Skip navigation
Please use this identifier to cite or link to this item: https://repositorio.unb.br/handle/10482/4707
Files in This Item:
File Description SizeFormat 
2009_MarcosMesquitaResende.pdf262,73 kBAdobe PDFView/Open
Title: Sistemas de Identidades Polinomiais sem Base Finita
Authors: Resende, Marcos Mesquita
Orientador(es):: Krassilnikov, Alexei
Assunto:: Álgebra
Issue Date: 2009
Citation: RESENDE, Marcos Mesquita. Sistemas de Identidades Polinomiais sem Base Finita. 2009. 41 f. Dissertação (Mestrado em Matemática)-Universidade de Brasília, Brasília, 2009.
Abstract: Seja F um corpo e seja A a F- algebra associativa livre (sem unidade) com geradores livres x1; x2; :::. Seja f = f(x1; :::; xn) 2 A e seja G uma algebra associtativa sobre F. Dizemos que f = 0 e uma identidade polinomial (ou apenas uma identidade) em G se f(g1; :::; gn) = 0 para todos g1; :::; gn 2 G. Dois sistemas de identidades polinomiais fui = 0 j i 2 Ig e fvj = 0 j j 2 Jg s~ao equivalentes se toda F- algebra associativa satisfazendo todas as identidades ui = 0 satisfaz todas as identidades vj = 0 e vice-versa. Se o sistema de identidades polinomiais fui = 0 j i 2 Ig e equivalente a algum sistema nito de identidades, dizemos que o sistema fui = 0 j i 2 Ig tem base nita. Nesta disserta c~ao, faremos um estudo detalhado de dois sistemas de identidades polinomiais que n~ao possuem base nita, ou seja, que n~ao s~ao equivalentes a um conjunto nito de identidades. O primeiro deles consiste num sistema de identidades polinomiais que n~ao tem base nita em algebras associativas (sobre um corpo de caracter stica 2) sem unidade e com unidade, enquanto o segundo vale apenas para algebras associativas (sobre um corpo de caracter stica 2) sem unidade e cont em a identidade x6 = 0. Esta disserta c~ao foi baseada nos artigos [7] e [8] de Gupta e Krasilnikov, e no cap tulo 3 do livro Free Algebras and PI-Algebras do Drensky [4]. ___________________________________________________________________________________________ ABSTRACT
Let F be a eld and let A be the free associative F-algebra (without 1) on free generators x1; x2; :::. Let f = f(x1; :::; xn) 2 A and let G be an associative algebra over F. We say that f = 0 is a polynomial identity (or an identity) in G if f(g1; :::; gn) = 0 for all g1; :::; gn 2 G. Two systems of polynomial identities fui = 0 j i 2 Ig and fvj = 0 j j 2 Jg are equivalent if every associative F-algebra satisfying all the identities ui = 0 satis es all the identities vj = 0 and vice versa. If a system of polynomial identities fui = 0 j i 2 Ig is equivalent to some nite system of identities, we say that the system fui = 0 j i 2 Ig has a nite basis or is nitely based. In this dissertation, we study in detail two systems of polynomial identites that are not nitely based, that is, they are not equivalent to a nite set of identities. The rst one consists of a system of polynomial identities that has no nite basis in associative algebras (over a eld of characteristic 2) with or without unity, whereas the second one works only in non-unitary associative algebras (over a eld of characteristic 2) and contains the identity x6 = 0. This dissertation was based on the articles [7] and [8] by Gupta and Krasilnikov, and the chapter 3 from the book Free Algebras and PI-Algebras by Drensky [4].
Description: Dissertação (mestrado)—Universidade de Brasília, Instituto de Ciências Exatas, Departamento de Matemática, 2009.
Appears in Collections:MAT - Mestrado em Matemática (Dissertações)

Show full item record Recommend this item " class="statisticsLink btn btn-primary" href="/handle/10482/4707/statistics">



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.