Skip navigation
Veuillez utiliser cette adresse pour citer ce document : http://repositorio.unb.br/handle/10482/52457
Fichier(s) constituant ce document :
Il n'y a pas de fichiers associés à ce document.
Titre: Pro-p groups acting on trees with finitely many maximal vertex stabilizers up to conjugation
Auteur(s): Chatzidakis, Zoé
Zalesski, Pavel
metadata.dc.identifier.orcid: https://orcid.org/0000-0002-3369-100X
https://orcid.org/0000-0002-2015-239X
metadata.dc.contributor.affiliation: Ecole Normale Supérieure, Département de Mathématiques et Applications
University of Brasilia, Department of Mathematics
Assunto:: Grupos pro-p
Grupos-p finitos
Date de publication: 6-mar-2022
Editeur: Magnes Press
Référence bibliographique: CHATZIDAKIS, Zoé; ZALESSKI, Pavel. Pro-p groups acting on trees with finitely many maximal vertex stabilizers up to conjugation. Israel Journal of Mathematics, Jerusalem, v. 247, p. 593-634, 2022. DOI: https://doi.org/10.1007/s11856-022-2287-5. Disponível em: https://link.springer.com/article/10.1007/s11856-022-2287-5. Acesso em: 13 jun. 2025.
Abstract: We prove that a finitely generated pro-p group G acting on a pro-p tree T splits as a free amalgamated pro-p product or a pro-p HNN-extension over an edge stabilizer. If G acts with finitely many vertex stabilizers up to conjugation, we show that it is the fundamental pro-p group of a finite graph of pro-p groups (G, Γ) with edge and vertex groups being stabilizers of certain vertices and edges of T respectively. If edge stabilizers are procyclic, we give a bound on Γ in terms of the minimal number of generators of G. We also give a criterion for a pro-p group G to be accessible in terms of the first cohomology H1(G, Fp[[G]]).
metadata.dc.description.unidade: Instituto de Ciências Exatas (IE)
Departamento de Matemática (IE MAT)
metadata.dc.description.ppg: Programa de Pós-Graduação em Matemática
DOI: https://doi.org/10.1007/s11856-022-2287-5
metadata.dc.relation.publisherversion: https://link.springer.com/article/10.1007/s11856-022-2287-5
Collection(s) :Artigos publicados em periódicos e afins

Affichage détaillé " class="statisticsLink btn btn-primary" href="/handle/10482/52457/statistics">



Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.