Skip navigation
Use este identificador para citar ou linkar para este item: http://repositorio.unb.br/handle/10482/53776
Arquivos associados a este item:
Não existem arquivos associados a este item.
Registro completo de metadados
Campo DCValorIdioma
dc.contributor.authorLamas, Giulia Cruz-
dc.contributor.authorGonzales, Thiago da Silva-
dc.contributor.authorSilva, Simone Monteiro e-
dc.contributor.authorRodrigues, Pedro Paulo de Oliveira-
dc.contributor.authorMacedo, Lucélia Alves de-
dc.contributor.authorRodrigues, Thiago Oliveira-
dc.contributor.authorRousset, Patrick Louis Albert-
dc.contributor.authorProtásio, Thiago de Paula-
dc.contributor.authorPires, Armando Caldeira-
dc.contributor.authorSilveira, Edgar Amaral-
dc.date.accessioned2026-01-28T15:08:50Z-
dc.date.available2026-01-28T15:08:50Z-
dc.date.issued2025-06-25-
dc.identifier.citationLAMAS, Giulia Cruz et al. Multiparameter optimization of torrefaction for achieving carbon-negative biocoal: integrating quality parameters, thermodynamics, and environmental performance. Energy Conversion and Management, v. 341, 120055, 2025. DOI: https://doi.org/10.1016/j.enconman.2025.120055.pt_BR
dc.identifier.urihttp://repositorio.unb.br/handle/10482/53776-
dc.language.isoengpt_BR
dc.publisherElsevierpt_BR
dc.rightsAcesso Restritopt_BR
dc.titleMultiparameter optimization of torrefaction for achieving carbon-negative biocoal: integrating quality parameters, thermodynamics, and environmental performancept_BR
dc.typeArtigopt_BR
dc.subject.keywordSequestro de carbonopt_BR
dc.subject.keywordAquecimento globalpt_BR
dc.subject.keywordEficiência energéticapt_BR
dc.subject.keywordConversão termoquímicapt_BR
dc.subject.keywordBiocombustíveispt_BR
dc.subject.keywordEconomia circularpt_BR
dc.identifier.doihttps://doi.org/10.1016/j.enconman.2025.120055pt_BR
dc.relation.publisherversionhttps://www.sciencedirect.com/science/article/pii/S0196890425005795?via%3Dihubpt_BR
dc.description.abstract1This study advances the torrefaction field by proposing a framework that integrates energy, exergy, and environmental analyses with the quality assessment of torrefaction products, while evaluating process carbon neutrality and carbon-negative outcomes. While biocoal properties are often emphasized, multi-objective analyses addressing critical aspects such as exergy efficiency and life cycle assessment are frequently overlooked. This research critically addresses inconsistencies in life cycle assessment related to functional units, system boundaries, and impact allocation of products, fostering a consistent and robust environmental diagnostic. Experimental data from urban forest waste torrefaction, combined with a two-step kinetic modeling, enabled the simulation of a scaled-up system using Aspen Plus. This integrative approach assessed the properties of biocoal, bio-oil, and torgas, as well as mass and energy flows, irreversibilities, and process emissions. Life cycle assessment quantified and allocated environmental impacts. The framework accounted for CO2 uptake by biomass, revealing trade-offs arising from the severity of torrefaction and the definition of the functional unit. Response surface methodology served as a unifying optimization tool, allowing the simultaneous integration and evaluation of all indicators. Results identified bottlenecks, formulated an equation to evaluate carbon neutrality and determined optimal conditions, offering a scalable and replicable pathway for sustainable torrefaction. Optimal conditions at 256 °C for 41 min yielded biocoal with 87.82 % mass retention, a heating value of 20.98 MJ kg−1, a fuel ratio of 0.34, and an ash content of 4.98 %. The system required 20.99 kWh for drying and 4.04 kWh for torrefaction, with the irreversibility of 81.5 MJ h−1 and a global warming potential of –0.504 kg CO2 eq. per GJ of biocoal.pt_BR
dc.identifier.orcidhttps://orcid.org/0000-0002-2774-1656pt_BR
dc.identifier.orcidhttps://orcid.org/0000-0002-7582-5010pt_BR
dc.contributor.affiliationUniversity of Brasília, Mechanical Sciences Graduate Program, Laboratory of Energy and Environmentpt_BR
dc.contributor.affiliationUniversity of Brasília, Mechanical Sciences Graduate Program, Laboratory of Energy and Environmentpt_BR
dc.contributor.affiliationUniversity of Brasília, Mechanical Sciences Graduate Program, Laboratory of Energy and Environmentpt_BR
dc.contributor.affiliationUniversity of Brasília, Mechanical Sciences Graduate Program, Laboratory of Energy and Environmentpt_BR
dc.contributor.affiliationForest Products Laboratory, Brazilian Forest Servicept_BR
dc.contributor.affiliationBrazilian Institute of Information in Science and Technology,pt_BR
dc.contributor.affiliationCIRAD, UPR BioWooEB, F-34398 Montpellier, Francept_BR
dc.contributor.affiliationFederal University of Lavras – UFLA, Department of Forest Sciencept_BR
dc.contributor.affiliationUniversity of Brasília, Mechanical Sciences Graduate Program, Laboratory of Energy and Environmentpt_BR
dc.contributor.affiliationUniversity of Brasília, Mechanical Sciences Graduate Program, Laboratory of Energy and Environmentpt_BR
dc.description.unidadeFaculdade de Tecnologia (FT)pt_BR
dc.description.unidadeDepartamento de Engenharia Mecânica (FT ENM)pt_BR
dc.description.ppgPrograma de Pós-Graduação em Ciências Mecânicaspt_BR
Aparece nas coleções:Artigos publicados em periódicos e afins

Mostrar registro simples do item Visualizar estatísticas



Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.