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The Extended ADS/CFT Correspondence
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The correspondence between conformal covariant fields in Minkowski’s space-time and isometric fields in
the five dimensional anti-deSitter space-time is extended to a six-dimensional bulk space and its regular sub-
manifolds, so as to include the analysis of evaporating Schwarzschild’s black holes without loss of quantum
unitarity.

I. INTRODUCTION

In 1975 S. Hawking presented his well known information
loss theorem based on the semiclassical Einstein’s equations:

Rµν− 1
R

gµν = 8πG < Tµν >

as applied to the ordinary Kerr and Schwarzschild black holes
in four-dimensional space-times. Three possible outcomes
were predicted: Either the black hole evaporates leaving no
trace of the properties of particles falling inside it or, after the
evaporation there is a naked singularity or, lastly, there would
be a regular remnant of the black hole. This result motivated
a 30 year debate about the validity of the quantum unitarity
near a black hole, leading to the conclusion that either some-
thing was missing in the theorem or that quantum theory in
the regime of strong gravity should be modified [1].

In 2004 Hawking presented a new version of the theorem
with new and different hypothesis: Now quantum gravity is
approached by Euclidean Path Integral followed by a Wick
rotation. Instead of the usual black holes the theorem refers
to extremal black holes in theAdS5 bulk. Finally it makes use
of the ADS/CFT correspondence. The conclusion is also dif-
ferent: The quantum unitarity is preserved near the extremal
black hole and some information can be recovered [2].

The use of different assumptions makes it difficult to com-
pare the two theorems on equal footing. If in 1975 ordinary
Special Relativity with the Poincaré symmetry was used, now
the conformal symmetry of Minkowski’s space is used, leav-
ing the impression is that we are playing a different game.
Nonetheless, when discussing the subject in classrooms we
can hardly avoid questions such as: but then, what happened
with the good old Schwarzschild’s solution? Are the Schwarz-
schild black holes still around? If so, can we still apply the
ADS/CFT correspondence? The purpose of this talk is to
show that it is possible to extend that correspondence in such
way that the quantum unitarity near a Schwarzschild black
hole can also be ensured.

II. CONFORMAL SYMMETRY

Back in 1909, just after the definition of Minkowski’s
space-timeM4 whose metric is invariant under the Poincaré
symmetry, it was found that electrodynamics was also covari-
ant under a larger symmetry, the conformal group defined by
Minkowski’s metric [3]. As it was later shown by I. Segal, this

is in fact the most general symmetry admitted by Maxwell’s
equations [4]. Therefore, following the same reasoning of
Minkowski, we may ask if there would be a newConformal
Special Relativity, with a new space-time such that its metric
is invariant under the conformal group ofM4.

Even before attempting an answer, it was found that the use
of conformal symmetry in electrodynamics was hampered by
the causality principle. For example, to maintain the confor-
mal covariance the solutions of the electromagnetic potential
wave equations must include the advancedAµ(x+vt) and re-
tardedAµ(x− vt) components together. The presence of the
advanced component implies in a violation of the causality
principle, which was then and still is today a principle based
on a solid intuition:The past must be divided from the future
by the present. A denial of these facts would be a denial of our
most primitive intuitions about time-order[5].

On the other hand, the discovery of the four-dimensional
anti-deSitter (AdS4) solutions of Einstein’s equations in 1917
has shown that causality may also be violated by gravity,
essentially because the anti-deSitter solution admits closed
time-like geodesics. Thus, if Einstein once gave us a physi-
cal meaning to the Riemann Geometry of abstract manifolds,
deSitter demonstrated that such meaning is not necessarily in-
tuitive.

In spite of this non causal implication, it was found much
later that the Lie algebra of the anti-deSitter group is more
consistent with the super-symmetry than the Poincaré group
[6]. This means that at least in some theoretical situations we
may be induced to trade causality violations by some elabo-
rated formal development, even if that theory has not yet been
proven experimentally. A powerful example of this is given
by the realization of type II string theory withE8×E8 in the
spaceAdS5×S5 [7].

The interest in conformal symmetry reappeared in 1967,
when R. Penrose pointed out that the semi-direct product
structure of the Poincaré group:P4 = SO(3,1)

J
s T4, implies

that the non-homogeneous action of the translation subgroup
T4 has to be handled separately from the homogeneous sub-
group in the spinor representations ofP4. He suggested
that the use of the conformal group leads to a more consis-
tent spinor representation [8]. The resulting spinor structure,
called twistors, is well defined in Minkowski’s space-timeM4,
but it still resists the generalization to curved space-times, so-
lutions of Einstein’s equations.

It should be recalled that a stronger objection to the transla-
tional subgroupT4 existed at that time, stating that in any at-
tempt to combine the Poincaré group with an internal or gauge
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symmetry, all particles belonging to the same spin multiplet
would necessarily have zero squared mass differences. This
is obviously against the experimental evidences. After much
debate it was found that the problem lies within the subgroup
T4, which acts nilpotently over the remaining of the combined
symmetry [10, 11]. As we know today, theadopted solution
of such No-Go problem as it become to be known, resides in
the hypothesis that the combined symmetry is spontaneously
broken by the Higgs mechanism. Nonetheless, in the present
context, it is relevant to stress that if the Poincaré symmetry is
replaced by the deSitter or the anti-deSitter groups, or in fact
by any semi-simple group, then the No-Go problem would be
solved exactly, without supersymmetry, giving an additional
support to Penrose’s argument in favor of the conformal sym-
metry [12, 13].

The next step in the development of the conformal sym-
metry in relativist physics was the invention of the ADS/CFT
correspondence in 1998 [14]. This is in essence a relation be-
tween conform-invariant fields inM4 and the five-dimensional
anti-deSitter gravitational fieldAdS5 [15]. Although the corre-
spondence was established in the realm of M-theory, or more
specifically in the properties of string theory in theAdS5×S5

space, it can be applied to most conform-covariant fields.
To understand the basics of this correspondence, recall that

the four-dimensional anti-deSitter space-timeAdS4 can be de-
scribed as a hypersurface of negative constant curvature iso-
metrically embedded in the flat spaceM5(3,2). By simply
adding one extra space-like dimension, we can easily see that
the five-dimensional negative constant curvature surfaceAdS5
can also be seen as a hypersurface embedded in the flat space
M6(4,2). SinceAdS5 is a maximally symmetric sub-space
of M6(4,2), it follows that any (pseudo) rotation on that sub-
space corresponds to a conformal transformation inM4, in ac-
cordance with the isomorphism

M4
con f ormal⇐= Co ∼ S0(4,2) isometric=⇒ AdS5

where it was emphasized that whileCo acts conformally on
M4, SO(4,2) acts isometrically onAdS5. Therefore, for a
given conformally invariant field defined inM4, there should
be a corresponding isometrically invariant field in the gravita-
tional field of theAdS5 space.

Example 1: Twistors on the Anti-deSitter space
Since twistors are elements of the spinor representation
of the conformal groupCo on M4, the above isomorphism
implies that they can also be seen as the spinor represen-
tations of the groupSO(4,2), here restricted to be the
group of isometries of theAdS5 space [9]. Therefore,
the M4-conformal/AdS5-isometric correspondence defines
twistors in the five-dimensional gravitational field ofAdS5.

Example 2: Gauge Fields on theAdS5
The super-symmetric Yang-Mills gauge fields inAdS5 can

be consistently defined in the heteroticE8×E8 string theory
on the 10-dimensional spaceAdS5×S5. Therefore, using the
ADS/CFT correspondence, in the reverse order we may derive
a superconformal Yang-Mills field inM4, corresponding to the
isometric Yang-Mills field inAdS5. Reciprocally, the super-
conformal Yang-Mills field inM4 corresponds to a quantum
gauge field defined on the gravitational environment of the

AdS5, preserving its main quantum properties, including the
unitarity.

III. THE M6(4,2)-ISOMETRIC/ M4-CONFORMAL
CORRESPONDENCE

The above correspondence should be somehow consistent
with four-dimensional physics and not just theAdS5. This
may be achieved by use of the brane-world theory where, like
in the popular Randall-Sundrum model the spaceAdS5 rep-
resents the bulk. According to this scheme, all gauge fields
are confined to the four-dimensional brane-worlds, but the
geometry of these subspaces propagates along the extra di-
mension. The latter condition requires that all perturbations of
the brane-world geometry should belong to the class of four-
manifolds embedded in the sameAdS5 bulk. In order to see
this we require some basic understanding of the geometry of
subspaces.

For simplicity we consider here only the case of the 4-
dimensional brane-worldV4 embedded in a five dimensional
bulk spaceV5, as given by the embedding mapZA : V4 →V5
(Here the indices A,B,C...run from 1 to 5. The indicesµ,ν...,
run from 1 to 4). Together with the unit normal vectorsηA,
they define a 5-bein{ZA

,α,ηB}, in which the components of
the bulk’s Riemann tensor5RABCD can be expressed in terms
of the brane-world metricgµν and the extrinsic curvaturekµν
as
{ 5RABCDZA

,αZB
,βZC

,γZD
,δ = Rαβγδ−2kα[γkβ]δ (Gauss)

5RABCDZA
,αηBZC

,γZD
,δ = kα[γ;δ] (Codazzi)

These expressions become the Gauss-Codazzi equations when
the Riemannian metric of the bulkGAB is given. In the present
case this geometry comes from the Einstein-Hilbert principle.
Starting from this principle, the dynamics for the embedded
brane-world can be derived from the above equations. Indeed,
from Gauss’ equations we obtain

5RABZA
,µZB

,ν = Rµν −(gαβkµαkνβ−hkµν)

+5RABCDηAZB
,µZC

,νηD

5R = R− (K2−h2)+2 5RABηAηB

where we have denotedK2 = kµνkµν h = gµνkµν. Therefore,
the Einstein-Hilbert action for the bulk decomposes into the
brane-world geometry as
Z

5R
√
−Gd5v≡

Z{
R−(K2−h2)+2 5RABηAηB

}√
−Gd5v

= α∗
Z

L∗√−Gd5v

where we have included the LagrangianL∗ for the confined
matter and gauge fields.

Now, in the cases of constant curvature bulks, like in the
AdS5 case, we have

5RABCD =
Λ∗
6

(GACGBD−GADGBC)
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whereΛ∗ is a bulk cosmological constant. Replacing in the
above equations, and applying to a spherically symmetric
brane-world, it follows that the extrinsic curvature has a par-
ticular formkµν = α0gµν, whereα0 is an integration constant
which cannot be zero, under the penalty of producing just a
trivial (a plane) solutionkµν = 0. Therefore, the Schwarz-
schild’s solution embedded inAdS5 necessarily becomes a
Schwarzschild-deSitter space:

ds2=(1−2m
r

+β2
0r2)−1dr2 + r2dω2− (1−2m

r
+β2

0r2)dt2

whereβ2
0 =(3α2

0−Λ∗). This shows that not all four-manifolds
can be embedded in theAdS5 bulk without imposing a con-
straint in its extrinsic geometry. In particular the Schwarz-
schild black hole cannot fit into theAdS5 bulk.

The above arguments show why the Schwarzschild black
holes were not considered in [2]. On the other hand, it is
not clear to us that extremal black-holes can be defined and
be perturbatively stable in the sense of Nash’s theorem [16]
within theADS5 bulk. In order to reinstate the Schwarzschild
black hole we notice that the spacesAdS5 andM6(4,2) have
the same 15-parameter group of isometriesSO(4,2), such that

all arguments based on the symmetries of theAdS5, can be
extended toM6(4,2). In addition, it can be extended to all
four-dimensional isometrically embedded submanifolds of the
M6(4,2) bulk and not just those which are embedded in its
AdS5 hypersurface with this in mind we propose an exten-
sion of the ADS/CFT correspondence to this larger class of
four-dimensional subspaces of theM6(4,2), provided we may
keep a 1:1 correspondence [17]. A local realization of this
extension can be obtained by use of the inverse functions the-
orem, when the embedding functions are also regular. This
is precisely the condition which required by Nash’s theorem
applied to find differentiable solutions of the Gauss-Codazzi
equations. The combination of theM6(4,2)-isometric/M4-
conformal correspondence with the regular and differentiable
embeddings provides an extended form of conformal to iso-
metric correspondence,whereby a conformally invariant field
in M4 corresponds to field on an isometrically and regular em-
bedded brane-world field inM6(4,2). As it happens,M6(4,2)
is the regular embedding space for the Schwarzschild solu-
tion, so that using such extension the unitarity of the quantum
gauge fields near a Schwarzschild black hole may be imple-
mented.
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