Skip navigation
Please use this identifier to cite or link to this item: http://repositorio.unb.br/handle/10482/45051
Files in This Item:
There are no files associated with this item.
Full metadata record
DC FieldValueLanguage
dc.contributor.authorFigueiredo, Giovany de Jesus Malcher-
dc.contributor.authorMadeira, Gustavo F.-
dc.date.accessioned2022-10-19T23:29:36Z-
dc.date.available2022-10-19T23:29:36Z-
dc.date.issued2020-11-23-
dc.identifier.citationFIGUEIREDO, Giovany M.; MADEIRA, Gustavo F. Positive maximal and minimal solutions for non-homogeneous elliptic equations depending on the gradient. Journal of Differential Equations, v. 274, p. 857-875, fev. 2021, DOI 10.1016/j.jde.2020.10.033. Disponível em: https://www.sciencedirect.com/science/article/pii/S0022039620305921. Acesso em: 19 out. 2022.pt_BR
dc.identifier.urihttps://repositorio.unb.br/handle/10482/45051-
dc.language.isoInglêspt_BR
dc.publisherScience Directpt_BR
dc.relation.isbasedonhttps://www.sciencedirect.com/science/article/pii/S0022039620305921pt_BR
dc.rightsAcesso Restritopt_BR
dc.titlePositive maximal and minimal solutions for non-homogeneous elliptic equations depending on the gradientpt_BR
dc.typeArtigopt_BR
dc.subject.keywordEquação elípticapt_BR
dc.subject.keywordOperador não homogêneopt_BR
dc.subject.keywordSolução máxima e mínimapt_BR
dc.identifier.doihttps://doi.org/10.1016/j.jde.2020.10.033pt_BR
dc.description.abstract1We are concerned with positive maximal and minimal solutions for non-homogeneous elliptic equations of the form − div(a(|∇u|p)|∇u|p−2∇u) = f (x, u, ∇u) in , supplied with Dirichlet boundary conditions. First we localize maximal and minimal solutions between not necessarily bounded sub-super solutions. Then using a uniform gradient estimate, which seems of independent interest, we show the existence of positive maximal and minimal solutions in some situations. More precisely, we obtain positive maximal and minimal solution to some classes of non-homogeneous equations depending on the gradient which may be perturbed by unbounded, singular or logistic sources.pt_BR
dc.contributor.emailmailto:giovany@unb.brpt_BR
dc.contributor.emailmailto:gfmadeira@ufscar.brpt_BR
Appears in Collections:Artigos publicados em periódicos e afins

Show simple item record " class="statisticsLink btn btn-primary" href="/handle/10482/45051/statistics">



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.