UNIVERSIDADE DE BRASÍLIA DEPARTAMENTO DE MATEMÁTICA

DIMENSÃO DE HAUSDORFF DE FERRADURAS

Eduardo Antonio da Silva

Brasilia-DF Agosto/2010 ... Eu faço samba e amor até mais tarde, por isso tenho muito sono de manhã...

Caetano Velozo.

Agradecimentos

• Em primeiro lugar agradeço a minha Mãe, que eu amo tanto, pelo apoio incondicional, sem ela o caminho até aqui teria sido muito mais difícil.

Agradeço ao meu irmão pelo companheirismo, por tudo o que passamos juntos e que nos tornou mais unidos, pelas conversas sobre a vida, pelas conversas sobre matemática e pelas discussões inúteis sobre: correntes cachorros e a agua mineral que vem com o café expresso ... Por estes e pelos bons momentos que ainda viveremos fica o meu mais sincero: muito obrigado! E um demodê: eu te amo cara!

Agradeço ao meu pai por tudo o que passamos juntos, pelos momentos bons, pelos momentos ruins, e pelos momentos terríveis... Aprendi muito sobre a vida com eles...

 Ao Ráderson quero agradecer pela orientação e pela liberdade que me deu para escrever a dissertação. Por confiar em mim e não me pressionar em nenhum momento... E por fim, agradecer às conversas que tivemos que muito me ajudaram no meu processo de autoconhecimento... Muito obrigado!!!

Agradeço aos professores que aceitaram participar da banca Lucas, Leandro e Jairo. Em particular ao Lucas e o Leandro pelas lições de humildade...

Aos meus colegas da UnB: Bruno, Tarcísio, Marcelo e Liniker pelas conversas sobre os mais variados assuntos e pelos cafés que tomamos juntos... À Thaynara pelas conversas infames e às não infames também...
 Pela ajuda com o tex e por cobrir minha defesa...

Em particular quero agradecer profundamente meu amigo Elias pelo companheirismo, pelas conversas e pela tolerâcia com meu gênio terrível, muito obrigado cara!

Aos meus amigos de goiânia: Pablo que dormiu no chão para assitir minha defesa, Daniel pelos jogos de basquete de madrugada, Diogo que trouxe, por um bom tempo, alegria pra minha vida e do meu irmão. E a Thays, carinhosamente apelidada de Geni, por ajudar o Diogo nessa tarefa...

RESUMO

Seja f um difeomorfismo de classe C^r , $r \geq 2$ de uma superficie M^2 , e seja Λ uma ferradura de f (isto é, um conjunto hiperbólico transitivo e isolado). É um resultado clássico que existe uma vizinhança U de Λ tal que para todo difeomorfismo próximo de f na topologia C^r o conjunto

$$\Lambda_g = \bigcap_{n \in \mathbb{Z}} g^n(U)$$

é uma ferradura de g. Nós provaremos um resultado de Mañé [3] que fornece uma vizinhança $\mathcal U$ de fna topologia C^r tal que a aplicação

$$\mathcal{U}\ni g\mapsto HD(\Lambda_q)\in\mathbb{R}$$

é uma função C^r de g.

ABSTRACT

Let f be a C^r diffeomorphism $r \geq 2$ of a surface M^2 , and let Λ a horseshoe of f (i.e, a transitive and isolated hiperbolic set). It is a classical result that exists a neighborhood U of Λ such that for every diffeomorphism close to f in C^r topology the set

$$\Lambda_g = \bigcap_{n \in \mathbb{Z}} g^n(U)$$

is a horseshoe for g. We will prove a result of Mañé [3] that provides there exist a C^r neighborhood \mathcal{U} of f such that, the map

$$\mathcal{U}\ni g\mapsto HD(\Lambda_q)\in\mathbb{R}$$

is a C^r function of g.

SUMÁRIO

1	A Dimensão de Hausdorff de Ferraduras			12
	1.1	Teoren	na A	13
		1.1.1	Shifts nos espaços $B(A)$ e $B^+(A)$	13
		1.1.2	Operador de Perron Frobenius	15
		1.1.3	Prova do Teorema A	39
	1.2	Teoren	na B	40
		1.2.1	Demonstração do Teorema B	41
	Noções de Teoria Espectral Variedades estáveis e conjuntos hiperbólicos			57 59
\mathbf{C}	Dimensão de Hausdorff			61
		C.0.2	Medida exterior métrica	61
		C.0.3	Medida de Hausdorff	61
		C.0.4	Dimensão de Hausdorff	63
		C.0.5	Capacidade Limite	63

INTRODUÇÃO

A ferradura de Smale

Henri Poincaré fundou, no início do século XX, a moderna teoria qualitativa dos sistemas dinâmicos, cujo desenvolvimento posterior contou com contribuições importantes de vários matemáticos, como Birkhoff, Cartwright, Littlewood, Levinson e Kolmogorov, entre outros, que originaram um novo campo de investigação sobre Sistemas Dinâmicos.

Nos anos 60, Stephen Smale foi um dos que também se interessaram por explorar a teoria de Poincaré, tendo contribuido para uma explosão de novas idéias em Sistemas Dinâmicos. Uma de suas primeiras contribuições foi uma conjectura falsa. Smale propos que os sistemas dinâmicos tendiam a atingir na, maioria das vezes, um comportamento não demasiadamente estranho (ver [2]), o que implicava segundo a terminologia atual, que o caos não existia. As más notícias chegavam-lhe através de uma carta de Norman Levinson, descrevendo um resultado deste que continha um contra-exemplo à conjectura. Smale trabalhou no desafio colocado por essa carta às suas idéias, tendo acabado por se convencer que de fato sua conjectura estava errada. Essa convicção resultou, especialmente, daquilo que descobriu: a ferradura de Smale. Trata-se de uma transformação topológica que fornece uma base para o entendimento das propriedades caóticas dos sistemas dinâmicos. Para construirmos uma versão simples da ferradura de Smale, tomemos um quadrado, e estiquemos este quadrado até obtermos um retângulo fino, dobremos este retângulo em forma de ferradura e coloquemo-lo sobre o quadrado original. Iterando este processo, é fácil ver que a segunda iteração produz uma espécie de ferradura dentro da ferradura, com tres dobras. Cada iteração duplica as dobras existentes e ainda lhe adiciona outra. Assim no final desse

processo obtemos uma curva infinitamente contorcida. Escolhendo-se dois pontos vizinhos no quadrado original, não se pode prever onde estes estarão no final: poderão ficar arbitráriamente afastados um do outro pelo encurvamento e esticamento, ou seja existe uma instabilidade local nas órbitas deste sistema dinâmico. A ferradura de Smale tornou-se uma das primeiras formas geométricas capazes de descrever um sistema dinâmico, mostrando a presença da imprevisibilidade a longo prazo, mesmo que a lei de evolução seja totalmente determinista. Para mais detalhes ver [18] e [17].

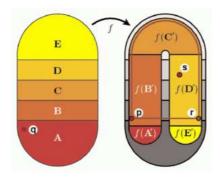


Figura 1: Ferradura

Dimensão de Hausdorff de Ferraduras

Diferenciabilidade da Dimensão de Hausdorff

A ferradura de Smale é o protótipo do que é conhecido hoje na literatura como conjuto hiperbólico. Vamos relembrar o conceito de conjunto hiperbólico. Seja $f: M \to M$ um difeomorfismo de classe C^r , $r \ge 1$, de uma variedade M de dimensão n. Um conjunto compacto $\Lambda \subset M$ é dito um conjunto hiperbólico quando $f(\Lambda) = \Lambda$ e além disso vale o seguinte: em cada espaço tangente T_xM com $x \in \Lambda$ existe uma decomposição em soma direta

$$T_xM = E_x^u \oplus E_x^s$$

em termos de subespaços E_x^u e E_x^s tais que

(a)
$$Df(E_x^u) = E_{f(x)}^s$$
 e $Df(E_x^s) = E_{f(x)}^u$

- (b) Existem constantes C > 0 e $\lambda \in (0, 1)$ tais que
 - 1. $||Df_x^n(v)|| \le C\lambda^n ||v||$ quando $v \in E_x^s$, $n \ge 0$.

- 2. $||Df_x^{-n}(v)|| \le C\lambda^n ||v||$ quando $v \in E_x^u$, $n \ge 0$.
- (c) $E_x^u \in E_x^s$ dependem continuamente de x

Note que a contração e expansão em direções complementares, presentes na ferradura de Smale, aparecem em nossa definição no item (b) acima onde exigimos que $Df|E^u$ seja uniformemente expansivo e $Df|E^s$ seja uniformemente contrativo: esta propriedade é fundamental para a instabilidade local das órbitas. Agora estamos em condições de dar um definição concreta de ferradura. Uma ferradura $f:M\to M$ para um difeomorfismo f é um conjunto hiperbólico $\Lambda\subset M$ que é transitivo (e portanto tem uma órbita densa) e totalmente desconexo. Devemos salientar dois aspectos fundamentais que tornam as ferraduras objetos matemáticos interessantes

- O primeiro aspecto importante e que $f|\Lambda$ é conjugada ao shift bilateral de k símbolos. E é fato amplamente conhecido a caoticidade do shift, no sentido definido por Devaney, isto é, o shift $\sigma: \Sigma \to \Sigma$ possui:
 - dependência sensível com relação as condições iniciais
 - transitividade
 - o conjunto dos pontos periódicos de σ é denso em Σ

de modo que $f|\Lambda$ tem todas essas propriedades. O primeiro do items acima fala da imprevisibilidade do comportamento das órbitas de dois pontos próximos a longo prazo. O segundo item diz que o sistema dinâmico $f|\Lambda$ é indecomponível. E o terceiro item diz que $f|\Lambda$ possui uma certa regularidade em alguns pontos.

• O segundo aspecto é que as ferraduras são estruturalmente estáveis, isto significa que pequenas perturbações em f não destroem a ferradura.

Tendo em vista a discussão acima, dado um diffeomorfismo $f:M\to M$ de uma variedade M de dimensão finita, nos parece extremamente razoável querer mensurar o quanto a ferradura Λ de f "ocupa" na variedade M. Não obstante é um fato da vida, conhecido amplamente, que a medida de Lebesgue ignora certos conjuntos de geometria muito complicada, por exemplo o conjunto de cantor ternário da reta real que possui medida de Lebesgue nula mesmo sendo não enumerável. Uma outra alternativa é usar a medida de Hausdorff para tentar mensurar tais conjuntos. Daí a necessidade de se calcular a dimensão de Hausdorff de ferradurras. Mas além de calcular "espessura" da ferradura, a dimensão de Hausdorff nos permite extrair informações bastante ricas de nosso sistema dinâmico, passaremos agora a descrever alguns resultados para ilustrar este comentário

Teorema 0.1 (Palis-Takens [4]). Seja $(f_{\mu})_{\mu \in I}$ uma família a um parâmetro de difeomorfismos, com $f_0 = f$. Se Λ é uma ferradura de f com dimensão de Hausdoff $HD(\Lambda) < 1$, então

$$\lim_{\delta \to 0} \frac{m(H_{(-\delta,\delta)})}{2\delta} = 1$$

Onde $H_{(-\delta,\delta)}$ corresponde aos valores do parâmetro μ em $(-\delta,\delta)$ para os quais f_{μ} é hiperbólico e m indica a medida de Lebesgue do conjunto. Assim se a dimensão fracionária de Λ é pequena, a hiperbolicidade de f_{μ} prevalece próximo de $\mu = 0$.

Existem muitos outros resultados nessa linha mas que não colocaremos aqui, para mais ver [4]. Até este ponto acreditamos ter mostrado todo o interesse em se calcular a dimensão de Hausdorff de ferraduras. Depois de toda esta motivação uma pergunta bem razoavel pode surgir, uma vez que sabemos que as ferraduras são estrturalmente estáveis, podemos nos perguntar: como varia a dimensão de Hausdorff da ferradura quando perturbamos o difeomorfismo? Existem hoje vários resultado nessa linha, um primeiro resultado que gostariamos de citar está em [8] artigo de A.Manning, H.McCluskey onde prova-se que no caso de $f: M \to M$ ser um diffeomorfismo de classe C^1 onde M é uma variedade de dimensão 2 a aplicação $\mathcal{U} \ni f \mapsto HD(\Lambda_f) \in \mathbb{R}$ depende continuamente de f na topologia C^1 . A estratégia central de Manning e McCluskey para abordar este problema é motivada por técnicas desenvolvidas em [7] num trabalho onde Bowen usa metodos do formalismo termodinâmico para calcular a dimensão de Hausdorff de quase-circulos. Bowen originalmente estabeleceu uma fórmula para a dimensão de Hausdoff de um quase-círculo J associado a um grupo quase-Fuchsiano G, nesse caso dimensão de Hausdorff de J é dada pelo único t tal que $P(t\phi) = 0$ onde Onde P é a pressão topológica e ϕ é um potencial "adequado". Nesse contexto a dinamica é conforme: a contração ou expansão é a mesma em todas as direções.

O objetivo desta dissertação é estudar o artigo de Ricardo Mañé The Hausdorff dimension of horseshoes of diffeomorphisms of surfaces, este trabalho trata da diferenciabilidade da dimensão de Hausdorff de ferraduras. Mais precisamente vamos mostrar que se $f: M \to M$ é um difeomorfismo de classe C^r , $r \geq 2$, de uma variedade M de dimensão 2 possuindo uma ferradura Λ_f então existe uma vizinhança \mathcal{U} de f na topologia C^r tal que a aplicação $\mathcal{U} \ni f \mapsto HD(\Lambda_f) \in \mathbb{R}$ é de classe C^{r-1} . A seguir vamos tentar dar um esboço da demonstração deste fato.

O primeiro passo para isso é calcular a dimensão de Hausdorff de uma ferradura Λ_g associada a um difeomorfismo $g:M\to M$ de classe C^r , \geq 2 e M variedade de dimenão 2. Para isso usaremos o método de Bowen.

A dificuldade aqui é que a dinâmica em uma ferradura não é conforme: ocorre expansão na direção instável e contração na direção estável. Para tentar aplicar o método de Bowen nesse contexto tentaremos decompor a dinamica em duas partes conformes: a instável e a estável. No nosso contexto este método diz basicamente o seguinte: tome um $x \in \Lambda_g$ e seja J^u um intervalo contido em $W^u(x)$ então um candidato a dimensão de Hausdorff de $B_r(x) \cap J^u \cap \Lambda_g$ é o número $\delta^u(g) = \delta$ tal que

$$\mathcal{B}(q,\delta) = P(\delta T \psi_q) = 0.$$

Onde $T\psi_g$ é um potencial adequado. Analogamente, trocando u por s, obtemos $\delta^s(g) = \delta$ candidato a dimensão de Hausdorff de $B_r(x) \cap J^s \cap \Lambda_g$. Para mostrar que de fato

$$\delta^u(g) = HD(J^u \cap \Lambda_g) \tag{1}$$

$$\delta^s(g) = HD(J^s \cap \Lambda_q) \tag{2}$$

obtemos, por meio de um trabalho árduo, medidas μ_u e μ_s definidas nos boreleanos de $J^u \cap \Lambda_q$ e $J^s \cap \Lambda_q$ satisfazendo as seguintes estimativas:

$$C^{-1}r^{\delta^{u}(g)} \le \mu_{u}(B_{r}(p_{1}) \cap J^{u} \cap \Lambda_{q}) \le Cr^{\delta^{u}(g)}$$
(3)

$$C^{-1}r^{\delta^s(g)} \le \mu_s(B_r(p_2) \cap J^s \cap \Lambda_g) \le Cr^{\delta^s(g)} \tag{4}$$

para todos $p_1 \in J^u \cap \Lambda_g$, $p_2 \in J^s \cap \Lambda_g$ e todo $r \geq 0$. Estas estimativas juntamente com um resultado clássico de medida de Hausdoff (ver apêncide C) estabelecem (1) e (2). Agora, um resultado clássico de dinâmcia hiperbólica (ver apêndice B, Palis-Takens) diz que a ferradura Λ_g é localmente o produto cartesiano de dois conjuntos hiperbólicos, portanto se $B_r(x)$ é uma vizinhança suficientemente pequena de x temos

$$HD(B_r(x) \cap \Lambda_g) = \delta^u(g) + \delta^s(g).$$

Como $B_r(x) \cap \Lambda_g$ é uma vizinhança de x e x é arbitrário,pode-se mostrar que $HD(\Lambda_g) = \delta^u(g) + \delta^s(g)$. Para ver a diferenciabilidade de $\mathcal{U} \ni g \mapsto HD(\Lambda_g) \in \mathbb{R}$ defina a aplicação $\mathcal{B} : \mathbb{R} \times \mathcal{U} \to \mathbb{R}$ onde $\mathcal{B}(t,g) = P(tT\psi_g)$, temos

$$B(g, \delta^u(g)) = 0$$

e obteremos

$$\frac{\partial B}{\partial t}(g, \delta^u(g)) < .0$$

Usando o teorema da função implicita obtemos que $\mathcal{U} \ni g \mapsto \delta^u(g) \in \mathbb{R}$ é de classe C^{r-1} . Analogamente mostra-se que $\mathcal{U} \ni g \mapsto \delta^s(g) \in \mathbb{R}$ é de classe

 C^{r-1} . Neste ponto cabe um comentário, Manning e McCLuskey provam a continuidade para difeomorfismos C^2 e pela densidade de C^2 em C^1 segue a continuidade para difemorfismos de classe C^2 . Mañé prova a diferenciabilidade da dimensão de Hausdorff para difeomorfismos de Classe C^r , $r \geq 2$ entretanto não é verdade que se uma aplicação é diferenciável num conjunto denso ela seja diferenciável no conjunto todo de modo que o resultado de Mañé pode não valer para difeomorfismos de classe C^1 .

Até agora estamos trabalhando com variedades de dimensão 2, de modo que uma pergunta natural surge , será que o teorema é válido se considerarmos variedades de dimensão $k \geq 3$? A resposta para este questionamento já existe e é negativa, com efeito, em [10] Díaz e Viana mostram que a dependência entre o difeomorfismo e a dimensão de Hausdorff não é nem contínua nesse caso.

Contribuições

Ao longo desta dissertação mostramos um fato bastante conhecido mas que não encontramos demonstrado ao longo de nossa pesquisa bibliográfica, se trata da analiticidade do operador de Perron-Frobenius. Mostramos através de calculos explícitos sua analiticidade e calculamos sua derivada.

Um outro ponto que gostaríamos de salientar é que encontramos um pequeno erro no trabalho de Mañé, mais precisamente no Teorema A, mostramos através de um contra-exemplo que o Teorema A é falso da maneira como enuciado, impomos uma hipótese adicional e mostramos que esta é satisfeita no contexto original onde era aplicada originalmente.

Limitações

Ao longo deste trabalho encontramos algumas limitações, vamos citar algumas.

- A primeira limitação encontrada foi no Teorema de Perron Frobenius, não encontramos em nossa pesquisa bibliográfica uma demonstração de que o maior autovalor do operador de Perron Frobenius é um pólo simples.
- Outra limitação reside em ainda não termos entendido a intuição por trás do método de Bowen, não conseguimos entender por que é razoável esperar que o número $\delta^u(g) = \delta$ (respec. $\delta^s(g) = \delta$) tal que

$$\mathcal{B}(g,\delta) = P(\delta T \psi_q) = 0.$$

seja a dimensão de Hausdorff de de $J^u\cap\Lambda_g$ (respec. $J^s\cap\Lambda_g$). Em [20] N.Luzia motiva isso para dinâmica unidimensional.

 \bullet Por falta de tempo não demonstramos em todos o detalhes os lemas 1.3 e 1.4

CAPÍTULO 1

A DIMENSÃO DE HAUSDORFF DE FERRADURAS

Introdução

Este capítulo é o objeto principal de nossa dissertação. Ele é dividido basicamente em duas seções. Na primeira seção usando propriedades espectrais do operador de Perron-Froebenius vamos demonstrar o Teorema A:

Teorema 1.1. Seja N uma variedade de Banach e seja $\Phi: N \to C^{\gamma}(B^+(A), \mathbb{R})$, $0 < \gamma \le 1$, uma aplicação de classe C^k , $k \ge 1$, que leva conjuntos limitados em conjuntos limitados tal que $\Phi: N \to C^0(K, \mathbb{R})$ é C^{k+1} . Então $P \circ \Phi: N \to \mathbb{R}$ é C^{k+1} .

Onde P é a pressão topológica que definiremos mais à frente(pag.14) usando o operador de Perron-Froebenius, o conjunto compacto $K = B^+(A)$ é o espaço dos caminhos que é definido no inicio da próxima seção e $C^{\gamma}(B^+(A), \mathbb{R})$ é o espaço das aplicações γ -Hölder contínuas entre K e \mathbb{R}

Na segunda seção provaremos, usando o Teorema A, o objeto principal desta dissertação o Teorema B:

Teorema 1.2. Seja Λ ferradura de $f \in \text{Diff}^r(M)$, dim(M) = 2, $r \geq 2$, e U uma vizinhança de Λ tal que $\bigcap_{n \in \mathbb{Z}} f^n(U) = \Lambda$. Então existe uma vizinhança \mathcal{U} de f na topologia C^r tal que a dimensão de Hausdorff de $\Lambda_g = \bigcap_{n \in \mathbb{Z}} g^n(U)$ é uma função C^{r-1} de $g \in \mathcal{U}$.

1.1 Teorema A

1.1.1 Shifts nos espaços B(A) e $B^+(A)$

Seja A uma matriz quadrada de ordem m cujas entradas a_{ij} pertencem ao conjunto $\{0,1\}$. Considere os conjuntos

$$B^{+}(A) = \{\theta : \mathbb{Z}^{+} \to \{1, \dots, m\}; \ a_{\theta(n)\theta(n+1)} = 1 \ \text{para todo} \ n \in \mathbb{Z}^{+}\}$$

е

$$B(A) = \{\theta : \mathbb{Z} \to \{1, \dots, m\}; \ a_{\theta(n)\theta(n+1)} = 1 \ \text{para todo} \ n \in \mathbb{Z}\}$$

munidos das métricas

$$d(\alpha, \beta) = \sum_{n \ge 0} 2^{-n} |\alpha(j) - \beta(j)|.$$

е

$$d(\alpha, \beta) = \sum_{n \in \mathbb{Z}} 2^{-|n|} |\alpha(j) - \beta(j)|.$$

respectivamente. O shift $\sigma: B^+(A) \hookleftarrow$ é a tranformação definida por

$$\sigma(\theta)(n) = \theta(n+1).$$

Analogamente defini-se o shift $\sigma: B(A) \longleftrightarrow$. Considere o conjunto $\{1, \ldots, m\}$ munido da topologia discreta, claramente $\{1, \ldots, m\}$ é compacto, segue do Teorema de Tychonoff que

$$\mathscr{B} = \prod_{n=1}^{\infty} \{1, \dots, m\} = \{\theta : \mathbb{Z}^+ \to \{1, \dots, m\}\}$$

com a topologia produto tambem o é. Agora equipe \mathscr{B} com a mesma métrica de $B^+(A)$, note que a topologia gerada por esta métrica em \mathscr{B} é equivalente à topologia produto. Tome $(\theta_n) \subset B^+(A)$ com $\theta_n \to \theta$. Para todo $k \in \mathbb{N}$ temos

$$\theta_n(k) \to \theta(k)$$
.

Fixe $k \in \mathbb{N}$, como θ_n só assume valores inteiros concluimos que deve existir n_0 para o qual $\theta_n(k) = \theta(k)$ para todo $n \ge n_0$, assim tomando j suficientemente grande temos

$$1 = a_{\theta_i(k)\theta_i(k+1)} = a_{\theta(k)\theta(k+1)}$$

como k foi tomado de modo arbitrário isto implica que $\theta \in B^+(A)$. Em outras palavras $B^+(A)$ é fechado, como \mathscr{B} é compacto e $B^+(A) \subset \mathscr{B}$ segue que $B^+(A)$ é compacto.

No que segue frequentemente consideraremos o espaço das aplicações γ -Hölder contínuas de $B^+(A)$ em $\mathbb R$

$$C^{\gamma}(B^{+}(A), \mathbb{R}) = \left\{ \psi : B^{+}(A) \to \mathbb{R} ; \sup_{x \neq y} \frac{d(\psi(y), \psi(x))}{d(x, y)^{\gamma}} < \infty \right\},$$

 $0 < \gamma \le 1$. Nestes casos consideraremos $C^{\gamma}(B^+(A), \mathbb{R})$ munido da norma,

$$\|\psi\|_{\gamma} = \sup_{x} |\psi(x)| + \sup_{x \neq y} \frac{d(\psi(y), \psi(x))}{d(x, y)^{\gamma}}$$

O espaço $B^+(A)$ pode ser visto como o conjunto de certos "passeios aleatórios" em pontos permitidos em A, a saber , os pontos na posição i,j com $a_{ij}=1$.

Exemplo 1.1. Considere a matriz

$$A = \left(\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right).$$

A sequência

$$\theta = (1, 1, 2, 1, 1, 2, 2, 2 \dots)$$

não esta em $B^+(A)$ pois $a_{\theta(1)\theta(2)} = 0$, já a sequência

$$\alpha = (2, 2, 2, 1, 1, 1, 1, \dots)$$

está em $B^+(A)$. A sequência α fornece o "passeio aleatório" abaixo:

$$a_{\alpha(0)\alpha(1)} \rightarrow a_{\alpha(1)\alpha(2)} \rightarrow a_{\alpha(2)\alpha(3)} \rightarrow a_{\alpha(3)\alpha(4)} \rightarrow \dots$$

onde $a_{\alpha(3)\alpha(4)}$ se repete até o infinito. Olhando o domínio de $\theta \in B^+(A)$,

$$0 = 1 = 2 = 3 = 5 = 6...$$

caminhamos nos pontos de A correspondentes aos pares de inteiros que são imagem via θ dos pares de inteiros sublinhados acima. Reciprocamente, é facil ver que todo "passeio aleatório" que de uma i-ésima coluna vai para uma i-ésima linha é dado por uma sequência em $B^+(A)$.

Considere a matriz

$$C = \left(\begin{array}{ccc} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 1 \end{array}\right).$$

vamos encontrar uma sequência em $B^+(C)$ que modela o passeio

$$a_{11} \rightarrow a_{13} \rightarrow a_{33} \rightarrow a_{32} \rightarrow a_{22} \rightarrow a_{22} \dots$$

Basta tomar

$$\theta = (1, 1, 3, 3, 2, 2, 2, \ldots)$$

calramente $\theta \in B^+(C)$.

1.1.2 Operador de Perron Frobenius

Dada $\psi \in C^{\gamma}(K,\mathbb{R})$, $0 \le \gamma \le 1$, o operador de Perron-Froebenius $\mathcal{L}_{\psi}: C^{\gamma}(K,\mathbb{R}) \hookleftarrow$ é definido por

$$(\mathscr{L}_{\psi}\varphi)(x) = \sum_{\sigma(y)=x} \varphi(y) \exp \psi(y).$$

Então

$$(\mathscr{L}_{\psi}^{n}\varphi)(x) = \sum_{\sigma^{n}(y)=x} \varphi(y) \exp S_{n}\psi(y).$$

onde

$$S_n \psi = \sum_{j=0}^{n-1} \psi \circ \sigma^j.$$

Antes de seguirmos adiante vamos realizar um pequeno esforço no intuito de buscar uma interpretação para operador de Perron-Froebenius. Mais a frente mostraremos que para todo $x \in B^+(A)$ o limite

$$\lim_{n\to\infty} \frac{1}{n} \log(\mathcal{L}_{\psi}^n 1)(x)$$

existe e independe de x. Tome $\psi = I_Z$ e $\varphi = 1$, onde Z é um boreliano em $B^+(A)$, segue que

$$(\mathcal{L}^n 1)(x) = \sum_{\sigma^n(y) = x} \exp \# \{ \sigma^j(y); \sigma^j(y) \in Z, 0 \le j \le n \}.$$
 (1.1)

Podemos interpretar (1.1) como uma medida quantitativa de o quanto Z foi vizitado pelo conjunto

$$\{\sigma^j(y); \ \sigma^j(y) \in B^+(A), \ \sigma^j(y) = x, \ 0 \le j \le n\}.$$

Assim podemos interpretar $\frac{1}{n}\log(\mathscr{L}_{\psi}^{n}1)(x)$ como uma "frequência relativa" de o quanto o conjunto Z foi vizitado pelos y's tal que disconsiderando-se onde ele esteve nas j-primeiras horas $y \in x$. Logo o fato de

$$\lim_{n \to \infty} \frac{1}{n} \log(\mathcal{L}_{\psi}^{n} 1)(x) = \lambda$$

onde λ é constante com respeito a x pode ser interpretado como: a "frequência relativa" de visitas ao conjunto Z, feitas pelo conjunto ,

$$\{\sigma^{j}(y); \ \sigma^{j}(y) \in B^{+}(A), \ \sigma^{j}(y) = x, \ 0 \le j \le n\}$$

é assintótica a λ , quando $n \to \infty$

Observação: Note que o o raciocínio é apenas heurístico uma vez que $\psi = I_Z$ não é contínua, e o operador de Perron-Frobenius está definido em $C^{\gamma}(K,\mathbb{R}),\ 0<\gamma\leq 1.$

No que segue abaixo $C^{\gamma}(K,\mathbb{R})'$ denota o dual de $C^{\gamma}(K,\mathbb{R})$, que pelo Teorema de Riesz-Markov, podemos identificar com $\mathcal{M}(B^+(A))$ e \mathcal{L}_{ψ}^* denota o adjunto de \mathcal{L}_{ψ} .

Teorema 1.3 (Ruelle). Se $\psi \in C^{\gamma}(K, \mathbb{R})$, $0 < \gamma \leq 1$ o espectro de $\mathscr{L}_{\psi} : C^{\gamma}(K, \mathbb{R}) \hookrightarrow consiste$ em um autovalor simples $\lambda(\psi) > 0$ e um conjunto contido no disco $\{z \in \mathbb{C}; |z| < \lambda(\psi)\}$. Além disso existe uma função estritamente positiva $h_{\psi} \in C^{\gamma}(K, \mathbb{R})$ e uma probabilidade ν_{ψ} na σ -álgebra de borel de K satisfazendo,

- (a) $\mathscr{L}_{\psi}h_{\psi} = \lambda(\psi)h_{\psi}$
- (b) $\int h_{\psi} d\nu_{\psi} = 1$
- (c) $\mathscr{L}_{\psi}^* \nu_{\psi} = \lambda(\psi) \nu_{\psi}$
- (d) Para toda $\varphi \in C^{\beta}(K, \mathbb{R}), 0 \leq \beta \leq \gamma$,

$$\lim_{n\to\infty} \|\lambda(\psi)^{-n} \mathcal{L}_{\psi}^n \varphi - h_{\psi} \int \varphi d\nu_{\psi} \|_{\beta} = 0$$

e quando $0 < \beta \le \gamma$ a convergência é uniforme na bola unitária C^{β} .

(e) Existe C>0 tal que definindo para cada $\theta\in B^+(A)$ e n>0

$$B(\theta, n) = \{ \alpha \mid \alpha(j) = \beta(j) \text{ para } 0 \le j \le n \},$$

 $ent\tilde{a}o$

$$C^{-1}\lambda(\psi)^{-n}\exp(S_n\psi)(\theta) \le \nu_{\psi}(B(\theta,n)) \le C\lambda(\psi)^{-n}\exp(S_n\psi)(\theta).$$

Corolário 1.1. Se $\psi \in C^{\gamma}(K,\mathbb{R})$, $0 < \gamma \leq 1$, então

$$P(\psi)(x) := \lim_{n \to \infty} \frac{1}{n} \log \sum_{\sigma^n(y) = x} \exp(S_n \psi)(y) = \log \lambda(\psi)$$

uniformemente em $x \in K$

Demonstração: Temos que

$$\lim_{n \to \infty} \frac{1}{n} \log \sum_{\sigma^{n}(y)=x} \exp(S_{n}\psi)(y) = \lim_{n \to \infty} \frac{1}{n} \log(\mathscr{L}^{n}1)(x)$$

$$= \lim_{n \to \infty} \frac{1}{n} \log \frac{\lambda(\psi)^{n}}{\lambda(\psi)^{n}} (\mathscr{L}^{n}1)(x)$$

$$= \lim_{n \to \infty} \frac{1}{n} \log \lambda(\psi)^{n} + \lim_{n \to \infty} \frac{1}{n} \log \lambda(\psi)^{-n} (\mathscr{L}^{n}1)(x)$$

$$= \log \lambda(\psi) + \lim_{n \to \infty} \frac{1}{n} \log \lambda(\psi)^{-n} (\mathscr{L}^{n}1)(x)$$

Agora, pela parte (d) de 1.1, temos que

$$|\lambda(\psi)^{-n}(\mathscr{L}^n 1)(x) - h(x)| \le ||\lambda(\psi)^{-n}(\mathscr{L}^n 1)(x) - h(x)||_{\beta} \to 0$$

quando n tende ao infinito portanto $\lambda(\psi)^{-n}(\mathcal{L}^n1)(x)$ converge uniformemente para h(x), isto implica

$$\lim_{n\to\infty}\frac{1}{n}\log\lambda(\psi)^{-n}(\mathscr{L}^n1)(x)=0$$

donde segue o resultado.

Corolário 1.2. Se $\psi \in C^0(K,\mathbb{R})$ então o limite

$$P(\psi)(x) = \lim_{n \to \infty} \frac{1}{n} \log \sum_{\sigma^n(y) = x} \exp(S_n \psi)(y) = \log \lambda(\psi)$$

existe para todo $x \in K$ e independe de x

Demonstração: Para demonstrar este corolário basta provar que a sequência $\Phi_n: C^0(K, \mathbb{R}) \hookleftarrow$ dada por

$$\Phi_n(\psi)(x) = \frac{1}{n} \log \sum_{\sigma^n(y)=x} \exp(S_n \psi)(y)$$

converge uniformemente nas partes compactas de $C^0(K,\mathbb{R})$ para uma aplicação contínua $\Phi: C^0(K,\mathbb{R}) \longleftrightarrow$. De fato, pelo corolário 1.1, $\Phi(\psi) \in C^0(K,\mathbb{R})$ é uma função constante sempre que $\psi \in C^{\gamma}(K,\mathbb{R})$, $0 < \gamma \le 1$. Segue da densidade de $C^{\gamma}(K,\mathbb{R})$ em $C^0(K,\mathbb{R})$ que dada $\psi \in C^0(K,\mathbb{R})$ existe uma sequência $(\psi_n) \subset C^{\gamma}(K,\mathbb{R})$ com $\psi_n \to \psi$. Finalmente usando a continuidade de Φ obtemos $\Phi(\psi) = \lim_{n \to \infty} \Phi(\psi_n) = \log \lambda(\psi)$. O que demonstra o teorema.

Agora vamos mostrar que a sequência $\Phi_n : C^0(K, \mathbb{R}) \longleftrightarrow$ converge uniformemente nas partes compactas de $C^0(K, \mathbb{R})$.

Inicialmente repare que podemos identificar a sequência $\Phi_n: C^0(K, \mathbb{R}) \hookleftarrow$ com a sequência $\Phi_n: C^0(K, \mathbb{R}) \times K \to \mathbb{R}$ por

$$\Phi_n(\psi, x) = \frac{1}{n} \log \sum_{\sigma^n(y) = x} \exp(S_n \psi)(y).$$

Então,

$$\frac{\partial}{\partial \psi} \Phi(\psi, x) \cdot \varphi = \frac{\sum_{\sigma^n(y)=x} \frac{1}{n} (S_n \varphi)(y) \exp(S_n \psi)(y)}{\sum_{\sigma^n(y)=x} \exp(S_n \psi)(y)}.$$

Além disso

$$\left\| \frac{1}{n} \sum_{j=0}^{n-1} \varphi \circ \sigma^{j} \right\|_{0} \leq \frac{1}{n} \sum_{j=0}^{n-1} \left\| \varphi \circ \sigma^{j} \right\|_{0} \leq \frac{1}{n} \sum_{j=0}^{n-1} \| \varphi \|_{0} = \| \varphi \|_{0}$$

onde na segunda desiguladade usamos a sobrejetividade de σ . Portanto temos

$$\left| \frac{\partial}{\partial \psi} \Phi_{n}(\psi, x) \cdot \varphi \right| = \left| \frac{\sum_{\sigma^{n}(y)=x} \frac{1}{n} (S_{n}\varphi)(y) \exp(S_{n}\psi)(y)}{\sum_{\sigma^{n}(y)=x} \exp(S_{n}\psi)(y)} \right|$$

$$\leq \frac{\sum_{\sigma^{n}(y)=x} \left| \frac{1}{n} (S_{n}\varphi)(y) \exp(S_{n}\psi)(y) \right|}{\left| \sum_{\sigma^{n}(y)=x} \exp(S_{n}\psi)(y) \right|}$$

$$\leq \frac{\sum_{\sigma^{n}(y)=x} \left| \frac{1}{n} (S_{n}\varphi)(y) \right| \left| \exp(S_{n}\psi)(y) \right|}{\left| \sum_{\sigma^{n}(y)=x} \exp(S_{n}\psi)(y) \right|}$$

$$\leq \|\varphi\|_{0}$$

para todo $x \in K$. Logo

$$\left| \frac{\partial}{\partial \psi} \Phi_n(\psi, x) \cdot \varphi \right| \le 1$$

para todo n. Fixando ψ e $\widetilde{\psi}$ em $C^0(K,\mathbb{R})$, para cada n a função $\hat{\Phi}_n(t) = \Phi_n(\gamma(t),x)$, onde $\gamma(t) = t\psi + (1-t)\widetilde{\psi}$ com $0 \le t \le 1$, é uma aplicação de [0,1] em \mathbb{R} diferenciável. Donde $|\hat{\Phi}_n(1) - \hat{\Phi}_n(0)| = \left|\frac{d}{dt}\hat{\Phi}_n(\hat{t})(1-0)\right|$ para algum $\hat{t} \in (0,1)$, isto significa que

$$|\Phi_n(\psi, x) - \Phi_n(\widetilde{\psi}, x)| = \left| \frac{\partial}{\partial \psi} \Phi_n(\psi, x) (\psi - \widetilde{\psi}) \right| \le \|\psi - \widetilde{\psi}\|_0$$

ou seja a sequência $\Phi_n: C^0(K,\mathbb{R}) \hookleftarrow$ é uniformemente equicontínua. Devido ao corolário anterior a sequência Φ_n converge pontualmente no conjunto denso $C^{\gamma}(K,\mathbb{R}) \subset C^0(K,\mathbb{R})$. Além disso para cada $\psi \in C^0(K,\mathbb{R})$ o conjunto $\{\Phi_n(\psi), n \in \mathbb{N}\}$ tem fecho completo em $C^0(K,\mathbb{R})$. Segue que Φ_n converge nas partes compactas de $C^0(K,\mathbb{R})$ para uma função contínua $\Phi: C^0(K,\mathbb{R}) \hookleftarrow$.

Uma aplicação $f:U\subset E\to F$ entre os espaços de Banach E e F é dita analítica quando existem as derivadas de todas as ordens de f e é possível escrever:

$$f(x+v) = f(x) + \sum_{j=1}^{\infty} \frac{1}{n!} D^{j} f(x) v^{j}$$

para todo v tal que $x + v \in U$.

Lema 1.1. A aplicação $\theta: C^{\gamma}(K,\mathbb{R}) \to C^{\gamma}(K,\mathbb{R})$ dada por $\theta(\psi)(\varphi) = \mathcal{L}_{\psi}(\varphi)$ é analitica.

Demonstração: Sejam ψ , $\widetilde{\psi} \in C^{\gamma}(K, \mathbb{R})$ então

$$\theta(\psi + \widetilde{\psi})(\varphi)(x) - \theta(\psi)(\varphi)(x) = \mathcal{L}_{\psi + \widetilde{\psi}}(\varphi)(x) - \mathcal{L}_{\psi}(\varphi)(x) = \sum_{\sigma(y) = x} \varphi(y) \exp(\psi(y) + \widetilde{\psi}(y)) - \sum_{\sigma(y) = x} \varphi(y) \exp(\psi(y)) = \sum_{\sigma(y) = x} \varphi(y) \sum_{n=0}^{\infty} \frac{(\psi(y) + \widetilde{\psi}(y))^n}{n!} - \sum_{\sigma(y) = x} \varphi(y) \sum_{n=0}^{\infty} \frac{(\psi(y))^n}{n!} = \sum_{\sigma(y) = x} \varphi(y) \left\{ \sum_{n=0}^{\infty} \frac{(\psi(y) + \widetilde{\psi}(y))^n}{n!} - \sum_{n=0}^{\infty} \frac{(\psi(y))^n}{n!} \right\}.$$

Usando a expansão de $(\psi(y) + \widetilde{\psi}(y))^n$ em termos do binômio de Newton obtemos

$$\theta(\psi + \widetilde{\psi})(\varphi)(x) - \theta(\psi)(\varphi)(x) =$$

$$\sum_{\sigma(y)=x} \varphi(y) \left\{ \sum_{n=0}^{\infty} \frac{1}{n!} \sum_{k=0}^{n} \binom{n}{k} (\psi(y))^{n-k} (\widetilde{\psi}(y))^k - \sum_{n=0}^{\infty} \frac{(\psi(y))^n}{n!} \right\}.$$

Desenvolvendo o somatório que contém o binômio de Newton e agrupando os termos convenientemente vem

$$\sum_{n=0}^{\infty} \frac{1}{n!} \sum_{k=0}^{n} \binom{n}{k} (\psi(y))^{n-k} (\widetilde{\psi}(y))^{k} = e^{\psi(y)} + e^{\psi(y)} \widetilde{\psi}(y) + \frac{e^{\psi(y)} (\widetilde{\psi}(y))^{2}}{2!} + \dots + \frac{e^{\psi(y)} (\widetilde{\psi}(y))^{n}}{n!} + \dots$$

portanto

$$\theta(\psi + \widetilde{\psi})(\varphi)(x) - \theta(\psi)(\varphi)(x) =$$

$$\sum_{\sigma(y)=x} \varphi(y)e^{\psi(y)}\widetilde{\psi}(y) + \sum_{\sigma(y)=x} \varphi(y)\frac{e^{\psi(y)}(\widetilde{\psi}(y))^{2}}{2!} + \dots +$$

$$\sum_{\sigma(y)=x} \varphi(y)\frac{e^{\psi(y)}(\widetilde{\psi}(y))^{n}}{n!} + \dots +$$

donde

$$\theta(\psi + \widetilde{\psi})(\varphi) - \theta(\psi)(\varphi) = \sum_{n=1}^{\infty} \frac{1}{n!} \theta(\psi)(\varphi(\widetilde{\psi})^n).$$

Para concluir a analiticidade de \mathscr{L}_{ψ} com relação ao parâmetro ψ resta apenas argumentar que

$$D^k \theta(\psi)(\widetilde{\psi}, \dots, \widetilde{\psi})(\varphi) = \mathscr{L}_{\psi}(\varphi(\widetilde{\psi})^n).$$

Por simplicidade faremos apenas os casos k=1 e k=2 os outros casos são análogos. Pois bem, do exposto acima temos

$$\theta(\psi + \widetilde{\psi})(\varphi) - \theta(\psi)(\varphi) = \theta(\psi)(\varphi\widetilde{\psi}) + \sum_{n=2}^{\infty} \frac{1}{n!} \theta(\psi)(\varphi(\widetilde{\psi})^n).$$

Considere a aplicação $\mathscr{O}:V\to\mathscr{L}(V,V)$ definida por

$$\mathscr{O}(\widetilde{\psi})(\varphi) = \sum_{n=2}^{\infty} \frac{1}{n!} \theta(\psi)(\varphi(\widetilde{\psi})^n),$$

onde estamos convencionando $V=C^{\gamma}(K,\mathbb{R})$ para simplificar a notação. Por

definição

$$\begin{split} \left\| \mathscr{O}(\widetilde{\psi}) \right\|_{\mathscr{L}(V,V)} &= \sup_{\|\varphi\| \le 1} \left\| \mathscr{O}(\widetilde{\psi})(\varphi) \right\|_{V} \\ &= \sup_{\|\varphi\| \le 1} \left\| \sum_{n=2}^{\infty} \frac{1}{n!} \theta(\psi)(\varphi(\widetilde{\psi})^{n}) \right\|_{V} \\ &= \sup_{\|\varphi\| \le 1} \left\| \sum_{n=2}^{\infty} \frac{1}{n!} \mathscr{L}_{\psi}(\varphi(\widetilde{\psi})^{n}) \right\|_{V} \\ &\le \sup_{\|\varphi\| \le 1} \sum_{n=2}^{\infty} \frac{1}{n!} k \|\varphi\|_{V} \|\widetilde{\psi}\|_{V}^{n} \\ &\le k \sum_{n=2}^{\infty} \frac{1}{n!} \|\widetilde{\psi}\|_{V}^{n} \end{split}$$

logo

$$\frac{\|\mathscr{O}(\widetilde{\psi})\|_{L(V,V)}}{\|\widetilde{\psi}\|_{V}} \le k \sum_{n=2}^{\infty} \frac{1}{n!} \|\widetilde{\psi}\|_{V}^{n-1} \to 0$$

quando $\|\widetilde{\psi}\|_V \to 0$, donde

$$D\theta(\psi)(\varphi) = \mathcal{L}_{\psi}(\varphi\widetilde{\psi}).$$

Isto conclui o caso k = 1, para o caso k = 2 observe que

$$D\theta(\psi + \widehat{\psi})(\widetilde{\psi})(\varphi) - D\theta(\psi)(\varphi) = \sum_{n=1}^{\infty} \frac{1}{n!} \theta(\psi)(\varphi \widetilde{\psi}(\widehat{\psi})^n)$$
$$= \theta(\psi)(\varphi \widetilde{\psi} \widehat{\psi}) + \sum_{n=2}^{\infty} \frac{1}{n!} \theta(\psi)(\varphi \widetilde{\psi}(\widehat{\psi})^n).$$

Considere a aplicação $\mathcal{O}_1: V \to \mathcal{L}(V, \mathcal{L}(V, V))$ dada por

$$\mathscr{O}_1(\widehat{\psi})(\widetilde{\psi})(\varphi) = \sum_{n=2}^{\infty} \frac{1}{n!} \theta(\psi)(\varphi \widetilde{\psi}(\widehat{\psi})^n)$$

Então

$$\begin{split} \|\mathscr{O}_{1}(\widehat{\psi})\| &= \sup_{\|\widetilde{\psi}\| \leq 1} \left\| \mathscr{O}_{1}(\widehat{\psi})(\widetilde{\psi}) \right\|_{\mathscr{L}(V,V)} \\ &= \sup_{\|\widetilde{\psi}\| \leq 1} \left\{ \sup_{\|\varphi\| \leq 1} \left\| \mathscr{O}_{1}(\widehat{\psi})(\widetilde{\psi})(\varphi) \right\} \right\|_{V} \right\} \\ &= \sup_{\|\widetilde{\psi}\| \leq 1} \left\{ \sup_{\|\varphi\| \leq 1} \sum_{n=2}^{\infty} \frac{1}{n!} \|\theta(\psi)(\varphi \widetilde{\psi}(\widehat{\psi})^{n})\|_{V} \right\} \\ &= \sup_{\|\widetilde{\psi}\| \leq 1} \left\{ \sup_{\|\varphi\| \leq 1} \sum_{n=2}^{\infty} \frac{1}{n!} \|\mathscr{L}_{\psi}(\varphi \widetilde{\psi}(\widehat{\psi})^{n})\|_{V} \right\} \\ &\leq \sup_{\|\widetilde{\psi}\| \leq 1} \left\{ \sup_{\|\varphi\| \leq 1} \sum_{n=2}^{\infty} \frac{1}{n!} k \|\varphi\|_{V} \|\widetilde{\psi}\|_{V} \|\widehat{\psi}\|_{V}^{n} \right\} \\ &\leq \sup_{\|\widetilde{\psi}\| \leq 1} k \sum_{n=2}^{\infty} \frac{1}{n!} \|\widetilde{\psi}\|_{V} \|\widehat{\psi}\|_{V}^{n} \\ &= k \sum_{n=2}^{\infty} \frac{1}{n!} \|\widehat{\psi}\|_{V}^{n} \end{split}$$

daí

$$\frac{\|\mathscr{O}(\widehat{\psi})\|_{\mathscr{L}(V,\mathscr{L}(V,V))}}{\|\widehat{\psi}\|_{V}} \le k \sum_{n=2}^{\infty} \frac{1}{n!} \|\widehat{\psi}\|_{V}^{n} \to 0$$

quando $\|\widehat{\psi}\|_V \to 0$, logo

$$D^{2}\theta(\widetilde{\psi})(\widehat{\psi})(\varphi) = \mathcal{L}_{\psi}(\varphi\widetilde{\psi}\widehat{\psi}).$$

Isto conclui o caso k=2, os outros casos são análogos.

Agora usando o Corolário 1.2 dada $\psi \in C^0(K,\mathbb{R})$ defina

$$P(\psi)(x) = \lim_{n \to \infty} \frac{1}{n} \log \mathcal{L}^n 1(x)$$

No próximo corolário mostraremos que as autofunções h_{ψ} e ν_{ψ} dadas pelo Teorema de Perron-Frobenius dependem analiticamente do parâmetro ψ .

Corolário 1.3. Para todo $0 < \gamma \le 1$ as funções ,

$$P: C^{\gamma}(K, \mathbb{R}) \to \mathbb{R}$$

$$C^{\gamma}(K, \mathbb{R}) \ni \psi \mapsto \nu_{\psi} \in C^{\gamma}(K, \mathbb{R})'$$

 $C^{\gamma}(K, \mathbb{R}) \ni \psi \mapsto h_{\psi} \in C^{\gamma}(K, \mathbb{R})$

são analíticas.

Demonstração: Seja D um disco fechado e centrado em $\lambda(\psi)$ tal que $D \cap \sigma(\mathcal{L}_{\psi}) = \{\lambda(\psi)\}$. Considere F o espaço dos operadores lineares de $C^{\gamma}(K,\mathbb{R})$ munido da topologia da norma.

Afirmação 1: Existe uma vizinhança U de \mathcal{L}_{ψ} em F tal que $\sigma(L) \cap \partial D = \phi$ para todo $L \in U$.

Então, se $L \in U$ podemos definir a projeção de $C^{\gamma}(K, \mathbb{R})$ por

$$\pi_L = \frac{1}{2\pi i} \int_{\partial D} (\lambda I - L)^{-1} d\lambda \tag{1.2}$$

Afirmação 2: Quando $L = \mathcal{L}_{\psi}$ a imagem desta projeção é o autoespaço associado ao autovalor $\lambda(\psi)$. Além disso este autoespaço e unidimensional. Afirmação 3: A projeção $\pi_{L}: C^{\gamma}(K|\mathbb{R}) \iff$ é contínua com relação ao

Afirmação 3: A projeção $\pi_L : C^{\gamma}(K, \mathbb{R}) \longleftrightarrow \text{\'e}$ contínua com relação ao parâmetro L.

Portanto tomando U suficientemente pequeno temos que

$$||\pi_L - \pi_{\mathscr{L}_{\psi}}||_{\gamma} < \min\{||\pi_L||_{\gamma}^{-1}, ||\pi_{\mathscr{L}_{\psi}}||_{\gamma}^{-1}\}.$$

Segue então da proposição A.7 que a imagem de π_L também e unidimensional e invariante por L.

Afirmação 4: Se U é suficientemente pequeno o espectro de $L \in U$ consiste de $\mu(L)$ e um conjunto contido em um disco $\{z; |z| < r\}$ com $r < \mu(L)$.

Então seja $v \in C^{\gamma}(K, \mathbb{R})$ e $w \in C^{\gamma}(K, \mathbb{R})'$ vetores tais que $\langle w, \pi_L v \rangle \neq 0$ (Hahn Banach) como a projeção π_L comuta com o operador L, temos que

$$\langle w, \pi_L(Lv) \rangle = \langle w, L(\pi_L v) \rangle = \langle w, \mu(L) \pi_L v \rangle = \mu(L) \langle w, \pi_L v \rangle,$$

isto implica

$$\mu(L) = \frac{\langle w, \pi_L(Lv) \rangle}{\langle w, \pi_L v \rangle}.$$
 (1.3)

Escolha v e w tais que $\langle w, \pi_{\mathcal{L}_{\psi}} v \rangle \neq 0$ então $\langle w, \pi_L v \rangle \neq 0$ para todo $L \in U$ desde de que U seja suficientemente pequeno. Combinando (1.2) e (1.3) concluimos que $\mu(L)$ é uma função real analítica de L.

Afirmação 5: Existe uma vizinhança V de ψ em $C^{\gamma}(K,\mathbb{R})$ tal que $\mathscr{L}_{\varphi} \in U$ sempre que $\varphi \in V$.

Então , se φ está tão próxima de ψ que $\mathscr{L}_{\varphi} \in U$ temos

$$\mu(\mathscr{L}_{\varphi}) = \lambda(\varphi) \tag{1.4}$$

Segue do Lema 1.1 que a função $V \ni \varphi \mapsto \lambda(\varphi)$ é analítica, pois é a composição das aplicações $V \ni \varphi \mapsto \mathcal{L}_{\varphi} \in U$ e $U \ni L \mapsto \mu(L)$, donde se conclui a anliticidade da aplicação $V \ni \varphi \mapsto P(\varphi) = \log \lambda(\varphi)$ (Veja Corolário 1.1).

Observação 1.: Lembrando que o espectro de $\mathscr{L}_{\psi}^{*}: C^{\gamma}(K,\mathbb{R})' \leftrightarrow$ é o mesmo espectro de $\mathscr{L}_{\psi}: C^{\gamma}(K,\mathbb{R}) \leftrightarrow$, e na demonstração da Afirmação 1, trocando \mathscr{L}_{ψ} por \mathscr{L}_{ψ}^{*} e $C^{\gamma}(K,\mathbb{R})$ por $C^{\gamma}(K,\mathbb{R})'$, obtemos a existência de uma vizinhança U de \mathscr{L}_{ψ}^{*} no espaço das aplicações lineares contínuas de $C^{\gamma}(K,\mathbb{R})'$ em si mesmo munido da topologia da norma, tal que para cada $L \in U$ existe uma projeção $\widehat{\pi}_{L}: C^{\gamma}(K,\mathbb{R})' \leftrightarrow$, dependendo analiticamente de L.

Seja U uma vizinhança de \mathscr{L}_{ψ}^* tal que a imagem $\widehat{\pi}_{\mathscr{L}_{\psi}^*}$ é um autoespaço unidimensional associado ao autovalor $\lambda(\psi)$. E seja W uma vizinhança de ψ tal que $\mathscr{L}_{\varphi}^* \in U$ sempre que $\varphi \in W$. Então

$$\widehat{\pi}_{\mathscr{L}_{\wp}^*}\nu_{\psi} = \widetilde{\lambda}\nu_{\varphi} \Rightarrow \langle \widehat{\pi}_{\mathscr{L}_{\wp}^*}\nu_{\psi}, 1 \rangle = \widetilde{\lambda}\langle\nu_{\varphi}, 1 \rangle = \widetilde{\lambda}$$

portanto

$$\nu_{\varphi} = \langle \widehat{\pi}_{\mathcal{L}_{\varphi}^*} \nu_{\psi}, 1 \rangle^{-1} \widehat{\pi}_{\mathcal{L}_{\varphi}^*} \nu_{\psi}$$

além disso pelo Teorema 1.3

$$\pi_{\mathcal{L}_{\varphi}} h_{\psi} = \widehat{\lambda} h_{\varphi} \Rightarrow \langle \pi_{\mathcal{L}_{\varphi}} h_{\psi}, \nu_{\varphi} \rangle = \widehat{\lambda} \langle h_{\varphi}, \nu_{\varphi} \rangle = \widehat{\lambda}$$

ou seja,

$$h_{\varphi} = \langle \pi_{\mathscr{L}_{\varphi}} h_{\psi}, \nu_{\varphi} \rangle^{-1} \pi_{\mathscr{L}_{\varphi}} h_{\psi}.$$

Isto mostra que as aplicações $\psi \mapsto h_{\psi}$ e $\psi \mapsto \nu_{\psi}$ são analíticas em uma vizinhaça W de ψ , como ψ foi tomado arbitrariamente, concluimos a analiticidade dessas funções em $C^{\gamma}(K,\mathbb{R})$.

Agora vamos demonstrar a sequência de afirmações usadas na demonstração acima.

Afirmação 1: Existe uma vizinhança U de \mathcal{L}_{ψ} em F tal que $\sigma(L) \cap \partial D = \phi$ para todo $L \in U$.

Demonstração: Temos $D \cap \sigma(\mathcal{L}_{\psi}) = \{\lambda(\psi)\}$ isto implica $\partial D \cap \sigma(\mathcal{L}_{\psi}) = \phi$ como $\mathbb{C} \setminus \sigma(\mathcal{L}_{\psi})$ é aberto temos que para cada $\lambda \in \partial d$ existe $\epsilon_{\lambda_k} > 0$ tal que o disco $B_{\epsilon_{\lambda}}(\lambda)$ não intercepta o especto de \mathcal{L}_{ψ} . Claramente a família

$$\{B_{\epsilon_{\lambda}}(\lambda) : \lambda \in \partial D\}$$

fornece uma corbertura para ∂D . Pela compacidade de ∂D podemos trabalhar com uma subcobertura finita

$$\{B_{\epsilon_{\lambda_k}}(\lambda_k) : k = 1, \dots, n\}.$$

Agora para cada k = 1, ..., n vamos obter uma vizinhaça U_{λ_k} de \mathcal{L}_{ψ} para o qual $\sigma(L) \cap B_{\epsilon_{\lambda_k}}(\lambda_k) = \phi$ para todo $L \in U_{\lambda_k}$. Para tanto tome $k \in \{1, ..., n\}$ arbitrariamente e considere $B_{\epsilon_{\lambda_k}}(\lambda_k)$, tome também $L \in \mathcal{F}$. Por hipótese existe $(\tilde{\lambda}I - \mathcal{L}_{\psi})^{-1}$, pela Proposição A.1 para que $\tilde{\lambda}I - L$ seja invertível é suficiente que

$$||L - \mathscr{L}_{\psi}||_{F} \leq \inf_{\tilde{\lambda} \in \overline{B_{\epsilon_{\lambda_{k}}}}(\lambda_{k})} ||(\tilde{\lambda}I - \mathscr{L}_{\psi})^{-1}||_{F}^{-1}.$$

Portanto para cada k, k = 1, ..., n existe uma vizinhança U_{λ_k} de \mathcal{L}_{ψ} para o qual $\sigma(L) \cap B_{\epsilon_{\lambda_k}}(\lambda_k) = \phi$ para toda $L \in U_{\lambda_k}$. Então para obter a vizinhaça desejada basta considerar a interseção

$$U = \bigcap_{k=1}^{n} U_{\lambda_k} \neq \phi.$$

Afirmação 2: Quando $L = \mathcal{L}_{\psi}$ a imagem desta projeção é o autoespaço associado ao autovalor $\lambda(\psi)$. Além disso este autoespaço e unidimensional. **Demonstração:** A primeira parte da afirmação é óbvia tendo-se em vista a Proposição A.5 pois $\lambda(\psi)$ é pólo de ordem 1 de \mathcal{L}_{ψ} (Ver Teorema 1.2). Resta mostrar que este autoespaço é unidimensional. Com efeito seja φ outro autovetor de \mathcal{L}_{ψ} associado a $\lambda(\psi)$, pela parte (d) do teorema 1.1 temos

$$0 = \lim_{n \to \infty} \left\| \lambda(\psi)^{-n} \mathcal{L}_{\psi}^{n} \varphi - h_{\psi} \int \varphi d\nu_{\psi} \right\|_{\beta} = \lim_{n \to \infty} \left\| \lambda(\psi)^{-n} \lambda(\psi)^{n} \varphi - h_{\psi} \int \varphi d\nu_{\psi} \right\|_{\beta} = \left\| \varphi - h_{\psi} \int \varphi d\nu_{\psi} \right\|_{\beta}$$
$$\Rightarrow \varphi = h_{\psi} \int \varphi d\nu_{\psi}$$

como pretendíamos.

Observação 2.: Se $\lambda(\psi)$ é um pólo de ordem 1 de \mathcal{L}_{ψ} então $\lambda(\psi)$ também é pólo de ordem 1 de \mathcal{L}_{ψ}^* , logo a imagem da projeção $\widehat{\pi}_L : C^{\gamma}(K, \mathbb{R})' \leftarrow$ é um autoespaço de \mathcal{L}_{ψ}^* associado a $\lambda(\psi)$. Sejam $\widetilde{\nu}$ outro autovetor de \mathcal{L}_{ψ}^* associado a $\lambda(\psi)$ e $\psi \in C^{\gamma}(K, \mathbb{R})$, $0 < \beta \le \gamma \le 1$. Então

$$\lambda(\psi)^{-n}(\mathscr{L}_{\psi}^{*n}\widetilde{\nu})(\varphi) - \nu_{\psi}(\varphi)\widetilde{\nu}(h_{\psi}) =$$

$$\lambda(\psi)^{-n}\lambda(\psi)^{n}\widetilde{\nu}(\varphi) - \nu_{\psi}(\varphi)\widetilde{\nu}(h_{\psi}) = \widetilde{\nu}(\varphi) - \nu_{\psi}(\varphi)\widetilde{\nu}(h_{\psi})$$

por outro lado, pelo Teorema 1.1

$$\lim_{n \to \infty} \|\lambda(\psi)^{-n} \mathcal{L}_{\psi}^{*n} \nu - \nu_{\psi} \nu(h_{\psi})\|_{\beta} =$$

$$\lim_{n \to \infty} \|\nu(\lambda(\psi)^{-n} \mathcal{L}_{\psi}^{n} \varphi - h_{\psi} \int \varphi d\nu_{\psi})\|_{\beta} =$$

$$\|\nu(\lim_{n \to \infty} \lambda(\psi)^{-n} \mathcal{L}_{\psi}^{n} \varphi - h_{\psi} \int \varphi d\nu_{\psi})\|_{\beta} = 0$$

Portanto temos $\widetilde{\nu}(\varphi) = \nu_{\psi}(\varphi)\widetilde{\nu}(h_{\psi})$, ou seja, a imagem de $\widehat{\pi}_L$ é um autoespaço unidimensional de \mathscr{L}_{ψ}^* .

Afirmação 3: A projeção $\pi_L: C^{\gamma}(K,\mathbb{R}) \longleftrightarrow$ é contínua com relação ao parâmetro L.

Demonstração: Pela proposição (?), dado $\varepsilon > 0$ existe $\delta > 0$ tal que

$$||L_1 - L_2||_{\gamma} < \delta \Rightarrow ||R(L_1, \lambda) - R(L_2, \lambda)||_{\gamma} < \frac{\varepsilon}{2\pi r}$$

portanto

$$||\pi_{L_1} - \pi_{L_2}||_{\gamma} = ||\int_{\partial D} R(L_1, \lambda) - R(L_2, \lambda) d\lambda||_{\gamma} \leq \int_{\partial D} ||R(L_1, \lambda) - R(L_2, \lambda)||_{\gamma} |d\lambda| < \int_{\partial D} \frac{\varepsilon}{2\pi r} |d\lambda| = \varepsilon.$$

Afirmação 4: Se U é suficientemente pequeno o espectro de $L \in U$ consiste de $\mu(L)$ e um conjunto contido em um disco $\mathcal{C} = \{z; |z| < r\}$ com $r < \mu(L)$. Demonstração: Comecemos lembrando que a afirmação é válida quando $L = \mathcal{L}_{\psi}$. Pela Proposição A.5, o espectro de L restrito à imagem de π_L está contido no interior de D. Como a imagem de π_L é um autoespaço unidimensional de L o espectro de L restrito à imagem de π_L consiste do conjunto unitário $\{\mu(L)\}$. Então basta na Proposição A.6 escolhermos

$$\varepsilon < \{ dist(\sigma(\mathcal{L}_{\psi}) - \{\lambda(\psi)\}, \partial \mathcal{C}), \delta_1 \}.$$

onde $\partial \mathcal{C}$ é a fronteira do disco \mathcal{C} de raio r com centro na origem e δ_1 é o raio do disco D

Afirmação 5: Existe uma vizinhança V de ψ em $C^{\gamma}(K,\mathbb{R})$ tal que $\mathscr{L}_{\varphi} \in U$ sempre que $\varphi \in V$.

Demonstração: Para demonstrar a Afirmação 5 basta mostrar que \mathcal{L}_{φ} é contínua com relação ao parâmetro φ . Pois bem, da continuidade da função exponencial, dado $\varepsilon > 0$ existe $\delta_1 > 0$ tal que

$$|\psi(y) - \varphi(y)| \le ||\psi - \varphi||_{\gamma} < \delta_1 \Rightarrow |\exp \psi(y) - \exp \varphi(y)| < \frac{\varepsilon}{3\sum_{\sigma(y)=x} |u(y)|}$$

para todo $y \in \sigma^{-1}(x)$. Logo

$$\left|\sum_{\sigma(y)=x} u(y)(\exp \psi(y) - \exp \varphi(y))\right| \le \sum_{\sigma(y)=x} |u(y)| |\exp \psi(y) - \exp \varphi(y)| < \frac{\varepsilon}{3}.$$

Existem também δ_2 e δ_3 tais que $|\psi(y)-\varphi(y)|\leq ||\psi-\varphi||_{\gamma}<\delta_2,\delta_3$ acarretam

$$|\exp \psi(y) - \exp \varphi(y)| < \frac{\varepsilon d(x, x')^{\gamma}}{3 \sum_{\sigma(y)=x} |u(y)|}$$

е

$$|\exp \psi(y') - \exp \varphi(y')| < \frac{\varepsilon d(x, x')^{\gamma}}{3\sum_{\sigma(y')=x'} |u(y')|}$$

para todos $y \in \sigma^{-1}(x), y' \in \sigma^{-1}(x')$ com $x \neq x'$. Portanto tomando $\delta = \min\{\delta_1, \delta_2, \delta_3\}$ temos

$$\sup_{x} |(\mathcal{L}_{\psi} - \mathcal{L}_{\varphi})u(x)| \le \frac{\varepsilon}{3}$$

е

$$\sup_{x \neq x'} |(\mathscr{L}_{\psi} - \mathscr{L}_{\varphi})u(x) - (\mathscr{L}_{\psi} - \mathscr{L}_{\varphi})u(x')| \leq \frac{2\varepsilon}{3}.$$

Consequentemente

$$||\psi - \varphi||_{\gamma} < \delta \Rightarrow ||\mathscr{L}_{\psi} - \mathscr{L}_{\varphi}||_{\gamma} < \varepsilon$$

como queríamos.

Observação3.: Existe uma vizinhança W de ψ tal que $\mathscr{L}_{\varphi}^* \in U$ sempre que $\varphi \in W$. Para isso basta lembrar que existe um isomorfismo isométrico entre $C^{\gamma}(K,\mathbb{R})$ e $C^{\gamma}(K,\mathbb{R})'$

Corolário 1.4. Para todo $0 < \gamma \le 1$, ν_{ψ} é uma função fracamente contínua de $\psi \in C^{\gamma}(K, \mathbb{R})$, isto é,

$$\lim_{n \to \infty} \int \varphi d\nu_{\psi_n} = \int \varphi d\nu_{\psi}$$

para toda sequência convergente $\nu_{\psi_n} \to \nu_{\psi}$ em $C^{\gamma}(K, \mathbb{R})'$.

Demonstração: Suponha que $\psi_n \to \psi$ é uma sequência convergente em $C^{\gamma}(K,\mathbb{R})$ e que ν_{ψ_n} não convirja fracamente para ν_{ψ} . Então podemos assumir que ν_{ψ_n} converge fracamente para uma probabilidade $\nu \neq \nu_{\psi}$. Então

$$\mathscr{L}_{\psi}^* \nu = \lim_{n \to \infty} \mathscr{L}_{\psi_n}^* \nu_{\psi_n} = \lim_{n \to \infty} \lambda(\psi_n) \nu_{\psi_n} = \lambda(\psi) \nu.$$

Portanto, $\nu \in C^0(K, \mathbb{R})' \subset C^{\gamma}(K, \mathbb{R})'$ é um autovetor de $\mathscr{L}_{\psi}^* : C^{\gamma}(K, \mathbb{R})' \longleftrightarrow$ associado ao autovalor $\lambda(\psi)$. Lembrando que o autoespaço de \mathscr{L}_{ψ}^* associado ao autovalor $\lambda(\psi)$ é unidimensional, segue que ν é múltiplo de ν_{ψ} . Como ν e ν_{ψ} são probabilidades temos $\nu = \nu_{\psi}$ contradição!

Corolário 1.5. Se $\psi \in C^{\gamma}(K,\mathbb{R}), 0 < \gamma \leq 1, então$

$$\lim_{n \to \infty} \left\| \frac{1}{n} \frac{\mathcal{L}_{\psi}^{n}(S_{n}\varphi)}{\mathcal{L}_{\psi}^{n} 1} - \int \varphi h_{\psi} d\nu_{\psi} \right\|_{\beta}$$

para toda $\varphi \in C^{\gamma}(K,\mathbb{R})$, $0 \leq \beta \leq \gamma$. Além disso a convergência é uniforme na bola unitária C^{β} .

Demonstração: Vamos demonstrar este corolário usando uma sequência de afirmações.

Afirmação 1:

$$\mathscr{L}_{\psi}^{n}(S_{n}\varphi) = \sum_{j=0}^{n-1} \mathscr{L}_{\psi}^{n-j}(\varphi \mathscr{L}_{\psi}^{j}1).$$

Então

$$\lambda(\psi)^n \mathcal{L}_{\psi}^n(S_n \varphi) = \sum_{j=0}^{n-1} \lambda(\psi)^{n-j} \mathcal{L}_{\psi}^{-(n-j)}(\varphi \lambda(\psi)^{-j} \mathcal{L}_{\psi}^j 1).$$

Afirmação 2:

$$\sup_{m} \|\lambda^{-m} \mathcal{L}_{\psi}^{m}\|_{\beta} < \infty$$

е

$$\lim_{n\to\infty} \left\| \frac{1}{n} \left\{ \lambda(\psi)^{-n} \mathcal{L}_{\psi}^{n}(S_{n}\varphi) - \sum_{j=0}^{n-1} \lambda(\psi)^{n-j} \mathcal{L}_{\psi}^{-(n-j)} \varphi h_{\psi} \right\} \right\|_{\beta}.$$
 (1.5)

Pelo teorema de Ruelle

$$\lim_{n \to \infty} \left\| \lambda(\psi)^{-n} \mathcal{L}_{\psi}^{n} \varphi h_{\psi} - h_{\psi} \int \varphi h_{\psi} d\nu_{\psi} \right\|_{\beta} = 0 \tag{1.6}$$

daí

Afirmação 3:

$$\lim_{n \to \infty} \left\| \frac{1}{n} \sum_{j=0}^{n-1} \lambda(\psi)^{n-j} \mathcal{L}_{\psi}^{-(n-j)} \varphi h_{\psi} - h_{\psi} \int \varphi h_{\psi} d\nu_{\psi} \right\|_{\beta} = 0.$$
 (1.7)

Além disso pelo teorema de Ruelle segue que

$$\lim_{n \to \infty} \left\| \lambda(\psi)^{-n} \mathcal{L}_{\psi}^{n} 1 - h_{\psi} \right\|_{\beta} = 0 \tag{1.8}$$

Portanto segue de (1.5) (1.7) e (1.8)

$$\lim_{n \to \infty} \left\| \frac{1}{n} \frac{\mathcal{L}_{\psi}^{n}(S_{n}\varphi)}{\mathcal{L}_{\psi}^{n} 1} - \int \varphi h_{\psi} d\nu_{\psi} \right\|_{\beta} =$$

$$\lim_{n \to \infty} \left\| \frac{\lambda(\psi)^{n}}{\mathcal{L}_{\psi}^{n} 1} \frac{1}{n} \lambda(\psi)^{-n} \mathcal{L}_{\psi}^{n}(S_{n}\varphi) - \int \varphi h_{\psi} d\nu_{\psi} \right\|_{\beta} \leq$$

$$\lim_{n \to \infty} \left\| \frac{\lambda(\psi)^{n}}{\mathcal{L}_{\psi}^{n} 1} \right\|_{\beta} \lim_{n \to \infty} \left\| \frac{1}{n} \lambda(\psi)^{-n} \mathcal{L}_{\psi}^{n}(S_{n}\varphi) - (\lambda(\psi)^{-n} \mathcal{L}_{\psi}^{n} 1) \int \varphi h_{\psi} d\nu_{\psi} \right\|_{\beta} \leq$$

$$C \lim_{n \to \infty} \left\| \frac{1}{n} \lambda(\psi)^{-n} \mathcal{L}_{\psi}^{n}(S_{n}\varphi) - h_{\psi} \int \varphi h_{\psi} d\nu_{\psi} \right\|_{\beta} = 0$$

A convergência uniforme na bola unitária C^{β} segue da parte (d) do Teorema de Ruelle.

Agora vamos demonstrar as afirmações usadas no corolário acima.

Afirmação 1:

$$\mathscr{L}_{\psi}^{n}(S_{n}\varphi) = \sum_{j=0}^{n-1} \mathscr{L}_{\psi}^{n-j}(\varphi \mathscr{L}_{\psi}^{j}1).$$

Demonstração: Comecemos reparando que

$$\mathscr{L}^n_{\psi}(\varphi\circ\sigma^n)=\varphi\mathscr{L}^n_{\psi}1$$

com efeito

$$\mathcal{L}_{\psi}^{n}(\varphi \circ \sigma^{n})(x) = \sum_{\sigma^{n}(y)=x} \varphi \circ \sigma^{n}(y) \exp(S_{n})(y)$$
$$= \varphi(x) \sum_{\sigma^{n}(y)=x} \exp(S_{n})(y)$$
$$= \varphi(x) \mathcal{L}_{\psi}^{n} 1(x)$$

donde $\mathscr{L}^n_{\psi}(\varphi \circ \sigma^n) = \varphi \mathscr{L}^n_{\psi}$ 1. Daí segue

$$\mathcal{L}_{\psi}^{n}(S_{n}\varphi) = \mathcal{L}_{\psi}^{n-1}[\mathcal{L}_{\psi}\{\varphi + \varphi \circ \sigma + \varphi \circ \sigma^{2} + \ldots + \varphi \circ \sigma^{n-1}\}] = \mathcal{L}_{\psi}^{n}(\varphi) + \mathcal{L}_{\psi}^{n-1}(\mathcal{L}_{\psi}(\varphi \circ \sigma)) + \mathcal{L}_{\psi}^{n-2}(\mathcal{L}_{\psi}^{2}\varphi \circ \sigma^{2}) + \ldots + \mathcal{L}_{\psi}(\mathcal{L}_{\psi}^{n-1}\varphi \circ \sigma^{n-1}) = \mathcal{L}_{\psi}^{n}(\varphi) + \mathcal{L}_{\psi}^{n-1}(\varphi\mathcal{L}_{\psi}1) + \mathcal{L}_{\psi}^{n-2}(\varphi\mathcal{L}_{\psi}^{2}1) + \ldots + \mathcal{L}_{\psi}(\varphi\mathcal{L}_{\psi}^{n-1}1) = \sum_{i=0}^{n-1} \mathcal{L}_{\psi}^{n-i}(\varphi\mathcal{L}_{\psi}^{i}1)$$

como pretendíamos.

Afirmação 2:

$$\sup_{m} \|\lambda^{-m} \mathcal{L}_{\psi}^{m}\|_{\beta} < \infty$$

е

$$\lim_{n\to\infty} \left\| \frac{1}{n} \left\{ \lambda(\psi)^{-n} \mathscr{L}_{\psi}^{n}(S_{n}\varphi) - \sum_{j=0}^{n-1} \lambda(\psi)^{-(n-j)} \mathscr{L}_{\psi}^{n-j} \varphi h_{\psi} \right\} \right\|_{\beta}.$$

Demonstração: Note, pelo Teorema de Ruelle existe uma constante M tal que

$$\|\lambda(\psi)^{-n} \mathcal{L}_{\psi}^{n} \varphi\|_{\beta} \leq M + \|h_{\psi} \int \varphi d\nu_{\psi}\|_{\beta}$$
$$= M + \|h_{\psi}\|_{\beta}$$

lembre que φ pertence à bola unitária, então

$$\|\lambda(\psi)^{-n}\mathcal{L}_{\psi}^n\| < M + \|h_{\psi}\|_{\beta}$$

portanto

$$\sup_{n} \|\lambda(\psi)^{-n} \mathcal{L}_{\psi}^{n}\| < \infty$$

$$\left\| \frac{1}{n} \left\{ \lambda(\psi)^{-n} \mathcal{L}_{\psi}^{n}(S_{n}\varphi) - \sum_{j=0}^{n-1} \lambda(\psi)^{-(n-j)} \mathcal{L}_{\psi}^{-(n-j)} \varphi h_{\psi} \right\} \right\|_{\beta} =$$

$$\left\| \frac{1}{n} \left\{ \sum_{j=0}^{n-1} \lambda(\psi)^{-(n-j)} \mathcal{L}_{\psi}^{n-j}(\varphi \lambda(\psi)^{-j} \mathcal{L}_{\psi}^{j} 1) - \sum_{j=0}^{n-1} \lambda(\psi)^{n-j} \mathcal{L}_{\psi}^{-(n-j)} \varphi h_{\psi} \right\} \right\|_{\beta} =$$

$$\left\| \frac{1}{n} \left\{ \sum_{j=0}^{n-1} \lambda(\psi)^{-(n-j)} \mathcal{L}_{\psi}^{n-j} \left(\varphi \lambda(\psi)^{-j} \mathcal{L}_{\psi}^{j} 1 - \varphi h_{\psi} \right) \right\} \right\|_{\beta} \leq$$

$$\frac{1}{n} \sum_{j=0}^{n-1} \left\| \lambda(\psi)^{-(n-j)} \mathcal{L}_{\psi}^{n-j} \left(\varphi \lambda(\psi)^{-j} \mathcal{L}_{\psi}^{j} 1 - \varphi h_{\psi} \right) \right\|_{\beta} \leq$$

$$\frac{1}{n} \sum_{j=0}^{n-1} \left\| \lambda(\psi)^{-(n-j)} \mathcal{L}_{\psi}^{n-j} \right\|_{\mathcal{L}(V,V)} \left\| \varphi \lambda(\psi)^{-j} \mathcal{L}_{\psi}^{j} 1 - \varphi h_{\psi} \right\|_{\beta} \leq$$

$$\frac{M}{n} \sum_{j=0}^{n-1} \left\| \varphi \lambda(\psi)^{-j} \mathcal{L}_{\psi}^{j} 1 - \varphi h_{\psi} \right\|_{\beta} \to 0$$

quando $n \to \infty$

Afirmação 3:

$$\lim_{n \to \infty} \left\| \frac{1}{n} \sum_{j=0}^{n-1} \lambda(\psi)^{n-j} \mathcal{L}_{\psi}^{-(n-j)} \varphi h_{\psi} - h_{\psi} \int \varphi h_{\psi} d\nu_{\psi} \right\|_{\beta} = 0.$$

Demonstração: Defina

$$A_{n,j} := \lambda(\psi)^{n-j} \mathcal{L}_{\psi}^{-(n-j)} \varphi h_{\psi}$$

е

$$B := h_{\psi} \int \varphi h_{\psi} d\nu_{\psi}.$$

note que devido ao Teorema de Ruelle

$$\lim_{n \to \infty} \|A_{n,j} - B\|_{\beta} = 0$$

Por outro lado temos

$$\left\| \frac{1}{n} \sum_{j=0}^{n-1} A_{n,j} - B \right\|_{\beta} = \left\| \frac{1}{n} \sum_{j=0}^{n-1} A_{n,j} - \frac{n}{n} B \right\|_{\beta}$$

$$= \frac{1}{n} \left\| \sum_{j=0}^{n-1} A_{n,j} - n B \right\|_{\beta}$$

$$\leq \frac{1}{n} \sum_{j=0}^{n-1} \|A_{n,j} - B\|_{\beta} \to 0$$

quando $n \to \infty$

Corolário 1.6. Se $0 < \gamma \le 1$, $e \ \psi \in C^{\gamma}(K, \mathbb{R})$, então a derivada de

$$P'(\psi): C^{\gamma}(K, \mathbb{R}) \to \mathbb{R}$$

é dada por

$$P'(\psi)\varphi = \int \varphi h_{\psi} d\nu_{\psi}.$$

Demonstração: Fixe $p \in K$ e defina $P_n : C^{\gamma}(K, \mathbb{R}) \to \mathbb{R}$ por

$$P_n(\psi) = \frac{1}{n} \log(\mathscr{L}_{\psi}^n 1)(p).$$

Como já foi visto no Corolário 1.2

$$P_{n}'(\psi)\varphi = \frac{1}{n} \frac{\mathscr{L}_{\psi}^{n}(S_{n}\varphi)}{\mathscr{L}_{\psi}^{n}1}$$

segue do corolário anterior que

$$P'(\psi)\varphi = \lim_{n \to \infty} P'_n(\psi)\varphi = \int \varphi h_{\psi} d\nu_{\psi}.$$

Agora vamos provar o Teorema A. Para tal fim precisaremos dos dois lemas abaixo.

Diremos que uma aplicação $f:K_1\to K_2$ onde K_1 e K_2 são espaços métricos, é compacta se f envia conjuntos limitados de K_1 em conjuntos précompactos em K_2 . Uma observação importante é que se uma sequência de aplicações compactas $f_n:K_1\to K_2$ converge para a aplicação $f:K_1\to K_2$ uniformemente em conjuntos limitados, então f é uma aplicação compacta.

Lema 1.2. Sejam E_1, E_2 espaços de Banach e $U \subset E_1$ um conjunto aberto. Se $f: U \to E_2$ é uma aplicação compacta, então para todo $x \in U$, as derivadas $f^{(j)}(x): E_1 \times \ldots \times E_1 \to E_2$ são compactas para todo $0 \le j \le k$.

Demonstração: Dado $x \in U$ seja B a bola unitária centrada em em 0 e defina as aplicações $f_n: B \to E_2$ por

$$f_n(v) = n(f(x + \frac{1}{n}v) - f(x)).$$

Então a sequência f_n converge uniformemente para f'(x)|B, para ver isso basta lembrar que como $f \in C^k, k \geq 1$ podemos escrever

$$f(x + \frac{1}{n}v) - f(x) = f'(x)\frac{v}{n} + \mathcal{O}\left(\frac{v}{n}\right)$$

onde

$$\lim_{n \to \infty} \frac{\mathscr{O}\left(\frac{v}{n}\right)}{\left|\frac{v}{n}\right|} = 0.$$

Como cada aplicação f_n é compacta, segue que f'(x) é compacta. Suponha agora que tenhamos provado que $f^{(j)}(x)$ é compacta para $1 \le j \le m$. Então defina as aplicações $f_n: B \to E_2$ por

$$f_n(v) = n^m m! \left(f(x + \frac{1}{n}v) - f(x) - \sum_{j=1}^{m-1} \frac{1}{j!} f^{(j)}(x) \left(\frac{v}{n}, \dots, \frac{v}{n} \right) \right).$$

A sequência f_n converge uniformemente para a aplicação

$$B \ni v \mapsto f^m(x)(v, \dots, v) \in E_2$$

com efeito usando o desnvolvimento de $f(x + \frac{1}{n}v) - f(x)$ em série de Taylor temos

$$f_n(v) = n^m m! \left(\frac{1}{m!} f^{(m)}(x) \left(\frac{v}{n}, \dots, \frac{v}{n}\right) + \mathcal{O}\left(\frac{v}{n}\right)\right)$$

onde

$$\lim_{n \to \infty} \frac{\mathscr{O}\left(\frac{v}{n}\right)}{\left|\frac{v}{n}\right|^m} = 0$$

donde segue o resultado. Portanto a aplicação

$$B \ni v \mapsto f^m(x)(v, \dots, v) \in E_2$$

é compacta. Note que pela proposição A.8 é possível escrever $f^{(m)}(x)(v_1,\ldots,v_n)$ como uma combinação linear dos vetores $f^{(m)}(x)(\tilde{v}_i,\ldots,\tilde{v}_i),\ 1\leq i\leq m,$ donde segue que $f^{(m)}$ é compacta.

Proposição 1.1. Sejam E e F espaços de Banach, $U \subset E$ um aberto e uma aplicação $\Phi: U \to F$. Uma condição suficiente para que Φ seja C^1 é que exista uma aplicação $A: U \to \mathcal{L}(E, F)$ dependendo continuamente de x com

$$\lim_{t \to 0} \frac{1}{t} (\Phi(x + tv) - \Phi(x)) = A(x)v$$

Demonstração: Sejam $x, v \in U$ tal que $x + v \in U$, então,

$$\Phi(x+tv) - \Phi(x) = \int_0^1 \frac{d}{dt} \Phi(x+tv) dt$$
$$= \int_0^1 A(x+tv) v dt$$
$$= A(x)v + \int_0^1 (A(x+tv) - A(x)) v dt$$

Portanto

$$\|\Phi(x+v) - \Phi(x) - A(x)\| = \|\int_0^1 (A(x+tv) - A(x))vdt)\|$$

$$\leq \|v\| \|A(x+tv) - A(x)\|$$

isto implica $\Phi'(x) = A(x)$.

Lema 1.3. Sejam E_0, E_1, E_2 espaços de Banach, $U \subset E_0$ e suponha que $f: U \to E_1, L: E_1 \to E_2$ e $P: E_2 \to \mathbb{R}$ são aplicações satisfazendo

- (a) L é linear e compacta
- (b) $f \in C^k$, $k \ge 1$ e leva conjuntos limitados em conjuntos limitados.
- (c) $L \circ f \notin C^{k+1}$
- $(d)\ P\circ L\ \acute{e}\ C^{k+1}$
- (e) Existe uma aplicação T que associa a cada $x \in E_1$ uma aplicação linear contínua $T(x): E_2 \to \mathbb{R}$ satisfazendo

$$(P \circ L)'(x) = T(x)L \tag{1.9}$$

para todo $x \in E_1$, e

$$\lim_{n \to \infty} T(x_n)v = T(\lim_{n \to \infty} x_n)v \tag{1.10}$$

para toda sequência convergente $(x_n) \subset E_1$ e todo $v \in E_2$. então $P \circ L \circ f$ é C^{k+1} .

Demonstração: Comecemos reparando que $P \circ L \circ f$ é C^k pois $P \circ L$ é C^k e f é C^k . Observe também que a derivada $(P \circ L \circ f)^{(k)}(x)$ pode ser escrita como a soma de

$$(P \circ L)'(f(x))f^{(k)}(x)$$
 (1.11)

e uma combinação linear das derivadas $(P \circ f)^{(i)}$ e $f^{(j)}$ com $1 < i \le k$ e $1 \le j < k$. As derivadas $(P \circ f)^{(i)}$ e $f^{(j)}$ com $1 < i \le k$ e $1 \le j < k$ são C^1 devido às hipóteses (b) e (d), isto significa que para provar que f é C^{k+1} basta provar que (1.11) é C^1 . Para este fim usaremos a proposição anterior.

Portanto

$$(P \circ L)'(f(x+tw))f^{(k)}(x+tw) - (P \circ L)'(f(x))f^{(k)}(x) = ((P \circ L)'(f(x+tw)) - (P \circ L)'(f(x)))f^{(k)}(x+tw) + (P \circ L)'(f(x))(f^{(k)}(x+tw) - f^{(k)}(x)).$$

Visto que $P \circ L \in C^2$ segue que

$$\lim_{t \to 0} \frac{1}{t} ((P \circ L)'(f(x+tw)) - (P \circ L)'(f(x)))f^{(k)}(x+tw) = (P \circ L)''(f(x))f'(x)wf^{(k)}(x).$$

Além disso por (1.9)

$$(P \circ L)'(f(x))(f^{(k)}(x+tw) - f^{(k)}(x)) = T(f(x))((Lf)^{(k)}(x+tw) - (Lf)^{(k)}(x)).$$

Como $L \circ f \in C^{k+1}$,

$$\lim_{t \to 0} \frac{1}{t} T(f(x))((Lf)^{(k)}(x+tw) - (Lf)^{(k)}(x)) = T(f(x))(Lf)^{(k+1)}(x)w.$$

Portanto

$$\lim_{t \to 0} ((P \circ L)'(f(x+tw))f^{(k)}(x+tw) - (P \circ L)'(f(x))f^{(k)}(x)) = (P \circ L)''(f(x))f'(x)wf^{(k)}(x) + T(f(x))(Lf)^{(k+1)}(x)w.$$

A primeira parcela da soma acima é uma aplicação contínua de x, pois $P \circ L$ é C^2 , portanto para concluir a demonstração basta mostrar que a aplicação

$$E_0 \ni x \mapsto T(f(x))(Lf)^{(k+1)}(x) \in \mathscr{L}(F, \mathbb{R})$$

depende continuamente de x na topologia da convergência uniforme, onde $F = E_0 \times \ldots \times E_0 \ (k+1 \text{ vezes}).$

Afirmação 1: Sejam $(y_n) \subset E_1$ com $y_n \to y$ e $S \subset E_2$ é um conjunto pré-compacto então $T(y_n)/S$ converge uniformemente para T(y)/S.

Note que Lf é compacta pois L é compacta e f envia conjuntos limitados em conjuntos limitados, portanto pelo lema anterior $(Lf)^{(k+1)}(y)$ é compacta para todo $y \in E_0$. Seja B a bola unitária de F, defina o conjunto

$$S = (Lf)^{(k+1)}(x)B \cup (\bigcup_{n>1} (Lf)^{(k+1)}(x_n)B).$$

Onde $(x_n) \subset E_0$ é uma sequência com $x_n \to x$.

Afirmação 2: S é pré-compacto.

Então $T(f(x_n))|_S$ converge uniformemente para $T(f(x))|_S$. Como

$$(Lf)^{(k+1)}(p)B \subset S$$

para todo $p \in \{x, x_1, \ldots\}$ segue que $T(f(x_n))(Lf)^{(k+1)}(x_n)|_B$ converge uniformemente para $T(f(x))(Lf)^{(k+1)}(x)|_B$. Isto conclui o caso $k \ge 1$.

Observação: Se adimitirmos ainda que f é lipchitziana podemos estender o lema para o caso em que f é apenas contínua:

Caso k=0. O único desafio no caso k=0 é mostrar que $P\circ L\circ f$ é diferenciavel, pois tendo este fato em mãos, a continuidade da derivada $(P\circ L\circ f)'$ é tratado de maneira similar ao caso $k\geq 1$. Sejam $x,v\in U$

$$(P \circ L \circ f)(x+v) - (P \circ L \circ f)(x) = (P \circ L)(f(x+v)) - (P \circ L)(f(x))$$

Ponha: f(x+v) = y + v' e f(x) = y, então

$$\begin{split} (P \circ L)(f(y+v')) - (P \circ L)(f(y)) &= (P \circ L)'(y)v' + \mathscr{O}_1(v') \\ &= T(y)L(v') + \mathscr{O}_1(v') \\ &= T(f(x))L(f(x+v) - f(x)) + \mathscr{O}_1(v') \\ &= T(f(x))((Lf)(x+v) - (Lf)(x)) + \mathscr{O}_1(v') \\ &= T(f(x))((Lf)'(x)v + \mathscr{O}_2(v)) + \mathscr{O}_1(v') \\ &= T(f(x))(Lf)'(x)v + \mathscr{O}_1(v') + T(f(x))\mathscr{O}_2(v) \end{split}$$

Agora defina $\mathscr{O}(v) := \mathscr{O}_1(v') + T(f(x))\mathscr{O}_2(v)$. Para verificar que

$$\frac{\mathscr{O}(v)}{\|v\|} \to 0$$

quando $v \to 0$ basta estudar o comportamento de $\frac{\mathscr{O}_1(v')}{\|v\|}$ quando $v \to 0$.

Portanto note:

$$\frac{\mathscr{O}_{1}(v')}{\|v\|} = \frac{\mathscr{O}_{1}(v')}{\|v'\|} \frac{\|v'\|}{\|v\|}
= \frac{\mathscr{O}_{1}(v')}{\|v'\|} \frac{\|f(x+v) - f(x)\|}{\|v\|}
\leq \frac{\mathscr{O}_{1}(v')}{\|v'\|} \frac{\|v\|}{\|v\|} \to 0$$

quando $v \to 0$. Onde na última desigualdade usamos do fato de f ser Lipchitziana.

Uma vez que provamos que $P \circ L \circ f$ é diferenciavel resta apenas provar que $(P \circ L \circ f)'(x)$ depende continuamente de x. O procedimento para mostrar a continuidade de

é essencialmente identico ao usado no caso anterior, deste modo faremos apenas o esboço da prova.

Considere o conjunto

$$S = (Lf)'(x)B \cup (\bigcup_{n \ge 1} (Lf)'(x_n)B)$$

onde $(x_n) \subset E_0$ com $x_n \to x$ e B é a bola unitária de E_0 . O conjunto S é précompacto e $(Lf)'(p)B \subset S$ para todo $p \in \{x, x_1, \ldots\}$, assim $T(f(x_n))(Lf)'(x_n)|_B$ converge uniformemente para $T(f(x))(Lf)'(x)|_B$.

Afirmação 1: Sejam $(y_n) \subset E_1$ com $y_n \to y$ e $S \subset E_2$ é um conjunto précompacto então $T(y_n)/S$ converge uniformemente para T(y)/S.

Demonstração: Suponha o contrário, isto é,

$$\lim_{n \to \infty} \sup_{s \in S} |T(y_n)s - T(y)s| \neq 0$$

então deve existir $\epsilon > 0$ e $(n_i) \subset \mathbb{R}$ tal que para todo n_i

$$\sup_{s \in S} |T(y_{n_j})s - T(y)s| \ge \epsilon > \frac{\epsilon}{2}.$$

Para cada n_j tome $s_{n_i} \in S$ com

$$\left| T(y_{n_j}) s_{n_j} - T(y) s_{n_j} \right| > \frac{\epsilon}{2}. \tag{1.12}$$

Deste modo obtemos uma subsequência $(s_{n_j}) \subset S$, podemos assumir $s_{n_j} \to s$ pois S é pré-compacto. Agora note o seguinte

$$T(y_{n_i})s_{n_i} \to T(y)s$$

quando $j \to \infty$. Com efeito,

$$\begin{aligned} \left| T(y_{n_{j}})s_{n_{j}} - T(y)s \right| &= \left| T(y_{n_{j}})s_{n_{j}} - T(y_{n_{j}})s + T(y_{n_{j}})s - T(y)s \right| \\ &\leq \left| T(y_{n_{j}})s_{n_{j}} - T(y_{n_{j}})s \right| + \left| T(y_{n_{j}})s - T(y)s \right| \\ &\leq \left\| T(y_{n_{j}}) \right\|_{E_{2} \to \mathbb{R}} \left\| s_{n_{j}} - s \right\|_{E_{2}} + \left| T(y_{n_{j}})s - T(y)s \right| \end{aligned}$$

observe que o Teorema da Limitação Uniforme garante a existência de uma constante M tal que para todo n_i

$$||T(y_{n_j})||_{E_2 \to \mathbb{R}} \le M$$

portanto fazendo $j\to\infty$ no segundo membro da última desigualdade acima obtemos o desejado. Para concluir a demonstração basta fazermos $j\to\infty$ em (1.12) obtendo

$$\frac{\epsilon}{2} \le 0$$

contradição!

Afirmação 2: S é pré-compacto

Demonstração: Seja $(u_n) \subset S$ então, ou (u_n) tem uma subsequência contida em algum $(Lf)^{(k+1)}(p)B$, $p \in \{x, x_1 ...\}$, e então (u_n) tem uma subsequência convergente pois $(Lf)^{(k+1)}(p)B$ é pré-compacto, ou (u_n) possui uma subsequência que pode ser escrita como

$$u_{n_j} = (Lf)^{(k+1)}(x_{m_j})\theta_{m_j}$$

com $\theta_{m_j} \in B$ e $m_j \to \infty$ quando $j \to \infty$. Usando a compacidade de $(Lf)^{(k+1)}(x)$ podemos assumir que a sequência $(Lf)^{(k+1)}(x)\theta_{m_j}$ converge para um ponto $y \in E_2$. Então

$$\begin{aligned} \left\| u_{n_{j}} - y \right\|_{E_{2}} &= \left\| (Lf)^{k+1}(x_{m_{j}})\theta_{m_{j}} - (Lf)^{k+1}(x)\theta_{m_{j}} + (Lf)^{k+1}(x)\theta_{m_{j}} - y \right\|_{E_{2}} \\ &= \left\| ((Lf)^{k+1}(x_{m_{j}}) - (Lf)^{k+1}(x))\theta_{m_{j}} \right\|_{E_{2}} + \left\| (Lf)^{k+1}(x)\theta_{m_{j}} - y \right\|_{E_{2}} \\ &\leq \left\| (Lf)^{k+1}(x_{m_{j}}) - (Lf)^{k+1}(x) \right\|_{F \to \mathbb{R}} + \left\| (Lf)^{k+1}(x)\theta_{m_{j}} - y \right\|_{E_{2}} \end{aligned}$$

Agora lembre que $(Lf)^{k+1}$ é contínua pois $L\circ f$ é C^{k+1} portanto

$$||(Lf)^{k+1}(x_{m_i}) - (Lf)^{k+1}(x)||_{F \to \mathbb{R}} \to 0$$

quando $j \to \infty$

Isto conclui que S é pré-compacto

Lema 1.4. A inclusão $i: C^{\gamma}(K,\mathbb{R}) \to C^{0}(K,\mathbb{R})$ é uma aplicação compacta.

Demonstração: Se $\mathcal{A} \subset C^0(K, \mathbb{R})$ é limitado, existe M > 0 tal que para toda $\psi \in \mathcal{A} \subset C^{\gamma}(K, \mathbb{R})$

$$\|\psi\|_{\gamma} \leq M$$

portanto

$$\sup_{x \neq y} \frac{\|\psi(x) - \psi(y)\|}{d(x, y)} \le \sup_{x} \|\psi(x)\| + \sup_{x \neq y} \frac{\|\psi(x) - \psi(y)\|}{d(x, y)^{\gamma}} \le M$$

isto significa que para toda $\psi \in \mathcal{A}$

$$\|\psi(x) - \psi(y)\| < Md(x, y)$$

com isso concluimos que A é uniformemente equicontínuo, note ainda que por \mathcal{A} ser limitado o conjunto $\mathcal{A}(x) = \{\psi(x), \psi \in \mathcal{A}\} \subset \mathbb{R}$ é pré-compacto. Portanto podemos usar o Teorema de Arzelá-Ascoli para garantir que

$$i(\mathcal{A}) = \mathcal{A} \subset C^{\gamma}(K, \mathbb{R})$$

é pré-compacto.

Observação importante: No artigo de Mañe no Teorema A as hipóteses sobre Φ exigem apenas que Φ seja de classe C^k , $k \geq 1$, devemos salientar que está hipótese sobre Φ é insuficiente para a validade do Teorema A uma vez que usamos fundamentalmente que a composição Lf é uma aplicação compacta. O seguinte exemplo me foi informado por Mauro Patrão: considere a aplicação $f: l^2(\mathbb{R}) \longleftrightarrow \text{dada por } f(\{x_k\}) = \{x_k^k\}, f \in C^{\infty} \text{ e no entanto leva conjuntos limitados em conjuntos ilimitados.}$

1.1.3 Prova do Teorema A

A prova o teorema A é uma aplicação do Lema 3. O diagrama abaixo deve nos ajudar a entender como o Lema 3 será aplicado:

$$U \subset E_0 \xrightarrow{f=\Phi} E_1 \xrightarrow{L=i} E_2 \xrightarrow{P} \mathbb{R}$$

$$\sqcap \qquad \qquad \sqcap \qquad \qquad \sqcap$$

$$C^r(M) \qquad C^{\gamma}(K, \mathbb{R}) \qquad C^0(K, \mathbb{R})$$

Vamos aplicar o Lema 3 a um aberto $U \in N$ os espaços de Banach $C^{\gamma}(K,\mathbb{R})$ e $C^{0}(K,\mathbb{R})$, a aplicação $\Phi: U \to C^{\gamma}(K,\mathbb{R})$ de classe C^{k} que leva limitados em limitados, a aplicação linear compacta $i: C^{\gamma}(K,\mathbb{R}) \to C^{0}(K,\mathbb{R})$ dada pela inclusão e a função $P: C^{0}(K,\mathbb{R}) \to \mathbb{R}$.

Note que as hipóteses (a), (b) e (c) do Lema 3 são claramente satisfeitas. A hipótese (d) vale devido ao Corolário 3. Para verificar (e) considere a aplicação

$$C^{\gamma}(K,\mathbb{R}) \ni \psi \mapsto T(\psi) \in C^{0}(K,\mathbb{R})'$$

dada por

$$T(\psi)\varphi = \int \varphi h_{\psi} d\nu_{\psi}$$

então pelo corolário 6

$$(P \circ i)'(\psi)\varphi = T(\psi)\varphi$$

isto verifica a propriedade (1) da hipótese (e). Para verificar a propriedade (2) lembre que ν_{ψ} é uma função fracamente contínua de ψ e h_{ψ} é uma função contínua de ψ (em ambos os casos $\psi \in C^{\gamma}(K,\mathbb{R})$), isto se deve aos Corolários 3 e 4 respectivamente. Portanto podemos aplicar o Lema 3 e concluir que $P \circ i \circ \Phi$ é C^{k+1}

1.2 Teorema B

Proposição 1.2. Para todo $\gamma < 0 \le 1$ exite uma aplicação linear contínua $T: C^{\gamma}(B(A), \mathbb{R}) \to C^{\gamma}(B(A), \mathbb{R})$ tal que, denotando por $\pi: B(A) \to B^+(A)$ a projeção dada por $\pi(\theta) = \theta|_{\mathbb{Z}^+}$ então, para toda $\psi \in C^{\gamma}(B(A), \mathbb{R})$, ψ é homologa a $(T\psi) \circ \pi$, isto é, existe $u \in C^0(B(A), \mathbb{R})$ tal que

$$u \circ \sigma - u = \psi - (T\psi) \circ \pi.$$

Lema 1.5. Se Λ é uma ferradura de $f \in \text{Diff}^r(M)$, $r \geq 1$,, $e \ h : B(A) \to \Lambda$ é uma equivalencia topológica entre $\sigma : B(A) \longleftrightarrow e \ f|_{\Lambda}$, então h é holder contínua.

Lema 1.6. Seja Λ uma ferradura de $f \in \text{Diff}^r(M)$, $r \geq 2$, dim M = 2. Seja $h : B(A) \to \Lambda$ uma equivalência topológica entre $\sigma : B(A) \longleftrightarrow e f|_{\Lambda}$. Defina $\psi : B(A) \to \mathbb{R}$ por

$$\psi(\theta) = -\log \left| f'(h(\theta))|_{E_{h(\theta)}^u} \right|.$$

Então as seguintes propriedades são verdadeiras:

(a) A função $\mathbb{R} \ni \delta \to P(\delta T \psi) \in \mathbb{R}$ é analítica.

(b) Existe uma constante c > 0 tal que

$$\frac{\partial}{\partial \delta} P(\delta T \psi) \le -c$$

para todo δ .

(c) Existe um único $\delta = \delta(f) > 0$ tal que $P(\delta(f)T\psi) = 0$. Além disso todo $x \in \Lambda$ está contido em um intervalo aberto $J^u \subset W^u(x)$ (respec. $J^s \subset W^s(x)$) tal que existe uma probabilidade μ na σ -álgebra de Borel de $J^u \cap \Lambda$ (respec. $J^s \cap \Lambda$) e uma constante C > 0 satisfazendo

$$C^{-1}r^{\delta} \le \mu(B_r(x) \cap J^u \cap \Lambda) \le Cr^{\delta}$$

para todo $r \geq 0$.

Para as definições de $W^s(x)$, $W^u(x)$ $W^s(x)$ e $W^u(x)$ ver apêndice B.

Lema 1.7. Seja Λ uma ferradura de $f \in \text{Diff}^r(M)$, $r \geq 2$, existem vizinhanças U e \mathcal{U} de Λ e f respectivamente tais que, definindo $\Lambda_g = \bigcap_n g^{-n}(U)$, deve existir $0 < \gamma < 1$ e uma uma aplicação C^{r-1} , $\mathcal{U} \ni g \to h_g \in C^{\gamma}(\Lambda, M)$ satisfazendo a seguinte propriedade: $h_g(\Lambda) = \Lambda_g$ e h_g é uma equivalência topológica entre $f|_{\Lambda}$ e $g|_{\Lambda_g}$.

1.2.1 Demonstração do Teorema B

Seja Λ uma ferradura de $f\in \mathrm{Diff}^r(M),\,r\geq 2$ e suponha dimM=2. Então sejam:

- \mathcal{U} e U vizinhanças de f e Λ respectivamente dadas pelo Lema (1.7).
- $\bullet \ h: B(A) \to \Lambda$ a equivalência topológica dada pelo Lema (1.5) entre

$$\sigma: B(A) \longleftrightarrow e f|_{\Lambda}.$$

• h_g a equivalência topológica entre $f|_{\Lambda}$ e $g|_{\Lambda_g}$ dada pelo Lema (1.7).

Note que a aplicação $h_g \circ h : B(A) \to \Lambda_g$ é uma equivalência topológica entre

$$\sigma: B(A) \longleftarrow e g|_{\Lambda_g}.$$

Com efeito,

$$(h_g \circ h) \circ \sigma = h_g \circ (h \circ \sigma)$$

$$= h_g \circ (f \circ h)$$

$$= (h_g \circ f) \circ h$$

$$= (g \circ h_g) \circ h$$

$$= g \circ (h_g \circ h).$$

Além do mais pelos Lemas (1.5) (1.7) existe $0 < \gamma < 1$ tal que $h_g \circ h \in C^{\gamma}(B^+(A), M)$. Note que a função :

$$\mathcal{U} \ni g \mapsto h_q \circ h \in C^{\gamma}(B^+(A), M)$$

é C^{r-1} , com efeito temos da demonstração do Lema 1.7 (ver página?) temos que $h_g = \pi \xi_g$ onde a aplicação $\mathcal{U} \ni g \to \xi_g \in C^{\gamma}(\Lambda, G)$ é de classe C^{r-1} .

Defina $\psi_g \in C^{\gamma}(B^+(A), \mathbb{R})$ por

$$\psi_g(\theta) = -\log \left\| g'(h_g \circ h(\theta)) |_{E^u_{(h_g \circ h)(\theta)}} \right\|$$

 $e \mathcal{B} : \mathcal{U} \times \mathbb{R} \to \mathbb{R} \text{ por }$

$$\mathcal{B}(g,t) = P(t(T\psi_g))$$

Afirmação: $B \notin C^{r-1}$

Isto segue de aplicar o Teorema A a uma variedade de Banach \mathcal{U} e a aplicação de classe C^{r-2} , $\mathcal{U} \ni g \mapsto \psi_g \in C^{\gamma}(B^+(A), \mathbb{R})$. Vamos mostrar que as hipóteses do Teorema A são satisfeitas. Vamos mostrar que a aplicação $\mathcal{U} \ni g \mapsto \psi_g \in C^{\gamma}(B^+(A), \mathbb{R})$ dada por

$$\psi_g(\theta) = -\log \left| g'(h_g h(\theta))_{|E^u(h_g h(\theta))|} \right|$$

leva conjuntos limitados em conjuntos limitados. Lembre que o espaço $C^{\gamma}(B^+(A), \mathbb{R})$ está munido da norma

$$\|\psi\|_{\gamma} = \sup_{x} |\psi(x)| + \sup_{x \neq y} \frac{d(\psi(y), \psi(x))}{d(x, y)^{\gamma}}$$

Vamos dividir a demonstração duas partes : vamos mostrar que existe uma vizinhança \mathcal{U} de f tal que

Parte1.
$$\sup_{g \in \mathcal{U}} \sup_{\theta \in B^+(A)} |\psi_g(\theta)| < \infty$$

Parte2.
$$\sup_{\theta \neq \widetilde{\theta}} \frac{d(\psi_g(\theta), \psi_g(\widetilde{\theta}))}{d(\theta, \widetilde{\theta})^{\gamma}} < \infty$$

Pois bem, Seja \mathcal{V}' uma vinhança de Λ , na qual está definida uma folheação F de classe C^1 , de forma que, se T_pF denota o espaço tangente à follha de F que passa por p então $T_pF=E^u_p,\ p\in\Lambda$, por abuso de notação denote por E^u_p o subespaço T_pF , também para $p\in\mathcal{V}'$.

Agora definimos, $\Phi(p) = \left| g'(p)_{|E_p^u} \right|, \ p \in \mathcal{V}'$. Como f é difeomorfismo temos que

 $\delta = \inf_{\theta \in B^+(A)} \left| |f'(h_f h(\theta))|_{E^u(h_g h(\theta))} \right| > 0,$

então segue por continuidade que existe uma vizinhança $\mathcal U$ de f tal que

$$\inf_{g \in \mathcal{U}} \inf_{\theta \in B^{+}(A)} \left| g'(h_g h(\theta))_{|E^u(h_g h(\theta))} \right| \ge \frac{\delta}{2}$$

$$\sup_{g\in\mathcal{U}}\sup_{\theta\in B^{+}(A)}\left|g^{'}(h_{g}h(\theta))_{\mid E^{u}(h_{g}h(\theta))}\right|\leq \frac{3\delta}{2}.$$

Prova da parte 1. Lembrando que o log é Lipchitz. longe da origem temos que:

 $|\log x - \log y| \le \frac{2}{\delta}|x - y|,$

 $\forall x,y \in [\frac{\delta}{2},\infty)$. Dai, para toda $g \in \mathcal{U}$

$$\left| \log \left| g'(h_g h(\theta))_{|E^u(h_g h(\theta))} \right| - \log \delta \right| \leq \frac{2}{\delta} \left| \left| g'(h_g h(\theta))_{|E^u(h_g h(\theta))} \right| - \delta \right|$$

$$\leq \frac{\delta}{2} \left\{ \sup_{g \in \mathcal{U}} \sup_{\theta \in B^+(A)} \left| g'(h_g h(\theta))_{|E^u(h_g h(\theta))} \right| + \delta \right\}$$

$$\leq K.$$

Prova da parte 2. Para Agora, se $\mathcal{V} \subset \mathcal{V}'$ é uma vizinhança compacta de Λ então temos, Então temos

$$\frac{\left|-\log\left|g'(h_gh(\theta))_{\mid E(\theta)}\right| + \log\left|g'(h_gh(\widetilde{\theta}))_{\mid E(\widetilde{\theta})}\right|\right|}{d(\theta,\widetilde{\theta})^{\gamma}} \leq \frac{\frac{2}{\delta}\left(\left|g'(h_gh(\widetilde{\theta}))_{\mid E(\widetilde{\theta})}\right| - \left|g'(h_gh(\theta))_{\mid E(\theta)}\right|\right)}{d(\theta,\widetilde{\theta})^{\gamma}} \\
\leq \frac{2}{\delta}\sup_{v \in \mathcal{V}, g \in 0\mathcal{U}} \Phi'(v) \frac{d(h_g(h(\theta)), h_g(h(\theta)))}{d(\theta,\widetilde{\theta})^{\gamma}} \\
\leq \frac{2}{\delta}C_1C_2$$

Onde estamos usando na última desigualdade que $h_g \circ h$ é Hölder contínua e $C_1 \equiv \sup_{v \in \mathcal{V}, g \in \mathcal{U}} \Phi'(v)$.

Pelo Lema (1.6) para cada $g \in \mathcal{U}$ existe um único $\delta^u(g)$ satisfazendo

$$\mathcal{B}(g, \delta^u(g)) = 0$$

$$\frac{\partial \mathcal{B}}{\partial t}(g, \delta^u(g)) < 0.$$

Então pelo teorema da função implicita a função $\mathcal{U} \ni g \mapsto \delta^u(g) \in \mathbb{R}$ é de classe C^{r-1} .

Tome um $x \in \Lambda_g$ e seja J^u um intervalo contido em $W^u(x)$ e contendo x tal que de acordo com o Lema (1.6) exista uma medida finita μ_u sobre a σ -álgebra de Borel de $J^u \cap \Lambda_g$ e uma constante $C_u > 0$ tal que

$$C_u^{-1}r^{\delta^u(g)} \le \mu_u(B_r(p) \cap \Lambda_g) \le C_u r^{\delta^u(g)}$$

para todo $p \in J^u$ e r > 0. Raciocinando de maneira similar (i.e substituindo g por g^{-1}) deve existir uma aplicação de classe C^{r-1} dada por

$$\mathcal{U} \ni g \mapsto \delta^s(g) \in \mathbb{R}$$

tal que existe um intervalo $J^s \subset W^s(x)$ contendo x e uma medida finita μ_s na σ -álgebra de Borel de $J^s \cap \Lambda_q$ tal que existe uma constante C_s satisfazendo

$$C_s^{-1} r^{\delta^s(g)} \le \mu_s(B_r(p) \cap \Lambda_q) \le C_s r^{\delta^s(g)}$$

para todo $p \in J^s$ e r > 0. Pela proposição (B.2) existe ϵ tais que se J^u e J^s são suficientemente pequenos então $W^u_{\epsilon}(a) \cap W^s_{\epsilon}(b)$ tem exatamente um ponto para cada $a \in J^u$ e $b \in J^s$. Dados $a \in J^u \cap \Lambda_g$ e $b \in J^s \cap \Lambda_g$ defina

$$A \times B = \{W^u_{\epsilon}(a) \cap W^s_{\epsilon}(b) : a \in A, b \in B\}$$

Visto que g é no mínimo C^2 , as folheações estáveis e instáveis se estendem a uma C^1 -folheação de uma vizinhança de Λ_g (ver proposição(B.4)). A observação acima diz em outros termos que o conjunto $(J^u \cap \Lambda_g) \times (J^s \cap \Lambda_g)$ se torna localmente o produto cartesiano de dois conjuntos hiperbólicos, de modo que podemos tomar uma medida μ na sigma álgebra de borel de $(J^u \cap \Lambda_g) \times (J^s \cap \Lambda_g)$ tal que

$$\mu(A \times B) = \mu_u(A)\mu_s(B)$$

para todo par de boreleanos $A\subset J^u\cap\Lambda_g$ e $B\subset J^s\cap\Lambda_g$. Então deve existir k>1 tal que

$$(B_{\frac{r}{k}} \cap J^u) \times (B_{\frac{r}{k}} \cap J^s) \subset B_r(p) \subset (B_{rk} \cap J^u) \times (B_{rk} \cap J^s)$$

para todo $p \in J^u \times J^s$ e r > 0. Então pelo lema (1.6) temos que existe C > 0 tal que

 $C^{-1}r^{\delta^u(g)+\delta^s(g)} \le \mu_s(B_r(p)) \le Cr^{\delta^s(u)+\delta^s(g)}$

para todo $p \in J^u \times J^s$ e r > 0. Segue portanto da Proposição (C.5) que

$$HD(J^u \times J^s) = \delta^u(g) + \delta^s(g).$$

Como $J^u \times J^s$ é uma vizinhaça de x e x é arbitrário segue que

$$HD(\Lambda_q) = \delta^u(g) + \delta^s(g).$$

Visto que $\delta^u(g)$ e $\delta^s(g)$ são funções C^{r-1} de g temos completa a prova do Teorema B

Prova do Lema 1.5 : Vamos mostrar que h é localmente Hölder contínua. Devido à hiperbolicidade de Λ existem $\delta>0,\ C>0$ e $0<\gamma<1$ tais que se $x\in\Lambda$ e $y\in M$ satisfazendo $d(f^n(x),f^n(y))<\delta$ para todo $-N\leq n\leq N$ então

$$d(x,y) \le C\lambda^N$$
.

Agora lembre que B(A) está equipado com a métrica

$$d(\alpha, \beta) = \sum_{-\infty}^{\infty} 2^{-|n|} |\alpha(n) - \beta(n)|$$

apartir dai uma condição suficiente para que $\alpha(n) = \beta(n)$ é que tenhamos

$$|n| < -(\log 2)^{-1} \log d(\alpha, \beta).$$

Com efeito, fixe n_0 e suponha $|\alpha(n_0) - \beta(n_0)| > 0$, então temos

$$d(\alpha, \beta) = \sum_{-\infty}^{\infty} 2^{-|n|} |\alpha(n) - \beta(n)| \ge 2^{-|n_0|} |\alpha(n_0) - \beta(n_0)| \ge 2^{-|n_0|}$$

donde

$$|n_0| \ge -(\log 2)^{-1} \log d(\alpha, \beta).$$

Retomemos a demonstração do lema.

Afirmação: Existe k tal que para quaisquer α e $\beta \in B(A)$ com $\alpha(n) = \beta(n)$ para todo $-k \le n \le k$ vale $d(h(\alpha), (\beta)) \le \delta$.

Então dados α e $\beta \in B(A)$ com $\alpha(n) = \beta(n), -k \le n \le k$, defina

$$N = -(\log 2)^{-1} \log d(\alpha, \beta) - 1. \tag{1.13}$$

Portanto $\alpha(n) = \beta(n)$ para todo n com $-N \leq n \leq N$. Então $(\sigma^j \alpha)(n) = (\sigma^j \beta)(n)$ para todo -k < n < k desde que $-(N-k) \leq j \leq (N-k)$. Logo $d(h(\sigma^j \alpha), (\sigma^j \beta)) \leq \delta$ desde que $-(N-k) \leq j \leq (N-k)$. Como $h\sigma^j = f^j h$, temos que

$$d(f^{j}(h(\alpha)), f^{j}(h(\beta))) \leq \delta.$$

sempre que $-(N-k) \le j \le (N-k)$. Então

$$d(h(\alpha), (\beta)) \le C\lambda^{N-k}$$

subistituindo (1.13) na desigualdade acima obtemos

$$d(f^{j}(h(\alpha)), f^{j}(h(\beta))) \leq C_0 \lambda^{N-k} d(x, y)^{\gamma}$$

onde $C_0 = C/\lambda^{k+1}$ e $\gamma = (\log 2)^{-1} \log \lambda$. Isto mostra que h é localmente Hölder contínua. Como B(A) é compacto concluimos que h é globalmente Hölder contínua.

Prova do Lema 1.6 : Item (a). A analiticidade da aplicação

$$\mathbb{R} \ni t \to P(t(T\psi)) \in \mathbb{R}$$

segue da linearidade de $T: C^{\gamma}(B^+(A), \mathbb{R}) \to C^{\gamma}(B^+(A), \mathbb{R})$ e da analiticidade de $P: C^{\gamma}(B^+(A), \mathbb{R}) \to \mathbb{R}$.

Item (b). Para provar o item (b) primeiro vamos mostrar a existência de constantes A < 0 < B satisfazendo

$$S_n(T\psi)(\theta) \le A + nB \tag{1.14}$$

para todo $\theta \in B^+(A)$ e $n \ge 0$. Para isso tome $\theta \in B^+(A)$ e $\overline{\theta} \in B(A)$ tal que $\pi(\overline{\theta}) = \theta$. Então

$$S_n(T\psi)(\theta) = S_n(T\psi)(\pi(\overline{\theta}))$$

$$= \sum_{j=0}^{n-1} (T\psi)(\sigma^j(\pi(\overline{\theta})))$$

$$= \sum_{j=0}^{n-1} (T\psi)(\pi(\sigma^j\overline{\theta}))$$

Lembrando que $T\psi \circ \pi$ é homóloga a ψ temos que existe $u \in C^0(B(A), \mathbb{R})$ tal que

$$(T\psi) \circ \pi = \psi + (u - u \circ \sigma).$$

Daí

$$S_n(T\psi)(\theta) = \sum_{j=0}^{n-1} ((T\psi) \circ \pi)(\sigma^j \overline{\theta})$$

$$= \sum_{j=0}^{n-1} \psi(\sigma^j \overline{\theta}) + \sum_{j=0}^{n-1} (u - u \circ \sigma)(\sigma^j \overline{\theta})$$

$$= \sum_{j=0}^{n-1} \psi(\sigma^j \overline{\theta}) + u(\overline{\theta}) - u(\sigma^n \overline{\theta})$$

Seja K o máximo de u em B(A). Então

$$S_n(T\psi)(\theta) \le \sum_{j=0}^{n-1} \psi(\sigma^j \overline{\theta}) + 2K. \tag{1.15}$$

Agora observe o seguinte, por definição de ψ temos

$$\sum_{j=0}^{n-1} \psi(\sigma^{j}\overline{\theta}) = -\sum_{j=0}^{n-1} \log \left\| f'(h\sigma^{j}(\overline{\theta}))|_{E_{h\sigma^{j}(\overline{\theta})}^{u}} \right\|$$

$$= -\sum_{j=0}^{n-1} \log \left\| f'(f^{j}h(\overline{\theta}))|_{E_{f^{j}h(\overline{\theta})}^{u}} \right\|$$

$$= -\log \prod_{j=0}^{n-1} \left\| f'(f^{j}h(\overline{\theta}))|_{E_{h(\overline{\theta})}^{u}} \right\|$$

$$= -\log \left\| (f^{n})'(h(\overline{\theta}))|_{E_{h(\overline{\theta})}^{u}} \right\|.$$

Note, como f é difeomorfismo global temos diretamente da regra da cadeia que:

$$[(f^n)'(x)] \cdot [(f^{-n})'(x)] = I(x)$$

portanto

$$1 \le \left\| (f^n)'(x) \right\| \cdot \left\| (f^{-n})'(x) \right\|$$

isto implica

$$\left\| \left(f^{n} \right)'(x) \right\|^{-1} \le \left\| \left(f^{-n} \right)'(x) \right\|$$

Então sejam C>0 e $0<\lambda<1$ tais que

$$\left\| (f^{-n})'(x)|_{E_x^u} \right\| \le C\lambda^n.$$

para todo $x \in \Lambda$ e $n \ge 0$, temos então que:

$$\sum_{j=0}^{n-1} \psi(\sigma^{j}(\overline{\theta})) \le \log C + n \log \lambda$$

substituindo esta desigualdade em (1.15) concluimos que $A = 2K + \log C$ e $B = \log \lambda$. Para concluir a prova do item (b) fixe $\alpha \in B(A)$ e defina $P_n : \mathbb{R} \leftarrow$ por

$$P_n(t) = \frac{1}{n} \log \sum_{\sigma\theta = \alpha} \exp S_n(t(T\psi))(\theta)$$

então

$$\frac{d}{dt}P_n(t) = \frac{1}{n} \frac{\sum_{\sigma\theta=\alpha} S_n(T\psi)(\theta) \exp S_n(t(T\psi))(\theta)}{\sum_{\sigma\theta=\alpha} \exp S_n(t(T\psi))}$$

$$\leq \frac{1}{n} \sup_{\sigma^n\theta=\alpha} S_n(T\psi)(\theta)$$

$$\leq \frac{1}{n} (A+nB).$$

Portanto existe c > 0 tal que se n é suficientemente grande tem-se

$$\frac{d}{dt}P_n(t) \le -c$$

para todo t. Em particular $t_1 \ge t_2$ implica

$$P_n(t_1) - P_n(t_2) < -c(t_1 - t_2)$$

pelo Corolário (1.2) $P(t(T\psi)) = \lim_{n \to \infty} P_n(t)$.

Daí:

$$P(t_1(T\psi)) - P(t_2(T\psi)) \le -c(t_1 - t_2)$$

isto implica

$$\frac{d}{dt}P(t(T\psi)) \le -c$$

provando (b).

Item (c). Para uma demonstração de que existe um único $\delta = \delta(f)$ tal que $P(\delta(f)T\psi) = 0$ ver [8].

Agora vamos provar as estimativas do Item (c). Para fazer isso tome $x \in \Lambda$ e considere um intervalo $J^u \subset W^u(x)$ contendo x, defina

$$F: J^u \to B^+(A)$$

por

$$F(x) = \pi h^{-1}(x).$$

Vamos usar as propriedades da aplicação F juntamente com o último item do Teorema de Ruelle para colocar uma medida na sigma álgebra de borel de $J^u \cap \Lambda$ com "boas" propriedades.

Nosso primeiro passo será provar que se J^u é aberto e com diâmetro suficientemente pequeno então $F:J^u\cap\Lambda\to F(J^u\cap\Lambda)$ é um homeomorfismo. Para concluir esta tarefa devemos provar duas coisas:

- F é injetiva desde que o diâmetro de J^u seja suficientemente pequeno.
- Quando J^u é aberto o conjunto $F(J^u \cap \Lambda)$ é aberto em $B^+(A)$.

Vamos provar o primeiro item. Primeiro note que F é contínua, pois é a composição de duas aplicações contínuas. Sejam $x_1, x_2 \in J^u$ tais que $F(x_1) = F(x_2)$, isto significa que :

$$\pi h^{-1}(x_1) = \pi h^{-1}(x_2)$$

e portanto

$$h^{-1}(x_1)(n) = h^{-1}(x_2)(n) \quad \forall n \ge 0.$$

Por outro lado quando n < 0 não temos informação sobre a relação entre $h^{-1}(x_1)(n)$ e $h^{-1}(x_2)(n)$. Vamos mostrar abaixo que para todo $n \ge 0$ vale $h^{-1}(x_1)(-n) = h^{-1}(x_2)(-n)$ e concluir que $x_1 = x_2$.

Pois bem seja $K_i \subset \Lambda$ a imagem por h do conjunto $\{\theta \in B(A) : \theta(0) = i\}$. Os conjuntos K_i são compactos e disjuntos, com efeito para i = 1, 2, ..., m os conjuntos $K_i = \{\theta \in B(A) : \theta(0) = i\}$ são a imagem inversa do i pela aplicação $\pi : B(A) \to \{1, ..., m\}$ definida por

$$\pi: \theta \mapsto \theta(0)$$

, além do mais h é homeomorfismo, donde segue que os conjuntos K_i são compactos e disjuntos. Nesta linha de raciocinio deve existir $\delta_0 > 0$ tal que $d(K_i, K_j) > \delta_0$ para todo $1 \le i < j \le m$. Visto que J^u é um intervalo contido em uma variedade instável, se diminuirmos seu diâmetro garantimos que diam $(f^{-n}(J^u)) \le \delta_0$, isto acontece pois pela Proposição (B.1) escolhendo delta conveniente temos para n suficientemente grande:

$$\operatorname{diam}(f^{-n}(J^{u})) = \sup_{\substack{x,y \in J^{u}}} |f^{-n}(x) - f^{-n}(y)|$$

$$\leq \sup_{\substack{x,y \in J^{u}}} (\mu - \delta)^{n} C(\delta)$$

$$\leq \delta_{0}$$

Isto significa que se K_i é um conjunto da partição $\{K_1, \ldots, K_m\}$ que contém $f^{-n}(x)$, então $f^{-n}(J^u \cap \Lambda) \subset K_i$, pois

$$f^{-n}(J^u \cap \Lambda) \le \delta_0 < d(f^{-n}(x), \Lambda - K_i) \text{ e } f^{-n}(J^u \cap \Lambda) \subset \Lambda.$$

Por outro lado se $\theta \in B^+(A)$ o ponto $h(\theta)$ satisfaz

$$f^n(h(\theta)) \in K_{\theta(n)}$$

para todo $n \in \mathbb{Z}$, para ver isto basta lembrar que $f^{j}h = h\sigma^{j}$. Portanto se $h(\theta_{0})$ e $h(\theta_{1})$ estão contidos em J^{u} segue que $\theta_{0}(-n) = \theta_{1}(-n)$ para todo $n \leq 0$, pois para todo $n \leq 0$ temos

$$f^{-n}(h(\theta_0)) \in K_{\theta_0(-n)}$$

$$f^{-n}(h(\theta_1)) \in K_{\theta_1(-n)}$$
.

Agora estamos em condições de concluir que F é injetiva. Para concluir que $h^{-1}(x_1)(n) = h^{-1}(x_2)(n)$ para todo $n \leq 0$ note :

$$J^u \ni x_1 = h(h^{-1}(x_1))$$

$$J^u \ni x_1 = h(h^{-1}(x_1))$$

então pelo exposto acima $h^{-1}(x_1)(n) = h^{-1}(x_2)(n)$ para todo $n \leq 0$ como pretendíamos.

Vamos provar o segundo item. Para provar que $F(J^u \cap \Lambda)$ é aberto basta mostrarmos que se $\overline{\theta} \in B^+(A)$ está muito próximo de F(y) então $\overline{\theta} \in F(J^u \cap \Lambda)$. Tome $y \in J^u$. Dado $\epsilon > 0$ existe N > 0 tal que se $\theta(n) = h^{-1}(y)(n)$ para todo n < N então

$$h(\theta) \in W^u_{\epsilon}(y) = \{x \in M : d(f^{-n}(x), f^{-n}(y)) \le \epsilon \text{ para todo } n \ge 0\}$$

com efeito,

$$\begin{array}{lcl} d(f^{-k}(h(\theta)),f^{-k}(y)) & = & d(h\sigma^{-k}(\theta),f^{-k}(h(h^{-1}(y))) \\ & = & d(h\sigma^{-k}(\theta),h\sigma^{-k}h^{-1}(y)) \ \ \text{para todo} \ \ k \geq 0 \end{array}$$

segue diretamente da continuidade de h que tomando N suficientemente grande garantimos $d(f^{-k}(h(\theta)), f^{-k}(y)) \leq \epsilon$ para todo $k \geq 0$. Portanto como J^u é aberto existe N > 0 tal que se $\theta \in B^+(A)$ e $\theta(n) = h^{-1}(y)(n)$ para todo $n \leq N$ então $h(\theta) \in J^u \cap \Lambda$. Tome $\overline{\theta}$ suficientemente próximo de $F(y) = \pi h^{-1}(y)$ de tal modo que $\overline{\theta}(n) = h^{-1}(y)(n)$ para todo $0 \leq n \leq N$.

Defina $\theta \in B(A)$ por $\theta(n) = h^{-1}(n)$ para $n \leq 0$ e $\theta(n) = \overline{\theta}(n)$ para $n \geq 0$. Esta definição é correta pois

$$h^{-1}(0) = (\pi h^{-1}(y))(0) = F(y)(0) = \overline{\theta}(0).$$

Então por definição de θ temos $\theta(n)=h^{-1}(y)(n)$ para todo $n\leq N,$ isto implica $h(\theta)\in J^u\cap\Lambda.$ Portanto

$$\overline{\theta} = \theta|_{\mathbb{Z}^+} = \pi h^{-1}(h(\theta)) = F(h(\theta)).$$

Isto conclui que o conjunto $F(J^u \cap \Lambda)$ é aberto em $B^+(A)$. Lembrando que $J^u \cap \Lambda$ é um conjunto de cantor podemos tomar J^u de modo que $J^u \cap \Lambda$ seja aberto e compacto. Desta discussão concluimos que $F: J^u \cap \Lambda \to F(J^u \cap \Lambda)$ é um homeomorfismo.

Prova das estimativas. Para mostrar que μ satisfaz as desigualdades do Lema (1.6), defina para cada $y \in J^u \cap \Lambda$

$$S_{\delta}(y,n) = \{ p \in J^u \cap \Lambda : d(f^k(p), f^k(y)) \le \delta \text{ para } 0 \le k \le n \}$$

e para cada $\theta \in B^+(A)$ defina

$$B(n,\theta) = \{ \alpha \in B^+(A) : \alpha(j) = \beta(j) \text{ para } 0 \le j \le n \}.$$

Agora vamos provar que existe $\delta_1 > 0$ e N > 0 tal que:

$$F(S_{\delta_1}(y,n)) \subset B(F(y),n) \subset F(S_{\delta_1}(y,n-N)) \tag{1.16}$$

para todo $y \in J^u \cap \Lambda$ e $n \geq N$. Escolha δ_1 satisfazendo $\delta_1 < \delta_0$ onde δ_0 satisfaz a seginte propriedade

$$d(K_i, K_j) > \delta_0$$
 para todos $1 \le i < j \le m$.

Então pelos mesmos argumentos usados anteriormente, se $p, y \in J^u \cap \Lambda$ e $d(f^k(p), f^k(y)) \leq \delta_1$ para $0 \leq k \leq n$, segue que $f^k(p)$ e $f^k(y)$ devem estar contidos em um mesmo elemento da partição $\{K_1, \ldots, K_m\}$ para $0 \leq k \leq n$. Daí $h^{-1}(p)(n) = h^{-1}(y)(n)$ para todo $0 \leq k \leq n$ e portanto $F(p) \in B(F(p), n)$ para todo $p \in J^u \cap \Lambda$ e $n \geq 0$.

Para provar a segunda inclusão, tome $\epsilon > 0$ tal que $W^u_{\epsilon}(y) \subset J$ para todo $y \in J^u \subset W^u(x)$. Tome N > 0 grande de tal modo que $\alpha(n) = \beta(n) \ \forall n \leq N$ implique $h(\alpha) \in W^u_{\epsilon}(h(\beta))$ para quaisquer $\alpha, \beta \in B(A)$. Tomando ϵ menor que δ_1 temos como conclusão particular desta última relação que

$$d(h(\alpha), h(\beta)) < \delta_1$$

para ver isso com uma clareza maior basta lembrar que

$$W_{\delta_1}^u(h(\beta)) = \{ y : d(f^n(y), f^n(h(\beta)) \le \delta_1 \text{ para todo } n \ge 0 \}.$$

Então

$$\alpha(n) = \beta(n)$$
 para todo $n \leq N \Rightarrow (h(\alpha), h(\beta)) < \delta_1$.

Tome $\overline{\theta} \in B(F(y), n), n \geq N, y \in J^u \cap \Lambda$, defina $\theta \in B(A)$ por

$$\theta(m) = \overline{\theta}(m)$$
 para todo $m \ge 0$

е

$$\theta(m) = h^{-1}(y)(m)$$
 para todo $m \le 0$

certamente θ está bem definida pois

$$\overline{\theta}(0) = F(y)(0) = \pi h^{-1}(y)(0) = h^{1}(y)(0) = \theta(0).$$

Note que por definição $\theta(m) = h^{-1}(y)(m)$ para todo $m \leq N$ segue do exposto acima que $h(\theta) \in W^u_{\epsilon}(y)$. Como $h(\theta) \in W^u_{\epsilon}(y) \subset J^u$ temos $h(\theta) \in J^u \cap \Lambda$. Portanto se mostrarmos que $h(\theta) \in S_{\delta_1}(y, n - N)$ obtemos que $\overline{\theta} \in F(S_{\delta_1}(y, n - N))$ pois $\overline{\theta} = F(h(\theta))$. Para provar que $h(\theta) \in S_{\delta_1}(y, n - N)$ note que

$$\sigma^{k}(\theta)(j) = ((h^{-1} \circ f^{k} \circ h)(\theta))(j)
= (h^{-1} \circ f^{k})(h(\theta))(j)
= (h^{-1} \circ f^{k})(y)(j)
= h^{-1}(f^{k}(y))(j)$$

para $0 \le j + k \le n$. Além do mais sempre que $0 \le k + j \le n$

$$\sigma^k(\theta)(j) = \overline{\theta}(j+k) = h^{-1}(y)(j+k)$$

então sempre que $n-k \geq N$, ou o que é equivalente $k \leq n-N$, temos

$$d(h(\sigma^k(\theta)), f^k(y)) = d(h(\sigma^k(\theta)), h(h^{-1}(f^k(y)))) \le \delta_1$$

isto claramente implica $h(\theta) \in S_{\delta_1}(y, n-N)$ completando a prova de que $B(F(y), n) \subset F(S_{\delta_1}(y, n-N))$. Repare que as inclusões em (1.16) podem ser reescritas como :

$$B(F(y), n) \subset F(S_{\delta_1}(y, n - N)) \subset B(F(y), n - N).$$

Defina uma medida μ na sigma álgebra de borel de $J^u \cap \Lambda$, que denotaremos por $\mathcal{B}(J^u \cap \Lambda)$, por

$$\mu(S) = \nu(F(S))$$

para todo $S \in \mathcal{B}(J^u \cap \Lambda)$ onde $\nu = \nu_{\delta T_{\psi}}$ é dada pelo Teorema de Ruelle. Como $F(J^u \cap \Lambda)$ é aberto , $\nu(F(J^u \cap \Lambda)) > 0$, daí $\mu(J^u \cap \Lambda)$ é positivo e ≤ 1 . Portanto

$$\nu(B(F(y), n)) \le \nu(F(S_{\delta_1}(y, n - N))) \le \nu(B(F(y), n - N)). \tag{1.17}$$

Agora relembre que se $\varphi \in C^{\gamma}(B^+(A)), \mathbb{R})$ e ν_{φ} é dada pelo Teorema de Ruelle então deve existir $C_1 > 0$ tal que para todo $\theta \in B^+(A)$ e $n \geq 0$:

$$C_1^{-1}\lambda(\varphi)^{-n}\exp(S_n\varphi)(\theta) \le \nu_{\varphi}(B(\theta,n)) \le C_1\lambda(\varphi)^{-n}\exp(S_n\varphi)(\theta).$$

Então se $\log \lambda(\delta T \psi) = P(\delta T \psi) = 0$, segue que

$$C_1^{-1} \exp(S_n \delta T \psi)(\theta) \le \nu(B(\theta, n)) \le C_1 \exp(S_n \delta T \psi)(\theta) \tag{1.18}$$

para todo $\theta \in B^+(A)$ e $n \ge 0$. Segue de (1.17) e (1.18) que existem \tilde{C}_1 e \tilde{C}_2 tais que para todo $y \in J^u$ e n > 0:

$$\tilde{C}_1^{-1} \exp(S_n \delta T \psi)(F(y)) \le \nu(F(S_{\delta_1}(y, n - N))) \le \tilde{C}_2 \exp(S_n \delta T \psi)(F(y))$$

então trocando \tilde{C}_1 e \tilde{C}_2 por $C_2 = \max\{\tilde{C}_1, \tilde{C}_2\}$ temos

$$C_2^{-1}\exp(S_n\delta T\psi)(F(y)) \le \nu(F(S_{\delta_1}(y,n-N))) \le C_2\exp(S_n\delta T\psi)(F(y))$$

para todo $y \in J^u$ e $n \ge 0$.

Agora lembre que da Proposição 1.1 podemos escrever

$$(T\psi) \circ \pi = \psi + (u - u \circ \sigma)$$

onde $u \in C^0(B(A), \mathbb{R})$. Note que

$$(S_n T \psi)(F(y)) - (S_n \psi)(h^{-1}(y))$$

$$= \sum_{j=0}^{n-1} T \psi \circ \sigma^j(\pi h^{-1}(y)) - \sum_{j=0}^{n-1} \psi \circ \sigma^j(h^{-1}(y))$$

$$= (\text{Soma telescópica})$$

$$= u(h^{-1}(y)) - u(\sigma^n h^{-1}(y))$$

segue portanto da continuidade de u que existe uma constante A > 0 tal que

$$|(S_n T \psi)(F(y)) - (S_n \psi)(h^{-1}(y))| \le A.$$

Daí

$$(S_n \psi)(h^{-1}(y)) = -\log|(f^n)'(y)|_{E_n^u}|.$$

Então:

$$C_2^{-1} \le \frac{\mu(S_{\delta_1}(y,n))}{|(f^n)'(y)|E_y^u|^{-\delta}} \le C_2$$

para todo $n \ge 0$ e $y \in \Lambda$. Defina $\rho(y,n) = d(y,J^u - S_{\delta_1}(y,n))$. Por argumentos clássicos existe $C_3 > 0$ tal que

$$C_3^{-1} \le \frac{\operatorname{diam} S_{\delta_1}(y, n)}{|(f^n)'(y)|E_y^u|^{-1}} \le C_3$$

$$C_3^{-1} \le \frac{\rho(y,n)}{|(f^n)'(y)|E_y^u|^{-1}} \le C_3$$

para todo $y \in J^u \cap \Lambda$ e $n \geq 0$. Agora note que $S_{\delta_1}(y, n+1) \subset S_{\delta_1}(y, n)$ isto implica que $\rho(y, n+1) \leq \rho(y, n)$ tome r tal que $\rho(y, n+1) \leq r \leq \rho(y, n)$. Então claramente:

- $B_r(y) \cap \Lambda \subset S_{\delta_1}(y,n)$
- $B_r(y) \cap \Lambda \supset S_{\delta_1}(y, n+1)$

Então,

$$\mu(B_{r}(y) \cap \Lambda) \leq \mu(S_{\delta_{1}}(y, n))
\leq C_{2} \left| (f^{n})'(y)|_{E_{y}^{u}} \right|^{-\delta}
\leq C_{2}C_{3}^{\delta}\rho(y, n)^{\delta}
= C_{2}C_{3}^{\delta}r^{\delta} \left(\frac{\rho(y, n)}{r} \right)^{\delta}
\leq C_{2}C_{3}^{\delta}r^{\delta} \left(\frac{\rho(y, n)}{\rho(y, n + 1)} \right)^{\delta}
\leq C_{2}C_{3}^{\delta}r^{\delta} \left(\frac{C_{3}|(f^{n})'(y)|_{E_{y}^{u}}|^{-1}}{C_{3}^{-1}|(f^{n+1})'(y)|_{E_{y}^{u}}|^{-1}} \right)^{\delta}
= C_{2}C_{3}^{\delta}r^{\delta} \left| f'(f^{n}(y))|_{E_{y}^{u}} \right|^{-\delta}$$

Seja C_4 uma cota superior para $|f'(z)|_{E^u_z}|^{-1}, z \in \Lambda$, temos então

$$\mu(B_r(y) \cap \Lambda) \le Cr^{\delta}$$

 $com C = C_2 C_3^{3\delta} C_4^{-\delta}$

Analogamente temos,

$$\mu(B_{r}(y) \cap \Lambda) \geq \mu(S_{\delta_{1}}(y, n+1))
\geq C_{2}^{-1} \left| (f^{n})'(y) \right|_{E_{y}^{u}} \right|^{-\delta}
\geq C_{2}^{-1} C_{3}^{-\delta} \rho(y, n+1)^{\delta}
= C_{2}^{-1} C_{3}^{-\delta} r^{\delta} \left(\frac{\rho(y, n+1)}{r} \right)^{\delta}
\geq C_{2}^{-1} C_{3}^{-\delta} r^{\delta} \left(\frac{\rho(y, n+1)}{\rho(y, n)} \right)^{\delta}
\geq C_{2}^{-1} C_{3}^{-\delta} r^{\delta} \left(\frac{C_{3}^{-1} | (f^{n+1})'(y) | E_{y}^{u} |^{-1}}{C_{3} | (f^{n})'(y) | E_{y}^{u} |^{-1}} \right)^{\delta}
= C_{2} C_{3}^{3\delta} r^{\delta} \left| f'(f^{n}(y)) |_{E_{f^{n}(y)}^{u}} \right|^{\delta}$$

eja \widetilde{C}_4 uma cota superior para $|f'(z)|_{E_z^u}|, z \in \Lambda$, temos então

$$\mu(B_r(y) \cap \Lambda) \leq \widetilde{C}r^{\delta}$$

$$\operatorname{com} \widetilde{C} = C_2 C_3^{3\delta} C_4^{\delta}$$

Prova do Lema 1.7 : Considere G a o fibrado grassmaniano dos subespaços 1-dimensionais das fibras T_xM , isto é, G é o conjunto de todos os pares (x, E), com $x \in M$ e E sendo um subespaço vetorial de dimensão 1 de T_xM , munido de uma estrutura de variedade diferenciável.

• Associado a cada $f \in \text{Diff}^r(M)$ temos um difeomorfismo $F_f \in \text{Diff}^{r-1}(G)$ definido por

$$F_f(p, E) = (f(p), f'(p)E).$$

Claramente a aplicação $\operatorname{Diff}^r(M) \ni f \mapsto F_f \in \operatorname{Diff}^{r-1}(G)$ de classe C^{∞} .

• Dado $0 \le \gamma < 1$ e $g \in \mathrm{Diff}^r(M), r \ge 2$, defina $\Phi_g : C^\gamma(\Lambda, G) \longleftrightarrow \mathrm{por}$

$$\Phi_g = F_g(\xi(f^{-1}(x))).$$

Afirmação:

(a) Quando $\gamma=0$ a aplicação $\xi_0\in C^\gamma(\Lambda,G)$ definida por: $\xi_0(x)=(x,E^u_x)$ é um ponto fixo hiperbólico de Φ_f .

- (b) A aplicação $\mathcal{H}:C^0(\Lambda,G)\to C^0(\Lambda,G)$ dada por $\mathcal{H}(\xi)=\Phi_f(\xi)$ é de classe C^{r-1}
- (c) A aplicação $\mathrm{Diff}^r(M)\times C^0(\Lambda,G)\ni (g,\xi)\to \Phi_g(\xi)\in C^0(\Lambda,G)$ é de classe C^{r-1} .

Considere a aplicação $H: \mathrm{Diff}^r(M) \times C^0(\Lambda, G) \to C^0(\Lambda, G)$ dada por $H(g, \xi) = \Phi_g(\xi) - \xi$, note que $H(f, \xi_0) = 0$, além do mais

$$\frac{\partial}{\partial \xi} H(f, \xi_o) = \frac{\partial}{\partial \xi} \Phi_f(\xi_0) - I$$

como ξ_o é ponto fixo hiperbólico de Φ_f temos que $\frac{\partial}{\partial \xi} H(f, \xi_o)$ é invertível, segue do teorema da função implícita que existe uma vizinhança \mathcal{U} de f na topologia C^r e uma aplicação de classe C^{r-1} $\mathcal{U} \ni g \mapsto \xi_g \in C^0(\Lambda, G)$ de classe C^{r-1} tal que $\xi_f = \xi_0$ e $\Phi_g(\xi_g)$ para todo $g \in \mathcal{U}$.

Seja $\pi: G \to M$ definida por $\pi(p, E) = p$. Vamos mostrar agora que a aplicação $\pi \xi_g: \Lambda \to M$ é uma equivalência topológica entre $f | \Lambda$ e $g | \Lambda_g$. Pois bem, sejam $h_g \equiv \pi \xi_g$ e $\xi_g(x) = (\xi_{g1}(x), \xi_{g2}(x))$. Então

$$(h \circ f)(x) = (\pi \xi_g)(f(x))$$

$$= \pi(\Phi_g(\xi_g)(f(x)))$$

$$= \pi(g(\xi_{g1}(f^{-1}(f(x))), \cdot))$$

$$= \pi(g(\xi_{g1}(x), \cdot))$$

$$= g(\pi \xi_g(x)) = (g \circ h)(x)$$

APÊNDICE A

NOÇÕES DE TEORIA ESPECTRAL

Esta seção contém alguns fatos básicos sobre teoria espectral de operadores em espaços de Banach que serão usadas nesta dissertação.

Nesta seção \mathfrak{X} vai denotar um espaço de Banach complexo e T um operador linear limitado em \mathfrak{X} . Não consideraremos o caso trivial em que $\mathfrak{X} = \{0\}$.

Proposição A.1. O conjunto dos elementos invertíveis de $\mathcal{L}(\mathfrak{X})$ é aberto, de forma mais explícita, se $T \in \mathcal{L}(\mathfrak{X})$ é um operador invertível o mesmo vale para todo $L \in \mathcal{L}(\mathfrak{X})$ para o qual

$$||T - L|| < ||T^{-1}||^{-1}$$

Definição A.1. O conjunto resolvente $\rho(T)$ de T é o conjunto dos números complexos λ para o qual $(\lambda I - T)^{-1}$ existe e é limitado em \mathfrak{X} . O espectro $\sigma(T)$ de T é o complemento de $\rho(T)$. A função $R(\lambda;T) = (\lambda I - T)^{-1}$ definida em $\rho(T)$ e chamada de função resolvente de T, ou simplismente o resolvente de T.

Proposição A.2 (Dunford-Schwartz, pag: 566). O conjunto resolvente $\rho(T)$ é aberto. Além disso a função $R(\lambda;T)$ é analítica em $\rho(T)$

Segue da proposição acima que o espectro $\sigma(T)$ de um operador T é fechado, além disso pode-se mostrar que o espectro de T é não vazio e limidado, ou seja $\sigma(T)$ é compacto. Isto nos conduz à seguinte definição:

Definição A.2. A quantidade $r(T) = |\sigma(T)| := \sup\{|x - y|, x, y \in \sigma(T)\}$ é dita raio espectral de T

Proposição A.3 (Dunford-Schwartz, pag: 567). $r(T) = \lim_{n \to \infty} ||T^n||^{\frac{1}{n}} \le ||T||$

Proposição A.4 (Dunford-Schwartz, pag: 568). Seja $T \in \mathcal{L}(\mathfrak{X})$. O espectro da adjunta T^* é igual ao espectro de T.

Definição A.3. Seja $T \in \mathcal{L}(\mathfrak{X})$ e $U \subset \mathbb{C}$ um conjunto contendo $\sigma(T)$ e cujo bordo B consiste de um número finito de curvas de Jordan retificáveis e orientadas positivamente. Considere $f: V \subset \mathbb{C} \to \mathfrak{X}$, uma aplicação analítica talque $U \cup B \subset V$. Então o operador f(T) é definido por

$$f(T) = \frac{1}{2\pi i} \int_{B} f(\lambda) R(\lambda; T) d\lambda$$

Um fato fundamental mas que não provaremos aqui é que a definição de f(T) depende apenas de f e não do domínio U.

Definição A.4. Seja $T \in \mathcal{L}(\mathfrak{X})$. Um ponto $\lambda_0 \in \sigma(T)$ é dito um ponto isolado de $\sigma(T)$ se existe uma vizinhança U de λ_0 tal que $\sigma(T) \cap U = \{\lambda_0\}$. Um ponto isolado $\lambda_0 \in \sigma(T)$ é chamado um pólo de T ou simplesmente um pólo, se $R(\lambda, T)$ tem um pólo em λ_0 . Por ordem $\nu(\lambda_0)$ de um pólo λ_0 é entendido a ordem de λ_0 como um pólo de $R(\lambda, T)$.

Definição A.5. Definir projeção espectral

Considere $T \in \mathcal{L}(\mathfrak{X})$, se λ é um autovalor isolado de $\sigma(T)$ então escreveremos $\mathfrak{X}_{\lambda} = \pi_T(\mathfrak{X})$

Proposição A.5 (Dunford-Schwartz, pag: 573-74). Seja $T \in \mathcal{L}(\mathfrak{X})$ e λ um pólo de T de ordem ν . Então

$$\mathfrak{X}_{\lambda} = \{x | (T - \lambda I)^{\nu} = 0\}.$$

Denote por T_{λ} a restrição de T a \mathfrak{X}_{λ} . então $\sigma(T_{\lambda}) = \{\lambda\}$

Proposição A.6 (Dunford-Schwartz, pag: 585). Seja $T \in \mathcal{L}(\mathfrak{X})$ $e \in 0$. Então existe $\delta > 0$ tal que se $T_1 \in \mathcal{L}(\mathfrak{X})$ $e ||T - T_1|| < \delta$, então

$$\sigma(T_1) \subset S(\sigma(T_1), \epsilon)$$

Proposição A.7 (Dunford-Schwartz, pag: 587). Sejam E_1, E_2 projeções em \mathfrak{X} tal que

$$||E_1 - E_2|| < \min\{||E_1||^{-1}, ||E_2||^{-1}\}.$$

Então se uma das projeções tem posto finito o mesmo vale para a outra e além disso

$$\dim E_1(\mathfrak{X}) = \dim E_2(\mathfrak{X})$$

Proposição A.8 (Mujica pag. 18). Seja $A: E \times ... E \to F$ forma k-linear simétrica, para quaisquer $x_0, ..., x_m \in E$, temos a Fórmula de Polarização

$$A(x_1, \dots, x_k) = \frac{1}{k! 2^k} \sum_{\epsilon_i = \pm 1} \epsilon_1 \dots \epsilon_k A(x_0 + \epsilon_1 x_1 + \dots + \epsilon_k x_k)^k$$

APÊNDICE B

VARIEDADES ESTÁVEIS E CONJUNTOS HIPERBÓLICOS

Seja $f: M \to M$ um difeomorfismo de uma variedade Riemanniana M.

Definição B.1. Um subconjunto fechado $\Lambda \subset M$ é dito hiperbólico se $f(\Lambda) = \Lambda$ e em cada plano tangente T_xM com $x \in \Lambda$ existe uma decomposição em soma direta

$$T_xM = E_x^u \oplus E_x^s$$

em termos de subespaços E_x^u e E_x^s tais que

(a)
$$Df(E_x^u) = E_{f(x)}^s \ e \ Df(E_x^s) = E_{f(x)}^u$$

(b) Existem constantes C > 0 e $\lambda \in (0,1)$ tais que

1.
$$||Df_x^n(v)|| \le C\lambda^n ||v||$$
 quando $v \in E_x^s$, $n \ge 0$.

2.
$$||Df_x^{-n}(v)|| \le C\lambda^n ||v||$$
 quando $v \in E_x^u$, $n \ge 0$.

(c) E_x^u e E_x^s dependem continuamente de x

Observações: O item (c) pode ser demonstrado a partir dos itens (a) e (b) (ver [14]). Os conjuntos

$$E^s = \bigcup_{x \in \Lambda} E^s_x \ e \ E^u = \bigcup_{x \in \Lambda} E^u_x$$

são subfibrados contínuos de $T_\Lambda M=\bigcup_{x\in\Lambda}T_xM$ além disso $T_\Lambda M=E^s\oplus E^u$

Definição B.2. Para cada $x \in M$ e $\epsilon > 0$ defina

- (a) $W^s(x) = \{ y \in M : d(f^n(x), f^n(y)) \to 0 \text{ quando } n \to \infty \}$
- (b) $W_{\epsilon}^s(x) = \{ y \in M : d(f^n(x), f^n(y)) \le \epsilon \text{ para todo } n \ge 0 \}$
- (c) $W^u(x) = \{y \in M : d(f^{-n}(x), f^{-n}(y)) \rightarrow 0 \text{ quando } n \rightarrow \infty\}$
- (d) $W^{u}_{\epsilon}(x) = \{ y \in M : d(f^{-n}(x), f^{-n}(y)) \le \epsilon \text{ para todo } n \ge 0 \}$

Os conjuntos $W^s(x)$, $W^s(x)$ são chamados respectivamente de variedades estável e instável de x. Analogamente, os conjuntos $W^s_{\epsilon}(x)$, $W^s_{\epsilon}(x)$ são chamados respectivamente de variedades estável loca e instável local de x.

Teorema B.1 (Katok pag. 267). Seja Λ um conjunto hiperbólico de um difeomorfismo f de classe C^r . Então dado ϵ pequeno

- (i) $W^u_{\epsilon}(x)$ e $W^s_{\epsilon}(x)$ são discos de classe C^r quando $x \in \Lambda$ e além disso $T_x W^u_{\epsilon}(x) = E^u_x$ e $T_x W^s_{\epsilon}(x) = E^s_x$.
- (ii) $d(f^n(x), f^n(y)) < C(\delta)(\lambda + \delta)^n d(x, y)$ para todo $y \in W^s(x)$
- (iii) $d(f^{-n}(x), f^{-n}(y)) < C(\delta)(\lambda \delta)^{-n}d(x, y)$ para todo $y \in W^u(x)$

Proposição B.1 (Katok pag. 265). Seja Λ um conjunto hiperbólico para $f: U \subset M \to M$ então existe um vizinhança compacta V de Λ tal que para toda g suficientemente próxima de f na topologia C^r tal que o conjunto invariante

$$\Lambda_g = \bigcap_{n \in \mathbb{Z}} g^n V$$

é hiperbólico.

Proposição B.2 (Brin, Stuck Pag. 128). Seja Λ um conjunto hiperbólico para $f: U \subset M \to M$. Para todo ϵ sufucientemente pequeno existe $\delta > 0$ tal que se $x, y \in \Lambda$ e $d(x, y) < \delta$ então a interseção $W^u_{\epsilon}(x) \cap W^s_{\epsilon}(y)$ consiste de exatamente um ponto [x, y].

Proposição B.3 (Bowen, pag.90). Seja Λ um conjunto hiperbólico para $f: U \subset M \to M$. Exitem $\delta > 0$, C > 0 e $0 < \lambda < 1$ tais que se $x \in \Lambda$ e $y \in M$ satisfazem $d(f^n(y), f^n(x)) < \delta$ para todo $-N \leq n \leq N$ então

$$d(x,y) \le C\lambda^N.$$

Proposição B.4 (Palis, Takens; Apêndice 1). Seja Λ um conjunto hiperbólico de um difeomorfismo f de classe C^r , $r \geq 2$. Para cara $x \in \Lambda$ sejam $W^u(x)$ e $W^s(x)$ as variedades instável e estável de f em x. Então existem vizinhanças \mathcal{V}_1' e \mathcal{V}_2' de Λ na qual estão definidas folheações \mathcal{F}_1 e \mathcal{F}_2 de classe C^1 de modo que se $T_p\mathcal{F}_i$ denota o espaço tangente à folha de \mathcal{F}_i que passa por $p \in \Lambda$ então $T_p\mathcal{F}_1 = E_p^u$ e $T_p\mathcal{F}_2 = E_p^s$.

APÊNDICE C

DIMENSÃO DE HAUSDORFF

O objetivo deste apêndice é apresentar alguns fatos básicos a respeito de Medidas de Hausdorff. Faremos todos os teoremas e definições em \mathbb{R}^n , não há perda de generalidade esta não perda de generalidade é o seguinte teorema:

Teorema C.1 (Teorema da Imersão de Withney). Toda variedade n-dimensional pode ser mergulhada em \mathbb{R}^{2n+1} como uma subvariedade fechada.

C.0.2 Medida exterior métrica

Seja (M,d) um espaço métrico e A,B conjuntos em M, a distância entre A e B é definida por

$$d(A, B) = \inf\{d(x, y) : x \in A \in y \in B\}.$$

Uma medida exterior μ^* em M é dita uma medida exterior métrica se cumpre a seguinte condição:

$$\mu^*(A \cup B) = \mu^*(A) + \mu^*(B)$$
 sempre que $d(A, B) > 0$.

Teorema C.2. Seja M um espaço métrico e μ^* uma medida exterior métrica em M. Então os boreleanos de M são conjuntos mensuráveis com relação á medida exterior μ^* . Portanto μ^* restrita a $\mathcal{B}(M)$ é uma medida.

C.0.3 Medida de Hausdorff

Seja M um espaço métrico localmente compacto. Considere un subconjunto $E\subset M$ qualquer, defina a medida exterior de Hausdoff α -dimensional de E

por,

$$m_{\alpha}^{*}(E) = \lim_{\delta \to 0} \inf \left\{ \sum_{k} (\operatorname{diam} F_{k})^{\alpha} : E \subset \bigcup_{k=1}^{\infty} F_{k}, \operatorname{diam} F_{k} \leq \delta \operatorname{para todo} k \right\},$$

onde diamS denota o diâmetro do conjunto S que definimos como sendo diam $S = \sup\{|x-y| : x,y \in S\}$. Dizendo de outro modo, dado $\delta > 0$ nós consideramos todas as coberturas enumeráveis de E por famílias de conjuntos cujo diâmetro de cada elemento em alguma destas famílias não supera δ , depois tomamos o ínfimo do conjunto das somas $\sum_k (\operatorname{diam} F_k)^{\alpha}$. Então tomamos o limite destes ínfimos quando $\delta \to 0$. Agora considere a seguinte quantidade

$$\mathcal{H}_{\alpha}^{\delta}(E) = \inf \left\{ \sum_{k} (\operatorname{diam} F_{k})^{\alpha} : E \subset \bigcup_{k=1}^{\infty} F_{k}, \operatorname{diam} F_{k} \leq \delta \operatorname{para} \operatorname{todo} k \right\}$$

não é uma tarefa difícil verificar que $\mathcal{H}^{\delta}_{\alpha}(E)$ cresce de acordo com que δ decresce, de modo que o limite

$$m_{\alpha}^{*}(E) = \lim_{\delta \to 0} \mathcal{H}_{\alpha}^{\delta}(E)$$

sempre existe (podendo vir a ser infinito). Note em particular que $\mathcal{H}^{\delta}_{\alpha}(E) \leq m_{\alpha}^{*}(E)$ para todo $\delta > 0$.

Proposição C.1 (Monotonicidade). Sejam $E_1, E_2 \subset M$, com $E_1 \subset E_2$ então $m_{\alpha}^*(E_1) \leq m_{\alpha}^*(E_2)$.

Proposição C.2 (Subaditividade). $m_{\alpha}^*(\bigcup_{j=1}^{\infty} E_j) \leq \sum_{j=1}^{\infty} m_{\alpha}^*(E_j)$ para qualquer

família enumerável $\{E_j\}_{j\in\mathbb{N}}$ de conjuntos em M.

Proposição C.3. Sejam $E_1, E_2 \in M \ com \ d(E_1, E_2) > 0, \ então$

$$m_{\alpha}^*(E_1 \cup E_2) = m_{\alpha}^*(E_1) + m_{\alpha}^*(E_2).$$

A proposição (C.3) mostra em particular que a medida m_{α}^* é em particular uma medida exterior métrica. Usando então o Teorema (C.1) temos

Proposição C.4. Se $\{E_j\}_{j\in\mathbb{N}}$ é uma família de boreleanos em M e $E=\bigcup_{j=1}^{\infty}E_j$, então

$$m_{\alpha}^{*}(E) = \sum_{j=1}^{\infty} m_{\alpha}^{*}(E_{j})$$

A proposição (C.4) acima mostra em particular que m_{α}^* quando restrita aos boreleanos de M é de fato uma medida, e denotaremos esta medida por m_{α} ao invés de m_{α}^* . Chamaremos m_{α} de medida de Hausdorff α -dimensional.

C.0.4 Dimensão de Hausdorff

Dado um boreleano E de M podemos mostrar que existe um único α tal que

$$m_{\beta}(E) = \begin{cases} \infty & \text{se} & \beta < \alpha \\ 0, & \text{se} & \alpha < \beta. \end{cases}$$

Escrevendo de outra maneira temos

$$\alpha = \sup\{\beta : m_{\beta}(E) = \infty\} = \inf\{\beta : m_{\beta}(E) = 0\}.$$

Nós diremos que E tem dimensão de Hausdorff α , ou mais sucintamente que a dimensão de E é α . Denotaremos $HD(E)=\alpha$. Intuitivamente podemos concluir da breve discussão acima que para dar uma boa medida de Hausdorff para E, isto é, uma medida que que não subestime nem superestime E, é necessário estar na dimensão certa.

C.0.5 Capacidade Limite

Para cada $\epsilon >$ considere um decomposição de \mathbb{R}^n em cubos cujas arestas tem comprimento ϵ : paca cada $J = (j_1, \ldots, j_n) \in \mathbb{Z}^n$, defina

$$R_{j_1,...,j_n} = \{(x_1,...,x_n) : j_i \epsilon \le x_i < (j_i+1)\epsilon \text{ para } 1 \le i \le n\}.$$

Cada R_J da forma descrita acima é dito um ϵ -cubo. Para cada conjunto $A \subset \mathbb{R}^n$ compacto defina $N(A, \epsilon)$ como sendo o número de ϵ -cubos R_J sobre todas as escolhas de $J \in \mathbb{Z}^n$ tal que $A \cap R_J \neq \phi$.

Um raciocínio simples nos permite concluir que para um segmento de reta o número de ϵ -cubos, $N(A, \epsilon)$, necessários para cobrir este segmento é aproximadamente ϵ^{-1} vezes o comprimento do segmento. Analogamente para um retângulo no plano $N(A, \epsilon)$ é aproximadamente ϵ^{-2} vezes a área do retângulo. Mais geralmente considere uma variedade M em \mathbb{R}^n de dimensão d. Considere uma região A de M e admita que A é uma região boa o suficiente de modo que o raciocínio empregado acima continue valendo, isto é, que $N(A, \epsilon)$ seja proporcional a ϵ^{-d} , de forma mais precisa, que existam constantes C_1 e C_2 tais que

$$C_1 \le N(A, \epsilon)\epsilon^d \le C_2$$

tomando logaritimos na desigualdade acima obtemos

$$\log(C_1) \le \log(N(A, \epsilon)) - d\log(\epsilon^{-1}) \le \log(C_2),$$

daí

$$\frac{\log(N(A,\epsilon)) - \log(C_2)}{\log(\epsilon^{-1})} \le d \le \frac{\log(N(A,\epsilon)) - \log(C_1)}{\log(\epsilon^{-1})}$$

portanto

$$d = \lim_{\epsilon \to 0} \frac{\log(N(A, \epsilon))}{\log(\epsilon^{-1})}$$

Este raciocinio deve tornar claro as definições a seguir. Seja $A \subset \mathbb{R}^n$, defina a capacidade inferior de A por

$$C^{-}(A) = \lim_{\epsilon \to 0} \inf \frac{\log(N(A, \epsilon))}{\log(\epsilon^{-1})}$$

de forma análoga definimos a capacidade superior de A como sendo

$$C^{+}(A) = \lim_{\epsilon \to 0} \sup \frac{\log(N(A, \epsilon))}{\log(\epsilon^{-1})}.$$

A próxima proposição é fundamental na prova do Teorema B.

Proposição C.5. Seja K um espaço métrico compacto e μ uma probabilidade na sigma-álgebra de Borel de K tal que existem $0 \le \delta_1 \le \delta_2$ e C > 0 satisfazendo:

$$C^{-1}r^{\delta_2} \le \mu(B_r(x)) \le Cr^{\delta_1}$$

para todo $x \in K$ e r > 0. Então :

$$\delta_1 \le HD(K) \le C^-(K) \le C^+(K) \le \delta_2$$

Demonstração: Seja $N(K,\epsilon)$ o número mínimo de ϵ -bolas B^{ϵ} que cobrem K. Note o seguinte : as bolas $B_j^{\frac{\epsilon}{2}}$, $j=1,\ldots,N(K,\epsilon)$ são disjuntas. Então

$$1 \ge \mu \left(\bigcup_{j=1}^{N(K,\epsilon)} B_j^{\frac{\epsilon}{2}} \right) \ge \sum_{j=1}^{N(K,\epsilon)} \mu \left(B_j^{\frac{\epsilon}{2}} \right) \ge N(K,\epsilon) \left(\frac{\epsilon}{2} \right)^{\delta_2},$$

Portanto

$$N(K, \epsilon) \le C(\epsilon^{-1})^{\delta_2}$$

tomando o logarítimo obtemos

$$\log N(K, \epsilon) \le \delta_2 \log(\epsilon^{-1}) + \log C$$

daí

$$\frac{N(K,\epsilon)}{\log(\epsilon^{-1})} \le \delta_2 + \frac{\log C}{\log(\epsilon^{-1})}$$

tomando o lim sup:

$$C^+(K) \le \delta_2$$

como pretendíamos. Agora vamos mostrar que $HD(K) \geq \delta_1$, para isto basta mostrarmos que $m_{\delta_1}(K) > 0$. De fato seja $\{B_{\frac{r}{2}}(x_n)\}$ uma cobertura finita de K por bolas cujo diâmetro é igual a $\frac{r}{2}$ onde r > 0 é tal que $\frac{r}{2} < \epsilon$. Então

$$\sum_{n} \left(\operatorname{diam} B_{\frac{r}{2}}(x_{n}) \right)^{\delta_{1}} = \sum_{n} r^{\delta_{1}}$$

$$\geq \sum_{n} C^{-1} \mu(B_{\frac{r}{2}}(x_{n}))$$

$$\geq C^{-1} \mu(K) = C^{-1} > 0.$$

Isto fornece uma maneira de calcular a dimensão de Hausdorff de certos conjuntos:

Corolário C.1. Se na proposição anterior tivermos $\delta_1 = \delta_2 = \delta$ então $HD(K) = \delta$.

REFERÊNCIAS BIBLIOGRÁFICAS

- [1] N.Dunford; Schwartz, J. T., *Linear Operators, Part I General Theory*, Pure and Applied Mathematics: A Series of Texts and Monographs (Interscience, 1958).
- [2] S.Smale., On Gradient dynamical sistems, The Annals of Mathematics, Second Series, Vol. 74, No. 1 (Jul., 1961), pp. 199-206
- [3] R.Mañé., The Hausdorff dimension of diffeomorphims of surfaces, Boletim da sociedade brasileira de matemática, volume 20, n°2, 1990.
- [4] J.Palis, F.Takens., Hyperbolicity and sensitive chaotic dynamics at homoclinic bifurcations, Cambridge studies in advanced mathematics, 1993
- [5] F. Ledrappier, Mesures d'equlibre d'entropie complèment positive, Systèmes Dynamiques, Astérisque 50(1977), 251-272.
- [6] R. Bowen. , Equilibrium states and the ergodic theory of Anosov diffeomorphisms, Lecture Notes in Mathematics 470(1973). Springer-Verlag.
- [7] R. Bowen., Hausdorff dimensions of quasicircles, IHES Publ. Math. 50(1979), 11-25.
- [8] A.Manning, H.McCluskey., *Hausdorff dimension for horseshoes*, Ergodic Theory Dynamical Systems 3(1983).
- [9] J.Palis, M.Viana, On the continuity of Hausdorff dimension and limit cpapetity for horseshoes, Proc. of Symposium on Dynamical Systems, Chile 1986, Lectures Notes in Mathematics 1331(1988),150-160. Springer-Verlag

- [10] L.J. Díaz, M.Viana, Discontinuity of the Hausdorff dimension od hiperbolic sets, Ergodic Theory and Dynamical Systems, v. 9, p. 403-425, 1989.
- [11] E.M.Stein, R.Shakarchi., Real Analysis measure Theory, Integration, and Hilbert Spaces, Princeton Lectures in Analysis, Princeton University (2005).
- [12] M.W.Hirsch, C.C.Pugh., Sable manifolds and hyperbolic sets Global Analysis, Proc. Symp. Pure Math., Amer. Math. Soc., 14(1970)
- [13] M.Brin, G.Stuck., *Introduction To Dynamical Systems*, Cambridge University Press, (2001)
- [14] A.Katok, B.Hasselblatt., Introduction to the modern theory of dynamical systems, Encyclopedia of Mathematics and its Applications 54, Cambridge University Press, (1995).
- [15] C.Robinson., Dynamical Systems: Stability, Symbolic Dynamics, and Chaos, Hardcover (1995).
- [16] J.Mujica., Complex Analysis in Banach Spaces, North-Holland, Mathematics Studies
- [17] F.A.Ferreira., Dinâmica simbólica e ferradura de Smale Revista de Estudos Politécnicos, 2007, Vol.5, n°8,183-199.
- [18] J. Gleick., Caos: a construção de uma nova ciência, 1994, Editora CAM-PUS ELSEVIER
- [19] J.Palis., Sistemas caóticos ou turbulentos; atratores e bifurcações homoclínicas, 1988, Revista matemática universitária nº's 9/10.
- [20] N.Luzia., Minicourse on Hausdorff dimension, CMUP, Porto, June 4-6, 2007, disponível em: www.math.ist.utl.pt/~nluzia/minicourse.pdf