Skip navigation
Please use this identifier to cite or link to this item: https://repositorio.unb.br/handle/10482/24898
Files in This Item:
File Description SizeFormat 
ARTIGO_EvaluationCassandraNoSQL.pdf1,31 MBAdobe PDFView/Open
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAniceto, Rodrigo-
dc.contributor.authorXavier, Rene-
dc.contributor.authorGuimarães, Valeria-
dc.contributor.authorHondo, Fernanda-
dc.contributor.authorHolanda, Maristela-
dc.contributor.authorWalter, Maria Emília Machado Telles-
dc.contributor.authorLifschitz, Sérgio-
dc.date.accessioned2017-10-30T13:54:11Z-
dc.date.available2017-10-30T13:54:11Z-
dc.date.issued2015-05-
dc.identifier.citationANICETO, R. et al. Evaluating the Cassandra NoSQL Database Approach for Genomic Data Persistency. Hindawi Publishing Corporation, Cairo, v. 2015, Art. ID 502795, 2015. Disponível em: <https://www.hindawi.com/journals/ijg/2015/502795/>. Acesso em: 19 out. 2017. doi: http://dx.doi.org/10.1155/2015/502795.pt_BR
dc.identifier.urihttp://repositorio.unb.br/handle/10482/24898-
dc.language.isoInglêspt_BR
dc.publisherHindawi Publishing Corporationpt_BR
dc.rightsAcesso Abertopt_BR
dc.titleEvaluating the Cassandra NoSQL Database Approach for Genomic Data Persistencypt_BR
dc.typeArtigopt_BR
dc.subject.keywordBanco de dadospt_BR
dc.subject.keywordBiologia computacionalpt_BR
dc.rights.licenseCopyright © 2015 Rodrigo Aniceto et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Fonte: https://www.hindawi.com/journals/ijg/2015/502795/. Acesso em: 19 out. 2017.pt_BR
dc.identifier.doihttp://dx.doi.org/10.1155/2015/502795pt_BR
dc.description.abstract1Rapid advances in high-throughput sequencing techniques have created interesting computational challenges in bioinformatics. One of them refers to management of massive amounts of data generated by automatic sequencers. We need to deal with the persistency of genomic data, particularly storing and analyzing these large-scale processed data. To find an alternative to the frequently considered relational database model becomes a compelling task. Other data models may be more effective when dealing with a very large amount of nonconventional data, especially for writing and retrieving operations. In this paper, we discuss the Cassandra NoSQL database approach for storing genomic data. We perform an analysis of persistency and I/O operations with real data, using the Cassandra database system. We also compare the results obtained with a classical relational database system and another NoSQL database approach, MongoDB.pt_BR
Appears in Collections:CIC - Artigos publicados em periódicos

Show simple item record Recommend this item " class="statisticsLink btn btn-primary" href="/handle/10482/24898/statistics">



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.