Skip navigation
Use este identificador para citar ou linkar para este item: http://repositorio.unb.br/handle/10482/51959
Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
ARTIGO_DeepLearningApplied.pdf13,95 MBAdobe PDFVisualizar/Abrir
Título: Deep learning applied to equipment detection on flat roofs in images captured by UAV
Autor(es): Santos, Lara Monalisa Alves dos
Zanoni, Vanda Alice Garcia
Bedin, Eduardo
Pistori, Hemerson
ORCID: https://orcid.org/0000-0001-8181-760X
Afiliação do autor: University of Brasília
University of Brasília
Dom Bosco Catholic University
Dom Bosco Catholic University
Federal University of Mato Grosso do Sul
Assunto: Telhado plano - manutenção
Detecção de equipamentos
Inspeção predial
Veículos aéreos não tripulados (VANTs)
Visão computacional
Aprendizado profundo
Data de publicação: 2023
Editora: Elsevier Ltd.
Referência: SANTOS, Lara Monalisa Alves dos et al. Deep learning applied to equipment detection on flat roofs in images captured by UAV. Case Studies in Construction Materials, [S. l.], v. 18, e01917, Jul. 2023. DOI: https://doi.org/10.1016/j.cscm.2023.e01917. Disponível em: https://www.sciencedirect.com/science/article/pii/S2214509523000967?via%3Dihub#sec0005. Acesso em: 18 mar. 2025.
Abstract: Maintenance on flat roofs is a complex activity. Equipment improperly positioned on flat roofs hinders the correct drainage of water and makes maintenance services more difficult. This article presents an experiment with deep learning algorithms involving 330 images acquired in 9 buildings by Unmanned Aerial Vehicle-UAV. This dataset was created by the authors to optimize decision-making for maintenance through automated processes and is being used for the first time in this article. The dataset refers to condenser equipment positioned on flat roofs and was tested in six state-of-the-art object-detection deep learning algorithms: Region-based convolutional neural networks (Faster R-CNN), Focal Loss (Retina-Net), Adaptive Training Sample Selection (ATSS), VarifocalNet (Vfnet), Side-Aware Boundary Localization (SABL) and FoveaBox (Fovea). Nine performance metrics were applied, achieving successful results by Faster R-CNN (Recall=0.93, Fscore=0.93, MAE=0.43) followed by ATSS (Precision=0.95). In a system with many variables, the target is the identification of the best algorithm capable of solving the proposed problem. In conclusion, the types of errors analyzed in detection alert to the diversity of causes related to the inherent characteristics of flat roofs that induce network confusion.
Unidade Acadêmica: Faculdade de Arquitetura e Urbanismo (FAU)
Departamento de Tecnologia em Arquitetura e Urbanismo (FAU TEC)
Programa de pós-graduação: Programa de Pós-Graduação em Arquitetura e Urbanismo
Licença: This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
DOI: https://doi.org/10.1016/j.cscm.2023.e01917
Aparece nas coleções:Artigos publicados em periódicos e afins

Mostrar registro completo do item Visualizar estatísticas



Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.