Skip navigation
Please use this identifier to cite or link to this item: https://repositorio.unb.br/handle/10482/31840
Files in This Item:
File Description SizeFormat 
ARTIGO_UseRadiofrequencyHepatocellular.pdf483,55 kBAdobe PDFView/Open
Title: The use of radiofrequency for hepatocellular carcinoma ablation : an update review and perspectives
Authors: Monteiro, Melissa Silva
Guimarães, Guilherme dos Anjos
Motta, Bruno da Costa
Fonseca, Ronei Delfino da
Marques, Marina Pinheiro
Mendonça, Gabriel Williams Silva de
Rosa, Suélia de Siqueira Rodrigues Fleury
Assunto:: Carcinoma hepatocelular
Radiofrequência
Nanopartículas
Issue Date: Jul-2017
Publisher: MedCrave Group
Citation: MONTEIRO, Melissa Silva et al. The use of radiofrequency for hepatocellular carcinoma ablation: an update review and perspectives. International Journal of Biosensors & Bioelectronics, v. 3, n. 1, p. 1-6, set. 2017. Disponível em: <http://medcraveonline.com/IJBSBE/IJBSBE-03-00055.php>. Acesso em: 9 maio 2018.
Abstract: The World Health Organization classifies liver cancer among the five types of cancer with highest death rates in the world. Among the current methods available for the treatment of liver cancer, there is the resection of hepatic tissue and the radiofrequency ablation of the tumor. Even though resection presents the best results, only 10% to 15% of the affected patients may eligible for this procedure. On the other hand, the radiofrequency ablation encompasses a larger scope of patients and provides a non-invasive method when compared to resection. There is research with sufficient evidence to allow the transposition of this concept to new technological paradigms, which would yield a more effective ablation process, i.e.: generating enough volumetric necrosis for complete regression of the tumor, leading to a high survival rate of patients. These technological paradigms encompass aspects of operability, innovation and of theoretical framework. In terms of operability, there is the use of better imaging sources to aid the healthcare professional in the positioning of electrodes; in terms of innovation, there are new technologies such as the use of optical fiber microsensors and metallic magnetic nanoparticles to increase the efficiency of the process; in terms of theoretical framework, there is the development of more precise mathematical models that would expand the possibilities of application and increase its effectiveness. These new challenges are new possibilities that may reshape the concept and the use of radiofrequency ablation as it is currently known.
Licença:: Open Access by MedCrave Group is licensed under a Creative Commons Attribution 4.0 International License (CC BY NC). Fonte: http://medcraveonline.com:/IJBSBE/IJBSBE-03-00055.php. Acesso em: 14 maio 2018.
Appears in Collections:FGA - Artigos publicados em periódicos

Show full item record Recommend this item " class="statisticsLink btn btn-primary" href="/handle/10482/31840/statistics">



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.