Skip navigation
Please use this identifier to cite or link to this item: http://repositorio.unb.br/handle/10482/42815
Files in This Item:
There are no files associated with this item.
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKhukhro, Evgeny I.-
dc.contributor.authorShumyatsky, Pavel-
dc.date.accessioned2022-02-03T18:59:00Z-
dc.date.available2022-02-03T18:59:00Z-
dc.date.issued2021-12-24-
dc.identifier.citationKHUKHRO, Evgeny I.; SHUMYATSKY, Pavel. On profinite groups with automorphisms whose fixed points have countable Engel sinks. IIsrael Journal of Mathematics, [S.l.], 2021. DOI: https://doi.org/10.1007/s11856-021-2267-1.pt_BR
dc.identifier.urihttps://repositorio.unb.br/handle/10482/42815-
dc.language.isoInglêspt_BR
dc.publisherSpringerpt_BR
dc.rightsAcesso Restritopt_BR
dc.titleOn profinite groups with automorphisms whose fixed points have countable Engel sinkspt_BR
dc.typeArtigopt_BR
dc.subject.keywordGrupos profinitospt_BR
dc.subject.keywordAutomorfismospt_BR
dc.subject.keywordGrupo Engelpt_BR
dc.identifier.doihttps://doi.org/10.1007/s11856-021-2267-1pt_BR
dc.relation.publisherversionhttps://link.springer.com/article/10.1007/s11856-021-2267-1pt_BR
dc.description.abstract1An Engel sink of an element g of a group G is a set E(g) such that for every x ∈ G all sufficiently long commutators [⋯[[x, g], g],…, g] belong to E(g). (Thus, g is an Engel element precisely when we can choose E(g)={1}.) It is proved that if a profinite group G admits an elementary abelian group of automorphisms A of coprime order q2 for a prime q such that for each a ∈ A {1} every element of the centralizer CG(a) has a countable (or finite) Engel sink, then G has a finite normal subgroup N such that G/N is locally nilpotent.pt_BR
Appears in Collections:Artigos publicados em periódicos e afins

Show simple item record " class="statisticsLink btn btn-primary" href="/handle/10482/42815/statistics">



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.