Skip navigation
Por favor, use este identificador para citar o enlazar este ítem: http://repositorio.unb.br/handle/10482/53099
Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
ARTIGO_PredictingTeakTree.pdf610,46 kBAdobe PDFVisualizar/Abrir
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorAlmeida, Mariana Pacheco de-
dc.contributor.authorMiguel, Eder Pereira-
dc.contributor.authorSantos, Mario Lima dos-
dc.contributor.authorGaspar, Ricardo de Oliveira-
dc.contributor.authorSantos, Cassio Rafael Costa dos-
dc.contributor.authorRaddatz, Dione Dambrós-
dc.contributor.authorMartin, Walmer Bruno Rocha-
dc.contributor.authorMatricardi, Eraldo Aparecido Trondoli-
dc.date.accessioned2025-11-17T15:38:21Z-
dc.date.available2025-11-17T15:38:21Z-
dc.date.issued2022-11-
dc.identifier.citationALMEIDA, Mariana Pacheco de et al. Predicting teak tree (Tectona grandis Linn F.) height using generic models and artificial neural networks. Australian Journal of Crop Science, [S.l], v. 16, n. 11, p. 1243-1252, 2022. DOI: 10.21475/ajcs.22.16.11.p3736. Disponível em: https://www.cropj.com/november2022.html. Acesso em: 16 jul. 2025.pt_BR
dc.identifier.urihttp://repositorio.unb.br/handle/10482/53099-
dc.language.isoengpt_BR
dc.publisherSouthern Cross Publishingpt_BR
dc.rightsAcesso Abertopt_BR
dc.titlePredicting teak tree (Tectona grandis Linn F.) height using generic models and artificial neural networkspt_BR
dc.typeArtigopt_BR
dc.subject.keywordRedes neurais artificiaispt_BR
dc.subject.keywordTectona grandispt_BR
dc.subject.keywordEstimativas de alturapt_BR
dc.subject.keywordManejo florestalpt_BR
dc.subject.keywordAmazôniapt_BR
dc.subject.keywordPlantio (Cultivo de plantas)pt_BR
dc.rights.licenseAll the contents of this journal is licensed under a CC-BY-NC. AJCS does not have any commercial interest in the scientific contents of the journal. Fonte: https://www.cropj.com/about.html. Acesso em: 11 mar. 2025.pt_BR
dc.identifier.doi10.21475/ajcs.22.16.11.p3736pt_BR
dc.description.abstract1The continuous monitoring of dendrometric variables provides estimates that assist in conducting fast-growing stands. In this study, we aimed to investigate the performance of generic models and artificial neural networks to estimate total height of Tectona grandis in a forest stand in the Eastern Amazon. Continuous forest inventory was performed in this population, where measured of total height and diameter at breast height. These variables, age and the square root of the average diameter (dg) of the plots, were used to compose the methods adopted to estimate the height of the trees. The accuracy of these methods was assessed using the residual standard error of the estimate, the coefficient of correlation, and the graphical analysis of residues. The aggregated difference and ANOVA were calculated to compare the methods. The independent variables mentioned were able to describe the behavior of individuals at height. We concluded that the methods showed good residual dispersion, normal distribution of errors and little tendency to overestimate height. It was found that the generic models and the ANNs do not differ significantly from each other and are efficient to estimate the height of individuals. We also concluded that the ANNs, especially those that included dg, presented superior statistical indicators.pt_BR
dc.identifier.orcidhttps://orcid.org/0000-0001-6259-4594pt_BR
dc.identifier.orcidhttps://orcid.org/0000-0002-2035-2180pt_BR
dc.identifier.orcidhttps://orcid.org/0000-0001-9356-0186pt_BR
dc.identifier.orcidhttps://orcid.org/0000-0001-6538-5763pt_BR
dc.identifier.orcidhttps://orcid.org/0000-0002-5323-6100pt_BR
dc.contributor.affiliationFederal University of Lavras, Department of Forest Engineeringpt_BR
dc.contributor.affiliationUniversity of Brasilia, Department of Forest Engineeringpt_BR
dc.contributor.affiliationUniversity of Brasilia, Department of Forest Engineeringpt_BR
dc.contributor.affiliationUniversity of Brasilia, Department of Forest Engineeringpt_BR
dc.contributor.affiliationFederal Rural University of Amazonpt_BR
dc.contributor.affiliationUniversity of Brasilia, Department of Forest Engineeringpt_BR
dc.contributor.affiliationFederal Rural University of Amazonpt_BR
dc.contributor.affiliationUniversity of Brasilia, Department of Forest Engineeringpt_BR
dc.description.unidadeFaculdade de Tecnologia (FT)pt_BR
dc.description.unidadeDepartamento de Engenharia Florestal (FT EFL)pt_BR
dc.description.ppgPrograma de Pós-Graduação em Ciências Florestaispt_BR
Aparece en las colecciones: Artigos publicados em periódicos e afins

Mostrar el registro sencillo del ítem " class="statisticsLink btn btn-primary" href="/handle/10482/53099/statistics">



Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.