directions. The Tyler and Sofrin mode gener-

ation rule makes the selection of the generated circumferential modes. Unfortunately there

is not a mathematical relation that selects which radial modes will be generated by the

rotor and stator interaction, or even for the case where there are only the rotor blades. The

amplitude of the circumferential modes, along with its radial mode counterpart depends

on the aerodynamic properties of the rotor and stator and must be obtained by numerical
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or experimental means for their propagation analysis [68]. The physical solution will be

considered as the real part of the above equation.

2.2.4 Tonal Modal Noise Propagation Through the Nacelle-Hub

Duct

Based on the solution of the wave equation with convective effects in cylindrical coordi-

nates, and considering the set of solutions that follows the Tyler and Sofrin circumferential

modes selection rule, it is possible to characterize the generated tonal noise and its propa-

gating behavior through the nacelle-hub duct. With the duct propagation theory, the set of

modes that effectively composes the noise becomes more restricted, where only generated

and propagated modes will irradiate outside the duct.

2.2.4.1 Propagating Modes Definition

By modeling the turbofan nacelle and hub as a circular uniform duct with constant axial

mean flow and with the hardwall boundary condition, equation 2.113 is the relation that

will dictate mode behavior at these flow conditions. The generated modes are associated

with circumferential and radial characteristics that will compose each harmonic of the tonal

noise.

According to equation 2.127, the modes of a given particular solution will propagate in

an oscillatory way without changes of its amplitude, if all the spatial and temporal variables

and arguments of the exponential terms are real. This assertion will hold true for the wave

number terms from the circumferential, temporal and radial wave numbers, considering

that the Bessel and Neumann eigenvalues are real values. The wave number associated

with the axial direction and argument of the exponential may be of complex type.

Taking the wave number equation of the axial direction 2.113, repeated here for the sake

of clarity and remembering that the sign change implies the wave propagation direction in

the axial direction:

±Kx =
ω/c0(

1−M0
2
)
−M0 ±

√
1−

(
1−M0

2
)(Krc0

ω

)2
 . (2.128)
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Both real and imaginary values may be obtained from the square root of equation 2.128.

Real values for the wave number induces in the solution oscillatory behavior only, but when

these arguments have complex values, the solution of the wave equation will have a decaying

or amplifying effect on the wave propagation.

Taking into account the wave equation solution and remebering the signal convention

for both the wave equation solution and the axial wave number equation, only complex

arguments related to wave decay are allowed, keeping the physical coherence in the ther-

modynamic point of view. Now isolating the square root argument from equation 2.128, we

have the following conditions for mode propagation:

(
1−M0

2
)(Krc0

hBΩ

)2

=


< 1 cut on,

= 1 critical value,

> 1 cut off.

(2.129)

We now define that when the value of the above expression is lower than one, the square root

of equation 2.113 will be of real type and there will be no dampening of the propagating

wave on equation 2.127, we will define the propagating mode to be cut-on. When the

expression above has values higher than one, the square root will be of imaginary type and

the exponential decay term will appear in equation 2.127; the generated modes will cut-off.

There are the critical modes, that are also of cut-on type, when equation 2.129 is equal to

unity.

According to equation 2.129, the most influential factors on mode propagating behavior

are basically thermodynamic (sound speed c0), operational conditions of the aircraft (axial

Mach number) and values that are related to the engine design (number of rotor blades

and stator vanes, rotor shaft angular speed and hub and nacelle radii). The turbofan con-

figuration is directly related to the radial wave number, that must be obtained numerically

for given radial n and circumferential m modes that were given by equation 2.126), and

then compared with the critical value. Substituting equation 2.99 into equation 2.129 on

the critical condition and isolating the critical eigenvalue term σmn,c:

σmn,c =
RoΩh

c0 (1−M2
0 )

1/2
. (2.130)

A kinematic analysis may help the understanding of the cut-on and cut-off aerodynami-

63



cally generated modes due to rotor and stator interaction. Taking the exponential argument

of the general solution of the wave equation 2.127, with the generated modes from the rotor

and stator interaction and considering the argument as a constant, we have the isovalue of

the resulting wavefront of the circumferential, axial and temporal solutions [66]:

−hBΩt+Kxx+ θ (hB + kV ) = φ. (2.131)

By isolating the θ term and differentiating it in respect to time to obtain the circumferential

phase velocity at a fixed plane perpendicular to the x axis we have:

(hB + kV )
dθ

dt
= hBΩ. (2.132)

Now multiplying both sides of the above expression by the external radius (nacelle inner

wall), we define the phase velocity:

Ro
dθ

dt
= Um =

hBURo
hB + kV

. (2.133)

Rearranging:
Um
URo

=
hB

hB + kV
. (2.134)

Equation 2.134 is the ratio of the circumferential speeds of a given circumferential mode

m and the rotor blades circumferential speed. Such expression implies that for a given

harmonic, the condition to a given mode spin rate in the same rate, the ratio of the number

of lobes of this rotor only generated mode and the one from the interaction must be the

same phase speeds. As a consequence, the interaction generated modes that have lower

values than the rotor only generated modes have higher circumferential phase speeds that

can be higher than the sound velocity itself.

Combining equations 2.134 and 2.129 at the critical condition, yields:

Um,c =
(
1−M2

0

)1/2 σmn
m

c0, (2.135)

equation 2.135 expresses the needed circumferential phase speed the mode m must have

to be of cut-on type. Equation 2.135 can also be simplified for no flow conditions M0 = 0

and now taking the ratio σmn/m as near one for large m values, the following expression is

obtained:

Um,c = c0. (2.136)
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As a rule-of-thumb, equation 2.136 says that for a given circumferential mode, it will prop-

agate only if it has at least sonic phase speed. This also implies that the propagation

condition for a rotor only generated mode is that the rotor must spin at least sonic tip

speed. But in the case between the rotor and the stator, according to equation 2.134,

the rotor blades do not necessarily have sonic phase speed to generate propagating modes,

because some interaction generated modes may have supersonic phase speed to keep their

respective harmonic frequency.

2.2.4.2 Modal Propagation Angles

Similar to the linearization process was done on the governing equations to obtain

analytical results concerning the modal propagation in ducts, its geometric characteristics

may be obtained through simple geometric analysis of the results from the wave equation

solution.

Again regarding constant cross section ducts, we consider that the wave fronts that

compose the circumferential m modes behave like plane waves, that propagate with a given

angle φi in respect to a given i coordinate. With simple geometrical manipulations, we may

obtain this wave front angle with the i coordinate [70]:

cos (φi) =
Ki√∑
iK

2
i

. (2.137)

In the cylindrical duct case from the previous sections, we have the following wave numbers:

Ki = Kr, Kx. The wave front angle with the axial coordinated is given by:

cos (φx) =
Kx√

K2
r +K2

x

. (2.138)

Substituting the denominator of equation 2.138 with the wave numbers from the coordinates

given by equation 2.112 and by the definition of the temporal wave number, i.e., Kt = ω/c0

yields:

cos (φx) =
Kx

Kt −M0Kx

. (2.139)

Now substituting the respective wave numbers:

cos (φ±x) =
−M0 ±

√
1− (1−M2

0 ) (Kr/Kt)
2

1∓M0

√
1− (1−M2

0 ) (Kr/Kt)
2
. (2.140)
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The following form of equation 2.140 as the source defined for the wave number Kt and

with the eigenvalues calculated for σmn may be obtained:

cos (φ±x) =
−M0 ±

√
1− (1−M2

0 )
(
σmnc0
RoBΩh

)2

1∓M0

√
1− (1−M2

0 )
(
σmnc0
RoBΩh

)2
. (2.141)

2.2.4.3 Two Dimensional Cascade Approximation

More simplifications will be used on the modal analysis to provide a better validation of

the numerical results of this work. We will consider the two dimensional simplification of

the numerical cases, where the radial element of the flow can be removed, where the lack of

source modeling and information may interfere with the validation process, without losing

much of the physical insight.

Figure 2.2: Thin annular duct approximation.

The proposed approximation is carried out by taking the limit Ri → Ro, i.e., making the

hub radius almost as large as the inner nacelle wall radius, thus eliminating any higher modal

radial content from the propagation mechanics, resulting in the thin annular duct condition

[71, 72], where the flow is basically two dimensional. Such approximation corresponds

directly with the Cartesian two dimensional case with cyclic boundary conditions at the
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upper and lower positions of the domain.

The mathematical consequences on the wave equation solution 2.127 result in a simpli-

fication of the eigenvalues [72] of the linear system of equations 2.101:σmn = m for n = 1,

σmn � σmn,c for n > 1.

(2.142)

The radial modes n associated with the circumferential modes m that are larger than one

will necessarily be of cut-off type. This means that the thin annular duct approximation is

equal to a two dimension case of cascades. The calculated eigenvalues are shown in tables

I.1 and I.2 in the appendix I.

2.2.4.4 Circumferential Modes Measurement by Doppler Effect

Regarding ducts and thin annular ducts, the circumferential mode measurement of all

its harmonics structure is possible by the use of the Doppler effect on the pressure signal

measurement of the modal propagation field.

According to equation 2.134, each mode associated with a given harmonic will have its

phase speed given by the ratio the number of rotor blades with the circumferential mode

value and with its respective harmonic number. From the exponential argument of equation

2.127, we have:

ei(−hBΩt+Kxx+θm) = ei(−hBΩt+θm+φx). (2.143)

This part of the wave equation solution represents the time oscillation at a given position

in space. The time varying pressure signal will be given at same circumferential positions

of the angular coordinate θ at the plane perpendicular to a fixed axial position, where the

difference from two points will be due to phase angle φx. Making the angular position of the

pressure signal measurement to change with time at a constant angular velocity dθ(t)
dt

= θ̇,

and by defining this velocity as a fraction of the rotor blades angular frequency ϕ = Ω
θ̇
, we

have:

ei(−hBΩt+θ(t)+φx) = ei(−hBΩt+θ̇mt+φx) = ei((−hBΩ+ Ωm
ϕ )t+φx). (2.144)

By applying the Fourier transform of equation 2.144:

F
(
ei((−hBΩ+ Ωm

ϕ )t+φx)
)

=
√

2πδ

(
−hBΩ +

Ωm

ϕ

)
. (2.145)
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The result obtained shows that the exponential time argument will result in a Dirac delta

function at the modulus of the frequency itself. By doing this, there will be a shift in

the frequency of the measured pressure signal Ωm
ϕ

around its corresponding harmonic [73,

74]. As a consequence, the frequency shift of a pressure measurement probe that spins at

the same angular direction as the rotor will have a decrease in its frequency for a given

circumferential mode m with positive value, while a mode m with negative value will have

an increase in its frequency. Certain care must be taken into account for determining the

value of θ̇ in the case where two consecutive harmonics have decomposed modes that may

intersect each other, mixing the measurement. The value of θ̇ also must be fast enough to

make possible the distinction between the modes of a given harmonic.

2.3 Noise Generation by Supersonic Sources and Prop-

agation in Ducts

With the introduction of the turbofan engines in the 1970s and the increase of the fan

bypass ratio, the fan tip speeds also increased, reaching supersonic levels during some flight

phases (take-off and climb). This produces a system of shock-waves and expansion waves

fixed to the rotor blades that propagates in the upstream direction that finally radiates

to the environment as the prevalent source of noise in these conditions, affecting both the

community and cabin noise levels.

In nominal operating and perfect manufacturing conditions the noise produced by su-

personic blades has a single tone noise related to the blade passing fundamental frequency

and its harmonics that is associated with a circumferential pressure profile that resembles

a sawtooth pattern, shown in figure 2.3. But in realistic conditions, due to manufacturing

processes and extended usage, minimal blade to blade differences are produced in the stag-

ger angle, camber, thickness and blade spacing, slightly affecting the system of shock and

expansion waves in the rotor blades region, as shown in figure 2.4. The mechanisms of this

particular noise generation and the shock-waves behavior in ducts have been addressed theo-

retically and experimentally since the 1970s [75, 72, 77, 78, 79], and are phenomenologically

well understood.
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Figure 2.3: Uniform system of shock and expansion waves generated by the supersonic

tangential velocity of the rotor tips. (a) Shock and expansion waves pattern around the

rotor blades. (b) Circumferential pressure profile near the rotor blades leading edges.

Figure 2.4: Shock-waves and expansion waves distortions due to rotor blade to blade non-

uniformity. (a) Shock and expansion waves pattern around the rotor blades. (b) Circum-

ferential pressure profile near the rotor blades leading edges.

Due to the non-uniform pressure pattern at each blade stage, the fundamental tonal

frequency changes to the rotor shaft rotation frequency, where the resultant pressure pattern

repeats only after a full shaft turn. The perceived noise resultant from this interaction is

commonly referred to as the multiple tone noise or buzz-saw noise, for its resemblance to
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the sound produced by a circular buzz-saw. These effects vary from engines of the same

model due to these slight rotor to rotor blades differences, making it difficult to obtain an

ultimate method to predict this kind of noise for a given turbofan engine.

2.3.1 Regular Shock-waves Propagation in Ducts

Several methodologies have been applied to predict the sound pattern at the end of

an engine duct. For regular sawtooth wave patterns propagating through ducts, nonlinear

analytical methods were proposed [75, 79, 72].

Initially consider the analytic relations that describe the decay rate of a sawtooth shock-

wave, as shown in figure 2.5. An analytical relation [72] for a sawtooth wave traveling in

the medium, where it is considered a weak shock in a perfect gas and that describes at a

fixed time the decay of a sawtooth wave pattern along a duct, is given by:

d (1/z)

dt
=

(γ + 1)

2γ

c0

λ
, (2.146)

where z is the non-dimensional pressure jump of the sawtooth wave ∆p/p0, γ is the gas

specific heat ratio and λ is the wave length of the sawtooth wave generated by the su-

personic rotor blades. Integrating equation 2.146 with respect to time and considering for

the integration interval the shock-wave amplitude zi for an initial time t0, where we will

consider t0 = 0, up to an arbitrary time t yields:

∆p (t)

p0

= z (t) =

[
1

zi
+
c0t

λ

(γ + 1)

2γ

]−1

. (2.147)

The needed values for equation 2.147 are the initial shock-wave amplitude zi and its wave

length λ located at the plane perpendicular to the flow direction, upstream to the rotor

blades, and the shock-wave propagation time t.

We may use equation 2.147 for a regular shock-wave system propagating in a duct, i.e.,

the turbofan nacelle and hub duct. At these conditions, the wave fronts will propagate

through an helicoidal path along the duct and its propagation will have a retarded effect

due to the incoming flow.

From figure 2.6, we obtain the following relation between the flow angles:

φ+ β + µ = π, (2.148)
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Figure 2.5: Repeated sawtooth wave pattern generated by supersonic rotor blade cascades.

Figure 2.6: Geometrical details of the system of regular sawtooth shock-waves at the up-

stream rotor region [76].

where φ is the angle between the shock-wave and the duct axis, β is the angle between the

flow relative to the rotor blade with the duct axis and µ is the Mach angle of the shock-wave.

By applying the sine on equation 2.148 and with the mathematical identity of the sum of

the angles of the sine argument, we have:

sin (φ) = sin (µ) cos (β) + cos (µ) sin (β) . (2.149)

Also applying the same idea as above but with the cosine on equation 2.148, we have:

cos (φ) = sin (µ) sin (β)− cos (µ) cos (β) . (2.150)

The two obtained expressions above will be useful to define a relation for the propagation

time of the shock-wave and the traveled axial distance x (t).
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From figure 2.6 we have the following relations:

cos (β) =
Mx

Mrel

,

sin (µ) =
1

Mrel

,

(2.151)

where Mx is the axial Mach number of the flow and Mrel is the Mach number of the flow

relative to the rotor blades, given by:

M2
rel = M2

x +M2
t , (2.152)

where Mt is the Mach number of the tangential speed of the rotor blades. By combining

equations 2.151 and 2.152 into equations 2.149 and 2.150, we have respectively:

sin (φ) =
1

M2
rel

[
Mx +Mt

(
M2

rel − 1
)1/2
]
,

cos (φ) =
1

M2
rel

[
Mt −Mx

(
M2

rel − 1
)1/2
]
.

(2.153)

According to figure 2.6, we may define the Mach number of the shock-wave relative to

the duct:

Mu = sin (φ)−Mx. (2.154)

Again, according to figure 2.6 we may associate the wave length λ with the tangential

distance d of two equivalent and neighboring blade points:

λ = d cos (φ) . (2.155)

Also defining the relation between the axial distance x (t) traveled by the shock-wave and

the propagation time of that distance:

x (t) = Muc0t, (2.156)

by rearranging and multiplying both sides by the wave length λ, we have:

λ

c0t
=
Muλ

x
. (2.157)

Substituting equations 2.154 and 2.155 into equation 2.157:

λ

c0t
=
d

x
cos (φ) (sin (φ)−Mx) . (2.158)
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Now defining the following term F (Mrel,Mx):

F (Mrel,Mx) = cos (φ) (sin (φ)−Mx) . (2.159)

By substituting equation 2.153 into equation 2.159 and rearranging its terms, we obtain:

F (Mrel,Mx) =
(M2

rel − 1)
1/2

M4
rel

[
Mx

(
M2

rel − 1
)1/2 −Mt

]2

, (2.160)

where:
λ

c0t
=
d

x
F (Mrel,Mx) . (2.161)

Substituting equation 2.161 into equation 2.147:

∆p (t)

p0

=

[
1

zi
+

x

F (Mrel,Mx) d

(γ + 1)

2γ

]−1

. (2.162)

Equation 2.162 states the decay of a rotor blade generated shock-wave that propagates at an

axial distance along the duct [76], a function of the flow variables F (Mrel,Mx). Note that

equation 2.162 is relevant to shock-wave propagation through the duct only, the generation

process and shock-wave amplitudes must be obtained from other means, such as from CFD

or experiment.

2.3.2 Non-Regular Shock-waves Propagation in Ducts

In the case studied in section 2.3.1 the realistic buzzsaw noise signature was not consid-

ered. When the rotor blades show slight geometrical differences between them, some slight

differences between the shock-waves are also produced, resulting in differences at their prop-

agation speeds and propagation angles. In this case, some phenomena may occur when a

neighboring shock-wave travels at a higher velocity than its counterparts. If the duct is

long enough and the mean values of the shock-waves pressure jump [58], shock coalescence

between faster and slower shock-waves may occur. Two neighboring shock-waves become

one shock-wave with a distinct propagation speed and decay rate.

Modifications can be made to the theory of propagation and decay of shock-waves in a

duct, as defined in section 2.3.1, where it is possible to predict the propagation of a system

of non-regular sawtooth shock-waves, which corresponds to the noise signal produced by

supersonic rotor blades with geometrical differences. Algorithms for prediction of these
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system of non-regular shock-waves are available in literature [57, 58, 59]. Some of these

algorithms are applied on the time domain [75, 58] or on the frequency domain [59, 60].

Consider a frame of reference traveling at the sound speed given by the mean tempera-

ture of the inlet region and at an helicoidal path through the duct. The propagation angle

φ, defined by equations 2.153 and that is used under the following form:

φ = acos
[

1

M2
rel

(
Mt −Mx

(
M2

rel − 1
)1/2
)]

, (2.163)

where φ is the angle of propagation between a given shock-wave and the duct axial direction,

given by the flow inlet conditions and the rotor blades tangential speed.

Now consider that the expansion waves between the shock-waves result in equal gradients

among them as time passes, the modulus of the decay rate of the maximum value of the

shock-waves and the growth rate of its minimum value are equal [58]. As a consequence, the

mean pressure of the shock-waves pressure jump remains constant while the propagation

occurs. When a sawtooth shock-wave has a mean pressure that differs from the flow mean

pressure, it propagates at a constant but different speed from the system of coordinates:

v (pm) =
(γ + 1) c0

2γp0

∆pm, (2.164)

where the subscripts 0 reffer to the duct inlet values and ∆pm is the mean pressure difference

of the shock-wave pm and the inlet duct pressure p0. A useful form for equation 2.164 is

the difference of the two neighboring shock-waves propagation speeds:

∆v (pm1, pm2) =
(γ − 1) c0

2γp0

(pm1 − pm2) , (2.165)

where the mean pressure of each shock-wave is pm1 and pm2.

If one of two neighboring shock-waves have different mean pressure and the pursuer

shock has higher mean pressure than the followed shock, inevitably at a given coalescence

time tc they will merge into a new shock-wave, that will propagate on the same conditions

of the other shocks before the coalescence. The coalescence time is given by:

tc =
λ

∆v (pm1pm2)
. (2.166)

Another expression needed to describe the propagation and coalescence phenomena of saw-

tooth shock-waves, is the axial distance equivalent to its propagation time. Already defined
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by equation 2.161, repeated here for the sake of clarity:

λ

c0t
=
d

x
F (Mrel,Mx) . (2.167)

The pressure jump from the resulting shock-wave of two coalescing ones is simply the sum

of both at the coalescing time and the resulting mean pressure is the coalescing shocks

weighted average where the pressure jumps are their respective weights.

To become useful so that comparisons can be made with the numerical results, the

circumferential components [75] of the velocities and all the other variables are used:

vy (pm) =
v (pm)

cos (φ)
,

∆vy (pm1, pm2) =
∆v (pm1, pm2)

cos (φ)
,

tc =
λ

∆v (pm1, pm2)
=

d

∆vy (pm1, pm2)
.

(2.168)

The decay of each sawtooth shock-wave is the same one used in the case where the shock

distribution is totally homogeneous. Note that the case where there are only identical

shock-waves both in mean pressure and shock amplitude reduces to the use of equation

2.147 only.

The input data of the analytical method is the shock-wave circumferential distribution

before the rotor, at a given position where the shock-waves are already weak. The circum-

ferential distance distribution between the shocks is approximately the same, where they

can be regarded as the rotor-to-rotor circumferential distance. The main difference between

them is the mean pressure and shock amplitude.

With all the needed relations derived, it is possible to make a simple algorithm that

will describe the pressure field of the propagating shock-waves in the inlet direction. The

main idea of this algorithm is that at a given initial circumferential shock-wave condition

the prediction of the lowest shock coalescence must be made to be able to assemble a new

circumferential shock-wave distribution. This distribution is now considered as the new

initial condition and their decay and coalescence time is again calculated until the desired

axial distance is reached. This method was implemented in a purely serial code in Matlab

R2013b for Linux 64 bits and the execution time to achieve the circumferential shock
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distribution for the farthest axial distance to be compared with the numerical simulation

took less than a second.
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Chapter 3

Non-linear Gas Dynamics with

Expansional Viscosity

This chapter describes the expansional viscosity model [20], regarding a non-Stokesian

fluid, where the state of thermodynamic equilibrium is not instantaneously achieved. Dissi-

pative effects related to the dilatation and contraction of the fluid have strong influence on

the equilibrium of forces and energy conservation on the medium. The model is described

and its nondimensional parameters are identified. A one dimensional linear stability anal-

ysis is carried out in the frequency domain as a preliminary study for the model behavior

in numerical simulations.

3.1 The Stress Tensor

Consider the constitutive equation for a stress tensor that describes a viscous Newtonian

fluid in the most general form [18]:

σij = −p0δij + τij, (3.1)

where p0 in this context is the equilibrium pressure or the thermodynamic pressure and

τij is the nonequilibrium part or the flow part of the stress tensor given by the generalized

Newton viscosity law [18]:

τij = ηijklDkl, (3.2)
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where Dkl is the rate of strain tensor:

Dij =
1

2

(
∂uj
∂xi

+
∂ui
∂xj

)
. (3.3)

Here we will consider ηijkl as an isotropic fourth order viscosity tensor where its most

general form is given by [61]:

ηijkl = λδijδkl + βδikδjl + γδilδjk, (3.4)

where λ, β and γ are material constants of a homogeneous Newtonian fluid.

By substituting equation 3.4 into equation 3.2, and taking into account the symmetry

of the rate of strain tensor Dij, we have:

τij = λδijDkk + (β + γ)Dij. (3.5)

Defining β + γ = 2µ at the shearing strain term:

τij = λδijDkk + 2µDij, (3.6)

remembering that the term Dkk is the velocity divergent ∇ · u and that it physically rep-

resents the rate of dilatation or contraction of the fluid element per unit of volume.

Now we define µ as the shear viscosity of the Newtonian fluid and λ as its bulk or

expansional modulus. Substituting equation 3.6 into equation 3.1, we have:

σij = −p0δij + λδij∇ · u + 2µDij. (3.7)

3.1.1 Mechanical Pressure

We may define the flow mechanical pressure from the trace of the tensor σij [18]:

p = −tr (σ)

3
. (3.8)

By combining equation 3.8 with equation 3.7, we have:

p = p0 − λ∇ · u−
2

3
µ∇ · u, (3.9)

rearranging the obtained equation:

p = p0 −
(
λ+

2

3
µ

)
∇ · u. (3.10)
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We now define the term κ = λ + 2
3
µ as the second viscosity coefficient or expansional

viscosity that in the constitutive equation for the mechanical pressure is given by:

p = p0 − κ∇ · u. (3.11)

Equation 3.11 shows that the difference between the mechanical pressure, or flow pressure,

and the thermodynamic pressure, or equilibrium pressure, is directly related to the second

viscosity coefficient κ. The stated equilibrium deviation due to the presence of the flow

is given by ∇ · u, that occurs in compressible flows with high frequencies or dilatation

and contraction amplitudes, like for exemple, the acoustic propagation of waves with high

frequencies, high frequency oscillation of bubles in a liquid fluid or yet wave propagation at

large distancies.

3.1.2 The Stokesian Fluid

In Newtonian and Stokesian fluids it is considered that the deviation from the thermo-

dynamic equilibrium induced on a fluid by the flow or some excitation is too small, when

compared with the dilatation or contraction rate of the same characteristic time of the flow.

This is a typical laboratory condition and is usually found in most of the low compressible

flow cases, where:

κ ≈ 0, (3.12)

resulting in:

λ = −2

3
µ (3.13)

in equation 3.11. This condition is the Stokes’ hypothesis, where the mechanical pressure

is equal the thermodynamic pressure:

p = p0, (3.14)

and equation 3.7 results in the following form:

σij = −p0δij −
2

3
µδij∇ · u + 2µDij = −p0δij + 2µ

(
Dij −

1

3
∇ · u

)
. (3.15)

Equation 3.15 is the final form for a Newtonian compressible and Stokesian fluid. This form

is the most common fluid model used in CFD, along with the continuity, momentum and

energy equations.
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3.1.3 The Non-Stokesian Fluid

The non-Stokesian fluid is an even more general case that may be reduced to the Stoke-

sian fluid. In this case, we may write σij in the following form of the second viscosity

coefficient:

σij = −p0δij + κδij∇ · u + 2µ

(
Dij −

1

3
δij∇ · u

)
, (3.16)

that is the constitutive equation that describes flows with dissipative effects related to

compressibility, where the thermodynamic non-equilibrium effects are not negligible. At

these conditions, the time of response or relaxation time of the dilating fluid are larger than

the excitation time. The flow itself becomes an irreversible process with a certain deviation

from the equilibrium with κ 6= 0.

For inviscid barotropic flows under high frequencies, equation 3.16 is reduced to the

following form:

σij = −p0δij + κδij∇ · u, (3.17)

where λ = κ in this case. Now we apply the constitutive equation 3.17 into Cauchy’s

equation without body forces, which is the representation of Newton’s second law for a

continuous media [61]:

ρ
Du

Dt
= ∇ · σ, (3.18)

we then have:

ρ
Du

Dt
= −∇p0 +∇ (κ∇ · u) . (3.19)

3.1.4 Energy Considerations for the General Newtonian

Stress Tensor

From the energy equation 2.10 in its differential and conservative form for a generalized

Newtonian fluid, we have:

(∂ρet)

∂t
+∇ · (ρuet) = ∇ · (−q + τ · u− pI · u) + ρfe · u, (3.20)

and by its non-conservative equivalent form:

ρ
D

Dt

(
u2

2
+ e

)
= ∇ · (−q + σ · u) + ρfe · u, (3.21)
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where σ · u = τ · u− pI · u. By defining the body forces through a potencial field, we have:

ρfe · u = −ρ∇φ · u = −ρDφ
Dt

(3.22)

and with the following vector identity:

∇ · (σ · u) = u · ∇ · σ + σ : ∇u. (3.23)

Substituting equations 3.22 and 3.23 into equation 3.21, we have:

ρ
D

Dt

(
u2

2
+ e

)
= −∇ · q + u · ∇ · σ + σ : ∇u− ρ∇φ · u, (3.24)

or in an equivalent form:

ρ
D

Dt

(
u2

2
+ e+ φ

)
− u · ∇ · σ = −∇ · q + σ : ∇u. (3.25)

In equation 3.25 it is implicit the mechanical energy equation (mathematical derivation

in appendix III):

ρ
D

Dt

(
u2

2
+ φ

)
= u · ∇ · σ, (3.26)

where the resulting equation is the Kirchoff’s equation of internal energy:

ρ
De

Dt
= −∇ · q + σ : ∇u. (3.27)

Now we consider the stress tensor for a non-Stokesian Newtonian fluid (equation 3.16),

repeated here:

σ = −p0I + κ∇ · u + 2µ

(
D− 1

3
(∇ · u) I

)
. (3.28)

Taking into account that the above tensor is symmetric (σij = σji), the second term of

the right hand side from equation 3.27 may be split into the symmetric and antisymmetric

parts:

σ : ∇u = σ : D + σ : W, (3.29)

where the antisymmetric part is equal to zero, then we have:

σ : ∇u = σ : D. (3.30)

By substituting equation 3.16 into equation 3.30:

σ : ∇u = −p0∇ · u +

(
κ− 2

3
µ

)
(∇ · u)2 + 2µD : D. (3.31)
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Now by taking the entropic form of the second law of thermodynamics equation, we

have:

Tds = de+ p0d

(
1

ρ

)
= de− p0

ρ2
dρ. (3.32)

Differentiating equation 3.32 in respect to time:

ρT
Ds

Dt
= ρ

De

Dt
− p0

ρ

Dρ

Dt
. (3.33)

Substituting the second term of the right hand side of equation 3.33 by its counterpart from

continuity equation results in:

ρT
Ds

Dt
= ρ

De

Dt
+ p0∇ · u. (3.34)

Substituting equations 3.27 and 3.31 into equation 3.34 and using the material derivative

notation:

ρ
Ds

Dt
=

1

T

[
−p0 (∇ · u) +

(
κ− 2

3
µ

)
(∇ · u)2 + 2µD : D + p0 (∇ · u)−∇ · q

]
, (3.35)

resulting in:

ρ
Ds

Dt
=

1

T

[(
κ− 2

3
µ

)
(∇ · u)2 + 2µD : D−∇ · q

]
. (3.36)

Equation 3.36 states the second law of thermodynamics under the entropic form where the

right hand side terms of the equation are the entropy generation sources. The first term

is the expansional viscosity effect associated with the fluid dilatation and contraction. The

second term is the shear viscosity effect acting on a shearing fluid. The third term is the

effect of thermal condution on the fluid.

Note that if the fluid is Stokesian, in the first term of the right hand side, expression

3.13 will be valid in equation 3.36 and it will be equal to zero and as a consequence there

will not be entropy growth due to dilatation and contraction effects on the fluid.

3.1.5 Second Viscosity Coefficient for an Inviscid

Non-Stokesian Fluid

The second viscosity coefficient may be modeled after phenomena that oscillate between

the equilibrium and non-equilibrium states. The magnitude of the expansional viscosity

is usually the same as the shear viscosity, but in some cases, the expansional viscosity
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magnitude may surpass the shear viscosity magnitude [20]. As shown in equation 3.17,

the second viscosity coefficient is multiplied by the velocity divergent, which represents the

dilatation and contraction rate per unit of volume of a fluid element. In cases where there

is a fast dilatation or contraction rate of the fluid, it leaves the thermodynamic equilibrium,

and then internal processes occur so that the fluid goes back to the equilibrium condition.

In cases where there is acoustic propagation, the dilatation or contraction of the fluid occurs

at a characteristic frequency. The second viscosity coefficient then acts with this dilatation

or contraction and as a consequence, the effect of the second viscosity coefficient is directly

related with not only the material but also with the flow itself, in the same way that happens

with the shear viscosity.

Now we consider a given phenomenon where ξ denotes an arbitrary state of the fluid from

a given physical quantity, and that ξ0 is the same physical quantity but at thermodynamic

equilibrium. We also consider that like any thermodynamic quantity, ξ depends on this

case of the fluid temperature and density. If the fluid is not at thermodynamic equilibrium,

ξ will change with time towards the equilibrium value ξ0.

We now take a Taylor series expanding ξ0 around its equilibrium state, relative to

the reference time t0, and the same property ξ but out of the equilibrium state, which is

evaluated at a physical time t. Also consider that the relaxation time fluid, that is the time

needed to go from the non-equilibrium to the equilibrium condition τ = t− t0, where large

values for τ means that the fluid will go back to the state of equilibrium slower than small

relaxation times:

ξ (t) = ξ0 (t0)− (t− t0)
dξ

dt

∣∣∣∣
t=t0

+O
(
τ 2
)
, (3.37)

taking only the linear terms of the Taylor series, we have:

ξ (t) = ξ0 (t0)− τ ξ̇, (3.38)

rearranging the terms and isolating the derivative:

ξ̇ = −(ξ − ξ0)

τ
. (3.39)

Now we consider physical processes where the fluid goes under periodic and adiabatic

dilatation or contraction. This implies that the density and other thermodynamic variables

will also be subjected to temporal periodic changes. As a consequence, the equilibrium
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state ξ0 may be written as:

ξ0 = ξ00 + ξ′0, (3.40)

where ξ00 is the mean value and is non-time dependent, and ξ′0 is the fluctuation of the

equilibrium state subjected to the periodic oscillation e−iωt. By the same idea the non-

equilibrium state may be defined by its fluctuating and mean variables, we then have:

ξ = ξ00 + ξ′. (3.41)

By combining equations 3.40 and 3.41 with equation 3.39, we have the non-equilibrium

relaxation time derivative related to its fluctuation terms, given by:

ξ̇ =
d

dt
(ξ00 + ξ′) = −ξ00 + ξ′ − ξ00 − ξ′0

τ
, (3.42)

or yet:

ξ̇′ = −ξ
′ − ξ′0
τ

. (3.43)

Equation 3.43 states that if the fluctuations are function of a certain periodic fluctuation:

ξ′ = ξ̂e−iωt, (3.44)

ξ′0 = ξ̂0e
−iωt, (3.45)

where ξ̂ and ξ̂0 are the amplitudes of the terms in and out the thermodynamic equilibrium,

respectively, for the ξ fluctuation. By substituting equations 3.44 and 3.45 into equation

3.43, we have:

−iωξ̂e−iωt = − ξ̂e
−iωt − ξ̂0e

−iωt

τ
. (3.46)

Arranging the terms from equation 3.46:

ξ̂ =
ξ̂0

1− iτω
. (3.47)

Equation 3.47 may also be expressed from the mathematical point of view as the fre-

quency domain transform, where the resulting equation is the amplitude fluctuation of the

equilibrium states as a function of thermodynamic states (relaxation time τ) and flow vari-

ables (excitation frequency ω). The main idea here is to obtain a constitutive model for the

second viscosity coefficient in the frequency domain, where it can be brought to the time
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domain. By using the Fourier transform property for derivatives [62], we may define the

following operators of their own domain:

−iω ↔ ∂

∂t
, order 1,

ω2 ↔ ∂2

∂t2
, order 2,

...

(−iω)n ↔ ∂n

∂tn
, order n. (3.48)

Consider now the total derivative of the pressure in respect to the fluid density and the

thermodynamic property ξ, where p = p (ρ, ξ (ρ)), we then have:

dp

dρ
=

(
∂p

∂ρ

)
ξ

+

(
∂p

∂ξ

)
ρ

∂ξ

∂ρ
. (3.49)

Substituting equation 3.47 on the second term of the right hand side of equation 3.49 results

in:
∂ξ

∂ρ
=

∂

∂ρ

(
ξ̂0

1− iωτ

)
=

1

1− iωτ
∂ξ̂0

∂ρ
, (3.50)

substituting equation 3.50 into equation 3.49:

dp

dρ
=

(
∂p

∂ρ

)
ξ

+
1

1− iωτ

(
∂p

∂ξ

)
ρ

∂ξ̂0

∂ρ
. (3.51)

Equation 3.51 may also have the following form:

dp

dρ
=

1

1− iωτ

[(
∂p

∂ρ

)
ξ

+

(
∂p

∂ξ

)
ρ

∂ξ̂0

∂ρ
− iωτ

(
∂p

∂ρ

)
ξ

]
. (3.52)

The first two terms of the right hand side of equation 3.52 are the total derivative of

the pressure for physical processes that are slow enough so that they are in thermodynamic

equilibrium:
dp

dρ
=

1

1− iωτ

[(
dp

dρ

)
eq

− iωτ
(
∂p

∂ρ

)
ξ

]
. (3.53)

On equation 3.53, we have two distinct conditions for the pressure p. The first one is the

pressure at the thermodynamic equilibrium state p0 and the second one the pressure out of

the thermodynamic equilibrium. The pressure at the equilibrium p0 is easily obtained by the

usual equation of state (equation 2.13), which may be entirely defined, for example, when

density and entropy are known variables. The pressure in non-equilibrium or mechanical

85



pressure is different from p0, being a function of variables also outside the equilibrium state

(ξ̂).

We consider now a change of δρ on the fluid. As a consequence, we have the following

changes for the equilibrium and non-equilibrium states:

• Equilibrium state:

δp0 =

(
dp

dρ

)
eq

δρ. (3.54)

• Non equilibrium state by combining equations 3.54 and 3.52:

δp =

(
dp

dρ

)
δρ =

(
1

1− iωτ

[(
dp

dρ

)
eq

− iωτ
(
∂p

∂ρ

)
ξ

])
δρ. (3.55)

We may also define the pressure deviation outside the equilibrium state (mechanical

pressure) as a reference to the thermodynamic pressure, function of the variation of the

thermodynamic state of ρ+ δρ:

δp− δp0 =

[
dp

dρ
−
(
dp

dρ

)
eq

]
δρ. (3.56)

Substituting equation 3.55 into equation 3.56, we have:

δp− δp0 =

[
1

1− iωτ

[(
dp

dρ

)
eq

− iωτ
(
∂p

∂ρ

)
ξ

]
−
(
dp

dρ

)
eq

]
δρ,

=
iωτ

1− iωτ

[(
dp

dρ

)
eq

−
(
∂p

∂ρ

)
ξ

]
δρ. (3.57)

The continuity equation may be given by the following form:

D

Dt
(δρ) = −ρ∇ · u. (3.58)

The above expression represents the rate of volume change per unit of time of a given fluid

element δρ. We now apply the Fourier transform on equation 3.58:

iωδρ = ρ∇ · u. (3.59)

Now, isolating the term δρ of equation 3.59 we have:

δρ =
( ρ
iω

)
∇ · u. (3.60)
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By substituting equation 3.60 into equation 3.55, we obtain:

δp− δp0 =
ρτ

1− iωτ

[(
∂p

∂ρ

)
eq

−
(
∂p

∂ρ

)
ξ

]
∇ · u. (3.61)

Also, note that:

δp− δp0 = (p− p∞)− (p0 − p∞) = p− p0. (3.62)

For a barotropic fluid (p = p (ρ)), the speed of sound at equilibrium and at non-

equilibrium are: (
∂p

∂ρ

)
eq

= c2
0, (3.63)(

∂p

∂ρ

)
ξ

= c2
∞. (3.64)

Substituting equations 3.63 and 3.64 into equation 3.61 we have:

− (p− p0) =
ρτ

1− iωτ
(
c2
∞ − c2

0

)
∇ · u. (3.65)

By comparing equation 3.65 with the constitutive equation 3.11, which defines the mechan-

ical pressure for a compressible fluid under rapid dilatation and contraction, we obtain an

equation for the second viscosity coefficient, or expansional viscosity, given by:

κ =
ρτ

1− iωτ
(
c2
∞ − c2

0

)
, (3.66)

or in an alternative form:

κ =
ρτc2

0

1− iωτ
(
r2
M − 1

)
, (3.67)

where the term rM is then defined as:

rM =
c∞
c0

=
U0

c0

c∞
U0

=
M0

M∞
, (3.68)

it is also a valid interpretation of the ratio of Mach numbers that are related to the ther-

modynamic equilibrium and non-equilibrium.

The momentum equation with the derived model of the second viscosity coefficient is

given by:

ρ

(
∂u

∂t
+ u · ∇u

)
= −∇p0 +∇ (κ∇ · u) . (3.69)
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For the closure of the system of equations we will use the continuity equation and a

general barotropic relation for the pressure in thermodynamic equilibrium:

p0 = βργ (3.70)

where β and γ are material constants of the fluid.

By organizing the governing equations and their closure expressions, we have:

• Continuity equation:
∂ρ

∂t
+ ρ∇ · u + u · ∇ρ = 0. (3.71)

• Linear momentum equation:

ρ

(
∂u

∂t
+ u · ∇u

)
+∇p0 −∇ (κ∇ · u) = 0. (3.72)

• Expansional viscosity equation in frequency domain:

κ =
ρτc2

0

1− iωτ
(
r2
M − 1

)
. (3.73)

• Barotropic equation:

p0 (ρ) = βργ. (3.74)

3.2 Linear Stability Analisys of the Governing Equations

The system of governing equations obtained in section 3.1.5 (equations 3.71 to 3.74), is

composed of nonlinear partial differential equations and in most cases, their solution is non-

existent or may not satisfy the boundary conditions. A numerical methodology is needed

for approximate solutions. Before the proposal of a numerical methodology to solve the

system of governing equations, a linear stability analysis will be carried out by introducing

perturbations into the linearized governing equations.

3.2.1 Non-Dimensional Form of the Governing Equations

In order to identify the non-dimensional parameters that represent the physical phe-

nomena of the governing equations, we propose the following expressions to obtain the
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non-dimensional form of the governing equations, where the superscript ∗ indicates a non-

dimensional value:

x∗ =
x

L0

, u∗ =
u

U0

, t∗ =
t

L0/U0

, ρ∗ =
ρ

ρ0

, p∗ =
p

ρ0 (U0)2 , (3.75)

where the variables with subscript 0 are reference values that are on thermodynamic equi-

librium. From this point on the governing equations we will assume the one dimensional

unsteady form: ρ = ρ (x, t), u = u (x, t) e p = p (x, t).

By substituting equations 3.75 into the continuity equation 3.71, we have:(
U0ρ0

L0

)
∂ρ∗

∂t∗
+

(
U0ρ0

L0

)
ρ∗
∂u∗

∂x∗
+

(
U0ρ0

L0

)
u∗
∂ρ∗

∂x∗
= 0, (3.76)

that is equivalent to the dimensional form, after cancelling any non-dimensional terms:

∂ρ∗

∂t∗
+ ρ∗

∂u∗

∂x∗
+ u∗

∂ρ∗

∂x∗
= 0. (3.77)

Consider the one dimensional form of equation 3.72:

∂u

∂t
+ u

∂u

∂x
+

1

ρ

∂p

∂x
− 1

ρ

∂

∂x

(
κ (ρ)

∂u

∂x

)
= 0. (3.78)

Opening the third term from the left hand side of equation 3.78 and applying the chain rule

for κ (ρ), we have:

∂u

∂t
+ u

∂u

∂x
+

1

ρ

∂p

∂x
− 1

ρ

∂κ

∂ρ

∂ρ

∂x

∂u

∂x
− κ

ρ

∂2u

∂u2
= 0. (3.79)

Substituing equation 3.73 into equation 3.79, we then have:

∂u

∂ρ
+ u

∂u

∂x
+

1

ρ

∂p0

∂x
−
[
τc2

0 (r2
M − 1)

1− iωτ

]
∂2u

∂x2
− 1

ρ

[
τc2

0 (r2
M − 1)

1− iωτ

]
∂ρ

∂x

∂u

∂x
= 0. (3.80)

Substituting the non-dimensional expressions 3.75 into equation 3.80 and rearranging:

∂u∗

∂t∗
+ u∗

∂u∗

∂x∗
+

1

ρ∗
∂p∗0
∂x∗
−
[
τc2

0

U0L0

](
(r2
M − 1)

1− iωτ

)
∂u2

∂x2
− 1

ρ∗

[
τc2

0

U0L0

](
(r2
M − 1)

1− iωτ

)
∂ρ∗

∂x∗
∂u∗

∂x∗
= 0.

(3.81)

The term between brackets on equation 3.81 may be identified as the Reynolds number of

the expansional viscosity:

Reκ =
L0U0

τc2
0

=
L0M0

τc0

=

(
L0

U0

)
τ

U2
0

c2
0

=
t0M

2
0

τ
, (3.82)
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where M0 is the Mach number based on the reference or equilibrium velocity:

M0 =
U0

c0

. (3.83)

The given interpretation for the non-dimensional group 3.82 is the mathematical rela-

tion between the effects of equilibrium (U0) and non-equilibrium (τ), directly associated

with compressibility of the flow (M0) and the characteristic length of the flow (L0). An-

other interpretation that may be given is the ratio of the characteristic times of the flow in

equilibrium (t0), the compressibility effects and the fluid relaxation time (τ). If the com-

pressibility or the flow effects have a larger time than the effects in non-equilibrium, the

momentum dissipation due to the fluid dilatation and contraction will happen much faster

and its effects will be negligible. If the time associated with the dissipation due to the

expansional viscosity is larger than the flow characteristic time or compressibility effects,

there will be a larger influence of the expansional viscosity and its dissipation effects will

not be negligible.

Substituting equation 3.82 into equation 3.81 we have:

∂u∗

∂t∗
+ u∗

∂u∗

∂x∗
+

1

ρ∗
∂p∗0
∂x∗
− 1

Reκ

(
(r2
M − 1)

1− iωτ

)
∂u2

∂x2
− 1

ρ∗Reκ

(
(r2
M − 1)

1− iωτ

)
∂ρ∗

∂x∗
∂u∗

∂x∗
= 0. (3.84)

Now applying the chain rule on the third term of equation 3.84 and according to the

barotropic equation 3.74, where p∗0 = p∗0 (ρ∗ (x∗)):

∂p∗0
∂x∗

=
∂p∗0
∂ρ∗

∂ρ∗

∂x∗
. (3.85)

The first derivative on the right hand side of equation 3.85 may be evaluated in the

barotropic equation 3.74 in its non-dimensional form:

∂p∗0
∂ρ∗

= β∗γ∗ργ
∗−1 = β∗γ∗

ρ∗γ
∗

ρ∗
= γ∗

p∗0
ρ∗
. (3.86)

By substituting equation 3.86 into equation 3.84, we have the following nonlinear form of

the momentum equation:

∂u∗

∂t∗
+ u∗

∂u∗

∂x∗
+ γ∗

p∗0
ρ∗2

∂ρ∗

∂x∗
− 1

Reκ

(
(r2
M − 1)

1− iωτ

)(
∂2u∗

∂x∗2
+
∂ρ∗

∂x∗
∂u∗

∂x∗

)
= 0. (3.87)

The non-dimensional and final form of the system of governing equations is given by

(suppressing the superscript ∗ from now on):
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• Continuity equation:
∂ρ

∂t
+ ρ

∂u

∂x
+ u

∂ρ

∂x
= 0. (3.88)

• Momentum equation:

∂u

∂t
+ u

∂u

∂x
+ γ

p0

ρ2

∂ρ

∂x
− 1

Reκ

(
(r2
M − 1)

1− iωτ

)(
∂2u

∂x2
+
∂ρ

∂x

∂u

∂x

)
= 0. (3.89)

• Barotropic equation:

p0 = βργ, (3.90)

resulting in a system of three equations with their non-dimensional groups and three un-

known variables: u, p0 and ρ.

3.2.2 Linear Form of the Governing Equations

The decomposition into mean (equilibrium) values and fluctuations of non-equilibrium

of any flow variable is given by:

f = f0 + f ′. (3.91)

In the linear stability analysis context, the fluctuation terms f ′ are much smaller than

their equilibrium or mean counterparts, i.e., |f ′|/|f0| � 1. As a consequence, the second

order or superior fluctuation terms (f ′2) will be neglected in this analysis. In this case the

mean or equilibrium values will be regarded as constant in space and time permanent. By

applying the decomposition 3.91 for the density and velocity variables ρ e u, we have:

ρ (x, t) = 1 + ρ′ (x, t) , (3.92)

u (x, t) = 1 + u′ (x, t) . (3.93)

Now applying the decompositions 3.92 and 3.93 into the continuity equation 3.88:

∂

∂t
(1 + ρ′) + (1 + ρ′)

∂

∂x
(1 + u′) + (1 + u′)

∂

∂x
(1 + ρ′) = 0. (3.94)

Developing equation 3.94 and neglecting the superior order terms of fluctuation:

∂ρ′

∂t
+
∂u′

∂x
+
∂ρ′

∂x
= 0. (3.95)
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Applying the density fluctuation equation 3.92 into the baratropic equation 3.90, we

have:

p0 = βργ = β (1 + ρ′)
γ
. (3.96)

Equation 3.96 may be put in a linear form from Newton’s binomial series:

(1 + x)n = 1 + nx+
n (n− 1)

2!
x2 +O

(
x3
)
, (3.97)

where the neglected arguments are the second order O (x2) and higher terms. By combining

equation 3.97 with equation 3.96 we have:

β (1 + ρ′)
γ ∼= (1 + γρ′) β. (3.98)

By applying the velocity perturbation 3.92 and density 3.93 terms and the linearized

barotropic equation 3.98 into the momentum equation 3.89 we have:

∂

∂t
(1 + u′) + (1 + u′)

∂

∂x
(1 + u′) + γβ

(1 + γρ′)

(1 + ρ′)2

∂

∂x
(1 + ρ′)

− 1

Reκ

(
(r2
M − 1)

1− iωτ

)(
∂2

∂x2
(1 + u′) +

∂

∂x
(1 + ρ′)

∂

∂x
(1 + u′)

)
= 0. (3.99)

Now evaluating the derivatives at their respective perturbation terms and neglecting again

the fluctuation terms of higher order:

∂u′

∂t
+
∂u′

∂x
+

γβ

(1 + ρ′)2

∂ρ′

∂x
− 1

Reκ

(
(r2
M − 1)

1− iωτ

)
∂2u′

∂x2
= 0. (3.100)

Expanding the denominator of the third term from equation 3.100 by using the Newton’s

binomial series and neglecting the higher order perturbation terms:

(1 + ρ′)
−2 ∼= 1− 2ρ′. (3.101)

By substituting equation 3.101 into equation 3.100 and again neglecting the superior order

perturbation terms, we have:

∂u′

∂t
+
∂u′

∂x
+ γβ

∂ρ′

∂x
− 1

Reκ

(
(r2
M − 1)

1− iωτ

)
∂2u′

∂x2
= 0. (3.102)

The linearized non-dimensional form of governing equations system is finally given by:

• Continuity equation:
∂ρ′

∂t
+
∂u′

∂x
+
∂ρ′

∂x
= 0. (3.103)

• Momentum equation:

∂u′

∂t
+
∂u′

∂x
+ γβ

∂ρ′

∂x
− 1

Reκ

(
(r2
M − 1)

1− iωτ

)
∂2u′

∂x2
= 0. (3.104)
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3.2.2.1 The Oscillatory Nature of the Linearized Governing Equations

By applying the quiescent fluid condition to equations 3.103 and 3.104, the derivatives

∂ρ′/∂x and ∂u′/∂x will be equal to zero in continuity equation 3.103 and momentum equa-

tion 3.104, respectively:

• Continuity equation:
∂ρ′

∂t
+
∂u′

∂x
= 0. (3.105)

• Momentum equation:

∂u′

∂t
+ γβ

∂ρ′

∂x
− 1

Reκ

(
(r2
M − 1)

1− iωτ

)
∂2u′

∂x2
= 0. (3.106)

Differentiating equation 3.105 in respect to time and equation 3.106 in respect to space

coordinate, we have:

• Continuity equation:
∂2ρ′

∂t2
+
∂2u′

∂t∂x
= 0. (3.107)

• Momentum equation:

∂2u′

∂x∂t
+ γβ

∂2ρ′

∂x2
− 1

Reκ

(
(r2
M − 1)

1− iωτ

)
∂3u′

∂x3
= 0. (3.108)

Subtracting equation 3.108 from equation 3.107 and rearranging we have:

∂2ρ′

∂t2
− γβ∂

2ρ′

∂x2
= − 1

Reκ

(
(r2
M − 1)

1− iωτ

)
∂3u′

∂x3
. (3.109)

Mathematically equation 3.109 is of the same oscillatory nature as the wave equation.

Obtained for the perturbations outside thermodynamic equilibrium and with the stated

simplifications, equation 3.109 has its own characteristics that differ from the traditional

wave equation; the term related to the linearized propagation speed of the perturbations

(γβ) and the dissipation and dispersion associated with the expansional viscosity on the

right hand side.
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3.2.3 Infinitesimal Perturbations and Its Modal

Temporal Stability

Regarding the linearized governing equations in the non-dimensional form, there are

some conditions where its behavior concerning the amplification or attenuation of the os-

cillatory solution can be analyzed. This analysis is useful to predict the type of waves that

will have its amplitude amplified or attenuated, as well as its dispersion effects on the wave

number.

3.2.3.1 The Perturbations

The stability analysis is then applied on the system of linearized governing equations:

• Continuity equation:
∂ρ′

∂t
+
∂u′

∂x
+
∂ρ′

∂x
= 0. (3.110)

• Momentum equation:

∂u′

∂t
+
∂u′

∂x
+ γβ

∂ρ′

∂x
− 1

Reκ

(
(r2
M − 1)

1− iωτ

)
∂2u′

∂x2
= 0. (3.111)

The above system of equations is then defined by two equations and two unknown

variables. We consider a priori an oscillatory solution for the density and velocity:

u′ = uae
st+ikx,

ρ′ = ρae
st+ikx, (3.112)

where k is the wave number of the x coordinate and s is the exponential argument of the

time solution, that may be complex or imaginary. By applying this kind of solution implies

the modal temporal analysis [80], where its functionality will be explained later on.

Substituting the solutions 3.112 in the continuity equation 3.110 we have:

ρae
st+ikxs+ ρae

st+ikxik + uae
st+ikxik = 0, (3.113)

arranging its terms, we then have:

ua = −ρa (s+ ik)

ik
. (3.114)
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Equation 3.114 expresses the relation between the density and velocity fluctuations.

Now by substituting equations 3.112 into equation of momentum 3.111 we obtain:

uae
st+ikxs+ uae

st+ikxik + γβρae
st+ikxik − 1

Reκ

(
(r2
M − 1)

1− iωτ

)
uae

st+ikx (ik)2 = 0, (3.115)

arranging the terms again:

ua

(
s+ ik +

k2

Reκ

(
(r2
M − 1)

1− iωτ

))
+ ρaγβik = 0. (3.116)

By substituting equation 3.114 into equation 3.116:(
−ρa (s+ ik)

ik

)(
s+ ik +

k2

Reκ

(
(r2
M − 1)

1− iωτ

))
+ ρaγβik = 0, (3.117)

and now arranging its terms:

(s+ ik)

(
s+ ik +

k2

Reκ

(
(r2
M − 1)

1− iωτ

))
+ γβk2 = 0. (3.118)

Manipulating equation 3.118 into terms of s:

s2 + s

(
i2k +

k2

Reκ

(
(r2
M − 1)

1− iωτ

))
+

(
i
k3

Reκ

(
(r2
M − 1)

1− iωτ

)
− k2 + γβk2

)
= 0. (3.119)

3.2.3.2 Temporal Modal Analysis

Equation 3.119 has a quadratic complex solution that will give the eigenvalues s and its

dispersion relation for the infinitesimal disturbances as a function of the wave number k.

As said before, the time angular frequency s(k) was defined as a complex function:

s (k) = η(k)− iΩ (k) , (3.120)

where η(k) is defined as the real part and Ω is the imaginary part of s(k). We will use

the negative exponential time argument and the other exponential terms as positive for the

sign convention.

Similar to the oscillation spatial functions, the imaginary part of s(k) represents the

wave oscillation on the time coordinate, where its real part η will define the amplitude

modification of the wave according to its physical parameters, the temporal modal stabil-

ity analysis. Such amplitude change may be amplification if the exponential argument is

positive and attenuation of the argument is negative. If a given wave with wave number k
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has amplification on its amplitude with time, the wave is unstable. For the opposite case,

if the wave with a given wave number k attenuates its amplitude with time, the wave is

stable. A critical value is the case where there is not any change of the wave amplitude in

time, i.e., the amplification factor η (k) is equal zero. We then define the mode k stability:

e[η(k)−iΩ(k)]t+ikx =


stable if η (k) < 0,

critical value (stable) if η (k) = 0,

unstable if η (k) > 0.

(3.121)

In a similar way, the imaginary part of the exponential argument from equation 3.121

is directly associated with the phase speed of the perturbations, that may by given by the

differentiation in respect to time of this term [66] [80], for a constant point in the wave:

Ω (k) t− kx = constant, (3.122)

as a consequence:

V (k) =
dx

dt
=

Ω (k)

k
. (3.123)

Equation 3.119 has analytical solution for η due to its quadratic nature. By Bhaskara’s

quadratic solution:

s =
−b±

√
b2 − 4ac

2a
, (3.124)

where:

a = 1,

b = i2k +
k2

Reκ

(
(r2
M − 1)

1− iωτ

)
,

c = i
k3

Reκ

(
(r2
M − 1)

1− iωτ

)
− k2 + γβk2.

(3.125)

Note that the quadratic solution is composed of two solutions; one with a positive sign

for the square root argument of equation 3.124 and the other with a negative sign. For both

cases the amplification factor η will be analyzed, given by the real part of these solutions. A

physical interpretation will be given for the physical parameters of the expansional viscosity.

By substituting the terms of equation 3.125 into equation 3.124 we then obtain the following
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solutions:

s1 =
k (−ikr2

M − 2iReκωτ + ik + 2Reκ)

2Reκ (i+ ωτ)

+

(
k
√
−k2r4

M + 2k2r2
M + 4Re2

κγβ − 8iRe2
κγβωτ − 4Re2

κγβω
2τ 2 − k2

)
2Reκ (i+ ωτ)

, (3.126)

s2 =
k (−ikr2

M − 2iReκωτ + ik + 2Reκ)

2Reκ (i+ ωτ)

−

(
k
√
−k2r4

M + 2k2r2
M + 4Re2

κγβ − 8iRe2
κγβωτ − 4Re2

κγβω
2τ 2 − k2

)
2Reκ (i+ ωτ)

. (3.127)

By the amplification factor definition from equation 3.120, we may define the η function

from the real parts from equations 3.126 and 3.127:

η1 = Re (s1) , (3.128)

η2 = Re (s2) . (3.129)

As a consequence, the linear combination of the two above solutions is the general solution:

η (k) = η1 (k) + η2 (k) . (3.130)

Equation 3.130 has several physical parameters to be evaluated on the linear stability

analysis of the amplification factor. Typical values for these parameters that are physically

consistent for the expansional viscosity model are:

• Expansional Reynolds Number:

0 < Reκ < +∞. (3.131)

• Ratio of speeds rM :

1 < rM < +∞. (3.132)

• Product of the oscillation frequency and the relaxation time:

0 < ωτ < +∞. (3.133)

• Space wave number k:

0 < k < +∞. (3.134)
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• Product of the material constants from the barotropic equation:

0 < γβ < +∞. (3.135)

The allowed values for the physical parameters will be the ones physically reasonable. The

ratio of speeds (equation 3.132) must be larger than one. The product of the time oscillation

frequency with the relaxation time (equation 3.133) may be of any positive value, where

we will consider values near unity. The expansional Reynolds number (equation 3.131),

similar to the wave number (equation 3.134) may have any positive value. The product of

the material constants of the barotropic equation (equation 3.135) must be near unity.

Figure 3.1 shows that when κ is equal to zero, there is no decay nor amplification for any

value of wave number. As a consequence of the linearization process, there is only transport

of the fluctuations out of the thermodynamic equilibrium. The positive sign solution from

equation 3.130 has a behavior where the amplification factor decays indefinitely with larger

values of k. The negative sign solution from equation 3.130, as k grows to infinity, the

amplification factor decays until an asymptotic value is reached.

Figure 3.2 shows the sensitivity of the product between the oscillation ω and the ther-

modynamic relaxation time τ . The effect of this parameter on the expansional viscosity is

that, for small wave numbers, the amplification factor is larger if ωτ has small values. For

the positive sign solution the amplification factor decays indefinitely as k increases. For

the negative sign solution, the behavior of the amplification factor is of fast decay until a

certain value for wave number. For larger values of k the amplification factor tends to an

asymptotic value as k tends to infinity.

Figure 3.3 shows the same behavior as figure 3.2; as the expansional Reynolds number

gets smaller, the amplification factor gets larger for small wave number values for all shown

Reκ. The same behavior is observed for all k for the positive sign solution, but the opposite

happens with large k values for the negative sign solution. In this case there is physical

incoherence, as the expansional viscosity effects become more negligible with the Reylnods

number, the larger the wave amplitude attenuation becomes.

Figure 3.4 shows that for the parameter rM the same sensitivity can be observed from

the previous cases. For small values of wave number k the same behavior is observed for

both solutions from equation 3.130. For the negative sign solution, for larger values of k,
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Figure 3.1: Physical consistency test of the expansional viscosity model with the following

values for the physical parameters: Reκ=1,0, γβ=1,1, rM=1,05 e ωτ=1,0.

the derivative behavior changes and the amplification factor rises until an asymptotic value

is reached as k goes to infinity. The proportion of η with the physical paramter rM changes

in the same way as the previous case.

Figure 3.5 shows the sensivity of the physical parameter γβ, that is the product of the

material constants of the barotropic relation 3.90 on the non-dimensional form. It can be

seen that for small values of wave number k there is smaller influence of this parameter for

both solutions of the amplification factor η. For the negative sign solution, stronger effects

of the amplification factor are observed for higher values of γβ. In this case an asymptotic

behavior of the amplification factor is also observed for large values of k.
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Figure 3.2: ωτ sensitivity for the following physical parameters: Reκ=1,0,

γβ=1,1, rM=1,05.

About the sensitivity analysis of the physical parameters from the amplification factor,

two main trends were observed according to the solution given by equation 3.130: the

behavior of both solutions for small values of wave number is basically the same, because

there are no real values in the square root term of these solutions. For certain values of k,

the behavior of these solutions changes for all the values for the physical parameters. For

the positive sign solution, the growth of the amplification factor as k grows is maintained,

for the negative sign solution, there is a rapid growth of the amplification factor, then an

asymptotic behavior as k tends to infinity. Here, an inversion of the proportion with all the

physical parameters can be observed in this region. Physically, the expected behavior of

the expansional viscosity is the one observed with the positive sign solution, where waves
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Figure 3.3: Expansional Reynolds number Reκ sensitivity for the following physical param-

eters: γβ=1,1, rM=1,05, ωτ=1,05.

with larger wave number suffer attenuation of at least two orders of magnitude difference

between the two η solutions. On the general solution, that is the linear combination of

both solutions, η1 will be the prevailing term and its parameters behavior will dictate the

results. For small values of k both solutions have similar values of η and the same behavior

regarding the physical parameters can be observed.
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Figure 3.4: Velocity ratio rM sensitivity for the following physical parameters: γβ=1,1,

Reκ=1,0, ωτ=1,05.
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Figure 3.5: Material constants γβ sensitivity for the following physical parameters:

Reκ=1,0, rM=1,05, ωτ=1,05.

103



Chapter 4

Numerical Methodologies

This Chapter describes the numerical methodologies of this work. A new numerical

scheme for the expansional viscosity analysis is proposed and some modifications of the

already existing immersed boundary method are also proposed.

The first numerical methodology that is described in this chapter is to assess in unsteady

and one dimensional cases the expansional viscosity model described on chapter 3. Spatial

discretization scheme of compact high order finite differences and time marching process

using an explicit Runge-Kutta method are presented. Numerical stability is achieved by high

spatial wave number filtering, from which typically originates the numerical oscillations.

The code validation process is done by comparing a discontinuous exact solution of the

Burgers equation of the numerical results to modifications on the Euler equations to make

an equivalent system of governing equations, enabling a direct comparison of both solutions.

The second numerical methodology described in this chapter is the moving immersed

boundary of the VAT (Virtual Aeroacoustic Tunnel) code. The spatial discretization

schemes of the finite volume formulation are described along with the time marching pro-

cess by using an explicit Runge-Kutta method and stabilization process with a numerical

viscosity scheme. The most general case of the immersed boundary method is presented

with the imposition of the boundary conditions for moving surfaces.
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4.1 Expansional Viscosity Numerical Model

The numerical methodology for solving the system of differential equations with the

expansional viscosity is presented. A finite difference method for the space discretization

is time marched with a Runge-Kutta method, both with very high spatial and temporal

precision respectively. A spectral high order filter is used to eliminate the high wave number

content to achieve numerical stability.

For the numerical methodology validation, a simplification of the system of equations to

the viscous Burgers’ equation is made. The numerical results are then compared with the

analytical solution of a traveling discontinuity. The numerical precision is then evaluated

for several values of the non dimensional parameter. The difference of these solutions is then

evaluated for the validation of the numerical scheme and its computational implementation.

4.1.1 Governing Equations

For the sake of clarity, we show again the system of equations obtained with the expan-

sional viscosity model from chapter 3:

• Continuity equation:
∂ρ

∂t
+ ρ∇ · u + u · ∇ρ = 0. (4.1)

• Linear momentum equation:

ρ

(
∂u

∂t
+ u · ∇u

)
+∇p0 −∇ (κ∇ · u) = 0. (4.2)

• Expansional viscosity in frequency domain:

κ =
ρτc2

0

1− iωτ
(
r2
M − 1

)
. (4.3)

• Barotropic equation:

p0 (ρ) = βργ. (4.4)

Putting the continuity and momentum equations into the one dimensional form:
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• Continuity equation:
∂ρ

∂t
+ ρ

∂u

∂x
+ u

∂ρ

∂x
= 0. (4.5)

• Linear momentum equation:

ρ
∂u

∂t
+ ρu

∂u

∂x
+
∂p0

∂x
− ∂

∂x

(
κ
∂u

∂x

)
= 0. (4.6)

• Expansional viscosity in frequency domain:

κ =
ρτc2

0

1− iωτ
(
r2
M − 1

)
. (4.7)

• Barotropic equation:

p0 (ρ) = βργ. (4.8)

In chapter 3 the expansional viscosity model is obtained in the spectral domain. To

make it applicable in the time domain, it is necessary to apply the time derivative operator,

as stated by equation 3.48. The imaginary oscillation frequency iω is then swapped with

the time derivative:

−iωκ = −κ
τ

+ ρc2
0

(
r2
M − 1

)
, (4.9)

where the time domain equivalent equation is given by:

∂κ

∂t
= −κ

τ
+ ρc2

0

(
r2
M − 1

)
. (4.10)

Note that the equation 4.10 is the time domain form of the expansional viscosity model,

making it an evolution equation in time domain.

By applying the proposed non dimensional terms from section 3.2.1, the continuity,

momentum and barotropic equations are then given by:

• Continuity equation:
∂ρ∗

∂t∗
+ ρ∗

∂u∗

∂x∗
+ u∗

∂ρ∗

∂x∗
= 0. (4.11)

• Linear momentum equation:

ρ
∂u∗

∂t∗
+ ρ∗u∗

∂u∗

∂x∗
+
∂p∗0
∂x∗
− 1

Reκ

∂

∂x∗

(
κ∗
∂u∗

∂x∗

)
= 0. (4.12)
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• Barotropic equation:

p∗0 (ρ∗) = β∗ (ρ∗)γ , (4.13)

for the expansional viscosity term κ we use the same non dimensional substitutions from

the linear stability analysis:

κ∗ =
κ

ρ0c2
0τ
. (4.14)

By applying the non dimensional substitutions into the evolution equation of the ex-

pansional viscosity, we have:

∂κ∗

∂t∗
=

L0

U0τ

(
−κ∗ + ρ∗

(
r2
M − 1

))
. (4.15)

Now defining the relaxation time τ as a physical parameter, the term L0/ (U0τ) is then

identified as a new non dimensional parameter for the time domain. This parameter can

be defined as:

Ψ =
L0

U0τ
. (4.16)

This physical parameter is the ratio of the characteristic flow time and the relaxation time

related to the thermodynamic equilibrium of the fluid.

The final, non dimensional and conservative form of the system of differential equations

where the numerical scheme will be applied is:

• Continuity equation:
∂ρ∗

∂t∗
+

∂

∂x∗
(ρ∗u∗) = 0. (4.17)

• Linear momentum equation:

∂

∂t∗
(ρ∗u∗) +

∂

∂x∗
(ρ∗u∗u∗) +

∂p∗0
∂x∗
− 1

Reκ

(
∂κ∗

∂x∗
∂u∗

∂x∗
+ κ∗

∂2u∗

∂x∗2

)
= 0. (4.18)

• Time domain expansional viscosity equation:

∂κ∗

∂t∗
= Ψ

(
−κ∗ + ρ∗

(
r2
M − 1

))
. (4.19)

• Barotropic equation:

p∗0 (ρ∗) = β∗ (ρ∗)γ . (4.20)
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4.1.2 Numerical Method

From the system of differential equations obtained in section 4.1.1, we start with the

Padé scheme [81] for the first order space derivatives:

βf ′i−2 +αf ′i−1 +f ′i +αf
′
i+1 +βf ′i+2 = c

(fi+3 − fi−3)

6∆x
+b

(fi+2 − fi−2)

4∆x
+a

(fi+1 − fi−1)

2∆x
. (4.21)

Equation 4.21 defines an implicit algebraic relation between the spatial derivatives f ′ at the

computational mesh points and the values of the given unknown variable f . A linear system

of equations must be solved to obtain the derivatives. The coefficients α, β, a, b, and c

can be obtained according with the desired capabilities of the numerical scheme. Two main

characteristics are considered here; the formal order of precision and spectral capabilities.

The formal order of precision is the order of the truncating error when the Taylor series

are applied on equation 4.21. The spectral capabilities are the restraints applied with the

Fourier transform on equation 4.21 to obtain good discretization characteristics for a range

of wavenumbers.

The coefficients of equation 4.21 can be regarded as degrees of freedom to be used with

the desired characteristics described above. In the numerical scheme used here, two degrees

of freedom were used for the formal fourth order of precision and the remaining three degrees

of freedom were used for the optimization in the spectral domain. By applying the Taylor

series on equation 4.21 and using two degrees of freedom to obtain a fourth order numerical

scheme, the following restraints are obtained [81]:

a+ b+ c = 1 + 2α + 2β on the order of (∆x)0 , (4.22)

a+ 22b+ 32c = 2
3!

2!

(
α + 22β

)
on the order of (∆x)2 . (4.23)

An infinite set of solutions exist when equations 4.22 and 4.23 are used to obtain the

coefficients from equation 4.21 for a fourth order scheme. The remaining three degrees

of freedom are used for a spectral optimization. By applying the Fourier transform on

equation 4.21 the following spectral relation is obtained [81]:

k′ (k) (1 + 2α cos (2πk∆x) + 2β cos (2πk∆x)) =

a sin (2πk∆x) + (b/2) sin (4πk∆x) + (c/3) sin (6πk∆x) , (4.24)
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where k is a given numerical wave number of a discretized single wave and k′ (k) is the

modified wavenumber. The following restraints were applied in the spectral domain [81]:

k′ (2πk∆x1) = 2πk∆x1 = 2.2,

k′ (2πk∆x2) = 2πk∆x2 = 2.3,

k′ (2πk∆x3) = 2πk∆x3 = 2.4, (4.25)

resulting in the following relations:

2.2 (1 + 2α cos (2.2) + 2β cos (2.2)) = a sin (2.2) + (b/2) sin (4.4) + (c/3) sin (6.6) , (4.26)

2.3 (1 + 2α cos (2.3) + 2β cos (2.3)) = a sin (2.3) + (b/2) sin (4.6) + (c/3) sin (6.9) , (4.27)

2.4 (1 + 2α cos (2.4) + 2β cos (2.4)) = a sin (2.4) + (b/2) sin (4.8) + (c/3) sin (7.2) . (4.28)

With the restraints set in equations 4.22, 4.23, and from 4.26 to 4.28, the coefficients of the

scheme can be obtained. The following coefficients were found in the literature for single

precision numerical implementations [81]:

a = 1.3025166, b = 0.9935500, c = 0.03750245,

α = 0.5771439, β = 0.0896406. (4.29)

By solving the resulting linear system of equations, we have the following coefficients for

the first order finite difference scheme in double precision:

a = 1.294985463981978, b = 1.012134117804698, c = 0.040558683106297,

α = 0.581310505308791, β = 0.092528627137696. (4.30)

Note that there is some numerical differences in the given coefficients and the calculated

ones. The most probable cause was the method used to solve the linear system of equations

to obtain the finite difference coefficients. For the double precision form of the coefficients,

the program used to solve the linear system was Matlab R2012a for Linux 64 bits.

To calculate the derivatives, a linear system must be solved for each mesh point according

with equation 4.21. For a mesh with N equally spaced points, the following linear system

is obtained:
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

β α 1 α β 0 0 . . . 0 0 0 0 0 0 0

0 β α 1 α β 0 . . . 0 0 0 0 0 0 0

0 0 β α 1 α β . . . 0 0 0 0 0 0 0
...

...
...

...
...

...
... . . . ...

...
...

...
...

...
...

0 0 0 0 0 0 0 . . . β α 1 α β 0 0

0 0 0 0 0 0 0 . . . 0 β α 1 α β 0

0 0 0 0 0 0 0 . . . 0 0 β α 1 α β





f ′−1

f ′0

f ′1
...

f ′N

f ′N+1

f ′N+2



=



c (f4−f−2)
6∆x

+ b (f3−f−1)
4∆x

+ a (f2−f0)
2∆x

c (f5−f−1)
6∆x

+ b (f4−f0)
4∆x

+ a (f3−f1)
2∆x

c (f6−f0)
6∆x

+ b (f5−f1)
4∆x

+ a (f4−f2)
2∆x

...

c (fN+1−fN−5)

6∆x
+ b (fN−fN−4)

4∆x
+ a (fN−1−fN−3)

2∆x

c (fN+2−fN−4)

6∆x
+ b (fN+1−fN−3)

4∆x
+ a (fN−fN−2)

2∆x

c (fN+3−fN−3)

6∆x
+ b (fN+2−fN−2)

4∆x
+ a (fN+1−fN−1)

2∆x


. (4.31)

Note that the values of variables on nodes with index less than 1 and higher than N must

be provided according with the boundary conditions, resulting on the removal of the first

two and last two lines of unknown variables of the system of equations 4.31, and thus,

reducing the system to N unknown variables. Another boundary condition that is used for

the infinite wave is the cyclic boundary condition. Equation 4.21 will result in the following

linear system:

110





1 α β 0 0 . . . 0 0 0 β α

α 1 α β 0 . . . 0 0 0 0 β

β α 1 α β . . . 0 0 0 0 0
...

...
...

...
... . . . ...

...
...

...
...

0 0 0 0 0 . . . β α 1 α β

β 0 0 0 0 . . . 0 β α 1 α

α β 0 0 0 . . . 0 0 β α 1





f ′1

f ′2

f ′3
...

f ′N−2

f ′N−1

f ′N



=



c (f4−fN−3)

6∆x
+ b (f3−fN−2)

4∆x
+ a (f2−fN−1)

2∆x

c (f5−fN−4)

6∆x
+ b (f4−fN−3)

4∆x
+ a (f3−fN−2)

2∆x

c (f6−fN−5)

6∆x
+ b (f5−fN−4)

4∆x
+ a (f4−fN−3)

2∆x
...

c (f1−fN−5)

6∆x
+ b (fN−fN−4)

4∆x
+ a (fN−1−fN−3)

2∆x

c (f2−fN−4)

6∆x
+ b (f1−fN−3)

4∆x
+ a (fN−fN−2)

2∆x

c (f3−fN−3)

6∆x
+ b (f2−fN−2)

4∆x
+ a (f1−fN−1)

2∆x


. (4.32)

A similar numerical scheme can be obtained for the space discretization of the second

order derivative. We use the general compact formulation:

βf ′′i−2 + αβf ′′i−1 + f ′′i + αf ′′i+1 + βf ′′i+2 =

c
(fi+3 − 2fi + fi−3)

9∆x2
+ b

(fi+2 − 2fi + fi−2)

4∆x2
+ a

(fi+1 − 2fi + fi−1)

∆x2
. (4.33)

The main idea behind the calculation of the coefficients for the second order spatial deriva-

tive is the same for the first order case: two degrees of freedom for the formal precision of

the scheme and the remaining three for the spectral optimization, where the formal fourth

order of numerical precision is also kept. By applying the Taylor series in equation 4.33 to

obtain the restraints up to the fourth order of formal precision [81]:

a+ b+ c = 1 + 2α + 2β on the order of (∆x)0 , (4.34)

a+ 22b+ 32c =
4!

2!

(
α + 22β

)
on the order of (∆x)2 . (4.35)

On the same way that was done with the first order equation 4.21, the Fourier transform
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is applied on equation 4.33 and the following spectral relation is obtained [81]:

k′′ (k) (1 + 2α cos (k) + 2β cos (2k))

= 2a (1− cos (k)) + (b/2) (1− cos (2k)) + (2c/9) (1− cos (3k)) . (4.36)

With the following restraints of the spectral domain:

k′′ (2πk∆x1) = 2πk∆x1 = 2.02,

k′′ (2πk∆x2) = 2πk∆x2 = 2.42,

k′′ (2πk∆x3) = 2πk∆x3 = 2.62, (4.37)

the following relations are obtained:

2.02
(
1 + 2α cos

(
2.02

)
+ 2β cos

(
2 ∗ 2.02

))
= 2a

(
1− cos

(
2.02

))
+ (b/2)

(
1− cos

(
2 ∗ 2.02

))
+ (2c/9)

(
1− cos

(
3 ∗ 2.02

))
, (4.38)

2.42
(
1 + 2α cos

(
2.42

)
+ 2β cos

(
2 ∗ 2.42

))
= 2a

(
1− cos

(
2.42

))
+ (b/2)

(
1− cos

(
2 ∗ 2.42

))
+ (2c/9)

(
1− cos

(
3 ∗ 2.42

))
, (4.39)

2.62
(
1 + 2α cos

(
2.62

)
+ 2β cos

(
2 ∗ 2.62

))
= 2a

(
1− cos

(
2.62

))
+ (b/2)

(
1− cos

(
2 ∗ 2.62

))
+ (2c/9)

(
1− cos

(
3 ∗ 2.62

))
. (4.40)

With two restraints for the formal order of precision and three in the spectral domain, a

resulting linear system of equations is obtained with equations 4.34, 4.35, and from 4.38 to

4.40. The following coefficients for the second order in single precision are given by [81]:

a = 0.21564935, b = 1.7233220, c = 0.17659730

α = 0.50209266, β = 0.05569169, (4.41)

the values for double precision calculated here are:

a = 0.215649631004306, b = 1.723321721695239, c = 0.176597105958252

α = 0.502092570454933, β = 0.055691658873965. (4.42)
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In a similar way, a linear system of equations must be solved to obtain the second order

derivatives:

β α 1 α β 0 0 . . . 0 0 0 0 0 0 0

0 β α 1 α β 0 . . . 0 0 0 0 0 0 0

0 0 β α 1 α β . . . 0 0 0 0 0 0 0
...

...
...

...
...

...
... . . . ...

...
...

...
...

...
...

0 0 0 0 0 0 0 . . . β α 1 α β 0 0

0 0 0 0 0 0 0 . . . 0 β α 1 α β 0

0 0 0 0 0 0 0 . . . 0 0 β α 1 α β





f ′′−1

f ′′0

f ′′1
...

f ′′N

f ′′N+1

f ′′N+2



=



c (f4−2fi+f−2)
6∆x

+ b (f3−2fi+f−1)
4∆x

+ a (f2−2fi+f0)
2∆x

c (f5−2fi+f−1)
6∆x

+ b (f4−2fi+f0)
4∆x

+ a (f3−2fi+f1)
2∆x

c (f6−2fi+f0)
6∆x

+ b (f5−2fi+f1)
4∆x

+ a (f4−2fi+f2)
2∆x

...

c (fN+1−2fi+fN−5)

6∆x
+ b (fN−2fi+fN−4)

4∆x
+ a (fN−1−2fi+fN−3)

2∆x

c (fN+2−2fi+fN−4)

6∆x
+ b (fN+1−2fi+fN−3)

4∆x
+ a (fN−2fi+fN−2)

2∆x

c (fN+3−2fi+fN−3)

6∆x
+ b (fN+2−2fi+fN−2)

4∆x
+ a (fN+1−2fi+fN−1)

2∆x


. (4.43)

The first two lines and the last two lines of the linear system must be replaced by the

boundary conditions with the derivatives and solution variables known a priori. The cyclic

boundary condition results in the following linear system of second order derivatives as

unknown variables:
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

1 α β 0 0 . . . 0 0 0 β α

α 1 α β 0 . . . 0 0 0 0 β

β α 1 α β . . . 0 0 0 0 0
...

...
...

...
... . . . ...

...
...

...
...

0 0 0 0 0 . . . β α 1 α β

β 0 0 0 0 . . . 0 β α 1 α

α β 0 0 0 . . . 0 0 β α 1





f ′′1

f ′′2

f ′′3
...

f ′′N−2

f ′′N−1

f ′′N



=



c (f4−2fi+fN−3)

6∆x
+ b (f3−2fi+fN−2)

4∆x
+ a (f2−2fi+fN−1)

2∆x

c (f5−2fi+fN−4)

6∆x
+ b (f4−2fi+fN−3)

4∆x
+ a (f3−2fi+fN−2)

2∆x

c (f6−2fi+fN−5)

6∆x
+ b (f5−2fi+fN−4)

4∆x
+ a (f4−2fi+fN−3)

2∆x
...

c (f1−2fi+fN−5)

6∆x
+ b (fN−2fi+fN−4)

4∆x
+ a (fN−1−2fi+fN−3)

2∆x

c (f2−2fi+fN−4)

6∆x
+ b (f1−2fi+fN−3)

4∆x
+ a (fN−2fi+fN−2)

2∆x

c (f3−2fi+fN−3)

6∆x
+ b (f2−2fi+fN−2)

4∆x
+ a (f1−2fi+fN−1)

2∆x


. (4.44)

For the time marching process the Runge-Kutta explicit method with nine steps and

of fifth order of precision [82] was used. The name of the scheme is RK5(4)9(2R+)M.

According to the Runge-Kutta formulation for an initial value problem, we have:

dUi
dt

= F (t, U (t)) , (4.45)

where for the governing equations 4.17 to 4.20, we have the calculation of the time derivative

to be solved as an initial value problem and the function F is solved by the other space

discretization schemes described before, for the first and second order derivatives.

By following the idea of the Runge-Kutta method, from the initial step U (n) for the

numerical time step of U (n+1), with a physical time step of ∆t, we have:

F (i) = F (i)
(
t(i), U (i)

)
,

U (i) = U (n) + ∆t
i−1∑
j=1

aijF
(j),

U (n+1) = U (n) + ∆t
9∑
j=1

bjF
(j),

(4.46)
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where the coefficients of the scheme RK5(4)9(2R+)M are given by table 4.1.

a21 + 5573095071601
11304125995793

b1
549666665015
5899839355879

a32 + 315581365608
4729744040249

b2 − 548816778320
9402908589133

a43 + 8734064225157
30508564569118

b3
1672704946363
13015471661974

a54 + 6457785058448
14982850401353

b4
1025420337373
5970204766762

a65 + 5771559441664
18187997215013

b5
1524419752016
6755273790179

a76 +1906712129266
6681214991155

b6 −10259399787359
43440802207630

a87 + 311585568784
2369973437185

b7
4242280279850
10722460893763

a98 −4840285693886
7758383361725

b8
1887552771913
6099058196803

b9 − 453873186647
15285235680030

Table 4.1: Runge-Kutta coefficients for scheme RK5(4)9(2R+)M.

The numerical stabilization is achieved by a high spectral order explicit filter [25]. The

filter removes the high frequency waves of the solution that could result in an unstable code,

due to the known high wavenumber numerically unstable content. The filter is applied on

the conservative variables of the Runge-Kutta steps after a certain number of iterations

were completed. The filter used in this scheme is a 7-point stencil filter. It is symmetric

to avoid amplification in all the wave number spectra. The most general form of a seven

point stencil filter is given by:

f̂i = A (fi+3 + fi−3) +B (fi+2 + fi−2) + C (fi+1 + fi−1) +Dfi, (4.47)

where the filter is applied over the solution variable f and f̂ is the resulting filtered variable.

To obtain the filter coefficients A, B, C and D, we apply the inverse Fourier transform

into equation 4.47 [25]:

F (k) = 2A cos (3k) + 2B cos (2k) + 2C cos (k) +D, (4.48)

where F (k) is the transfer function of the filtered values over the wave number spectrum

(0, π). The transfer function represents the fraction of the original value that is conserved

when the filter is applied on the variable fi at the mesh node i. For a numerically well

resolved wavenumber spectrum, for example around k = (0, 1), the filter almost does not

change the original values of the variable f , but for the remainder of the spectrum (k =
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(1, π)), the filtered content is a fraction of the original content, as can be seen in figure 4.1

for the filter that was used in this numerical scheme.

Figure 4.1: Transfer function F (k) used for filtering of the poorly resolved wavenumber

content.

In the 7-point stencil filter 4.47, four restraints can be used to define the spectral behavior

of the filter. The following constraints are applied on equation 4.48 to obtain the low pass

filter [25] shown in figure 4.1:

F (0) = 2A+ 2B + 2C +D = 1, (4.49)
∂2F (0)

∂k2
= 18A+ 8B + 2C = 0, (4.50)

∂4F (0)

∂k4
= 162A+ 32B + 2C = 0, (4.51)

F (π) = −2A+ 2B − 2C +D = 0. (4.52)

By solving the resulting linear system, we obtain the following rational coefficients:

A =
1

64
, B = − 3

32
, C =

15

64
, D =

11

16
. (4.53)

The filter equation is then given by:

f̂i =
1

64
(fi+3 + fi−3)− 3

32
(fi+2 + fi−2) +

15

64
(fi+1 + fi−1) +

11

16
fi. (4.54)
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4.1.3 Numerical Method Validation

A validation process is needed to evaluate the capabilities of the proposed numerical

scheme. Unfortunately the system of differential governing equations from section 4.1.1

does not have an analytic solution to be compared with the numerical solution. A physically

and mathematically similar equation that has an analytical solution can be used to validate

the proposed numerical scheme. The Burgers’ equation is the best choice:

∂u

∂t
+ u

∂u

∂x
= ν

∂2u

∂x2
. (4.55)

The above equation has two main characteristics that are also present in the system of

governing equations from section 4.1.1: the unsteady term, the non linear convection term,

and the linear second order derivative diffusion term. Physically the Burgers’ equation

describes the time evolution of a nonlinear wave that is dependent of the non dimensional

parameter. Evanescent wave or discontinuity solutions may occur.

The Burger’s equation may be defined as a special case of the system of governing

equations from section 4.1.1. Considering that the fluid density is constant and has unity

value, in the momentum equation the density related derivatives will be equal to zero. We

then have:
∂u∗

∂t∗
+ u∗

∂u∗

∂x∗
− 1

Reκ

(
∂κ∗

∂x∗
∂u∗

∂x∗
+ κ∗

∂2u∗

∂x∗2

)
= 0. (4.56)

Now we also consider that the expansional viscosity coefficient has constant value, thus

eliminating the κ related derivative in equation 4.56:

∂u∗

∂t∗
+ u∗

∂u∗

∂x∗
− κ∗

Reκ

(
∂2u∗

∂x∗2

)
= 0. (4.57)

Now we define a numeric Reynolds number for the numerical evaluation of the obtained

equation:

Re =
Reκ
κ∗

. (4.58)

As a result, the Burgers’ equation in the non dimensional form and with the viscous terms

is obtained:
∂u∗

∂t∗
+ u∗

∂u∗

∂x∗
=

1

Re

∂2u∗

∂x∗2
, (4.59)

or in the conservative form for better numerical results [23]:

∂u∗

∂t∗
= −1

2

∂u∗2

∂x∗
+

1

Re

∂2u∗

∂x∗2
. (4.60)
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remembering that the usual interpretation of the parameter 1/Re is the same for the Navier-

Stokes equations; a scale relation between the convection and diffusive terms.

The analytical solution to be compared with the numerical solution is the traveling wave

with discontinuity. The error from the numerical solution will assess two main issues: the

dispersion (wave phase changes) and the diffusion (wave amplitude changes). The traveling

wave with discontinuity analytical solution with the Burgers’ equation is [83]:

u (x, t) =
1

1 + e(
Re(x−t/2)

2 )
. (4.61)

For the numerical implementation, the initial condition of the wave is the above solution

with t = 0. The boundary conditions at the ghost nodes outside the mesh are the analytical

solution known values of u, ∂u
∂x

and ∂2u
∂x2 . The analytical and numerical solutions will be

compared after a certain physical time. The difference error is the modulus of the largest

difference between the numerical and analytical solutions in the discontinuity region.

Figure 4.2: Mesh convergence of the proposed numerical scheme for the traveling wave with

discontinuity solution of the Burgers’ equation for several Reynolds numbers.

The value for the CFL condition used in this error assessment was 0.8 and the physical

simulation time was t∗ = 10. The computational domain was 220 characteristic lengths.
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For this validation case, the boundary conditions on both ends of the computational mesh

is the derivative equal zero for the first and second order. The imposition of the boundary

conditions is automatically satisfied when the derivatives are calculated from the linear

system of equation 4.21.

Note that in figure 4.2 a well defined convergence of the numerical mesh for the studied

Reynolds numbers can be observed. With higher Reynolds numbers in the traveling wave

solution the solution jump tends to a discontinuity. As a consequence, less mesh points are

used to describe this region with steep gradients, thus explaining the higher numerical error

for higher Reynolds numbers.

4.1.4 Implementation Details of the One Dimensional

Expansional Viscosity Numerical Code

Being a one dimensional numerical scheme, the computational cost is not as high as the

other numerical scheme used in this work (VAT code). A simple personal computer was

enough for the simulations.

The computational code was implemented in Fortran serial computation. For the solving

of the linear systems related to equations 4.21 and 4.33 the open source numerical libraries

LAPACK [84] and BLAS [85] along with the PGI compiler were used. The operating system

was Linux openSUSE 12.1 x64.

4.2 The Virtual Aeroacoustic Tunnel Numerical

Methodology

The term immersed boundary method was first used in reference to a method developed

to simulate cardiac mechanics and associated blood flow [86]. The distinguishing feature

of this method was that the entire simulation was carried out on a Cartesian grid, which

did not conform to the geometry of the heart, and a novel procedure was formulated for

imposing the effect of the immersed boundary on the flow. Since the method was introduced,

numerous modifications and refinements have been proposed and a number of variants of
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this approach now exist. Initially, the immersed boundary methods were developed for

incompressible viscous flows.

Immersed boundary methods for compressible viscous flows have been developed in the

last years [87, 88, 89, 90, 91, 92]. Most of these codes the resulting numerical schemes are of

second-order accurate in space and time. Higher order schemes were developed to be applied

on highly compressible flows [93], aerodinamically generated noise in both nonlinear [94]

and linearized governing equations [95], and featured with more sophisticated discretization

schemes [96, 97]. The aplication of the immersed boundary method is also suitable for high

Reynolds numbers where turbulence plays a major role in certain flows. Turbulence models

have been successfully applied along with the immersed boundary method: sub-grid scale

models [98, 99] and full scale turbulence modelling based on the RANS equations [100]. To

overcome the relative lack of resolution in the vicinity of the wall region, wall modelling for

turbulence has been applied on the immersed boundary method [101, 102].

Only recently the immersed boundary method has been used in realistic simulations;

oscillating cascade in turbomachinery [103], fast pitching airfoils [104], motion of a Hydro

Turbine[105], real vehicle simulations [106], solid rocket motors [107].

The first version of the immersed boundary method used in this work was validated for

aerodynamic cases; viscous laminar flow around a flat plate, supersonic laminar flow around

a double wedge airfoil and a supersonic turbulent flow around a cylinder [108].

This metodology was validated [109] with the modal aeroacoustic prediction of a stator

cascade under a rotor like linearized gust [71], generating the Tyler and Sofrin interaction

modes [69] and comparing its results with the linear subsonic theory from chapter 2.

The moving version of the moving immersed boundary [111] method imposes the rotor

blades movement through a regular cartesian mesh that also includes static surfaces, i.e., the

stator vanes cascade. This methodology is an alternative to the classic method of sliding

meshes, where there are two different computational meshes. There is one for the rotor

cascade and the other static for the remaining physical domain, with a relative movement

between these two meshes. A lack of resolution is always present in the interface of meshes.

By using the moving immersed boundary method, low resolution regions are not in the

domain, the rotor and stator cascades are both immersed in the same computational mesh.
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4.2.1 Governing Equations

In the proposed numerical method, the nonlinear and unsteady Euler equations will be

used. It is assumed that the turbulence effects do not have a major influence on the Tyler

and Sofrin mode generation process. The region that is most influenced from turbulence

is usually the near wall region (boundary layer) and the wake from the rotor blades and

stator vanes. For flows with high Reynolds numbers this region represents only a fraction

of the interaction region between the rotor and stator, and this simplification is assumed

to not have too much impact on the validation process.

For a non-inertial frame of reference, can be written in a conservation-law form as:

∂ρ

∂t
+

∂

∂xi
(ρui) = 0, (4.62)

∂

∂t
(ρui) +

∂

∂xj
(ρuiuj) = − ∂p

∂xi
+ fi, (4.63)

∂

∂t
(ρet) +

∂

∂xi
(ρetui) = − ∂

∂xi
(pui) + fiui, (4.64)

where the body forces are used for the domain accelaration from an initial steady state to

the reference inflow velocity. The non dimensional variables used in the above equations

are defined as:

x∗ =
x

L
, y∗ =

y

L
, z∗ =

z

L
, t∗ =

t

L/Uref

, u∗ =
u

Uref

, v∗ =
v

Uref

, w∗ =
w

Uref

,

p∗ =
p

ρref (Uref)
2 , ρ =

ρ

ρref

, T ∗ =
T

Tref

, e =
e

(Uref)
2 , f ∗ =

f

ρref (Uref)
2 /L

. (4.65)

The superscript ∗ represents non dimensional quantities and the subscript ref represents

reference values. The fluid total energy is given by the sum of the internal and kinetic

energies

et = e+ ek = cvT +
ui ui

2
(4.66)

and the Mach number is given by:

Mref =
Uref

cref

=
Uref√
γRTref

. (4.67)

For a thermally and calorically perfect gas, the equation of state can be written as:

p = (γ − 1) ρe (4.68)
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and

T =
γ M2

ref p

ρ
. (4.69)

A pseudo body force (fi) and its pseudo body force work (fiui) are then introduced on

the right hand side of the momentum and energy equations to continuously accelerate the

flow by using a non-inertial reference frame, from the stagnation condition to the geometry

reference condition, during a given acceleration time ta. After this acceleration time, the

value of the pseudo-force and pseudo-work are equal to zero, i.e., fi = fiui = 0, and

the governing equations recovers the form used for an inertial frame of reference. This

acceleration is used to avoid excessive numerical oscillations that would eventually make

the code unstable if the inital condition is the reference operating conditions. For an

undisturbed flow condition U∞, the pseudo body forces are given by [108]:

f ∗x =
fx

ρ∞ (U∞)2 /L
=
ρ (U∞sen (π/2− β) cos (α) /ta)

ρ∞ (U∞)2 /L

=

(
ρ

ρ∞

)(
L/U∞
ta

)
sen (π/2− β) cos (α)

=
ρ sen (π/2− β) cos (α)

ta
, (4.70)

f ∗y =
fy

ρ∞ (U∞)2 /L
=
ρ (U∞sen (π/2− β) sen (α) /ta)

ρ∞ (U∞)2 /L

=

(
ρ

ρ∞

)(
L/U∞
ta

)
sen (π/2− β) sen (α)

=
ρ sen (π/2− β) sen (α)

ta
, (4.71)

f ∗z =
fz

ρ∞ (U∞)2 /L
=
ρ (U∞cos (π/2− β) /ta)

ρ∞ (U∞)2 /L

=

(
ρ

ρ∞

)(
L/U∞
ta

)
cos (π/2− β)

=
ρ sen (β)

ta
. (4.72)
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4.2.2 Numerical Method

In order to be solved numerically using a finite-volume formulation, the governing equa-

tions are written in the following vector form:

∂U

∂t
+
∂E

∂x
+
∂F

∂y
+
∂G

∂z
= R. (4.73)

Defining tensor Π as:

Π = E⊗ i + F⊗ j + G⊗ k, (4.74)

Equation (4.73) is rewritten as:
∂U

∂t
+∇ · Π = R. (4.75)

For the Euler equations, the conservative variables vector U, and flux vectors E, F, G are

given by:

U =



ρ

ρu

ρv

ρw

ρet


, E =



ρu

ρuu+ p

ρuv

ρuw

(ρet + p)u


, F =



ρv

ρvu

ρvv + p

ρvw

(ρet + p) v


, G =



ρw

ρwu

ρwv

ρww + p

(ρet + p)w


.

(4.76)

The volume pseudo-force and pseudo-work vector R is given by:

R =



0

fx

fy

fz

fxu+ fyv + fzw


. (4.77)

By integrating equation 4.75 over the control volume V , and applying the divergence the-

orem to the first term of the right-hand side, we obtain:

∂

∂t

∫
V

UdV = −
∫
V

(∇ · Π) dV +

∫
V

RdV = −
∮
S

(Π · n) dS +

∫
V

RdV. (4.78)

Defining the volumetric mean of vectors U and R in the control volume V as:

U ≡ 1

V

∫
V

UdV, R ≡ 1

V

∫
V

RdV, (4.79)
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equation (4.78) is written as:

∂U

∂t
= − 1

V

∮
S

(Π · n)dS + R. (4.80)

Evaluating the previous equation for a hexahedral control volume yields:(
∂U

∂t

)
i,j,k

= − 1

Vi,j,k

[∫
Si+1/2

(Π · n) dS +

∫
Si−1/2

(Π · n) dS+∫
Sj+1/2

(Π · n) dS +

∫
Sj−1/2

(Π · n) dS+

∫
Sk+1/2

(Π · n) dS +

∫
Sk−1/2

(Π · n) dS

]
+ Ri,j,k, (4.81)

where Si+1/2, Si−1/2, Sj+1/2, Sj−1/2, Sk+1/2 e Sk−1/2 are the surfaces that define the hexahedral

control volume and Si+1/2 is the common surface between volume (i, j, k) and volume (i+

1, j, k).

Considering the value of tensor Π as constant over each of the control surfaces, it is

possible to write a finite-volume, discrete-time approximation of the previous equation as:

∆Ui,j,k

∆t
= − 1

Vi,j,k

[
(Π · S)i+1/2 + (Π · S)i−1/2+

(Π · S)j+1/2 + (Π · S)j−1/2+

(Π · S)k+1/2 + (Π · S)k−1/2

]
+ Ri,j,k, (4.82)

using time steps of size ∆t.

Defining Fi,j,k as a function of the flux of tensor Π over the surfaces of finite volume

Vi,j,k during time step ∆t as:

Fi,j,k =
∆t

Vi,j,k

[
(Π · S)i+1/2 + (Π · S)i−1/2 + (Π · S)j+1/2+

(Π · S)j−1/2 + (Π · S)k+1/2 + (Π · S)k−1/2

]
, (4.83)

and Ri,j,k as a function of the effect of body forces acting over the same finite volume during

the same time step, we have:

Ri,j,k = ∆t ·Ri,j,k, (4.84)

a finite-volume, discrete-time approximation of equation 4.82 is given by:

∆Ui,j,k = −Fi,j,k +Di,j,k +Ri,j,k. (4.85)
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In equation 4.85, the explicit artificial dissipation Di,j,k is added in the right-hand side in

order to control the discretization error generated by the calculation of the flux function

Fi,j,k.

In order to advance equation 4.85 with a high temporal resolution a third-order accurate

Runge-Kutta method [112] is used, resulting in the following three steps:

U
1

i,j,k = U
n

i,j,k −
(
Fni,j,k −Dni,j,k −Rn

i,j,k

]
, (4.86)

U
2

i,j,k =
3

4
U
n

i,j,k +
1

4
U

1

i,j,k −
1

4

(
F1
i,j,k −D1

i,j,k −R1
i,j,k

)
, (4.87)

U
n+1

i,j,k =
1

3
U
n

i,j,k +
2

3
U

2

i,j,k −
2

3

(
F2
i,j,k −D2

i,j,k −R2
i,j,k

)
. (4.88)

In order to calculate Fi,j,k in any of the previous steps, the flux of tensor Π over each of

the control surfaces must be calculated. For the control surface Si+1/2, this flux is given by:

(Π · S)i+1/2 =



(Π · S)1

(Π · S)2

(Π · S)3

(Π · S)4

(Π · S)5


i+1/2

. (4.89)

The first component of the vector defined by the above equation is associated to the

continuity equation and given by:

(Π · S)1 = ρi+1/2 (qs)i+1/2 , (4.90)

where the volumetric flux is:

(qs)i+1/2 = ui+1/2 · Si+1/2 = ui+1/2 (sx)i+1/2 + vi+1/2 (sy)i+1/2 + wi+1/2 (sz)i+1/2 . (4.91)

The second, third, and fourth components are associated with the three components of the

momentum equation and the fifth component is associated with the energy equation. For

the Euler equations, those components are given by from equation 4.92 to equation 4.95:

(Π · S)2 = (ρu)i+1/2 (qs)i+1/2 + pi+1/2 (sx)i+1/2 , (4.92)

(Π · S)3 = (ρv)i+1/2 (qs)i+1/2 + pi+1/2 (sy)i+1/2 , (4.93)
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(Π · S)4 = (ρw)i+1/2 (qs)i+1/2 + pi+1/2 (sz)i+1/2 , (4.94)

(Π · S)5 = (ρet)i+1/2 (qs)i+1/2 + pi+1/2 (qs)i+1/2 . (4.95)

In order to calculate the flux (Π · S) according to equations 4.90 to 4.95, it is necessary

to approximate the values of the variables at the control surface Si+1/2 from the mean values

of the conservative variables in the control volumes, given by the vector:

Ui,j,k =



ρ

ρu

ρv

ρw

ρet


i,j,k

. (4.96)

In order to obtain the momentum and energy primitive variables, the Favre mean is

used to calculate the mass-averaged momentum and energy primitive variables as:

ũ =
ρu

ρ
, ṽ =

ρv

ρ
, w̃ =

ρw

ρ
, ẽt =

ρet
ρ
. (4.97)

The mean of the total energy is given by:

ẽt = ẽ+ ẽk = ẽ+
ũ ũ+ ṽ ṽ + w̃ w̃

2
, (4.98)

so the mean internal energy is calculated as:

ẽ = ẽt − ẽk = ẽt −
ũ ũ+ ṽ ṽ + w̃ w̃

2
, (4.99)

and the mean pressure and temperature in the control volume is calculated using the state

equation as:

p̃ = (γ − 1) ρ ẽ, T̃ =
γ M2

ref p̃

ρ
. (4.100)

It is important to note that the first terms in the right-hand side of equations 4.90,

4.92, 4.93, 4.94, and 4.95 are the fluxes of mass, momentum and total energy through

surface Si+1/2 and the other terms are fluxes that are functions of the right-hand sides of

the momentum and total energy equations.

In order to calculate the fluxes of mass, momentum and total energy through surface

Si+1/2, an approach for interpolating the values of the conservative and primitive variables
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at the control surfaces, while mantaining the spectral resolution and stability with a formal

fourth order interpolation is proposed. Starting with the compact interpolation scheme [81]:

βfi−2 + αfi−1 + fi + αfi+1 + βfi+2 =

c

2

(
fi+5/2 − fi−5/2

)
+
b

2

(
fi+3/2 + fi−3/2

)
+
a

2

(
fi+1/2 − fi−1/2

)
, (4.101)

a general form for a centered compact numerical interpolation scheme with stencil sizes N

and M , for the left and right hand sides respectively, is given by:

M∑
m=0

αm
2

(fi+m + fi−m) =
N∑
n=1

an
2

(
fi+n−1/2 + fi−n+1/2

)
. (4.102)

By applying the following Taylor expansion to the above equation around the face i location,

we have:

f (x) =
∞∑
i=0

∂i

∂xi
f (x0)

(x− x0)i

i!
, (4.103)

where for the left-hand side of equation 4.102 we have for regular cartesian meshes:

(x− x0)i = (±∆xm)i , (4.104)

and for the right hand side of the same equation, we then have:

(x− x0)i = [± (∆x (n− 1/2))]i , (4.105)

the expanded form of equation 4.102 is obtained as:

M∑
m=0

αm
2

(
∞∑
i=0

∂i

∂xi
f (x0)

(∆xm)i

i!
+
∞∑
i=0

∂i

∂xi
f (x0)

(−∆xm)i

i!

)
=

N∑
n=1

an
2

(
∞∑
i=0

∂i

∂xi
f (x0)

[∆x (n− 1/2)]i

i!
+
∞∑
i=0

∂i

∂xi
f (x0)

[− (∆x (n− 1/2))]i

i!

)
. (4.106)

Rearranging equation 4.106, the expanded form can be written as:

M∑
m=0

αm
2

(
∞∑
i=0

∂i

∂xi
f (x0)

1

i!

[
(∆xm)i + (−∆xm)i

])
=

N∑
n=1

an
2

(
∞∑
i=0

∂i

∂xi
f (x0)

1

i!

[
(∆x (n− 1/2))i + (− (∆x (n− 1/2)))i

])
, (4.107)

and it is automatically fulfilled for odd-order derivatives, since all the the terms in the

brackets are equal to zero.
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Now we consider only the even terms for the previous equation:

M∑
m=0

αm

(
∞∑
i=0

∂2i

∂x2i
f (x0)

1

2i!
(∆xm)2i

)
=

N∑
n=1

an

(
∞∑
i=0

∂2i

∂x2i
f (x0)

1

2i!
(∆x (n− 1/2))2i

)
.

(4.108)

Using equation 4.108, it is possible to build numerical schemes with the maximum possible

precision by combining the same derivative order terms on the left and right hand sides.

For each even formal order to be satisfied, its equation must be fulfilled for increasing even

precision orders beginning from zero. Considering a regular Cartesian mesh with constant

∆x, the maximum possible precision is given by:

M∑
m=0

αm (m)2i =
N∑
n=1

an (n− 1/2)2i on the order of (∆x)2i . (4.109)

For a numerical scheme to have the highest formal order, a (M×N)−1 system of equations

must be solved from the expression above to obtain all the coefficients αm and an. Each

equation will give a constraint to obtain a desired formal order. Note that the procedure

above can also be used for derivatives regarding finite differences and filtering schemes for

removal of short length scales.

For computational aeroacoustics, good wave propagation properties are desired for the

numerical scheme and wave domain analysis is required for such. Applying the inverse

Fourier transform:

f (x) =
1√
2π

∫ +∞

−∞
F (k) ej2πkxdk, (4.110)

on equation 4.102, we obtain:

M∑
m=0

αm

(∫ +∞

−∞
F (k)

[
ej2πk(x+∆xm) + ej2πk(x−∆xm)

]
dk

)
=

N∑
n=1

an

(∫ +∞

−∞
F̂ (k)

[
ej2πk(x+∆x(m−1/2)) + ej2πk(x−∆x(m−1/2))

]
dk

)
. (4.111)
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By applying the Euler formula to the above equation, we have:

M∑
m=0

αm

(∫ +∞

−∞
F (k)

[
cos (2πk∆xm) + j sin (2πk∆xm)

+ cos (−2πk∆x (m+ 1/2)) + j sin (−2πk∆x (m+ 1/2))
]
dk

)
=

N∑
n=1

an

(∫ +∞

−∞
F̂ (k)

[
cos (2πk∆x (m− 1/2)) + j sin (2πk∆x (m− 1/2))

+ cos (−2πk∆x (m+ 1/2)) + j sin (−2πk∆x (m+ 1/2))
]
dk

)
, (4.112)

we then obtain the following relation:∫ +∞

−∞
F (k)

M∑
m=0

αm cos (2πk∆x m) dk =

∫ +∞

−∞
F̂ (k)

N∑
n=1

an cos (2πk∆x (n− 1/2)) dk.

(4.113)

Defining a transfer function for each given wavenumber k as:

T (k) =
F (k)

F̂ (k)
=

N∑
n=1

an cos (2πk∆x (n− 1/2))

M∑
m=0

αm cos (2πk∆x m)

, (4.114)

it is possible to evaluate the numerical error associated with each wavenumber k, represented

by the numerical solution along with the calculated interpolation coefficients an and αm.

The product 2πk∆x is the phase angle associated with the number of points used to define

a given wavenumber, where it covers the domain (−π, π) for a given length L.

For transfer functions with value T (k) = 1, there is no numerical error, i.e., wavenumber

k will propagate with no damping nor amplification. On the other hand, for transfer

functions with values T (k) < 1, the numerical error has damping characteristics and for

T (k) > 1, the numerical error associated to wavenumber k has amplifying characteristics.

For a regular Cartesian grid with x-direction resolution ∆x and length L, the shortest

wavelength that can be represented is λmin = 2∆x and the largest one is λmax = L. For

the associated wavenumber, k = 1/λ, the biggest wavenumber that can represented is

kmax = 1/(2∆x), while the smallest value is kmin = 1/L. For a regular Cartesian mesh we

have:

∆x =
L

Nv

, (4.115)
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where Nv if the number of finite volumes along the length L and, therefore, the minimum

wavenumber kmin is given by:

kmin =
1

Nv∆x
. (4.116)

The equation above can be regarded as the minimum wavenumber obtainable for the given

mesh resolution.

Rearranging equation 4.116 and substituting into equation 4.114 we have:

T (k) =

N∑
n=1

an cos

(
2π

Nv

(n− 1/2)

)
M∑
m=0

αm cos

(
2π

Nv

m

) . (4.117)

The expression obtained is a variation from equation 4.114 where the number of points is

the variable to estimate the error of the lesser wavenumber k that the given volume mesh

can define.

For a given numerical interpolation stencil, compact or not, several assumptions can be

made to determine its coefficients; equations 4.109 and 4.114 can be combined to produce

schemes with desired formal precision and spectral characteristics. Tam[113] andWebb built

explicit (non-compact) finite difference schemes (Dispersion-Relation-Preserving schemes)

by using an optimization technique to achieve optimal spectral resolution using some of

the stencil degrees of freedom and maintaining a formal precision order with the remaining

ones. Lele[81] used a combination of implicit (compact) formal precision and non opti-

mized spectral defined relations for finite difference and finite volume methods to achieve a

“spectral-like” resolution scheme where a formal precision order and good spectral behavior

were obtained.

In a previous work to the moving immersed boundary methodology, the skew-symmetric

scheme from Ducros [114] was the one used, given by:

fi+1/2,j,k =
2

3
(fi,j,k + fi+1,j,k)−

1

12
(fi−1.j.k + fi,j,k + fi+1,j,k + fi+2,j,k) , (4.118)

for the surface interpolation of all the primitive and conservative variables. In this work, a

fourth-order and non compact (explicit) interpolation scheme is proposed, using equation
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4.109 to obtain the stencil coefficients, by solving the following linear system:

a0 = α1 + α2 on the order of (∆x)0 ,

0 =
1

4
α1 +

9

4
α2 on the order of (∆x)2 . (4.119)

Since α0 = 1 can be made arbitrarily, solving this linear system for a1 and a2 we obtain:

α1 =
9

8
, α2 = −1

8
. (4.120)

By substituting these coefficients in equation 4.102 we obtain the interpolation scheme:

fi+1/2,j,k =
9

16
(fi+1,j,k + fi,j,k)−

1

16
(fi+2,j,k + fi−1,j,k,) . (4.121)

Applying both schemes into equation 4.114, their spectral resolution can be assessed.

Figure 4.3: Spectral resolution of several numerical interpolation schemes. Note the am-

plification region from the Ducros’ scheme, while the formal fourth order scheme has an

asymptotic behavior around the unity value.

Like the dispersion relation preserving and spectral-like schemes, the former numerical

scheme [114] used in VAT shows amplification (see figure 4.3) at some region of the spectral

domain, indicating that at that region the code might be generating higher wavenumber

content than there actually is from the exact solution. This introduces instabilities to the
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numerical calculation due to a non-physical amplification. A hypothesis that can be made

about this instability case. The oscillation of the spectral behavior of the scheme around

the unity value of the transfer function, brings instability to the discretization process and

makes harder to achieve a stable and converged solution. When the maximum formal order

is obtained for an interpolation scheme an asymptotically behavior around the unity value

for the transfer function gives the best stability and higher precision order.

Even having less spectral accuracy, the formal fourth-order scheme still has great res-

olution for the cases presented in this work. For a second order spatial accuracy code, a

wavelength is finely propagated by 35 points [115], or volumes considering the finite vol-

ume discretization. According to equation 4.117 and considering a second order formal

explicit interpolation, where the interpolated value at surface Si+1/2 is the mean of the

neighbouring volumes (a1 = 1 in equation 4.109), the transfer function has a value of

0.995975 = T (N = 35) or an error of about 0.4% of the exact value. Considering the simu-

lation cases of this work, where we have 300 volumes along a characteristic length of 0.2393

meters, that gives about 8 ∗ 10E − 04 meters of volume width. For a sound wave traveling

in the quiescent media at about 347 meters per second, dividing it by the volume width and

by the human hearing upper threshold of 22 kHz, we have 19.7159 volumes, we round up to

20 control volumes to define the wave at 22kHz. For the wavenumber to be calculated by

using the proposed formal fourth order scheme at the highest frequency of human hearing

and by using at least 20 volumes to define it, according to equation 4.117 we have a value for

the transfer function of 0.999773 or a numerical error of about 0.02% for the worst resolved

waves, concluding that the explicit fourth order formal accuracy interpolation scheme is

more than enough to define with very high resolution the whole spectra of human hearing.

Now by applying the explicit formal fourth order scheme on the primitive variables we

have:

ui+1/2 =
9

16
(ũi,j,k + ũi+1,j,k)−

1

16
(ũi−1,j,k + ũi+2,j,k) +O(∆x4), (4.122)

vi+1/2 =
9

16
(ṽi,j,k + ṽi+1,j,k)−

1

16
(ṽi−1,j,k + ṽi+2,j,k) +O(∆x4), (4.123)

wi+1/2 =
9

16
(w̃i,j,k + w̃i+1,j,k)−

1

16
(w̃i−1,j,k + w̃i+2,j,k) +O(∆x4), (4.124)

and

pi+1/2 =
9

16
(p̃i,j,k + p̃i+1,j,k)−

1

16
(p̃i−1,j,k + p̃i+2,j,k) +O(∆x4). (4.125)
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In this work, the same scheme used for the primitive variables is also used for the conser-

vative variables ρ, ρu, ρv, ρw and ρeT . Using this approach, the value of the conservatives

variables at surface Si+1/2 is given by:

ρi+1/2 =
9

16

(
ρi,j,k + ρi+1,j,k

)
− 1

16

(
ρi−1,j,k + ρi+2,j,k

)
+O(∆x4), (4.126)

(ρu)i+1/2 =
9

16

(
ρui,j,k + ρui+1,j,k

)
− 1

16

(
ρui−1,j,k + ρui+2,j,k

)
+O(∆x4), (4.127)

(ρv)i+1/2 =
9

16

(
ρvi,j,k + ρvi+1,j,k

)
− 1

16

(
ρvi−1,j,k + ρvi+2,j,k

)
+O(∆x4), (4.128)

(ρw)i+1/2 =
9

16

(
ρwi,j,k + ρwi+1,j,k

)
− 1

16

(
ρwi−1,j,k + ρwi+2,j,k

)
+O(∆x4), (4.129)

and

(ρet)i+1/2 =
9

16

(
ρeti,j,k + ρeti+1,j,k

)
− 1

16

(
ρeti−1,j,k + ρeti+2,j,k

)
+O(∆x4). (4.130)

The scheme proposed from equation 4.122 to equation 4.130 is non-monotonic, and

therefore, an explicit artificial viscosity was previously included in equation 4.85. In this

work we use the basic idea of the the artificial dissipation model [116] and some modifications

were made to improve the numerical stability for rotor-stator interaction case, we have then

the numerical dissipation operator:

Di,j,k =
(
di+1/2 − di−1/2

)
+
(
dj+1/2 − dj−1/2

)
+
(
dk+1/2 − dk−1/2

)
, (4.131)

where for surface Si+1/2 we have:

di+1/2 = ε
(2)
i+1/2

[
Ui+1,j,k −Ui,j,k

]
− ε(4)

i+1/2

[
Ui+2,j,k − 3Ui+1,j,k + 3Ui,j,k −Ui−1,j,k

]
. (4.132)

The first and second terms of the right-hand side of equation 4.132 are the second-order

and fourth-order dissipation operators, respectively, and the coefficients for both operators

are:

ε
(2)
i+1/2 = K (2)max (Ψi,Ψi+1) , ε

(4)
i+1/2 = max

[
0,
(
K (4) − ε(2)

i+1/2

)]
, (4.133)

and the pressure based sensor Ψi, given by:

Ψi =
|p̃i+1,j,k − 2p̃i,j,k + p̃i−1,j,k|
|p̃i+1,j,k|+ |2p̃i,j,k|+ |p̃i−1,j,k|

. (4.134)

133



For a better numerical stability of the moving immersed boundary method, a vorticity

based sensor,

(Ψrot)i+1/2 = K
(2)
rot · |∇ × ũ|i+1/2, (4.135)

and a divergent based sensor,

(Ψdiv)i+1/2 = K
(2)
div · |∇ · ũ|i+1/2, (4.136)

were proposed previously [111], substituting the pressure based sensor for the second order

numerical dissipation quantity, resuting in:

ε
(2)
i+1/2 = max

[
(Ψrot)i+1/2 , (Ψdiv)i+1/2

]
. (4.137)

The previous sensors are derived from the velocity field. In order to have an even

better stability for the numerical scheme to handle the intense gradients and other non

linearities in the rotor and stator cascades interaction region, two new sensors based on the

thermodynamic field are proposed. The first one is a pressure gradient based sensor, given

by:

(Ψprs)i+1/2 = K(2)
prs · |∇p̃|i+1/2, (4.138)

and the second sensor is based on the density, given by:

(Ψden)i+1/2 = K
(2)
den · |∇ρ|i+1/2, (4.139)

by modifying the second order dissipation sensor, given by equation 4.137, we have:

ε
(2)
i+1/2 = max

[
(Ψrot)i+1/2 , (Ψdiv)i+1/2 , (Ψprs)i+1/2 , (Ψden)i+1/2

]
. (4.140)

In order to calculate the spatial derivatives from the hydrodynamic and thermodynamic

solutions to be used in the artificial viscosity, the divergence theorem in the form proposed by

Hirsch [23] is used. The integrating volume is not the same as the finite volume discretization

used in the simulations. The control volume Vp used for the calculation of derivatives states

the order of spatial precision that the derivatives will have. By applying the divergence

theorem on the velocity component u, we have:∫
Vp

(∇u) dVp =

∮
Sp

u dsp. (4.141)
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Evaluating the integration for an hexaedric control volume, we have:∫
Vp

[(
∂u

∂x

)
i +

(
∂u

∂y

)
j +

(
∂u

∂z

)
k

]
dVp =

∮
Sp

[(u dspx) i + (u dspy) j + (u dspz)k] ,

(4.142)

we may arrange the components to an explicit form of the derivatives at each direction:∫
Vp

(
∂u

∂xi

)
dVp =

∫
Sp

u dspxi . (4.143)

Now defining the volumetric mean of the derivative for the integrating control volume:(
∂u

∂xi

)
≡ 1

Vp

∫
p

(
∂u

∂xi

)
dVp. (4.144)

By combining equations 4.143 and 4.144 we obtain:(
∂u

∂xi

)
=

1

Vp

∫
Sp

u dspxi . (4.145)

Defining the net flux of the velocity component u through the surface vector component

i as:

f (u)xi ≡
∫
Sp

u dspxi , (4.146)

substituting into equation 4.145 we have:(
∂u

∂xi

)
i,j,k

=
1

Vp i,j,k

[
f (u)xi

]
i,j,k

. (4.147)

To maintain the derivative calculation with the same fourth order as the flux calculation,

a four control volumes numerical stencil is used to calculate the derivatives as shown in

figure 4.4. The derivatives are calculated at the vertex i, j with equations 4.146 and 4.147.

Following the same idea of the finite volume method we have, for example, the value of

f (u)xi to cartesian volume meshes in the x direction:

[f (u)x]i,j,k = [f (u)x]i+1/2,j,k + [f (u)x]i+1/2,j−1,k + [f (u)x]i−1/2,j,k

+ [f (u)x]i−1/2,j−1,k + [f (u)x]i+1/2,j,k−1 + [f (u)x]i+1/2,j−1,k−1

+ [f (u)x]i−1/2,j,k−1 + [f (u)x]i−1/2,j−1,k−1 .

(4.148)
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Figure 4.4: Mesh stencil for derivative calculation on vertex i, j [117].

In the same way for y and z directions:[
f (u)y

]
i,j,k

=
[
f (u)y

]
i,j+1/2,k

+
[
f (u)y

]
i−1,j+1/2,k

+
[
f (u)y

]
i,j−1/2,k

+
[
f (u)y

]
i−1,j−1/2,k

+
[
f (u)y

]
i,j+1/2,k−1

+
[
f (u)y

]
i−1,j+1/2,k−1

+
[
f (u)y

]
i,j−1/2,k−1

+
[
f (u)y

]
i−1,j−1/2,k−1

,

(4.149)

and finally:

[f (u)z]i,j,k = [f (u)z]i,j,k+1/2 + [f (u)z]i−1,j,k+1/2 + [f (u)z]i,j,k−1/2

+ [f (u)z]i−1,j,k−1/2 + [f (u)z]i,j−1,k+1/2 + [f (u)z]i−1,j−1,k+1/2

+ [f (u)z]i,j−1/2,k−1/2 + [f (u)z]i−1,j−1,k−1/2 .

(4.150)

Each term of the previous equation may be obtained with the face values calculated with

arithmetic mean:

[f (u)x]i+1/2,j,k = ui+1/2,j,k (i · Sx)i+1/2,j,k (4.151)

136



and in the other directions:[
f (u)y

]
i,j+1/2,k

= ui,j+1/2,k (j · Sy)i,j+1/2,k , (4.152)

[f (u)z]i,j,k+1/2 = ui,j,k+1/2 (k · Sz)i,j,k+1/2 , (4.153)

where the face values may be evaluated through arithmetic mean from the volumes that

share the same face:

ui+1/2,j,k =
1

2
(ũi,j,k + ũi+1,j,k) . (4.154)

Now with the derivative values calculated for the vertex i, j, k, the derivative values for

the faces may again be calculated through arithmetic mean from the values in the vertexes:(
∂u

∂x

)
i+1/2,j,k+1/2

=
1

4

[(
∂u

∂x

)
i+1,j,k

+

(
∂u

∂x

)
i+1,j+1,k

(4.155)

+

(
∂u

∂x

)
i+1,j,k+1

+

(
∂u

∂x

)
i+1,j+1,k+1

]
, (4.156)

where the indexes on the left hand side are evaluated on the faces and the indexes on the

right hand side are evaluated at the vertexes. By doing this, the derivatives on the faces of

the control volumes may be calculated and then applied on the artificial dissipation scheme

to stabilize the code. Since the calculation of the vorticity and divergence of the velocity

field, as well as the temperature and density gradients is fourth-order accurate in space, the

resulting numerical method is also fourth-order accurate in space and third-order accurate

in time.

4.2.3 Numerical Imposition of Moving Surfaces by Using the Im-

mersed Boundary Method

The approach used in this work for imposing the boundary conditions at the boundary

volumes, defined as the control volumes that contain one or more surface-grid points, is a

discrete forcing one where the boundary conditions are imposed directly to the boundary

volumes.
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In all the control volumes, the mean values of the conservative variables are given by:

Ui,j,k =



ρ

ρu

ρv

ρw

ρet


i,j,k

=



ρ

ρũ

ρṽ

ρw̃

ρ ẽt


i,j,k

. (4.157)

In order to impose the free-slip condition in the boundary volumes for the Euler equations,

the velocity of the fluid at the solid surface is decomposed in the normal (subscript n) and

tangential (subscript t) components as:

ũ = ũn + ũt = ũnn + ũtt. (4.158)

Since the impenetrability condition in the boundary volumes establishes that the normal

component of the fluid velocity must be equal to the normal component of the velocity of the

moving body, unB , the normal and tangential components of the velocity in the boundary

volumes are given by:

ũn = ubn, e ũt 6= 0. (4.159)

Is is important to note that for a static surface, unB = 0, and for a moving surface the

velocity of the moving bodies is equal to the normal component of the velocity of the

surface for every point of the solid walls, given by unB = vrotor · n.

For the Euler equations there is no momentum diffusion in the normal direction at the

solid walls of the surfaces, yielding:
∂ũ

∂xn
= 0. (4.160)

The boundary condition for the static pressure at the wall is obtained considering the

momentum equation in the normal direction,

∂

∂t
(ρ ũn) +

∂

∂xn
(ρ ũnũn) +

∂

∂xt
(ρ ũnũt) = − ∂p̃

∂xn
, (4.161)

where the expansion of all the terms of the previous equation results in:

ũn
∂ρ

∂t
+ ρ

∂ũn
∂t

+ (ũn)2 ∂ρ

∂xn
+ (2ρ ũn)

∂ũn
∂xn

+ (ũnũt)
∂ρ

∂xt
+ (ρ ũt)

∂ũn
∂xt

+ (ρ ũn)
∂ũt
∂xt

= − ∂p̃

∂xn
.

(4.162)
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By Appling the imprenetrability condition to the momentum equation in the normal direc-

tion, we have:

ubn
∂ρ

∂t
+ ρ

∂ubn
∂t

+
(
ubn
)2 ∂ρ

∂xn
+
(
2ρubn

) ∂ubn
∂xn

+
(
ubnut

) ∂ρ
∂xt

+ (ρut)
∂ubn
∂xt

+
(
ρubn
) ∂ut
∂xt

= − ∂p

∂xn
.

(4.163)

For a static solid body, ubn = 0, and the above equation yields:

∂p̃

∂xn
= 0. (4.164)

For a moving body, unB 6= 0, if measured by an observer in an inertial system that is

stationary. However, static pressure is independent from the velocity of the inertial system

of the observer and if the later is moving with the same constant velocity of the moving

surface it will also result in unB = 0, and using equation 4.163 will also result in:

∂p̃

∂xn
= 0. (4.165)

Considering the walls of the moving and static bodies are adiabatic, the boundary

condition for the temperature is given by:

∂T̃

∂xn
= 0, (4.166)

and differentiating the state equation for an ideal gas with respect to the normal direction,

∂p̃

∂xn
=

∂

∂xn

(
ρRT̃

)
= Rρ ∂T̃

∂xn
+RT̃ ∂ρ

∂xn
, (4.167)

results in:
∂ρ

∂xn
= 0. (4.168)

Since

ẽ =
1

γ (γ − 1)M2
ref T̃

, (4.169)

the adiabatic wall condition results in:

∂ẽ

∂xn
= 0. (4.170)

Since n is a unit vector, with direction normal to the body wall in and outward sense

and cartesian components n = nxi + nyj + nzk, the derivatives of the flow variables ũ, ũn,

ρ and ẽ in the normal direction can be evaluated as:

∂ũ

∂xn
=
∂ũ

∂n
=
∂ũ

∂x

∂x

∂n
+
∂ũ

∂y

∂y

∂n
+
∂ũ

∂z

∂z

∂n
= nx

∂ũ

∂x
+ ny

∂ũ

∂y
+ nz

∂ũ

∂z
, (4.171)
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∂ρ

∂xn
=
∂ρ

∂n
=
∂ρ

∂x

∂x

∂n
+
∂ρ

∂y

∂y

∂n
+
∂ρ

∂z

∂z

∂n
= nx

∂ρ

∂x
+ ny

∂ρ

∂y
+ nz

∂ρ

∂z
, (4.172)

∂ẽ

∂xn
=
∂ẽ

∂n
=
∂ẽ

∂x

∂x

∂n
+
∂ẽ

∂y

∂y

∂n
+
∂ẽ

∂z

∂z

∂n
= nx

∂ẽ

∂x
+ ny

∂ẽ

∂y
+ nz

∂ẽ

∂z
. (4.173)

Depending on the resolution of the cartesian and surface grids, more than one surface point

can lie within a boundary volume and, in this case, the mean among all normal unit vectors

associated to the grid points that lie within the boundary volume is used.

The derivatives in the normal direction of the boundary volumes (superscript b) can be

evaluated according to the boundary conditions given by equations 4.160, 4.168, 4.170 as:

0 = nx

(
∂ũ

∂x

)b
i,j,k

+ ny

(
∂ũ

∂y

)b
i,j,k

+ nz

(
∂ũ

∂z

)b
i,j,k

, (4.174)

0 = nx

(
∂ρ

∂x

)b
i,j,k

+ ny

(
∂ρ

∂y

)b
i,j,k

+ nz

(
∂ρ

∂z

)b
i,j,k

, (4.175)

0 = nx

(
∂ẽ

∂x

)b
i,j,k

+ ny

(
∂ẽ

∂y

)b
i,j,k

+ nz

(
∂ẽ

∂z

)b
i,j,k

. (4.176)

If nx > 0, in the regular region of the Cartesian grid the derivative ∂ρ
∂x

in the bound-

ary volumes can be calculated with fourth order spatial precision using a forward finite-

difference approach obtained from polynomial fitting proposed by Tanehill [118], given by:(
∂ρ

∂x

)b
i,j,k

=
1

12∆x

[
−25ρ b

i,j,k + 48ρi+1,j,k − 36ρi+2,j,k + 16ρi+3,j,k − 3ρi+4,j,k +O(∆x)4
]
.

(4.177)

Defining the difference operator:

D+
i ρ =

1

25

(
48ρi+1,j,k − 36ρi+2,j,k + 16ρi+3,j,k − 3ρi+4,j,k

)
, (4.178)

D+
j ρ =

1

25

(
48ρi,j+1,k − 36ρi,j+2,k + 16ρi,j+3,k − 3ρi,j+4,k

)
, (4.179)

D+
k ρ =

1

25

(
48ρi,j,k+1 − 36ρi,j,k+2 + 16ρi,j,k+3 − 3ρi,j,k+4

)
, (4.180)

D−i ρ =
1

25

(
48ρi−1,j,k − 36ρi−2,j,k + 16ρi−3,j,k − 3ρi−4,j,k

)
, (4.181)

D−j ρ =
1

25

(
48ρi,j−1,k − 36ρi,j−2,k + 16ρi,j−3,k − 3ρi,j−4,k

)
, (4.182)

D−k ρ =
1

25

(
48ρi,j,k−1 − 36ρi,j,k−2 + 16ρi,j,k−3 − 3ρi,j,k−4

)
. (4.183)

Equation 4.177 is written as:(
∂ρ

∂x

)
i,j,k

=
25

12∆x

[
−ρ b

i,j,k +D+
i ρ+O(∆x)4

]
. (4.184)
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If n = i (nx = 1, ny = 0 and nz = 0), equation 4.175 gives:

0 =

(
∂ρ

∂x

)b
i,j,k

, (4.185)

and introducing this result in equation 4.184 we have:

ρ b
i,j,k = D+

i ρ+O(∆x)4. (4.186)

Following the same line of reasoning, if n = j (nx = 0, ny = 1 and nz = 0),

ρ b
i,j,k = D+

j ρ+O(∆y)4, (4.187)

and if n = k (nx = 0, ny = 0 e nz = 1),

ρ b
i,j,k = D+

k ρ+O(∆z)4. (4.188)

For the generalized case, where n = nxi+nyj+nzk, the averaged density is calculated in

the boundary volumes as the weighted value from the normal vector components magnitude

|nx|, |ny| e |nz|,

ρ b
i,j,k =

|nx|Diρ+ |ny|Djρ+ |nz|Dkρ

|nx|+ |ny|+ |nz|
. (4.189)

Following an analogous procedure, since ∂ρ/∂xn = ∂ẽ/∂xn = ∂ũ/∂xn = 0, the averaged

internal energy and tangential velocity are calculated as the weighted values:

ẽ bi,j,k =
|nx|Diẽ+ |ny|Dj ẽ+ |nz|Dkẽ

|nx|+ |ny|+ |nz|
, (4.190)

ũ b
i,j,k =

|nx|Diũ + |ny|Djũ + |nz|Dkũ

|nx|+ |ny|+ |nz|
. (4.191)

In the previous equations, the difference operators (Di, Dj and Dk) can be in the forward

direction (D+
i , D

+
j and D+

k ), if the values of nx, ny and nz are positive, or in the backward

direction (D−i , D
−
j and D−k ), if the values of nx, ny and nz are negative.

Since the normal velocity, ũn, is known for every boundary volume its cartesian compo-

nents are also known and given by

(ũn) bi,j,k =
(
ũnxi + ũnyj + ũnzk

) b
i,j,k

, (4.192)

and since

ũ b
i,j,k = (ũ) bi,j,k = (ũn) bi,j,k + (ũt)

b
i,j,k , (4.193)
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the cartesian components of of the tangential velocity, ũt, are given by:

(ũtx)
b
i,j,k = (ũ− ũnx)

b
i,j,k ,

(
ũty
) b
i,j,k

=
(
ṽ − ũny

) b
i,j,k

, (ũtz)
b
i,j,k = (w̃ − ũnz)

b
i,j,k . (4.194)

In this manner, the conservative variables vector for the boundary volumes are given by

U
b

i,j,k =



ρ

ρ (ũtx + ũnx)

ρ
(
ũty + ũny

)
ρ (ũtz + ũnz)

ρ
[
ẽ+ 1

2

[
(ũtx + ũnx)

2 +
(
ũty + ũny

)2
+ (ũtz + ũnz)

2
]]



b

i,j,k

. (4.195)

4.2.3.1 Expansional Viscosity Model Implementation in the VAT Code

In this work, a first implementation of the expansional viscosity model is done into the

VAT code. The numerical formulation is exactly the same from the previous section for

the Euler equation. According to equation 4.19, the physical parameter Ψ is related to the

ratio of the flow characteristic time and the time relaxation related to the thermodynamic

equilibrium of the fluid. We will consider that the relaxation time of the fluid is much

smaller than the flow characteristic time:

L0

U0

� τ, (4.196)

as a consequence:

Ψ� 1. (4.197)

The above relation implies that in equation 4.19 the left hand side, the time rate term of

change of the expansional viscosity coefficient, is negligible when compared with the right

hand side. The consequence of this statement is that the expansional viscosity coefficient

evolution is practically instantaneous. As a consequence the κ term is only dependent on

the fluid density:

κ∗ (ρ∗) = ρ∗
(
r2
M − 1

)
. (4.198)

By adding the expansional viscosity model into the Euler equation and the work done by

the expansional viscosity into the energy equation, the flux vectors 4.76 used on the VAT
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code will be in the following form (non dimensional superscript ∗ already supressed):

U =



ρ

ρu

ρv

ρw

ρet


, E =



ρu

ρuu− σxx
ρuv

ρuw

(ρet − σxx)u


,

F =



ρv

ρvu

ρvv − σyy
ρvw

(ρet − σyy) v


, G =



ρw

ρwu

ρwv

ρww − σzz
(ρet − σzz)w


,

(4.199)

where:

σxx = σyy = σzz = −p0 +

[
(r2
M − 1)

Reκ

]
ρ∇ · u. (4.200)

Finally, we may define the following physical parameter:

kexp =
(r2
M − 1)

Reκ
. (4.201)

4.2.4 VAT Code Implementation Details

As stated in chapter 1, parallel computing has been in use for several decades, mainly

in high performance computing. Currently almost every electronic with computing capa-

bilities, has central processing units with multiple processing cores. The main reason for

using multiple cores is that the growth of the clock speed reached its physical limitations,

and it was not feasible to increase the processing capability by simply increasing the clock

speed. As a result, since around 2005 [119] computer CPUs implemented more cores with

a single processor while the clock speed was held constant. Even with dozens of cores in

the CPUs, the relative parallelism from the GPUs is far superior. With thousands of cores,

the graphic units has parallel processing as their main processing characteristic, and as a

consequence, fulfilling Moore’s law in computational power.

The use of GPUs for parallel processing in high performance computing initially was

impractical. With the advent of the CUDA architecture in 2007 [27], a new environment for
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the development of this type of application was more suitable to scientific and engineering

applications with GPUs. At the end of 2009 the first CUDA Fortran compiler was available

[30], where language extensions where added for the Fortran language, including memory

management over the GPU memory.

The CUDA computing architecture is an hybrid programming model, i.e., some code

parts may be executed both on CPU and GPU. Parts of the CUDA Fortran code may be

implemented incrementally from the CPU to the GPU for a faster execution. The parallel

levels of execution are usually more aggressive when the numerical work is exclusively run

on the GPU. Subroutines that run in a GPU may execute more execution threads than on

a CPU for the same time. These subroutines are called kernels. A call for a kernel specifies

how many parallel instances of this kernel will be simultaneously executed. Each instance

will be executed by a single thread. By organizing the execution threads into thread blocks,

each thread has a single global index from the computation grid and a local index from its

execution block. By using these indexes, execution loops may be executed simultaneously

with the launch of a single block into one of the dozens of streaming multiprocessors from

the GPU until all the grid blocks are processed.

Being an extremely parallel friendly methodology, the VAT numerical scheme may be

implemented with high gains of performance when compared with its execution on CPUs.

The usual performance gain with several GPUs with the same numerical methodology, when

compared with the serial execution on a single core of CPU was around one hundred times

faster.

4.2.4.1 The GPU Architecture

The GPU architecture, specially the NVIDIA branded ones, are built around an scalar

array of streaming multiprocessors (SM). Each SM of a GPU is made to support the con-

current executions of hundreds of threads. From the available SMs of a single, it is possible

to process thousands of threads at the same time.

When a subroutine (kernel) to be executed in a GPU is called, each thread block, which

together constitutes an execution grid, are launched for a SM available for execution. Once

scheduled for a SM, the threads of the block are then processed. Several blocks of a grid may
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be scheduled for a single SM that will be processed according to the resources availability

of that SM.

Figure 4.5: Basic architecture of a general purpose graphic computing unit (GPGPU) [119].

The memory hierarchy of the CUDA-Fortran code implementation point of view is

defined as follows [120]:

• Global memory: the GPU hardware outermost memory, may be allocated both stat-

ically and dynamically in CUDA-Fortan.

• Texture memory: read only memory, has an extremely fast reading when compared

with the other memory used for both reading and writing.

• Shared memory: private memory of a single SM, with extremely high reading and

writing speeds for use on a single thread block. Its duration is the same of the block.

• Register memory: memory for scalars that are private for a single execution thread.

Similar to the shared memory in speed and duration.

The writing of the values through the several memory hierarchies is not always done

instantaneously, sometimes writing and reading of wrong values may occur. For an efficient

and consistent numerical implementation, the block order execution must be taken into

account along with its synchronization in the code. The writing of calculated values into
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the global memory from the shared memory is not done instantaneously. CUDA-Fortran

intrinsic synchronization functions [121] like synchthreads and threadfence. The use of

these functions guarantees the correct order of writing and reading over the global and

shared memories after certain code parts execution.

4.2.4.2 CUDA-Fortran Implementation of the VAT Code

The VAT code has two main kernel subroutines. The most important one, that consumes

up to 90% of the total iteration time, is euler_solver. This kernel performs the numerical

calculations required by equations 4.83 to 4.140. The second one, that consumes up to 5%

of the total iteration time, is immersed_boundary and this kernel performs the numerical

calculations required by equations 4.189 to 4.195. Considering other minor kernels, the

overall result is that 97% of the iteration time is spent in the GPU and only 3% of it is

spent in the CPU host. This very small fraction of the total iteration time came from

off-loading practically 100% of the numerical calculations from the CPU host to the GPU

device. These execution times were obtained independently by two profiling programs:

pgprof (CUDA-Fortran compiling tool) and tau (Tuning and Analysis Utilities) and both

programs showed excellent agreement of the results.

In order to off-load the numerical calculations to the GPU, the conservative variables

defined by equations 4.126 to 4.130 were allocated by the main program in the GPU global

memory using the CUDA Fortran variable qualifier device. Using this approach, the most

important variables in the VAT code reside in the GPU global memory and not in the CPU

memory, avoiding the communication bottleneck between the GPU and the CPU when the

numerical calculations are performed.

With the conservative variables allocated in the GPU global memory, the texture cache

of the GPU was used to open a fast and read-only access from the NVIDIA symmetric

multiprocessors to the conservative variables using standard Fortran pointers. The last im-

portant implementation was to allocate the primitive variables defined by equations 4.122 to

4.125 in the symmetric multiprocessors’ shared memory using the variable qualifier shared

in the declaration of the primitive variables of the euler_solver kernel.

The CUDA Fortran version of the VAT code was run on a single NVIDIA GeForce GTX
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TITAN GPU, with 896 double-precision cores and 6 gigabytes of RAM memory (CUDA

global memory). The time needed for each iteration of the simulated cases of rotor and

stator cascades interaction was around 1.1 seconds, where around thirty million control

volumes were used in the computational mesh. On the available global memory of the

GPU, 32 million control volumes could be simulated on the two dimension version of the

code. The operating system that the simulations were carried out was under the Linux

distribution openSUSE 12.1 x64.

The computational capacity obtained from a single GPU NVIDIA Titan GTX was

equivalent to the CPU parallel version of the VAT code with OpenMP and MPI on 256

CPU cores distributed equally into 8 nodes of the cluster Trestles from the San Diego

Supercomputer Center (SDSC).
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Chapter 5

Numerical Results

This chapter presents the results of the numerical methodologies described in chapter

4. The first part of this chapter presents the numerical results of a cyclic wave under the

effects of expansional viscosity. The theoretical base of results is the linear stability analysis

from chapter 3, that will then be compared with the numerical amplification factor.

The second part presents the numerical results from the VAT code, where the numer-

ical validation of the study for the rotor and stator interaction is applied to the subsonic,

transonic and supersonic flow regimes. The duct propagation theory and tonal noise char-

acterization are used as the theoretical base of solutions for comparison to the numerical

simulations modal response for the subsonic and transonic cases. The shock-wave duct

propagation theory and the algorithm of these shock-waves interaction obtained earlier are

used for comparison to the numerical results of the supersonic rotor cascade cases.

The third and last part of this chapter is about the synergy of the two lines of research

of this work. For the supersonic case, which has high levels of non linearity due to the

rotor and stator interaction in supersonic conditions, the expansional viscosity model with

instantaneous response is applied to the flow and its effects are evaluated by varying the

physical parameter related to the expansional viscosity.
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5.1 One Dimensional Simulations With the Expansional

Viscosity Model

The numerical simulations of this sections are about the first computational test of the

expansional viscosity model applied to the Euler equations in its non linear form with the

barotropic model as the closure relation. The numerical methodology described in chapter

4 in used for the discretization process.

The nonlinear form of the governing equations has different behavior compared to the

linearized governing equations used in the stability analysis. The proposed problem to

be solved numerically is similar the linear stability analysis. A one dimensional wave is

the inital condition. Its amplitude decay through time is compared to the decay from the

analytical solution of the stability analysis as a validation process for both methods. The

physical parameters effects are then assessed upon the expansional viscosity.

For the numerical simulations we will consider the following initial conditions for the ve-

locity, density, in the non dimensional form, and the expansional viscosity on the permanent

form:

u (x, t = 0) = 1 + uae
ikx, ρ (x, t = 0) = 1 + ρae

ikx, κ (x, t = 0) = ρ
(
r2
M − 1

)
. (5.1)

The same numerical value for the oscillation amplitude of the density was used for the

oscillation amplitude of the velocity. A cyclic condition is applied at the boundaries of

the computational mesh with physical length of 2π/k for an infinite wave solution. As as

consequence, only one wavelength is numerically solved. The value for the CFL condition

is 0.5, where convergence and stability are guaranteed for all cases. The spectral filter used

for the removal of non resolved wave content was applied at every one hundred iterations.

The computational mesh resolution is two hundred equally spaced points.

Apart from the linear stability analysis, the amplitudes of the wave variables are now

finite in the numerical cases, inducing non linear effects on its behavior. Figure 5.1 shows

the case where the expansional viscosity is not considered, where the non linear effects

results on the shock formation due to the finite amplitude of the wave.
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Figure 5.1: Illustrative shockwave formation due to non linear effects directly associated

with the wave finite amplitude. The variable shown is the linear momentum ρu.
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For the case depicted in figure 5.1, the positions of the wave have different propagating

speeds. Rarefaction and compression points will appear along the wave [20]. The difference

in the propagation speeds along the wave induces a change of its shape in time. The

compression points move ahead and the rarefaction points retreat. As a result some points

along the wave will ultimately tend to non unique values, creating a discontinuity at that

point.

The influence of the expansional viscosity is the attenuation of the non linear effects as-

sociated with the finite amplitude of the wave. The first test regarding this non linearity is

the comparison between the amplification factor obtained from the linear stability analysis

and the one from the numerical results. Unlike the condition from the linear stability anal-

ysis, the temporal oscillation does not occur naturally in the time domain on the numerical

simulations, where a forcing term must be used for this oscillation to occur. By using ω = 0

in the stability analysis the same conditions for wave propagation can be obtained for both

methods. In the stability analysis, the amplification factor is the solutions of the linear

governing equations from chapter 3, but in the numerical cases the amplification factor

must be obtained indirectly from the results. We now consider the following form of the

velocity solution in a similar to the stability analysis:

u (x, t) = 1 +
(
uae

ηt
)
e−iΩt+ikx. (5.2)

The exponential term outside the parenthesis on equation 5.2 is the oscillatory term with

respect to the spatial and temporal point of view in the solution. Now considering the

temporal term as equal to zero, only the time decay due to the expansional viscosity will

have a time effect on the wave. We also consider that the decay measurement point on the

wave, is the wave crest, i.e., the maximum value of speed of the solution as time passes. In

this maximum wave value, the term outside the parenthesis in equation 5.2 will be unity,

as a consequence the solution at this point will be of the following form:

u (x, t) = 1 + uae
ηt. (5.3)

Regarding the numerical solution, from the velocity fluctuation history the wave velocity

amplitude ua and the amplification factor η may be obtaind and compared with the initial

value of ua and the amplification factor obtained from the linear stability analysis. The curve
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Theoretical Numeric

0,00001 0,00001

0,00005 0,00005

0,0001 0,0001

0,0005 0,0005

0,001 0,0009999

0,005 0,004998

0,01 0,009993

0,05 0,0,04983

0,1 0,9934

0,2 0,1975

0,3 0,2948

0,4 0,3912

0,5 0,4869

Table 5.1: Theoretical and numerical comparison of the initial wave amplitude ua.

fitting was obtained with the least squares method [124]. The flow conditions considered for

this validation case were of rM = 1, 05, Ψ = 1, 0, β = 1, 0, γ = 1, 4, Reκ = 0, 5 e k = 2. The

simulation physical time interval was of t = 1, enough to obtain an asymptotic condition at

the end of the simulated physical time. The theoretical values for the amplification factor

were of η1 = −0.41 and η2 = −0.41, resulting in an effective solution of η = −0.82 by the

linear combination of the two solutions to be compared with the numerical results.

Several values of velocity and density for the initial wave amplitudes were tested and

the decay results compared with the linear stability analysis. Table 5.1 shows that the

regression values related to the initial wave amplitude agree really well with the actual

initial values for the numerical method. Figure 5.2 shows the amplification factor obtained

from the linear stability analysis, which is independent of the initial wave amplitude, and

the obtained values from the numerical simulations. An excellent agreement between both

methods can be observed for wave amplitude values smaller than 10−3. For larger values of

the wave amplitude, the damping effect of the expansional viscosity become smaller due to

the afore mentioned non linear effects of momentum accumulation on the wave crest and
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Figure 5.2: Linearity level of the theoretical and numerical amplification factor comparison.

trough as seen in figure 5.1. This momentum accumulation, non existent in the linear cases,

reduces the wave decay rate due to the expansional viscosity.

Regarding the physical parameters sensivity analysis, the most important ones related

to the expansional viscosity are assessed: the spatial wavenumber k, the relaxation time

non dimensional parameter Ψ, the expansional Reynolds number Reκ and the ratio of

propagation velocities rM . The initial value for the wave amplitudes for velocity and density

are ua = ρa = 10−2. Figure 5.3 shows the wave velocity amplitude decay sensivity for three

order of magnitude for the wavenumber k. Identical curves for the time decay for the three

cases can be observed. As expected, the expansional viscosity acts in a more intense way

for larger values of wavenumber, i.e., waves with higher frequency. For the values shown in

figure 5.3, an order of magnitude higher for the wavenumber results in a reduction of two

orders of magnitude on the wave amplitude time decay.

The next physical parameter to be assessed is Ψ, directly related to the flow charac-

teristic time and the fluid non equilibrium relaxation time, as shown in figure 5.4. The

amplitude of velocity does not show any effect due to the Ψ parameter, in all three cases
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Figure 5.3: Wavenumber k sensivity for three order of magnitude with the following pa-

rameters: Reκ = 0, 5, Ψ = 1, 0, β = 1, 0, γ = 1, 4 e rM = 1, 05.

the decay of the velocity amplitude remains the same. For the fluid density a slight effect

of the Ψ parameter becomes apparent, even though its effect is minimal, the difference

between the curves can be noted in figure 5.4. The most interesting effect of the Ψ param-

eter is the time evolution of the modulus of the expansional viscosity at the wave crest.

As Ψ is proportional with the flow characteristic time and inversely proportional to the

fluid relaxation time, the expansional viscosity response observed in the third graph from

figure 5.4 shows the behavior of these characteristic times. A large value for Ψ shows a fast

response of the expansional viscosity to obtain an asymptotic value. A small value of the

Ψ parameter shows a damped oscillation of the expansional viscosity through time until a

final value is obtained.

Figures 5.5 and 5.6 show the sensivities of the expansional Reynolds number and the

ratio of propagation speeds in and out of the thermodynamic equilibrium, respectively. The

sensivity obtained for these physical parameters on the velocity, density and expansional

viscosity wave amplitudes follows a fixed trend at their proposrtions. With the rise of

the expansional Reynolds number Reκ, the density and expasional viscosity values rises,

while at the wave crest the velocity gets smaller through time. The opposite effect was
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obtained for the ratio of propagation speeds rM , as rM increases the crest wave value for

the density and expansional viscosity modulus get smaller and larger values are obtained

for the velocity.

Figure 5.4: Ratio of flow and fluid relaxation characteristic times Ψ sensivity with the

following parameters: Reκ = 0, 5, k = 1, 0, β = 1, 0, γ = 1, 4 e rM = 1, 05.

155



Figure 5.5: Expansional Reynolds number Reκ sensivity with the following parameters:

Ψ = 1, 0, k = 1, 0, β = 1, 0, γ = 1, 4 e rM = 1, 05.
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Figure 5.6: Ratio of propagation speeds in and out of the thermodynamic equilibrium rM

sensivity with the following parameters: Ψ = 1, 0, k = 1, 0, β = 1, 0, γ = 1, 4 e Reκ = 0, 5.
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5.2 Rotor and Stator Cascades Interaction Numerical

Simulatons

5.2.1 Rotor and Stator Cascades Simulations in Subsonic Regime

The blade and vane geometries used in the numerical simulations, shown in figure 5.7,

corresponds to the profile sections at the tip of the rotor blades and stator vanes of the

Advanced Noise Control Fan (ANCF), a fan rig from the Aeroacoustics Branch of the NASA

Glenn Research Center.

Figure 5.7: Rotor blade (red) and stator vane (blue) geometries.

The extent of the computational domain with a regular Cartesian mesh is presented in

figure 5.8, showing a rotor cascade with 16 blades (red) and a stator cascade with 13 vanes

(blue), as well as the position of the far-field (black point) and near-field (green point)

probes, the horizontal inflow velocity U∞ (blue arrow) and the vertical blade velocity UB

(red arrow).

The characteristic length of the setup is the pitch of the blades cascade, LpB (0.2394 m),

so the dimension of the computational domain in the vertical direction is 16 LpB (3.8302

m) and the dimension in the horizontal direction is 13 LpB (3.1121 m). Since the Cartesian

grid has a resolution of 300 control volumes along the pitch of the blades cascade, the total

number of control volumes in the regular computational domain is 18,720,000. Adding the

control volumes in the stretched regions upstream and downstream of the regular region,

the total number of control volumes in the domain is 20,160,000. Figure 5.9 gives an idea

of the resolution levels of the Cartesian and surface grids at the leading edge of the blade.

In order to avoid numerical oscillations and wave reflextions, there are 154 control
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Figure 5.8: Computational domain of the regular cartesian mesh.

volumes on the inlet and outlet mesh boundaries. The first control volume on the non

regular region has the same horizontal length as its neighbor in the regular region. The

length of the second control volume is 1.05 times of its neighbor closer to the regular region

and so on until the last control volume of the non regular part of the computational mesh.

The horizontal length of the last control volumes is so larger than the length of the control

volumes of the regular region, that any acoustic wave or any other traveling gradient are

damped by the lack of resultion of the non-regular mesh and any disturbance will not reflect

back to the regular region because the physical time needed is larger than the simulated

physical time.

At the left and right ends of the computational mesh, the values from conservative vari-

ables vector U of the mesh edge control volumes are repeated on two ghost control volumes

neighboring these control volumes. Due to the large volume of these control volumes when

compared to the regular mesh region control volumes, the prescribed reference values are

maintained through all the simulation time. At the upper and lower control volumes, a

cyclic boundary condition is applied. By using two ghost control volumes at the lower and
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upper edges of the computational mesh, the values of the conservative variables vector U

are repeated from their opposite side counterparts to ensure the cyclic condition.

Figure 5.9: Grid resolution at the leading edge of the blade.

The flow conditions used for all cases are very close to the operational conditions of

the ANCF rig. The horizontal inflow velocity is U∞ = 41.39 m/s, the inflow pressure and

temperature are p∞ = 101, 300 Pa and T∞ = 300 K, respectively, resulting in an inflow

Mach number M∞ = 0.12. For a shaft angular velocity of 30 rps and a tip radius of 24 in,

the equivalent vertical velocity of the blade cascade is UB = 114.9 m/s with MB = 0.33,

measured from an inertial frame of reference that is fixed to the stator vanes.

The numerical time step ∆t is given by [23]::

CFL =
U∞ + c∞(

∆x
∆t

) . (5.4)

In the cascade simulation cases of this work, the value for the CFL condition is approxi-

mately 0.75. In all cases enough iterations were run to obtain a complete developed flow,

i.e., the perturbations reached all the regular region of the computational mesh and the

modal responses are already cyclic. After this state is reached, at least one million of

iterations are run for the pressure probes measurement.

In flow visualization figures, the visualization variable βT is used. It is based on the

magnitude of the temperature gradient as [108]:

βT = |∇T |1/10. (5.5)

This variable is used since it can simultaneously show acoustics waves, that are characteristic

of acoustic fields, and vorticity regions, that are characteristic of aerodynamic fields.
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For the Fourier transform of the pressure probes time history, the presented scale of the

signal strenght is the root mean square (RMS). Defined as:

p′rms =

√
1

t2 − t1

∫ t2

t1

[p′ (t)]2 dt, (5.6)

where the RMS calculation is done over the fluctuation of the pressure signal p′ (t) in the

integrating time interval t2 − t1.

5.2.1.1 Subsonic Rotor Only

The rotor alone is a very good test of the moving-body high-order immersed boundary

method, since all the cascade blades are moving with the vertical velocity UB = 114.9 m/s,

as shown in figure 5.10. From the acoustics point of view, using the Tyler-Sofrin selection

rule (equation 2.126) for the rotor cascade (V = 0) yields m = h B = 16 h, i.e., all the

generated modes are hamonics of the number of blades in the cascade.

Solving equation 2.130 for the stator cascade yields σm1,c = 5.32h and since for cascades

σm1 = m (equation 2.142), all the modes generated by the rotor are cut-off since

σm1,c = 5, 32h < 16 h = m = σm1, for h = 1, 2, 3, 4, ...... (5.7)

The spectra of the root mean square (RMS) value of the pressure fluctuation is shown in

figure 5.11, where the green curve corresponds to the spectrum for the near-field static probe

and the black curve to the spectrum for the far-field static probe. In this figure is possible

to see, for the near-field static probe, a very strong tonal peak for the first harmonic of the

blade-passing frequency, generated by the moving blades associated to the mode m = 16

but no sign of propagation is observed into the far-field probe. These results show that the

moving-body immersed boundary methodology is capable of generating the correct rotor

modes, but they are cut-off as predicted by the linear propagation theory, showing that as

in the previous case, no spurious modes are generated and/or propagated.

Figure 5.10 also shows a vorticity wake for each rotor blade. These wakes are not spuri-

ous, since they are generated by the pressure-gradient source term of the two-dimensional

vorticity equation (equation IV.10 from appendix IV). It is worth noting that there are no

signs of vorticity generation in the blades surfaces, since the boundary conditions for the
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Figure 5.10: Visualization of the instantaneous aeroacoustic field generated by the rotor

cascade.

Euler equation specify that (∇p)n and (∇ρ)n are both zero in the normal direction of the

surface, so the only non-zero gradients are those in tangencial direction, (∇p)t and (∇ρ)t

and since they are aligned, the pressure-source term in the vorticity equation is zero over

the blades surface.
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Figure 5.11: Spectra of the RMS value of the pressure fluctuation for the near-field (blue)

and far-field (red) static probes.

5.2.1.2 Subsonic Rotor and Stator Interaction

Unlike the previous case where all the generated modes are cut-off, in this case there

are cut-on modes, as shown by the numerical results presented in figure 5.12 and by the

theoretical results present in table 5.2. In this table the critical values of σm1 are calculated

up to the fourth harmonic using equation 2.130. The cut-on modes are defined by initially

using the Tyler-Sofrin selection rule, with B = 16 and V = 13, to assess which modes are

generated. Then using the thin annular duct approximation for cascades (σm1 = m), the

cut-on modes are defined as the ones that comply with |m| < σm1,c. Table 5.2 also shows

the modal wave-front angles, θ.

It is important to note that the relation (m/h) in equation 2.141 defines families of

cut-on modes that have the same wave-front angle. From the above table it is possible to

see that θ = 59.44o for the following mode/harmonic relations:

m

h
=

3

1
=

6

2
=

9

3
=

12

4
= 3.0. (5.8)
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Figure 5.12: Visualization of the instantaneous aeroacoustic field βT generated by the in-

teraction of the rotor and stator cascades.

This family is represented in Fig. 5.12 by the green line that was manually drawn parallel

to the numerical wave-fronts associated with the above modes. The measured numerical

wave-front angle is θn = 57.81o and this value compares very well with the theoretical value

given by table 5.2.

Another family is associated with θ = −36.71o, where the harmonic/mode relation is
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h 1 2 3 4

fbp,h 480 Hz 960 Hz 1440 Hz 1920 Hz

σm1,c 5,32 10,65 15,98 21,31

m +3 -7, +6 -4, +9 -14, -1, +12

θ 59.44° -36.71°, 59.44° -77.14°, 59.44° -36.71°, -82.39°, 59.44°

Table 5.2: Theoretical cut-on modes and and wave-front angles from the first to the fourth

harmonic.

given by:
m

h
=
−7

2
=
−14

4
= −3.5. (5.9)

This family is represented in figure 5.12 by the blue line drawn parallel to the numerical

wave-fronts. The measured numerical wave-front angle is θn = −33.20o and this value also

compares well with the theoretical value. It is important to note that the previous family,

m/h = 3.0, is composed by 4 members and the family m/h = −3.5 is composed for only 2

members, so it is natural that the former is more well defined than the later in figure 5.12.

The last visible family in figure 5.12 has only one member and it is associated with

θ = −77.14o, with a harmonic/mode relation:

m

h
=
−4

3
= −1.3333. (5.10)

This family is represented in Fig. 5.12 by the red line. The measured numerical wave-front

angle is θn = −80.82o and this value compares well with the theoretical value.

Another alternative to identify the numerical cut-on modes is to perform a mode de-

composition using the Doppler effect by taking pressure over time measurements with a

far-field probe that is moving at a selected vertical speed, Ump, that is usually a fraction

of the rotor cascade speed, UB. Using this approach, the modal frequency shift around a

given harmonic is given by Eq. 2.145.

Figure 5.13 show the spectra of the RMS value of the pressure fluctuation for two-

different far-field probes: a static (black spectrum) and a moving (blue spectrum) probe.

The later is moving with a vertical velocity Ump = 57.45 m/s, yielding δ = UB/Ump = 0.5.

In this figure all the spectrum peaks associated with the cut-on modes presented in table

5.2 are identified by the shift in their frequency and, also, all the peaks associated to
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the harmonics are identified. Although the harmonic frequencies slightly differ from the

theoretical ones, there is a very good agreement in the modal frequency shift around the

first, second and fourth harmonics, and even though the third harmonic is not centered

around a single frequency, the tonal shift of its modes is approximately correct.

The numerical results present in figure 5.13 compares very well with the theoretical

predictions presented in table 5.2 for the cut-on modes and associated harmonics, showing

that the moving-body immersed boundary methodology used in this work is capable of

predicting the generation and propagation of acoustics modes due to the subsonic rotor-

stator interaction in two-dimensional cascades.

From an aerodynamic point of view, it is worth noting that the massive vorticity region

around the stator is due to the pressure source term in the vorticity equation. This strong

source is associated to the actual movement of the rotor cascade in the computational

domain, generating a very strong and unsteady aerodynamic loading over the stator cascade.

Figure 5.13: Spectra of the RMS value of the pressure fluctuations for a static far-field

probe (red) and a moving far-field probe (blue) showing the mode decomposition around

each harmonic.
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5.2.2 Rotor and Stator Cascades Simulations in Transonic Regime

The rotor blades and stator vanes geometries used in the transonic cascade interaction

case is the same used in the subsonic cascade interaction case, following the same proportion

for the velocities triangle and keeping geometric similarity. The inlet pressure of the flow

is p∞ = 101, 300 Pa and the inlet temperature is T∞ = 300 K. The rotor blades vertical

velocity is UB = 312.3 m/s with a Mach number of MB = 0.9, the inlet undisturbed

horizontal velocity is U∞ = 112.88 m/s with a relative Mach number of M∞ = 0.32. The

corresponding shaft rotation frequency is 81.5 complete turns per second on the equivalent

radius of 24 inches (0.6096 m). The characteristic length is the same as the subsonic case.

Figure 5.14: Computational domain with a regular Cartesian mesh.

The computational domain was increased after the subsonic case, now with 21 charac-

teristic lengths in the horizontal direction in the regular region of the computational mesh

and with the same 16 characteristic lengths in the vertical direction. The same mesh reso-

lution is used here, with 300 control volumes through each characteristic length, resulting

in 30,240,000 control volumes in the regular cartesian region and 31,780,400 total of control
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volumes including the stretch region for numerical damping of the reflecting acoustic waves.

Figure 5.14 shows the pressure probes positioning through the computational domain. The

computational domain with stretched control volumes is exactly the same as the subsonic

cases.

5.2.2.1 Transonic Rotor Only

As seen in the subsonic case, the rotor alone is truly a case to validate the analytical

theory regarding propagating modes. The case shown in figure 5.15 shows no acoustic modal

structure being propagated at all.According to equation 2.130, the critical eigenvalue for

each harmonic is σm1,c = 15.2217h and the Tyler-Sofrin [69] modes generated by the blades

arem = 16h. When compared to the critical eigenvalue all the blade only modes are cut-off,

showing exact phenomenon agreement between the analytical and numerical results.

Figure 5.15: Visualization of the instantaneous aeroacoustic field generated by the transonic

rotor cascade using the variable βT .

The near field shows the shock waves at the pressure and suction sides of the rotor where
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it interacts with the wake produced by the neighbor preceding blade. Rotor self noise is

produced on the trailing edge of each blade where it is propagated to the farfield.

According to the Tyler-Sofrin rule, the only acoustic modes produced by this case are

the rotor only ones m = 16h and the harmonics Figure 5.16 shows the nearfield pressure

fluctuations due to the rotor blades passage and the frequency shift of the moving probe at

each harmonic shows that there are only the rotor blade generated modes. The blade only

generated modes are made mostly of the shock wave pressure jump discontinuity, as seen

by the high values of RMS of pressure fluctuation in figure 5.17.

Figure 5.16: Spectra of the RMS value of the pressure fluctuations for the static nearfield

probe 1 (blue) and the moving nearfield probe 1 (red) showing the decomposition of the

nonlinear modes around each harmonic.

As seen in chapter 2, rotor only generated modes may propagate only if their phase

speed, i.e. the rotor vertical speed, is approximately above the speed of sound. Figure 5.17

shows that the even though the RMS of pressure fluctuation amplitude is well above the

usual acoustic ones due to the shock wave, there is a strong decay of the RMS of pressure

fluctuations, implying that the generated modes are cut-off.
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Figure 5.17: Nearfield probe pressure RMS signal decay due to the shock-waves evanescence.

5.2.2.2 Transonic Rotor and Stator Interaction

In order to correctly evaluate all the phenomena found on the transonic rotor-stator

interaction case, we must first validate the case aeroacoustically. The mode generation

and propagation theory will be used to assess the validity of the numerical results for the

farfield, and when validated, the interstage will be analyzed from the viewpoint as a source

of sound.

The rotor stator interaction case presents cut-on modes, unlike the rotor only cases,

where though generated, the modes do not propagate. By combining the mode selection

rule, the critical eigenvalue equation and the thin annular duct approximation, where σm1 =

m, one is able to know a priori all the modes propagated to the farfield. For the transonic

blade with stator interaction case, the cut-on modes are described in table 5.3.

By using the Doppler effect to decompose the modes at each harmonic and comparing

with table 5.3, a form of validation can be obtained for the farfield analysis. Figure 5.18

shows the mode decomposition, where the moving probe may decompose the modes that

make a given harmonic. The probe velocity is a tenth of the rotor vertical velocity such that

it is not fast enough for a mode of a harmonic will not overlap a mode from a neighboring
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h 1 2 3 4

fbp,h (Hz) 1304 2068 3912 5216

σm1,c 15,2217 30,4434 45,6651 60,8868

m+ +3 +6, +19 +9, +22, +35 +12, +25, +38, +51

m− -10 -20, -7 -43, -30, -17, -4 -53, -40, -27, -14, -1

Table 5.3: Theoretical cut-on modes from the first to the fourth harmonic for the transonic

rotor and stator cascade interaction case.

one.

Figure 5.18: Pressure spectra of the farfield moving probe and the static probe, showing

the modal decompostions up to the fourth harmonic.

Correct mode generation and propagation can be observed up to the fourth harmonic

as shown in figure 5.18. Excellent results appear in the first and third harmonics with all

predicted modes amplitudes well above the broadband content. In the second and fourth,

some modes are on the level of the broadband with a slight prominence of their tone. It

is worth noting that in the first and second harmonics, the modes amplitudes are higher

than their respective harmonic, it happens because from the definition of the RMS pressure

fluctuation, the modulus of the signal is used, thus not conserving the amplitude composing
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a given harmonic into its modes.

The second methodology used to validate the acoustic modal behavior is the angle mea-

surement of the modes wavefront. The angles of the modes can be calculated theoretically

and compared with the measured ones that appears in the βT visualization from figure 5.19.

Unfortunately only the modes of the modes families m = +3h and m = −10h appeared

in figure 5.19 due to their high amplitude when compared to the other modes, nonetheless

the validation can be carried out. The measured modes angles show outstanding agreement

with the theoretical ones, the error is 0.07 degrees for the m = −10h modes family and 0.02

degrees for the m = +3h modes family.

Figure 5.19: βT flowfield variable visualization with the modal angle measurement of the

propagating wave fronts.

For the farfield mode propagation analysis the modes that were propagated are the

correct ones according to the theory, making the sound source one of the correct solutions

to tonal sound source of transonic rotor-stator interaction. Now the interstage region can

be correctly assessed since it was validated as a correct sound source.

The βT field of the numerical solution for the rotor-stator interaction case shown in
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figure 5.19 depicts a very nonlinear and chaotic flow on the nearfield region; shock waves on

both suction and pressure sides of the rotor interacting with the wake of the preceding rotor

blade and self-noise being produced likewise in the rotor only case. The wakes produced

by the rotor cascade and the moving shock waves interacts with the stator vanes cascade

that keeps reflecting on the neighbor vanes. Due to the supersonic flow velocity before a

shock wave, there is a sound barrier at the opposite flow direction, as can be seen in the

rotor trailing edge region, creating a sound propagating channel that resembles a bat wing.

Strong vorticity structures are convected with the flow at the downstream region.

Figure 5.20 shows the moving probes located at the rotor-stator interstage and at the

nearfield upstream rotor region. Mode decomposition for the interstage probe shows that

all the theoretical probes plus the rotor only shock wave modes that decay when propagated

as shown in figure 5.18 and some cut-off modes that are generated as well according to the

Tyler-Sofrin rule, are mainly negative valued (interaction) modes. The upstream nearfield

probe shows that there is a silence region for most of the negative valued modes on the

upstream nearfield region. After this silence region all the predicted cut-on modes appear

and propagate through the farfield.

An important fact here is that even with a highly nonlinear and chaotic flow region at

the interstage, the modes are generated correctly in a nonlinear regime, where the RMS

amplitudes are at least an order of magnitude higher than of the modes propagated in

farfield region. For a correct rotor-stator interaction tonal noise, it is not necessary that the

terms regarding the flow in the interaction region must be in the linear range. Tonal modal

response may exist in a source where shock-waves and high amplitude pressure fluctuations

are part of the solution, as can be seen in figure 5.21. We therefore may classify the source

region as nonlinear and the propagation region after this silence region as linear, considering

mode amplitudes. The modes generated by the transonic rotor-stator interaction are even

better defined than the ones found in the subsonic rotor-stator interaction.
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Figure 5.20: Spectra of the RMS value of the pressure fluctuations for the moving interstage

probe (red) and the moving nearfield probe 1 (blue) showing the mode decomposition

around each harmonic, being all the identifiable modes given by the Tyler-Sofrin rule. The

light-blue regions delimited by dashed lines are the cut-on regions around each harmonic.
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Figure 5.21: Linear, transition and nonlinear regions of the computational domain. The

dominant linear modes m=-10 and m=+3, associated to the first harmonic, are easily iden-

tified in the linear region. In the transition region it is possible to observe the superposition

phenomena of nonlinear waves that will result in the linear modes. Transonic shocks and

shock-wake interactions are observed in the nonlinear region.
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5.2.3 Rotor and Stator Cascade Simulations in

Supersonic Regime

Since the buzz-saw noise can be regarded as a two dimensional phenomenon through

the duct, i.e. there are no effects in the radial direction, its flow can be analyzed in the

region near the duct wall [79]. The approach used in this work is the two-dimensional rotor

blades and stator vanes cascades flow simulation then remains valid.

Figure 5.22: Computational domain of regular control volumes showing the rotor blades

and stator vanes cascades positioning, the pressure probes and circumferential measuring

locations.

The computational domain for the supersonic cases is exactly the same used for the

transonic cases. The flow conditions used in all cases are the following: the horizontal flow

velocity is U∞ = 137.97 m/s, the rotor blades upward velocity is UB = 381.7 m/s, which

gives a blade passing frequency of 1594 Hz. The flow inlet pressure is of p∞ = 101, 300 Pa

and the flow inlet temperature is T∞ = 300 K. The resulting Mach numbers are M∞ =

0.3972 and MB = 1.1. All these flow conditions are from an inertial reference frame fixed
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at the stator vanes cascade.

In the vertical (circumferential) direction there are 16 units and 21 on the horizontal

(axial) direction. The probes (black dots) and circumferential measurements (colored lines)

are shown in figure 5.22, they are at 1, 2, 9 and 19 units of distance in the horizontal

direction from the rotor blades cascade. The cascades configuration used in the numerical

simulations are of 16 rotor blades and 13 stator vanes and the origin of the coordinate

system is at mid chord of the rotor blades cascade.

5.2.3.1 Supersonic Rotor Alone in Nominal Conditions

Figure 5.23: The βT flow visualization of the supersonic nominal rotor blade cascade alone

configuration.

The flow visualization in a developed flow state is shown in figure 5.23. At the flow

outlet there is a region of interaction between the rotor blades vorticity, generated by

compressibility effects, explained in appendix IV, and the system of rotor locked shock-

waves. At the inlet direction there is a system of shock-waves that moves along with the
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rotor blades cascade and that decays rapidly at the horizontal direction.

The first validation of the rotor blades cascade at supersonic condition is the pressure

probes analysis. No signs of blade passing frequency decomposition into rotor shaft turning

frequency may appear in the pressure probes. Indeed it does not happen as shown in the

spectra of the four pressure probes in figure 5.24. The tonal noise is distributed solely on

the blade passing frequencies, concluding that in a time sense the pressure distribution and

shock-wave propagation at each rotor blade is perfectly even.

Figure 5.24: Spectra up to the fourth harmonic of pressure probes from the supersonic

nominal rotor blades cascade only case.

The second validation for the moving immersed boundary methodology for supersonic

cascades can be regarded as the spatial correctness of the flow. There can be absolutely

no flow distortions, nor differences between the flow pattern at each rotor blade in the

system of shock-waves if there are no rotor blade-to-blade geometrical differences. The

pressure coefficients extracted from the circumferential stations 1 to 4 are shown in figure

5.25. The pressure coefficient distribution for the circumferential station 1 shows strong

sawtooth pressure discontinuities due to the shock-waves passage, where each pressure pro-

file is exactly the same of its neighbors. This trend remains the same for the whole inlet

flow-field until the fourth circumferential station, where decay is present but the pressure

profile remains the same for all the blade-to-blade shock-waves.
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Figure 5.25: Pressure coefficient profiles of the circumferential stations for the supersonic

nominal rotor blades cascade only configuration.

The last validation of this case is the sawtooth pattern decay along the axial direction.

According to equation 2.147 there is a pressure decay of the sawtooth wave pattern along

the duct axis proportional to 1/x at large distances from the rotor. The pressure coefficient

distribution along the horizontal direction from the rotor blades cascade towards the inlet

is shown in figure 5.26 with the theoretical scaled decay. There is an excellent agreement

of the sawtooth wave amplitude between the numerical result and the analytical theory, up

to the end of the regular mesh region. The shape of the sawtooth wave also shows good

agreement with the theoretical shape.

With a qualitative and quantitative validation of the immersed boundary methodology,

concerning the behavior of the flow field with rotor blades at supersonic speeds, more

realistic cases are verified and their more complex physics is assessed with the numerical

simulations. The first one is the case where the rotor blades are still identical and the stator

vanes cascade interacting with the rotor blades cascade is added. In the second case there

are small geometrical differences between the rotor blades and finally the case where the

rotor blades cascade with geometrical differences interacts with the stator vanes cascade.
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Figure 5.26: Pressure coefficient decay of the sawtooth pattern in the x direction for the

supersonic nominal rotor blades only configuration.

5.2.3.2 Supersonic Rotor and Stator Interaction in Nominal Conditions

The following case presented here is the interaction between the rotor blades and stator

vanes cascade. Comparing figures 5.23 and 5.27 the general characteristics of the flow

remains almost the same but with slight differences. The system of shock-waves generated

by the rotor blades supersonic tangential speed still has its perfectly ordered spacing and

decay. The general shape of the shock-waves near the rotor blades also remains the same.

Some differences now arise from the stator vanes and rotor blades interaction. The wake of

the rotor blades interact with the stator vanes similar to the subsonic and transonic flow

conditions. Strong shock-wave reflections between the stator vanes are also present in the

flow outlet region. Between the propagating shock-waves at the inlet direction, there are

signs of the effects of rotor blades and stator vanes interaction, where some modal response

perpendicular to the shock-waves can be observed.

Considering the spectra of the time pressure probes from the first validation case with

the rotor blades and stator vanes cascades case in figures 5.24 and 5.28 it can be seen that

there is not any differences in the probes signal. The shock-waves intensity remains almost
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the same between both cases and the tonal blade passing frequency remains the only content

on the signal.

By comparing the pressure coefficient extracted from the circumferential stations 1 to

4 of the nominal rotor blades cascade alone and the case with the stator vanes cascade in

figure 5.29, some slight differences occur between cases. Although not seen in the spectra of

the time pressure probes, there is some small amplitude variations between each sawtooth

wave. On stations at x = −9 and x = −19 there is some degeneration of the sawtooth

wave shape, caused by the rotor blades and stator vanes interaction. The influence of the

stator vanes on the sawtooth waves does not changes its amplitude, nor the signal phase,

but adds some wave-like content to the signal. While the stator vanes cascade presence

causes some degeneration of the expansion waves between the shock-waves, its influence is

not sufficient to produce disturbances on the shock-waves signature to cause multiple pure

tone noise and its related phenomena such as shock coalescence.

Figure 5.27: The βT visualization of the supersonic nominal rotor blades and stator vanes

cascades configuration.

Figure 5.30 shows the comparison between the theoretical and numerical decay of the
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Figure 5.28: Spectra up to the fourth harmonic of pressure probes from the supersonic

nominal rotor blades and stator vanes cascades case.

Figure 5.29: Pressure coefficient profiles of the circumferential stations for the supersonic

nominal rotor blades and stator vanes cascades configuration.

sawtooth wave amplitude in the axial direction. It is seen that there is still an excellent

agreement between the numerical and theoretical results. The influence of the stator vanes

cascade may be noted on the slight degeneration of the sawtooth waves shape, specially

when the sawtooth wave achieves a slow decrease on its amplitude around x = −5.0.
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Figure 5.30: Pressure coefficient decay of the sawtooth pattern in the x direction for the

supersonic nominal rotor blades and stator vanes cascades configuration.

5.2.3.3 Supersonic Rotor Alone in Realistic Conditions

In the rotor blades cascades with nominal conditions considered in previous sections,

the generated and propagated sawtooth pressure field from the supersonic rotor blades

cascade is identically repeated from blade to blade, with the consequence of having a fixed

tonal frequency related to each passing of the rotor blades on the generated noise. We now

consider the realistic case where due to extended use and manufacturing characteristics there

are some geometrical non-uniformities at blade-to-blade on the rotor row. These differences

may affect the stagger angle, camber, thickness and blade spacing. Theoretical parametric

studies [79] were carried out, where the effect of blade-to-blade changes in stagger angle

and pitch distance within manufacturing tolerances was assessed. He found out that the

variation of stagger angle was the most significant geometric non-uniformity to induce the

MPT noise. A variation of ±0.75 degrees more or less for the stagger angle error was

sufficient to produce well noted MPT noise in the pressure spectrum and changes in spatial

pressure profiles as well.

The modification on the stagger angles for each rotor blade is shown in table 5.4. The
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Blade Number 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Stagger Variation - + + - + - - - + + + - + - + -

Table 5.4: Randomly generated stagger error distribution for the rotor blades cascade in

realistic conditions.

plus sign means that a value of 0.75 degrees is added to the nominal stagger angle and the

negative sign means that 0.75 degrees is subtracted from the nominal stagger angle. The

distribution is randomly generated and evenly distributed between positive and negative

values.

Figure 5.31: The βT visualization of the supersonic realistic rotor blades cascade configu-

ration.

The first result concerning the effects of stagger error distribution between rotor blades

is shown in figure 5.31. Visually, near the rotor blades in the upstream direction there is

not much influence of the imposed stagger error. As the generated shock-waves propagate

through the flow in the inlet direction, the difference of the shock-waves of each rotor blade

grows until they encounter and merge with each other, resulting in a single shock-wave.
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This trend continues to occur until the end of the computational regular region, depicting

the buzz-saw effect on the flow field.

Figure 5.32: Spectra for the first harmonic of pressure probes from the rotor blades cascade

case showing the multiple tone noise generation from shaft order 1 to 16, being the later

equal to the blade passing frequency.

Figure 5.32 shows the spectra of the pressure probes located at the circumferential

stations. Multiple pure tone harmonics are shown for the first blade passing frequency

harmonic. The correct number of tones is present in the probes of all axial stations, where

it is given by the number of the rotor blades. For the pressure probes located at the first

two circumferential stations (x = −1.0 and x − 2.0), the strongest tone is the one related

to the blade passing frequency. In station at x = −9.0 the first two shaft order harmonics

begin to prevail over the blade passing frequency and this trend is observed at station

x = −19.0 as well. This is due to the uniformity of strength and spacing of the shock-

waves close to the rotor, but as the axial distance grows, they become more irregular. This

energy spectrum exchange is also observed in experimental observations [122, 123] and from

theoretical results [79].

Although not seen in the βT visualization of figure 5.31, the non-uniform pressure profiles

of the circumferential stations show in figure 5.33 that at an early stage, at x = −1.0

and x = −2.0, there is already an influence of the stagger error distribution through the
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Figure 5.33: Numerical and theoretical pressure coefficient profiles of the circumferential

stations for the supersonic realistic rotor blades cascade configuration.

rotor blades. For the other pressure coefficient circumferential stations, a reduction of the

sawtooth waves amplitude is still observed similar to the previous cases. But as the axial

distance increases at x = −9.0 and x = −19.0, due to different propagation velocities

of different sawtooth profiles, the stronger shock-waves catches up and merges with the

weaker ones, reducing the number of shock-waves. Comparing the numerical results with

the shock-waves information provided by the analytical method, it is easy to see a strong

concordance by these two methods. The initial condition of the analytical method is the

information provided by the shock characteristics at x = −1, 0 of the numerical results.

The first result of the shock-wave propagation and comparison is shown at x = −2.0, where

there is a noticeable amplitude decay of the shock-waves and the coalescence did not occur

yet. At a typical rotor to nacelle lip distance at x = −9.0 the two methods still have strong

concordance, where in a practical sense two shock-waves coalescence already have or are to

occur at a very near axial position. Even though it is not in the equivalent nacelle region

anymore, at the axial distance of x = −19.0, located at the end of the regular mesh region

of the numerical simulation, the two methods still show strong coherence by only missing

the exact coalescence of two shock-waves, validating with strong concordance the numerical

method.
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5.2.3.4 Supersonic Rotor and Stator Interaction in Realistic Conditions

Now we consider the case with the most realistic configuration regarding supersonic

rotor blades and stator vanes cascades in this work. The rotor blades cascade has the same

stagger angle error on blade-to-blade distribution used in the previous rotor blades cascade

MPT noise case. The stator vanes cascade has a perfectly positioned configuration; there

is no stagger angle errors nor any stator-to-stator vanes difference. The first result of this

configuration is the βT flow visualization shown in figure 5.34. The system of shock-waves

produced by the supersonic passage of the rotor blades is very similar to the one presented in

figure 5.31 of the previous case. The βT texture of the inlet region between the shock-waves

is similar to the one found in figure 5.27 from the rotor and stator interaction case without

the rotor cascade stagger angle errors. This is due to the interaction between the rotor and

stator cascades. Even though the flow is primarily supersonic, there is a subsonic region

between the rotor leading edge and the shock-wave where all the rotor and stator interaction

propagates to the inlet region. Due to the shock-wave shielding these interactions cannot

be properly assessed by the small perturbations linear theory and a relation between the

shock-waves and the interaction waves, if possible, has yet to be developed.

The spectra of the static pressure probes located at the circumferential stations defined

in figure 5.22 are shown in figure 5.35. The same shaft order tones development from the

previous case can be observed, where no strong differences in the tones distribution can be

seen. The rotor and stator cascade interaction noise observed in figure 5.34 is not strong

enough to have any influence on the pressure probes spectra of all the axial positions.

The circumferential pressure coefficient distribution for various axial stations is shown

in figure 5.36. The rotor-to-rotor blade stagger angle error effect can also be seen in the

nearer pressure distribution at x = −1.0, the location of initial conditions for the analytical

method. The next circumferential station at x = −2.0 shows a similar behavior as the

MPT case without the stator vanes cascade. The analytical method agrees really well with

the numerical results for the first two axial measurements. For the last two circumferential

measurementes, at x = −9.0 and at x = −19.0, the behavior observed in the previous mea-

surements positions is no more. The analytical method does not agree with the numerical

results as in the rotor only MPT case. The rotor and stator interaction disturbances affect
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Figure 5.34: The βT visualization of the supersonic realistic rotor blades and stator vanes

cascades configuration.

the expansion waves located between the propagating shock-waves. The assumption of lin-

ear shaped expansion waves cannot be considered for the last two circumferential stations

and therefore the considerations made for the analytical method are not adequate anymore.

The shock-waves decay and their propagation velocities cannot be exactly predicted but the

pressure distribution and shock-waves signature can still be qualitatively represented by the

analytical method.

5.3 Expansional Viscosity Test in Rotor and Stator Su-

personic Interaction

The last section of results is about the merger of the two lines of research developed

in this work. Even though it is at an incipient stage, the expansional viscosity model

retains application possibilities that makes viable a first study of its effects according to
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Figure 5.35: Spectra for the first harmonic of pressure probes from the supersonic rotor

blades and stator vanes cascades case showing the multiple tone noise generation from

shaft order 1 to 16, being the later equal to the blade passing frequency.

Figure 5.36: Pressure coefficient profiles of the circumferential stations for the supersonic

realistic rotor blades and stator vanes cascades configuration.

the identified physical parameters. The chosen test case was the supersonic rotor and

stator cascade interaction with the rotor cascades in nominal conditions. The shock-waves

interactions on the cascade region and its later propagation in the inlet direction is a truly
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remarkable case for a first study of the expansional viscosity in realistic conditions.

Figure 5.37: Comparison of the decay rate of the shock-waves intensity for the supersonic

rotor and stator cascade interaction for several expansional viscosity parameter cases and

a base case.

Identical operating conditions were used for the expansional viscosity cases. Three orders

of magnitude of the parameter kexp were simulated: 10−4, 10−3 and 10−2. The result for

comparison is the shockwave decay through the axial distance towards the flow inlet. The

number of completed iterations in each case was approximately the same as the base case;

one million of iterations after the acoustic perturbations reached the inlet region of the

regular mesh.

Figure 5.37 shows the horizontal distribution of the pressure coefficient for all cases.

The base case result is repeated here for convenience. In the first value of kexp = 10−4 the

expansional viscosity effects are of little evidence, the phase distribution of the shock-waves

was not yet modified, only some attenuation on its amplitude can be perceived. For the

case with kexp = 10−3 the expansional viscosity influence becomes more apparent. The

shock-waves amplitudes have even more attenuation and some dispersive effects can also
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be observed. For the fourth case, with kexp = 10−2, the effects of the expansional viscosity

becomes more aggressive, its influence affects all the shock-wave system. With a strong

dispersion of the shock-waves, as seen in the realistic cases, the shock-waves coalescence

occurs through all the regular computational domain. The pressure field does not follows

anymore the decay trend presented by the theoretical analysis, the base case and the other

cases with expansional viscosity.

Figure 5.38 shows the βT variable visualization of the base case and the cases with

application of the expansional viscosity model. The figure is composed as follows: base case

at the top left position, expansional viscosity case with kexp = 10−4 at the top right position,

kexp = 10−3 at the inferior left position and kexp = 10−2 at the inferior right position. In

the first case of expansional viscosity (top right), there can be seen that visually the shock-

waves distribution is almost the same as the base case, where the acoustic response due to

the rotor and stator cascade interaction were somewhat attenuated. On the second case

(inferior left), the shock-wave attenuation became more intense as they propagated towards

the inlet region. The interaction response between the shock-waves was almost entirely

eliminated in this case. On the last case (inferior right), as observed before on the axial

distribution of the pressure coefficient (figure 5.37), the shock-wave attenuation was intense

through all the propagation region. The shock-waves coalescence begins to take place very

near the rotor blades cascade, where the regularity of the shock-waves among the rotor

blades is totally affected, resulting in lesser waves at that region and a unique wave far

from the rotor cascade.

Another result to be noted is directly related to the vorticity structures emitted by the

trailing edge of the rotor blades that will interact with the stator vanes cascade, as shown

in figure 5.39. The expansional viscosity did not have any effect on the vortex wake, only on

the flow compressibility. Even though the vortex wake ordering was modified by the shock-

waves interaction of varying strength, depending on the case, the characteristic length of

these vorticity structures is the same for all four cases.
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

Modifications were proposed in almost all the numerical scheme of the moving immersed

boundary applied to the finite volume formulation. The first modification was on the control

volume value face numerical interpolation. The old interpolation scheme was proposed by

Ducros, where a centered numerical stencil of four control volumes was used to interpolate

the face value from the mean variables of these control volumes, resulting in an explicit

interpolation. By using a spectral analysis of the Fourier transform from the space to the

wavenumber domain, a general form of the centered interpolation was obtained. In implicit

or explicit form, it was possible to predict over a linear range the behavior of the face

reconstruction of the control volume for the Ducros scheme. It was found that at a certain

wavenumber range, there was amplification of the signal when compared with the exact

value. By defining the interpolation coefficients and using the Taylor series to formally

obtain the maximum precision order with the same four control volumes centered numeric

stencil, a non amplifying (in a spectral sense) interpolation scheme was proposed. A lower

asymptotic behavior around the unity value of the transfer function of the exact value was

obtained. Besides that, according with numerical considerations found in the literature,

for the required definition of a good wave description for a second order numerical scheme,

it was possible to predict the discretization error of a propagating wave for the formal

fourth order proposed scheme. This error was at least one order of magnitude smaller
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when compared with the second order numerical base scheme, justifying the use of the

proposed numerical scheme and the computational mesh of the rotor and stator cascade

interaction cases of this work. The core of the immersed boundary method relies upon

direct imposition of the boundary conditions on the control volumes in computational cases

that present highly numerically unstable flow elements (steep physical gradients). The

immersed boundary method needs stabilization schemes that makes the numerical solution

stable without affecting the physical properties of the flow. Initially the artificial viscosity

numerical scheme used on VAT was not strong enough to make the code stable in the

studied cases of this work. From the artificial viscosity scheme previously used on VAT,

new numerical dissipation sensors based on kinematic and thermodynamic variables were

proposed. These were based on the flow vorticity, divergent, pressure, and density gradients.

The four proposed new numerical dissipation sensors were able to make the code numerically

stable in all the studied cases without affecting the physical properties of the flow. The

last proposed modification was the implementation of a slipping boundary condition of

the tangential velocity component on the body control volumes. The slipping boundary

condition was used because of the nature of the governing equations (Euler equations),

where by the lack of fluid viscosity results in no boundary layer on the body surface, or

its thickness is infinitely small. This proposed boundary condition was used with the other

ones for the other flow variables and no further modifications were necessary, as a result for

the invariant properties of these boundary conditions for inertial frames of reference.

Superb performance gains were obtained for the VAT code with the CUDA architecture

implementation. By using certain implementation and execution strategies of the numerical

scheme in CUDA Fortran, it was possible to achieve a speedup of around one hundred times

when compared with a serial code execution on a common CPU core. The conservative

variables declaration as permanent on the global GPU memory during the code execution

enabled the complete offloading of the numerical computation from the CPU to the GPU

without loss of performance due to the small PCI-express bus communication bandwidth,

which would be inevitable at each executed iteration. The communication between the

GPU and its node was reduced to the strictly necessary ones, like the data reading and

output and the process communication at a distributed memory level (MPI processes).

The numerical subroutine that took most of the computational resources was the Euler
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equations associated numerical solver. Most of the optimization efforts for performance gain

were spent in this subroutine, where roughly 90% of the total iteration time is spent. The

decisions for optimization were taken almost fully at a user level, restricting the automatic

compiler optimization. In the individual grid block processing, where each block is processed

separately by a SM of the GPU, the working variables declaration was done at the chipset

memory level, which has an extremely low latency but small capacity and same duration

as the block processing. The use of this memory was both as registers (thread restricted

scalars) and as shared memory (thread block common arrays). For read only arrays, like the

mesh discretization constants, such as face values and volume inverses, the texture memory

cache was used for a fast access of these values on the GPU global memory. From these

two ideas of optimization in the code, it was possible to obtain extremely high performance

gains on the main code subroutine. The other subroutines of the code were written in

a way to let the compiler control the optimization process, where parallel directives very

similar to the OpenMP for execution loops were used on the GPU variables working regions.

Being simpler algorithms, the performance gain by compiler controlled optimization was

satisfactory on these subroutines. The main strategy to avoid the PCI-express bottleneck

brought some limitations to the code execution; the permanent variable declaration only on

the GPU global memory sets a limit on the problem size to be simulated. Fortunately with

the increase of the GPU global memory size with each new generation, this problem will be

mitigated as the GPUs’ total memory tends to be of the same size as the RAMmemory of the

same computing node. CUDA architecture proved to be an extremely useful and effective

scientific and engineering high performance computing tool, as an excellent alternative for

CPU execution only codes. The CUDA architecture also proved to be mature enough for

high performance computing applications where a tradeoff must be paid for adapting or

even rewriting whole numerical codes with the needed language extensions for the GPU

computation offload.

The rotor blades and stator vanes cascade interaction were studied by using the moving

immersed boundary method for all the flow compressibility regimes found in a typical

turbofan engine: subsonic, transonic and supersonic. The thin duct approximation was used

to make a more viable the comparison between the analytical and numerical results. On the

subsonic and transonic cases the theory regarding the acoustic modes generated by cascade
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interaction and propagated through the annular duct agreed very well with the results from

the numerical simulations. Excellent agreement was observed with the angle measurement

of the dominant modes that could be identified in the aeroacoustic visualization. The

modal decomposition by means of a spectral analysis of the moving pressure probes has

also shown excellent agreement with the analytical results. All the predicted modes could

be identified by the modal decomposition up to the fourth harmonic of the blade passing

frequency. The supersonic rotor and stator interaction case needed a different treatment for

the validation process. The first validation was with the generated shock-waves behavior and

its propagation towards the inlet direction for the rotor blades cascade only. Outstanding

agreement was observed for the amplitude decay of these shock-waves. The stator cascade

influence on the supersonic rotor blades cascade case was also assessed. The rotor and

stator interaction was not enough to produce any change in the shock-waves decay, even

though the expansion waves between the shocks had some modification due to the cascade

interaction similar to what was found in the subsonic and transonic cases. The third case

with supersonic rotor cascade was with slight geometry modifications of the rotor blades to

produce the multiple pure tone noise. A randomly generated distribution of fixed increments

of the stagger angle was used to produce the flow effects that induced the buzz-saw noise.

By comparing the shock-waves propagating to the inlet direction with the results from the

theoretical values for the decay and shock coalescence, excellent agreement was observed in

all the considered circumferential positions, including the equivalent nacelle lip position and

at the end of the regular computational control volumes mesh. The pressure probes spectral

analysis at several positions in the inlet region revealed the typical energy transfer from

the higher shaft frequency harmonics to the lower ones, a phenomenon already observed in

experiments that produce the well known buzz-saw noise signature. The fourth supersonic

rotor case was the most complete one, with the stator cascade and random stagger angle

modification of the rotor blades. Similar results were obtained when compared to the

rotor cascade alone in realistic conditions on the pressure probes spectral analysis. The

pressure field obtained numerically and the analytical results did not have the same excellent

agreement as in the rotor only case. This was due to the cascade interaction propagating

between the shock-waves and then affecting in an disorderly way the expansion waves

between them. This modification of the expansion waves affected the shock-waves decay,

propagation and consequently the coalescence. The interaction influence on the expansion
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waves was not considered for the analytical theory, where a perfectly linear expansion wave

is considered, resulting in an uneven decay between the high and low pressure parts of the

shock-waves. Though the results differ in the shock-wave signature, they qualitatively agree

to some extent.

The expansional viscosity model reported by Landau was extensively studied along with

its application to a non-Stokesian fluid, where the thermodynamic non-equilibrium state is

hypothetically considered in flows with regions of rapid compression and expansion. The

expansional viscosity model was applied in the stress tensor for a fluid and its effects were

identified, directly related to the dissipation term, as a function of the divergence of the

velocity field and the fluid density. A linear stability analysis was carried as a first study

of the expansional viscosity behavior, in a fluid with no shearing viscosity. The governing

equations used in this analysis were the continuity equation, the Cauchy equation with

the expansional viscosity model applied to the stress tensor and the barotropic equation

for the pressure and density closure. The case studied on the stability analysis was the

decay time decay of a one dimensional cyclic wave in the frequency domain. The non

dimensional physical parameters that are directly related to the case of wave propagation

were identified and its sensitivity to wave number was assessed. In all cases of the physical

parameters analysis, the amplifying factor was only decay of the wave amplitude. No

cases of wave amplification were found for all the wave number spectrum analyzed. For

a Stokesian inviscid fluid, no amplification nor decay of the wave was observed, only the

transport of its related quantities (mass and momentum). Two solutions were obtained for

the amplification factor in the stability analysis. The observed behavior of these solutions

was asymptotic values or monotonic increase of the wave decay for higher values of wave

number. The linear stability analysis has shown that, at least for the linear range, the

expansional viscosity model is physically coherent, acting only as of diffusive character for

all the range of the tested physical parameters. In the nonlinear regime (not taken into

account in the linear stability analysis) a numerical scheme with very high formal and

spectral precision of finite differences for the space discretization and explicit Runge-Kutta

time marching was proposed. The stability of the method was achieved by using a high

frequency filtering after a given number of iterations was complete. Starting from the same

formulation used in the linear stability analysis, the inverse Fourier transform was applied
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to the expansional viscosity model and a nonlinear evolution model in the time domain

was obtained and proposed for numerical study. Comparing the corresponding physical

parameters between the time domain from the numerical simulation, and spectral domain

from the stability analysis, it was possible to identify the linear regime range as a function

of the wave velocity amplitude. The linear stability analysis is not explicitly dependent

on this wave amplitude. The same amplification factor is found regardless of the wave

amplitude. The value of the amplification factor is the solution from the stability analysis.

In the numerical simulations the amplification factor was obtained with an exponential

regression from the wave velocity amplitude solution through time, and then compared

with the theoretical values. For velocity wave amplitudes lower than 10−3, the numerical

amplification factor has excellent agreement with the theoretically obtained results. For

higher values, the flow regime begins to diverge from the linear until a seemingly exponential

divergence of the amplification factor as a function of the wave speed amplitude is seen.

This is due to the accumulation of momentum at the wave crest and trough as a result

of the different propagation speeds along the wave. As a consequence, steeper gradients

will result in larger differences in propagation velocities along the wave and therefore its

nonlinear effects, thus explaining the amplification factor reduction with high values for the

wave velocity amplitude in the numerical simulations. The physical parameters analysis at

the theoretical and numerical sides has shown important aspects of the expansional viscosity

model, like the proportion of these parameters which affects the wave decay as a function

of its wave number, i.e., the wave frequency. Regarding the values of the wave velocity

amplitudes in the nonlinear region for different orders of magnitude for the wave number,

the time needed to achieve the same wave amplitude, from the case with the wave number

one order of magnitude smaller, was one hundred times smaller, showing a logarithmic decay

as the frequency of the wave rises. Another important result from the numerical simulation

was the response of the expansional viscosity coefficient for several values of the related

physical parameter Ψ. Depending on the value of this parameter, the wave maximum value

of the expansional viscosity coefficient may oscillate and be decayed until a final value is

reached.

The last result of this work is about the expansional viscosity model application in a

realistic case of numerical simulation. The expansional viscosity model with instantaneous
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response was implemented into the VAT numerical code. The chosen case for comparison of

the expansional viscosity effects, for several values of the correspondent physical parameter,

was the supersonic rotor cascade in nominal conditions interacting with the stator vanes

cascade. Three values differing in order of magnitude for the expansional viscosity param-

eter were simulated and then compared with the base case with no expansional viscosity

at all. The shock-wave decay in the cases with this model was more intense with higher

values of the associated physical parameter, where in the case with the highest value the

shock-wave spreading was so intense that there was the coalescence between all the shock-

wave system at a given horizontal position. The last result that was observed was about

the vorticity wake from the rotor blades trailing edge. Even though a byproduct of com-

pressibility effects, the vorticity structures were not affected by the expansional viscosity

acting on the flow, keeping its characteristic length.

6.2 Future Work

Although all the objectives of this work were completed, further development is needed

for all the methodologies and models used here. Of course the numerical study of the

moving immersed boundary still need more validation beyond from the two dimensional

cases. Validation with three dimensional cases and comparison with experimental results

is likely the next step towards the VAT code being able to be used by industry for routine

capacity cases. The radial modes would be taken into account in the code validation for the

sound propagation in ducts, where all the flow regimes would be considered as well (subsonic,

transonic and supersonic). Physics enhancement used in the VAT code must also be taken

into account: turbulence models and wall functions to compensate the inherent lack of

resolution at the wall is a needed feature. Since out of the duct the sound waves behave

linearly for most flow regimes, propagation and radiation techniques could be used for sound

propagation into the farfield, including the use of some acoustic analogies similar to what

was presented in appendix II. A multiblock discretization scheme would be useful to reduce

the control volume count in the physical domain, so that a huge control volume density

that was used in the noise source region would not be needed for acoustic propagation

and radiation in more well behaved flow regions. The expansional viscosity model has
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shown great potential to be used for really long propagation distances calculation and in

regions of high compression and expansion in fluids. An experimental validation of the

model, derivation of parameter closure relations and their calibration would be the next

step for making it more suitable for physical studies. A second order model could be even

more precise than the first order model used here. Also two and three dimensional tests

with simple propagation problems could be done to understand better the effects of the

expansional viscosity.
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II. NOISE GENERATED

AERODYNAMICALLY

Consider the surface S (t) and the volume V (t) of a given arbitrary body. This body

is immersed in a sufficiently smooth fluid domain Vf that moves continuously in space. An

arbitrary function f (x, t) is then introduced such that:

f (x, t) =


< 0 if x ∈ V (t) ,

= 0 if x ∈ S (t) ,

> 0 if x /∈ V (t) ,

(II.1)

where the given condition refers to continuity, and the existence of the field where the

surface is denoted by the isovalue for f (x, t). Now multiplying the function that defines

the given surface by the Heaviside step function H (f), a value of H (f) = 0 is given by

the subdomain where there is not fluid. At the fluid region H (f) = 1. By doing this, only

regions where there is fluid are considered in the following calculations.

Defining the body surface normal vector as [63]:

n (x, t) =
∇f
|∇f |

∣∣∣∣
f=0

, (II.2)

where the body may be described with parametric coordinates fixed to its surface; (t, µ, λ).

Taking a given point xs (t) of the surface as µ and λ of constant values, that moves at a

given speed U = ẋs, we then have f (xs (t) , t) = 0. As a consequence of this mathematical

relation, the material derivative of the function f (t) at the surface is given by:

Df

Dt
=
∂f

∂t
+ ẋs · ∇f =

∂f

∂t
+ (U · n) |∇f | = 0, (II.3)

as a consequence for the Heaviside step function:

∂

∂t
(H (f)) = −U · ∇H (f) . (II.4)

With all the mathematical relations already defined at the surface of the body immersed

in fluid, we define the governing equations 2.8 and 2.9 in the main body of this thesis, at
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the fluid where the body is immersed at and without body forces:

H (f)

[
∂ρ

∂t
+∇ · (ρu)

]
= 0,

H (f)

[
∂ρu

∂t
+∇ · (ρu⊗ u− τ + pI) .

]
= 0 (II.5)

By doing this the governing equations are already satisfied in all of the domain, including

inside the body that is immersed in the fluid. Rearranging the terms to include H (f) inside

the derivatives (chain rule) and by applying the linearization decomposition:

∂

∂t
[ρ′H (f)] +∇ · [ρuH (f)] = [ρ0U + ρ (u−U)] · ∇H (f) ,

∂

∂t
[ρuH (f)] +∇ · [(ρuu + pI− τ)H (f)] = [ρu (u−U) + pI− τ ] · ∇H (f) . (II.6)

Equations II.6 are nothing more than the the Navier-Stokes equation under the generalized

equations form. Now taking the temporal derivative of the first equation and the divergent of

the second one, then subtracting one from the other and adding the term −c0
2∇2 (ρ′H (f))

to both sides of the resulting equation. Finally applying the given identity for the Heaviside

function ∇H (f) = n |∇f | δ (f):

∂2

∂t2
[ρ′H (f)]− c0

2∇2 (ρ′H (f)) = ∇ · [∇ · [ρuu− τ + (p′ − c0
2ρ′) I]H (f)]

+ ∂
∂t

[(ρ (u−U) + ρ0U) · n |∇f | δ (f)]

−∇ · [(ρu (u−U) + p′I− τ) · n |∇f | δ (f)] . (II.7)

The equation above is the Ffowcs Williams-Hawkings equation [52]. It is the Navier-Stokes

equations in the form of the wave equation. The Ffowcs Williams-Hawkings equation may

be use as an acoustic analogy. By comparing it with the wave equation, we may characterize

the aeroacoustic source. The Ffowcs Williams-Hawkings equation is very similar to the wave

equation obtained previously but without the advective term and with the right hand side

sources that makes it a non-homogeneous equation. This is known as the wave equation

applied to the Green’s function:(
1

c0
2

∂2

∂t2
−∇2

)
G = δ (x− y) δ (t− τ) . (II.8)

Several Green’s functions exist depending on the governing equation to which they are

applied to. When applied to the non-homogeneous wave equation, the solution of the three-

dimensional free propagation in a quiescent fluid is the most used. The Green’s function
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for this equation is given by:G = 0 for t < τ,

G (x,y, t− τ) = 1
4π|x−y|δ

(
t− τ − |x−y|

c0

)
para t ≥ τ.

(II.9)

Consider equation II.9 for a generalized source distributed along the time and space

coordinates:(
1

c0
2

∂2

∂t2
−∇2

)
G = F (x, t) =

∫ t

0

∫
∞
F (y, τ) δ (x− y) δ (τ − t) dV dτ, (II.10)

for the wave equation for the pressure fluctuations, the free field propagation solution is

[64]:

p′ (x, t) =
1

4π

∫ t

0

∫
∞

F (y, τ)

|x− y|
δ

(
t− τ − |x− y|

c0

)
dV dτ, (II.11)

or in the retarded potential, where the Dirac delta is evaluated when different from zero

and applied in F (y, τ) when τ = t− |x−y|
c0

:

p′ (x, t) =
1

4π

∫
∞

F
(
y, t− |x−y|

c0

)
|x− y|

dV. (II.12)

The retarded potential is the pressure signal on the position x at a given instant t as a

linear superposition of the source terms contribution through space at y that radiated at

a previous time t − |x−y|
c0

, where |x−y|
c0

is the time needed for the wave to travel from the

source position y to the observer position x.

Applying the Green’s function of generalized sources into the Ffowcs Williams-Hawkings

equation and noting that the source terms are evaluated at the retarded potential t− |x−y|
c0

:

p′ (x, t) =
1

4π

∫
∞

∇ · [∇ · [(ρuu− τ + (p′ − c0
2ρ′) I)H (f)]]

|x− y|
dV

+
1

4π

∫
∞

∂
∂t

[(ρ (u−U) + ρ0U) · n |∇f | δ (f)]

|x− y|
dV

− 1

4π

∫
∞

∇ · [(ρu (u−U) + p′I− τ) · n |∇f | δ (f)]

|x− y|
dV. (II.13)

By evaluating the term δ (f), where it is not zero only at the surface and the term |∇f | δ (f)
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is directly related to the integration at the body surface S (t):

p′ (x, t) =
1

4π

∫
∞

∇ · [∇ · [(ρuu− τ + (p′ − c0
2ρ′) I)H (f)]]

|x− y|
dV

+
1

4π

∮
S(t)

∂
∂t

[(ρ (u−U) + ρ0U) · n]

|x− y|
dS

− 1

4π

∮
S(t)

∇ · [(ρu (u−U) + p′I− τ) · n]

|x− y|
dS. (II.14)

Taking into account that the body is rigid and that there is no fluid passing through

its surface, i.e., U = u, the Ffowcs Williams-Hawkings equation applied into a three-

dimensional free field propagation is then obtained [125]:

p′ (x, t) =
1

4π

∫
∞

∇ · [∇ · [(ρuu− τ + (p′ − c0
2ρ′) I)H (f)]]

|x− y|
dV

+
1

4π

∮
S(t)

∂
∂t

[(ρ0U) · n]

|x− y|
dS − 1

4π

∮
S(t)

∇ · [(p′I− τ) · n]

|x− y|
dS. (II.15)

Equation II.15 describes the propagated acoustic signal p′ at a given point x along a physical

time t when aeroacoustic sources are concerned. The right hand side integrals describes the

noise sources acoording with the flow interactions.

Mathematically the source terms may be characterized as polar sources according to the

mathematical similarity between the source term and the kind of pole. On the right hand

side of equation II.15 the first term is a quadrupole noise source, due to the second order

space derivative. The second term is a monopole kind of noise source, because there is not

a space derivative. The third term represents the dipole noise source, due to its first order

space derivative. The noise origin of each source term is also distinct. The first term is due

to the fluid flow only with its three components:

• ρuu: Reynolds stress tensor; related to the velocity fluctuations in the fluid. Com-

monly associated with turbulence. Also occurs in highly nonlinear flows that are not

necessarily turbulent.

• −τ : noise viscous dissipation source, usually neglected due to its low influence in

dissipation of acoustic fluctuations.

• p′ − c0
2ρ′: non-isentropic compressibility term. Related to deviation of reversible

processes to irreversibility due to high frequency or high amplitude fluctuations (p′ ∼

p0).
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The Ffowcs Williams-Hawkings equation with only the quadrupole noise sources is com-

monly known as the Lighthill analogy. The noise source terms with surface intgrals in

equation II.15 are due to the immersed bodies in the flow that has an aerodynamic field

along its body generating noise. The monopole source is due to the noise related to the

body thickness or the fact that the body is dislocating fluid along the flow. The dipole noise

source is related to the aerodynamic loading along the body. This noise source depends on

the stress distribution along the body. It is commonly known as loading noise source [125].
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III. MECHANICAL ENERGY EQUATION

By taking the scalar product between u and the Cauchy’s equation with body forces:

ρu · Du

Dt
= u · ∇ · σ + u · ρfe. (III.1)

The body force can be represented as a potential field:

fe = −∇φ. (III.2)

Substituting equation III.1 into equation III.2:

ρu · Du

Dt
= u · ∇ · σ − ρ (u · ∇φ) . (III.3)

The material derivative of the body force term is given by:

Dφ

Dt
=
∂φ

∂t
+ u · ∇φ, (III.4)

where the potential term of a constant body force is:

Dφ

Dt
= u · ∇φ. (III.5)

Substituting equation III.5 into equation III.3:

ρu · Du

Dt
= u · ∇ · σ − ρDφ

Dt
. (III.6)

Then, rearranging the right hand side of equation III.6 in the kinetic energy form:

ρ
D

Dt

(
1

2
u2

)
= −ρDφ

Dt
+ u · ∇ · σ, (III.7)

rearranging the material derivative term of the body force potential on the left hand side:

ρ
D

Dt

(
1

2
u2 + φ

)
= u · ∇ · σ. (III.8)

Equation III.8 is the non-conservative differential form of the specific mechanical energy.

The left hand side represents the kinetic and potential energies variation of a particle in

the flow counter balanced by the work done by surface forces on the right hand side.
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IV. VORTICITY GENERATION

In the rotor and stator interaction case, some of the governing equations are the Euler

equations for the linear momentum and sometimes the viscosity is characterized as the only

vorticity generation mechanism. The following arguments deny this assertion and deduce

other vorticity mechanisms according to the numerical results presented in chapter 5.

The liner momentum equation for an inviscid fluid under the non-conservative form may

be rewritten as follows:
∂u

∂t
+ (u · ∇)u = −1

ρ
∇p. (IV.1)

From the following vector identity:

u · ∇u =
1

2
∇u2 − u×∇× u, (IV.2)

substituting equation IV.2 into equation IV.1:

∂u

∂t
+

1

2
∇u2 − u×∇× u = −1

ρ
∇p. (IV.3)

By applying the curl operator into equation IV.3:

∇× ∂u

∂t
+∇× 1

2
∇u2 −∇× (u×∇× u) = −1

ρ
(∇×∇p)− 1

ρ2
∇p×∇ρ. (IV.4)

Also by vector identities, the second and the fourth terms from equation IV.3 are equal to

zero:

∇× ∂u

∂t
−∇× (u×∇× u) = − 1

ρ2
∇p×∇ρ. (IV.5)

Consider the following vector identity:

∇× (u×∇u) = − (∇× u) (∇ · u) + (∇× u) · ∇u− u · ∇ (∇× u) . (IV.6)

Substituting equation IV.6 into equation IV.5:

∇× ∂u

∂t
+ (∇× u) (∇ · u)− (∇× u) · ∇u + u · ∇ (∇× u) = − 1

ρ2
∇p×∇ρ. (IV.7)

Rearranging the terms:

∂

∂t
(∇× u) + u · ∇ (∇× u) = (∇× u) · ∇u− (∇× u) (∇ · u)− 1

ρ2
∇p×∇ρ. (IV.8)
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In an alternative way, using a more compact notation the left hand side of equation IV.8

can be written as:

D

Dt
(∇× u) = (∇× u) · ∇u− (∇× u) (∇ · u)−

(
1

ρ2

)
∇p×∇ρ. (IV.9)

For two-dimensional flows, the vorticity equation can be simplified:

D

Dt
(∇× u) = − (∇× u) (∇ · u)−

(
1

ρ2

)
∇p×∇ρ, (IV.10)

due to the orthogonality between∇×u, which is normal to the plane of the two-dimensional

flow and ∇u, that is in the flow field plane. In equation IV.10 the first term of the right

hand side is the contribution to the vorticity variation in a fluid element that moves along

the flow, where ∇ · u is the rate of change of volume of that fluid element.

The last term of the right hand side of equation IV.10 is the contributing term of the

vorticity generation on a fluid element on the flow due to the local pressure gradient ∇p.

By using the perfect gas equation 2.13, this term can be rewritten as:

∇p = ∇ (ρRT ) = RT∇ρ+Rρ∇T, (IV.11)

showing that if the pressure gradient of a given point is non zero, the second source term

from equation IV.10 will be usually non-zero unless the temperature gradient is also equal

to zero. The two-dimensional cases of rotor and stator interaction show vorticity generation

due to the pressure gradient term resulting in vorticity wakes of varied intensity depending

on the flow case. It is also important to note that the pressure gradient source term may

be equal to zero, but with non zero values for ∇T , if it has the same direction as ∇ρ, as

usually happens in acoustic wave propagation phenomena.
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