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RESUMO 
 

A teoria do controle ótimo tem sido uma fonte bastante útil de ferramentas para o estudo 
de problemas econômicos. Um campo mais recente do controle ótimo, denominado controle 
robusto, tem sido adotado por alguns economista de renome internacional no estudo de 
problemas econômicos onde há uma preocupação com erros de especificação dos modelos 
utilizados. Neste caso é possível construir modelagens onde é feita a separação entre elementos 
de aversão ao risco e aversão à incerteza (Knightiana) e, a partir deste arcabouço teórico, 
conseguir resolver alguns dos importantes enigmas empíricos de economia e finanças.  
 A maioria dos modelos atuais que levam em consideração esta análise de erros de 
especificação nos modelos considera uma representação unidimensional para o conceito de 
incerteza. Esta tese objetiva em construir uma modelagem para o apreçamento de ativos (e para 
outros problemas econômicos) que seja bidimensional no sentido de permitir a existência de dois 
parâmetros relacionados a intenção do modelador em ter seus resultados como sendo robustos a 
erros de especificação. Cada um dos parâmetros é relacionado a dois conceitos econômicos 
importantes (taxa de desconto e elasticidade de substituição intertemporal) não necessariamente 
em um correspondência biunívoca entre eles.  Esta abordagem permite que sejam explicados 
dois enigmas: excesso de retorno para ativos arriscados (equiti premium puzzle) e enigma da alta 
taxa livre de risco (risk-free rate puzzle).  

O tratamento bidimensional é um passo na tentativa de mostrar a necessidade de uma 
multidimensionalidade na representação da incerteza econômica. Como um produto adicional a 
tese define o conceito de Preço Multifatorial da Incerteza Knightiana (Multifactor Price of Knightian 
Uncertainty –MFPU) que estende um clássico conceito de Preço de Risco de Mercado (Market 
Price of Risk - MPR). 

Estes resultados da tese mostram que um modelo com multidimensionalidade para 
modelos robustos a erros de especificação é um ferramental útil na explicação de anomalias no 
apreçamento de ativos e, em alguns casos, os resultados são melhores do que os obtidos com 
modelos clássicos de finanças.  

Esta tese contribui com a enorme agenda de pesquisa relacionada a intenção de obter 
modelagem robustas a erros de especificações em problemas aplicados à economia e finanças.   
 
ABSTRACT 

Optimal control theory has being a source of useful tools (including Euler equations, z-
transforms, lag operators, Bellman equations, Kalman filtering) to study dynamic economics 
problems. A more recent field of optimal control, namely robust control, has recently been adopted 
by some leading economists (Thomas Sargent, Lars Hansen and coauthors) to study important 
problems in 
economics where there is a concern about model misspecification. With such new feature one can 
disentangle the concepts of risk aversion and (Knightian) uncertainty aversion and get some hope 
to explain famous empirical puzzles. 

The majority of current models that take into consideration the fear of model 
misspecifications work with a single representation for uncertainty. This dissertation aims at 
building a bi—dimensional robust pricing model by allowing for two free parameters related to the 
fear of model misspecification. Both parameters may be linked to the discount rate and to the 
elasticity of intertemporal substitution not necessarily with a bijective mapping. This approach 
allows for a full explanation of the equity premium puzzle and the risk-free rate puzzle. 

This bi-dimensional treatment is a step in trying to show the necessary multidimensionality 
of the representation of economic uncertainty. As a by-product we define a new concept, the 
Multifactor Price of Knightian Uncertainty (MFPU), that extends the classical Market Price of Risk 
(MPR) and Hansen and Sargent’s Market Price of Uncertainty (MPU). 

The main results of the dissertation show that a model with multidimensional 
representation of concern for model misspecification is a valuable tool for explaining asset pricing 
anomalies and, in some cases, it outperforms standard neoclassical financial models.  

This work is just part of the prolegomena of the research agenda of robustness concerns 
in economics and finance and shows some of its potential and weakness. 
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1 Introduction

Optimal control theory has being a source of useful tools (including Euler equa-
tions, z-transforms, lag operators, Bellman equations, Kalman filtering) to study
dynamic economics problems. A more recent field of optimal control, namely
robust control, has recently been adopted by some leading economists (Thomas
Sargent, Lars Hansen and coauthors) to study important problems in economics
where there is a concern about model misspecification. With such new feature
one can disentangle the concepts of risk aversion and (Knightian) uncertainty
aversion and get some hope to explain famous empirical puzzles.
The majority of current models that take into consideration the fear of model

misspecifications work with a single representation for uncertainty. This disser-
tation aims at building a bi—dimensional robust pricing model by allowing for
two free parameters related to the fear of model misspecification. Both para-
meters may be linked to the discount rate and to the elasticity of intertemporal
substitution not necessarily with a bijective mapping. This approach allows for
a full explanation of the equity premium puzzle and the risk-free rate puzzle.
This bi-dimensional treatment is a step in trying to show the necessary multidi-
mensionality of the representation of economic uncertainty. As a by-product we
define a new concept, the Multifactor Price of Knightian Uncertainty (MFPU),
that extends the classical Market Price of Risk (MPR) and Hansen and Sargent’s
Market Price of Uncertainty (MPU).
The main contributions of this dissertation is twofold: (i) introduce a second

parameter to model concern about model uncertainty and analyze what are the
main implications in terms of power to explain puzzles like the risk-free rate
puzzle in addition to the explanation of the equity premium puzzle; (ii) provide
an explicit role for a second economic concept (the elasticity of intertemporal
substitution, EIS) in the framework of uncertainty modelling with a quantifica-
tion of its impact in the value of the fundamentals of asset pricing (mainly the
first two moments of the stochastic discount factor).
One feature of the modelling treated here is that it considered uncertainty in

a bi-dimensional fashion by looking at the very basic primitives of the economy.
This is in contrast to the recent attempt by Hansen and Sargent (2006) which
work with two parameters that model uncertainty but this is done in a two
step procedure: the agent does not know his actual model (first parameter of
uncertainty needed to treat this) and he does not observe part of the state
vector which force him to filter. This filtering problem adds a second parameter
related to uncertainty since they argue that estimation of the unobservable part
is subject to misspecification too. We treat the bi-dimensionality of uncertainty
up front: the malevolent nature acts in diverse ways and this affect the decision
rule of the maximizing controller.1

As a side product the process of including a second parameter forced us to
scrutinize the one-dimensional model and see possible way of improvement and
also some problems with the modelling setup. It is worth stressing that both

1See section 4 on the boost of empirical power for a description for the failure of HSW
model.
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the multi prior approach and the robust control approach are very intellectual
demanding areas of research and any eventual contribution of this dissertation
is likely to be only incremental to the rich paths already set by their intellectual
mentors.
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1.1 Motivation for Modelling Uncertainty

Robust control seems to be a workable formalization of Knightian Uncertainty
and this is a long searched issue by economists.
Before describing the aspects of robust control we briefly mention the three

phases of control theory.
3 Generations of Control Theory

i) Classical Control: Euler equations, z-transforms, lag operators
ii) Modern Control: Bellman equations, Kalman filtering (Dual Prob-

lem)
iii) Robust Control: feedback control, Riccati Equations.

The phases (i) and (ii) were key for development of dynamic theory in eco-
nomics (e.g. for studying rational expectations model). Phase (iii) has promis-
ing avenues in some economic areas.

1.1.1 Frank Knight, X-29, and NYSE: What Do They Have in Com-
mon?

Frank Knight leaded the idea of uncertainty in economic problems (in the Uni-
versity of Chicago and in the 1920’s). He made a distinction of risk and uncer-
tainty. The first is related to variable that are possible to attach a probability
distribution.
By its turn the X-29 is a fine piece of engineering system control that was

made possible by the use of the tools of robust control (it is one of the most
successful aircraft design).
The New York security exchange (NYSE) is the most well known place in

the world for trading stocks. It can be argued that price of asset trades in
an stock exchange bears more than a compensation for risk since it has some
components of uncertainty aversion. The stock pricing is a famous application
of finance theory.
All those three issues are related to the idea of uncertainty: a very complex

and fascinating topic in both engineering and social sciences.

Remark 1 Frank Knight’s (1921) distinction can be stated more formally: Risk
refers to situations where an investor is able to calculate probabilities on the basis
of an objective classification of instances. Uncertainty refers to cases where
no objective classification is possible. This distinction is useless if one work
with subjective probabilities in the sense of Savage (1954), i.e., probability is
simply the degree of belief. Hence investors will be always in Knight’s world
of uncertainty. See Hirshleifer and Riley (1997) pages 9-11 and Mas-Collel et
AL (1996), chapter 6, section 6.F for the definition of subjective probability and
comments about the Ellsberg’s paradox. See also Gilboa and Schmeidler (1989)’s
atemporal Axiomatization approach.
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1.1.2 Representing Uncertainty in Engineering and Other Technical
Fields

The modelling of uncertainty using robust control has been done for more than
two decades in engineering and other technical fields. Much of the research in
this area start by establishing the differences between the various types of un-
certainty. One classification ranks uncertainties as unstructured, and structured
(which includes the parametric uncertainties).

Definition 2 Unstructured uncertainties refers to unmodelled and or nonlinear
dynamics not captured by the model.

Uncertainty as treated in the feedback control theory has two sources:
(i) discrepancy between the physical plant and the mathematical model used

for controller design and
(ii) unmeasured noises and disturbances that impact the physical plant.

Feedback is used to desensitize the control system from the effect of both
types of uncertainty.
Searching ways of coping with uncertainty have been a key motivation for

use of feedback rules in those technical fields. This was also a motivation for
Hansen, Sargent and coauthors. Likewise this dissertatiton will focus on the
robust control related with feedback rules (sometimes the literature interchange
the names robust control and feedback control).
Robust control was not the only branch of optimal control that tries to

model uncertainty. The adaptive control literature is another approach. The
main difference between the two can be stated informally as: robust control
models uncertainty without reducing it, just live with it while adaptive control
explicitly tries to reduce it. That is why some models of uncertainty with
learning (agents using the data to get better future decision rules) is likely to
use adaptive control tools.
Robust control do not rely on a single parameter to represent uncertainty

even though for many multivariable systems the literature works with what is
called a singular value (or SSV which stands for single structured value). Many
references explicitly deals with multidimensional versions of uncertainty. See for
example Malakorn (2003) and Ball (2003).
The Idea of feedback (of the distortion to the relevant state variable) in

modelling uncertainty is attractive because allow a comparison of the actual
result with the desired result and allow control systems to take actions based
on the difference of the two. The use of state feedbacking (feedback rules that
force uncertainty to impact the state variable) allows new controller structures
and efficient design algorithms
Since it is very difficult to capture uncertainty modelers used setup that

permit calculations. One of them is the Linear Quadratic Gaussian framework
(LQG for short). One drawback os this approach is that sometimes the state
space approach delivers a nice design methods but also innocent design problems
that give extremely non-robust systems.
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The tools that are in common use in robust control are: algebraic Riccati
equation, doubling algorithms, matrix sign algorithm, H2 and H∞ criteria, ro-
bustness bound, entropy (sometimes used in the indirect utility function of the
multiplier problem, extremization and minmax solution, certainty equivalent is-
sues. Many of these tools will be used or at least cited in this dissertation. For
example:
i) The solution of a Riccati equation is key for getting the value of the

worst-case distortion (v in our setup).
ii) The use of a doubling algorithm is essential for solving numerically the

equations (involving Riccati-like equations). The matlab code in the Appendix,
which is a copy with slight modification of the code done by Neng E. Wang, use
a function called doublex by HST that is a doubling algorithm.
iii) H2 and H∞ can be interpreted as special cases of the value of η and w

(see the model below).
iv) Entropy was also the metric used to deal with uncertainty by HST and

HSW.
v) Extremization is the problem solved by HST and HSW (they have a

minmax problem). This dissertation work with a slight modification by working
with a minminmax problem.
vi) The use of certainty equivalent is a source of much insight in economics

(as it is in optimal control!). The work by HST and HSW also make strong use
of this tool (with some modifications). This dissertation does not extend this
issue on certainty equivalence beyond what they have done.
One of the main contribution of Hansen and Sargent (1995) to the robust

control literature was to introduce discounting in the model. It turned out that
this was key to the empirical strategy adopted by HST and HST.
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1.2 Modelling Economic Uncertainty: Robustness Prefer-
ence and Multi Prior Approaches

This dissertation will focus on two branches in economics that try model uncer-
tainty. They can be understood as ways of studying non standard preferences
in economics (and finance).
a) The Multi Prior Approach: in this field of knowledge model uncertainty

is formalized in such a way that the decision maker is left with a set of models
over which the decision maker does not put a unique prior.
b) The Robustness Preference Approach: in the words of Thomas Sargent

we have that "...control theorists have altered their formulations to cope with
their distrust of their models. We shall describe probabilistic formulations of
robust control theory, link them to Epstein and Schneider’s work on model
ambiguity, and describe how they can be used to model situations in which
decision makers distrust their models and want decision rules that will work for
a set of models. Robust control theory can be thought of as a practical way to
generate a plausible set of priors. We shall discuss the kinds of behavior
that a concern for robustness leads to." The most famous current application of
robustness are asset pricing (see HST and HSW) and monetary economics (see
Onatsky (2001)).
There is a vivid debate between these two approaches. Eventough they both

try to handle the difficult question of how to model uncertainty their motiva-
tions are quite different and some disagreement come at times. For example
Epstein and Schneider (2003) argues that the type of preferences modeled with
robust concern is not time consistent. Hansen, Sargent, Turmuhumbetova and
Williams (2005) provides a defense of robust control approach regarding the
time consistency issue. They also argue that the type of enlargement of the
ordinary set of priors (considered to be admissible) proposed by Epstein and
Schneider is too large to be useful for robust control modelling.2 For the model
used in this dissertation the introduction of a second uncertainty parameter
is not likely to imply an implausible enlargement of the neighborhood (ball in
topology jargon) represented by a circle. Indeed it may even imply a shrinkage
of the admissible set of priors.
Note that both approaches tries to model preferences (instead of just mod-

elling behavior). This option is more complex and intellectual demanding. The
gains are that preferences provide an unchanging feature of a model such that
agent model can be analyzed in different environment (say different institutions
or polices). Modelling behavior directly will have the drawback of a need to
adjust the model each time we change, say, policy.
Are those modelling just an excuse for using free parameters? No, since they

put greater or novel demands on the data and raise empirical issues that are
relevant.

2The enlargement may bee too much for robust approach purposes even if the duality
between multi prior and robust control is still valid.
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1.2.1 A Single-Parameter Robust Pricing of Uncertainty

In a survey paper Campbell (2000) cites a work by Hansen, Sargent and Tallarini
(1999), henceforth HST, that signals a promising road to explaining empirical
puzzles. HST provides a general equilibrium model to the treatment of investor
behavior that is commonly presented in partial equilibrium models, i.e., it is,
in a sense, an extension and improvement of what the bulk of models such as
behavioral finance attempts (partial equilibrium analysis is indeed one of the
main criticisms to behavioral models). HST deals with the usefulness of robust
control by considering concerns about model misspecification and, by doing this,
looks in a particular way of relaxing neoclassical finance assumptions. Exploring
these concerns is fruitful because other model modifications such as Cambpell
and Cochrane (1999)’s external habit, Constantinides and Duffie (1996)’s market
frictions and Heaton and Lucas (1998)’s transaction costs are only partially
successful in accounting fully for the market price of risk (or market price of
knightian uncertainty to be defined later).
In a recent extension to HST, Hansen, Sargent and Wang (2002), henceforth

HSW, study the contribution of a preference for robustness in the market price
of risk in three different models: the basic HST model and two modified ver-
sions of HST in which agents do not (fully) observe the state vector and hence
must filter. These two versions imply two robust filtering problems. The main
conclusion is that regardless of the selected model the relationship between the
detection error probability (DEP) and the contribution of robustness to the
market price of risk is very strong (even though the value of the parameter
measuring preference for robustness (σ) depends on the model). Moreover a
preference for robustness corresponding to a plausible value of the DEP (small
values) leads to a substantial increase in the market price of risk.
In order to understand DEP consider a simple problem of statistical dis-

crimination: from historical data make a pairwise choice between two mod-
els: approximate model and worst-case model. This can be reformulated as
a Bayesian decision problem. Accordingly to the selected model two types of
errors are possible: the resulting DEP quantifies the statistical discrimination.
For some values of σ the worst-case model is hard to detect statistically given
the approximating model. In a parallel to rational expectations intuition, the
decision maker want to be protected against some misspecified models: those
that could not have been ascertained easily given historical data. This mean
that factor risk prices brings model uncertainty premia in the model of robust
decision making with these factor prices being largest precisely when, under
the approximating model, investors are most unsure of the hidden state. Hence
there is a strong relationship between ambiguity (encoded in state probabilities)
and model uncertainty (reflected in local factor prices). (for further details see
Cagetti et AL (2002)).
HSW conceals elements of the state from the planner and the agents, i.e.,

there is hidden state, forcing them to filter. Then the modeler needs to work
jointly with robust filtering and control. In order to compute the appropriate
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market prices of Knightian uncertainty the DEP are used to discipline (con-
strain) the single free parameter that robust decision making adds to the stan-
dard rational expectations paradigm, i.e., that governs the taste for robustness.
HST reinterpret Epstein-Zin (1989) recursions as reflecting a preference for

robustness instead of aversion to risk. Moreover it shows that in a class of sto-
chastic growth models the consequences of either a preference for robustness
(robust control problem) or a risk-sensitive adjustment to preferences (recursive
risk-sensitive control problem) are difficult to detect in the behavior of quantity
data they use: consumption (C) and investment (I). The reason is that altering
a preference for robustness has effects on quantities (C, I) identical to changes in
the discount factor (β), i.e., a robust decision maker with a lower discount factor
would use the same optimal decision rules for (C,I). This is called the observa-
tional equivalence for quantities (C,I). One consequence is that alterations in
the parameter measuring preference for robustness (σ, also called the robustness
penalty parameter) can be offset by a change in the subjective discount factor
(β). Hence, the vector (C, I) is unchanged. The main implication concerning
asset pricing is that this observational equivalence result does not extend to
equilibrium asset prices (and specially the market prices of risk). That is why
HST and HSW are able to use this observational equivalence result to study the
equity premium puzzle (robust decision-making induces a behavior similar to
the one produced by risk aversion; preference for robustness can be interpreted
as aversion to Knightian uncertainty). (The equity premium puzzle is the puz-
zle of the large gap between expected returns on stocks and government bonds.
See Mehra and Prescott (1985). We will stress the interpretation of this puzzle
given by Hansen and Jaganathan (1991)).
Hence they can calculate how much preference for robustness is necessary

for market prices of risk to match the empirical findings, i.e., how much model
misspecification the decision maker should fear given his historical data record.
In sum: by applying single-agent robust decision theory to representative

agent pricing models, HST and HSW show that for a discrete-time linear quadratic
permanent income model when robustness is taken into consideration the im-
pact of precautionary savings should enter the macroeconomic calibration of
parameters. Specifically decreasing the robustness parameter (σ) leads to an
increase in the robust precautionary motive and increase the average level of
capital. This could also be attained by lowering the discount factor (β), i.e., a
more patient decision maker will hold more capital. The extra precautionary
motive due to robustness is fully offset by increasing β.
Some branches of the modern finance literature has been prone to criticism

due to lack of model discipline. For example a severe criticism about Behavioral
Finance literature is that they are a bunch of psychological bias looking for a
theory. Behavioral finance models assume specific types of psychological bias
such as overreaction to new events, underreaction to other events, diverse types
of heuristic, etc. Fama (1998) argues that there too much ad hoc assumption
in the model.
The solution presented by robust control is to consider a particular type of

model misspecification. So it is arguable that is not the case that any misspec-
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ification goes. One needs to look for intuitive and reasonable types of model
uncertainties and ideally attach an economic intuition to such misspecification.
Anderson, Hansen and Sargent (2000) extends HST to include more general

misspecification errors. They are justified based on specification test statistics.
The econometrician can get at least implicitly a penumbra of alternative spec-
ifications that are statistically close to the preferred specification. Hence, it is
argued that such specifications doubts can be infused into the economy agents.
The robust control approach imply a departure from standard expected-

utility (Von Neuman-Mongestern) results:
(i) Rational expectations models assume that agents know the model and

are not concerned about specification errors. It attributes a common model to
the econometrician and the agents within the model: they can have different
information sets but agree about the stochastic processes that drives the model.
Also agents make unbiased forecast of the future.
(ii) Robust control assumes that the agent is concerned about some endoge-

nous worst-case possibility that differs from the result of the reference model
due to (preference) parameter misspecification. We look for reasonable values
for this parameter which is a measure of the strength of the preference for ro-
bustness. Coherently the agent tries to hedge against this worst-case possibility.
The idea of uncertainty aversion as interpreted by robust control literature

is a possible solution for the equity premium puzzle since robustness (or uncer-
tainty aversion) strongly reduces the demand for risky assets. The way to ex-
plain the equity premium puzzle with the idea of robustness is by making agents
concerned about model uncertainty (besides the ordinary concern about market
risk) when making decision about optimal dynamic portfolio and consumption.
Or in other words: uncertainty aversion adds to the traditionally considered risk
aversion. Coherently the desirable decision rule should be twofold:
(i) provide a good result when the state variables that were modeled corre-

spond exactly to reality (no model misspecification)
(ii) provide a good approximation when there are some particular types of

model misspecification about the state variables.
Robustness can help explain some other asset pricing puzzles that have

been reported by the financial literature by improving on the neoclassical treat-
ment to better match theory and stylized facts. The main point here is to show
that factor risk prices have components that can be interpreted as factor prices
of model uncertainty. Hence the risk premium that is claimed to appear in secu-
rity market data may be partially explained by model misspecification premium
(ou uncertainty premium)
We can interpret robustness (to parameter uncertainty) as increasing risk-

aversion without changing the preference for intertemporal substitution. In an
environment where you can separate the coefficient of risk aversion from the
elasticity of intertemporal substitution like those worked by Epstein and Zin
(1989, 1990) and Tallarini (1996, 2000) it is possible to get some resolution of
both the equity premium and risk-free rate puzzle. We argue that is done by
arbitrarily set the elasticity of intertemporal substitution (EIS) equals to one.
In this paper we try to see how a variable EIS will affect the resolutions of both
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puzzles.
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1.2.2 Potential Improvements to HST/HSW

Although the research agenda set forth by HST and HSW is impressive there
are some points that can be thought as a priori improvement to those models
(Sargent, Hansen and coauthors have themselves addressed some of the topics
listed below). The focus of this dissertation is on the treatment of an additional
parameter that represents concern for robustness. This is not included in the
topics below and is developed in the next section.
(i) The models are done for single-agent decision problems. If multiple

agents want robustness then HST or HSW are not suitable models. In this
case we need a new equilibrium concept to replace rational expectations (in-
stead of using a natural extension of rational expectations as HST and HSW
do) where agents have different preferences for robustness. Making decision-
makers heterogeneous should provide new insights about the role of robust-
ness for decision-making. Chapter 16 of Hansen and Sargent (2007) tackles this
topic.
(ii) Allowing for robustness repair only some of the deficiencies that bench-

mark stochastic growth models have. One needs a richer transient dynamics
and multiple sectors and consumers to produce models that deliver better
empirical findings. A rich learning dynamics may result in quantitatively
important asymmetries in uncertainty premia in expansions and recessions.
(iii) Nonlinear-quadratic Gaussian (NLQG) control problem-framework

may be less restrictive and more suitable in some situations than linear-quadratic
Gaussian (LQG) set up. See chapter 17 of Hansen and Sargent (2007). Robust
decision rules and prices can be computed for economies with more general
return and transition functions (with a representative agent who prefers
a robust rule). It is also possible to generalize to a continuos-time setting
with manageable generalizations of Bellman (and Ricatti) equations and the
correspondent asset pricing equations associated with a rational expectations
model. See AHS (2003).
(iv) HST consider a limited array of specification errors. It takes the

form of shifts in the conditional means of shocks that would be i.i.d.
and normally distributed under the approximating model. This can be general-
ized to Markov diffusion problems. See chapter 17 of Hansen and Sargent
(2007). Specification test statistics can be used to substantiate the form of
specification errors used.
(v) There is no learning. The robust decision maker fully accepts model

misspecification as a permanent state of affairs and design robust controls. The
data is not used to improve his model specification over time. One has to bear
this in mind since learning is the next logical step n decision making modelling
under uncertainty.
(vi) Misspecifications are small in a statistical sense and the way decision-

makers select an approximating model is merely an extension of rational expec-
tations models.
(vii) Linking of premia in asset prices from Knightian uncertainty to detec-

tion error statistics for discriminating between models may be a desired
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feature.
(viii) The effects of concern about robustness are likely to be particularly im-

portant in economies with large shocks that occur infrequently (rare events).
Hence, it is promising to model robustness in the presence of jump compo-
nents. See Liu, Uppal and Wang (2005).

20



1.3 Related Literature

Incomplete (please skip the reading of this section)

1.3.1 Bansal and Yaron (2004)

1.3.2 Pathak (2002)

1.3.3 Maenhout (2004)

1.3.4 Maenhout (2006)

1.3.5 Uppal and Wang (2003)

1.3.6 Liu, Uppal and Wang (2005)

1.3.7 Kogan, Leonid and Wang (2002)

1.3.8 Tornell (2001)

Robust-H∞ Forecasting and Asset Pricing Anomalies. UCLA working paper.
Mimeo.

1.3.9 Trojani and Vanini (2002)

1.3.10 Skiadas (2003)

1.3.11 Vardas and Xepapadeas (2004)

1.3.12 Abel (2002)

21



2 Robust Control (Hansen & Sargent) and Risk-
Sensitive Control (Epstein & Zin) Methods
for Modelling Uncertainty

In this section we describe two approaches for modelling economic uncertainty.
Before we briefly describe the economy using state space methods.

2.1 State Space Description

The state transition equation is

xt+1 = Axt +Bit + Cwt+1

Where xt is the Markov state vector, it is the control vector and wt+1 is an
i.i.d. Gaussian random vector with Ewt+1 = 0, and Ewt+1w

0
t+1 = I.

The one-period (quadratic) return function is:

u(i, x) = −i0Qi− x0Rx

with Q being a positive definite matrix and R being a positive semidefinite
matrix.

2.2 Risk-Sensitive Control Problem (Epstein, Zin, and Coau-
thors)

Use of a recursive non-expected utility similar to that used by Kreps and Porteus
(1978), Epstein and Zin (1989), Weil (1990) and Tallarini (2000):

Vt =W (ct, μ(Vt+1))

μ(Vt+1) = f−1{Et[f(Vt+1)]}

f(z) =

½
z1−γ , if 0 < γ 6= 1
log z, if γ = 1

Where V (.) is the value function, W (.) represents an aggregator function,
μ(.) represents a certainty equivalent (or mean value) function, f(.) is a (power)
utility function that describes the atemporal risk attitudes, and γ can be inter-
pretted as a coefficient of relative risk aversion.3

The most common used aggregator is the CES aggregator, i.e.:

W (c, μ) = [(1− β)c1−ρ + βμ1−ρ]
1

1−ρ , for 0 < ρ 6= 1 or

3The coefficient γ will be compared to the standard Arrow-Pratt measure or risk aversion
in section XXXX.
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lim
ρ−→1

W (c, μ) = c1−βμβ

Where 1
ρ > 0 is the Elasticity of intertemporal substitution (EIS) and β is

the discount factor. Note that when we have ρ = γ we get the canonical case of
additive expected power utility.

Lemma 3 When ρ = 1 we get log preferences under certainty, i.e., W (c,W
0

) =
c1−βμβ where W

0

means next period value for W .
Proof. Straightfoward.

Definition 4 A power certainty equivalent function is of the form μ(V ) =

[E(V α)]
1
α .

Using a power certainty equivalent function we get a recursive utility under
uncertainty:

Vt = c1−βt

n
Et(V

1−γ
t+1 )

1
1−γ
oβ

Or

log Vt = (1− β) log ct +
β

1− γ
logEt(V

1−γ
t+1 )

Or
log Vt
(1− β)

= log ct +
β

(1− β)(1− γ)
logEt(V

1−γ
t+1 )

Define Ut ≡ log Vt
(1−β) which implies that V

1−γ
t = exp[(1− β)(1− γ)Ut]

Then we can rewrite the above equation as:

Ut = log ct +
β

(1− β)(1− γ)
logEt {exp[(1− β)(1− γ)Ut+1]}

This is the formulation of risk sensitive recursion of Hansen and Sargent
(1995). If we define, as Tallarini (2000) did, the coefficient of risk-sensitivity σ
as σ = 2(1− β)(1− γ) we will get the following formulation:

Ut = log ct + β
2

σ
logEt

n
exp[

σ

2
Ut+1]

o

Then we can represent the recursion to induce intertemporal preferences as:

Ut = u(it, xt) + β<t(Ut+1)

where we define the operator <t(Ut+1) ≡ 2
σ logEt

©
exp[σ2Ut+1]

ª
.

Since we are in a LQG setup, Hansen and Sargent (1995), Whittle (1989)
and Jacobson (1973) allow us to write the above value function as:

U = x0tΩxt + κ
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with the decision rule given by:

it = −Fxt
for a feedback rule F solved in the robust control literature (for getting the
solution one need to solve a canonical Riccati equation).
Derived expression for the negative semidefinite matrix Ω is:

Ω = A∗0
£
Ω+ σΩC(I − σC 0ΩC)−1C 0Ω

¤
A∗

where A∗ = A−BF.
There is also a derived expression for the nonpositive real number κ but is

not of our main concern in this work.

Remark 5 The name risk sensitivity may sound inappropriate at a first reading
since a concept with that role should treat the third derivative of the utility
function (u000) as was done by Kimball (1990) which defined a new concept called
prudence to measure this features. As a matter of fact the concept is famous in
the optimal control literature (see Whittle (1990)) and goes back to the seventies.
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2.3 Robust Control Problem (Hansen, Sargent and Coau-
thors)

The distorted law of motion for the state vector can be written as

xt+1 = Axt +Bit + C(wt+1 + vt)

where the term vt is the conditional mean distortion to the innovation wt+1.
The way vt enters the above law of motion is crucial for our work.
The minimizing player (nature) choose a state feedback rule for vt to mini-

mize utility subject to:

(
bEt

X
βjvt+j · vt+j ≤ ϑt

ϑt+1 = β−1(ϑt − vt · vt)

where bEt is a conditional distorted expectation operator, ϑ0 is given and ϑt
indexes the pessimism, i.e., it is a continuation pessimism bound at date t. We
associate a constant Lagrange multiplier θ ≡ −σ−1 > 0 to the constraint above.

The game to be solved is an extremization:4

W (x) = inf
v
sup
i

½
−i0Qi− x0Rx+ β

∙
− 1
σ
v0v +EW (Axt +Bit + C(wt+1 + vt))

¸¾

The solution for the minimization problem gives us:

vt =
£
σ(I − σC0ΩC)−1C 0ΩA∗

¤
xt = κxt

Given that the solution for the control variable i is the same with and without
the concern for robustness HST and HSW called this a modified version of
certainty equivalence. In other words i = −Fx is independent of the covariance
matrix C.

Remark 6 By virtue of the Lagrange multiplier theorem, HST and Hansen
and Sargent (2007) shows that there is a duality between the solution to the
risk sensitive control problem and the solution to the robust control problem
when we define θ ≡ −σ−1, a very simple relation between the parameters that
represent uncertainty in each approach, and for mild conditions: σ needs to
obey: σ < σ < 0, for some breakdown point σ, or equivalently θ< θ <∞. This
condition is easily satisfied for the empirical relevant range of model parameter
values used by HST and HSW).

4There is also consideration of nature as benevolent agent such that the existence of this
second controller will imply a maxmax problem to be solved instead of a maxmin setup as
HST and HSW use. See Resende (2006) and Schneider and XXXX (1999).
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Remark 7 At this point is worth comments on some of the features of the ma-
trix κ: i) it is not necessarily symmetric, ii) it can be sparse. If the eigenvalues
of κ are not close to zero than the solution to the equation is stable. These is-
sues are not a main concern in this dissertation (since our model is simple and
well-posed when compared to the complex ones treated in the robust and optimal
control literature). For more on stability and performance of feedback systems
see Hansen and Sargent (2007) and chapters 4, 5, and 6 of Zhou, Glover and
Doyle (1998).

Remark 8 For our purpose a weak concept of absolute continuity is used.
Here it means that over finite intervals two models are difficult to distinguish
given samples of finite length. In the standard notion we have that two stochastic
processes are considered absolutely continuous with respect to each other if they
agree about ,as the specialized literature points out, “tail events”. The concept
that is being used here requires that the two probability measures being compared
both put positive probability on all of the same events, except tail events. See
HSTW for a continuos-time treatment of this issue.
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2.4 Econometric Specification Analysis x Robust Decision

Making

At this point it is worth mention the main difference between the standard
econometric specification and the robust control approach. We use two figures
of Hansen and Sargent (2007) to describe them.
For the econometric specification assume that the data generating process

(DGP) is f, and that the econometrician fits a parametric class of models fα ∈ A
to the data with f /∈ A. Estimation by maximum likelihood of parameter α may
select the misspecified model fα0 that is closest to f as measured by entropy
I(f).

For the robust control approach we assume that a decision maker with the
approximating model fα0 suspects that the DGP is actually generated by the
unknown model f , such that I(α0, f) ≤ η .

Figure XX: Source Hansen and Sargent (2007).

Figure XX: Source Hansen and Sargent (2007).
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2.5 Permanent Income Growth Model

We need some structure on the data (C,I) for consumption and investment in
order to proceed with the estimation of the parameter σ ≡ −θ−1. Let’s assume
that the utility index is defined by the following equations:

Ut = −(st − bt)
2 + β<(Ut+1)

st = (1 + λ)ct − λht−1 (2βtμst)

ht = δhht−1 + (1− δh)ct (2βtμht)

where s stands for service consumption and h for (internal) habit (since we
are considering a representative agent model).
The production technology is given by

ct + it = εkt−1 + dt

kt = δkkt−1 + it

By eliminating i we have

ct + kt = (ε+ δk)kt−1 + dt = Rkt−1 + dt (2βtμct)

Note that the risk free rate R = ε+ δk was unambiguously pinned down by
the production technology. Also note that in three of the above equations we
listed in parenthesis the Lagrange multipliers μst, μht and μct for the appropriate
equations (multiplied by 2β for mathematical convenience).
HST argued that the solution of the model is established by an observational

equivalence for the quantity observations, the consumption (c) and investment
(i). They proceed in two steps: (i) compute the solution for the permanent
income economy without concern for robustness, using σ = 0 and β = 1. (ii)
Use the allocation (c,i) for this benchmark economy to construct an equivalent
class of alternative pairs (σ, β) that generate the same allocation, considering
all other parameters of the economy to be fixed. This imply a non identification
of pair (σ, β) from knowledge of (c,i).
From standard calculus of first-order conditions we get a martingale repre-

sentation for the Lagrange multiplier for service consumption, i.e.,

μst = μst−1 +
√0

wt

It is straightforward to show that this martingale representation extends to
μht and μct. Moreover there a possible way of writing as an additive function
of key model elements (bt+j , dt+j,ht−1, kt−1). Without loss of generality we can
assume bt = μb, i.e., we have a fixed bliss point.
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2.6 Relation between β and σ

To compute the relation between β and σ we need to first note that μst = st−bt.
We have that:

Ωx2 = −x2 + βmin
v

∙
− 1
σ
v2 +Ω(x+ αv)2

¸

and write μst = μst−1 + α(v + w), with α2 =
√0√

Solving the above problem let us with

Ω = Ω(β) =
(β − 1 + σα2) +

p
(β − 1 + σα2)2 + 4σα2

−2σα2
Where this come from a solution (Baskara formulation) of a quadratic equa-

tion with coefficients given by
¡
−σα2, β − 1 + σα2, 1

¢
. Now we are ready to

compute the distorted expectation operator:

bEtμst+1 = ζμst

with

bζ = bζ(β) = 1

1− σα2Ω(β)
= 1 +

σα2Ω(β)

1− σα2Ω(β)

Note that for σ 6= 0⇒ bζ(β) 6= 1.
Given the martingale representation for consumption we also have:

bEtμct+1 = ζμct

This give us an Euler Equation for consumption. Now take bβRbζ(bβ) = 1.
Then we have

bβR bEtμct+1 = μct

To find an explicit equation for bβ work with the quadratic forms to obtain:

bβ = 1

R
+

α2

R− 1σ

which shows that β and σ are related in a very simple mapping!

Remark 9 The value for σ can be find by calculating the lowest value for σ
such that the quadratic equation above has a real solution. Just work with the
discriminant of the equation (∆) with the triple

¡
−σα2, β − 1 + σα2, 1

¢
.

Remark 10 It is possible to interpret
√
in another way:

√
= MsC, where C

is the volatility matrix of the state vector equation and Ms is the marginal utility
of consumption services. The equivalence hinges on the fact that μst = Msxt,
i.e., we can take μst as the state vector and solve for it.
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2.7 Bivariate Stochastic Endowment Process and Para-
meter Values

In order to proceed HST and HSW took a very workable formulation for the
endowment process.

⎧
⎨
⎩

dt = μd + d1t+1 + d2t+1
d1t+1 = g1d

1
t + g2d

1
t−1 + c1w

1
t+1 = (φ1 + φ2)d

1
t − φ1φ2d

1
t−1 + c1w

1
t+1

d2t+1 = a1d
2
t + a2d

2
t−1 + c1w

2
t+1 = (α1 + α2)d

2
t + α1α2d

2
t−1 + c1w

2
t+1

Hence the law of motion for the state variable can be written as:

xt+1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

ht
kt
dt
1

dt+1
d1t+1
d1t

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

δh (1− δh)γ 0 0 (1− δh) 0 0
0 δk 0 0 0 0 0
0 0 0 0 1 0 0
0 0 0 1 0 0 0
0 0 a2 μd(1− a1 − a2) a1 g1 − a1 g2 − a2
0 0 0 0 0 g1 g2
0 0 0 0 0 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

·

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

ht−1
kt−1
dt−1
1
dt
d1t
d1t−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−(1− δh)
1
0
0
0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

it +

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0
0 0
0 0
0 0
c1 c2
c1 0
0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

·

∙
w1t+1
w2t+1

¸

The parameters value that HST and HSW worked with were:⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

β0 = 0.9971⇒ R = 1, 025 or an interest rate of 2,5%
δh = 0.6817
λ = 2.443
α1 = 0.8131
α2 = 0.1888
φ1 = 0.9978
φ2 = 0.7044
μd = 13.7099
c1 = 0.1084
c2 = 0.1551

Four values for μb = {18, 24, 30, 36}
Three values for σ = {0.25, 0.50, 0.75} · 10−4

30



2.8 Relevant Asset Pricing Relations

In this section we stressed the key relations for asset pricing implication of
the model at hand.
If we denote by qt the asset price of a unit vector of consumption good in

period t than the relevant Euler equation will give us the fundamental relation
about pricing:

qt(x
t | xo) = βt u0(ct(x

t))

e1 · u0(c0(x0))
f (t)(xt | xo)

where xt represents the history, ct(x
t) represents a history-dependent state-

contingent consumption process, e1 is a selector vector that pulls off the first
consumption good (we take the time-zero value of it as a numeraire) and f(xt+1 |
xt) represents the transition density. Note that qt is also known as the pricing
kernel.
If we assume that consumption is not history-dependent than we will obtain

the following t-step pricing kernel:

qt(xt | xo) = βt u0(ct(xt))

e1 · u0(c0(x0))
ft(xt | xo)

Let’s represent by {y(xt)}
∞
t=0 the stream of payoffs that the owner of the

asset has the right to receive.
Then the time-0 price of the asset is

a0 =
∞X

t=0

Z

xt

qt(xt | xo) · y(xt)dxt

Which can be also written as

a0 = E0

∞X

t=0

βtpc(xt) · y(xt)dxt

Where pc(xt) =
u0(ct(xt))

e1·u0(c0(x0))
is the (scaled) Arrow-Debreu state price. The

term βtpc(xt) has a special denomination and we definite below.

Definition 11 The t-period stochastic discount factor (SDF) is defined asm0,t =

βtpc(xt), where pc(xt) =
u0(ct(xt))

e1·u0(c0(x0))
is the appropriate Arrow-Debreu state price.

Hence we can write the price of the asset as:

a0 = E0

∞X

t=0

m0,t · y(xt)dxt

For the setup that we are working with (linear-quadratic Gaussian general
equilibrium models, i.e. LQG-GE) one can obtain explicit and closed-form so-
lutions for pricing (as stated below).
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2.8.1 Asset Pricing with Robustness Concerns

Given the above structure and suppose that the distorted model is governed by
the distorted transition density bft(xt | xo) .
In this case the time-0 price of the asset is represented by:

a0 =
∞X

t=0

Z

xt

βtpc(xt) · y(xt)bft(xt | xo)dxt

which can be written using the distorted expectation operator as:

a0 = bE0
∞X

t=0

βtpc(xt) · y(xt)

It is common to work with the above formulation and include the concept
of likelihood ratio (or the Radon-Nykodin derivative) in the following way:

a0 =
∞X

t=0

Z

xt

βtpc(xt)
bft(xt | xo)
ft(xt | xo)

· y(xt)ft(xt | xo)dxt

or using the (non-distorted) expectation operator:

a0 = E0

∞X

t=0

βtpc(xt)
bft(xt | xo)
ft(xt | xo)

· y(xt)

Hence we obtained a modified SDF of the form defined below:

Definition 12 The modified stochastic discount factor is a multiplicative ad-

justment to the ordinary SDF using the likelihood ratio Lt =
bft(xt|xo)
ft(xt|xo)

, i.e., it is

given by m0,t

h bft(xt|xo)
ft(xt|xo)

i
.

Note that this representation was made possible by virtue of the LQG frame-
work. Given the properties of the normal-exponential integrals it is straightfor-
ward to show that:

Lemma 13 The likelihood ratio is given by

Lt =
bft(xt|xo)
ft(xt|xo)

= exp

(
tX£

wsvs − 1
2v
0
svs
¤

s=1

)

where s is the appropriate time index.

Proof. We have that f(x) = (2π)−1/2 exp
n
−x2

2

o
. Then

bft(xt|xo)
ft(xt|xo)

=
(2πC)−1/2 exp

n
− v2

2 −w2

2 +vw
o

(2πC)−1/2 exp
n
−w2

2

o = exp
n
−v2

2 − w2

2 + vw + w2

2

o

= exp
n
−v2

2 + vw
o
.
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Remark 14 The appearance of the likelihood ratio above is the same as the
one used to define entropy (for our purposes) and to describe the detection error
probabilities (DEP) as stated below.
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2.9 Market Price of Risk (MPR)

Now we will specialize our laboratory economy (the permanent income model
with habit) to have a scalar consumption process and a scalar random payoff
yt.
When there is no concern about robustness the asset price is given by

at = Etmt,t+1yt+1

This can be reworked by applying the definition of conditional covariance
and by a direct application of the Cauchy-Schwartz inequality delivering the
following expression:

µ
at

Etmt,t+1

¶
≥ Etyt+1 −

µ
stdt(mt,t+1)

Etmt,t+1

¶
stdt(yt+1)

The left side shows the ratio of the price of a claim to payoff yt+1 to the
price of a riskless claim to one unit of consumption next period. Along the
efficient-frontier, the price of risk can be defined in the following way:

Definition 15 The market price of risk (MPR) is represented by
³
stdt(mt,t+1)
Etmt,t+1

´

and provides an estimate of the rate at which the price of an asset decreases with
an increase in the conditional standard deviation of its payoff (stdt(yt+1)). This
ratio encodes information about the degree of aversion to risk the consumers
display at the equilibrium consumption process.

The bound above was studied by Hansen and Jaganhatan (1991) and are at-
tained by payoffs on the efficient frontier (in the space (Et(mt,t+1), stdt(mt,t+1)),
i.e., the inequality become an equality for payoffs yt+1 on the conditional mean-
standard deviation frontier. Another way to express this bound is: |E[τ ]|

std(τ) ≤
stdt(mt,t+1)
Etmt,t+1

, for an excess return τ , where the left term can be easily related to

the famous Sharpe ratio.

Remark 16 Optimal Portfolio and Merton’s Rule can be linked to the above theory.

Usually the model can nests the special cases of the static CAPM and the intertemporal

CAPM of Merton (1976). This is also true for the Consumption-CAPM. See Maenhout

(2004 and 2006), Koogan and Wang (2003), Liu, Pan and Wang (2005), Uppal and

Wang (2003) and Skiadas (2003).
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2.10 Empirical Puzzles of Interest and the Market Price

of Uncertainty (MPU)

Some studies have estimated the MPR from data on the pair (at, yt+1) . For
post WWII quarterly data in the U.S. the result was something around 0.25.
Barrilas, Hansen and Sargent (2006) found 0.2550 while Tallarini (2000) found
0.2525.
The characterization of the Equity Premium puzzle by Hansen and Ja-

ganathan (1991) is that data on asset market prices and returns imply a MPR
too high to be reconciled with many particular (specialized) models of the SDF
mt,t+1. The reason is that most of the theories make stdt(mt,t+1) too small.
Bellow we discuss some possible theories for the SDF.
a) Shiller (1981) considered mt,t+1 = β = constant. This implies that

stdt(mt,t+1) = 0.

b) Lucas (1973) and Breeden (1979) considered mt,t+1 = mf
t,t+1 = β u0(ct+1)

u0(ct)

with u(.) been a CRRA one-period utility function with power γ for the as-

sumed representative consumer. This implies stdt(mt,t+1) = β
³

ct
ct+1

´γ
which is

small given the empirically reasonable value for γ evaluated at aggregate U.S.
consumption growth rates. This happens because aggregate consumption is a
smooth series. Hence one needs γ to be huge for the MPR to get close to the
empirical value of 0.25.
The work by HST and HST (and the diversity of papers related to pricing

with robustness concern) deals with a multiplicative adjustment to SDF namely:

mt,t+1 = mf
t,t+1m

u
t,t+1

where the superscripts f and u stand for familiar (ordinary) and unfamiliar
(or uncertain) part of the SDF, respectively. This is the key expression for our
concern with bi-dimensionality representation of uncertainty and with a plain
role of the idea of elasticity of substitution (all of this worked in a friendly Linear
Quadratic Gaussian-LQG framework).

Definition 17 (due to HST) The one-period market price of Knightian uncer-
tainty (MPU) is the standard deviation of the multiplicative adjustment, i.e.,
stdt(m

u
t,t+1).

When we have concern about robustness the asset price is given by

at = Et

³
mf

t,t+1m
u
t,t+1

´
yt+1

where we omitted the summation because we are dealing with a single period
and omitted the inner product because consumption and payoff are scalars.
Moreover

mu
t,t+1 = exp

½
−v0v

2
+ w0v

¾
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by construction (see next section) we have that Et

¡
mu

t,t+1

¢
= 1. Than HST

computed that

MPR =
stdt(mt,t+1)

Et [mt,t+1]
=

r
Et

h¡
mu

t,t+1

¢2i−
¡
Et

£
mu

t,t+1

¤¢2

Et

£
mu

t,t+1

¤ =

q
exp(v0v)− (1)2

1
=
p
exp(v0v)− 1

Note that in the above derivation it was needed to assume that mf
t,t+1 =

β u0(ct+1)
u0(ct)

is constant such that

MPR =
stdt(mt,t+1)
Et[mt,t+1]

=MPR =
stdt(m

f
t,t+1m

u
t,t+1)

Et[mf
t,t+1m

u
t,t+1]

=
mf
t,t+1stdt(m

f
t,t+1m

u
t,t+1)

mf
t,t+1Et[mu

t,t+1]
=

stdt(m
f
t,t+1m

u
t,t+1)

Et[mu
t,t+1]

Remark 18 The result MPR =
stdt(mt,t+1)
Et[mt,t+1]

=
p
exp(v0v)− 1 is an upper

bound on the enhancement of the SDF due to consideration of robustness. Ide-
ally the formula will explicit the term correlation(mf

t,t+1,m
u
t,t+1) in the formula

for MPR.

This result within the robust control framework has a counterpart in the
risk sensitive control problem with the SDF also being suitably decomposed in
two factor: the standard (familiar) mf

t,t+1 and the adjustment due to the risk
sensitive parameter mr

t,t+1.

mt,t+1 = mf
t,t+1m

r
t,t+1

Note that although mr
t,t+1 = mu

t,t+1 for the two frameworks to deliver the
same asset pricing implications the economic intuition are strikingly different.
The justification for mf

t,t+1 is that agent (maximizing controller) fears misspec-
ifications of the model he is working with. By its turn mu

t,t+1 is justified in the
ground that the preferences are adjusted to be recursive with a parameter σ
driving the twist in preferences.
The equation for mr

t,t+1 is

mr
t,t+1 =

exp(σ2Ut+1)

Et

£
exp(σ2Ut+1)

¤

Note that this is just an "exponential tilting" in the SDF.

Remark 19 The effect of the multiplicative adjustment mu
t,t+j increases with

time. HSW calculated the values for the MPR for up to four periods (i.e., for
j = 1, 2, 3, 4). The equation for mu

t,t+4, for example, is straightforward.

A simple way of stating the two relevant puzzles for the purposes of this dis-
sertation is to look at the space (E(m), std(m)). See Tallarini (1996 and 2000)
and Barrilas, Hansen and Sargent (2006). Below the figure XXX gives a good
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Figure 1:

illustration of what are the important features. The arrows for the three situa-
tions (expected utility, Epstein-Zin with fixed EIS and Epstein-Zin with variable
EIS) points to the path obtained when the coefficient of risk aversion is increas-
ing. Success in the solution of the puzzles is declared if the pair (E(m), std(m))
is set within the parabola representing the Hansen-Jaganathan bound.
a) For the solution of the Equity Premium puzzle (EPP) it is necessary to

increase MPR =
stdt(mt,t+1)
Et[mt,t+1]

which can be done by increasing the numerator

stdt(mt,t+1) and or decreasing the denominator Et [mt,t+1]. Note that the MPR
is just the slope of a line drawn in the space (E(m), std(m)).
b) For the solution of the risk free rate puzzle (RFRP) it is necessary to

increase (or at least to maintain constant) the value of Et [mt,t+1] since r
f =

1
Et[mt,t+1]

.

The model using expected utility solves EPP but not the RFRP. The model
using Epstein-Zin preferences with an ad hoc value for EIS (set at 1) solves the
EPP but not the RFRP (though the value for rf obtained was not too far from
the reasonable value of 0.78%). Finally the model that we propose (Epstein-Zin
with variable EIS) is able to both increase the MPR and consequently solving the
EPP and decreasing the rf by increasing the denominator Et [mt,t+1]. Note that
the slope of the line is much bigger than one (for the MPR to really increase),
i.e., we need a bigger increase in the denominator than the increase in the
numerator.
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2.11 The Use of Martingales to Represent PerturbedMod-
els (in a Nutshell)

Martingales are useful tools for the characterization of distorted (alternative)
probability models. For easiness of exposition we will work with the very basic
concepts of martingale theory. See Duffie (2002) and Hansen (2005).

Definition 20 For a probability space (Ω,=, P ) with a finite number of events
(finite set Ω) and for a nonnegative random variable Y with E(Y)=1, we can
create a new probability measure Q by defining Q(B) = E(1BY ) for any event
B and for 1B representing the indicator function. Then we can write dQ

dP = Y
where Y is the Radon-Nykodyn derivative of Q with respect to P.

For any random variable X we can assert that

EQ[X] = EP [Y X]

where EQ[.] means the expectation under probability measure Q (likewise
for EP [.])
Now let χt represents the date t information set. Let a nonnegative mar-

tingale {Mt : t ≥ 0} with M0 = 0. In particular E[Mt | χ0] = 1. The distorted

expectation bE can be represented as

bE[xt | χ0] = E[Mtxt | χ0]

with Mt being a likelihood ratio or a Radon-Nykodin derivative.
Now define entropy

Definition 21 Entropy is defined as I(bp, p) = bE log
³
bp
p

´
= EM logM , where

EM=1

Remark 22 For the static entropy penalization problem (similar to the robust
control problem described above) we have that the problem min

M≥0,EM=1
{E[M(U + θ log(M))]}

has the solution given by an exponential tilting: the worst case isM∗ = exp(σ2Ut+1(i,x))

E[exp(σ2Ut+1(i,x))]
,

with θ = −σ−1. Note that the minimized objective is −θ log(E
£
exp(−1

θUt+1)
¤
)

and that M∗ depends on the control i.

The extremization is written as:

sup
i

min
M≥0,EM=1

{E[M(U(i, x) + θ log(M))]}
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2.12 Results of HST and HSW Models

For the values used for the 10 free parameters HST and HSW found a significant
boost in the MPR. For example: a one-period HST model with μb = 36 and
σ = 0.75 · 10−4 they get a MPR of 0.1186 and for the four-period with the
same values for the pair (μb, σ) they get a MPR of 0.2405 which is a very good
match to the empirical value. HSW managed to get a MPR of 0.2405 even
with a one-period version of the model (for the four-period the MPR jumped to
0.3894).
By construction they kept the value for the interest rate constant at 2,5%

which is high for the data set analyzed (the empirical value is around 0,78%).
Hence both HST and HSW could managed to help solve the Equity Premium
puzzle but both were powerless in facing the risk free rate puzzle. We argue
that this was due to the implicit assumption that the elasticity of intertemporal
substitution (EIS) was fixed at 1 (that was the way the risk sensitive control
problem was solved with reflex for its dual solution in the robust control prob-
lem). Moreover if one come with a second parameter that captures the concern
for robusteness it is possible to get an optimal mix of the two parameter values
to solve both puzzles (since each parameter affects differently the key variables
that explain the mentioned puzzles).
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3 Functional Analysis Treatment

Below we try to draw a very synthetic map of the relevant approaches that is
pursuing modelling economic uncertainty. It has the mere objective to serve as
a guide since each one of the approaches are very complex and deserves long
studies. This guide will help to see what is needed to work with when one wants
to model uncertainty in a multidimensional fashion.

3.1 Eight Relevant Sets and Seven Respective Mappings

Below is a functional analysis treatment of the relevant mappings necessary
to treat multidimensional robust control with applications to economic prob-
lems. For simplicity we assumed that the dimension of the eight listed vectors
(a,Þ,Σ,Θ,Ł,Γ,E ,Ω) are equal to N.
a = (ζ1, · · · , ζ?) : vector or parameters representing the Gilboa and Schmei-

dler (1989)’s atemporal axiomatization treatment of preferences (including sup-
port of behavior of Ellsberg’s types).
ÞNx1 = (þ1, · · · ,þN ) : vector of Multi-Prior treatment (Epstein and Schnei-

der and coauthors). Each þ represents a prior (or belief).
ΣNx1 = (σ1, · · · , σN ) : vector of parameter in the risk-sensitive control prob-

lem. (constraint problem)
Θ = (θ1, · · · , θN ) : vector of technical (extra or free) parameters in the robust

control problem that allow for representation of model uncertainty. (multiplier
problem)

Ł = (I1, · · · , IN ) : vector of distance (or discrepancy or entropy measure).
Γ = (γ1, · · · , γN ) : vector of economic parameters. In HST and HSW treat-

ment we had that γ1 = β
E = (e1, · · · , eN ) : vector of famous empirical puzzles in economics/finance.

In HST and HSW treatment we had that e1 = equity premium puzzle.
Ω = (v1, · · · , vN ) : vector of distortions
Hence the set composed of one element of each vector is : [(σ1, θ1, I1, ω1) , (ζ1,þ1) , (γ1, e1)] .
The seven mappings related the above set are:
m(·) from a to Σ
l(·) from a to Þ
g(·) from Σ to Θ
f(·) from Θ to Γ
h(·) from Ł to Θ
t(·) from Γ to E
s(·) from Ω to Ł

Remark 23 Lucas (1976) analyze the one-to-one mapping from transition laws
(xt+1 in our case) to decision rules (ut = −Fxt+1). See Lucas (1976) and
Chapter 1 Footnote 16 of Hansen and Sargent (2007)).

The mapping g(·) from Σ to Θ is particularly important for our purposes.
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Figure 2:

When θ1 = θ in HST we had that the only cited economic parameter was γ1 = β.
In this case the model addressed the equity premium puzzle (e1)
When considering a bi-dimensional robust control problem a new parame-

ter θ2 is introduced in the analysis and a candidate for γ2 is the Elasticity of
intertemporal substitution (EIS) represented by (ψ), and the additional puzzle
to be addressed is the risk-free rate puzzle (e2).
Similarly when one has the third free-parameter θ3 it may be possible to treat

a third puzzle, say a desire for less diversification in the optimal portfolio than
advised by standard (Markovitz, Tobin, Merton) portfolio theory (one version
of this behavior is the home-bias puzzle).
We can list the likely set of candidate elements (puzzles) to be explained by

the use of robust control tools:⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

e1 = equity premium puzzle
e2 = risk-free rate puzzle

e3 = low diversification (home-bias) puzzle
e4 = limited arbitrage feature (closed end fund puzzle)

· · ·
eN−1 = volatility/predictability puzzle

⎫
⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

Although the task of formalizing a relationship between the eight sets dis-
cussed above is clearly a daunting task, the objective of this section is less
ambitious and it is to set forth a first step in that direction by working with a
bi-dimensional robust control regulator.

Remark 24 Note that not all the elements presented in HST and HSW are
necessarily represented in the sets above. For example there is no representation
for the element

√
(recall that

√0√
= α2).

The fundamental question is what the relation between each one of the
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elements of vectors such as [(σ1, θ1, I1, ω1) , (ζ1,þ1) , (γ1, e1)]. For example for
HST and HSW it derived that:
i) σ1 = −θ−11 , i.e., g(·) is trivially derived as g(σ1) = θ1 = −σ−11 ⇒ g(x) =

−x−1
ii) There is an upper bound on I1 = I1 =

v21
2

Also note that we should work with h−1(·) but this represents no problem
since h(·) is assumed bijective.

42



Figure 3:

3.2 Note on Phatak (2002)’s Critique onMaenhout (2004)’s
Homothetic Transformation

Phatak (2002) argued that Maenhout (2004)’s homothetic transformation break
the link with Gilboa and Schmeidler (1989) atemporal axiomatization. If such a
single transformation broke the link, one can argue that the sort of transforma-
tions proposed by this dissertation will force us to find another axiomatization in
substitution of the one provided by Gilboa and Schmeidler (1989). Fortunately
this is not the case given the simple modification that we to the HST-HSW
setup: a linear additive transformation.
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3.3 Some Comments on the Functional Analysis Exposi-
tion and Related Issues

We are now in position to make some comments about the analysis made so far
about modelling economic uncertainty:
1) The parameters of the sets Θ and Γ (like θ and ψ ) may have asymmetric

treatment, i.e., a bijection within two sets does not guarantee the others set will
also be related by bijections.
2) We should avoid "anything goes" solution by placing a reasonable re-

striction on the type of the additional misspecification added to the model.
Specifically we can have the same entropy constraint for the new v2.
3) The structure of modelling may allow for N version of the Certainty Equiv-

alent Principle (CEP), one for each free-parameter introduced in the analysis.
Each version of CEP has an analytical translation: it is a sufficient condition for
the mapping f(·) to be bijective. As it will be seen below this is not a necessary
condition.
4)What is the limit of the dimension N for the eight listed vectors (a,Þ,Σ,Θ,Ł,Γ,E ,Ω)?

We need to work with a reasonable value for N. The answer may depend heav-
ily on the set of equivalent economic parameters of interest (recall that even in
HST and HSW - one dimensional treatment the application of robust control is
environment specific).
5) The relevant mathematical technique for mastering each of the mapping

between the eight relevant sets should be similar to the tools used by HST and
HSW. The most important mappings for our purposes are f(·) from Θ to Γ
and g(·) from Σ to Θ.
6) The literature has virtually overlooked the issue of multidimensionality

in economic application of robust control. See Maenhout (2004) and Uppal
and Wang ( 2003). In particular Uppal and Wang (2003) worked with different
degrees of model uncertainty for each risky asset of the portfolio allocation
problem. But they still used a single parameter. Ideally our work can be
combined with theirs to provide a Matrix Θ of element θij ; 1 ≤ i ≤ N ; 1 ≤ j ≤ J ,
where N is the number of free parameters and J is the number of risky assets.
7) It is important to be aware of the various possibilities of properties for the

seven mappings (l(·), g(·), f(·), h(·), t(·),m(·) and s(·)). The most comfortable
situation would be to obtain all of these mappings to be bijective (i.e. they are
both injective and surjective). Again, the results below will prove that this in
not the case.
8) Each mapping is supported by well established theorems of functional

analysis. For example the relationship g(·) from Σ to Θ is based on the Lagrange
Multiplier Theorem. It is desirable to make explicit use of each one of these
theorems.
9) HST and HSW name the control optimizations as Constraint Problem

and Multiplier Problem. They can be cast in our terminology. See chapters 6
and 7 of the Robustness of Hansen and Sargent (2007).
10) Maenhout (2004) does an extension of HST treatment by adding a mod-
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ified set eΘ =
³
eθ1, · · · ,eθN

´
for the vector of technical (extra or free) parameters

in the robust control problem. He worked in a continuos time framework. It
is the case that in a continuos time setting it may be easier to see how mul-
tidimensionality will play a role in the model set up. This mean that instead
of augmenting the term dZt in Maenhout (2004) to (gtdt+ d bZt) one should act
directly in the dZt term. One would also need to model the Permanent In-
come Model with habit in a continuos time setting. It is also arguable that the
misspecification term may enter the diffusion term (instead of the drift term).
But Hansen, Sargent, Turmuhambetova and Williams (2004) proved that an
absolute continuity property prevented the modelling of misspecification in the
diffusion term.
Maenhout (2004) extends HST by allowing a homothetic transformation

of the distortion and it has the following punch line: it provided a heuristic
argument for the portfolio rule (α) to be homothetic, namely that the formula
for the optimal portfolio rule does resemble the classical result of Merton’s
optimal portfolio if one let the distortion to be written as Ψt =

θ
(1−γ)Vt

, i.e.,

the distortion is proportional to the inverse of the continuation value function
Vt. That worked smoothingly in a power settings (Vt(W ) = kW 1−γ). Hence his
justification for a homothetic transformation comes for seeing what the model
needs to present in order to obey neoclassical results. One can extend his
pragmatic procedure and see the holes of current theory with respect to a list
of empirical puzzles E = (e1, · · · , eN ).
Note that a particular puzzle (the volatility puzzles as named in Campbell

(2000) seems to be linked to a change in the volatility of the diffusion term dZt

(in sharp contrast to comment 10 above).
11) The elaboration of the last argument is to allow for misspecification to

enter not only the conditional mean of distortion (first moment) or the diffusion
term (second moment) but the whole probability distribution function of
the innovation. This is technically demanding but it has some useful insights. It
will allow for distorting higher order moments. This can be done using Markov
chains. Hansen and Sargent (2007) work in a way that provide some insights
about that issue: they worked by choosing a Gaussian distribution with the
same mean distortion.
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4 Bidimensional Robust and Risk Sensitive Con-
trollers

4.1 Motivation for a Second Free Parameter (θ2)

The fundamental question to be addressed is: what is the adequate represen-
tation of uncertainty in economic problems?
The missing element on the relevant literature on model uncertainty is that

modelling fear of misspecification should be multidimensional, i.e., the con-
cern about model uncertainty should be represented by a vector of parameters.
This dissertation takes a first step by designing a by-dimensional robust control
problem and stress the claim that Knightian uncertainty is essentially multidi-
mensional: it cannot be expressed (represented) in terms of a single parameter.
We argue that in order to get a higher degree of freedom for explaining more

than a single empirical puzzle (like HST and HSW did for the equity premium
puzzle) one needs to find a second free parameter in the framework of robust
control and risk sensitive control problems. In other words we try to get an
additional dimension and work with a vector (θ1, θ2) of uncertainty parameters.
As stated in the functional analysis section the candidates are: the risk-free rate
puzzle for (e2) and EIS for (γ2).
The EIS is a possible and reasonable candidate for γ2 due to many reasons:
i) it is tightly related to the CRRA in power utility functions (EIS =

CRRA−1), such that breaking this link gives some hope to explain both e1
and e2
ii) It appeared at Epstein-Zin (1989)’s main equation.

Remark 25 Indeed there is only two economic parameters (EIS and β) in
Epstein-Zin (1989)’s setup which may suggest that we may not be able to come
with another (third) parameter for modelling uncertainty, at least for the frame-
work that we are working with. In other words, the number of economic para-
meters presented in the main equations may work as an upper bound for the
dimensionality of uncertainty modelling as worked here. (recall that we need to
obtain a mapping between elements of Γ and elements of Θ).

Remark 26 It is possible to model uncertainty by attaching a new distortion v2
to a new (standard) restriction, say a liquidity constraint (like the one used in
the literature of the equity premium puzzle).Yet this modelling can be interpreted
in the framework that we are working with: if a measure of liquidity is a state
variable than adding a new (liquidity) constraint is just like enhancing the vector
of state variables.
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4.1.1 Fama and French’s Multifactor Model and the Role of Multi-
dimension Risk

The idea treated here has some similarity with the extension to the CAPM.
This equilibrium pricing equation uses a single factor, namely the market (and
associated with a parameter called beta of the asset), to quantify the return of
a single asset (or portfolio of assets). Fama and French (1993 and 1996) extends
this work for three factors, i.e., they added two factors to the regression model
(this supposedly would improve the fitness with a better r-squared).
Two observations motivated the work by Fama and French: small caps and

stocks with a high book-value-to-price ratio (called value stocks; as opposed to
the so called growth stocks) have tended to do better than the market taken
as a whole. So they add two extra factors in order to reflect the exposure of
the portfolio’s exposure to these two classes of assets. Their equation can be
summarized as:

r −Rf = α+ beta3(Km −Rf ) + bsSMB + bvHML

Where:

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

r = rate of return of the portfolio
Rf = risk-free rate of return

Km = return of the whole stock market
SMB = small [cap] minus big; 0 < bs < 1

HML = high [book/price] minus low; 0 < bv < 1

It is noticeable a weakness in explaining the intuition for dealing with 3
dimensions for the risk feature (instead of a single factor). Two factors are
reasonably linked to economic issues but the third factor is hardly accepted as
economic meaningful.
But one can argue that we have a essentially multifactor Arbitrage, i.e. the

notion of arbitrage is intrinsically multidimensional.
Hence our defense of use of multidimensional uncertainty may be compared

with the use of multidimensional risk. But the not consensual declared success
of models that treat risk as multidimensional in explaining empirical puzzles
encourage us to treat uncertainty as a multidimensional feature.
For the issue of why care about modelling uncertainty in a multidimensional

way there is a reference that show the limited use and applications of multidi-
mensionality of the attitude toward risk: Karni and Schmeidler (1981) analyze
the use of multivariate risk aversion. Their main conclusion is that to put a
meaning in comparison of multivariate risk aversions it is necessary to deal with
the following problem: the individual is more risk averse the smaller is his cer-
tainty equivalence for a given risk. If u and v are two von Neumann-Mongestern
utility functions on Rn

+ , it is possible to state that u displays greater multivari-
ate risk aversion than v if Cu(W ) ≥ Cv(W ) for all W ∈W , the set of random
vectors with E[u(W )] been finite, and for Cu representing the certainty equiva-
lent for u, i.e., u(C) = E[u(W )]. But for this definition to make sense we need u
and v to represent the same preference relation. If they do not have this feature
then the certainty equivalent measures are non-comparable. Or in other words,
if the utility functions u and v represent different ordinal preferences then the
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comparison of certainty equivalences is dependent on the direction in which they
are measured. Kilhstrom and Mirmam (1981) proved that a necessary condition
for comparability is for the preference relations to be homothetic.
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4.2 Possible Classes of Functions and Nesting Conditions
with Multidimensionality

The purpose of this section is to study the criteria for altering the modelling of
economic uncertainty as proposed by HST and HSW. The main point is that
the proposed model must obey some rules to be considered worth pursuing the
effort. We propose to modify the distorted law of motion for the state vector xt
to be:

xt+1 = Axt +Bit + C(wt+1 + v1t + v2t)

This seems to be the most simple and natural way for adding a new para-
meter to express agent’s fear of model misspecification. It is done in an additive
and linear fashion.
There are many alternative candidates to this distorted law of motion for

xt. Let’s represent by F (v1t, v2t) the various candidate functions for relating
the last part of the law of motion which is composed by the volatility matrix
C, the noise wt+1, and the two distortions v1t and v2t. We will stick to this
procedure eventough it may be worth pursuing other modelling such as having
a misspecification of the return function instead of the transition law. Also note
that each different F (.) will imply a different distorted transition probability
density for xt.
The core part of the law of motion that interest us is:

xt+1 −Axt −Bit − Cwt+1 = f(C,F (v1t, v2t))

or in a slightly different form:

C−1(xt+1 −Axt −Bit − Cwt+1) = F (v1t, v2t)

Some examples of possible F (.) are:
i) C(wt+1 + v1t − v2t)
ii) C(wt+1 + v1t · v2t)
iii) C(wt+1 + v1t) · v2t
iv) C(wt+1 + v1t)/v2t
v) C(wt+1 + exp v1t + exp v2t)
vi) C(wt+1 + exp(v1t + v2t)
vii) C(wt+1 + 1/v1t + 1/v2t)
viii) C(wt+1 + ln v1t + ln v2t)
ix) C(wt+1 + ln v1t · ln v2t)
x) C(wt+1 + |v1t|+ |v2t|)
xi) C(wt+1 + v21t + v22t)
xii) C(wt+1 + vn1t + vn2t), n > 2 and n ∈ Z
xiii) C(wt+1 +max (v1t, v2t))
xiii) C(wt+1 +min (v1t, v2t))
xiv) C(wt+1 + vv2t1t )
It is easy to come up with combination of the above alternatives (these are

considered elementary functions). Indeed the number of possibilities is infinite.
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Note that we are not modifying the simple additive relation between C and
the distortions: we can proposed a format like C(wt+1 · F (v1t, v2t)).This is a
very modification but that brings about considerable mathematical difficulties
to be handle in the model. If the distortion takes a multiplicative format we will
need a new type of normalization, such that C’C will be the Covariance Matrix.
The nine properties that we propose to be satisfied by F (v1t, v2t) are:
1) Nesting for the law of motion for the state vector. This is easily checked

in our proposed additive model (since as v2t = 0 we get to HST-HSW model).
2) No destruction of the observation equivalence result (OER) of the elements

of Θ and Γ.
2.1.) Nesting of the OER for the bidimensional case. This is obtained in our

model since the discount rate β is just a linear function of σ1 + σ2.
3) Nesting formula for the optimal value for v = (v1t, v2t).
4) Multiplicative representation for the stochastic discount factor (SDF), i.e.,

mt,t+1 = mf
t,t+1m

u
t,t+1. When evaluating asset prices under the approximating

model we want to adjust the SDF in a simple manner. The most simple way in
the LQG setup is this multiplicative adjustment.
5) Nesting for the SDF: Etm

u
t,t+1 = 1 when v2t = 0.

6) The estimated value for (σ1, σ2) should not be beyond the breakdown
point σ (a concern of the risk sensitive control theory). See HST footnote 11.
This condition is likely to satisfy a less stringent one that the implied values for
the measure of risk aversion be an empirically reasonable one.
7) The link between the market price of Knightian uncertainty (MPU) and

the detection error probability (DEP) is maintained. This can be relaxed but
we will need to come up with another statistical detection method to substitute
DEP.
8) The modelling must preserve the fact that robustness parameters (θ1, θ2)

will affect only the mean of the disturbance (but not the variance), i.e., v =
(v1t, v2t) is still just a mean distortion. In a continuous time setting Anderson,
Hansen and Sargent (2003) proved that the one-dimensional approach implies
that the perturbation v can alter the drift but not the volatility of the diffusion
(because it is infinitely cost in terms of entropy).
9) Ensure that "stochastic singularity" is avoided. The estimating strategy

adopted by HST and HSW used two observed time series, namely (c, i), so
their econometric specification needed at least two shock processes to avoid
stochastic singularity. They accomplished that by specifying a bivariate or two-
factor stochastic process for the endowment: dt = μd+ d1t+1+ d2t+1. (stochastic
singularity is a spectral density of full rank for the observable vector of variables
(c, i) for which it is constructed the (log) likelihood function used for estimating
the free parameters of the model). Note that in our case we continue to use
the same two observed series. Hence modelling the endowment with four shock
processes dt = μd+d1t+1+d2t+1+d3t+1+d4t+1 will make even more easy satisfying
this criteria.

Remark 27 Some straightforward and boring algebra is able to rule out all the
proposed candidates except the linear additive one. The rest of this dissertation
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shows that the additive solution obey all nine criteria. Failure for a candidate
function is declared if it violates at least one of the nine criteria listed in this
section.

To illustrate how the possibilities of alternatives that obey the criteria is
really constrained we state below a famous theorem (Cauchy’s Equation) that
show that even working we the simple additive function we may have a stringent
restriction on its format.

Theorem 28 The set of continuos functions defined in R→ R such that f(x+
y) = f(x) + f(y) , for real x and y, is given by f(x) = x.f(1).
Proof. Start by working with x = 0 to get that f(0) = 0. Then show that f(.)
is odd, i.e., f(x) = −f(x). For n ∈ N show that f(n.x) = n.f(x). The same
applies for x∈ Q. For x ∈ Qc use the the fact that it is continuos and take a
sequence of rational numbers to obtain that f(x) = x.f(1).

Sometimes it is necessary to state that the effect of the distortion v1 and
v2 in the state variable are independent. Since we are studying diverse classes
of (v1, v2) and since orthogonality is implied by independence it is important to
define what are orthogonal functions.

Definition 29 Two functions f(v)and g(v) are orthogonal over the interval

a ≤ v ≤ b with weighting function ϕ(v) if hf | gi =

bZ

a

f(v)g(v)ϕ(v)dv = 0.

Remark 30 The desirable result is to show what are the admissible classes of
functions within all the existing functions that obey all criteria listed above. This
is a very demanding question (to say a minimum about it). For our purposes it
suffices to prove that the most common family functions fail at least one of the
criteria and that the specification we work with is the only one that satisfies all
stated criteria.
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4.3 Static Setting Case

This section will provide the basis insight of working with bidimensionality to
model economic uncertainty. We choose a static setting because it is sufficient
to provide the main results that a dynamic counterpart will do with a much
more easy mathematics involved).

4.3.1 State Space and Preference Description

Let’s assume that the law of motion for the state variable is given by

x = Ax0 +Bi+ C(w + v1 + v2)

and that the quadratic utility function is given as:

u(i, x) = −Qi2 −Rx2

This is a standard LQG setup where x is the state variable, i is the control
variable, x0 is a fixed initial value of x, w is the noise with w following a N(O, 1)
and v1 and v2 are the two additive mean distortion to w. The matrices used in
the two equations above are assumed to obey: A 6= 0, B 6= 0, C 6= 0, Q > 0, R >
0.
If we have the standard optimal control setup (without robustness concern

and without risk-sensitivity) it is straighforward to show that we can rewrite
Eu = −

£
Qi2 +R(Ax+Bi)2

¤
− RC2 . This will give the following optimal

solution for the control variable:

i∗ = −(Q+B2R)−1(ABR)x

Note that in this case we have standard preferences (a la vonNeumann-
Mongestern) and distortions taken to be zero. Moreover note that even in
this setup the control variable can be written as i∗ = −Fx, with F = (Q +
B2R)−1(ABR). This gives some hint for the importance of feedbackin in mod-
elling uncertainty.

4.3.2 Risk-Sensitive Control Problem

The setup of the problem is: we do not work with the standard preferences
but instead maximize an exponential certainty equivalent of utility U as defined
below. This change of preference representation is in the tradition of the recusive
utility literature pioneered by Kreps and Porteus (1979), Chew (1983, 1989),
Dekel (1986) and latter developed by Eptein-Zin (1989) and related papers. For
the law of motion of the state vector we make no change (we work as if the
distortions are all zero).

Definition 31 Suppose that the state x is drawn with probability p(x) from a
finite set X = {1, 2, · · · ,X}. The certainty equivalent or mean value func-
tional μ of a set of state-contingent consequences (for example consumption
c(x)) is a certain consequence that give the same level of utility: U(μ, · · · , μ) =
U(c(1), · · · , c(X)). The functional μ represents the same preferences as U .
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The agent maximizes the following exponential certainty equivalent of Ut =
V [ut, μ(Ut+1)] which in this static case become V [u, μ(U)] :

μ(U) = −(θ1 + θ2)
−1 logE {exp[−(θ1 + θ2)U ]}

where (θ1, θ2) are parameters linked to the idea of risk aversion (not uncer-
tainty). Note that when θ2 = 0 we get to the one-dimensional case.

Remark 32 The way of modelling uncertainty stated as Ut = V [ut, μ(f(θ1, θ2), Ut+1), μ2(Ut+1)]
above is superior (in all senses of the nine criteria stated above in this section)
when compared with a modelling such as Ut = V [ut, μ1(θ1, Ut+1), μ2(θ2, Ut+1)]
that assume separability of (θ1, θ2) in two different mean-value functionals (μ1, μ2).
If we choose this second modelling we will face problems in defining two discount
factors β. More on this below. This result reinforces the result to be stated in
the next subsection that β = β(σ1 + σ2).

Remark 33 Elaborating a little on the above remark: we cannot have two dif-
ferent μ1(θ1, Ut+1) and μ2(θ2, Ut+1) since by definition (see Epstein and Zin
(1989), page 944) the mean value functional μ is a certainty equivalent for ran-
dom future utility (and it does not make economic sense to have two different
mean values for the same concept).

The way we choose to model uncertainty allow us to use the nice proporteis
of the exponential functions when dealing with normal-exponential integrals. In
particular one can show that

μ(U) = −1
2
log
£
1− 2(θ1 + θ2)RC

2
¤
−
∙
Qi2 +

R

1− 2(θ1 + θ2)RC2
(Ax0 +Bi)

2

¸

Where we assum that 1− 2(θ1+ θ2)RC
2 > 0 or equivalently θ1+ θ2 <

1
2RC2

which is an upper bound on the value of the sum of the risk aversion parameters.
Note that 1 − 2(θ1 + θ2)RC

2 < 1 since (θ1 + θ2) ≥ 0, R > 0, and C > 0.
This allow us to compare the risk sensitive control solution with the standard
optimal control solution.
Solving max

i
{μ(U)} we find that:

∂μ(U)

∂i
= 0⇒ 2Qi+

R

1− 2(θ1 + θ2)RC2
2 (Ax0 +Bi)B = 0⇒

i∗ = −(Q+B2R− 2(θ1 + θ2)QRC
2)−1(ABR)x0

Note that:
a) i∗ = f(θ1, θ2) ,
b) i∗ = −Fx, and
c) The signal of AB is of high importance.
We have that for a fixed control variable i the relation between θ1 and θ2

is an affine function. This suggest that we can define a new concept that is
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Figure 4:

valid only in the realm of multidimensional modelling of uncertainty: isocontrol
curve, the locus where i takes a particular (constant) value regardless of the
values of the risk sensitive parameters.

Definition 34 The Isocontrol Curve is defined as a projection of the curve
i = i(θ1, θ2) for a particular constant value for the control variable i. This curve
is in fact represented by a line in the (θ1, θ2) plane.

5

Figure XXX illustrates the aforementioned concept. Note that the shapes
of the two curves i = f(θ1) holding θ2 fixed and i = g(θ2) holding θ1 fixed,
for two different function f(.) and g(.), are similar to a hyperbole which makes
the particular format of the isocontrol curve, i.e. a line, a surprising result.
The figure was drawn using the Matlab command meshc which draws the level
curves (in our case these are the projection of the isocontrol curves in the (θ1, θ2)
plane.
It is worth mentioning that the isocontrol curves will also be present in the

robust control framework but it will be stated as i = i(v1, v2), i.e, the control
variable as a funtion of the distortions (instead of the uncertainty parameters
themselves).

Lemma 35 The expression for the exponential certainty equivalent μ(U) =
−(θ)−1 logE {exp[−θU ]} used here (and in Backus, Routledge and Zin (2004))

5The name isocontrol was suggested by Paulo Cesar Coutinho.
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is similar to the power exponential certainty equivalent μ(U) = [E(Uθ)]
1
θ used

in Epstein-Zin (1989) and related papers (like Tallarini (1996,2000).
Proof. Just take logs and recollect terms.
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How Modelling of Uncertainty will not Work Let’s now formalize a
comment made above.

Proposition 36 Modelling uncertainty in the risk sensitive framework with
nonseparable mean value funtional is superior (Â) to modelling that assume
separability, i.e.,

Ut = V [ut, μ(f(θ1, θ2), Ut+1), μ2(Ut+1)] Â Ut = V [ut, μ1(θ1, Ut+1), μ2(θ2, Ut+1)]

The separability of (θ1, θ2) in two different mean-value functionals (μ1, μ2) of
the second approach will deliver results that will fail to satisfy some of the nine
criteria for modelling uncertainty proposed by this dissertation.
Proof. The approach Ut = V [ut, μ1(θ1, Ut+1), μ2(θ2, Ut+1)] will deliver Ut =
ut+β1μ1(θ1, Ut+1)+β1μ2(θ2, Ut+1). But this is problematic from the economic
point of view (unless β1 = β2) since the discount factor does not have risk or
uncertainty in its definition (it is not a concept to deal with risk preference or
uncertainty preference but only with time preference). But even if we suppose
that β1 = β2 = β and proceed with the calculus (normal-exponential integrals)
you get to:

Ut = ut + β

⎧
⎨
⎩
−1
2 log

£
1− 2θ1RC2

¤
−
h
Qi2 + R

1−2θ1RC2 (Ax0 +Bi)2
i
+

−1
2 log

£
1− 2θ2RC2

¤
−
h
Qi2 + R

1−2θ1RC2 (Ax0 +Bi)
2
i

⎫
⎬
⎭

The first order condition
Solving max

i
{μ(U)} we find after some tedious algebra that:

∂μ(U)

∂i
= 0⇒ i∗ = −

∙
(1− 2θ1RC2)(1− 2θ2RC2)

1− θ1RC2 − θ2RC2
Q+B2R

¸−1
(ABR)x0

This resemble i=-Fx which is a good feature. But there also some drawbacks:
the formula for i using this approach for modelling uncertainty does not became
the formula for i in the one-dimensional case when we have that θ2 = 0, i.e.,
the nesting rule fails for the first order condition that gives the value for the
optimum control variable. But this could be anticipated because by construction
the parameter θ2 cannot be equal to zero since it will make the mean value
functional not well defined (in the first place).
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4.3.3 Robust Control Problem

We have the following unconstrained problem to solve

max
i
min
v1
min
v2

©
Eu+ θ1v

2
1 + θ2v

2
2

ª

where we took θ1 and θ2 as the parameters that governs the penalties added
to the malevolent agent (nature) in its two versions. Those penalties discipline
the way we introduce uncertainty in the model, i.e., they limit how much the
"player" nature distorts the model. Small values of θ1 and θ2 means weaker
limits on nature actions.6

The constrained version of the problem had the following equations:

½
v21 ≤ η1 , (θ1)
v22 ≤ η2 , (θ2)

where θ1 > 0 and θ2 > 0 are the Lagrange multipliers.
We can write that (recall that Ew = 0):

Eu = E(−Qi2 −Rx2) = −Qi2 −R [Ax0 +Bi+ Cv1 + Cv2)]
2 =

= −Qi2 −R (Ax0 +Bi)
2 − 2R (Ax0 +Bi)Cv1 − 2R (Ax0 +Bi)Cv2

−2RC2v1v2 −RC2v21 −RC2v22

Note the presence of a cross-term −2RC2v1v2.
The two first order conditions are (stars denote optima):
a) ∂$

∂v1
= 0⇒

v∗1 = (θ1 −RC2)−1[R (Ax0 +Bi)C −RC2v2]

Note that when v2 = 0 we can recover the one-dimensional solution (i.e.,
nesting is obeyed for this equation).
b) ∂$

∂v2
= 0⇒

v∗2 = (θ2 −RC2)−1[R (Ax0 +Bi)C −RC2v1]

Note that when v1 = 0 we can recover the one-dimensional solution (i.e.,
nesting is obeyed for this equation).

Remark 37 The term −(θ1 − RC2)−1RC2v2 that appears in the first F.O.C.
can be written as v2

1− θ1
RC2

which is <0 if we assume that there exists a lower

bound on θ1, i.e., θ1 > RC2 > 0. Similar results apply to the last term in the
second F.O.C. assuming θ2 > RC2 > 0.

6We obtained a maxminmin solution which differs a little of the maxmin scheme of HST
and HSW. There are versions of maxmax for related economic decision problems. See Resende
(2006) and Schmeidler and XXX (1999XXX).
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Note the affine relationship between the distortions v∗1 and v∗2 (at the op-
timum values). This will have impact on the relationship between θ1 and θ2
(compare to the relationship between σ1 and σ2 for the risk sensitive problem).
It is also an affine relationship.
Consider a constant value for the control variable, say i = i∗.
Then we have:

v∗2 = (θ2−RC2)−1[R (Ax0 +Bi∗)C−RC2v∗2 ] =
R (Ax0 +Bi∗)C
(θ2 −RC2)

− RC2

(θ2 −RC2)
v∗1

which can be synthetically be stated as:

Lemma 38 In the two-dimensional static case the distortions are related by an
affine function.

Lemma 39 v∗2 = i+ jv∗1 , where i =
R(Ax0+Bi∗)C
(θ2−RC2) R 0 and j = − RC2

(θ2−RC2) < 0.

Similar results apply to the other distortion v∗1 = f(v∗2).
Proof. Immediate from the stated above. The sign of i depends on the magni-
tude of A, B and i∗.

Remark 40 For the special case that θ1 and θ2 are equal we have that v
∗
1+v

∗
2 =

Ax0+Bi∗

C , implying that the decision rule will not be influenced by the distortions
(a degenerate case for feedback control). The effect of one distortion is canceled
out by the other one (except for a constant term).

Given this affine relationship between the distortions v∗1 and v
∗
2 we can draw

a figure to represent curves where the level of the control variable is the same
(regardless of particular values of the distortions). The definition below follow
the similar one stated for the risk sensitive control problem.

Definition 41 The Isocontrol Curve is defined as a projection of the curve
i = i(v1, v2) for a particular constant value for the control variable i. This
curve is in fact represented by a line in the (v1, v2) plane.

Substitute out the values for v∗1 and v∗2 in the robust control objective func-
tion we obtain the following expression:

max
i

½
−Qi2 −R (Ax0 +Bi)2 − 2R (Ax0 +Bi)Cv∗1 − 2R (Ax0 +Bi)Cv∗2 − 2RC2v∗1v∗2 −RC2 (v∗1)

2

−RC2 (v∗2)2 + θ1 (v
∗
1)
2
+ θ2 (v

∗
2)
2

¾
=

= max
i

(
−
"
Qi2 + (

R

1− RC2

(θ1+θ2)

) (Ax0 +Bi)2
#)

−RC2

Comparing the above equation with the expression for i in the risk sensitive
control problem we note that we obtain the same result for the optimum control

58



variable if we set (θ1 + θ2) = −(σ1 + σ2)
−1. This is a very strinklingy simple

relation between (θ1, θ2) and (σ1, σ2) but note that the hypothesis of bijection
between sets Θ and Σ is rejected.

Remark 42 Since we obtained that v∗2 = f(v∗1) one may suggest that we substi-
tute this at the original formulation and work only with one uncertainty parame-
ter v∗1 which will make us dismiss the power or even the use of bi-dimensionality.
But this is not appropriate since the value v∗2 = f(v∗1) are valid only at the op-
timum (it come from a first order condition).
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4.4 Relation between β and (σ1, σ2)

The choice followed by this dissertation of modelling uncertainty using two para-
maters is fully compatible with the laboraty economy of the permanent income
growth model that HST and HSW used for their one-dimensional case. As in
their setup the quantities (c,i) will not be affected but there are important asset
pricing modifications via-a-vis a model with no robustness concerns. Hence we
will keep all the results of section 2.5 while deriving a new relation between the
discount factor and the uncertainty parameters.
Recall that we have a martingale representation for the shadow price of

consumption services

μst = μst−1 +
√0wt

This imply a similar martingale representation for the other shadow prices:
μht and μct.
To compute the relation between β and (σ1,σ2) we first state the program

to be solved (using μst as the state variable).

Ωx2 = −x2 + βmin
v

∙
− 1

σ1
v21 −

1

σ2
v22 +Ω[x+ α(v1 + v2)]

2

¸

where μst = μst−1 + α(v + w), with α2 =
√0√

The two first order conditions are:
i) ∂(.)

∂v1
= 0⇒ v1

σ1
= Ω[x+α(v1+v2)]α⇒ v1(1−σ1α

2Ω) = σ1αΩx+σ1α
2Ωv2

ii) ∂(.)
∂v2

= 0⇒ v2
σ2
= Ω[x+ α(v1 + v2)]α⇒ v2 =

σ2
σ1
v1

Remark 43 The relation v2 =
σ2
σ1
v1 confirms our conjecture that we can draw

an isocontrol curve for the space (σ1, σ2) in the same fashion that we do for
the space (v1, v2).

Then we have

v1 =
σ1αΩ

1− σ1α2Ω− σ2α2Ω
x

Note that the above expression nests the one-dimensional case (which was
written as v = σαΩ

1−σα2Ωx). This implies that

v2 =
σ2αΩ

1− σ1α2Ω− σ2α2Ω
x

Substituting out those values for v1 and v2 in the control program we have

Ωx2 = −x2 − β
1

σ1
(

σ1αΩ

1− σ1α2Ω− σ2α2Ω
x)2 − β

1

σ2
(

σ2αΩ

1− σ1α2Ω− σ2α2Ω
x)2

+βΩ[x+ α(
σ1 + σ2

σ1
)

σ1αΩ

1− σ1α2Ω− σ2α2Ω
x]2

60



The above expression allows us to eliminate x2 which is very convenient
(since the solution will be free of the assumption made about what is appropriate
state vector to consider).
Rewriting the above problem will deliver

(−σ1α2 − σ1α
2)Ω2 + (β − 1 + σ1α

2 + σ2α
2)Ω+ 1 = 0

which allow us to write Ω as Ω(β).
Compute the distorted expectation operator used in the martingale repre-

sentation of the shadow price μst : :

bEtμst+1 = ζμst

with

bζ = bζ(β) = 1

1− σα2Ω(β)
= 1 +

σα2Ω(β)

1− σα2Ω(β)

Given the martingale representation for consumption we also have:

bEtμct+1 = ζμct

This give us an Euler Equation for consumption. Now take bβRbζ(bβ) = 1.
Then we have

bβR bEtμct+1 = μct

To find an explicit equation for bβ work with the quadratic forms to obtain:

bβ = 1

R
+

α2

R− 1(σ1 + σ1)

which shows that β has a non bijective relation with (σ1, σ2) altough it shows
a nice simple mapping.

Remark 44 for a fixed β we can see that we obtain an affine relationship be-
tween (σ1, σ2). We can write: σ2 =

¡
β − 1

R

¢ ¡
R−1
α2

¢
− σ1, showing an inverse

relation between uncertainty parameters. Also note that the space (β, σ1, σ2) has
a representation a bit different when compared with space (i, v1, v2): both will
show a line as a projection for fixed i or β, but the former space will display
some linearities that the second will not.

Remark 45 The value for σ1 + σ2 can be find by calculating the lowest value
for σ1+σ1 such that the quadratic equation above has a real solution. Just work
with the discriminant of the equation (∆) with the triple

¡
−σ1α2 − σ1α

2, β − 1 + σ1α
2 + σ2α

2, 1
¢
.

Remark 46 HST and HSW argued that there is a observational equivalence
for their one-dimensional case since for fixed the quantity data (c, i) we cannot
simultaneously identify (β, σ). For our case holding fixed (c, i) will deliver an
identification problem of higher magnitude since we will not be able to simulta-
neously identify (β, σ1, σ2). By its turn the result of HST and HSW that there
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is a modified certaint equivalent result (in the sense that the decision rule i=-Fx
will be the same with ou without robustness concern) will be kept. But it is a bit
surprising that we do not come with an additional certainty equivalent result by
adding a second uncertainty parameter.
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4.4.1 Stochastic Endowment Process and Potential Boost in Empir-
ical Power

There is a potential boost in empirical power for the bi-dimensional uncertainty
modelling case in terms of the fitting with data of the assumed stochastic process
for the endowment dt. In HST there was an explicit choice of not using the whole
sample of post WWII data for the U.S. economy. Instead of using the available
data at the time of their publication (from 1948 1996) they worked with the time
span of 1970:1 to 1996:1. Their justification was that working with the whole
sample they get worse result than working with only the second subsample due
to earlier period of higher productivity. By using the whole sample HST would
capture the productivity slowdown in their likelihood estimation by an initial
slow decline in the bt term of the utility function, that is followed by a slow
increase. Hence they stated that "our illustrative permanent income model
is not well suited to capture productivity slowdowns" (see HST footnote 16).
By working with two uncertainty parameters we suggest that the endowment
process can be assumed to follow a more rich process than just a sum of two
AR(2) processes like HST did. Initially one can work with a sum of four AR(2)
processes but there are other combinations to be analyzed to get a better match
with data. The bottom line is that we get a higher degree of freedom to match
data (by construction and not by a virtue of the bi-dimensional uncertainty
modelling method).
Below we reproduce the HST-HSW workable assumption about dt.

⎧
⎨
⎩

dt = μd + d1t+1 + d2t+1
d1t+1 = g1d

1
t + g2d

1
t−1 + c1w

1
t+1 = (φ1 + φ2)d

1
t − φ1φ2d

1
t−1 + c1w

1
t+1

d2t+1 = a1d
2
t + a2d

2
t−1 + c1w

2
t+1 = (α1 + α2)d

2
t + α1α2d

2
t−1 + c1w

2
t+1

One possible modification is to assume dt = μd + d1t+1 + d2t+1 + d3t+1 + d3t+1,
i.e., endowment has four component: very persistent, mildly persistent, mildly
transient and transient components.

Conjecture 47 The use of two parameter modelling uncertainty allow for the
machinery set forth by HST and HSW to use the whole WWWII sampla data
for the U.S. economy.

The law of motion for the state variable would be written in a very con-
venint way as the one-dimensional uncertainty modelling case. It is necessary
however to change the state vector accordingly. One possible way is to set
xt = (ht−1, kt−1, dt−1, 1, dt, d1t , d

1
t−1, d

2
t , d

2
t−1, d

3
t , d

3
t−1)

0, i.e., we would get a 1x11
vector instead of the 1x7 vector of HST-HSW. Note that

¡
d4t , d

4
t−1
¢
is implictly

represented in xt by displaying (dt, dt+1).

Remark 48 Tallarini (1996,2000) and Barrilas et AL (2006) used the whole
available data sample (from 1948:2 to 1993:4 and from 1948:2 to 2005:5, re-
spectively) because they assumed different processes for the consumption stream
(a random walk and a trend stationary processes).
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4.5 Market Price of Risk (MPR) and Multifactor Price of
Uncertainty (MFPU)

Recall from the asset pricing section of chapter 2 that we have the following
fundamental relations:

a) The asset pricing can be state as a0 = E0

∞X

t=0

βtpc(xt)
bft(xt|xo)
ft(xt|xo)

·y(xt), where

there is a multiplicative adjustment to the ordinary SDF using the likelihood ra-

tio Lt =
bft(xt|xo)
ft(xt|xo)

= exp
n
−v2

2 + vw
o
, i.e., the SDF it is given by m0,t

h bft(xt|xo)
ft(xt|xo)

i

b) HST defined the one-period market price of Knightian uncertainty (MPU)
as the standard deviation of the multiplicative adjustment, i.e., stdt(m

u
t,t+1).

c) Under the framework of robust control problem we have that at = Et

³
mf

t,t+1m
u
t,t+1

´
yt+1,

with mu
t,t+1 = exp

n
−v0v

2 + w0v
o
and MPR =

stdt(mt,t+1)
Et[mt,t+1]

=
p
exp(v0v)− 1

d) Under the framework of risk sensitive control problem we have that

at = Et

³
mf

t,t+1m
u
t,t+1

´
yt+1, with mr

t,t+1 =
exp(σ2Ut+1)

Et[exp(σ2Ut+1)]
, which is just an

"exponential tilting" in the SDF.
When considering two uncertainty parameters the properties of normal ex-

ponential integrals give us the following expression for the likelihood ratio:

Lemma 49 The likelihood ratio is given by Lt =
bft(xt|xo)
ft(xt|xo)

= exp
n
− (v1+v2)

2

2 + (v1 + v2)w
o

Proof. Use the fact that f(x) = (2π)−1/2 exp
n
−x2

2

o
. Then

bft(xt|xo)
ft(xt|xo)

=
(2πC)−1/2 exp{− 1

2 (wt+1−v1t−v2t)
0(wt+1−v1t−v2t)}

(2πC)−1/2 exp
n
−w2

2

o = exp
n
− (v1+v2)

2

2 + (v1 + v2)w
o
.

Remark 50 The formulation of the likelihood ratio continue to be the the same
as the one used to define entropy (for our purposes) and to describe the detection
error probabilities (DEP).

Given the resulte above we can define a related concept to MPU.

Definition 51 The one-period multifactor price of Knightian uncertainty (MFPU)
is the standard deviation of the multiplicative adjustment, i.e., stdt(m

u
t,t+1). for

the bi-dimentional case. It is given by stdt(mt,t+1) =
p
exp(v1 + v2)2 − 1

The MPR is therefore given by MPR =
stdt(mt,t+1)
Et[mt,t+1]

=
p
exp(v1 + v2)2 − 1

Hence we get a nice expression for the MPR helping to more easily solve the
equity premium puzzle since we do not need to rely in any specific distortion to
increase the MPR but only in their sum (we can have, for example, a smaller
value for μb than what was assumed by HST and HSW). But there is also the
following problem: to solve the equity premium puzzle we need to boost the
theoretical MPR by an increase of (v1 + v2) but this will affect the value of the
risk free rate (which is equal to 1

E[mt,t+1]
).
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At this point we can comment in a possible problem with the estimation
strategy used by HST and HSW: not only the quantitative data (c, i) needed to
stay fixed but also the value for the risk free rate rf . But as long as the E[mt,t+1]
was changed to solve the equity premium puzzle rf could not stay fixed. We
need another variable to be change such that rf would stay fixed. Recall that in
HST and HSW (c, i) stayed fixed because as σ was introduced (and changed its
value) there was an exact cancelling out effect by changing β accordingly. We
propose that (c, i, rf ) will stay fixed as the two uncertainty parameters (σ1, σ2)
were introduced by changing (β,EIS) accordingly.7 Recall that we used the same
feature that the rf is tied down by the technology. HST argued on page 879
that "adding knowledge of the risk-free rate, which is constant in this model,
does not achieve identification".

Remark 52 In Epstein and Zin (1989) rf was not constant but a function of
the risk aversion coefficient, the discount rate β and the elasticity of substitution.
Obtaining a closed-form solution for rf is very difficult (at a minimum we need

to get ∂rf

∂EIS to get hope of convincily solve the risk free rate puzzle).

Remark 53 Given the approximationMPR =
stdt(mt,t+1)
Et[mt,t+1]

=
p
exp(v1 + v2)2 − 1 ≈

|v1 + v2| in order to get a sense of the effect of v1 + v2 in solving both puzzles
we need to compare the functions½

exp(v1 + v2)
2

|v1 + v2|

This allows us to write the following result:

Proposition 54 In the bidimentional linear additive case for modelling eco-
nomic uncertainty the effect of an increase in v1 + v2 on the risk free rate is
always bigger than the effect on the MPR. This increses the importance of using
EIS to solve the risk-free rate puzzle.
Proof. Strightforward.

Figure XXX gives an illustration of the effect of the two functions. Of
particular interest is the value for v1+ v2 = 0.2550 which is the empirical value
for the MPR. Note that exp(v1+v2)

2 is always above |v1 + v2| for all the domain
function (the effect on the risk free rate of an increase in v1+v2 is always bigger
than the effect on the MPR), that for v ranging from zero to approximately
0.75 the increase in |v1 + v2| is bigger than the increase in exp(v1 + v2)

2, i.e,
this happens after the value 0.2550.
When v1 + v2 = 0 we have the biggest difference between the two effect on

MPR and on rf . As long as v1+v2 6= 0 the effect will decrease monotically and
symmetrically up to the point where the difference is minimum (approximately
0.75) but this happen after the desired target for the MPR (for solving the

7 Iddeally we find an implicit function related the two economic conceps: g(EIS, β) = 0.
Note that an increase in EIS tend to lower the value of rf .
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Figure 5:

equity premium puzzle) which hovers around 0.2550. Without changing the
value of EIS solving the equity premium puzzle will have the side effect that rf

will increase by approximately 3.3% (and this exarcebates instead of solve the
risk free rate puzzle).
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4.6 Elasticity of Intertemporal Substitution (EIS) and Ex-
planation of the Two Puzzles

Elasticity of substitution is an old and important concept. It was proposed by
Hicks (1932) and has many uses in diverse branches of economics. The constant
elasticity of substitution (CES) function was initially proposed by Arrow et aL
(1961) and it is also a workhorse for many problems in dynamic economics.
In utility theory it is usual to define the elasticity of substitution between

goods 1 and 2 (see Mas-Colell et aL (1996)) as:

ξ12(p,w) , −
∂
h
x1(p,w)
x2(p,w)

i

∂
h
p1
p2

i
p1
p2

x1(p,w)
x2(p,w)

where x represents the Walrasian demand function, p is the price of the
commodity and w is the wealth level. For the CES utility function we have that
ξ12(p,w) =

1
1−ρ which is indeed a constant. This is a reasonable measure of

curvature of the indifference curve.

This section will deal with the concepts of EIS and CES within the framework
of modelling robustness concern with two parameters.
We want to obtain both EIS and β as functions of (σ1, σ2) but with different

magnitudes. The main point is that EIS should increase to help solve the risk-
free rate puzzle.
When considering a variable EIS (instead of fixed at 1) some algebraic

manupulations of Epstein and Zin (1989) and Hansen (2006) shows that the
following expression is valid for the SDF:

Lemma 55 For the case of variable EIS we have that

Et[mt+1,t] = Et

(
β

µ
ct+1
ct

¶−ρ
exp [(1− β)(ρ− γ)Ut+1]

{Et [exp((1− β)(ρ− γ)Ut+1)]}
ρ−γ
1−γ

)

where 0 6= ρ < 1 is the index of substitutability (ρ was also used in section 2.2).
Note that EIS = 1

ρ .

Proof. Use the result of Hansen (2005) that mt+1,t = β
³
ct+1
ct

´−ρ

( Vt+1
<(Vt+1)

)ρ−γ

and proceed with an adequate change of variable Ut =
log Vt
1−β .

Lemma 56 For the case of variable EIS we have that

Et[mt+1,t] = Et

⎧
⎨
⎩β

µ
ct
ct+1

¶µ
ct
ct+1

¶ρ−1 exp
£
σ
2Ut+1

¤

©
Et

£
exp(σ2Ut+1)

¤ª ρ−γ
1−γ

⎫
⎬
⎭ ,

i.e., mu
t,t+1 =

³
ct

ct+1

´ρ−1 exp[σ2Ut+1]

{Et[exp(σ2Ut+1)]}
ρ−γ
1−γ

.

Proof. Straigthforward.
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Note that the nesting property is satisfied: the new mu
t,t+1 nests the old

mu
t,t+1 when ρ is specialized bo te equal to one. Note also that we let mf

t,t+1 =

β
³

ct
ct+1

´
to be independent of ρ to conform to the standard literature on SDF

(including HST and HSW).

4.6.1 Local Recovery of EIS

If we define the coefficient of risk-sensitivity as σ ≡ 2(1− β)(ρ− γ) than we get
the following expression:

Et[mt+1,t] = Et

⎧
⎨
⎩β

µ
ct
ct+1

¶ρ exp
£
σ
2Ut+1

¤
©
Et

£
exp(σ2Ut+1)

¤ª ρ−γ
1−γ

⎫
⎬
⎭

Note that when

½
ρ = 1⇒ get σ used by Tallarini (1996,2000)
ρ = γ ⇒ get σ = 0 (expected utiliyt case)

Moreover we can work with the inverse map of the definition to get a (local)
recovery8 of EIS:

ρ =
σ

2(1− β)
+ γ

hence ∂ρ
∂σ =

1
2(1−β) > 0, i.e., an increase in |σ| imply an increase in EIS which

would help solve the risk-free rate puzzle (since rf will shrink).

8See Wang (1993) for a related issue on recoverability of EIS.
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4.6.2 Disentangle the Relation of EIS with (σ1, σ2)

Now we have to discuss what is the effect of having a variable ρ in the two-
dimensional case. Note that ρ has effect in rf (through the effect on Et[mt+1,t]
as discussed above) and also on stdt(mt+1,t) since this is a function of σ = σ(ρ).
Note that the relation β = β(σ1, σ2) is more difficult to disentangle as β =

β(f(σ1), g(σ2)), i.e., get separability on the two parameters, when compared to
separability of EIS = EIS(σ1, σ2) = EIS(f(σ1), g(σ2)). This happens because
the relation σ ≡ 2(1 − β)(ρ − γ) was derived for a very specific agregator, the

CES function (recall that W (c, μ) = [(1 − β)c1−ρ + βμ1−ρ]
1

1−ρ , for 0 < ρ 6= 1
) and a special power mean value functional μ. For others types of aggregators
the mathematics is much more complex and some issues of existence and non
uniquiness of utility function V= W (c, μ(V )) arises (see page 946 and footnote
7 of Epstein and Zin (1989)).

Remark 57 There is a direct link between ρ and the risk sensitive parameter
but there is no such a link between ρ and the robust parameter, i.e., EIS is a
direct matter i the modelling a la Epstein-Zin risk sensitive approach but in only
implicitly treated in Hansen-Sargent robust control methodology.

For getting separability in EIS we need to define two elements of the substi-
tutability issue (say ρ1 and ρ2). There are two channels for that: acting with the
aggregator W (c, μ) or the mean value functional μ. By definition of μ we ruled
out the existence of two different mean value funtionals for the same controller
problem (recall that μ is a parameterized by one feature only (γ) while W is
paramaterized by two features (β, ρ)). The next section shows our proposal to
this problem.

4.6.3 Two Parameter Constant Elasticity of Substitution (2CES)
Aggregator

Definition 58 (2CES) Let the aggregator be of the following format

fW (c, μ) = [(1− β)c1−ρ1 + βμ1−ρ2 ]
1

1−ρ

where ρ = ρ1+ρ2
2 and 0 < ρ1 6= 1 and 0 < ρ2 6= 1.

Note the nesting feature being satisfied by this definition: when ρ1 = ρ2 we
get back to the ordinary CES aggregator. Now we state an important result
where we define two convenient risk sensitive parameters to conform to ρ1 and
ρ2.

Proposition 59 For ρ1 6= ρ2 we have

Et[mt+1,t] = Et

⎧
⎨
⎩β

µ
ct
ct+1

¶µ
ct
ct+1

¶ρ1−1 exp
£
σ2
2 Ut+1

¤

©
Et

£
exp(σ22 Ut+1)

¤ª ρ2−γ
1−γ

⎫
⎬
⎭

with σ1 = 2(1− β)(ρ1 − γ) = σ1(ρ1) and σ2 = 2(1− β)(ρ2 − γ) = σ2(ρ2)
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From the above result we get that MPR (which can be susbtituted by the
concept MFPU) is affected in different ways by ρ1 and ρ2 since: MPR =
stdt(mt,t+1)
Et[mt,t+1]

=
p
exp(v1 + v2)2 − 1 =

p
exp(v1(σ1) + v2(σ2))2 − 1 =

p
exp(v1(ρ1) + v2(ρ2))

2 − 1.

Proposition 60 It is possible to find a suitable combination of (ρ1, ρ2), or
(σ1, σ2), such that stdt(mt,t+1) will raise and Et [mt,t+1]=

1
rf
will (mildly) in-

crease, allowing to help solve both the equity premium and the risk-free rate
puzzle.
Proof. This is a direct result of the observation of the statis comparative re-

sults:
∂Et[mt,t+1]

∂ρ1
> 0,

∂Et[mt,t+1]
∂ρ1

T 0, ∂stdt(mt,t+1)
∂ρ1

T 0, ∂stdt(mt,t+1)
∂ρ1

T 0, ∂|v|∂ρ >

0, ∂|v|∂ρ1
T 0, ∂|v|∂ρ2

T 0. Also use the fact that the only restrictions to substitutability
parameters are 0 < ρ1 6= 1 and 0 < ρ2 6= 1.

The solution of the two puzzles can be reached by a suitable selection of
(γ, ρ1, ρ2) instead of a selection of the risk sensitive parameter γ only (like Tal-
larini (1996, 2000) and Barrilas et AL (2006) do. This new channel may solve the
critic to the value for γ (=50) that Tallarini (1996, 2000) calculated as necessary
to put the pair (Et [mt,t+1] , stdt(mt,t+1)) inside the Hansen-Jaganathan bound.
This is arguably very high and in part was a motivation for the critic stated by
Lucas (2003) for the results obtained so far (including Tallarini (1996,2000)):
"No one has found risk aversion parameters of 50 or 100 in the diversification

of individual portfolios, in the level of insurance deductibles, in the wage pre-
miums associated with occupations with high earnings risk, or in the revenues
raised by state-operated lotteries. It would be good to have the equity premium
resolved, but I think we need to look beyond high estimates of risk aversion to
do it.”
Barrilas et AL (2006) work on this critic but there is no consideration of EIS

in the paper since it assumed to be equal to one.

Remark 61 There is a well defined region of factability for the vector (ρ1, ρ2)
due to economies that satisfies the proposition above. For a description of a sim-
ilar problem with a direct result for the region of factability for ρ see Schroeder
and Skiadas (1999) and specially page 964 of Maenhout (2004).

Remark 62 It is possible to prove that the proposed 2-CES has indeed a con-

stant elasticity. Some hints are: we need to prove that ξ =
d ln(μc )

d ln(RS) is constant,

where RS =-
∂fW(c,μ)

∂c
∂fW(c,μ)

∂μ

is the rate of substitution. After isolating μ
c take log and

attach a suitable combination of factors (1−ρ1) and (1−ρ2). The results should
nests the elasticity for the standard CES aggregator (which has an elasticity
equal to 1

ρ ).
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Figure 6:

Remark 63 The 2-CES concept is only a slight modification of the standard
CES aggregator such that the considerations made by Epstein and Zin (1989)
for incorporating asset pricing results like the static CAPM and I-CAPM could
be still valid.

Remark 64 For a comparison with other alternatives formulation of CES func-
tions with more than one parameter see Rutheford (2002) and specially the non
separable nested CES function of Perroni and Rutheford (1995).

Remark 65 The fact that β has an over powering role by beeing the economic
concept (from set Γ) that captures both uncertainty parameters (recall the rela-
tion β = β(σ1 + σ2) dispensing the role of the other economic concept (EIS) to
act as the economic counterpart of the pure robust control modelling) arguably
comes with no surprise since EIS was not present in the constraint set used in

the robust control program:

(
bEt

X
βjvt+j · vt+j ≤ ϑt

ϑt+1 = β−1(ϑt − vt · vt)

4.7 Illustration of the Sets andMappings for the Bi-Dimensinal
Case

Given the use of two dimensions for modelling uncertainty the figure below
illustrates the relevant sets and mappings. Note that some mappings are not
bijective. This is a reduced version of the graph showed in section 3.
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4.8 Geometry of the Set of Priors: Circle or Ellipse?

We start this section with a caveat: Epstein and Schneider (2003, JET) de-
fine the set of priors to be "rectangular" if its induced set of conditional and
marginals probabilities shows a particular form of decomposition. They illus-
trated rectangularity in the probability simplex (see their Figure 1). HSTW
argues that this particular (rectangular) set of beliefs advocated by Epstein and
Schneider means an enlargement that is too immense to be useful for the robust
control framework (because the enlargement reduces the content of the original
set of prior beliefs).
What we intend to describe here with the figure XX above is not a formal

topological treatment of the representation of the space of probability distri-
butions but only a much vague idea of how the probability distributions are
dispersed with respect to the approximating model representation. Specifically
if the representation used is not a circle of ray η1 but an ellipse of parameters
(η1, η2) with, say, η1 > η2 , we may have situations where a probability repre-
sentation of a distorted model is included (in the set of robust decisions) in the
first case and it is excluded in the second. We argue that the topological idea of
a neighborhood of a point may be have a better geometric interpretation when
using an ellipse instead of a circle.
The approach by Epstein, Zin, Schneider and coauthors (Recursive Multi-

Priors Model = RMP) delivers rectangular sets of priors (with a prior-by-prior
updating rule). The Robust Control (RC) approach by Hansen, Sargent and
coauthors (mainly the papers HST and AHS) delivers sets of priors constrained
by relative entropy (linked to one parameter η) that has a circle as a vague
illustration. Our work with robust control treatment using two parameters de-
livers (under some mild conditions) a vague illustration of an ellipse. Since η
is directly linked to the concept of entropy we will obtain a η1 − entropy and
η2 − entropy "axis" of an ellipse instead of a η − entropy "radius" of a circle.
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5 Conclusions

This dissertation models the non uniquiness of beliefs from the primitives (or
fundamentals) of the economy: it assumed up front that uncertainty is mul-
tidimensional. We advocate that adding more layers of specification doubt in
that way seems a more natural manner for modelling uncertainty. The hunch
for our model comes from the belief that structured uncertainty is inherently
multidimensional.
Our work does not deliver a closed and definitive framework for a bidimen-

sional treatment of uncertainty (in the sense of fear of model misspecification
used by Hansen, Sargent and coauthors). It is a step in that direction and
adds to the prolegomena stated by those researchers. Indeed both approaches
of multi prior and robustness for modelling economic uncertainty are still under
work and face a viviv debate between their advocates.9 In order to get a sense
of the various approaches that tackle the problem of modelling uncertainty we
stated a simple functional analysis treatment of eight relevant sets of key con-
cepts and seven respective mapping relating those sets. This gives a road map
of what is in play.
Working with a two dimensions has a side benefit of checking at least the

main results of the one-dimensional case which requires a serious study of this
difficult literature. Some of the empirical results using bidimensionality may
seem more plausible: for example the value for μb may be smaller than those
worked by HST and HSW. The bottom line is that one gets more degree of
freedom to attach value to parameters that have more sound economic intuition.
Most of Hansen, Sargent and coauthors attempt to model uncertainty with

two parameters is done by assuming that the state vector has some unobservable
part which forces the agent to filter. In Hansen and Sargent (2006) it is explicitly
used the term "fragile" to describe the fact that the representative consumer
is not confident about his posterior probabilities given that the model has a
sort of Bayesian learning. For the first time they come with a paper that has a
concept that leading researchers in robust control theory (like John C. Doyle)
is using frequently: the fact that the design of some systems may be robust
to the presence of structured uncertainties but still fragile for other types of
uncertainties. 10

One of the contributions of this dissertation is to show that there is not
necessarily a bijection between the elements of the set of economic parameters

9Some of the dissagreement are: Epstein and Zin (2003) argues that the type of preferences
advocated by robust control defenders is not time consistent. Hansen and Sargent (2005)
maek a defense of their point in terms of time consistency and claim that the enlargement
of admissible priors proposed by Epstein and co-authors are too big to be useful for robust
control purposes.
10The way Bayesian learning from history of state vector is justified by Hansen and Sar-

gent (2006)’s use of hidden markov states may be better modelled with the use of adaptive
control (instead of robust control). Moreover there is no explanation for the way the second
uncertainty parameter θ2 is disciplined (for example by providing a detection error probability
analysis to θ2). They argued that introduction of θ2 implies that representative agent’s beliefs
are fragile since he is not confident of his posterior probabilities. The horsework of the paper
was the mixing of model selection and state estimation.
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(Γ) and the elements of the set of parameters in the robust control problem
(Θ), as one can initially assume without going through a formal treatment of
a second parameter to model concern for robustness. By assuming a second
uncertainty parameter we need to work with three controllers: an agent that
maximizes and two versions of nature that minimizes. We proposed a list of nine
criteria to be satisfied by possible functions F (v1t, v2t) of the two distortions to
the model specification.
Another contribution of the dissertation is to work explicitly with a variable

elasticity of intertemporal substitution (EIS). If you shut down the channel
of EIS effect by assuming it to be equal to one (like explicitly did Tallarini
(1996, 2000) and implicitly assumed HST, HSW and others) than you loose a
considerable richness and power of modelling economic uncertainty. A suitable
2-CES function was proposed to handle that issue.
One possible extension of the work presented here is to consider a new con-

cept (suitably defined) of covariabality between υ1 and υ2 different from the
standard notion of covariance (this last concept is impossible to work in a
robust control framework since we do not have knowledge of the probability
distributions of neither υ1 or υ2.

11

One open question is when we should stop adding new perturbations like
(υ1, υ2). A possible rule of thumb is to consider how many important empirical
puzzles are outstanding in economics and finance. The list has certainly less than
seven really important and cataloged puzzles. This may be an upper bound to
the number of extra parameters related to robustness concern. Still this number
may be arguably too big. One defense for our case to multidimensionality is that
it adds a new possible explanation but one may not focus all the explanations to
puzzles as coming from the uncertainty world (at least the type of uncertainty
treated in this dissertation, with a feedback on the vector of state variables).
The enlargement of the admissible set of priors with more than two uncertainty
parameters will likely to be a complex issue. For our work with (v1t, v2t) entering
the law of motion for the state vector we heuristically defined an ellipse as the
neighborhood of the probability density that governs the approximate model.12

Applications of our work to policy are possible but some rich ingredients will
needed to be modelled. Since it is unavoidable that the models used to make
policy evaluation are misspecified. One element that will need to be introduced
are robust multi-agents.

11This observation was made by Rodrigo A. S. Penaloza.
12This "ball" was represented in the probability space.
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6 Appendix A: Analysis of Risk Aversion Mea-
sures in Uncertainty Modelling

This section will discuss how the measures for risk aversion for risk sensitive and
robust control frameworks are calculated and how they compare to each other.
We stress that this comparison is not made in the literature and in particular
is missing in HST and HSW. Through the use of the detection error probability
(DEP) method HST and HST argues that they are able to select reasonable
value for θ. From the definition θ ≡ −σ−1 this will imply a corresponding
value for σ. It is expected that DEP as a statistical detection tool will deliver
uncertainty parameters (θ, σ) linked to reasonable values for risk aversion.

6.1 Risk Aversion (γ) in the Risk Sensitive Control Frame-
work

In the risk sensitive problem the values for σ that will imply, via the definition
σ ≡ 2(1 − β)(1 − γ), the respective value for γ can be found by reversing
engineering the formula, i.e.,

γ = 1− σ

2(1− β)
= 1 +

1

2(1− β)θ

Hence for γ to assume a reasonable value, say between 1 and 10, and assum-
ing (as HST and HSW did) that β = 0.9971, we have that:

1 < 1 +
1

2(1− β)θ
< 10⇒ θ >

1

18(1− β)
> 0⇒

θ > 19, 1571

Or equivalently

522 · 10−4 < σ < 0

For the four values for σ
¡
(0,−0.25,−0.50,−0.75) · 10−4

¢
that HST and

HSW worked with the condition is satisfied. These four values (and two other
important ones) are reported on the table below. Note that ∂γ

∂|σ| =
1

2(1−β) > 0.

TABLE 01:
σ(10−4) θ γ
0 ∞ 1

−0.25 4 1.00431
−0.50 2 1.00862
−0.75 1.33 1.01293
−1.00 1 1.017224
−522.00 0.001957 10
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Remark 66 Note that the formula implies that γ > 1 and, in particular, γ = 0
(i.e. the risk-neutrality case) is discharged here. Maenhout (2006) states that
γ > 1 is arguably defensible since: (i) It is the empirically relevant part of the
parameter space, (ii) Assures that the solution of most models, Maenhout (2004
and 2006) in particular, are well-behaved and (iii) it seems most plausible for
relatively risk-averse investors given that robustness induces a relatively conser-
vative behavior. There is also an explanation regarding time and risk preferences
assumption: γ > (<)ρ implies that the agent has a preference for early (later)
resolution of uncertainty (see Backus, Routledge and Zin (2004)). In the special
case that ρ = 1, γ > 1 is a sufficient condition for a risk preference for early
resolution of uncertainty.

Remark 67 There is a much more stringent condition for σ to satisfy: the
breakdown condition as posited by the risk sensitive control theory. The value
σ = −522x10−4 as the limit to get a "reasonable" value for γ = 10 is far beyond
the breakdown point σ. The breakdown analysis states that for σ <σ the positive
definiteness of the expression (I − σC 0ΩC) ceases to hold and the risk-adjusted
recursive utility is −∞ whatever is the controller (maximizing agent) actions.
An equivalent way to express this condition is to check if log det(I − σC0ΩC) >
−∞, i.e., if the eigenvalues of (I − σC 0ΩC) are all positive. This happens
because the minimizing agent (nature) is sufficiently unconstrained that he can
force the criterion function to be −∞ regardless of the best response of the
maximizing agent. One consequence is that it comes with no result to seek for
more robustness beyond σ. For the general equilibrium considerations of HST,
HSW and this dissertation this breakdown point hovers around −1.00 · 10−4
(which implies a risk aversion coefficient γ = 1.017224, an empirical reasonable
value). Hence the type of risk corrections (in the sense of the risk sensitive
control problem) that we are working with is much smaller (in absolute value)
than the limit imposed by the breakdown analysis. See also Glover and Doyle
(1988) and chapter 7 of Hansen and Sargent (2007) for a detailed explanation
of the breakdown point. Whittle (1990) calls σ the "utter psychotic despair".

6.1.1 Model with Variable EIS

For the model a variable EIS that we propose in this dissertation we have that
σ ≡ 2(1− β)(ρ− γ) which implies

γ = ρ− σ

2(1− β)
= ρ+

1

2(1− β)θ

Then for the range 1 < γ < 10, assuming the discount factor is β = 0.9971
and for the value of the inverse of the EIS, that Bansal and Yaron (2004) and
the references cited therein assumed for, i.e., ρ = 1.5, we have that:

1 < 1.5 +
1

2(1− β)θ
< 10⇒ −0.5 < 0 < θ <

1

17(1− β)
⇒

θ > 20, 284
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Or equivalently

−493 · 10−4 < σ < 0

Note that the restriction for both θ and σ are more restrictive for the
case with ρ = 1.5, i.e., consideration of a variable EIS gives more discipline
(less degree of freedom) to the way uncertainty is modelled. But again the
consideration of the breakdown point σ is much more stringent. Lastly, the
introduction of ρ will deliver agents that are even more far for the risk-neutral
case.

6.2 Risk AversionMeasure (CRRA) in the Robust Control
Framework

Below we show how the standard Arrow-Pratt measure of risk aversion is calcu-
lated in the quadratic utility setup of the robust control framework and compare
it to the measure of risk aversion (γ) calculated above for the risk sensitive ap-
proach.
For the robust control problem the bliss point μb is a curvature parameter

since Ut = −(st − bt)
2 + β<(Ut+1), with bt = μb. From the equation for con-

sumption service st = (1 + λ)ct − λht−1 we get uc = ∂u
∂c = −2(1 + λ)(st − μb).

Note that no habit term ht will appear in the marginal utility of consumption
uc since ht = δhht−1 + (1− δh)ct . The second derivative is ucc = −2(1 + λ)2.
Hence the CRRA for consumption gambles is:

CRRA ≡ −ctucc
uc

= − ct
£
−2(1 + λ)2

¤

−2(1 + λ)(st − μb)
=

ct(1 + λ)

μb − st
, or

CRRA =
ct(1 + λ)

μb − (1 + λ)ct − λht−1

Note that this can be easily evaluated for the sample data used by HST and
HSW since:
a) The (bi-dimensional case) state vector is

xt = (ht−1, kt−1, dt−1, 1, dt, d1t , d
1
t−1, d

2
t , d

2
t−1, d

3
t , d

3
t−1)

0 ,

b) The consumption is given by ct = (ε+ δk)kt−1 + dt − kt,
c) The (one-dimensional) endowment is modelled as

⎧
⎨
⎩

dt = μd + d1t+1 + d2t+1
d1t+1 = g1d

1
t + g2d

1
t−1 + c1w

1
t+1 = (φ1 + φ2)d

1
t − φ1φ2d

1
t−1 + c1w

1
t+1

d2t+1 = a1d
2
t + a2d

2
t−1 + c1w

2
t+1 = (α1 + α2)d

2
t + α1α2d

2
t−1 + c1w

2
t+1

and

d) The value for the parameters [(λ, ε, δk), (μd, φ1, φ2, α1, α2, c1, c2,) (μb)] are
known.
For example when μb = 36, we get the reasonable value of CRRA = 2.3.

Note that this value is not equal to the parameter of risk aversion γ used in
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the risk sensitive control problem which hovers a little bit above 1. Indeed
γ = γ(β, σ) is not a function of μb, for example. By its turn, CRRA =
CRRA ((λ, ε, δk), (μd, φ1, φ2, α1, α2, c1, c2,) (μb)) is not a function of σ, for ex-
ample.

Remark 68 It is important to obtain reasonable values for both γ and CRRA
since the solution to the robust control problem will provide a unique optimum
θ which is related by construction to a unique σ. Note that σ is defined as
σ ≡ −θ−1 such that the two approaches match, i.e., the objective functions will
differ only from some constant terms that will not affect the optimal control
variable. We do not set σ first but θ. For details of the Lagrange multiplier
theorem, that guarantees the duality between the risk sensitive approach and the
robust control method see Luenberger (1969), pages 216-221.

Remark 69 Getting a reasonable value for the measure of risk aversion cannot
be listed as a criteria for the way uncertainty should be modelled simply because
CRRA is not a function of σ, and consequently it is not a function of distortions
(v1, v2) (or the way these distortions enter the model). Anyway the already sixth
listed criteria (i.e., the estimated value for (σ1, σ2) should not be beyond the
breakdown point) is a very stringent condition.

6.3 Unreasonable Risk Aversion of Tallarini (1996, 2000)

Tallarini (1996, 2000) worked with two parametric assumptions about the log
consumption stream, namely random walk and trend stationary models, with
the results for the random walk hypothesis getting better results.
For values of the discount factor of β = 0.999 and β = 0.9999 (i.e., very

close to 1) the test statistics reported by Tallarini (based on the Hansen, Heaton
and Luttmer (1995) method) under the assumption of non-expected utility and
random walk consumption assert that the hypothesis that the mean-standard
deviation pair (E(m), std(m)) is in the Hansen-Jaganathan region cannot be
rejected at 10% for all values of risk aversion used (γ = 1, 5, 10, 15, 20, 25).
But for β = 0.995 only the high values of γ = 50 for the random walk model
and 250 for the trend stationary model puts the pair (E(m), std(m)) in the
bounds of Hansen-Jaganathan region. Recall that the value used for HST and
HSW was β = 0.9971. Hence it is likely that for the framework adopted by
Tallarini (1996,2000) the value of the atemporal risk aversion coefficient γ is not
empirically reasonable. This rests mainly in the assumption for the consumption
stream adopted: in HST and HST we get that the shadow price of consumption
μct can be represented by a martingale but this is not the same as assuming
that consumption is a random walk or a trend stationary process à la Tallini
(1996,2000).

6.4 Certainty Equivalent Interpretation

One may justifies that the values for risk aversion in risk sensitive framework
(γ) and in the robust control framework (CRRA) are not equal because the
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two setups use different notion of certainty equivalent. This does not proceed
due to the following reasoning: in the risk sensitive control approach we use the
certainty equivalent (or mean value) function μ(Vt+1) ≡ f−1{Et[f(Vt+1)]}, with
the value function Vt = W (ct, μ(Vt+1)) and W (.) representing an aggregator
function. Most of the literature on recursive utility function use power utility
specifications, i.e.,

f(z) =

½
z1−γ , if 0 < γ 6= 1
log z, if γ = 1

Hence this is exactly what is stated in standard microeconomics theory
books (see Mas-Collel et AL (1996), for example) as the certainty equivalent
u−1(E(u)), just take f(.) = u(.), where u(.) is the Bernoulli utility function.
Usually the definition is stated as u(μ) ≡ Et[f(Vt+1)], which is a variant for the
above definition of μ.
The restriction imposed by the risk sensitive approach taken here is for U(.)

to be of a power function format. In particular we are ruling out the linear
utility function (γ = 0). The figure below gives an illustration of the certainty
equivalent function μ.

Note that μ ≤ Et[Vt+1] which means that some expected return is exchanged
for getting the certainty payoff μ. As a matter of fact we can state the following
result.

Lemma 70 The condition μ ≤ Et[Vt+1] is equivalent to the claim that the agent
is risk averse.
Proof. From the nondecreasing feature of f(.) and the definition of μ we have
that μ ≤ Et[Vt+1]⇔ f(μ) ≤ f(Et[Vt+1])⇔ Et[f(Vt+1)] ≤ f(Et[Vt+1]).
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7 Appendix B: Some Possible Extensions

7.1 Multidimensional Model Uncertainty and Equivalent
Martingale Measure (EMM)

When modelling uncertainty in a multidimensional fashion some implications
may occur for the existence and uniqueness of the equivalent martingale measure
(EMM). Recall than in standard finance theory it is proved that there is an
equivalence between: a) there is no arbitrage opportunities in the market and
b) it is possible to price using a probability measure (the EMM itself) that
is equivalent to the original probability density (f) (and this is linked to risk
neutral pricing). This may result in a " no-arbitrage theorem with robustness
concerns". Some promising road may be the use of the concept of approximate
arbitrage property. Note that when making arbitrage considerations with the
concept of risk there is no limitation for risk to be a one-dimensional variable.
Arguably the same apply to uncertainty.
Risk neutral pricing relies on the existence of a probability (fRNP ) that de-

scribe the economy as if all investors are risk neutral. Would we have something
similar to an "uncertainty neutral pricing"? One may use a measure to the no-
tion of entropy for the distance between f and fRNP . An important reference
for starting this line of research is Duffie (2002) (specially pages 121 and 132 of
chapter 6).
There are some implications for other issues in theoretical and applied fi-

nance when using nonstandard specification of preferences (like the pref-
erences with robustness concern that we are studying). There is some
room for using the robustness artillery in issues such as value-at-risk and risk
management. There are also some branches of finance for what we see no role
for robusteness like the theory of capital structure.
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7.2 Modelling Uncertainty in Emerging Economies

HST and HSW used U.S. dataset to check if the model could better explain the
equity premium puzzle. Arguably emerging economies inherit a higher degree
of uncertainty and may be a valuable task to compare the performance of HST
model in rich and developing economies
First one should provide the intuition for an emerging economy to show

agents that are more likely (vis-a-vis developed or rich economies) to fear model
misspecifications. Another topic to be studied is the eventual maintenance of the
observational equivalence when considering emerging economies. Finally: exam
if it matters if the economy is rich or poor, have strong or weak institutions
(etc) for the theory (robustness helping to explain empirical puzzle) to hold.
To the best of my knowledge there is no application of HST and HSWmodels

to other country other the U.S. (accordingly to Econlit, ProQuest, Webscience,
IDEAS, SSRN, JSTOR, and other search devices in use for economic research).
Some more general lessons (regarding the role of robustness in explaining

asset pricing anomalies) may be extracted from extensions of HST-HSW-like
models to emerging economy asset price data and maybe one can get new in-
sights about the way financial markets operate in general.
To be more formal: it is arguable that it is more difficult to model the transi-

tion law for the vector of state variables of an emerging economy (B) compared
to the developed economy case (A). In other words model misspecification of
the transition law of B is likely to be more substantial (with this feature to be
formally defined) than the distortion of the approximating model for case A.
The discrepancy (as measured by relative entropy) between the approximate
and distorted model is likely to be higher in case A (or for that matter the
pessimism bound η need to be greater for economy B.
Some specific key points to be considered are:
i) What are the relevant economic variables to be included in the state

variable vector xt? One can initialy work with an important state variable,
capital kt: why there is more uncertainty in, say, capital accumulation optimal
rule for B? This may have some appealing intuition and maybe it can be formally
related to the level of investments in the economy.
ii) How is relative entropy defined in case B?
iii) In what sense will a multidimensional analysis of economic uncertainty

help in matching the empirical results?
iv) Why feedbacking (of the uncertainty parameter θ1 into the state variable

xt+1) will be more significant in case B?
v) Related the idiosyncrasies of economy B. In particular analyze the finan-

cial market data
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