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RESUMO

O presente trabalho tem por objetivo principal investigar o comportamento não-linear de uma

bolha imersa em um fluido magnético, sujeita a um campo de pressão acústico e um campo mag-

nético. Uma nova versão da equação de Rayleigh-Plesset é proposta com o tensor magnético.

Esta equação para dinâmica de bolhas é resolvida computacionalmente pelo método Runge-Kutta

de quinta ordem com passo de tempo adaptativo, visando diminuir o custo computacional. O

código é validado por meio de uma teoria assintótica em função da amplitude de excitação e do

número de Reynolds Magnético. A influência de parâmetros adimensionais é investigada, como o

número de Reynolds e Weber e dos parâmetros magnéticos, como Reynolds Magnético e Suscepti-

bilidade Magnética. A excitação magnética aplicada foi variada contando com campos oscilatórios

e constantes. Uma solução assintótica para o raio mínimo de colapso é apresentada. Isto permite

uma análise utilizando tanto as teorias de estabilidade linear hidrodinâmica quanto as teorias não-

lineares - como as redes neurais e os expoentes de Lyapunov. Uma série de análises como diagrama

de bifurcação dos padrões vibracionais e diagramas de colapso são construídos. Neste contexto,

um novo método baseado nas ferramentas de diagrama de fase e DFT é proposto para analisar

o comportamento da bolha oscilando em diferentes números de Reynolds Magnético e Suscetibili-

dade Magnética. Os novos padrões vibracionais apresentados devido ao acoplamento das escalas de

tempo do problema são estudados e que leva a identificação de padrões caóticos. Neste sentido, a

magnetização do ferrofluido é analizada tanto do ponto de vista das interações partícula-partícula,

utilizando-se tanto das ferramentas já apresentadas quanto da equação fenomenológica da mag-

netização. Essa última permite a comparação deste modelo com o modelo superparamagnético

proposto para a modelagem matemática. Visando verificar os conceitos utilizados e as hipóteses

restritivas de movimento radial e não deformação uma bancada experimental é desenvolvida. Nesta

bancada, estuda-se uma bolha ascendente em diversos fluidos magnéticos que foram sintetizados

para este fim. Estes fluidos tem suas características analizadas por meio de um reômetro de discos

rotativos e um tensiômetro. Por fim, adiciona-se um campo magnético estacionário por meio de

um imã de neodímio e observa-se como a bolha responde.

Palavras-Chave: Equações de Maxwell, Fluidos magnéticos, Equação de Rayleigh-Plesset,

Dinâmica de Bolhas, Análise não-Linear.



ABSTRACT

The main purpouse of the present work is to investigate the nonlinear behaviour of a bubble im-

mersed in a magnetic fluid, subjected to an acoustic pressure forcing and a magnetic field. A

new version of the Rayleigh-Plesset equation is proposed with the magnetic tensor. That equa-

tion is numerically solved using a fith order Runge-Kutta scheme with and adaptive time step,

in order to lower the computacional cost. That code is validated with an asymptotic solution in

terms of Magnetic Reynolds number and the pressure forcing amplitude. The influence of the

main Newtonian dimentionless physical parameters, such as the Reynolds and Weber numbers

and the non-Newtonian parameters, as Magnetic Reynolds and Magnetic Susceptibility are inves-

tigated. The applied magnetic excitation was varied between stationary and oscillatory fields. An

asymptotic theory for the minimum radius before collapse is presented. This permits an analysis

using both hydrodynamic linear stability theory and nonlinear theories, such as neural networks

and Lyapunov exponents. A serie of analyzes using vibrational pattern bifurcation diagrams and

collapse diagrams are built. In this context, a new method based in the phase plot and DFT

is proposed in order to analyze the bubble behavior when oscillating. The identified vibrational

patterns are studied in order to generate chaotic patterns due to time scales coupling. In this

sense, the magnetization of the ferrofluid is analyzed from the particle-particle interactions point

of view, using the tools already presented and the phenomenological equation of magnetization.

This last allows the comparison of this model with the superparamagnetic model proposed for the

mathematical modeling. In order to verify the concepts used, the restrictive assumption of radial

movement and lack of deformation an experimental bench is developed. In this bench, a rising

bubble immersed in synthesized magnetic fluid is observed. These fluids have their characteristics

(such as viscosity and surface tension) analyzed using a rotating disc rheometer and a tensiometer.

Finally, a stationary magnetic field is applied using a neodymium magnet and the bubble behavior

is observed.

Key-Words: Maxwell Equations, Magnetic Fluids, Rayleigh-Plesset Equation, Bubble Dynamics,

Nonlinear Control.
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Chapter 1

Introduction

In this chapter, we present an overview on bubble

dynamics, cavitation and its practical applications

and ferrofluids. The motivations, references and

specific objectives are exposed.

Bubble dynamics is a research line that has been studied since the middle of the industrial

revolution. However, the study of ferrohydrodynamics is fairly new. However, both themes have

many different applications. Works involving bubbles immersed in magnetic fluids are still sparse

and little depth. The study of a rising bubble in a ferrofluid was first made in order to clarify

the effects of nonuniform magnetic field on the bubble behavior in a magnetic fluid. The behavior

of vapor bubbles is visualized with ultrasonic wave echo under the nonuniform magnetic field

[1]. The visual observation of the effect of magnetic fields in air and vapor bubbles immersed in

magnetic fluids [2] was one of the first attempts to study this topic. However, the attention was

more focused in magnetohydrodynamics (MHD) research lines. MHD is the study of the flow of

electrically conducting liquids in electric and magnetic fields [3].

The study of bubbles immersed in magnetic fluids based on the ferrohydrodynamics (FHD)

perspective was first conducted in Vortex research group at University of Brasília [4]. Indeed, other

works regarding ferrofluid foams have been made aiming to order bubbles spiral arrangements in a

tube [5]. However, both themes - bubble dynamics and FHD - have several practical applications

when used in other contexts that will be explored in this chapter.

1.1 Cavitation

Cavitation is the term used to represent the formation, behavior and collapse of bubbles (or

cavities) in a liquid. The dynamic behavior of bubbles under the effects of variable pressure fields

in liquids has always been of great interest in many areas of scientific and technological importance.

Bubbles may be composed of both gases and steam and can be produced by several different

ways. The diffusion of gases dissolved in liquids (degassing), for example, is one way of creating

bubbles. Another possibility is the pressure reduction or temperature rise (gaseous cavitation)
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within the liquid. For bubbles containing steam, the formation is somehow different. Indeed, it

happens when there is a sufficient reduction of ambient pressure at constant temperature (vaporous

cavitation) or a sudden temperature raise at constant pressure (boiling).

The dynamics of bubbles is a broad theme in our daily life since the human body uses cavitation.

One example is the inlet and discharge of blood in the heart chambers. The sudden pressure

differences facilitate the formation of cavitation in this region. Bubbles are also associated with

the microfluidic transport in cells and blood, performing a pump function in micro-channels [6].

The use of micro-bubbles should produce a drag reduction, ie the flow resistance. This decrease is

directly associated with the deformation of bubbles in the flow direction. This geometric anisotropy

of the deformed bubble produces a stress in the flow lines direction, which inhibits the transverse

fluctuations during blood circulation, especially in the larger arteries and veins. This effect is also

seen in turbulent flows when macromolecules are added to the fluid [7].

Cavitation has become a problem during the Industrial Revolution. During this period, several

fluid flow mechanisms have emerged. The hydrodynamic flow effects on those systems result in

regions where the pressure assumes values lower than the vapor pressure. The turbines in ships

provided a thorough study of this phenomenon, since a cloud of bubbles is formed when the water

pressure decreases in the turbine boosters.

When the bubbles collapse occurs near solid boundaries, it is typically associated with a high

jet velocity [8]. The formation of these jets has been demonstrated experimentally [9]. Some

experts point out that there is a high probability that this damage on solid surfaces of materials is

caused by the collapse of vapor bubbles; not only by the jet that can occur due to a non-spherical

collapse, but also the shock wave itself generated after several collapses [10]. The effect of the

collapse is shown in figure 1.1.

Figure 1.1: Photo of a propeller blade from the aircraft carrier Intrepid, taken in the Intrepid Sea,

Air & Space Museum (Taken by the author - NY/2015). It is possible to notice small spherical

erosions caused by the collapse of cavitating bubbles.

Some experiments and theories have been formulated in order to minimize those damages [11].

The inventor of the steam turbine [12] also stood out for the research about the amount of energy

dissipated due to cavitation in turbines. In all these cases, all studies of bubbles were developed
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based on radial movements, in which the bubbles oscillate spherically. Some subsequent studies [9]

have been based on the collapse of near wall bubbles. In these situations, the bubble was attracted

to the membrane surface at the time of collapse, deforming itself. This type of failure creates a

shock wave that can have devasting effects on a surface. One example is the erosion of metals such

as steel, reducing the useful life of materials.

From a theoretical point of view, some studies have been done aiming the description of the

bubble radial motion. Rayleigh model is the oldest, as pointed before, and describes an empty space

in the water, influenced by a constant external pressure. The effects of viscosity, surface tension

and a non-constant external pressure have been included to the equation by Plesset [10], who

proposed the famous Rayleigh-Plesset equation. The version proposed by Gilmore [13] accounted

the compressibility of the liquid.

Large amplitudes of oscillation result when the acoustic frequency is at the bubble natural

frequency, or certain rational multiples of it. In this case, Keller and Miksis [14] combine several

modifications to derive a new equation for the bubble radius. It includes the effects of acoustic

radiation, present when the bubble oscillation is large enough, viscosity, surface tension and an

incident sound wave. Many other works have presented new versions of bubble dynamic equations,

but all of them are based on a variation of the Rayleigh-Plesset equation.

1.2 Acoustic Cavitation

Different fields can be applied in order to excitate bubbles. The use of ultrasound applied to

the study of bubbles promotes increased chemical reactions in a research field called sonochemistry

[15]. Such use can reduce the use of catalysts, the reaction temperature and allow the generation

of useful reactive species. The turbulent flow and shock waves produced by ultrasound may trigger

- when used in high intensity - the shock of metallic particles at sufficiently high speed to allow

the melting at the point of collision [16]. This process is also used in water purification [17].

The collapse of bubbles induced by ultrasound is also used for cleaning. These processes are

used for cleaning jewelry, lenses, surgical instruments and industrial components [18]. The control

of the frequency and intensity of ultrasound is essential for the control of the bubble collapse, as

it will be shown later.

However, the latest application to control cavitation occurs in the branch of biomedicine. Ul-

trasound with contrast is an example of how cavitation can be used in the biomedical industry

[19]. The microbubbles are injected into the body and take part in image contrast. The ultra-

sound pulses are applied with the approximate resonance frequency of the microbubbles. These

microbubbles respond to pulses with increase and decrease of its diameter, generating echoes in its

neighborhood. The difference between these echoes and echoes produced by the tissue generates a

contrast. Furthermore, bubbles may be used to transport drugs [6]. The stability of microbubbles

is ensured using gases and membranes of different materials that create a shell on the bubble [20].

Thus, they can be injected into the human body through intravenous injection.
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Another new application is the use of cavitation to increase membrane permeability of tumor

cells [21]. The increase of the cell permeability allows medicinal macromolecules to be injected into

the tumor cell. One of the interesting factors of this technology is that the ultrasonic radiation

can be focused on almost any part of the body, does not present hazards and is not expensive.

Some studies describe methods for the delivery of genes and drugs in the pancreas of diabetic

patients [22]. The two main forms of diabetes involve the destruction or dysfunction in the beta

cells. Type 1 diabetes, which affects about 1 million Americans is a condition of complete deficiency

of insulin due to beta cell destruction. Type 2 diabetes afflicts over 20 million Americans and the

hyperglycemia associated with this disease develops when the ability to secrete insulin can no longer

compensate for the resistance thereof [23]. In this study, genes incorporated into microbubbles are

injected intravenously. When the bubbles collapse near the pancreas, the gene for human insulin

is thus embedded in the pancreas of rats, which in turn produce human insulin, lowering blood

glucose. The technique involves incorporating plasmids - which are double circular DNA molecules

capable of reproducing independently of cromossomic DNA - in the bubble membrane, which are

inserted in rats and disposed near the pancreas with ultrasound.

The chemical effects of ultrasound [24, 25] are not directly linked to a sound field interacting

with chemical agents. In fact, sonoluminescence and sonochemistry derive mainly from acous-

tic cavitation: the formation, and increasing collapse of bubbles in liquids, irradiated with high

intensity ultrasound [26].

The collapse of bubbles during the process of cavitation means that all the diffusive sound

energy is concentrated, causing the generation of heat due to the compression of the gas bubble.

When this compression occurs during cavitation, heating is produced faster than its transported.

A few years ago, noninvasive and reversible disruption of the blood brain barrier was demon-

strated using focused ultrasound bursts in conjunction with an ultrasound contrast agent [27].

Contrast agents that contain preformed microbubbles are now extensively investigated for many

therapeutic applications. This method for blood brain barrier disruption with ultrasound utilizes

preformed microbubbles injected into the blood stream before the ultrasound burst exposures. The

working hypothesis for this research was that since the microbubbles act as energy concentrators

and are contained in the blood, the induced biological effects would be confined to the blood vessel

walls.

1.3 Sonoluminescence

Sonoluminescence is a unique phenomenon in fluid mechanics related to bubble dynamics [28].

Its dynamics is modeled with the classic equations and parameters, governed by hydrodynamic

Navier Stokes equation [29] or in Cauchy equation on the more general case of bubbles immersed

on complex fluids, evolving to a process of high energy density, which can be described by a very

different set of equations.

Basically, sonoluminescence describes the transformation of sound energy into light, as seen in
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figure 1.2. This energy transformation takes place in specific situations in a short period of time

(order of nanoseconds). This transformation also generates a great heat dissipation and emits high

frequency waves.

Figure 1.2: Drop tower Sonoluminescence yields 150 Watt flashes of light, one at a time, from a

1/5 atmosphere pressure pulse. Credit to Brian Kappus and Avik Chakravarty from Putterman

Research Group (UCLA)

The process of sonoluminescence, which is directly connected to the bubble radius R as a func-

tion of time t for an oscilatting bubble due to an external acoustic field can be divided into two

types: sonoluminescence caused by the collapse of several bubbles (Multiple bubble sonolumines-

cence, MBSL) or just one bubble (Single bubble sonoluminescence, SBSL).

Indeed, this sonoluminescence process is found in nature. The small snapping-shrimp (Alphei-

dae family), for example, competes with the beluga whale as the “loudest animals of the sea”. The

red creature pops its claw creating an acoustic wave that generates pressures up to 80kPa at a

distance of 4 centimeters. Measurements indicate levels of up to 190dB at one meter distance.

The click lasts less than a millisecond and is a form of defense against predators [30].

In experiments, when the local acoustic pressure applied to the fluid exceeds a cavitation thresh-

old, an interesting area of bubbles is formed. If cavitation is severe enough, the sonoluminescence

processes ocurs. In MBSL, a large number of bubbles grow and collapse at the higher sound pres-

sure region. This process is in the temporal order of picoseconds and space of micrometers. Since
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the time scales are out of the continuum scope, it is difficult to apply a physical theory to describe

this phenomenon. Thus, a new mathematical framework is required, differing from the classical

treatment used in the study of classical hydrodynamics equations.

The collapse of bubble in sonoluminescence condition can cause points of extreme conditions

of temperature and pressure. In the case of the so called multibubble cavitation, the collapse

produces hot spots with effective temperature of over 10, 000K and pressures of 10, 000atm. In

the process of single bubble cavitation, these conditions can be even more extreme [31, 32].

1.4 Ferrofluids

A magnetic fluid (or ferrofluid) is a colloidal suspension of magnetic particles, with typical

dimensions of about 10nm, dispersed in a liquid carrier [33]. The base fluids typically used in the

manufacture of magnetic fluids are synthetic oils, ester or water. Ferrofluids are different from the

usual magnetorheological fluids (MRF) used for dampers, brakes and clutches, formed by micron

sized particles dispersed in oil. In MRF the application of a magnetic field causes an enormous

increase of the viscosity. Indeed, for strong fields, the magnetorheological suspension behaves like

a solid. Thus, magnetorheological suspensions do not undergo Brownian effect and are not stable,

so the particles undergo sedimentation.

In order to avoid agglomeration, the magnetic particles have to be coated with a shell of

an appropriate material. According to the coating, the FFs are classified into two main groups:

surfacted (SFF), if the coating is a surfactant molecule, and ionic (IFF) if it is an electric shell.

The combination of magnetic fields and ferrofluids has attracted, more recently, professionals in

the fields of physics, chemistry, engineering and biomedicine. This theme has been very endorsed

lately, including in science museums, so that more people have access to this information as can

be seen in figure 1.3.

Figure 1.3: (a) A highly concentrated ferrofluid immersed in a water column allows the visitor from

the Science Museum of Boston to create spikes and interact the magnetic drops. (b) A ferrofluid

pool is subject to two permanent magnets. The New York Hall of Science visitor can approximate

or remove the magnets, controlling the formation of spikes in the field lines directions.
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At a high dipolar strength and low volume fraction the ferrofluid tends to aggregates in chains.

Naturally, these microstructures may be formed only by rather large ferroparticles, intensively

interacting magnetically which each other, as seen in figure 1.4. These instabilities show less

prominence of viscous and surface tension effects in the ferrofluid. At low concentration the chain

formation tends to increase the magnetization and induces a larger initial susceptibility. At high

densities, the particle spatial distribution starts to homogenize again, and the significance of the

chains goes down. This is due to the fact that in dense ferrofluids the interparticle interaction

results in chain disintegration. To sum up, we may conclude that the chain aggregates are most

conspicuous in diluted ferrofluids, while dense ferrofluids are characterized by a homogeneous fluid

like structure [34].

Figure 1.4: Instabilities formed due thee interaction of a ferrofluid (with volume fraction of particles

equal to 13 %) with a magnetic field. These instabilities are a result of the balance between

magnetic and gravitational forces. The magnetic force was generated by a neodymium magnet.

The pictures are related to a video produced by Cunha and Abade [35, 36].

Besides the use in several practical applications, biocompatible ferrofluids are also used in

cancer treatment, for example [37]. Magnetic particle hyperthermia improves the precision of

heating by embedding the heating source (magnetic particles) into the tumour tissue and heating

it using an external alternating magnetic field [38].

Magnetic drug targeting (MDT) is another technique that uses ferrofluids. Indeed, it is an active

of drug targeting for the medical treatment of various diseases and cardiovascular episodes, such as

stenosis and thrombosis. In MDT, magnetically guided droplets of biocompatible ferrofluid with

specific chemotherapeutic agents bonded to nanoparticles are used to carry and release medicinal

drugs at target sites in vivo. This enhances the efficacy of the drug while simultaneously minimizing

its deleterious side effects.
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1.5 Objectives

1.5.1 General Objectives

In the present study we investigate the non-linear oscillatory motion of a bubble immersed

in a complex fluid, wherein the magnetic properties are considered. The bubble is subjected

to a sinusoidal external acoustic field. Thus, this study aims to determine an extension of the

Rayleigh-Plesset equation for a magnetic fluid, based on the work of Cunha [4].

The major contribution to the study concerns a bubble immersed in a colloidal suspension

with permanently magnetized particles, suffering the influence of an external pressure field and a

magnetic field determined by Rosensweig [39]. Secondarily, this study uses linear dynamic systems

analysis approaches such as Fourier Transforms, phase diagrams and Lyapunov exponents. Finally,

an experimental bench was developed, allowing observation of the behavior of a bubble rising in

different Newtonian and non-Newtonian fluids, including magnetic fluids.

1.5.2 Specific Objectives

• Development of a dimensional analysis of the governing bubble dynamics equation (Rayleigh-

Plesset), applying the magnetic stress tensor. We propose then the Magnetic Rayleigh-Plesset

equation (MRP);

• Based on typical quantities and the use of known and proposed dimensionless parameters

such as the Magnetic Reynolds number, we proposed the non-dimensional version of MRP

equation;

• Determination of the asymptotic solution of the governing equation of bubble dynamics in

magnetic fluids using the perturbation method for small values of stipulated parameters;

• Elaboration and validation of a computational code based on the fifth order Runge-Kutta

scheme with adaptive time step;

• Study of an asymptotic theory for the collapse radius and its use as stop criteria;

• Analysis of vibrational patterns for the bubble immersed in a magnetic fluid through typ-

ical dynamical systems analysis approaches, such as Fourier transform, phase diagram and

Lyapunov exponents considering variations of dimensionless parameters;

• Creation and trainning of a neural network with the backpropagation method in order to

identify the determined vibrational patterns;

• Analysis of the collapse diagram, proposed as a function of the non-dimensional patterns in

order to understand how they influence the bubble behavior;

• Comparison between the application of three different magnetic fields: static, oscillatory and

a combiation of static and oscillatory;
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• Chaos identification with Lyapunov exponents and correlation analysis using scatter dia-

grams;

• Application of the validated dynamical system approaches to the ferrofluid where the bubble

is immersed aiming to study the particles magnetization. With that, we aim to identify the

particle volume fraction and magnetization with neural networks;

• Comparison between the superparamagnetic model and a magnetization model using Langevin

equilibrium magnetization in order to understand how this asymetry changes the magnetic

contribution of MRP equation;

• Elaboration of an experimental bench to study a bubble rising in different sintetized ferroflu-

ids;

• Characterization of the sintetized ferrofluids in the rotating disks rhemeter and the tensiome-

ter;

• Analyse of the bubble rising in different fluids under the application of a static magnetic field

provided by a neodymium magnet. Analysis of the magnet with two different gaussmeters

and an analytical solution;
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Chapter 2

Mathematical Formulation

This chapter aims to demonstrate the ba-

sic mathematical formulation, expressing the

governing equations and modeling the bubble be-

havior from both Continuity and Cauchy equa-

tion. The theoretical foundation permeates the

linearization of the system and stability analy-

sis. For the magnetic model, Maxwell’s equations

are used, considering a superparamagnetic model,

coupling magnetism and hydrodynamics.

2.1 Governing Equations

The study of the dynamic oscillatory movement of a bubble presented in this work is based

on the analysis of its radial movement when immersed in a ferrofluid subjected to a pressure field

excitation and a magnetic field. The mathematical modeling of this movement is based on the

combination of apropriate restrictive hypothesis and classical hydrodynamic equations.

The main restrictive assumptions used in this work consist in assuming that the fluid in which

the bubble is immersed is incompressible and isotropic, free of nonlinear effects associated with

viscoelasticity, for example. The principal governing equations used for the mathematical modeling

are based on the mass conservation principle (continuity equation) and Newton’s second law of

motion (Cauchy equation), besides a constitutive model apropriate to represent the jump of traction

in the bubble interface and Maxwell equations.

The next sections describe in details the mathematical modeling of this problem, shown in

figure (2.1), which leads to the development of a nonlinear differential equation, called Magnetic

Rayleigh-Plesset equation (MRP). The Rayleigh-Plesset equation is a classical equation in this

research field. Even though this equation is based on a radial motion model, it allows us to

test physical concepts associated with the influence of different nonlinear mechanisms from the

interaction between the bubble and the liquid that surrounds it.
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Figure 2.1: Problem schematic of a gas bubble immersed in a magnetic fluid of viscosity µ and

density ρ with acoustic and magnetic applied fields.

2.1.1 Continuity Equation

The mass conservation equation is mathematically given by:

∂ρ

∂t
+∇ · (ρu) = 0, (2.1)

where ρ is the fluid density, t represents time and u is the flow Euleurian velocity field of the flow.

However, for an incompressible fluid, we have:

∇.u = 0. (2.2)

The above equation shows that in an incompressible flow, the velocity field is solenoidal. Con-

sidering an analogy with electromagnetism, this is the same behavior expected for the magnetic

induction field according to Gauss’ law of magnetism. Physically, both laws propose that the flux

of a certain quantity that crosses a closed surface boundary is zero. In the continuity equation

case, the quantity is represented by mass, while in Gauss’ law of magnetism we have the magnetic

flux density. Considering that all perturbations on the flow are purelly radial, the components in

the θ and φ direction are null. In that case, the continuity equation can be written in spherical

coordinates as:

1

r

[
∂

∂r
(r2ur)

]

= 0 →
∫

∂

∂r
(r2ur)dr = 0, (2.3)

where r represents the physical distance from the spherical bubble center to any point in the

surrounding fluid and ur is the radial component of velocity. Therefore, integrating equation 2.3

over the medium, we have:
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r2ur(r, t) = F (t) → ur(r, t) =
F (t)

r2
. (2.4)

In this situation, the bubble radius, R(t), will be perturbed. With that in mind, we idealize that

there is no mass transport in the interface. To sum up, the impenetrability kinematic condition of

the bubble interface is considered:

ur(R, t) =
dR

dt
, (2.5)

substituting equation 2.5 in 2.4 and considering r = R(t) we have

F (t) = R2dR

dt
. (2.6)

If one considers the existence of evaporation in the interface between the bubble and the fluid,

the volumetric production rate of vapour would be equal to the bubble growth rate. The rate of

evaporation inside the bubble is given by:

ṁ = ρv4πR
2dR

dt
, (2.7)

where ρv is the saturated vapour density. Applying the mass conservation principle, we note that

this rate must be equal to the liquid mass flow into the bubble. Therefore, the ratio between the

internal speed of the liquid relative to the interface is given by the ratio between the densities of

the vapor and fluid. Figure 2.1 ilustrates that principle.

Figure 2.2: Schematic showing a bubble of radius R(t), immersed in a fluid.

In this way, using the continuity equation:
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4πR2 dR

dt
︸ ︷︷ ︸

1

− 4πR2 ρv
ρ

dR

dt
︸ ︷︷ ︸

2

= 4πr2ur
︸ ︷︷ ︸

3

, (2.8)

where 1 is the volumetric flow into the bubble, 2 the expansional volumetric vapour flow and 3 the

mass flow in a control surface far from the bubble. Isolating ur(r, t) and considering r = R:

ur(R, t) =

(

1− ρv
ρ

)
dR

dt
(2.9)

substituting in 2.6, we have:

F (t) =

(

1− ρv
ρ

)

R2dR

dt
. (2.10)

In many pratical applications, the bubbles are immersed in liquids. In that case, ρv << ρ.

Otherwise, ρv
ρ << 1, such that the term in brackets in equation 2.10 can be approximated to 1.

Therefore, equation 2.6 becomes valid for both steam and gas bubbles. In that case, combining

equations 2.4 and 2.10, we have:

u(r, t) =
R2

r2
dR

dt
=
R2

r2
Ṙ. (2.11)

Note that equation 2.11 will be essential in the calculations that follow and physically expresses

the mass balance in the bubble-liquid interface.

2.1.2 Cauchy Equation

The balance of linear momentum, which comes from the postulate of Newton’s second law

applied to the description of the movement of a continuous medium in its differential formulation

is known as Cauchy equation. This equation is the result of a balance of the rate change of linear

momentum that cross an infinitesimal volume control in a continuum medium, the external forces

acting on that same volume and temporal momentum variations and is given by:

ρ

(
∂u

∂t
+ u · ∇u

)

= −∇p+∇.σN +∇.σ, (2.12)

where u is the Euleurian velocity field, σN represents the Newtonian contribution of the stress

tensor, σ denotes the non-Newtonian effects of the fluid and p is the pressure field.

2.1.2.1 Non-Newtonian Fluid Model

Considering the basic principle of Material Frame Indifference (or, in other words, considering

that the description remain unchanged when observed under a variety of conditions), the stress

tensor for magnetic fluids is given by:
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σ =

(

−µ0H
2

2

)

I +BH , (2.13)

where B represents the induced magnetic field, H the applied magnetic field and µ0 is the magnetic

permeability. For an imcompressible Newtonian fluid, the trace of the stress tensor, excluding the

normal stresses since the effects of the pressure field are already incorporated in the radial gradient

of pressure, is null. That means that tr(σN ) = ∇ · u = 0. This hypothesis must be carefully

analysed if a non-Newtonian fluid is considered. In the case of a viscoelastic fluid, it is still valid

[40]. On the other hand, considering a magnetic fluid, that hypothesis is not valid.

For the radial motion, the Cauchy equation in spherical coordinates considering only radial

motion is given by:

ρ

(
∂u

∂t
+ u

∂u

∂r

)

= −∂p
∂r

+
1

r2
∂

∂r
(r2σNrr) +

1

r2
∂

∂r

(
r2σrr

)
−

(σθθN + σφφN )

r
− (σθθ + σφφ)

r
. (2.14)

Considering that σNrr + σNφφ + σNθθ = 0, we may write equation 2.14 using σNrr = −σNθθ − σNφφ:

ρ

(
∂u

∂t
+ u

∂u

∂r

)

= −∂p
∂r

+

[
∂σNrr
∂r

+
3σNrr
r

]

+
∂σrr
∂r

+
2σrr
r

− σθθ
r

− σφφ
r
. (2.15)

On the next steps, only radial and tangential effects regarding θ will be considered. We may write

the strain rate tensor, D, or the deviatoric part of the incompressible Newtonian fluid (σN = 2µD)

in radial components as:

D =

(
∂ur
∂r

)

êr êr. (2.16)

Therefore, the terms associated with the Newtonian contribution of the stress tensor in the radial

direction result in:

∂σNrr
∂r

+
3σNrr
r

= 2µ

(
∂2ur
∂r2

+
3

r

∂ur
∂r

)

= 0. (2.17)

The velocity u(R) is given by equation 2.11, which represents the continuity equation for the

radial motion. Thus, some terms of equation 2.17 are canceled resulting in

∂2u

∂r2
=

∂

∂r

(

−2R2Ṙ

r3

)

=
6R2Ṙ

r4
, (2.18)

3

r

∂u

∂r
=

3

r

∂

∂r

(

−2R2Ṙ

r3

)

=
6R2Ṙ

r4
, (2.19)

substituting equation 2.17 in 2.15 results:
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ρ

(
∂ur
∂t

+ ur
∂ur
∂r

)

=
−∂p
∂r

+
∂σrr
∂r

+
3σrr
r
. (2.20)

The inertial terms on the left side of equations refering to the velocity are

∂ur
∂t

=
2RṘ2 +R2R̈

r2
, (2.21)

and

ur
∂ur
∂r

= −2Ṙ2R4

r5
, (2.22)

substituting 2.21 and 2.22 in 2.20 and integration the resulting equation in the flow domain, i.e.

the region between the bubble surface and infinite, R ≤ r <∞ we have:

∫ ∞

R

2Ṙ2R+R2R̈

r2
dr−

∫ ∞

R

2Ṙ2R4

r5
dr = −1

ρ

∫ ∞

R

∂p

∂r
dr+

1

ρ

∫ ∞

R

∂σrr
∂r

dr+
2

ρ

∫ ∞

R

σrr
r
dr−1

ρ

∫ ∞

R

σθθ
r
dr.

(2.23)

After the integration, we obtain an equation relating p∞, which denotes the ambient pressure field,

and the liquid pressure avaliated at the buble’s interface (i.e. in r = R).

2Ṙ2R+R2R̈

R
− 2Ṙ2R4

4R4
=
pl(R)− p∞

ρ
− 1

ρ
σrr|r=R +

2

ρ

∫ ∞

R

σrr
r
dr − 1

ρ

∫ ∞

R

σθθ
r
dr. (2.24)

Note that the integral term is null in the Newtonian regime. We may observe new terms related

to the fluid anisotropy. In this condition, there is an extra contibuition of the σrr effect, given

by the integral parcel in equation . In this case, that term sums to −1
ρσrr. This is associated

to the non-linearity of the fluid. Every non-Newtonian fluid has a non-linear contribution in the

constitutive equation, such as elasticity [40] or the existence of magnetic tensions. A Lagrangian

description of the bubble surface motion and the use of more sophisticated numerical algorithms

is appropriate in these cases [41, 42, 40].

2.1.2.2 Ferrofluid Modelling

The Gauss’ law of magnetism states that the magnetic induction flow passing through a closed

surface is zero. The magnetic induction lines that pass through a Gaussian surface are closed,

resulting in the absence of lines created or terminated within that surface:

∇.B = 0, (2.25)

where B is a vector field defined by the sum of H and magnetization M multiplied by the free

space permeability given by µ0 = 4π × 10−7H.m−1:
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B = µ0(H +M). (2.26)

Considering that the fluid is composed of superparamagnetic nanoparticles, it is possible to state

that M = χH , where χ is the magnetic susceptibility and:

B = µ0(1 + χ)H . (2.27)

Futhermore, Ampère-Maxwell’s law stablishes that a magnetic field can be generated by an

electric current or by the temporal variation of an applied electric field. In other words:

∇×H = Jǫ0
∂E

∂t
, (2.28)

where J represents the current density measure in A/m2, ǫ0 is the permittivity of free space given

by 8.8541878 × 10−12C2/N.m2 and E is the electric field.

Considering the magnetostatic regime, the magnetic effects related to the electrical charges

movement are neglected and so do the involved electric fields. In this case, we may consider

∂E

∂t
= 0, (2.29)

Thus, using the conditions expressed in 2.29, the Maxwell equations can be reduced to:

∇.B = 0; (2.30)

∂B

∂t
= 0; (2.31)

∇×H = 0; (2.32)

For a magnetic fluid, that approach would be valid if the particles are surrounded of insulating

material. In this case, there would be no electric current being conducted.

Furthermore, the components of the magnetic stress tensor are given by:

σmag
rr =

−µ0
2

(H2
r +H2

θ ) + µ(1 + χ)H2
r (2.33)

σmag
θθ =

−µ0
2

(H2
r +H2

θ ) + µ(1 + χ)H2
θθ (2.34)
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2.1.2.3 Applied Field (H) Determination

At this point, it is essential to determine the field H . In spherical coordinates considering

symmetry of axes, Laplace’s equation for the magnetic potential has the form below:

∂

∂r

(

r2
∂Ψ

∂r

)

+
1

senθ

∂

∂θ

(
∂Ψ

∂θ

)

= 0, (2.35)

where r is the radial distance from the origin, θ is the polar angle and Ψ is the associated potential.

A plausible solution attempt would be:

Ψ(r, θ) = R(r)Ψ(θ), (2.36)

leading to solutions in terms of Legendre polynomials. Indeed, it was determined by Rosensweig

[39] as:

Ψ =

{

Ar cos θ, para r < R

−(C − 2D
r3

) cos θ, para r > R,
(2.37)

where R is the sphere radius. The associated magnetic field is then expressed by:

H = −∇Ψ = −∂Ψ
∂r

êr −
1

r

∂Ψ

∂θ
êθ, (2.38)

leading to:

H =

{

−A(cos θêr − sin θêθ), para r < R

−(C − 2D
r3

) cos θêr + (C + D
r3
) sin θêθ, para r > R.

(2.39)

The magnetic field far from the sphere should approximate the uniform applied field H0k, in

which k is the unitary vector in z direction. In spherical coordinates, k = êr cos θ− êθ sin θ, so for

r −→ ∞, we have:

C = −H0. (2.40)

Likewise, the form of the solution for r < R presents H = Ak. Since the tangential component

of H and the normal component of B are both continuous between the sphere interface, two more

relations for the constats can be obtained:

A =
−3µ1H0

µr + 2µ1
, (2.41)

D =
µ2 − µ1
µ2 + 2µ1

R3H0, (2.42)
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where µ1 is the permeability of the medium around the sphere and µ2 is the permeability of

the sphere. Considering that field H , it is possible to demonstrate (see Appendix I) that the

Raylegh-Plesset equation becomes:

2ṘR+R2R̈

R
− 2Ṙ2R4

4R4
=
pl(R)− p∞

ρ
− 1

ρ

[

µ0

(−3µ2rH
2
0

8

)]

+
1

ρ
µ0)χ

[−µrH2
0

3
− 17µrH

2
0

12
+
H2

0

2
ln(R∞)− H2

0

2
ln(R)

]

. (2.43)

where µr represents (µ2 − µ1)/(µ2 + 2µ1) and R∞ is the distance from the bubble interface to a

point where H = 0, 99H0.

2.1.3 Interface Condition

The conservation equations introduced above can be applied within each phase and up to

an interface. However, they are not valid across the interface, where sharp changes in several

properties occur. That is the case of pressure. Any change in the bubble surface tension will

create, for example, tangential forces also known as Marangoni forces [43]. These variations may

occur by several factors such as temperature gradients or the addition of sulfactants in the fluid.

In other cases, the weight of the surface itself, as in the case of soap bubbles, is one of the

reasons why the surface tension does not remain constant. While pressure jumps can sustain

normal stress jumps across a fluid interface, they do not contribute to the tangential stress jump.

Consequently, tangential surface stresses can only be balanced by viscous stresses associated with

fluid motion. The influence of surfactants, for example, is greater on small bubbles. Knowing

that the Marangoni effect is more pronounced in this cases, there will be no consideration of

concentration or temperature gradients on the bubble surface in this work.

Considering a clean interface, there is a continuity in both velocity and tangential stresses:

(σtt)l = (σtt)b, (2.44)

(u)l = (u)b, (2.45)

where (σtt)l represents the tangential component of stresses on the fluid side, while (σtt)b represents

the same component on the gas side. Likewise, (u)l and (u)b are both the radial components of

velocity in the liquid and gas sides respectively.

In figure 2.3, we may observe that interface. Indeed, σs is the surface tension coefficient, in such

a way that its tangent vector is given by σtt = t ·Σ · t. On the other hand there is a discontinuity

in the interface regarding normal tractions. This discontinuity can be modelled based on the

informations of both fluids surrounding the interface. Considering that the bubble is immersed in

a fluid 1 and filled with a fluid 2. In this case, the balance of forces in the bubbles interface is

given by:
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Figure 2.4: Interface condition showing the three main unitary vectors t̂, n̂ and b̂.

∫

D

[
f1(n̂)− f2(n̂)

]
dS + Fn = 0, (2.46)

where Fn is related with the forces acting on the interface (such as Marangoni forces, for example)

and f1(n̂) and f2(n̂) are related with the tensors projected in the normal direction (traction) of

both fluids 1 and 2. The forces on the interface can be written as:

Fn =

∫

C
σbdl, (2.47)

where σ is the surface tension, a force per length in a direction tangent to the surface and b = t̂× n̂,

as seen in figure 2.4.

Using equation 2.47 in equation 2.46 we have:

∫

D
[f1(n̂)− f2(n̂)]dS +

∫

C
σbdl = 0, (2.48)

or, in other words,

∫

D
[σ1 − σ2] · n̂dS +

∫

C
σbdl = 0. (2.49)
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Substituting b by t̂× n̂ and [σ1 − σ2] · n̂ as ∆f and using the Stokes Theorem, we obtained:

∫

D
∆fdS =

∫

D
[n̂∇ · (σn̂)−∇(σn̂) · n̂]dS. (2.50)

After some algebric manipulation:

∆f = (σ∇s · n̂)n̂− (I − n̂n̂) · ∇σ. (2.51)

Writing (I − n̂n̂) · ∇ = ∇s, as the superficial gradient we have:

∆f = (σ∇s · n̂)n̂ −∇sσ. (2.52)

Knowing that ∇s · n̂ is the curvature of the interface (or twice the mean curvature), we may

rewrite equation 2.52 as:

∆f = 2σ < κ > n̂−∇sσ. (2.53)

When the Marangoni number tends to zero, which is our case of study, the forces are given only

by the normal stresses. Considering the associated time scales, that the flow time scale dominates

the surfactant time. This non-dimensional number is given by:

Ma =
tsurfactant
tflow

=
(µa)/(β∆C∗)

(1/γ̇)
=

µaγ̇

β∆C∗ , (2.54)

where σ is the surface tension, L is a characteristic lenght, ∆C∗ is the surfactant concentration

difference, β = (∂σ/∂C), η is the dynamic viscosity, α is the thermal diffusivity, a is a typical

length and ·γ is a shear rate. In this case:

(−p1I + p2I) · n̂ = 2σ < κ > n̂, (2.55)

where κ is the surface curvature and the viscous effects were disconsidered due to the radial nature

of the problem. This is know as Young [44] and Laplace [45] law. In the case of the bubble, we

may rewrite this law as [46]:

σnn = (n ·Σ · n)l − (n ·Σ · n)b = σs∇s · n, (2.56)

where the term l determines the side of the liquid and b represents the the normal stresses on the

gas/vapour side of the bubble.

• Determining the Pressure Inside the Bubble

Returning to equation 2.56, we may write:
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∇s · n̂ = 2κ→ κ =
1

2

(
1

R1
+

1

R2

)

, (2.57)

where R1 and R2 are the semi-axis along x and y retrospectively. Since the bubble is spherical,

R1 = R2, then κ = 1/R. Thus, the interior of the bubble is defined as:

(n ·Σ · n)b = −pb(t) = −[pv(Tb) + pg(t)], (2.58)

where pv(Tb) the vapour pressure of the liquid inside the bubble at temperature Tb. This temper-

ature does not vary in our context. Thus, pg(t) is the pressure of the gas assumed as perfect and

subjected to the polytropic process: pgV n = constant.

The gas volume is given by V = (43)πR
3. Using an equilibrium pressure that corresponds to the

bubble condition when its radius is RE (an equilibrium radius), we have assumed by the polytropic

law:

pg(t)

(
4

3
πR3

)n

= p̃g(t)

(
4

3
πR3

E

)n

. (2.59)

After some manipulation

pg(t) = p̃g(t)

(
RE

R

)3n

. (2.60)

Now, substituting equation 2.60 in 2.58, the internal pressure results in

pb(t) = pv + p̃g

(
RE

R

)3n

. (2.61)

Assuming that in the initial instant of study t = 0 and the bubble radius is RE the pressure

discontinuity in the interface assumes the form given bellow, based on the Young-Laplace condition:

p̃b(t) = p̃∞ +
2σ̃

RE
. (2.62)

considering that:

˜pb(t) = p̃g + pv (2.63)

In this case, p̃∞ denotes the static pressure of equilibrium applied by the fluid in the initial time

and p̃b represents the internal pressure of equilibrium. For t = 0, there is no deviatoric part of

the stress tensor, since the viscous effect can be neglected. We can now use equation 2.58 for the

internal pressure of equilibrium. In this case, substituting equation 2.62 in 2.63 one reaches:

p̃g = (p̃∞ − pv) +
2σ̃

RE
. (2.64)
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Thus, returning the term p̃g to its original form, we obtain:

pb = pv +

[

(p̃∞ − pv) +

(
2σ̃

RE

)(
RE

R

)]3n

. (2.65)

Defining p̃∞ − pv as ∆p̃, we have the contribution of normal traction in the interface on the

gas side as:

Σrr,l + pv +

(

∆p̃+
2σ̃

RE

)(
RE

R

)3n

=
2σ̃

R
. (2.66)

• Determining the Pressure in the Liquid

For the liquid side, the component of normal stresses becomes:

σnn = (n ·Σ · n)l = −n.pl(R, t)I · n+ n · [2µD + 2Σf ] · n, (2.67)

where Σf represents the tensorial contribution of the effective stress tensor of the liquids due to

non-Newtonian effects.

In this case, we must identify the stress component on the liquid side Σrr,l. According to the

liquid stress tensor, different traction conditions are obtained. Said that, the discontinuity analysis

assumes the form:

Σ = −pI + σN + σ, (2.68)

with

Σrr,l = −êr · plI · êr + êr · σN · êr + êr · σ · êr. (2.69)

Equation 2.68 is the stress tensor that describes the liquid behavior. In the same way, when σN

is known, we may rewrite the discontinuity as:

Σrr,l = −pl + 2µDrr|r=R + σrr|r=R. (2.70)

This discontinuity is given in r = R. In this case, ur = R2Ṙ/r2. At the same way, substituting

the stress tensor in the radial direction, we have:

Σrr,l = −pl + 4µ
Ṙ

R
+ σrr|r=R. (2.71)

Finally, using equation 2.70 in 2.66 it is possible to determine the boundary condition where:

−pl − 4µ
Ṙ

R
+ σrr|r=R + pv +

(

∆p̃+
1σ̃

RE

)(
RE

R

)3n

=
2σ̃

R
. (2.72)
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Rewriting pl as function of the internal pressure (pb), the equation is simplified. It is possible

to verify that this external pressure is written as a function of the non-Newtonian effects, the

superficial tensor and the internal pressure of the bubble.

pl = 4µ
Ṙ

R
− 2σ̃

R
+ pb + σrr|r=R. (2.73)

2.1.3.1 Interface Condition for a Ferrofluid

The jump of traction in the bubble’s interface given by Young-Laplace condition (equation

2.56) maintains itself if the liquid is a magnetic fluid. However, the avaliation of the stress tensor

is modified due the extra magnetic pressure. In this section, we intend to understand how the

interface condition is modified if the bubble is immersed in a magnetic fluid.

In t = 0, we may consider or not the presence of an external applied magnetic field. If H 6= 0,

equation 2.62 becomes:

p̃b(t) = p̃∞ +
2σ̃

RE
− σmag

rr |r=R. (2.74)

Thus, considering yet that the equilibrum pressure inside the bubble is

p̃b(t) = p̃g + pv, (2.75)

and substituting equation 2.74 in 2.75 we obtain a new version of 2.64, given by:

p̃g = (p̃∞ − pv) +
2σ̃

RE
− σmag

rr |r=R. (2.76)

Rewriting p̃g in its original format, we have:

pb = pv +

[

(p̃∞ − pv) +

(
2σ̃

RE
− σmag

rr |r=R

)(
RE

R

)]3n

. (2.77)

Since (p̃∞ − p̃v) = ∆p̃ and σrr|b = −pb then:

σrr|b = −pv −
(

∆p̃+
2σ̃

RE
− σmag

rr |r=R

)(
RE

R

)3n

. (2.78)

In the same way, it is possible to determine the traction on the liquid side:

σrr|l + pv +

(

∆p̃+
2σ̃

RE
− σmag

rr |r=R

)(
RE

R

)3n

=
2σ̃

R
. (2.79)

Substituting equation 2.79 in 2.71 we obtain:
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−pl − 4µ
Ṙ

R
+ σmag

rr |r=R

[

1−
(
RE

R

)3n
]

+ pv +

(

∆p̃+
2σ̃

RE

)(
RE

R

)3n

=
2σ̃

R
. (2.80)

2.1.4 Generalized Governing Equation

Considering the above development, we may write the Magnetic version of Rayleigh-Plesset

equation as:

R̈R+
3

2
Ṙ2 = −4

µ

ρ

Ṙ

R
− 2σ̃

ρR
+
pb − p∞

ρ
+

2

ρ

∫ ∞

R

σrr
r
dr − 1

ρ

∫ ∞

R

σθθ
r
dr +

1

ρ

∫ ∞

R

∂σrr
∂r

dr, (2.81)

which represents the generalized governing equation for a unidimensional radial flow. Any extra

pressure can be considered as an external field [47]. In this case, an harmonic pressure forcing

expressed by:

p∞(t) = p̃∞[1 + ε sin(ωt)], (2.82)

was used. In this case, ε represents the amplitude of pressure and ω defontes the frequency of

excitation. We may observe that in this case, there is a magnetic pressure condition expressed by

the magnetic stress tensor valued in the bubble interface. Moreover, the non-Newtonian intergral

is considered for both components r and θ. Using the jump condition obtained, we have:

R̈R+
3

2
Ṙ2 = −∆p̃

ρ
+

1

ρ

(

∆p̃+
2σ̃

RE
− σmag

rr |r=R

)(
RE

R

)3n

−4µ

ρ

Ṙ

R
− p∞

ρ
ǫ sin(ωt)− 2σ̃

ρR
+

2

ρ

∫ ∞

R

σrr
r
dr − 1

ρ

∫ ∞

R

σθθ
r
dr +

1

ρ

∫ ∞

R

∂σrr
∂r

dr. (2.83)

2.1.5 Dimensionless Version of the Governing Equation

In order to write the governing equation in a non-dimensional form, a scale analysis is needed.

In this case, all dimensionless variables are written with an asterisks. Considering the typical scales

of radius and time given by:

R∗ =
R

RE
, t∗ =

t

tc
, (2.84)

where the typical scale of velocity is written Uc = (|∆p̃|/ρ)1/2 and tc = RE/Uc. Thereby, velocity

and acceleration in the bubble surface assume the following form:

Ṙ∗ =
Ṙ

Uc
, R̈∗ = R̈

RE

U2
c

. (2.85)
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The parameter ε must also be defined in non-dimensional terms:

ε∗ = ε

(
p̃∞
∆p̃

)

. (2.86)

On the other hand, the non-dimensional form of the traction σrr might be written as:

σ∗rr =
σrr
ρU2

c

. (2.87)

Considering the new notation for the non-dimensional variables and using the typical scales, the

governing equation assumes the form:

U2
cR

∗R̈∗ +
3

2
U2
c (Ṙ

∗)2 = −U2
c +

1

ρ

2σ̃

RE

[(
RE

RER∗

)3n

− 1

R∗

]

U2
c

U2
c

+

(
RE

RER∗

)3n

U2
c −

U2
c ε(ω

∗t∗)− 4µ

ρ

U∗
c

RE

Uc

Uc

Ṙ∗

R∗ + 2U2
c

∫ ∞

R

σ∗rr
r
dr − U2

c

∫ ∞

R

σ∗θθ
r
dr + U2

c σ
∗
rr, (2.88)

where the frequency can be written as ω∗ = ωtc. Dividing equation 2.88 for U2
c and using simple

algebric manupulation one reaches:

R∗R̈∗ +
3

2
(Ṙ∗)2 = −1 +

1

ρ

2σ̃

REU2
c

[(
1

R∗

)3n

− 1

R∗

]

+

(
1

R∗

)3n

− ε(ω∗t∗)− 4µ

ρ

1

REUc

Uc

Uc

Ṙ∗

R∗ .+ 2

∫ ∞

R

σ∗rr
r
dr −

∫ ∞

R

σ∗θθ
r
dr + σ∗rr. (2.89)

In equation 2.89 it is possible to identify both Reynolds and Weber numbers, defined as:

Re =
ρUcRE

µ
, (2.90)

and

We =
ρU2

cRE

σs
. (2.91)

The Reynolds number relates both inertial and viscous forces of the flow. The fundamental meaning

of the Reynolds number is the same that allow us to carachterize the type of flow as turbulent

or laminar, for example. Besides, it may also indicate bifurcation and instability levels of a flow

during its transient until it reaches a turbulent regime.

The Weber number denotes a ratio between inertial forces and surface tension. The higher the

Weber number, the lower the resistance of the surface tension regarding the bubble oscillations.

Considering these parameters, we may rewrite equation 2.89 as:
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R∗R̈∗ +
3

2
(Ṙ∗)2 =

2

We

[
1

(R∗)3n
− 1

R∗

]

− 1− ε∗sen(ω∗t∗)

+
1

(R∗)3n
− 4

Re

Ṙ∗

R∗ + 2

∫ ∞

R

σ∗rr
r
dr −

∫ ∞

R

σ∗θθ
r
dr + σ∗rr. (2.92)

To sum up, it is emphasized that the vapor pressure inside the bubble is also written in a dimen-

sionless form, such that:

p∗b = p∗v +

(

1 +
2

We

)(
1

R∗

)3n

→ p∗g =

(

1 +
2

We

)(
1

R∗

)3n

. (2.93)

2.1.5.1 Non-Dimensional Formulation of the Magnetic Component

In order to write the magnetic component in a dimensionless form, the same variables are used:

R∗ =
R

RE
, (2.94)

t∗ =
t

tc
, (2.95)

where the velocity scales are given by Uc = (|∆p̃|/ρ)1/2 and tc = RE/Uc, respectively. Using

those variables, the Magnetic Version of Rayleigh-Plesset equation (Eq. 2.83) may be written in a

dimensionless form as:

U2
cRER̈

∗R∗ +
3

2
U2
c Ṙ

2∗ =
−4µ

ρ

Uc

RE

Ṙ∗

R∗ − 2σ̃

ρRER∗ +

+U2
c

(

U2
c +

2σ̃

ρRE
− σmag

rr ρU2
c

ρ

)(
RE

R∗RE

)3n

− U2
c ǫ

∗ sin(ω∗t∗) + σ∗rrU
2
c +

U2
c

∫
2σ∗rr
r
dr −

∫
2σ∗θθ
r
dr − U2

c σ
mag
rr |r=R

(
RE

RER∗

)3n

, (2.96)

where σmag
rr represents the magnetic stress tensor obtained in the jump of traction study. Thus,

σrr represents the non-Newtonian stress tensor. Reorganizing all terms and writing the equation

as a function of Uc, we have:

U2
cRER̈

∗R∗ +
3

2
U2
c Ṙ

2∗ =
1

ρ

2σ̃

RE

[

− 1

R∗ +

(
1

R∗

)3n
]

U2
c

U2
c

+

(
1

R∗

)3n

U2
c +

−U2
c ǫ

∗ sin(ω∗t∗)− U2
c − −4µ

ρ

Uc

RE

Ṙ∗

R∗
Uc

Uc
+ σ∗rrU

2
c + U2

c

∫
2σ∗rr
r
dr +

−U2
c

∫
2σ∗θθ
r
dr − U2

c σ
mag
rr |r=R

(
1

R∗

)3n

. (2.97)
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Dividing the whole equation by U2
c :

RER̈
∗R∗ +

3

2
Ṙ2∗ =

1

ρ

2σ̃

REUc

[

− 1

R∗ +

(
1

R∗

)3n
]

+

(
1

R∗

)3n

− ǫ∗ sin(ω∗t∗)

−1− −4µ

ρ

Uc

RE

Ṙ∗

R∗ + σ∗rr +
∫

2σ∗rr
r
dr −

∫
2σ∗θθ
r
dr − σmag

rr |r=R

(
1

R∗

)3n

, (2.98)

and using the non-dimensional numbers presented, it is possible to rewrite equation 2.98 as:

RER̈
∗R∗ +

3

2
Ṙ2∗ =

1

ρ

2

We

[

− 1

R∗ +

(
1

R∗

)3n
]

+

(
1

R∗

)3n

− ǫ∗ sin(ω∗t∗)

−1− −4

Re

Ṙ∗

R∗ + σ∗rr +
∫

2σ∗rr
r
dr −

∫
2σ∗θθ
r
dr − σmag

rr |r=R

(
1

R∗

)3n

. (2.99)

We note that the non-Newtonian integral, which determines the extra pressure on both direc-

tions r and θ is not written in a dimensionless form. Considering σ∗rr = σrr/(ρU
2
c ), these integrals

are given by:

∫
2σ∗rr
r
dr −

∫
σθθ
r
dr − σmag

rr |r=R

(
1

R∗

)3n

=

=
1

ρU2
c

[

µ0

(−3µ2rH
2
0

8

)

+ µ0χ

(

−µrH
2
0

3
− 17µ2rH

2
0

12
+
H2

0

2
ln(R∞)− H2

0

2
ln(R)

)]

− 1

ρU2
c

[

µ0

(

−3µrH
2
0

2
− 3µ2rH

2
0

4

)

+ µ0χ

(

−4µrH
2
0

2
− 4µ2rH

2
0

2

)](
RE

R

)3n

, (2.100)

substituting µr = −1/2 (considering that there is no magnetization inside the bubble or applied

field) we have:

∫
2σ∗rr
r
dr −

∫
σθθ
r
dr − σmag

rr |r=R

(
1

R∗

)3n

=

=
1

ρU2
c

[

µ0

(−3H2
0

32

)

+ µ0χ

(
H2

0

6
− 17H2

0

48
+
H2

0

2
ln(R∞)− H2

0

2
ln(R)

)]

− 1

ρU2
c

[

µ0

(
3H2

0

4
− 3H2

0

16

)

+ µ0χ

(
4H2

0

4
− 4H2

0

8

)](
RE

R

)3n

. (2.101)

Using the conditions stated above and after some algebric manipulation, it results in

∫
2σ∗rr
r
dr −

∫
σθθ
r
dr − σmag

rr |r=R

(
1

R∗

)3n

=

=
1

ρU2
c

{

µ0

[−3H2
0

32

)

+ µ0χ

(

−9H2
0

48
+
H2

0

2
ln(R∗

∞RE)−
H2

0

2
ln(R∗RE)

]}

− 1

ρU2
c

[

µ0

(
9H2

0

16

)

+ µ0χ

(
H2

0

2

)](
RE

R

)3n

. (2.102)
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Finally, one reaches:

1

Remag

{
χ

2

[

ln

(
R∗

∞
R∗

)

− C1

2

]

−
[
C1

8
+

1

(R∗)3n

(

C2
1 − χ

2

)]}

, (2.103)

where

C1 =
3

4
, (2.104)

Remag =
ρU2

c

µ0H2
0

. (2.105)

Equation 2.105 represents what is defined as Magnetic Reynolds number. The hydrodynamic

Reynolds number, by definition, compares both inertial and viscous forces. In this case, the relation

between inertial and magnetic forces may be considerer as a Magnetic Reynolds number.

2.1.6 Final Version of Magnetic Rayleigh-Plesset Equation

Until now the formulation considered an applied magnetic field in t = 0 for the jump of traction.

Even though this is a valid condition, this consideration does not imply that the applied field reaches

it maximum value at R∞ and decays as it approaches the bubble surface. Mathematically, using

this formulation, the applied field on the bubble’s surface is null. However, in order to maintain the

most complete formulation, this condition was not used until now since it may not be guaranteed

in a pratical application.

Considering now this simplification, equation 2.103 may be written as:

1

Remag

{
χ

2

[

ln

(
R∗

∞
R∗

)

− C1

2

]

− C1

8

}

. (2.106)

For now on, the form bellow will be considered the final version of Magnetic Rayleigh-Plesset

equation (MRP). More information regarding the algebric manipulation can be found in Appendix

1. Therefore, the complete equation with the magnetic stress tensor is written as:

R∗R̈∗ +
3

2
(Ṙ∗)2 =

2

We

[
1

(R∗)3n
− 1

R∗

]

− 1− ε∗sen(ω∗t∗)

+
1

(R∗)3n
− 4

Re

Ṙ∗

R∗ +
1

Remag

{
χ

2

[

ln

(
R∗

∞
R∗

)

− C1

2

]

− C1

8

}

. (2.107)

In order to develop a numerical code to solve the Magnetic Rayleigh-Plesset equation we must

define what will be considered R∞. For that, the applied field described by Rosensweig [39] was

plotted. In this case, we consider that at a sufficient distance from the bubble, the applied field

would value 0.99H0.
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Figure 2.5: Magnetic applied field H as a function of the distance from the bubble.

We notice from figure 2.5 that the field decays as the observer approaches the bubble. This

characteristic may be observed by the change in colors: orange being the higher values of H and

blue the lower. Since this decay is substantially fast (scaling with r2), R∞ will not be high.

In figure 2.6, we observe that from r ∼ 2.3 the field value starts to decay expressively. However,

as seen in the insert, H0 = 0.99 is obtained with r = 4.658. In this way, any value above that one

can be consider as R∞. With that said, R∞ = 5 will be used for further investigations in respect

of numerical formulation.

2.1.7 Associated Time Scales

The model presented in this work involves several time scales associated with different physical

mechanisms present in the study of an oscillating bubble immersed in a magnetic field. The main

physical parameters are associated with the viscous diffusion (denoted as tµ); the surface tension

relaxation (expressed as tσ); the excitation time due to the oscillating pressure field applied (tω);

and one associated with the magnetic effects (defined as tm).

This last scale, tm, represents the relaxation time of the fluid magnetization. In other words,

it represents the fluid relaxation time. Indeed, it is the time the fluid takes to magnetize in the

presence of an external field. In addition to represent the innovation in this work, the time scale

can be interpreted as an interaction between the particles magnetic dipoles and the external field.

The forces and torques in each magnetic nanoparticle interact with the applied field, generating
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Figure 2.6: Magnetic applied field H as a function of the distance r from the bubble.

rotational and translational movements.

We can also define a typical macroscopic time scale of the problem, which will be called inertial

scale (or convective) and denoted by ti. This scale represents the time that an infinitesimal volume

of fluid takes to cover a radial distance equivalent to the equilibrium radius RE , at velocity Uc. In

this case, ti = RE/Uc.

Using Bernoulli’s principle, it is possible to write Uc as
√

|∆p̃|/ρ, where ∆p̃ = p̃∞ − pv. The

static pressure of the liquid evaluated far from the bubble at the equilibrium instant (t = 0) is

given by p̃∞ and pv denotes the steam pressure inside the bubble.

The problem studied is governed by a nonlinear equation involving multiple time scales, the

physical interpretation of the results necessarily requires an interpretation of the relationship be-

tween these scales. When the MRP equation was written in its non-dimensional form, several

dimentionless parameters that are related with those time scales appeared spontaneously. So we

may rewrite the time scales tω, tµ, tσ and tm as:

tω =
1

ω
, tµ =

R2
E

ν
, tσ =

√

ρR3
E

σ
, tm = RE ×

(
µ0H

2
0

ρ

)−1/2

, (2.108)

where ν represents the cinematic viscosity of the fluid, given by µ/ρ, σ is the surface tension

coefficient and ω is the frequency of excitation of the forcing pressure field. These time scales

represented in (2.108) can be written in a dimensionless form regarding the inertial time scale (ti),
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such that:

tω
∗ =

tω
ti

=
1

ω × (RE/Uc)
=

1

ω∗ , (2.109)

tν
∗ =

tν
ti

=
R2

EUc

νRE
=
UcRE

ν
= Re, (2.110)

tσ
∗ =

tσ
ti

=

√

ρR3
E

σ
× Uc

Re
=

√

ρU2
cRE

σ
=

√
We, (2.111)

tm
∗ =

tm
ti

= RE ×
(
µ0H

2
0

ρ

)−1/2

× Uc

Re
=

√

ρU2
c

µ0H2
0

=
√

Remag, (2.112)

where Reynolds, Weber and Magnetic Reynolds number have already been defined previously.

In this case, the Magnetic Reynolds number, for example, represents the relation between two

time scales besides been described as a quotient between inertial and magnetic forces. When the

applied field grows, the Magnetic Reynolds decreases. In conclusion, when there is no applied field,

Remag → ∞. The decrease in Remag implies an increase in the applied field, so the magnetic time

scale also decreases, as seen in (2.112). Typically, the magnetic time scales are very small and the

system tends to react quickly. When there is an increase in the magnitude order of that time scale,

such that it equates the continuous time scales (such as ti), the bubble reacts more expressively.

On the other hand, if the magnetic scale is very small in relation to the inertial one (Remag ≪ 1)

during a typical time of the bubble oscillation (considering that tω∗ ∼ 1) the nanoparticles will

have a much larger number of microstructural changes that the bubble will not notice.

The same thing happens in the other asymptotic limit, where the magnetic time is too large,

so that while the bubble oscillates one or more periods, the field has not yet been able to change

the microstructure of the ferrofluid. In this sense, it is expected that the bubble reacts better to

the magnetic effects when its magnetic time scales are in the same order of magnitude that the

inertial and excitation ones.

This same interpretation applies to the other non-dimensional parameters of the problem.

Whenever possible, the physical results obtained from the simulations in this work will be inter-

preted in terms of the typical time scales of the problem expressed in terms of non-dimensional

parameters that will serve as input for processing data.

31



Chapter 3

Numerical Solution

The numerical solution used for calculating the

nonlinear differential equation that governs the

bubble dynamics developed in the previous section

is modeled in this chapter. The application of the

fourth order Runge-Kutta and later its evolution

to the fifth order with adaptive time step is repro-

duced and validated.

3.1 Introduction

Due to the nonlinearity of the governing differential equation we do not have an analytic solution

for arbitrary input parameters. In this sense we must reccur to the use of computer simulation

techniques. There are several numerical methods for solving ordinary differential equations. In fact,

each one has strengths and weaknesses, depending on the application. One widely used method

within the class of differential equations described by Initial Value Problems (IVP), is the Runge-

Kutta scheme, which is presented in different orders of accuracy. This method corresponds to the

advanced predictor-corrector algorithm, which uses weighted averages of a function f calculated

at the extremes and at intermediate points with start and end time, i.e. [tj , tj + 1] [48].

3.2 Fourth Order Runge-Kutta

For the fourth order method, considering y′ = f(t, y) and y(t0) = y0, each time step is evaluated

into four sub-steps. In this case, four integrations per time step are made. The standard expression

that characterizes it is [49]:

yn+1 = yn

(

+
k1 + 2k2 + 2k3 + k4

6

)

, (3.1)

where

k1 = ∆tf(xn, yn), (3.2)
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k2 = ∆tf

(

xn +
∆t

2
k1, yn +

∆t

2

)

, (3.3)

k3 = ∆tf

(

xn +
∆t

2
k2, yn +

∆t

2

)

, (3.4)

k4 = ∆tf (xn +∆tk3, yn +∆t) . (3.5)

Note that this method will separate the ordinary differential equation, regardless of their order,

into first-order equations and then solve this system. For an initial value problem using n time

steps, it is necessary 4n ratings, which demands certain computational effort.

This time step value, ∆t, must be carefully set since the R(t) function, which describes the time

evolution of the bubble radius can vary significantly depending on the non-dimensional parameters,

and the applied disturbances, such as pressure and/or magnetic fields.

Small values of ∆t could decrease the risk of a high value of Ṙ(t), thus eliminating the possibility

of numerical collapse. However this would require a higher computational cost. With that said, it

is easy to conclude that the numerical error for the solution method is of the order O(∆t5).

The time interval must be calibrated depending on the excitation frequency of the applied

pressure and magnetic field (if oscillatory). A numerical time step depending on the proposed fre-

quency takes form as ∆t = O(1/ω). Likewise, we must note the fluid relaxation time. Considering

a ferrofluid, the alignment of the particles and aggregates modify the relaxation time of the fluid.

In this context, the time scales, including the magnetic one must be correctly analyzed.

Based on the analysis of Rayleigh cavity, an adequate time step for subsequent simulations

was identified. It is given between ∆tRay = 10−3 and ∆tRay = 5.10−4. A convergence test was

performed in order to understand how the system responds as the time step diminished.

It can be seen in figure 3.1 that as the time step increases the value of the average radius

for a sinusoidal excitation considering small amplitude increases in a not convergent manner. On

the other hand, for values of ∆t < 0.01 that variable reaches an stable plateau. In this sense,

there is no need to use a time step smaller than 10−3. It would be an unnecessary increase in the

computational cost for the same numerical solution of the governing equation.

Similarly, for very small values (smaller than 0.002), the system convergence would be impaired

by an oscillatory motion, as seen in the insert of figure 3.1. This phenomena is explicitly related

to the numerical residue, a characteristic of all computational codes that deals with the solution

of nonlinear equations. The language used, Fortran 90, uses by default eight digits of precision. A

very small number for the time step can generate computational instabilities, generating numerical

oscillations.

Importantly, in a physical problem governed by differential equations in terms of time deriva-

tives, the numerical solution passes through a time discretization process. Consequently, the

adoption of a numerical time step ∆t is part of the solution process. The physical parameters that
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Figure 3.1: (a) Convergence of the numerical solution of the average radius as a function of the

used time step; (b) The insert shows the magnified zone of the instability due the low time step

used.

govern the behavior of a dynamic system serve as a good estimate of the order of magnitude of

the involved time scales. As these parameters can be interpreted as typical time scales, some of

these can serve as an estimate of the magnitude of the numerical time steps appropriate for solving

certain differential equation.

3.2.1 Analytical Solution for Rayleigh’s Cavity

Consider an infinite mass of incompressible, homogeneous fluid acting without external forces

and at rest on a spherical portion of fluid, which is suddenly filled. The instantaneous pressure

change was determined at any point of mass using the equation of fluid motion [50]. Likewise, the

time for the cavity to be filled was also calculated.

Rayleigh [51] meticulously observed the conditions of collapse of a cavity in vacuum by de-

veloping a theoretical model that is used for calibration purposes in this study. Indeed, τc was

determined as being the time of total collapse of the cavity. Expressed, in non-dimensional terms,
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we have:

τc = 0.915R0

√
ρ

P0
→ τc

R0

√
ρ
P0

= 0.915. (3.6)

Considering a cavity, the dimensionless version of Rayleigh-Plesset equations becomes:

RR̈+
3

2
Ṙ2 = −1. (3.7)

The numerical integration of equation 3.7 leads to the following system of first order differential

equations: 





y = Ṙ

ẏ = 1
R [−1− 3

2y
2].

(3.8)

The numerical solution of the bubble movement in a collapse condition is presented in figure

3.2. The error in the estimation of the time of collapse given by the numerical solution and the

one predicted by the analytical solution is 0.082%. This, in a way, is a validation of the numerical

calculation and shows that our numerical integration calibrated with the methodology of time step

selection set out in this work, captures the bubble collapse time with great accuracy.
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Figure 3.2: Computational solution of the time of collapse proposed for Rayleigh’s cavity problem.

The insert shows in details the bubble movement during the collapse imminence.
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3.3 Adaptive Time Step

As stated before, in order to obtain the lowest possible computational requirement, time steps

must be meticulously calibrated. For unstable regions where there is a sudden change in radius

size or rapid variations of compression and expansion, it is necessary to set a smaller time step.

The estimated error obtained as we use a numerical method for solving ODEs is the key to

implement an adaptive time step. As the adaptive time step is used in the fourth order Runge-

Kutta, the need to capture each time step twice is required. One provides the value for y1 using the

complete time step. The other computes y2 independently, using two time steps. The associated

error between these two numerical mesures is given by:

∆err = y2 − y1. (3.9)

The first study in adaptive time steps was proposed by Fehlberg [49]. This method proposes

the use of six functions (fifth order Runge-Kutta). Nevertheless, the combination of these functions

must also result in the fourth order method.

The most general form of the method is expressed by:

k1 = hf(xn, yn), (3.10)

k2 = hf

(

xn +
1

5
h, yn +

1

5
k1

)

, (3.11)

k3 = hf

(

xn +
3

10
h, yn +

30

40
k1 +

9

40
k2

)

, (3.12)

k4 = hf

(

xn +
3

5
h, yn +

3

10
k1 −

9

10
k2 +

6

5
k3

)

, (3.13)

k5 = hf

(

xn + h, yn − 11

54
k1 +

5

2
k2 −

70

27
k3 +

35

27
k4

)

, (3.14)

k6 = hf

(

xn +
7

8
h, yn +

1631

55296
k1 +

175

512
k2 +

575

13824
k3 +

44275

110592
k4 +

253

4096
k5

)

. (3.15)

The approach of the y(t) solution for the fifth order Runge-Kutta is obtained by equation:

y∗n+1 = y∗n +
2825

27648
k1 +

18575

48384
k3 +

13525

55296
k4 +

277

14336
k5 +

1

4
k6. (3.16)

On the other hand, the approach of the y(t) for the fourth order Runge-Kutta assumes

yn+1 = yn +
37

378
k1 +

250

621
k3 +

125

594
k4 +

512

1771
k6. (3.17)

The error estimation is, finally, given by:

∆err = y∗n+1 − yn+1. (3.18)
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1. Define Re,We,Remag , χ, n (polytropic coefficient) and ε;

2. Initial conditions and simulation time R(0) and G(0);

3. While t(i− 1) < b do ;

4. Compute Rmin(R(0),We);

5. Compute k1, k2, k3, k4, k5, k6 e q1, q2, q3, q4, q5, q6;

6. Forth order → g(i) and Fifth order → P (i);

7. Compute error =

∣
∣
∣
∣

(
g(i) − P (i)

tolerance

)∣
∣
∣
∣
;

8. If error > 1 then → dt = htemp ∗ seg
9. Compute new k1, k2, k3, k4, k5, k6 and q1, q2, q3, q4, q5, q6;

10. If error > 1 then → dt = htemp ∗ seg;
11. If error > parameter then → hnext = seg ∗ htemp ∗ parameter2;
12. If error < parameter then → hnext = htemp ∗ parameter3;
13. If R(i) < Rmin then → COLAPSE

14. If hdid < dtm then → END

15. If hdid > dtm then → go to step 5.

(3.19)

Figure 3.3: Algorithm to compute R(t) as a function of the initial inputs.

These constants, given by Cash and Karp [32] provide smaller errors than the estimated by Fehlberg

[49].

Here, in the scheme shown in 3.3, b detones the total time of the simulation, an user defined option.

The minimum radius, Rmin represents the minimum radius proposed [40] where the bubble should

collapse. The variable htemp represents the temporary time step and the variable hnext is the next

time step to be used in the following iteration, after the multiplication by the security parameters

(seg) and tolerance (parameter2 and parameter3). Subsequently, the time step dt becomes hdid

at the end of the iteration and is compared with the minimum time, dtm, defined by the user.

Even though the bubble collapse is not on the continuum mechanics formulation an asymptotic

solution to predict the minimum radius before collapse can be developed. This theory [40, 41, 42]

considers the most adverse condition of the flow when Re → ∞. Considering that the ambient

pressure is constant p∞(t) = p̃, the Rayleigh-Plesset equation might be written as:

R̈R+
3

2
Ṙ2 = −∆p̃

ρ
+

1

ρ

(

∆p̃+
2σ̃

RE

)(
RE

R

)3n

− 2σ̃

Rρ
. (3.20)

The equation 3.20 migh be solved by the integrating factor method. In this case, the integrating

factor is given by 2ṘR2. Considering that, the left side of Rayeigh-Plesset equation can be seen as a

product of two functions, becoming a separable ODE. Multiplying equation 3.20 by the integrating

factor, we have:
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2R̈ṘR3 + 3Ṙ3R2 = −2ṘR2∆p̃

ρ
+

1

ρ
2ṘR2

(

∆p̃+
2σ̃

RE

)(
RE

R

)3n

− 4ṘRσ̃

Rρ
. (3.21)

Considering an equilibrium constant H̃:

H̃ =

(

∆p̃+
2σ̃

RE

)

R3
E. (3.22)

It is possible to write equation 3.21 as a function of its derivatives and integrate it considering its

initial conditions: Ṙ(0) = 0 e R(0) = R0:

d

dt
(R3Ṙ2) =

−2

3

(
∆p̃

ρ

)
d

dt
(R3) +

2

ρ
H̃
d

dt
(lnR)− 2σ̃

ρ

d

dt
(R2). (3.23)

Integrating, we obtain:

R3Ṙ2 =
−2

3

(
∆p̃

ρ

)

(R3 −R3
0) +

2

ρ
H̃
d

dt

(
lnR

R0

)

− 2σ̃

ρ
(R2 −R2

0). (3.24)

Its now possible to manipulate the equation and rewrite it as

Ṙ2 =

(
R3

0

R3

)[
2

3

(
∆p̃

ρ

)(

1− R3

R3
0

)

+
2

ρ
H̃

1

R3
0

ln

(
R

R0

)

− 2σ̃

ρ

1

R0

(
R2

R2
0

− 1

)]

. (3.25)

In the imminence of collapse, in which R << 1, equation 3.25 can be written as:

Ṙ2 =

(
R3

0

R3

)[
2

3

(
∆p̃

ρ

)

+
2

ρ
H̃

1

R3
0

ln

(
R

R0

)

− 2σ̃

ρ

1

R0

]

. (3.26)

Since the bubble is not a cavity and its moles number is finite we must not use the condition of

Ṙ→ ∞. In this case, the minimum radius is never null. Thus, Ṙ = 0 and at the collapse condition

the bubble reaches the minimum radius. Equation 3.26 reduces to:

0 =
2

3

(
∆p̃

ρ

)

+
2

ρ
H̃

1

R3
0

ln

(
R

R0

)

− 2σ̃

ρ

1

R0
. (3.27)

Isolating Rmin and aplying the exponencial function on both sides:

ln

(
Rmin

R0

)

= −R3
0

3H̃

(

∆p̃+
3σ̃

R0
,

)

, (3.28)

or

Rmin = R0e
−R3

0
3H̃ ∆p̃+

(
3σ̃

R0

)

. (3.29)
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Since the mathematical modelling is written in its non-dimensional form, this stop criteria must

also be written in a dimensionless version. Thus, the initial and minimum radius are both given

by:

R∗
min = RminRE , (3.30)

R∗
0 = R0RE. (3.31)

Substituing:

R∗
min = R∗

0e

(−R∗

0)
3R3

E
3H̃

(

δp̃+ 3σ̃
R∗

0
RE

)

= R∗
0e

X . (3.32)

Observing now how the term X can be written as a non-dimensional parameter:

X = − (R∗
0RE)

3∆p̃

3∆p̃R2
E

[
2σ̃

REδp̃ + 1
]

[

1 +
3σ̃

R∗
0RE∆p̃

]

. (3.33)

Using the Weber number, the equation 3.33 may be rewritten as:

X = − (R∗
0)

3

3
[

2
We + 1

]

[

1 +
3

R∗
0We

]

, (3.34)

and simplified as:

X = −(R∗
0)

2 (1 +
R∗

0We
3 )

We+ 2
. (3.35)

Thus, the minimum radius found by the asymptotic solution is given by:

R∗
min = (R∗

0)e
−(R∗

0)
2

[

(1+R∗

0We/3)

We+2

]

. (3.36)

3.4 Asymptotic Solution

In order to validate the numerical code developed, an asymptotic solution for small amplitudes

of the pressure forcing and applied magnetic field has been proposed. In this section, a regular

perturbation method is used in equation (2.107), considering the first order O(ε/Remag) asymptotic

solution. Under this limit, a variable change is made consisting in R = 1+ r. In a subsequent step

a binomial expansion is used for (1 + r)−1 and (1 + r)−3 as:

(1 + r)−3n = 1− 3nr +
3

2
[(1 + 3n)n]r2 + O(r3)

(1 + r)−1 = 1− r + r2 + O(r3). (3.37)
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Substituting equation (3.37) in (2.107) and considering a MacLaurin expansion of the function

ln(1 + r) around r = 0, we have ln(1 + r) = r + r2

2 and

r̈ + rr̈ +
3

2
ṙ2 = − 4r

We
− 3r − ε sin(ωt)− 4ṙ

Re
+

+
4ṙr

Re
+

1

Remag

{
χ

2

[

ln(R∞) +
r2

2
− r − C1

2

]

− C1

8

}

. (3.38)

Now it is possible to expand r as the following power series:

r =

∞∑

k=1

(
ε

Remag

)k

rk(t). (3.39)

Substituting equation (3.39) in (3.38) a theoretical solution for r1 is obtained and given by equation

(3.40).

r1(t) = e(2We+λ1)t/ReWe We[λ2λ3 −ReRemagωWe(4 + 3We)λ4 + λ5]

2(4 + 3We)λ1(16ω2We2 +Re2[−4 + (−3 + ω2)We]2)
. (3.40)

The parameters λ1, λ2, λ3, λ4, λ5 and Υ are given by equations (3.41), (3.42), (3.44), (3.45),

(3.46), (3.43), respectively.

λ1 =
√

We[4We−Re2(4 + 3We))], (3.41)

λ2 = −Υ16ω2We2 +Re2[−4 + (ω2 − 3)We]2, (3.42)

Υ =
1

ε

{
χ

2

[

ln(R∞)− C1

2

]

− C1

8

}

, (3.43)

λ3 = 2(−1 + e2λ1t/ReWe)We+
[

1 + e2λ1t/ReWe − 2e(2We+λ1)t/ReWe
]

λ1, (3.44)

λ4 = (−1 + e2λ1t/ReWe)Re2[−4 + (ω2 − 3)We] + 4[−2We+ λ1] + 4e2λ1t/ReWe(2We+ λ1), (3.45)

λ5 = 2ReRemag(4 + 3We)λ1e
(2We+λ1)t/ReWe4ω cos(wt) +Re[−4 + (ω2 − 3)We] sin(ωt). (3.46)

Based on that solution, figure 3.4 shows the maximum bubble radius in steady state as a

function of ε/Remag . The aim is to compare the numerical solution with the first order asymptotic

solution. The parameters are Re = We = ω = 1. We observe an error smaller than 1% for

ε/Remag ≤ 0.4. For instance, we have an error of 0.09% when ε/Remag = 0.1. This theoretical

approach works as a validation of the proposed algorithm, therefore in the next sections we intend

to use the developed code to explore other regimes that can not be captured by our asymptotic

solution.
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Figure 3.4: Comparison between the asymptotic solutions O(ε/Remag) (filled line) and the numer-

ical simulation (filled black circles) for the maximum radius obtained as a function of the excitation

pressure amplitude ε and magnetic Reynolds number Remag.
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Chapter 4

Constant Applied Field

This chapter shows the results for a bubble im-

mersed in a ferrofluid and subject to a con-

stant magnetic field. In this condition, the non-

dimensional parameters are analysed and a hy-

drodynamic linear stability analysis is conducted.

Thus, the collapse diagram is studied for both

Newtonian and non-Newtonian cases and the vi-

brationa patterns are identified. With that in

mind, a nonlinear control approach is used based

on Neural Networks.

4.1 Magnetic Reynolds Number Influence

As a first result, it is observed how this new dimensionless parameter, Remag, modifies the

bubble behavior. In Figure (4.1) it is possible to see how the magnetic field affects the bubble

motion. In this case, for Remag = 10, the behavior is similar to what we would observe if the

bubble was immersed in a Newtonian Fluid. Nevertheless, with Remag = 0.1 or in other words,

with a high applied magnetic field, it is noted that the bubble behavior is completely stable and

harmonic, showing a perfect limit cycle in the phase plot.

In order to understand how these patterns interfere regarding the bubble stability, it is im-

portant to discuss its response in the phase space, as shown in figure (4.1). For higher values of

applied magnetic field, the bubble reacts as an harmonic sysem, showing only one energetic state.

For Remag = 1, there is a deformation in the limit cycle, showing the distortion in the valley of

the time response.

For low values of applied magnetic field, such as Remag = 10, the behavior approaches the

one seen in the Newtonian case. Two energetic levels are present by the second limit cycle. This

response represents a new frequency of oscillation, showing that two periods are present. When

a magnetic field is applied, there are two mechanisms that describe the relaxation of a colloidal
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ferrofluid [53]. The first mechanism is the relaxation due to the particle’s hydrodynamic rotation

and is called Brownian diffusion time.
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Figure 4.1: (a) and (b) represent the bubble response in time and phase plot, respectively, for

Remag = 0.1; (c) and (d) show the bubble behavior in time and phase plot, respectively, for

Remag = 1; (e) and (f) represent the response in time and phase plot for Remag = 10. In all cases,

Re = 10, We = 5, ε = 0.3 and χ = 1.

The Néel mechanism, on the other hand is related to the magnetic dipole rotation. In general,

these mechanisms can be added to other time scales presented on the Mathematical Modeling

section. The coupling of these time scales can modify the bubble behavior, increasing, for example,

its amplitude of oscillation and avoiding the collapse. This result is shown in Figure (4.2). In this

case, the amplitude of the oscillating bubble radius increases when the time scales are coupled.

The bubble oscillation remains stable despite the bigger amplitude. When the applied magnetic

field is increased, the time scales do not couple. In this case, the magnetic dipoles align faster

than the inertial forces can act. On the other hand, by decreasing the magnetic field, the viscous

effects become more present, hindering the bubble expansion and contraction movements. A key

finding of the present investigation was that the nonlinear oscillatory motion of a gas bubble in a

ferrofluid induced by a sufficiently large magnetic field can be attenuated. It happens when the

magnitude of the magnetic force is comparable to the inertia force acting on the bubble interface.

This magnetic effect is a direct consequence of an extra normal stress (magnetic pressure) produced

in the surrounding polarized fluid under the action of a field [4].
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Figure 4.2: Amplitude of oscillation as a function of 1/Remag . The dashed circle represents the

higher values of amplitude, present where the time scales couple. In this case Re = 10, We = 10,

ε = 0.35, ω = 1 and χ = 1.

Once the bubble is now subjected to an external magnetic field and immersed in a magnetic

fluid, it is possible to analyze how the concept of collapse is modified by studying the collapse

diagram. Under the influence of a magnetic field, a magnetic torque due to the presence of an

external field acting on the magnetic particles causes the magnetization M to be out of phase

with H . In this situation, the expression for these magnetic torque, T = µ0M ×H , acting on the

particles will try to rotate this magnetic domains, resulting in a higher resistance of the particles

to rotate in the direction of the fluid vorticity which may result in an increase in the suspension

effective viscosity [54, 13, 39, 56]. Based on the change of viscous effects due the application of

a variable external field, it is expected that the collapse criteria is modified. When the applied

magnetic field is increased, there is a stabilization on the bubble movement preventing the collapse.

Even with a smaller magnetic field, Remag = 1, the result is more proeminent than in the case

of the bubble immersed in a Newtonian fluid. It is interesting to see that we can capture this

damping effect of the nonlinear responses by the application of an external field, which would be

equivalent to increase the fluid viscosity.

4.1.1 Magnetic Susceptibility Influence

The response of the material to an applied field, characterized by the magnetization behavior is

depicted by the suspension magnetic susceptibility. Its response describes along with the magnetic

permeability, the magnetic behavior of the material. In some cases, such as for diamagnetic mate-

rials, susceptibility is small and negative. In other cases, the relationship between magnetization

and applied field is nonlinear, so that the magnetic susceptibility varies with the intensity of this

applied magnetic field.
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Based on these considerations, a study regarding the influence of the magnetic susceptibility

was made. Figure (4.3) shows the behavior of the bubble radius as a function of χ for different

values of χ for Remag = 1. We note that for higher values of the magnetic susceptibility, the

transient response leads to an increase in the oscillation values of the bubble radius. However the

steady state response is directed to a more harmonic pattern. In addition to reaching higher values

in the initial transient response, the bubble behavior at steady state is harmonic and represented by

a limit cycle in the phase plane. The amplitude of oscillation in steady state is smaller, contributing

for the bubble stabilization.
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Figure 4.3: Bubble behavior for different magnetic susceptibilities. In (a) χ = 0.1; (b) χ = 0.5;

and (c) χ = 1 . The top images show the time response and the images bellow show the phase

plot and Poincaré section (black dots). For all tests Remag = 1, Re = 20, We = 10, ε = 0.3 and

ω = 1.

This behavior is directly related to the number of particles that align in the direction of the

applied field and how this microstructural dynamic influences the motion of the bubble. In this

case, when a small amount of particles align in the field direction, the bubble behavior is similar

to the one observed in the case of a bubble immersed on a Newtonian Fluid. In this condition,

the magnetic pressure is not enough to decrease the inertial movements. On the other hand, when

χ = 1, the magnetic pressure acts as if there was a decrease in the surrounding pressure around the

bubble. Since this field is applied from outside it attracts the particles and therefore the fluid in

the radial direction trying to expand the oscillating bubble. In other words, the bubble equilibrium
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radius grow and the amplitude of oscillation is smaller. This change is even more noticeable in the

phase plot. In (b) there is a second limit cycle, which represents a period doubling. We can see a

second frequency of oscillation on the time response. This second limit cycle gets smaller with the

increase of the magnetic susceptibility, until it reaches an almost harmonic response with only one

limit cycle or, as we can see in the Poincaré section, one energy level.

In figure (4.4), with Remag = 0.1 and χ = 0.1, the magnetic contribution is similar to other

cases when both Remag and the χ are more proeminent. In this case, even using a high magnetic

field, the amount of particles that align in the field direction is not enough to produce a considerable

contribution. On the other hand, when χ = 1, we can admit that the magnetic time scale couples

with the inertial one and the magnetic field interacts with both pressure field and the viscous

flow produced by the oscillatory motion of the bubble. With that in mind, it is possible to see

an harmonic response, oscillating around a higher equilibrium radius but with small oscilattion

amplitudes. In that case, we can consider that the magnetic contribution stabilizes the bubble

motion. We also note that the coupling of these time scales can cause or prevent the collapse of

the bubble.
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Figure 4.4: Bubble behavior for different magnetic susceptibilities. The top images show the time

response and the images bellow show the phase plot and Poincaré section (black dots). For all

tests Remag = 0.1, Re = 20, We = 10, ε = 0.3 and ω = 1.

To sum up, it was noted that the behavior of the bubble varies depending on the magnetic

susceptibility. However, the hypothesis of superparamagnetism indicates that the particles align
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immediately with the application of the magnetic field. Thus, the magnetic susceptibility is indeed

related to a spatial scale, conditioning homogeneity or anisotropy. With the increase of the suscep-

tibility more particles respond to the applied field. In this context, with many accounting particles,

i.e for large values of χ, there is a greater homogeneity in the magnetic suspension domain.

4.1.2 Acoustic Field Frequency Influence

The frequency of the acoustic field is also an important parameter of the problem since it’s

associated with the coupling of other time scales. When the frequency of the field increases, the

bubble oscillation period ends not being sufficiently large so that there is a coupling between

the viscous, inertial and magnetic forces. In this situation, the bubble begins to oscillate under

incomplete periods, showing different frequencies as response.

In Figure (4.5), one can see a dynamic behavior with several degrees of freedom. Moreover,

such rapid oscillation changes eventually prevents collapse. Thus, one has a precisely contrary

response to the application of a magnetic field: it avoids collapse, but the behavior of the bubble

radius becomes very nonlinear during its transient response.

The application of a magnetic field, as shown in figure (4.5) decreases the amplitude of oscil-

lation of the bubble. Basically, the presence of a magnetic pressure, as mentioned before, reduces

the effect of the acoustic pressure field. As the excitation frequency is higher than the natural

frequency of oscillation of the bubble, the acoutic pressure effects are even smaller. This mecha-

nism reduces the external excitation exerted on the bubble even more. Despite producing a small

damping ratio, the transient period is quite fast when the applied magnetic field is high. The phase

plots also show a very nonlinear transient but an harmonic response in steady state.

In figure (4.6), the frequency of excitation has been set to ω = 10. In this case, the bubble

responds even less to the acoustic field excitation. In this scenario, the amplitude of oscillation

is even lower due to the uncoupling of the inertial and excitation time scales. Moreover, during

one oscillation period other frequencies are noted (as rapid changes in the radius) that occur due

to the high frequency of the acoustic field. In this situation, the application of a magnetic field

causes the movement to become even more stable with very low oscillation amplitudes. Moreover,

at higher frequencies, it is noted that the application of a magnetic field can prevent the collapse,

in addition to stabilizing its movement.
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Figure 4.5: Bubble radius behavior (a) Remag → ∞ and χ = 0; (b) Remag = 1 and χ = 1; and (c)

Remag = 0.1 and χ = 1. In all cases Re = 10, We = 10, ω = 5 and ε = 0.3. The insert in (c) is a

zoom from t = 15 to t = 20, with a steady state response.
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4.1.3 Hydrodynamic Linear Stability Analysis

The importance of this analysis is to determine the influence of each physical parameter on the

amplification or attenuation of a small perturbation around an equilibrium state of the system. It

was noted that much of the physical interpretation of the results shown so far relies on the role

that different typical time scales have in the bubble dynamics. The application of an external field

changes the microscopic characteristics of the fluid. In this context, the non-dimensional numbers

have a major role in stabilizing the bubble movement. In this particular problem we use a contin-

uum mechanics formulation of the ferrohydrodynamics balance equations of a superparamagnetic

fluid in order to capture how microstructural modifications in the suspension structure influence

the macroscopic behavior of this oscillating bubble in its radial direction.

In this section a linear stability analysis will be developed from small amplitude disturbances

within the bubble radius. Considering R = 1 + δ(t) MRP equation and excluding the sinusoidal

excitation we have:

¨δ(t)(1 + δ(t)) +
3

2
˙δ(t)

2
=

2

We

[
1

(1 + δ(t))3
− 1

(1 + δ(t))

]

+

(
1

(1 + δ(t))

)3

− 1− 4

Re

˙δ(t)

(1 + δ(t))
+

1

Remag

{
χ

2

[

ln

(
R∞

(1 + δ(t))

)

− C1

2

]

− C1

8

}

. (4.1)

Excluding the terms of higher order and considering a binomial expansion so that:

(1 +R)−3 = 1− 3R− 3

2
(1− 3)R2 + O(R)3, (4.2)

(1 +R)−1 = 1−R+R2 − O(R)3, (4.3)

we have:

¨δ(t) + δ(t) ¨δ(t) +
3

2
˙δ(t)

2
=

2

We

[

−3δ(t)− 3

2
(1− 3)δ(t)2 + δ(t) − δ(t)2

]

+1− 3δ(t) − 3

2
(1− 3)δ(t)2 − 1−

4

Re
˙δ(t)(1− δ(t) + δ(t)2) +

1

Remag

{
χ

2

[

(ln(R∞)− 1− δ(t)) − C1

2

]

− C1

8

}

. (4.4)
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Now we insert a perturbation given by δ(t) = f0e
st and obtain the problem characteristic

polynomial, given by

s2 +
4

Re
s+

(

3 +
χ

2Remag
+

4

We

)

= 0. (4.5)

In this case, the two roots or eigenvalues are given by:

s1,2 = − 4

Re
±
√

16

Re2
− 4

(

3 +
χ

2Remag
+

4

We

)

. (4.6)

In this context, s = ξ−iω. The real part is responsible for the growth or reduction of the distur-

bances. On the other hand the imaginary part is associated with the disturbances phase and hence

its speed of propagation. We can see from equation (4.6) that both roots give us stable behaviors,

unless we have a negative magnetic susceptibility. If χ is negative, the material is diamagnetic. In

this case, the magnetic field in the material is weakened by the induced magnetization.

One solution is the desired dispersion relation, in which there will probably be stable and

unstable modes. This will be obtained for the calculated value in equation (4.6) with the negative

sign. The other solution always provide stable modes, which confirm what our previous results

have shown so far: the application of an external magnetic field tends to stabilize the oscillatory

motion of the bubble.

However in order to present a careful analysis of the system we will consider in this section the

case of a bubble immersed in a diamagnetic fluid, as studied experimentally by [57]. Therefore,

the bubble movement will be considered locally stable when ξ < 0. For ξ = 0, we have the neutral

stability condition, since the modes will not be amplified or attenuated in the course of time. In

this context, this condition produces the so-called neutral stability curve. In our case, this curve

will be a function of three dimensionless parameters: We, χ and Remag and their relation is given

by

We = − 8Remag

6Remag + χ
. (4.7)

In figure (4.7), we can see the three stability points in both cases (a) and (b). In region A,

all values lead to an unstable behavior. On the other hand, in region B, the roots real part is

negative and the disturbance and oscillation are out of phase with each other. In region C, there

is no imaginary part and the real one is always negative, leading to locally stable points. For that,

there is a combination of values that generate only real responses, an stability criterion given by:

χ

Remag
≤ 32

Re2
− 24− 8

We
. (4.8)

In this regard, it is noted again in this linear analysis that the application of a magnetic

field stabilizes the nonlinear dynamic behavior of a bubble subjected to an acoustic field. This

theoretical analysis helps us to confirm what our numerical results have shown so far.
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Figure 4.7: Neutral stability curve for (a) χ = −100 and (b) χ = −200. The three regions

represent: A unstable solution; B stable with complex roots; and C stable.
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4.2 Collapse Diagram

The attenuation of collapse can be seen in figure (4.8). As mentioned before, the application of

a magnetic field can stabilize the bubbles motion. In this context, a decrease in Remag or increase

in the magnetic susceptibility, χ, may change the bubble response due to an external pressure

forcing.

Re

W
e

0 20 40 60 80 100 120 14
0

20

40

60

80

100

Collapse

Figure 4.8: Collapse diagram for Remag = 1 and χ = 1 (dashed line), Remag = 1 and χ = 3

(dotted line) and Remag → ∞ (solid line), as a function of Re and We for ε = 0.3 and ω = 1.

However, this behavior differs from the previously noted, where the presence of the magnetic

field transforms the bubble motion in an harmonic oscillation. This phenomenon is explained

due to the abrupt transient which is also present in the magnetic case. Whereas the bubble

is at equilibrium and both fields are applied at t = 0, there is a lag until it reaches a steady

state oscillatory regime. During this short period of time, viscous, inertial and magnetic forces are

competing without coupling causing abrupt changes in the radius. These changes end up generating

high values of the radius derivative, implying in a higher probability of collapse. Nevertheless, it

is noted that when the magnetic force is dominant (χ = 3), the magnetic pressure acts trying to

compensate the mechanical pressure generated by the acoustic field, preventing the bubble collapse.

To sum up, depending on the parameters, the breakdown may be induced or prevented, but the

bubble movement remains harmonic in both cases, as seen in figure (4.9).
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Figure 4.9: Bubble radius behavior without collapse criteria for (a) Remag → ∞ and χ = 0; (b)

Remag = 1 and χ = 1; and (c) Remag = 1 and χ = 3. In all cases Re = 30, We = 30, ω = 1 and

ε = 0.3. In (b) we can see that the transient would cause collapse, even though the response is

less nonlinear.

4.3 Vibrational Patterns

The nonlinearity of the MRP equation increases the number of degrees of freedom. That means

that even though the system is more stable, it may be possible to find new patterns of vibration.

When the Magnetic Reynolds number is unitary, for example, the bubble movement approaches

an harmonic pattern. It is observed that inspite of preventing the collapse, the application of

magnetic fields can also increase the amplitude of the transient response. In this context, new

vibrational patterns appear, as seen in figure (4.10).

These vibrational patterns can be analyzed by different dynamical systems approach of such as

Discrete Fourier Transform (DFT), Poincaré section, phase plot, Lyapunov exponents and wavelets

transform as shown in 17. Each one of these approaches promotes gain of informations when char-

acterizing a nonlinear dynamic system. For instance, the frequency response give us information

about the energy stored in every harmonic. Since the excitation frequency used was ω = 1, we note

that the biggest amount of energy is present in the first harmonic of a time series. On the other

hand, deformations in the time response also can induce spectral spreading in which the energy

of the system spreads along different harmonics. That means that in some part of the system

response, there is a frequency variation. That frequency variation is also seen in the phase plot as

a shape deformation in the limit cycle. In this case, there is no second limit cycle, pointing out

that no period doubling is presented. The Poincaré section is another interesting approach to be

used, specially when the system is periodic. The stability of a periodic orbit of the original system

is closely related to the stability of the fixed point of the corresponding Poincaré map. We can see

that there is a difference in the energy levels seen in the phase plot.

That analysis might leads us to think that the bubble motion is chaotic, due to the nonlinearity

of the equation. In order to verify if there is a chaotic behaviour in this context, that is for a

spherical oscillating bubble immersed in a magnetic field and subjected to a pressure forcing, the

Lyapunov exponents must be obtained.
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Figure 4.10: Identified vibrational patterns as a function of Remag and χ. For all cases, Re = 10,

We = 10 e ε = 0.3.

The Lyapunov exponents are considered to be a dynamic measure of the complexity of attrac-

tors and can be used for the characterization of chaos and bifurcations, which are very common

consequences of high nonlinearity in dynamic systems, such as the transient-oscillatory motion of

bubbles in complex fluids [58]. Behnia [59] define the Lyapunov exponents as:

Consider two different neighboring points in the phase space in time t = 0 and t, with

distances in the i direction defined as ||δxi(0)|| and ||δxi(t)||. The Lyapunov exponent

will reflect the average growth (λi) of these initial distances.

||δxi(t)||
||δxi(0)||

= 2λit (t→ ∞) (4.9)

or

λi = lim
t→∞

1

t
log2

||δxi(t)||
||δxi(0)||

(4.10)

Based on that, we migh find three different behaviors of λ:

• If λ < 0, the trajectories are close (stable oscillation)
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Figure 4.11: Bubble response using different dynamical system approaches to analysis. (a) Shows

the DFT; (b) the phase plot and Poincaré section; (c) shows the three Lyapunov exponents. In all

cases Re = 10, We = 10, ε = 0.3, ω = 1, χ = 0.3 and Remag = 1.

• If λ = 0, then the energy levels maintain their relative positions (stable attractor)

• If λ > 0, it implies that the energy orbits do not remain nearby (unstable attractor)

To sum up, the existence of positive Lyapunov exponents indicates that there is a chaotic

behavior towards infinitesimal differences. In order to compute the Lyapunov exponents, we need

to transform the magnetic version of Rayleigh-Plesset equation in an autonomous system, given

by Equation 4.11.







dx
dt = y
dy
dt = 1

x

[
−3

2y
2 + 2

We

(
1
x3 − 1

x

)]
− 1

x − εsin(ωz)
x + 1

x4 − 4
Re

y
x2 + 1

Remag

[χ
2

(
ln(5)− ln(x)− 3

8

)
− 3

32

]

dz
dt = 1

(4.11)

Considering different values of Re, We, ε, Remag, χ and the initial conditions it is possible to

test the chaotic behavior of the bubble using a Matlab Lyaponov Exponents Toolbox. The output

of the Matlab LET code [60] may give different behaviors, which can be classified as periodic cycles

or stable equilibrium, nonlinear chaotic and pure random processes. In order to compute the bubble

vibrational pattern a neural netowork can be trainned. This tool is used in nonlinear systems as

a family of statistical learning models inspired by biological neural networks (the central nervous

systems of animals, in particular the brain) and are used to estimate or approximate functions

that can depend on a large number of inputs and are generally unknown. In practical applications,

the use of neural networks can help to identify how the bubble is vibrating and, from that, the

dimensionless parameters of the system.
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4.4 Neural Networks

As said in the previous section, in machine learning and cognitive science, artificial neural

networks (ANNs) are a family of statistical learning models inspired by biological neural networks

(the central nervous systems of animals, in particular the brain) and are used to estimate or

approximate functions that can depend on a large number of inputs and are generally unknown

[61].

This is a very interesting tool to use in pattern identification. In this case, considering the

new technologies been used, two networks were trainned in order to identify the bubble vibrational

patterns.

For the trainning of both networks, the Scaled Conjugate Gradient method was used in the

Matlab Neural Network Toolbox. The basic conjugate gradient backpropagation algorithm adjusts

the weights in the steepest descent direction (negative of the gradient). This is the direction in

which the performance function is decreasing most rapidly. Even though the Scaled Conjugate

Gradient needs more storage than the other second order algorithms, its convergence is more

rapid. This algorithm is based upon a class of optimization techniques well known in numerical

analysis as the Conjugate Gradient Methods [62]. From an optimization point of view, learning

in a neural network is equivalent to minimizing a global error function, which is a multivariate

function that depends on the weights in the network. This perspective gives some advantages in

the development of effective learning algorithms because the problem of minimizing a function is

well known in other fields of science, such as conventional numerical analysis.

Considering the use of a logarithmic or tangential transfer function the results obtained by the

neural network as patterns are not integer numbers and those errors can lead to misidentifications.

For that approach, ten tests were made for both harmonic and Lyapunov exponents inputs. In the

case of the harmonic input, the DFT response containing both amplitude and frequency information

from ω = 0 to ω = 10 were given as trainning set. For each case, the targets were given as the

correct patterns. In the second network, using Lyapunov exponents, the input is given as the three

exponents obtained from the autonomous system as shown in figure 4.12.

For the first network, based on the frequency spectrum, 95 neurons were set in the hidden

layer. The network was trainned during 100 epochs for each test. In the first layer a logarithmic

transfer function was used and in the second layer a linear transfer function. In the case of the

second network, trainned with the Lyapunov exponents, 20 neurons were used in the hidden layer

and the network was trainned for 1000 epochs. In the first layer a tangential transfer function was

used and in the second layer a linear transfer function.

The performance of the pattern identification using Neural Networks was analyzed based on

the normalized error. In this case, it was defined as the normalized absolute error between the

identified pattern and the correct one:

E =
|Pi − Pc|

4
100%, (4.12)
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Figure 4.12: Typical schematic of a neural network.

where Pi is the pattern identified by the network and Pc is the correct pattern.

In table 4.1 we can see an example related with three selected results between the ten tests

performed. In this case, the higher relative error is 13.55%. Considering a bigger validation set,

the error propagation is not going to be alarming. On the other hand, from table 4.2, we can

see the larger relative error when using lyapunov exponents as the main information to train the

neural network. Nevertheless, this information is not enough to decide which method would be

better to use.

Table 4.1: Identified pattern and normalized error for the 3 of the 10 tests using the harmonic

input.
Test 1 Test 2 Test 3

Pattern 1 1.008 (0.2 %) 1.013 (0.33 %) 1.024 (0.60 %)

Pattern 2 1.905 (2.38 %) 1.795 (5.13 %) 1.729 (6.78 %)

Pattern 3 2.894 (2.65 %) 3.127 (3.18 %) 3.075 (1.88 %)

Pattern 4 4.237 (5.93 %) 4.135 (3.38 %) 3.967 (0.83 %)

Table 4.2: Identified pattern and normalized relative error for the 3 of the 10 tests using Lyapunov

exponents input.
Test 1 Test 2 Test 3

Pattern 1 1.335 (8.38 %) 1.387 (9.68 %) 1.430 (10.75 %)

Pattern 2 2.183 (4.58 %) 2.035 (0.88 %) 2.088 (2.20 %)

Pattern 3 3.099 (2.48 %) 2.906 (2.35 %) 3.118 (2.95 %)

Pattern 4 4.342 (8.55 %) 3.906 (2.35 %) 3.783 (5.43 %)

We can see from figure 4.13 that even though the results from tables 4.1 and 4.2 have shown

that the Lyapunov exponents can lead to more missidentifications, on the average, the results are

more accurate and carry some relevant informations. The tests carried out here have demonstrated

58



that the use of less information as input, such as the Lyapunov exponents, and more epochs of

trainning may be more efficient. In this condition, the network has more time to adjust the

neurons weights. In general, the patterns have small distinctions among themselves and the use

of the frequency spectrum ends up not being the best tool. This is because the differences in

bandwidth and amplitude of each harmonic do not change much. For this reason, the network

ends up having difficulties in storing the primary characteristics of each pattern. If the patterns

presented more non-linear characteristics as shown in other studies [61], the use of the frequency

spectrum would be more appropriate.
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Figure 4.13: Comparison between both networks explored in the present work. (a) Result of 10

tests made with different weights initial conditions for the frequency spectrum input; (b) Results

of 10 tests made with different weights initial conditions for the Lyapunov exponents input;

In order to consider the pattern identification, the obtained pattern was rounded to an integer.

In this context, the higher the error obtained in the previous approach, the greater the chances for

the neural network to misidentify the pattern (considering the rounding).

Table 4.3: Identified pattern for the 10 tests for the harmonic input. In this context, the neural

network idenfity accurately the pattern in 90% of cases.
Test 1 Test 2 Test 3 Test 4 Test 5 Test 6 Test 7 Test 8 Test 9 Test 10

Pattern 1 1 1 1 1 1 1 1 1 1 1

Pattern 2 2 2 2 1 2 2 2 2 1 2

Pattern 3 3 3 3 3 3 3 3 3 3 3

Pattern 4 4 4 4 5 5 4 4 4 4 4

Correct Identification 100 % 100 % 100 % 50 % 75 % 100 % 100 % 100 % 75 % 100 %

As we can see from tables 4.3 and 4.4, the Lyapunov exponents give a robust way for examining

the bubble dynamic system explored in this work with neural network. The neural network cor-

rectly identified the vibrational pattern in 95 % of the cases. This is a consequence due to the fact

that the network trained with the Lyapunov exponent has less information to be used in training

(only 3 numbers), whereas in the case of frequency spectrum 95 points were used for each input.

In addition, the exponents have been more sensitive to the changes of the patterns. This shows

that the DFT may not be the most appropriated approach for this type of analysis in the absence
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Table 4.4: Identified pattern for the 10 tests for the harmonic input. In this context, the neural

network idenfity accurately the pattern in 95% of the cases.
Test 1 Test 2 Test 3 Test 4 Test 5 Test 6 Test 7 Test 8 Test 9 Test 10

Pattern 1 1 1 1 1 1 1 1 1 1 1

Pattern 2 2 2 2 3 2 2 2 2 3 2

Pattern 3 3 3 3 3 3 3 3 3 3 3

Pattern 4 4 4 4 4 4 4 5 4 4 4

Correct Identification 100 % 100 % 100 % 100 % 75 % 100 % 100 % 100 % 75 % 100 %

of pattern being highly nonlinear. Indeed, from a practical point of view, changes in harmonics

amplitude are not very significant in these cases.

In pratical problems that make use of the cavitation phenomena and ferrofluids, this identi-

fication opens application possibilites in different fields, such as biomedical and naval industries.

In the cavitation study, characterizing the bubble freedom degrees in its nonlinear motion is very

important for predicting premature collapse. In this context, using neural networks in order to

identify cavitation vibrational modes seems to be very promising for a complete characterization

of bubble dynamics.
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Chapter 5

Oscillatory Magnetic Field

This chapter presents the results obtained for a

bubble immersed in a magnetic fluid under the ac-

tion of an oscillating magnetic field. In this situ-

ation, new vibrational modes are analyzed and the

decorrelation between the excitation frequencies of

acoustic and magnetic fields lead the bubble to a

chaotic behavior.

5.1 Introduction

An oscillating magnetic field differs from an static magnetic field since it is time dependent.

In order to understand how the oscillatory magnetic field would interact with the static magnetic

field, two different conditions were proposed. In the first one, only the oscillatory contribution

would be study. In the second one, both static and oscillatory would be used in order to see how

the bubble would react.

5.2 First Field Condition

In this context, the H0 would be replaced by H(t), in which H(t) = H0 sin(wmagt). Therefore,

equation 2.43 is rewritten as:

2ṘR+R2R̈

R
− 2Ṙ2R4

4R4
=
pl(R)− p∞

ρ
− 1

ρ

[

µ0

(−3µ2rH(t)2

8

)]

+
1

ρ
µ0χ

[−µrH(t)2

3
− 17µrH(t)2

12
+
H2

0

2
ln(R∞)− H(t)2

2
ln(R)

]

. (5.1)

After the same algebric manipullations presented in the Mathematical Modelling chapter, the MRP

equation can be written as:
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R∗R̈∗ +
3

2
(Ṙ∗)2 =

2

We

[
1

(R∗)3n
− 1

R∗

]

− 1− ε∗sen(ω∗t∗)

+
1

(R∗)3n
− 4

Re

Ṙ∗

R∗ +
sin(ωmagt)

Remag

{
χ

2

[

ln

(
R∗

∞
R∗

)

− C1

2

]

− C1

8

}

. (5.2)

In practical applications, it would be the same as having the exclusive application of a sinusoidal

magnetic field.

5.2.1 Frequency Coupling Analysis

The addition of one more frequency at the system also adds a new time scale. Being a highly

nonlinear system, it is expected that the application of an oscillating magnetic field will influence

the movement of the bubble. However, this should only occur when the time scales are coupled.

Otherwise, if the time scale of the oscillating magnetic field is much bigger than the bubble oscilla-

tion time, the results should be similar to the ones obtained for a bubble immersed in a Newtonian

fluid [61].
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Figure 5.1: Bubble response for ε = 0.4, Re = 20, We = 20, ω = 3, Remag = 1, χ = 1 when (a)

ωmag = 1 in time and (b) phase plot with Poincaré section; (c) ωmag = 3 in time and (d) phase

plot with Poincaré section; and (e) ωmag = 5 in time and (f) phase plot with Poincaré section;

It is possible to see from figure 5.1(a,b) that when the magnetic frequency is smaller than the
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pressure forcing one, the bubble reacts the same way as when it is immersed in a Newtonian fluid.

That happens because the bubble oscillation time is much smaller than the magnetic one. In this

case, when the particles align in the field direction, the bubble has already oscillated during several

periods. Thus, since it is a sinusoidal field, when the particles align, the field starts to decrease

and there is a relaxation in the fluid, allowing the movement of the bubble.

On the other hand, when the magnetic frequency is the same as the pressure one, as shown

in 5.1(c,d), there is a coupling between these mechanisms. It is observed that there is a transient

in which the bubble changes from a stacionary condition to a state of reaction of several different

mechanisms. In this context, after the transient, there is a stabilization and an harmonicity is

observed in the movement thereof. This can be observed even in the phase space, in which a limit

cycle is observed with no period doubling or bifurcations. When the magnetic frequency increases,

the coupling mechanisms decrease and the movement of the bubble, although stabilized, suffer

from some variations in frequency. It is interesting to see that since the magnetic field acts much

faster in this case, the bubble still reacts to its actions. However, the bubble sees it as if a weaker

magnetic field has been imposed.

5.2.2 Magnetic Parameters Interaction

Similarly to the case of the static field, the magnetic parameters are of great influence on the

system. Note from figure 5.2 that when the applied field has high intensity with χ = 1, there is an

attenuation in the bubble oscillation amplitude. However, there is a period doubling. On the other

hand, when the magnetic susceptibility is small (ie. χ = 0.1) the magnetic particles do not align in

the field direction and the behavior is similar to the case when Remag = 0.1 and χ = 1. This shows

us that the applied field and the magnetic susceptibility are two complementary parameters. In

general, if few particles are magnetized, the result is similar to the case when a low field is applied

in a medium with high susceptibility.

The condition shown in (5.2c) lead us to think that the application of a specific magnetic field

and susceptibility migh lead the bubble to a nonlinear behavior or even chaotic, due to time scales

uncopling.

5.3 Second Field Condition

In this case, as explained before, there is an static field and an oscillating field in addition.

Yoshimura [63] classified the effects of magnetic fields on microbial growth and reproduction. In

biology, the use of static and oscillating magnetic fields may modify the growth (or destruction)

of microorganisms. Moore [64], for example, showed that the population of Pseudomonas aerug-

inosa and Candida albicans increased when the frequency of the aplied oscillatory magnetic field

increased. On the other hand, the cell population of Streptococcus themophilus reduced from

25, 000 cells/ml to 970. In this condition, in order to not affect the living microorganisms or try

to compensate one field action, both static and oscillating fields are applied. This aims to keep
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Figure 5.2: Bubble response for ε = 0.4, Re = 20, We = 20, ω = 3, ωmag = 3 when (a) Remag = 1,

χ = 1; (b) Remag = 1 and χ = 0.1; (c) Remag = 0.1 and χ = 1; (d) Remag = 0.1 and χ = 0.1.

the medium intact in biologial aspects.

For that, H0 is replaced by H(t) = H0[1 + sin(wmagt)] and the MRP equation becomes:

R∗R̈∗ +
3

2
(Ṙ∗)2 =
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1

(R∗)3n
− 1
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]
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)

− C1

2

]

− C1

8

}

. (5.3)

5.3.1 Magnetic Frequency Influence

Considering the sum of both oscillatory and static fields, the magnetic contribution is superior

than other cases. Accordingly, it is possible to see in figure 5.3 a bifurcation diagram involving the

two frequencies: magnetic and non-magnetic.

It is noted the existence of new modes of vibration. In this context, observing figure 5.4 one

may see patterns with smaller amplitudes, for example, as seen in patterns 1 and 2. On the other

hand, the application of an oscillatory field in addition with the static one may lead to the nonlinear

behavior seen in pattern 6. In this pattern, specifically, the harmonic oscillation is modulated by

another frequency. That behavior is normally seen in the FM radio waves, for example. In this

case, there are two leading frequencies: one related to the oscillation and another related to the
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Figure 5.3: Bifurcation diagram as a function of ω and ωmag for Re = 60, We = 20, Remag = 1,

χ = 1 and ε = 0.8.

modulation [65].

This shows us the importance of frequency coupling. In order to control the bubble motion,

the application of both oscillatory and static field is the best option, since several new patterns

appear. On the other hand, the system becomes more sensibe to the parameters. This sensitivy

to initial conditions migh lead the bubble to a chaotic behavior, specially because of the presence

of new parameters concerning different physical mechanisms.

5.4 Chaos Analysis

A chaotic time-series analysis can give us a profound insight into the complex hydrodynamics

of gas liquid systems. In this context, the study of bubble behavior has been the center of atten-

tion and it is shown that this phenomenon exhibits highly complex and chaotic dynamics both

experimentally [66, 67, 68] and numerically [69, 70].

As said before, the existence of a positive Lyapunov exponent is the indicator of chaos, showing

that neighboring points with infinitesimal differences at the initial state abruptly separate from
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Figure 5.4: (a) Pattern 1; (b) pattern 2; (c) pattern 3; (d) pattern 4; (e) pattern 5 ; (f) and pattern

6 obtained from different combinations of ω and ωmag for ωmag for Re = 60, We = 20, Remag = 1,

χ = 1 and ε = 0.8.

each other in the ith direction.

In our case, the bubble governing system is non-autonomous. Considering the autonomous

version, we transform the system to a 3−dimensional model in the phase space. Since our third

variable dz/dt = 1, one of the Lyapunov exponents will always be null. The Lyapunov spectrum,

applied in this work, can be used to give an estimate of the rate of entropy production and of the

fractal dimension of the considered dynamical system. In particular from the knowledge of the

Lyapunov spectrum it is possible to obtain the so-called Kaplan-Yorke dimension [71], given by:

DKY = k +

k∑

i=1

λi
|λk+1|

, (5.4)

where k is the maximum integer such that the sum of the k largest exponents is still non-negative.

Actually, the inverse of Lyapunov exponents can be seen as a characteristic timescale: the

Lyapunov time. Another way to compute the complexity of a dynamical system is analyzing its

entropy. Yakov Sinai was the first to come up with a mathematical foundation for quantifying the

complexity of a given dynamical system [72]. Inspired by Shannon’s entropy in information theory,

and in the framework of Kolmogorovs Moscow seminar, Sinai introduced the concept of entropy for

so-called measure preserving dynamical systems, today known as Kolmogorov-Sinai entropy. This

entropy turned out to be a strong and far reaching invariant of dynamical systems. Summing up,
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the Kolmogorov-Sinai entropy measures the unpredictability of a dynamical system. The higher

the unpredictability, the higher the entropy. It has been anticipated that the magnetic field can

be used to control the growth or collapse of bubbles in conducting fluids [73].

Based on that, the dynamic of the oscillating bubble has been observed using tools of dynamic

system analysis. In the first test, a non-magnetic test was made. In this context, the bubble is

immersed in a Newtonian fluid and the frequency of the pressure forcing is ω = 3. In figure 5.5,

we can see three different types of oscillation in the same signal. The phase plots bellow show the

response from 0 ≤ t ≤ 250, 250 ≤ t ≤ 500 and 500 ≤ t ≤ 550. The bubble collapsed at t = 550

due to an amplification in its energy, as can be seen from the phase plot. We may notice that the

bubble response passes through transients at the beginning of each period, but tends to reach a

stable and harmonic response until the next period.

In figure 5.6 we can see the bubble response in frequency spectrum, Poincaré section and

Lyapunov spectrum. The peak of higher energy in the frequency spectrum is located on the

pressure forcing frequency (ω = 3). As expected there are positive Lyapunov exponents in the

Lyapunov spectrum, showing a chaotic behavior of the bubble. The Lyapunov dimension is not

always null in this case.

When a static magnetic field is added, the behavior appears to stabilize, as shown in figure 5.7

but if we analyse the signal for long enough, after t = 258, the bubble energy starts to grow in a

nonlinear way. This sensitivy to initial conditions is a characteristic of chaotic systems. In the first

phase plot, that represents 0 ≤ t ≤ 258, after the transient, the bubble movement is characterized

by a limit cycle. On the other hand, in the second phase plot, there is an unstable equilibrium

point.

In figure 5.8, the frequency spectrum, Poincaré section and Lyapunov spectrum is shown. The

Poincaré section shows some points in the unstable equilibrium point but, after some time, there

are other energy levels at bigger R and R′, what lead the bubble to collapse. Again, there are

positive Lyapunov exponents in the spectrum on the initial transient.

On the other hand, when an oscillatory magnetic field is applied, the amplitude of oscillation

of the bubble decreases significantly, as seen in figure 5.9. In this context, the bubble does not

collapse and the magnetic field tends to stabilize its motion at every time. The time response

was divided in three periods: 0 ≤ t ≤ 258, 258 ≤ t ≤ 510 and 510 ≤ t ≤ 700. On every period,

even though the response is not harmonic, it is very similar as we can see in the three phase plots

presented. The phase plot shows a period doubling at the very first limit cycle and the addition on

a third one with some deformation. The insert shows us that there are more than one frequency

of oscillation and a deformation in the time response between these two frequencies.

Even though there are positive Lyapunov exponents, as seen in figure 5.10, the amplitude of

the harmonic in ω = 3 decreases, which is also shown in the time response as a decrease in the

bubble amplitude of oscillation. In this case, even in a chaotic motion, the bubble does not collapse.

Indeed, its collapse is prevented when immersed in a magnetic fluid, subject to extreme conditions.

When the frequency of the magnetic field increases, the bubble behavior becomes even more
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non-linear, but again there is no collapse. In fact, the amplitude of oscillation tends to decrease

with time. Being a highly nonlinear system, any rapid decoupling caused by the application of the

oscillating magnetic field generates major disruption. Under these conditions, a particle that has

been convected due to the oscillatory motion of bubble and end up taking longer to align could

cause large variations in the system. However, since the magnetic time scale is very small, the

system tends to rapidly return to its equilibrium state.

The responses in frequency, Poincaré section and Lyapunov spectrum, shown in figure 5.12,

are very similar to the ones found when other values of ωmag were applied. Nevertheless, there are

small variations in the frequency spectrum generated by the spectrum spreading of power in the

frequency of the pressure forcing and the magnetic field.
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Figure 5.5: Bubble response in time and phase plots for Re = 60, We = 20, ω = 3 and ε = 0.8 when immersed in a Newtonian fluid.

69



Frequency

A
m

pl
itu

de

0 2 4 6 8 10
0

250000

(a)

R
R

’
0.9 1 1.1 1.2

0

0.2

0.4

0.6

(b)

t

LE

20 40 60 80

-0.4

0

0.4

(c)

Figure 5.6: Bubble response in frequency spectrum, Poincaré section and Lyapunov spectrum for Re = 60, We = 20, ω = 3 and ε = 0.8 when

immersed in a Newtonian fluid.
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Figure 5.8: Bubble response in frequency spectrum, Poincaré section and Lyapunov spectrum for Re = 60, We = 20, ω = 3, ε = 0.8, Remag = 1

and χ = 1 when immersed in a magnetic fluid.
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Figure 5.9: Bubble response in time and phase plots for Re = 60, We = 20, ω = 3, ε = 0.8, Remag = 1, χ = 1 and ωmag = 5 when immersed in a

magnetic fluid.
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Figure 5.10: Bubble response in frequency spectrum, Poincaré section and Lyapunov spectrum for Re = 60, We = 20, ω = 3, ε = 0.8, Remag = 1,

χ = 1 and ωmag = 5 when immersed in a magnetic fluid.
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Figure 5.11: Bubble response in time and phase plots for Re = 60, We = 20, ω = 3, ε = 0.8, Remag = 1, χ = 1 and ωmag = 10 when immersed

in a magnetic fluid.
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Figure 5.12: Bubble response in frequency spectrum, Poincaré section and Lyapunov spectrum for Re = 60, We = 20, ω = 3, ε = 0.8, Remag = 1,

χ = 1 and ωmag = 10 when immersed in a magnetic fluid.

76



Another study can be done with respect to correlation between two variables. In this case, the

correlation of the signal R(t) with R(t+ τ), where τ scales with the system period of oscillation.

This approach, called scatter diagram or delay methods, can be used for both conditions: stationary

and oscillatory.

Observing figure (5.13), it is possible to see a perfect strong positive correlation between both

variables. That means that the magnetic effects, when added with a stationary and an oscillatory

part, increases the system memory, as expected.
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Figure 5.13: Scatter diagram for R(t) and R(t + τ) when Re = 10, We = 10, ω = 2, ε = 0.3,

Remag = 1, χ = 1, ωmag = 4 shows a perfect strong positive correlation.

However, figures (5.14) and (5.15) shows a weaker correlation between both variables. In this

condition, with a static magnetic field, there is no coupling between the magnetic effects and

the inertial ones. Indeed, the magnetic effects are less proeminent and less memory is added to

the system, weakinning the correlation. The same behavior is observed when only the oscillatory

magnetic field is applied.

It was noted that the coupling of time scales is very sensitive. Thus, the application of a

magnetic field with both static and oscillatory parts allows the fluid to be permanently magnetized.

Furthermore, when the oscillatory part couples with the bubble oscillation, it responds as if a

stronger magnetic field is applied.

When no magnetic field is applied, the correlation is even weaker, due the lack of memory of

the system, as seen in figure (5.16).
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Figure 5.14: Scatter diagram for R(t) and R(t + τ) when Re = 10, We = 10, ω = 3, ε = 0.3,

Remag = 0.1, χ = 1.
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Figure 5.15: Scatter diagram for R(t) and R(t + τ) when Re = 10, We = 10, ω = 3, ε = 0.4,

Remag = 0.1, χ = 1, ωmag = 3.
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Figure 5.16: Scatter diagram for R(t) and R(t+ τ) when Re = 10, We = 10, ω = 3, ε = 0.4.
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Chapter 6

Ferrofluid Magnetization

This chapter aims to compare the superparamag-

netism hypothesis used in the mathematical mod-

elling of MRP equation with a magnetization

model. In this context, the magnetic stress ten-

sor is modified and the Langevin model for equi-

librium magnetization is used.

6.1 Introduction

The mathematical formalization of the balance equations of Ferrohydrodynamics began with

the simplified hypothesis of superparamagnetism. In this condition, the system of governing equa-

tions does not demand the resolution of the magnetization evolutive equation nor the angular

momentum equation, since M = χH . Indeed, besides all the differences between the superpara-

magnetic model and the magnetization evolution equation, maybe the most important one is the

presence of a linear relaxation term τs that accounts for deviations from the equilibrium state.

Indeed, in systems where the magnetic moment relaxation rate plays an important role, the

magnetization on the linear momentum balance must be used. This model has proven to be far

more robust than the superparamagnetic one, in which particles align with the field immediately.

In this context, an analysis of the magnetization of the fluid through finite difference method is

made. However, there is no coupling with the MRP equation. Therefore, it is considered a virtual

bubble always oscillating in a harmonious and sinusoidal way.

6.2 Mathematical Modelling

This study intents to compute the magnetization effects in the stress tensor when a phenomeno-

logical equation for the magnetization is used. In this consideration, the particles take a period of

time to align in the field direction.

Observing equation 2.92 and disconsidering the term referring to σθθ, we have:
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R∗R̈∗ +
3

2
(Ṙ∗)2 =

2

We

[
1

(R∗)3n
− 1

R∗

]

− 1− ε∗sen(ω∗t∗)

+
1

(R∗)3n
− 4

Re

Ṙ∗

R∗ + 2

∫ ∞

R

σ∗rr
r
dr + σ∗rr. (6.1)

Considering now the magnetic stress tensor as:

σmag = µ
H2

2
I +BH = µ0

(
H2

2
I +HH +MH

)

. (6.2)

And its radial component:

σrr = µ0

(
H2

r

2
+Hr +MrHr

)

= µ0

(
3H2

r

2
+MrHr

)

, (6.3)

where H is the applied magnetic field, M is the magnetization vector and B is the magnetic

induction vector. As explained before, in the Mathematical Modelling chapter, it is essential to

determine the field H .

On the other hand, the phenomenological equation for magnetization may be written as [74]:

∂M

∂t
+ v · ∇M =

(
1

2
∇× v +ω

)

×M +
1

τs
(M0 −M) (6.4)

where M0 is the magnetization of equilibrium in a magnetic field H, given for dilute fluids from

the Langevin superparamagnetic relationship, and M , as previously defined, is the actual mag-

netization at a given instant of time. Thus, τs is the magnetic relaxation time constant and

ω = 1/ζM ×H , where ζ is given by:

ζ =
ρ

Jτsµ0
(6.5)

where ρ is the fluid density, J is the polar moment of inertia of the particles and µ0 is the magnetic

permeability. Physically interpreting equation 6.4 we may note that the term on the left side is

associated with the material derivative of the magnetization vector field, the first term on the right

side represents a transport by the rotation of the particles that compose the magnetic fluid and

the transport of magnetization by the action of the vorticity of the fluid.

The magnetization on the linear momentum balance has a wide applicability to systems where

the relaxation rate of the magnetic moment plays an important role. In this approach, important

physical parameters of the suspension appear explicitly on the mathematical formulation. The

combination of these parameters (φ, τs, α). In the present model, a transient response of the

magnetization is considered and the convective contribution is accounted. Since in this case the

bubble has only radial motion, then equation 6.4 might be written as:

∂Mr

∂t
+ vr

∂Mr

∂r
=

1

τ∗s
(M0,r, −Mr), (6.6)
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where τ∗s is the non-dimensional magnetic relaxation time (τ∗s = τs/τh, being τh a hidrodynamic

time scale) and M0,r may be modeled as:

M0,r =M∗
dL (α)φ, (6.7)

where M∗
d is a physical non-dimensional parameter that represents the magnetization magnitude

order of the material, φ is the volume fraction of particles and L (α) is the Langevin function of

the α parameter representing the interation between particles and magnetic field, given by:

α =
µ0mH0

kBT
, (6.8)

where µ0 is the vacuum magnetic permeability, H0 is a typical intensity of the applied magnetic

field, kB is the Boltzmann constant and T is the fluid absolute temperature.

Indeed, a rigorous definition of the time scale τs is given by

τs =
τNτB
τN + τB

, (6.9)

where τN is the Néel characteristic time scale, associated with the time that the particle dipole

moment takes to flip and align with an external applied field H . For now on, τ∗s will be replaced

by τs in order to provide a clear nomenclature. The Brownian rotational time scale, on the other

hand, is represented by τB. When τN ≪ τB , τs → τN and when τB ≪ τN , τs → τB . While

τN ∼ ed, being d the particle diameter, the Brownian time scales with τB ∼ d3. In this sense,

τN ≪ τB for nanosized particles. In this asymptotic limit the particles may be interpreted as

small gyroscopes and their magnetic dipole moments may flip regardless their rotational motion.

It is also important to notice that in this limit the physics is restricted to Brownian suspensions

where the Péclet number (Pe = Ud/D) must be always much less than 1. Here, U is a typical

velocity and D is the isotropic diffusional Stokes-Einstein coefficient. In the other asymptotic limit,

τB ≪ τN , the magnetic dipoles are fixed in each particle and Pe might be arbitrary. Under the

perspective of continuum mechanics, the assumption of fixed dipole moments (τB ≪ τN ) leads to a

more physically consistent model. From a phenomenological perspective, the Néel relaxation time

scale lies on non-continuum mechanims in the realm of quantum mechanics.

We may observe from figure 6.1 that the suspension may be dominated by different time

scales. In general, small particles lead to τs = τN ≪ τB . Defining a Magnetic Péclet number

as Pemag = τN/τh and being Pe = τB/τh we may conclude that in a suspension of nanosized

particles Pe ≪ 1 and Pemag ≪ 1. In order to couple the hydrodynamic time scale with the

magnetic relaxation time, Pemag ∼ 1. In this sense, the flow time scale should be extremely fast.

From a practical point of view, when one considers a simple shear (in a rheometer, for example),

τh = 1/γ̇. In this condition, γ̇ should be extremely high. Since τN ≪ τB , Pe→ ∞.

However, when there is a formation of aggregates or micro-sized particles are used, the flow

time scale migh become important. In this condition, when coupling is considered, Pe ≫ 1 and

Pemag ≪ 1. Three asymptotic limits can be explored as seen in 6.2. In this context, τs will be

assumed as Pe or Pemag depending on the suspension characteristics.
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Figure 6.1: Schematic example of the transition between multiple time scales and its relation with

the particles size.

≫ 1 → nanometric τN ≪ τB
τs ∼ Pemag

≪ 1 → micrometric
τN ≫ τB

τs ∼ Pe

∼ 1 → interfacePe
Pemag

= τB
τN

Figure 6.2: Three asymptotic limits obtained by the comparison between Pe and Pemag .

In this regard, it is noted that for suspensions in which τN ≪ τB, there is only one main time

scale. Thus, the flow does not interact with the particles as τh ≫ τN → Pemag ≪ 1. Acording

to Sobral and Cunha [75] for nanosized particles τN ∼ 0.1ns, whereas τB ∼ 103ns. In this

application, in order to compute the coupling between the hydrodynamic scale and the magnetic

ralaxation time, the flow must be extremely fast and Pe ∼ 104. On the other hand, if we consider

micro-composites of nanoparticles τB ≪ τN and Pemag ≪ 1. Given that, the coupling between

hydrodynamic and magnetic time scales is easier to obtain from a practical perspective when using

microsized particles.

This discussion shows that the microstructure of a magnetic suspension is governed by several
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mechanisms with multiple time scales. With this in mind, the interface between continuum and

non-continuum mechanics becomes tenuous. Like many other physical problems, the mutiplicity

of time scales allows the study of a rich and highly nonlinear dynamics.

6.3 Numerical Modelling

This nonlinear behavior of the bubble dynamics does not allow the equations to be solved

analytically and in order to optimize the analysis of these nonlinear ordinary differential equation,

a computer simulation was used. A finite-difference method in Fortran 90 was proposed. It is a

numerical method for approximating the solutions to differential equations using finite difference

equations to approximate derivatives. In this case, a bubble sinusoidal motion uncoupled with the

flow is used.

Considering equation 6.6 and using a backward difference, it is possible to achive and always

stable an convergent scheme as shown bellow:

M t+1
r −M t

r

∆t
= −

{
[1 + 2εsin(ωt) + ε2sin2(ωt)]ωεcos(ωt)

r2

}(

M t+1
i+n −M t+1

i−1

2∆r

)

+
1

τs
(Md(L(α))φ−M r+1

r ). (6.10)

where t is the current time step, t+1 is the next time step and i represents a certain node. In this

condition, it is possible to consider the following constants:

C1 =

{
[1 + 2εsin(ωt) + ε2sin2(ωt)]ωεcos(ωt)

}

, (6.11)

C2 =
1

τs
, (6.12)

A =MdL (α)φ. (6.13)

With this discretization is noted that the node i depends on the nodes i − 1 and i + 1. For this

reason, a linear system of type Ax = b is mounted, as shown bellow:
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1. Define Re,We,Remag , χ, n (polytropic coefficient) and ε;

2. Define α, ε, τs, φ, ω,Md, Remag and χ;

3. Define dt, the time step andL, the size of the mesh;

4. Define the initial and boundary conditions;

5. Define constants:C1, C2, C3;

6. do p = 1, 1000;

do i = 2, n− 1;

A(i, i) = 1 + C2;

A(i, i + 1) = C1(i);

A(i, i − 1) = C1(i);

b(i) =M(i− 1) + C2C3;

end do ;

end do ;

10. call linear system;

11. Compute M(i);

(6.15)

Figure 6.3: Algorithm to compute the magnetization and the magnetic contribution of the problem

To solve the linear system shown in Equation 20 with n× n matrix, the TDMA (Tri-Diagonal

Matrix Algorithm), also known as Thomas Algorithm was used. It is a simplified form of Gaussian

elimination that can be used to solve tridiagonal systems of equations. Finally, the trapezoidal

rule is used for the numerical integration of equation ??. An algorithm of the numerical solution

is shown in 6.3:

6.4 Parameters Influence on the Magnetization

As said before, when a paramagnetic or ferromagnetic material is stressed by a magnetic field

the magnetic dipoles within the material will attempt to align their magnetic dipole moment

parallel to the direction of the applied field. Ferromagnetic materials display a strong magnetic

interaction between neighboring molecules, while paramagnetic materials display only weak inter-

actions between neighboring material molecules.

The initial slope of the magnetization curve, χ, is the magnetic susceptibility and is given as:

χ =
M

H
=

π

18

µ0φM
2
dd

3

kBT
, (6.16)

where d represents the particle diameter, kB is the Boltzmann constant, T is the temperature, φ is

the volumetric fraction of particles, Md is the solid particles magnetization and µ0 is the magnetic

permeability of free space. The susceptibility describes the magnitude of magnetic response shown

by a magnetic material at low field strengths. A large value of χ, as said before, corresponds to

strongly magnetic materials, while a small value corresponds to a weakly magnetic material.
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Based on the proposed code, several results are obtained when the physical parameters are

changed. Each parameter changes the system behavior in a different way. Changing the volu-

metric fraction of particles can increase the magnetization drastically as shown in figure 6.4. It

is known that when the magnetic field is applied to a magnetic fluid, its rheological properties

will change. For diluted ferrofluids where there are almost no interaction between particles the

Brownian rotation is hindered by the magnetic field, so its effective viscosity is increased [76]. The

transient time also decreases.
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Figure 6.4: Diagrams of R versus time for different particle volume fraction with α = 1, ε = 0.5,

ω = 1, τs = 1 × 10−2 and Md = 0.5. (a) Represents φ = 1%, (b) φ = 3%, (c) φ = 5% and (d)

φ = 8%. The diagonal lines represent the transient time. The range varies from 0 to 1 (blue to

red).

The increase of particles in the fluid, also changes the corresponding susceptibility, as proposed

by Shliomis [53]. When the volumetric fraction of particles is greater then 10%, a necessary

correction is made in equation 6.16. In this case:

χ(2χ+ 3)

χ+ 1
=
π

6
φ
µ0M

2
dd

3

kBT
= α (6.17)

Since the corresponding susceptibility is bigger, the increase of the volume fraction increase the

magnetic time, which correspond to the alignment time.

Even though Curie’s law for the initial susceptibility shows that it depends linearly on the

particle concentration, there is an essential deviation from the Langevin formula. This is caused
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by particle-particle interaction [77], which was not considered in this work, but should be observed

at high concentrations [33].

Changing the interaction between the particles and the field also allow us to control the applied

magnetic field, increasing the magnetization, as shown in 6.5.
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Figure 6.5: Diagrams of R versus time with φ = 5%, ε = 0.5, ω = 1, τs = 1× 10−2 and Md = 0.5

for (a) α = 1, (b) α = 3, (c) α = 5 and (d) α = 8. The diagonal lines represent the transient time.

The range varies from 0 to 1 (blue to red).

The increase of the applied magnetic field decreases the magnetic time, but do not change

the transient time. Changing the magnetic relaxation time, on the other hand, modificates the

transient time, as shown in 6.6.

When the magnetic relaxation time decreases, the transient time represented by the diagonal

line slope also decreases. This is due the alignment of the particles that takes less time to occur.

In quasi-equilibrium ferrohydrodynamics, M is collinear with H , as in ferrohydrostatics. The

viscous stress tensor is then symmetric, and it is immaterial whether relaxation is dominated by

the Néel or Brownian relaxation mechanism [39]. When M does not align with H , there exists

a nonequilibrium state of magnetization and a concomitant state of asymmetric stress. Brownian

relaxation is faster than Néel relaxation for particles of sufficiently large size. Note that the

assumption of τs ≪ τh is not directly related with Pe. In other words, we may have τs ≪ τh for

arbitrary Pe number (Pe ∼ 1 or Pe≫ 1).

The amplitude and frequency do not generate many changes in magnetization, as shown in
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Figure 6.6: Diagrams of R versus time with α = 1, φ = 5%, ε = 0.5, ω = 1 and Md = 0.5 for (a)

τs = 4× 10−2; (b) τs = 2× 10−2 and (c) τs = 5× 10−3. The diagonal lines represent the transient

time. The range varies from 0 to 1 (blue to red).

6.7. First, the disturbance generated by the oscillatory motion of the bubble is not very relevant

in contrast to the mesh size
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Figure 6.7: Diagrams of R versus time with (a) ω = 1 and ε = 0.3, (b) ω = 3 and ε = 0.3, (c)

ω = 1, τs = 1× 10−2 and ε = 0.7 and (d) ω = 3 and ε = 0.7 with α = 1, φ = 5%, ε = 0.5, ω = 1,

and Md = 0.5. The diagonal lines represent the transient time. The range varies from 0 to 1 (blue

to red)

On the other hand, when the factor Md is increased, there is a change in transient, shown in

figure 6.8, since this magnetization factor has a behavior similar to the decrease in relaxation time.
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In other words, the capacity of the fluid particles to be magnetized increases considerably.
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Figure 6.8: Diagrams of R versus time with (a) Md = 0.5, (b) Md = 2.0, (c) Md = 4.0 for α = 1,

φ = 5%, ε = 0.5, τs = 1× 10−2 and ω = 1.

To sum up, it is possible to conclude that the magnetic relaxation time is one of the main

parameters that control the magnetization. The reduction thereof causes the particles to align more

quickly in the field direction, approaching the superparamagnetic behavior. Furthermore, the Md

factor is also extremely important in increasing or decreasing the magnetization. The variation

of the volume fraction of particles has a very similar behavior to the Langevin parameter, α,

increasing in direct proportion, although more discretly, the magnetization. Indeed, the alignment

characteristics of magnetic dipoles of the fluid can be easily controlled by the applied field and the

type of particles employed.
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Chapter 7

Experimental Analysis of a Rising

Bubble

In order to visualize the bubble in a ferrofluid,

an experimental setup was designed. This chap-

ter aims to explore the results obtained with these

experiments for a bubble rising in different fluids

inclusing a magnetorheological suspension and a

ferrofluid with high particle magnetization.

7.1 Introduction

Multi-phase fluids play an important role in many natural and industrial processes such as

combustion/chemical reaction, petroleum refining and boiling. The rising of a single bubble in a

viscous liquid due to buoyancy forces is one typical multi-phase flow. A fundamental understanding

of the bubble rising physics is essential in various practical applications, ranging from the rise of

steam bubbles in boiler tubes to gas bubbles in oil [78]. Indeed, it is very difficult to study a bubble

under low Stokes velocity.

As a result of that difficulty, approximate theoretical solutions have been derived in the limit

of very small bubble deformations (low Bond number) for either high [79] or low [80] Reynolds

numbers, where the bubble shape is relatively stable. That is the condition used in this work for

all the simulations and code development.

This spherical shape is completely related to the bubble size. The fact that gas bubbles with

volumes exceeding about one centilitre take a spherical-cap shape when they rise steadily through

liquid of small viscosity appears to have been noticed first by Taylor and Davies [81].

So far, we have used the Weber number as the non-dimensional parameter related to the

superficial tension. However, the rising of a bubble in a viscous fluid under the influence of

gravitational forces can be generally grouped in three different regimes: spherical, ellipsoidal,

and spherical cap. These regimes are achieved depending on the values of two important non-

dimensional quantities, the Bond and Morton numbers:

90



Bo =
g∆ρd2

σ
, (7.1)

and

Mo =
g∆ρη4l
σ3ρ2ℓ

(7.2)

where d is the bubble diameter, ρℓ is the liquid density, ηl is the liquid viscosity, ∆ρ = ρℓ−ρg is the

density difference between continuous medium and the dispersed fluid and g is the gravitational

acceleration. The Bond number, Bo is the ratio of the body forces (effective gravitational forces)

and the surface tension forces, but it could also be considered as a dimensionless size value of the

bubble [82]. The physical parameter Mo provides a description of the properties of the surrounding

fluid, mainly focusing in viscosity and surface tension. A general classification of the bubble is

usually done depending on final shape or by the primary forces acting on the system [83].

However, the transition areas from regime to regime are still not well defined. A brief description

of each of the three main regimes: Spherical, ellipsoidal, and spherical cap is provided as follows

[84].

• Spherical regime: This regime is dominated by surface tension and viscous forces. Original

size of the bubble is small, usually less than 1.3mm. The shape of the bubble remains

spherical or nearly-spherical. Usually the ratio of minor to major axis is less than 10%. In

this regime, the terminal velocity is proportional to the size of the bubble.

• Ellipsoidal regime: This regime is mainly dominated by surface tension. Bubble size is

intermediate, typically from 1.3 to 6 mm, and the range for Bo is 0.25 < Bo < 40. Final

shape is usually oblate with convex interface if looking from inside. Generally, there is no

fore-and-aft symmetry. In this regime, there is little viscous resistance to internal circulation,

therefore drag and terminal velocity are very sensitive to contamination.

• Spherical cap regime: This regime is governed by inertia force. Bubble size is large, usually

bigger than 6 mm. Bo > 40 and Re > 1 : 2. In this regime, terminal velocity of bubble is

proportional to size. In addition, large inertia creates higher deformation by creating high

pressure on the front and rear and low pressure at the sides

Besides the bubble shape, many experiments performed over the last 50 years have demon-

strated that millimetric bubbles rising in low viscosity liquids do not generally follow a straight

trajectory [85]. In the regime where bubbles exhibit approximately oblate spheroidal shapes, they

rather rise in zigzag within a given vertical plane or spiral around a vertical axis. In pure water

the transition from straight path to zigzag path occurs when the equivalent diameter of the bubble

exceeds 1.8 mm, which corresponds to a rise Reynolds number of about 660 and an aspect ratio

about 1.85 [86].
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7.2 Experimental Setup

In order to generate the bubbles accurately and in a controlled way, a syringe pump was

developed. For that, a microcontroller (Arduino) was programmed to control a stepper motor.

This stepper motor was connected to a linear actuator that pushes the glass syringe. In order

to controll the motor, the Easy Driver hardware was used. This driver has an H-bridge design

internally, which is an electronic circuit that enables a voltage to be applied across a load in either

direction. In other words, it allows DC motors to run forwards and backwards. A LCD display is

used to inform the user if the motor is running forward or backward and other relevant information.

The apparatus can be seen in figure 7.1.

Figure 7.1: Experimental bench working as a syringe pump. The electronic part controls the

stepper motor step. This motor is connected to a linear actuator that pushes the syringe with

velocity proportional to the motor rotation speed and the amount of steps.

The eletronic circuit and the protoboard figure produced by Fritzing can be seen in Appendix

II. Two leds were added to show the user the motor action if the LCD is not connected. In order

to control the LCD contrast, a 10kΩ potentiometer is used. The electrical circuit and the three

modes of operation of the LCD are shown in figure 7.2. The LCD is programmed to initiate the

process and then inform the user if the motor is running forward or backward. Between this two

modes, the system waits for 10 seconds, which is also shown in the LED screen. The syring is

connected to an acrylic tank in which the fluid is added.

The dimension on the tank must be calculated regarding the physical non-dimensional param-

eter called Stokes number. If we consider the bubble as a flotating particle, it is possible to define

two time scales. One related to the bubble relaxation time and the other one related to the time the

bubble needs to rise a distance a, which is its radius. These two time scales are given respectively

by:

tr =
m

6πµa
(7.3)
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Figure 7.2: Electronic part of the experimental bench. The Arduino is connect to an H-bridge

(Easydriver), stepper motor, LCD screen and leds. The LCD screen works in four different modes:

(a) initialization mode, (b) clockwise , (c) countdown and (d) counterclockwise. The contrast of

the LCD screen is controlled by a potentiometer.

and

tc =
a

Ut
, (7.4)

where m is the bubble mass, a is its radius, µ is the viscosity of the fluid and Ut is the terminal

velocity. Now, considering that Sta = tr/tc and using equations 7.3 and 7.4 we define that:

Sta =
mUs

6πµa2
, (7.5)

and for the case of creeping flow (Re≪ 1) the particle terminal velocity reduces to Stokes terminal

velocity given by:

Us =
2

9

∆ρ

µ
ga2. (7.6)

Supposing a single isolated small bubble, which is approximately a perfect sphere due to surface

tension dominant effect on its shape and µ = 100cP , the Stokes solution is a good approximation.

Us = 0.0747
m

s
(7.7)

and
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Sta = 2.36 × 10−4. (7.8)

Now if this Stokes number is compared with a Stokes number related to the tank height, H,

where:

StH =
mUs

6πµaH
. (7.9)

this leads to

StH
Sta

=
a

H
(7.10)

Considering that StH must be smaller than 0.1, so the bubble reaches its terminal velocity within

the height of the column. In this condition, the critical tank heigh Hc should be:

Hc

a
=

Sta
StH

. (7.11)

We may observe that if the bubble is small enough, it quickly reaches the Stokes terminal

velocity. Besides, considering creeping flow, Us ∼ Ut, where Ut is the terminal velocity. In this

condition H/a≪ 1. Based on that, the whole bench can be seen in figures 7.3 and 7.4.

Figure 7.3: The whole experimental setup. A shows the fluid column, B is the back LED light

used to iluminate when using opaque liquids, C represents the computer used to control the

microcontroller, D is the syringue, E shows the linear actuator, F is the stepper motor, G shows

the electronic devices, H is the HD camera and I is the monitor of visualization.
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Figure 7.4: The experimental bench apparatus seen from another point of view. In this image is

possible to see the test column. The black paper on background facilitates the visualization due

the contrast.
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The magnet used in order to apply a magnetic field is shown in figure 7.5. This magnet made

from a combination of neodymium, iron and boron is extremely strong, but fragile at temperatures

above 120oC and has typical values of remanence and coercitivity 0.38T and 600kA/m, respectively.

Figure 7.5: Neodymium magnet used as a constant applied magnetic field in the experiments

In order to compute the decay of the field produced by the magnet, two different gaussmeters

were used: a LakeShore 410 Gaussmeter and F.W.Bell 5070 Gaussmeter, shown in figures 7.6(a)

and 7.6(b). Both equipments measure the strength of the magnetic field at a point in space based

in the Hall Effect. The Hall generator is a device commonly used to measure flux density. It is

a thin slice of a semiconductor material to which four leads are attached at the midpoint of each

edge. A constant current Ic is forced through the material. In a zero magnetic field there is no

voltage difference between the other two edges. When flux lines pass through the material the path

of the current bends closer to one edge, creating a voltage difference known as the Hall voltage Vh.

In an ideal Hall generator there is a linear relationship between the number of flux lines passing

through the material (flux density) and the Hall voltage. The Hall voltage is also a function of

the direction in which the flux lines pass through the material, producing a positive voltage in one

direction and a negative voltage in the other. If the same number of flux lines pass through the

material in either direction, the net result is zero volts. This sensitivity to flux direction makes it

possible to measure both static (dc) and alternating (ac) magnetic fields.

This voltage is also a function of the angle at which the flux lines pass through the material.

The greatest Hall voltage occurs when the flux lines pass perpendicularly through the material.

Otherwise the output is related to the cosine of the difference between 90o and the actual angle.

The decay of the field produced by the magnet is shown in figure 7.6. It is possible to see that

for d ≥ 3cm, the measured values can be fitted by a function of type 1/r2. However, when d ≤ 3cm

it is more appropriate to fit the gaussmeter behavior by a exponencial fit. For the F.W.Bell 5070
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(a) LakeShore 410 Gaussmeter (b) F.W.Bell 5070 Gaussmeter
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Figure 7.6: Field decay measured with the F.W.Bell 5070 Gaussmeter (empty circles and dashed

line) and the LakeShore 410 Gaussmeter (filled circles and solid line). The 1/r2 behavior is shown

for d ≥ 3cm.

Gaussmeter, the fits are given by:

B =







e(−0.65d+1.62), if d ≤ 3.0cm (near-field configuration)

1.59d−1.69, if d ≥ 3.0cm (far-field configuration)
(7.12)

and for the LakeShore 410:

B =







e(−0.58d+1.55), if d ≤ 3.0cm (near-field configuration)

1.22d−1.26, if d ≥ 3.0cm (far-field configuration)
(7.13)

It is interesting to notice that the near-field configuration could also be fitted if we consider
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other harmonics besides 1/r2. However, at certain small distance d, this series diverges. For

this reason all the simulations experiments regarding particle-particle magnetic interaction should

be made with dilute suspensions. If the particles are at a critical distance dcr, the decay of the

magnetic forces and torques, represented respectively by 1/r3 and 1/r4 would produce errors.

However, in numerical simulations of many bodies problems, a near-field repulsion force (fictitious

lubrication) is used to avoid the particles overlapping.

In addition to using gaussmeters, it is also possible to calculate analytically the field generated

by a permanent magnet [87]. In order to conduct this calculation, the magnet is positioned as

shown in figure 7.7.

 2a

2b

y

x

z

Figure 7.7: Schematic of the permanent magnet position for the analytic calculation.

The fields in the x and y directions will not be considered. However, the Hz component is

given by:

Hz =
J

4πµ0

[

tan−1

(

(x+ a)(x + b)

z(x+ a)2 + (x+ b)2 + z2
1/2

)

+ tan−1

(

(x− a)(x− b)

z(x− a)2 + (x− b)2 + z2
1/2

)]

J

4πµ0

[

−tan−1

(

(x+ a)(x − b)

z(x+ a)2 + (x− b)2 + z2
1/2

)

− tan−1

(

(x− a)(x+ b)

z(x− a)2 + (x+ b)2 + z2
1/2

)]

, (7.14)

where J/µ0 = M . Considering that the remanent magnetization of the neodymium is M = 1.1T ,

a = b = 2.5cm, it is possible to compare the analytical solution with the values measured by the

gaussmeters. This comparison is shown in figure 7.8.

It can be seen that there is a good correlation between the results. However, we may notice

that the analytical solution is not adequate in the near-field region due to the exponencial behavior

of this region.
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Figure 7.8: Field decay comparison between the analytic solution (dashed line) and the values

measured by F.W.Bell 5070 Gaussmeter (filled circles) and the LakeShore 410 Gaussmeter (blank

circles). The 1/r2 behavior is shown for d ≥ 3cm.

7.3 Fluids Characterization

7.3.1 Viscosity Measurements

In order to characterize the viscosity of the fluids used in the experiments, an Anton-Paar

Physica MCR 301 rheometer is used to measure the viscosity. The rheometer, shown in figure 7.10

is installed on a robust table and isolated from vibrations. It allow us to study both Newtonian

and non-Newtonian fluids with or without the influence of magnetic fields in simple and oscillatory

shears. The temperature of the plates is kept constant due to a Peltier system. When a magnetic

field is applied, this system cannot be used, due to the electrical components and the temperature

is controlled with a thermal bath from Lauda.

The rheometer is supplied with compressed air from a Schulz compressor. The air is previously
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(a) Anton-Paar Physica MCR 301 Rheometer (b) Rheometer plates

cleaned and dehumidified by several filters (as shown in figure 7.9). Depending on the viscosity

of the fluid, the shear rate can reach values around 5000s−1, which overcomes most viscometers

standards.

Figure 7.9: Filters used to clean and dehumidified the compressed air from the Schulz compressor

The physical measuring principle of rheometry is used to determine macroscopic material func-

tions of a sample behavior. However, such functions are the sum result of the sample microscopic

structure parameters. The rotational tests conducted using an Anton-Paar rheometer are possible

due to the dynamic EC motor that controls the shear rate imposed. Besides, a Peltier system is

used to maintain the temperature of the sample from −150oC up to 1000oC. In this context, to

conduct the experiments, the sample is loaded into a gap between two parallel plates. The upper

disc rotates due to the movement of an ultra-low inertia motor, coupled to an ultra-high precision

position encoder, which can be seen in figure 7.10.

The size of the gap is determined due to the fluids viscosity. For the magnetic fluids used to

generate bubbles the gap and the volume of the sample is shown in table 7.1. In order to obtain

the sample volume, we must use the rotational plate diameter dPP50 = 49.963mm.

When the fluid is sheared in the rheometer it is governed by Continuity and Navier-Stokes

equations. For that, both stationary and rotational disks are used as boundary conditions. The
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Figure 7.10: Rheometer plates schematic. The rotational plate (with radius R) is positioned at

a distance δ from the stationary plate and rotates with angular velocity ω. The fluid sample is

added between both plates.

Fluid Gap [mm] Sample Volume [ml]

Ferrofluid # 1 0.4 0.784

Magnetorheological Suspension 0.4 0.784

Ferrofluid # 2 0.7 1.372

Table 7.1: Adequate gaps and sample volume for fluids used.

mechanical quantity to be controlled in the experient is the torque, which must be within the range

indicated by the manufacturer (200mNm - 0.1µNm). The torque is based on the force acting on

the element of fluid. In this case, the shear rate is a function of the disk radius, the angular velocity

and the gap between the rotational and static disc:

γ̇ =
ωr

δ
, (7.15)

where ω is the angular velocity and δ is the gap size. Said that, the torque is then, given by:

T =

∫ R

0
rηγ̇2πrdr, (7.16)

so

T =
ηγ̇R3π

2
. (7.17)

Based on that information, the magnetic fluids used are tested. The uncertainty of the viscosity

measurements obtained by the rheometer was considered the maximum between the standard

deviation of the measurements obtained for each shear rate and the one calculated by the rheometer

torque expression in equation 7.17:

∆η =
∂η

∂T
∆T +

∂η

∂R
∆R+

∂η

∂γ̇
∆γ̇. (7.18)

101



7.3.1.1 Ferrofluid #1

Ferrofluid #1 is a mixture of EFH3 (commercial ferrofluid manufactured by Ferrotec) and

mineral oil (commercialized by VETEC) . Both fluid characteristics can be seen in table 7.2:

Fluid Viscosity [cP] Volumetric Fraction [%] Density [g/mL] Magnetization [Gauss]

EFH3 12 11.8 1.42 650

Mineral Oil 156 cP - ≈ 0.85 -

Table 7.2: Properties of the fluids used as base to synthesize the ferrofluid #1

In order to measure the fluid viscosity, three tests are conducted for different shear rates. For

each shear rate, the viscosity is measured in time (0 ≤ t ≤ 300), as seen in figure 7.11(a). For each

realization, a time average was taken and an ensenble average was made from these, as shown in

figure 7.11(b).

t

η

50 100 150 200 250 300
155

155.5

156

156.5

(b)

t

η

50 100 150 200 250 300

155

155.5

156

156.5

(a)

Figure 7.11: (a) The viscosity η is shown as a function of time for the first (dotted line), second

(dashed) and third (solid line) realizations. (b) The time avarage of each realization is shown in

dotted lined and the ensenble average by the solid line.

With the ensenble avarage of each shear rate, the fluid viscosity can be obtained. For ferrofluid

#1, we made three realizations for γ̇ = 50, γ̇ = 100 and γ̇ = 500. The Newtonian fluid behavior

can be seen in figure 7.12. This is consistent with expected, since there is no applied field.

7.3.1.2 Magnetorheological Suspension

The magnetorheological suspension (MRS) is a mixture of mineral oil and magnetic micropar-

ticles (d ≈ 100µm). The magnetic particles used in the experiment were maghemite nanoparticles

(mean diameter equal to 4nm) immersed in styrene-divinylbenzene spherical micron-sized polymer
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Figure 7.12: (a) The viscosity η of the ferrofluid is shown as a function of time for the first (dotted

line), second (dashed) and third (solid line) realizations. (b) The time avarage of each realization

is shown in dotted lined and the ensenble average by the solid line.

templates with mean diameter of 100µm. The difference from a MRS and a ferrofluid is basically

the stability of the suspension. While in the ferrofluid there is Brownian motion, this mechanics

is not effectively in the MRS due to the particle size.

When subjected to a magnetic field, the MRS greatly increases its apparent viscosity, to the

point of becoming a viscoelastic solid, depending on the volumetric fraction of particles. In this

case, there are 758 ppm in volume so the fluid is not opaque.

For the MRS, we made three realizations for γ̇ = 20, γ̇ = 100 and γ̇ = 500. It is possible to see

from figure 7.13 that the fluid has a Newtonian behavior. Again, that is expected because there is

no applied field and the suspension is very dilluted.

We may observe on figure 7.14 the magnetorheological suspension amplified with a Olympus

30 UC microscope. Note on the far left of the figure, the presence of dimers and trimers when the

suspension is subjected to shear rate of cot γ = 300. These type of chains are the most proeminet

in diluted suspensions. However, when we apply a magnetic field (middle figure), there is an

agglomeration of these particles, increasing the length of the chains. For this reason, the viscosity

increases when the field is applied. These agglomerates generate a flow resistance. In far right,

the figure shows the same suspension 24 hours after the application of the magnetic field. It is
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Figure 7.13: (a) The viscosity η of the magnetorheological suspension is shown as a function of

time for the first (dotted line), second (dashed) and third (solid line) realizations. (b) The time

avarage of each realization is shown in dotted lined and the ensenble average by the solid line.

observed that there is still a residual magnetization (due to hysteresis) since the particles become

small magnets.

Figure 7.14: The far left figure shows the suspension under a shear (γ̇ = 300). The figure in the

midle presents the magnetorheological suspension when there is an applied magnetic field. The far

right figure shows the same suspension 24 hours after the application of the magnetic field.
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7.3.1.3 Ferrofluid #2

The ferrofluid #2 is a mixture of EFH3 (commercial ferrofluid manufactured by Ferrotec) and

silicon oil. Both fluid characteristics can be seen in table 7.3. For the ferrofluid #2, we made two

realizations for γ̇ = 10, γ̇ = 20, γ̇ = 50 and γ̇ = 100. The non-Newtonian behavior can be seen in

figure 7.15.

Fluid Viscosity [cP] volumetric Fraction [%] Density [g/mL] Magnetization [Gauss]

EFH3 12 11.8 1.42 650

Silicon Oil 60,000 cP - ≈ 0.97 -

Table 7.3: Properties of the fluids used as base to synthesize the ferrofluid #2
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Figure 7.15: (a) The viscosity η of the magnetorheological suspension is shown as a function of

time for the first (dotted line), second (dashed) and third (solid line) realizations. (b) The time

avarage of each realization is shown in dotted lined and the ensenble average by the solid line.

The viscosity can be fitted by a Cross Model [88] given by:

η = η∞ +
(η0 − η∞)

1 + (0.02γ̇)4.2
(7.19)

This model basically represents two plateaus (the zero-shear Newtonian plateau and the infinite-

shear Newtonian plateau) and a shear-thinning region. It is extremely difficult to synthesize pure
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silicone oil with high viscosity. For this reason, it is common to add long chain macromolecules.

However, when the macromolecules are not deformed, or at rest, the fluid behaves as a Newtonian

one. As these macromolecules have a high molecular weight, there is a relaxation mechanism

generating the shear thinning behavior. That effect, called reptation [89] describes the effect of

polymer chain entanglements on the relationship between molecular mass and chain relaxation

time (or similarly, the polymer zero-shear viscosity). This memory effect varies directly with the

molecular weight (M) with τ ∼M3.4 [90].

At low shear rates the flow does not interact with the polymer molecules. In this situation the

molecules relaxes faster than the variations of the flow maintaining its original form. However,

as the shear rate increases, also does the macromolecule deformation, which occurs in the flow

direction. The viscosity decreases with the increasing shear rate until the threshold at which the

molecule reaches its maximum elongation.

7.3.2 Surface Tension

The surface tension of the bubbles is measure using a Lauda TVT2 tensiometer, shown in figure

7.16. The measuring principle here is the drop volume technique. Actually, on the simple balance

between Arquimedes’ buoyancy force and interfacial surface when a small drop is generated and its

detachments from the edge of a capillary tube. By this principle is possible to make measurements

of surface tension between gas-liquid and interfacial tension between liquid-liquid. The mechanical

arm of the tensiometer pushes the syringe plunger, which presses the fluid into the capillary. The

drop remains attached to the capillary due to superficial tension. The temperature is controlled

and kept constant (24 degree Celsius) by using a Lauda thermal bath.

Figure 7.16: Figure shows the computer with the special data aquisition software, the tensiometer

and the thermal bath: all from Lauda.

With the gradual increase in the drop volume, it detaches from the capillary. The superficial
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tension is given by:

σ =
∆ρV g

2πR
F (7.20)

where V is the drop volume, g is the gravity acceleration, ∆ρ is the difference of both fluids density,

R is the capillary radius and F is a correction factor given by the manufacturer. The capillary is

immersed in a glass container which is filled with a fluid. In this case, the fluid is air. If the liquid

in the syringe has greater density, the straight capillary should be used. If this fluid has the lower

density, a reserve capillary must be used. In this case, the drop is formed under the light barrier,

and rises to the top because of the difference in specific gravity. The formed drop is detected when

passing through the light barrier and the critical drop volume and time is measured.

In standard mode of operation, the only adjustable parameter is the drop formation rate, which

remains constant throughout the experiment. Thus, all the drops have the same formation time.

This was the mode used in all tests, performed at a temperature of 24oC, which is kept constant

with a Lauda Thermal Bath, with the straight capillary (r = 1.38mm). The average results are

given in table 7.4, for two different tests. For each test, we consider five realizations of drops

formation (cycles of drop formation) and, for each realization we average over five drop volume

formations.

Fluid Surface Tension [mN/m] Volume [µl]

Ferrofluid #1 30.36 ± 0.8 20.16

Magnetorheological Suspension 30.62 ± 0.27 20.34

Table 7.4: Surface tension obtained for both tested fluids as a function of the drop volume.

7.4 Experimental Results

7.4.1 Mineral Oil

When using a mineral oil of µ = 156cp, depending on the velocity set in the stepper motor,

the bubble may deform. In this context, we show figure 7.17. An edge detection algorithm was

used in order to observe the bubble shape. It is possible to see two different types of bubbles: the

spherical cap and ellipsoidal. This is related to the high Reynolds number obtained due to the

motor velocity.

Using the software CVMOB [91], it is possible to measure the bubble risen velocity and its

radius. At first, the bubble horizontal and vertical diameters are, respectively: 0.00271m and

0.00296m. The deformation parameter "D" proposed by Taylor [92] is used to quantify bubble

shape deviation form a spherical shape:

D =
|b− a|
b+ a

(7.21)
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Figure 7.17: A Sobel edge detection algorithm is used to identify different bubble shapes. In this

case, one may see the spherical cap, ellipsoidal and spherical.

where b and a denote the semi-axis along x and y retrospectively. For values of D smaller than

10% the bubble is considered spherical. In this case, the system is not at low Reynolds number

and the bubbles end up not coalescing, as seen in figure 7.18. However, for this specific bubble

D ≈ 5%. For a given bubble, for example, considering a constant risen velocity of 0.0576m/s and

the mineral oil density of ρ = 850kg/m3 at 25oC, the particle Reynolds is ≈ 1. The Bond number,

on the other hand, is ≈ 1 indicating a non-trivial balance between the two effects. In these cases,

there is a certain deformation of the bubble spherical shape.

Considering Re = 1 and Bo = 1, the bubble is still in spherical shape what can be confirmed

by the diagram proposed by Clift [84] (where the Bond number is called Eötvös, pronounced as

Ertversh). This diagram can be seen in figure 3.

It is interesting to notice that these results are not valid for extreme values of density ratio

(γ = ρb/ρℓ) or viscosity ratio κ = µb/µ, found for liquid drops falling through gases. Thus, if the

walls of the container affects the bubble (or drop), this diagram is not valid. If the bubble or drop

is sufficiently large, it fills most of the container cross section and the "slug flow" regime results.

7.4.2 Magnetorheological Suspension

A magnetorheological suspension is formed by microscale iron particles. Unlike the ferrofluid in

which the particles are nanometric, the magnetorheological suspension is not stable. They cannot

be considered an equivalent continuum fluid, but can be seen as a biphasic system with magnetic

properties. These suspensions are interesting to make flow visualizations, since it is possible to see
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Figure 7.18: Bubble interaction without coalescence. The contact time needed for these bubbles

to coalesce is not enough. In this condition, both bubbles react as two particles interacting with

reversibility.

these particles in the naked eye.

However, since the particles are larger particles, they are quickly attracted by an applied field.

In this sense, the attraction of these particles produces a velocity field perpendicular to the bubble

upward movement. For this reason, the bubble tends to modify its trajectory, as can be seen in

figure 7.20.

A monitoring fluid particles was done through the software CVMOB. In this regard, we note

that these small volumes are attracted to the field because of the attraction of the magnetic

particles. This is why the bubbles passing end up having its trajectory modified. This change in

trajectory can be seen in figure 7.19.

However, the bubble deformation in the x direction is not considerable. For instance, the initial

average diameter of the bubble is di = 0.002275m with a deformation coefficient of Di = 7.9%.

After rising 5.5cm, the diameter is df = 0.002345m with Df = 5.5%. However, in situations

where a higher magnetic field is applied or the concentration of particles is greater, there may be a

distortion in the bubble shape. In this case, Re ≈ 0.4, Remag ≈ 0.021 and Bo ≈ 0.6. Under these

conditions, the magnetic effects dominate the inertial effects

7.4.3 Ferrofluid #1

The first ferrofluid was made with mineral oil and EFH3 (particle volume fraction of ≈
252.86ppm). The ferrofluid EFH3 is very opaque and the visualization gets worse exponentially

as the volume fraction increases. The application of a magnet in the left side of the container do

not affect the bubble trajectory or velocity. When there is no applied magnetic field, the initial

defformation ratio of a bubble with avarage diameter d = 0.00157m is Di ≈ 17%. When the bubble
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Figure 7.19: The trajectory of two rising bubbles immersed in the magnetorheological suspension.

It is possible to observe that the bubble modifies its trajectory in x in 3.5 times its diameters.

rises h = 2.4cm, this quocient becomes Df ≈ 25%.

When the magnetic field is applied, considering a bubble of diameter d ≈ 0.00160m, the

deformation ratio changes to Di ≈ 3% and Df ≈ 3.5%. This shows, once again, a stabilization

in the movement of the bubble with the application of magnetic field. In this sense, when the

field is applied, the particles tend to align in its direction, generating a resistance to tangential

movements.

In addition, we analyzed two bubbles with average diameters of d1 = 0.001815m and d2 =

0.001835m. In this case, d1 is the diameter of a bubble immersed in ferrofluid without any applied

field. On the other hand, d2 is the diameter of a bubble immersed in ferrofluid with a field applied

in left side of the column. The relation between the Stokes velocity of both bubbles is given by:

Us1

Us2
=

(
d1
d2

)2

= 0.9783 (7.22)

where Us1 is the Stokes velocity of the first bubble and Us1 is related to the second bubble. This

means that there is a variation of 2.22% in the bubbles Stokes velocity due to size differences.

However, the rising velocity of the first bubble, when there is an applied field, is U1 = 0.049m/s.

When there isn’t any applied field, the second bubble velocity is U2 = 0.038m/s. This represents
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Figure 7.20: The trajectory of small volumes of fluid (represented by the different colors) are

analyzed over time by CVMOB software in two different cases. Note that the flow tends to move

toward the magnet, due to the attraction of the magnetic particles.

a difference of 28, 94%, as shown in figure 7.21 The application of the magnetic field generates

a change in the flow around the bubble. In addition, the magnetic fluid begins to present its

non-Newtonian behavior.

The magnetic particles tend to align and be attracted in the direction of the applied field. In

this sense, the approach of the magnet generates a transverse flow. However, since the magnet is

applied in h ≈ 40cm, the velocity field has a component in the z direction (related to the column

heigh). Thus, as the bubble rises to a height of 60cm, its velocity ends up being modified by the

flow movement in the magnet direction. Furthermore, the application of the magnetic field tends

to reduce the bubble deformation coefficient. Therefore, when the bubble is more spherical it has

less area perpendicular to the flow, reducing drag.

When there is no applied field, Re = 0.4 and Bo = 0.9. When the field is applied, we have

Re = 0.5 and Remag = 0.025. For both cases, the bubble is still in the spherical region of the Clift

diagram.

7.4.4 Ferrofluid #2

The second ferrofluid made with silicon oil and EFH3 (particle volume fraction of ≈ 103.25ppm)

joins the non-Newtonian mechanisms of macromolecules and magnetic effects. The higher fluid

viscosity allows the bubble to have more time to react to magnetic effects. However, the same

long relaxation time decelerates the alignment movement of the particles in the field direction. It
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Figure 7.21: Bubble velocity over time for both cases: when a magnetic field is applied (blank

circles) and when there is no applied field (black circles).

is possible to see in figure 7.22 that the particles are aligned in the field direction when that one

is applied on the left side of the test column.

Figure 7.22: Particles alignment of approximately 45 degrees due to the application of a magnetic

field.

In this context, the viscous effects compete with the torque generated by aggregates due to the
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alignment tendency. This ends up generating a resistance to the bubble movement. It is observed

in figure 7.23 the bubble trajectory in both cases: in the presence and absence of magnetic applied

field.
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Figure 7.23: Bubble trajectory deviation. In this case, this deviation is 40% of its initial diameter,

due to the size of the bubble and characterization of creeping flow.

It is possible to see that when there is the application of a magnetic field, the bubble tends to

be taken in the same direction. This is due the alignment of particles in the direction of the field,

generating a crossflow movement of the bubble.

Even considering a bubble of average diameter d = 0.00975m, due to the high viscosity of the

fluid, the Reynolds number is very low (Re ≈ 0.0005) and the deformation coefficient is D = 2%.

The Magnetic Reynolds number is Remag = 0.00011. This condition of creeping flow results

in reversibility. In this condition, if two bubbles interacting possess a very high surface tension

(B → ∞) they would not coalesce. Rather, they would interact in the same way as observed in

figure 7.18. However, in that case, that interaction is due to the value of the Reynolds number,

which does not characterize creeping flow.

7.5 Bubble Interaction

The coalescence of a pair of bubbles occurs in two stages: (i) the draining of the intervening

film of continuous-phase liquid to a critical thickness, h, which is thought to be between 10 and

100 nm [93]; (ii) the rupture of the remaining film by a mechanism which is not understood and
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may involve non-continuum effects. The first of these steps is ordinarily the slower and hence

determines the overall duration of the coalescence process.

A number of attempts have been made to describe the film-drainage stage mathematically

[94, 95, 96, 97] and several detailed experiments have been carried out [98, 99, 100]. Among the

difficulties encountered are: (i) if a realistic zero-tangential-stress boundary condition is applied

to the draining film and surface tension is correctly included, a singular perturbation problem is

generated which requires matched asymptotic expansions for its solution; (ii) if the bubbles collide

with appreciable velocity, circulation patterns within the bubbles impose on the interface shear

stresses, which assist drainage, greatly increasing computational difficulties; (iii) the area of the

draining film varies with time: collisions at low relative velocities, being associated with initially

small film areas, are more likely to lead to coalescence than collisions at high relative velocities,

which involve large deformations of the bubbles and hence the rapid formation of a large-area,

slowly draining film [101].

In this context, considering that two bubbles are pressed together by a steady force, F , the

time τ required for the films to drain to the rupture thickness h is a classical lubrication problem

and can be given by:

τ =
3πµS4

2F 2h
(7.23)

where µ is the dynamic viscosity of the continuous phase, S is the radius of the film and F is

the force pressing the bubbles together. Considering the pressure within the deformed bubbles we

have

F = 4πS2σ

d
(7.24)

where σ is the surface tension and d the bubble diameter. Based on that information, two bubbles

rising under buoyancy in a silicon oil (100, 000cP ) were analysed. The results are seen in figures

7.24 and 7.25.

In this case the bubbles start to rise due to buoyancy forces after being released. Subsequently,

a wake is formed behind each bubble, and a pressure gradient is generated at the bottom surface

of the bubbles at the same time. The trailing bubble is immersed in the wake of the leading one

and interacts with the wake flow, which results in a stretch deformation in the vertical direction.

It can be observed in figure 7.24 that the shape of the trailing bubble becomes a prolate ellipsoid

which differs from that of the leading bubble of oblate shape.

The bottom of the leading bubble is progressively flattened whereas the top remains spherical.

As time increases, the leading bubble develops towards an oblate ellipsoidal cap shape while the

trailing one is deformed into a prolate shape due to the interaction of bubble-bubble and bubble-

fluid. After that, the trailing bubble goes up faster due to the upward flow in the wake of the

leading one and the recirculation at the side of the bubbles. The leading bubble appears to wrap

itself around the trailing one as the bubbles move closer together. Finally, two bubbles coalesce
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Figure 7.24: Bubble interaction in creeping flow. In this condition, two bubbles immersed in silicon

oil interact and end up coalescing.

Figure 7.25: Bubble interaction in creeping flow. In this condition, two bubbles immersed in silicon

oil interact and end up coalescing into a spherical shape bubble.

to form a bigger bubble. Another interesting feature to note is that the region of high curvature

develops at the back of the trailing bubble, which results in a taper shape on the bottom of

coalesced bubble. The reason for causing this pattern can be given as follows. For a fixed Morton

number the surface tension of the bubble decreases with decreasing the density ratio. The smaller

tension allows a tail with a region of high curvature on a bubble to develop in a steady extensional

flow. The wake flow of the leading bubble resembles an extensional flow. The Morton number is a

dimensionless number used together with the Eötvös number or Bond number to characterize the

shape of bubbles or drops moving in a surrounding fluid or continuous phase and is given by:

Mo =
gµ4∆ρ

ρ2l σ
3

(7.25)

where µ is the liquid viscosity, σ is the bubble surface tension, ρl is que fluid density and ∆ρ is

the difference of density from both liquid and gas.
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Chapter 8

Conclusions

This work investigated the oscillatory motion of a bubble immersed in a magnetic fluid sub-

jected to an harmonic pressure and an external magnetic field. The governing equation for the

radial movement of the oscillating bubble, in this context, called the Magnetic Rayleigh-Plesset

equation (MRP) provides a highly nonlinear response. In this sense, several characteristic responses

have been studied.

This study aimed to analyze these characteristic responses using an original methodology in

order to seek the possible physical interpretations of how the main parameters of the problem

influence the bubble response. To physically interpret how the oscillatory behavior of the bubble

is modified due the system non-dimensional parameters, different dynamical system approaches

have been used. Among these approaches, we may recall the use of collapse diagram, frequency

spectrum alaysis, Lyapunov exponents, phase space analysis, bifurcation diagrams and scatter

diagrams. These approchaes are able to provide important informations regarding the bubble

behavior under different physical aspects. Furthermore, they proved to be very effective from the

stability analysis point of view.

In the first part of this work, we studied how the equation of Rayleigh-Plesset is modified when

the bubble is immersed in a magnetic fluid. For this, a new version of equation (MRP) was devel-

oped using the Maxwell’s stress tensor. The applied magnetic field followed the model proposed by

Rosensweig [39], considering only radial oscillations. The non-dimensional mathematical modeling

has proved to be extremely robust, adding two new parameters: the Magnetic Reynolds number

and the fluid magnetic susceptibility.

To solve the governing equation of the problem, we used a fifth order Runge-Kutta method

with adaptive time step. This method proved to be extremely efficient, reducing the time required

for the iterations with small time steps in up to 80%. In order to validate the code, an asymptotic

solution was developed. In this situation, it was observed that for small values of (ε/Remag), the

asymptotic solution perfectly couples the numerical one.

Based on these findings, it was observed how a static magnetic field modifies the bubble be-

havior. In this regard, it is noted that the application of a steady magnetic field increases the

stability of the bubble, preventing the collapse and increasing its periodicity. This behavior was
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also supported by the hydrodynamic linear stability analysis conducted.

It was noted that the non-dimensional parameters are extremely sensitive. Indeed, a study

based on the changes in the bubble oscillation as a function of the Magnetic Reynolds, magnetic

susceptibility and frequency of the pressure field was made. We observed, for example, that the

application of a stronger magnetic field is valid only when the magnetic susceptibility is fairly

significant, which is controlled by the volume fraction of particles in the ferrofluid.

The variation in these parameters generated several vibrational patterns that have been shown

in a bifurcation diagram. Subsequently, by applying the results obtained in an intelligent learning

system based on neural networks, a pattern recognition system was developed. This methodology

has become quite efficient and promising for practical applications.

In order to better control the suspension behavior an oscillatory magnetic field was proposed.

Therefore, two cases were considered: a sinusoidal oscillating field and the combination of a static

and an oscillatory magnetic field. Under the first condition, we observed that when there is a

frequency coupling the system becomes more stable. However, it is noted that this coupling is

extremely sensitive. The choice of a magnetic field oscillatory frequency, ωmag higher or lower

than the frequency of the pressure field, ω does not generate periodic responses. In addition, these

responses have different levels of energy and a spectrum spreading in several frequencies.

It is also noteworthy that the existence of a coupling or decoupling generates new vibrational

patterns that can be better observed in a bifurcation diagram relating ω and ωmag. Among these

patterns, there is the presence of chaotic conditions, which was confirmed by the existence of pos-

itive Lyapunov exponents. Under these conditions, the initial condition influences the movement

of the bubble that becomes unpredictable. We note that the change of the control parameters

increases or decreases the correlation between a signal R(t) and R(t + τ) analyzing the scatter

diagram.

With the validation of these dynamic system approaches, proving that the application of mag-

netic fields tend to stabilize the bubble oscillating movement, we were able to investigate the fluid

where the bubble is immersed. We observed that the application of an oscillatory shear coupled

with a magnetic field ends up changing the alignment of the particles joining magnetic and hy-

drodynamic effects. In this condition, we observed rapid fluctuations in the magnetization of the

suspension, which significantly modifies the movement of the bubble and is one of the responsibles

for the time scales coupling. This change was more prominent for more concentrated suspen-

sions. For this reason, the trained neural network was successful with the increase of the particles

volume fraction. Even then this network has proven to be extremely effective for observation of

hydrodynamic mechanisms, guessing the volume fraction correctly in 100% of the cases.

Still considering the ferrofluid where the bubble is immersed, a magnetization study was done

using a finite differences method. Indeed, the magnetic contribution in MRP equation regarding

the magnetic stress tensor was analyzed. It was possible to compare the superparamagnetic model

with the model proposed using a phenomenological evolutive equation for the suspension magne-

tization. In this condition, the variation of magnetic parameters such as φ, α and the magnetic

relaxation time τs was analysed. From this study, it was observed that the use of a superamagnetic
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model results in the same magnetization behavior than other models when the fluid vorticity is

not coupled with the suspension magnetization (and in the absence of internal magnetic torques

µ0M ×H). However, in this case one can only control the magnetic susceptibility. It is suggested

an investigation of how the magnetic stress tensor asymmetry can contribute to a more robust

mathematical modeling.

In order to verify the sphericity condition proposed, the purely radial movement condition

and study the behavior of the bubble when immersed in a ferrofluid, an experimental bench was

designed. The use of a microcontroller has proven suitable for these experiments. Therefore,

three magnetic fluids were synthesized: A ferrofluid based in mineral oil, a magnetorheological

suspension and a ferrofluid sintetized with a high viscosity silicone oil. They were all excited with

a static magnetic field provided by a neodymium magnet. The magnetization of this magnet was

tested with two gaussmeters and calculated analytically. It was observed that the decay follows a

power law only for the far-field condition. In the near-field conditions, there was an exponencial

fit, which is also used in many bodies computer simulations to provide a repulsion force or fictious

lubrication.

These three fluids were characterized with the aid of a rotating disk rheometer and a tensiome-

ter. It was observed that the presence of the magnetic particles did not modify the base fluid

characteristics significantly, due to the low volume fraction of particles.

We noted that for small bubbles, the condition of no tangential deformation is valid. It was

also observed that the interaction that generates coalescence between bubbles occurs only at low

Reynolds numbers (creeping flow). In situations where the Reynolds number is more significant,

there is an interaction similar to the one observed in particle-particle interaction without reversibil-

ity. It is also noted that even with the application of high magnetic fields (around 4000 G), there

is no significant deformation of the bubble shape, corroborating the results obtained numerically.

However, the application of these fields has shown important hydrodynamic effects, since the

alignment of the particles significantly alters the flow and therefore the bubble rise velocity.

Overall, we concluded that the considerations made for the mathematical and numerical mod-

eling were appropriate. Furthermore, it was observed that the application of magnetic fields

significantly increases the control over the bubble and prevents collapse. Note that the coupling of

time scales, which can be controlled by non-dimensional parameters, allows the bubbles to be used

in many different applications. The use of ferrofluids and magnetic fields in propulsion systems,

for example, can prevent the collapse of the bubbles formed due to the blade rotational movement,

preventing collapse and cavitation erosion. The delivery of drugs can be made by controlling the

bubble movement to the appropriate location by magnetic fields and exciting it with an acoustic

field. To sum up, the fact that an extremely complex system can be controlled allows new fields

of study and new applications to emerge.
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8.1 Future Works

In order to continue the study, we suggest some future works. First of all, it is possible to

investigate the effect of the aymmetry in the magnetic stress tensor, produced by the internal

torques M×H. In this sense, more sophisticated magnetization models could be used considering

the phenomenological magnetization equation. Besides, the finite difference method used to solve

that problem could be coupled to the MRP equation. At each time step, we would have the fluid

magnetization and thus would be possible to calculate the bubble radius as a function of these

updated magnetic effects.

In this asymmetric condition, M and B are not collinear. This means that the microscopic

dipoles are not aligned with the macroscopic field, which therefore causes a torque on each dipole.

In this condition, it is interesting to consider the magnetization in both r and θ directions. Thus,

it is possible to compute the vorticity term M ×H , which represents exactly the torques acting

on the dipolar matter due to an applied field, represented as ε : σ = −µ0M × H . With these

studies, all dynamic system approaches presented here can be used. Besides, an autocorrelation

function can be used proposed aiming to understand how the magnetism adds memory to the

system. Furthermore, the magnetic relaxation time τs can be explored. In this sense, a coupling

between the time scales may modify the behavior of the ferrofluid magnetization.

From the viewpoint of signal processing, it is also possible to perform a preprocessing to better

evaluate the frequency response. In this sense, the frequency signature can be extracted and only

the modifications present in each vibrational pattern can be analyzed. Moreover, it is noted that

there are other tools such as wavelet and spectrogram that may be better for certain applications.

In the case of experimental work, it is possible to use a piezoelectric actuator to excite the

bubble. As the fluids are incompressible, the use of amplifiers will not show much result. However,

exciting the fluid itself, in which the bubble is immersed in it is possible to simulate the application

of an acoustic field.

Finally, one can use these concepts to the production of microfluidic systems. One example,

would be to simulate the delivery of drugs or bubbles in specific locations of a capilar by the use

magnetic fields. Subsequently, exciting the bubble with acoustic fields may lead it to colapse, which

would administer the medication or cause erosion in cancer cells, for example. To sum up, there

are several research fronts that may use the results presented here not only as final conclusions,

but also as an introduction to more advanced researches.
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APPENDIX 1 - Formulation of the Magnetic Rayleigh-Plesset

Equation

This appendix aims to describe the algebra behind the magnetic formulation proposed. In

chapter 2, Cauchy’s equation for non-Newtonian fluid was given by 2.12. In the case of a bubble

immersed in a magnetic fluid, that same condition is used:

ρ

(
∂u

∂t
+ u.∇u

)

= −∇p+∇σN +∇σmag, (1)

where σN represents the Newtonian contribution of the stress tensor, while σ is used to denote

the non-Newtonian effects of the fluid. To the unidimensional movement (radial) proposed in the

formulation, the velocity field consists in u = urrê. Thus, in spherical coordinates we have:

ρ

(
∂u

∂t
+ u

∂u

∂r

)

= −∂p
∂r

+
1

r2
∂

∂r
(r2σNrr)−

(σNθθ + σNϕϕ)

r
+

1

r2
∂

∂r
(r2σrr)−

(σNθθ + σNϕϕ)

r
. (2)

After some algebraic manipulation:

ρ

(
∂u

∂t
+ u

∂u

∂r

)

= −∂p
∂r

+
∂σNrr
∂r

+
∂3σNrr
∂r

+
1

r2

(

r2
∂σrr
∂r

+ 2rσrr

)

− σθθ
r
. (3)

In the Newtonian formulation, however, σ trace is null. This afirmation is still valir but only for

the Newtonian part of the tensor.

ρ

(
∂u

∂t
+ u

∂u

∂r

)

= −∂p
∂r

+
∂σNrr
∂r

+
∂3σNrr
∂r

+
σrr
∂r

+
2σrr
r

+
σθθ
r
. (4)

In order to continue the formulation, it is necessary to calculate the non-Newtonian integral

obtained previously.

1

ρ

∫ ∞

R

∂σrr
∂r

dr +
1

ρ

∫ ∞

R

(
2σrr
r

− σθθ
r

)

dr. (5)

Knowing that the force related to the interaction between two dipoles is:

F = µ0H(∇ ·H), (6)

we may define which one is the related stress tensor:

T = µ0HH − 1

2
µ0H

2I. (7)

Knowing that B = µ0(H +M ) and that, in the superparamagnetic case, B = µ0(1 + χ)H , it is

possible to define, in that case, considering only the radial and polar components:
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σmag
θθ = −µ0

2
(H2

r +H2
θ ) + µ0(1 + χ)H2

θ , (8)

σmag
rr = −µ0

2
(H2

r +H2
θ ) + µ0(1 + χ)H2

r . (9)

Since the formulation considers only the radial movement, there are no parameters to define

the values of θ that should be used. For that reason, we may calculate the mean value in order to

considerate the medium effects of de colatitude of the applied field.

1

2π

∫ 2π

0
cos2θdθ =

1

2π

∫ 2π

0

(
1 + cos2θ

2

)

dθ =
1

2π

(
θ

2
+
sen2θ

4

)

|2π0 =
1

2
. (10)

the same is done for sinθ:

1

2π

∫ 2π

0
sin2θdθ =

1

2π

∫ 2π

0

(
1− cos2θ

2

)

dθ =
1

2π

(
θ

2
− sen2θ

4

)

|2π0 =
1

2
. (11)

At this time, the three terms of non-Newtonian integral will be divided and resolved separately.

Thus, we have:

Fator 1 -
σrr

ρ
|∞R , (12)

Fator 2 -
1

ρ

∫ ∞

R

2σrr
r
dr, (13)

Fator 3 -
1

ρ

∫ ∞

R

σθθ
r
dr, (14)

• First Term

1

ρ

{

− µ0
2

[
C2

2
− 4DC

2r3
+

4D2

2r6
+
C2

2
+

2DC

2r3
+
D2

2r6

]

+ µ0(1 + χ)

[
C2

2
− 4DC

2r3
+

4D2

2r6

]}

. (15)

after some algebric manipulation, nullifying the terms available, we have:

1

ρ

{

− µ0
2

[

C2 − DC

r3
+

5D2

2r6

]

+ µ0(1 + χ)

[
C2

2
− 4DC

2r3
+

4D2

2r6

]}

. (16)

Isolating the term as a function of µ0 e µ0χ:

1

ρ

{

µ0

[
C2

2
− 4DC

2r3
+

4D2

2r3
− C2

2
+
DC

2r3
− 5D2

4r6

]

+ µ0χ

[
C2

2
− 4DC

2r3
+

4D2

2r6

]}

. (17)

Manipulating the terms in order to get the leanest possible expression and applying the limits of

integration from R to ∞, it is possible to obtain:
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1

ρ

{

µ0

[−3DC

2r3
+

3D2

4r6

]

+ µ0χ

[
C2

2
− 4DC

2r3
+

4D2

2r6

]}

|∞R . (18)

In this case, when r → ∞, the terms cancel. Thus, the resulting equation reduces to

1

ρ

{

µ0

[−3DC

2R3
− 3D2

4R6

]

+ µ0χ

[
4DC

2R3
− 4D2

2R6

]}

. (19)

• Second Term

1

ρ

∫ ∞

R

2

r

{

µ0

[

−3DC

2r3
+

3D2

4r6

]

+ µ0χ

(
C2

2
− 4DC

2r3
+

4D2

2r6

)}

dr. (20)

integrating from R to ∞:

1

ρ

∫ ∞

R

{

µ0

(
3DC

3r3
− 3D2

12r6

)

+ µ0χ

(

C2 ln(r) +
4DC

3r3
− 4D2

6r6

)}

|∞R , (21)

substituting the integrating limits and reorganizing the terms, we have:

1

ρ

∫ ∞

R

{

µ0

(

−DC
R3

+
D2

4R6

)

+ µ0χ

(

C2 ln(R∞)−C2 ln(R)− 4DC

3R3
+

2D2

3R6

)}

. (22)

• Third Term

1

ρ

∫ ∞

R

{

µ0

[
3DC

2r4
− −3D2

4r7

]

+ µ0χ

(
C2

2r
− DC

r4
+
D2

2r7

)}

dr, (23)

integrating from R to ∞.

1

ρ

{

µ0

[

−3DC

6r3
+

3D2

24r6

]

+ µ0χ

(
C2

2
ln(R∞)− DC

3r3
− D2

12r6

)}

|∞R . (24)

reorganizing the terms of the equation, we have:

1

ρ

{

µ0

[
DC

2R3
− D2

8R6

]

+ µ0χ

(
C2

2
ln(R∞)− C2

2
ln(R) +

DC

3R3
+

D2

12R6

)}

. (25)

Organizing and combining the three terms, we obtain:

1

ρ

(

σrr +

∫ ∞

R

2σrr
r
dr −

∫ ∞

R

2σθθ
r
dr

)

, (26)

then
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1

ρ

{[

µ

(
3DC

2R3
− 3D2

4R6

)

+ µ0χ

(
4DC

2R3
− 4D2

2R6

)]

+

[

µ0

(
D2

4R6
− DC

R3

)

+ µ0χ

(

C2 ln(R∞)− C2 ln(R)− 4DC

3R3
+

2D2

3R6

)]

−
[

µ0

(
DC

2R3
− D2

8R6

)

+ µ0χ

(
C2

2
ln(R∞)− C2

2
ln(R) +

DC

3R3
+

D2

12R6

)]}

. (27)

Separating the terms in commom:

1

ρ

{[

µ
(3DC

2R3
− 3D2

4R6
+

D2

4R6
− DC

R3
− DC

2R3
+

D2

8R6

)

+

+µ0χ
(2DC

R3
− 2D2

R6
+ C2 ln(R∞)− C2 ln(R) +

−4DC

3R3
+

2D2

3R6
− C2

2
ln(R∞) +

C2

2
ln(R)− DC

3R3
− D2

12R6

)]}

, (28)

so

1

ρ

{[

µ0

(

− 3D2

8R6
− 3D2

4R6
+
DC

6R3

)

+ (29)

µ0χ
(DC

3R3
+
C2

2
ln(R∞)− C2

2
ln(R)− 4D2

3R6
+

2D2

12R3

)]}

. (30)

Using the formulationg poposed by Rosensweig, we have:

C = −H0, (31)

D =
µ2 − µ1
µ2 + 2µ1

R3H0, (32)

and considering that

µ2 − µ1
µ2 + 2µ1

= µr, (33)

we reach, substituting the terms:

1

ρ

[

µ
(2µ2rH

2
0

8
− µrH

2
0

6
− 3µ2rH

2
0R

3

4

)

+

+µ0χ
(

− 4µ2rH
2
0

3
− µrH

2
0

3
− µ2rH

2
0

12
+
H2

0

2
ln(R∞)− H2

0

2
ln(R)

)]

. (34)
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From equation 2.96 it is possible to follow the process of writting the magnetiv giverning

equation in a non-dimensional form. Observing the process for writing the non-Newtonian integral

as dimensionless, we divide the equation by U2
c :

1

ρU2
c

[

µ

(

−3µ2rH
2
0

8

)

+ µ0χ

(

−µrH
2
0

3
− 17µ2rH

2
0

12
+
H2

0

2
ln(R∞)− H2

0

2
ln(R)

)]

, (35)

considering µr = −1
2 , some simplifications can be made:

1

ρU2
c

[

µ

(

−3H2
0

32

)

+ µ0χ

(

−9H2
0

48
+
H2

0

2
ln(R∞)− H2

0

2
ln(R)

)]

. (36)

Writting the non-dimensional version of R∞ and R as:

1

ρU2
c

[

µ

(

−3H2
0

32

)

+ µ0χ

(

−9H2
0

48
+
H2

0

2
ln(R∗

∞RE)−
H2

0

2
ln(R∗RE)

)]

, (37)

and considering the magnetic Reynolds numer as

Remag =
ρU2

c

µ0H
2
0

, (38)

one reaches:

1

Remag

[

µ

(

−C1

8

)

+ χ

(

−C1

4
+

1

2
ln
(R∗

∞
R∗

))]

. (39)
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APPENDIX 2 - Electric Circuit of the Experimental Bench

Figure 1: Circuit schematic made with Fritzing

Figure 2: Circuit schematic
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APPENDIX 3 - Bubbles and Drops Shapes

Figure 3: Shape regimes for bubbles and drops in unhindered gravitational motion through liquids

proposed by Clift [84].
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Submitted Paper # 1

This paper was produced and submitted during the

Masters period. Neural networks and dynamic

system approaches are used to identify the vibra-

tional patterns of a bubble immersed in a Newto-

nian fluid.

Identification of Nonlinear Patterns of an Oscillating Bubble using

Neural Networks

S. Malvar, R. G. Gontijo and F. R. Cunha

The main goal of this article is to study the oscillatory motion of an spherical gas

bubble immersed in a Newtonian liquid subjected to an harmonic pressure excitation.

We use the classical Rayleigh-Plesset equation to study the radial motion of the bub-

ble undergoing a forcing acoustic pressure field. The second order non linear ordinary

differential equation that governs the bubble motion is solved through a robust fifth

order Runge-Kutta scheme with adaptive time-step. Several interesting patterns are

identified. First we develop an asymptotic solution for low amplitudes of excitation

pressure to validate our numerical code. Then we develop a bifurcation diagram in

order to show how the parameters of the flow modify the vibrational patterns of the

bubble. We also train a neural network to identify the vibrational pattern through

its FFT data. The combination of neural networks with a bifurcation diagram could

be useful for the identification of the flow physical parameters in practical applica-

tions. For each pattern we also provide an analysis of the motion of the bubble on

the phase-space and interpret physically the system behavior with its FFT. In addi-

tion we analyse nonlinear patterns using standard tools of dynamical systems such as

Poincaré sections and calculating the Lyapunov exponents of the system. Based on

that, we have identified topological transitions in phase plane using for instance the

analysis of Poincaré sections and the solution in the frequency spectrum. We have

seen that the mechanisms that dominates the dynamics of the oscillating bubble is the

competition of the acoustic field excitation with surface tension forces and momentum

diffusion through by the action of the surrouding fluid’s viscosity. Bubble dynamics,

Nonlinear dynamics, Neural networks, Rayleigh-Plesset
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The classical equation describing the oscillat-

ing motion of an spherical bubble subjected to

an harmonic acoustic excitation field is known

as Rayleigh-Plesset equation [1]. This highly

nonlinear ODE can be modified or extended to

study several phenomena associated with bub-

ble dynamics. For decades engineers and scien-

tists have productively employed single-degree-

of-freedom models to understand and explore

the behavior of violently collapsing bubbles [2,

3, 4, 5]. These studies have been applied in

many areas such as: sonochemistry, bioengineer-

ing, cavitation erosion, underwater explosions

and sonoluminescence [6].

The bubble shape can vary from spherical to

nearly polyhedral, forming a complex geometri-

cal structure insensitive to details of the liquid

composition or the average bubble size [7]. How-

ever, when small bubbles undergoind small os-

cillating amplitudes are considered the assump-

tion that the bubble’s shape is always spherical

can be used. This assumption is valid even in

highly nonlinear situations. A bubble immersed

in a non-Newtonian fluid, such as a viscoelastic

polymeric solution [8, 9, 10, 11] and even a mag-

netic fluid [12, 13] may have several degrees of

freedom, presenting very nonlinear oscillations.

This nonlinearity may present some difficul-

ties in controlling the bubble oscillation. When

used in biomedical applications, such as contrast

in ultrassonography [14], it is necessary to un-

derstand how the bubble is oscillating. In this

case microbubbles are injected into the body and

take part in image contrast. The ultrasound

pulses are applied with the bubbles’ resonance

frequency. The bubbles respond to pulses in-

creasing and decreasing their radius, generating

echoes in their neighborhoods. The difference

between these echoes and those shown by tissues

generates a contrast. Furthermore, bubbles may

be used to transport drugs [15], another exam-

ple in which the control of its degrees of freedom

may be very important.

Considering the relevance of understanding

a bubble oscillating patterns and identify them

in order to control its motion, a nonlinear tool

such as neural networks can be used. In prac-

tical applications, the identification of these pa-

rameters can become somewhat difficult due to

the nonlinearity of the equation that controls the

oscillatory regime of the bubble. However, it is a

simple problem of pattern identification. Recent

works [16, 17, 18] have analyzed the nonlinear

motion of a spherical bubble from a nonlinear

dynamical system perspective, but none of them

have used neural networks in order to identify

some of its nonlinear patterns of motion.

The physical and mathematical theory of

neural networks have been developed rapidly

during the past 25 years. It is a theory whose di-

versity and complexity reflects the multifaceted

organization of the brain in processes that it sets

out to explain and identify [19]. A multilayer

neural network can be used in order to iden-

tify deffects on metal beams and other dynamic

systems [20]. The vibrational parameters of the

beam and its response in the frequency domain

are used to determine the involvement thereof.

In the last 25 years, multilayer perceptrons

(MLPs) have been massively used in the area of

pattern recognition [21]. The experimental re-

sults have been impressive in some applications

where we know in advance that the patterns

belong to a small number of classes. In those

cases, because of their strong discrimination ca-

pabilities, MLPs exhibit excellent performance

[22, 23].

Considering the microbubble dynamic pa-

rameters, such as the system non-dimensional

numbers, several vibration patterns may be

identified. Those patterns are classified and rec-
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ognized by the neural network in order to pre-

dict the bubble’s oscillatory motion considering

its known parameters and vice versa.

In the present study, we use a sinusoidal ex-

citation with variable amplitude and frequency

as the pressure forcing field. The main goal is

to identify the non-dimensional parameters and

excitations that generate different vibrational

modes, characterizing the system. Those vibra-

tional patterns are used as a trainning input in

a multilayer backpropagation neural network in

order to identify them from the flow system non-

dimensional physical parameters. This is a first

step towards the understanding of the nonlinear

response of the bubble from a dynamical system

perspective.

II.1 Mathematical Modeling

II.1.1 Rayleigh-Plesset Equation

The study of the dynamic oscillatory move-

ment of a bubble presented in this work is based

on the analysis of its radial motion when im-

mersed in an incompressible fluid subjected to

an harmonic excitation pressure field. The main

governing equations used in the mathematical

modeling of the problem are based on the prin-

ciples of mass conservation (continuity equation)

and linear momentum balance (Newton’s second

law - equation of motion). An appropriate con-

stitutive model to represent the traction jump

(i.e. boundary condition for the stress) on the

bubble surface is also used. The velocities are

continuous on the surface.

Consider a spherical bubble immersed in a

Newtonian incompressible fluid of viscosity µ

and density ρ. The inner side of the bubble is

composed by a mixture of air and contaminant

gases (which develop a polytropic process) and

steam. We assume that the bubble develops only

radial motions due to its surface tension that re-

sists to other non-radial deformational modes,

simplifying our analysis to an unidimensional

motion, maintaining its spherical shape. This

assumption is valid for small excitation ampli-

tudes or for small bubbles. Therefore, effects like

pressure gradients in the liquid or surfactants in

the fluid are neglected. Changes in the vapour

temperature may modify its density modifying

the bubble dynamics [24]. However, for a small

equilibrium vapour density the isothermal pro-

cess is valid [25].

The mass conservation equation for a com-

pressible fluid is given by [26]

∂ρ

∂t
+∇ · (ρu) = 0, (40)

in which ρ is the constant fluid density (i.e. in-

compressible liquid), t represents time and u is

the Eulerian velocity fied on the liquid side. In

this model spherical coordinates are used. The

velocity components in the directions θ and φ are

zero. Thus, the mass conservation equation in

spherical coordinates for an incompressible fluid

is given by

1

r

[
∂

∂r
(r2ur)

]

= 0 →
∫

∂

∂r
(r2ur)dr = 0, (41)

where r represents the physical distance of the

center of the bubble to an arbitrary point in-

side the liquid phase, ur is the radial component

of the velocity field. Integrating equation (41)

from the surface of the bubble of radius R(t) to

an arbitrary point in the liquid (distance r) after

some algebric manipulation, we have

u(r, t) =
R2

r2
dR

dt
=
R2

r2
Ṙ. (42)

The equation that expresses the balance of linear

momentum is given by [26]

ρ

(
∂u

∂t
+ u · ∇u

)

= ∇ ·Σ, (43)

where Σ = −pI +2µD is the stress tensor for a

Newtonian incompressible fluid, written in terms

of the pressure field p, the identity tensor I and

136



the rate of strain tensor D = 1/2(∇u+(∇u)T ).

Considering the radial component of Navier-

Stokes equation in spherical coordinates, equa-

tion (43) reduces to

ρ
∂u

∂t
+u

∂u

∂r
=

−1

ρ

∂p

∂r
+2

µ

ρ

[
∂2u

∂r2
+

2

r

∂u

∂r
− 2u

r2

]

.

(44)

integrating the resulting equation in the flow

field (the region between the surface of the bub-

ble and the infinite quiescent liquid) after some

algebric manipulation, we have

2Ṙ2 + R̈R− Ṙ2

2
=
pℓ(R)− p∞

ρ
, (45)

where p∞ is the ambient pressure and pℓ de-

notes the pressure on the liquid phase at the

bubble surface. As the bubble is considered in

the present context a clean curved interface be-

tween two immiscible fluids, there is a normal

stress discontinuity in the interface due to its

surface tension. This jump of normal stresses is

given by Young-Laplace equation:

Σrr,ℓ − Σrr,b =
2σ̃

R
, (46)

where σ̃ represents the surface tension coefficient

and Σrr,ℓ and Σrr,b denote the radial compo-

nent of the traction (n̂ · σ) at the liquid phase

and inside the bubble phase, respectively. The

pressure inside the bubble is given by pb(t) =

pv+pg(t), where pv is the liquid vapour pressure

and pg(t) refers to the gas pressure. Therefore,

the term Σrr,b = −pb(t) is then given by

Σrr,b = −pv −
[

(p̃∞ − pv) +
2σ̃

RE

](
RE

R

)(3n)

(47)

where p̃∞ represents the static pressure for an

equilibrium condition and RE is the bubble equi-

librium radius. The Euleurian velocity field

induced by the bubble oscillations is given by

equation (42). Hence, Σrr,ℓ results in

Σrr,ℓ = −pℓ − 4µ
Ṙ

R
. (48)

Substituting equations (47) and (48) in (46) we

obtain

pℓ = −4µ
Ṙ

R
− 2σ̃

R
+pv+

(

∆p̃+
2σ̃

RE

)(
RE

R

)3n

,

(49)

where ∆p̃ = p̃∞− pv. The forcing acoustic pres-

sure field imposed on the bubble is taken as be-

ing p∞(t) = p̃∞[1+εsin(ωt)], where ε represents

the pressure amplitude and ω is the forcing pres-

sure frequency. Now, substituting equation (49)

in (45), the Rayleigh-Plesset equation is written

as

R̈R+
3

2
Ṙ2 =

∆p̃

ρ
+

1

ρ

(

∆p̃+
2σ̃

RE

)(
RE

R

)3n

− 2σ̃
Rρ − p̃∞

ρ εsin(ωt)−
4µ
ρ

Ṙ
R . (50)

II.1.2 Non-dimensional Formulation

We shall make use of non-dimensional vari-

ables indicated by asterisks, namely

R∗ =
R

RE
, t∗ =

t

tc
. (51)

Typical scales of velocity and time are repre-

sented by

Uc =

( |∆p̃|
ρ

)1/2

, tc =
RE

Uc
(52)

respectively. The excitation amplitude may also

be written as ε∗ = ε(∆p̃/p̃∞). Using these typi-

cal scales we can write the non-dimensional form

of Rayleigh-Plesset equation (49) as:

R̈∗R∗ +
3

2
Ṙ∗2 =

2

We

[
1

(R∗)3n
− 1

R∗

]

−1− ε ∗ sin(ω∗t∗) +
1

R∗(3n) −
4

Re

Ṙ∗

R∗ (53)

Here, Re = ρUcRE
µ corresponds to the Reynolds

number which measures the relative importance

between inertial and viscous forces. and We =
ρU2

cRE

σ̃ is the Weber number, which denotes the

ratio of inertial and surface tension forces.
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II.1.3 Neural Networks

The main goal of this work is to show that it

is possible to conceive, design and train a Neural

Network used for pattern identification purposes

in the specific dynamical problem of an oscil-

lating micro bubble immersed in a Newtonian

liquid. Multilayer neural networks are usually

composed of an input layer, a hidden layer and

an output layer. Those layers can be formed by

activation functions and different training meth-

ods. Based on the network’s input and ran-

dom initial conditions, a transfer function is then

used to calculate the output layer [27]. The out-

put yk of the kth neuron of the Network is given

by

yk = φ





n∑

j=0

wkjxj



 (54)

where yk is the output of the neural network, wkj

determines the weights given for each entry, xj is

the number of inputs and φ is the transfer func-

tion used. In the present work the output of the

network yk is the number of the pattern found by

the network, the input xj is the information used

in order to train the network. In the present the

work this information is composed by the ampli-

tude and part of the frequency spectrum around

the first harmonic. A sketch of the scheme used

to train the network is shown in figure (4).

There are several different trainning meth-

ods available in the current literature (e.g [28]).

In the present work the Levenberg-Marquardt

(LM) backpropagation method [29] is explored.

The Levenberg-Marquardt method seeks to min-

imize a nonlinear function. In this case the error

in the pattern identification process is defined as

eϕ,o = dϕ,o − nϕ,o, (55)

where eϕ,o is the error in identifying a given pat-

tern ϕ for a given output o of the network, dϕ,o is

the desired value of the pattern ϕ that the net-

work should identify in the output o and nϕ,o

is the current output that the network provides

for a known pattern ϕ in a current output o.

The idea of the Levenberg-Marquardt method

is to minimize this error eϕ,o for different pat-

terns ϕ in different outputs o of the network. In

this sense the network must adjust its weights

wkj for each input and each known pattern dur-

ing the training period in order to maximize its

chances of predicting the correct pattern. Ba-

sically the Levenberg-Marquardt algorithm uses

the Jacobian matrix containing the first deriva-

tives of the Network errors with respect to its

weights and biases, given by

J =





















∂e1,1
∂w1

∂e1,1
∂w2

· · · ∂e1,1
∂wn

∂e1,2
∂w1

∂e1,2
∂w2

· · · ∂e1,2
∂wn

· · · · · · · · · · · ·
∂e1,o
∂w1

∂e1,o
∂w2

· · · ∂e1,o
∂wn

· · · · · · · · · · · ·
∂ep,1
∂w1

∂ep,1
∂w2

· · · ∂ep,1
∂wn

· · · · · · · · · · · ·
∂ep,o
∂w1

∂ep,o
∂w2

· · · ∂ep,o
∂wn





















,

(56)

where n is the number of weights used for

each neuron of the network. The minimization

of the error in the identification of each pattern

is done through the following equation

wk+1 = wk −
(
JT

k Jk + αI
)−1

Jkek, (57)

where α is called the combination coefficient.

Depending on the value of α the LM algorithm

switches between the steepest descent and the

Gauss-Newton algorithms during the training

process. The use of the Jacobian matrix is sim-

pler to compute in comparison with the Hes-

sian matrix in minimization methods such as

the Newton algorithm. In this direction the

Levenberg-Marquardt algorithm is characterized

by a fast convergence rate in comparison to other

algorithms used to minimize nonlinear functions.
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Figure 4: Schematic of a typical Neural Network explored in the present work.

The nonlinearity in the bubble oscillatory

motion may generate not only pure harmonics,

but also some spectral spreading. This can be

identified in the frequency spectrum of the sig-

nal R(t). The amplitude of the first harmonic

and its spreading can be used to diagnose the

nonlinearity degree and the involved vibrational

modes in the coupled motion of the bubble and

the surrounding liquid. We will show that this

dynamic system has a spectra with broad bands,

similar to chaotic systems rather than isolated

peaks. In this context a training set of 23 differ-
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ent simulations containing 7 identified patterns

is inserted into the neural network. The vali-

dation group also possesses the same amount of

information, but in this case, the neural network

should identify the pattern from the frequency

signature. Seven tests are conducted with differ-

ent initial random conditions of the neural net-

work weights. Each test improves the weights

and the identification becomes more effective,

displaying a very good percentage of correct an-

swers in the sample. More details on the im-

plementation, training and performance of the

Neural Network will be given in subsequent sec-

tions.

II.2 Numerical Methodology

Due to the nonlinearity of the governing dif-

ferential equation we do not have an analytic

solution for arbitrary input parameters. In this

sense we must recur to the use of a numeri-

cal algorithm to integrate the governing equa-

tion of the bubble-liquid dynamic system. In

this work we use a Runge-Kutta scheme (RKS).

Our RKS algorithm uses the advanced predictor-

corrector algorithm, which uses weighted aver-

ages of a function f calculated at the extremes

and at intermediate points of several time inter-

vals [tj, tj + 1] [30].

The nonlinearity of our dynamic system re-

quires a careful calibration of the numerical

time-step. For the most unstable regions where

the radius of the bubble presents a rapid varia-

tion in time, the time step must be very small.

On the other hand, when the bubble oscillating

movement is harmonic, the computational cost

may be unnecessarily increased by using small

time steps. In order to solve this numerical is-

sue an adaptive time scheme is incorporated to

the dynamic simulations. Here we use the adap-

tive time step method scheme first proposed by

Fehlberg [27] who uses the difference between

two R predictions. The first prediction of R us-

ing a fifth order scheme and the second predic-

tion of R by means of a fourth order scheme. In

this way we have a good prediction of the trunca-

tion error by dynamically adjusting the numer-

ical time step. The formula written in terms of

kn constants for each time step is given by [32] :

ỹn+1 = yn +
2825

27648
k1 +

18575

48384
k3 +

13525

55296
k4 +

277

14336
k5 +

1

4
k6. (58)

The recurrence formula of a fourth order RKS is

given by

yn+1 = yn +
37

378
k1 +

250

621
k3 +

125

594
k4 +

512

1771
k6,

(59)

with the associated error given by

∆e = ỹn+1 − yn+1. (60)

In bubble dynamics studies it is useful to es-

tablish a minimum radius Rmin associated with

a collapse criteria to stop the simulation. In

order to evaluate the minimum radius at the

eminence of the collapse an asymptotic theory

[33] is used as a criteria to stop our simulations.

In this asymptotic theory the most adverse flow

condition is considered, that is Re → ∞ and a

constant ambient pressure p∞(t) = p̃ that com-

presses the bubble. Under this condition we can

solve Rayleigh-Plesset equation using the inte-

grating factor method. The asymptotic expres-

sion for Rmin results in

Rmin = R0e
−(R0)2

[

1+R0
We
3

We+2

]

, (61)

where Rmin is the minimum radius, R0 is the

initial radius and We is the Weber number.

It should be instructive to know that the

collapse in the present context is defined as

an abrupt release of pressure that occurs out-

side the spectrum of continuum mechanics time

scales. This sudden expansion occurs after sig-

nificant rapid shape deformations. During these
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extremely small time intervals the bubble can-

not be considered as an isotropic sphere. It is

important to say that we are not focused in ex-

ploring bubble collapse in the present work. In-

stead of this, we are interest to explore nonlinear

patterns associated to the nonlinear motion of a

bubble that leads to bifurcations in the unstable

vibrational modes.

II.2.1 Numerical tools

In this work we have used a series of numeri-

cal tools. The code that computes the motion of

the bubble was written in Fortran95 for Linux

platforms. For the post-processing of the nu-

merical results, the Softwares Matlab and Tec-

plot have been used. The full analysis of the

neural network is done by the neural networks

toolbox of Matlab, which is based on the FFT

responses acquired by a Scilab computational

script. The neural network is based on the

Levenberg-Marquardt method. We also used the

gradient descent method, which allows us to re-

calculate the delta function based on the weights

updated using the decrease of the error and de-

termining the minimum value of the error func-

tion [34]. The training method used, trainoss

(i.e. one step secant backpropagation), is a more

efficient version of the Levenberg-Marquardt al-

gorithm and has allowed calculations requiring

less computational cost with better accuracy.

For computing the Lyapunov exponents of the

system we have also used a Matlab Lyapunov

Exponents Toolbox (Matlab LET code [35]).

II.2.2 Code validation

In order to validate our numerical code, an

asymptotic solution for ε ≪ 1 is proposed. For

this end, a regular asymptotic expansion method

is proposed [25]. Specifically, a regular distur-

bance parametric method was used. In order to

develop the asymptotic solution for the nonlin-

ear governing equation 53 in the limit ε ≪ 1,

a convenient change of variable is proposed so

that R = (1 + r). The disturbances r around

an equilibrium radius R = 1 are assumed to

have the form r(t) = εy1(t) + ε2y2(t) + O(ε3),

here we truncate the regular expansion for terms

O(ε3). After this expansion we obtain the fol-

lowing system of two linear differential equations

O(ε) and O(ε2) governing the quasi-nonlinear

dynamic system

ÿ1(t) + γẏ1(t) + κy1(t) = −sen(ωt). (62)

and

ÿ2(t) + y1(t)ÿ1(t) +
3

2
ẏ1(t)

2 − αy2(t)−

βy1(t)
2 − γ(y1(t)ẏ1(t)− ẏ2(t)) +

λy2(t)− ηy1(t)
2 = 0. (63)

Note that equations (62) and (63) are both sec-

ond order ordinary differential equations. The

constants that appear in (62) and (63) are given

by

α =
2

We
(1− 3n), λ = 3n (64)

β =
2

We

[
9

2
n2 +

(
3

2

)

n− 1

]

(65)

η =

[
9

2
n2 +

(
3

2

)

n

]

, κ = λ− α (66)

Figure (35) shows a comparison between

O(ε) and O(ε2) asymptotic solutions with the

numerical solution (RKS). It is seen that in the

limit ǫ → 0 the asymptotic solutions are exact

solutions of the problem.

Essentially figure (35) indicates that for

small values of ε a perfect agreement exists be-

tween asymptotic solutions and the numerical

silution (RKS). The insert of figure (35) shows

the behavior of each solution for the interval

0 ≤ ε ≤ 0.2. The error between the O(ε2) and

the numerical solution exceeds 1% for ε ≈ 1.

In addition, the results presented in figure (35)

serve as a validation of the proposed algorithm.
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Therefore, in the next sections we to use the de-

veloped code in order to explore other regimes

that cannot be captured by our asymptotic so-

lution

II.3 Results

In this section we present different vibra-

tional patterns of the nonlinear bubble motion

that have been organized in seven possible pat-

terns observed within the range of parameters

Re = [0, 100], ε = [0, 1] for constant values of

We = 6, n = 1 and ω = 1. In the present con-

text, we do not intend to characterize all possible

vibrational modes of the nonlinear bubble oscil-

latory motion. Our goal is the conception, de-

sign and training of a neural network in order to

be applied as a tool for identifying patterns and

nonlinear responses in the specific flow problem

of an oscillating bubble in a Newtonian fluid.

This step is quite necessary to extend the ap-

proach for investigating bubbles in complex flu-

ids such as non-Newtonian fluid and magnetic

suspensions. For this end we propose the classi-

fication of different vibrational modes into seven

identified patterns based on the time response

of the system, on the frequency spectrum and

on the phase plane diagram. Each pattern is

examined and discussed in details. A bifurca-

tion diagram is also presented as a function of

the parameters Re and ε. A bifurcation dia-

gram in these dynamical system analysis is use-

ful in order to identify the oscillating pattern

for a given pair of Re and ε. The concept of

Poincaré sections and Lyapunov exponent com-

monly used for analyzing nonlinear responses of

dynamical systems is also applied to the investi-

gated bubble system. Actually with these tools,

we investigate if a chaotic characteristic is pre-

sented in the bubble nonlinear motion. Next, a

neural network is designed and trained based on

informations regarding the first harmonic on the

frequency response of the bubble motion.

II.3.1 Different patterns of response

Four of the seven identified patterns are

shown in figure (16). Based on the distortions of

the bubble response on the phase diagrams, the

vibrational modes of the bubble system are iden-

tified in seven different ways. 1) periodic with

mild distortion in the lower peak; 2) periodic

with moderate distortion in the lower peak; 3)

periodic with mild distortion; 4) periodic with

moderate distortion; 5) without harmonic dis-

tortion; 6) non-harmonic and non-periodic; 7)

non-harmonic and non-periodic type 2. Here

we have proposed that the concept of distortion

should be based on a pattern deformation coef-

ficient. So we define this coefficient as the ratio

between the two coexisting peaks shown in figure

(7). This ratio determines the degree of distor-

tion in the time response. While values bellow

a unit correspond to a slight distortion, a null

value means that the answer is harmonic and

values greater than the unit represent a moder-

ate signal distortion by our definition. The simu-

lations all assume a polytropic coefficient n = 1,

a forcing pressure frequency ω = 1 as a Weber

number constant, We = 6.

Figure 16 indicates that under the simulated

conditions if Re < 5 the bubble response cor-

responds always to the harmonic pattern 1 re-

gardless of the pressure forcing amplitude. Is is
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Figure 6: Bifurcation diagram. Parameter Re as a function of the pressure forcing amplitude ε,

for We=6.

also interesting to note that with ε ∼ 1 all pat-

terns tends to an harmonic configuration at low

Re. So, we identify a critical Reynolds number

for which the bubble motion seems to be always

harmonic even for ε ∼ 1.
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Figure 7: Identification of a typical time series (R versus t) of the bubble response.

Now, the stability of the bubble motion is

analyzed by examining the phase plane (where

g represents Ṙ), frequency and time responses of

the seven identified patterns.
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Figure 8: Left: pattern 1 characterized by a time series of R(t) (a), (b) phase plane and (c) Power

spectrum given by FFT of the output. Right: pattern 2 characterized by a time series of R(t) (a),

(b) phase plane and (c) Power spectrum given by FFT of the output.

Figure (17) shows that the phase space for

pattern 1 approaches to a stable, periodic and

harmonic response. In this case, the bubble re-

sponse is represented by a figure similar to a cir-
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cle in the phase diagram, despite a slight dis-

tortion in the second quadrant as a direct con-

sequence of the velocity variations on the lower

peak for smaller radius. The limit cycle, is also

seen as a closed orbit, representing in the phase

space a periodic trajectory with a finite and well

defined period. In this case, we have an attract-

ing limit cycle. The bubble response on the fre-

quency domain shows that most part of the en-

ergy is located in frequencies around ω = 1. This

implies a signal (or time series) pretty close to

a harmonic response. A second harmonic is pre-

sented due to the small deformation in the lower

peak of the time response signal.

In pattern 2, the shape anisotropy of the

phase diagram is more significant due to higher

distortions. A suddeng change in speed not

only increases the amplitude of the frequency

response in the Fourier space, but produces a

third harmonic to the system.

On the other hand, the phase diagram dis-

tortion is not enough to produce an inner limit

cycle. In pattern 2, shown in figure (17), the dis-

tortion on the phase space suggests the deviation

from the harmonic response. This deviation is

associated with a higher contribution of inertial

forces on the liquid. As shown in figure (16) for a

given value of ε, say ε = 0.1, the transition from

pattern 1 to pattern 2 occurs for Re = 10, so for

Re < 10 the bubble response is represented by

pattern 1, while for Re > 10 the bubble responds

according to pattern 2.

The presence of a slight distortion on the

time response (pattern 2) allows us to infer

about the existence of different harmonics with

different energetic levels. Pattern 2 is character-

ized by different states with nonlinear charac-

teristics but still having one period. In contrast

pattern 3 is seen clearly to have a time-series

with double-periods that represents an unsta-

ble motion of the bubble in comparison to the

harmonic one of pattern 1. At higher Reynolds

number even for ε ∼ 0.1 we can seen a quite

nonlinear response of the bubble motion tend-

ing to present a continuous spectrum of vibra-

tional degrees of freedom or periods. So, the

bubble develops a quite strong unstable motion

immersed in the Newtonian liquid. We can see

similar speed changes on patterns 3 and 4, figure

(18).

However, the change in position of pattern

4 is much more expressive, also increasing the

amplitude of the fourth harmonic. In partic-

ular, the moderate distortion provides a new

limit cycle, smaller than the main one. Thus, it

is observed that the common generated distor-

tion transforms the stable cycle and attenuates

abrupt velocity variations of the bubble surface.

In other words we can say that large accelera-

tions of the bubble surface induce internal ex-

tra cycles with different periods. The size of the

main limit cycle is proportional to acceleration?s

variations.

The third pattern, shown in figure (18), does

not present a distortion over the valley in the

time response. The phase space becomes more

symmetric, showing that the velocity changes

of patterns 3 and 4 are quite similar. How-

ever, there is an expressive change in position

in pattern 4, which increases the amplitude of

the fourth harmonic.

Patterns 5 and 6 are shown in figure (19).

It is noted that these patterns are harmonic

without distortion and non-harmonic and non-

periodic, respectively. Pattern 5 has a tendency

of stability in the phase space and only two

harmonics in the frequency response. The first

harmonic contains almost all the energy of the
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Figure 9: Left: pattern 3 characterized by a time series of R(t) (a), (b) phase plane and (c) Power

spectrum given by FFT of the output. Right: pattern 4 characterized by a time series of R(t) (a),

(b) phase plane and (c) Power spectrum given by FFT of the output.

system. On the other hand, pattern 6 shows

a damping effect on the bubble time response

and a continuos decrease in its energetic level in

the phase diagram. We speculate that this en-

ergy loss is associated with an energy exchange

between the bubble and the surrounding liquid.

During this bubble-liquid interaction the viscos-

ity of the liquid works as a damper decreasing

the overall energy of the oscillating bubble. In

the time response, we note that in each oscilla-

tion, the distortion parameter changes, inducing

different vibrational responses.

Finally, pattern 7 shown in figure (23) has

low distortion of the peak and a weak aperiod-

icity. This anisotropic behavior in the shape of

the phase diagram is observed, which may be in-

terpreted as a superposition of several degrees of

freedom or energy levels. This system is highly

nonlinear, showing a different frequency spec-

trum and phase space according to the variation

of the non-dimensional parameters. This indi-

cates that in the studies of dynamics systems

stability, controlling the physical parameters of

the problem is as important as the oscillation

amplitude or even the type of external forcing.

Viscous and restoring forces in relation to iner-

tia forces are much important on the dynamics

of the system than its forcing field.
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II.3.2 Poincaré sections and Lya-

punov exponents

Another interesting approach used to ex-

plore the behavior of our nonlinear system is

the Poincaré section of the phase plane. For in-

stance. the construction of the Poincaré map

(section) is extremely useful in order to convert

the study of the flow in the vicinity of a closed

orbit. Roughly speaking, the Poincaré map cor-

responds to the process of periodically strobing

a phase portrait. In particular we can see from

figure (24) that different parameters can lead to

an attractor if the collapse criteria is turned off.

However, the results indicate that even a bub-

ble describing nonlinear oscillations its motion

will not bifurcate for a chaotic motion if it is

immersed in a linear liquid. This type of re-

sponse is seen even under a high Re and We

numbers condition. We might argue, however,

that for a chaotic configuration to appear the

bubble should develops oscillations with a period

in the same time scale of a complex nonlinear liq-

uid such as a viscoelastic and magnetic fluid (see

[12], [11]). In another words the motion of the

bubble should be coupled with the mechanism

of structure relaxation (e.g. macromolecules and

chains present on these liquids). As the relax-

ation time of a Newtonian linear liquid is zero

compared with any period of the bubble oscil-

lation, the effect of the liquid is related with

dissipation and inertia. These mechanisms are

not sufficient to produce a chaotic route. Theses

findings have currently motivated us to examine

in full details the bubble dynamics in a mag-

netic anisotropic suspension [13]. Actually, in
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practical application the bubble would collapse

before its motion displays a chaotic motion. In

order to produce the attractor shown in figure

(24) the collapse criteria suggested in [10] based

on a asymptotic critical radius of collapse was

turned off in this specific simulation.

Now, we continue examining the nonlinear

response of the bubble dynamics through the

concept of Lyapunov exponents of this system.

This study allows to observe the sensitive of the

bubble system to initial conditions and also the

divergence and convergence rates of nearby tra-

jectories in the phase space. In other words the

Lyapunov exponents (LE) herein called λ are a

measure of the exponential separation (eλ) of the

neighboring trajectories over all points of a tra-

jectory around an attractor. For stable cycles

λ < 0 and neighboring trajectories converge,

whereas λ > 0 corresponds to a chaotic attrac-

tor. In terms of the Kolmogorov entropy (en-

tropic metric) the LE may be interpreted as a

measure of the disorder in the bubble motion re-

sponse due to the acoustic forcing pressure and

its nonlinear interaction with the surrounding

liquid. The Lyapunov exponents are also consid-

ered to be a dynamic measure of the complexity

of delays and may be used for the characteriza-

tion of chaos and bifurcations. These are stan-

dard consequences of a dynamical system with

a high degree of nonlinearity and instabilities as

can be seen in the unsteady oscillatory motion

of a bubble in a complex liquid. LE are found

in the present work by numerical computations.

It can only be evaluated analytically in some

simple cases. Most of them without practical

importance in the scenery of nonlinear dynamic

systems.

We shall now explore the behavior of Lya-

punov exponents for an equivalent autonomous

system representing the nonlinear motion of the

bubble. Since we are considering the radial mo-

tion of a non deformable bubble in a three di-

mensional quiescent liquid in the absence of any

rotational motion, we have a dynamical system

with three translational degrees of freedom. In

this sense we can use equation (53) in order

to express the primary system as being an au-

tonomous system. In this particular case, in

which the bubble is immersed in a Newtonian

liquid, Rayleigh-Plesset equation can be just

written as an equivalent autonomous system as







dx
dt = y
dy
dt = 1

x

[
−3

2y
2 + 2

We

(
1
x3 − 1

x

)]

− 1
x − εsin(ωz)

x + 1
x4 − 4

Re
y
x2

dz
dt = 1

(67)

The Jacobian of the system of nonlinear or-

dinary differential equations given in (67) is ex-

pressed by equation (68). Considering different

values of Re, We, ε and the initial conditions it

is possible to test whether the bubble presents

a chaotic behavior. For this purpose, we have

used the Matlab Lyapunov Exponents Toolbox

[35]. The output can present different behav-

iors which are characterized as periodic cycles

or stable equilibrium, nonlinear chaos and pure

random processes. In the Jacobian approach,

the Jacobians are usually found by locally lin-

ear mapping in the neighborhoods near the ref-

erence trajectory to neighborhoods at a subse-
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Figure 12: Poincaré section for different patterns. (a) the phase plane and the Poincaré section of

an harmonic pattern with low Reynolds and Weber numbers. The transient response is represented

by the dashed line. (b) a nonlinear pattern obtained with high Reynolds number and excitation

amplitude when the collapse criteria is turned off. Those different parameters leads to an attractor.

quent time [37]. Along with the Lyapunov ex-

ponents, the Lyapunov dimension is also given

for each time step. This dimension, also known

as Kaplan-York dimension can be defined as the

fractal dimension in which a cluster of initial

conditions will neither expand nor contract as

it evolves in time [29]. The rate of expansion

is the sum of the Lyapunov exponents, and this

sum will necessarily be negative for an attractor,

for example.







0 1 0
(

1.5 y2

x2 − 4 (2/We)
x5 + 2 (2/We)

x3 + 1
x2 + εsin(ωt)

x2 − 4
x5 + 2(4/Re) y

x3

) (

−3 y
x − (4/Re)

x2

)

εωcos(ωt)

0 0 0







(68)

Figure (25) shows that even though the bub-

ble response in a Newtonian fluid is highly

nonlinear, the formal requirements for reaching

chaotic configurations of the bubble oscillations

are not satisfied. Actually all Lyapunov expo-

nents are negatives and the Lyapunov dimen-

sions of both systems are null. The Lyapunov

dimension is zero when the system is a first order

one-dimensional system, such as it occurs in the

logistic map or all the Lyapunov exponents are

negative (or zero). All the tests were conducted

with no collapse criteria. Under this condition,

we can argue that none of the combination of

parameters physically accepted would lead to a

chaotic motion.
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Figure 13: Left: (a) Lyapunov exponents for the bubble dynamic system, (b) phase space and (c)

Poincaré section for Re = 150, We = 2, ε = 0.8 and ω = 8. Right:(a) Lyapunov exponents for

the bubble dynamic system, (b) phase space and (c) Poincaré section for Re = 200, We = 200,

ε = 1.5 and ω = 15.
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II.3.3 Neural Network Training data

from the Bubble Dynamical

System

In this part of our dynamic analysis a neu-

ral network is designed for identifying the vi-

brational patterns of the nonlinear motion of

the bubble through its FFT response. Previ-

ously, we know that the bubble motion is stable.

The set of parameter ranges for these tests are

Re = [0, 100], ε = [0, 1] under a condition of con-

stant ω = 1, n = 1 and We = 6. More precisely

the input data on the network consists on the fre-

quency f spectrum ranging from 0.2 ≤ f ≤ 1.5.

This band in the frequency spectrum includes in-

formations regarding the amplitude of the first

harmonic together with the spectral spreading

behavior on its vicinities.

The trained network uses a set of 36 input

matrices called Patterns. Each one with 15 dif-

ferent pairs of information concerning a set of

points that accounts for the spectral spreading

around frequencies in the interval 0.2 ≤ f ≤ 1.5.

The system uses 1000 epochs with a linear trans-

fer function on the first layer of the network

and a logarithmic transfer function on the sec-

ond layer. The first layer is built with 30 neu-

rons and the second with a single neuron. Each

training set has an output, called target, refer-

ring to its vibrational pattern. The validation

set is not used for training. In this sense we test

the performance of the network by providing an

input with information never seen before during

its training. In order to validate the performance

of the network and its ability in identifying the

vibrational patterns of the bubble nonlinear dy-

namic we have carried out seven tests. In each

test the network uses a different set of weights

in its initial condition. For a given input data

containing 15 points of the FFT signal in the in-

terval 0.2 ≤ f ≤ 1.5, the output of the network

is a real number. This real number corresponds

to the pattern the network is supposed to iden-

tify. Figure (14) shows the plots of the network

performance for identifying the particular pat-

terns

Figure (14 a) shows the output for seven dif-

ferent tests for a given input containing all the

possible patterns. The symbols denote the out-

put of the network for different tests. The con-

tinuous line would be the expected answer of the

network. Since the network uses different initial

conditions its output changes for each test. In

order to demonstrate the ability of the network

in identifying the patterns we might perform an

ensemble average over all validation tests. The

result of this ensemble average is presented in

figure (14b). It is seen that the resulting net-

work is able to identify the correct pattern for

all the defined patterns within the range of the

physical parameters explored in this work. This

result indicates that the network has the ability

of reading a new set of data that it had never

seen before and predict what pattern is respon-

sible for that specific data. The tests point out

that using a simple statistical analysis by con-

sidering an ensemble average of 7 tests the con-

fidence of the network ability for recognizing the

vibrational patterns is of 100%.

Identifying the pattern supports us for un-

derstanding the nonlinear bubble motion and

the influence of the physical parameters on the

vibrational modes of the oscillating bubble. Us-

ing the collapse diagram available from our pre-

viou work [30], we can identify the full range

of Reynolds and Weber numbers that leads to

the bubble collapse. As a promising application

the control of a cavitating bubble by monitoring

the bubble collapse time could be done by using

neural networks.
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Figure 14: (a) Network output as a function of the patterns considering seven tests with different

initial weights for each neuron, the full circles represent the Network output for a given test. (b)

average values of the Network output for seven different tests, denoted by the filled black circles.

In both plots the full line represents the desired output for each pattern.

II.4 Conclusions

The dynamic behavior of a single gas bub-

ble immersed in a Newtonian liquid in the pres-

ence of an acoustic pressure forcing was success-

fully observed and identified with a neural net-

work. The bubble motion dynamics was gov-

erned by the classical Rayleigh-Plesset equation

with both Reynolds and Weber number being

the non-dimensional physical parameter of the

bubble dynamics explored here. In pratical ap-

plicatios involving cavitating bubbles the identi-

fication of these paramaters and their dynamic

control in nonlinear bubble oscillatory motion

is a quite important feature for understanding

and controlling the instability and cavitation in

such a nonlinear system. The proposed model

has considered a one dimensional flow in the ra-

dial direction due to the spherical shape of the

bubble, the sinusoidal excitation in the same di-
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rection allowed visualization of the anisotropic

effect on the stability thereof.

The numerical simulations performed in this

work were quite important for identifying sev-

eral anisotropic shape in the phase diagram and

different modes in the frequency response of the

nonlinear bubble oscillatory motion. These dif-

ferent vibrational modes shows us the richness of

the dynamical behavior of the bubble-liquid dy-

namic system explored here. Surprisingly, even

having identified several modes of vibration for

the analysis of the bubble dynamics in a New-

tonian fluid, a chaotic configuration was never

reached. We argue that a chaotic situation re-

lated to a strange attractor could evolve if the

bubble is immersed in a complex fluid like a vis-

coelastic liquid or a magnetic suspension. In this

case a drastic change in the bubble oscillations

would be possible if a period of oscillation the

bubble surface is influenced by the particle re-

laxation time of theses complex liquids.

We have observed, however attractors result-

ing from the nonlinear motion in the phase plane

in the absence of bubble collapse. This analysis

was performed by both the Lyapunov exponents

as well as by the Poincaréé section approach.

Regardless the nonlinearities on the movement

of the bubble, the Lyapunov exponents were al-

ways negative under all conditions simulated. In

addition, the existence of a fractal dimension

was not identified, resulting in a null value. The

lack of a purely chaotic behavior contributes to

the stability of the neural network.

From our knowledge this work seems to be

a first step towards understanding and control-

ling the nonlinear response of bubbles in oscilla-

tory motions from a dynamical system point of

view. We have identified topological transitions

in phase plane using for instance the analysis of

Poincaré sections and the solution in the Fourier

space.

The training of a neural network is a slow

processing analysis, in particular because it re-

quires the use of different random weights in its

initial conditions. On the other hand, its apllica-

tion is rapid and simple once it is trained in order

to perform a specific task. The current literature

recommends that the number of epochs, neurons

and training algorithm is an important factor

for the choice of the network weights [28]. After

determining the network paramaters, the vibra-

tional patterns were identified and related as a

function of the relevant non-dimensional physi-

cal parameters governing the bubble motion dy-

namics. This study has successfully shown a rate

of 100% guesses of the network in identifying the

vibrational pattern of the bubble response sys-

tem by using numerical which did not belong to

the training set.

When identifying the history of bubble pat-

terns and oscillations, the present analysis can

be used to predict the collapse time and also

to control the set of dynamic parameters that

could avoid it. The presence of microbubbles

enormously enhances delivery of genetic mate-

rial, proteins and smaller chemical agents. De-

livery of genetic material is greatly enhanced by

ultrasound in the presence of microbubbles [38].

In this particular case, after characterizing the

vibrational pattern of the bubble nonlinear os-

cillations new investigations and studies could

be performed in order to extract the full details

of the bubble dynamic response. Moreover, de-

termining which vibrational pattern one desires,

the ultrasound may be adjusted likewise. In this

context, using neural networks to identify cavi-

tational vibrational modes seems to be a quite

effective process. Generalization in a two-layer

neural network with multiple outputs In future

works, we plan to use the approach of Poincaré

sections for all identified patterns as an input

information in order to test its influence on the

ability of the network identification. In addi-
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tion, we have been already using currently the

same approach presented here for examining [13]

bubble dynamic systems immersed in a complex

surrounding liquid.
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Submitted Paper # 2

This paper was produced and submitted during the

Masters period. The dynamic behavior of a mag-

netoheological fluid in the presence of a magnetic

field and undergoing an unsteady oscillatory shear

is studied. For that, the authors used the same

approaches used in this dissertation in order to

compute dynamical parameters.

A Microstrucutural Study of a Magnetorheological Fluid from the

Perspective of a Nonlinear Dynamical System

R. G. Gontijo, S. Malvar and F. R. Cunha

This paper focus on the dynamic behavior of a magnetorheological fluid undergoing

an unsteady oscillatory shear under the presence of an applied magnetic field. The

problem is studied from a nonlinear mechanical system perspective using tools such

as: analysis in the phase space, frequency response and neural networks for parameters

identification. For this purpose several numerical simulations are performed to com-

pute the motion of N magnetic rigid spheres suspendend in a Newtonian carrier liquid.

The particles are neutrally buoyant and interact both hydrodynamically and magnet-

ically throughout the process of dynamic simulation. We apply an external magnetic

field together with an oscillatory shear. These two deterministics mechanisms compete

with which other to align the particles in a preferential direction. The nonlinearities

are introduced into the system due to particle-particle interaction. The intensity of

the non-deterministic mechanisms is regulated by two physical parameters that appear

in the present formulation. The numerical simulations are based on a sophisticated

technique of Ewald sums that compute convergent hydrodynamic and magnetic inter-

actions. A numerical research code developed by the authors is used for this purpose.

The code is both accurate and computationally efficient. The present work intends to

show that several tools, otherwise thought to be mostly applied to the dynamics of

nonlinear systems, can be used to explore the physical behavior of wet suspensions in

fluid mechanics. Moreover several details of the micromechanics of these complex ma-

terials are captured and physically interpreted through the use of the proposed tools.
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Magnetorheological fluid, nonlinear dynamics, Ewald sums, hydrodynamic

interactions, dipolar matter.

III.5 Introduction

A ferrofluid is defined as a stable colloidal

magnetic suspension of nanometric particles im-

mersed in a carrier liquid [1]. The addition of

small magnetic particles inside a carrier liquid

(usually oil or water based) leads to new pos-

sibilities regarding the fluid response due to the

application of an external field. In the absence of

a magnetic field, a ferrofluid behaves as a New-

tonian liquid, but when an external field is ap-

plied the fluid magnetizes itself and, as a con-

sequence, several rheological properties are al-

tered [2]. The discover of ferrofluids in the 1960s

opened the doors for several interesting appli-

cations. At first, ferrofluids were mostly used

in applications where the focus was to control

its motion due to the application of an external

field. As years of research went by we now un-

derstand that ferrofluids can be used in a great

wide of otherwise unthinkable applications. We

can mention for example the use of ferrofluids

to increase the efficiency of heat transfer devices

[4, 4], magnetic pumping [5] and drag reduction

due to the magnetoviscous effect [6]. Just re-

cently [7] have shown that the interaction be-

tween magnetic particles and the application of

an external field can help to stabilize a fluidized

bed.

Another interesting class of magnetic sus-

pensions are the so called Magnetorheological

Suspensions (M.R.S), or magnetorheological flu-

ids. This type of fluid is a noncolloidal liquid-

solid suspension made through the addition of

micro-sized magnetic particles in a Newtonian

carrier liquid. The primary difference between

a M.R.S and a ferrofluid is the particle sensibil-

ity to thermal fluctuations induced by the liq-

uid molecules [2, 8]. In recent years some in-

teresting studies have been done regarding the

use of M.R.S in practical applications or sim-

ply exploring the physics of this complex mate-

rial. [9] made an interesting experimental study

on the dynamics of droplets of M.R.S impacting

on a flat surface under the presence of an ap-

plied field, in this study they used M.R.S drops

of 2.08 mm containing micro-sized particles. Re-

cent studies have tried to link nonlinear dynamic

tools, such as neural networks and fuzzy logic to

control the behavior of M.R.S in different appli-

cations [10, 11, 12].

One interesting fact about ferrofluids and

M.R.S is that they tend to form self-organized

patterns depending on the applied field and ge-

ometry where those fluids are confined. Since

the 1980s we can observe interesting pattern for-

mation in magnetic fluids [13, 14, 15]. For in-

stance [16] used a 3D finite element method to

identify hexagonal ferrofluid pattern formation

under the presence of an applied field. Other

authors have used theoretical approaches in or-

der to understand the theory of pattern forma-

tion [17, 18]. A recent experimental study shows

the fingering formation of an imiscible ferrofluid

drop immersed in water and subjected to a ra-

dial magnetic field [19].

Another great research field regarding fer-

rofluids and M.R.S is the rheology of these com-

plex class of fluids. In order to study the rheolog-

ical behavior of a complex fluid, we must apply

a simple rheological flow and observe how it re-

sists to the attempt of shearing it. The interest-

ing feature of magnetic fluids is that its macro-

scopic rheological response is intricately related

to its microstructural behavior. A great amount

of experimental works have been done in recent

years in order to understand the rheological re-
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sponse of ferrofluids [20, 21, 22, 23]. Another

possible way to study the rheology of magnetic

fluids is through numerical simulations [24] in a

microstrucural scale.

Even though magnetic fluids present several

interesting patterns under the presence of an ap-

plied field and a rich rheology due to dipolar

interactions in the micro or nano scale, these

two features have not been explored jointly.

This works seeks to perform a numerical study

using an oscillatory shear rate as a rheologi-

cal flow to understand the microstructural dy-

namics of M.R.S under the presence of an ap-

plied field. Dipolar [25, 26] and hydrodynamic

[27, 28, 30, 31] interactions between all the par-

ticles within the suspension space are also con-

sidered. We use nonlinear dynamic system tools

to explore the unsteady behavior of the suspen-

sion magnetization under different conditions of

the problem physical parameters. We intend

to show that due to its intrinsic microstructure

nonlinearity, mainly under the action of strong

magnetic interactions, the output of the fluid

system when excited in an harmonic way may be

highly nonlinear. Several different features are

explored and interpreted from a physical per-

spective. A neural network is also trained to

identify the problem physical parameters based

on the FFT response of the excited complex fluid

and its energetic dispersion on the phase plane.

Several nonlinear dynamical system tools, such

as phase space analysis, FFT and neural net-

works are used in this work to capture the

physics of this complex material.

III.6 Formulation of the prob-

lem

In this problem, we consider a suspension of

N spherical magnetic particles with radius a sus-

pended in a Newtonian liquid with viscosity η

and density ρf . The density of the particles ρp
is the same as the liquid density (ρp = ρf ) so

the suspension is assumed to be neutrally buoy-

ant. An external magnetic field H is suddenly

applied in the suspension space. The field is

applied in the same direction but with oppo-

site sense to the gravitational acceleration vector

g = gĝ. The particles are initially distributed

in an ordered manner. Their magnetic dipole

moments d = dd̂ are set to be initially aligned

transversely to gravity, so d̂·ĝ = 0. An unsteady

oscillatory shear is applied at the same moment

as the magnetic field. The upper boundary of

our calculation domain is set to move with ve-

locity γ̇× h, where h denotes the separation be-

tween the upper and lower boundaries of our do-

main. The applied shear rate γ̇ is a function of

time, given by γ̇(t) = γ̇0 sin(ωt), where γ̇0 is the

amplitude of the applied shear, ω denotes its fre-

quency and t is the time. A simple sketch of our

problem is shown in figure (15).

The dimensionless expression to compute the

velocity of an arbitrary ith particle in the sus-

pension space is based on the linearity of Stokes

equations (valid for Rep ≪ 1, where Rep is the

particle Reynolds number of the flow induced

by the motion of the spheres). This expression

is given by

ui = γ̇dziêx+M s
i,i ·f i+

N∑

j 6=i,j=1

M
p
i,j ·f j, (69)

where γ̇d is the dimensionless shear rate, in this

case γ̇d = γ̇a/Us, being a the particle radius

and Us the Stokes velocity of an isolated parti-

cle, zi denotes the dimensionless height of parti-

cle i with respect to the lower boundary of the
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Figure 15: A sketch of our problem. An ordered distribution of monodisperse magnetic particles

firstly aligned in the transveral direction to the applied field (a). Application of an oscillatory shear

in the suspension space together with an applied field. Particle hydrodynamic and dipole-dipole

magnetic interactions are also considered. The interactions between the particles and with the

applied magnetic field and shear may lead to a highly nonlinear distribution of the particles dipole

moments and positions as represented in figure (b).

calculation domain, êx is the direction of the

imposed shear (in the êz plane), M s
i,i is the self

mobility matrix that relates linearly the velocity

of one particle with its own force field, f i and

f j represent the forces acting on particles i and

j respectively and M
p
i,j is the pair mobility ma-

trix, which conects the disturbances induced on

the motion of an arbitrary i particle due to the

presence of the neighbouring j particles. The

forces acting on an arbitrary i particle are given

by

f i = f r
i + f c

i + fm
i , (70)

where fr
i is a repulsive force for near particles

given by a variance of the screened Coulomb

potential, f c
i is a contact Hertz force for over-

laped particles and fm
i represents the magnetic

forces due to dipole-dipole interaction acting on

the particles. More details can be found in [32].

We may also account a force f
mf
i for the field-

dipole interaction. This force is proportional

to f
mf
i ∼ ∇H , where H is the applied field.

In this work we consider that the suspension is

confined in an infinitesimal continuum volume,

so field gradients are neglegible within this vol-

ume. A consequence of this assumption is that

the particles will not suffer any magnetic force

due to the influence of an external field, but will

be subjected to magnetic field torques and will

interact magnetically with all the particles of the

suspension.

The dimensionless versions of the mobility

matrices are given by [33] as a consequence of

the application of the [34] summation technique

to the [35] mobility tensor:

M s
i,i =

(

1− 6ξπ−1/2 +
40

3
ξ3π−1/2

)

I. (71)
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and

M ij(r
′

) =
∑

x∈L

M1(r
′

+ x) +
1

V

∑

k∈L̂ ,k 6=0

M2(k) cos(k · r′

). (72)

where the mobilities M1 and M 2 are given by

M1(r) =
3

4

{(

1

r
+

2

3r3

)

erf(ξr) +

(

16

3
ξ7r4 + 4ξ3r2 − 80

3
ξ5r2 − 6ξ +

56

3
ξ3 +

4

3
ξr2

)

1√
π
exp(−ξ2r2)

}

I

+
3

4

{(

1

r
− 2

r3

)

erfc(ξr) +

(

−16

7
ξ7r4 − 4ξ3r2 +

64

3
ξ5r2 + 2ξ − 8

3
ξ3 − 4ξ − 4ξ

1

r2

)

1√
π
exp(ξ2r2)

}

r̂r̂ (73)

M2(k) =
(

I − k̂k̂
)

(

1− 1

3
k2

)(

1 +
1

4ξ2
k2 +

1

8ξ4
k4

)

6π

k2
exp

(−k2

4ξ2

)

, (74)

where r is the distance between two arbitrary

particles, k̂ = k/k represents the direction of

a wave number vector (will be discussed later)

and ξ = π1/2V −1/3 is a parameter set to acceler-

ate the convergence of the sum. It is important

to notice that the distance r and the parame-

ter ξ expressed in equations (73 - 74) must be

used in their dimensionless versions. The forces

fr
i ,f

c
i ,f

m
i necessary to calculate each particle

velocity as expressed in (69) are given in their

dimensionless versions as

fr
i = Λ |ui| e

(

− ǫij
Y

)

êr, f c
i = Pcǫ

3/2
ij êr, (75)

where Λ and Y are calibration constants of the

model, |ui| is the magnitude of particle i ve-

locity, ǫij represents the distance between the

surfaces of two close particles i and j, êr is the

direction of repulsion (opposite to the motion

of the spheres), Pc is the contact parameter for

overlaped particles, this parameter was consid-

ered to be Pc = 100 in all simulations performed

in this work. The magnetic force is taken as the

gradient of the potential energy interaction ψij

between two magnetic dipoles, given by

ψij =
∑

i 6=j

ϕm

r3ij
[di · dj − 3 (di · r̂ij) (dj · r̂ij)] , (76)

and

fi
m =

∑

i 6=j

ϕm

r4ij

[

(di · dj) r̂ij + (di · r̂ij)dj + (dj · r̂ij)di − 5 (di · r̂ij) (dj · r̂ij) r̂ij
]

,

here ϕm = µ0m
2
d/8π

2ηa5Us measures the in-

tensity of dipole-dipole interactions, µ0 is the

magnetic permeability of free space and md is

the magnitude of the particle dipole moment. In

this context ϕm is the physical parameter that

measures the intensity of particle-particle mag-

netic interactions. In Brownian magnetic disper-

sions a parameter λ = µ0m
2
d/(4πkBTd

3) is gen-

erally used, here kB represents the Boltzmann

constant, T is the absolute temperature of the

fluid and d is the particle diameter. Since we

are working with non-Brownian magnetic sus-

pensions, the influence of the carrier liquid ther-

mal fluctuations will not affect the behavior of

the immersed particles, hence the use of ϕm is

more appropriate than λ. For the rotational mo-

tion of the particles we assume that the particle

may be subjected to a small effect of rotational

inertia, this effect seems to be important in or-

der to describe the behavior of magnetic suspen-

sions as observed by [36]. The governing equa-

tion used to compute the angular velocity of the
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magnetic particles is given by

Str
dωi

dt
= −ωi + T i

m, (77)

where Str = JsUs/(8πµa
4) is the rotational

Stokes number of the particles, being Js the po-

lar inertia moment of the particle. The rota-

tional Stokes number measures the relative im-

portance of a rotational relaxation time scale

with respect to a typical time that the fluid

molecules take to diffuse angular momentum. In

addition, ωi is the angular velocity of a parti-

cle i and T i
m represents the magnetic torques to

which the particles are subjected. Equation (77)

considers that the rotational motion of the par-

ticles is governed by inertia, viscous drag and

magnetic torques. The magnetic torques are

computed by the following expression

Tm
i = ψm

(

di × ĥ
)

− ϕm

{∑

x∈L

[

(di × dj)B(rij)− (di × r̂ij) (dj · r̂ij)C (rij)
]

+
1

L3

∑

k∈L̂ ,k 6=0

4π
(

di × k̂
)(

dj · k̂
)

exp

[

−
(
πk

ξ

)2
]

cos
(

2πk̂ · r̂ij
)}

,

where ψm = µ0mdH0/6πηa
2Us is a physical parameter that measures the relative importance

of the torques exerted by an applied magnetic field with respect to the viscous torques that the

particles are subjected. The functions B(rij) and C (rij) that appear in expression (78) are given

by

B(rij) =

[

erfc (ξrij) +

(
2ξrij√
π

)

e(−ξ2r2ij)
]

r−3
ij . (78)

and

C (rij) =

(

2ξrij
r4ij

√
π

)

(
3 + 2ξ2r2ij

)
e(−ξ2r2ij) +

3erfc (ξrij)

r4ij
, (79)

where erfc is the complementary error function, defined as

erfc(x) = 1− 2√
π

∫ x

0
e−t2dt. (80)

Note that the summation used to compute

magnetic torques is taken in the analogous man-

ner as the one used to compute hydrodynamic

interactions. In both we must build a periodic

structure to compute thoses sums in the physi-

cal and reciprocal spaces. This is a consequence

of the use of the [34] summation technique. This

procedure is necessary to accurately compute

long range interactions in particulate systems

with slow decays. Due to the fast nature decay

of magnetic forces (1/r4) we can compute them

in a non periodic and consequently cheaper way.

III.7 Numerical methodology

We have developed a non commercial re-

search code written in Fortran for Linux Plat-

forms. This code calculates the translational

and rotational velocities of a set of N mag-

netic particles suspended in a viscous Newto-

nian fluid. In order to calculate these veloci-

ties the code is structured in several sequential

steps. First we must create a periodic struc-

ture with several boxes, called lattices. These

lattices are spreaded through the physical and

reciprocal spaces. Figure (16a) illustrates a 2D
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view of a set of 125 lattices distributed through

space. Note that in this view only 25 of those

125 lattices are seen, since the other lattices are

distributed through the other plane. The cen-

tral lattice is the real lattice where the particles

are properly located. All the surrounding lat-

tices are simply an imaginay representation of

the behavior presented by the particles in the

real lattice. The construction of these imagi-

nary lattices is a requirement of the [34] sum-

mation technique and aims the emulation of an

infinite suspension to accelerate the convergence

rate of long range sums that compute hydrody-

namic and magnetic torque interactions.

The procedure of creating the imaginary lat-

tices is done in two parts, one for the real space

lattices and other for the reciprocal space lat-

tices. For the real space lattices the vector xR

is added to the position of each particle in the

central cell, this vector is defined as

xR =
3∑

i=1

γiliêi, γi ∈ Z (81)

here γ1, γ2, γ3 are integers that in the present

simulations vary from [−2,+2] and l1, l2, l3 are

the lengths of each edge of the central cell. The

vectors denoted by γiêi are called lattice vec-

tors. These possible combinations lead to a

total of 53 = 125 lattices. Note that when

γ1 = γ2 = γ3 = 0 we are exactly on the cen-

tral cell. Each combination of values for the γi
coefficients denotes a different lattice. For the

reciprocal space sum we must add to the posi-

tion of each particle the vector xk defined as

xk =

3∑

i=1

2πβi
li

êi, βi ∈ Z (82)

where β1, β2, β3 are integers varying in the range

of [-2,+2]. This procedure is responsible for cre-

ating the reciprocal lattices for several possible

wavelengths.

After generating the initial condition in the

real and imaginary lattices a table with ten thou-

sand values of the scalar functions required to

compute M1(r), M2(k), B(rij) and C (rij) is

built. Since these functions depend on the dis-

tance between two arbitrary particles and on dif-

ferent wave numbers, they may be previously

calculated and storaged in several tables. These

tables consider all the possible range of distances

and wavenumbers used through the simulation,

based on the number of particles and the sus-

pension volume fraction φ = Nvp/V , where vp is

the volume of a particle and V is the suspension

volume. When a value needs to be calculated it

is taken from the table by interpolating the out-

put of these functions using the closests numbers

storaged. This idea was proposed in the works

of [30, 37] and aims to decrease the simulation

computational cost. Since we run dynamic sim-

ulations, the calculation of expensive mathemat-

ical functions in several loops through the time

evolution scheme may substantially increase the

computational cost.

After creating the periodic structure illus-

trated in figure (16a) and mouting the tables

with the numerical values of the required scalar

functions, the simulation process begins. The

first step is to calculate the velocity of each par-

ticle through equation (69). Two important re-

marks must be made. Each particle in the real

lattice interacts with all the other particles, but

the particles in the imaginary lattices only inter-

act with the ones in the real lattice. When the

shear is applied all the lattices must be sheared

with the imposed shear rate, as illustrated in

figure (16b). After calculating the particles ve-

164



(a)

(b)

γ̇ = γ̇0 sin(ωt)

Figure 16: Generation of an initial ordered condition (a) in several lattices and its consequence

deformation due to the imposed shear (b).

locities, their angular velocities are calculated

through equation (77). The next step is the cal-

culation of the particles new positions and dipole

moments. In this work, we consider that the

dipole moments of the particles are fixed and

turn with them. The simulation evolves in time

by recalculating the linear and angular veloci-

ties of the particles in subsequent moments. In

each time step the suspension configuration is

updated by their new positions and dipole mo-

ments distribution. Figure (17) shows the ini-

tial configuration for the simulations done in this

work.

In this work all simulations have the same

initial configuration with 6× 6× 6 = 216 parti-

cles in the central cell distributed in an orderly

way. The particles dipole moments are initially

set to be aligned transversely to gravity. The

separation between the particles on the X, Y , Z

axes is the same and vary as a function of the

volume fraction of particles φ.
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Figure 17: These figures show the initial condition used in all the simulations of this work. In

figure (a) a side view of the initial configuration is shown, while in figure (b) we have a three

dimentional view.

III.8 Code validation

Before proceding to the results and discus-

sions section it would be instructive to show an

example of the capabilities of our code in or-

der to predict magnetic suspensions transport

properties. This sections intends to show an ex-

ample of code validation. More details about it

can be found on [2, 32]. Figure (18) shows two

plots. In (18a) the mean sedimentation velocity

of an ordered suspension of nonmagnetic spheres

with hydrodynamic interactions is shown. Fig-

ure (18b) shows the behavior of the equilibrium

magnetization of a ferrofluid as a function of the

volume fraction of particles.

In figure (18) we define U = U/Us, where Us

is the Stokes velocity of an isolated particle and

U =
1

N

N∑

i=1

Ui, (83)

represents the mean sedimentation velocity of

the suspension, Ui is the sedimentation velocity

of an aribitrary i particle, moreover M∗ is the

dimensionless suspension magnetization, here

M∗ =
M0

Md
, (84)

where M0 is the equilibrium, or steady state,

magnetization and Md denotes the magnetiza-

tion of the particles.

Figure (18) shows a very good agreement

between our numerical outputs and the theo-

retical approaches used for code validation pur-

poses. For the case of nonmagnetic spheres a

perfect agreement between the numerically pre-

dicted sedimentation velocity and the theoretical

solutions of [38, 39] is observed. For the magne-

tization it is observed that for values of φ < 12%

the numerical and asymptotic solutions present

a perfect match. When the volume fraction of

particles increases above 12% the numerical so-

lution overestimates the O(φ3) asymptotic solu-

tion proposed by [40]. The explanation for this

divergence lies on the fact that the asymptotic

solution only considers magnetic interactions for

up to three particles. For diluted suspensions

the physics is indeed dominated by interactions

of two or three particles. However, for denser fer-

rofluid the probability of finding small clusters

with more than three close particles increases.

In this sense the numerical solution is more re-

liable for predicting the magnetization of dense
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Figure 18: Figure (a) illustrates the behavior of the suspension mean sedimentation velocity as a

function of φ1/3 for an ordered distribution of hydrodynamically interacting spheres. The continous

line represents the [38] theoretical solution, the dashed line denotes the asymptotic expression of

[39] and the filled black circles represent numerical values obtained with the present code. In figure

(b) we show the behavior of the equilibrium magnetization as a function of φ. The continous line

represents the O(φ3) solution of [40] while the black circles denote the numerical solution obtained

with the present code.

ferrofluids since it considers all particle-particle

magnetic and hydrodynamic interactions [32].

III.9 Results and discussions

First a non-interacting suspension (ϕm = 0

and no hydrodynamic interactions) under the

presence of an applied magnetic field (ψm = 1)

and an oscillatory shear with ω = 1 for φ = 5% is

considered. For all the simulations in this work

the dimensionless applied shear rate intensity is

set to be γ̇0 = 1. For the picture shown in fig-

ure (19) there are two deterministic mechanisms

competing for ruling the microstructural dynam-

ics: the external magnetic field and the imposed

shear.

It is possible to observe at figure (19a) that

a non interacting suspension responds with an

harmonic signal to the imposition of a sinuiso-

dal oscillatory shear. Nevertheless it is interest-

ing to notice at figure (19b) that the initial tran-

sient, induced by the attempt of the applied field

to align the particles in its direction, produces

a rapid variation of the suspension magnetiza-

tion. For the combined physical parameters we

observe that the suspension magnetization goes

from zero to its saturation value in less than 1

ts, being ts the Stokes time (the time in which

a particle with radius a takes to sediment its

own radius with velocity Us). This initial tran-

sient is clearly observed in the phase space dia-

gram shown in figure (19c), labeled as letter A.

One interesting feature seen in figure (19c) is a

moderate distortion on the phase space at the

end of the initial transient, labeled as letter C.

This distortion may be atributed by the interac-
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Figure 19: Figure (a) shows the unsteady response of the suspension magnetization as a function

of time after the initial transient (b). Figure (c) illustrates the phase diagram of the signal shown

in (a) and (b). In (d) we have the suspension microstructure after 8 ts while in (e) we show the

microstrucutre for 11 ts. Here ts is the Stokes time, defined as ts = a/Us.

tion between the applied field and the imposed

shear. We may speculate from figures (19b)

and (19c) that for the time interval defined as

0.3 < ts < 0.8 the shear is out of phase with

respect to the applied field. While the field is

still trying to align the particles in its direction,

the shear is attempting to dishevel them. When

the suspension magnetization finally reaches its

saturation value at ts = 0.45 the particles os-

cillate around an axis parallel to the direction

of the applied field. This harmonic oscillation

produces a perfect limit cycle with one energetic

level shown in figure (19c) and labeled as letter

B.

In figure (20) an interacting suspension

(ϕm = 0.4 with magnetic and hydrodynamic

interactions) under the presence of an applied

magnetic field (ψm = 1) and an oscillatory shear

with ω = 1 for φ = 1% is simulated.
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Figure 20: Figure (a) shows the unsteady response of the suspension magnetization as a function of

time after the initial transient. Figure (b) illustrates the phase diagram of the signal shown in (a).

In (c) we have the suspension microstructure after 8 ts while in (d) we show the microstrucutre

for 12 ts. Here ts is the Stokes time, defined as ts = a/Us.

For the picture shown in figure (20) besides

the two deterministic mechanisms competing for

ruling the microstructural dynamics (external

magnetic field and the imposed shear) a moder-

ate influence of particle-particle hydrodynamic

and magnetic interactions is also present. These

interactions lead to a systematic energy loss on

the suspension space as it may be noticed on the

phase diagram shown in (20b). When the time

response signal is observed, in figure (20a), it

is not clear the overall effect of particle interac-

tion on the suspension unsteady magnetization,

however the energy loss associated with particle

interaction is evident on the phase space. We

may interpret that while the applied field and

the imposed shear compete with each other by

exchanging energy with the particles, this energy

is dissipated through two mechanisms: dipole-

dipole and hydrodynamic interactions. Instead

of observing perfect aligned particles in prefer-

ential directions we now see that some of the

particles are misaligned with respect to axis z

(parallel to the direction of the applied field).

This phenomenon is noticed in figures (20c) and
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(20d). Although some nonlinearities are intro-

duced into the system due to particle interac-

tion, for a very dilute suspension (φ = 1%, ϕm =

0.4) the response is similar to a damped mass-

spring system. We may then ask what would

happen to a magnetic suspension under these

conditions, undergoing strong magnetic interac-

tion effects. It would be interesting to analyze if

the system could present a chaotic behavior for

more concentrated suspensions.

In order to see whether the system may

present a chaotic behavior, a simulation was per-

fomed for the following parameters: ψm = 1,

ω = 1 for φ = 1% and ϕm = 1. The results are

presented in figure (21).
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Figure 21: Figure (a) shows the unsteady response of the suspension magnetization as a function of

time after the initial transient. Figure (b) illustrates the phase diagram of the signal shown in (a).

In figure (c) we illustrate the FFT of the signal (a). In (d) we show a detail of rapid magnetization

fluctuations. These rapid fluctuations are responsible for inducing several higher frenquencies and

low energy peaks in the frequency spectrum.

It is possible to see that the time response

signal presents a damping effect, but also some

energy spreading in other frequencies. Observ-

ing the phase diagram it is possible to notice
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the mentioned energy loss due to the damping

caused by particle interaction, but also an en-

ergy spreading in different possible states. A

complementary information regarding the sys-

tem frequency response is the FFT of the signal

shown in (21a), this result is presented in fig-

ure (21c). It is possible to observe that most of

the energy is concentrated in the excitation fre-

quency (ω = 1). It is also observed for higher

frequencies several low energy peaks. When the

size of the signal shown in (21a) is enlarged for

a time interval that goes from 70 < ts < 90 we

observe several rapid magnetization fluctuations

induced by particle interactions. We may then

speculate that part of the energy imposed by the

shear in the attempt of misaligning the parti-

cles from their preferential orientation (i.e. the

magnetic field direction) is lost due to dipole-

dipole magnetic interactions. Particle-particle

interaction ends up spending part of this energy

inducing the observed low energy and high fre-

quency magnetization fluctuations. It is inter-

esting to notice that the system takes a very

long time to present this nonlinear behavior in-

duced by dipole-dipole and hydrodynamic inter-

actions. This seems to be a typical chaotic be-

havior in the sense of sudden bifurcations in the

oscillatory motion of the particles dipoles. After

30 ts a systematic energy decay is seen in fig-

ure (21a). This time interval is 30 times longer

than a typical time scale associated with the ex-

citation frequency. This behavior indicates that

the microstructure is slowly altered by the im-

posed shear and dipole-dipole particle interac-

tion. At first small microstructure alterations

are present. These alterations evolve through

time and induce an increasing nonlinear feature

on the system. Once the system starts its tra-

jectory to a more nonlinear behavior it presents

a constantly increase in this tendency.

It is important to notice that all the analy-

sis done so far are focused more on dipole-dipole

interaction rather than on hydrodynamic inter-

actions. Since we have considered a very dilute

suspension (φ = 1%) and varied the intensity of

magnetic interactions, we focused on the influ-

ence of magnetic interactions. In order to avail

how these dipole-dipole interactions steal part

of the energy concentrated on the excitation fre-

quency we show figure (22). In this picture we

still consider a very dilute suspension (φ = 1%),

but intend to explore the effect of more intense

magnetic interactions (ϕm > 1) on the frequency

response. A substantial reduction on the ampli-

tude of the excitation frequency is noticed for

this case. This reduction is around 45% and

is followed by an increase in the amplitude of

other frequencies, especially in lower frequencies.

In both cases we have a deterministic frequency

peak at zero related to the constant applied field.

Since the focus of this work is the nonlinear dy-

namics induced by many-body interactions it is

not worthy to discuss further details about this

deterministic peak.

We have mentioned that the system presents

a long time memory even in the presence of con-

siderable magnetic interactions. This so called

memory is related to the time it takes to leave

its harmonic behavior and start to present a non-

linear feature due to magnetic interactions. In

order to measure this correlation time we define

the normalized self correlation function of parti-

cle velocity fluctuations R(t). This function in a

more general case is a second rank tensor R(t)

defined as

171



ω

A

0 0.5 1 1.5
0

0.02

0.04

0.06

0.08

0.1

(a)

ω

A

0 0.5 1 1.5
0

0.02

0.04

0.06

0.08

0.1

(b)

Figure 22: Figure (a) shows the FFT response for ϕm = 1 and figure (b) for ϕm = 4.
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here τ denotes a time interval that for sta-

tistical purposes goes from 0 ≤ τ ≤ t, < > de-

notes an ensemble average. In this context, since

we define the same intitial configuration for all

of our simulations and have no random fluctua-

tions induced by Brownian motion, our average

is taken over one realization, u′(t) is the system

velocity fluctuation for a given time instant t,

defined as

u′(t) =
1

Nrea

1

N

Nrea∑

j=1

N∑

i=1

(

u
j
i −U j

)

, (86)

where Nrea represents the number of different

numerical experiments (realizations), N is the

number of particles in each realization, uj
i is the

velocity of an arbitrary particle i in a realization

j and U j is the suspension average velocity for

a given j realization in a given time t, defined as

U j =
1

N

N∑

i=1

u
j
i . (87)

Note that the second rank tensor R(t) is related

to particle velocity fluctuations in the particle

scale. We can use this tensor to measure a par-

ticle pressure or a particle viscosity in the con-

text of magnetorheological suspensions. These

macroscopic properties are related to an equiv-

alent Reynolds stress in the same way that the

fluid pressure and viscosity are related to veloc-

ity fluctuations in the molecular scale and the

turbulent viscosity is defined based on the flow

velocity fluctuations in a microscopic, but not

molecular scale. In this work we are interested

in computing the correlation time of the mag-

netization signal extracted from numerical sim-

ulations. By taking only the component of the

tensor R(t) in the direction of the shear, here

called R||(t), we plot figure (23).

We notice that for a non interacting suspen-

sion the time response signal of R||(t) oscillates

in the interval [−1, 1] through time. This os-

cillation indicates that the signal never decor-
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Figure 23: Figure (a) shows the normalized self correlation function of particle velocity fluctuations

in the direction of the shear for ϕm = 0 while figure (b) considers ϕm = 4.

relates and reaches a stable value around zero

after a certain time (correlation time). In figure

(b) we observe that velocity fluctuations induced

by dipole-dipole interactions are responsible for

taking the deterministic influence of the imposed

field and oscillatory shear. Therefore conduct-

ing the system to a nonlinear regime that is no

longer correlated to its initial behavior. After

25 ts we may say that for this combination of

physical parameters the unsteady behavior of

the magnetorheological suspension is no longer

related to its initial configuration.

From the analysis done so far it is possible

to highlight that any attempt of providing a sys-

tematic parameter recognition study using for

example neural networks will demand the un-

derstand of the best variables for this purpose.

We have explored the influence of dipole-dipole

interactions on the overall behavior of the sus-

pension for very dilute magnetorheological sus-

pensions. In order to understand how hydrody-

namic interactions may alter the suspension mi-

crostructure and consequently its overal behav-

ior we must vary the volume fraction of particles

φ.

Figure (24) shows the phase space plot for

different values of φ accounting for just a small

contribution of magnetic effects with ϕm = 0.1.

It is possible to observe that the overall behav-

ior of the suspension unsteady magnetization re-

sponse for ϕm ≪ 1 is a clear tendency of a

damped oscillator. When we increase the in-

tensity of hydrodynamic interactions the energy

imposed by the deterministic oscillatory shear is

spreaded due to other mechanisms such as parti-

cle interactions. By consequence the suspension

response is a decrease in its magnetization with

time.

Even though we have observed an alteration

in the suspension oscillatory motion due to the

presence of hydrodynamic interactions, we have

noted that dipole-dipole interactions overcomes

any hydrodynamic interaction effects with re-

spect to the system overall nonlinearity. Figure

(25) shows the magnetization time response for

several values of φ but considering ϕm = 1. We

observe a clear damping tendency, as we have

seen for ϕm ≪ 1, but in this case when ϕm ∼ 1

we also observe that this damping effect is more

intense with φ. We can also see that when the

mangetic interaction parameter is higher the sys-

tem reponds with several rapid magnetization
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Figure 24: Phase space plot for ϕm = 0.1 and: (a) φ = 1%, (b) φ = 4%, (c) φ = 7% and (d)

φ = 10%.

fluctuations leading to a hihgly nonlinear signal.

This information is confirmed in figure (26) that

shows the phase space plots for the same cases.

In figure (26), we see that the nonlinearities

introduced into the system by dipole-dipole in-

teractions lead the system to several other pos-

sible energetic states. In this sense we observe a

considerable energy spreding in the phase plot.

It is worthy to notice that a rectangular region

with area ζ is marked in figure (26). This param-

eter ζ may be defined as ζ = |Mmax −Mmin| ×
|Ṁmax−Ṁmin|. Here Mmax and Mmin represent

the maximum and minimum value of the suspen-

sion magnetization after the initial transient and

Ṁmax and Ṁmin denote the maximum and min-

imum value of the magnetization derivative also

after the initial transient period. The definition

of the area ζ is an attempt to measure the in-

tensity of this energetic spreding associated with

the identified rapid fluctuations in the time re-

sponse signal due to particle interactions. When

the frequency spectrum of the cases explored in

figures (25) and (26) is analyzed it is observed

a systematic decay on the amplitude of the first

harmonic (associated with the oscillatory shear).

This result is shown in figure (27).
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Figure 25: Time response plot for ϕm = 1 and: (a) φ = 1%, (b) φ = 2%, (c) φ = 3% and (d)

φ = 4%.

The combination of figures (25), (26) and

(27) leads us to the following physical interpre-

tation of the suspension behavior. First the par-

ticles are aligned within a 90 degree angle with

respect to the applied field at ts = 0. At this

moment the shear and the external field are ap-

plied and the particles that start to rotate in the

direction of the applied field due to a magnetic

torque Tm = µ0d×H , here µ0 is the magnetic

permeability of the free space. Since d ⊥ H

this magnetic torque is maximum in the begin-

ning of the simulation. The consequence is a fast

alignment in the direction of the field. At the

same time we have the undergoing oscillatory

shear trying to misalign the particles and rotate

them in the same direction of the fluid vorticity

induced by the shear. In order to explain the

competition between the applied magnetic field

and the imposed shear we may define a magnetic

time scale tm and a typical flow scale tf based

on the frequency of the oscillatory shear.

These time scales can be defined as

tm =

(
ρsdm
µ0H

2
0

)1/2

and tf =
1

ω
,

(88)

where ρs is the density of the magnetic particles,

dm is the particle magnetic diameter (excluding

the surfactant thickness), H0 is a typical inten-

sity of the applied field and ω is the shear fre-

quency. If we divide tm by tf we have

F =
tm
tf

=
ωA

H0
, with A =

√

ρsdm
µ0
(89)

where F is a normalized magnetic time scale
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Figure 26: Phase space plot for ϕm = 1 and: (a) φ = 1%, (b) φ = 2%, (c) φ = 3% and (d) φ = 4%.

(equivalent to magnetic Strouhal number). If we

perform a numerical simulation for F 6= 1 the

tendency of particle aligment due to the applied

field will be out of phase with the attempt of the

undergoing shear of misaligning these particles.

After an initial operational transient the parti-

cles will tend to oscillate around an axis z ‖ H

and this behavior will be harmonic for ϕm ≪ 1

or φ ≪ 1. After some scale analysis, we can

also express the normalized magnetic time scale

F as a combination of other parameters. These

parameters are the normalized frequency of the

flow St (equivalent to a hydrodynamic Strouhal

number), the magnetic parameters ϕm and ψm

and the particle Reynolds number Rep as

F =
St

ψm
×
√

ϕm ×Rep, (90)

here St = ωa/Us and Rep = ρsUsa/η. Note

that in this work we assume Rep ≪ 1 and con-

sider the Creeping flow regime, but the term
√
ϕm ×Rep is not necessary ≪ 1. Since the

square root increases the magnitude of its at-

tribute when the combination ϕ×Rep < 1. The

important conclusion of this scale analysis is

that the relation between the two determinis-

tic time scales of the problem (tm and tf ) is

associated with the physical parameters of the

problem. For example, if the intensity of the

applied field is increased (ψm ↑) maintaining

all the other parameters constant, we observe

a decrease in the magnetic time scale. This de-

crease indicates that the particles will respond

to the action of the field in a shorter time. The

same thought may be applied to understand how

the applied shear rate changes the nonlinear re-

sponse of the suspension. When ω ≪ 1, by equa-
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Figure 27: Frequency response for ϕm = 1 and: (a) φ = 1%, (b) φ = 2%, (c) φ = 3% and (d)

φ = 4%.

tion (89) we have tf ≪ 1. In this asymptotic

limit tf ≪ tm and so the particles take a very

long time to perceive any magnetic effect. In this

situation they are moved simply by the under-

going shear. As we have presented in this work,

the most interesting behavior is obtained when

both scales are of the same order and so we have

a coupled problem where both mechanisms are

able to interact and produce a rich suspension

response.

This discussion is valid for the deterministic

mechanisms of applied field and shear. However

if we increase the intensity of particle interaction

effects the tendency is that the energy injected

into the system by the deterministic mechanisms

of applied field and external shear will be trans-

ferred to other vibrational modes and the sys-

tem will present extra degrees of freedom in its

oscillatory motion. These extra degrees of free-

dom will be responsible for a decrease in the en-

ergy of the first harmonic at frequencies ω = ω0,

where ω0 is the frenquency of the imposed oscil-

latory shear and for a spreading in the energetic

levels seen in the phase plot. In this work, we

are dealing with a hihgly nonlinear phenomenon

and one of our goals is to investigate the pos-

sibility of using nonlinear control tools such as

Neural Networks to identify the physical param-

eters φ and ϕm (related to particle interaction)

that produce different vibrational modes. For

this purpose it would be interesting to define a

physical variable that would allow us to obtain a

well behaved function even for hihgly nonlinear

cases and at the same time could summarize in a

single pair of information several aspects of the

nonlinear system we are dealing with. With this

goal in mind we present figure (28).
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Figure 28: Area ζ as a function of φ and the amplitude A of the system harmonic at ω = 1 also

as a function of φ.

In figure (28) we note that both ζ and A are

well behaved, smooth, monotonic functions of φ

even though they are associated with the hihgly

nonlinear behavior shown in figures (25), (26)

and (27). It is instructive to show figure (29).

This figure shows the suspension microstructure

for a condition of φ = 4%, ϕm = ψm = 1 af-

ter 13 Stokes time of simulation in (a) while in

(b) we have the trajectory of a typical test par-

ticle immersed in the middle of the suspension.

It is possible to observe that both magnetic and

hydrodynamic interactions have led the suspen-

sion to a completely different configuration when

compared to its initial ordered distribution. It

is also clear that each particle may have an ex-

tremely complicated kinematic due to particle

interactions. These nonlinear behaviors are re-

sponsible for the nonlinearities observed in fig-

ures (25), (26) and (27).

Figure 29: Figure (a) shows the microstructure for φ = 4%, ϕm = ψm = 1 for ts = 13. Figure (b)

shows the trajectory of a typical test particle in the periodic dynamical simulation.
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The fact that both ζ and A present a smooth

behavior even being associated with the nonlin-

earities shown in figures (25), (26), (27), (28)

and (29) leads us to speculate if ζ or A would

work as good parameters to train a beural bet-

work capable of recognizing the flow parameters

φ and ϕm only by a pair of values of ζ or A.

If so, it would be interesting to avail how the

network would respond to the attempt of iden-

tifying these patterns.

III.9.1 Neural networks

A Neural Network was trained in order to

avail its learning capabilities in identifying the

combination of the physical parameters φ and

ϕm that lead to the responses observed in pre-

vious sections. For this purpose the Neural Net-

work uses the values of ζ and A obtained for sev-

eral simulations varying φ and ϕm in the range

of 0.5% < φ < 3.0% and 1 < ϕm < 2. More pre-

cisely 36 long time simulations were perfomed

considering several combinations of φ and ϕm

within the mentioned range. However from these

36, six were removed (one for each φ) to be part

of the test group (validation set). The 30 files

from the trainning set were linked to two targets:

the concentration and the magnetic parameter.

These simulations were used to train a Neural

Network with the goal of identifying the combi-

nation of parameters ϕm and φ that could lead

to the nonlinear behavior explored in previous

sections.

The network was trainned with 100 neurons

in the hidden layer and two neurons in the out-

put layer for 300 epochs. The basic conjugate

gradient backpropagation algorithm was used to

adjusts the weights in the steepest descent direc-

tion (negative of the gradient). This is the di-

rection in which the nonlinear function, here de-

fined by the error (difference between target and

output), decreases most rapidly. Even though

the Scaled Conjugate Gradient needs more stor-

age than other second order algorithms, its con-

vergence is more rapid. This algorithm is based

upon a class of optimization techniques well

known in numerical analysis as the Conjugate

Gradient Methods [41]. From an optimization

point of view learning in a neural network is

equivalent to minimizing a global error function,

which is a multivariate function that depends

on the weights in the network. This perspec-

tive gives some advantages in the development

of effective learning algorithms since the problem

of minimizing a function is well known in other

fields of science, such as conventional numerical

analysis [42]. In the first layer of the Network a

logarithmic transfer function was used, while in

the output layer a linear function was adopted.

Under this configuration, ten tests were con-

ducted in order to see if the neural network was

able to identify the correct values of φ. The first

result regarding the performance of the Network

is shown in figure (30).

Figure (30) shows the ability of the Network

in predicting the volume fraction of particles

used in the simulations that could lead to the

combination of ζ and A used as in input for the

Network. It is possible to note a small devia-

tion between the continous line (correct value)

and the dashed line (Network output). In this

sense we may say that the Network has learned

how to identify the correct value of φ with good

precision. Physically we may speculate that the

influence of hydrodynamic interactions between

the particles leads to nonlinearities identifiable

by the Network. Here φ is the hydrodynamic

parameter since it measures the influence of hy-

drodynamic interactions between the suspended

particles.
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Figure 30: Predicted volume fraction φ
′

by the Network as a function of the input value of φ

used in the simulations. The continous line represent the expected prediction. The blank symbols

represent the Network responses for several tests. The filled symbols denote the average output

of the Network. The dashed line represents a linear fit obtained by the average responses of the

Network.

To check how the Network identifies the mag-

netic parameter ϕm we show figure (31). In

this picture the dashed horizontal lines represent

constant values of φ for which different simula-

tions varying ϕm were perfomed. The circles

filled in black represent values of ϕm considered

under six different simulations (for six different

values of φ). The blank circles represent the Net-

work output in ϕm for several tests with differ-

ent initial weights. The circles filled in gray are

the average response of the Network consider-

ing all the tests. From figure (31) it is clear

that the network is not capable to identify the

value of ϕm for small volume fraction of parti-

cles. This statement is equivalent to say that it

can’t capture the influence of magnetic effects

in very dilute suspensions. For volume fractions

above 2.0% the distance between the black and

gray circles decreases. This behavior indicates

that the network ability in predicting the cor-

rect value of ϕm and hence in understanding the

influence of magnetic effects increases with φ.

We may say that despite of the nonlineari-

ties in the time response signal observed in this

manuscript, the use of A and ζ seems to be a

good choice to train a Neural network capable

of identifying the physical parameters used in

the simulations. Moreover, it is clear that the

network failure in predicting the intensity of ϕm

for very dilute suspensions (φ < 2%) is a con-

sequence of the low influence of magnetic effects

in these limits of φ.

III.10 Concluding remarks

In this work we have developed a nonlinear

dynamic system analysis to treat the microstru-
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Better identification
of ϕm

Figure 31: Predicted value of ϕm for several values of φ. The dashed lines represent constant

values of φ for which several values of ϕm were tested. The blank symbols denote the Networks

predictions of ϕm for a given condition of this parameter considering different tests with different

initial weights. The filled black circles represent the used (correct) value of ϕm in the simulation

while the circles filled in gray denote the average value of ϕm predicted by the Network.

cural response of a magnetorheological suspen-

sion. For this purpose we have developed a

numerical research code written in Fortran for

Linux Platforms that compute the motion of N

neutrally buoyant rigid spherical particles sus-

pended in a viscous fluid. These particles are

made of magnetic material and are subjected to

long range interactions through their individual

dipole moments. We decided to apply simulta-

neously an external magnetic field and an oscil-

latory shear. Since the particles are suspendend

in a viscous fluid their individual displacements

induce a flow field in their neighborhoods which

induce a secondary motion on other particles in

a process known as hydrodynamic interaction.

The combination of an applied steady state mag-

netic field with a time varying hydrodynamic

field forces the system (here defined as a magne-

torheological suspension) to respond to the ac-

tion of these deterministic mechanisms. Since

the particles interact and are free to translate

and rotate we end up with a system that presents

several degrees of freedom.

To investigate the microstructural behavior

of this many-body problem we decided to use

classical tools of nonlinear dynamic system anal-

ysis, such as its response on the frequency spec-

trum and phase plane. We were able to use

these tools in order to understand how the cou-

pling between the mechanisms of magnetic and

hydrodynamic interaction governs the microme-

chanics of these complex materials. For instance,

a clear increase on the nonlinear response of

the unsteady magnetization was observed as we

increased φ and ϕm. We have identified that
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while the volume fraction of particles is respon-

sible for computing mostly the influence of hy-

drodynamic interactions, the magnetic parame-

ter ϕm computes how long range magnetic in-

teractions alter the microstructural dynamics of

the system. Even though the increase φ for a

given value of ϕm also increases the magnetic

response, for very diluted suspensions (φ < 2%)

we may observe the influence of long range hy-

drodynamic interactions. The reason for this be-

havior may lie on the fact that while hydrody-

namic interactions are proportional to 1/r (be-

ing r the distance of arbitrary particles), inter-

particle magnetic forces and torques are pro-

portional to 1/r4 and 1/r3 respectively. The

slow decay nature of hydrodynamic interaction

is then responsible for a higher influence of φ

in the microstructural response of a very dilute

magnetorheological suspension.

We have also identified that the influence of

these non deterministic mechanisms (hydrody-

namic and magnetic interactions) leads to rapid

angular velocity fluctuations on near interacting

particles. This phenomenon was observed as an

energetic spreading of the suspension magnetiza-

tion on the phase plane. These flucutations are

concentrated just below the saturation magneti-

zation. Despite of a highly nonlinear response we

were able to define two important parameters A

and ζ that behave smoothly with respect to the

problem main physical parameters φ and ϕm.

In our definition A is the amplitude of the first

harmonic in the frequency spectrum response of

the unsteady magnetization. ζ was defined as

the area in the phase plane M × Ṁ that con-

centrates the energetic spreading of the system

response after an initial deterministic transient.

We have then used A and ζ to train a neural

network to identify the values of φ and ϕm used

in our simulations. The idea was to see if we

could concentrate in a single pair of data the

overall behavior of our nonlinear system and see

wheter a neural network was capable to learn

how particle interactions are somehow responsi-

ble for generating the observed responses. We

observed that the Network was extremely effi-

cient in identifying the volume fraction of par-

ticles φ. In this sense we may conclude that

regardless of the volume fraction of particles the

choice of a single pair of date A and ζ seems

to be enough for the Network to identify the in-

fluence of hydrodynamic interactions. For very

dilute suspensions φ < 2% the Network fails in

the identification of ϕm. We speculate that this

result is a direct consequence of the slow decay

nature of hydrodynamic interactions that over-

whelms the influence of magnetic effects for very

dilute magnetorheological suspensions.

An important application of this work would

be the use of neural networks to characterize

the properties of a magnetic fluid through its re-

sponse to an applied field and shear rate. Since

the macrorheology of a complex fluid is directly

linked to its microstructural dynamics, we could

use an observable output of this complex mate-

rial to infer its volume fraction of particles. The

highlight of the present work is that we can use

several tools of classic nonlinear system analysis

to understand in greater depth the rich and in-

tricated micromechanics of magnetorheological

suspensions.
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Submitted Paper # 3

This paper was produced and submitted during the

Masters period. This work focus on a theoretical

investigation of the shape of a magnetic liquid-

liquid interface formed between two vertical flat

plates. An oscillating magnetic field is applied.

The shape and equilibrium height are analysed

with tools such as wavelet transforms.

The influence of a magnetic field on the mechanical behavior of a

fluid interface

R. G. Gontijo, S. Malvar, Y. D. Sobral and F. R. Cunha

This work focus on a theoretical investigation of the shape and equilibrium height of

a magnetic liquid-liquid interface formed between two vertical flat plates in response

to vertical magnetic fields. The formulation is based on an extension of the so called

Young-Laplace equation for an incompressible magnetic fluid infor a two-dimensional

free interface. A first order dependence of the fluid’s susceptibility with respect to the

magnetic field is considered. The formulation results in a hydrodynamic-magnetic cou-

pled problem governed by a nonlinear second order differential equation that describes

the liquid-liquid meniscus shape. According to this formulation, five relevant physi-

cal parameters are revealed in this fluid static problem. The standard gravitational

Bond number, the contact angle and three new parameters related to magnetic effects

in the present study: the magnetic Bond number, the magnetic susceptibility and its

derivative with respect to the field. The nonlinear governing equation is integrated nu-

merically using a fourth order Runge-Kutta method with a Newton-Raphson scheme,

in order to accelerate the convergence of the solution. The influence of the relevant

parameters on the rise and shape of the liquid-liquid interface is examined. The in-

terface shape response in the presence of a magnetic field varying with characteristic

wavenumbers is also explored. The numerical results are compared with asymptotic

predictions also derived here for small values of the magnetic Bond number and constant

susceptibility. A very good agreement is observed. Furthermore, all the parameters are

varied in order to understand how the scales influence the meniscus shape. Finally, is
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shown how the magnetic field can control the format of the meniscus. Meniscus, free

surface, magnetic fluid, non-linear response, asymptotic solution

IV.11 Introduction

Recently the study of magnetic fluids has gained increasing importance in the global research

landscape due to its many possible application fields. These fluids can be used in a great number

of industrial processes, biomedical applications, optimization of heat transfer rates [1, 2, 3, 4] and

so on. Recent advances in magnetic fluid flows are described in the current literature [5, 6]. Theo-

retical works and optical experimental measurements of ferrofluid free surfaces for tangential and

perpendicular magnetic fields developed in recent years have been considered of special importance

[7, 8, 9, 10, 11]. Some studies have shown the possibility of displacing magnetic fluids inside porous

media by the combination of capillary and magnetic pressures [8, 12]. The possibility of using a

magnetic fluid for promoting a more effective capillary displacement is promising for applications

of oil industries. Oil reservoirs constitute a porous medium where capillary pressure plays an

important role on the dynamics of fluid displacement inside small porous containing immiscible

fluids.

Bragard and Lebon [12] investigated the capillary rise of a non-magnetic fluid in a porous

media and developed a scaling law that establishes a relationship between the microstructure

of the porous medium and the height that a fluid rises by capillary pressure, here called the

free surface equilibrium height. The first experimental evidence on the possibility of pumping

a magnetic fluid due to an external applied magnetic field was shown by [13]. In their pioneer

work the authors studied the effect of magnetic pumping at high oscillating magnetic fields finding

a negative viscosity, which depends on the orientation of the applied field. A first attempt of

developing a study for capillary rise of magnetic fluids by the effect of magnetic pressure in a

porous medium was done by [14]. These authors examined the equilibrium height of a magnetic

fluid column inside a cylindrical capillary in the presence of an external uniform magnetic field.

They found that due to the fluid meniscus deformation,the surface pressure drop in the fluid

decreases in the longitudinal and transverse direction of the field with respect to the capillary axis.

Just to mention, some works [11, 15, 16] have done numerical simulations and measurements of

ferrofluid meniscus shape around a vertical cylindrical wire carrying electric current and observed

the influence of the viscosity, the contact angle and the surface tension on the shape of the meniscus.

Possible instabilities formed on a ferrofluid free surface due to the presence of external applied

magnetic fields have been also investigated [7, 17, 18].

Boudouvis et al. [19] were the first to examine the deformation of a free surface of a ferrofluid by

numerical simulation using a Galerkin method and carrying out some experimental observations.

Their main focus was to investigate the effect of the contact angle on the deformation of the

ferrofluid’s free surface pool and to observe the deformation of a captive ferrofluid drop at different

magnetic field strengths. A related problem using the Young-Laplace equation coupled to Maxwell

equations in order to investigate stability of polarized droplets between two faces of charged parallel
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plates in the presence of a magnetic field or electric field has been examined by Wohlhuter and

Barasan [20].

The present theoretical work aims to study the behavior of the shape and the equilibrium

height of a ferrofluid meniscus in the presence of a vertical magnetic field against the direction

of gravity. The meniscus shape is investigated for different combinations of the magnetic pa-

rameters: magnetic Bond number, susceptibility and its derivative with respect to the field. We

consider both uniform and non-uniform fields as the magnetic field depends on the wavenumbers

in the longitudinal direction. In addition, we present an asymptotical expression for the ferrofluid

meniscus shape under conditions of small values of the magnetic Bond number and for constant

magnetic susceptibility. Magnetic fluid rise with contact angles higher than π/2 by combining the

values of the magnetic Bond number and the magnetic susceptibility is also examined. One of

the motivations for this work is to investigate possibilities of capillary rise of a magnetic fluid by

controlling the identified magnetic physical parameters of the system even at conditions of null

meniscus curvatures.

The highlights of this article are: the proposed formulation for describing the shape and predict

the equilibrium height of a magnetic fluid, the identification and influence of the problem’s physical

parameters, the proposition of several theoretical solutions in different asymptotic regimes, the

validation of those solutions by a numerical research code and finally a physical interpretation of

the results obtained here.

IV.12 Formulation of the problem

The problem to be examined here considers a magnetic fluid between two parallel flat plates

as illustrated in figure (32). In the lower side of the interface we have a magnetic fluid, called in

this formulation Fluid 1 and in the upper side of the interface we have a non magnetic fluid, called

Fluid 2.

The spacing between the plates is 2b. The magnetic fluid has density ρ1, dynamic viscosity

η1 and magnetic susceptibility χ1. The non-magnetic fluid has properties ρ2, η2 and χ2 = 0. A

meniscus between fluid 1 and fluid 2 is formed. The surface tension is denoted by γ. The shape

of the meniscus is described by the curve y − f(x) = 0. Here d denotes the vertical distance from

the origin of the coordinate system xy to the bottom of the container. In in this problem d is also

called the meniscus equilibrium rise. The mean curvature of the function y = f(x) is denoted by

Ck and α represents the contact angle between the magnetic liquid and the plate’s solid walls.

IV.12.1 General governing equations

Maxwell’s equations are considered in the magnetostatic limit and the hydrodynamics of an

inviscid fluid (governed by Euler’s equation). Therefore, we have the following governing equations

of the problem:

∇×H = 0, (91)
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Figure 32: A sketch of the problem used in the mathematical formulation.

B = µ0 (M +H) , (92)

∇ ·B = 0, (93)

ρ
Du

Dt
= ∇ · σ + ρg. (94)

Here ∇ denotes the gradient vector operator, H is the applied magnetic field, B represents the

magnetic induction vector field, M is the medium magnetization field, µ0 is the magnetic perme-

ability of the free space, u would represent the fluid’s velocity field (in this case u = 0), σ is the

fluid’s stress tensor, ρ is the density of the fluid and g denotes the gravity acceleration vector field.

IV.12.2 A discussion on the constitutive equation for a magnetic fluid

Even assuming in this article that the magnetization vector is always parallel to the applied field

(i.e. symmetric fluid), it would be instructive to give a brief discussion on the constitutive equation

for the magnetic stresses. Additionally, there are some controversies in the current literature about

what would be the more appropriate constitutive equation to describe the behavior of a magnetic

fluid [7, 21, 22, 23, 24].

A well-known constitutive equation for describing the stress tensor of a magnetic fluid in the

absence of shear stresses is given by [1]

σ = σh + σm = −phI − (pmI −BH). (95)

The tensor σh denotes the hydrodynamic contribution represented by phI for the particular case

of an inviscid or static fluid. The second rank tensor σm is the magnetic contribution of the total

stresses. Here, H represents an external magnetic field, B is the magnetic induction field, u is the

Eulerian velocity field of the fluid, σ is the fluid stress tensor, g denotes the gravity acceleration
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vector field, ph denotes the hydrodynamic pressure and pm = µ0(H ·H)/2 is called the magnetic

pressure.

Now, when we replace (95) in (94) we obtain the modified Euler equation for a ferrofluid

ρ
Du

Dt
= −∇ph + µ0M · ∇H + ρg. (96)

The only magnetic contribution in equation (96) is the magnetic force per unit of volume fM =

µ0M · ∇H . We argue that the constitutive equation (96) seems to be not suitable in a more

general case of non symmetric fluids, when the presence of magnetic torque should give the extra

contribution fM = µ0∇ × (M × H)/2. More intriguing is to see that while the divergent of

the symmetrical part of the stress tensor in equation (95) results in a magnetic force per unit of

volume fM = µ0M · ∇H + µ0∇× (M ×H)/2, the divergent of the non-symmetrical part gives

−µ0∇ × (M × H)/2. So, the terms associated with magnetic torques will be always canceled.

This indicates that it is not possible with the constitutive model given by equation (95) to study

the flow of a non-symmetrical fluid in the presence of a field gradient.

In contrast, when considering the constitutive equation based on a generalization of the Maxwell

stress tensor for a magnetic medium using the dyadic HB,

σ = − (ph + pm) I +HB, (97)

and replacing equation (97) into equation (94), we obtain

ρ
Du

Dt
= −∇ph + µ0M · ∇H +

1

2
µ0∇× (M ×H) + ρg. (98)

Now, the divergent of equation (97) results separately in two different contributions relevant to

the problem of describing an arbitrary ferrofluid. The first one, µ0M · ∇H, represents magnetic

surface forces due to field gradients and, in a more general case, it is ncessary for describing both

symmetric and non-symmetric fluids in the presence of a field gradient. This contribution however

is null for fluids undergoing an applied uniform field. This situation

occurs in rheological investigations which usually consider the application of an uniform field

in a simple shear flow for measuring a rotational viscosity, resulting from magnetic torques. In

this case, the second magnetic term on the RHS of equation (98), µ0∇ × (M ×H) /2 is not

null even for an uniform field distribution, and it accounts for the magnetoviscous effects. This

proposal seems to be a formidable task because the divergent of the symmetric part of the magnetic

tensor −pm + (HB + BH)/2 gives only the magnetic force per unit of volume µ0M · ∇H ,

whereas the divergent of the non-symmetrical contribution leads to the force per unit of volume

µ0∇× (M ×H)/2, associated with magnetic torques which arise in non-symmetric fluids. Thus,

a typically non-symmetric ferrofluid in the presence of an uniform field should be described simply

by:

σm =
1

2
µ0 (HM −MH) . (99)
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Equation (99) has been also proposed in a heuristic way by [23, 24].

In the present work we use the standard superparamagnetic assumption, i.e. M = χ(H)H ,

where χ is the fluid susceptibility. In this case, the stress contribution can be described by using

the symmetric part of HB, as first proposed by [22]:

σm = −pmI +
1

2
µ0 (HM +MH) . (100)

Under this condition equation (98) can be simplified to equation (96). So, in the case of

symmetrical fluids the constitutive equations (95), (97), (100) lead to the same description of the

fluid, producing the same magnetic effect since the contribution µ0∇ × (M × H)/2 is always

null. This justifies why in this work we can just use the standard equation (95) for describing a

symmetric magnetic fluid.

IV.12.3 Condition of fluid at rest

For an equilibrium condition the fluid between the rigid plates is in rest, so u = 0. In addition,

we consider the superparamagnetic condition, expressed by M = χ(H)H , where χ(H) is the

magnetic susceptibility which in a more general case may depends on the magnitude H =| H |.
Under these conditions, equation (96) reduces to

∇ph = µ0χ(H)∇
(
H2

2

)

+ ρg, (101)

In this work we just consider a first correction of the χ filed dependence so that a Taylor series

around H0 truncated at O(∆H) can be applied:

χ(H) = χ(H0) + β0∆H +O(∆H2), (102)

where ∆H = H −H0 and β0 = (dχ/dH)H0 . Here χ0 represents χ(H0).

Making a scalar product of equation (101) by dx and integrating, we obtain

ph = ρg · x+
µ0χ0H

2

2
+ µ0β0

(
H3

3
− H0H

2

2

)

+A, (103)

where A is an integration constant.

IV.12.4 Two immiscible fluids

Let’s consider the system showed in figure (32) filled with two immiscible fluids where the liquid

1 is a magnetic

and fluid 2 is not magnetic. Now, applying equation (103) for each side of the interface we

obtain

p1h = ρ1g · x+
µ0χ0H

2
1

2
+ µ0β0

(
H3

1

3
− H0H

2
1

2

)

+A1, (104)
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p2h = ρ2g · x+A2, (105)

for convenience the terms p1h and p2h will be simply called p1 and p2, respectively. Thus the

pressure jump at the interface between the fluids is given by

p2 − p1 = (ρ2 − ρ1)g · x
−µ0

[
χ0H2

1
2 + β0

(
H3

1
3 − H0H2

1
2

)]

+ (A2 −A1) . (106)

In order to calculate the term (A2 − A1) the boundary condition at y = −d where pressures

p2 = p1 = p0 and H1 = 0 is applied. In this case it is considered that the external magnetic field is

applied in the meniscus region and that it decays far away from the surface, where it is null. Note

that g · x = −gy, where g is the magnitude of the vector g. We find

(A2 −A1) = (ρ1 − ρ2) gd.

Hence equation (106) becomes

p2 − p1 = (ρ1 − ρ2) g (y + d)

−µ0
[
χ0H2

1
2 + β0

(
H3

1
3 − H0H2

1
2

)]

. (107)

IV.12.5 Jump of traction on the interface

Now let’s examine the jump of normal tractions on the interface between those two fluids given

by the so called Young-Laplace equation:
[

f (n)
]

= f
(n)
1 − f

(n)
2 = 2Ckγn̂, (108)

where the symbol [ ] denotes the jump of a certain property on the interface, f is the traction,

given by f = n̂ · σ, n denotes the normal component of the traction f , Ck represents the mean

curvature of the surface and γ is the surface tension of the meniscus. In the a general case, fluids 1

and 2 can be considered two immiscible incompressible ferrofluids. The stress tensor in both sides

of the interface are written respectively as

σ1 = −p1I − µ0H
2
1

2
I +B1H1, (109)

σ2 = −p2I − µ0H
2
2

2
I +B2H2. (110)

Now calculating the traction due to fluid 1 and fluid 2 and using the jump of normal stresses on

the interface, equation (108) results in

2Ckγn̂ = (p2 − p1) n̂+
µ0
2

(
H2

2 −H2
1

)
n̂− (B2nH2 −B1nH1) , (111)
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where B1n and B2n denote the normal components of vector B on fluids 1 and 2, respectively.

The magnetic boundary conditions given in [1] are B1n = B2n and H1t = H2t, which means

that the normal components of B and the tangential component of H are continuous across the

interface.

Applying the magnetic boundary conditions and after some algebraic manipulations we obtain

2Ckγ = (p2 − p1) +
µ0
2

(
H2

2n −H2
1n

)
−Bn (H2n −H1n) . (112)

Since B = µ0(M +H) and also considering the fluid 1 a magnetic liquid and fluid 2 a non-

magnetic fluid (so the magnetization in 2 is null), we obtain

H1n =
Bn

µ0
−M1n (113)

and

H2n =
Bn

µ0
. (114)

Replacing (113) and (114) in (112) we obtain

p2 − p1 = 2Ckγ +
µ0
2

[
χ2
0H

2
1n + β20

(
H2

1n − 2H1nH0

)
H2

1n

]
. (115)

Now substituting equation (115) into equation (107) we have

2Ckγ =

[

∆ρg (y + d)− µ0χ0

2

(
H2

1 + χ0H
2
1n

)

−µ0β0
(
H3

1
3 − H0H2

1
2

)
]

, (116)

The average curvature of an arbitrary curve y = f(x) is given by

Ck =
y
′′

2 (1 + y′2)3/2
, (117)

where y′ = dy/dx. Using equation (117) into equation (116) finally results

y
′′

=
(
1 + y′2

)3/2

[

∆ρg

γ
− µ0χ0

2γ

(
H2

1 + χ0H
2
1n

)

−µ0β0

γ

(
H3

1
3 − H0H2

1
2

)
]

. (118)

In the present work, equation (118) represents a modified Young-Laplace equation with non-

constant curvature in the presence of magnetic effects.

IV.12.6 Dimensionless governing equation

It is important to write equation (118) in terms of dimensionless quantities. For this purpose,

we consider a typical length scale of the problem as being the gap between the plates. According to

194



figure (32) the size b is the characteristic length scale. For making magnetic quantities dimensionless

the reference H0 is used. Here H0 represents a typical applied field. Therefore equation (118)

written in terms of dimensionless quantities is given by

Y
′′

=
(
1 + Y ′2)3/2

[

Bo (Y +D)−Bomχ0

(

H̃2
1 + χ0H̃

2
1n

)

−

2Bomβ
∗
0

(
H̃3

1
3 − H̃2

1
2

) ]

, (119)

where Y = y/b and D = d/b. Also, H̃ = H/H0, Bo and Bom are two important physi-

cal parameters of the problem called the Bond number and the magnetic Bond number defined

respectively as

Bo =
∆ρgb

γ/b
(120)

and

Bom =
µ0H

2
0

2γ/b
. (121)

The Bond number can be interpreted as the relation between the hydrostatic pressure and the

interfacial tension, whereas the magnetic Bond number represents the ratio between magnetic

pressure and interfacial tension.

The following boundary conditions of the problem are considered

Y (−1) = − cotα, and Y ′(1) = cotα (122)

The solution of the ordinary nonlinear differential equation of second order

Y
′′

= F (X, H̃1, α,Bo,Bom, χ, β
∗
0) (i.e. equation (118)) with the boundary conditions (122), gives

the shape of the meniscus formed on the interface between two immiscible fluids under action of a

perpendicular magnetic field. Here fluid 1 is taken as the magnetic liquid.

IV.13 Theoretical Solutions

Analytical formulae are useful for validating numerical results. In this section, we develop and

review several possible analytical solutions for a ferrofluid meniscus rising under actions of capillary

and magnetic pressure. For all analytical solutions we use the assumption Y ′2 ≪ 1 so that the

meniscus mean curvature is reduced to

Ck =
Y ′′

2
. (123)

IV.13.1 Geometric solution for the meniscus shape under constant curvature

A specific geometric solution of the meniscus shape is obtained for a constant curvature Ck =

cosα/2, according to the sketch illustrated in figure (33).

When equation (123) is integrated with boundary conditions Y (0) = 0 and Y ′(1) = cotα,

yields
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Figure 33: A sketch of the free surface’s geometrical parameters.

Y (X) = X (cotα− cosα) +X2 cosα

2
. (124)

Note that in this case the solution is symmetric with respect to the Y axis and that the boundary

condition Y ′(−1) = − cotα is automatically satisfied due to the problem’s symmetry. Moreover,

the condition Y (0) = 0 is only a geometrical restriction associated with the definition of the origin

of the problem’s coordinate system and it does not represent an extra boundary condition. The

model is well posed.

The first derivative of equation (124) can be used to find a geometric constraint in terms of

contact angle for the application of analytic solutions based on equation (123).

L(α) = (X − 1) cosα+ cotα≪ 1 (125)

Equation (125) and its derivative points out that the minimum value of L(α) occurs for α = π/2

in all X. However, at X = 1 that implies L(α) = cotα the value of this functions is maximum.

So, if cotα≪ 1 the constraint (123) is satisfied at any X of the meniscus shape.

IV.13.2 Meniscus shape for a non magnetic fluid for cot(α) ≪ 1 and non-

constant curvature

Another analytic solution is obtained by direct integration of (119), in the limit of Y ′2 → 0

and χ0 = 0 under the same boundary conditions Y (−1) = − cotα and Y ′(1) = cotα. We have

Y (X) = −D +
cot(α)cosh

(√
BoX

)

csch
(√

Bo
)

√
Bo

(126)

Equation (126) gives the meniscus shape under condition of non-magnetic fluid (i.e, χ0 = 0) with

contact angles satisfying the constraint cot(α) ≪ 1, that is α ∼ π/2.
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IV.13.3 Prediction of D for a non-magnetic fluid meniscus with constant cur-

vature

Again, consider the sketch of the meniscus shown in figure (33). We have that ζ = R(1− sinα)

and cosα = b/R. For a meniscus with a constant mean curvature we assume that Y ′′ is constant

so that the dimensionless mean curvature Ck is given simply by

Ck =
Y ′′

2
=

1

2R
=

cosα

2
. (127)

The necessary and sufficient condition for assuming a constant meniscus curvature occurs when

ζ << d, where d = bD is the dimensional equilibrium rise of the meniscus. In dimensionless terms

we can write that

1− sinα << D cosα, (128)

Now, the dimensionless governing equation (119) under condition of constant curvature condition

is given by

2Ck = Bo (Y +D)−Bomχ0

(

H̃2
1 + χ0H̃

2
1n

)

−2Bomβ
∗
0

(
H̃3

1
3 − H̃2

1
2

)

, (129)

Evaluating equation (129) at the origin for a non-magnetic fluid (χ0 = 0) we find that the

capillary rise

Dc for the condition of constant curvature is given by

Dc =
cosα

Bo
. (130)

The sign of the capillary rise in equation (130) is determined by the value of the contact angle α

When α < π/2 the meniscus rises, when α > π/2 the meniscus submerges, and when α = π/2 the

meniscus remains flat at the level of the free surface outside the plates.

Substituting equation (130) into (128) yields

Bo << 1 + sinα, (131)

that is the condition for the constant mean curvature approach to be applied.

IV.13.4 Prediction of D for a non-magnetic fluid meniscus for cot(α) ≪ 1 and

non-constant curvature

Equation (126) provides the shape of a non-magnetic fluid meniscus in the limiting case of

cot(α) ≪ 1. As seen by equation (125), this is the necessary condition for the assumption that

Y ′2 ≪ 1. Using the geometrical condition that Y (0) = 0, we obtain an analytical expression for

the equilibrium displacement D0, given by

D0 =
√
BoDc ×





csch
(√

Bo
)

sin(α)



 (132)
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IV.13.4.1 Prediction of D for a ferrofluid for cot(α) ≪ 1 and constant curvature

Now, applying equation (129) evaluated at the origin for the case of a ferrofluid undergoing a

vertical magnetic field H̃1(X,Y ) = (1 + Y/D)G(X)êy , yields

D = Dc +
Bom
B0

[

χ0(1 + χ0)−
1

3
β∗0

]

. (133)

Equation (133) states that a magnetic fluid in the small gap between two parallel plates can rise

against gravity

by magnetic pressure even if the effect produced by capillary pressure Dc is null, that occurs

for α = π/2 and the condition for Bo >> 1. In this case, there is a new contribution from the

magnetic action corresponding to the second term on the right hand side of equation (133) that

can produce the fluid meniscus elevation inside a small porous. This behavior can be better seen

in figure (34).

It is possible to observe that even though different combinations of Bom and χ0 may produce

D > 0 and D < 0, the shape of the free surface practically does not change for different pairs of

these parameters. The shapes ilustrated in the details of figure (34) were obtained with numerical

simulations using the methodology presented in the next section. In the next sections it will show

the application of a variable magnetic field like sin(kX), where k is a wave number, may drastically

change the meniscus shape of a magnetic fluid.

χ0

B
o m

0 1 20

1

2
Zero level

Zero level

Figure 34: Combination of Bom and χ0 in which a magnetic fluid in the small gap between two

parallel plates can rise against gravity for contact angles higher than π/2. This curve was plotted

using the constant curvature theory, equation (133). In this case we consider β = 0.1 and Bo = 0.1.
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IV.13.5 An asymptotic solution for a ferrofluid meniscus shape : Bom ≪ 1,

χ0 ∼ 1, cot(α) ≪ 1 and non-constant curvature

Consider a ferrofluid meniscus where Bom ≪ 1, but not necessary null and cot(α) ≪ 1, so Y ′2

is small as required by equation (125). In this case the governing equation of the problem is given

by

Y
′′

= Bo (Y +D)−Bomχ0

(

H̃2
1 + χ0H̃

2
1n

)

−2Bomβ
∗
0

(
H̃3

1
3 − H̃2

1
2

)

, (134)

for a magnetic field like

H1(X,Y ) = (1 + Y/D)êy , (135)

we have that

Y
′′

= Bo (Y +D)−Bom

[

χ0 (1 + χ0)

(

1 +
2Y

D
+
Y 2

D2

)

+

β∗

0
3

(

−1 + 3Y 2

D2 + 2Y 3

D3

) ]

. (136)

Equation (136) does not have an analytical solution, but it is possible to seek an asymptotic

solution for small values of the magnetic Bond number. For this purpose consider a regular

asymptotic expansion, [25, 26], given by

Y (X) = Y0(X) +BomY1(X) +Bo2mY2(X) + ... (137)

and

D = D0 +BomD1 +Bo2mD2 + ..., (138)

where Y0(X) is the leading order term for the non-perturbated equation, Y1(X) represents the first

correction of the magnetic effect, Y2(X) is the second correction, and so on. Thus, we have D0

as the equilibrium rise for the case of a non magnetic fluid, D1 is the first correction of magnetic

effects on the equilibrium rise D, and so on. Applying the regular asymptotic expansion, equation

(137) at the governing equation (136), we find that

Y0
′′

= Bo (Y0 +D0) , (139)

Y1
′′

+
3Y0

′′

D1

D0
= Bo

[

Y1 + 4D1 +

(
3Y0D1

D0

)]

− F , (140)

3

D0

(

Y
′′

0 D2 +
Y

′′

0 D
2
1

D0
+ Y

′′

1 D1

)

+ Y2
′′

= Bo

[

Y2 + 4D2 + 6
D2

1

D0

+
3

D0

(
Y0D2 + Y0D

2
1Y1D1

)

]

− χ0 (1 + χ0)

D0

(

3D1 +
Y0D1

D0
+ 2Y1 +

Y 2
0 D1

D2
0

+
2Y0Y1
D0

)

− β∗0
3D0

(

−3D1 +
3Y 2

0 D1

D2
0

+
6Y0Y1
D0

+ 6
Y 2
0 Y1
D2

0

)

, (141)
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where F is given by

F = χ0 (1 + χ0)

[

1 +
2Y0
D0

+
Y 2
0

D2
0

]

+
β∗0
3

[

−1 +
3Y 2

0

D2
0

+
2Y 3

0

D3
0

]

, (142)

equation (139) represents the leading order solution of the non magnetic problem and was

already presented in equation (126). The equation that governs the behavior of the O(Bom) cor-

rection is given by (140), while equation (141) is the governing equation for the O(Bo2m) correction.

The boundary conditions used for these asymptotic solutions are Y
′

0 (−1) = − cot(α), Y
′

0 (1) =

cot(α), Y
′

1 (−1) = Y
′

1 (1) = 0 and Y
′

2 (−1) = Y
′

2 (1) = 0. The leading order solution is given by

Y0(X) =
cot(α)cosh

(√
BoX

)

csch
(√

Bo
)

√
Bo

−D0. (143)

Details of the analytical solution of differential equation (140) are presented in the appendix of

this article. In contrast the correction O(Bo2), that was solved using the software Mathematica

presents a too tedious calculation for the details to be given in this work. So, we have omitted

this calculations by convenience. The comparision of the asymptotic solutions with numerical

results will be presented in the next section. The values of D0, D1 and D2 are obtained by

applying the geometrical conditions given respectively by: Y0(0) = 0, Y1(0) = 0 and Y2(0) = 0.

As pointed out before, this procedure is tedious and generates huge expressions for D1 and D2.

All the manipulations done related to these asymptotic theories were made by using the Wolfram

Mathematica 7 for Linux.

IV.14 Numerical solution

In order to validate our theories and to extend the solution of the problem to more complicated

cases where we don’t have a theoretical solution, we developed a researh code written in Fortran

called MENIS-2D. This code computes the equilibrium height D of a ferrofluid and the free sur-

face shape Y = F (X, H̃1, α,Bo,Bom, χ, β
∗
0) of a two-dimensional ferrofluid meniscus between two

vertical plates as the sketch shown in figure (32). The system of 2 ordinary differential equations

dYk
dt

= Gk(X, H̃1, α,Bo,Bom, χ, β
∗
0), where k = 1, 2, (144)

resulting from the second order nonlinear differential equation (118) and boundary conditions (122)

was integrated numerically using a fourth-order Runge-Kutta scheme. The method requires four

Gk evaluations at each step of the numerical integration. The problem was transformed in an Initial

Valor Problem (IVP) using an iterative scheme and a Newton-Rhapson method to accelerate the

convergence of the solution [27]. The solution was advanced according to the following algorithm
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






1. Set Bo,α,Bom, χ0, β
∗
0 , and ∆X;

2. Set Boundary conditions ;

3. Set initial value forD;

4. Compute Gk(X, H̃1, α,Bo,Bom, χ0, β
∗
0);

5.
dU

dX
→ G and

dY

dX
→ U ;

6. Fc(D) → Y ′(1) − cot(α);

7. Jc[Y (0)] → Y (0)− 0;

8. If |Fc(D)| < tol then → END

9. If |Jc[Y (0)]| < tol then → END

10. Fc(D +∆D) → Y ′(1)− 1;

11. Jc[Y (0) + ∆Y (0)] → Y (0)− 0;

12. D → D − Fc(D)

Fc(D +∆D)− Fc(D)
∆D

13. Y (0) → Y (0) − Jc[Y (0)]

Jc[Y (0) + ∆Y (0)] − Jc[Y (0)]
∆Y (0)

14. Back to step 4.

(145)

The algorithm (145) makes a picture of the whole numerical integration scheme.

The dimentionless space step ∆X was sufficiently small to ensure an error in the numerical

integration less than 10−3. A typical value of the space step was b× 10−4. An initial guess for the

equilibrium height D is required in order to initialize the iterative scheme of the transformed IVP.

The maximum number of iterations needed for each space step integration is around 20.

The integration starts at X = −1 with boundary condition Y ′(−1) = − cot(α) and with

arbitrary values of D and Y (−1). After each integration step the boundary condition Y ′(1) =

cot(α) and the geometrical restriction Y (0) = 0 are verified. If these conditions are not satisfied,

a Newton-Rhapson scheme is used in order to updated a new rise D that must satisfy

Y ′(1) − cot(α) = 0 (146)

and a new value of Y (−1) that must satisfy

Y (0) = 0. (147)

The procedure is repeated until both conditions given by equations (146) and (147) are satisfied

within a tolerance of 10−6. In this way the initial guess of the equilibrium rise D and the position

Y (−1) are carefully controlled in order to ensure the convergence of the method. The external

magnetic field in the direction of gravity was considered as being a function of x and y; H(x, y) =

h1(x)h2(y). For instance, an uniform field on the gravity direction is imposed with h1(x) = 1

and h2(y) = H0êy. Here H0 denotes a constant value of a reference applied field. In addition, an

uniform field gradient is imposed with h1(x) = 1 and h2(y) = Ho(1 + y/d)êy . In a more general

form we propose h1(x) = [1+ ε sin(kx)] h2(y) = Ho(1+ y/d)êy , that depends on the wavenumbers

k = 2πn/b where n=0, 1, 2,. . . . This proposition is done in order to test the response of this

nonlinearsystem when we apply an harmonic periodic input.
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IV.14.1 Validation and preliminary results

One test of the full numerical integration scheme was to reproduce the exact solution obtained

under conditions of non-constant curvature, small Bom and arbitraty values of the parameter β∗0 , as

shown in figure (35). We can see that within the range of Bom in which the asymptotic solution is

valid (Bom ≪ 1), the numerical solution presents a very good agreement with the exact solution.

The agreement between the O(Bom) solution and the numerical values is very good with Bom

ranging in the interval [0,0.15]. After this point, the O(Bo2m) solution starts to agree much better

than solution O(Bom) correction. The agreement between the numerical and O(Bo2m) solutions

works very well for Bom up to 0.3.
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0 0.1 0.2 0.3 0.4

Figure 35: Equilibrium height versus the magnetic Bond number. The black circles represent

numerical results, the solid line denotes the exact solution for small values of the magnetic Bond

number given by the O(Bom) asymptotic theory, while the dashed line denotes the O(Bo2m) solu-

tion. For this plot: Bo = 0.3, χ0 = 0.1, β∗0 = 0.1 and α = π/2− 1
10 .

Another important test for the numerical solution and also to check the theoretical solution

for constant curvature, eq. (133), is a comparison of the equilibrium rise for several values of the

magnetic Bond number under condition of constant curvatures. This result is shown in figure (36).

It is possible to observe a great agreement between the numerical solution and the theory of

constant curvature, specially for higher magnetic Bond number values. Under light and conditions

of the result showed in figure (36), for small values of Bom, capillary pressure is more important

than magnetic pressure against hydrostatic pressure. So, as the capillary pressure is proportional to

the mean curvature a model with a constant curvature will show some discrepancies at small Bom.

On the other hand for moderate value of Bom ∼ 0.5 magnetic pressure dominates capillary pressure

against gravity and variations of curvatures becomes unimportant. Figure (36) also suggests that

for Bom ≥ 0.5, the magnetic effect on the shape makes curvature variations unimportant on the

equilibrum rise. In this range of parameters the effect of a magnetic field tends to jump the

meniscus shape from a non-constant curvature curve to a condition of constant curvature.
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Figure 36: Equilibrium height as a funtion of the magnetic Bond number. The black circles

represent numerical values, the solid line denotes the theoretical solution for the constant curvature

condition. For this plot: Bo = 0.3, χ0 = 0.1, β∗0 = 0.1 and α = π/2− 0.1.

IV.15 Results and discussions

In the previous section of this work, some of our theories were compared with the numerical

results in order to test them. In this section we present numerical results that cannot be explored or

examined using the analytical solutions developed here. Such as the influence of the wave number

k and the parameter ε used to impose an harmonic field, on the shape of the meniscus and on its

equilibrium rise D.

IV.15.1 Meniscus shape

Figure (38) shows four configurations of the meniscus shape for different values of the harmonic

field wave number.

The parameter n is related to the wavenumber k = 2πn/b. It is important to notice that the

variations of n allow us to examine different length scales of the problem. The wavenumber may

also be related to the spatial frequency, given by ξ = k
2π . In other words, a characterization of a

structure’s periodicity across any position in space.

Figure (38) shows that increasing the wavenumber results in different meniscus shapes of the

magnetic meniscus free surface, including asymetrical ones. It also indicates that the asymmety

degree between the left and right side of the curve, that could be defined by Y (−1)−Y (1), decreases

with the increase of the wavenumber. We argue that in the limiting case of n → ∞ the shape

tends to the case of a magnetic problem with a non-harmonic field, as indicated by figure (37).

In the limiting case of n → ∞ the corresponding wavelenghts go to zero, meaning that the

harmonic contribution of the applied field tends to a constant behavior equivalent to the imposition
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Figure 37: Meniscus shape for n = 100. The solid line represents Bom = 0 while the dashed line

considers Bom = 1.5. For this plot: Bo = 0.3, χ0 = 0.1, β∗0 = 0.1, α = π/2− 1
10 , ε = 1.
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Figure 38: Meniscus shape for different values of n. Figure (a) stands for n = 1, (b) for n = 2, (c)

for n = 3 and (d) for n = 4. For this plot: Bo = 0.3, χ0 = 0.1, β∗0 = 0.1, α = π/2− 1
10 , ε = 1 and

magnetic Bond numbers varying from 0 to 1.5.

of a non-harmonic mangetic field in the vertical direction. Note that when the wavenumber is

increased, the wavelenth becomes smaller. Consequently, there are more waves in a shorter distance

b. It would be similar to increase the frequency of an external excitation. In the frequency case,

it generates a time scales’ decoupling and thus the system will not respond to the excitation. In

this work, specifically, a space scale can be assumed. When the wave number increases, the system
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does not respond to this excitation, producing a more symmetrical and less nonlinear response.

Furthermore, the system has an entropy increase.

Another interesting finding in this problem are the bifurcations of the meniscus shape in the

presence of a magnetic field. Figure (39) shows the shape of the meniscus and the equivalent FFT

plots in the inserts of the graphics for the case of a non-magnetic fluid (Bom = 0) and for a small

value of the magnetic bond number (Bom = 0.2). In this figure A represents the FFT amplitude.

For figure (39) it is observed that for higher values of the harmonic magnetic field, the non

linearity is strongly influenced by just small variations of the magnetic parameters of the system.

This strong dependence on small pertubations of a physical parameter is a typical characteristic

of problems governed by nonlinear differential equations. It is also interesting to notice that other

shape configurations start to appear when magnetic pressure tends to dominate capillary pressure

on the liquid-interface, indicating a more nonlinear and complex behavior of the meniscus shape.

We note that the excitation wavenumber is present as the first harmonic. It means that even

being very non-linear, the meniscus still has a frequency signature. In both cases, most of the

energy is concentrated in the first harmonic, in which k/π = 2. We noted that when there is

an applied magnetic field, the second, third and fourth harmonics are concentrated in the same

wavenumber: k/π = 4, k/π = 6 and k/π = 8, respectively. Nevertheless, when the magnetic field

is applied, those harmonics steal energy from the first one, providing a more non-linear response

to the meniscus. In addition, many other harmonics can be seen at k/π = 10 and k/π = 12, for

example.
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Figure 39: Meniscus shape for a non magnetic case Bom = 0 (a) and Bom = 0.2 (b). For this plot:

ε = 3, Bo = 0.3, χ0 = 0.1, β∗0 = 0.1, α = π/2− 1
10 , k/π = 2.

On Figure (41), for example, only the magnetic effects are analyzed. We can see from the

frequency (or wavenumber) spectrum that the increase of the Magnetic Bond number is associated

with a spectrum spreading. In other words, more energy is lost to other harmonics, what causes

the translation of the meniscus symmetry. For Bom = 0, 5 there is a small loss of energy in the

peak shown by the dotted line in the insert (a). Nevertheless, since the amplitude of excitation is

small, the magnetic effects are not very prominent.

FFT is a very interesting tool, but has some disadvantages. The biggest disadvantage of a

Fourier expansion however is that it has only frequency resolution (or wavenumber) and no time

205



k

A
m

pl
itu

de

0 20 40 60 80 100 120 1400

1000

(a)

k

A
m

pl
itu

de

0 50 1000

1000

(b)

k

A
m

pl
itu

de

0 50 1000

1000

(c)

X

Y

-1 -0.5 0 0.5

0.07

0.06

0.05

0.04

0.03

0.02

0.01

0

(

Figure 40: Meniscus shape for three different cases. The solid line represents Bom = 0.1, the

dashed one features Bom = 0.25 and the dotted one represents Bom = 0.5. (a) Shows the FFT

for Bom = 0.1, (b) represents Bom = 0.25 and (c) Bom = 0.5. For this plot: ε = 0.5, χ0 = 0.1,

β∗0 = 0, α = π/2 + 1
8 , k/π = 2.
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Figure 41: Meniscus shape for three different cases. The solid line represents Bom = 0.1, the

dashed one features Bom = 0.25 and the dotted one represents Bom = 0.5. (a) Shows the FFT

for Bom = 0.1, (b) represents Bom = 0.25 and (c) Bom = 0.5. For this plot: ε = 0.5, χ0 = 0.1,

β∗0 = 0, α = π/2 + 1
8 , k/π = 2.

resolution (or space). The wavelet transform or wavelet analysis is probably the most recent solu-

tion to overcome the shortcomings of the Fourier transform. Since the introduction of wavelets as a
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signal processing tool in the late 1980âĂŹs, considerable attention has focused on this application

[29, 30]. For instance, one can apply a rectangular (so-called Haar-basis) window function [31], to

âĂİzoom-inâĂİ on the singularity of a signal. On Figure (42) it is possible to see two different

combination of parameters that lead to nonlinear responses. In this figure, the wavelet transforms

using Haar-basis are shown with the FFT transforms. The FFT does not show many relevant

information in addition to the energy loss in the spectral signature harmonic. Note that this sig-

nature is in different positions, as shown by the dotted lines, due the excitation’s wavenumber.

Haar basis best represents functions that consist of sharp peaks and discontinuities. In the upper

case (a), the clearer parts of the wavelet transform correspond to bigger coeficients. In this case,

The coefficients become larger in the vicinity of a singularity and in this case, a null derivative.

The larger scales represent low frequencies or large wavelengths. In this case, a low wavenumber.

Figure 42: Meniscus Haar wavelet transform. (a)k/π = 2, Bom = 1.4, χ0 = 0.1, β∗0 = 0, ε = 1.0

and α = π
2 − 1

10 (b) k/π = 4, Bom = 1, χ0 = 0.1, β∗0 = 0.2, ε = 0.7 and α = π
2 − 1

10

Once the system is excited with a low wavenumber, the coefficients are higher in larger scales

and not present the the smaller ones. As the scale decreases, there is less energy on the harmonics,

since the wavenumbers are bigger, which can be confirmed through the FFT. Furthermore, in this

case, it is possible to determine that the right side of the meniscus presents a non imposed boundary

condition Y ≈ 0. This can be observed because the signals tend to have higher coefficient values

at the edges, due to the high derivatives and the boundary conditions. In this case, this does not

occur, demonstrating the proximity to the null value or to what could be considered a resting value

for a situation without capillary forces. The comparison between the wavelet transform and the

physical shape of the meniscus and wavenumber spectrum response can be seen in figure (43).

In the case bellow (b), the excitation has a larger k, which can be observed by the coefficients

on the wavelet transform. It is noted that the coefficients are large even in smaller scales when

compared with the case presented in (a). In addition, the singularities appear almost together and

can be seen as an inflection. In this case, it is possible to determine that the shape of the meniscus
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Figure 43: Source of meniscus shape used to compute the wavelet transform. (a) Meniscus shape

for k/π = 2, Bom = 1.4, χ0 = 0.1, β∗0 = 0, ε = 1.0 and α = π
2 − 1

10 . (b) Correspondent FFT. (c)

k/π = 4, Bom = 1, χ0 = 0.1, β∗0 = 0.2, ε = 0.7 and α = π
2 − 1

10 . (d) Correspondent FFT.

approaches a paraboloid.

Figure (44) shows the amplitude of the first harmonic in the wavenumber spectrum as a function

of the Bom. it is possible to see that, the increase of the magnetic field, transfers energy into the

system, which now has harmonics with higher amplitudes. In this respect, the signal carries more

power. The way this amplitude increases as a function of the magnetic Bond can be described by

a second-degree polynomial.

To sum up, it is possible to see in Figure (45) many different patterns formed by the meniscus

shape. In general, the modification of the system’s control parameters, such as magnetic Bond

number, oscillation amplitude and wavenumber, can modify the anisotropy in the meniscus’ shape.

Furthermore, high magnetic fields at low values of oscillation can generate highly non-linear results.

The ability to control the shape of the meniscus opens doors for the study of traction jump and even

modifications on the capillary forces. The applications are diverse both in oil and bioengineering

industry.

IV.15.2 Equilibrium rise of the meniscus

In this section we examine the dependence of the equilibrium rise of the meniscus on the contact

angle α. A comparison between equation 133 and numerical results is presented in the plot of figure

(46). We can see that when the α → π/2 both solutions provide the same result. As the values

of α start to differ significantly from π/2, because the curvature can not be defined by the second

derivative of the shape and it can not be assumed constant. For α = 0, the error is about 15%.

The plot in figure (46) is also pointing out the range of application of the theory given by
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Figure 44: Comparison between the amplitude of the first harmonic in the wavenumber spectrum

and the Magnetic Bond number. The dotted curve can be approximated as second order polynomial

given by A = 408.38 + 1288.59Bom + 199.65Bo2m. For this plot: ε = 1, χ0 = 0.1, β∗0 = 0,

α = π/2 − 1
8 , k/π = 1.
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Figure 45: Comparison between the meniscus patterns formed by different controlling parameters.

(a) ε = 1, χ0 = 0.1, β∗0 = 0, α = π/2 − 1
8 , k/π = 2, Bom = 1.5. (b) ε = 1, χ0 = 0.1, β∗0 = 0,

α = π/2− 1
8 , k/π = 1, Bom = 1.5. (c) ε = 3, χ0 = 0.1, β∗0 = 0, α = π/2− 1

8 , k/π = 1, Bom = 1.3.

(d) ε = 0.3, χ0 = 0.1, β∗0 = 0.1, α = π/2 − 1
5 , k/π = 1, Bom = 0.1. (e) ε = 1, χ0 = 0.1, β∗0 = 0,

α = π/2 + 1
4 , k/π = 1, Bom = 0.5. (f) ε = 3, χ0 = 0.1, β∗0 = 0, α = π/2− 1

6 , k/π = 6, Bom = 2.
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equation (133). It should be said that that all analytical solutions consider the restriction that

Y ′2 ≪ 1, that requires α−π/2 ≪ 1. In addition figure (46) shows the importance of the numerical

solution for exploring other regimes within the full range of contact angles.

α/π
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0
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3

Figure 46: Equilibrium rise D as a function of the contact angle α. The solid line represents the

theory with constant curvature and magnetic effects, equation (133), while the dashed line is the

numerical solution. For this plot: ε = 0, Bo = 0.3, χ0 = 0.1, β∗0 = 0.1, Bom = 0.1.
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Figure 47: Equilibrium rise D as a function of ε. In the insert the solid line represents ε = 0

while the dashed line denotes ε = 1.25. For this plot: n = 1, Bo = 0.3, χ0 = 0.1, β∗0 = 0.1,

Bom = 1.0. The solid line is well fitted by the relation: D = c0 + c1ε + c2ε
2 + c3ε

3, where

c0 = 0.593, c1 = 0.003, c2 = 0.398 and c3 = −0.003.
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An interesting result is the behavior of D when varying the amplitude of the harmonic con-

tribution of the field. This result is particulary important because there is no theory to predict

how the nonlinearities on the meniscus shape may change the equilibrium rise in which a magnetic

interface can be displaced in a capillary under the influence of a magnetic pressure. Figure (47)

shows the plot of D as a function of ε.

We can see that D is a rapid varying function of the amplitude ε of the magnetic field. It

is observed that the variation of D with ε is O(ε3) as showed by the best fit. This indicates

that displacements of magnetic liquid interfaces against gravity may have much higher equilibrium

rise by monitoring the amplitude of an external magnetic field, in contrast with the displacement

produced by capillary pressure.

From this results we can see that while D is proportional to Bom and χ2
0 it goes like O(ε3).

In general, the results indicates that as the nonlinearities related to magnetic effect on the polar

fluid free surface increase, the equilibrum rise of the magnetic meniscus may increase even in the

absence of capillary pressure.

IV.15.3 A brief discussion on the boundary conditions of the problem

The formulation of the problem requires some assumptions related to the boundary condition

used in order to provide the shape of the meniscus. We must choose a physically consistent

boundary condition in order to properly model the problem. One important discussion is the

appropriate choice of the boundary condition used in the problem. In this section we show two

options and discuss the differences between them. We define here the following options:

B.C.1:Y
′

(0) = 0 and Y
′

(1) = cot(α), 0 ≤ X ≤ 1 (148)

and

B.C.2:Y
′

(−1) = −cot(α) and Y
′

(1) = cot(α), −1 ≤ X ≤ 1 (149)

Boundary condition 1 requires the imposition of vertical symmetry in order to provide the full

shape of the meniscus. Figure (48) shows the difference between the meniscus shape considering

boundary conditions 1 and 2 for several magnetic Bond numbers.

We can see from figure (48) that the assumption of vertical symmetry leads to an unrealistic

behavior of the free surface. Indeed we do not know the derivatives values in the center of the

meniscus. The only real boundary conditions that we know for sure from the physics of the problem

are the values of the derivatives in the walls, since they depend exclusively on the contact angle,

that is a property from the fluid and the wall material. It is interesting to notice in the insert of

figure (48.b) that as we increase the magnetic Bond number the derivatives in the center of the

meniscus increase in magnitude. For the non magnetic case, Bom = 0 both boundary conditions

provide the same result, since we obtain a symmetrical profile. We argue that the deviation of the

symmetry condition in the magnetic free surface shape is a measurement of the intensity of the

magnetic effects.

211



X

Y

-1 -0.5 0 0.5 1

-0.02

0

0.02

0.04

Bom = 2

Bom = 0

Bom = 1

(a) X

Y

-1 -0.5 0 0.5

0

0.1

Bom = 2

Bom = 0

Bom = 1

(b)

Figure 48: Meniscus shape considering symmetrical boundary conditions (a) and non-symetrical

boundary conditions (b). For this plot: n = 1, Bo = 0.3, χ0 = 0.1, β∗0 = 0.1, ε = 1.0 and

α = π
2 − 0.1.

IV.16 Conclusions

In this work we have presented a theoretical and numerical analysis on the behavior of two

important variables regarding the behavior of a magnetic fluid freesurface. The shape of the sur-

face and the equilibrium rise were explored. The numerical code developed to solve the nonlinear

modified Young-Laplace differential equation has been validated against several theories, includ-

ing non-magnetic cases for constant and non-constant curvature, magnetic problem for constant

curvature and an asymptotic theory valid of small magnetic effects and non-constant curvature.

We showed that even for the condition of an interface with no curvature it is possible to lift

a magnetic fluid due to magnetic pressure effects. Additionally, it was shown that variations of

the magnetic liquid susceptibility with respect to the applied field decrease the effect of magnetic

pressure on the magnetic interface for contact angle higher than π/2. Another interesting finding

of this work regards the non-linearities on the free surface shape with respect to the wavelength

and the intensity of the applied field. It was also shown that for the case of ε 6= 0, which cannot be

solve by and analytical expression, a small variation of the magnetic Bond number may produce a

significant change in the shape of the free surface, leading to additional shape configurations.

Finally, we found out that the increase of the dimensionless amplitude ε leads to a nonlinear

behavior of the equilibrium rise of the magnetic liquid. This magnetic effect has been described

by a O(ε3) shape dependence.

IV.17 Appendix

The O(Bom) asymptotic solution is given by
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Y1(X) = −
csch4

(√
Bo
)

96Bo5/2D3
0

{

12
√
BoD0

[
3Bo2D2

0D1 + 2(ξ − β∗0) cot
2(α)

]

− 24
√
BoD0

[
2Bo2D2

0D1 + (ξ − β∗0) cot
2(α)

]
cosh

(

2
√
Bo
)

+ 12Bo5/2D3
0D1 cosh

(

4
√
Bo
)

+ cot2(α)
[

8(−ξ + β∗0)
√
BoD0 cosh (α4)

+ 4
√
Bo {2ξD0 − β∗0 [2D0 + 3cot(α)(1 +X)]} cosh (α3)

+ 4
√
BoD0 cosh (2α3) [ξ − β∗0 ]− 8ξ

√
BoD0 cosh

(

2
√
BoX

)

+ 8β∗0
√
BoD0 cosh

(

2
√
BoX

)

+ 8
√
BoD0 cosh (α1) [ξ − β∗0 ]

− 12β∗0
√
Bo cot(α) cosh (α1) [1−X] + 4ξ

√
BoD0 cosh (2α1)

− 4β∗0
√
BoD0 cosh (2α1)− 8

√
BoD0 cosh (α2) [ξ − β∗0 ]

+ β∗0 cot(α) sinh
[√
Bo(1− 3X)

]

+ 3β∗0 cot(α) [sinh (α4)− sinh (α2)]

− 12β∗0 cot(α) [sinh (α1)− sinh (α3)] + β∗0 cot(α) sinh (α5)
]}

with

α1 =
√
Bo(1 +X) α2 =

√
Bo(3 +X) α3 =

√
Bo(−1 +X)

α4 =
√
Bo(−3 +X) α5 =

√
Bo(1 + 3X) ξ = χ0 (1 + χ0)
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