Skip navigation
Veuillez utiliser cette adresse pour citer ce document : http://repositorio.unb.br/handle/10482/45000
Fichier(s) constituant ce document :
Fichier Description TailleFormat 
ARTIGO_GroundStateSign.pdf505,81 kBAdobe PDFVoir/Ouvrir
Affichage complet
Élément Dublin CoreValeurLangue
dc.contributor.authorTong, Yonghui-
dc.contributor.authorGuo, Hui-
dc.contributor.authorFigueiredo, Giovany de Jesus Malcher-
dc.date.accessioned2022-10-05T18:44:58Z-
dc.date.available2022-10-05T18:44:58Z-
dc.date.issued2021-
dc.identifier.citationTONG, Yonghui; GUO, Hui; FIGUEIREDO, Giovany M. Ground state sign-changing solutions and infinitely many solutions for fractional logarithmic Schrödinger equations in bounded domains. Electronic Journal of Qualitative Theory of Differential Equations, n. 70, 1–14, 2021. DOI 10.14232/ejqtde.2021.1.70. Disponível em: http://www.math.u-szeged.hu/ejqtde/p9311.pdf. Acesso em: 05 out. 2022.pt_BR
dc.identifier.urihttps://repositorio.unb.br/handle/10482/45000-
dc.language.isoInglêspt_BR
dc.publisherUniversity of Szegedpt_BR
dc.rightsAcesso Abertopt_BR
dc.titleGround state sign-changing solutions and infinitely many solutions for fractional logarithmic Schrödinger equations in bounded domainspt_BR
dc.typeArtigopt_BR
dc.subject.keywordSchrödinger, Equação dept_BR
dc.subject.keywordEquações diferenciaispt_BR
dc.rights.licenseElectronic Journal of Qualitative Theory of Differential Equations - EJQTDE applies the Creative Commons Attribution (CC BY) license to articles and other works we publish. It is to be understood that once a paper is published, it cannot be removed or corrected, although a correction can be published later in the journal and a notation made in the original article telling where a correction appears. Fonte: http://www.math.u-szeged.hu/ejqtde/submit.html. Acesso em: 05 out. 2022.pt_BR
dc.identifier.doihttps://doi.org/10.14232/ejqtde.2021.1.70pt_BR
dc.description.abstract1We consider a class of fractional logarithmic Schrödinger equation in bounded domains. First, by means of the constraint variational method, quantitative deformation lemma and some new inequalities, the positive ground state solutions and ground state sign-changing solutions are obtained. These inequalities are derived from the special properties of fractional logarithmic equations and are critical for us to obtain our main results. Moreover, we show that the energy of any sign-changing solution is strictly larger than twice the ground state energy. Finally, we obtain that the equation has infinitely many nontrivial solutions. Our result complements the existing ones to fractional Schrödinger problems when the nonlinearity is sign-changing and satisfies neither the monotonicity condition nor Ambrosetti–Rabinowitz condition.pt_BR
dc.contributor.emailmailto:myyhtong@163.compt_BR
dc.contributor.emailmailto:huiguo_math@163.compt_BR
dc.contributor.emailmailto:giovany_ufpa@yahoo.com.brpt_BR
Collection(s) :Artigos publicados em periódicos e afins

Affichage abbrégé " class="statisticsLink btn btn-primary" href="/handle/10482/45000/statistics">



Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.