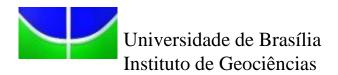


MODELAGEM DINÂMICA ESPACIAL DO USO E OCUPAÇÃO DO SOLO NA BACIA HIDROGRÁFICA DO LAGO PARANOÁ-DF: 1998–2020.

Dissertação de Mestrado

Lidiane Tomaz Dias



Modelagem dinâmica espacial do uso e ocupação do solo na bacia hidrográfica do Lago Paranoá-DF: 1998-2020.

Lidiane Tomaz Dias

Dissertação de mestrado apresentada junto ao curso de Pós Graduação em Geociências Aplicadas – Área de Concentração em Geoprocessamento e Análise Ambiental – para obtenção do título de Mestre em Geociências Aplicadas.

Orientador: Prof. Dr. Detlef Hans-Gert Walde

Modelagem dinâmica espacial do uso e ocupação do solo na bacia hidrográfica do Lago Paranoá-DF: 1998-2020.

Lidiane Tomaz Dias

Banca Examinadora:

Prof. Dr. Detlef Hans-Gert Walde (Orientador) – UnB

Prof. Dr. Henrique Llacer Roig - UnB

Prof. Dr. Éder de Souza Martins - EMBRAPA

Agradecimentos

A Deus, por me proporcionar as maravilhosas oportunidades e surpresas que a vida tem me apresentado.

À minha família, em especial às minhas irmãs Flávia e Paula pelo companheirismo, suporte e por muitas vezes me mostrar como continuar a seguir esta caminhada. Aos meus lindos sobrinhos Luiz Henrique e Fernanda pela alegria e descontração.

Ao Prof. Dr. Detlef Hans-Gert Walde, pelo apoio e paciência e principalmente pela oportunidade que me deu ao me aceitar como orientanda para a realização deste trabalho.

Aos amigos Andrea Amaziles, Bruno Lousada, Cleide Moura e Edivaldo Lima, pela amizade durante o curso, pelo companheirismo e pelos incentivos à finalização deste trabalho.

Aos demais amigos e amigas que de qualquer forma contribuíram a realização deste.

À Claudia Roque e Rosa Abreu pela compreensão e ajuda no início do curso ao me proporcionar horário diferenciado de trabalho e aos amigos Cleiton Fernandes, Mariza, Rafael e Laryssa pelos momentos de descontração e ainda à Laudo Hamada, a Paulo Cesar e a Eloi Hoff pela compreensão de minha ausência nesta etapa final.

Ao amigo Paulo Henrique pelos subsídios fornecidos e pela importante contribuição e incentivo, e por me ajudar a revisar o trabalho final; e ao prof. Dr. Henrique Roig pelas idéias e contribuições importantes ao desenvolvimento deste.

Aos colegas da Terracap, pela disponibilização de dados importantes a elaboração desta pesquisa.

Enfim, a todos que participaram direta ou indiretamente da realização deste trabalho.

Resumo

Observa-se uma crescente preocupação com as tendências ocupacionais do território urbano principalmente a partir dos anos 50, com o rápido crescimento da população, resultando no aumento do número de cidades e suas dimensões. Na década de 50, Brasília começou a ser instalada no Planalto Central, atraindo um número de imigrantes fora do planejado e em pouco tempo se tornou uma grande região de cidades em torno de um centro de poder. Assim, o conhecimento da complexa dinâmica de uso dessas áreas torna-se indispensável para um planejamento eficiente. O uso de técnicas apropriadas de análise da dinâmica espacial é uma importante ferramenta nesse sentido, permitindo efetuar a simulação de cenários futuros de expansão urbana e dinâmica de uso do solo, permitindo ao gestor conhecer as tendências da ocupação e tomar decisões no sentindo de torná-las sustentável, ou de impedi-las, seja qual for o caso. Nesse sentido, este trabalho tem como objetivo modelar a dinâmica espacial do uso e ocupação do solo na bacia hidrográfica do Lago Paranoá. Propõe-se a identificar os processos de mudança no uso e ocupação do solo por meio de análises multitemporais, e à criação de cenários futuros para os anos de 2014 e 2020 nas subbacias do Bananal, do Ribeirão do Gama e do Lago Paranoá. Para tanto, utilizou-se o software Dinamica EGO como plataforma para modelagem. Desta forma, foi possível destacar as transições de uso do solo ocorridas nos períodos de 1984 a 1994, de 1994 a 1998 e de 1998 a 2009. Esse último período foi utilizado para calibração do modelo para simulação futura, por meio do método de pesos de evidência. Os prognósticos modelados para os dois períodos futuros indicam uma saturação no espaço territorial das unidades hidrográficas estudadas caso mantenha-se a tendência de mudança no uso do solo avaliado nos períodos anteriores.

Palavras chave: Bacia do Lago Paranoá, Dinamica EGO; Modelagem espacial dinâmica; simulação de cenários.

Abstract

There is a growing concern about occupational trends of urban land mainly from 50 years with the rapid population growth, resulting in an increasing number of cities and their dimensions. In the 50's, Brasília began to be installed in the Planalto Central, attracting a number of immigrants out of the planned and soon became a great part of town around a center of power. Knowledge of the complex dynamics of the use of these areas it is essential for efficient planning. The use of appropriate techniques for analysis of spatial dynamics is an important tool in this direction, allowing you to place the simulation of future scenarios of urban sprawl and land use dynamics, allowing the manager to know the trends of the occupation and take decisions to make them sustainable, or stop them, whatever the case. In this sense, this paper aims to model the spatial dynamics of land use and soil in units in the Lago Paranoá basin. Aims to identify the processes of change in land use and soil through multitemporal analysis, and the creation of future scenarios for the years 2014 and 2020 in sub-basins of the Bananal, Ribeirão do Gama and the Lago Paranoá. To this end, we used the software Dinamica EGO as a platform for modeling. Thus, it was possible to highlight the transitions in land use occurred in the periods 1984 to 1994, from 1994 to 1998 and from 1998 to 2009. This latter period was used to calibrate the model to simulate future, through the weights of evidence method. The modeled predictions for the two future periods indicate saturation in the territorial space of the units studied basins hold if the trend of change in land use evaluated in previous periods.

Keywords: Lago Paranoá basin; Dinamica EGO; dynamic spatial modeling, scenario simulation.

Sumário

1	Intr	rodução	1
	1.1	Objetivos	3
	1.2	Justificativas	3
	1.3	Localização da área de estudo	4
2	Car	racterização da área de estudo	6
	2.1	Hidrografia	6
	2.1.	.1 Unidade hidrográfica do Bananal	8
	2.1.	.2 Unidade hidrográfica do Ribeirão do Gama	8
	2.1.	.3 Unidade hidrográfica do Lago Paranoá	8
	2.2	Clima	9
	2.3	Vegetação	10
	2.4	Geologia	11
	2.5	Geomorfologia	15
	2.6	Solos	16
3	Uso	o e ocupação do Solo	18
	3.1	Uso e ocupação do solo no Distrito Federal	18
	3.2	Políticas Públicas de Uso e Ocupação do Solo	21
	3.3	Plano Diretor de Ordenamento Territorial	23
	3.4	Condicionantes ambientais no uso e ocupação do solo	25
	3.4.	l.1 Unidades de Conservação	25
4	Мо	delagem ambiental	28
	4.1	Modelagem Espacial Dinâmica	29
	4.1.	.1 Modelos autômatos celulares	30
	4.2	Método dos pesos de evidência	31
	4.3	Dinamica EGO	32
5	Mat	teriais e Métodos	36
	5.1	Dados de entrada do modelo	37

	5.2	Cal	libração e validação do modelo	39		
	5.	2.1	Matriz de Transição	39		
	5.2.2		Pesos de Evidência	40		
	5.3	Col	nstrução do modelo de simulação e validação	41		
	5.	3.1	Modelo de Simulação	41		
	5.	3.2	Validação do modelo de simulação	42		
	5.4	Ob	tenção de cenários de tendência histórica	42		
6	R	esulta	ados e Discussão	43		
(6.1	Mu	danças no uso e ocupação do solo	43		
	6.	1.1	Sub-bacia do Bananal	43		
	6.	1.2	Sub-bacia do Lago Paranoá	44		
	6.	1.3	Sub-bacia do Ribeirão do Gama	46		
(6.2	Cal	libração do modelo	47		
	6.	2.1	Matriz de transição	47		
	6.	2.2	Escolha das variáveis estáticas	51		
	6.	2.3	Pesos de Evidência	58		
	6.	2.4	Correlação de mapas	65		
(6.3	Col	nstrução do modelo de simulação e validação	66		
	6.	3.1	Validação do modelo de simulação	79		
	6.	3.2	Simulação de cenário	80		
(6.4	Sin	nulação de cenários de tendência histórica	86		
7	C	onclu	sões	92		
RE	REFERÊNCIAS BIBLIOGRÁFICAS94					
A۱	IEX	os	1	03		

Lista de Figuras

Figura 1 - Localização da bacia hidrográfica do Lago Paranoá. Fonte: Menezes, 2010 5
Figura 2 - Unidades da bacia hidrográfica do Lago Paranoá. Fonte: Ferrante et al., 2001 7
Figura 3 - Detalhamento da litoestratigrafia do Grupo Paranoá na região do Distrito Federal, indicando o ciclo transgressivo (CT), o primeiro ciclo regressivo (ICR) e o segundo ciclo regressivo (ICR). Fonte: Ferreira, 2010
Figura 4 - Mapa Geológico da Bacia do Lago Paranoá. Fonte: Menezes, 2010 14
Figura 5 - Fluxograma metodológico
Figura 6 - Uso e ocupação do solo na sub-bacia do Bananal nos anos de 1984, 1994, 1998 e 200944
Figura 7 - Uso e ocupação do solo na sub-bacia do Lago Paranoá nos anos de 1984, 1994, 1998 e 2009
Figura 8 - Uso e ocupação do solo na sub-bacia do Ribeirão do Gama nos anos de 1984, 1994, 1998 e 2009
Figura 9 - Variáveis estáticas utilizadas para a unidade do Bananal – (a) Distância até as drenagens; (b) solos; (c) distância até a área protegida53
Figura 10 – Variáveis estáticas utilizadas para a unidade do Lago Paranoá – (a) solos; (b) distância até a drenagem; (c) PDOT54
Figura 11 - Variáveis estáticas utilizadas para a unidade do Lago Paranoá – Distância até as estradas/vias55
Figura 12 - Variáveis estáticas utilizadas para a unidade do Ribeirão do Gama – (a) Solos; (b) Distância às drenagens
Figura 13 - Variáveis estáticas utilizadas para a unidade do Ribeirão do Gama – (a) Distância até as vias; (b) PDOT57
Figura 14 - Mapas de probabilidade espacial de transição na sub-bacia do Bananal. (a) classe agricultura para a classe urbana; (b) classe agricultura para classe vegetação; (c) classe vegetação para a classe agricultura; (d) classe vegetação para a classe área urbana.
Figura 15 - Mapas de probabilidade espacial de transição na sub-bacia do Bananal. (a) classe mata de galeria para agricultura; (b) classe mata de galeria para área urbana; (c) classe mata de galeria para classe vegetação
Figura 16 - Cenário simulado para o ano de 2009 na sub-bacia do Bananal. (a) final real – 2009; (b) final simulado – 2009

Figura 17 - Mapas de probabilidade espacial de transição na sub-bacia do Lago Paranoá. (a) classe vegetação para agricultura; (b) classe vegetação para classe área urbana; (c) classe vegetação para a classe mata de galeria; (d) classe mata de galeria para a classe agricultura.
Figura 18 - Mapas de probabilidade espacial de transição na sub-bacia do Lago Paranoá. (a) classe de mata de galeria para área urbana; (b) classe mata de galeria para vegetação; (c) classe reflorestamento para agricultura; (d) classe reflorestamento para área urbana 73
Figura 19 - Mapas de probabilidade espacial de transição na sub-bacia do Lago Paranoá – classe reflorestamento para vegetação
Figura 20 - Cenário simulado para o ano de 2009 na sub-bacia do Lago Paranoá. (a) Final real – 2009; (b) Final simulado – 2009
Figura 21 - Mapas de probabilidade espacial de transição na sub-bacia do Ribeirão do Gama. (a) classe agricultura para a classe área urbana; (b) classe agricultura para a classe vegetação; (c) classe vegetação para a classe agricultura; (d) classe vegetação para a classe área urbana
Figura 22 - Mapas de probabilidade espacial de transição na sub-bacia do Ribeirão do Gama. (a) classe mata de galeria para a classe agricultura; (b) classe mata de galeria para a classe área urbana; (c) classe mata de galeria para a classe vegetação; (d) classe reflorestamento para a classe agricultura.
Figura 23 - Cenário simulado para o ano de 2009 na sub-bacia do Lago Paranoá. (a) Final real – 2009; (b) Final simulado – 2009
Figura 24 - Simulação do uso e ocupação de 2009 na Bacia do Bananal utilizando a função expander. (a) Final real – 2009; (b) Final simulado – 2009
Figura 25 - Simulação do uso e ocupação de 2009 na Bacia do Ribeirão do Gama utilizando a função <i>expander</i> . (a) Final real – 2009; (b) Final simulado – 2009
Figura 26 - Simulação do uso e ocupação de 2009 na Bacia do Ribeirão do Gama utilizando a função <i>expander</i> . (a) Final real – 2009; (b) Final simulado – 2009
Figura 27 - Bacia do Bananal - Cenário simulado para o ano 2014 87
Figura 28 - Bacia do Bananal - Cenário simulado para o ano de 2020
Figura 29 - Cenários simulados para os anos de 2014 e 2020 na bacia do Lago Paranoá. (a) Cenário simulado para 2014; (b) Cenário simulado para 2020
Figura 30 - Cenários simulados para a bacia do Ribeirão do Gama. (a) Cenário simulado para 2014. (b) Cenário simulado para 2020

Lista de Tabelas

Tabela 1 - Matriz de Transição do uso e ocupação do solo na Sub-bacia do Bananal no período de 1984 a 1994
Tabela 2 - Matriz de Transição do uso e ocupação do solo na Sub-Bacia do Bananal no período de 1994 a 199848
Tabela 3 - Transições do uso e ocupação do solo na Sub-Bacia do Bananal no período de 1998 a 200948
Tabela 4 - Matriz de Transição do uso e ocupação do solo na Sub-Bacia do Lago Paranoá no período de 1984 a 199449
Tabela 5 - Matriz de Transição do uso e ocupação do solo na Sub-Bacia do Lago Paranoá no período de 1994 a 199849
Tabela 6 - Matriz de Transição do uso e ocupação do solo na Sub-Bacia do Lago Paranoá no período de 1998 a 200950
Tabela 7 - Matriz de Transição do uso e ocupação do solo na Sub-Bacia do Ribeirão do Gama no período de 1984 a 199450
Tabela 8 - Matriz de Transição do uso e ocupação do solo na Sub-Bacia do Ribeirão do Gama no período de 1994 a 199851
Tabela 9 - Matriz de Transição do uso e ocupação do solo na Sub-Bacia do Ribeirão do Gama no período de 1998 a 200951
Tabela 10 - Variáveis estáticas selecionadas para cada unidade estudada 52
Tabela 11 - Parâmetros internos do operador <i>Patcher</i>
Tabela 12 - Índices de similaridade79
Tabela 13 – Parâmetros utilizados na nova construção do cenário de 2009 81
Tabela 14 – Valores usados no parâmetro <i>Mean Patch Size</i> da função <i>Expander</i> , para as transições encontradas na sub-bacia do Ribeirão do Gama
Tabela 15 - Valores usados no parâmetro <i>Mean Patch Size</i> da função <i>Expander</i> , para as transições encontradas na sub-bacia do Lago Paranoá

1 Introdução

O crescimento populacional concentrado em áreas urbanas faz com que, muitas vezes, o processo de urbanização aconteça de forma desordenada, resultando em ocupação de áreas irregulares, não planejadas. A partir de 1960 houve um crescimento acelerado na maioria das cidades brasileiras. Nessa mesma época Brasília foi concebida, não fugindo à regra de crescimento populacional.

A ocupação do Distrito Federal se deu de forma rápida e intensa. A instalação da nova capital, Brasília, no Planalto Central, tinha como premissa um novo processo de ocupação, como uma esfera fechada para abrigar o poder com um número populacional pré-definido. No entanto, 50 anos depois, o que se pode observar é um quadro urbano-populacional característico de grandes metrópoles, e com os mesmos problemas. Tudo isso decorrente da política de ocupação de terras adotada. A princípio pelo grande numero de pessoas atraídas para trabalhar em sua construção e que buscava em Brasília, a esperança de uma vida melhor. Depois pela política populista do governo local, com a promoção de imensos loteamentos populares.

Tendo em vista esse crescimento populacional, o planejamento urbano tem sido tema de grande interesse, sendo amplamente abordado nas últimas décadas. Esse visa ordenar as áreas urbanas, levantando as que são e as que não são favoráveis à ocupação, e que podem de alguma forma causar desequilíbrio ao meio ambiente. O estudo da dinâmica do uso do solo pode auxiliar nesse sentido, por levar ao planejador a compreensão das tendências ocupacionais de determinada área, relacionadas ao processo histórico e as suas características.

Assim, como uma ferramenta para o planejamento urbano, o conhecimento sobre a dinâmica do uso e ocupação do solo pode fornecer ao planejador informações importantes a cerca das tendências de ocupação de determinado território. O emprego de modelos matemáticos ajuda a entender o processo das mudanças no uso e cobertura da terra e a prever alterações futuras, gerando importantes contribuições científicas ao planejamento ordenado de uma área (Câmara e Monteiro, 2003).

A simulação pode antever prováveis eventos em uma determinada área de acordo com as suas peculiaridades e simular cenários futuros. Nesse sentido, o propósito da modelagem dinâmica é simular as mudanças espaço-temporais atreladas a uma região, permitido o entendimento das variáveis que influenciam a mudança, para assim ter uma visão de como o sistema urbano evolui.

Assim, a modelagem espacial dinâmica é tida como uma representação matemática do mundo real capaz de representar como uma determinada área ou região muda em resposta às circunstâncias impostas a ela. Esse tipo de simulação permite a construção de cenários futuros quando as forças inerentes aos fenômenos de transição do solo são devidamente identificadas.

Para tanto a construção desses cenários futuros deve ser precedida de uma análise multitemporal para o reconhecimento dos indicadores de mudança e exploração das transições que a área vem sofrendo. Neste trabalho, essas transições são representadas célula a célula em um modelo de autômatos celulares.

Modelos de autômatos celulares consistem em um ambiente de simulação representado por um espaço em forma de grade, no qual um conjunto de regras de transição determina o estado de cada célula, levando em consideração os atributos das células de sua vizinhança (Almeida, 2007).

Neste trabalho foi utilizado o Dinamica EGO como plataforma para simulação. O Dinamica EGO se baseia em um algoritmo de autômato celular, sendo um modelo de simulação espacial da dinâmica da paisagem. É uma ferramenta desenvolvida pelo Centro de Sensoriamento Remoto (CSR) pertencente ao Instituto de Geociências da Universidade Federal de Minas Gerais. Utiliza o método de peso de evidência para o cálculo das probabilidades de transição de determinada classe para outra. Método esse, baseado no teorema da probabilidade condicional de Bayes (Almeida, 2005; Soares Filho et al., 2009).

Buscou-se mostrar a aplicação de um método de simulação espacial a fim de que sistemas como esse possam ser difundidos e usados na tomada de decisão. Para tanto, esse tem como área de estudo unidades da bacia hidrográfica do Lago Paranoá, que juntamente com as bacias hidrográficas do Rio São Bartolomeu, do Rio Descoberto, do Rio Corumbá e do Rio São Marcos compõe a Região hidrográfica do Paraná.

Este trabalho é associado ao Projeto Água-DF, uma cooperação científica firmada entre Universidade de Brasília, CAESB, Helmholtz Centre for Environmental Research, Leipzig - Alemanha (UFZ) e a Universidade Técnica de Dresden - Alemanha (TUD).

1.1 Objetivos

Este trabalho tem como objetivo principal a modelagem dinâmica espacial do uso do solo na Bacia hidrográfica do Lago Paranoá no Distrito Federal. Como objetivos específicos os seguintes itens serão abordados:

- Identificar os processos de mudanças no uso e ocupação do solo por meio de análises multitemporais de imagens classificadas dos anos de 1984, 1994, 1998 e 2009;
- Explorar o uso do software Dinamica Ego como plataforma para a modelagem da dinâmica do uso e ocupação do solo e para simulação de cenários de mudança;
- Projetar simulações futuras, de intensidade e localização dos processos de transição do uso e ocupação do solo para os anos de 2014 e 2020.

1.2 Justificativas

A bacia hidrográfica do Lago Paranoá foi escolhida por sua significativa importância dentro do contexto físico, político e cultural do Brasil. Abriga o centro do poder federal e distrital, possui uma extensa área protegida pelo instrumento do tombamento, sendo considerada pela UNESCO como Patrimônio Cultural da Humanidade e ainda no contexto regional por abrigar o Lago Paranoá e apresentar grande parte do seu território protegida por unidades de conservação. Ainda assim, a região não está livre do crescimento rápido e por diversas vezes desordenado do território, o que acarreta graves danos que comprometem a sua sustentabilidade.

Além disso, a escolha desta área se deu pela disponibilidade dos dados vetoriais e de classificação do uso do solo levantados anteriormente por Menezes (2010).

Embora os SIGs permitam enormes avanços na representação e visualização de dados espaciais e tenham contribuído grandemente com métodos de análise e simulação espacial, seu uso ainda não se consolidou de maneira efetiva dentre a comunidade de planejadores, os tomadores de decisão.

Diante disso, esse trabalho se propõe a estudar a dinâmica do uso e ocupação do solo em unidades com diferentes características dentro da bacia, a fim de que possa ser uma contribuição para o desenvolvimento de instrumentos para a tomada de decisão no planejamento urbano.

1.3 Localização da área de estudo

A área de estudo do presente trabalho corresponde à Bacia Hidrográfica do Lago Paranoá (figura 1), a única bacia integralmente localizada em território do Distrito Federal. Está localizada na região central do Distrito Federal e possui uma área de aproximadamente 1.034,07 km² correspondendo a cerca de 18% do seu território. Limita-se ao Norte com as regiões administrativas de Brazlândia – RA IV e de Sobradinho – RA V (Bacia do Maranhão); ao Leste, com parte da RA V e da RA VII do Paranoá (Bacia do São Bartolomeu); ao Sul, com a RA II do Gama (Bacia do Corumbá); e, a Oeste, com a RA III de Taguatinga e parte da RA IV de Brazlândia (Bacia do Descoberto) (Ferrante et al., 2001).

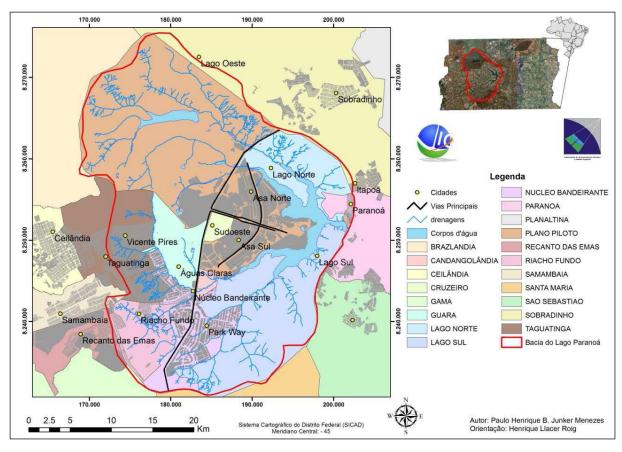


Figura 1 - Localização da bacia hidrográfica do Lago Paranoá. Fonte: Menezes, 2010.

A área da bacia envolve várias Regiões Administrativas do Distrito Federal. Dentre elas, a Região administrativa de Brasília— RA I a Região Administrativa do Lago Sul — RA XVI, a Região Administrativa do Lago Norte — RA XVIII, a Região Administrativa do Cruzeiro — RA XI, a Região Administrativa do Núcleo Bandeirante — RA VIII, a Região Administrativa da Candangolândia — XIX, a Região Administrativa do Riacho Fundo — RA XVII, a Região Administrativa do Guará — RA X, parte da Região Administrativa de Taguatinga — RA III e a área urbana da Região Administrativa do Paranoá — RA VII (Ferrante et al., 2001).

2 Caracterização da área de estudo

2.1 Hidrografia

A bacia hidrográfica do Lago Paranoá, juntamente com as bacias hidrográficas do Rio São Bartolomeu, do Rio Descoberto, do Rio Corumbá e do Rio São Marcos compõe a Região hidrográfica do Paraná. Essa é responsável pela maior área drenada do Distrito Federal com área aproximada de 3.658 km² e com uma descarga média de 64 m³/s. Nessa região estão localizadas todas as grandes áreas urbanas e todas as captações de água para o abastecimento público do Distrito Federal (Ferrante et al., 2001).

Segundo Calijuri e Bubel (2004), uma bacia hidrográfica pode ser definida como a área total drenada por um rio e seus tributários. A bacia hidrográfica pode ser formada por um conjunto de sub-bacias.

Compõe a bacia hidrográfica do Lago Paranoá, as unidades hidrográficas do Bananal, Lago Paranoá, Riacho Fundo, Ribeirão do Gama e Santa Maria/Torto (figura 2). As unidades aqui estudadas se referem às unidades do Bananal, Lago Paranoá e Ribeirão do Gama.

170000 180000 200000 Unidades Hidrográficas (bacias de 7ª ordem) - Área (Km ²) Lago Paranoá - 37,50 Km² Limite da área de estudo - 1034,07 Km² 129,60 Bacia do Lago Paranoá (bacia de 5ª ordem) - Área (Km²) 149.36 1034,07

Bacia do Lago Paranoá - Carta de Unidades Hidrográficas

Figura 2 - Unidades da bacia hidrográfica do Lago Paranoá. Fonte: Ferrante et al., 2001

2.1.1 Unidade hidrográfica do Bananal

A unidade do Bananal ocupa uma área de 127,74 km², e é constituída pelo ribeirão Bananal e pelo córrego Acampamento, além de outros pequenos córregos. O Ribeirão Bananal tem uma extensão de 19,1 km e deságua diretamente no Lago Paranoá, com uma vazão média é de 2,51 m³/s. Essa unidade hidrográfica está localizada, em sua quase totalidade, dentro do Parque Nacional de Brasília (Ferrante et al., 2001).

2.1.2 Unidade hidrográfica do Ribeirão do Gama

O ribeirão do Gama nasce na parte Sul da Bacia do Paranoá, na área conhecida como Mata do Catetinho. Possui uma área de drenagem de 142,40 km² sendo que o seu curso principal mede cerca de 14 quilômetros. Seus principais afluentes são os córregos Mato Seco, Cedro, Capetinga e Taquara. Deságua diretamente no Lago Paranoá, com uma vazão média de 1,85 m³/s (Ferrante et al., 2001).

2.1.3 Unidade hidrográfica do Lago Paranoá

Essa unidade hidrográfica ocupa uma área de 288,69 km e é constituída pelo Lago Paranoá, pelas áreas de drenagens de pequenos córregos que contribuem diretamente com o lago, como Cabeça de Veado, Canjerana e Antas, na região do Lago Sul; Taquari, Gerivá e Palha, na região do Lago Norte; além das áreas que contribuem diretamente com o espelho d'água. O lago é resultado de uma antiga depressão inundada formado a partir do fechamento da barragem do Rio Paranoá, no ano de 1959 (Ferrante et al., 2001).

2.2 Clima

O clima do Distrito Federal é marcado pela forte sazonalidade, com dois períodos distintos bem caracterizados. Um período com baixa taxa de precipitação, baixa nebulosidade, alta taxa de evaporação, e com baixas umidades relativas do ar. Essa estação seca varia de maio a setembro. Já no período entre outubro e abril os padrões são contrastantes (Campos, 2004). A estação chuvosa começa em outubro e termina em abril, representando 84% do total anual, sendo que o mês de dezembro é considerado o mês de maior precipitação do ano. A precipitação média no Distrito Federal varia entre 1.200mm a 1.700mm. Esses índices apresentam uma relação direta com a variação de altitude sendo que as menores alturas pluviométricas anuais ocorrem na porção leste e as taxas mais elevadas estão concentradas em dois pontos a Sudoeste e Noroeste (Baptista 1998). No Leste, na Bacia do Rio Preto, as chuvas representam cerca de 1200mm ao ano. O Lago Paranoá, apresenta índices pluviométricos, de 1.250 a 1.300 mm ao ano (Ferrante et al., 2001).

O clima predominante da região é o tropical de Savana segundo a classificação de Köppen. A temperatura média anual varia de 18º a 22º C e a umidade relativa do ar de 70 a 20%, podendo chegar a valores próximos de 12% nos meses de agosto e setembro (Ferrante et al., 2001).

De acordo com GDF, 2010, no Distrito Federal, conforme a classificação de Köppen, observam-se os seguintes tipos climáticos:

- Tropical encontrado nas áreas com cotas altimétricas abaixo de 1.000 metros (bacias hidrográficas dos rios São Bartolomeu, Preto, Descoberto/Corumbá, São Marcos e Maranhão). A temperatura, para o mês mais frio, é superior a 18°C.
- Tropical de Altitude Abrange, aproximadamente, as áreas com cotas altimétricas entre 1.000 e 1.200 metros (unidade geomorfológica - Pediplano de Brasília). Temperatura, para o mês mais frio, inferior a 18°C, com média superior a 22°C no mês mais quente.
- Tropical de Altitude Corresponde às áreas com cotas altimétricas superiores a 1.200 metros (unidade geomorfológica - Pediplano Contagem/Rodeador). Temperatura, para o mês mais frio, inferior a 18°C, com média inferior a 22°C no mês mais quente.

2.3 Vegetação

O Distrito Federal tem como vegetação típica o cerrado (GDF, 2010), e abrange os tipos fisionômicos: campo limpo, campo sujo, campo cerrado, cerrado, cerradão e ainda matas ciliares, matas mesófilas e Veredas descritas a seguir:

- Campo Limpo em áreas com campo limpo se destacam as gramíneas. Possui uma fitofisionomia predominantemente herbácea, com raros arbustos e ausência de árvores. Situam-se em solos arenosos, rasos e duros, nos quais ocorre deficiência de água durante os meses secos. É encontrada com mais freqüência nas encostas, nas chapadas, olhos d'água, ao redor de veredas e nas bordas de matas de galeria.
- Campo Sujo Já no Campo Sujo, é comum encontrar os arbustos distribuídos de forma esparsa, nestas áreas a vegetação é herbácio-arbustiva.
- Campo Cerrado é a Forma intermediária de vegetação entre o cerrado típico e o campo sujo. Apresenta cobertura com árvores de mais ou menos 3 m de altura, bem espalhadas. Pode apresentar alta densidade de herbáceas com destaque para as gramíneas.
- Cerrado ou cerrado típico apresenta uma camada arbórea descontínua atingindo os 8 m de altura excepcionalmente mais alta, cobrindo de 10 a 60% da superfície e um estrato herbáceo-arbustivo bastante diversificado com cobertura de até 95%.
- Cerradão apresenta vegetação exuberante, considerada um tipo de formação florestal, com fechamento do dossel de 70%, em média, com espécies arbóreas de 15 m e algumas atingindo 18 – 20 m de altura. As condições de luminosidade possibilitam a ocorrência dos estratos arbustivos e herbáceo.
- Mata de Galeria matas que se desenvolvem no fundo dos vales, onde o lençol freático aproxima-se da superfície. As árvores variam de 9 a 17 metros e apresentam largura variável em função das condições edáficas e do relevo. Esses ambientes são importantes áreas de refúgio e corredores ecológicos (Brasil, 1998).

Segundo GDF (2006), levantamentos botânicos registraram a ocorrência de cerca de 1.600 espécies de plantas, distribuídas em 600 gêneros pertencentes a 150 famílias. A maior parte dessas espécies, 950, é natural dos campos, cerrados e outros ambientes diferentes de mata, onde ocorrem cerca de 650 espécies.

2.4 Geologia

O Distrito Federal apresenta uma estruturação geral bastante complexa com superimposição de dobramentos com eixos ortogonais, por estar localizado na porção central da Faixa de Dobramentos e Cavalgamentos Brasília (Marini et al. 1981) na sua transição das porções internas (de maior grau metamórfico) e externas (de menor grau metamórfico) (Campos, 2004).

Compõem o Distrito Federal quatro conjuntos litológicos: os grupos Canastra, Araxá e Bambuí e Paranoá, e suas respectivas coberturas de solos residuais ou coluvionares.

O Grupo Paranoá ocupa 65% da área total do território do Distrito Federal. Corresponde a uma unidade psamo-pelito-carbonatada distribuída na porção externa da Faixa de Dobramentos Brasília. As áreas-tipo são definidas nas proximidades de Alto Paraíso de Goiás e São João D´Aliança no estado de Goiás. Está em contato tectônico com as demais unidades geológicas através de falhas de empurrão relacionadas aos sistemas de cavalgamentos São Bartolomeu, Descoberto e Paranã (Freitas-Silva e Campos 1998).

Faria (1995) apud Ferreira, (2010) elaborou a coluna integrada para o Grupo Paranoá (figura 3), a qual se mostra aplicável regionalmente por toda a porção externa da Faixa Brasília, atribuindo siglas às diferentes unidades da base para o topo conforme a seguinte estratigrafia: SM, R1, Q1, R2, Q2, S, A, R3, Q3, R4, PC.

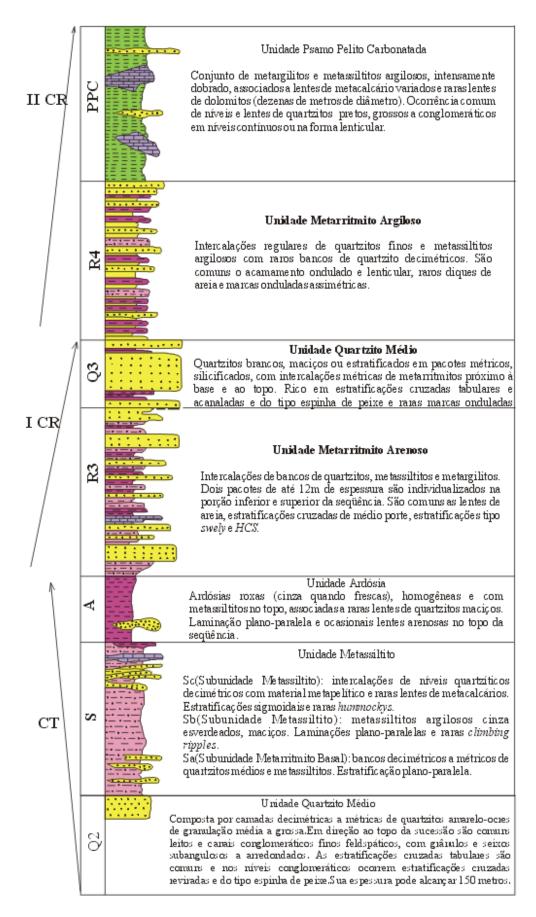


Figura 3 - Detalhamento da litoestratigrafia do Grupo Paranoá na região do Distrito Federal, indicando o ciclo transgressivo (CT), o primeiro ciclo regressivo (ICR) e o segundo ciclo regressivo (IICR). Fonte: Ferreira, 2010.

No Distrito Federal ocorrem apenas as sete unidades do topo. Na Bacia Hidrográfica do Lago Paranoá, segundo Freitas Silva e Campos, 1998, encontram-se, as seguintes unidades: S, A, R3 e Q3 (figura 4). Suas principais características são descritas a seguir:

- Unidade S: com espessura de até 500m, é constituída de metassiltitos argilosos de aspecto maciço e cor cinza esverdeado. Para o topo são freqüentes intercalações rítmicas de bancos centimétricos de quartizitos finos a médios com níveis milimétricos de materiais silticos e argilosos. São comuns estruturas com marcas onduladas, laminações plano-paralelas, laminações cruzadas e lentes arenosas nos níveis pelíticos. No topo ocorrem raras lentes de calcário de dimensões variadas.
- Unidade A: De acordo com Campos & Freitas-Silva, 1998, esta unidade constitui a maior parte da porção central da bacia e das bordas do lago Paranoá. Esta unidade é constituída por ardósias cinza esverdeadas com cor de alteração vermelha. Possui duas direções de clivagens ardosianas penetrativas.
- Unidade R3: com aproximadamente 90m, dá origem a um relevo mais movimentado com vales encaixados. Essa unidade é caracterizada pelas intercalações irregulares, com estratos milimétricos a métricos de quartzitos de granulação fina a média, de coloração cinza, amarelada, rosada ou avermelhada, devido aos diferentes graus de intemperismo, metassiltitos argilosos, metargilitos sílticos e metalamitos. Em função da presença de duas intercalações mais espessas de quartzitos, esta unidade foi dividida por Freitas-Silva e Campos (1995) apud Ferreira (2010), em duas subunidades na região do Parque Nacional de Brasília: Subunidade Inferior iniciada por um contato gradacional com as ardósias, com aumento progressivo de intercalações de metassiltitos e delgadas camadas de quartzitos, com um espesso nível de quartzito denominado de q1 no topo, e a Subunidade Superior composta por um conjunto de metarritmitos típicos com constantes intercalações de bancos centimétricos a decimétricos de quartzitos e metassiltitos laminados, culminando em um espesso nível de quartzito maciço ou laminado denominado de q2.
- Unidade Q3: é composta por quartzitos finos a médios, brancos ou rosados, silicificados e intensamente fraturados. Apresentam estratificações cruzadas variadas e mais raramente marcas onduladas. Mostra-se com elevada resistência aos processos de desgaste, ocupando as áreas mais elevadas do Distrito Federal. Sustenta o relevo de chapadas elevadas em cotas superiores a 1.200 m.

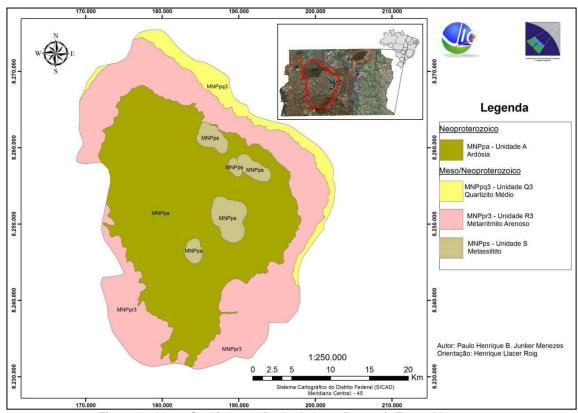


Figura 4 - Mapa Geológico da Bacia do Lago Paranoá. Fonte: Menezes, 2010.

Considerando toda a Bacia Hidrográfica do Rio Paranoá, além do Grupo Paranoá, ocorrem filitos homogêneos correlacionáveis às formações Serra do Landim e Paracatu, do Grupo Canastra. Essas unidades são limitadas pelo Sistema de Cavalgamento São Bartolomeu (Freitas-Silva e Campos, 1998). O Grupo Canastra ocupa apenas áreas no baixo curso do Rio Paranoá, já fora dos limites da Bacia do Lago Paranoá.

O Grupo Canastra ocupa cerca de 15% da área total do DF, sendo distribuído pelos vales dos rios São Bartolomeu (na porção central do DF) e Maranhão (na porção Centro-Norte do DF). É constituído essencialmente por filitos variados, os quais incluem clorita filitos, quartzo-fengita filitos e clorita-carbonato filitos. Além dos filitos, ocorrem subordinadamente, na forma de lentes decamétricas, mármores finos cinza-claros e quartzitos finos silicificados e cataclasados. Na região do DF, estes filitos são correlacionáveis às formações Serra do Landim e Paracatu (Freitas-Silva & Dardenne, 1994).

2.5 Geomorfologia

O Distrito Federal situa-se em uma das porções mais elevadas do Planalto Central, onde se localizam as cabeceiras de afluentes dos três maiores rios brasileiros - o Rio Maranhão (afluente do Rio Tocantins), o Rio Preto (afluente do Rio São Francisco) e os rios São Bartolomeu e Descoberto (tributários do Rio Paraná). (Campos, 2004).

Dentre os fatores responsáveis pela evolução morfodinâmica do Distrito Federal, destacam-se o clima, o tipo de vegetação, a evolução dos perfis de alteração, a estruturação neotectônica além de processos de incisão de vales nas amplas chapadas elevadas. (Campos, 2004).

Segundo Novaes Pinto (1986), a paisagem natural do DF apresenta-se integrada por 13 unidades geomorfológicas, que por suas similaridades morfológicas e genéticas, as agrupam-se em três tipos de paisagem (macrounidades) característicos da região de cerrados: a Região de Chapada, a Área de Dissecação Intermediária e a Região Dissecada de Vale. Martins e Baptista (1998) incluem nesta compartimentação as Regiões de Rebordo e Regiões de Escarpas. Suas características, de acordo com os autores citados, são descritas a seguir:

- Região de Chapada inclui a Chapada da Contagem de Brasília. Todas as áreas de chapada correspondem a regiões de relevo plano e suave ondulado com cotas acima de 1000m e são controladas pela presença de tipos litológicos atribuídos às unidades R3 e Q3 do Grupo Paranoá. Sobre essa superfície foram edificadas as cidades satélites de Taguatinga, Ceilândia, Samambaia, Gama, Santa Maria, Recanto das Emas, Riacho I e II, e os condomínios da região do Jardim Botânico (Campos e Freitas-Silva, 2001).
- Área de Dissecação Intermediária Este tipo de paisagem ocupa cerca de 31 % do DF e corresponde às áreas fracamente dissecadas, drenadas por pequenos córregos, modeladas sobre ardósias, filitos e quartzitos (Depressão do Paranoá e Vale do Rio Preto). Nos interflúvios ocorrem couraças, latossolos e fragmentos de quartzo. Estão situadas as cidades de Brasília, Núcleo Bandeirante, Guará I e II, Candangolândia, Cruzeiro, Setor Sudoeste, Setor de Indústria e Abastecimento, e Setor de Mansões Park Way (Campos e Freitas-Silva, 2001).
- Região Dissecada de Vale Ocupa aproximadamente 35 % do DF e corresponde às depressões de litologias de resistências variadas, ocupadas

pelos principais rios da região. Ocorre no baixo curso do rio Paranoá, já fora dos limites da bacia. È condicionada por unidades muito impermeáveis, com pequena capacidade de infiltração e maior potencial erosivo dos grupos Canastra, Araxá e Unidade Psamo Pelito Carbonatada do Grupo Paranoá.

 Os Rebordos e Escarpas – são controlados pela região de transição ou contato brusco entre litologias com alto contraste de erodibilidade. É definida por padrão de relevo ondulado, geralmente relacionado à presença de quartzitos do topo da Unidade S do Grupo Paranoá. Está situado geralmente na transição entre as regiões de dissecação intermediária e de dissecação de vales.

2.6 Solos

Os solos do Distrito Federal são produtos do intemperismo de rochas proterozóicas dos grupos Paranoá, Araxá, Canastra e Bambuí. Os solos do DF foram levantados pela EMBRAPA em 1978 por meio do Boletim Técnico 53 – "Levantamento de Reconhecimento dos solos do Distrito Federal". Em 1999 os solos foram reclassificados conforme o Sistema Brasileiro de Classificação dos solos. A região do Distrito Federal apresenta três classes de solos entre os mais importantes: Latossolo Vermelho (antiga classe do Latossolo Vermelho-Escuro), Latossolo Vermelho-Amarelos e Cambissolo. A representatividade territorial desses três tipos de solo no DF é de 85,5%. Os Latossolos ocupam 54,50% da área do Distrito Federal, sendo que os Latossolos Vermelhos ocupam 38,92% e os Latossolos Vermelho-Amarelos 15,58% da área. A classe dos Cambissolos representa 30,98% da área do DF (Reatto et al., 2004). As características destes solos são descritas a seguir:

• Latossolos Vermelhos – Ocorre nos topos das chapadas, divisores principais de bacias com topos planos, na depressão do Paranoá e na Bacia do Rio Preto (Campos e Freitas-Silva, 2001). São solos não-hidromórficos, com horizonte A moderado e horizonte B latossólico, de textura argilosa ou média. São muito porosos, bastante permeáveis e de acentuada a fortemente drenados. Também são álicos e fortemente ácidos. São solos espessos, com fraca distinção entre os horizontes, pouco férteis e com evolução antiga (Reatto et al., 2004). A vegetação associada é geralmente de cerrado e cerradão.

- Latossolos Vermelho-Amarelos Ocorre principalmente nas bordas de chapada e divisores, em superfícies planas, abaixo dos topos da Chapada da Contagem, sempre adjacente à classe dos vermelho-escuros. A distinção entre os latossolos Vermelhos e Vermelho-Amarelos está apenas relacionada à cor do horizonte B, que neste varia de vermelho à amarelo, matiz 2,5 YR ou mais amarelada. A vegetação associada é geralmente de cerrado sensu stricto, campo limpo e campo sujo (Campos e Freitas-Silva, 2001).
- Cambissolos ocorre preferencialmente nas vertentes das bacias dos Rios Maranhão, Descoberto e São Bartolomeu e nas encostas com declividades mais elevadas, na depressão do Paranoá e na Bacia do Rio Preto (Campos e Freitas-Silva, 2001). Apresentam solos pouco desenvolvidos, caracterizados por possuírem horizonte B incipiente (poucos centímetros), no qual alguns minerais primários e fragmentos líticos facilmente intemperizáveis ainda estão presentes (Reatto et al., 2004). A vegetação associada geralmente é de campo limpo.

3 Uso e ocupação do Solo

A Organização das Nações Unidas para a Agricultura e Alimentação – FAO define o termo "uso do solo" pelo critério funcional, relacionando-o com a finalidade para qual a terra é usada pela população humana, como sendo as atividades humanas diretamente relacionadas à terra, fazendo uso e tendo impacto sobre ela (FAO, 1995). Dessa forma pode-se entender a mudança no uso do solo como as transformações de um determinado tipo de atividade em uma mesma área.

Para Turner et al. (1994), o termo "uso da terra" se refere aos propósitos humanos associados à cobertura da terra. O termo "cobertura da terra", por sua vez, compreende a caracterização do estado físico, químico e biológico da superfície terrestre. Assim, a pecuária seria o uso da terra associado à gramínea que é a cobertura da terra. Desta forma, um único tipo de cobertura da terra pode suportar diversos tipos de uso da terra.

3.1 Uso e ocupação do solo no Distrito Federal

Para se entender a dinâmica do uso e ocupação do solo no Distrito Federal, é necessário discorrer sobre os caminhos percorridos desde a escolha do local onde a capital do Brasil seria instalada, até os dias atuais. A capital federal, Brasília, foi planejada no centro do país com o propósito estratégico de promover o desenvolvimento do interior.

Assim, partiu-se do ano de 1894, que pode ser considerado o marco histórico do denominado Quadrilátero Cruls, que viria a ser o Distrito Federal. Trata-se do ano da apresentação do "Relatório da Comissão Exploradora do Planalto Central", que, sob a chefia do astrônomo belga Luiz Cruls, realizou um levantamento minucioso sobre a topografia, clima, geologia, flora, fauna, recursos minerais e outros aspectos da Região.

A Comissão, que era composta por oito especialistas e mais 14 ajudantes, demarcou, estudou, analisou e fotografou um quadrilátero de 14.400km² (Barbo, 2001).

Em 1955 foi concluído "Relatório Técnico sobre a Nova Capital da República" - Relatório Belcher - que teve como objetivo definir o sítio onde se localizaria a nova Capital. Foram levantadas inúmeras informações em uma área de 50.000km², como topografia, geologia, drenagem, solos para engenharia, solos para agricultura e utilização da terra dentro de um retângulo previamente escolhido para conter o Distrito Federal (UNESCO, 2002)

Com base nesse relatório foram indicados cinco sítios onde seria possível implementar a nova Capital. Esses sítios foram denominados como sítio amarelo, vermelho, azul, verde e castanho cada um com 1000km². Em abril de 1955, o Sítio Castanho, onde se localizava a Fazenda Bananal, foi escolhido para abrigar a nova capital, exatamente no local onde esteve acampada a comitiva de Luiz Cruls. Em torno do local escolhido foram traçados os limites do novo Distrito Federal, com uma área de aproximadamente 5.000km². Já em 1955 começaram as desapropriações de terra a partir da Fazenda Bananal que se situava entre os córregos Bananal e Torto (Menezes Junior et al., 2001).

Em setembro de 1956, foi sancionada a Lei nº 2.874, que dispunha sobre a mudança da capital federal e criava a Companhia Urbanizadora da Nova Capital do Brasil, NOVACAP (Brasil, 1956). Em 1957, Presidente Juscelino Kubitschek, sancionou a Lei nº 3.273, que fixou para o dia 21 de abril de 1960 a transferência da capital para Brasília (Brasil, 1957).

Definido o sítio e a configuração do Lago Paranoá, o Plano Piloto de Brasília foi objeto de concurso público, saindo vencedora a proposta de Lucio Costa (GDF, 1991)

A primeira obra de alvenaria, segundo Senado Federal (2011), foi a Ermida Dom Bosco em maio de 1957. A partir de então as obras seguiram aceleradas. A construção dos principais prédios foi concluída no prazo de três anos a tempo para a data da estabelecida para a inauguração de Brasília.

A obra de Brasília atraiu um grande número de pessoas, principalmente daquelas que foram para trabalhar nos canteiros de obra. A cidade recebeu pioneiros de todas as regiões do país. A partir daí iniciou-se o processo de ocupação, muitas vezes desordenada, do solo do Distrito Federal.

Apesar de nenhum dos idealizadores de Brasília ter previsto a existência das cidades satélites, antes mesmo de concluírem o núcleo central da Capital, os construtores abriram novos espaços urbanos (Paviani, 2003). Segundo França e Viana

(2010) no plano de Lúcio Costa existia o projeto para a construção das cidades satélites vinte anos após a Capital ser consolidada. O primeiro núcleo urbano foi a cidade Livre, hoje Núcleo Bandeirante, criado para abrigar os candangos, aqueles que vieram para trabalhar na construção de Brasília (Soares e Alves, 2004).

Desta forma, já no final de 1959, mesmo antes da inauguração de Brasília, já se configuravam ocupações diversas nas proximidades da então Cidade Livre, como a Vila Matias além de outros pequenos agrupamentos próximos. Esses assentamentos e outros que foram criados no início dos anos 60, como o Gama e Sobradinho, além da expansão de cidades pré-existentes como Planaltina e Brazlândia, serviram para atender o intenso fluxo migratório, bem como realocar a população instalada em torno das grandes áreas de construção do Plano Piloto (GDF, 1991; França e Viana, 2010).

A persistência da instalação de agrupamentos próximos a Cidade Livre e em outras localidades levou a criação da Campanha de Erradicação de Invasões, conhecida como CEI. Essa se consolidou como Ceilândia em 1970. Nessa época já estavam definidas Taguatinga, Ceilândia, Núcleo Bandeirante – antiga Cidade Livre -, Gama, Guará, além das já existentes Planaltina e Brazlândia. Essas áreas urbanas ficaram conhecidas como cidades-satélite (GDF, 1991; Soares e Alves, 2004).

Como essas cidades não haviam sido objeto de estudo, na sua concepção morfológica e no seu processo de implantação, não foram levados em conta os aspectos ambientais do Relatório Belcher. As conseqüências disso, tendo como agravante a falta de uma gestão adequada dos assentamentos, foram logo sentidas (GDF, 1991).

Em 1986, o Distrito Federal foi subdividido em oito Regiões administrativas por meio do Decreto n.º 488. Essas eram: RA de Brasília, do Gama, de Taguatinga, de Brazlândia, de Sobradinho, de Planaltina, do Paranoá e de Jardim. Em 1989, três anos depois, o Decreto n.º 11921 alterava de oito para 12 Regiões Administrativas, Jardim passou a ser RA do Núcleo Bandeirante e foram criadas a de Ceilândia, do Guará, do Cruzeiro e de Samambaia (GDF, 1991). Nos fins do ano 2000 já eram 19. Hoje o Distrito Federal conta com 30 Regiões Administrativas, sendo a última criada em 2009, a de Vicente Pires.

O que havia sido idealizado para a Capital era um plano piloto "fechado", no qual se estipulara uma população de 500 mil habitantes quando inteiramente ocupado. Esse patamar populacional tinha sua razão de ser na função de capital federal (Paviani, 2003). Dessa forma esperava-se que houvesse algum tipo de limitador para o crescimento da cidade, principalmente com relação às cidades que a cada dia cresciam

ao redor. Porém o que se observou no fim da década de 80 e na década de 90 foram incentivos do governo local para o crescimento com a criação de aglomerados como Samambaia, Santa Maria, Recanto das Emas (Paviani, 2003; Soares e Alves, 2004). O Distrito Federal, segundo o IBGE, no inicio da década de 90 já estimava uma população na casa de 1,5 milhões de habitantes, no início dos anos 2000 de cerca de dois milhões e no resultado preliminar do senso de 2010 a população encontrada foi de aproximadamente 2,47 milhões.

Desta forma, Brasília se encontra com muitas dificuldades de gestão dos processos de ocupação e crescimento urbano e já apresenta um processo de saturação urbano-populacional que é causador de uma série de problemas tais como: grilagem de terras, ocupação indevida com conflito de uso do solo, proliferação de ocupações irregulares e em situação de risco, impermeabilização do solo, sobrecarga dos sistemas públicos básicos (transporte, educação, saúde) e os conseqüentes impactos ambientais correlacionados (Soares e Alves, 2004; Barbo, 2001).

Assim se faz necessário conhecer a dinâmica do uso e tendências futuras de ocupação para subsidiar a tomada de decisão dos gestores no sentido de conter, controlar ou organizar o crescimento da cidade.

3.2 Políticas Públicas de Uso e Ocupação do Solo

Segundo Barbo (2001) o processo de urbanização do DF tem se caracterizado por um crescente descompasso entre as diversas ações do Poder Público, muitas vezes contraditórios entre si. Segundo o autor, tal fato tem estimulado o desrespeito à legislação urbanística vigente, contribuindo assim para a existência de duas realidades distintas - a cidade formal e a cidade informal ou ilegal.

O Decreto nº 163, de 26 de fevereiro de 1962, foi a primeira tentativa do GDF de fixar diretrizes de ordenamento do solo, dispondo sobre a necessidade de se disciplinar o uso das áreas rurais e urbanas (Distrito Federal, 1999).

Com o PEOT – Plano Estrutural de Organização Territorial do Distrito Federal, de 1977 começam a ser tomadas as primeiras medidas objetivando definir os espaços urbanos, estabelecendo diretrizes para sua ocupação, levando em consideração os seguintes fatores: hipóteses de crescimento da população; necessidades de futuras

áreas de emprego e serviço e possibilidade de solução para circulação de bens e pessoas (Distrito Federal, 1999).

Esse tinha no bojo da política de planejamento conter o crescimento acelerado no DF preservando os recursos hídricos, impedindo a ocupação dos mananciais do Rio Descoberto e São Bartolomeu, somando a eles a Bacia do Paranoá (França e Viana, 2010).

O PEOT debruçou-se sobre a identificação das áreas do DF mais adequadas à expansão urbana e a outras destinações, em termos de transporte, abastecimento de água e esgotamento sanitário. Desse esforço surgiu a indicação do Eixo Taguatinga-Ceilândia-Gama como o mais adequado para suportar as pressões do crescimento urbano (Oliva et al., 2001).

Seguiram-se ao PEOT de 1977, o Plano de Ordenamento Territorial – POT (1985), e o Plano de Ocupação e Usos do Solo do Distrito Federal – POUSO (1986-1990).

O POT teve como grande destaque a proposta de estruturação básica de um Sistema de Planejamento da Ocupação Territorial que previa um Conselho Consultivo Superior de Planejamento representado por diversos segmentos da sociedade. Embora o POT não tenha sido homologado, serviu como subsídio para os demais Planos posteriores (Costa, 2011).

O POUSO foi aprovado em 1986, mas somente foi homologado pelo Decreto 12898, de 13/12/1990. Consistiu em um macrozoneamento do controle e uso do solo, que introduziu diretrizes relativas à preservação ambiental (Oliva et al., 2001). Esse plano definiu e delimitou o território do Distrito Federal em duas categorias: Solo Urbano e Solo Rural. O solo urbano foi dividido em zonas com um regime diferenciado de uso e ocupação do solo variando do parcelamento tipicamente urbano até a definição de áreas de proteção e preservação ecológica: Zonas Urbanas (ZUR), Zonas de Expansão Urbana (ZEU), Zonas de Destinação Mista (ZDM), Zonas de Ocupação Restrita (ZOR), Zonas de Interesse Ambiental (ZIA) e Zonas Rurais (ZRU).

Reforçando sua importância, o Plano Diretor foi definido nos art. 182 e 183 da Constituição Federal de 1988, como instrumento básico para a política pública urbana, e tem por objetivo ordenar o pleno desenvolvimento das funções sociais das cidades e garantir o bem estar de seus habitantes. A execução da política de desenvolvimento e de expansão urbana fica a cargo do poder público municipal. O Plano deve definir qual o uso e as características de ocupação de cada porção do território municipal, fazendo com que todos os imóveis cumpram sua função social (Barros et al., 2010). Esses

artigos da Constituição foram regulamentados pela Lei Federal n.º 10.257 de 10 de julho de 2001, o Estatuto da Cidade (Brasil, 2001), que estabelece as diretrizes gerais da política urbana.

O Estatuto da Cidade define as diretrizes que devem ser seguidas pelo Município ao elaborar sua política urbana, todas elas voltadas para garantir cidades justas, em que todos, pobres e ricos, desfrutem dos benefícios da urbanização (Barros et al., 2010).

3.3 Plano Diretor de Ordenamento Territorial

O Plano Diretor de Ordenamento Territorial - PDOT, segundo Barbo, 2001, foi uma das principais ações do poder público do Distrito Federal no tocante ao seu território. O primeiro PDOT foi produzido em 1992 e homologado pela Lei nº 353, de 18 de novembro de 1992.

Esse PDOT previu uma ocupação para a Bacia do Lago Paranoá, até o ano 2030, de 1.223.045 habitantes, distribuídos por diversas localidades a serem implantadas, ou com vistas ao adensamento populacional de localidades existentes (Barros et al., 2010). Na bacia do Lago Paranoá, incluindo Brasília, Lago Sul, Lago Norte, Candangolândia, Cruzeiro, Núcleo Bandeirante, Guará, Riacho Fundo, Paranoá e parte da RA de Taguatinga, os dados do Censo de 1991 (IBGE) revelavam que a população naquela época era de 506.498 habitantes (Distrito Federal, 1992).

O Plano Diretor de Ordenamento Territorial – PDOT/92 instituiu o Sistema de Planejamento Territorial e Urbano do Distrito Federal – SISPLAN, o Sistema de Informações Territoriais e Urbanas do Distrito Federal – SITURB e o Conselho de Planejamento Territorial e Urbano do Distrito Federal (Distrito Federal, 1992). Estabeleceu ainda um processo de descentralização das ações de planejamento determinando que cada Região Administrativa elaborasse seu Plano Diretor Local - PDL criando Gerências de Planejamento e Conselhos Locais de Planejamento – CLPs nessas RAs (Costa, 2011). Com a criação dos PDLs, buscava-se regular o uso e ocupação do solo de forma detalhada e pontual.

Em 1997, por meio da Lei Complementar n.º 17, de 28 de janeiro de 1997, foi aprovado um novo PDOT, vinculado aos PDLs. Esse confirma a ocupação do eixo oeste/sudoeste sob as premissas de respeito às restrições ambientais e de saneamento, dando preferência ao adensamento das áreas já urbanizadas à criação de novas áreas.

Assim, uma estratégia era consolidar a ocupação urbana do Plano Piloto e dos núcleos urbanos de Sobradinho, Planaltina, Paranoá, Candangolândia, Cruzeiro e Setores de Habitação Individual Sul e Norte - SHIS e SHIN e restringir a ocupação urbana nas áreas consideradas sensíveis do ponto de vista ambiental e de saneamento, incluindo as áreas com incidência de parcelamentos nas bacias do Rio São Bartolomeu, do Lago Paranoá e do Rio Maranhão. O PDOT de 1997 buscou ainda reforçar a autonomia de cada cidade do DF (Distrito Federal, 1997).

O PDOT de 1997 instituiu sete zonas no território do DF, três zonas urbanas e três zonas rurais: de dinamização, de consolidação e de uso controlado; e uma zona de conservação ambiental. Estabeleceu que a ocupação das zonas urbanas dentro da Bacia do Lago Paranoá deverá partir de um planejamento global com a especificação da população prevista e a localização dos empreendimentos urbanísticos em consonância com a capacidade de suporte da Bacia (Distrito Federal, 1997).

A Lei Orgânica do Distrito Federal (Distrito Federal, 1993) estabeleceu um prazo de vigência para o Plano Diretor de Ordenamento Territorial de 10 anos passível de revisão a cada cinco anos. Assim, em 2005 começaram as discussões sobre a revisão do plano de 1997. No final de 2007 o novo PDOT foi encaminhado para aprovação na Câmara Legislativa do DF sob a forma de projeto de lei. Logo depois foi retirado da casa para ajustes propostos pelo Ministério Público do Distrito Federal. Depois de quatro anos de discussões, o PDOT foi aprovado em 2008 e sancionado em abril de 2009.

O Plano prevê a criação de mais 29 áreas habitacionais, como os setores Catetinho, Mangueiral e Noroeste (Distrito Federal, 2009)

O PDOT, sancionado em 2009, atualmente está passando por um processo de atualização por relevante interesse público e pela declaração de inconstitucionalidade de diversos dos seus dispositivos. Segundo a Agência Brasília Ambiental, dos 1668 dispositivos do PDOT, a inconstitucionalidade recaiu sobre 60 itens, a maioria por vício de iniciativa.

Dentre as estratégias de ordenamento territorial do PDOT-2009, França e Viana (2010) destacam: a dinamização das áreas urbanas, a revitalização dos conjuntos urbanos, a ampliação da estrutura viária, ofertas habitacionais e a regularização fundiária.

3.4 Condicionantes ambientais no uso e ocupação do solo

3.4.1 Unidades de Conservação

A criação de espaços territoriais especialmente protegidos pelo Poder Público federal, estadual e municipal, é um dos instrumentos da Política Nacional do Meio Ambiente, estabelecida pela Lei 6938 de 31 de agosto de 1981, para a preservação, melhoria e recuperação da qualidade ambiental propícia à vida (Brasil, 2010).

A criação desses espaços territoriais foi referendada pela Constituição Federal de 1988, para assegurar a efetividade do direito de todos a um meio ambiente ecologicamente equilibrado. Assim, incumbiu ao Poder Público, a definição das áreas e seus componentes, em todas as unidades da Federação, que devem ser especialmente protegidos, sendo vedada qualquer utilização que comprometa a integralidade dos seus atributos. Estabeleceu ainda que a supressão ou a alteração dessas áreas só será permitida através de lei (Brasil, 2010)

As unidades de conservação são esses espaços territoriais e seus recursos ambientais, legalmente instituídas pelo Poder Público com objetivos de conservação, como foi definido pela lei 9985 de 18 de julho de 2000 (Brasil, 2000).

Essa lei institui o Sistema Nacional de Unidades de Conservação – SNUC sendo constituído pelo conjunto das unidades de conservação federais, estaduais e municipais. Essas unidades foram divididas em dois grupos: unidades de proteção integral, que tem como objetivo preservar a natureza permitindo apenas o uso indireto dos seus recursos naturais; e unidades de uso sustentável que permite compatibilizar a conservação da natureza com o uso sustentável de seus recursos (Brasil, 2000).

As unidades de conservação desempenham função fundamental no processo de ordenamento e ocupação territorial, funcionando como barreiras para expansão urbana, preservando os recursos naturais e disciplinando o uso e ocupação onde é tolerada a atividade humana (Cardoso et al., 2001).

3.4.1.1 Unidades de conservação no Distrito Federal

O Distrito Federal tem cerca de 45% do seu território composto de áreas legalmente protegidas na forma diferentes unidades de conservação (Cardoso et al., 2001). A maioria dessas áreas implantadas na década de 90 como uma tentativa de controle do processo de ocupação que aqui se instalava.

O Distrito Federal conta com as seguintes unidades de conservação: as Áreas de Proteção Ambiental - APA, as Estações Ecológicas, as Reservas Biológicas e Áreas de Relevante Interesse Ecológico- ARIE. Além das unidades de conservação previstas, parte das áreas protegidas do Distrito Federal possui nomenclatura própria, não constante no Sistema Nacional de Unidades de Conservação como Reservas Ecológicas, Parques Ecológicos e de Uso Múltiplo e Áreas de Proteção de Mananciais.

Os Parques Ecológicos e os Parques de Uso Múltiplo foram criados por meio da Lei Complementar N° 265, de 14 de dezembro de 1999, e classificados como sendo de Uso Sustentável. Para sua criação, a Lei Complementar definiu que os Parques Ecológicos devem possuir em no mínimo trinta por cento de sua área total áreas de preservação permanente, nascentes, olhos d'água, veredas, matas ciliares, campos de murundus ou manchas representativas de qualquer fitofisionomia do cerrado e os Parques de Uso Múltiplo devem ser predominantemente cobertos por vegetação, nativa ou exótica e situar-se dentro de centros urbanos, ou contíguos a estes, em áreas de fácil acesso à população (Distrito Federal, 1999).

As Áreas de Proteção de Mananciais foram criadas por meio da Lei Complementar nº 17 de 28 de janeiro de 1997, que aprovou o PDOT, como áreas destinadas à conservação, recuperação e manejo das bacias hidrográficas a montante dos pontos de captação da Companhia de Saneamento do Distrito Federal – CAESB. Sendo assim, áreas de grande relevância, visto que são locais de captação de água para abastecimento das cidades do DF (Distrito Federal, 1997).

3.4.1.2 Unidades de Conservação na Bacia hidrográfica do Lago Paranoá

Na bacia do Lago Paranoá, cerca de 67% do seu território está ocupada por unidades de conservação, sendo identificadas por 11 Unidades de Conservação de

Proteção Integral, quatro Unidades de Conservação de Uso Sustentável, 22 Parques Ecológicos e de Uso Múltiplo, e sete Áreas de Proteção de Mananciais (Cardoso et al., 2001).

Dentro das unidades de Uso Sustentável presentes na Bacia do Lago Paranoá, estão as APAs das Bacias do Gama e Cabeça de Veado, e do Lago Paranoá; a ARIE da Granja do Ipê; e a Floresta Nacional de Brasília. Além dessas, estão presentes pequenas áreas das APAs do Rio Descoberto, do Rio São Bartolomeu e de Cafuringa nas bordas da porção Norte da bacia (Ramos et al., 2001 e Cardoso et al., 2001).

A APA, das bacias do Gama e Cabeça de Veado, foi criada pelo Decreto Distrital nº 9.417, de 21 de abril de 1986, com o objetivo de proteger e garantir a integridade das cabeceiras do Ribeirão do Gama e do Córrego Cabeça de Veado, responsáveis por um terço das águas do Lago Paranoá. Nela se encontram a Estação Ecológica do Jardim Botânico, Estação Ecológica da Universidade de Brasília, Reserva Ecológica do IBGE, Fazenda Experimental Água Limpa, Jardim Zoológico e Áreas de Relevante Interesse Ecológico (Ramos et al., 2001).

A APA do Lago Paranoá, foi criada por meio do Decreto 12055 de 14 de dezembro de 1989, com o objetivo de preservar o cerrado, as várzeas e as matas ciliares que protegem as margens dos mananciais que deságuam no Lago Paranoá e assegurar a melhoria da qualidade da água do Lago (Brasil, 1989). É uma unidade de conservação criada sobre área predominantemente urbana ou de evidente vocação urbana onde se concentra as terras mais valorizadas do DF (Lago Sul/Norte, Asa Sul/Norte), isto é, com maior pressão imobiliária. Segundo a Terracap, boa parte da APA já está ocupada, regular ou irregularmente. Apesar de contar com o aparato da fiscalização para garantir a integridade da UC, o Poder Público não tem conseguido frear a grilagem de terras.

A APA abriga outras unidades de conservação como o Jardim Botânico de Brasília, o Parque Nacional de Brasília, a Fazenda Água Limpa da UnB, as áreas de relevante interesse ecológico (ARIE) Capetinga-Taquara e Riacho Fundo, a Reserva Ecológica do IBGE e a Área do VI Comando Aéreo da Aeronáutica (Ramos, et al., 2001).

4 Modelagem ambiental

A modelagem ambiental é uma atividade que vem sendo desenvolvida através dos séculos. Busca-se com um modelo respostas a uma determinada situação. Para tanto se exige do usuário que possua conhecimentos sobre os processos e eventos envolvidos a fim de que a modelagem encontre resultados o mais próximo possível da realidade (James e Huntley, 1990).

Para Christofoletti (1999), o objetivo principal da modelagem é buscar reproduzir as características relevantes para o tratamento de uma determinada questão, e não produzir uma cópia exata. Assim, pode-se modelar uma mesma situação de maneiras diferentes, de acordo com as informações e objetivos que se quer alcançar.

Segundo Christofoletti (1999), a modelagem pode ser feita a partir de uma simples projeção ou tendência, até sistemas complexos em termos de distribuição espacial. Com os seus resultados pode se tomar decisões e fazer escolhas a partir daquilo que melhor se assemelha a realidade. Ainda segundo o autor, a modelagem se destaca no suporte à elaboração de estudos sobre os sistemas ambientais, ecológicos, econômicos e sociais. Desta forma, pode ser empregado para avaliar os efeitos de amplos fenômenos, como mudança de uso e ocupação do solo, mudanças climáticas, manejo de bacias hidrográficas, entre outros.

Pesquisas operacionais e simulações de sistemas utilizando computadores passaram a se desenvolver com rapidez a partir dos anos 1950 época em que o uso de computadores para o armazenamento e processamento de grandes bancos de dados começava a dominar as aplicações no mundo dos negócios, principalmente daqueles vinculados a transações financeiras (Batty, 2007).

No começo da década de 60, surgiram os modelos computacionais destinados à simulação de sistemas de transporte das cidades americanas. Gradualmente esses modelos passaram a ampliar as suas áreas de atuação, envolvendo questões como distribuição espacial de emprego e de população, e de alocação dos usos dos solos (Almeida, 2007). Atualmente, o uso de computadores no planejamento urbano e regional foca o desenvolvimento de banco de dados, análise espacial, modelagem de

simulações, prognósticos e projeto, sendo cada vez mais usados no processo de planejamento (Batty, 2007).

Os Sistemas de Informação Geográfica – SIGs entraram definitivamente em cena no âmbito de estudos ambientais com os avanços em computação gráfica e a progressiva inserção de interfaces gráficas no universo digital no final dos anos 80, ganhando impulso ao longo dos anos 90. (Almeida, 2007).

Por meio dos Sistemas de Informação Geográfica - SIG, a representação de cidades e regiões moveu-se quase inteiramente para o âmbito digital, onde podem ser armazenados, visualizados, analisados e difundidos. Assim os SIG constituem uma importante ferramenta onde os ambientes naturais e antrópicos, são estudados e representados na esfera do planejamento urbano. Há uma abundância de ferramentas para representação, análise e previsão de sistemas urbanos e regionais. Esses sistemas de representação são apenas o início para aplicação de um conjunto de medidas para se enfrentar os problemas encontrados no planejamento urbano e regional. São conhecidos como sendo sistemas de suporte à decisão ou sistemas de suporte ao planejamento (Batty, 2007).

4.1 Modelagem Espacial Dinâmica

Uma importante contribuição dos atuais recursos computacionais tem sido a possibilidade de simulação de fenômenos dinâmicos espaciais como expansão urbana, mudança do uso do solo, processos de ocupação entre outros.

O modelo espacial dinâmico, para Burrough e McDonnel (1998), sintetiza a superação da modelagem em relação às limitações das ferramentas de geoinformação. Os autores o definem como sendo "uma representação matemática de um processo do mundo real em que uma localização na superfície terrestre muda em resposta a variações nas forças direcionadoras".

Assim, o propósito da modelagem dinâmica é simular as mudanças espaçotemporais nos atributos do meio ambiente, atreladas a um território geográfico, permitindo o entendimento dos mecanismos que determinam a função de mudança e, assim, avaliar como um sistema evolui diante de um conjunto de variáveis definidas pelo modelador (Benedetti, 2010). Por possibilitar a simulação de cenários futuros, a modelagem dinâmica, quando utilizada para o estudo de fenômenos de transição no uso e ocupação do solo, se torna uma ferramenta valiosa para o planejamento urbano (Benedetti, 2010).

Para Valentin (2008), a modelagem dinâmica constitui uma potencial ferramenta para antecipar prováveis tendências passíveis de ocorrer dentro de uma bacia hidrográfica.

4.1.1 Modelos autômatos celulares

Modelos autômatos celulares, ACs, que transmitem a idéia de representação das cidades como células e transições urbanas como regras, conquistam cada vez mais usuários pelo fato de se articularem bem com dados matriciais muito usados em SIG (Batty, 2007).

Modelos de autômatos celulares consistem em um ambiente de simulação representado por um espaço em forma de grade, no qual um conjunto de regras de transição determina o estado de cada célula, levando em consideração os atributos das células de sua vizinhança (Almeida, 2007).

Os ACs podem ser entendidos como sistemas formais baseados em grades, representando os processos de mudanças célula a célula, como um mapeamento do estado atual de uma célula e das suas vizinhas para o estado da mesma no instante de tempo seguinte (Almeida, 2003).

Torrens (2000) define autômatos celulares como um conjunto de parcelas ou células em um espaço finito, organizados em um grid, cujas células mudam de estado automaticamente, obedecendo a regras de transição e em função das células vizinhas, na expectativa de que a interação dessas células possa gerar padrões de comportamento complexo, como no caso da cidade.

As estruturas de dados para representação de dados geográficos em bancos de dados podem ser divididas em duas grandes classes: estruturas vetoriais e estruturas matriciais. As estruturas de dados vetoriais são representadas por três formas básicas: ponto, linha e polígono, definidas por suas coordenadas cartesianas. São utilizadas na representação das coordenadas das fronteiras de cada entidade geográfica. As estruturas de dados matriciais usam uma grade regular representada como uma matriz

sobre a qual cada célula possui um número de linha e de coluna e um valor que corresponde ao elemento ou atributo que está sendo representado (Camara e Monteiro, 2007)

No modelo baseado em AC, o estado de cada célula depende de seu estado anterior além de um conjunto de regras de transição, de acordo com o arranjo específico de certa vizinhança, sendo todas as células atualizadas simultaneamente a passos discretos de tempo (Soares-Filho et al., 2002).

Os modelos computacionais baseados em agentes e autômatos celulares (ACs) mostram o potencial de representar e simular a complexidade dos processos envolvidos na dinâmica espacial e na mudança do uso da terra (Delaneze et al., 2011).

4.2 Método dos pesos de evidência

O método dos pesos de evidência é utilizado para o cálculo das probabilidades de transição de determinada classe para outra. Esse método se baseia no teorema da probabilidade condicional de Bayes (Almeida, 2005; Soares Filho et al., 2009).

O teorema condicional de Bayes concerne na disposição de um evento ocorrer em face da ocorrência passada de outro evento (Almeida, 2003). Os pesos de evidencia representam a influencia das faixas de distância de uma determinada variável nas probabilidades espaciais de uma transição de uso da terra (Trentin e Freitas, 2010). Indica a atração ou correlação positiva entre determinada evidência e uma dada transição de uso de solo (Almeida et al., 2005). A probabilidade condicional permite obter a probabilidade de um evento **A** ocorrer sabendo-se que o evento **B** já ocorreu (Trentin, 2008).

Os pesos de evidencia são obtidos a partir das seguintes fórmulas:

$$O\{D|B\} = \frac{P\{D|B\}}{P\{\overline{D}|B\}}$$

$$\log\{D|B\}\log\{D\} + W^+$$

Onde O {D} e O {D/B} são as chances, de ocorrer a priori o evento D e ocorrer D dado um padrão espacial B, respectivamente. E, W⁺ é o Peso de Evidência da ocorrência do evento D, dado um padrão espacial B (Soares-Filho et al., 2003).

Esse método tem como condição a independência espacial entre os pares de variáveis usadas para análise da modelagem. Para avaliar essa condição, dois outros métodos foram utilizados: o índice de Cramer (V) e a Incerteza da Informação Conjunta (U).

O índice de Cramer foi definido por Bonham-Carter (1994) pela seguinte fórmula:

$$V = \sqrt{\frac{X^2}{T \dots M}}$$

Em que:

T = totais marginais da matriz de tabulação cruzada entre dois mapas A e B;

X₂ = estatística qui-quadrado;

M = mínimo de (n-1, m-1), em que n é igual ao número de linhas e m é o número de colunas da matriz de tabulação cruzada entre os mapas A e B.

A Incerteza de Informação Conjunta *(U)* também se baseia na matriz de tabulação cruzada T; assim, *U* (A, B) pode ser usada como uma medida de associação, sendo definida por (Bonham-Carter, 1994 apud Benedetti, 2010):

$$U(A, B) = 2 [H(A) + H(B) - H(A, B) / H(A) + H(B)]$$

A qual varia entre 0 e 1, sendo que quando os dois mapas são completamente independentes, então $H(A, B) = H(A) + H(B) = U(A, B) \neq 0$, e quando os dois mapas são completamente dependentes, H(A) = H(B) = H(A, B) = 1, e U (A, B) \neq 1 (Almeida, 2003).

4.3 Dinamica EGO

O DINAMICA é uma ferramenta desenvolvida e mantida pelo Centro de Sensoriamento Remoto (CSR) pertencente ao Instituto de Geociências da Universidade Federal de Minas Gerais para ser aplicada a uma variedade de estudos de dinâmica da paisagem e modelagem ambiental.

O software DINAMICA foi desenvolvido por Soares-Filho et al (1998, 2002) e a partir de reformulações passou a denominar-se DINAMICA EGO (Rodrigues et al., 2007).

Nesse trabalho utilizou-se a versão 1.6, intitulada Dinamica EGO – acrônimo para Environment for Geoprocessing Objects (ambiente para objetos de geoprocessamento), disponível como freeware em www.csr.ufmg.br/dinamica/EGO.

O DINAMICA é um modelo de simulação espacial do tipo Autômato Celular. O software é utilizado como um instrumento de investigação da trajetória de paisagens e da dinâmica de fenômenos espaciais, sendo um modelo genérico de mudanças. Utiliza como entrada um conjunto de mapas, que correspondem a mapas de paisagem inicial e um conjunto de variáveis cartográficas, classificadas em estáticas e dinâmicas. Essas variáveis - solo, vegetação, distância às estradas, altitudes - são combinadas a partir da definição de seus pesos de evidências para gerar os mapas de probabilidade de transição (Trentin, 2008).

Uma grande vantagem do Dinamica EGO, segundo Rodrigues et al. (2007) é a alocação de memória. O Dinamica utiliza um fluxo de dados que é mantido em memória durante o tempo em que for necessário à execução do modelo.

O ambiente de modelagem do Dinamica EGO envolve uma série de operadores chamados de functores (functors). Os functores podem ser considerados como os elementos básicos de um modelo cartográfico. Um functor aplica um número finito de operações sobre um conjunto de dados de entrada produzindo como saída um novo conjunto de dados. Para cada tarefa específica existe um functor responsável, que inclui todos os operadores de álgebra cartográfica (Tomlim, 1990 apud Rodrigues et al., 2007).

Esses operadores atuam sobre um conjunto de dados de entrada produzindo um novo conjunto de dados como saída. Além dos functores, o programa inclui operadores de grupos chamados de containers. Esses agrupam e determinam o comportamento para o conjunto de functores neles contidos (Rodrigues et al., 2007).

Assim, o usuário pode construir a estrutura do modelo arrastando os operadores para o centro da interface e conectando cada operador de acordo com as possibilidades disponíveis para a entrada de informações no programa, além da definição da forma de saída dos produtos (Trentin, 2008).

Os modelos criados pelo Dinamica EGO são gravados na forma de scripts textuais e criados em duas sintaxes: XML ou EGO Script. Sua interface gráfica é escrita

em Java e seu núcleo, responsável pela criação e execução dos modelos é escrito em C++.

O DINAMICA EGO apresenta dois algoritmos de transição do uso do solo (ou de alocação do uso do solo): os fuctores *expander* e *patcher*. A função *expander* responde pela expansão de manchas previamente existentes de uma certa classe de uso do solo. A função *patcher*, por sua vez, destina-se a gerar novas manchas através de um mecanismo de constituição de sementes (Soares-Filho et al. 2002).

Assim, a função *expander* executa transições de um estado *i* para um estado *j* apenas nas vizinhanças adjacentes de células com estado *j*. E a função *patcher* realiza transições de um estado *i* para um estado *j* apenas nas vizinhanças adjacentes de células com estado diferente de *j*.

Ambos os algoritmos de transição adotam um mecanismo estocástico de seleção. Incorporam um dispositivo de alocação que é responsável pela identificação de células com as maiores probabilidades para cada transição *ij.* Identificadas as células com valores de probabilidade mais elevados, eles as dispõem em um vetor de dados no qual as células são armazenadas, organizando-as para ulterior seleção. As células são selecionadas da maior para a menor probabilidade, e cada célula recém-selecionada formará o núcleo de uma nova mancha ou franja de expansão Os tamanhos das novas manchas e franjas de expansão são definidos de acordo com uma distribuição de probabilidade lognormal, cujos parâmetros são determinados em função do tamanho médio e variância de cada tipo de mancha e franja de expansão a ser gerada (Soares-Filho et al. 2002).

No caso de a função *expander* não executar a quantia de transições desejadas após um número fixo de iterações, ela transfere à função *patcher* um número residual de transições, de modo que o número total de transições sempre alcance um valor esperado (Soares-Filho et al. 2002).

Segundo Almeida, 2003, o algoritmo *expander* é expresso pela seguinte equação:

If
$$n_i > 3$$
 então $P'_{ij}(x,y) = P_{ij}(x,y)$ senão $P'_{ij}(x,y) = P_{ij}(x,y) x (n_i)/4$

Onde n_i corresponde ao número de células do tipo j ocorrendo em uma janela 3 x 3. Este método garante que a máxima P'_{ij} será a P_{ij} original, sempre que uma célula do tipo i esteja cercada por pelo menos 50% de células vizinhas do tipo j.

A função patcher procura simular padrões de mudanças do uso do solo gerando

manchas difusas e impedindo, ao mesmo tempo, a formação de manchas de apenas uma célula. Esta função emprega um dispositivo que procura por células em torno de uma dada localização considerada para transição. Isto é obtido primeiramente pela seleção de uma célula núcleo da nova mancha, e então pela seleção de um número específico de células ao redor da célula núcleo, de acordo com as suas probabilidades de transição P_{ij} (Almeida, 2003).

Algumas de suas aplicações com relação à dinâmica urbana estão em Almeida (2003), Godoy (2004), Trentin (2008), Valentin (2008).

5 Materiais e Métodos

As unidades hidrológicas da bacia do Lago Paranoá estudadas foram as sub-bacias do Riacho do Bananal, do Ribeirão do Gama e do Lago Paranoá. A modelagem da dinâmica urbana destas unidades hidrográficas foi elaborada em quatro fases principais para cada período de simulação, em uma série multitemporal de 25 anos, que compreende os anos de 1984 a 2009. Em uma primeira fase foi preparado os dados de entrada; na segunda fase, calibração do modelo com a definição de parâmetros; na terceira fase procedeu-se a construção do modelo de simulação e validação; e na quarta fase a obtenção dos cenários de tendência histórica (figura 5).

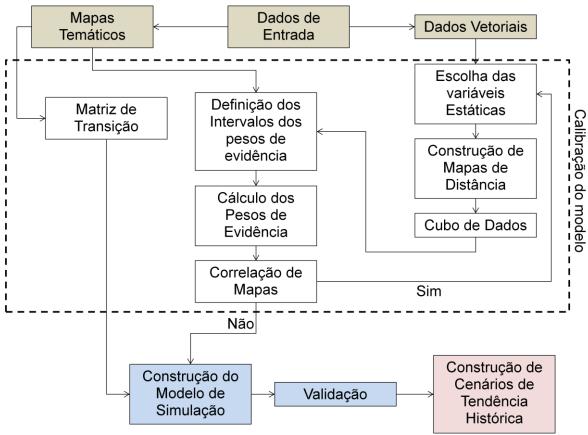


Figura 5 - Fluxograma metodológico

5.1 Dados de entrada do modelo

Os dados de entrada do modelo fornecem informações sobre os aspectos de uso e ocupação do solo, como áreas urbanas, rurais, vegetação, rede viária entre outros. Neste trabalho os dados de entrada do modelo englobam:

- Mapas temáticos relativos a quatro cenários do uso e ocupação do solo para os anos de 1984, 1994, 1998 e 2009; e
- Dados vetoriais;

Os mapas de uso e ocupação do solo, referentes aos anos de 1984, 1994 e 1998, foram elaborados para a UNESCO (2000 e 2002) por meio de classificação supervisionada MAxVer sobre imagens Landsat (Felizola et al., 2001 apud Menezes, 2010), validadas por Menezes (2010).

A validação foi realizada por meio de interpretação visual de fotografias aéreas e imagens do sensor Landsat 5 (TM) e por sobreposição dos mapas vetoriais com as imagens das respectivas datas, permitindo a ratificação e/ou a retificação das classes de uso do solo. (Menezes, 2010).

As imagens foram registradas utilizando como referência a imagem de 1998, que foi georreferenciada utilizando-se a base cartográfica da CODEPLAM, na escala de 1:10. 000 no sistema de projeção SICAD (CODEPLAN, 2008 apud Menezes, 2010).

O mapa de uso e ocupação de solo referente ao ano de 2009 foi elaborado por Menezes (2010) com base na análise da imagem do sensor AVNIR-2 a bordo do satélite ALOS, de setembro de 2009. Esse foi georreferenciado utilizando-se a base cartográfica da CODEPLAM na escala de 1:10.000 no sistema de projeção SICAD. O mapa foi validado por Menezes, 2010, meio de dados em campo.

Todos esses mapas passaram por adaptação para aplicação na simulação da dinâmica do uso e ocupação do solo. Na classificação original (Menezes, 2010) foram considerados oito tipos de classe para todo o período. As classes foram: cerrado, campo, mata de galeria, corpos d'água, agricultura, solo exposto, reflorestamento e área urbana. Neste trabalho foi necessário fazer uma generalização destas classes, pois a complexidade do modelo tende a aumentar quanto maior for o número de atividades distintas usadas (Batty et al., 1999). Desta forma, foi proposta a criação de uma nova

classe: vegetação, que englobou as classes: cerrado, campo e solo exposto. Assim, as classes consideradas neste estudo foram:

- Agricultura compreende as áreas ocupadas por culturas intensivas, áreas irrigadas, chácaras e setores habitacionais ainda não consolidados caracterizados pela coexistência de atividades agrícolas e empreendimentos de parcelamento do solo;
- 2. **Área urbana** compreende todas as áreas urbanas consolidadas
- 3. Vegetação compreende as formações savânicas, dentre elas: cerrado típico, cerrado denso, cerrado ralo e campo cerrado; as formações com extrato predominantemente herbáceo de caráter natural ou antropizado; e às áreas sem nenhuma cobertura com exposição direta do solo às intempéries, tais como: áreas de empréstimo, cascalheiras e solo preparado para o plantio;
- 4. **Mata de galeria** compreende todas as formações florestais, dentre elas: mata ciliar, mata de galeria, mata mesofítica (seca), mata de encosta e cerradão:
- Corpos d'água correspondem aos espelhos d'água formados por lagos, lagoas e represas;
- Reflorestamento corresponde às áreas com plantios homogêneos de pínus e eucaliptos;

As unidades escolhidas para modelagem do uso e ocupação do solo foram as sub-bacias do Bananal, importante por abrigar parte da Floresta Nacional, a do Lago Paranoá, que apresenta a maior densidade urbana dentre as demais e a sub-bacia do Ribeirão do Gama.

No decorrer de uma série multitemporal, e ao se trabalhar com a modelagem da transição do uso e ocupação do solo, se faz necessário o conhecimento das variáveis que direcionam as mudanças no uso solo. Essas variáveis são estáticas, ou seja, não se modificam durante o período da análise.

Segundo Valentin (2008), essas variáveis podem auxiliar no entendimento da dinâmica, no entanto, dificilmente consegue-se reunir um número suficiente de mapas estáticos que explique os fenômenos.

Nesse sentido, uma série de procedimentos foi executada a fim de avaliar as características de diversas variáveis de modo a permitir a escolha do melhor conjunto para explicar determinada transição. As variáveis espaciais estáticas correspondem aos

dados vetoriais de hidrografia, estradas, relevo, mapas de classes de solo, áreas protegidas, mapas do PDOT.

Os mapas vetoriais foram convertidos em mapas matriciais, por meio da construção de mapas de distância. Estes mapas dizem respeito tanto a elementos lineares, como é o caso das estradas e dos rios, quanto a polígonos, como classes de uso de solo e áreas protegidas. Todos os mapas de variáveis estáticas e dinâmicas devem conter a mesma resolução espacial e o mesmo *box* de coordenadas com igual número de linhas e colunas. Para tanto, os mapas foram convertidos em formato matricial no Arcgis 9.3 e convertidos para a extensão de arquivo no formato *GeoTiff file filter*. O sistema de referência foi o SICAD.

5.2 Calibração e validação do modelo

Para a calibração do modelo foram selecionadas as variáveis estáticas, e realizados inúmeros testes no software Dinamica EGO de forma a buscar o melhor ajuste entre o modelo e a realidade observada.

5.2.1 Matriz de Transição

A fim de analisar a dinâmica da paisagem pela forma como as classes de uso e ocupação do solo variam em dois instantes de tempo distintos foi utilizada a matriz de transição. Essa descreve um sistema que muda em intervalos de tempo (Soares-Filho, 2009). É considerada uma das maneiras mais simples para se determinar mudanças no estado da paisagem (Godoy, 2004).

Nesse passo são obtidas todas as transições encontradas entre as classes de uso e ocupação do solo. A série multitemporal adotada, de 25 anos, foi dividida em três períodos para estudo: de 1984 a 1994; de 1994 a 1998; e de 1998 a 2009. A matriz de transição recebe como entrada o mapa de uso inicial e final correspondente ao período. Consiste basicamente na tabulação cruzada desses mapas por meio de um modelo elaborado no software Dinamica EGO.

O Dinamica EGO gera duas matrizes para cada período, single step matrix e multiple step matrix. A primeira corresponde à transição ocorrida para todo o período, já a segunda apresenta a transição ocorrida por passos de tempo, neste caso, transições ocorridas anualmente. Para a construção de cenários foram consideradas as matrizes por passos de tempo, multiple steps matrix. As tabelas apresentadas como resultado no decorrer deste trabalho mostram as transições em valores percentuais e correspondem à single step, ou seja, consideram a transição ocorrida para todo o período.

5.2.2 Pesos de Evidência

O software Dinamica EGO adota o método dos pesos de evidência baseado no teorema da probabilidade condicional de Bayes para produzir um mapa de probabilidades de transição, que representa as áreas mais favoráveis para possíveis mudanças (Soares-Filho et al., 2009).

A obtenção dos pesos de evidência foi estruturada em duas etapas. A primeira etapa consiste na definição dos intervalos para a derivação dos pesos de evidência e a segunda, no cálculo dos coeficientes dos pesos de evidência. Os produtos utilizados para a primeira etapa foram os mapas de uso e ocupação do solo final e inicial; os mapas de variáveis estáticas e mapas de variáveis dinâmicas, que podem ser atualizadas durante a iteração do modelo, como mapa de distância. Os mapas de variáveis estáticas compuseram um cubo de dados - um *multilayer* produzido pelo software Dinamica EGO - onde os mapas são dispostos em camadas. Enquanto que os mapas de variáveis dinâmicas foram produzidos por meio do functor *Calc to Distance Map* do Dinamica EGO. Esse functor gera um mapa de distancia entre as células de cada classe de um mapa. O resultado desta primeira etapa, um arquivo esqueleto dos pesos de evidência, será usado como entrada para a segunda etapa.

A segunda etapa consiste no calculo dos coeficientes dos pesos de evidência. Além do esqueleto dos pesos de evidência, serão usados como entrada o mapa de uso de solo final e inicial e o cubo de dados.

Para o método dos Pesos de Evidência supõe-se que os mapas de variáveis devem ser independentes entre si. Para estimar esta suposição dois métodos serão utilizados: o Índice de *Cramer* e o *Join Information Uncertainty* (Incerteza da Informação

Conjunta) (Bonhan-Carter, 1994). Ambos destinam-se a avaliar a existência de dependência ou associação entre duas variáveis.

Estes métodos, utilizados para verificar a independência entre os pares de variáveis estáticas, são calculados a partir da matriz de transição produzida pela tabulação cruzada de dois mapas (Soares-Filho et al., 2009). Os índices variam de zero a um, sendo que as variáveis são independentes quando seu valor é igual a zero e completamente dependentes quando igual a um. Quanto maior for o valor do coeficiente, maior é a dependência entre as variáveis. As variáveis correlacionadas devem ser desprezadas do modelo. O limiar de corte considerado neste estudo será fixado em 0,5. Ultrapassado este limiar, uma das variáveis deve ser descartada, ou vinculada à outra formando nova variável.

Desta forma, serão selecionados os melhores conjuntos de variáreis para cada transição dentro de cada unidade hidrográfica estudada, para construção do modelo de simulação.

5.3 Construção do modelo de simulação e validação

5.3.1 Modelo de Simulação

A partir de então foi ajustado o modelo de simulação de uso e ocupação do solo. Para produzir os padrões espaciais de mudanças na transição do uso do solo o Dinamica EGO apresenta dois algoritmos: o *patcher* e o *expander*. A função *expander* é responsável pela expansão ou contração das manchas já existentes de determinada classe, ou seja, executa transições de um estado i para um estado j somente nas adjacências de células no estado j. Já a função *patcher* destina-se a gerar novas manchas de transição de um estado i para um estado j nas vizinhanças de células com estado diferente de j. Variando os parâmetros de entrada, estas funções possibilitam a formação de uma variedade de tamanhos e formas de manchas representativas das transições.

Os parâmetros de entrada destes algoritmos são o *patch mean size, patch size* variance e pacth isometry. O tamanho das novas manchas, a expansão ou a contração das manchas já existentes são fixados de acordo com uma distribuição de probabilidade lognormal, portanto os parâmetros de distribuição representados pelo *patch mean size* e

patch size variance de cada mancha a ser formada devem ser especificados. O patch isometry pode variar de 0 a 2 apresentando as manchas uma forma mais isométrica em função da variação deste número, à medida que ele aumenta (Soares-Filho et al., 2003).

5.3.2 Validação do modelo de simulação

A validação do modelo se simulação compreende a elaboração de modelos de diferença e de similaridade. São métodos de comparação baseados em proximidade. Segundo Soares-Filho et al., (2009), os mapas - mesmo os que não se assemelham exatamente - podem apresentar padrões similares e concordância espacial nas proximidades de uma célula.

Hagen (2003) desenvolveu um método para avaliar a similaridade de um conjunto de mapas com dados categóricos, esse método aplica a lógica *fuzzy* e foi denominado de *kfuzzy*. Envolve tanto a incerteza da localização quanto a incerteza da categoria.

O método empregado neste trabalho é uma adaptação do método desenvolvido por Hagen, (2003) para aplicação no Dinamica EGO. Utiliza uma função de decaimento exponencial com a distância para ponderar a distribuição do estado da célula ao redor de uma célula central (Soares-Filho, 2009). O método aplica a teoria fuzzy, que leva em consideração a incerteza da localização de uma categoria dentro da vizinhança de uma célula, e gera um mapa, que especifica para cada célula um grau de semelhança em uma escala de 0 a 1, assim como um valor global de similaridade (Hagen, 2003). Quanto mais próximo de 1, maior a similaridade entre os mapas. Como entrada o modelo recebe os mapas de uso de solo inicial, final e final simulado. Assim, foram identificadas as distinções entre os mapas de uso final e inicial reais; e final simulado e inicial real.

5.4 Obtenção de cenários de tendência histórica

Esta etapa se voltou para a simulação de cenários usando como base os padrões do modelo calibrado e validado anteriormente. Para curto e médio prazos, utilizando para tanto um número de iterações igual a 5 e 11 respectivamente. Assim os cenários simulados correspondem ao uso e ocupação do solo nos anos de 2014 e 2020.

6 Resultados e Discussão

6.1 Mudanças no uso e ocupação do solo

As unidades da Bacia do Lago Paranoá aqui estudadas foram escolhidas por apresentar diferentes usos predominantes. Se por um lado tem-se uma unidade com alto índice de ocupação urbana como é o caso da sub-bacia do Lago Paranoá, por outro lado tem-se uma unidade com alta taxa de preservação vegetal pelo fato de abrigar parte da Floresta Nacional, é o caso da sub-bacia do Bananal. Entre as duas têm-se uma bacia com índices de ocupação urbana e ocupação vegetal bem equilibrado, a sub-bacia do Ribeirão do Gama. Com isso, pôde-se construir a modelagem ambiental em cenários com dinâmicas de uso distintas. Desta forma, estudou-se a dinâmica do uso do solo considerando os mapas de uso e ocupação do solo para os anos de 1984, 1994, 1998 e 2009. As classes de uso e ocupação do solo consideradas foram: agricultura, área urbana, vegetação, mata de galeria, corpos d'água e reflorestamento.

6.1.1 Sub-bacia do Bananal

A unidade hidrográfica do Bananal foi escolhida para calibrar o modelo de simulação por conter pouca variação no uso e ocupação e por ser a sub-bacia com menor área dentre as demais. A figura 6 mostra os mapas de uso e ocupação do solo na sub-bacia para os quatro períodos citados acima.

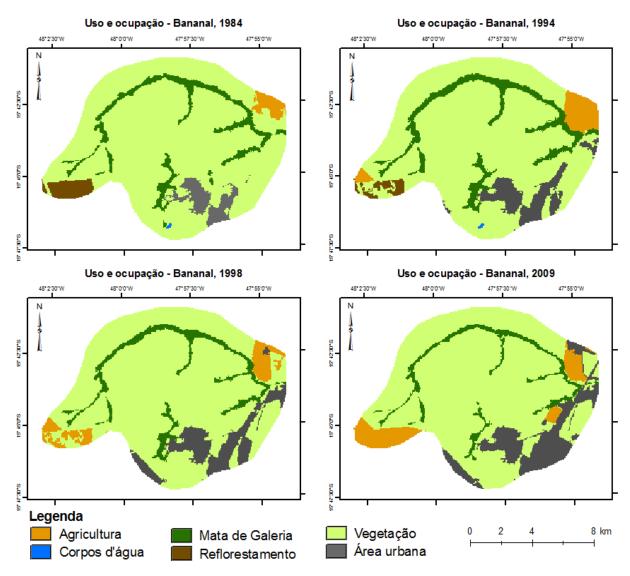


Figura 6 - Uso e ocupação do solo na sub-bacia do Bananal nos anos de 1984, 1994, 1998 e 2009.

6.1.2 Sub-bacia do Lago Paranoá

Dentre as demais unidades da Bacia do Lago Paranoá, a sub-bacia que leva o mesmo nome foi a que apresentou maior transição de uso e ocupação do solo, com intensa ocupação urbana. Os mapas de uso e ocupação referente aos anos de 1984, 1994, 1998 e 2009 são apresentados na figura 7.

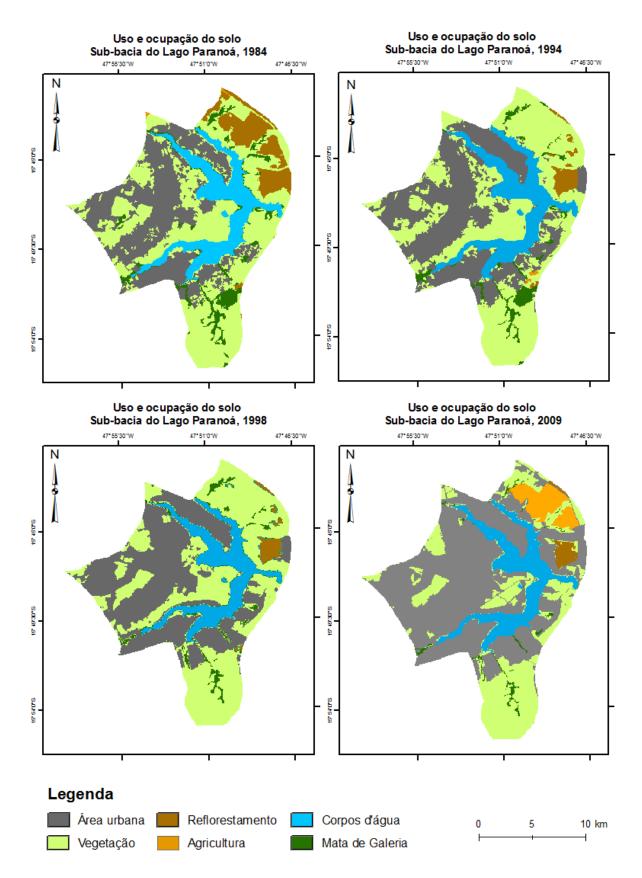


Figura 7- Uso e ocupação do solo na sub-bacia do Lago Paranoá nos anos de 1984, 1994, 1998 e 2009.

6.1.3 Sub-bacia do Ribeirão do Gama

Na figura 8 são apresentados os mapas de uso e ocupação do solo da sub-bacia para os anos de 1984, 1994, 1998 e 2009.

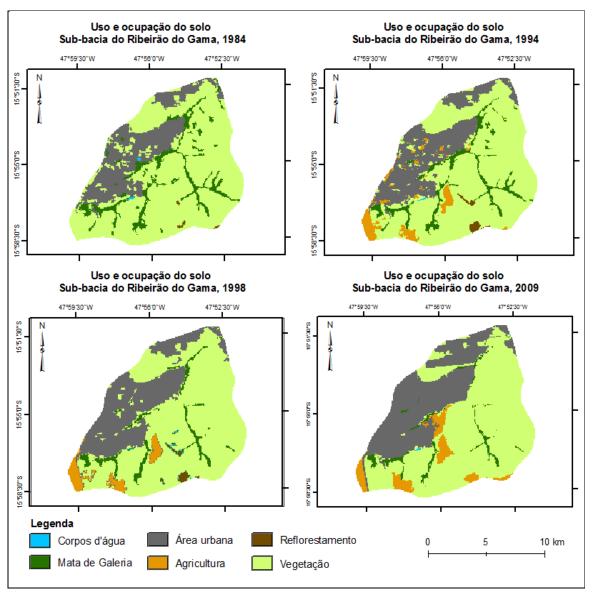


Figura 8 - Uso e ocupação do solo na sub-bacia do Ribeirão do Gama nos anos de 1984, 1994, 1998 e 2009.

6.2 Calibração do modelo

6.2.1 Matriz de transição

A partir dos mapas de uso inicial e final do solo correspondentes a três períodos distintos, 1984 a 1994; 1994 a 1998 e 1998 a 2009, foram calculadas as matrizes de transição no Dinamica EGO a partir da tabulação cruzada destes mapas. As classes estão sendo representadas numericamente, sendo que 1 representa agricultura, 2 área urbana, 3 vegetação, 4 mata de galeria, 5 corpos d'água e 6 reflorestamento.

As tabelas 1, 2 e 3 mostram as transições encontradas na sub-bacia do Bananal. Pode-se concluir, por meio da matriz de transição (tabela 1), que a transição mais significativa nesta sub-bacia, no período de 1984 a 1994, foi a mudança de área reflorestada para vegetação. Segundo a Ecooideia, muitos projetos de reflorestamento da PROFLORA tiveram sua cobertura vegetal suprimida nesta época.

1994 1 2 3 4 5 6 Classes 1 --0,01% 0,06% 2 --3 2,99% 3,22% 2,06% 4 0,08% 0,03% 2,53% 5 0,29%

Tabela 1 - Matriz de Transição do uso e ocupação do solo na Sub-bacia do Bananal no período de 1984 a 1994.

Na matriz de transição do período de 1994 a 1998 (tabela 2), percebe-se que o remanescente de reflorestamento presente nesta região foi completamente substituído por áreas agrícolas. Esse foi o período com maior alternância entre áreas agrícolas para área urbana, cerca de 28%.

^{6 -- -- 44,31% -- -- 1 -- 44,31% -- 1 --} Agricultura; 2- Área urbana; 3- Vegetação; 4- Mata de Galeria; 5- Corpos d'água; 6 -- Reflorestamento.

			1998						
	Classes	1	2	3	4	5	6		
	1		3,11%	27,99%					
	2								
1994	3	0,18%	2,96%						
19	4	0,29%	0,04%	23,59%					
	5			100,00%					
	6	100,00%							

Tabela 2 - Matriz de Transição do uso e ocupação do solo na Sub-Bacia do Bananal no período de 1994 a 1998.

Na tabela 3 referente ao período de 1998 a 2009 é observado um percentual de transição de áreas agrícolas de aproximadamente 11% para área urbana e 6% para área com vegetação. Como a classe vegetação, neste trabalho, corresponde a áreas de cerrado, campo e solo exposto, essa transição para vegetação pode ser explicada pela alternância entre atividade de agricultura e pecuária, assim como para áreas de regeneração e replantio. Dentre as unidades estudadas, esta foi a que apresentou menor taxa de transição para área urbana. Isso se deve ao fato de abrigar parte do Parque Nacional de Brasília.

Tabela 3 - Transições do uso e ocupação do solo na Sub-Bacia do Bananal no período de 1998 a 2009.

		2009					
	Classes	1	2	3	4		
	1		10,96%	5,83%			
1998	2						
19	3	3,17%	2,86%		0,01%		
	4	0,53%	0,13%	21,72%			

^{1 –} Agricultura; 2- Área urbana; 3- Vegetação; 4- Mata de Galeria;

Para a sub-bacia do Lago Paranoá, as matrizes de transição estão nas tabelas 4, 5 e 6. Pode-se observar que nos dois primeiros períodos pouca foi a incidência de área agrícola, já no período de 1998 a 2009 (tabela 6) observou-se uma transição significativa para essa classe. Boa parte dessa transição pode ser explicada pelo fato de o PDOT de 1997 aprovar e a Câmara Legislativa confirmar a criação dos Núcleos Rurais Remanescentes, ocupados, principalmente, por chacareiros produtores de hortifrutigranjeiros na Região administrativa do Lago Norte.

^{1 –} Agricultura; 2- Área urbana; 3- Vegetação; 4- Mata de Galeria; 5- Corpos d'água; 6 – Reflorestamento.

⁵⁻ Corpos d'água; 6 – Reflorestamento.

Nas três matrizes de transição, puderam-se observar altas taxas de transição de áreas com vegetação para área urbana. Sendo a maior taxa de transição no período de 1998 a 2009, com 31%. A atração pelo plano piloto acarretou, em várias épocas, a demanda por loteamentos ou parcelamentos irregulares nessa área. O primeiro em 1975, o Condomínio Quintas da Alvorada. Na década de 80 os parcelamentos ganharam força chegando ao seu ápice em 1995. Alguns desses parcelamentos foram regularizados como é o caso do Setor Habitacional Taquari. Além disso, vários setores foram criados nessa área, como a Área Octogonal, na década de 80 e o Setor Sudoeste, no fim da década de 80 e início de 90.

Tabela 4 - Matriz de Transição do uso e ocupação do solo na Sub-Bacia do Lago Paranoá no período de 1984 a 1994.

		1994						
	Classes	1	2	3	4	5	6	
	1			100,00%				
	2			1,99%	0,21%	0,13%		
1984	3	0,38%	12,63%		0,29%	1,06%	0,05%	
19	4		7,70%	24,27%		7,95%	0,57%	
	5		0,74%	2,75%	0,21%			
	6		6,87%	66,07%	0,62%			

^{1 –} Agricultura; 2- Área urbana; 3- Vegetação; 4- Mata de Galeria; 5- Corpos d'água; 6 – Reflorestamento.

Tabela 5 - Matriz de Transição do uso e ocupação do solo na Sub-Bacia do Lago Paranoá no período de 1994 a 1998.

		1998							
	Classes	1	2	3	4	5	6		
	1		99,50%	0,34%	0,16%				
	2			0,97%	0,03%				
94	3	0,08%	14,97%		0,36%		0,14%		
1994	4		7,87%	43,47%			1,54%		
	5		1,32%	5,47%	0,82%				
	6		1,28%	9,25%					

^{1 –} Agricultura; 2- Área urbana; 3- Vegetação; 4- Mata de Galeria; 5- Corpos d'água; 6 – Reflorestamento.

2009							
	Classes	1	2	3	4	5	6
	1						
	2						
1998	3	11,01%	31,10%		0,40%		
19	4	2,47%	18,92%	24,70%			
	5						
	6	12,23%	4,75%	10,37%			

Tabela 6 - Matriz de Transição do uso e ocupação do solo na Sub-Bacia do Lago Paranoá no período de 1998 a 2009.

Dentre as bacias estudadas a do Lago Paranoá foi a que apresentou as maiores taxas de transição para área urbana. As transições mais significativas se deram de forma direta, ou seja, de área com vegetação para área urbana.

Na sub-bacia do Ribeirão do Gama, de acordo com as matrizes (tabelas 7, 8 e 9), a transição para área urbana se deu tanto de forma direta, quanto de forma indireta. Principalmente pelo adensamento da ocupação urbana na área do Park Way, regulamentada com a aprovação Decreto nº 18.910, de 15 de dezembro de 1997, que criou a possibilidade de parcelamento dos lotes que antes eram de 20.000m² em até oito habitações (Distrito Federal, 1997). Dessa forma é possível explicar as altas taxas de transição encontradas de área agrícola para área urbana na matriz de transição do ano de 1994 a 1998 (tabela 8), cerca de 20%. Pela figura 8, pode se verificar que as áreas com agricultura dentro da região do Park Way se extingue nesse período. Assim, nos anos de 1998 a 2009 (tabela 9), essa transição cai para uma taxa de cerca de 7%.

Tabela 7 - Matriz de Transição do uso e ocupação do solo na Sub-Bacia do Ribeirão do Gama no período de 1984 a 1994.

Classes		1994							
		1	2	3	4	5	6		
	1			31,82%			68,18%		
	2								
1984	3	6,62%	2,34%		0,12%		0,82%		
19	4	1,50%	1,03%	26,79%					
	5		34,70%	10,16%					
	6	2,55%		24,56%					

^{1 –} Agricultura; 2- Área urbana; 3- Vegetação; 4- Mata de Galeria; 5- Corpos d'água; 6 – Reflorestamento.

^{1 –} Agricultura; 2- Área urbana; 3- Vegetação; 4- Mata de Galeria; 5- Corpos d'água; 6 – Reflorestamento.

Classes		1998							
		1	2	3	4	5	6		
	1		21,53%	4,25%	0,32%				
	2								
1994	3	0,77%	4,61%		0,27%		0,24%		
19	4	1,00%	1,97%	46,39%					
	5			22,34%					
	6			13,34%					

Tabela 8 - Matriz de Transição do uso e ocupação do solo na Sub-Bacia do Ribeirão do Gama no período de 1994 a 1998.

Tabela 9 - Matriz de Transição do uso e ocupação do solo na Sub-Bacia do Ribeirão do Gama no período de 1998 a 2009.

From \ To		2009							
		1	2	3	4	5	6		
	1		7,44%	13,74%					
	2								
1998	3	3,11%	6,47%		0,02%				
19	4	0,81%	3,10%	10,73%					
	5								
	6	50,07%		49,93%					

^{1 –} Agricultura; 2- Área urbana; 3- Vegetação; 4- Mata de Galeria; 5- Corpos d'água; 6 – Reflorestamento.

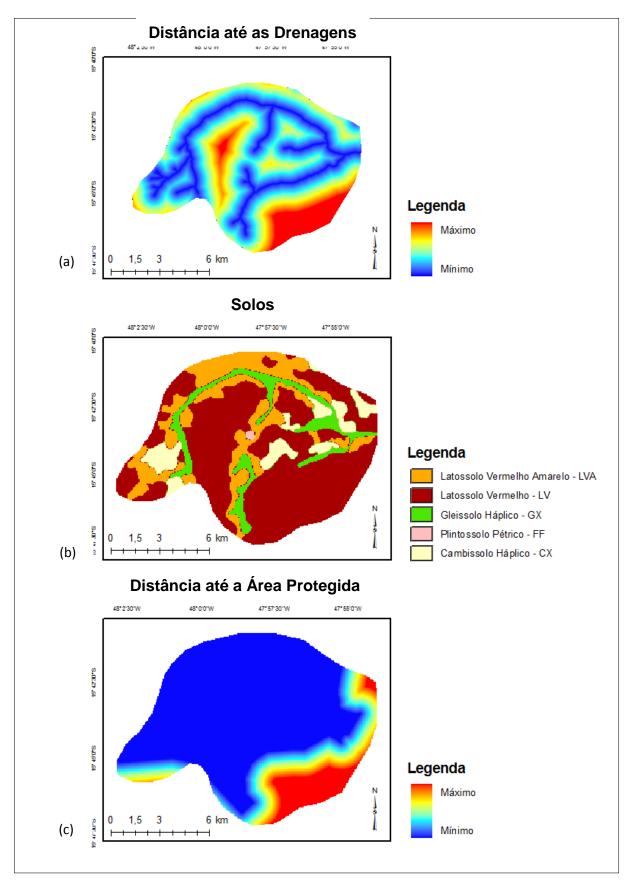
6.2.2 Escolha das variáveis estáticas

Com base no resultado obtido pelas matrizes de transição, procedeu-se à seleção das variáveis estáticas. A escolha das variáveis se deu após a realização de vários testes, levando-se em consideração a influência dessas sobre as transições observadas.

Além das variáveis estáticas escolhidas, foram utilizados os mapas de distancia até as classes, criados por meio do operador *Calc Distance Map*. Esse functor calcula um mapa que representa a distância entre uma célula e as células mais próximas de uma determinada categoria especificada. A distância calculada é a distância euclidiana e a unidade usada é o metro. Por fim foram utilizadas as variáveis que apresentaram melhores resultados dentro de cada unidade (tabela 10).

^{1 –} Agricultura; 2- Área urbana; 3- Vegetação; 4- Mata de Galeria; 5- Corpos d'água; 6 – Reflorestamento.

Tabela 10 - Variáveis estáticas selecionadas para cada unidade estudada.


	Unidades hidrográficas					
Variáveis estáticas	Bananal	Lago Paranoá	Ribeirão do Gama			
Distância até as estradas/vias		X	X			
Distância até a drenagem	X	X	X			
Solos	X	X	X			
Distância até a Área protegida	X					
Distância até a classe 1	X	X	X			
Distância até a classe 2	X	X	X			
Distância até a classe 3	X	X	X			
Distância até a classe 4	X	X	X			
Distância até a classe 5		X	X			
Distância até a classe 6		X				
PDOT		X	X			
Distância até o Lago		X				

Para todas as unidades utilizaram-se as variáveis solos e distância até a drenagem, além das variáveis de distância até as classes.

Para a Unidade do Bananal, além dessas utilizou-se a distância até a área protegida, que corresponde a Floresta Nacional – área de proteção integral (figura 9).

Na Unidade o Lago Paranoá optou-se por utilizar, além das variáveis mencionadas anteriormente, a variável distância até as estradas/vias e duas novas variáveis: distância até o Lago e classificação do Plano Diretor de Ordenamento Territorial de 2009 - PDOT (figuras 10 e 11).

Por fim, para a unidade do Ribeirão do Gama utilizou-se a variável distância até as vias e PDOT, além das já citadas (figuras 12 e 13).

Figura 9 - Variáveis estáticas utilizadas para a unidade do Bananal – (a) Distância até as drenagens; (b) solos; (c) distância até a área protegida.

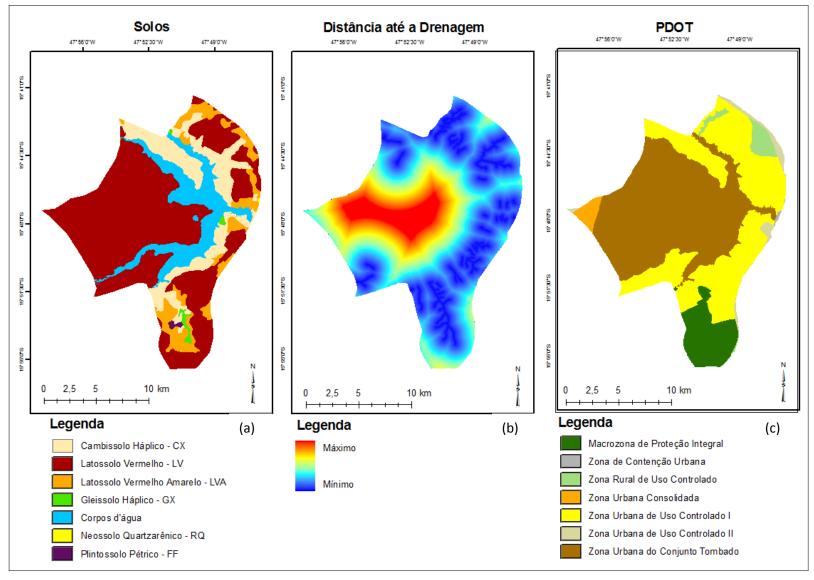


Figura 10 - Variáveis estáticas utilizadas para a unidade do Lago Paranoá - (a) solos; (b) distância até a drenagem; (c) PDOT

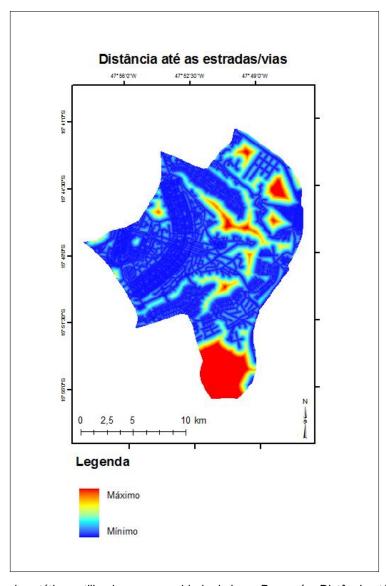
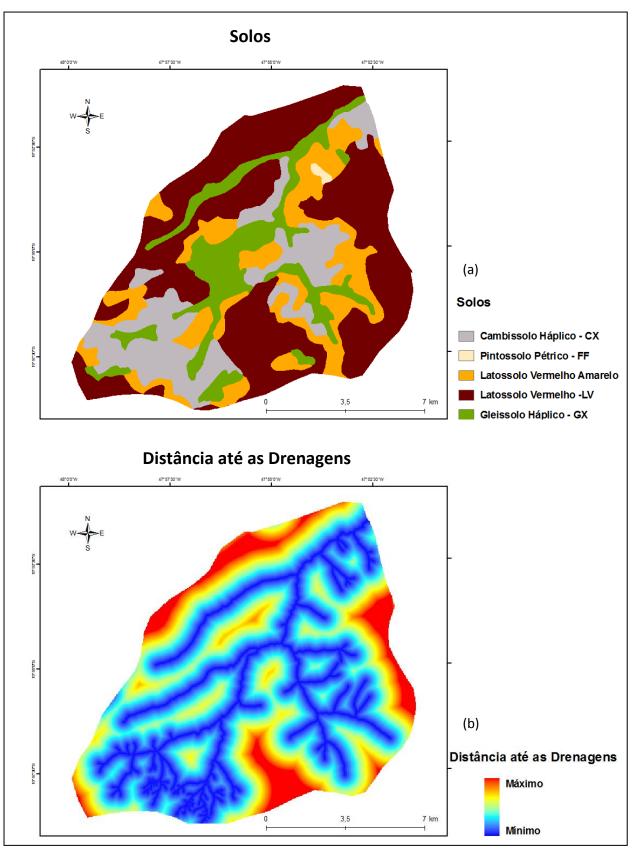
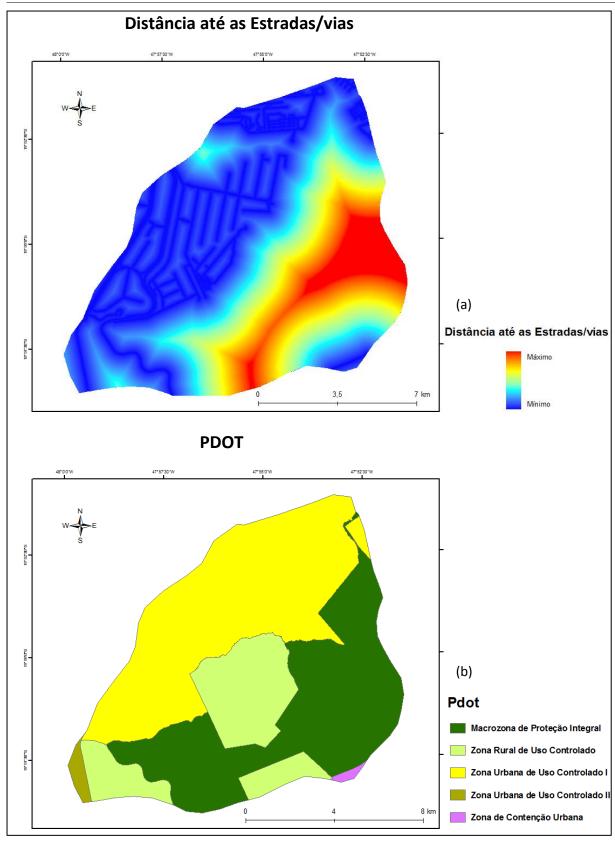




Figura 11 - Variáveis estáticas utilizadas para a unidade do Lago Paranoá – Distância até as estradas/vias

Figura 12 - Variáveis estáticas utilizadas para a unidade do Ribeirão do Gama – (a) Solos; (b) Distância às drenagens

Figura 13 - Variáveis estáticas utilizadas para a unidade do Ribeirão do Gama – (a) Distância até as vias; (b) PDOT

6.2.3 Pesos de Evidência

A partir das variáveis constantes na tabela 10 procedeu-se então a elaboração do esqueleto para o cálculo dos pesos de evidência. Nesta etapa definiram-se os intervalos ou faixas de distância das variáveis estáticas para cada transição encontrada, incluindo as distâncias até as classes de uso identificadas.

O esqueleto estabelece as melhores faixas de distância para o cálculo dos pesos de evidência a partir do contêiner *Determine Weights of Evidence Ranges*.

O arquivo com o esqueleto contendo as faixas de distância foi então utilizado juntamente com o mapa cubo, que contém as variáveis estáticas, e os mapas de uso e ocupação inicial e final (1998 a 2009), para o cálculo dos coeficientes dos pesos de evidência (W^+). Esses coeficientes indicam se a variável é favorável ou não para explicar a transição ocorrida no período, e quais os intervalos de distância que são significativos.

Nesse modelo, o operador *Calc Distance Map* também foi usado para inclusão dos mapas de distância até as classes. O cálculo dos coeficientes dos pesos de evidência foi realizado por meio do contêiner *Determine Weights of Evidence Coefficients*. Como resultado desta etapa obteve-se as faixas de distância, a probabilidade de transição dentro delas, as transições ocorridas, a medida do contraste e o resultado do teste de significância para cada variável dentro das transições encontradas. Os resultados positivos indicam as faixas que são favoráveis à transição, os resultados próximos a zero indicam que as faixas não exercem efeito sobre a transição e os resultados negativos indicam as faixas que repelem a transição. O valor do contraste mede o efeito de atração/repulsão, quanto maior o valor, maior a atração e quanto menor (negativo) maior é o efeito de repulsão (Soares-filho et al., 2009).

6.2.3.1 Sub-Bacia do Bananal

Na bacia do Bananal os resultados encontrados nesta etapa foram os seguintes:

 Agricultura para área urbana: as variáveis que apresentaram faixas com resultado positivo para o teste de significância, ou seja, as faixas capazes de ter efeito sobre a transição foram: distância até as áreas urbanas, distância até a drenagem, distância às áreas protegidas e solo. A faixa de 0 até 750m de distancia até as áreas urbanas apresentaram uma associação positiva, favorecendo a transição. Acima disso a associação encontrada foi negativa, repelindo a transição. Com relação à distância até a drenagem, a faixa entre 60 a 120m favorece a transição por apresentar valores positivos enquanto as faixas mais próximas e mais distantes a esta apresentaram valores negativos. As faixas que favorecem a transição com relação à distância até a área protegida estão acima dos 50m, principalmente as faixas acima dos 210m de distância. Os solos latossolo vermelho e cambissolo háplico apresentaram valores positivos.

- Agricultura para Vegetação: a faixa de 0 a 30m de distância até a drenagem, assim como a faixa de 90 a 120m, apresentou valores positivos, o que para o modelo favorece a transição. As faixas centrais, de 30 a 90m apresentaram valores negativos repelindo a transição. O solo Cambissolo Háplico mostrou-se favorável enquanto os solos Latossolo Vermelho Amarelo e Latossolo Vermelho apresentaram resultados que afastam a transição.
- Vegetação para Agricultura: a faixa de 0 a 250m de distância até as áreas com agricultura apresentou altos valores, indicando o favorecimento da transição nesta área. As faixas de distância até a drenagem que favorecem a transição de área urbana para agricultura estão entre 60 e 150m. Os valores próximos a zero indicam que estas faixas não exercem influencia sobre a transição de vegetação para agricultura. As faixas de distância de 0 a 60 metros, assim como a faixa de 150 até 180m desfavorecem a ocorrência da transição. Com relação às áreas protegidas as faixas de distancia entre 10 e 210m favorecem a transição sendo mais evidente nas faixas entre 10 e 140m.
- Vegetação para área urbana: Favorecem a transição de vegetação para área urbana as faixas de 0 a 500m de distância às áreas previamente urbanizadas, o intervalo de 240 a 270m de distancia até as drenagens, as faixas de 10 a 260 metros de distância até a área protegida e as áreas que contém o solo de classe Latossolo Vermelho. Desfavorece a transição as faixas de 750 a 1250m de distância até as áreas urbanas, os intervalos inferiores a 250m de distancia até as drenagens e as áreas com menos de 10m de distância à área de proteção. Os altos valores de

distância até as drenagens podem ser explicados pelo fato de que a maior parte da drenagem da bacia se encontra dentro da área da Floresta Nacional. Para os intervalos de distância até as áreas previamente urbanizadas encontrou-se um resultado condizente com a realidade, já que as novas áreas urbanas tendem a ser próximas de áreas urbanas já existentes, atraídas pela infra-estrutura que esta possui.

• Mata de galeria para agricultura: Favorecem a transição de mata de galeria para agricultura as faixas de até 250 metros de distância da classe previamente ocupada com agricultura, as faixas de distância de 30 a 60m das drenagens, áreas a partir de 10 metros de distância da área protegida, sendo mais evidente em faixas de 20 a 160m, e as áreas com solos Latossolo Vermelho e Cambissolo Háplico. Da mesma forma, desfavorecem a transição as faixas a partir de 1000m de áreas com agricultura, as faixas de 0 a 30 metros de distância até as drenagens e a faixa de 0 a 10 metros de distância à área protegida.

6.2.3.2 Sub-Bacia do Lago Paranoá

• Vegetação para Agricultura: O teste mostra que as transições de vegetação para a agricultura acontecem a partir de 8500m de distância de áreas previamente ocupadas com agricultura. A maior parte das transições acontece nas faixas a partir de 13000m de distância, apresentando, o teste, valores positivos que a favorecem nestas faixas e desfavorecem nas faixas mais próximas, de 8500 a 13000m de distância. Com relação à distância até a drenagem a maior parte das transições ocorre nas primeiras faixas estudadas, de 0 a 60m as demais faixas apresentaram valores negativos, o que incorre na repulsão de transições. As faixas centrais, de 90 a 250m de distância até o Lago apresentaram valores positivos, que favorecem a transição. A maior parte das transições ocorre nestas faixas. As faixas de 0 a 90m e de 240 a 270m de distância até o Lago mostraram valores negativos, repelindo a transição. A área correspondente a zona rural de uso controlado e zona urbana de uso controlado I apresentaram valores positivos favorecendo a transição nestas áreas, já a área de zona urbana de uso controlado II repele a transição. Os solos

Latossolo Vermelho – favorece; Latossolo vermelho amarelo (LVd) e Cambissolo (Cd) – desfavorecem. Favorecem a transição ainda as faixas de 0 a 117m e de 168 a 246m de distância até as vias.

- Vegetação para área Urbana: A transição da classe vegetação para área urbana é favorecida nas faixas de 0 a 2000m de distância de áreas previamente urbanas, e desfavorecida nas faixas superiores. Com relação à distância até a drenagem as áreas mais próximas, até 120m, desfavorecem a transição enquanto as áreas mais distantes, de 120 a 270m, apresentaram valores positivos, favorecendo-a. De forma inversa se deu a avaliação da variável distância até o Lago, as faixas mais próximas, de 0 a 90m, favorecem a transição enquanto as faixas mais distantes, de 90 a 210, a repele. Com relação à classificação do PDOT as transições ocorreram em locais de Zona de Contenção Urbana, Zona de uso controlado I e Zona urbana do Conjunto Tombado, nas outras classes as transições ocorreram em menor número e o teste apresentou resultado negativo, indicando que estas áreas repelem a transição de vegetação para área urbana, essas classes são: Zona rural de uso controlado, Macrozona de proteção Integral, Zona urbana de uso controlado II e Zona urbana consolidada. Também favorecem a transição os solos Cambissolo Háplico e o Latossolo Vermelho enquanto os demais a desfavorece. As faixas de 0 a 33m de distância até as vias apresentaram valores positivos indicando que maior parte das transições relacionadas a esta variável ocorre nessas faixas.
- Vegetação para Mata de Galeria: A transição de Vegetação para Mata de Galeria foi favorecida na faixa de 0 a 250m de distância até as áreas previamente ocupadas por mata de galeria; de 0 a 30m de distância das drenagens e do Lago; onde ocorre solo do tipo Cambissolo; de 0 a 57m das vias.
- Mata de Galeria para Agricultura: Pelo fato de o mapa de 1998 apresentar uma pequena área apenas classificada como agricultura, e esta área estar distante de áreas com mata de galeria, a distância favorável para transição de mata de galeria para agricultura até as áreas previamente classificadas como agricultura foi de 13000 a 15750m, já que as áreas classificadas em 2009 como agricultura estavam bem distantes das classificadas anteriormente. As áreas com mata de galeria mais próximas do Lago, de 0 a 120m repelem a transição para agricultura enquanto que

as mais distantes, de 120 a 150m a favorece. Favorecem a transição de mata de galeria para agricultura as áreas com mata distantes das vias nas faixas de 6 a 27m, 48 a 57m, e de 75 a 180m.

- Mata de galeria para Área urbana: As áreas de mata de galeria mais próximas das áreas previamente ocupadas com área urbana são as mais suscetíveis à transição (0 a 750m), assim como as áreas intermediárias, de 1000 a 1500m. Com relação à variável drenagem, as áreas com mata de galeria que favorecem a transição para área urbana encontram-se na faixa de 30 a 60m de distância das drenagens. As áreas mais próximas repelem essa transição. As áreas mais próximas ao Lago, de 0 a 30m e a faixa de 210 a 250m beneficiam a transição enquanto que as áreas intermediárias apresentaram valores negativos indicando que a transição naquelas faixas acontece em menor quantidade. As áreas classificadas pelo PDOT como zona urbana de uso controlado I e zona urbana consolidada, favorecem a transição, enquanto que áreas classificadas como zona rural de uso controlado e Macrozona de Proteção Integral desfavorecem. As faixas de 0 a 66m de distância das vias são favoráveis à transição enquanto que as maiores distâncias a repele.
- Mata de galeria para Vegetação: As faixas mais suscetíveis à transição de mata de galeria para vegetação¹ são aquelas mais próximas às áreas previamente ocupadas com a vegetação, de 0 a 250m. Com relação à distância até a drenagem, as áreas mais próximas, de 0 a 30m repelem a transição enquanto que a faixa de 30 a 60m a favorece. Levando em consideração a variável distância até o Lago, as faixas em que a transição é favorecida são as centrais, de 30 a 150m, as faixas mais próximas ao Lago e as mais distantes desfavorecem. Com relação à distância até as vias, as áreas com mata de galeria, mais próximas a essa, de 0 a 9m, são as mais favoráveis à transição, assim como as mais distantes, de 75 a 258m. As faixas intermediárias repelem essa transição, segundo o teste.
- Reflorestamento para Agricultura: De acordo com a variável distância até a drenagem as áreas com reflorestamento que mais atraem a transição para agricultura estão localizadas a uma faixa de 0 a 60m de distância da drenagem.

-

¹ A classe Vegetação, neste estudo abrande as áreas de campo, cerrado e solo exposto.

Com relação à distância até o Lago essa faixa aumenta para 150m, sendo que a faixa de 60 a 90m é a que mais atrai a transição. As transições ocorreram de 9 a 168m da variável distância até as vias.

- Reflorestamento para Área Urbana: As transições de área com reflorestamento para área urbana foram mais favoráveis nas faixas de 0 a 250m, 1000 a 1250m, 4000 a 5000m de distância até as áreas urbanas. Com relação à distância até as drenagens as faixas que favorecem a transição são: de 0 a 30m e de 90 a 150m. Para a variável distância até o Lago as faixas favoráveis são de 0 a 60m e de 90 a 120m, alem de uma faixa mais distante de 180 a 240m. Analisando a variável PDOT as áreas que atraem a transição são as zonas urbanas de uso controlado I e II. Considerando a distância até as vias, as faixas que atraem a transição são as mais próximas, de 0 a 15m. As demais a repele.
- Reflorestamento para Vegetação: As áreas mais próximas da vegetação, de 0 a 250m, são as mais atrativas para a transição de áreas com reflorestamento para vegetação. A única faixa estudada que mostrou resultado negativo para esta transição, com relação à variável distância até a drenagem, foi a de 30 a 60m. As demais faixas mostram uma atração. A distância até o Lago teve as faixas mais distantes favoráveis, já que não há área de reflorestamento tão próxima ao Lago. As faixas mais favoráveis a transição ocorrem entre 90 a 120m e 180 a 240m. As faixas de distância de 0 a 63m de distância das vias favorecem a transição de reflorestamento para vegetação.

6.2.3.3 Sub-Bacia do Ribeirão do Gama

• Agricultura para Área urbana: As faixas que mais favorecem a transição de agricultura para área urbana são as de 0 a 5500m de distância às áreas ocupadas por área urbana, de 100 a 200m de distância às drenagens e as áreas com solos do tipo Cambissolo Háplico e Gleissolo Háplico; e a área estabelecida pelo PDOT como Zona Rural de Uso Controlado. As demais faixas, solos e Zonas do Pdot repelem a transição.

- Agricultura para Vegetação: A transição de agricultura para vegetação, lembrando que esta envolve cerrado, campo e solo exposto, é atraída nas faixas de 0 a 1000m de distância de áreas classificadas como vegetação e de 0 a 100m de distância para a drenagem. A variável distância até as vias não mostrou resultado positivo para o teste de significância. Os tipos de solo que favorecem esse tipo de transição são os solos Cambissolo Háplico e o Gleissolo Háplico. A transição se mostrou favorável nas áreas definidas dentro da Macrozona Rural.
- Vegetação para Agricultura: Para este tipo de transição, a variável distância até a agricultura apresentou resultados positivos para as faixas de 0 a 3470m, acima disso a transição é repelida. Das três faixas de distância até a drenagem estudadas, as três mostraram resultado positivo para o teste de significância sendo que a primeira faixa, de 0 a 100m atrai a transição e as outras duas a repelem. Dos solos que tiverem resultado positivo no teste de significância somente o latossolo vermelho teve valor positivo para coeficiente e contraste. As áreas mais próximas das vias, de 0 a 100m, são as que mais beneficiam a transição segundo o teste. Da mesma forma as áreas dentro da Macrozona Rural.
- Vegetação para Área Urbana: Favorece a transição de área com vegetação para a área urbana, segundo os resultados do teste as áreas distâncias de áreas urbanas já existentes de 0 a 1250m, acima disso a transição é repelida. O teste mostrou ainda que as áreas distantes de 0 a 100m das drenagens repelem a transição e a favorece nas faixas acima de 100m. Com relação à variável distância até as vias, o teste mostrou que a faixa mais próxima, de 0 a 100m, atrai a transição. Assim como as áreas dentro da Macrozona Urbana definida pelo PDOT.
- Vegetação para Mata de Galeria: O teste mostrou que foram poucas as transições entre essas classes, sendo favorecidas nas faixas mais próximas à mata de galeria, de 0 a 250m e às vias, de 0 a 100m;
- Mata de galeria para Agricultura: Assim como a anterior, poucas transições foram encontradas, sendo favorecidas nas faixas mais próximas à Agricultura.

- Mata de galeria para Área urbana: as áreas mais favoráveis à transição de mata de galeria para área urbana estão mais próximas das áreas já ocupadas por área urbana até uma distância de 750m, em áreas de distância de 100 a 200m da drenagem, e dentro da Macrozona Urbana.
- Mata de galeria para Vegetação: essa transição, segundo o teste é favorecida nas áreas mais próximas a vegetação, de 0 a 250m de distância, nas áreas mais próximas às vias, de 0 a 100m de distância e nas áreas dentro da Macrozona Urbana definida pelo PDOT.

Vale ressaltar que a classe vegetação corresponde ao cerrado, campo e solo exposto na classificação original de uso e classificação do solo utilizado neste trabalho. Para todas as transições devem ser considerados os ajustes relativos à classificação dos mapas de uso e ocupação do solo de 1998 e 2009. Dessa forma, algumas das transições informadas podem ser relacionadas a ajustes dos limites das classes estudadas.

6.2.4 Correlação de mapas

Como dito anteriormente, para aplicação do método de pesos de evidência, as variáveis devem ser espacialmente independentes entre si. Deste modo, a independência entre os pares de variáveis foi verificada pelo cálculo dos índices de Cramer (V) e da Incerteza da informação conjunta (U) (*Joint information Uncertainty*) (Bonham-Carter, 1994). Como entrada para esse modelo foi utilizado: o mapa de uso e ocupação do solo inicial (1998) ligado ao operador *Calc Distance Map*, que juntamente com o mapa cubo é responsável pela introdução das variáveis estáticas e o arquivo gerado na etapa anterior contendo os coeficientes dos pesos de evidência. O cálculo da correlação foi feito pelo contêiner *Determine Weights Of Evidence Correlation*.

A saída deste modelo é uma planilha² contendo a descrição dos pares de variáveis e os resultados correspondentes aos dois testes. Como não há um consenso na literatura sobre o valor de corte que deve ser utilizado e considerando que quanto

_

² A planilha contendo todos os resultados encontrados nesta etapa está disponível no anexo 1.

maior o valor, maior a correlação, resolveu-se utilizar como corte os valores superiores a 0,5 obtidos em ambos os testes. Neste estudo, nenhum dos pares de variáveis apresentou valores de correlação superior a 0,5 nos dois testes para nenhuma das três áreas estudadas, indicando razoável independência entre eles.

6.3 Construção do modelo de simulação e validação

Concluído o processo de calibração, passou-se à construção do modelo de simulação para um intervalo de 11 anos, usando como dados de entrada:

- O mapa de uso e ocupação do solo inicial, correspondente ao ano de 1998;
- Os mapas de variáveis aceitos para cada unidade hidrográfica, no formato de um mapa cubo;
- O arquivo contendo os coeficientes dos pesos de evidência; e
- A matriz de transição de múltiplos passos.

Nesta etapa definiram-se os parâmetros para as manchas de uso do solo a serem criadas, por meio do algoritmo *patcher*. Este operador busca as células que apresentam a maior probabilidade de transição e gera novas manchas de uma determinada classe usando um mecanismo de semeadura (Soares-Filho et al.2009). Os parâmetros que devem ser definidos para o algoritmo são: *Mean patch size, Patch size variance,* e *Patch isometry*, responsáveis pelas características das novas manchas. O tamanho médio e a variância são definidos em unidade de área (hectares), já a isometria varia de 0 a 2, sendo que quanto maior, mais isométrica (células agregadas) a mancha aparece. Por meio da variação desses parâmetros, vários padrões espaciais poderam ser reproduzidos. A escolha destes parâmetros foi realizada por meio da execução de vários testes até se obter o resultado esperado, comparando visualmente as mudanças de uso do solo ocorridas no período (tabela 11).

Tabela 11 - Parâmetros internos do operador Patcher

	Mean patch size	Patch size variance	Patch isometry
Bananal	5	5	1,5
Lago Paranoá	10	1	2
Ribeirão do Gama	20	5	2

Outros operadores foram utilizados nesta etapa. O Calc Change Matrix, que calcula a quantidade de mudanças, multiplicando as taxas de transição pelo número de células de cada categoria a ser alterada e o Mux Categorical Map, que cria um mapa categórico atualizado dinamicamente, alimentado em cada interação pelo mapa de saída do modelo. Considera-se a interação o intervalo de tempo entre o mapa inicial e o mapa final utilizados nesta etapa, ou seja, de 1998 a 2009 temos 11 interações. Essas interações são controladas por um container, o Repeat. Esse contém todos os operadores acima descritos e faz com que o fluxo de dados seja repetido n vezes, conforme o número de interações.

Além dos operadores já descritos, fazem parte do *container Repeat* o operador *Calc Distance Map* e o *container Calc W. Of E. Probability Map* (*Calc Weights of Evidence Probability Map*), que gera um mapa de probabilidade para cada uma das transições a partir da aplicação do método de pesos de evidência. Os mapas de probabilidade espacial de transição mostram a probabilidade de uma célula na posição (x, y) para mudar de um estado i para um estado j.

Um dos primeiros resultados na fase de simulação do uso do solo foi a obtenção de mapas de probabilidade espacial de mudança, que mostram as áreas com maiores probabilidades de transição. O mapa de probabilidade é representado por cores onde o vermelho apresenta os locais com maiores chances de mudança, passando pelo amarelo e o verde até o azul que representa as áreas com menor probabilidade de transição. O modelo executado no Dinamica EGO cria um mapa de probabilidade para cada transição encontrada. Os mapas de probabilidade espacial são apresentados nas figuras 14, 15, 17, 18, 19, 21 e 22.

Como resultado desta etapa, além dos mapas de probabilidade espacial de transição, é obtido um cenário simulado para 2009. Apesar de terem sido realizadas várias simulações e obtidos vários cenários, são apresentos apenas os cenários considerados como satisfatórios para cada unidade estudada e obtidos a partir dos parâmetros apresentados na tabela 11. Juntamente aos cenários simulados são apresentados, os

mapas de uso e ocupação final real obtidos para o ano de 2009 de cada unidade nas figuras 16, 20 e 23 para termos de comparação.

Pode-se observar que os mapas simulados apresentam uma lógica de ocupação, sendo as manchas criadas em localizações próximas às que ocorreram nas áreas originais. A exemplo da unidade do Bananal (figura 16), pode se perceber um excesso de manchas criadas, principalmente de áreas urbanas próximo às classes de agricultura. Isso pode ser explicado pela falta de alguma variável explicativa, descrita neste trabalho como variável estática, e também pelo grande intervalo de tempo que compreende essa simulação, 11 anos.

Ademais, as manchas não se assemelham às dimensões e características do mapa real, visto que a modelagem visa obter tendências e padrões e não a reprodução fiel da realidade (Trentin, 2008). Desta forma, o algorismo utilizado nesta fase, o *pacther* se mostrou eficiente por buscar a lógica da ocupação mas não foi capaz de reproduzir o formato real das classes estudadas, pelo fato de apenas criar novas manchas, desconsiderando a expansão das manchas já existentes.

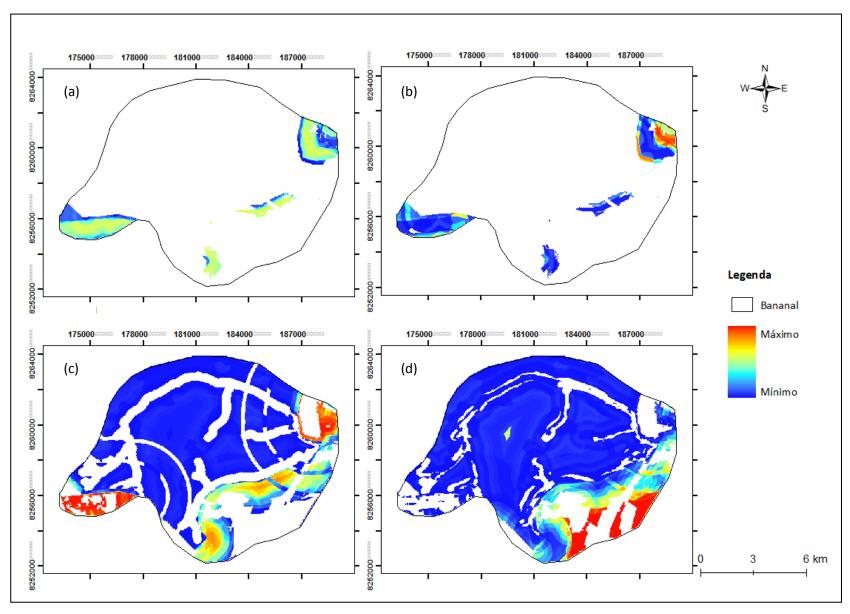


Figura 14 - Mapas de probabilidade espacial de transição na sub-bacia do Bananal. (a) classe agricultura para a classe urbana; (b) classe agricultura para classe vegetação; (c) classe vegetação para a classe vegetação para a classe área urbana.

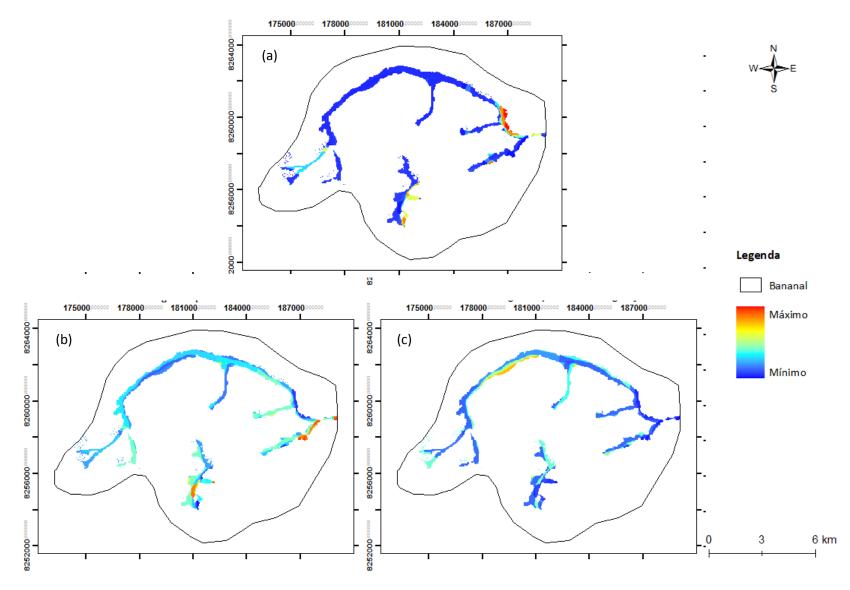
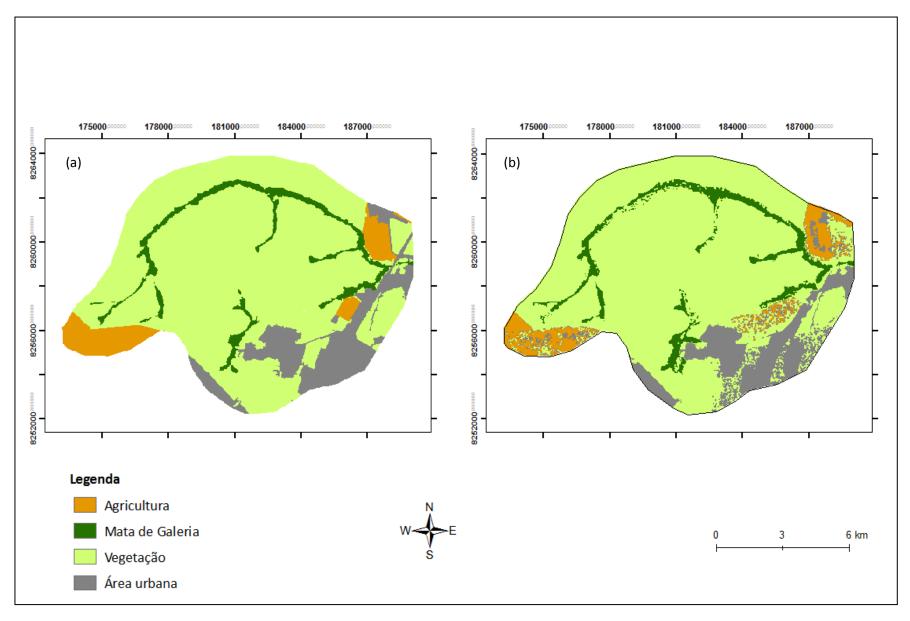
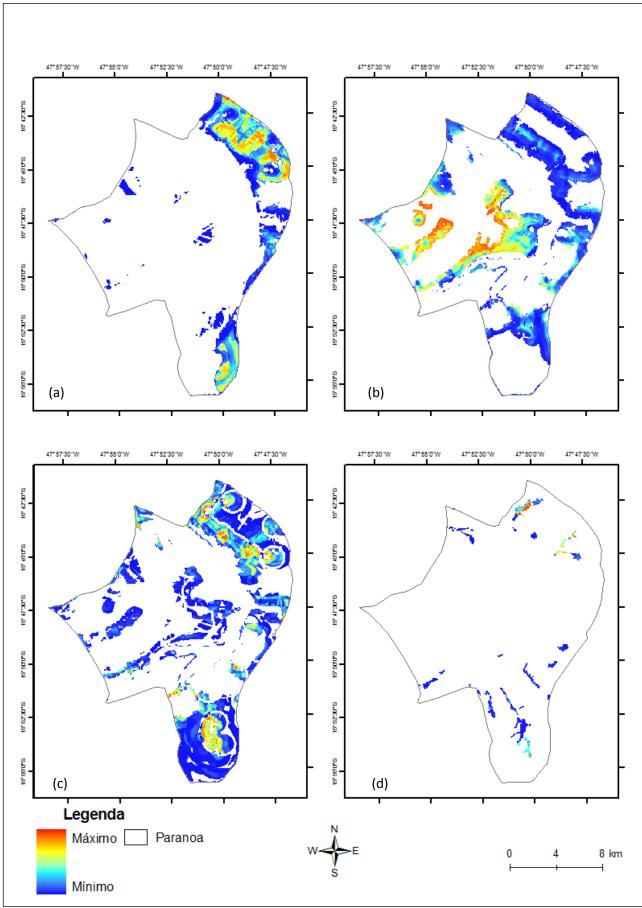
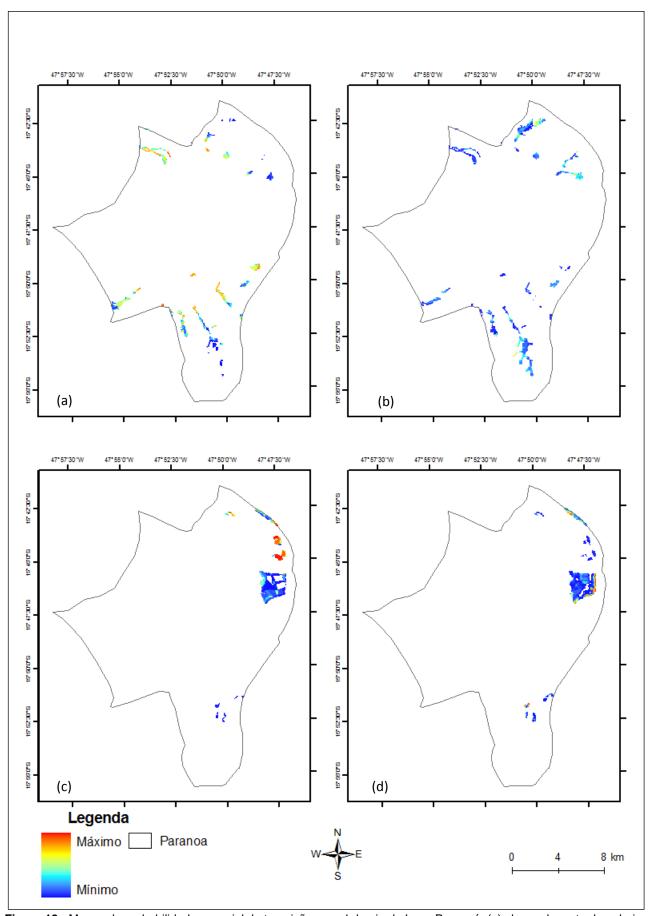


Figura 15 - Mapas de probabilidade espacial de transição na sub-bacia do Bananal. (a) classe mata de galeria para agricultura; (b) classe mata de galeria para área urbana; (c) classe mata de galeria para classe vegetação.

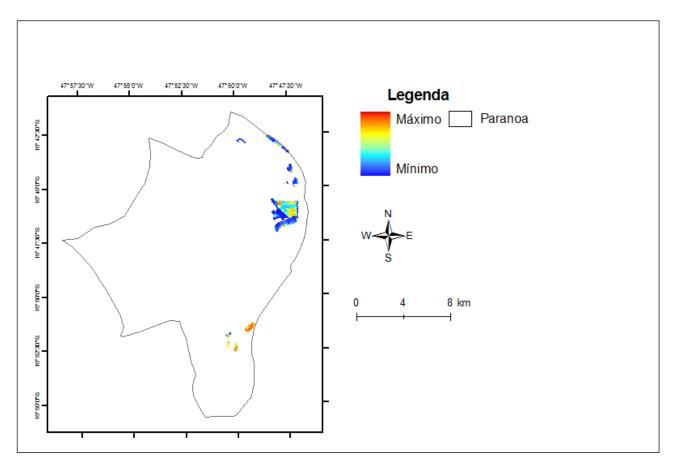

Figura 16 - Cenário simulado para o ano de 2009 na sub-bacia do Bananal. (a) final real – 2009; (b) final simulado – 2009.

Figura 17 - Mapas de probabilidade espacial de transição na sub-bacia do Lago Paranoá. (a) classe vegetação para agricultura; (b) classe vegetação para classe área urbana; (c) classe vegetação para a classe mata de galeria; (d) classe mata de galeria para a classe agricultura.

Figura 18 - Mapas de probabilidade espacial de transição na sub-bacia do Lago Paranoá. (a) classe de mata de galeria para área urbana; (b) classe mata de galeria para vegetação; (c) classe reflorestamento para agricultura; (d) classe reflorestamento para área urbana.

Figura 19 - Mapas de probabilidade espacial de transição na sub-bacia do Lago Paranoá – classe reflorestamento para vegetação.

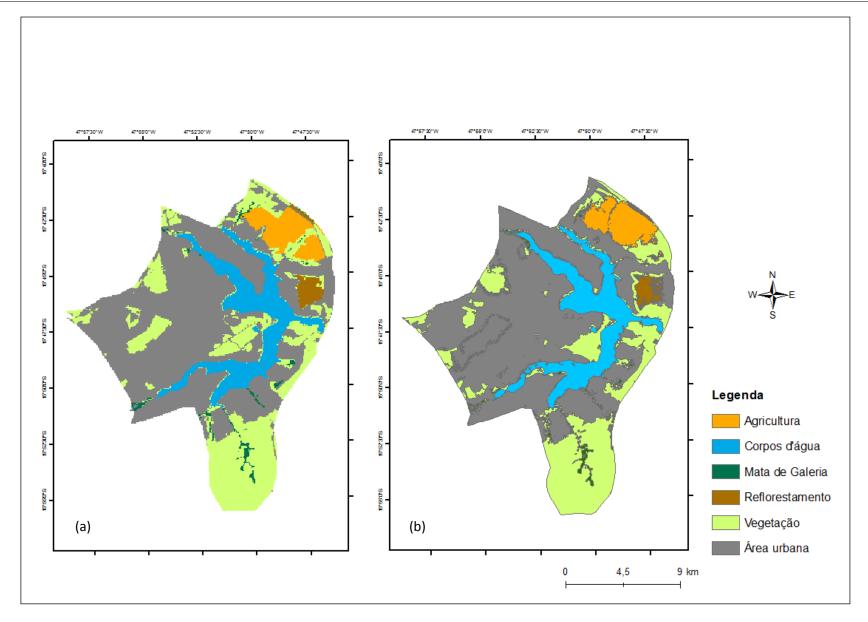


Figura 20 - Cenário simulado para o ano de 2009 na sub-bacia do Lago Paranoá. (a) Final real – 2009; (b) Final simulado – 2009.

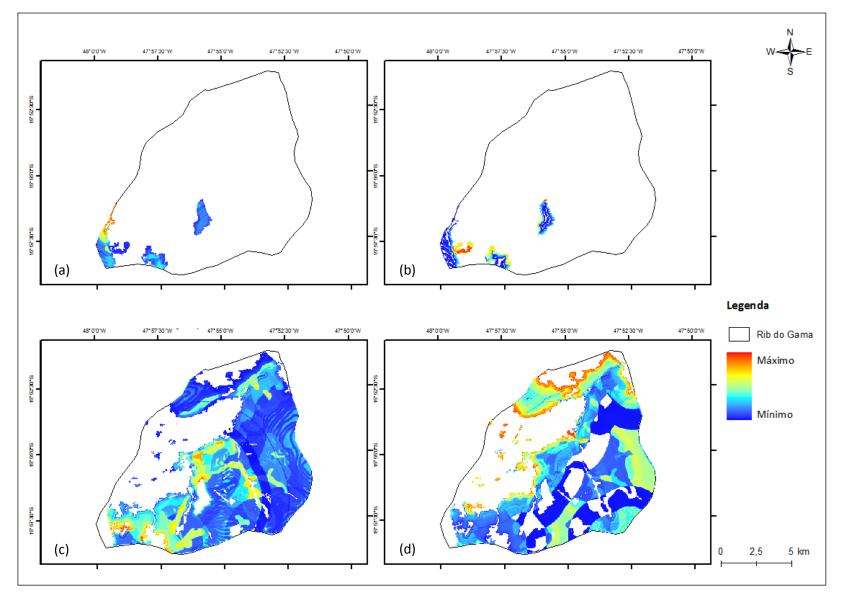


Figura 21 - Mapas de probabilidade espacial de transição na sub-bacia do Ribeirão do Gama. (a) classe agricultura para a classe área urbana; (b) classe agricultura para a classe vegetação; (c) classe vegetação para a classe agricultura; (d) classe vegetação para a classe área urbana.

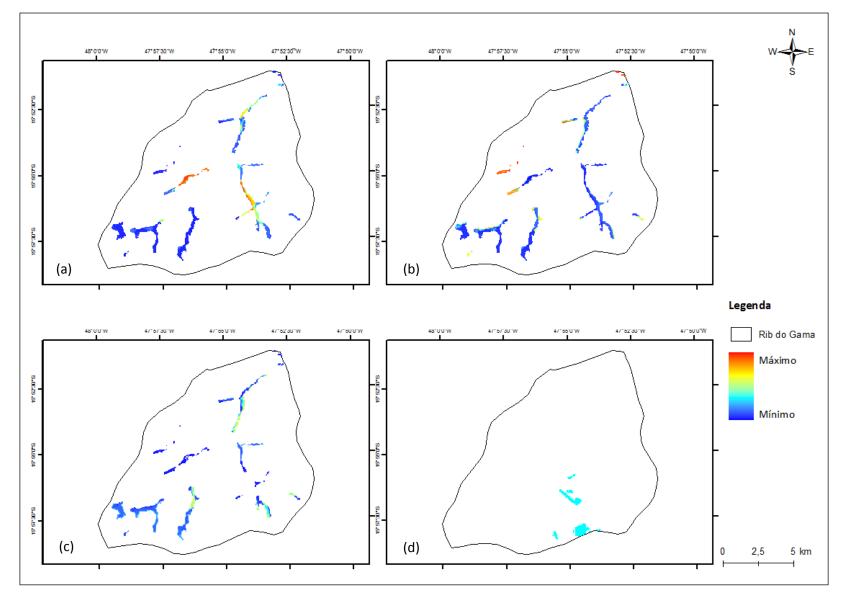
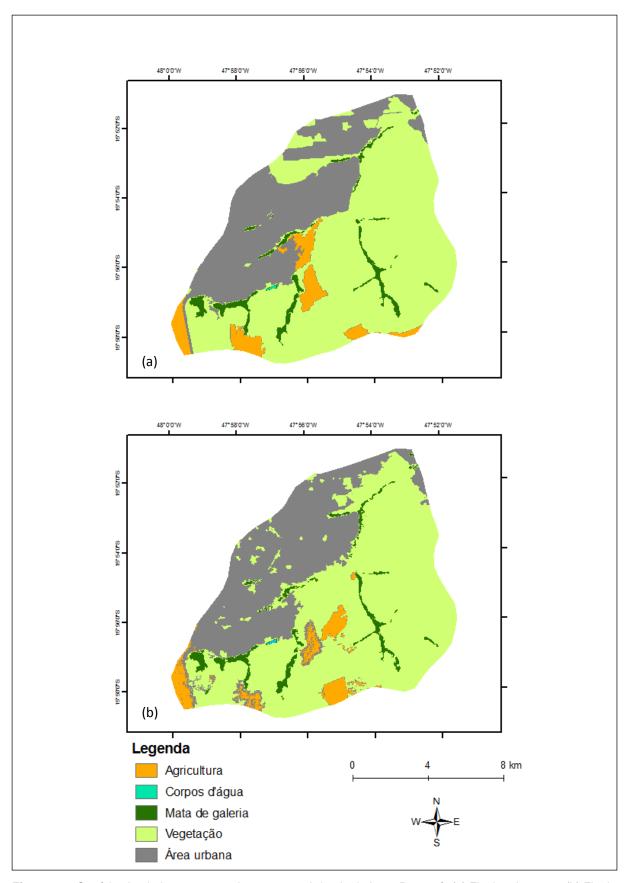



Figura 22 - Mapas de probabilidade espacial de transição na sub-bacia do Ribeirão do Gama. (a) classe mata de galeria para a classe agricultura; (b) classe mata de galeria para a classe área urbana; (c) classe mata de galeria para a classe vegetação; (d) classe reflorestamento para a classe agricultura.

Figura 23 - Cenário simulado para o ano de 2009 na sub-bacia do Lago Paranoá. (a) Final real – 2009; (b) Final simulado – 2009.

6.3.1 Validação do modelo de simulação

Na etapa de validação do modelo aplicou-se o método de diferença e similaridade baseada na lógica *fuzzy* adaptada de Hagen (2003). Esse método calcula os erros e acertos da modelagem. Os dados de entrada são os mapas de uso e ocupação do solo inicial, 1998; final real, 2009; e final simulado, 2009.

A princípio o modelo recebe dois containers Calculate Categorical Map. O primeiro calcula as diferenças entre o mapa inicial e o mapa final real, gerando o que pode ser chamado de primeiro mapa. As células iguais entre o mapa inicial e o mapa final real recebem um valor nulo, enquanto que as células do mapa final real que não coincidem com a do mapa inicial são conservadas. O segundo Container realiza a mesma operação com o mapa inicial e o mapa final simulado, resultando no segundo mapa.

Os dois mapas obtidos como resultados destes passam virtualmente para o operador *Calc Reciprocal Similarity Map* responsável pelo calculo dos índices de similaridade *fuzzy* entre os mapas. Não se baseia no ajuste pixel a pixel, mas no ajuste de múltiplas resoluções. O tamanho da janela trabalhada foi de 11x11 células. Segundo Ferrari (2008), valores de janelas acima disso podem saturar o sistema. Se for verdade, a semelhança é calculada usando uma função de decaimento exponencial truncada fora da janela. Caso contrário, uma função constante é usada dentro do tamanho da janela especificada. O valor padrão é verdade.

Esse operador gera dois índices e dois mapas de similaridade. Os índices de similaridade são o *First Mean* e o *Second Mean*. O *First Mean* compara o primeiro mapa com o segundo e o *Second Mean* compara o segundo mapa com o primeiro (tabela 12). O primeiro mapa de similaridade mostra o grau de correspondência espacial entre o primeiro e segundo mapa de entrada, já o segundo mapa de similaridade mostra do segundo para o primeiro. A similaridade varia de zero a um, quando da combinação perfeita.

Tabela 12 - Índices de similaridade

	First Mean	Second Mean
Bananal	0.46319	0.40509
Lago Paranoá	0.64207	0.65728
Ribeirão do Gama	0.42660	0.39932

A primeira medida de similaridade, ou índice de similaridade, relaciona a diferença entre o mapa final real e o mapa de uso inicial, enquanto a segunda medida resulta da diferença entre o mapa final simulado e o mapa de uso inicial (Delaneze et al., 2011). As similaridades encontradas para a Bacia do Bananal e do Ribeirão do Gama apresentaram índices baixos, considerando que estes variam de 0 a 1. A sub-bacia do Lago Paranoá foi a que apresentou maior índice. Em todos os casos os valores encontrados podem ser considerados válidos tendo como explicação a morfologia dispersa das áreas (Trentin e Freitas, 2010).

6.3.2 Simulação de cenário

Partindo do princípio que a dinâmica de uso e ocupação do solo não se dá apenas pela formação de novas áreas de uso e ocupação, mas também, e em maior grau, pela expansão das classes de uso já existentes, um novo modelo foi executado. Este modelo inclui três novos operadores: o *Modulate Change Matrix*, *Expander e Add Change Matrix*.

O Expander é responsável pela expansão ou contração de manchas previamente existentes de uma determinada classe. Assim como no operador Pacther, o Expander também usa uma matriz de parâmetros de transição que inclui Mean Patch size, Patch size variance, e isometry. Por meio da variação desses parâmetros, vários padrões espaciais podem ser reproduzidos. O tamanho das novas manchas de expansão são fixados de acordo com uma distribuição de probabilidade lognormal. Portanto, é necessário especificar os parâmetros desta distribuição representada pela média e variância dos tamanhos das manchas a serem formados. Na função Expander, a probabilidade de transição espacial de células i para células j depende da quantidade de células do tipo j em torno de um tipo de célula i (Soares-Filho, et al., 2009).

Com a inserção deste novo operador é preciso estabelecer a quantidade de mudança que deve ser considerada para cada tipo de função de transição. Qual a taxa que deve ser considerada para a criação de novas manchas e qual a taxa que deve ser considerada para a expansão das categorias já existentes (Soares-Filho et al., 2009). Para isso é incluído no modelo o *Modulate Change Matrix*. Este é usado para dividir a quantidade de mudança entre os dois operadores, o *Patcher* e o *Expander*.

A escolha dos parâmetros estabelecidos nesta etapa para o *Patcher* e para o *Expander*, assim como a quantidade de mudança que deve ir para cada um deles, foi realizado por meio de tentativa e erro até se obter o melhor resultado de simulação. Esses valores são apresentados na tabela 13.

Tabela 13 – Parâmetros utilizados na nova construção do cenário de 2009

			Expander		Patcher		
Unidades	Modulate	Mean Patch size	Patch size variance	isometry	Mean Patch size	Patch size variance	Isometry
Bananal	0,2	5	10	1	5	25	1,5
Lago Paranoá	1	*	10	1,5	1	0	1
Ribeirão do Gama	0,8	**	10	1,5	1	0	1

^{*} valores definidos na tabela 15

Esses valores podem ser alterados para cada transição encontrada. Neste trabalho, pelo fato do grande número de transições trabalhadas, principalmente nas subbacias do Lago Paranoá e Ribeirão do Gama, optou-se por padronizar esses valores para todas as transições, com exceção do valor do parâmetro *Mean Patch Size* do *Expander* nas sub-bacias do Ribeirão do Gama e Lago Paranoá. Esse parâmetro foi estabelecido de acordo com as tabelas 14 e 15, tendo como base o número de células que sofreram transição.

Tabela 14 – Valores usados no parâmetro *Mean Patch Size* da função *Expander*, para as transições encontradas na sub-bacia do Ribeirão do Gama.

Classes	1	2	3	4
1	XXXX	42	80	
2		XXXX	60	
3	280	590	XXXX	20
4	40	15	52	XXXX
6	56		56	

Tabela 15 - Valores usados no parâmetro *Mean Patch Size* da função *Expander*, para as transições encontradas na sub-bacia do Lago Paranoá

Classes	1	2	3	4
3	320	915	XXXX	10
4	30	25	30	XXXX
6	15	7	15	

^{**} valores definidos na tabela 14

Segundo Soares-Filho et al. (2009), não é possível garantir que o *Expander* realize todas as transições passadas a ele. Dessa forma, ele passa a quantidade de mudanças remanescentes ao *Patcher* por meio do operador *Add Change Matrix*. Esse operador soma as duas matrizes de quantidade de mudança: a matriz de quantidade estabelecida para o *Patcher* por meio do *Modulate Change Matrix* e a matriz remanescente de mudanças do *Expander*.

Os resultados desta etapa são apresentados por meio dos mapas de uso e ocupação final simulado para o ano de 2009 disponíveis nas figuras 24, 25 e 26. Pode se observar, quando comparados ao mapa real de uso e ocupação de 2009, que os padrões de transição alcançados foram bem próximos, seguindo a tendência de transição das sub-bacias tanto para a localização das mudanças quanto para a estrutura da paisagem. Assim o modelo mostrou sua capacidade em mostrar as tendências de ocupação podendo ser usado para construção de cenários de tendência histórica.

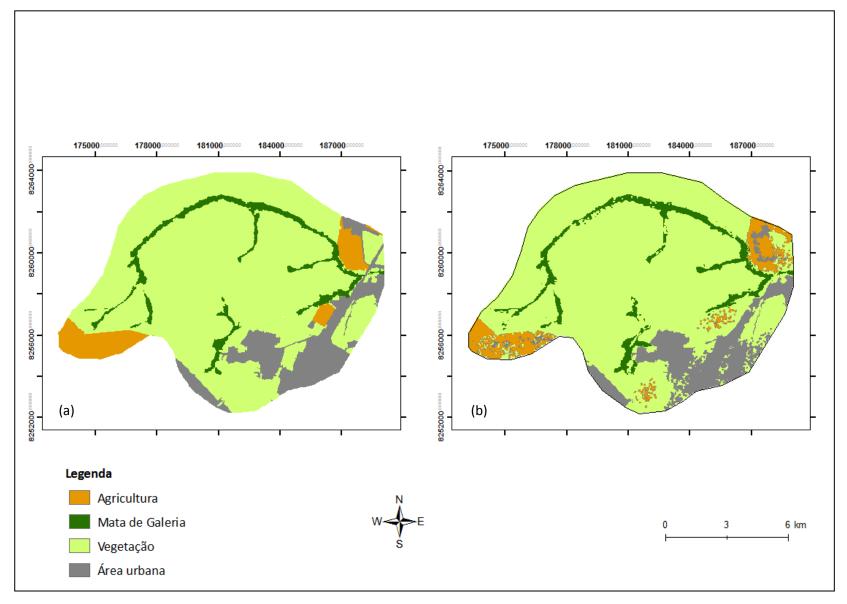


Figura 24 - Simulação do uso e ocupação de 2009 na Bacia do Bananal utilizando a função expander. (a) Final real – 2009; (b) Final simulado – 2009.

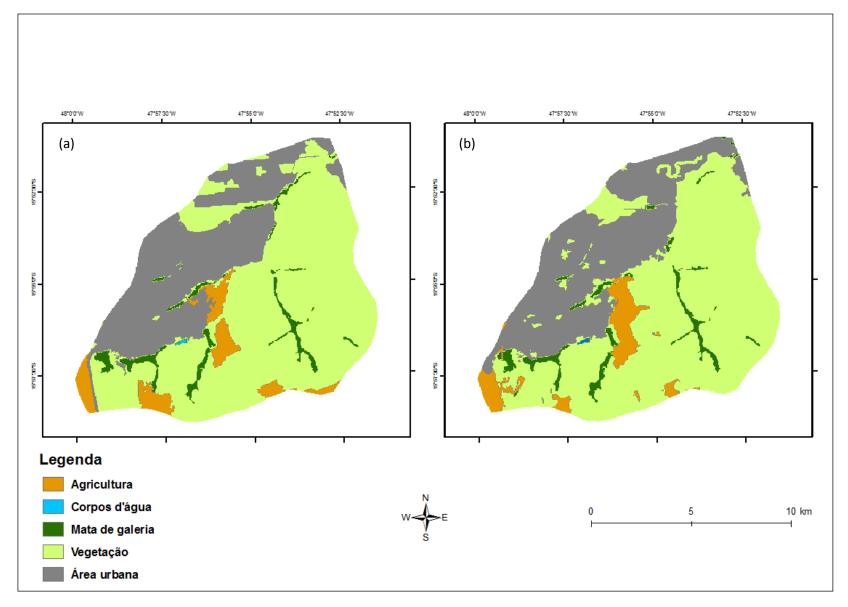


Figura 25 - Simulação do uso e ocupação de 2009 na Bacia do Ribeirão do Gama utilizando a função expander. (a) Final real – 2009; (b) Final simulado – 2009.

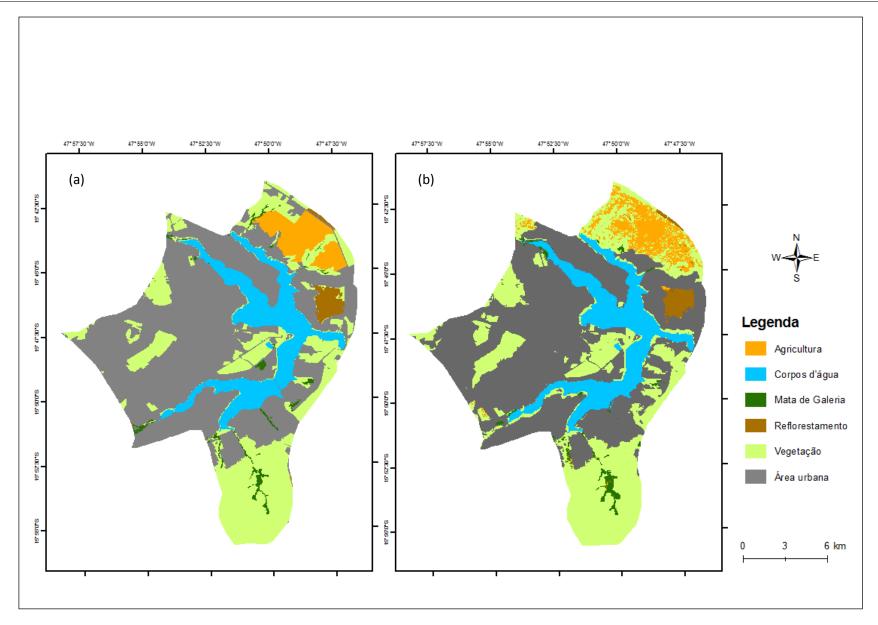


Figura 26 - Simulação do uso e ocupação de 2009 na Bacia do Ribeirão do Gama utilizando a função expander. (a) Final real – 2009; (b) Final simulado – 2009.

6.4 Simulação de cenários de tendência histórica

Nesta etapa foram elaborados os cenários de tendência histórica, que consideram as transições em taxas fixas, projetando-as para o futuro. Dessa forma, esses cenários partem da calibração obtida para simulação do cenário de 2009, mantendo todos os parâmetros utilizados inalterados. Para os prognósticos de mudanças de solo, foi utilizado o mesmo modelo anterior, alterando apenas a entrada do mapa de uso de solo inicial, que passou a ser o mapa de uso e ocupação de 2009 e o número de interações atribuídas ao *Repeat*. O número de interações varia de acordo com o período futuro que se deseja simular.

Segundo Almeida (2003) deve-se evitar o prognóstico de longo prazo pelo fato de que as mudanças são dificilmente previsíveis para grandes períodos por sofrer influência de setores como a economia, dentre outros. Para a autora, apenas o curto e médio prazo são relevantes para a definição de prioridades, alocação de recursos e tomada de decisão.

Ainda segundo a autora, quanto à delimitação de horizontes de projeção, não existem definições oficiais com relação a curto e médio prazo para fenômenos de mudanças de uso do solo urbano. Ela define como curto prazo um período de até cinco anos e médio prazo entre cinco e dez anos.

Seguindo este raciocínio foi estabelecida a simulação de cenários para as unidades estudadas em curto e médio prazo. Considerou-se para curto prazo um período de 5 anos e para médio prazo um período de 11 anos. A simulação de cenários futuros nas sub-bacias foi então estabelecida para os anos de 2014 e 2020. O período estabelecido para longo prazo extrapolou em um ano o estabelecido por Almeida (2003). Esse prazo foi estabelecido considerando o resultado positivo da construção do cenário para o ano de 2009 – etapa anterior – que utilizou um prazo de interação de 11 anos.

Os cenários obtidos são apresentados nas figuras 27, 28, 29 e 30.

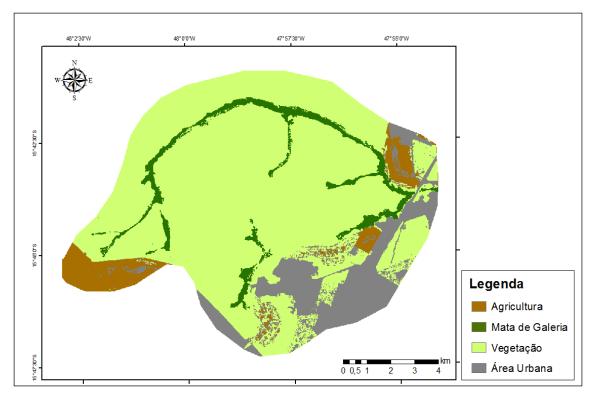


Figura 27 - Bacia do Bananal - Cenário simulado para o ano 2014.

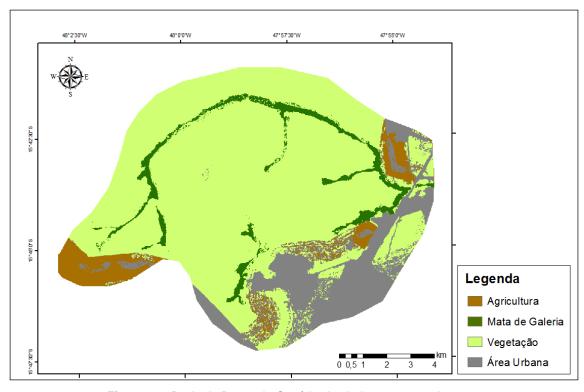


Figura 28 - Bacia do Bananal - Cenário simulado para o ano de 2020

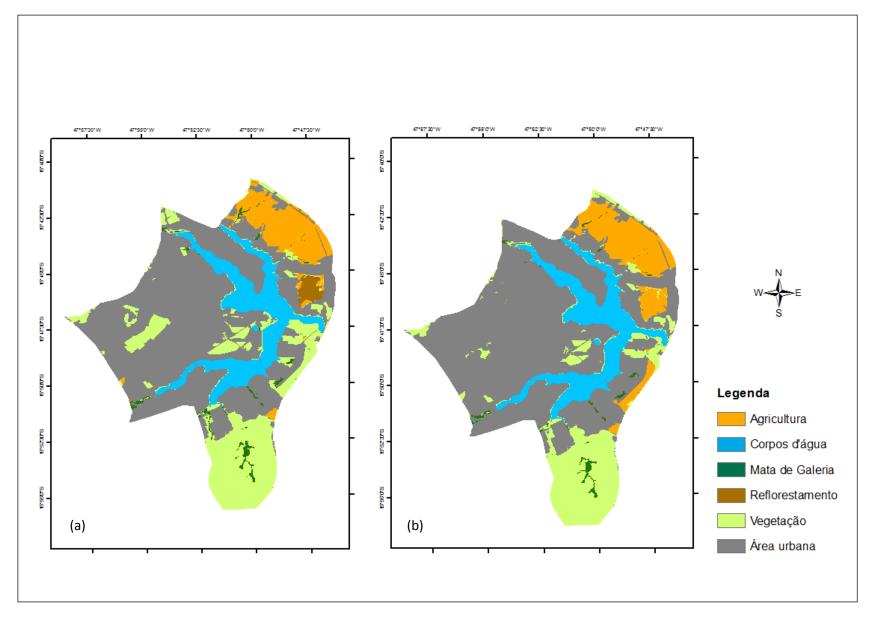


Figura 29 - Cenários simulados para os anos de 2014 e 2020 na bacia do Lago Paranoá. (a) Cenário simulado para 2014; (b) Cenário simulado para 2020.

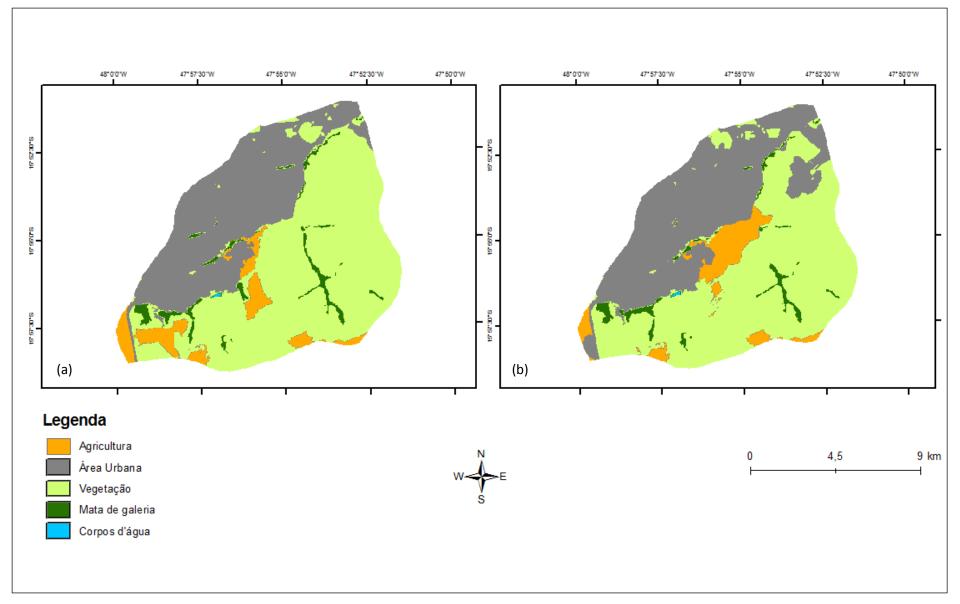


Figura 30 - Cenários simulados para a bacia do Ribeirão do Gama. (a) Cenário simulado para 2014. (b) Cenário simulado para 2020.

Os cenários simulados mostraram a tendência de ocupação levando em consideração as taxas de transição validadas para o período anterior. Devemos ter em mente que esse período (1998 a 2009) foi marcado por uma grande explosão na ocupação das terras do Distrito Federal. O modelo atribuiu ao cenário de tendência histórica essa mesma taxa, alocando as transições nas faixas mais favoráveis a elas.

Caso essa taxa de ocupação ou transição do solo do DF seja constante, áreas como os arredores do aeroporto, na sub-bacia do Ribeirão do Gama e os parques ecológicos, como o de Burle Max na sub-bacia do Lago Paranoá sofreriam com a ocupação urbana logo em 2014.

Em 2020, de acordo com a classificação do Plano Diretor de Ordenamento Territorial do DF de 2009, praticamente toda a Zona de Uso Controlado I, na sub-bacia do Ribeirão do Gama estaria ocupada, levando a expansão da mancha urbana à ocupar áreas inseridas na Macrozona de Proteção Integral. A expansão da mancha rural, nessa mesma sub-bacia permaneceria dentro dos limites estabelecidos pelo PDOT na Zona Rural de Uso Controlado.

Na sub-bacia do Lago Paranoá, a área de Proteção integral, estabelecida pelo PDOT, e que corresponde a Estação Ecológica do Jardim Botânico permaneceria inalterada até o ano de 2020. Outras áreas de proteção como os Parques ecológicos passariam a sofrer ocupação para suportar as altas taxas de transição, sendo ocupados pela expansão da mancha urbana e rural.

Já na Bacia do Bananal, as taxas de transição no período de 1998 a 2009 foram mais baixas, mas, seguindo essa tendência, grande parte da área fora daquele pertencente à Floresta Nacional de Brasília estaria sujeita a expansão das manchas urbana e rural.

Deve-se levar em consideração que nenhum sistema é fechado e ele sofre influências externas. A simulação da dinâmica do uso do solo, neste trabalho considerou as transições fechadas dentro de cada sub-bacia. Deve-se atentar para o fato de que a ocupação do DF se dá em diversas áreas do seu território, assim, as taxas de transição consideradas para o futuro poderiam ser projetadas para áreas fora das bacias e mais adequadas à ocupação. Não resultando necessariamente na saturação do território, como pode se perceber nas simulações dos cenários futuros, principalmente das sub-bacias do Lago Paranoá e Ribeirão do Gama no ano de 2020.

Assim, embora o nível alcançado na simulação seja considerado satisfatório, melhores resultados com relação à representação da realidade poderão ser

obtidos se a modelagem for realizada abrangendo uma área maior, seja a totalidade da bacia ou ainda toda a área do Distrito Federal. Para tanto, deve-se ter em vista que a complexidade do modelo tende a aumentar com o número de variáreis e transições no uso do solo.

De qualquer forma, os resultados encontrados apontam para a importância de uma política de uso e ocupação mais rígida na região, observando as normas ambientais e a capacidade do meio em absorver a demanda por infra-estrutura, abastecimento, educação dentre outros.

Assim, estudos como esse servem para alertar os tomadores de decisão nas estratégias de crescimento das cidades.

7 Conclusões

Os processos de mudança no uso e ocupação do solo foram identificados para os anos de 1984 a 1994, de 1994 a 1998 e de 1998 a 2009. As principais transições ocorreram no sentido de urbanização do território com as transformações de áreas agrícolas e de vegetação (campo, cerrado e solo exposto) para área urbana, confirmando a tendência de crescimento urbano do Distrito Federal. É importante destacar que grande parte da transição para área urbana ocorre diretamente, ao contrario do esperado, que é de vegetação para agricultura e daí então para área urbana. Também foi possível observar a perda de áreas de reflorestamento para agricultura e em menor grau para área urbana. O método utilizado, a matriz de transição, apresenta os resultados por meio de taxas e se mostrou eficiente no levantamento dessas mudanças.

Assim, foi possível identificar os processos de mudança no uso e ocupação do solo nas unidades estudadas, mostrando que a vegetação foi a classe que mais sofreu transição e a área urbana foi a que mais ocupo espaço no território.

A metodologia aplicada ao software Dinamica EGO se mostrou eficiente na modelagem da dinâmica espacial do uso e ocupação do solo, possibilitando a construção de cenários futuros de curto e médio prazos, o que permite ao usuário final uma clara dimensão dos processos inseridos em cada unidade. Faz com que o usuário, seja ele o tomador de decisão ou não, tenha noção, não somente dos processos atuais, mas dos processos históricos passados e como esses podem afetar o futuro.

As simulações futuras para cada unidade mostraram que a continuidade do processo de ocupação de tais bacias pode acarretar uma saturação do território em 2020, no entanto é necessário saber que o modelo simula tendências de uso e ocupação e o processo analisado é valido apenas se forem mantidas as mesmas condições estudadas. Assim, recomenda-se que, para trabalhos futuros, seja estudado uma extensão maior da bacia, e que sejam inseridas mais variáveis como as relacionadas à aspectos demográficos, sociais e econômicos que possam ajudar a explicar melhor as transições.

De qualquer forma, trabalhos como este aqui desenvolvido é de considerável importância para uma melhor prática de planejamento urbano por permitir ao tomador de decisão visualizar as tendências de uso da região e controlá-las por meio de medidas públicas adequadas, dando especial atenção à proteção de áreas de interesse ambiental, a fim de assegurar uma qualidade de vida e condições favoráveis às futuras gerações. E da mesma forma, identificar as áreas mais favoráveis ao desenvolvimento de determinada atividade, seja ela de cunho social, econômico ou ambiental.

Assim, espera-se que os resultados deste estudo contribuam com o desenvolvimento de políticas públicas e pesquisas voltadas ao uso e ocupação do solo, principalmente quanto à expansão urbana na Bacia do Lago Paranoá e que possa servir de subsídio para elaboração de cenários e identificação de mudanças no uso do solo em toda a extensão da Bacia hidrográfica do Lago Paranoá e em outras unidades hidrográficas.

REFERÊNCIAS BIBLIOGRÁFICAS

- AGÊNCIA BRASÍLIA AMBIENTAL. Portal de notícia do Governo do Distrito Federal. Disponível em http://www.agenciabrasilia.df.gov.br. Acesso em 09 de março de 2011.
- ALMEIDA, C. M. Modelagem da dinâmica espacial como uma ferramenta auxiliar ao planejamento: simulação de mudanças de uso da terra em áreas urbanas para as cidades de Bauru e Piracicaba (SP). 2003. 351f. Tese (Doutorado em Sensoriamento Remoto), Instituto Nacional de Pesquisas Espaciais. São José dos Campos, 2003.
- ALMEIDA, C. M. de.; MONTEIRO, A. M. V. CÂMARA, G. Modelos de Simulação e Prognósticos de Mudanças de Uso do Solo Urbano: Instrumento para o Subsídio de Ações e Políticas Públicas Urbanas. In: Encontro nacional de pós-graduação e pesquisa em planejamento urbano e regional, 11., 2005, Salvador. 2005. **Anais...**Salvador: ANPUR, 2005.
- ALMEIDA, C. M.; O diálogo entre as dimensões real e virtual urbano. In.: ALMEIDA, C. M.; CÂMARA, G.; MONTEIRO, A. M. V. (Org.) **Geoinformação em urbanismo: cidade real x cidade virtual**. São Paulo: Oficina de textos, 2007.
- BAPTISTA, G.M.M. Caracterização climatológica do Distrito Federal. In: IEMA/SEMATEC/UnB, Inventário Hidrogeológico e dos Recursos Hídricos Superficiais do Distrito Federal. Vol. 1. Brasília, 1998. 187-208p.
- BARBO, L. C. A ocupação do solo no Distrito Federal. **Revista de Conjuntura do Corecon-DF.** Brasília, nº. 07, Jul/Set 2001.
- BARROS, A. M. F. B.; CARVALHO, C. S.; MONTANDON, D. T. O Estatuto da Cidade comentado (Lei Nº 10. 257 de 10 de julho de 2001). 2010. Disponível em <www.conselhos.mg.gov.br/uploads/24/06.pdf> Acesso em: 08 março 2011.

- BATTY, M. Geomatics in urban and regional planning chalenges & perspectives. In.: ALMEIDA, C. M.; CÂMARA, G.; MONTEIRO, A. M. V. (Org.) Geoinformação em urbanismo: cidade real x cidade virtual. São Paulo: Oficina de textos, 2007.
- BATTY, M.; XIE, Y.; SUN, Z. Modeling urban dynamics through GIS-based cellular automata. Computers, **Environment and Urban Systems**, 23, 1999. p205–233.
- BENEDETTI, A. C. P. Modelagem dinâmica para simulação de mudanças na cobertura florestal das serras do sudeste e campanha meridional do rio grande do sul. 2010. 167f. Tese (Doutorado em Engenharia Florestal). Universidade Federal de Santa Maria. Santa Maria, RS, 2010.
- BONHAM-CARTER, G. F. **Geographic Information Systems for Geoscientists:**Modelling with GIS. Ontario: Pergamon, 1994. 305 p.
- BRASIL. Lei nº 2874, de 19 de setembro de 1956. Dispõe Sobre a Mudança da Capital Federal e da Outras Providencias. **Diário Oficial da União**. Seção1, 20 novembro 1956. Disponível em: http://www2.camara.gov.br. Acesso em: 15 maio 2011.
- BRASIL. Lei nº 3.273, de 1º de outubro de 1957. Fixa a data da mudança da Capital Federal, e dá outras providências. **Diário Oficial da União**, Seção 1, 01 outubro 1957. Disponível em http://www2.camara.gov.br. Acesso em: 15 maio 2011.
- BRASIL. Lei 6938 de 31 de agosto de 1981. Dispõe sobre a Política Nacional do Meio Ambiente, seus fins e mecanismos de formulação e aplicação, e dá outras providências. **Diário Oficial da União**, 02 setembro 1981. Disponível em: http://www.planalto.gov.br/ccivil_03/leis/l6938compilada.htm. Acesso em: 18 maio 2011.
- BRASIL. Lei 9985 de 18 de julho de 2000. Regulamenta o art. 225, § 10, incisos I, II, III e VII da Constituição Federal, institui o Sistema Nacional de Unidades de Conservação da Natureza e dá outras providências. **Diário Oficial da União**, 19 julho 2000. Disponível em: http://www.planalto.gov.br/ccivil_03/leis/I9985.htm>. Acesso em: 18 de maio de 2011.
- BRASIL. Constituição da República Federativa do Brasil (1988). Texto constitucional promulgado em 5 de outubro de 1988, com as alterações adotadas pelas Emendas Constitucionais nos 1/1992 a 64/2010, pelo Decreto Legislativo no 186/2008 e pelas Emendas Constitucionais de

- Revisão nos 1 a 6/1994. 32 ed. Brasília: Câmara dos Deputados, Edições Câmara, 2010.
- BRASIL. Lei n.º 10.257 de 10 de julho de 2001. Regulamenta os arts. 182 e 183 da Constituição Federal, estabelece diretrizes gerais da política urbana e dá outras providências. **Diário Oficial da União**, 11 julho 2001. Disponível em: http://www.planalto.gov.br/ccivil_03/leis/leis_2001/l10257.htm. Acesso em: 08 março 2011.
- BRASIL. Ministério do Meio Ambiente. Instituto Brasileiro do Meio Ambiente e dos Recursos Naturais Renováveis. **Plano de gestão da APA Federal da Bacia do Rio Descoberto**, DF/GO. Brasília: DIREC, 1998.
- BURROUGH, P. A.; McDONNEL, R. A. **Principles of Geographical Information Systems.** Oxford: Clarendon Press, 1998. 333p.
- CALIJURI, M. C.; BUBEL, A. P. M. Conceituação de Microbacias. In: LIMA, W. P.; ZAKIA, M. J. (eds) **Manejo ambiental em áreas plantadas**: Operacionalizando o conceito de microbacia como unidade de planejamento. Rima, São Carlos. 2004.
- CÂMARA, G.; MONTEIRO, A.M.V. Introdução à modelagem dinâmica espacial. In: SBSR, Simp. Bras. Sens. Remoto. Belo Horizonte, 2003. **Anais**...Belo Horizonte: SBSR, 2003
- CÂMARA, G.; MONTEIRO, A.M.V. Territórios Digitais Urbanos. In.: ALMEIDA, C. M.; CÂMARA, G.; MONTEIRO, A. M. V. (Org.) **Geoinformação em urbanismo:** cidade real x cidade virtual. São Paulo: Oficina de textos, 2007.
- CAMPOS J.E.G. **Hidrogeologia do distrito Federal**: subsídios para a gestão dos recursos hídricos subterrâneos. Rev. Bras. Geoc., 2004. 1:41- 48.
- CAMPOS, J.E.G.; FREITAS-SILVA, F.H. Geomorfologia In: FONSECA, F. O. Olhares sobre o Lago Paranoá. 1ª edição. Brasília DF: Secretaria de Meio Ambiente e Recursos Hídricos, SEMARH 2001.
- CARDOSO, E. S.; FONSECA, F. O.; SANTOS, R. M. D. B. Vulnerabilidade das áreas protegidas. In: FONSECA, F. O. **Olhares sobre o Lago Paranoá**, 1^a Ed. Brasília DF: Secretaria de Meio Ambiente e Recursos Hídricos, SEMARH, 2001.
- CHRISTOFOLETTI, A. **Modelagem de sistemas ambientais**. Ed. Edgard Blucher. 236p. 1999.

- COSTA, G. G. A cartografia nos planos Diretores do Distrito Federal. In: Simpósio brasileiro de cartografia histórica, 1., Paraty, 2011. **Anais**... Paraty, 2011.
- DELANEZE, M. E.; RIEDEL, P. S.; MARQUES, M. L.; FERREIRA, M. V.; BENTZ, C. M. Modelagem espacial utilizando autômato celular aplicada à avaliação das mudanças do uso e cobertura da terra no entorno da faixa de dutos Rio de Janeiro Belo Horizonte. In: Simpósio Brasileiro de Sensoriamento Remoto SBSR, 15., 2011, Curitiba, PR, Brasil. Anais... Curitiba: INPE, 2011.
- DISTRITO FEDERAL (Brasil). Câmara Legislativa. **Ocupação e legalidade das terras do DF**. Brasília: CLDF, 1999. 25p
- DISTRITO FEDERAL (Brasil). Câmara Legislativa do Distrito Federal. Lei nº 353, de 18 de novembro de 1992. Aprova o Plano Diretor de Ordenamento Territorial do Distrito Federal, institui o Sistema de Planejamento Territorial e Urbano do Distrito Federal e dá outras providências.
- DISTRITO FEDERAL (Brasil). Lei Complementar nº 17, de 28 de janeiro de 1997. Aprova o Plano Diretor de Ordenamento Territorial do Distrito Federal PDOT e dá outras providências. **Diário Oficial do Distrito Federal**, 29 janeiro 1997. Disponível em: http://www.sedhab.df.gov.br/sites/300/379/00001416.pdf>. Acesso em: 08 de março de 2011.
- DISTRITO FEDERAL. Decreto 12055 de 14 de dezembro de 1989. Cria a Área de Proteção Ambiental do Lago Paranoá. **Diário Oficial do Distrito Federal**, 15 dezembro 1989. Disponível em: http://www.tc.df.gov.br/silegisdocs/distrital/gdf/decretos/ Acesso em: 09 março 2011.
- DISTRITO FEDERAL (Brasil). Lei orgânica do Distrito Federal. **Diário Oficial do Distrito Federal**, 09 junho 1993. Disponível em:

 http://www.cl.df.gov.br/cldf/legislacao/lei-organica-1/>. Acesso em: 08 de março de 2011.
- DISTRITO FEDERAL (Brasil). Lei Complementar nº 803, de 25 de abril de 2009. Aprova a revisão do Plano Diretor de Ordenamento Territorial do Distrito Federal PDOT e dá outras providências. **Diário Oficial do Distrito Federal**, 27 abril 2009. Disponível em: http://www.cl.df.gov.br/cldf/processo-legislativo-1/pdot>. Acesso em: 08 de março de 2011.
- DISTRITO FEDERAL. Decreto nº 18.910, de 15 de dezembro de 1997. Aprova Normas de Edificação, Uso e Gabarito, relativas às Regiões Administrativas

- do Núcleo Bandeirante RA VIII e Lago Sul RA XVI. **Diário Oficial do Distrito Federal**, 16 dezembro 1997. Disponível em: http://www.copevdf.com.br/coordenacao/alvaras/dec_1997.htm. Acesso em: 4 julho 2011.
- DISTRITO FEDERAL. Lei Complementar N° 265, de 14 de dezembro de 1999. Dispõe sobre a criação de Parques Ecológicos e de Uso Múltiplo no Distrito Federal. **Diário Oficial do Distrito Federal**, 23 dezembro 1999. Disponível em: http://www.sedhab.df.gov.br/sites/300/379/00001430.pdf>. Acesso em: 09 de março de 2011.
- ECOOIDEIA. Plano de Manejo Florestal em Regime Sustentável e de Integração Social da Proflora Florestamento e Reflorestamesnto S/A. Disponível em: http://www.ecooideia.org.br/>. Acesso em: 18 de fevereiro de 2011.
- FAO, Food and Agriculture Organization of the United Nations. Plannaing for sustainable use of land resources. **FAO land and water bulletin 2**. Rome: FAO,1995. 67p.
- FERRANTE, J. E. T.; RANCAN, L., NETTO, P. B. Meio físico. In: FONSECA, F. O. Olhares sobre o Lago Paranoá, 1ª Ed. Brasília DF: Secretaria de Meio Ambiente e Recursos Hídricos, SEMARH, 2001.
- FERRARI, R. Modelagem Dinâmica do Uso e Cobertura da Terra da Quarta Colônia, RS. 2008. 130f. Dissertação (Mestrado em Geomática) Universidade Federal de Santa Maria, Santa Maria, 2008.
- FERREIRA, M. M. S. Avaliação da qualidade da água subterrânica para o consumo humano na Bacia do Rio São Bartolomeu: O caso dos poços tubulares profundos no Setor Habitacional Jardim Botânico, Distrito Federal. 2010. 124f. Dissertação (Mestrado em Geociências Aplicadas) Universidade de Brasília, Brasília, 2010.
- FRANÇA, K.; VIANA, R. Brasília: a imposição da utopia. In: Encontro Nacional dos Geógrafos, 16., Porto Alegre, 2010. **Anais**...Porto Alegre: AGB, 2010.
- FREITAS-SILVA, F.H; CAMPOS, J.E.G. Geologia do Distrito Federal. In: **Inventário** hidrogeológico e dos recursos hídricos superficiais do Distrito Federal. Brasília: GDF. 1998.
- FREITAS-SILVA, F.H.; DARDENNE, M. A. Proposta de subdivisão estratigráfica formal para o grupo Canastra no oeste de Minas Gerais e leste de Goiás. In: Simpósio Geol. Centro Oeste, 4. Brasília, 1991. **Anais**...Brasília: SBG, 1994. p.164-165

- GDF. Companhia Imobiliária de Brasília. **Estudo de impacto ambiental EIA**: Zona de expansão urbana da cidade satélite de Brazlândia RA IV. Vol II. ENGEA: Brasília, 1991.
- GDF. **Síntese de informações Socioeconômicas 2010**. Companhia de Planejamento do Distrito Federal. Brasília: Codeplan, 2010. 89p.
- GDF. **Síntese de informações Socioeconômicas 2006**. Companhia de Planejamento do Distrito Federal. Brasília: Codeplan, 2006. 68p.
- GODOY, M. M. G. **Modelagem da Dinâmica Intra-urbana no Bairro Savassi, Belo Horizonte**. 2004. 84f. Disseratação (Mestrado em geografia). Universidade Federal de Minas Gerais, Belo Horizonte, 2004.
- GODOY, M. M. G.; SOARES FILHO, B. S.. Modelagem da Dinâmica Intra-urbana no Bairro Savassi, Belo Horizonte. In: Almeida, C. M. de; Câmara, G.; Monteiro, A. M. V.. **Geoinformação em urbanismo**: cidade real x cidade virtual. São Paulo: Oficina de Textos, 2007. Cap. 13, p. 286-304.
- HAGEN, A. Fuzzy set approach to assessing similarity of categorical maps. **International Journal of Geographical Information Science**, Palma, v 17. n. 3, p. 235-249, 2003.
- IBGE. Censos Demográficos 1991. Divulga análises e avaliações do Censo Demográfico de 1991. Disponível em http://www.ibge.gov.br/home/estatistica/populacao/censodem/default_censo1991.shtm. Acesso em 26 dezembro de 2010.
- IBGE. Censo 2000. Divulga análises e avaliações do Censo Demográfico de 2000. Disponível em: < http://www.ibge.gov.br/censo/>. Acesso em 26 dezembro 2010.
- IBGE. Censo 2010. Divulga análises e avaliações preliminares do Censo Demográfico de 2010. Disponível em: < http://www.censo2010.ibge.gov.br/>. Acesso em 26 dezembro 2010.
- JAMES, D. J. G.; HUNTLEY, I. D. Some aspects of the processes of mathematical models. In: Mathematical Modeling – a source book of case studies. London, 1990.
- MARINI, O.J.; FUCK, R.A.; DANNI, J.C. A evolução geotectônica da Faixa Brasília e seu embasamento. In: Simpósio sobre o Craton do São Francisco e suas

- faixas marginais. Salvador, 1981. **Anais**... Salvador, SBG/BA, 1981. p. 100-113.
- MARTINS, E.S.; BAPTISTA, G. M. M. Geomorfologia do Distrito Federal. In: Inventário hidrogeológico e dos recursos hídricos superficiais do Distrito Federal. Brasília. IEMA/SEMATEC/UnB, 1998.
- MENEZES, P. H. B. J.; Avaliação do efeito das ações antrópicas no processo de escoamento superficial e assoreamento na Bacia do Lago Paranoá. 2010. 117f. Dissertação (Mestrado em Geociências) Universidade de Brasília, Brasília, DF, 2010.
- MENEZES JUNIOR, A.; SINOTI, M. L. SARAIVA, R. C. F. II Histórico. In: FONSECA, F. O. **Olhares sobre o Lago Paranoá**. 1ª Ed. Brasília: Secretaria de Meio Ambiente e Recursos Hídricos SEMARH, 2001.
- NOVAIS PINTO, M. Unidades geomorfológicas do Distrito Federal. **Geografia**, 11(21) [S. l.: s. n.], 1986.
- OLIVA, A. Q.; CAVALCANTE, C. V.; FONSECA, F. O.; NETTO, P. B., OGLIARI, T. C. Planos urbanísticos Governamentais. In: FONSECA, F. O. Olhares sobre o Lago Paranoá. 1ª Ed., Brasília: Secretaria de Meio Ambiente e Recursos Hídricos SEMARH, 2001.
- PAVIANI, A. Brasília no contexto local e regional: urbanização e crise. **Revista Território**, Rio de Janeiro, v 7. n 11, set./out., 2003.
- RAMOS, A. E.; NÓBREGA, M. G. G.; CARDOSO, E. S. Vegetação, flora e unidades de conservação na Bacia do Lago Paranoá. In.: FONSECA, F. O. **Olhares sobre o Lago Paranoá**. 1ª Ed., Brasília: Secretaria de Meio Ambiente e Recursos Hídricos SEMARH, 2001.
- REATTO, A.; MARTINS, E. S., FARIAS, M. F. R.; SILVA, A. V.; CARVALHO JR, O. A. Mapa pedológico digital SIG atualizado do Distrito Federal escala 1:100.000 e uma síntese do texto explicativo. Planaltina: Embrapa Cerrados, 2004.
- RODRIGUES, H.O., SOARES-FILHO, B. S., COSTA, W. L. S. Dinamica EGO, uma plataforma para modelagem de sistemas ambientais. In: Simpósio Brasileiro de Sensoriamento Remoto, 13. Florianópolis, 2007. **Anais...** Florianópolis: INPE, 2007.
- SENADO FEDERAL. Secretaria Especial de Comunicação Social. Agência Senado. **50 anos de Brasília**. Celebra o cinqüentenário de Brasília. Disponível em:

- http://www.senado.gov.br/noticias/especiais/brasilia50anos/default.asp. Acesso em: 16 maio 2011.
- SOARES, F. S.; ALVES, F. Análise multitemporal do desenvolvimento urbano do Distrito Federal. Encontro Nacional de Estudos Populacionais, 14., Caxambú (MG), 2004. **Anais**... Caxambu (MG): 2004.
- SOARES-FILHO, B.S., PENNACHIN, C.; CERQUEIRA, G. DINAMICA a stochastic cellular automata model designed to simulate the landscape dynamics in Amazonian colonization frontier. **Ecological Modelling**, v.154, p. 217-234, 2002.
- SOARES-FILHO B.S., CORRADI-FILHO L., CERQUEIRA G.C., ARAUJO W.L. Simulating the spatial patterns of change through the use of the dinamica model. In: Simpósio Brasileiro de Sensoriamento Remoto, 11. pp. 721-728. Belo Horizonte, 2003. **Anais**...Belo Horizonte: INPE, 2003.
- SOARES-FILHO B.S., CERQUEIRA G.C., ARAUJO, W.L., VOLL E. Modelagem de dinâmica de paisagem: concepção e potencial de aplicação de modelos de simulação baseados em autômato celular. In: Albernaz A.L., Silva J.M.C. da, Valeriano, D.(editores). Ferramentas para modelagem da distribuição de espécies em ambientes tropicais. Editora Museu Paraense Emílio Goeldi, 2004.
- SOARES-FILHO, B. S.; RODRIGUES, H. O.; CERQUEIRA, G. C.; COSTA, W. L. S.; ARAÚJO, W. L.; OLIVEIRA, L. B. R. **Software Dinamica EGO: Environment for Geoprocessing Objects**. CSR/UFMG. Versão 1.2.1. 2005
- SOARES-FILHO, B. S; RODRIGUES, H.; LELLES, W. **Modeling Environmental Dynamics with Dinamica EGO.** 1. ed. v.1. Belo Horizonte: CSR, 2009. 115p.
- TURNER, B.L.; MEYER, W. B.; SKOLE, D. Global land-use/land cover change: Towards an integrate study. **Ambio**, Londres, v.23, n.1, p. 91-95, 1994.
- TORRENS, P. How cellular models of urban systems work. London: Casa, UCL, 2000. 75 p.
- TERRACAP. Zoneamento Ambiental da Área de Proteção Ambiental (APA) do Lago Paranoá. Brasília: Terracap, [20??]. 16 slides, color. Acompanha texto.
- TRENTIN, G. A expansão urbano-industrial do município de Americana SP: geotecnologias aplicadas à análise temporal e simulação de cenários. 2008.

- 236f. Dissertação (mestrado em Geografia). Universidade Estadual Paulista, Rio Claro (SP), 2008.
- TRENTIN, G.; FREITAS, M. I. C. Modelagem da dinâmica espacial urbana: modelo de autômato celular na simulação de cenários para o município de Americana-SP. **Revista Brasileira de Cartografia**, Rio de janeiro, n 62, Ed. especial 01, 2010.
- UNIVERSIDADE FEDERAL DE MINAS GERAIS. Dinamica Project. Apresenta o projeto dinâmica, suas aplicações, lista de discussões. Disponível em: http://www.csr.ufmg.br/dinamica/>. Ultimo acesso em: 25 julho 2011.
- UNESCO. **Vegetação do Distrito Federal**. Tempo e espaço. 1ª ed. Brasília: Unesco, 2000. 74p.
- UNESCO. **Vegetação do Distrito Federal**. Tempo e espaço: uma avaliação multitemporal da perda de cobertura vegetal no DF e da diversidade flórística. 2 ed. Brasília: Unesco, 2002. 80p
- VALENTIN. E. F. D. Modelagem dinâmica de perdas de solo: o caso do Alto curso da Bacia Hidrográfica do Rio Descoberto DF/GO. 2008. 149f. Tese (Doutorado em Geologia). Instituto de Geociências. Universidade de Brasília, Brasília, 2008.

ANEXOS

Anexo 1

Coeficiente dos pesos de evidência

b - Correlação entre mapas. Índice de Cramer e Incerteza da Informação Conjunta

ANEXO 1 - Coeficiente dos pesos de evidência

Sub-bacia do Bananal										
	Range	Possible Transitions	Executed Transitions	Weigth Coefficient	Contrast					
AGRICULTURA PARA AREA URBANA										
	0 <= v < 250	32464	17331	2,1631600	2,708660					
	250 <= v < 500	36335	12570	1,3906400	1,701410					
Distância até área urbana	500 <= v < 750	40585	6608	0,3901420	0,454982					
	750 <= v < 1000	34806	1882	-0,8343220	-0,903703					
	1000 <= v < 1250	21937	83	-3,5457500	-3,621320					
	0 <= v < 30	14839	275	-1,9419900	-1,985940					
Distância atá a dronagam	30 <= v < 60	66639	5871	-0,3094940	-0,377044					
Distância até a drenagem	60 <= v < 120	159599	23277	0,2599910	0,560588					
	120 <= v < 180	86995	9051	-0,1255710	-0,167599					
	0 <= v < 30	61855	1305	-1,80972	-2,0074					
	30 <= v < 40	20507	1824	-0,299037	-0,316537					
Di-t &	40 <= v < 50	22482	2360	-0,115607	-0,123648					
Distância às áreas protegidas	50 <= v < 210	214686	26055	0,0479617	0,141678					
	210 <= v < 220	1163	759	2,65813	2,67667					
	220 <= v < 260	10007	6171	2,50298	2,66458					
	2 <= v < 3	231053	28200	0,0543852	0,190043					
Solos	5 <= v < 6	61862	10274	0,413872	0,530299					
	AGRICULTURA	PARA VEGETA	ÇÃO							
	0 <= v < 30	16244	1680	0,498076	0,532523					
	30 <= v < 60	63139	2371	-0,585917	-0,696038					
Distância até a drenagem	60 <= v < 90	74502	3996	-0,212569	-0,271682					
	90 <= v < 120	77092	11276	0,893648	1,43798					
	120 <= v < 150	63057	1162	-1,31746	-1,49708					
	1 <= v < 2	38106	321	-2,11039	-2,23306					
Solos	2 <= v < 3	209380	6527	-0,7787	-1,57977					
	5 <= v < 6	65225	13637	1,32733	2,22883					
	VEGETAÇÃO PA	ARA AGRICULT	URA							
	0 <= v < 250	251810	128586	3,43162	4,5122					
	250 <= v < 500	152679	19069	1,44217	1,52278					
Distância atá agricultura	1750 <= v < 2000	205065	1516	-1,5108	-1,53923					
Distância até agricultura	2000 <= v < 2250	226183	9399	0,250729	0,262048					
	2250 <= v < 3000	761364	33188	0,300673	0,353352					
	3000 <= v < 3250	274762	756	-2,50384	-2,54912					
	0 <= v < 30	978514	13138	-0,907982	-1,02266					
Distância até a drenagem	30 <= v < 60	1252245	34094	-0,186941	-0,232187					
	_ 60 <= v < 90	1112499	52646	0,386732	0,500704					

	<u> </u>				
	90 <= v < 120	934838	52585	0,568979	0,720032
	120 <= v < 150	677491	27315	0,21922	0,251251
	150 <= v < 180	412442	12736	-0,0572695	-0,0614538
	0 <= v < 10	4800985	7867	-3,02323	-4,81458
	10 <= v < 20	48913	18277	2,87249	2,96686
Distância às áreas protegidas	20 <= v < 140	525880	137651	2,35215	3,53701
	140 <= v < 160	84001	12028	1,59997	1,65179
	160 <= v < 210	186969	16691	1,06646	1,12686
	1 <= v < 2	1589024	40431	-0,256478	-0,337391
Solos	2 <= v < 3	3329939	115500	0,0628896	0,150362
30103	3 <= v < 4	446087	240	-4,13807	-4,21818
	5 <= v < 6	515540	36343	0,809917	0,931409
	VEGETAÇÃO PAR	A ÁREA URBAI	NA		
	0 <= v < 250	543032	112658	2,1508	3,11672
Distância atá ánsa unhana	250 <= v < 500	357119	36800	1,32728	0,634699
Distância até área urbana	750 <= v < 1000	286526	3875	-0,798572	-0,826837
	1000 <= v < 1250	209904	3854	-0,487912	-0,502274
	0 <= v < 30	983020	17644	-0,511027	-0,589364
	30 <= v < 60	1237471	19320	-0,652853	-0,775203
	60 <= v < 90	1070489	10636	-1,11055	-1,25291
Distância atá a duanasana	90 <= v < 120	902853	20600	-0,266093	-0,307939
Distância até a drenagem	120 <= v < 150	660511	10335	-0,650612	-0,710305
	150 <= v < 210	656293	6686	-1,08526	-1,16691
	210 <= v < 240	143172	2972	-0,36274	-0,370374
	240 <= v < 270	225583	85641	3,00003	3,65377
	0 <= v < 10	4817013	23895	-1,81017	-3,49537
	10 <= v < 20	36197	5561	1,7847	1,81183
	20 <= v < 30	34658	2912	1,10217	1,11348
Distância às ánsas mustasidas	30 <= v < 40	34554	1643	0,493812	0,497524
Distância às áreas protegidas	40 <= v < 80	138914	8783	0,795372	0,824146
	80 <= v < 90	35602	3339	1,22285	1,23657
	90 <= v < 230	501546	37280	0,969095	1,1256
	240 <= v < 260	253020	89565	2,88952	3,58454
	1 <= v < 2	1557737	9144	-1,64091	-1,90353
	2 <= v < 3	3370480	156041	0,465806	1,91639
Solos	3 <= v < 4	449916	4069	-1,20548	-1,26316
	5 <= v < 6	483777	4580	-1,15932	-1,22034
	MATA DE GALERIA I	PARA AGRICUL	TURA		
	0 <= v < 250	30033	2290	2,48628	3,85029
	1000 <= v < 2000	70127	397	-0,187736	-0,219603
Distância até agricultura	2000 <= v < 2250	13989	295	1,14298	1,21435
	2250 <= v < 2500	12863	29	-1,11184	-1,13188
	0 <= v < 30	434730	2440	-0,196385	-2,81734
Distância até a drenagem	30 <= v < 60	6617	571	2,62095	2,81734
Distância à áreas protegidas	0 <= v < 10	426131	275	-2,36437	-5,82746
· · · · ·	_			, /	- /

10 <= v < 20		_				
Solos 2 <= v < 3 36075 721 1,08819 1,27781 3,24781 5 <= v < 6 43754 2290 2,08444 3,41446		10 <= v < 20	6440	557	2,62346	2,8145
Solos 5 <= v < 6 43754 2290 2,08444 3,41446 MATA DE GALERIA PARA AREA URBANA Distância até a drenagem 0 <= v < 30		20 <= v < 160	8776	2179	3,87296	5,144
5 <= v < 6 43754 2290 2,08444 3,41446 MATA DE GALERIA PARA AREA URBANA Distância até a drenagem 0 <= v < 30	Solos	2 <= v < 3	36075	721	1,08819	1,27781
Distância até a drenagem 0 <= v < 30 432853 563 -0,223714 -2,9537 30 <= v < 60		5 <= v < 6	43754	2290	2,08444	3,41446
Distância até a drenagem 30 <= v < 60 6197 151 2,72999 2,9537 0 <= v < 10		MATA DE GALERIA	PARA AREA URI	BANA		
30 <= v < 60	Distância atá a drenagem	0 <= v < 30	432853	563	-0,223714	-2,9537
Distância às áreas protegidas		30 <= v < 60	6197	151	2,72999	2,9537
Distância às áreas protegidas 30 <= v < 120 3044 15 1,11192 1,2622 120 <= v < 130		0 <= v < 10	426275	419	-0,504128	-3,17908
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		10 <= v < 20	5918	35	1,29538	1,33213
130 <= v < 160	Distância às áreas protegidas	30 <= v < 120	3044	15	1,11192	1,12622
1 <= v < 2 89229 103 -0,343219 -0,414746 Solos 2 <= v < 3		120 <= v < 130	622	95	4,70653	4,84811
Solos $ 2 <= v < 3 \qquad 35436 \qquad 82 \qquad 0,35341 \qquad 0,39131 \\ 3 <= v < 4 \qquad 272921 \qquad 529 \qquad 0,175849 \qquad 0,555041 \\ \hline MATA DE GALERIA PARA VEGETAÇÃO \\ Distância até a vegetação 250 <= v < 250 \qquad 558125 \qquad 122232 \qquad 0,00194678 \qquad 0,429187 \\ 250 <= v < 500 \qquad 2889 \qquad 446 \qquad -0,42724 \qquad -0,429187 \\ \hline 0 <= v < 30 \qquad 522017 \qquad 89727 \qquad -0,298902 \qquad -3,26795 \\ \hline 30 <= v < 60 \qquad 32045 \qquad 25999 \qquad 2,73208 \qquad 2,95636 \\ \hline 1 <= v < 2 \qquad 133001 \qquad 43875 \qquad 0,564716 \qquad 0,780016 \\ 2 <= v < 3 \qquad 66859 \qquad 31505 \qquad 1,15816 \qquad 1,37087 \\ \hline 3 <= v < 4 \qquad 310855 \qquad 38463 \qquad -0,684123 \qquad -1,27927 \\ \hline 5 <= v < 6 \qquad 50299 \qquad 8835 \qquad -0,272682 \qquad -0,297311 \\ \hline 0 <= v < 100 \qquad 315472 \qquad 71550 \qquad 0,0469707 \qquad 0,109206 \\ \hline $		130 <= v < 160	1489	150	4,23082	4,46358
$3 <= v < 4 \qquad 272921 \qquad 529 \qquad 0,175849 \qquad 0,555041$ $\frac{3 <= v < 4}{272921} \qquad 529 \qquad 0,175849 \qquad 0,555041$ $\frac{0 <= v < 250}{250 <= v < 500} \qquad 558125 \qquad 122232 \qquad 0,00194678 \qquad 0,429187$ $\frac{250 <= v < 500}{250 <= v < 500} \qquad 2889 \qquad 446 \qquad -0,42724 \qquad -0,429187$ $\frac{0 <= v < 30}{30 <= v < 60} \qquad 32045 \qquad 25999 \qquad 2,73208 \qquad 2,95636$ $\frac{1 <= v < 2}{2} \qquad 133001 \qquad 43875 \qquad 0,564716 \qquad 0,780016$ $2 <= v < 3 \qquad 66859 \qquad 31505 \qquad 1,15816 \qquad 1,37087$ $3 <= v < 4 \qquad 310855 \qquad 38463 \qquad -0,684123 \qquad -1,27927$ $5 <= v < 6 \qquad 50299 \qquad 8835 \qquad -0,272682 \qquad -0,297311$ $0 <= v < 100 \qquad 315472 \qquad 71550 \qquad 0,0469707 \qquad 0,109206$		1 <= v < 2	89229	103	-0,343219	-0,414746
MATA DE GALERIA PARA VEGETAÇÃO Distância até a vegetação 0 <= v < 250 558125 122232 0,00194678 0,429187 250 <= v < 500	Solos	2 <= v < 3	35436	82	0,35341	0,39131
$\begin{array}{c} {\rm Dist \hat{a}ncia\ at \acute{e}\ a\ vegeta \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$		3 <= v < 4	272921	529	0,175849	0,555041
Distância até a vegetação $ 250 <= v < 500 $ $ 2889 $ $ 446 $ $ -0,42724 $ $ -0,429187 $ $ 0 <= v < 30 $ $ 522017 $ $ 89727 $ $ -0,298902 $ $ -3,26795 $ $ 30 <= v < 60 $ $ 32045 $ $ 25999 $ $ 2,73208 $ $ 2,95636 $ $ 1 <= v < 2 $ $ 133001 $ $ 43875 $ $ 0,564716 $ $ 0,780016 $ $ 2 <= v < 3 $ $ 66859 $ $ 31505 $ $ 1,15816 $ $ 1,37087 $ $ 3 <= v < 4 $ $ 310855 $ $ 38463 $ $ -0,684123 $ $ -1,27927 $ $ 5 <= v < 6 $ $ 50299 $ $ 8835 $ $ -0,272682 $ $ -0,297311 $ $ 0 <= v < 100 $ $ 315472 $ $ 71550 $ $ 0,0469707 $ $ 0,109206 $		MATA DE GALERIA	A PARA VEGETA	ÇÃO		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Distância até a vegetação	0 <= v < 250	558125	122232	0,00194678	0,429187
Distância até a drenagem 30 <= v < 60 32045 25999 2,73208 2,95636 1 <= v < 2		250 <= v < 500	2889	446	-0,42724	-0,429187
30 <= v < 60 32045 25999 2,73208 2,95636 1 <= v < 2	Distância até a drenagem	0 <= v < 30	522017	89727	-0,298902	-3,26795
Solos 2 <= v < 3 3 <= v < 4 310855 38463 -0,684123 -1,27927 5 <= v < 6 50299 8835 -0,272682 -0,297311 0 <= v < 100 315472 71550 0,0469707 0,109206		30 <= v < 60	32045	25999	2,73208	2,95636
Solos 3 <= v < 4 310855 38463 -0,684123 -1,27927 5 <= v < 6		1 <= v < 2	133001	43875	0,564716	0,780016
3 <= v < 4	Solos	2 <= v < 3	66859	31505	1,15816	1,37087
0 <= v < 100 315472 71550 0,0469707 0,109206	30103	3 <= v < 4	310855	38463	-0,684123	-1,27927
313472 71330 0,0403707 0,103200		5 <= v < 6	50299	8835	-0,272682	-0,297311
Distancia até as estradas 100 <= v < 200 140526 23583 -0,327738 -0,424575		0 <= v < 100	315472	71550	0,0469707	0,109206
	Distancia até as estradas	100 <= v < 200	140526	23583	-0,327738	-0,424575
200 <= v < 300 105016 27545 0,23934 0,299145		200 <= v < 300	105016	27545	0,23934	0,299145

SUB-BACIA DO LAGO PARANOA							
	Range	Possible Transitions	Executed Transitions	Weigth Coefficient	Contrast		
	VEGETAÇÃO PAR	A AGRICULTUR	A.				
	8500 <= v < 11000	531492	44	-7,892820	-8,049980		
	12250 <= v < 13000	465505	27161	-1,274870	-1,368590		
	13000 <= v < 13250	200599	51743	0.449657	0.47407		
Distância até a Agricultura	13250 <= v < 14000	663856	183946	0.547391	0.664158		
Distancia ate a Agricultura	14000 <= v < 14750	625563	181370	0.610627	0.734481		
	14750 <= v < 15500	523129	166630	0.745792	0.873428		
	15500 <= v < 15750	130754	63705	1,455190	1,518580		
	15750 <= v < 17000	296914	135396	1,329930	1,467630		
	0 <= v < 30	1517433	311286	0.151873	0.236168		
Dstância até a drenagem	30 <= v < 60	1069611	318803	0.649771	0.9199		
	60 <= v < 90	717104	122940	-0.0691115	-0.0819982		

	90 <= v < 120	555219	55294	-0.695446	-0.771899
	120 <= v < 150	222194	1672	-3,375630	-3,435820
	0 <= v < 30	659846	8552	-2,826450	-3,012190
	30 <= v < 60	468612	39771	-0.871601	-0.946121
	60 <= v < 90	539658	89075	-0.114716	-0.129849
Distância até o Lago	90 <= v < 120	643249	147501	0.294115	0.349296
Distancia ate o Lago	120 <= v < 150	666760	191357	0.596325	0.72642
	150 <= v < 180	535425	172830	0.765369	0.900839
	180 <= v < 240	552599	158422	0.59481	0.698274
	240 <= v < 270	397107	2487	-3,560500	-3,671730
	1	401683	257296	2,084080	2,425970
PDOT	3	232697	4737	-2,367420	-2,425980
	4	1630412	547962	0.825571	1,602730
	0	611835	101255	-0.111558	-0.128562
Solos	1	2552303	618850	0.367148	1,057740
	2	1051036	89062	-0.873307	-1,062430
	0 <= v < 3	213975	49111	0.29531	0.311679
	3 <= v < 15	596805	145312	0.372671	0.438471
	15 <= v < 27	500908	122056	0.373682	0.427527
	27 <= v < 42	527262	127221	0.360706	0.415595
	42 <= v < 66	534370	121433	0.282415	0.324891
	66 <= v < 72	100922	20067	0.112767	0.115472
	72 <= v < 117	514062	103870	0.132862	0.150998
	117 <= v < 156	260473	45986	-0.0335647	-0.0356214
Distância até as vias	156 <= v < 159	16384	2405	-0.253659	-0.254519
	159 <= v < 168	47574	8282	-0.0505891	-0.0511252
	168 <= v < 189	101147	19990	0.105194	0.107717
	189 <= v < 192	13395	3189	0.343079	0.344226
	192 <= v < 246	195787	39870	0.142648	0.149507
	246 <= v < 249	8526	603	-1,06926	-1,07069
	249 <= v < 252	8386	429	-1,41400	-1,41565
	252 <= v < 255	8117	170	-2,33840	-2,34037
	255 <= v < 258	815163	1	-1,21048	-1,23573
	VEGETAÇÃO PARA				2,20070
	0 <= v < 250	1897404	1151596	0.785041	1,150170
	250 <= v < 500	789887	328870	0.0128324	0.0146993
	500 <= v < 750	480995	200982	0.0189841	0.0205763
	750 <= v < 1000	421656	186837	0.122026	0.130981
Distância até a área urbana	1000 <= v < 1250	301853	150199	0.340964	0.358718
	1250 <= v < 1750	522936	256123	0.309715	0.338735
	1750 <= v < 2000	227580	102949	0.159481	0.165607
	2000 <= v < 2250	189535	61059	-0.393297	-0.405079
	2250 <= v < 2500				
		142397	15310	-1,765760 4 402770	-1,795200
	2500 <= v < 2750	115803	989	-4,403770	-4,435320
	2750 <= v < 3750	500265	4162	-4,430180	-4,574510

	3750 <= v < 4000	123914	8230	-2,292470	-2,321450
	4000 <= v < 4250	118420	23902	-1,024220	-1,041100
	4250 <= v < 4500	115788	33283	-0.557207	-0.56703
	4500 <= v < 4750	117200	43339	-0.182527	-0.185964
	4750 <= v < 5000	88770	5023	-2,463170	-2,484400
	0 <= v < 30	2014318	808171	-0.0498078	-0.0734737
	30 <= v < 60	1122778	371970	-0.351732	-0.425639
	60 <= v < 90	765222	171058	-0.894548	-1,003250
Distância até a Drenagem	90 <= v < 120	670818	170893	-0.722816	-0.801245
C	120 <= v < 150	415814	195292	0.229103	0.245782
	150 <= v < 210	644416	370667	0.653697	0.731373
	210 <= v < 240	247971	199856	1,774610	1,842210
	240 <= v < 270	344777	284946	1,911380	2,012250
	0 <= v < 30	1508321	857027	0.625113	0.833881
	30 <= v < 60	951836	522995	0.54909	0.651468
	60 <= v < 90	926521	475938	0.40535	0.478265
	90 <= v < 120	824202	328454	-0.0610661	-0.070324
Distância até o Lago	120 <= v < 150	643268	167865	-0.690398	-0.76234
	150 <= v < 180	462735	100140	-0.936113	-1,000940
	180 <= v < 210	282747	66686	-0.824961	-0.859663
	210 <= v < 240	199725	21609	-1,758720	-1,800270
	240 <= v < 270	426759	32139	-2,157250	-2,258990
	0	17216	7951	0.197659	0.198214
	1	170002	25615	-1,378710	-1,409030
	2	1492369	726	-7,277230	-7,801710
PDOT	3	296345	68385	-0.853412	-0.890904
	4	2193876	1111426	0.377022	0.591225
	5	50038	13270	-0.668517	-0.673462
	6	2006268	1345480	1,061680	1,602300
	0	1096954	586374	0.489015	0.597123
Solor	1	3537117	1603664	0.163588	0.386492
Solos	2	1249562	287588	-0.856854	-1,043920
	3	83919	9820	-1,670380	-1,687040
	0 <= v < 3	543639	378775	1,182430	1,295500
	3 <= v < 9	800405	553276	1,156550	1,328640
	9 <= v < 15	614336	409972	1,046790	1,162800
	15 <= v < 21	490838	299133	0.795535	0.865232
	21 <= v < 24	210492	117445	0.58347	0.604393
	24 <= v < 27	188505	94405	0.353841	0.365128
Distância até as vias	27 <= v < 30	169518	77268	0.173382	0.178299
		147565	61814	0.0232869	0.0238534
	30 <= v < 33				
	30 <= v < 33 33 <= v < 48			-0.0851815	-0.0937207
	33 <= v < 48	571780	224564	-0.0851815 -0.23192	
				-0.0851815 -0.23192 -0.373533	-0.0937207 -0.235117 -0.402318

	75 <= v < 117	505855	133395	-0.67621	-0.730503
	117 <= v < 120	22426	4170	-1,125970	-1,129360
	120 <= v < 126	42465	6865	-1,295300	-1,302430
	126 <= v < 132	39922	5004	-1,592160	-1,599820
	132 <= v < 135	18607	1649	-1,979970	-1,983980
	135 <= v < 162	142034	5631	-2,836720	-2,872580
	162 <= v < 258	1112721	829	-6,850750	-7,213340
	VEGETAÇÃO PARA M	IATA DE GALERI	A		
	0 <= v < 250	589718	19117	1,690110	3,394720
	250 <= v < 500	419740	1752	-0.388472	-0.42922
Distância até a Mata de Galeria	500 <= v < 750	413593	1	-7,846410	-7,966520
	2000 <= v < 3250	555303	1077	-1,157170	-1,272830
	3250 <= v < 3500	84171	635	0.206814	0.212205
	0 <= v < 30	1227017	20870	1,029350	3,208130
Distância ate a drenagem	90 <= v < 120	501586	1661	-0.620816	-0.691575
	120 <= v < 150	220573	51	-3,285700	-3,345710
	0 <= v < 30	667083	15789	1,366570	2,371480
	30 <= v < 60	431126	2285	-0.148498	-0.166685
Distância até o Lago	60 <= v < 90	453856	3273	0.161387	0.186336
	90 <= v < 120	495749	1	-8,027600	-8,173390
	180 <= v < 240	395411	1234	-0.680317	-0.738296
	2	1492692	1049	-2,173570	-2,650770
PDOT	4	1095756	13306	0.687455	1,225780
	6	669015	8227	0.700211	0.953745
	0	519099	8519	0.992974	1,316040
	1	1942448	8995	-0.284172	-0.529539
Solos	2	964060	2086	-1,047520	-1,256190
	3	74338	239	-0.650471	-0.660323
	4	94183	2366	1,427630	1,512850
	0 <= v < 3	166182	1318	0.257217	0.271177
	3 <= v < 6	131126	1252	0.4444	0.465241
	6 <= v < 9	118773	1518	0.739265	0.77623
	9 <= v < 18	307962	5097	1,001590	1,170860
	18 <= v < 36	545997	7039	0.748051	0.961979
Distância até as vias	36 <= v < 39	74814	721	0.453785	0.465744
	39 <= v < 45	134242	1802	0.78899	0.835226
	45 <= v < 57	217628	2258	0.528344	0.572933
		45857	239	-0.165372	-0.167297
	57 <= v < 60	43037			
	57 <= v < 60 60 <= v < 63			-0.378737	-0.382527
	60 <= v < 63	43657	184	-0.378737 -0.643545	-0.382527 -0.693364
	60 <= v < 63 63 <= v < 93	43657 356159	184 1153	-0.378737 -0.643545	-0.382527 -0.693364
	60 <= v < 63 63 <= v < 93 MATA DE GALERIA PA	43657 356159 RA AGRICULTU	184 1153 RA	-0.643545	-0.693364
Distância até a Agricultura	60 <= v < 63 63 <= v < 93	43657 356159	184 1153		

	<u>_</u>				
Distância até o Lago	0 <= v < 120	162332	2822	-0.818784	-2,21656
	120 <= v < 150	22365	4473	1,829580	2,62301
	150 <= v < 180	8817	279	-0.205193	-0.21394
	0 <= v < 6	6940	77	-1,274220	-1,30103
	6 <= v < 9	3891	238	0.484844	0.49723
	9 <= v < 27	35250	1737	0.256103	0.32117
	27 <= v < 30	6015	142	-0.506417	-0.51909
	30 <= v < 48	34481	1042	-0.252704	-0.29965
	48 <= v < 51	4839	293	0.474046	0.48912
	51 <= v < 54	4661	369	0.762165	0.78911
	54 <= v < 57	4617	243	0.325505	0.33467
	57 <= v < 60	4516	105	-0.522019	-0.53170
	60 <= v < 63	4120	42	-1,359820	-1,37609
Distância até as vias	63 <= v < 75	10795	177	-0.878279	-0.91252
	75 <= v < 78	1998	102	0.293348	0.29681
	78 <= v < 96	10915	676	0.498111	0.53583
	96 <= v < 99	1448	198	1,373250	1,39309
	99 <= v < 150	19707	1968	1,017130	1,21934
	150 <= v < 153	880	4	-2,173190	-2,17732
	156 <= v < 180	6056	45	-1,678810	-1,70521
	180 <= v < 183	496	44	0.886384	0.88981
	189 <= v < 198	1070	18	-0.8522	-0.85540
	198 <= v < 201	312	27	0.859225	0.86128
	201 <= v < 204	301	3	-1,382600	-1,38379
	MATA DE GALERIA PA		NA	•	•
	0 <= v < 250	134001	51390	0.568471	1,47401
	250 <= v < 750	7104	3621	1,082030	1,11938
	750 <= v < 1000	1226	268	-0.23069	-0.2317
Distância até a área urbana	1000 <= v < 1250	10393	4204	0.656434	0.6883
	1250 <= v < 1500	13214	4031	0.219831	0.23248
	1500 <= v < 1750	16687	2396	-0.742659	-0.78469
	1750 <= v < 2000	19401	605	-2,393000	-2,48874
Distância até a Drenagem	0 <= v < 30	243787	57400	-0.13461	-2,51390
Distancia ate a Dienagem	30 <= v < 60	6748	4352	1,640010	1,69490
	0 <= v < 30	101511	32880	0.307291	0.53731
	30 <= v < 60	50914	13008	-0.0263741	-0.032892
	60 <= v < 90	34947	4601	-0.84322	-0.9467
Distância até o Lago	90 <= v < 120	27240	4613	-0.547095	-0.60289
Distancia ate o Eugo	120 <= v < 150	24004	6112	-0.0309289	-0.034112
	150 <= v < 180	12611	4073	0.303024	0.31993
	180 <= v < 210	3290	763	-0.154359	-0.15629
	240 4 4240	781	465	1,429470	1,43481
	210 <= v < 240	701		•	
PDOT	1	8695	11	-5,628170	-5,67510

	4	170941	47947	0.101131	0.322974
	6	31578	17689	1,285020	1,517760
	0	93952	29006	0.237117	0.388332
Solos	1	75320	26481	0.431069	0.639412
	2	50818	2970	-1,736300	-1,982920
	3	13151	1039	-1,412770	-1,463330
	$0 \le v \le 3$	10882	7257	1,737280	1,833420
	3 <= v < 15	36581	20519	1,288070	1,568020
	15 <= v < 18	9896	3960	0.638379	0.667812
	18 <= v < 24	19118	6745	0.436456	0.475592
	24 <= v < 66	96990	26359	0.0575114	0.0935407
	66 <= v < 69	2997	345	-0.996354	-1,005300
	69 <= v < 72	2419	125	-1,866570	-1,876910
	72 <= v < 75	2095	8	-4,520870	-4,531870
Distância até as vias	75 <= v < 102	14597	240	-3,048180	-3,123670
	102 <= v < 105	1131	141	-0.905774	-0.90891
	105 <= v < 108	1300	137	-1,095610	-1,099720
	108 <= v < 111	1179	142	-0.945089	-0.948461
	111 <= v < 114	1086	222	-0.315725	-0.316969
	114 <= v < 120	1934	268	-0.784023	-0.78885
	120 <= v < 123	836	0	~ 0	-0.0044382
	123 <= v < 126	842	25	-2,443590	-2,447550
	126 <= v < 135	3189	22	-3,926330	-3,942910
	MATA DE GALERIA F	ARA VEGETAÇÃO)		
	0 <= v < 250	195614	62484	0.237818	1,265710
Distância até a vegetação	250 <= v < 750	40216	7321	-0.50834	-0.589082
	750 <= v < 1000	21339	46	-5,143260	-5,262270
	0 <= v < 30	250776	64389	-0.0686485	-1,886900
Distância até a drenagem	30 <= v < 60	3861	1465	0.502288	0.510712
	0 <= v < 30	87384	18753	-0.303157	-0.442378
	30 <= v < 90	96432	28180	0.10964	0.177507
	90 <= v < 120	35954	13327	0.464882	0.54891
Distância até o Lago	120 <= v < 150	25099	7207	0.0849329	0.0942571
	150 <= v < 180	9707	1169	-0.994144	-1,023550
	180 <= v < 100	2639	1103	-2,122060	-2,133930
	1	24365	15681	1,585200	1,792350
	2	49606	6390	-0.917243	-1,081270
PDOT		157862	34868	-0.266332	
	4				-0.628976
	6	26738	12849	0.916403	1,043260
	0	103040	38094	0.460734	0.827354
	1	56833	7994	-0.815604	-0.993421
Solos	2	57195	9347	-0.63874	-0.787385
	3	14634	2522	-0.574911	-0.604446
	4	23372	11126	0.898319	1,004750
	6	1288	1	-6,165840	-6,172660

	0 <= v < 3	5350	1725	0.251607	0.257223
	3 <= v < 9	9617	2726	0.0668529	0.0694757
	9 <= v < 12	5360	1123	-0.333618	-0.34011
Distância até as vias	12 <= v < 21	20737	3625	-0.557692	-0.599419
	21 <= v < 75	105073	21278	-0.376466	-0.599921
	75 <= v < 78	3345	1449	0.725361	0.736229
	78 <= v < 258	109152	37925	0.363972	0.673233
	REFLORESTAMENTO PA	ARA AGRICULTU	RA		
	0 <= v < 14500	177036	5449	-1,669270	-2,590640
Distância atá a Agricultura	14750 <= v < 15250	39700	887	-1,998280	-2,137370
Distância até a Agricultura	15250 <= v < 15500	4689	4430	4,619710	4,723730
	15500 <= v < 17000	56114	33678	2,186560	3,515460
	0 <= v < 30	37170	20461	1,982960	2,534370
Distância até a Drenagem	30 <= v < 60	128369	22801	0.247834	0.455868
	60 <= v < 90	124110	1182	-2,864010	-3,464890
	0 <= v < 60	39414	7063	0.25861	0.300765
Distância até o Lago	60 <= v < 90	54388	15487	0.859366	1,128140
	90 <= v < 150	131151	21894	0.172895	0.316263
PDOT	4	264241	23029	-0.568537	-2,302350
Solos	0	26413	6975	0.755487	0.849617
	1	261248	26773	-0.38957	-1,668640
	2	20431	10696	1,874530	2,112210
	0 <= v < 3	47097	2106	-1,281290	-1,419850
	3 <= v < 6	25564	2122	-0.621785	-0.66598
	6 <= v < 9	11236	1421	-0.152166	-0.157609
Distância atá acuta	9 <= v < 18	25621	3815	0.0371404	0.040558
Distância até as vias	18 <= v < 153	187790	32005	0.1978	0.57744
	153 <= v < 156	2021	775	1,305550	1,318410
	156 <= v < 168	5391	1498	0.825336	0.844746
	171 <= v < 186	2349	420	0.255883	0.258034
	REFLORESTAMENTO PA	RA ÁREA URBA	NA		
	0 <= v < 250	44397	5642	0.847207	1,108220
	250 <= v < 500	37204	42	-4,011140	-4,160520
	500 <= v < 750	39847	730	-1,207040	-1,322250
	750 <= v < 1000	45353	1575	-0.550648	-0.631589
	1000 <= v < 1250	36310	2321	0.0901898	0.104257
Distância para area urbana	1250 <= v < 1500	23181	200	-1,969880	-2,048850
		16743	338	-1,108070	-1,151550
	1200 <= A < 1/20			•	•
	1500 <= v < 1750 1750 <= v < 2000	6485	192	-0.715469	-0.727888
	1750 <= v < 2000	6485 2764	192 34	-0.715469 -1,611470	
	1750 <= v < 2000 2000 <= v < 2250	2764	34	-1,611470	-1,619810
	1750 <= v < 2000 2000 <= v < 2250 4000 <= v < 4250	2764 1808	34 569	-1,611470 1,996050	-1,619810 2,026540
	1750 <= v < 2000 2000 <= v < 2250	2764 1808 25991	34 569 4808	-1,611470 1,996050 1,291310	-1,619810 2,026540 1,553230
Distância até a drenagem	1750 <= v < 2000 2000 <= v < 2250 4000 <= v < 4250 4250 <= v < 5000	2764 1808	34 569	-1,611470 1,996050	-0.727888 -1,619810 2,026540 1,553230 1,306440 -0.153817

	90 <= v < 120	17160	2853	1,161850	1,296520
	120 <= v < 150	4860	724	1,031540	1,060730
	0 <= v < 30	12702	1022	0.338112	0.356937
	30 <= v < 60	22119	1448	0.11568	0.126168
Distância até o Lago	60 <= v < 90	40515	1614	-0.408076	-0.464453
	90 <= v < 120	52097	3262	0.0681218	0.08427
	120 <= v < 150	62352	1930	-0.669605	-0.8051
	210 <= v < 240	13443	2665	1,376930	1,51192
PDOT	3	27812	5376	1,345510	1,65226
PDOT	4	252286	11074	-0.306848	-1,65254
	0	21380	1942	0.470717	0.51974
Solos	1	243415	8940	-0.492585	-1,90994
	2	15304	5569	2,215720	2,59137
	0 <= v < 3	50058	5067	0.590515	0.77158
	3 <= v < 9	38709	5452	0.965946	1,23369
	9 <= v < 15	16557	1786	0.661541	0.71880
	15 <= v < 18	7381	346	-0.237986	-0.24377
	18 <= v < 21	7434	234	-0.652287	-0.66564
	21 <= v < 30	22214	491	-1,015450	-1,07114
	30 <= v < 33	6729	60	-1,936650	-1,95862
	33 <= v < 66	51685	651	-1,587510	-1,76227
	66 <= v < 69	3341	78	-0.959465	-0.96716
	69 <= v < 84	16010	466	-0.733016	-0.76504
	84 <= v < 87	3167	112	-0.531807	-0.53663
	87 <= v < 90	2918	64	-1,023370	-1,03035
Distancia até as vias	90 <= v < 96	5664	160	-0.763828	-0.77515
Distancia ate as vias	96 <= v < 99	2805	158	-0.0443586	-0.044798
	99 <= v < 105	5443	256	-0.234505	-0.23869
	105 <= v < 108	2707	69	-0.869441	-0.87529
	108 <= v < 111	2507	92	-0.493437	-0.49703
	111 <= v < 114	2375	104	-0.309356	-0.31166
	114 <= v < 138	16596	608	-0.49519	-0.5200
	138 <= v < 141	1709	16	-1,887440	-1,89291
	141 <= v < 144	1645	2	-3,936900	-3,94303
	144 <= v < 162	7903	52	-2,242920	-2,26999
	162 <= v < 165	948	38	-0.40163	-0.40277
	165 <= v < 171	1625	49	-0.696596	-0.69960
	171 <= v < 174	664	16	-0.927073	-0.92856
	174 <= v < 177	629	24	-0.452946	-0.45378
	REFLORESTAMENTO	PARA VEGETAÇÃ	0		
	0 <= v < 250	161332	34027	0.402104	1,02229
~	250 <= v < 500	69987	3395	-1,254750	-1,47112
Distância até a vegetação	500 <= v < 750	52681	7622	-0.0553985	-0.066446
	750 <= v < 1000	26786	2094	-0.745868	-0.79876
	/30 <= v < 1000				

	30 <= v < 60	111317	5749	-1,188790	-1,570240
	60 <= v < 90	157431	34503	0.450983	1,139750
	90 <= v < 120	17321	3014	0.164055	0.174337
	0 <= v < 60	33435	1084	-1,674450	-1,782100
	60 <= v < 90	45015	6114	-0.128903	-0.149621
	90 <= v < 120	65479	16644	0.645138	0.87584
Distância até o Lago	120 <= v < 150	69220	8798	-0.205293	-0.259004
	150 <= v < 180	49188	4514	-0.570673	-0.655672
	180 <= v < 210	35335	7678	0.440016	0.506986
	210 <= v < 240	13084	2306	0.179543	0.187961
PDOT	3	22516	80	-3,914860	-4,002100
FDOT	4	288256	47044	0.0869425	3,840530
	0	19776	338	-2,330400	-2,399790
Solos	1	273808	39333	-0.0637497	-0.466806
	2	16715	6980	1,388860	1,511490
	0 <= v < 3	60023	15032	0.625254	0.82218
	3 <= v < 15	60901	12873	0.404883	0.522741
	15 <= v < 18	8054	1019	-0.210541	-0.215732
	18 <= v < 33	41780	6188	-0.0279736	-0.0322696
	33 <= v < 36	8192	1887	0.515181	0.53183
	36 <= v < 63	50689	9584	0.265501	0.323306
Distancia até as vias	63 <= v < 66	3736	112	-1,755300	-1,766760
	66 <= v < 69	3268	5	-4,759430	-4,771780
	69 <= v < 141	60011	215	-3,906520	-4,159170
	141 <= v < 144	1748	105	-1,028780	-1,032800
	144 <= v < 147	1604	54	-1,635490	-1,640240
	147 <= v < 153	2968	61	-2,142470	-2,152260
	153 <= v < 156	1249	3	-4,307550	-4,312220

SUB-BACIA DO RIBEIRÃO DO GAMA

	Range	Possible Transitions	Executed Transitions	Weigth Coefficient	Contrast
	AGRICULTURA PA	RA AREA URBAI	NA		
	0 <= v < 250	913	756	3,931610	4,122250
	250 <= v < 1000	1262	754	2,754730	2,937010
	1000 <= v < 1250	186	35	0.897887	0.902755
	1250 <= v < 3250	1485	247	0.747955	0.779662
Distância até a área urbana	3250 <= v < 3500	188	30	0.698421	0.701959
	3500 <= v < 3750	191	39	0.9995	1,005290
	3750 <= v < 4000	191	32	0.75665	0.760636
	4000 <= v < 4250	206	45	1,085080	1,092080
	4250 <= v < 4500	196	36	0.868164	0.873068

	4500 <= v < 4750	211	40	0.907035	0.912638
	4750 <= v < 5000	204	34	0.750381	0.754593
	5000 <= v < 5500	486	71	0.59422	0.60174
	6000 <= v < 7250	2581	151	-0.418548	-0.437715
	7250 <= v < 7500	546	30	-0.485091	-0.489502
	7500 <= v < 8750	3401	147	-0.737389	-0.776898
	8750 <= v < 9000	703	30	-0.750729	-0.758647
	9000 <= v < 10500	4315	181	-0.768685	-0.821057
	10500 <= v < 11000	1341	60	-0.701233	-0.71577
	11000 <= v < 15250	11131	524	-0.647959	-0.783794
	15250 <= v < 15500	553	30	-0.498565	-0.503133
	15500 <= v < 16000	973	63	-0.310491	-0.315939
	16750 <= v < 22500	8995	728	0.0699072	-0.0848378
	22500 <= v < 22750	511	30	-0.414851	-0.418483
	22750 <= v < 23250	871	31	-0.939596	-0.951021
Di-tâité Du	0 <= v < 100	22361	1674	-0.154471	-0.267746
Distância até as Drenagens	100 <= v < 200	22282	2611	0.340407	0.71198
	0	7273	1094	0.628503	0.776899
Solos	1	1452	545	1,850460	1,966310
	4	28982	1488	-0.556716	-1,061400
PDOT	Zona Rural de Uso Controlado	28434	2919	0.191793	0.508745
	AGRICULTURA PAF	RA VEGETAÇÃO			
	0 <= v < 250	5858	2389	1,374070	1,654220
	250 <= v < 1000	14146	4577	1,009580	1,637330
	1000 <= v < 1250	3095	371	-0.24659	-0.260452
	1250 <= v < 1500	2554	138	-1,115550	-0,115266
	1500 <= v < 2000	4812	91	-2,201850	-2,300140
Distância até a vegetação	2000 <= v < 2750	6882	19	-4,142400	-4,303990
	2750 <= v < 3000	1786	27	-2,429600	-2,465720
	3000 <= v < 3750	4281	92	-2,071360	-2,156530
	3750 <= v < 4000	815	30	-1,517420	-1,531070
	4000 <= v < 6000	5090	118	-1,993830	-2,094850
	6250 <= v < 10000	3424	38	-2,742750	-2,815490
	0 <= v < 100	26189	5502	0.422671	1,003920
Distância ate a drenagem	100 <= v < 200	22077	2406	-0.354116	-0.559684
	0	9154	2975	1,016150	1,341690
	1	3622	2715	2,843470	3,243840
Solos	2	11038	368	-1,620040	-1,840480
	3	29275	1781	-0.989728	-1,665820
F. 1.	Macrozona Rural	32967	7452	0.51628	2,543140
Pdot	Macrozona Urbana	15387	456	-1,741640	-2,081330
	VEGETAÇÃO PARA		· · · · · · · · · · · · · · · · · · ·	<u> </u>	<u> </u>
	0 <= v < 250	5886	1421	2,223890	2,269900
Distância até a Agricultura	250 <= v < 1000	15797	2346	1,622460	1,692400
				_,0 100	

	1000 <= v < 1250	4838	313	0.697628	0.703222
	1250 <= v < 2750	26407	1784	0.743975	0.778629
	2750 <= v < 34750	358146	18745	0.472542	1,024220
	34750 <= v < 35000	1755	0	~ 0	-0.002134
	35000 <= v < 41500	48385	120	-2,628170	-2,684370
	41500 <= v < 41750	2081	38	-0.615791	-0.616934
	41750 <= v < 42500	6122	139	-0.393406	-0.395785
	42500 <= v < 50750	84712	2271	-0.223065	-0.245081
	50750 <= v < 51000	2940	105	0.0729608	0.0732225
	51000 <= v < 53750	33850	1017	-0.105779	-0.109942
	53750 <= v < 54000	3006	25	-1,412340	-1,415090
	54000 <= v < 54250	3104	10	-2,365840	-2,369250
	0 <= v < 100	545639	21939	0.196145	0.673013
Distância até drenagem	100 <= v < 200	201697	4145	-0.495301	-0.611655
	200 <= v < 300	103919	2250	-0.441995	-0.491126
	0	169041	2737	-0.738157	-0.862329
Color	1	122676	16220	1,487310	2,198480
Solos	2	200867	2814	-0.88513	-1,055850
	4	353151	6405	-0.622716	-0.913538
Vies	0 <= v < 100	385353	26206	0.751054	2,766470
Vias	100 <= v < 200	275058	2128	-1,485240	-1,810120
	Macrozona Rural	199805	24806	1,415100	3,259340
PDOT	Proteção Integral	473985	318	-3,937410	-4,783180
	Macrozona Urbana	177434	3203	-0.627496	-0.745441
	VEGETAÇÃO PARA	A ÁREA URBANA	1		
	0 <= v < 250	13590	8740	3,225170	3,379750
	250 <= v < 1750	56227	21845	2,182680	2,602980
	1750 <= v < 2000	6614	1555	1,456550	1,477110
	2000 <= v < 2250	7180	1488	1,294610	1,313240
	2250 <= v < 2500	6186	1100	1,105060	1,117690
	2500 <= v < 2750	7089	1103	0.944849	0.956437
	2750 <= v < 3000	6485	906	0.818513	0.8272
	3000 <= v < 3250	6936	942	0.785729	0.794529
	3250 <= v < 3500	6802	897	0.75174	0.759872
	3500 <= v < 3750	6916	935	0.780442	0.789136
Distância até a área urbana	3750 <= v < 4500	20205	2691	0.763151	0.788365
	4500 <= v < 4750	6929	1041	0.903504	0.914141
	4750 <= v < 6000	33248	4291	0.726946	0.766705
	6000 <= v < 6250	6747	754	0.563283	0.568848
	6250 <= v < 7250	24896	2478	0.433826	0.449154
	7250 <= v < 7500	5764	485	0.248895	0.250722
	7500 <= v < 8250	17337	1292	0.117033	0.119505
	8250 <= v < 9750	32394	2425	0.117033	0.119303
	9750 <= v < 10000	5202	430	0.121906	0.126818
	10000 <= v < 12500				
	10000 <- V < 12300	49569	3511	0.0622379	0.0660523

	12500 <= v < 12750	4700	37	-2,200260	-2,205310
	0 <= v < 100	556135	32435	-0.145442	-0.358058
Distância até a drenagem	100 <= v < 200	216547	18995	0.294412	0.408862
Distancia ate a arenagem	200 <= v < 300	109185	7516	0.0315501	0.0360786
	0 <= v < 100	417956	58809	0.826802	6,31773
Distância até as vias	100 <= v < 200	273067	137	-4,96075	-5,36138
	Macrozona Rural	176486	1487	-2,131780	-2,345320
PDOT	Proteção Integral	475100	1433	-3,164500	-3,996950
1001	Macrozona Urbana	230257	56026	1,501670	4,268810
				1,301070	4,200010
	VEGETAÇÃO PARA M			2.60444	4.6504.4
	0 <= v < 250	14788	129	3,60441	4,65014
Distância até a mata de galeria	1000 <= v < 1250	15115	12	1,19967	1,24399
	1250 <= v < 1500	13724	17	1,64496	1,71841
	1500 <= v < 2250	42507	27	0.97646	1,07086
	0	166309	5	-2,07472	-2,27477
Solos	1	106459	3	-2,13946	-2,26265
-	2	198065	12	-1,37397	-1,58644
	0 <= v < 100	359338	191	0.798198	3,71618
Distancia até as vias	100 <= v < 200	272932	2	-3,48641	-3,87917
	200 <= v < 300	190848	4	-2,43551	-2,67884
	Macrozona Rural	175001	2	-3,041980	-3,270860
PDOT	Proteção Integral	473677	10	-2,428260	-3,233230
	Macrozona Urbana	174416	185	1,489630	4,050020
-	MATA DE GALERIA PA	ARA AGRICULTUR	A		
	0 <= v < 17500	21665	36	-1,738030	-2,370290
Distância até a Agricultura	17500 <= v < 17750	148	23	2,967420	3,024270
	17750 <= v < 28750	5536	337	1,924100	3,695300
	MATA DE GALERIA PA	RA ÁREA URBAN	Α		
	0 <= v < 250	2182	787	2,741450	3,435460
Distância atá a área urbana	250 <= v < 750	4835	687	1,515830	2,011780
Distância até a área urbana	750 <= v < 1000	1896	32	-0.750869	-0.775191
	1000 <= v < 1250	1790	16	-1,394530	-1,427280
Di-tân-it/ - Du-n	0 <= v < 100	42204	1342	-0.102164	-1,72144
Distância até a Drenagem	100 <= v < 200	1160	180	1,61928	1,72144
	0	19033	143	-1,569670	-2,071500
6.1	1	12359	314	-0.333137	-0.44157
Solos	2	6915	187	-0.269049	-0.313256
	4	5057	878	1,753690	2,508550
22.27	Macrozona Rural	7478	23	-2,467270	-2,648270
PDOT	Macrozona Urbana	9820	1499	1,599890	5,570450
	MATA DE GALERIA P				
-	0 <= v < 250	14344	2365	0.451202	0.710913
	500 <= v < 750	9933	713	-0.486069	-0.58935
Distância até a Vegetação	750 <= v < 2500	11411	938	-0.339226	-0.430935
	_		333		21.20000

	2500 <= v < 2750	214	8	-1,174860	-1,178270
	2750 <= v < 3500	100	3	-1,402520	-1,404270
	0	20564	1674	-0.349837	-0.567328
Solos	1	12651	606	-0.915945	-1,133060
30103	2	9364	2636	1,136560	1,656500
	4	4524	345	-0.420703	-0.4581
	0 <= v < 100	32470	4415	0.22442	0.941803
Distancia até as vias	100 <= v < 200	9675	830	-0.292602	-0.358391
	200 <= v < 300	4958	16	-3,659360	-3,782000
	Macrozona Rural	7835	380	-0.902889	-1,024140
PDOT	Proteção Integral	27746	1680	-0.668258	-1,258990
	Macrozona Urbana	11522	3201	1,118260	1,834150

Correlação entre mapas. Índice de Cramer e Incerteza da Informação Conjunta

ANEXO 1b – Correlação de Mapas – Sub-bacia do Bananal

	Correlação de Mapas		
	Sub-bacia do Bananal		
Primeira Variável	Segunda Variável	Cramer (v)	Incerteza da Informação Conjunta (U)
AGRIC	ULTURA PARA ÁREA URB	ANA	
	Drenagem	0.218487	0.0691527
Distância até a Área Urbana	PDOT	0.343806	0.190849
	Solos	0.270373	0.0829954
	Estradas/vias	0.449335	0.253935
	PDOT	0.436742	0.252447
Drenagem	Solos	0.356156	0.190034
	Vias	0.257197	0.0687019
PDOT	Solos	0.201444	0.10401
1501	Vias	0.187979	0.0925786
Solos	Vias	0.244357	0.0716109
AGRI	CULTURA PARA VEGETAÇ	ÃO	
	Drenagem	0.166219	0.0216014
D: .^ ~	PDOT	0.234446	0.0794047
Distância até a Vegetação	Solos	0.102403	0.0220065
	Estradas/vias	0.106722	0.0400692
	PDOT	0.357074	0.235579
Drenagem	Solos	0.36108	0.174654
	Vias	0.25738	0.0619571
	Solos	0.203569	0.10042
PDOT	Vias	0.193027	0.0899986
Solos	Vias	0.244357	0.0716109
VFGF	TAÇÃO PARA AGRICULTU		
	Drenagem	0.182447	0.0557567
5	PDOT	0.223629	0.0804751
Distância até a Agricultura	Solos	0.228782	0.0544686
	Estradas/vias	0.405385	0.209598
	PDOT	0.422453	0.238644
Drenagem	Solos	0.36108	0.174654
J	Vias	0.263985	0.0606598
DDOT	Solos	0.204685	0.10068
PDOT	Vias	0.198085	0.0836392
Solos	Vias	0.258584	0.0701521
VEGE	TAÇÃO PARA ÁREA URBA		
Distância até a Área Urbana	Drenagem	0.224518	0.0768517
		3.22-3310	3.0, 3031,

	PDOT	0.28394	0.187891
	Solos	0.270385	0.081475
	Estradas/vias	0.436785	0.307273
	PDOT	0.399552	0.241377
Drenagem	Solos	0.360764	0.173772
	Vias	0.268797	0.0647267
DDOT	Solos	0.206572	0.0979837
PDOT	Vias	0.198085	0.0814585
Solos	Vias	0.258584	0.0701521
VEGET	AÇÃO PARA MATA DE	GALERIA	
	Drenagem	0.478392	0.41283
	PDOT	0.438974	0.154348
Distância até a Vegetação	Solos	0.337568	0.15408
	Estradas/vias	0.131303	0.0165419
	PDOT	0.505933	0.215769
Drenagem	Solos	0.360764	0.176844
Ü	Vias	0.26188	0.0612815
	Solos	0.234614	0.106994
PDOT	Vias	0.198085	0.0904144
Solos	Vias	0.258584	0.0701521
	E GALERIA PARA AGRI		0.0701321
WiXIIX	Drenagem	0.165632	0.0349166
Distância até a Agricultura	PDOT	0.222247	0.0796505
	Solos	0.215356	0.0670919
	Estradas/vias	0.417339	0.180874
	PDOT	0.281807	0.169193
Drenagem	Solos	0.388058	0.210238
	Vias	0.22915	0.0664672
	Solos	0.203384	0.10727
PDOT	Vias	0.198085	0.0902382
Solos	Vias	0.258584	0.0701521
	E GALERIA PARA ÁREA		0.0701321
IVIATAD	Drenagem		0.0501904
	PDOT	0.165356	0.0501804 0.28422
Distância até a Área Urbana	Solos	0.34138	
		0.204734	0.0847669
	Estradas/vias	0.477057	0.239933
		11 /411//1/	0.167239
Dranagam	PDOT	0.290747	0.040000
Drenagem	Solos	0.388058	0.210238
Drenagem	Solos Vias	0.388058 0.22915	0.0664672
Drenagem PDOT	Solos Vias Solos	0.388058 0.22915 0.204685	0.0664672 0.10125
PDOT	Solos Vias Solos Vias	0.388058 0.22915 0.204685 0.198085	0.0664672 0.10125 0.0842746
PDOT Solos	Solos Vias Solos Vias Vias	0.388058 0.22915 0.204685 0.198085 0.258584	0.0664672 0.10125
PDOT Solos	Solos Vias Solos Vias	0.388058 0.22915 0.204685 0.198085 0.258584	0.0664672 0.10125 0.0842746

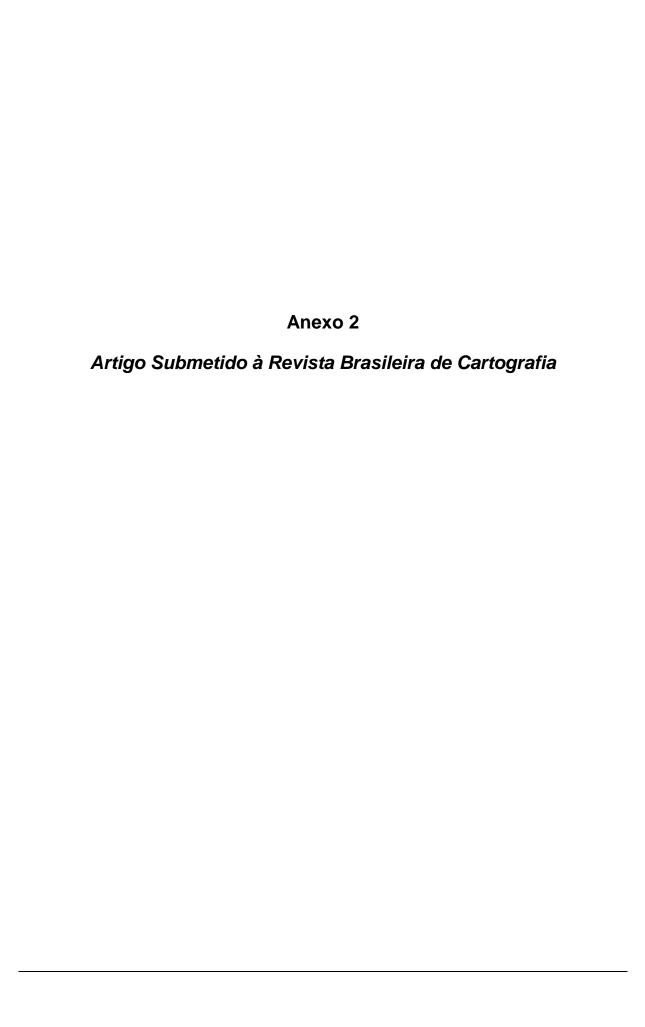
	PDOT	0.18287	0.081276
	Solos	0.0836118	0.0220065
	Estradas/vias	0.106737	0.0314104
	PDOT	0.340063	0.204051
Drenagem	Solos	0.352968	0.198707
	Vias	0.236068	0.0594988
PDOT	Solos	0.205192	0.104741
PDOT	Vias	0.198085	0.08678
Solos	Vias	0.258584	0.0701521

ANEXO 1b – Correlação de Mapas – Sub-bacia do Lago Paranoá

	Correlação de Mapas					
	-bacia do Lago Paranoá	i				
Primeira Variável	Segunda Variável	Cramer (v)	Incerteza da Informação Conjunta (U)			
VEGETA	VEGETAÇÃO PARA AGRICULTURA					
	Drenagem	0.0565794	0.0025663			
	Lago	0.0270064	0.00108629			
Distância até a Agricultura	PDOT	0.0267979	0.00160396			
	Solos	0.0419759	0.0014521			
	Estradas/vias	0.00682455	0.000114893			
	Lago	0.270233	0.125861			
Drenagem	PDOT	0.434251	0.398095			
Dienagem	Solos	0.390034	0.358397			
	Vias	0.403297	0.200101			
	PDOT	0.32339	0.177182			
Lago	Solos	0.356344	0.23781			
	Vias	0.407588	0.0975807			
PDOT	Solos	0.471213	0.637219			
PDOT	Vias	0.83874	0.456068			
Solos	Vias	0.837204	0.454871			
VEGETA	AÇÃO PARA ÁREA URBA	ANA				
	Drenagem	0.137313	0.0483813			
	Lago	0.183432	0.050662			
Distância até a Área Urbana	PDOT	0.319223	0.206349			
	Solos	0.193595	0.0817618			
	Estradas/vias	0.325616	0.254243			
	Lago	0.253852	0.144408			
5	PDOT	0.369571	0.381719			
Drenagem	Solos	0.331506	0.342713			
	Vias	0.242245	0.158888			
	PDOT	0.319086	0.230953			
Lago	Solos	0.330311	0.29414			
	Vias	0.234327	0.122448			
2007	Solos	0.471213	0.437219			
PDOT	Vias	0.423675	0.417882			
Solos	Vias	0.373134	0.393209			
VEGETAC	ÃO PARA MATA DE GA					
	Drenagem	0.495139	0.311268			
	Lago	0.135592	0.0333745			
Distância até a Mata de Galeria	PDOT	0.237163	0.157858			
	Solos	0.183118	0.0945969			

	Estradas/vias	0.11241	0.0347386
	Lago	0.300625	0.149574
	PDOT	0.483123	0.409089
Drenagem	Solos	0.435675	0.369947
	Vias	0.315812	0.151185
	PDOT	0.345973	0.227896
Lago	Solos	0.364191	0.296343
	Vias	0.245561	0.105909
	Solos	0.471213	0.437219
PDOT	Vias	0.394383	0.368031
Solos	Vias	0.361482	0.352405
Ματα η	GALERIA PARA AGRI		
IVI/(I/(DI	Drenagem	0.0361292	0.00359163
	Lago	0.0862925	0.00597405
Distância até a Agricultura	PDOT	0.0002323	0.00337403
2.000.000 000 07.00.00000	Solos	0.0451738	0.00411733
	Estradas/vias	0.0324869	0.00320720
	Lago	0.0324803	0.107714
Drenagem	PDOT	0.408544	0.411191
	Solos	0.492623	
			0.399579
	Vias	0.298453	0.104952
Lago	PDOT	0.223629	0.113358
	Solos	0.209573	0.130989
	Vias	0.146684	0.0301082
PDOT	Solos	0.471213	0.437219
Calaa	Vias	0.414534	0.302196
Solos	Vias	0.35285	0.282699
MATA DE	GALERIA PARA ÁREA		
	Drenagem	0.140022	0.0444073
	Lago	0.146884	0.0449763
Distância até a Área Urbana	PDOT	0.321232	0.216566
	Solos	0.198438	0.0841497
	Estradas/vias	0.323184	0.207549
	Lago	0.273958	0.139807
Drenagem	PDOT	0.430804	0.404904
Drenagem	Solos	0.389126	0.365787
	Vias	0.283581	0.146236
	PDOT	0.297312	0.21413
Lago	Solos	0.308657	0.275156
Lago	Solos Vias	0.308657 0.191619	0.275156 0.10004
Lago PDOT	Vias	0.191619	0.10004
	Vias Solos	0.191619 0.471213	0.10004 0.437219
PDOT Solos	Vias Solos Vias	0.191619 0.471213 0.422759 0.374861	0.10004 0.437219 0.367288

	Lago	0.12319	0.0273333	
	PDOT	0.213636	0.117394	
	Solos	0.169653	0.0748373	
	Estradas/vias	0.207009	0.078271	
	Lago	0.26918	0.142864	
	PDOT	0.430144	0.404642	
Drenagem	Solos	0.388505	0.367908	
	Vias	0.284824	0.149716	
	PDOT	0.297111	0.221548	
Lago	Solos	0.307693	0.282828	
_	Vias	0.213757	0.10687	
	Solos	0.471213	0.437219	
PDOT	Vias	0.43954	0.380621	
Solos	Vias	0.379524	0.356212	
	estamento para Agric		0.330212	
Kellol	· ·	~ 0		
	Drenagem	~ 0		0
Distância até a Agricultura	Lago			0
Distancia ate a Agricultura	PDOT	~ 0		0
	Solos	~ 0		0
	Estradas/vias	~ 0	0.420645	0
Drenagem	Lago	0.231342	0.129615	
	PDOT	0.396415	0.398095	
	Solos	0.356051	0.358397	
	Vias	0.25732	0.163656	
	PDOT	0.283192	0.18206	
Lago	Solos	0.292282	0.233934	
	Vias	0.208336	0.0880486	
PDOT	Solos	0.471213	0.437219	
	Vias	0.437899	0.423205	
Solos	Vias	0.362882	0.38908	
REFLORES	TAMENTO PARA ÁRE	A URBANA		
	Drenagem	0.134681	0.0446952	
	Lago	0.146709	0.043894	
Distância até a Área Urbana	PDOT	0.322557	0.209709	
	Solos	0.193319	0.0810968	
	Estradas/vias	0.375685	0.248124	
	Lago	0.251838	0.137343	
5	PDOT	0.396415	0.398095	
Drenagem	Solos	0.356051	0.358397	
	Vias	0.261251	0.153663	
	PDOT	0.297312	0.21413	
Lago	Solos	0.308657	0.275156	
- U -	Vias	0.199034	0.107808	
	Solos	0.133034	0.437219	
PDOT	Vias	0.471213	0.437219	
	vias	0.440020	0.330233	


Solos	Vias	0.38163	0.372596
REFLORE	ESTAMENTO PARA VE	GETAÇÃO	
	Drenagem	0.183169	0.0571569
	Lago	0.129617	0.0264937
Distância até a Vegetação	PDOT	0.224188	0.109821
	Solos	0.182356	0.072993
	Estradas/vias	0.223222	0.0884748
	Lago	0.233176	0.124237
Drenagem	PDOT	0.396415	0.398095
Dienagem	Solos	0.356051	0.358397
	Vias	0.261044	0.158235
	PDOT	0.263308	0.17422
Lago	Solos	0.271189	0.223525
	Vias	0.181984	0.0821257
PDOT	Solos	0.471213	0.437219
	Vias	0.439589	0.407474
Solos	Vias	0.382406	0.384233

ANEXO 1c – Correlação de Mapas – Sub-bacia do Ribeirão do Gama

	Correlação de Mapas					
Sub-bacia do Ribeirão do Gama						
Primeira Variável	Segunda Variável	Cramer (v)	Incerteza da Informação Conjunta (U)			
AGRIC	CULTURA PARA ÁREA URE	BANA				
	Drenagem	0.120062	0.0228957			
Distância até a Área Urbana	PDOT	0.476826	0.22713			
	Solos	0.173109	0.0403206			
	Estradas/vias	0.459587	0.346807			
Drenagem	PDOT	0.411344	0.202889			
	Solos	0.386714	0.261421			
	Vias	0.20481	0.0912749			
PDOT	Solos	0.482726	0.44514			
	Vias	0.436501	0.325959			
Solos	Vias	0.323716	0.192526			
AGR	ICULTURA PARA VEGETA	ÇÃO				
	Drenagem	0.149427	0.0395267			
Distância até a Vegetação	PDOT	0.335352	0.169921			
Distancia ate a vegetação	Solos	0.102833	0.0213682			
	Estradas/vias	0.239414	0.177311			
	PDOT	0.410911	0.22192			
Drenagem	Solos	0.37998	0.278652			
	Vias	0.241155	0.0951347			
PDOT	Solos	0.482726	0.44514			
PDOT	Vias	0.436984	0.314786			
Solos	Vias	0.326082	0.187666			
VEG	ETAÇÃO PARA AGRICULTI	JRA				
	Drenagem	0.14014	0.0280482			
Distância até a Agricultura	PDOT	0.301014	0.118997			
Distancia ate a Agricultura	Solos	0.192371	0.0637716			
	Estradas/vias	0.0817951	0.0286096			
Drenagem	PDOT	0.411002	0.215061			
	Solos	0.382666	0.271809			
	Vias	0.247398	0.083589			
PDOT	Solos	0.482726	0.44514			
FDOT	Vias	0.442002	0.276712			
Solos	Vias	0.330404	0.166327			
VEG	ETAÇÃO PARA ÁREA URBA	ANA				
Distância até a Área Urbana	Drenagem	0.135818	0.0207955			
	PDOT	0.479757	0.228923			
	Solos	0.181844	0.0448408			
	Estradas/vias	0.386171	0.3365			

Drenagem PDOT	PDOT	0.409719	0.250024
	Solos	0.399661	0.290056
	Vias	0.26234	0.101614
	Solos	0.482726	0.44514
PDOT	Vias	0.430881	0.305795
Solos	Vias	0.325552	0.185157
VEGET	AÇÃO PARA MATA DE	GALERIA	
	Drenagem	0.368762	0.153951
Distância até a Vegetação	PDOT	0.0944349	0.0109068
	Solos	0.207147	0.0870465
	Estradas/vias	0.122762	0.0205845
	PDOT	0.40942	0.238111
Drenagem	Solos	0.483093	0.287987
	Vias	0.294131	0.108223
PDOT	Solos	0.482726	0.44514
	Vias	0.425442	0.34517
Solos	Vias	0.360074	0.209693
MATA D	DE GALERIA PARA AGR	RICULTURA	
	Drenagem	0.081963	0.0129762
	PDOT	0.30046	0.150608
Distância até a Agricultura	Solos	0.139586	0.0422941
	Estradas/vias	0.0788578	0.0106446
	PDOT	0.410541	0.221187
Drenagem	Solos		
	Vias	0.256943	
	Solos		
PDOT	Vias	0.406529	0.341041
Solos	Vias	0.356152	0.214665
MATA D	DE GALERIA PARA ÁRE		
	Drenagem		0.0240255
	PDOT		
Distância até a Área Urbana	Solos	0.384515 0.280411 0.256943 0.105438 0.482726 0.44514 0.406529 0.341041 0.356152 0.214665 PARA ÁREA URBANA	
	Estradas/vias	0.421459	0.361109
	PDOT	0.411344	0.202889
Drenagem	Solos	0.38	0.261421
	Vias	0.216846	0.0950998
	Solos	0.482726	0.44514
PDOT	Vias	0.416177	0.327448
Solos	Vias	0.321294	0.203915
	DE GALERIA PARA VE		0.203313
IVIATA	Drenagem	0.124295	0.0349477
	PDOT	0.124233	0.184487
Distância até a Vegetação			
	Solos	0.0868275	0.0165708
Dranagam	Estradas/vias	0.26787	0.165355
Drenagem	PDOT	0.410577	0.213552

-				
	Solos	0.385987	0.272371	
	Vias	0.197699	0.068512	
PDOT	Solos	0.482726	0.44514	
	Vias	0.490231	0.250923	
Solos	Vias	0.28257	0.133956	

