UNIVERSIDADE DE BRASÍLIA INSTITUTO DE CIÊNCIAS BIOLÓGICAS DEPARTAMENTO DE FITOPATOLOGIA

BIOLOGIA, EPIDEMIOLOGIA E CONTROLE DO MÍLDIO (Bremia lactucae) DA ALFACE (Lactuca sativa) EM VIVEIRO.

PAULO GÓES MESQUITA

BRASÍLIA – DF 2008

Trabalho realizado junto ao Departamento de Fitopatologia,	
Instituto de Ciências Biológicas, Universidade de Brasília, s	ob
orientação do Professor Adalberto Corrêa Café Filho, com a	apoio
financeiro da Coordenação de Aperfeiçoamento de Pessoal	de
Nível Superior (CAPES).	

Banca examinadora:

Adalberto Corrêa Café Filho, Ph. D.

Professor do Departamento de Fitopatologia Universidade de Brasília-DF

Carlos Hidemi Uesugi, Ph. D.

Professor do Departamento de Fitopatologia Universidade de Brasília-DF

Ailton Reis, D. Sc.

EMBRAPA Hortaliças, Brasília, DF

UNIVERSIDADE DE BRASÍLIA INSTITUTO DE CIÊNCIAS BIOLÓGICAS DEPARTAMENTO DE FITOPATOLOGIA

BIOLOGIA, EPIDEMIOLOGIA E CONTROLE DO MÍLDIO (*Bremia lactucae*) DA ALFACE (*Lactuca sativa*) EM VIVEIRO.

PAULO GÓES MESQUITA

Dissertação apresentada ao Departamento de Fitopatologia, dia 31 de outubro de 2008, no Instituto de Ciências Biológicas da Universidade de Brasília, como parte das exigências para obtenção do grau de "Magister Scientiae" em Fitopatologia.

BRASÍLIA – DF 2008 A toda sociedade brasileira pela oportunidade

Aos meus pais Ana Maria e Alcione

Aos meus irmãos Pedro e Luís

À minha noiva Roberta

DEDICO

AGRADECIMENTOS

Aos meus pais, Alcione Lira de Mesquita e Ana Maria Medeiros Góes Mesquita, pessoas maravilhosas que passaram por muitas dificuldades, mas sempre foram exemplos de amor, coragem, determinação e luta pelos seus ideais de vida.

Ao professor Adalberto C. Café Filho, pela orientação, pela amizade e companheirismo nos momentos difíceis que passei durante o curso.

A todos os professores do Departamento de Fitopatologia da UnB, especialmente agradeço a

Ailton Reis, Alice Nagata, Carlos Uesugi, Carlos Inácio, Carlos Lopes, Cláudio Costa, Juvenil Cares, Luiz Blum, Marcos Freitas, Marisa Ferreira, Marisa Sanchez, Paulo de Tarso, Renato Resende e Zuleide Chaves pelos ensinamentos.

Aos meus irmãos, Pedro Góes Mesquita e Luís Góes Mesquita, pessoas que poderei contar a qualquer momento.

À minha noiva, Roberta Gomes Pacheco, pela compreensão e incentivo.

Ao amigo Ciro Courbassier Mancilha, amigo pra toda a vida.

Aos amigos de mestrado e doutorado, em especial: Jaqueline, Leonardo Lopes, Uéllen, Cristiane, Magno, Silvia, Leonardo Albuquerque, Bruno, Leandro, Keize, Marcelo, Rafael e Reinaldo.

Aos funcionários do Departamento de Fitopatologia. Especialmente agradeço a Ribamar, Silene, Camila, Leila, Fábio e Arlindo.

Ao produtor Sr. Mário Ito pela ajuda.

Minha família pelo apoio em mais uma etapa acadêmica.

À Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), pela concessão da bolsa de estudo.

À Universidade de Brasília e toda sociedade Brasileira pela a oportunidade do mestrado.

ÍNDICE GERAL

AGRADECIMENTOS	
ÍNDICE GERAL CAPÍTULO I	
ÍNDICE DE TABELAS CAPÍTULO I	
ÍNDICE DE FIGURAS CAPÍTULO I	
ÍNDICE GERAL CAPÍTULO II	
ÍNDICE DE TABELAS CAPÍTULO II	
ÍNDICE DE FIGURAS CAPÍTULO II	
ANEXOS (CAPÍTULOS I E II)	
ÍNDICE DE TABELAS ANEXO	
ÍNDICE DE FIGURAS ANEXO	
CAPÍTULO I	
RESUMO	
ABSTRACT	
INTRODUÇÃO	
Hospedeira	
Patógeno	
O Gênero <i>Bremia</i>	
Bremia graminicola Naoumov	
Bremia lactucae Regel	
Gama de hospedeiros e especificidade	_
Morfologia e morfometria de <i>Bremia lactucae</i> Regel	_
Germinação dos esporângios	
Dinâmica temporal da doença	
Sintomatologia	
Período de latência	
MATERIAL E MÉTODOS	
Obtenção dos isolados, preparação do inóculo e inoculação	_
Morfologia e morfometria de <i>Bremia lactucae</i> Regel	
Período de latência	
Inoculação	

Estádio I
Estádios II, III e IV
Índice de latência
Determinação do Círculo de Hospedeiras Cultivadas do patótipo de <i>B. lactucae</i> do Núcleo Rural da Vargem Bonita – DF
RESULTADOS E DISCUSSÃO
Morfologia e morfometria de <i>Bremia lactucae</i> Regel
Período de latência
Determinação do Círculo de Hospedeiras Cultivadas do patótipo de B.
lactucae do Núcleo Rural da Vargem Bonita – DF
LITERATURA CITADA

ÍNDICE DE TABELAS CAPÍTULO I

Tabela 1 - Comparação morfológica de Bremia lactucae Regel	39
Tabela 2 - Índice de latência médio das diferentes cultivares da alface em diferentes estádios de desenvolvimento	40

ÍNDICE DE FIGURAS CAPÍTULO I

Figura 1 - Umidade relativa do ar máxima e mínima (%). Brasília, UnB, 2008
Figura 2 - Temperatura máxima e mínima (°C). Brasília, UnB, 2008
Figura 3 - Viveiro de mudas de alface, no Núcleo Rural da Vargem Bonita – DF
Figura 4 - Sintomas e sinais do míldio nas folhas da alface
Figura 5 - Bandeja de 128 células semeada com o cultivar de alface Tainá para obtenção de inóculo inicial em uma propriedade no Núcleo Rural da Vargem Bonita – DF
Figura 6 – Estruturas do fungo <i>Bremia lactucae</i> – a- Esporangióforo com ramificação dicotômica; b- Esporangióforo com ramificação tricotômica; c- esporângios
Figura 7 – Esterigmas e apófises de <i>Bremia lactucae</i> , agente causal do míldio da alface
Figura 8 - Índice de latência dos diferentes cultivares da alface em diferentes estádios de desenvolvimento

CAPÍTULO II

Introdução	RESUMO
Irrigação	
Irrigação por aspersão	NTRODUÇÃO
Análise espacial e temporal de epidemias MATERIAL E MÉTODOS Sistema de irrigação por aspersão Sistema de irrigação tipo float (floating) Análise espacial e temporal de epidemias Curvas de progresso da doença Influência da distância do foco inicial em relação ao foco final na susceptibilidade da hospedeira RESULTADOS E DISCUSSÃO Análise espacial e temporal de epidemias Curvas de progresso da doença Efeito da resistência genética no progresso do míldio da alface Efeito da prática de irrigação no progresso do míldio da alface Influência da distância do foco inicial em relação ao foco final na	rrigação
MATERIAL E MÉTODOS Sistema de irrigação por aspersão	rrigação por aspersão
MATERIAL E MÉTODOS Sistema de irrigação por aspersão	Sistema float
Sistema de irrigação por aspersão	Análise espacial e temporal de epidemias
Sistema de irrigação tipo float (floating)	MATERIAL E MÉTODOS
Análise espacial e temporal de epidemias	Sistema de irrigação por aspersão
Curvas de progresso da doença	Sistema de irrigação tipo float (floating)
Influência da distância do foco inicial em relação ao foco final na susceptibilidade da hospedeira	Análise espacial e temporal de epidemias
RESULTADOS E DISCUSSÃO Análise espacial e temporal de epidemias Curvas de progresso da doença Efeito da resistência genética no progresso do míldio da alface Efeito da prática de irrigação no progresso do míldio da alface Influência da distância do foco inicial em relação ao foco final na	Curvas de progresso da doença
Análise espacial e temporal de epidemias Curvas de progresso da doença Efeito da resistência genética no progresso do míldio da alface Efeito da prática de irrigação no progresso do míldio da alface Influência da distância do foco inicial em relação ao foco final na	
Curvas de progresso da doença Efeito da resistência genética no progresso do míldio da alface Efeito da prática de irrigação no progresso do míldio da alface Influência da distância do foco inicial em relação ao foco final na	RESULTADOS E DISCUSSÃO
Efeito da resistência genética no progresso do míldio da alface Efeito da prática de irrigação no progresso do míldio da alface Influência da distância do foco inicial em relação ao foco final na	Análise espacial e temporal de epidemias
Efeito da prática de irrigação no progresso do míldio da alface	Curvas de progresso da doença
Influência da distância do foco inicial em relação ao foco final na	Efeito da resistência genética no progresso do míldio da alface
•	Efeito da prática de irrigação no progresso do míldio da alface
•	nfluência da distância do foco inicial em relação ao foco final na susceptibilidade da hospedeira
I ITERATURA CITADA	ITEDATUDA CITADA

ÍNDICE DE TABELAS CAPÍTULO II

Tabela 1 - Variedades utilizadas no experimento
Tabela 2 - Valores obtidos de Z para análise espacial do míldio da alface no teste Ordinary Runs em sistema de irrigação diurna, noturna e float
Tabela 3 - Valores obtidos de Z para análise espacial do míldio da alface no teste Doublet em sistema de irrigação diurna, noturna e float.
Tabela 4 - Ajuste de três modelos de progresso ao míldio da alface em oito cultivares no sistema de irrigação diurna (repetição 1) pelo coeficiente de determinação ajustado (R*2), obtido da regressão linear entre os valores previstos (variável dependente) e observados (variável independente).
Tabela 5 - Ajuste de três modelos de progresso ao míldio da alface em quatro cultivares no sistema de irrigação diurna (repetição 2) pelo coeficiente de determinação ajustado (R*2), obtido da regressão linear entre os valores previstos (variável dependente) e observados (variável independente).
Tabela 6 - Ajuste de três modelos de progresso ao míldio da alface em quatro cultivares no sistema de irrigação diurna (repetição 3) pelo coeficiente de determinação ajustado (R*2), obtido da regressão linear entre os valores previstos (variável dependente) e observados (variável independente)
Tabela 7 - Ajuste de três modelos de progresso ao míldio da alface em oito cultivares no sistema de irrigação noturna (repetição 1) pelo coeficiente de determinação ajustado (R*2), obtido da regressão linear entre os valores previstos (variável dependente) e observados (variável independente)
Tabela 8 - Ajuste de três modelos de progresso ao míldio da alface em seis cultivares no sistema de irrigação noturna (repetição 2) pelo coeficiente de determinação ajustado (R*2), obtido da regressão linear entre os valores previstos (variável dependente) e observados (variável independente)
Tabela 9 - Ajuste de três modelos de progresso ao míldio da alface em quatro cultivares no sistema de irrigação noturna (repetição 3) pelo coeficiente de determinação ajustado (R*2), obtido da regressão linear entre os valores previstos (variável dependente) e observados (variável independente)

Tabela 10 - Resumo dos resultados obtidos de três modelos do progresso do míldio da alface em oito cultivares 79
Tabela 11 - Comparação da resposta dos diferentes tipos de irrigação quando observado o alcance máximo (cms) de disseminação do patógeno 80
Tabela 12 - Comparação da resposta média das cultivares em diferentes tipos de irrigação quando observada a AACPD
Tabela 13 - Comparação da resposta dos diferentes tipos de irrigação quando observados o total de plantas infectadas 82
Tabela 14 - Número de plantas infectadas (diário e acumulado) emdiferentes cultivares de alface no sistema de irrigação por aspersão, comturno de rega diurno (Repetição 1)
Tabela 15 - Número de plantas infectadas (diário e acumulado) emdiferentes cultivares de alface no sistema de irrigação por aspersão, comturno de rega diurno (Repetição 2)
Tabela 16 - Número de plantas infectadas (diário e acumulado) em diferentes cultivares de alface no sistema de irrigação por aspersão, com turno de rega diurno (Repetição 3) 85
Tabela 17 - Número de plantas infectadas (diário e acumulado) em diferentes cultivares de alface no sistema de irrigação por aspersão, com turno de rega noturno (Repetição 1) 86
Tabela 18 - Número de plantas infectadas (diário e acumulado) em diferentes cultivares de alface no sistema de irrigação por aspersão, com turno de rega noturno (Repetição 2) 87
Tabela 19 - Número de plantas infectadas (diário e acumulado) em diferentes cultivares de alface no sistema de irrigação por aspersão, com turno de rega noturno (Repetição 3) 88
Tabela 20 - Número de plantas infectadas (diário e acumulado) em diferentes cultivares de alface no sistema de irrigação tipo float (Repetição 1)
Tabela 21 - Número de plantas infectadas (diário e acumulado) emdiferentes cultivares de alface no sistema de irrigação tipo float(Repetição 2)90
Tabela 22 - Número de plantas infectadas (diário e acumulado) emdiferentes cultivares de alface no sistema de irrigação tipo float(Repetição 3)

ÍNDICE DE FIGURAS CAPÍTULO II

Figura 1 - bandejas apoiadas em vaso de plástico sobre bancadas de 80 cms de largura, a uma altura de 1,20m em relação à superfície do solo 92
Figura 2 – Sistema de irrigação por aspersão 93
Figura 3 - Sistema de irrigação tipo Float 94
Figura 4 - Umidade relativa do ar máxima e mínima (%). Brasília, UnB, 2008 95
Figura 5 - Temperatura máxima e mínima (°C). Brasília, UnB, 2008 96
Figura 6 - Mapas de distribuição espacial e temporal do míldio da alface a partir de um foco de inóculo inicial, com inoculação aos 21 DAP em Brasília, DF, 2007. Cada quadrante representa uma célula da bandeja com uma planta. Os números em cada quadrante representam o dia em que a planta apresentou sinais do patógeno após a inoculação na irrigação diurna - Repetição 197
Figura 7 - Mapas de distribuição espacial e temporal do míldio da alface a partir de um foco de inóculo inicial, com inoculação aos 21 DAP em Brasília, DF, 2007. Cada quadrante representa uma célula da bandeja com uma planta. Os números em cada quadrante representam o dia em que a planta apresentou sinais do patógeno após a inoculação na irrigação noturna - Repetição 1
Figura 8 - Mapas de distribuição espacial e temporal do míldio da alface a partir de um foco de inóculo inicial, com inoculação aos 21 DAP em Brasília, DF, 2007. Cada quadrante representa uma célula da bandeja com uma planta. Os números em cada quadrante representam o dia em que a planta apresentou sinais do patógeno após a inoculação nas irrigações diurna e noturna na Repetição 2
Figura 9 - Mapas de distribuição espacial e temporal do míldio da alface a partir de um foco de inóculo inicial, com inoculação aos 21 DAP em Brasília, DF, 2007. Cada quadrante representa uma célula da bandeja com uma planta. Os números em cada quadrante representam o dia em que a planta apresentou sinais do patógeno após a inoculação nas irrigações diurna e noturna na repetição 3
Figura 10 - Mapas de distribuição espacial e temporal do míldio da alface a partir de um foco de inóculo inicial, com inoculação aos 21 DAP em

Brasília, DF, 2007. Cada quadrante representa uma célula da bandeja com uma planta. Os números em cada quadrante representam o dia em que a planta apresentou sinais do patógeno após a inoculação no sistema float nas repetições 1, 2 e 3
Figura 11 - Distribuição de resíduos em função de dias após o plantio (DAP) dos modelos de progresso Monomolecular, Logístico e Gompertz, na cultivar Tainá infectada pelo míldio em três repetições com irrigação diurna, Brasília, UnB, 2007/2008
Figura 12 - Distribuição de resíduos em função de dias após o plantio (DAP) dos modelos de progresso Monomolecular, Logístico e Gompertz, nas cultivares Vera, Red Frizzly No 2 e Green Frizzly infectadas pelo míldio. Irrigação diurna, repetição 1, Brasília, UnB, 2007/2008
Figura 13 - Distribuição de resíduos em função de dias após o plantio (DAP) dos modelos de progresso Monomolecular, Logístico e Gompertz, nas cultivares Grand Rapids TBR, Verônica e Laurel infectadas pelo míldio. Irrigação diurna, repetição 1, Brasília, UnB, 2007/2008
Figura 14 - Distribuição de resíduos em função de dias após o plantio (DAP) dos modelos de progresso Monomolecular, Logístico e Gompertz na cultivar Elisa infectada pelo míldio em três repetições com irrigação diurna, Brasília, UnB, 2007/2008
Figura 15 - Distribuição de resíduos em função de dias após o plantio (DAP) dos modelos de progresso Monomolecular, Logístico e Gompertz na cultivar Elisa infectada pelo míldio em três repetições com irrigação diurna, Brasília, UnB, 2007/2008
Figura 16 - Distribuição de resíduos em função de dias após o plantio (DAP) dos modelos de progresso Monomolecular, Logístico e Gompertz, na cultivar Tainá infectada pelo míldio em três repetições com irrigação noturna, Brasília, UnB, 2007/2008
Figura 17 - Distribuição de resíduos em função de dias após o plantio (DAP) dos modelos de progresso Monomolecular, Logístico e Gompertz, na cultivar Red Frizzly N°2 infectada pelo míldio em três repetições com irrigação noturna, Brasília, UnB, 2007/2008
Figura 18 - Distribuição de resíduos em função de dias após o plantio (DAP) dos modelos de progresso Monomolecular, Logístico e Gompertz, na cultivar Grand Rapids TBR infectada pelo míldio em três repetições com irrigação noturna, Brasília, UnB, 2007/2008

Figura 19 - Distribuição de resíduos em função de dias após o plantio (DAP) dos modelos de progresso Monomolecular, Logístico e Gompertz, na cultivar Elisa infectada pelo míldio em três repetições com irrigação noturna, Brasília, UnB, 2007/20081	110
Figura 20 - Distribuição de resíduos em função de dias após o plantio (DAP) dos modelos de progresso Monomolecular, Logístico e Gompertz na cultivar Green Frizzly infectada pelo míldio em duas repetições com irrigação noturna, Brasília, UnB, 2007/2008 1	111
Figura 21 - Distribuição de resíduos em função de dias após o plantio (DAP) dos modelos de progresso Monomolecular, Logístico e Gompertz na cultivar Verônica infectada pelo míldio em três repetições com irrigação diurna, Brasília, UnB, 2007/2008 1	112
Figura 22 - Distribuição de resíduos em função de dias após o plantio (DAP) dos modelos de progresso Monomolecular, Logístico e Gompertz na cultivar Laurel infectada pelo míldio em duas repetições com irrigação noturna, Brasília, UnB, 2007/20081	113
Figura 23 - Distribuição de resíduos em função de dias após o plantio (DAP) dos modelos de progresso Monomolecular, Logístico e Gompertz na cultivar Vera infectada pelo míldio com irrigação noturna, Brasília, UnB, 2007/2008 1	114
Figura 24 - Curvas de progresso do míldio da alface nas diferentes cultivares quando utilizado o sistema de irrigação por aspersão, no turno de rega diurno nas repetições 1,2 e 3 1	115
Figura 25 - Curvas de progresso do míldio da alface nas diferentes cultivares quando utilizado o sistema de irrigação por aspersão, no turno de rega noturno nas repetições 1,2 e 3 1	116
Figura 26 - Curvas de progresso do míldio da alface nas diferentes cultivares quando utilizado sistema de irrigação tipo float nas repetições 1,2 e 3 1	117

ANEXOS (CAPÍTULO I E II) ÍNDICE DE TABELAS

Tabela 1 - Comparação do comportamento das diferentes cultivares no estágio 1, quando observado o período de latência	119
Tabela 2 - Comparação do comportamento das diferentes cultivares no estágio 2, quando observado o período de latência	120
Tabela 3 - Comparação do comportamento das diferentes cultivares no estágio 3, quando observado o período de latência	121
Tabela 4 - Comparação do comportamento das diferentes cultivares no estágio 4, quando observado o período de latência	122
Tabela 5 - Comparação do comportamento da cultivar Tainá em diferentes estágios de desenvolvimento, quando observado o período de latência	123
Tabela 6 - Comparação do comportamento da cultivar Elisa em diferentes estágios de desenvolvimento da planta, quando observado o período de latência	124
Tabela 7 - Comparação do comportamento da cultivar Red Frizzly Nº2 em diferentes estágios de desenvolvimento da planta, quando observado o período de latência	12
Tabela 8 - Comparação do comportamento da cultivar Grand Rapids TBR em diferentes estágios de desenvolvimento da planta, quando observado o período de latência	126
Tabela 9 - Comparação do comportamento da cultivar Tainá em diferentes tipos de irrigação quando observadas as AACPD	127
Tabela 10- Comparação do comportamento da cultivar Red Frizzly Nº2 em diferentes tipos de irrigação quando observadas as AACPD	128
Tabela 11- Comparação do comportamento da cultivar Grand RapidsTBR em diferentes tipos de irrigação quando observadas as AACPD	129
Tabela 12 - Comparação do comportamento da cultivar Elisa em diferentes tipos de irrigação quando observadas as AACPD	130
Tabela 13 - Comparação do comportamento da cultivar Elisa em diferentes tipos de irrigação quando observadas as AACPD	13 ²
Tabela 14 - Comparação do comportamento do cultivar Tainá em diferentes tipos de irrigação quando observados o total de plantas infectadas	132

Tabela 15 - Comparação do comportamento do cultivar Red Frizzly Nº2 em diferentes tipos de irrigação quando observados o total de plantas infectadas
Tabela 16 - Comparação do comportamento do cultivar Grand Rapids TBR em diferentes tipos de irrigação quando observados o total de plantas infectadas
Tabela 17 - Comparação do comportamento do cultivar Elisa em diferentes tipos de irrigação quando observados o total de plantas infectadas
Tabela 18 - Comparação do comportamento dos diferentes tipos de irrigação quando observados o total de plantas infectadas
Tabela 19 - Comparação do comportamento do cultivar Tainá emdiferentes tipos de irrigação quando observado o alcance máximo (cms)de disseminação do patógeno
Tabela 20 - Comparação do comportamento do cultivar Red Frizzly Nº2 em diferentes tipos de irrigação quando observado o alcance máximo (cms) de disseminação do patógeno
Tabela 21 - Comparação do comportamento do cultivar Grand RapidsTBR em diferentes tipos de irrigação quando observado o alcancemáximo (cms) de disseminação do patógeno
Tabela 22 - Comparação do comportamento do cultivar Elisa emdiferentes tipos de irrigação quando observado o alcance máximo (cms)de disseminação do patógeno
Tabela 23 - Comparação do comportamento dos diferentes tipos de irrigação quando observado o alcance máximo (cms) de disseminação do patógeno

ANEXOS (CAPÍTULO I E II) ÍNDICE DE FIGURAS

Figura 1 - Alface - Green Frizzly	1
Figura 2 - Alface - Red Frizzly N°2	1
Figura 3 - Alface - Oak Leaf Green Pixie	1
Figura 4 - Alface - Oak Leaf Red Pixie	1
Figura 5 - Alface – Elisa	1
Figura 6 - Alface – Vera	1
Figura 7 - Alface - Tainá	1
Figura 8 - Alface - Laurel	1
Figura 9 - Grand Rapids TBR	1
Figura 10 - Verônica	1
Figura 11 - Chicória - Mariana Gigante	1
Figura 12 - Chicória - Radicchio Chioggia Carmem	1
Figura 13 - Chicória - De Ruffec	1
Figura 14 - Almeirão - Spadona Folhas Verdes	1

CAPÍTULO I

Caracterização morfológica, morfométrica e patogênica e determinação do período de latência do míldio (*Bremia lactucae*) em alface (*Lactuca sativa*)

RESUMO

Sintomas e sinais do míldio foram observados e coletados em plantas de alface (*Lactuca sativa*) no Distrito Federal. Foi observado o estágio assexual do patógeno (*Bremia lactucae*). Descrições detalhadas, com observações morfológicas e medidas morfométricas de microscopia óptica do estágio assexual foram realizadas. A patogenicidade do míldio proveniente do Núcleo Rural da Vargem Bonita e seu período de latência, em quatro diferentes estádios de desenvolvimento de cultivares comerciais de alface foram estudados por inoculação artificial em ensaios realizados na Estação Biológica da Universidade de Brasília.

Quando observado o "ranking" de suscetibilidade das cultivares nos quatro diferentes estádios de desenvolvimento para o período de latência, observou-se diferentes níveis de resistência entre as cultivares. Além disso, observou-se que a resistência parece aumentar com o desenvolvimento fenológico do hospedeiro. O "ranking" relativo das cultivares não foi afetado pelo estádio de desenvolvimento.

ABSTRACT

Symptoms and signs of downy mildew were observed and collected in lettuce plants (*Lactuca sativa*) in Distrito Federal, Brazil. Only the asexual stage of the pathogen (*Bremia lactucae*) was observed. Detailed descriptions, including fungal morphology and morphometrics were performed with light microscopy. The pathogenicity of downy mildew, collected in Núcleo Rural da Vargem Bonita, as well as it latent period in four phenological stages of lettuce

commercial cultivars were studied by artificial inoculation in experiments conducted at Biological Station of University of Brasilia - UnB.

Latent period was useful to separate cultivars by resistance level. In addition, results indicated that genetic resistance to downy mildew in lettuce seems to increase with plant development. The relative ranking of susceptibility among cultivars remained constant in all four phenological stages.

INTRODUÇÃO

Hospedeira

Lactuca é um abundante gênero da família Asteraceae com mais de cem espécies (Ryder e Whitaker, 1976). A alface (Lactuca sativa L.) é uma das mais importantes hortaliças cultivadas no mundo. Também está classificada entre as mais importantes hortaliças no Brasil, tanto em volume como valor comercializado, apresentando ótima aceitação pelo consumidor (Silva et al., 1995). Com uma produção nacional de aproximadamente 321.000 toneladas / ano (IBGE, 1996), e uma aquisição alimentar domiciliar per capita anual de 1,006 kg (IBGE, 2003), sendo que a produção comercializada somente na CEAGESP – SP em 2007 correspondeu a 21.587 toneladas com preço médio de 1,71 R\$/kg (AGRIANUAL 2008).

Gerando emprego para mais de 150.000 pessoas e representa um valor no agronegócio estimado em US\$ 2,1 bilhões (IBGE, 2003), o custo médio na produção da alface (R\$/ha) em 2007 em São Paulo foi de R\$ 8.847 com uma receita de R\$ 9.878 (AGRIANUAL 2008).

Largamente difundida no Brasil, sendo produzida em todo o território nacional, a alface é considerada a hortaliça folhosa mais consumida no país. Apresenta grande aceitação na alimentação humana e constitui-se em uma boa fonte de vitaminas (A1, B1, B2, B5 e C) e sais minerais (Ca, Fe, Mg, P, K e Na) (Menezes *et al.*, 2001; Maroto-Borrego, 1986; e Camargo, 1992).

A planta é originária da Ásia e ao redor do ano 4.500 a.C. já era conhecida no antigo Egito, chegando ao Brasil no século XVI, por meio dos

portugueses. Pertence à família Asteraceae, subfamília *Cichorioideae*, da tribo *Lactuceae* e espécie *Lactuca sativa* L. (Ryder, 1999).

A alface é uma espécie de hortaliça também muito atrativa aos horticultores, porque possui ciclo curto e alta produtividade, além de ser cultivada durante todo o ano, graças à adaptabilidade de suas variedades a diferentes condições climáticas.

Proveniente de clima temperado, o cultivo em locais de temperatura e luminosidade elevada gera obstáculos ao seu desenvolvimento, assim impedindo que expresse todo o seu potencial genético. Entre 21,1 e 26,6 °C, a planta floresce e produz sementes, podendo tolerar alguns dias com temperaturas de 26,6 a 29,4 °C, desde que as temperaturas noturnas sejam baixas. Nestas condições, ocorre redução do ciclo da cultura comprometendo a produção, devido à antecipação da fase produtiva (Setúbal e Silva, 1992).

As variedades de alface foram originadas a partir de formas selvagens que ainda são encontrados na natureza na Europa e na Ásia Ocidental. Seleção de cultivares produziu variedades que agora podem ser cultivadas durante todo o ano em países tropicais e subtropicais, como no Brasil (Filgueira, 2008).

A alface é uma planta herbácea de caule carnoso e esverdeado; folhas simples, flores amareladas, em capítulo, presa em um pequeno caule. Possui propriedades medicinais como: calamante, sonífero, refrigerante, emoliente e laxante. As cultivares comercialmente mais utilizadas estão assim divididas, segundo Filgueira (2008):

a) Tipo Repolhuda-Crespa (Americana)

As folhas são caracteristicamente crespas, bem consistentes com nervuras destacadas, formando uma cabeça compacta. A cultivar típica é a tradicional Great Lakes, da qual há várias seleções. No Distrito Federal a duas cultivares mais utilizadas pelos produtores locais, 'Tainá' e 'Lucy Brown'.

b) Tipo Repolhuda-Manteiga:

Nesta categoria, as folhas são bem lisas, muito delicadas, de coloração verde-amarelada e aspecto amanteigado, formando uma típica cabeça compacta. A cultivar típica é a tradicional White Boston, porém foi substituída por outras cultivares, como 'Brasil 303' e 'Carolina AG-576'.

c) Tipo Solta - Lisa

As folhas são macias, lisas e soltas, não havendo formação de cabeça.

A cultivar tradicional é a Babá de Verão. Atualmente, há diversas cultivares, como 'Elisa', 'Monalisa', 'Luisa' e 'Regina'.

d) Tipo Solta – Crespa

As folhas são bem consistentes, crespas e soltas, não formando cabeça. A cultivar típica é a 'Grand Rapids TBR', porém há cultivares exemplificandose com: 'Red Frizzly N°2', 'Green Frizzly', 'Laurel' (crespa repolhuda), 'Verônica', 'Vera', 'Vanessa', 'Marisa' e 'Solaris'.

e) Tipo Mimosa

As folhas são delicadas e com aspecto "arrepiado". Exemplos são as cultivares 'Oak Leaf Green Pixie', 'Oak Leaf Red Pixie', 'Salad Brown' e 'Greenbowl'.

f) Tipo Romana

Grupo de reduzida importância econômica, por sua pequena aceitação no mercado brasileiro. As folhas são alongadas e consistentes, com nervuras protuberantes, formando cabeças fofas. Sua cultivar tradicional é a 'Romana' 'Branca de Paris' e 'Romana Balão'.

Nos anos 80, o padrão da alface consumida no Brasil era do tipo lisa, porém a alface lisa vem sendo gradativamente substituída por outras e atualmente, o cultivo de alface lisa corresponde a menos de 20% do mercado. A alface crespa tem maior adaptabilidade para o cultivo de verão, em contraste com o tipo lisa, devido principalmente ao pendoamento lento (Costa & Sala, 2005).

A alface está sujeita à ocorrência de diversas doenças. Aproximadamente 75 doenças de origem biótica já foram registradas incidindo sobre a cultura em todo mundo (Lopes & Quezado-Duval, 1998). Entre as principais doenças de ocorrência no Brasil estão assim definidas, segundo Pavan et al., (2005):

Viroses

Mosaico (*Lettuce mosaic vírus* – LMV) causadores de amarelecimento foliar, clareamento das nervuras, má formação e distorção da cabeça, podendo

até levar à morte da planta dependendo da agressividade do isolado e da cultivares de alface;

Vira-cabeça (*Tospovirus*) doença que pode causar manchas necróticas e bronzeamento de folhas internas e das nervuras, presença de anéis necróticos e cloróticos e paralisação generalizada do crescimento da planta.

Bacterioses

Mancha bacteriana (*Pseudomonas cichorii*), doença limitante para o plantio da alface, causa manchas necróticas isoladas no centro ou no bordos do limbo foliar, podendo também atingir extensas áreas da nervura central. No início as lesões apresentam encharcamento e coloração escura, passando, depois, à cor parda a preta, com a seca dos tecidos.

Pectobacterium carotovorum (syn.: Erwinia carotovora), doença que geralmente ocorre em condições de excesso de irrigação e de nutrição desequilibrada das plantas, principalmente com o excesso de nitrogênio que favorece o ferimento dos tecidos e a colonização da bactéria. Em condições de alta umidade e alta temperatura a bactéria causa rápida decomposição aquosa dos tecidos, devido a ação de enzimas pectolíticas que agem na lamela média das células.

Nematoses

Meloidogyne spp. Os nematóides do gênero Meloidogyne podem afetar as plantas de alface provocando a formação de galhas nas raízes. Em geral, não constitui um fator limitante na cultura. Entretanto, em função do local, pode se constituir problema.

Doenças fúngicas

Mancha de Alternária (*Alternaria cichorii*) recentemente descrita no Brasil (Paz Lima *et al.*, 2003), Oídio (*Oidium* sp.) (Freitas, V. et al. (2003), septoriose (*Septoria lactucae*), mancha de cercospora além de damping off e podridão de raízes (*Pythium* spp. e *Rhizoctonia solani*) são doenças de grande importância no cultiva da alface.

Dentre as doenças fúngicas mais importantes encontra-se o mílidio (*Bremia lactucae*). A doença é importante em condições de alta umidade e temperatura amena a baixa, principalmente quando há cerração e orvalho. O fungo é muito sensível ao calor e à baixa umidade do ar, uma vez que essas condições influenciam diretamente na esporulação, germinação e penetração do mesmo nos tecidos da hospedeira, via abertura estomatal. Os sintomas se manifestam inicialmente nas folhas mais velhas com áreas cloróticas de tamanho variável, que mais tarde tornam-se necróticas, de cor parda. Na face inferior das áreas afetadas, formam-se frutificações do fungo de aspecto branco, constituídas de esporangióforos e esporângios.

O míldio é uma doença da alface de distribuição mundial e é tido como um dos piores problemas dessa cultura em casa de vegetação e em campo (Zambolim *et al.*, 2000; Crute, 1991). A doença é particularmente importante em condições ambientais de alta umidade e temperatura amena a baixa, provocando graves prejuízos econômicos aos produtores (Lebeda *et al.*, 2001).

Patógeno

O fungo é muito sensível ao calor e à baixa umidade do ar, uma vez que essas condições influenciam diretamente na esporulação, germinação e penetração do fungo nos tecidos do hospedeiro, via abertura estomatal (Pavan et al., 2005).

O Gênero *Bremia*

O gênero *Bremia* compreende oomicetos da família Peronosporaceae. A espécie *B. lactucae* é um parasita biotrófico que vive nas células vivas do hospedeiro e que só pode ser cultivado em plantas vivas de alface. A existência de dois ciclos reprodutivos, sexual e assexual, permitiram vários estudos genéticos com *B. lactucae*, que na maioria da sua vida útil é diplóide e predominantemente heterotálica (Michelmore & Ingram, 1982).

Embora estes organismos exibam um crescimento filamentoso, análises bioquímicas e filogenéticas o demonstraram que os oomicetos são distintos dos principais grupos fúngicos e estão mais relacionados com algas marrons heterocontas no reino Straminipila (Kamoun, 2002; Sogin & Silberman, 1998). Os oomicetos e fungos patógenos de plantas apresentam semelhantes modos de parasitismo que sugerem uma evolução convergente (Tyler, 2001). Algumas características que compreendem a classificação destes organismos no Reino Straminipila são a produção de esporos assexuais com flagelos heterocontos (tipo tinsel e chicote), denominados zoósporos, produção de esporos sexuais chamados oósporos, constituído de parede celular de glucano-celulose, fase vegetativa diplóide e crista mitocôndrial tubular (Alexopoulos *et al.*, 1996).

Os gêneros da família Peronosporaceae são diferenciados de acordo com o formato dos esporangióforos. O gênero *Bremia* apresenta esporangióforos com estrutura delgada, ramificado dicotomicamente com extremidade em forma de disco contendo esterigmas que suportam os esporângios.

O gênero inclui duas espécies fitopatogênicas de grande importância econômica, relatadas em vários paises. *Bremia*, primariamente, só foi encontrada parasitando membros da família Asteraceae, no entanto, uma espécie do mesmo gênero (*B. graminicola*) é encontrada em gramínea (Poaceae) *Arthraxon* spp. Beauv (Crute & Dixon, 1981).

Bremia graminicola Naoumov: Todos os míldios graminícolas têm uma distribuição principalmente tropical, com o centro de origem localizado na África Central (Spencer & Dick 2002).

Bremia graminicola (Naoumov, 1913) é a única espécie do gênero que não é encontrada em plantas da família Asteraceae. Foi colocada no gênero Bremia, principalmente, devido ao fato dos conidióforos serem ramificados dicotomicamente e possuírem extremidades infladas que suportam múltiplos esterigmas onde se encontram os esporângios quase globulares anexados. Estas características foram consideradas exclusivas para o gênero Bremia.

Recentemente Thines *et al.* (2006), com o estudo de características morfológicas baseadas na morfologia dos esporangióforos e de ultra-estrutura, morfologia dos haustórios, e usando sequenciamento e análise dos nu-LSU (26s) rDNA de *B. graminicola* propuseram a remoção desta espécie do gênero *Bremia* e a criação de um novo gênero *Graminivora* para abrigá-la.

De acordo com Thines *et al.* (2006), os esporangióforos de *B. graminicola* se diferenciam dos de *B. lactucae* por apresentarem curvas proeminentes logo após as ramificações, enquanto que *B. lactucae* tais curvas só podem ser observadas no final das ramificações quando estas estão dilatadas e possuem os esterigmas.

Bremia lactucae Regel: O míldio da alface é causado por um oomiceto (incertae sedis) muito especializado, patógeno obrigatório, pertencente ao Reino Straminipila; Filo: Oomicota; Classe: Oomicetes; Ordem: Peronosporales; Família: Peronosporaceae; Gênero: Bremia; Espécie: B. lactucae.

Como Shaw (1949) indicou, a espécie *Bremia lactucae* foi usado pela primeira vez por Regel (1843) para nomear o estádio assexual, enquanto que oósporo (estádio sexual) foi descrito por Caspary (1855) sob o nome de *Peronospora ganglioniformis. Peronospora ganglioniformis* portanto é sinônimo junior de *Bremia lactucae*.

Gama de hospedeiros e especificidade

De acordo com Crute e Dixon (1981) mais de duzentas espécies de Asteraceae de 36 gêneros foram registradas como hospedeiras de *Bremia*. Os seguintes gêneros foram relatados como hospedeiros de *Bremia*: *Agoseris* Rafin., *Andryala* L., *Arctium* L., (syn. *Lappa* Scop.), *Carduss* L. *Carlina* L., *Carthamus* L., *Cichorium* L., *Cirsium* Mill. (syn. *Barkhausia* Moench.), *Creis* L., (syn. *Lagoseris* Hoff. & Link), *Cynara* L., *Dendroseris* D. don., *Dimorphotheca* Moench., *Erechtites* Rafin., *Gaillardia* Fougeroux, *Helichrysum* Mill., *Hemistepla*

Bunge (syn. Saussurea D.C.), Hieraceum L., Inula L., Krigia Schreb., Lactuca L., Lapsana L. (syn. Lampsana Mill), Launaea Cass., Leontodon L., Mycelis Cass. (syn. Lactuca L.), Onopordum L., Parthenium L., Prenanthes L. (syn. Nabalus Cass.), Picris L. (syn. Helminthia Juss.), Senecio L. (syn. Jacobaea Mill & Cinerária L.), Solidago L., Sonchus L., Taraxacum Weber, Tragopogon L., Venedium Less.

No Brasil, além da alface, o fungo *B. lactucae* foi relatado infectando a alcachofra (*Cynara scolymus* L.) e duas espécies de plantas daninhas, serralha lisa (*Sonchus oleraceus* L.) e serralha de espinho (*Sonchus asper* L.) (Vieira e Barreto, 2006). Espécies de *Sonchus* spp. são as hospedeiras alternativas mais comuns encontradas no Brasil.

Bremia de alface apresenta tipos patogênicos que variam na sua capacidade de parasitar diferentes genótipos de *L. sativa*. Esta variação tem sido descrita para categorizar patótipos como raças fisiológicas (Crute & Davis, 1977).

Morfologia e morfometria de Bremia lactucae Regel

Esta espécie foi descrita por Regel, 1843, em amostras provenientes da Europa.

Bremia lactucae produz esporângios em esporangióforos que possuem de 4 a 6 ramificações dicotômicas, os esporangióforos geralmente medem em torno de 430-990 x 7-16 μ m, terminando em extremidades dilatadas (apófise) em forma de taça, cada uma contendo 4-5 esterigmas onde os esporângios

são formados (Alexopoulos *et al.*, 1996; Vieira & Barreto, 2006). Os esporangióforos são geralmente longos, brancos, podendo ser de cinza a marrom quando mais velhos, emergindo no tecido das plantas através dos estômatos. *Bremia lactucae* forma um visível emaranhado de esporangióforos geralmente na parte abaxial da folha, mas também pode aparecer em ambas superfícies foliares. Os esporangióforos crescem até a maturidade e então os esporângios são produzidos, todos por volta do mesmo tempo (Agrios, 2005).

A penetração dá-se, após enquistamento e germinação do zoósporo, através dos estômatos. No parênquima, o fungo desenvolve um micélio intercelular, que emite haustório globoso e piriforme para o interior das células do hospedeiro. Através da reprodução assexuada, esporangióforos são emitidos para fora do hospedeiro através dos estômatos, produzindo esporângios que serão disseminados pelo vento ou pela água. Estes, novamente na superfície suscetível do hospedeiro e na presença de água, liberam zoósporos, que vão dar origem a infecções secundárias. No final da estação de crescimento, o fungo produz oósporos a partir da fertilização do oogônio pelo anterídio, os quais serão responsáveis pela sobrevivência do fungo durante o inverno (Bergamim Filho, 1995). No entanto, de acordo com Vieira e Barreto (2006), os oósporos de *B. lactucae* ainda não foram encontrados no Brasil, o que sugere que hospedeiros "naturais", como *S. oleraceaus* e *S. asper* (Serralha) são de grande importância para a sobrevivência e infecção primária de míldio em cultivos de alface.

Germinação dos esporângios

Os fatores climáticos são os mais importantes entre os fatores do ambiente que influenciam as doenças de plantas e seu desenvolvimento epidêmico. Dentre os fatores microclimáticos, o mais importante deles é o molhamento foliar, produzido pelo orvalho, nevoeiro, pela chuva e pela irrigação, necessário tanto para infecção quanto para esporulação (Vale *et al.*, 2004). Outro fator importante é a temperatura, que influencia a duração do período de incubação e latência.

Temperatura é um importante fator em todos os processos fisiológicos afetando o crescimento e o desenvolvimento dos patógenos. Por exemplo, taxas de crescimento de fungos, quando plotados contra a temperatura, geralmente seguem uma curva geralmente em forma de sino (Cohen e Yarwood, 1952).

A germinação dos esporos de *B. lactucae* requer água livre e ocorre em temperaturas amenas. Grogan *et al.* (1955) relataram que a temperatura ótima está entre 10 e 15 °C ou, de acordo com Powlesland (1954), de 6 a 11 °C. Já Scherm e Van Bruggen (1993) estudaram a influência da temperatura e do molhamento foliar sobre a infecção em condições controladas e relataram que a infecção ocorre em temperaturas entre 5 e 20°C, com um mínimo de 4 a 8 h de molhamento foliar, respectivamente. Su *et al.* (2004) demonstraram que a temperatura teve um efeito muito significativo na esporulação de *B. lactucae* tendo como máxima esporulação a 15 °C.

Há uma interação significativa entre temperatura e tempo para a germinação dos esporângios, que é favorecido por longos períodos em temperatura ótima (Su *et al.*, 2004).

Dinâmica temporal da doença

Bremia lactucae, agente causal do míldio da alface tem diversos ciclos de infecção do patógeno durante um único ciclo de cultivo do hospedeiro. Doenças que exibem esta característica foram chamadas por Vanderplank (1963) de doenças de juros compostos. Neste caso, considerando que plantas doentes (ou lesões) dão origem a novas plantas doentes (ou novas lesões) no mesmo ciclo da cultura, a velocidade de aumento da doença é proporcional à própria quantidade de doença a cada instante. Assim, se uma lesão der origem a 10 lesões, 10 lesões darão origem a 100 e assim por diante (Bergamin Filho, 1995).

Por ser policíclica, a redução do inóculo inicial tem efeito limitado no desenvolvimento máximo da doença, uma vez que a progressão geométrica de multiplicação de novas infecções resulta em um rápido aumento da doença em sua fase crítica (Vale *et al.*, 2004). Neste caso, a adoção de medidas que reduzem a sua taxa de desenvolvimento é muito mais efetiva.

Teoricamente, a taxa de progresso de epidemias pode ser reduzida pelo manejo do turno de rega, de forma a não prolongar a duração do molhamento foliar; pela freqüência de aplicação de fungicidas; e pelo uso de variedades com resistência horizontal, com maiores períodos de latência, menores taxas de crescimento de lesões e menor produção de esporos por lesão.

Sintomatologia

Plantas em todos os estádios de desenvolvimento são susceptíveis a *B. lactucae*. Freqüentemente a observação dos sintomas e sinais ocorrem concomitantemente. A emersão dos esporangióforos dos estômatos pode ser o primeiro sinal do patógeno. Geralmente as frutificações estão localizadas na parte abaxial das folhas maduras, mas também podem ocorrer na parte adaxial e comumente cobrindo completamente os cotilédones e as folhas primárias (Crute & Dixon, 1981).

A doença pode ser observada desde a fase de mudinhas em bandejas, em plantas adultas no campo e até na pós-colheita.

Os primeiros sintomas do míldio nas folhas mostram-se em forma de manchas angulares, amarelo pálido que são delimitadas pelas nervuras foliares. O tamanho das lesões varia de 0,25 x 0,5 cm a 2 x 4 cm. As primeiras folhas da planta de alface ou as folhas mais velhas próximo ao solo normalmente são as primeiras a mostrarem sintomas. Sob condições favoráveis, a esporulação assexual ocorre de 5 a 14 dias após a infecção, dependendo da condição do ambiente e da concentração do inóculo (Dickinson & Crute, 1974). Na parte abaxial da folha, poderá ser observado sinais do fungo de aspecto cotonoso (branco), uma massa branca de esporangióforos e esporângios. À medida que a doença se desenvolve, a parte adaxial das folhas também pode apresentar sinais do patógeno. Vlasova e Komarovara (1997) categorizaram a localização dos sintomas do míldio da alface da seguinte forma: (1) lesões típicas com esporulações na parte abaxial da folha, (2) lesões

difusas em ambos os lados, (3) lesões grandes, (4) lesões necróticas pequenas e angulares e (5) esporulações abundantes em ambos os lados da folha.

O fungo não só afeta plantas no campo, mas também reduz a qualidade das alfaces, durante o armazenamento e transporte (Koike & Henderson 1997; Powlesland & Brown 1954; Raid & Datnoff 1990; e Yuen & Lorbeer 1983).

Período de latência

Como a variabilidade genética dos míldios é bastante ampla com vários relatos de raças e de adaptações de insensibilidade a fungicidas (Bonnier *et al.* 1994), melhores resultados de controle são alcançados com a combinação de várias práticas de manejo que reduzam a probabilidade de estabelecimento do patógeno nas culturas e na redução das taxas de progresso da doença (Yuen & Lorbeer, 1983).

O período de latência é uma das variáveis epidemiológicas mais importantes, especialmente em doenças monocíclicas. Voehoeff (1960) fez uma série de experimentos em incubação de mudas de alface (cv. Proeftuins Blackpool) com temperatura constante ou com uma pequena variação. Ele observou os períodos latentes mais curtos (4-7 dias) quando as plantas inoculadas foram incubadas a 20-22 °C. O período de latência mais longo (24-34 dias) foi observado quando as plantas foram mantidas a 6 °C.

Embora temperaturas variáveis sejam típicas dos ambientes da maioria dos patógenos de plantas, mesmo assim experimentos com temperaturas constantes são rotineiramente utilizados para determinar parâmetros

epidemiológicos. Vários autores têm questionado a utilidade dos dados que utilizam temperaturas constantes para prever a evolução e flutuação de pragas no campo (Hagstrum, & Hagstrum, 1970 e Woner, 1992). Não foram encontrados na literatura relatos de período de latência de *B. lactucae* em condições normais de cultivo no Brasil.

O objetivo do capítulo I foi descrever as características morfológicas, morfométricas e patogênicas de um isolado de *B. lactucae* do Distrito Federal, determinar o período de latência em cultlivares comerciais e determinar o círculo de hospedeiras cultivadas do patótipo de *B. lactucae* do Núcleo Rural da Vargem Bonita em condições de telado.

MATERIAL E MÉTODOS

O presente estudo foi desenvolvido no Laboratório de Fitopatologia da UnB, em propriedade no Núcleo Rural da Vargem Bonita, Distrito Federal (Chácara 19 – Sr. Mário Ito), e em telado na Estação Experimental de Ciências Biológicas da Universidade de Brasília. A Estação Biológica da UnB situa-se na área urbana do Plano Piloto, às margens do Lago Paranoá na Asa Norte, a uma latitude de 15°44'5.49" S, longitude de 47°53'0.64" O e altitude de 1004m. Os ensaios foram conduzidos durante o período de 17 de Julho de 2007 a 10 de Julho de 2008.

O sistema de irrigação foi composto por uma bomba de 3/4 c.v. e uma linha central com 8 microaspersores por bancada com sistema antigotejo, distanciados uns dos outros em 0,90 m, raio de ação regulável e, a uma altura de 50 centímetros das bandejas. Procederam-se irrigações diárias das plântulas e mudas, durante o período de 2 minutos duas vezes ao dia quando para determinação do período de latência nos diferentes estágios de desenvolvimento da hospedeira.

A temperatura e a umidade relativa foram medidas em termohigrógrafo portátil da marca Qualitäts - Erzeugnis by TFA / Germany, com registro diário.

Obtenção dos isolados, preparação do inóculo e inoculação

Os isolados foram obtidos a partir da lavagem de esporos de mudas infectadas coletadas em plantio comercial no intervalo de 30 a 54 DAP na Chácara 19 no Núcleo Rural da Vargem Bonita – DF a uma latitude de 15°55'59.54"S, longitude de 47°56'11.30"O.

O inóculo de *B. lactucae*, para o teste de período de latência foi preparado de acordo com o método descrito por Alfenas *et al.* (2007). Após a obtenção das mudas infectadas no Núcleo Rural da Vargem Bonita – DF, uma suspensão de esporângios foi obtida através da lavagem das mudas com água destilada e esterilizada e sua concentração foi ajustada com emprego de hemacitômetro (câmara de Neubauer) para 1 x 10⁵ esporângios/ml. Usando pulverizador manual, no final do dia e a uma temperatura amena, as plantas foram inoculadas com a suspensão de esporângios até o ponto de escorrimento.

Micrografia, morfologia e morfometria de Bremia lactucae

Em Julho de 2008, na Vargem Bonita, DF (Figura 3), plantas de alface do cv. Tainá mostrando sintomas do míldio foram coletadas para análise no Laboratório de Fitopatologia da Universidade de Brasília. Foram coletados observados e mesurados esporângios e esporangióforos de lesões velhas e novas presentes em folhas doentes da alface (Figura 4). Micrografia, morfologia e morfometria dos esporângios foram feitas com um microscópio de luz com objetiva de 40x e ocular de 10x ligado ao computador com o software Leica QWin.

Período de latência

O período de latência do míldio foi estudado em quatro diferentes estádios de desenvolvimento vegetativo, em cultivares comerciais de alface, no

período entre 06 de Junho de 2008 e 09 de Julho de 2008 em condições naturais de telado.

A irrigação utilizada foi por aspersão com dois turnos de rega de 2 minutos com vazão regulada para 700ml/min, o primeiro ao meio dia e o segundo no início da noite às 18h00min.

No experimento para observar o período de latência foram selecionadas quatro cultivares com diferentes graus de resistência como uma amostra da variedade de formas morfológicas e fisiológicas presentes nas alfaces cultivadas. Os cultivares selecionados foram: Alface tipo Crespa: Grand Rapids TBR e Red Frizzly nº2 que apresentam folhas recortadas, brilhantes e coloração arroxeada nas bordas; Alface tipo lisa: 'Elisa', que é cultivar líder e padrão de mercado, com plantas de porte grande, cabeças compactas e folhas de coloração verde claro e; Alface tipo Americana: 'Tainá', que é procurada principalmente por empresas de "fast food", devido ao excelente sabor e textura, apresentando alta compacidade e tamanho das cabeças. Figuras das cultivares utilizadas podem ser observadas no anexo (Figuras 2, 5, 7 e 9).

Inoculação

Onze dias após o plantio (DAP) uma bandeja de 128 células semeada com o cultivar de alface Tainá foi levada a uma propriedade, no Núcleo Rural da Vargem Bonita – DF, onde há intenso plantio de alface e uma alta incidência do patógeno em questão (vide Figura 5). Aos 18 DAP foi observada uma completa infecção do patógeno em todas as mudas contidas na bandeja. Esta bandeja serviu como fonte de mudas contaminadas para o Estádio I (mudas: 20 DAP - quatro folhas) e de coleta de esporângios para inoculação das

plantas de alface nos outros três diferentes estádios de desenvolvimento da alface.

Depois da coleta dos esporângios, a concentração da suspensão de esporângios foi ajustada para 1 x 10⁵ esporângios/ml com o emprego de hemacitômetro (Câmara de Neubauer). Este foi feito de acordo com o método descrito por Alfenas *et al.* (2007).

As plantas foram inoculadas em três diferentes estádios de desenvolvimento: Estádio II (transplante: 31 DAP – seis a oito folhas), Estádio III (vegetativo 1: 40 DAP – oito a dez folhas), e Estádio IV (vegetativo 2: 54 DAP – dez a doze folhas).

Após a inoculação, as plantas foram observadas diariamente e o período de latência foi determinado com o aparecimento dos primeiros sinais do patógeno, em dias.

Estádio I: a determinação do período de latência no estádio I foi observado em bandejas de poliestireno expandido com 128 células de 40 mL cada, com substrato Plantmax®. Aos 20 DAP foi feita a substituição, na célula central das bandejas, de uma muda sadia por uma muda da mesma idade da cultivar susceptível Tainá infectada. Esta apresentava abundante esporulação do patógeno, que serviu como foco de inóculo inicial para obtenção do período de latência. Pode-se observar que a infecção das plantas vizinhas à muda transplantada ocorreu do 4º ao 14º dia após o transplantio da muda infectada.

Estádios II, III e IV: nestes estádios, as cultivares foram semeadas em bandejas de poliestireno expandido com 128 células, com substrato Plantmax® para hortaliças, e aos 20 DAP, as mudas foram transplantadas para vasos com capacidade de 1L, com terra esterilizada. As plantas foram adubadas com 15g do formulado NPK 04-14-08.

No estádio I a unidade experimental foi representada por nove plantas com quatro repetições (36 plantas), já nos estádios II, III e IV a unidade experimental foi representada por quatro plantas com quatro repetições (16 plantas).

As plantas foram inoculadas no final da tarde à temperaturas aproximada de 23 °C e umidade relativa de aproximadamente 62 %.

Índice de latência

Para quantificar a severidade da doença foi criado um índice de latência onde foi arbitrada uma nota de acordo com o dia em que a planta apresentou os primeiros sinais do patógeno, de modo que plantas que apresentaram os sinais do fungo mais cedo receberam maiores notas. A primeira planta a apresentar esporulação do patógeno (4º dia após a inoculação) representou 12 pontos enquanto que a última planta a apresentar esporulação (15º dia após a inoculação) recebeu 1 ponto. As notas foram:

12- Plantas que apresentaram sinais do patógeno no 4º dia após a inoculação

11- Plantas que apresentaram sinais do patógeno no 5º dia após a inoculação

10- Plantas que apresentaram sinais do patógeno no 6º dia após a inoculação 09- Plantas que apresentaram sinais do patógeno no 7º dia após a inoculação 08- Plantas que apresentaram sinais do patógeno no 8º dia após a inoculação 07- Plantas que apresentaram sinais do patógeno no 9º dia após a inoculação 06- Plantas que apresentaram sinais do patógeno no 10º dia após a inoculação 05- Plantas que apresentaram sinais do patógeno no 11º dia após a inoculação 04- Plantas que apresentaram sinais do patógeno no 12º dia após a inoculação 03- Plantas que apresentaram sinais do patógeno no 13º dia após a inoculação 02- Plantas que apresentaram sinais do patógeno no 14º dia após a inoculação 01- Plantas que apresentaram sinais do patógeno no 15º dia após a inoculação 01- Plantas que apresentaram sinais do patógeno no 15º dia após a inoculação 0 delineamento experimental utilizado foi inteiramente casualizado com

O delineamento experimental utilizado foi inteiramente casualizado com quatro repetições. Cada parcela foi constituída de 9 plantas para o estádio I e de 4 plantas para os estádios II, III e IV.

Os resultados foram comparados por análise de variância e as médias separadas pelo teste de Tukey (α = 0,05).

Determinação do Círculo de Hospedeiras Cultivadas do patótipo de *B. lactucae* do Núcleo Rural da Vargem Bonita – DF

A suscetibilidade da alface, chicória e almeirão foram observadas em dez cultivares de alface dos grupos: americana, crespa, lisa e mimosa; três de

chicória dos grupos: crespa, lisa e repolhuda e; uma cultivar de almeirão. O experimento foi conduzido em bandejas de poliestireno expandido de 128 células combinadas duas a duas de forma a se obter um conjunto de 256 células por cultivar, com duas repetições. Aos 21 dias após o plantio (DAP) foi feita a substituição, na célula central do conjunto de bandejas, de uma muda sadia por uma muda da mesma idade da cultivar susceptível Tainá infectada e apresentando abundante esporulação do patógeno, que serviu como foco de inóculo inicial. Dos 26 aos 34 DAP foram observados os sintomas do míldio nas mudas. As plantas que apresentaram sintomas foram consideradas hospedeiras do patótipo de *B. lactucae* da Vargem Bonita, enquanto que as que não apresentaram sintomas foram consideradas não-hospedeiras.

RESULTADOS E DISCUSSÃO

Morfologia e morfometria de Bremia lactucae

Usando o software Leica QWin para mensuração de *Bremia lactucae* coletados foi observada a fase assexuada do fungo, única fase reprodutiva encontrada no Brasil (Vieira & Barreto, 2006).

Pode-se observar uma boa conformidade do patótipo coletado no Núcleo Rural da Vargem Bonita quando comparado com as descrições de Fisher (1892), Ling & Tai (1945) e Savulescu (1962). Já quando comparado com uma possível variante da espécie relatada por Vieira & Barreto (2006), o isolado da Vargem Bonita tem esporangióforos com dimensões bem menores (Tabela 1). O míldio encontrado no Distrito Federal produz esporângios cilíndricos em esporangióforos que possuem de 6 a 10 ramificações dicotômicas ou tricotômicas (Figuras 6a e 6b), esporangióforos com dimensões médias de 280-485 x 8-12 μm, terminando em extremidades dilatadas em forma de taça (apófises – Figura 7). Cada apófise continha de 4 a 5 esterigmas (Figura 7), onde os esporângios, que medem em torno de 15-17 μm de diâmetro, são formados.

Períodos de latência

Os sintomas do míldio em cultivares da alface, no estádio I, foram observados a partir do 24º dia após o plantio (DAP) e do 4º dia após o transplantio da muda infectada (4 DAI) quando as plantas apresentavam 4 folhas. De acordo com o teste de Tukey a 5% de probabilidade, as diferentes cultivares não apresentaram diferença significativa entre si no estádio I,

indicando que, todas as variedades são igualmente susceptíveis no estádio inicial de desenvolvimento (mudinhas).

Já no estádio II (transplante), os sintomas foram observados a partir do 31º DAP, quando as plantas apresentavam de 6 a 8 folhas, e 4 DAI. De acordo com o teste de Tukey a 5% as diferentes cultivares apresentaram diferença significativa entre si no estádio II indicando diferenças de susceptibilidade ao míldio neste estádio de desenvolvimento.

Os sintomas do míldio nas plantas da alface, no estádio III e IV, quando as plantas apresentavam de 8 a 10 folhas (plantas com 40 dias) e 10 a 12 folhas (plantas com 54 dias) respectivamente, e aos 4 e 5 DAI respectivamente. Estes resultados sugerem, de acordo com o teste de Tukey a 5%, que as diferentes cultivares não apresentaram diferenças entre si nos estádios III e IV.

Quando observado o "ranking" de suscetibilidade das cultivares nos quatro diferentes estádios de desenvolvimento, as cultivares comportaram-se da mesma forma independente do estádio de desenvolvimento (Tukey, 5%, Tabela 2). No entanto, ao observar as médias gerais na Tabela 2, as mudas de alface parecem ser mais susceptíveis ao patógeno quando comparadas aos estádios mais avançados de desenvolvimento das cultivares. Esta tendência também é observada na Figura 8 para todas as cultivares testadas, o que indica que: quanto mais avançado o estádio de desenvolvimento (até o estádio IV) das cultivares de alface, maior a sua resistência em relação ao patógeno.

No interior do telado, foram registradas, ao longo do experimento, médias de temperatura máxima de 28,8 °C e mínima de 11,4 °C com máximas e mínimas de 34,6 °C e 8,1 °C respectivamente e médias de umidade relativa

máxima de 87% e mínima de 40% com máxima e mínima e 91% e 34% respectivamente (Figuras 1 e 2). Embora as temperaturas máximas sejam muito elevadas para o desenvolvimento da doença, as temperaturas mínimas registradas no telado ficaram na faixa ótima para o patógeno (Scherm & Van Bruggen,1993).

Determinação do Círculo de Hospedeiras Cultivadas do patótipo de *B. lactuca*e do Núcleo Rural da Vargem Bonita – DF

Dos 26 aos 34 DAP foram observados os sintomas do míldio nas mudas de forma agrupada no centro das bandejas (padrão espacial agregado), próximas ao inóculo inicial, com quase nenhuma ocorrência nas bordas. Os grupos de alface crespa (cvs. Red Frizzly Nº 2, Green Frizzly, Verônica, Vera, repolhuda Laurel e Grand Rapids TBR), lisa (cv. Elisa) e americana (cv. Tainá) mostraram serem susceptíveis ao míldio, todas apresentaram altos índices de contaminação, com grande taxa de dispersão espacial do patógeno nas bandejas.

As alfaces do grupo mimosa (cvs. Oak Leaf Green Pixie e Oak Leaf Red Pixie), as chicórias 'De Ruffec', 'Mariana Gigante' e 'Radicchio Chioggia Carmem' e o almeirão 'Spadona Folhas Verdes' não apresentaram nenhum sinal da presença do patógeno em nenhuma das repetições, mostrando-se assim, serem imunes as raças do míldio presentes no Núcleo Rural da Vargem Bonita - DF.

Os resultados obtidos demonstram que as cultivares de alface do grupo mimosa (cvs. Oak Leaf Green Pixie e Oak Leaf Red Pixie) apresentaram

resistência vertical ao patógeno, e que provavelmente essa resistência é dada à presença de genes resistência (Dm genes). Conforme a literatura, até o momento, pelo menos 20 Dm genes ou fator-R foram introduzidos em cultivares de alface, assim como, genes complementares de virulência foram identificados no patógeno (Lebeda & Zinkernagel, 2003). Até o inicio da década mais de 40 Dm genes já eram conhecidos (Farrara et al., 1987; Michelmore et al., 2003). Isso indica que estudos para diagnosticar os genes que proporcionam a resistência vertical dessas cultivares podem indicar uma forma de controle ao patógeno em cultivares susceptíveis. Outra possível fonte de resistência para cultivares comerciais de alface são os genes de resistência de Chichorium (almeirão e chicória), ainda desconhecidos.

LITERATURA CITADA

- AGRIANUAL. 2008. Anuário Estatístico da Agricultura Brasileira. São Paulo: FNP Consultoria & Comércio.
- AGRIOS, G. N. 2005. Plant Pathology. 5th edition, San Diego, Academic Press, 427p.
- ALEXOPOULOS, C.J., MIMS, C.W. & BLACKWELL, M. 1996. Introductory Mycology. 4th ed. New York. Wiley & Sons. 723-726.
- ALFENAS, A. C.; ZAUZA, E. A. V.; MAFIA, R. G. 2007. Produção, determinação e Calibração da Concentração de Inóculo em Suspensão. In: ALFENAS, A.C.; MAFIA, R.G.. (Org.). Métodos em Fitopatologia. VIÇOSA, MG: EDITORA UFV, p. 103-116.
- BERGAMIN FILHO, A. In: BERGAMIN FILHO, A.; KIMATI, H.; AMORIM, L. 1995. Manual de Fitopatologia: Princípios e Conceitos. 3. ed. São Paulo: Agronômica Ceres, v.1, p. 63-64.
- BERGAMIN FILHO, A. In: BERGAMIN FILHO, A.; KIMATI, H.; AMORIM, L. 1995. Manual de Fitopatologia: Princípios e Conceitos. 3. ed. São Paulo: Agronômica Ceres, v.1, p.574-601.
- BONNIER, F.J.M.; REININK, K.; GROENWOLD, R. 1994. Genetic analysis of Lactuca accessions with new major gene resistance to lettuce downy mildew. *Phytopathology*, 84: 462–468
- CAMARGO, L.S. 1992. As Hortaliças e seu Cultivo. 3.ed. Campinas: Fundação Cargill, 252p.

- CASPARY, R. MONATSBER. 1855. Preuss. Akad. Wissensch, z, Berlin, 308-331.
- COHEN, M. & YARWOOD, C. E. 1952. Temperature response of fungi as straight line transformation. Plant Physiol. 27:634-638.
- COSTA, C. P. & SALA, F.C. 2005. A evolução da alfacicultura brasileira.

 Horticultura Brasileira 23 (1): Artigo de Capa.
- CRUTE, I. R. 1991. Downy mildew of lettuce. In: MUKHOPADHYAY, H. S., H. S. CHAUBE, J. KUMAR & U. S. Singh (eds), Plant Diseases of International Importance, Vol. II, pp. 165–185, Prentice Hall, NJ, USA.
- CRUTE, I.R. & DAVIS, A. A. 1977. Specificity of *Bremia lactucae* from *Lactuca sativa*. Transactions of the British Mycological Society 69: 405-410.
- CRUTE, I.R. & DIXON, G.R. 1981. Downy mildew diseases caused by the genus *Bremia* Regel. In The Downy Mildew. Edited by D. M. Spencer. Academic Press, London. pp. 421–459.
- DICKINSON, C. H. & CRUTE, I. R. 1974. The influence of seedling age and development on the infection of lettuce by *Bremia lactucae*. Annals of Applied Biology. 76, 49-61.
- FARRARA, B.F., ILOTT, T.W. & MICHELMORE, R.W. 1987. Genetic analysis of factors for resistance to downy mildew (*Bremia lactucae*) in species of lettuce (*Lactuca sativa* and *L. serriola*). *Plant Pathol.* 36: p. 499–514.

- FILGUEIRA F.A.R. 2008. Novo Manual de Olericultura: Agrotecnologia Moderna na Produção e Comercialização de Hortaliças. Universidade Federal de Viçosa, UFV, Ed. UFV, 300-306p.
- FREITAS, V.M., PEREIRA NETO, J.P., PEREIRA, RITA C., CHAVES RENATA C., ARMANDO, E. A.S., MARTINS, D.M.S., CAFÉ FILHO, A.C. & UESUGUI, C. 2003. Ocorrência de oídio em alface no Distrito Federal. Fitopatologia Brasileira 28: S209. (Resumo).
- GROGAN, R. G.; SNYDER, E. C.; & BARDIN, R. 1955. Diseases of lettuce.

 California Agricultural Experiment Station, Circular 448:14-15.
- HAGSTRUM, D. W. & HAGSTRUM, W. R. 1970. A simple device for producing fluctuation temperatures, with an evaluation of the ecological significance of fluctuating temperatures. Annals of the Entomological Society of America. 63:1385-1389.
- IBGE, http://WWW.IBGE.GOV.BR/, 1996.
- IBGE, Diretoria de Pesquisas, Coordenação de Índices de Preços, Pesquisa de Orcamentos Familiares 2002-2003.
- KAMOUN, S., DONG, S., HAMADA, W., HUITEMA, E., KINNEY, D., MORGAN, W.R., STYER, A., TESTA, A., & TORTO, T.A. 2002. From sequence to phenotype: functional genomics of *Phytophthora*. Canadian Journal Plant Pathology. 24, 6–9.
- KOIKE, S., & HENDERSON, D. 1997. Implementation of a downy mildew prediction model. Annual Report of the California Iceberg Lettuce Advisory Board Research Program, Davis, California.

- LEBEDA A.; Pink DAC.; MIESLEROVA B. 2001. Host-parasite specificity and defense variability in the *Lactuca* spp.—*Bremia lactucae* pathosystem.

 Jornal of Plant Patholology 83:25–35.
- LEBEDA A, ZINKERNAGEL V. 2003. Characterization of new highly virulent German isolates of *Bremia lactucae* and efficiency of resistance in wild *Lactuca* spp. germplasm. Journal of Phytopathology 151, 274–82.
- LOPES, C. A.; QUEZADO-DUVAL, A.M. 1998. Doenças da Alface. Brasília: EMBRAPA HORTALIÇAS, 18p. (Circular técnica, 14)
- MAROTO-BORREGO, J.V. 1986. Horticultura: herbácea especial. 2.ed. Madri: Mundi-Prensa, 590p.
- MENEZES, N. L.; SANTOS, O. S.; & SCHMIDT, D. 2001. Lettuce seed production in hydroponic system. Cienc. Rural [online], vol. 31, no. 4 [cited 2008-03-31], pp. 705-706.
- MICHELMORE, R.W. & INGRAM, D.S. 1982. Secondary homothallism in Bremia lactucae. Transactions of the British Mycological Society. 78, p. 1–9.
- MICHELMORE, R.W. & SANSOME, E.R. 1982. Cytological studies of heterothallism and secondary homothallism in *Bremia lactucae*.

 Transactions of the British Mycological Society. 79, p. 291–297.

- MICHELMORE RW, OCHOA OE, TRUCO MJ & RYDER EJ. 2003. Breeding crisphead lettuce. California Lettuce Research Board, Salinas, CA, USA, 47–56.
- NAUMOV N. 1913. Matériaux pour la Flore mycologique de la Russie. Bulletin del la Sociiété Mycologique de France 29: 273–278.
- PAVAN, M. A., KRAUSE-SAKATE R, & KUROSAWA C. 2005. Doenças da Alface. In: Kimati H., Amorim L., Filho A.B.; Camargo L.E.A., Rezende J.A.M.; (Eds) Manual de Fitopatologia. Doenças de plantas cultivadas, Vol. 2, São Paulo, Brasil, Editora Agronômica Ceres, p. 27-35.
- PAZ LIMA, M.L., REIS, A. & LOPES, C.A. 2003. Patogenicidade de *Alternaria* cichorii sobre espécies da família Asteraceae no Brasil. Fitopatologia Brasileira: 28: 682-685.
- PINK, D.A.C. 2002. Strategies using genes for non-durable disease resistance. Euphytica 124: 227–236.
- POWLESLAND, R., & BROWN, W. 1954. The fungicidal control of lettuce downy mildew caused by *Bremia lactucae*. Annals of Applied Biology. 41: 461–469.
- POWLESLAND, R. 1954. On the biology of *Bremia lactucae*. Transactions of the British Mycological Society. 37:362-371.
- RAID, R.N., & DATNOFF, L.E. 1990. Loss of the EBDC fungicides: impact on control of downy mildew of lettuce. Plant Dis. 74: 829–831.

- REGEL E. 1843. Beiträge zur Kenntnis einiger Blattpilze. Botanische Zeitung 1: 665–667.
- RYDER, E. J.; WHITAKER, T.N. Lettuce. 1976. In: Evolution of crop plants.

 New York: Longman Group Limited, Ed. N.E. Simmonds, p. 39-41.
- RYDER, E. J. 1999. Crop Production in Horticulture: Lettuce, Endive and Chicory. US Department of Agriculture, Agricultural Research Service. Salinas, California, USA. 208 p.
- SCHERM, H., & VAN BRUGGEN, A.H.C. 1993. Response surface models for germination and infection of *Bremia lactucae*, the fungus causing downy mildew of lettuce. Ecological Modelling. 65: 281–296.
- SETÚBAL, J.W.; SILVA, A.M.R. 1992. Avaliação do comportamento de alface de verão em condições de calor no município de Teresina-Pi. Horticultura Brasileira, Brasília, v. 10, n. 1, p. 69, (Resumo 127).
- SHALL, C.G. (1949). Mycologia 41, 326.
- SILVA, A.C.F.; REBELO, J.A.; & MÜLLER, J.J.V. 1995. Produção de sementes de alface em pequena escala. Agropecuária Catarinense, Florianópolis, v. 8, n. 1, p. 41-44.
- SPENCER MA & DICK MW. 2002. Aspects of graminicolous downy mildew biology: perspectives for tropical plant pathology and Peronosporomycetes phylogeny. In: Watling R, Frankland JC, Ainsworth AM, Robinson CH (Eds), Tropical Mycology. Micromycetes, vol. 2. CABI publishing, Wallingford, UK, pp. 63–81.

- SOGIN, M.L. & SILBERMAN, J.D. 1998. Evolution of the protists and protistan parasites from the perspective of molecular systematics. International Journal for Parasitology. 28, 11–20.
- SU, H., VAN BRUGGEN, A.H.C.; SUBBARAO, K.V & SCHERM, H. 2004.

 Sporulation of *Bremia lactucae* affected by temperature, relative humidity, and wind in controlled conditions. Phytopathology, 94:396-401.
- THINES, M. GÖKER, O. SPRING & F. OBERWINKLER. 2006. A revision of Bremia graminicola, Mycological Research 110, p. 646–656.
- TYLER, B.M., FORSTER, H., COFFEY, M.D. 1995. Inheritance of avirulence factors and restriction fragment length polymorphism markers in outcrosses of the oomycete *Phytophthora sojae*. Mol. Plant– Microbe Interact. 8, 515–523.
- VALE, F.X.R.; JESUS Jr, W.C.; LIBERATO, J.R.; SOUZA, C.A. 2004. Natureza das epidemias. In: VALE, F.X.R.; JESUS Jr, W.C.; ZAMBOLIM, L. Epidemiologia aplicada ao manejo de doenças de plantas, p. 21-46.
- VANDERPLANK, J. E. 1963. Plant Diseases: Epidemics and Control. New York, 349p.
- VLASOVA, E. A. & KOMAROVARA, A. 1997. Trudy Prikl. Bot. Genet. Selek. 61, 130-142.
- VIEIRA, B. S. & BARRETO, R. W. 2006. First record of *Bremia lactucae* infecting *Sonchus oleraceus* and *Sonchus asper* in Brazil and its infectivity to lettuce. Journal of Phytopathology 154 (2), p. 84–87.

- VOEHOEFF, K. 1960. On the parasitism of *Bremia lactucae* Regel on lettuce.

 Tijdschr. Planteziekten 66:133-204
- WONER, S. P. 1992. Performance of phenological model under variable temperature regimes: Consequences of the Kaufmann or rate summation effect. Environmental Entomological. 21:689-699.
- YUEN, J.E., & LORBEER, J.W. 1983. Metalaxyl controls downy mildew and supplements horizontal resistance to *Bremia lactucae* in lettuce grown on organic soil in New York. Plant Dis. 67: 615–618.
- ZAMBOLIM L, DO VALE FXR, COSTA H. 2000. Controle de Doenças de Plantas Hortaliças, Vol. 1. Viçosa, Brasil, Editora Viçosa, UFV.

Tabela 1 - Comparação morfológia de *Bremia lactucae* Regel

	E	sporangióforo	Esporângio	Esterigmas	
	Comprimento			Diamétro	
	(µm)	Largura (µm)	Ramificações	(µm)	Quantidade
Fischer (1892)	240 - 400	8 - 10	-	17	-
Ling & Tai (1945)	275 - 610	8 - 15	-	10 - 24	-
Savulescu (1962) Vieira & Barreto	225 - 510	7 - 12	-	15 - 22	-
(2006)	430 - 990	7 - 16	-	14 - 25	4 - 5
TESE	280 - 485	8 - 12	6 - 10	15 - 17	4 - 5

Tabela 2 - Índice de latência médio das diferentes cultivares da alface em diferentes estádios de desenvolvimento

	Estádio I	Estádio II	Estádio III	Estádio IV
Tainá	3,83 a A	2,47 a A	2,52 a A	1,35 a A
Elisa	3,08 a A	3,31 b A	2,18 a A	2,25 a A
Red Frizzly N°2	4,33 a A	2,70 ab A	2,17 a A	1,98 a A
Grand Rapids TBR	3,81 a A	2,21 a c A	1,46 a A	1,65 a A
Médias	3,76 A	2,67 B	2,08 B	1,81 B

Médias seguidas de mesma letra minúscula nas colunas e maiúsculas nas linhas não diferem entre si, de acordo com o teste de Tukey a 5% de probabilidade

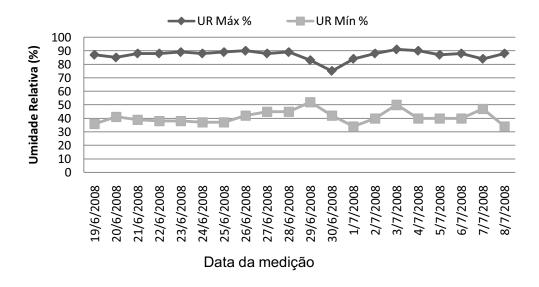


Figura 1 - Umidade relativa do ar máxima e mínima (%). Brasília, UnB, 2008.

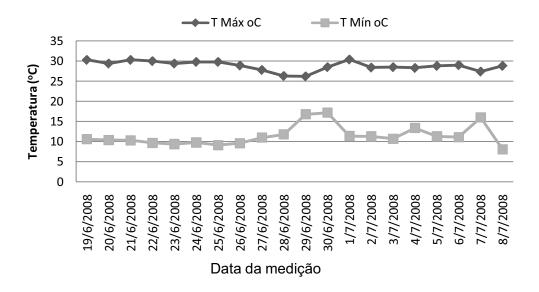
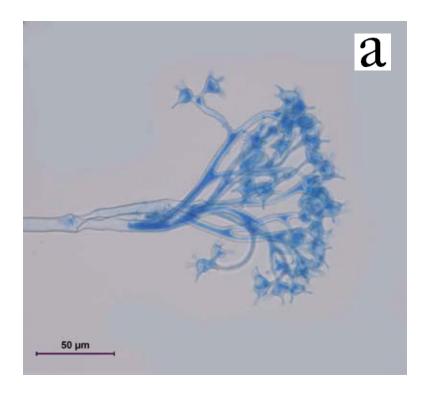
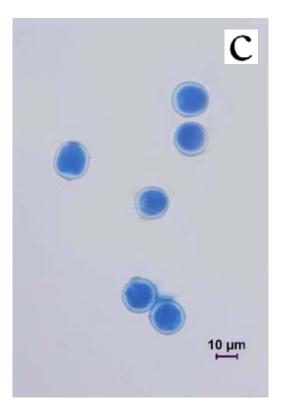
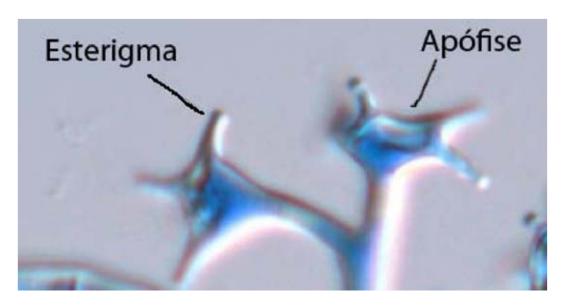


Figura 2 - Temperatura máxima e mínima (°C). Brasília, UnB, 2008.


Figura 3 - Viveiro de mudas de alface, no Núcleo Rural da Vargem Bonita – DF




Figura 4 - Sintomas e sinais do míldio nas folhas da alface


Figura 5 - Bandeja de 128 células semeada com a cultivar de alface Tainá para obtenção de inóculo inicial em uma propriedade no Núcleo Rural da Vargem Bonita - DF

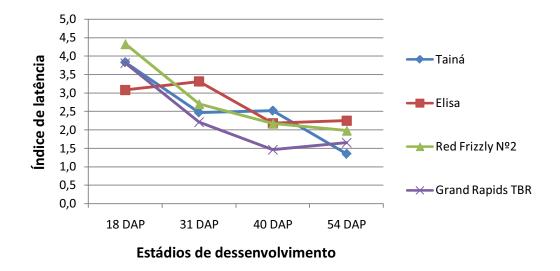


Figura 6 – Estruturas do fungo *Bremia lactucae* – a- Esporangióforo com ramificação dicotômica; b- Esporangióforo com ramificação tricotômica; c- esporângios

Figura 7 – Esterigmas e apófises de *Bremia lactucae*, agente causal do míldio da alface.

Figura 8 - Índice de latência médio das diferentes cultivares da alface em diferentes estádios de desenvolvimento

CAPÍTULO II

Influência do turno e do sistema de irrigação na severidade do míldio da alface em viveiro

RESUMO

O progresso temporal e a distribuição espacial do míldio da alface foram estudados em ensaios em telado com a inoculação de *Bremia lactucae* em foco pontual. Para o estudo do progresso da doença e do padrão de distribuição espacial foram utilizadas 10 cultivares de alface. Foram utilizadas bandejas de poliestireno expandido de 128 células colocadas duas a duas de forma a se obter um conjunto de 256 células para cada cultivar e nenhuma medida de controle químico foi utilizada após a inoculação. Para obtenção das curvas de progresso da doença, quantificou-se o número de plantas infectadas, dos 26 aos 34 dias após o plantio (DAP), o que correspondeu dos 4 aos 12 dias após a inoculação (DAI).

Com base na melhor distribuição de resíduos e no maior coeficiente de determinação ajustado (R*²), o modelo de Gompertz apresentou o melhor ajuste às curvas observadas de progresso do míldio da alface, quando também observados os modelos Monomolecular e Logístico. Com relação ao padrão de distribuição espacial nas análises de Ordinary Runs e Doublet, foi encontrado que o míldio da alface teve incidência com padrão agregado de disseminação em sementeira.

ABSTRACT

The temporal progress and the spatial distribution of lettuce downy mildew were studied in the screenhouse following point-source inoculations of *Bremia lactucae*. Ten lettuce cultivars were used for the study of disease progress and spatial distribution analysis. Combined expanded polystyrene

trays with 256 planting cells were used for each cultivar and no control measures were employed after plot infestation. Disease progress curves were obtained by counting the number of infected plants from 26 to 34 days after planting (DAP), which corresponded to 4 to 12 days after inoculation.

Based on best fit analysis, including distribution of residues and the determination of the adjusted coefficient of determination (R*2), the Gompertz model was the most appropriate for describing lettuce downy mildew disease progress in the seedling stage, compared to the Logistic or the Monomolecular models. Ordinary Runs analysis and Doublet analysis indicated an aggregated distribution pattern in the greenhouse.

INTRODUÇÃO

Irrigação

Existe um estreito relacionamento entre a ocorrência das doenças e a forma de aplicação da água. Via de regra, as doenças da parte aérea são mais favorecidas pelos sistemas de irrigação por aspersão, pois, especialmente em regime de alta freqüência, a aspersão favorece condições de elevada umidade na folhagem (Lopes *et al.*, 2006; Marouelli, 2004).

Irrigação por aspersão

A aspersão é o método de irrigação em que a água é aplicada sob forma de precipitação, resultante da fragmentação de um jato lançado sob pressão no ar atmosférico (Scaloppi, 1986), ou seja, método em que a água é aspergida sobre a superfície do terreno, assemelhando-se a uma chuva (Bernardo *et. al.* 2008).

Sementeiras e culturas mais tenras somente podem ser irrigadas por aspersão, com pequena intensidade de aplicação, ou seja, abaixo de 5 mm/hora ou irrigação localizada.

Outro ponto que deve ser considerado é a incidência de doenças, lembrando-se que a irrigação por aspersão, periodicamente, lava as folhas da cultura e aumenta a umidade relativa do ar em volta dela, proporcionando, em vários casos de doenças foliares, um ambiente favorável ao surgimento de doenças (Lopes et al., 2006; Bernardo et. al. 2008).

Sistema float

O sistema de irrigação de bandejas flutuantes (sistema tipo Float) é feito em bandejas de poliestireno expandido com substrato mantido sobre uma fina lâmina de água. Esse método já vem sendo utilizado principalmente pela fumicultura nacional abrangendo mais de 90% da área produtiva de mudas de fumo no Rio Grande do Sul (Anuário Brasileiro do Fumo, 2003). Este sistema permite a completa eliminação da etapa de fumigação, como com Brometo de Metila, reduz a necessidade de defensivos agrícolas, elimina a necessidade de controle de lesmas, dispensa a irrigação, resulta em lavouras mais uniformes e produtivas e proporciona condições mais confortáveis para o trabalho do agricultor (Souza Cruz, 1998).

Análise espacial e temporal de epidemias

A análise espacial e temporal de doenças de plantas já foi realizada em diversos patossistemas (Bergamin Filho et al., 1995). Esses estudos permitem um melhor entendimento dos processos epidêmicos e podem levar a um melhor entendimento dos patossistemas e auxiliar no manejo das doenças, como o míldio da alface (Su et al., 2004).

Os modelos de progresso temporal e seus respectivos parâmetros são ferramentas úteis para se comparar epidemias e se distinguir variedades, técnicas de manejo, bem como gerar modelos de previsão e auxiliar na quantificação de danos e perdas (Bergamim Filho, 1995).

A dispersão espacial de patógenos e o resultante padrão espacial da doença são determinados pelos mecanismos de dispersão do patógeno e da

doença, respectivamente (McCartney & Fitt, 1998). Tais padrões guardam estreita relação com os mecanismos de dispersão. Assim, um padrão espacial ao acaso de plantas doentes relaciona-se geralmente a patógenos dispersados pelo vento, enquanto que patógenos veiculados por respingos de chuva ou de irrigação costumam dar origem a padrões agregados de plantas doentes. A natureza, no entanto, raramente é tão simples assim e a maioria das doenças possui mais de um mecanismo de dispersão (Bergamin Filho et al., 2004). A dispersão em condições particulares, como em sementeiras em casa de vegetação e em escalas espaciais reduzidas é ainda mais raramente estudada.

Os padrões espaciais de doenças originam-se das interações de fatores físicos, químicos e biológicos que influenciam os processos de dispersão e infecção (Taylor, 1984).

Em uma linha de plantio ou numa parcela o padrão espacial pode ser ao acaso ou agregado. Padrão ao acaso em doenças cujos patógenos são veiculados pelo ar significa que a probabilidade de um esporo cair sobre uma planta hospedeira é igual para todas as plantas hospedeiras, seja a fonte de inóculo na mesma planta ou nas vizinhas próximas. Assim, a ocorrência da doença não é influenciada pela distância até a fonte de inóculo. Padrão espacial ao acaso está diretamente relacionado a iguais oportunidades de infecção (Bergamin Filho et al., 2004), diferentemente do que ocorre no padrão espacial agregado, onde a chance de infecção de plantas próximas é muito maior.

Esses estudos ainda não foram desenvolvidos nas condições ambientais e com cultivares de alface prevalentes no Brasil, no campo ou em sementeira. Entretanto, níveis elevados de infecção são observados em sementeiras, como

por exemplo, no Núcleo Rural da Vargem Bonita em Brasília, DF durante a maior parte do ano.

O objetivo do capítulo II foi descrever a Influência do turno e do sistema de irrigação na severidade do míldio (*Bremia lactucae*) em cultivares de alface com diferentes níveis de suscetibilidade ao míldio e descrever a distribuição temporal e espacial do míldio em sementeira.

MATERIAL E MÉTODOS

O efeito das práticas de irrigação e da resistência genética do hospedeiro na dinâmica temporal e espacial do míldio da alface foi estimado utilizando 10 cultivares de alface, 2 turnos de rega e 2 sistemas de irrigação em sementeiras em telado. As cultivares utilizadas encontram-se na Tabela 1.

Os experimentos foram conduzidos em condições de telado em bandejas de poliestireno expandido de 128 células com 6,2 cm de altura e capacidade de 34,6 cm³ de volume de substrato, colocadas duas a duas de forma a se obter um conjunto de 256 células para cada cultivar, sustentadas por bancadas a uma altura de 80 cm em relação à superfície do solo, as quais permitiram o perfeito nivelamento das bandejas, garantindo o uniforme suprimento de água às plântulas. Decorridos 6 dias após a semeadura foi feito o desbaste, deixando apenas uma planta por célula. Os experimentos seguiram delineamento inteiramente casualizado, em 3 repetições no tempo, 10 tratamentos para cultivares e 3 tratamentos para práticas de irrigação (aspersão diurna, aspersão noturna e sistema float).

Sistema de irrigação por aspersão

No sistema de irrigação por aspersão, as bandejas permaneceram apoiadas em vasos plásticos de 40cm de altura (Figura 1) sobre bancadas de 80cm de largura, a uma altura de 1,20m em relação à superfície do solo, sendo irrigadas por um sistema de microaspersores (Figura 2) com vazão regulada para 700ml/min, em dois tratamentos distintos: (a) irrigação às 9:00h da manhã (irrigação diurna) de forma a favorecer um menor tempo de molhamento

foliar, pois a irrigação é seguida por um período mais quente do dia, e o outro (b) às 17:45h da tarde (irrigação noturna) para que pudesse obter um maior tempo de molhamento foliar (temperaturas mais amenas após a irrigação). O período de irrigação foi uniformizado para 2 minutos por turno de rega e os turnos de rega foram diários.

Para análise estatística foi calculada a área abaixo da curva de progresso da doença (AACPD) (Campbell & Madden, 1990; Jesus Jr. et al. 2004) e em seguida foi feita análise de variância, teste de média e correlação dos dados.

Sistema de irrigação tipo float (floating)

O sistema de irrigação de bandejas flutuantes (float) foi montado, dentro da estufa, sobre uma bancada de concreto revestidas por uma cobertura dupla de filme preto de polietileno de baixa densidade (PEBD) de 200 micra de espessura, formando piscinas individualizadas com 4 metros de comprimento e 0,60 cm de largura, com uma capacidade total de 5 bandejas de poliestireno expandido com 128 células cada (Figura 3). As bandejas permaneceram em lâmina de água de 8 cm durante todo o experimento até a ultima leitura (38 dias após o plantio).

Análise espacial e temporal de epidemias

A análise do padrão espacial do míldio da alface em sementeira foi realizada empregando os testes Ordinary Runs e Doublet. Como as parcelas

possuíam muitas linhas de plantio, as linhas foram combinadas para formar uma linha maior antes da análise, conforme Campbell & Madden (1990).

Ordinary Runs

O padrão espacial da doença foi determinado por meio da analise de "Ordinary Runs", em todas as linhas das áreas estudadas, com um total de 57 linhas, em um nível de 0,05 de probabilidade. Neste teste, o número de runs é considerado como um critério de padrão aleatório. Um run é definido como uma seqüência de um ou mais símbolos idênticos, os quais são seguidos ou precedidos por um símbolo diferente ou por símbolo nenhum (no começo ou fim da linha). Neste tipo de análise, a hipótese de nulidade (H₀) é aceita quando a següência ordenada de plantas doentes ou sadias é casualizada. Aceite ou rejeição da hipótese nula é dada pelo valor de ZR= [R+0,5- $E(R)/\sigma(R)$, onde R é igual ao número de corridas ("runs", ou sucessão de uma ou mais plantas sadias ou doentes), E(R)=1+2m(N-m)/N, com 'm' e 'N' indicando o número de plantas doentes e o total, respectivamente, $\sigma(R)$ o desvio padrão de R, dado por $\sigma(R) = \{2m (N - m) [2m (N-m) - N]/N^2 (N-1)\}^{1/2}$. Nessa análise rejeita-se H₀ se o valor de ZR (Valor estandardizado) for menor que E(R) (o valor esperado) de R, indicando que o padrão de distribuição apresenta agregação (Bergamin Filho et al, 2004; Campbell & Madden, 1990). A análise de Ordinary Runs foi realizada dos 32 aos 38 dias para os experimentos com Irrigação Diurna, Irrigação Noturna e Irrigação tipo Float.

Doublet

Assim como o teste Ordinary Runs o teste *Doublet* tem como objetivo analisar o padrão espacial da doença em linhas de plantio. Porém com

certa diferença nos critérios de avaliação. Na análise de *doublet*, o número de *doublets*, isto é, duas plantas doentes adjacentes, são utilizadas como critério de decisão. Neste teste a hipótese de nulidade é aceita quando a seqüência ordenada de plantas doentes ou sadias é causalizada. Aceite ou rejeição da hipótese nula é dada pelo valor de ZD=[D+0,5-E(D)]/ σ (D), onde D = número de duplas de plantas doentes em uma linha, E(D)=m(m-1)/N, com 'm' e 'N' indicando o número de plantas doentes e o total, respectivamente, σ (R) o desvio padrão de D, dado por σ (D) = {m (m-1) [N (N-1)+2N (m-2)+N(m-2)(m-3)-(N-1) m (m-1)]/[N² (N-1)]}^{1/2} (Bergamin Filho *et al*, 2004). As análises de Doublet foram realizadas dos 32 aos 38 dias para os experimentos com Irrigação Diurna, Irrigação Noturna e Irrigação tipo Float.

Curvas de progresso da doença

Para obtenção das curvas de progresso da doença e dos ajustes dos modelos, observou-se, diariamente, a quantidade de plantas infectadas em cada uma das repetições estudadas do 4º ao 17º dia após a substituição de uma muda sadia por uma infectada no centro de cada conjunto de 256 plantas.

As avaliações de ajuste dos modelos foram feitas de acordo com a forma das curvas de progresso do míldio, com o coeficiente de determinação ajustado (R*2), obtido da regressão linear entre os valores previstos (variável dependente) e observados (variável independente), e da distribuição do resíduo (x observado – x previsto) em função da variável independente (Bergamim Filho & Amorim, 1996) e dos valores previstos (Campbell & Madden, 1990)

Influência da susceptibilidade da hospedeira no alcance máximo de disseminação

A distância final de plantas sintomáticas em relação ao foco inicial da doença foi medida diariamente dos 26 aos 34 DAP e ao final do experimento computou-se as maiores distâncias em quatro direções (Norte, Sul, Leste e Oeste) em relação ao foco inicial. Com a obtenção das distâncias pode-se obter médias para cada cultivar em seus respectivos tratamentos e repetições, essa média foi usada para avaliação estatística. A Influência da susceptibilidade das hospedeiras no alcance máximo de disseminação do patógeno foi observada nas cultivares Tainá, Grand Rapids TBR, Red Frizzly Nº 2 e Elisa.

Para análise estatística foi efetuada análise de variância, teste de média e correlação dos dados com ensaios em sistemas de irrigação por aspersão noturna e diurna e sistema de irrigação tipo float.

RESULTADOS E DISCUSSÃO

Análise espacial e temporal de epidemias

Após 4 dias da inoculação de *B. lactucae* e aos 23 DAP, observou-se os primeiros sintomas do míldio nas folhas dos genótipos de alface. Mesmo sob condições climáticas relativamente sub-ótimas, quando levado em conta a baixa umidade relativa do ar com média mínima de 41% e máxima de 87% (Figura 4) e uma alta temperatura, com máxima de 30,4 °C e mínima de 8,1 °C (Figura 5), a doença evoluiu e se disseminou para as áreas mais distantes do foco inicial, atingindo, em algumas cultivares ampla dispersão espacial (Figuras 6 a 10).

A partir da análise de Ordinary Runs foram obtidos os valores de Z(R) (vide Tabela 2) para as cultivares estudadas em seus respectivos tratamentos. Dessa forma, quando Z(R) < -1,64 pode-se afirmar que o míldio da alface teve incidência com padrão espacial agregado de disseminação, no caso contrário, onde Z(R) > -1,64 observa-se que o padrão espacial é ao acaso. Já no teste Doublet os valores obtidos de Z(D) estão descritos na Tabela 3. Quando Z(D) > 1,64 E(D) pode-se afirmar que o míldio da alface teve incidência com padrão agregado de disseminação nas bandejas, no caso contrário, onde Z(D) < 1,64 se afirmar que o míldio da alface teve padrão espacial ao acaso.

Tanto o teste Ordinary Runs quanto o teste de Doublet demonstraram, na maioria dos casos, que o míldio da alface possui um padrão espacial agregado nas diferentes cultivares e seus respectivos tratamentos. Tais resultados demonstram que nos experimentos o patógeno é disseminado principalmente pela água (proveniente de irrigação por aspersão). Nas Figuras 6 a 10, pode-se observar a distribuição espacial do míldio em bandejas.

Outros autores estudando a dispersão espacial em patossistemas diferentes obtiveram resultados semelhantes aos encontrados neste trabalho (Laranjeira et al.1998; Pinto et al. 2001; Santos et al. 2005).

Curvas de progresso da doença

Efeito da resistência genética no progresso do míldio da alface

Após 4 dias da inoculação, observaram-se os primeiros sintomas do míldio nas cultivares de alface testadas. As cultivares mostraram diferentes taxas de progresso da doença durante o seu ciclo de produção, sendo que, as cultivares Tainá e Elisa geralmente apresentaram as maiores taxas de progresso, indicando serem genótipos mais susceptíveis.

A maioria das curvas de progresso em diferentes cultivares apresentou melhor ajuste ao modelo Gompertz (Figura 24 a 26). Isso indica que o progresso do míldio da alface apresenta uma curva em forma de S com um início acentuado e um ponto de inflexão em y<0,5, o que difere do S logístico que apresenta um crescimento menos acentuado no início e um ponto de inflexão em y=0,5. Tanto para o modelo Gompertz quanto para o modelo Logístico a velocidade de progresso da doença é proporcional a própria quantidade da doença (Bergamim Filho, 1995). Já no modelo monomolecular, o segundo modelo que melhor foi representado pelas curvas de progresso da doença, apresenta, diferentemente dos modelos Gompertz e Logistico, uma curva menos acentuada no início e a quantidade de doença é proporcional a quantidade de inóculo inicial. Os primeiros dois modelos estão associados às doenças policíclicas e o ultimo às monocíclicas.

As distribuições dos resíduos em função de dias após o plantio (DAP) dos modelos de progresso das curvas de progresso da doença podem ser observadas nas Figuras 11 a 23.

Além da análise matemática das curvas é interessante notar o efeito de resistência genética das cultivares nos valores das taxas de progresso (r). Das tabelas 4, 5 e 6 (irrigação diurna) pouco se pode dizer, pois o níveis de doenças foram muito baixos e portanto os materiais não se diferenciam. Todos os valores de r ficaram entre 0,0759 e 0,2041. Entretanto, quando os níveis de doenças foram mais altos (condições favoráveis de irrigação noturna), as maiores taxas de progresso foram observadas na cv. Tainá e as menores taxas de progresso nas cvs. Red Frizzly Nº 2 e Green Frizzly (Tabelas 7, 8 e 9). Ainda com a irrigação noturna, nota-se que a cultivar Grand Rapids TBR apresentou um nível intermediário da taxa de progresso, o que indica um nível intermediário de resistência.

Efeito da prática de irrigação no progresso do míldio da alface

Os resultados dos experimentos demonstraram que dependendo da forma de irrigação utilizada o progresso da doença se dá de forma mais severa ou mais amena para as diversas cultivares utilizadas. Ao utilizarmos a irrigação diurna, apesar de apresentar menor quantidade de doença no final de cada repetição (podendo até não apresentar sinais do patógeno), o progresso da doença inicia-se de forma proporcionalmente mais acentuada (modelo Gompertz), enquanto que, mesmo em condições climáticas favoráveis ao patógeno, quando é observado um maior número de plantas infectadas no final

do experimento, o progresso inicial da doença ocorreu de forma menos acentuada (modelo Monomolecular) atingindo uma maior incidência no final do experimento.

Com relação ao ajuste dos três modelos de progresso do míldio da alface no sistema de irrigação por aspersão em dois turnos de rega diferentes (diurno e noturno) pode-se observar, quando comparados os valores do coeficiente de determinação ajustado (R*²) (Tabelas 4 a 9), que os valores mais adequados foram encontrados para o modelo Gompertz seguido pelo modelo monomolecular (Tabela 10).

Após a análise de 31 curvas de progresso, em oito cultivares de alface e 3 regimes de irrigação, observou-se que a maioria (22 curvas) tiveram melhor ajuste aos modelos Gompertz ou Logístico, cujo progresso é proporcional a quantidade de doença e é característico de doenças policíclicas. Apenas 9 curvas apresentaram melhor ajuste ao modelo Monomolecular.

Não foi possível obter curvas de progresso da doença no sistema float, pois os níveis obtidos da doença foram muito baixos.

Influência da susceptibilidade da hospedeira no alcance máximo de disseminação

As condições climáticas observadas em plantio em telado na Estação Biológica da UnB foram favoráveis à doença durante todo o experimento (temperatura e umidade relativa favorável). O alcance máximo de disseminação da doença foram alcançados aos 34 DAP, quando, para a

cultivar moderadamente susceptível Grand Rapids TBR, utilizando a irrigação por aspersão no turno de rega noturno, atingiu alcance médio máximo de 26 cm em relação ao foco inicial da doença, e alcance médio mínimo de 1 cm quando utilizada o sistema de irrigação tipo Float. Tendo, para todas as cultivares testadas, diferentes taxas de progresso nos diferentes tipos de irrigação (vide Tabelas 14 a 22 para taxas de progresso da doença e Figuras 24 a 26 para curvas de progresso da doença).

De acordo com o teste de Tukey a 5% de probabilidade, com exceção da cultivar Elisa, todas as cultivares apresentaram diferença significativa, no controle do míldio da alface, em pelo menos um dos diferentes tipos de irrigação (irrigação noturna, irrigação diurna e sistema float), tendo a cultivar altamente susceptível Tainá, apresentado diferença significativa nos três tratamentos (Tabela 11). Tais resultados demonstram que: a) o progresso do míldio da alface responde diferentemente para os variados tipos de irrigação; b) o sistema de irrigação por aspersão, quando usado noturnamente é o que mais favorece a propagação do míldio, pois, com o aumenta da umidade relativa do ar e do tempo de água livre na superfície foliar, propicia melhores condições para infecção do patógeno na hospedeira, separando assim dos demais tipos de irrigação e; c) o sistema de irrigação float apresentou os melhores resultados quanto à dispersão espacial do míldio da alface, sendo assim indicado como a melhor forma alternativa de controle ao patógeno quando observados os tipos de irrigação.

Também é possível concluir que, com a análise do alcance máximo de disseminação da doença melhores diagnósticos sobre a epidemiologia da doença foram alcançados quando comparados a AACPD e o total de plantas

infectadas (Tabela 12 e 13). A AACPD e o total de plantas infectadas não foram eficientes para diferenciar os três tratamentos pelo teste de Tukey a 5% de probabilidade.

LITERATURA CITADA

- ANUÁRIO BRASILEIRO DO FUMO. 2003. Santa Cruz do Sul, RS: ed. Gazeta do Sul.
- BERGAMIM FILHO, A. 1995. Curvas de progresso da doença. IN: BERGAMIM FILHO, A.; KIMATI, H. et al. Manual de Fitopatologia: Princípios e conceitos. São Paulo: Ceres.
- BERGAMIM FILHO, A. & AMORIM, L. 1996. Doenças de plantas tropicais: epidemiologia e controle econômico, São Paulo: Editora Ceres, 289p.
- BERGAMIN FILHO, A.; HAU, B.; AMORIM, L.; JESUS Jr, W.C. 2004. Análise espacial de epidemias. In: VALE, F.X.R.; JESUS Jr, W.C.; ZAMBOLIM, L. Epidemiologia Aplicada ao Manejo de Doenças de Plantas, p. 21-46.
- BERNARDO, S.; SOARES, A. A.; MANTOVANI, E. C. 2008. Manual de Irrigação. 08. ed. Viçosa: Editora UFV, 2006. p. 625.
- CAMPBELL, C. L. & MADDEN, L. V. 1990. Introduction to plant Diseases Epidemiology. New York: John Wiley & Sons, 523p.
- JESUS Jr, W.C.; POZZA, E. A.; VALE, F.X.R. 2004. Análise Temporal de epidemias. In: VALE, F.X.R.; JESUS Jr, W.C.; ZAMBOLIM, L. Epidemiologia aplicada ao manejo de doenças de plantas, p. 127-188.
- LARANJEIRA, F.F.; AMORIM, L.; BERGAMIM FILHO, A.; BERGER, R.D.; & HAU, B. 1998. Análise espacial do amarelecimento fatal do dendezeiro para elucidar sua etiologia. Fitopatologia Brasileira, 23 (3): 397-493.

- LOPES, C. A.; MAROUELLI, W. A. & CAFE FILHO, A.C. 2006. Associação da irrigação com doenças de hortaliças. Revisão Anual de Patologia de Plantas 14: 151-179.
- MAROUELLI, W. A. 2004. Controle da irrigação como estratégia na prevenção de doenças em hortaliças. A Lavoura 110: 18 22.
- MCCARTNEY, H. A.; & FITT, B.D. L. 1998. Dispersal of foliar fungal plant pathogens: mechanisms, gradients and spatial patterns. In: JONES, D. G. (ed). The Epidemiology of Plant Diseases. Dordrecht: Kluwer.
- PINTO, A.C.S.; POZZA, E.A.; TALAMINI, V.; MACHADO, J.C.; SALES, N.L.P.; GARCIA JÚNIOR, D. & SANTOS, S.M. 2001. Análise do padrão espacial e do gradiente de antracnose do feijoeiro em duas épocas de cultivo. Summa Phytopathologica, 27: 392-398.
- SANTOS, G.R.; CAFE FILHO, A.C.; LEÃO, F. F.; CESAR, M.; & FERNANDES, L.E. 2005. Progresso do crestamento gomoso e perdas na cultura da melancia. Horticultura Brasileira, Brasília DF, v. 23, n. 02, p. 230-234.
- SCALOPPI, J. E. Características dos principais sistemas de irrigação. Irrigação e Tecnologia Moderna, 25: 22-27, 1986.
- SOUZA CRUZ. 1998. Cultura do fumo Manejo integrado de pragas e doenças. (Coordenação geral: Eng. Agr. Saul Bianco) Rio de Janeiro.
- SU, H., VAN BRUGGEN, A.H.C.; SUBBARAO, K.V & SCHERM, H. 2004.

 Sporulation of *Bremia lactucae* affected by temperature, relative humidity, and wind in controlled conditions. Phytopathology, 94:396-401.

TAYLOR, L. R. 1984. Assessing and interpreting the spatial distributions of insect populations. Annual Review of Entomology, v29, p. 321-357.

Tabela 1 - Variedades utilizadas no experimento

Espécie	Cultivar	Grupo	Empresa
	Tainá	Americana	Agroflora
	Vera	Crespa	Agroflora
	Red Frizzly N°2	Crespa	Sakama
	Green Frizzly	Crespa	Sakama
Alface	Grand Rapids TBR	Crespa Solta	Feltrin
	Verônica	Crespa	Agroflora
	Laurel	Crespa Repolhuda	Sakama
	Elisa	Lisa	Agroflora
	Oak Leaf Green Pixie	Mimosa	Sakama
	Oak Leaf Red Pixie	Mimosa	Sakama
Almeirão	Spadona Folhas Verdes		Feltrin
	De Ruffec	Crespa	Feltrin
Chicória	Mariana Gigante	Lisa	Agroflora
	Radicchio Chioggia Carmem	Repolhuda	Sakama

Tabela 2 - Valores obtidos de Z para análise espacial do míldio da alface no teste Ordinary Runs em sistema de irrigação diurna, noturna e float

		Valores de Z em Ordinary Runs							
					Irrigação	1			
Cultivar		Diurna			Noturna			Float	
	R1	R2	R3	R1	R2	R3	R1	R2	R3
Tainá	-6,72	-5,40	-2,13	-6,78	-8,43	-9,16	-4,22	-0,81	х
Vera	-9,19			-8,01					
Red Frizzly N°2	-6,79	-2,18	-0,60	-6,66	-5,94	-8,80	5,77	-6,83	x
Green Frizzly	-9,52			-5,59	4,10				
Grand Rapids TBR	-2,76	-2,18	1,36	-6,84	-8,18	-4,58	7,12	x	х
Verônica	-7,91			-4,50	-5,89				
Laurel	-9,06			-8,33	-4,22				
Elisa	-8,37	2,47	-5,52	-7,11	-12,61	-4,97	-2,98	-10,13	1,68

x - não houve sinal de infecção pelo patógeno

Tabela 3 - Valores obtidos de Z para análise espacial do míldio da alface no teste Doublet em sistema de irrigação diurna, noturna e float

				Valores	s de Z em	Doublet			
					Irrigação				
Cultivar		Diurna			Noturna			Float	
	R1	R2	R3	R1	R2	R3	R1	R2	R3
Tainá	9,00	6,57	2,82	6,94	8,42	9,68	-16,04	2,12	x
Vera	10,10			7,74					
Red Frizzly N°2	7,15	5,59	2,24	7,32	7,14	9,57	-28,31	16,95	x
Green Frizzly	10,34			5,57	3,52				
Grand Rapids TBR	7,92	16,95	2,12	6,50	8,16	5,43	-20,79	Х	x
Verônica	8,97			4,06	6,32				
Laurel	9,71			13,27	4,84				
Elisa	9,02	16,95	6,33	7,40	-6,26	4,91	-18,18	16,30	3,14

x - não houve sinal de infecção pelo patógeno

Tabela 4 -Ajuste de três modelos de progresso ao míldio da alface em oito cultivares no sistema de irrigação diurna (repetição 1) pelo coeficiente de determinação ajustado (R*2), obtido da regressão linear entre os valores previstos (variável dependente) e observados (variável independente).

Modelo		Monomolecular	Logístico	Gompertz
Equação)	(y=1-[(1-yo)exp(-rt)])	(1/[1+exp(-{ln[yo/(1-yo)]+rt})]	(exp[ln(yo)exp(-rt)]
Equação linea	rizada	ln(1/(1-y)=ln[1/(1-yo)]+ rt	In[y/(1-y)]=In[yo/(1-yo)]+rt	$-\ln[-\ln(y)] = -\ln[-\ln(yo)] + rt$
	(yo)	-0,1669	-13,484	-3,6882
Tainá	(r)	0,0063	0,3103	0,0759
	(R*2)	92	75	96
	(yo)	-0,3354	-20,414	-5,4031
Vera	(r)	0,0119	0,5255	0,13
	(R*2)	86	61	91
Red Frizzly	(yo)	-1,1019	-23,954	-7,4347
No 2	(r)	0,0383	0,6661	0,2041
110 2	(R*2)	93	85	92
	(yo)	-0,6739	-24,127	-6,8083
Green Frizzly	(r)	0,0235	0,653	0,1783
	(R*2)	89	68	90
Grand Rapids	(yo)	-0,2274	-19,185	-4,9019
TBR	(r)	0,008	0,4713	0,1101
IBIX	(R*2)	84	74	91
	(yo)	-0,2709	-19,339	-5,0441
Verônica	(r)	0,0096	0,4883	0,1176
	(R*2)	86	60	92
	(yo)	-0,4704	-20,577	-5,7327
Laurel	(r)	0,0164	0,5389	0,1427
	(R*2)	94	83	91
	(yo)	-0,441	-19,177	-5,3718
Elisa	(r)	0,016	0,5048	0,1343
	(R*2)	91	62	94

Tabela 5 -Ajuste de três modelos de progresso ao míldio da alface em quatro cultivares no sistema de irrigação diurna (repetição 2) pelo coeficiente de determinação ajustado (R*2), obtido da regressão linear entre os valores previstos (variável dependente) e observados (variável independente).

			,			
Modelo		Monomolecular	Logístico	Gompertz		
Equação)	(y=1-[(1-yo)exp(-rt)])	(1/[1+exp(-{ln[yo/(1-yo)]+rt})]	(exp[ln(yo)exp(-rt)]		
Equação linea	rizada	In(1/(1-y)=In[1/(1-yo)]+ rt	ln[y/(1-y)] = ln[yo/(1-yo)] + rt	-ln[-ln(y)]= -ln[-ln(yo)]+rt		
	(yo)	-0,1324	-13,036	-3,5103		
Tainá	(r)	0,006	0,3452	0,0816		
	(R*2)	88	99,5	94		
	(yo)					
Elisa	(r)		Baixa incidência da doença			
	(R*2)					
Dod Erizzly	(yo)					
Red Frizzly No 2	(r)		Baixa incidência da doença			
110 2	(R*2)					
Crand Danida	(yo)					
Grand Rapids TBR	(r)		Baixa incidência da doença			
	(R*2)					

Tabela 6 - Ajuste de três modelos de progresso ao míldio da alface em quatro cultivares no sistema de irrigação diurna (repetição 3) pelo coeficiente de determinação ajustado (R*2), obtido da regressão linear entre os valores previstos (variável dependente) e observados (variável independente).

Modelo		Monomolecular	Logístico	Gompertz
Equação)	(y=1-[(1-yo)exp(-rt)])	(1/[1+exp(-{ln[yo/(1-yo)]+rt})]	(exp[ln(yo)exp(-rt)]
Equação linea	rizada	In(1/(1-y)=In[1/(1-yo)]+ rt	ln[y/(1-y)]=In[yo/(1-yo)]+rt	-ln[-ln(y)]= -ln[-ln(yo)]+rt
	(yo)	-0,1054	-14,055	-3,6093
Tainá	(r)	0,0043	0,3379	0,0749
	(R*2)	89	79	95
	(yo)	-0,1054	-18,337	-6,0612
Elisa	(r)	0,0413	0,5631	0,1859
	(R*2)	89	63	96
Red Frizzly	(yo)	-0,1411	-13,998	-3,6947
No 2	(r)	0,0058	0,3492	0,0812
	(R*2)	85	82	95
Crand Danida	(yo)			
Grand Rapids TBR	(r)		Baixa incidência da doença	
	(R*2)			

Tabela 7 -Ajuste de três modelos de progresso ao míldio da alface em oito cultivares no sistema de irrigação noturna (repetição 1) pelo coeficiente de determinação ajustado (R*2), obtido da regressão linear entre os valores previstos (variável dependente) e observados (variável independente).

Modelo		Monomolecular	Logístico	Gompertz
Equação)	(y=1-[(1-yo)exp(-rt)])	(1/[1+exp(-{ln[yo/(1-yo)]+rt})]	(exp[ln(yo)exp(-rt)]
Equação linea	rizada	ln(1/(1-y)=ln[1/(1-yo)]+ rt	ln[y/(1-y)]=ln[yo/(1-yo)]+rt	$-\ln[-\ln(y)] = -\ln[-\ln(yo)] + rt$
	(yo)	-2,3723	-32,665	-11,134
Tainá	(r)	0,0829	0,9828	0,3361
	(R*2)	88	86	92
	(yo)	-2,4343	-28,856	-10,254
Vera	(r)	0,0872	0,8784	0,3152
	(R*2)	95	70	96
Dod Erizzly	(yo)	-0,5004	-21,212	-5,9451
Red Frizzly No 2	(r)	0,0178	0,5801	0,1545
140 2	(R*2)	93	97	94
	(yo)	-1,1781	-24,131	-1,9336
Green Frizzly	(r)	0,0424	0,7058	0,1403
	(R*2)	99	81	96
Grand Rapids	(yo)	-1,8163	-29,507	-9,7446
TBR	(r)	0,0642	0,8816	0,2907
	(R*2)	93	74	94
	(yo)	-2,0666	-27,427	-9,4876
Verônica	(r)	0,0737	0,8258	0,2869
	(R*2)	98	82	96
	(yo)	-1,1502	-31,42	-9,148
Laurel	(r)	0,043	0,9187	0,2625
	(R*2)	92	81	90
	(yo)	-2,8613	-31,703	-11,453
Elisa	(r)	0,101	0,9668	0,3529
	(R*2)	95,1	81	95

Tabela 8-Ajuste de três modelos de progresso ao míldio da alface em seis cultivares no sistema de irrigação noturna (repetição 2) pelo coeficiente de determinação ajustado (R*2), obtido da regressão linear entre os valores previstos (variável dependente) e observados (variável independente).

		<u> </u>		
Modelo		Monomolecular	Logístico	Gompertz
Equação)	(y=1-[(1-yo)exp(-rt)])	(1/[1+exp(-{In[yo/(1-yo)]+rt})]	(exp[ln(yo)exp(-rt)]
Equação linea	rizada	In(1/(1-y)=In[1/(1-yo)]+ rt	In[y/(1-y)]=In[yo/(1-yo)]+rt	-ln[-ln(y)]= -ln[-ln(yo)]+rt
	(yo)	-0,7969	-20,372	-6,2055
Tainá	(r)	0,0347	0,6736	0,201
	(R*2)	93	90	90
Red Frizzly	(yo)	-0,3676	-17,417	-4,8781
No 2	(r)	0,0162	0,539	0,1419
110 2	(R*2)	94	95	91
	(yo)	-0,2789	-16,647	-4,5394
Green Frizzly	(r)	0,0123	0,4994	0,1258
	(R*2)	91	97	91
Crand Danida	(yo)	-0,5497	-18,868	-5,5043
Grand Rapids TBR	(r)	0,024	0,6051	0,1697
	(R*2)	92	91	90
	(yo)	-1,5215	-21,166	-7,3684
Verônica	(r)	0,0661	0,7274	0,2554
	(R*2)	90	89	92
	(yo)	-0,3401	-18,438	-5,0085
Laurel	(r)	0,0147	0,5607	0,1425
	(R*2)	81	95	89
	(yo)	-0,3163	-17,297	-4,7521
Elisa	(r)	0,0138	0,5262	0,1347
	(R*2)	90	90	91

Tabela 9 - Ajuste de três modelos de progresso ao míldio da alface em quatro cultivares no sistema de irrigação noturna (repetição 3) pelo coeficiente de determinação ajustado (R*2), obtido da regressão linear entre os valores previstos (variável dependente) e observados (variável independente).

Modelo		Monomolecular	Logístico	Gompertz	
Equação)	(y=1-[(1-yo)exp(-rt)])	(1/[1+exp(-{ln[yo/(1-yo)]+rt})]	(exp[ln(yo)exp(-rt)]	
Equação linea	rizada	ln(1/(1-y)=ln[1/(1-yo)]+ rt	In[y/(1-y)]=In[yo/(1-yo)]+rt	-ln[-ln(y)] = -ln[-ln(yo)] + rt	
	(yo)	-1,6649	-17,86	-6,6321	
Tainá	(r)	0,0724	0,5853	0,2245	
	(R*2)	94	77	95	
	(yo)	-0,2693	-15,327	-4,2428	
Elisa	(r)	0,0114	0,4178	0,1072	
	(R*2)	85	91	88	
Red Frizzly	(yo)	-0,8809	-15,899	-5,3265	
No 2	(r)	0,0381	0,492	0,1651	
2	(R*2)	95	82	93	
Crand Danida	(yo)	-1,1481	-19,776	-6,4595	
Grand Rapids TBR	(r)	0,0485	0,622	0,2048	
	(R*2)	88	80	90	

Tabela 10 - Resumo dos resultados obtidos de três modelos do progresso do míldio da alface em oito cultivares

	Irrigação					
Cultivar		Diurna			Noturna	
Guitival	R1	R2	R3	R1	R2	R3
Tainá	G	L	G	G	М	G
Vera	G			G	Χ	
Red Frizzly N°2	М	BID	G	L	L	М
Green Frizzly	G			М	L	
Grand Rapids TBR	G	BID	BID	G	М	G
Verônica	G			М	G	
Laurel	М			М	L	
Elisa	G	BID	G	М	G	L
Resumo		9 G / 2 M / 1	L	7	G/7M/5	L

- M Modelo Mononuclear
- L Modelo Logístico
- G Modelo Gompertz

BID - Baixa incidência da doença, não foi possível obter a curva de progresso da doença x - não foram observados ciclos secundários de infecção pelo patógeno

Tabela 11 - Comparação da resposta dos diferentes tipos de irrigação quando observado o alcance máximo (cms) de disseminação do patógeno.

	Irrigação Noturna	Irrigação Diurna	Sistema Float
Tainá	25,67 A	11,00 B	1,67 C
Elisa	17,33 A	14,33 A	2,67 A
Red Frizzly N°2	25,33 A	15,67 AB	0,33 B
Grand Rapids TBR	26,33 A	6,67 B	0,67 B
Médias	23,67 A	11,92 B	1,33 B

Médias seguidas de mesma letra maiúsculas nas linhas não diferem entre si, de acordo com o teste de Tukey a 5% de probabilidade

Tabela 12 - Comparação da resposta média das cultivares em diferentes tipos de irrigação quando observada a AACPD

	Irrigação Noturna	Irrigação Diurna	Sistema Float
Tainá	272 A	42,83 A	6,5 A
Elisa	123,67 A	150,67 A	8,17 A
Red Frizzly N°2	134,67 A	106 A	0,5 A
Grand Rapids TBR	199,17 A	23,5 A	0,17 B
Médias	182,38 A	80,75 AB	3,83 B

Médias seguidas de mesma letra maiúsculas nas linhas não diferem entre si, de acordo com o teste de Tukey a 5% de probabilidade

Tabela 13 - Comparação da resposta dos diferentes tipos de irrigação quando observados o total de plantas infectadas

	Irrigação Noturna	Irrigação Diurna	Sistema Float
Tainá	82,67 A	10,33 B	1,67 B
Elisa	47,67 A	31,33 A	2,33 A
Red Frizzly N°2	41,67 A	23,00 A	0,33 A
Grand Rapids TBR	62,33 A	5,67 B	0,33 B
Médias	58,58 A	17,58 B	1,17 B

Médias seguidas de mesma letra maiúsculas nas linhas não diferem entre si, de acordo com o teste de Tukey a 5% de probabilidade

Tabela 14 - Número de plantas infectadas (diário e acumulado) em diferentes cultivares de alface no sistema de irrigação por aspersão, com turno de rega diurno (Repetição 1).

		Irrigaç	ão Diurna	a - Repeti	ção 1			
		Total de						
Cultivares	9	10	11	12	13	14	17	plantasinfectadas
Tainá	3	3	3	0	0	3	0	12
	3	6	9	9	9	12	12	
Vera	0	0	7	9	0	1	0	17
	0	0	7	16	16	17	17	
Red Frizzly N°2	1	7	12	0	20	13	2	55
-	1	8	20	20	40	53	55	
Green Frizzly	0	0	7	16	6	3	0	32
•	0	0	7	23	29	32	32	
Grand Rapids TBR	0	0	0	9	1	2	0	12
	0	0	0	9	10	12	12	
Verônica	0	0	7	6	1	0	0	14
	0	0	7	13	14	14	14	
Laurel	0	4	2	9	2	8	0	25
	0	4	6	15	17	25	25	
Elisa	0	10	7	4	0	4	0	25
	0	10	17	21	21	25	25	
Oak Leaf Green Pixie	0	0	0	0	0	0	0	0
Oak Leaf Red Pixie	0	0	0	0	0	0	0	0

Tabela 15 - Número de plantas infectadas (diário e acumulado) em diferentes cultivares de alface no sistema de irrigação por aspersão, com turno de rega diurno (Repetição 2).

Irrigação Diurna - Repetição 2								
			Dias ap	ós o tran	splantio			Total de
Cultivares	7	8	9	10	11	12	13	plantasinfectadas
Tainá	1	0	1	2	2	3	3	12
	1	1	2	4	6	9	12	
Elisa	0	0	0	2	0	0	0	2
	0	0	0	2	2	2	2	
Red Frizzly N°2	0	0	0	0	1	0	0	1
	0	0	0	0	1	1	1	
Grand Rapids TBR	0	0	0	1	0	0	1	2
	0	0	0	1	1	1	2	

Tabela 16 - Número de plantas infectadas (diário e acumulado) em diferentes cultivares de alface no sistema de irrigação por aspersão, com turno de rega diurno (Repetição 3).

Irrigação Diurna - Repetição 3									
Cultivares			Dias ap	ós o tran	splantio			Total de	
Cultivales	7	8	9	10	11	12	13	plantas infectadas	
Tainá	0	0	1	4	2	0	0	7	
	0	0	1	5	7	7	7		
Elisa	4	29	10	10	9	0	5	67	
	4	33	43	53	62	62	67		
Red Frizzly N°2	0	5	1	1	0	0	6	13	
	0	5	6	7	7	7	13		
Grand Rapids TBR	0	0	0	0	2	0	1	3	
	0	0	0	0	2	2	3		
Oak Leaf Green Pixie	0	0	0	0	0	0	0	0	

Tabela 17 - Número de plantas infectadas (diário e acumulado) em diferentes cultivares de alface no sistema de irrigação por aspersão, com turno de rega noturno (Repetição 1).

	Irri	gação Notur	na - Repetiç	ão 1		
		Total de				
Cultivares	7	8	9	10	11	plantas infectadas
Tainá	4	10	19	42	4	79
	4	14	33	75	79	
Vera	15	27	30	9	2	83
	15	42	72	81	83	
Red Frizzly N°2	5	3	1	8	7	24
	5	8	9	17	24	
Green Frizzly	14	10	7	14	4	49
	14	24	31	45	49	
Grand Rapids TBR	6	11	30	14	1	62
	6	17	47	61	62	
Verônica	17	15	14	27	3	76
	17	32	46	73	76	
Laurel	0	7	15	16	4	42
	0	7	22	38	42	
Elisa	9	18	41	15	11	94
	9	27	68	83	94	
Oak Leaf Green Pixie	0	0	0	0	0	0
Oak Leaf Red Pixie	0	0	0	0	0	0

Tabela 18 - Número de plantas infectadas (diário e acumulado) em diferentes cultivares de alface no sistema de irrigação por aspersão, com turno de rega noturno (Repetição 2).

		Irrigaç	ão Noturi	na - Repe	tição 2				
	Dias após o transplantio								
Cultivares	7	8	9	10	11	12	13	plantas infectada	
Tainá	0	4	7	10	13	9	10	53	
	0	4	11	21	34	43	53		
Red Frizzly N°2	0	3	4	5	3	6	7	28	
	0	3	7	12	15	21	28		
Green Frizzly	0	2	4	2	2	7	5	22	
	0	2	6	8	10	17	22		
Grand Rapids TBR	0	4	3	10	4	12	5	38	
	0	4	7	17	21	33	38		
Verônica	3	3	9	19	30	14	10	88	
	3	6	15	34	64	78	88		
Laurel	0	0	2	3	6	10	4	25	
	0	0	2	5	11	21	25		
Elisa	0	1	4	2	7	7	1	22	
	0	1	5	7	14	21	22		
Oak Leaf Green Pixie	0	0	0	0	0	0	0	0	
Oak Leaf Red Pixie	0	0	0	0	0	0	0	0	

Tabela 19 - Número de plantas infectadas (diário e acumulado) em diferentes cultivares de alface no sistema de irrigação por aspersão, com turno de rega noturno (Repetição 3).

		l	rrigaçã	o Notu	rna - R	epetiç	ão 3				
	Dias após o transplantio										Total de
Cultivares	4	5	6	7	8	9	10	11	12	13	plantasinfectadas
Tainá	2	0	12	28	28	15	10	16	0	5	116
	2	2	14	42	70	85	95	111	111	116	
Elisa	0	0	0	1	2	6	6	6	0	6	27
	0	0	0	1	3	9	15	21	21	27	
Red Frizzly N°2	2	0	10	5	13	14	14	7	0	8	73
	2	2	12	17	30	44	58	65	65	73	
Grand Rapids TBR	0	0	0	7	20	19	17	16	0	8	87
	0	0	0	7	27	46	63	79	79	87	
Oak Leaf Green Pixie	0	0	0	0	0	0	0	0	0	0	0

Tabela 20 - Número de plantas infectadas (diário e acumulado) em diferentes cultivares de alface no sistema de irrigação tipo float (Repetição 1).

Sistema Float - Repetição 1									
		D	ias apó	s o trans	splantio)		Total de	
Cultivares	7	8	9	10	11	12	13	plantasinfectadas	
Tainá	0	0	1	1	0	0	0	2	
	0	0	1	2	2	2	2		
Elisa	0	1	0	0	0	1	1	3	
	0	1	1	1	1	2	3		
Red Frizzly N°2	0	0	0	0	0	0	0	0	
	0	0	0	0	0	0	0		
Grand Rapids TBR	0	0	0	0	0	0	1	1	
	0	0	0	0	0	0	1		

Tabela 21 - Número de plantas infectadas (diário e acumulado) em diferentes cultivares de alface no sistema de irrigação tipo float (Repetição 2).

		Sistema	Float -	Repetion	ção 2			
		Total de						
Cultivares	7	8	9	10	11	12	13	plantas infectadas
Tainá	0	0	2	0	1	0	0	3
	0	0	2	2	3	3	3	
Elisa	0	0	0	0	2	0	0	2
	0	0	0	0	2	2	2	
Red Frizzly N°2	0	0	0	0	0	1	0	1
	0	0	0	0	0	1	1	
Grand Rapids TBR	0	0	0	0	0	0	0	0
Oak Leaf Green Pixie	0	0	0	0	0	0	0	0

Tabela 22 - Número de plantas infectadas (diário e acumulado) em diferentes cultivares de alface no sistema de irrigação tipo float (Repetição 3).

		Sistema	Float - F	Repetiçã	io 3			
Cultivares		Total de plantas						
	7	8	9	10	11	12	13	infectadas
Tainá	0	0	0	0	0	0	0	0
Elisa	2	0	0	0	0	0	0	2
	2	2	2	2	2	2	2	
Red Frizzly N°2	0	0	0	0	0	0	0	0
Grand Rapids TBR	0	0	0	0	0	0	0	0
Oak Leaf Green Pixie	0	0	0	0	0	0	0	0

Figura 1 - bandejas apoiadas em vaso de plástico sobre bancadas de 80 cms de largura, a uma altura de 1,20m em relação à superfície do solo.

Figura 2 – Sistema de irrigação por aspersão

Figura 3 - Sistema de irrigação tipo Float

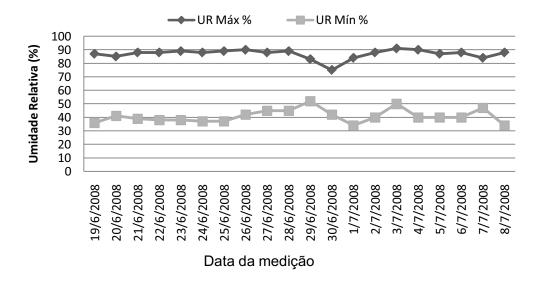
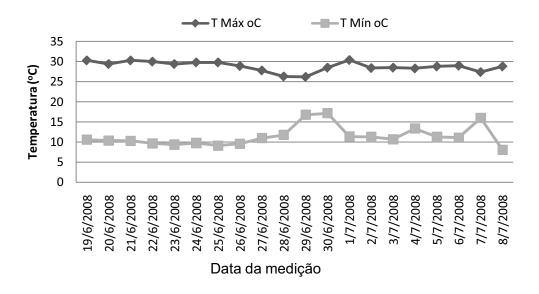
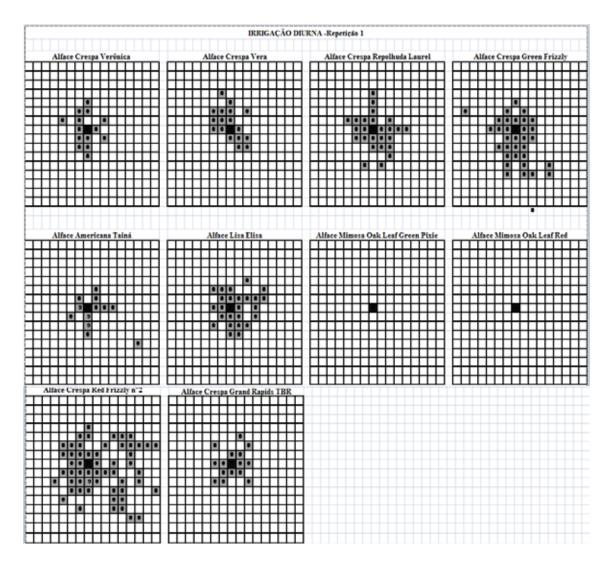
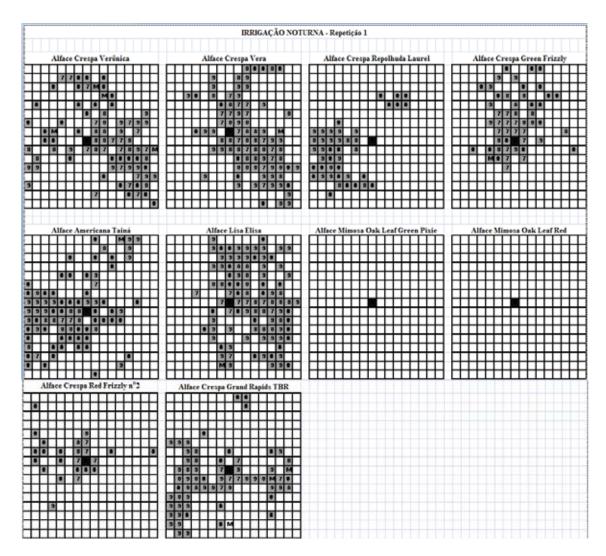
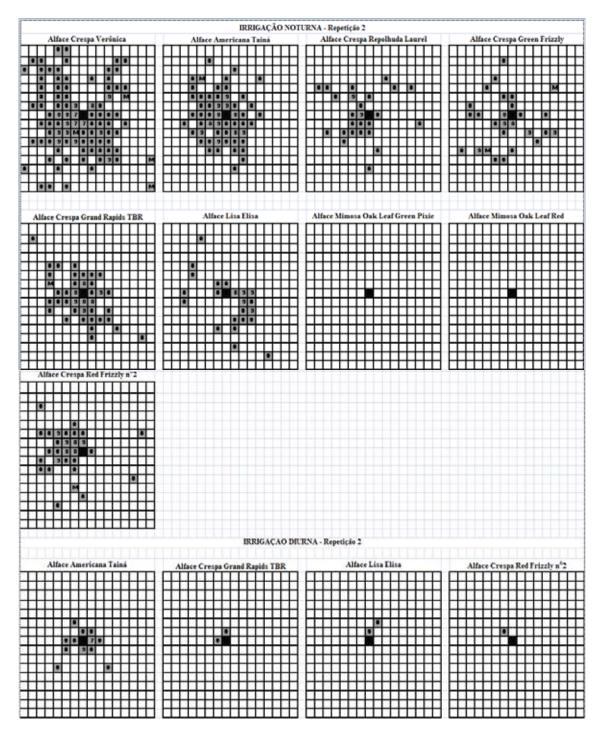
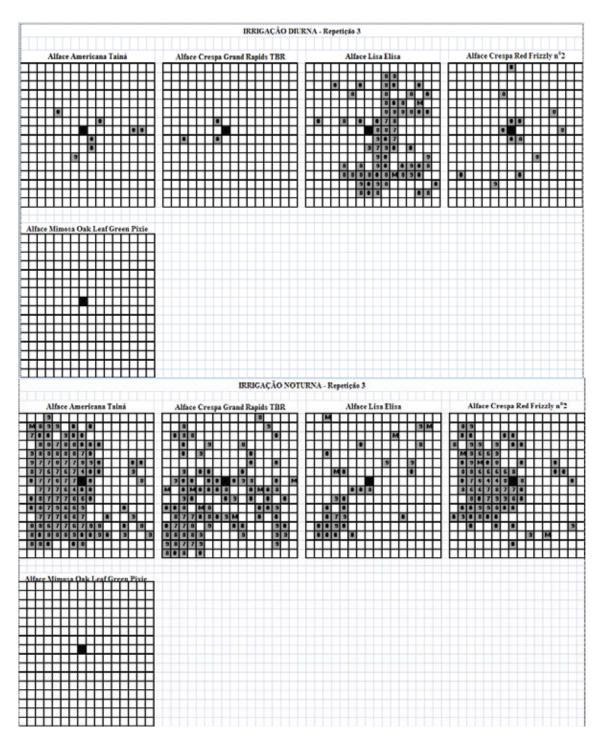
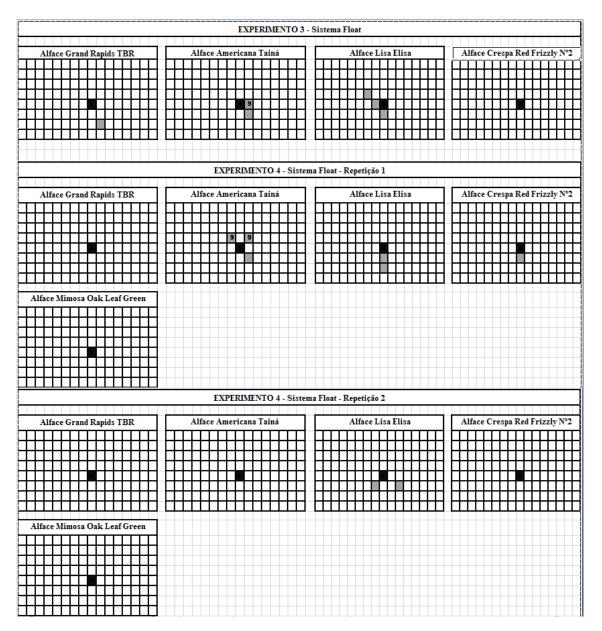


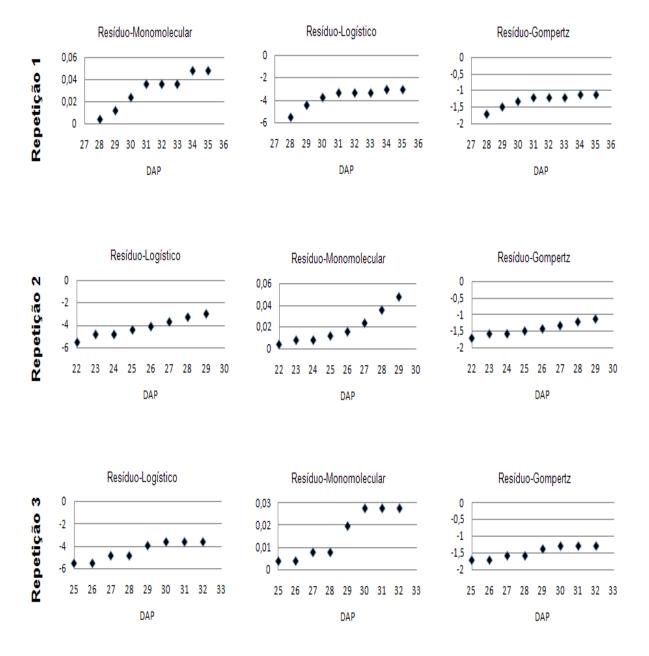
Figura 4 - Umidade relativa do ar máxima e mínima (%). Brasília, UnB, 2008.

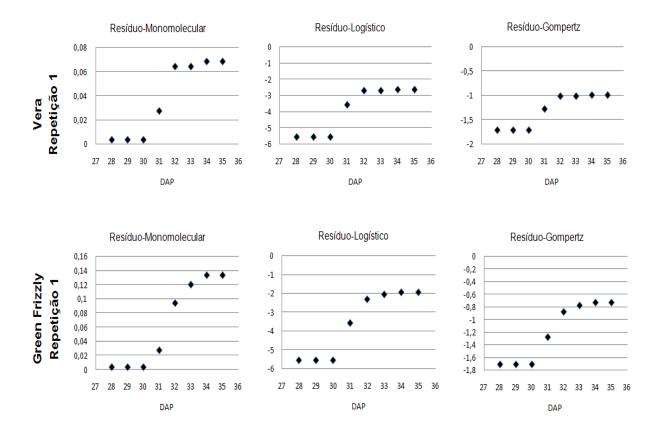




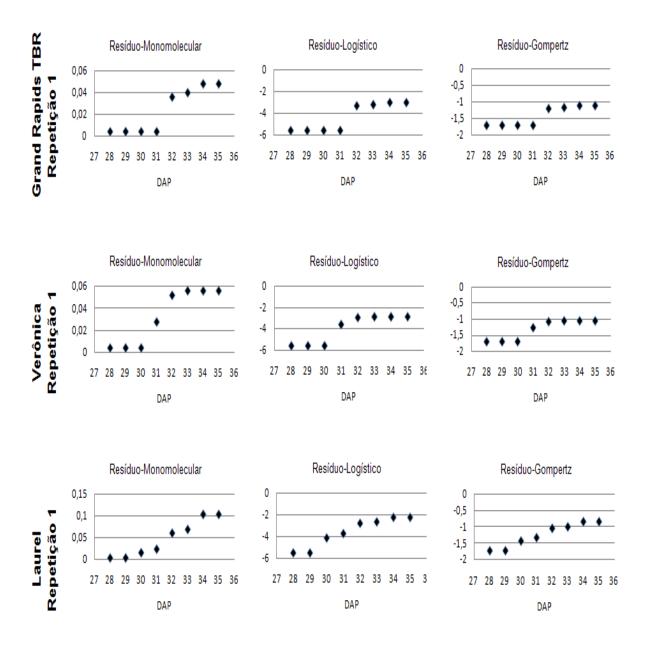

Figura 5 - Temperatura máxima e mínima (°C). Brasília, UnB, 2008.


Figura 6 - Mapas de distribuição espacial e temporal do míldio da alface a partir de um foco de inóculo inicial, com inoculação aos 21 DAP em Brasília, DF, 2007. Cada quadrante representa uma célula da bandeja com uma planta. Os números em cada quadrante representam o dia em que a planta apresentou sinais do patógeno após a inoculação na irrigação diurna -Repetição 1.


Figura 7 - Mapas de distribuição espacial e temporal do míldio da alface a partir de um foco de inóculo inicial, com inoculação aos 21 DAP em Brasília, DF, 2007. Cada quadrante representa uma célula da bandeja com uma planta. Os números em cada quadrante representam o dia em que a planta apresentou sinais do patógeno após a inoculação na irrigação noturna -Repetição 1.


Figura 8 - Mapas de distribuição espacial e temporal do míldio da alface a partir de um foco de inóculo inicial, com inoculação aos 21 DAP em Brasília, DF, 2007. Cada quadrante representa uma célula da bandeja com uma planta. Os números em cada quadrante representam o dia em que a planta apresentou sinais do patógeno após a inoculação nas irrigações diurna e noturna na repetição 2.


Figura 9 - Mapas de distribuição espacial e temporal do míldio da alface a partir de um foco de inóculo inicial, com inoculação aos 21 DAP em Brasília, DF, 2007. Cada quadrante representa uma célula da bandeja com uma planta. Os números em cada quadrante representam o dia em que a planta apresentou sinais do patógeno após a inoculação nas irrigações diurna e noturna na repetição 3.


Figura 10 - Mapas de distribuição espacial e temporal do míldio da alface a partir de um foco de inóculo inicial, com inoculação aos 21 DAP em Brasília, DF, 2007. Cada quadrante representa uma célula da bandeja com uma planta. Os números em cada quadrante representam o dia em que a planta apresentou sinais do patógeno após a inoculação no sistema float nas repetições 1, 2 e 3.

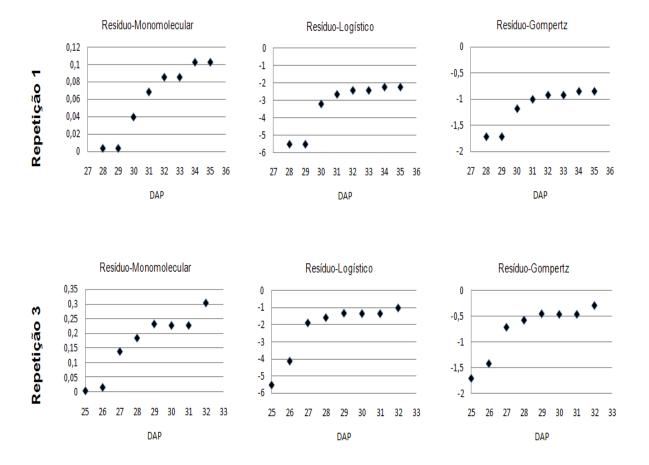

Figura 11 - Distribuição de resíduos em função de dias após o plantio (DAP) dos modelos de progresso Monomolecular, Logístico e Gompertz, na cultivar Tainá infectada pelo míldio em três repetições com irrigação diurna , Brasília, UnB, 2007/2008.

Figura 12 - Distribuição de resíduos em função de dias após o plantio (DAP) dos modelos de progresso Monomolecular, Logístico e Gompertz, nas cultivares Vera, Red Frizzly No 2 e Green Frizzly infectadas pelo míldio. Irrigação diurna, repetição 1 , Brasília, UnB, 2007/2008.

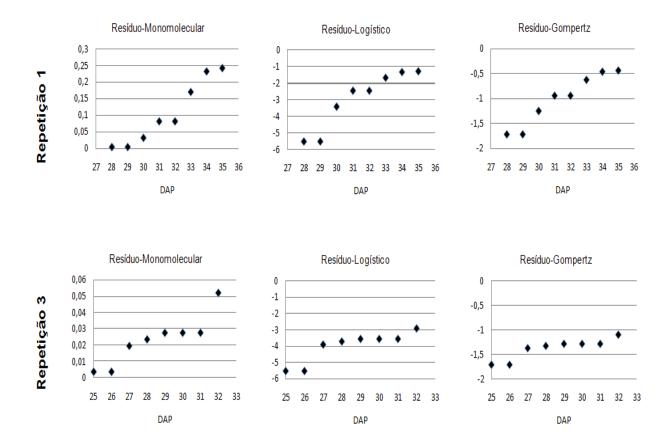


Figura 13 - Distribuiçõa de resíduos em funçõa de dias após o plantio (DAP) dos modelos de progresso Monomolecular, Logístico e Gompertz, nas cultivares Grand Rapids TBR, Verônica e Laurel infectadas pelo míldio. Irrigação diurna, repetição 1 , Brasília, UnB, 2007/2008.

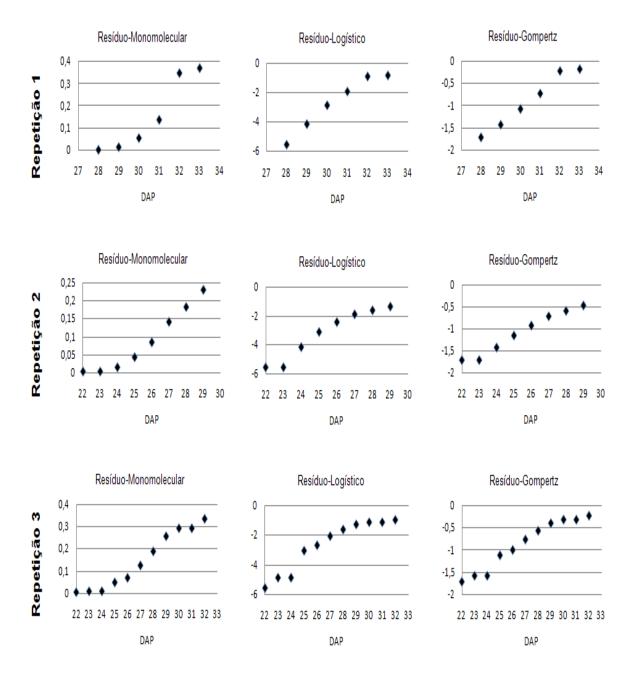
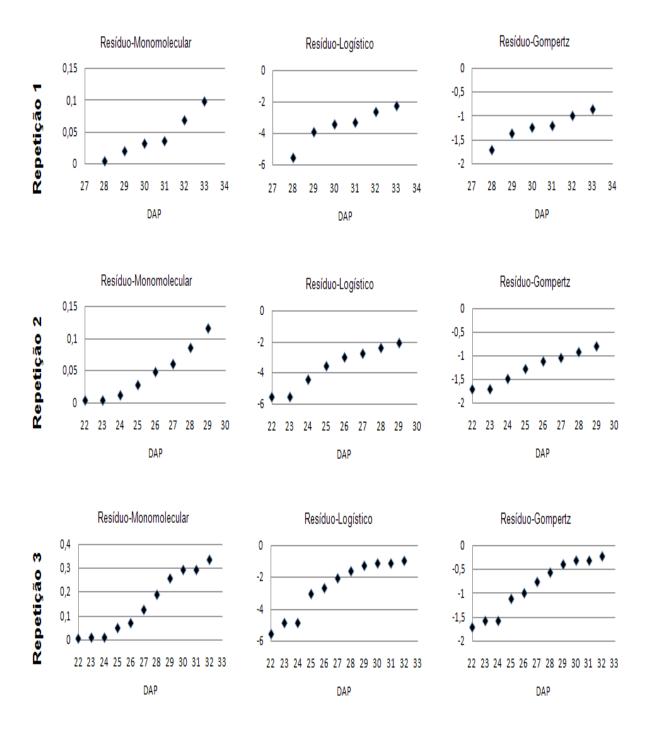
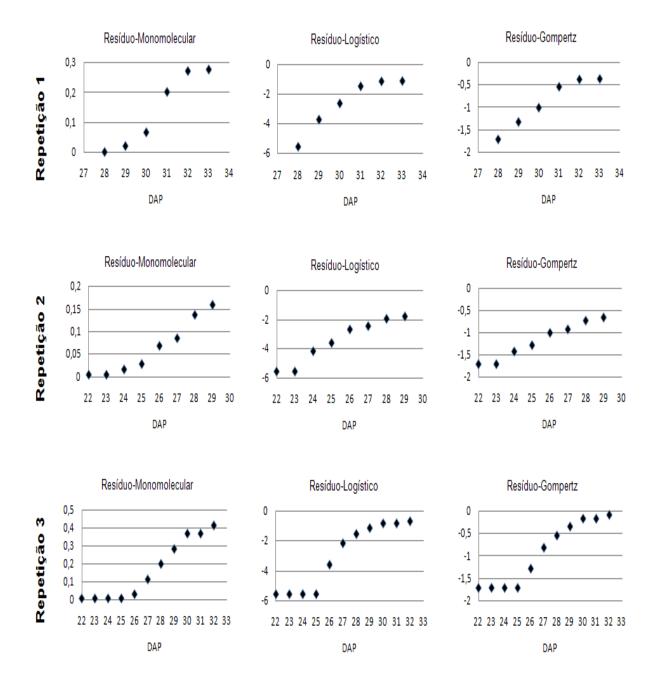
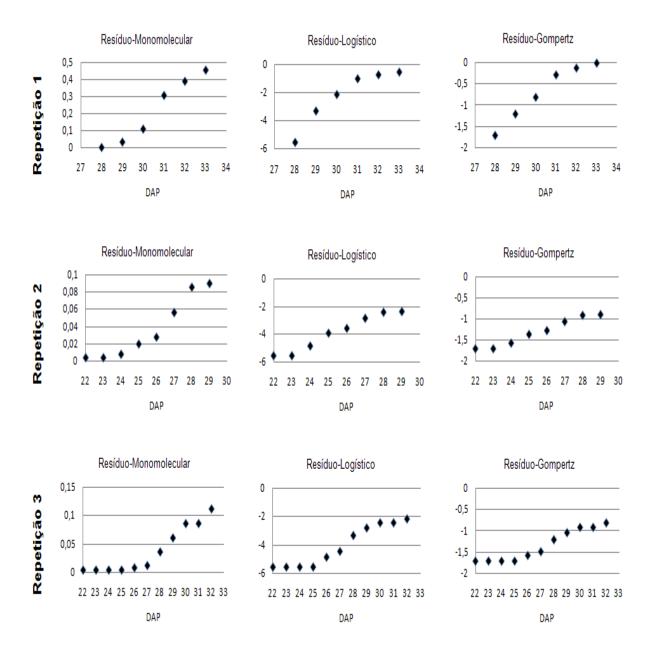

^{* -} Não foi possível obter os modelos de progresso da doença para a repetição 2 pois houve baixa incidência da doença.

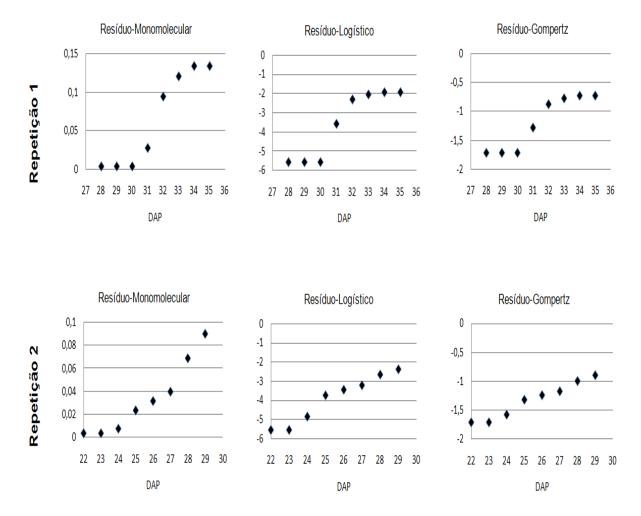
Figura 14 - Distribuição de resíduos em função de dias após o plantio (DAP) dos modelos de progresso Monomolecular, Logístico e Gompertz na cultivar Elisa infectada pelo míldio em três repetições com irrigação diurna, Brasília, UnB, 2007/2008.

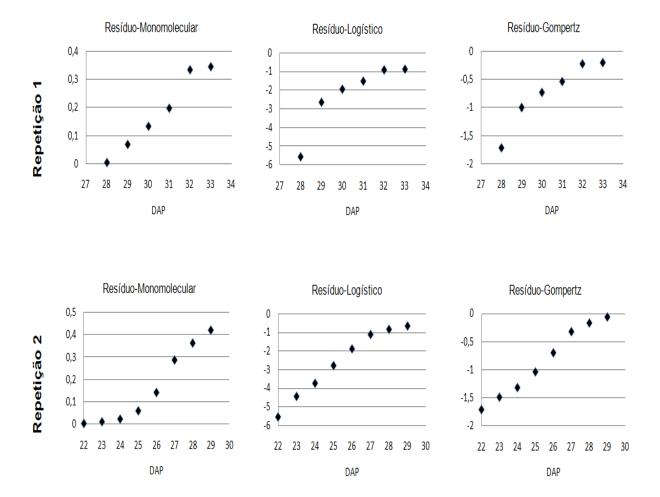


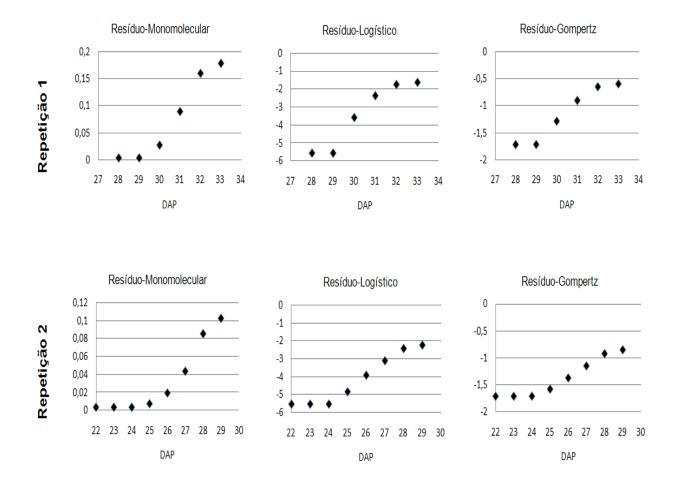
* - Não foi possível obter os modelos de progresso da doença para a repetição 2 pois houve baixa incidência da doença.


Figura 15 - Distribuição de resíduos em função de dias após o plantio (DAP) dos modelos de progresso Monomolecular, Logístico e Gompertz na cultivar Elisa infectada pelo míldio em três repetições com irrigação diurna , Brasília, UnB, 2007/2008.


Figura 16 - Distribuição de resíduos em função de dias após o plantio (DAP) dos modelos de progresso Monomolecular, Logístico e Gompertz, na cultivar Tainá infectada pelo míldio em três repetições com irrigação noturna, Brasília, UnB, 2007/2008.


Figura 17 - Distribuição de resíduos em função de dias após o plantio (DAP) dos modelos de progresso Monomolecular, Logístico e Gompertz, na cultivar Red Frizzly Nº2 infectada pelo míldio em três repetições com irrigação noturna, Brasília, UnB, 2007/2008.


Figura 18 - Distribuição de resíduos em função de dias após o plantio (DAP) dos modelos de progresso Monomolecular, Logístico e Gompertz, na cultivar Grand Rapids TBR infectada pelo míldio em três repetições com irrigação noturna, Brasília, UnB, 2007/2008.


Figura 19 - Distribuição de resíduos em função de dias após o plantio (DAP) dos modelos de progresso Monomolecular, Logístico e Gompertz, na cultivar Elisa infectada pelo míldio em três repetições com irrigação noturna, Brasília, UnB, 2007/2008.

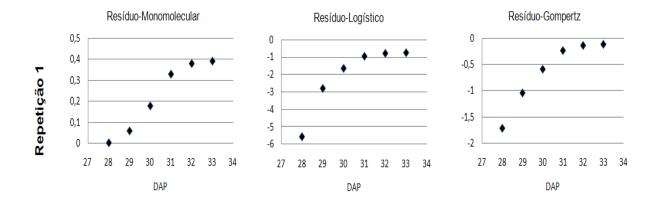

Figura 20 - Distribuição de resíduos em função de dias após o plantio (DAP) dos modelos de progresso Monomolecular, Logístico e Gompertz na cultivar Green Frizzly infectada pelo míldio em duas repetições com irrigação noturna, Brasília, UnB, 2007/2008.

Figura 21 - Distribuição de resíduos em função de dias após o plantio (DAP) dos modelos de progresso Monomolecular, Logístico e Gompertz na cultivar Verônica infectada pelo míldio em três repetições com irrigação diurna, Brasília, UnB, 2007/2008.

Figura 22 - Distribuição de resíduos em função de dias após o plantio (DAP) dos modelos de progresso Monomolecular, Logístico e Gompertz na cultivar Laurel infectada pelo míldio em duas repetições com irrigação noturna, Brasília, UnB, 2007/2008.

Figura 23 - Distribuição de resíduos em função de dias após o plantio (DAP) dos modelos de progresso Monomolecular, Logístico e Gompertz na cultivar Vera infectada pelo míldio com irrigação noturna, Brasília, UnB, 2007/2008.

ANEXOS (CAPÍTULOS I E II)

Tabela 1 - Cor período de lat		omporta	mento d	as diferente	es cultivares n	o estágio 1, o	quando obsei	vado o
ANOVA - One \						k	4	
	, ,	Tratame	entos			n	16	
Repetições	A	В	С	D		n - k	12	Nível de
1	3,83	2,47	2,52	1,35		а	0,05	Significância
2	3,08	3,31	2,18	2,25		g.l. Total	15	· ·
3	4,33	2,70	2,17	1,98		С	106,606	
4	3,81	2,21	1,46	1,65		SQT	11,517	
5						SQTr	9,004	
6						SQR	2,513	
7	A= Tainá					QMTr	3,001	
8	B= Elisa					QMR	0,209	
9	C= Red Frizzly I	V°2				Fcal	14,33548	
10	D= Grand Rapid					Ftab	3,49029	
11						p =	0,0003	
13						Conclusão:	-,	
14						Há diferenças		
						anoronydd		
Total	15,05	10,69	8,33	7,23	41,30			
Repetições	4,00	4,00	4,00	4,00	16,00			
Média	3,76	2,67	2,08	1,81	10,00			
Variância	0,26	0,22	0,20	0,15				
vanancia B	0,51	0,22	0,45	0,13				
CV	0,14	0,47	0,43	0,22			Intervalo de C	onfianca
(Total)2	226,50	114,28	69,39	52,27	462,44		95%	omança
Total	56,63	28,57	17,35	13,07	115,61		. a	1,203
n	4,00	20,51	17,55	13,07	115,01		. b	3,960
Média	2,58						Erro amostra	
S	0,87							1,38
								1,22
RESUMO								
Grupo	Contagem	Soma	Média	Variância	s	CV		
A	4	15,05	3,76	0,26	0,51	13,68%		
В	4	10,69	2,67	0,22	0,47	17,58%		
C	4	8,33	2,08	0,20	0,45	21,40%		
D	4	7,23	1,81	0,15	0,39	21,66%		
D	-	1,23	1,01	0,15	0,55	21,0076		
ANOVA								
Fonte de variaç	ão		SQ	a l	QM	F cal	n	F tab
Fonte de vanaç Entre grupos (t			9,004	g.l. 3	3,001	14,3354826	0,0003	3,49029
				_		14,3334020	0,0003	3,43023
Dentro dos gru _l Total	pos (Residuo)		2,513	12	0,209			
Total			21,947	15				
Tulcove Markins	Companies T	oot		VIETDA (Copin D 145			
rukey iviuitiple	Comparisons To		- 4-r-b		Sonia. P.145			
	Valor Tabelado	D	q tab 5%	4,2				
Б.	24%	4	D.C	(01)	Oiif t o			
	e médias	d.m.s.		nça (Abs)	Significante?	q cal		
	е В	0,961		,0900	sim *	4,764		
	e C	0,961		,6800	sim *	7,343		
	e D	0,961		,9550	sim *	8,545		
	e C	0,961		,5900	não	2,579		
В	e D	0,961		,8650	não	3,781	81	
	e D	0,961	Δ.	.2750	não	1,202		

Tabela 2 - Comparação do comportamento das diferentes cultivares no estágio 2, quando observado o período de latência

periodo de								
ANOVA - O	ne Way (1 Fat	-				k	4	
			mentos		_	n	16	
Repetições		В	С	D		n - k	12	Nível de
1	2,50	2,67	2,67	2,08		а	0,05	Significância
2	1,92	3,42	2,92	2,58		g.l. Total	15	
3	2,83	3,42	2,75	2,00		С	114,668	
4	2,67	3,75	2,50	2,17		SQT	4,054	
5						SQTr	2,655	
6						SQR	1,399	
7	A= Tainá					QMTr	0,885	
8	B= Elisa					QMR	0,117	
9	C= Red Frizzly	N°2				Fcal	7,58809	
10	D= Grand Rapi	ds TBR				Ftab	3,49029	
11						p =	0,0042	
13						Conclusão:		
14						Há diferenç	as	
Total	9,92	13,25	10,83	8,83	42,83			
Repetições	4,00	4,00	4,00	4,00	16,00			
Média	2,48	3,31	2,71	2,21				
Variância	0,16	0,21	0,03	0,07				
S	0,40	0,46	0,17	0,26				
CV	0,16	0,14	0,06	0,12			Intervalo de	Confiança
(Total)2	98,34	175,56	117,36	78,03	469,29		95%	
Total	24,59	43,89	29,34	19,51	117,32		a	1,93
n	4.00	,		,	,		b	3,43
n	4,00						b	3,43
Média	2,68						Erro amost	
s	0,47							0,75
RESUMO								
Grupo	Contagem	Soma	Média	Variância	s	CV		
Α	4	9,92	2,48	0,16	0,40	16,09%		
В	4	13,25	3,31	0,21	0,46	13,84%		
С	4	10,83	2,71	0,03	0,17	6,41%		
D	4	8,83	2,21	0,07	0,26	11,73%		
ANOVA								
Fonte de var	iação		SQ	g.l.	QM	F cal	р	F tab
	s (tratamentos))	2,655	3	0,885	7,588089	0,0042	3,49029
	grupos (Resídu		1,399	12	0,117			
Total		,	4,054	15	-			
Tukev Multin	ole Comparisor	ns Test.	VII	E IRA , Sonia	. P.145			
, ,	Valor Tabelad		q tab 5%	4,2				
			1 0.0					
Pares d	e médias	d.m.s.	Diferen	ça (Abs)	Significante?	q cal		
	e B	0,717		3333	sim *	4,881		
	e C	0,717		2292	não	1,342		
	e D	0,717		2708	não	1,542		
					nao não			
	e C	0,717	0,6042 1,1042			3,539		
	e D	0,717			sim *	6,467		
C	e D	0,717	U,S	5000	não	2,928		

Tabela 3 - Comparação do comportamento das diferentes cultivares no estágio 3, quando observado o período de latência

periodo de		- \						
O - AVOVIA	ne Way (1 Fat	-	mentos			. k	4 16	
Repetições	A	В	C	D	_	n 		
1	2,58	1,17	1,33	1,67		n - k	12 0,05	Nível de
	3,25	3,33	1,67	0,67		a	15	Significância
2						g.l. Total C		
	2,33 1,92	1,50 2,75	2,75 2,92	1,08 2,42			69,444	
4	1,32	2,15	2,32	2,42		SQT	10,056	
5						SQTr	2,399	
6						SQR	7,656	
7	A= Tainá					QMTr	0,800	
8 9	B= Elisa					QMR	0,638	
	C= Red Frizzly					Fcal	1,25351	
10 11	D= Grand Rapi	ds IBR				Ftab	3,49029	
						p =	0,3340	
13						Conclusão:		
14						Não há dife	renças	
otal	10,08	8,75	8,67	5,83	33,33			
epetições	4,00	4,00	4,00	4,00	16,00			
lédia	2,52	2,19	2,17	1,46	10,00			
ariância	0,31	1,05	0,62	0,58				
allalicia	0,56	1,03	0,78	0,76				
V	0,30	0,47	0,76	0,52			Intervalo de	Confiance
otal)2	101,67	76,56	75,11	34,03	287,38		95%	Communiçã
Total	25.42	19,14	18,78	8,51	71,84		- a	1,37
n	4,00	13, 14	10,70	0,51	11,04		. a	2,79
Média	2,08						Erro amostr	
S	0,45							0,71
ESUMO								
Grupo	Contagem	Soma	Média	Variância	s	CV		
Α	4	10,08	2,52	0,31	0,56	22,16%		
В	4	8,75	2,19	1,05	1,02	46,80%		
С	4	8,67	2,17	0,62	0,78	36,22%		
D	4	5,83	1,46	0,58	0,76	52,06%		
NOVA								
onte de var			SQ	g.l.	QM	F cal	р	F tab
intre grupos	(tratamentos)	2,399	3	0,800	1,253515	0,3340	3,49029
entro dos g	grupos (Resídu	10)	7,656	12	0,638			
otal			10,056	15				
		+ .		TYPA Cari	D 445			
ukey Multip	ole Comparisor			EIRA, Sonia	i. P.145			
	Valor Tabelad	do	q tab 5%	4,2				
Paroe d	e médias	d.m.s.	Diforon	ça (Abs)	Significante?	q cal		
	e B	1,677		ça (Abs) 3333	não	0,835		
	e C			3542	não			
		1,677				0,887		
	e D	1,677		1625	não	2,660		
	e C	1,677		208	não ~ -	0,052		
	e D	1,677		'292 '092	não ~ -	1,826		
C	e D	1,677	0,7	083	não	1,774		

Tabela 4 - Comparação do comportamento das diferentes cultivares no estágio 4, quando observado o período de latência

período de l								
ANOVA - On	e Way (1 Fato	or)				k	4	
		Tratan				n	16	
Repetições	Α	В	С	D		n - k	12	Nível de
1	0,00	1,83	1,92	1,25		а	0,05	Significância
2	2,00	1,67	1,50	1,33		g.l. Total	15	
3	1,67	2,83	2,67	1,92		С	52,261	
4	1,75	2,67	1,83	2,08		SQT	6,607	
5						SQTr	1,828	
6						SQR	4,780	
7	A= Tainá					QMTr	0,609	
8	B= Elisa					QMR	0,398	
9	C= Red Frizzly	y N°2				Fcal	1,52960	
10	D= Grand Rap	ids TBR				Ftab	3,49029	
11						p =	0,2574	
13						Conclusão:		
14						Não há difere	enças	
Total	5,42	9,00	7,92	6,58	28,92			
Repetições	4,00	4,00	4,00	4,00	16,00			
Média	1,35	2,25	1,98	1,65				
Variância	0,84	0,34	0,24	0,17				
S	0,91	0,59	0,49	0,42				
CV	0,67	0,26	0,25	0,25			Intervalo de	Confiança
(Total)2	29,34	81,00	62,67	43,34	216,35		95%	
Total	7,34	20,25	15,67	10,84	54,09		а	1,19
n	4,00						_ b	2,43
Média	1,81						Erro amost	
S	0,39							0,62
RESUMO								
Grupo	Contagem	Soma	Média	Variância	S	CV		
A	4	5,42	1,35	0,84	0,91	67,48%		
В	4	9,00	2,25	0,34	0,59	26,01%		
С	4	7,92	1,98	0,24	0,49	24,88%		
D	4	6,58	1,65	0,17	0,42	25,27%		
ANOVA								
Fonte de vari			SQ	g.l.	QM	F cal	p	F tab
	(tratamentos)		1,828	3	0,609	1,5296041	0,2574	3,49029
	rupos (Resídu	10)	4,780	12	0,398			
Total			6,607	15				
		_						
Tukey Multip	le Comparisor			EIRA, Soni	a. P.145			
	Valor Tabela	ido	q tab 5%	4,2				
Pares de		d.m.s.		ça (Abs)	Significante?	q cal		
	e B	1,325		958	não	2,839		
	e C	1,325		250	não	1,981		
	e D	1,325		917	não	0,924		
В	e C	1,325		708	não	0,858		
В	e D	1,325		042	não	1,915		
C e	e D	1,325	0,3	333	não	1,056		

Tabela 5 - Comparação do comportamento da cultivar Tainá em diferentes estágios de desenvolvimento, quando observado o período de latência

	e rvado o perio e Way (1 Fator		icia		- k	3		
ANOVA - OIR) Tratamentos			_ K n	3 12		
Repetições	Α	В	С		_ '' n - k	9	NIS-LI de	
1	2,50	2,58	0,00		_ II-K	0,05	Nível de Significância	
2	1,92	3,25	2,00		g.l. Total	11	Olgillicalicia	
3	2,83	2,33	1,67		_ G.i. Total	53,834		
4	2,67	1,92	1,75		SQT	7,423		
5	2,07	1,02	1,70		SQTr	3,505		
6					SQR	3,918		
7	A= Estágio 2				QMTr	1,752		
8	B= Estágio 3				QMR	0,435		
9	C= Estágio 4				Fcal	4,02481		
10	C- Estagio 4				Ftab	4,25649		
11					p =	0,0564		
13					Conclusão:	0,0304		
14					Não há difere	ncae		
14					Ivao IIa uliere	liças		
Fotal	9,92	10,08	5,42	25,42				
Repetições	4,00	4,00	4,00	12,00				
Vedia Vedia	2,48	2,52	1,35	12,00				
Variância	0,16	0,31	0,84					
vanancia B	0,10	0,51	0,04					
CV	0,40	0,30	0,67			Intervalo de C	onfianca	
Total)2	98,34	101,67	29,34	229,35		95%	omança	
Total	24,59	25,42	7,34	57,34		. a	0,47	
n	3,00	25,42	1,54	31,34		. b	3,76	
Média	2,12					Erro amostral		
S	0,66						1,64	
								_
RESUMO								
Grupo	Contagem	Soma	Média	Variância	s	CV		
A	4	9,92	2,48	0,16	0,40	16,09%		
В	4	10,08	2,52	0,31	0,56	22,16%		
С	4	5,42	1,35	0,84	0,91	67,48%		
ANOVA								
onte de varia	ıção		SQ	g.l.	QM	Fical	р	F tab
Entre grupos	(tratamentos)		3,505	2	1,752	4,0248117	0,0564	4,25649
Dentro dos gr	upos (Resíduo))	3,918	9	0,435			
Total			7,423	11	-			
Tukey Multiple	e Comparisons	Test.	VII	EIRA, Soni	a. P.145			
	Valor Tabela		q tab 5%	4,2				
Pares de	médias	d.m.s.	Diference	ça (Abs)	Significante?	q cal		
Αe	e В	1,303		417	não	0,126		
Δ.								
A	e C	1,303	1,1	250	não	3,410		

Tabela 6 -Comparação do comportamento da cultivar Elisa em diferentes estágios de desenvolvimento da planta, quando observado o período de latência

	e Way (1 Fato	-			k	3		
		, ratamentos			n	12		
Repetições	Α	В	С		n - k	9	Nível de	
1	2,67	1,17	1,83		a	0,05	Significância	
2	3,42	3,33	1,67		g.l. Total	11	3	
3	3,42	1,50	2,83		C	80,083		
4	3,75	2,75	2,67		SQT	8,000		
5		_,-	_,		SQTr	3,198		
6					SQR	4,802		
7	A= Estágio 2				QMTr	1,599		
8	B= Estágio 3				QMR	0,534		
9	C= Estágio 4				Fcal	2,99675		
10	C- Latagio 4				Ftab	4,25649		
11					p =	0,1006		
13					Conclusão:	0,1000		
14					Não há diferen			
14					ivao na dilereni	ças		
otal	13,25	8,75	9,00	31,00				
Repetições	4,00	4,00	4,00	12,00				
Λédia	3,31	2,19	2,25	,				
/ariância	0,21	1,05	0,34					
ununcia	0,46	1,02	0,59					
V	0,14	0,47	0,26			Intervalo de (Confianca	
rotal)2	175,56	76,56	81,00	333,13		95%	Johnanga	
Total	43,89	19,14	20,25	83,28		a	1,01	
n	3,00	13, 14	20,25	03,20		b b	4,15	
Média	2,58					Erro amostra		
s	0,63						1,57	
							-	
RESUMO								
Grupo	Contagem	Soma	Média	Variância	s	CV		
Α	4	13,25	3,31	0,21	0,46	13,84%		
В	4	8,75	2,19	1,05	1,02	46,80%		
С	4	9,00	2,25	0,34	0,59	26,01%		
ANOVA								
onte de varia	ação		SQ	g.l.	QM	F cal	р	F tab
•	(tratamentos)		3,198	2	1,599	2,9967462	0,1006	4,25649
Dentro dos gr	rupos (Resíduo	o)	4,802	9	0,534			
otal			8,000	11				
ukey Multipl	e Comparison			EIRA, Sonia	a. P.145			
	Valor Tabela	do	q tab 5%	4,2				
Б	6.15		D.0	(A)	0: :5			
Pares de		d.m.s.		ça (Abs)	Significante?	q cal		
Αe		1,443		1250	não	3,080		
Αe		1,443		0625	não	2,909		
Re	e C	1,443	0,0	0625	não	0,171		

Tabela 7 - Comparação do comportamento da cultivar Red Frizzly $N^{\circ}2$ em diferentes estágios de desenvolvimento da planta, quando observado o período de latência

Repetições 4,00 4,00 4,00 12,00 Média 2,71 2,17 1,98 Variância 0,03 0,62 0,24 s 0,17 0,78 0,49 CV 0,06 0,36 0,25 Total) 21,73 75,11 62,67 255,15 95% n 3,00 3,23 5 63,79 a 1,34 n 3,00 3,23 6 2,28 5 6,70 s 0,38 2,71 0,03 0,17 6,41% 6,94 RESUMO A 4 10,83 2,71 0,03 0,17 6,41% 6,41% 6,41% 6,41% 6,41% 6,41% 7,92 1,98 0,24 0,49 24,88% 6,41% 7,92 1,98 0,24 0,49 24,88% 6,41% 7,92 1,147 2 0,573 1,93680782 0,197 4,25649 0,296 0,296 0,296 0,296 0,29	ANOVA - One	e Way (1 Fato	or)			k	3		
1		T	ratamentos			n	12		
1	Repetições	Α	В	С		n - k	9	Significânci	
3 2,75 2,75 2,67 2,67 3,812 50T 3,812 50T 3,812 50T 1,147 66 50R 2,665 7 A=Estágio 2 QMTr 0,573 QMR 0,296 7 A=Estágio 3 QMR 0,296 9 C=Estágio 4 Feal 1,93681 9 C=Estágio 4 P14	1	2,67	1,33	1,92		а	0,05	_	
A	2	2,92	1,67	1,50		g.l. Total	11		
SQT 3,812 SQT 1,147 SQR 2,665 SQT 1,147 SQR 2,665 SQT 1,147 SQR 2,665 SQR 2,665 SQR 2,665 SQR 2,665 SQR 2,665 SQR 2,665 SQR 2,296 SQR	3	2,75	2,75	2,67		С	62,639		
SQTr 1,147 SQR 2,665 SQR 2,264 SQR	4	2,50	2,92	1,83		SQT			
SQR 2,665 Country									
7 A= Estágio 2 8 B- Estágio 3 9 C- Estágio 4 10 11 Piab Piab Piab Piab 11 Piab Piab Piab 11 Piab Piab 12 Piab Piab 13 Piab Piab 14 Piab Piab 15 Piab Piab 16 Piab Piab 17 Piab Piab 18 Piab Piab 19 Piab Piab 19 Piab Piab 10 Piab Piab 11 Piab Piab 11 Piab Piab 11 Piab Piab 12 Piab Piab 13 Piab Piab 14 Piab Piab 15 Piab Piab 16 Piab Piab 16 Piab Piab 17 Piab 18 Piab Piab 18 Piab Piab 19 Piab 19 Piab 10 Piab 10 Piab 10 Piab 10 Piab 10 Piab 10 Piab 11 Piab 10 Piab 11 Piab 12 Piab 13 Piab 14 Piab 15 Piab 16 Piab 17 Piab 18 Piab 19 Piab 19 Piab 19 Piab 19 Piab 19 Piab 10 Piab	6								
8 B-Estágio 3 QMR 0,296 9 C-Estágio 4 Feal 1,93681 Flab 4,25649 p p = 0,1997 11		A= Estágio 2							
9									
Total 10.83									
11		C- Estagio 4							
13						-	7		
14						-	0,1551		
Total									
Repetições	14					ivao na difere	nças		
Repetições	Total	10,83	8,67	7,92	27,42				
Média 2,71 2,17 1,98 Variância 0,03 0,62 0,24 s 0,17 0,78 0,49 CV 0,06 0,36 0,25 (Total)2 117,36 75,11 62,67 255,15 95% Total 29,34 18,78 15,67 63,79 a 1,34 n 3,00 b 3,23 Erro amostral s 0,38 Erro amostral s 0,38 0,94 RESUMO Grupo Contagem Soma Média Variância s CV A 4 10,83 2,71 0,03 0,17 6,41% B 4 8,67 2,17 0,62 0,78 36,22% C 4 7,92 1,98 0,24 0,49 24,88% ANOVA Fonte de variação SQ g.l. QM F cal p F tab Entre grupos (tratamentos) 1,147 2 0,573 1,93680782 0,1997 4,25649 Dentro dos grupos (Resíduo) 2,665 9 0,296 Total Total Tukey Multiple Comparisons Test. VIEIRA, Sonia. P.145 Valor Tabelado Q tab 5% 4,2 Pares de médias A e B 1,075 0,5417 não 1,991 A e C 1,075 0,7292 não 2,680	Repetições								
Variância 0.03 0.62 0.24 s 0.17 0.78 0.49 CV 0.06 0.36 0.25 Intervalo de Confiança Total) 2 117,36 75,11 62,67 255,15 95%	Média				-				
CV									
CV									
Total 2		-					Intervalo de C	onfianca	
Total 29,34 18,78 15,67 63,79 a 1,34 n 3,00 b 3,23 Média 2,28 Erro amostral 0,94 S 0,38 0,94 RESUMO Grupo Contagem Soma Média Variância s CV CV A 4 10,83 2,71 0,03 0,17 6,41% B 4 8,67 2,17 0,62 0,78 36,22% C 4 7,92 1,98 0,24 0,49 24,88% ANOVA Fonte de variação Seriduo) 2,665 9 0,296 Fortal Sertire grupos (tratamentos) 1,147 2 0,573 1,93680782 0,1997 4,25649 Dentro dos grupos (Resíduo) 2,665 9 0,296 Total Tukey Multiple Comparisons Test. VIEIRA, Sonia. P.145 Valor Tabelado q tab 5% 4,2 Pares de médias d.m.s. Diferença (Abs) A e B 1,075 0,5417 não 1,991 A e C 1,075 0,7292 não 2,680				-	255 15				
Neddia 2,28 Erro amostral 2,28 Erro amostral 0,94								1 34	
Média 2,28 Erro amostral 0,94			10,10	15,01	05,75				
RESUMO Grupo Contagem Soma Média Variância s CV A 4 10,83 2,71 0,03 0,17 6,41% B 4 8,67 2,17 0,62 0,78 36,22% C 4 7,92 1,98 0,24 0,49 24,88% ANOVA Fonte de variação SQ g.l. QM F cal p F tab Entre grupos (tratamentos) 1,147 2 0,573 1,93680782 0,1997 4,25649 Dentro dos grupos (Resíduo) 2,665 9 0,296 Total 3,812 11 Tukey Multiple Comparisons Test. VIEIRA, Sonia. P.145 Valor Tabelado q tab 5% 4,2 Pares de médias d.m.s. Diferença (Abs) Significante? q cal A e B 1,075 0,5417 não 1,991 A e C 1,075 0,7292 não 2,680									
RESUMO Soma Média Variância S CV									
Grupo Contagem Soma Média Variância s CV A		0,00						5,5.	
Grupo Contagem Soma Média Variância s CV A									
Grupo Contagem Soma Média Variância s CV A	RESUMO								
ANOVA Fonte de variação Entre grupos (tratamentos) Dentro dos grupos (Resíduo) Total VIEIRA, Sonia. P.145 Valor Tabelado Q tab 5% A, 2 Pares de médias A e B 1,075 A e C 1,075 0,7292 1,00 0,03 0,17 6,41% 6,4		Contagem	Soma	Média	Variância	s	CV		
B 4 8,67 2,17 0,62 0,78 36,22% C 4 7,92 1,98 0,24 0,49 24,88% ANOVA Fonte de variação SQ g.l. QM F cal p F tab Entre grupos (tratamentos) 1,147 2 0,573 1,93680782 0,1997 4,25649 Dentro dos grupos (Resíduo) 2,665 9 0,296 Total 3,812 11 Fukey Multiple Comparisons Test. VIEIRA, Sonia. P.145 Valor Tabelado q tab 5% 4,2 Pares de médias d.m.s. Diferença (Abs) Significante? q cal A e B 1,075 0,5417 não 1,991 A e C 1,075 0,7292 não 2,680			10.83	2.71	0.03	0.17	6.41%		
C 4 7,92 1,98 0,24 0,49 24,88% ANOVA Fonte de variação SQ g.l. QM F cal p F tab Entre grupos (tratamentos) 1,147 2 0,573 1,93680782 0,1997 4,25649 Dentro dos grupos (Resíduo) 2,665 9 0,296 Total 3,812 11 Fukey Multiple Comparisons Test. VIEIRA, Sonia. P.145 Valor Tabelado q tab 5% 4,2 Pares de médias d.m.s. Diferença (Abs) Significante? q cal A e B 1,075 0,5417 não 1,991 A e C 1,075 0,7292 não 2,680	В	4							
ANOVA Fonte de variação SQ g.l. QM F cal p F tab Entre grupos (tratamentos) 1,147 2 0,573 1,93680782 0,1997 4,25649 Dentro dos grupos (Resíduo) 2,665 9 0,296 Total 3,812 11 Tukey Multiple Comparisons Test. VIEIRA, Sonia. P.145 Valor Tabelado q tab 5% 4,2 Pares de médias d.m.s. Diferença (Abs) Significante? q cal A e B 1,075 0,5417 não 1,991 A e C 1,075 0,7292 não 2,680		1							
SQ g.l. QM F cal p F tab			-,	-,	-,	-,	_,,,		
SQ g.l. QM F cal p F tab									
SQ g.l. QM F cal p F tab									
SQ g.l. QM F cal p F tab	ANOVA								
Entre grupos (tratamentos) 1,147 2 0,573 1,93680782 0,1997 4,25649 Dentro dos grupos (Resíduo) 2,665 9 0,296 Total 3,812 11 Tukey Multiple Comparisons Test. VIEIRA, Sonia. P.145 Valor Tabelado q tab 5% 4,2 Pares de médias A e B 1,075 0,5417 não 1,991 A e C 1,075 0,7292 não 2,680		ação		SQ	g.l.	QM	F cal	р	F tab
Total 3,812 11 Tukey Multiple Comparisons Test. VIEIRA, Sonia. P.145 Valor Tabelado q tab 5% 4,2 Pares de médias d.m.s. Diferença (Abs) Significante? q cal A e B 1,075 0,5417 não 1,991 A e C 1,075 0,7292 não 2,680	Entre grupos	(tratamentos)		1,147		0,573	1,93680782	0,1997	4,25649
Total 3,812 11 Tukey Multiple Comparisons Test. VIEIRA, Sonia. P.145 Valor Tabelado q tab 5% 4,2 Pares de médias d.m.s. Diferença (Abs) Significante? q cal A e B 1,075 0,5417 não 1,991 A e C 1,075 0,7292 não 2,680	Dentro dos gr	rupos (Resídu	0)	2,665	9	0,296			
Tukey Multiple Comparisons Test. VIEIRA, Sonia. P.145 Valor Tabelado q tab 5% 4,2 Pares de médias d.m.s. Diferença (Abs) Significante? q cal A e B 1,075 0,5417 não 1,991 A e C 1,075 0,7292 não 2,680	Total				11				
Valor Tabelado q tab 5% 4,2 Pares de médias d.m.s. Diferença (Abs) Significante? q cal A e B 1,075 0,5417 não 1,991 A e C 1,075 0,7292 não 2,680									
Pares de médias d.m.s. Diferença (Abs) Significante? q cal A e B 1,075 0,5417 não 1,991 A e C 1,075 0,7292 não 2,680	Tukey Multipl					a. P.145			
A e B 1,075 0,5417 não 1,991 A e C 1,075 0,7292 não 2,680		Valor Tabela	do	q tab 5%	4,2				
A e B 1,075 0,5417 não 1,991 A e C 1,075 0,7292 não 2,680	Description 1	mádia-	d ac a	Dif	οοο (Λh-)	Cianift-0	n a -1		
A e C 1,075 0,7292 não 2,680									
B e C 1,075 0,18/5 não 0,689									
	Ве	C	1,075	0,	18/5	não	0,689		

Tabela 8 - Comparação do comportamento da cultivar Grand Rapids TBR em diferentes estágios de desenvolvimento da planta, quando observado o período de latência

ANOVA - On	-		iido obsei	vado o pe	riodo de latei k	3		
		ratamento	s		n n	12		
Repetições	A	В	С		n - k	9	Nível de	
1	2,08	1,67	1,25		a	0,05	Significância	
2	2,58	0,67	1,33		g.l. Total	11	g	
3	2,00	1,08	1,92		C	37,630		
4	2,17	2,42	2,08		SQT	3,668		
5	_,	_,	_,00		SQTr	1,219		
6					SQR	2,450		
7	A= Estágio 2	,			QMTr	0,609		
8	B= Estágio 3				QMR	0,003		
9					Fcal	2,23884	1	
	C= Estágio 4	•			-		<u> </u>	
10					Ftab	4,25649	-	
11					p =	0,1625		
13					Conclusão:			
14					Não há diferer	nças		
Γotal	8,83	5,83	6,58	21,25				
Repetições	4,00	4,00	4,00	12,00				
Vedia	2,21	1,46	1,65	,,,,,				
/ariância	0.07	0,58	0,17					
3	0,26	0,76	0,42					
CV	0,12	0,52	0,25			Intervalo de	Confianca	
Total)2	78,03	34,03	43,34	155,40		95%	Oomança	
Total	19,51	8,51	10,84	38,85		. a	0,80	
n	3,00	0,51	10,04	30,00		. a b	2,74	
Média	1,77					Erro amostr		
S	0,39					Life alliesti	0,97	
5	0,55						0,31	
RESUMO								
Grupo	Contagem	Soma	Média	Variância	s	CV		
A	4	8,83	2,21	0,07	0,26	11,73%		
В	4	5,83	1,46	0,58	0,76	52,06%		
C	4	6,58	1,65	0,17	0,42	25,27%		
	4	0,50	1,03	0,17	0,42	23,21 70		
ANOVA								
onte de varia	ação		SQ	g.l.	QM	F cal	р	F tab
Entre grupos	-	s)	1,219	2	0,609	2,2388377	0,1625	4,25649
Dentro dos gr			2,450	9	0,272			
Fotal			3,668	11				
Tukey Multipl	e Compariso	ons Test	V	IEIRA, S	onia. P.145			
, , , , , , , , , , , , , , , , , , ,	Valor Tabel		q tab 5%	4,2	12.13			
	valor rabel		q tab 5%	7,2				
Pares de	médias	d.m.s.	Diferen	ça (Abs)	Significante?	q cal		
A e		1,030		500	não	2,875		
Ae		1,030		625	não	2,156		
Be		1,030		1875	não	0,719		
Бе	U	1,030	U,	1013	IIa0	0,719		

Tabela 9 - Comparação do comportamento da cultivar Tainá em diferentes tipos de irrigação quando observadas as AACPD

AACPD								
ANOVA - (One Way (1	Fator)			k	3		
		Tratamento	s		n	9		
Repetições	Α	В	С		n - k	6	Nível de	
1	163,50	76,50	8		а	0,05	Significância	
2	139,50	28,50	11,5		g.l. Total	8		
3	513,00	23,50	0		C	103255,111		
4					SQT	213519,389		
5					SQTr	124327,722		
6	A= Irrigação	Noturna			SQR	89191,667		
7	B= Irrigação				QMTr	62163,861		
8	C= Sistema				QMR	14865,278		
9					Fcal	4,18182		
10					Ftab	5,14325		
11					p =	0,0729		
13					Conclusão:	0,0723		
14					Não há diferen			
14					ivao na ulieren	lÇa5		
Total	946.00	120 FO	10.50	064.00				
Total	816,00	128,50	19,50	964,00				
Repetições		3,00	3,00	9,00				
Média	272,00	42,83	6,50					
Variância	43704,75	856,33	34,75					
S	209,06	29,26	5,89]		
CV	0,77	0,68	0,91			Intervalo de Co	nfiança	
(Total)2	665856,00	16512,25	380,25	682748,50		95%		
Total	221952,00	5504,08	126,75	227582,83		a	-250,48	
n	3,00					b	464,70	
Média	107,11					Erro amostral		
S	143,95						357,59	
RESUMO							_	
Grupo	Contagem	Soma	Média	Variância	S	CV		
Α	3	816,00	272,00	43704,75	209,06	76,86%		
В	3	128,50	42,83	856,33	29,26	68,32%		
С	3	19,50	6,50	34,75	5,89	90,69%		
ANOVA								
Fonte de v	ariacão		SQ	g.l.	QM	Fical	р	F tab
	os (tratamer	ntos)	124327,722	2	62163,861	4,181816313	0,0729	5,14325
THE RESERVE THE PARTY OF THE PA	grupos (Re	Control of the Control	89191,667	6	14865,278	MISSION		
Total	Surbee (110		213519,389	8	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
	Sonia. P.1	45	210010,000					
	tiple Compa							
Tuney Will	Valor Tabel		q tab 5%	4,2				
	valui Tabel	adu	q tab 5%	4,2				
Parae d	e médias	d.m.s.	Diferenç	a (Ahe)	Significante?	q cal		
	e B	305,503	229,1		não	3,256		
			265,5					
	e C	305,503			não 	3,772		
В	e C	305,503	36,3	333	não	0,516		

Tabela 10 - Comparação do comportamento da cultivar Red Frizzly N°2 em diferentes tipos de irrigação quando observadas as AACPD

observada	s as AACPD							
ANOVA - (One Way (1	Fator)			k	3		
		Tratamento	S		n	9		
Repetições	Α	В	С		n - k	6	Nível de	
1	48,50	277,00	0		а	0,05	Significância	
2	72,00	2,50	1,5		g.l. Total	8		
3	283,50	38,50	0		С	58161,361		
4					SQT	107966,889		
5					SQTr	29952,722		
6	A= Irrigação	Noturna			SQR	78014,167		
7	B= Irrigação				QMTr	14976,361		
8	C= Sistema				QMR	13002,361		
9					Fcal	1,15182		
10					Ftab	5,14325		
11					p =	0,3773		
13					Conclusão:			
14					Não há diferen	ncas		
Total	404,00	318,00	1,50	723,50				
Repetições		3,00	3,00	9,00				
Média	134,67	106,00	0,50	0,00				
Variância	16751,58	22254,75	0,75					
S	129,43	149,18	0,73					
CV	0,96	1,41	1,73			Intervalo de Co	nfianca	
(Total)2	-	101124,00		264342,25		95%	illiariça	
Total	54405,33	33708,00	0,75	88114,08		. a	-95,13	
		33700,00	0,75	00114,00		_ a b	255,91	
n Maaila	3,00					Erro amostral	200,91	
Média	80,39					Ello alliostrai	175,52	
S	70,65						175,52	_
RESUMO								
Grupo	Contagem	Soma	Média	Variância	S	CV		
А	3	404,00	134,67	16751,58	129,43	96,11%		
В	3	318,00	106,00	22254,75	149,18	140,74%		
C	3	1.50	0.50	0.75	0,87	173.21%		
-	J	1,50	0,50	0,75	0,07	173,2170		
ANOVA								
	ariao ão		SQ	al	QM	F cal	-	F tab
Fonte de va		taa)	The second secon	g.l. 2			p 0.2772	
	os (tratamen		29952,722		14976,361	1,15181858	0,3773	5,14325
	grupos (Re	siauo)	78014,167	6	13002,361			
Total			107966,889	8				
T. J	into Common	T-4						
	iple Compar		CONTRACTOR CO.	4.0				
	Valor Tabela	ado	q tab 5%	4,2			3	
Pares de		d.m.s.	Diferenç		Significante?	q cal		
	е В	285,720	28,6		não	0,435		
	e C	285,720	134,1		não	2,038	3	
	e C	285,720	105,5		não	1,603		

Tabela 11 - Comparação do comportamento da cultivar Grand Rapids TBR em diferentes tipos de irrigação quando observadas as AACPD

	S as AACPD							
ANOVA -	One Way (1	•			k	3		
		Tratamento			n	9		
Repetições		В	С		n-k	6	Nível de	
1	159,00	61,00	0,5		а	0,05	Significância	
2	101,00	4,00	0		g.l. Total	8		
3	337,50	5,50	0		С	49654,694		
4					SQT	103501,056		
5					SQTr	71004,222		
6	A= Irrigação	Noturna			SQR	32496,833		
7	B= Irrigação I	Diurna			QMTr	35502,111		
8	C= Sistema F	loat			QMR	5416,139		
9					Fcal	6,55487		
10					Ftab	5,14325		
11					p =	0,0310		
13					Conclusão:			
14					Há diferenças			
					ria anorongao			
Total	597,50	70,50	0,50	668,50				
Repetiçõe:		3,00	3,00	9,00				
Kepetiçõe: Média	199,17	23,50	0,17	3,00				
Variância								
	15193,08	1055,25	0,08					
S OV	123,26	32,48	0,29			latarania da Ca	 - 5	
CV	0,62	1,38	1,73	204070.75		Intervalo de Co	nnança	
Total)2	357006,25	4970,25	0,25	361976,75		95%	405.00	
Total	119002,08	1656,75	0,08	120658,92		a	-195,96	
n	3,00					b	344,51	
Média	74,28					Erro amostral		
S	108,78						270,24	
RESUMO			000 Ato 10					
Cruno								
Grupo	Contagem	Soma	Média	Variância	S	CV		
A	Contagem 3	Soma 597,50	Média 199,17	Variância 15193,08	s 123,26	CV 61,89%		
Α	3	597,50	199,17	15193,08	123,26	61,89%		
A B	3 3	597,50 70,50	199,17 23,50	15193,08 1055,25	123,26 32,48	61,89% 138,23%		
A B	3 3	597,50 70,50	199,17 23,50	15193,08 1055,25	123,26 32,48	61,89% 138,23%		
A B C	3 3	597,50 70,50	199,17 23,50	15193,08 1055,25	123,26 32,48	61,89% 138,23%		
A B C	3 3 3	597,50 70,50	199,17 23,50 0,17	15193,08 1055,25 0,08	123,26 32,48 0,29	61,89% 138,23% 173,21%	р	F tab
A B C	3 3 3	597,50 70,50 0,50	199,17 23,50 0,17	15193,08 1055,25 0,08 g.l.	123,26 32,48 0,29	61,89% 138,23% 173,21% F cal	p 0.0310	
A B C ANOVA Fonte de v	3 3 3 ariação os (tratamen	597,50 70,50 0,50	199,17 23,50 0,17 SQ 71004,222	15193,08 1055,25 0,08 g.l. 2	123,26 32,48 0,29 QM 35502,111	61,89% 138,23% 173,21%	p 0,0310	
A B C ANOVA Fonte de v Entre grup Dentro dos	3 3 3	597,50 70,50 0,50	199,17 23,50 0,17 SQ 71004,222 32496,833	15193,08 1055,25 0,08 g.l. 2 6	123,26 32,48 0,29	61,89% 138,23% 173,21% F cal		
A B C ANOVA Fonte de v Entre grup Dentro dos	3 3 3 ariação os (tratamen	597,50 70,50 0,50	199,17 23,50 0,17 SQ 71004,222	15193,08 1055,25 0,08 g.l. 2 6	123,26 32,48 0,29 QM 35502,111	61,89% 138,23% 173,21% F cal		
A B C ANOVA Fonte de v Entre grup Dentro dos	3 3 3 rariação os (tratamen s grupos (Res	597,50 70,50 0,50 0,50	199,17 23,50 0,17 SQ 71004,222 32496,833 103501,056	15193,08 1055,25 0,08 g.l. 2 6	123,26 32,48 0,29 QM 35502,111	61,89% 138,23% 173,21% F cal		
A B C ANOVA Fonte de v Entre grup Dentro dos	3 3 3 arriação os (tratamen s grupos (Res	597,50 70,50 0,50 tos) síduo)	199,17 23,50 0,17 SQ 71004,222 32496,833 103501,056	15193,08 1055,25 0,08 g.l. 2 6 8	123,26 32,48 0,29 QM 35502,111	61,89% 138,23% 173,21% F cal		
A B C ANOVA Fonte de v Entre grup Dentro dos	3 3 3 rariação os (tratamen s grupos (Res	597,50 70,50 0,50 tos) síduo)	199,17 23,50 0,17 SQ 71004,222 32496,833 103501,056	15193,08 1055,25 0,08 g.l. 2 6	123,26 32,48 0,29 QM 35502,111	61,89% 138,23% 173,21% F cal		
A B C ANOVA Fonte de v Entre grup Dentro dos Total	3 3 3 arriação os (tratamen s grupos (Res	597,50 70,50 0,50 tos) síduo)	199,17 23,50 0,17 SQ 71004,222 32496,833 103501,056	15193,08 1055,25 0,08 g.l. 2 6 8	123,26 32,48 0,29 QM 35502,111 5416,139	61,89% 138,23% 173,21% F cal 6,554874578		
A B C ANOVA Fonte de v Entre grup Dentro dos Total Tukey Mul	3 3 3 ariação os (tratamen s grupos (Res	597,50 70,50 0,50 0,50 tos) síduo)	199,17 23,50 0,17 SQ 71004,222 32496,833 103501,056 q tab 5%	15193,08 1055,25 0,08 g.l. 2 6 8	123,26 32,48 0,29 QM 35502,111	61,89% 138,23% 173,21% F cal 6,554874578		
A B C C ANOVA Fonte de v Entre grup Dentro dos Total Tukey Mul	3 3 3 arriação os (trataments grupos (Restiple Comparivator Tabela	597,50 70,50 0,50 tos) síduo)	199,17 23,50 0,17 SQ 71004,222 32496,833 103501,056 q tab 5%	15193,08 1055,25 0,08 g.l. 2 6 8	123,26 32,48 0,29 QM 35502,111 5416,139	61,89% 138,23% 173,21% F cal 6,554874578		F tab 5,14329

Tabela 12 - Comparação do comportamento da cultivar Elisa em diferentes tipos de irrigação quando observadas as AACPD

AACPD								
ANOVA - (One Way (1	Fator)			k	3		
		Tratamento:	S		n	9		
Repetições	Α	В	С		n - k	6	Nível de	
1	229,50	156,50	7,5		а	0,05	Significância	
2	59,00	7,00	5		g.l. Total	8		
3	82,50	288,50	12		С	79806,250		
4					SQT	91150,000		
5					SQTr	34375,500		
6	A= Irrigação	Noturna			SQR	56774,500		
7	B= Irrigação				QMTr	17187,750		
8	C= Sistema				QMR	9462,417		
9					Fcal	1,81642		
10					Ftab	5,14325		
11					p =	0,2417		
13					Conclusão:	0,2411		
14					Não há diferen	cae		
14					14a0 Ha Ullerell	ças		
Total	371,00	452,00	24,50	847,50				
Repetições		3,00	3,00	9,00				
Média	123,67			3,00				
Variância		150,67	8,17					
	8538,58	19836,08	12,58					
S	92,40	140,84	3,55			Intonulo do Co	ntianaa	
CV	0,75	0,93	0,43	240545.05		Intervalo de Co	nııança	
(Total)2		204304,00	600,25	342545,25		95%	02.00	
Total	45880,33	68101,33	200,08	114181,75		а	-93,86	
n	3,00					b	282,20	
Média	94,17					Erro amostral	400.00	
S	75,69						188,03	
RESUMO								
Grupo	Contagem	Soma	Média	Variância	s	CV		
Α	3	371,00	123,67	8538,58	92,40	74,72%		
В	3	452,00	150,67	19836,08	140,84	93,48%		
С	3	24,50	8,17	12,58	3,55	43,44%		
ANOVA								
Fonte de va	ariação		SQ	g.l.	QM	F cal	р	F tab
Entre grup	os (tratamer	ntos)	34375,500	2	17187,750	1,816422866	0,2417	5,14325
Dentro dos	grupos (Re	síduo)	56774,500	6	9462,417			
Total			91150,000	8				
Tukey Mult	tiple Compa	risons Test.						
	Valor Tabel		q tab 5%	4,2				
Pares de	e médias	d.m.s.	Diferenç	a (Abs)	Significante?	q cal		
	e B	243,742	27,0		não	0,481		
	e C	243,742	115,5		não	2,057		
	e C	243,742	142,5		não	2,537		
5		210,142	, .		1100	2,001		

Tabela 13 - Comparação do comportamento da cultivar Elisa em diferentes tipos de irrigação quando observadas as AACPD ANOVA - One Way (1 Fator) 3 Tratamentos 12 В С Repetições A 9 n - k Nível de 1 272.00 42.83 6.5 0.05 Significância а

1	272,00	42,83	6,5		а	0,05	Significância	
2	134,67	106,00	0,5		g.l. Total	11		
3	199,17	23,50	0,1666667		С	95022,336		
4	123,67	150,67	8,1666667		SQT	88490,192		
5					SQTr	64161,255		
6	A= Irrigação	Noturna			SQR	24328,938		
7	B= Irrigação	Diurna			QMTr	32080,627		
8	C= Sistema	Float			QMR	2703,215		
9					Fcal	11,86758		
10					Ftab	4,25649		
11					p =	0,0030		
13					Conclusão:			
14					Há diferenças			
Total	729,50	323,00	15,33	1067,83				
Repetiçõe		4,00	4,00	12,00				
Média	182,38	80,75	3,83					
Variância	4679,12	3413,71	16,81					
S	68,40	58,43	4,10					
CV	0,38	0,72	1,07			Intervalo de Co	nfiança	
(Total)2	532170,25	104329,00	235,11	636734,36		95%		
Total	133042,56	26082,25	58,78	159183,59		a	-133,48	
n	3,00					b	311,45	
Média	88,99					Erro amostral		
s	89,56						222,47	
RESUMO								
Grupo	Contagem	Soma	Média	Variância	S	CV		
Α	4	729,50	182,38	4679,12	68,40	37,51%		
В	4	323,00	80,75	3413,71	58,43	72,36%		
С	4	15,33	3,83	16,81	4,10	106,97%		
ANOVA								
Fonte de v	ariação		SQ	g.l.	QM	Fical	р	F tab
Entre grup	os (tratamer	ntos)	64161,255	2	32080,627	11,86758139	0,0030	4,25649
Dentro dos	grupos (Re	síduo)	24328,938	9	2703,215			
Total			88490,192	11				
Tukey Mul	tiple Compa	risons Test.					1	
	Valor Tabel	ado	q tab 5%	4,2				

	_,,,,,,,,	_				
	88490,192	11				
risons Test					14	
lado	q tab 5%	4,2				
d.m.s.	Diferença	(Abs)	Significante?	q cal		
102,685	101,62	250	não	3,909		
102,685	178,54	117	sim *	6,868		
102,685	76,91	67	não	2,959		
	d.m.s. 102,685 102,685	88490,192 arisons Test. lado q tab 5% d.m.s. Diferença 102,685 101,62 102,685 178,54	88490,192 11 arisons Test. lado q tab 5% 4,2 d.m.s. Diferença (Abs) 102,685 101,6250 102,685 178,5417	88490,192 11 arisons Test. lado q tab 5% 4,2 d.m.s. Diferença (Abs) Significante? 102,685 101,6250 não 102,685 178,5417 sim *	88490,192 11 arisons Test. lado q tab 5% 4,2 d.m.s. Diferença (Abs) Significante? q cal 102,685 101,6250 não 3,909 102,685 178,5417 sim * 6,868	88490,192 11 arisons Test. lado q tab 5% 4,2 d.m.s. Diferença (Abs) Significante? q cal 102,685 101,6250 não 3,909 102,685 178,5417 sim * 6,868

Tabela 14 - Comparação do comportamento do cultivar Tainá em diferentes tipos de irrigação quando observados o total de plantas infectadas

	nas iniectada					_		
ANOVA - 0	ne Way (1 F	-			k	3		
D .: #		Tratamento			_ n	9		
Repetições		В	С		_ n - k	6	Nível de	
1	79,00	12,00	2		_ a	0,05	Significância	
2	53,00	12,00	3		g.l. Total	8		
3	116,00	7,00	0		C	8961,778		
4					SQT	13894,222		
5					SQTr	11868,222		
6	A= Irrigação				SQR	2026,000		
7	B= Irrigação I				QMTr	5934,111		
8	C= Sistema F	loat			QMR	337,667		
9					Fcal	17,57387		
10					Ftab	5,14325		
11					p =	0,0031		
13					Conclusão:			
14					Há diferenças			
Total	248,00	31,00	5,00	284,00				
Repetições	3,00	3,00	3,00	9,00				
Média	82,67	10,33	1,67					
Variância	1002,33	8,33	2,33					
S	31,66	2,89	1,53					
CV	0,38	0,28	0,92			ntervalo de (Confiança	
(Total)2	61504,00	961,00	25,00	62490,00		95%		
Total	20501,33	320,33	8,33	20830,00		а	-78,93	
n	3,00					b	142,04	
Média	31,56					Erro amostra	al	
S	44,48						110,48	
						9 :	Ţ	
RESUMO					ili.			
Grupo	Contagem	Soma	Média	Variância	s	CV		
Α	3	248,00	82,67	1002,33	31,66	38,30%		
В	3	31,00	10,33	8,33	2,89	27,94%		
С	3	5,00	1,67	2,33	1,53	91,65%		
ANOVA								
Fonte de va	ariação		SQ	g.l.	QM	F cal	р	F tab
Entre grupo	s (tratament	os)	11868,222	2	5934,111	17,573873	0,0031	5,14325
Dentro dos	grupos (Res	íduo)	2026,000	6	337,667			
Total			13894,222	8				
				-200				
Tukey Mult	iple Comparis	sons Test.			The second second	1		
	Valor Tabela		q tab 5%	4,2				
			1					
Pares d	e médias	d.m.s.	Diferen	ça (Abs)	Significante?	q cal		
	e B	46,044		3333	sim *	6,818		
200000	e C	46,044		0000	sim *	7,635		
	e C	46,044		667	não	0,817		
D	0	40,044	0,0	551	1100	0,017		

Tabela 15 - Comparação do comportamento do cultivar Red Frizzly N°2 em diferentes tipos de irrigação quando observados o total de plantas infectadas

-		_	s infectadas					
ANOVA - O	petições A B				k	3		
		Tratamento	S		n	9		
Repetições	Α	В	С		n - k	6	Nível de	
1	24,00	55,00	0		а	0,05	Significância	
2	28,00	1,00	1		g.l. Total	8		
3	73,00	13,00	0		С	4225,000		
4					SQT	5660,000		
5					SQTr	2570,667		
6	A= Irrigação	Noturna			SQR	3089,333		
7	B= Irrigação				QMTr	1285,333		
8	C= Sistema				QMR	514,889		
9					Fcal	2,49633		
10					Ftab	5,14325		
11					p =	0,1626		
13					Conclusão:	0,1020		
14					Não há difere	ncas		
14					IVAU IIA UIIEIE	liças		
Total	125,00	69,00	1,00	195,00				
		3,00	3,00	9,00				
Repetições				9,00				
Média	41,67	23,00	0,33					
Variância	740,33	804,00	0,33					
S	27,21	28,35	0,58				. 05	
CV	0,65	1,23	1,73				e Confiança	
(Total)2	15625,00	4761,00	1,00	20387,00		95%		
Total	5208,33	1587,00	0,33	6795,67		a	-29,75	
n	3,00					b	73,09	
Média	21,67					Erro amos		
S	20,70						51,42	
RESUMO								
Grupo	Contagem	Soma	Média	Variância		CV		
Α	3	125,00	41,67	740,33	27,21	65,30%		
В	3	69,00	23,00	804,00	28,35	123,28%		
С	3	1,00	0,33	0,33	0,58	173,21%		
ANOVA								
Fonte de va	ıriação		SQ	g.l.	QM	F cal	p	F tab
Entre grupo	s (tratament	os)	2570,667	2	1285,333	2,496331	0,1626	5,14325
Dentro dos	grupos (Res	íduo)	3089,333	6	514,889			
Total			5660,000	8				
Tukey Multi	iple Compari	sons Test.						
-	Valor Tabel		q tab 5%	4,2				
			1 0.10	,-				
Pares de	e médias	d.m.s.	Diferenç	a (Abs)	Significante?	q cal		
	e B	56,857	18,6		não	1,425		
	e C	56,857	41,3		não	3,155		
	e C	56,857	22,6		não	1,730		
ים		50,057	22,0	001	IIaU	1,730		

Tabela 16 - Comparação do comportamento do cultivar Grand Rapids TBR em diferentes tipos de irrigação quando observados o total de plantas infectadas

ANOVA - O	ervados o tot ne Way (1 F	-	s iiiiectauas		k	3		
ANOVA - UI		ator) Fratamentos			. K n	9		
Repetições	Α	B	C		. n-k	6	March de	
1	62,00	12,00	1		a a	0,05	Nível de Significância	
2	38,00	2,00	0		g.l. Total	8	Significancia	
3	87,00	3,00	0		g.i. rotai C	4669,444		
4	67,00	3,00	U		SQT	8345,556		
5					SQTr	7083,556		
	A . Louisson 2 -	Nat			SQR			
6 7	A= Irrigação				QMTr	1262,000		
8	B= Irrigação C= Sistema				QMR	3541,778		
9	C= Sistema	rioat			Fcal	210,333		
					-	16,83888		
10 11					Ftab	5,14325		
					p =	0,0035		
13					Conclusão:			
14					Há diferença	S		
Total	107.00	17.00	4.00	205.00				
Total	187,00	17,00	1,00	205,00				
Repetições	3,00	3,00	3,00	9,00				
Média	62,33	5,67	0,33					
Variância	600,33	30,33	0,33					
S	24,50	5,51	0,58				05	
CV	0,39	0,97	1,73	05050.00			e Confiança	
(Total)2	34969,00	289,00	1,00	35259,00		95%	CO 50	
Total	11656,33	96,33	0,33	11753,00		a	-62,58	
n	3,00					b	108,13	
Média	22,78					Erro amos		
S	34,36						85,35	
RESUMO	Contagem	Soma	Média	Variância		CV		
Grupo								
A	3	187,00	62,33	600,33	24,50	39,31%		
В	3	17,00	5,67	30,33	5,51	97,19%		
С	3	1,00	0,33	0,33	0,58	173,21%		
44/01/4								
ANOVA			00		014			F. 1
Fonte de var		,	SQ	g.l.	QM	F cal	р	Ftab
Entre grupos	-	-	7083,556	2	3541,778	16,83888	0,0035	5,14325
Dentro dos g	grupos (Resi	duo)	1262,000	6	210,333			
Total			8345,556	8				
Tules Addition	-l- O	T- ·						
rukéy Multip	ole Comparis			4.0				
	Valor Tabel	ado	q tab 5%	4,2				
Pares de		d.m.s.	Diferenç		Significante?			
A e		36,340		667	sim *	6,768		
A e		36,340	62,0		sim *	7,405		
Ве	e C	36,340	5,3	333	não	0,637		

Tabela 17 - Comparação do comportamento do cultivar Elisa em diferentes tipos de irrigação quando observados o total de plantas infectadas

	o total de piai		us		_			
ANOVA - O	ne Way (1 Fa	•			k	3		
		Tratamentos			n	9		
Repetições		В	С		n - k	6	Nível de	
1	94,00	25,00	3		а	0,05	Significância	
2	22,00	2,00	2		g.l. Total	8		
3	27,00	67,00	2		C	6615,111		
4					SQT	8568,889		
5					SQTr	3162,889		
6	A= Irrigação I	Noturna			SQR	5406,000		
7	B= Irrigação (Diurna			QMTr	1581,444		
8	C= Sistema F	loat			QMR	901,000		
9					Fcal	1,75521		
10					Ftab	5,14325		
11					p =	0,2511		
13					Conclusão:			
14					Não há difere	enças		
Total	143,00	94,00	7,00	244,00				
Repetições	3,00	3,00	3,00	9,00				
Média	47,67	31,33	2,33					
Variância	1616,33	1086,33	0,33					
S	40,20	32,96	0,58					
CV	0,84	1,05	0,25			Intervalo d	e Confiança	
(Total)2	20449,00	8836,00	49,00	29334,00		95%		
Total	6816,33	2945,33	16,33	9778,00		а	-29,92	
n	3,00					b	84,15	
Média	27,11					Erro amos	tral	
S	22,96						57,04	
RESUMO								
Grupo	Contagem	Soma	Média	Variância	s	CV		
Α	3	143,00	47,67	1616,33	40,20	84,34%		
В	3	94,00	31,33	1086,33	32,96	105,19%		
С	3	7,00	2,33	0,33	0,58	24,74%		
	•							
ANOVA								
Fonte de var	riação		SQ	g.l.	QM	F cal	р	F tab
Entre grupos	s (tratamento	s)	3162,889	2	1581,444	1,75521	0,2511	5,14325
Dentro dos g	grupos (Resíd	luo)	5406,000	6	901,000			
Total			8568,889	8				
Tukey Multip	ole Comparis	ons Test.						
	Valor Tabela	ido	q tab 5%	4,2				
Pares de	e médias	d.m.s.	Diferenç	a (Abs)	Significante?	q cal		
А	e B	75,213	16,3		não	0,942		
A	e C	75,213	45,3		não	2,616		
	e C	75,213	29,0		não	1,673		
		,2.10				.,5.0		

Tabela 18 - Comparação do comportamento dos diferentes tipos de irrigação quando observados o total de plantas infectadas

ANOVA - O	ne Way (1 Fat	tor)			k	3		
		Tratamentos			. '` n	9		
Repetições	А	В	С		n - k	6	Nível de	
1	64,75	26,00	1,5		a	0,05	Significância	
2	35,25	4,25	1,5		g.l. Total	8	_	
3	75,75	22,50	0,5		С	5980,444		
4					SQT	6397,806		
5					SQTr	5247,181		
6	A= Irrigação N	oturna			SQR	1150,625		
7	B= Irrigação D				QMTr	2623,590		
8	C= Sistema Fl	oat			QMR	191,771		
9					Fcal	13,68086		
10					Ftab	5,14325		
11					p =	0,0058		
13					Conclusão:			
14					Há diferença	as		
Total	175,75	52,75	3,50	232,00				
Repetições	3,00	3,00	3,00	9,00				
Média	58,58	17,58	1,17					
Variância	438,58	136,40	0,33					
S	20,94	11,68	0,58					
CV	0,36	0,66	0,49			Intervalo d	e Confiança	
(Total)2	30888,06	2782,56	12,25	33682,88		95%		
Total	10296,02	927,52	4,08	11227,63		а	-47,68	
n	3,00					b	99,24	
Média	25,78					Erro amos	tral	
S	29,57						73,46	
RESUMO								
Grupo	Contagem	Soma	Média	Variância	s	CV	_	
Α	3	175,75	58,58	438,58	20,94	35,75%		
В	3	52,75	17,58	136,40	11,68	66,42%		
С	3	3,50	1,17	0,33	0,58	49,49%		
ANOVA								
Fonte de va	riação		SQ	g.l.	QM	F cal	p	F tab
Entre grupos	s (tratamentos	;)	5247,181	2	2623,590	13,68086	0,0058	5,14325
Dentro dos	grupos (Resídi	no)	1150,625	6	191,771			
Total			6397,806	8				
Tukey Multi	ple Compariso	ns Test.						
	Valor Tabelad	do	q tab 5%	4,2				
Pares d	le médias	d.m.s.	Diferenç	a (Abs)	Significante	? q cal		
Α	e B	34,699	41,0	000	sim *	5,128		
Α	e C	34,699	57,4	167	sim *	7,181		
В	e C	34,699	16,4	167	não	2,053		

Tabela 19 - Comparação do comportamento do cultivar Tainá em diferentes tipos de irrigação quando observado o alcance máximo (cms) de disseminação do patógeno

	ne Way (1 F		yao ao patog		_ k	3		
ANOVA		Tratamentos			n n	9		
Repetições		В	С		'' n - k	6	NKL-I-	
1	28,00	10,00	2		a	0,05	Nível de Significância	
2	21,00	10,00	3		g.l. Total	8	Olgrillicaricia	
3	28,00	13,00	0		_ g.i. Totai C	1469,444		
	20,00	13,00	U		SQT			
4 5						921,556		
					SQTr	878,222		
6	A= Irrigação				SQR	43,333		
7	B= Irrigação I				QMTr	439,111		
8	C= Sistema F	loat			QMR	7,222		
9					Fcal	60,80000		
10					Ftab	5,14325		
11					p =	0,0001		
13					Conclusão:			
14					Há diferenças	3		
Total	77,00	33,00	5,00	115,00				
Repetições	3,00	3,00	3,00	9,00				
Média	25,67	11,00	1,67					
Variância	16,33	3,00	2,33					
S	4,04	1,73	1,53					
CV	0,16	0,16	0,92			Intervalo de C	Confianca	
(Total)2	5929,00	1089,00	25,00	7043,00		95%		
Total	1976,33	363,00	8,33	2347,67		а	-17,28	
n	3,00	303,00	0,55	2341,01		b	42,83	
Média	12,78					Erro amostra		
S	12,10					Life amostra	30,05	
RESUMO	12,10						30,03	
Grupo	Contagem	Soma	Média	Variância	S	CV		
А	3	77,00	25,67	16,33	4,04	15,75%		
		33,00						
В	3		11,00	3,00	1,73	15,75%		
С	3	5,00	1,67	2,33	1,53	91,65%		
ANOVA								
Fonte de va	riação		SQ	g.l.	QM	F cal	р	F tab
Entre grupo	s (tratament	os)	878,222	2	439,111	60,8	0,0001	5,14325
Dentro dos	grupos (Resi	íduo)	43,333	6	7,222			
Total			921,556	8				
Tukey Multi	iple Comparis	sons Test.						
	Valor Tabela		q tab 5%	4,2				
	e médias	d.m.s.	Diferen	ça (Abs)	Significante?	q cal		
Α	e B	6,734	14,	6667	sim *	9,453		
Α	e C	6,734	24,	0000	sim *	15,468		
В	e C	6,734	9,3	3333	sim *	6,015		

Tabela 20 - Comparação do comportamento do cultivar Red Frizzly N°2 em diferentes tipos de irrigação quando observado o alcance máximo (cms) de disseminação do patógeno

ANOVA - O	ne Way (1 F	ator)			k	3		
,		Tratamento:	S		n	9		
Repetições		В	С		n - k	6	Nível de	
1	25,00	21,00	0		а	0,05	Significância	
2	24,00	1,00	1		g.l. Total	8		
3	27,00	25,00	0		С	1708,444		
4					SQT	1289,556		
5					SQTr	953,556		
6	A= Irrigação	Noturna			SQR	336,000		
7	B= Irrigação				QMTr	476,778		
8	C= Sistema I				QMR	56,000		
9					Fcal	8,51389		
10					Ftab	5,14325		
11					p =	0,0177		
13					Conclusão:			
14					Há diferenç			
					3			
Total	76,00	47,00	1,00	124,00				
Repetições	3,00	3,00	3,00	9,00				
Média	25,33	15,67	0,33					
Variância	2,33	165,33	0,33					
S	1,53	12,86	0,58					
CV	0,06	0,82	1,73			Intervalo de	e Confiança	
(Total)2	5776,00	2209,00	1,00	7986,00		95%	-	
Total	1925,33	736,33	0,33	2662,00		а	-17,54	
n	3,00					b	45,09	
Média	13,78					Erro amos	tral	
s	12,61						31,32	
RESUMO								
Grupo	Contagem	Soma	Média	Variância	s	CV		
Α	3	76,00	25,33	2,33	1,53	6,03%		
В	3	47,00	15,67	165,33	12,86	82,07%		
С	3	1,00	0,33	0,33	0,58	173,21%		
ANOVA								
Fonte de va	riação		SQ	g.l.	QM	F cal	p	F tab
Entre grupo	s (tratament	os)	953,556	2	476,778	8,513889	0,0177	5,14325
Dentro dos	grupos (Res	íduo)	336,000	6	56,000			
Total			1289,556	8				
Tukey Multi	ple Compari	sons Test.						
	Valor Tabel	ado	q tab 5%	4,2				
	6 P		D.C.	(61.)	2: -:5			
Pares de		d.m.s.	Diferenç		Significante			
Α 6		18,751	9,66		não	2,237		
Αe		18,751	25,0		sim *	5,786		
B∈	e C	18,751	15,3	333	não	3,549		

Tabela 21 - Comparação do comportamento do cultivar Grand Rapids TBR em diferentes tipos de irrigação quando observado o alcance máximo (cms) de disseminação do patógeno

ANOVA - O	ne Way (1 F	ator)			k	3		
		Tratamento	S		n	9		
Repetições	Α	В	С		n - k	6	Nível de	
1	29,00	11,00	2		а	0,05	Significância	
2	21,00	2,00	0		g.l. Total	8		
3	29,00	7,00	0		С	1133,444		
4					SQT	1167,556		
5					SQTr	1081,556		
6	A= Irrigação	Noturna			SQR	86,000		
7	B= Irrigação				QMTr	540,778		
8	C= Sistema				QMR	14,333		
9					Fcal	37,72868		
10					Ftab	5,14325		
11					p =	0,0004		
13					Conclusão:			
14					Há diferença	S		
Total	79,00	20,00	2,00	101,00				
Repetições	3,00	3,00	3,00	9,00				
Média	26,33	6,67	0,67	-,				
Variância	21,33	20,33	1,33					
S	4,62	4,51	1,15					
CV	0,18	0,68	1,73			Intervalo d	e Confiança	
(Total)2	6241,00	400,00	4,00	6645,00		95%		
Total	2080,33	133,33	1,33	2215,00		а	-22,13	
n	3,00	100,00	1,00	22 10,00		b	44,57	
Média	11,22					Erro amos		
S	13,43						33,35	
RESUMO							00,00	
Grupo	Contagem	Soma	Média	Variância	S	CV		
Α	3	79,00	26,33	21,33	4,62	17,54%		
В	3	20,00	6,67	20,33	4,51	67,64%		
С	3	2,00	0,67	1,33	1,15	173,21%		
ANOVA	<u> </u>				<u> </u>		<u> </u>	
Fonte de var	riação		SQ	g.l.	QM	F cal	р	F tab
Entre grupos	s (tratamento	os)	1081,556	2	540,778	37,72868	0,0004	5,14325
Dentro dos g	grupos (Resí	duo)	86,000	6	14,333			
Total			1167,556	8				
Tukey Multip	ple Comparis	ons Test.						
	Valor Tabela	ado	q tab 5%	4,2				
D .		d.m.s.	Diforono	a (Abs)	Significante?	q cal		
	e médias							
A e	вВ	9,486	19,6	667	sim *	8,997		
	e B e C		19,6	667 667				

Tabela 22 - Comparação do comportamento do cultivar Elisa em diferentes tipos de irrigação quando observado o alcance máximo (cms) de disseminação do patógeno

ANOVA - Or	ne Way (1 Fa	tor)	,		k	3		
		Tratamentos			n	9		
Repetições	Α	В	С		n - k	6	Nível de	
1	7,00	12,00	3		а	0,05	Significância	
2	21,00	2,00	2		g.l. Total	8		
3	24,00	29,00	3		С	1178,778		
4					SQT	898,222		
5					SQTr	360,222		
6	A= Irrigação N	loturna			SQR	538,000		
7	B= Irrigação D)iurna			QMTr	180,111		
8	C= Sistema F	loat			QMR	89,667		
9					Fcal	2,00867		
10					Ftab	5,14325		
11					p =	0,2149		
13					Conclusão:			
14					Não há difer	enças		
Total	52,00	43,00	8,00	103,00				
Repetições	3,00	3,00	3,00	9,00				
Média	17,33	14,33	2,67					
Variância	82,33	186,33	0,33					
s	9,07	13,65	0,58					
CV	0,52	0,95	0,22			Intervalo d	e Confiança	
(Total)2	2704,00	1849,00	64,00	4617,00		95%	_	
Total	901,33	616,33	21,33	1539,00		a	-7,80	
n	3,00					b	30,69	
Média	11,44					Erro amos	tral	
s	7,75						19,25	
RESUMO								
Grupo	Contagem	Soma	Média	Variância	S	CV	_	
Α	3	52,00	17,33	82,33	9,07	52,35%		
В	3	43,00	14,33	186,33	13,65	95,24%		
С	3	8,00	2,67	0,33	0,58	21,65%		
	•							
ANOVA								
Fonte de variação			SQ	g.l.	QM	F cal	р	F tab
Entre grupos (tratamentos)			360,222	2	180,111	2,008674	0,2149	5,14325
Dentro dos grupos (Resíduo)		538,000	6	89,667				
Total			898,222	8				
Tukey Multip	ole Compariso	ons Test.						
Valor Tabelado			q tab 5%	4,2				
Pares de	e médias	d.m.s.	Diferenç	a (Abs)	Significante'	? q cal		
Αe	е В	23,727	3,0	000	não	0,549		
A e C 23,727		14,6667		não	2,683			
Ве	e C	23,727	11,6	6667	não	2,134		

Tabela 23 - Comparação do comportamento dos diferentes tipos de irrigação quando observado o alcance máximo (cms) de disseminação do patógeno

	ı s) de dissemir ne Way (1 Fat	-	geno		- 1.	2		
ANOVA - OI	ne vvay (1 Fat	Tratamentos			- k	3 9		
Repetições	A	В	С	_	n n-k	6		
1	6,88	3,31	0,4375		_ II - K	0,05	Nível de Significância	
2	5,50	0,94	0,4375		g.l. Total	8	Significancia	
3	6,75	4,63	0,373		_ g.i. rotai C	1362,840		
4	0,73	4,03	0,1075		SQT	878,722		
5					SQTr	748,847		
	A luninus 2 a N	-4			SQR	129,875		
7	6 A= Irrigação Noturna				QMTr	374,424		
	B= Irrigação Di					-		
8 9	C= Sistema Flo	oat			QMR Fcal	21,646		
					_	17,29772		
10					Ftab	5,14325		
11					p =	0,0032		
13					Conclusão:			
14					Há diferença	S		
Takal	74.00	25.75	4.00	110.75				
Total	71,00	35,75	4,00	110,75				
Repetições	3,00	3,00	3,00	9,00				
Média	23,67	11,92	1,33					
Variância	8,40	56,27	0,27					
S	2,90	7,50	0,52					
CV	0,12	0,63	0,39				e Confiança	
(Total)2	5041,00	1278,06	16,00	6335,06		95%		
Total	1680,33	426,02	5,33	2111,69		а	-15,45	
n	3,00					b	40,06	
Média	12,31					Erro amos		
S	11,17						27,75	
RESUMO								
Grupo	Contagem	Soma	Média	Variância		CV		
Α	3	71,00	23,67	8,40	2,90	12,24%		
В	3	35,75	11,92	56,27	7,50	62,95%		
С	3	4,00	1,33	0,27	0,52	39,03%		
ANOVA								
Fonte de variação			SQ 748,847	g.l.	QM	F cal	р	F tab
	Entre grupos (tratamentos)			2	374,424	17,29772	0,0032	5,14325
Dentro dos grupos (Resíduo)			129,875	6	21,646			
Total			878,722	8				
Tukey Multip	ole Compariso							
	Valor Tabelad	0	q tab 5%	4,2				
Pares d	e médias	d.m.s.	Diferenç		Significante?	q cal		
Α	e B	11,658	11,7	500	sim *	4,374		
A e C 11,658		22,3333		sim *	8,314			
В	e C	11,658	10,5	833	não	3,940		

CULTIVARES UTILIZADAS NOS EXPERIMENTOS

Figura 1 - Alface - Green Frizzly

Figura 2 - Alface - Red Frizzly N°2

Figura 3 - Alface - Oak Leaf Green Pixie

Figura 4 - Alface - Oak Leaf Red Pixie

Figura 5 - Alface - Elisa

Figura 6 - Alface - Vera

Figura 7 - Alface - Tainá

Figura 8 - Alface - Laurel

Figura 9 - Alface - Grand Rapids TBR

Figura 10 - Alface - Verônica

Figura 11 - Chicória - Mariana Gigante

Figura 12 - Chicória - Radicchio Chioggia Carmem

Figura 13 - Chicória - De Ruffec

Figura 14 - Almeirão - Spadona Folhas Verdes