Skip navigation
Veuillez utiliser cette adresse pour citer ce document : http://repositorio.unb.br/handle/10482/44414
Fichier(s) constituant ce document :
Fichier Description TailleFormat 
SemTexto.pdf1,11 kBAdobe PDFVoir/Ouvrir
Affichage complet
Élément Dublin CoreValeurLangue
dc.contributor.authorCarvalho, Luiz F. R. de-
dc.contributor.authorLaneve, Giovanni-
dc.contributor.authorBaraldi, Andrea-
dc.contributor.authorSantilli, Giancarlo-
dc.date.accessioned2022-08-04T15:48:54Z-
dc.date.available2022-08-04T15:48:54Z-
dc.date.issued2021-
dc.identifier.citationCARVALHO, Luiz F. R. de et al. Spectral rule-based expert system for automatic near real-time thermal anomalies detection in geostationary GOES-16 ABI imagery. 2021 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM IGARSS, 2021, Brussels - Belgium. DOI: 10.1109/IGARSS47720.2021.9553625.pt_BR
dc.identifier.urihttps://repositorio.unb.br/handle/10482/44414-
dc.language.isoInglêspt_BR
dc.publisherIEEEpt_BR
dc.rightsAcesso Restritopt_BR
dc.titleSpectral rule-based expert system for automatic near real-time thermal anomalies detection in geostationary GOES-16 ABI imagerypt_BR
dc.typeTrabalho apresentado em eventopt_BR
dc.subject.keywordSistemas especializadospt_BR
dc.subject.keywordProcessamento de imagens geofísicaspt_BR
dc.subject.keywordSensoriamento remotopt_BR
dc.identifier.doi10.1109/IGARSS47720.2021.9553625pt_BR
dc.relation.publisherversionhttps://ieeexplore.ieee.org/document/9553625pt_BR
dc.description.abstract1Typical advantages and limitations of prior knowledge-based (deductive, top-down) expert systems are well known in literature: they typically score “high” in efficiency and interpretability, but they tend to score “low” in transferability/robustness to changes in input data. To benefit from these advantages while overcoming their typical shortcomings, an original expert system, based on a priori purely spectral-domain knowledge, is proposed for per-pixel (spatial context-insensitive) automatic near real-time detection of thermal anomalies in geostationary GOES-16 ABI multi-spectral (MS) imagery. Unable to learn-from-data, the proposed static decision-tree for MS signature recognition (classification) requires neither training data nor human-machine interaction to run. Its degrees of novelty pertain to the Marr levels of system understanding known as information/knowledge representation, system design (architecture) and implementation. Input with day and night ABI imagery acquired every 15 minutes, the proposed expert system detected 680 pixels with thermal anomalies in ABI images of the North and South Americas acquired from 30/01/2018 (15:00 UTC) to 31/01/2018 (01:30 UTC).pt_BR
dc.description.unidadeFaculdade de Ciências e Tecnologias em Engenharia (FCTE) – Campus UnB Gama-
Collection(s) :Trabalhos apresentados em evento

Affichage abbrégé " class="statisticsLink btn btn-primary" href="/handle/10482/44414/statistics">



Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.