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RESUMO 

Este estudo apresenta a modelagem de um Sistema Instrumentado de Abastecimento 

de Água – SIAA por meio de Séries Temporais. A modelagem foi feita para os 

seguintes parâmetros de desempenho: vazão mínima noturna, índices de perda na 

distribuição, consumo de energia elétrica, demandas horária, mensal e per capita. O 

conjunto de dados foi extraído do banco de dados de uma companhia de 

abastecimento de água, contemplando um período de 8 anos. O desenvolvimento dos 

algoritmos foi feito utilizando a linguagem de programação estatística R e o ambiente 

de desenvolvimento integrado RStudio, com o intuito de efetuar o ajuste dos dados 

aos modelos de séries temporais e previsão dos parâmetros. A revisão bibliográfica 

investigou, no âmbito da literatura técnica e acadêmica, as três vertentes que 

envolvem a questão de pesquisa: a eficácia de modelos estatísticos que trabalham 

com a análise de dados e o comportamento de variáveis no tempo; a importância do 

planejamento de demanda em sistemas de produção; e os aspectos de funcionamento 

e gerenciamento de sistemas de abastecimento de água – SAAs. Neste último tópico, 

estão incluídas tecnologias emergentes como Telemetria e Business Intelligence. 

Após todas as compilações necessárias, foi verificado que o modelo ARIMA com 

sazonalidade foi adequado para o consumo mensal, dada a assertividade das 

previsões elaboradas. O método de análise por séries temporais viabilizou a definição 

de características fundamentais e a promoção de ajustes e previsões operacionais no 

sistema. A parametrização proposta pela modelagem identificou variáveis importantes 

do processo, viabilizando a elaboração de planos de produção e operação de maior 

eficiência, eficácia e efetividade.  

Palavras-chave: Instrumentação, Séries Temporais, Modelo ARIMA. 
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ABSTRACT 

This study presents the modeling of an Instrumented Water Supply System (IWSS) using Time 

Series. The modeling was performed for the following performance parameters: minimum night 

flow, distribution loss indices, electricity consumption, hourly, monthly, and per capita 

demands. The dataset was extracted from the database of a water supply company, covering 

a period of 8 years. The algorithms were developed using the R statistical programming 

language and the RStudio integrated development environment, with the aim of fitting the data 

to the time series models and forecasting the parameters. The literature review investigated, 

within the scope of technical and academic literature, the three aspects involved in the 

research question: the effectiveness of statistical models that work with data analysis and the 

behavior of variables over time; the importance of demand planning in production systems; 

and the operational and management aspects of water supply systems (WSSs). This last topic 

includes emerging technologies such as Telemetry and Business Intelligence. After all the 

necessary data compilations, it was verified that the ARIMA model with seasonality was 

suitable for monthly consumption, given the accuracy of the forecasts produced. The time 

series analysis method enabled the definition of fundamental characteristics and the promotion 

of operational adjustments and forecasts in the system. The parameterization proposed by the 

modeling identified important process variables, enabling the development of more efficient, 

effective, and impactful production and operation plans. 

Keywords: Instrumentation, Time Series, ARIMA Model. 
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1. INTRODUÇÃO 

Este capítulo apresenta os elementos norteadores da pesquisa e um panorama 

do tema no segmento industrial a que pertence: sistemas automatizados por meio de 

instrumentos e telemetria. Foram definidas bases metodológicas, justificativa e 

objetivos consistentes com a relevância da questão a ser investigada.  

1.1 CONTEXTUALIZAÇÃO 

Diante dos desafios impostos pelo ambiente regulatório, a automação de 

processos de produção, controle e distribuição de água potável tem sido adotada 

como instrumento de otimização de recursos e elevação da eficiência energética. A 

redução dos níveis de perda na operação dos sistemas de abastecimento está 

diretamente relacionada a implantação de projetos de monitoramento, estudos e 

diagnósticos que subsidiam o planejamento operacional. Para os fins desta pesquisa, 

a atenção será concentrada nos Sistemas de Abastecimento de Água – SAAs 

operados com auxílio de instrumentação, com análise específica de uma Unidade de 

Distribuição - UDA pressurizada por um conjunto de bombeamento e monitorada por 

dispositivos de telemetria.  

Dados retirados do Diagnóstico SNIS 2022 (Ministério das Cidades) nos 

informam que no Brasil há 808,2 mil quilômetros de extensão de redes de 

abastecimento; 64,4 milhões de ligações; consumo per capita médio de 148,2 

l/hab/dia; e um índice de perda médio de 37,8%. Todavia, as companhias estaduais 

ainda buscam avançar nos projetos de automação, visando a maior eficiência de suas 

operações. 

Diante do cenário apresentado, e tendo em vista que aplicações tecnológicas 

elevam a eficiência dos meios de produção, a evolução de sistemas mecânicos 

controlados por recursos computacionais tem se apresentado como opção bastante 

viável para o monitoramento de dados operacionais e maior disponibilidade de 

recursos.  

   Tendo em vista que determinados problemas demandam soluções bem 

elaboradas, a pesquisa acadêmica e científica possibilita elevar o nível de eficácia na 

gestão de sistemas de abastecimento pública de água tratada. Para Alain Biahmou 
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(2015), a Engenharia de Sistemas é uma metodologia para dominar a complexidade, 

o que na verdade significa aplicar pensamento sistêmico para enfrentar os desafios 

da criação de produtos complexos. O ferramental matemático e estatístico melhora os 

resultados de avaliação e decisões importantes em matéria de operações industriais.  

O tratamento estatístico de bases de dados robustas requer um trabalho 

criterioso de análise devido à multidisciplinaridade de conhecimentos que, muitas 

vezes, ali se encontram. Para Alain Biahmou (2015), um sistema RDB – Requirements 

Data Base – é composto das seguintes áreas de conhecimento:  

• Electric/Electronics 

• Mechanics 

• Software 

• Systems Engineering 

Esse modelo simboliza a união de áreas da tecnologia envolvidas em soluções 

complexas, bem como os requisitos envolvidos e a estruturação.  

1.2 JUSTIFICATIVA E RELEVÂNCIA DO TEMA  

A automação e controle de processos na indústria de saneamento têm 

promovido resultados satisfatórios na busca de modernização do setor. O 

monitoramento do consumo médio de água em sistemas de abastecimento viabiliza o 

planejamento e controle operacional pelas companhias públicas e privadas do país; 

eleva a eficiência no dimensionamento de novos projetos e a eficácia na 

implementação de medidas de racionamento do consumo em regiões com escassez 

hídrica.  

Dado o potencial da automação em viabilizar o monitoramento de sistemas e a 

produção de dados em massa, a proposta deste trabalho é utilizar o recurso estatístico 

de séries temporais para elaborar previsões que sejam mais assertivas e que elevem 

o nível de gestão operacional. 

Para BLEIDORN et al. (2023), “A análise de séries temporais é uma ferramenta 

útil para muitas aplicações práticas de gestão de recursos hídricos, como 

planejamento e antecipação de conflitos em torno do uso da água”. A utilização de 
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métodos estatísticos para previsão de demanda por abastecimento em sistemas 

públicos proporciona os seguintes benefícios: 

• Antecipação do perfil de consumo nas regiões de abastecimento; 

• Auxílio na elaboração de planos de otimização de recursos de produção; 

• Estabelecimento de diretrizes para utilização racional das vazões 

disponíveis em corpos hídricos. 

Como um dos componentes do Saneamento Ambiental, a água tratada possui 

relevante importância tanto por ser um bem essencial à vida como pela escassez de 

suas fontes naturais. O ambiente legislativo e regulatório brasileiro tem estabelecido 

normas e diretrizes que visam à expansão e modernização dos sistemas de 

abastecimento público com a nobre intenção de proporcionar a cobertura integral 

desse serviço no território nacional.  

De acordo com o Sistema Nacional de Informações sobre Saneamento no 

Brasil, a medição de grandes volumes de água aportados é conhecida como 

macromedição. Essa é feita por meio de equipamentos na saída das ETAs e em 

diferentes pontos da rede de distribuição. Dados do SNIS-AE 2022 informam que o 

índice de macromedição (IN011) alcança 72,3%. Numa comparação simples, significa 

que, de cada 100 litros de água disponibilizados para consumo, 72,3 litros foram 

efetivamente medidos. (Diagnóstico Temático – Serviços de Água e Esgoto / 2022). 

Para (SOBRINHO, Renavan Andrade; BORJA, Patrícia Campos; 2016): 

A universalização do acesso à água em condições de potabilidade, 

com implantação e manutenção de uma infraestrutura capaz de 

atender de maneira adequada e otimizada à demanda dos grandes 

centros urbanos, é o grande desafio dos prestadores de serviço 

público de abastecimento de água para as próximas décadas. 

Destarte, o controle das perdas nos sistemas de abastecimento de 

água, somado a projetos apropriados e ao uso racional da água pela 

população, é um instrumento fundamental para a sustentabilidade 

dos recursos hídricos. (SOBRINHO, Renavan Andrade; BORJA, 

Patrícia Campos. Management of water and energy losses in 

Embasa water supply systems: a study of factors involved in 

RMS. Salvador – BA, 2016.  

Dessa forma é possível compreender que o controle estatístico dos processos 

de distribuição e demanda de água tratada são de fundamental importância para o 
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alcance de metas e objetivos relacionados à Sustentabilidade em seu tripé: 

Econômico, Social e Ambiental.  

1.3 QUESTÃO DE PESQUISA 

A automação e controle de processos são ferramentas largamente utilizadas 

no segmento industrial. A modelagem de demanda de água potável em regiões 

geográficas atendidas por sistemas de abastecimento automatizados possui como fim 

a otimização do desempenho operacional e o subsídio ao planejamento e gestão 

operacional. Razão esta que impõe ao setor necessidade de estudo e pesquisa.  

1.4 OBJETIVOS 

Esta pesquisa possui o intuito de avaliar parâmetros funcionais em um Distrito 

de Medição e Controle – DMC que possui operação automatizada; responsável pelo 

abastecimento de 3025 unidades de consumo residencial, 63 comerciais, 5 unidades 

de instituições públicas e 1 industrial na cidade de Brazlândia/DF. Visa ainda ao 

estabelecimento de um modelo operacional de desempenho referente ao controle de 

vazão, consumo energético do processo produtivo, demanda per capita, consumo 

mensal e perdas na distribuição. 

1.4.1 Objetivo Geral 

Implementar modelos preditivos de consumo em um sistema instrumentado de 

distribuição de água potável, com ênfase nos parâmetros de vazão horária e volumes 

de consumo mensal e per capita. Por meio da modelagem de séries temporais 

estabelecer parâmetros que possam definir características fundamentais e contribuir 

para previsões e ajustes nas operações do sistema.  

1.4.2  Objetivos Específicos 

• Identificar parâmetros que subsidiem planos de produção e distribuição de 

água potável; 

• Avaliar os atuais índices de perda na distribuição e contribuir com a melhoria 

da gestão operacional do sistema; 
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• Avaliar o perfil de consumo energético da Unidade de Distribuição - UDA; 

• Localizar possíveis falhas no processo de distribuição; 

• Modelar séries temporais para os principais parâmetros de desempenho e 

identificar erros na previsão de demanda. 

1.5 ORGANIZAÇÃO DA DISSERTAÇÃO 

A presente Dissertação foi organizada a partir de Introdução, Referencial 

Teórico, Materiais e Método, Resultados, Conclusões e sugestão de trabalhos futuros, 

Referências Bibliográficas e Apêndice. No capítulo 1, o texto é introduzido a partir de 

uma contextualização do tema e do cenário em que se encontra, seguido de 

elementos que justifiquem a pesquisa e relevância das questões abordadas. A 

elaboração da questão de pesquisa, definição dos objetivos e formação de hipótese a 

ser investigada aparecem na sequência. O capítulo 2 discorre sobre as referências 

bibliográficas encontradas na literatura técnica e acadêmica, especificamente livros, 

artigos científicos, relatórios de acesso público e sites de empresas privadas que 

atuam no segmento. Está dividido em três subtópicos que se interrelacionam na 

compreensão global da proposta e de seus resultados. No capítulo 3 são 

apresentados o percurso metodológico e o ferramental utilizado na coleta e 

processamento dos dados históricos do sistema estudado. Já os capítulos 4 e 5 

apresentam os resultados obtidos com as análises e suas devidas conclusões, 

respectivamente. Por fim são listadas todas as referências bibliográficas utilizadas e 

um apêndice contendo materiais importantes, como os scripts da linguagem R 

desenvolvidos na modelagem das séries temporais.  

2. REFERENCIAL TEÓRICO 

Nesta seção são abordados conhecimentos consolidados pela literatura no que 

diz respeito ao embasamento teórico e científico do que se propõe a investigar com 

os estudos. Isto valendo para as características operacionais e tecnológicas do 

sistema, seu gerenciamento e as ferramentas metodológicas adotadas para análise 

dos dados referentes aos objetivos específicos já mencionados.  
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2.1 PREVISÃO DE DEMANDA 

Os sistemas de produção de água tratada abastecem reservatórios que por sua 

vez alimentam redes de distribuição e demais dispositivos operacionais. Normalmente 

a demanda de consumidores varia em função do perfil da unidade (residencial, 

comercial, industrial e público) e de períodos sazonais, basicamente. Um bom 

planejamento de produção e operações industriais passa pela previsão de demanda.  

Por meio das definições de SILVA (2003), é possível compreender que: 

demandas podem incluir as necessidades do mercado (clientes 

finais), as necessidades de distribuição, as necessidades de 

reabastecimento (armazéns na indústria em geral; reservatórios em 

um sistema de abastecimento de água) e a necessidade entre 

processos (plantas industriais ou ETA’s em sistemas de 

saneamento). As necessidades da empresa envolvem as demandas 

por produtos acabados, pedidos nos postos de abastecimento e as 

demandas a serem previstas, fazendo assim uma antecipação.  

Prever demanda por produtos e serviços é uma das mais importantes 

tarefas no gerenciamento de empresas. A previsão de demanda 

significa apoiar a gerência a decidir, onde, quando e quanto produzir 

ou realizar serviços. (SILVA, Carla Silva da. Tese Doutoral: 

Previsão multivariada da demanda horária de água em sistemas 

urbanos de abastecimento. Campinas – SP, 2003). 

A autora complementa que “Toda a hierarquia de decisão da cadeia de 

suprimentos é afetada pela previsão da demanda, incluindo etapas tais como” 

(Adaptado de SILVA, Carla Silva da; Campinas – SP, 2003). 

• Planejamento de Capacidade; 

• Plano Mestre de Produção; 

• Planejamento de estoque; 

• Sequenciamento e alocação de recursos. 

A figura 2.1 apresenta elementos fundamentais para da elaboração de 

previsões quantitativas, incluindo a modelagem de séries temporais. 
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Figura 2.1 - Métodos Quantitativos de Previsão. Fonte: SILVA (2003)  

Em matéria de sistemas de abastecimento urbano, conhecer a demanda 

horária por vazões nas linhas principais proporciona o melhor direcionamento em 

manobras de válvulas de abertura e fechamento, controle de pressão e equipamentos 

de elevação. Outro parâmetro importante, nessa mesma linha, é a sazonalidade. Em 

períodos diurnos ocorrem horários de pico e menor consumo; assim como em 

períodos semanais e anuais, de acordo com os meses do ano. A figura 2.2 exemplifica 

uma curva de previsão de demanda por um produto com alta sazonalidade.  

 

Figura 2.2 - exemplo de previsão de demanda.  Fonte: KUSTERS (2023). 

ROCHA E SILVA et al. (1999) apud (FEIL, Alexandre André; HAETINGER, 

Claus; 2013) discorrem em artigo publicado que no âmbito do Brasil, “o método de 
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previsão não está sendo usado em larga escala. Geralmente o SAA é planejado a 

partir da previsão e projeção do consumo per capita de água”. Fundamentalmente, 

outros fatores têm de ser levados em conta quando do dimensionamento de sistemas 

de abastecimento. Dado que o consumo de água envolve outras variáveis 

relacionadas a clima, sazonalidade, população e classes socioeconômicas das 

regiões atendidas.  

Em se tratando de número de habitantes, Magalhães et al. (2001) apud (FEIL, 

Alexandre André; HAETINGER, Claus; 2013) estudaram 83 sistemas de 

abastecimento de água rurais e urbanos em São Paulo, com população de até 113 

mil habitantes, concluindo que “há fraca influência da relação entre o porte da cidade 

e o consumo per capita de água”.  

A tabela 2.1 contém as faixas de população e seus respectivos consumos per 

capita, evidenciando baixa influência entre a quantidade de habitantes e o consumo 

per capita de água na cidade.  

Faixa de população (habitantes) Consumo per capita L/hab/dia 

<2.000 130 

2000 - 10000 125 

10000 - 50000 133 

50000 - 120000 128 
Tabela 2.1 - Faixa de população e consumo per capita. Fonte: (FEIL, Alexandre André; 

HAETINGER, Claus; 2013) 

Um componente importante no estudo das séries temporais é o gráfico de 

decomposição, plotado na figura 2.3. Trata-se de um instrumento de avaliação de 

parâmetros separadamente, porém em figuras paralelas que facilitam a visualização 

e contextualização. 

Segundo Barros (2021) et al, a primeira janela da figura representa a série 

temporal, enquanto a segunda, terceira e quarta janelas representam, 

respectivamente, as componentes de tendência, sazonalidade e erro.  
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Figura 2.3 - Decomposição da série temporal – consumo per capita. Eixo y – consumo per capita em 
l/s; eixo x – tempo em anos. Fonte: Autoria própria. 

O gráfico de decomposição exibido revela um comportamento de sazonalidade, 

típico em sistemas de abastecimento de água, porém objeto de investigação e 

validação para consolidar as características do sistema em estudo. As componentes 

da referida decomposição são: série temporal, tendência sazonalidade e erro, 

respectivamente.  

2.2 GERENCIAMENTO DE SISTEMAS DE ABASTECIMENTO DE ÁGUA 

Os sistemas de abastecimento de água desempenham um papel fundamental 

no planeamento urbano, não só para garantir que os cidadãos possam ter acesso a 

bens essenciais, mas também por razões de segurança pública (GRAYMAN et al., 

2009).  

2.2.1 Modelagem de Redes 

A modelagem de redes é uma ferramenta bastante útil no estudo do 

comportamento hidráulico de um sistema. Por meio dela é possível diagnosticar o 
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funcionamento operacional de componentes fundamentais no fluxo de distribuição de 

água em um setor. Segundo Itonaga (2005) o cadastramento de tais elementos 

técnicos dever assegurar confiabilidade em um modelo proposto: 

É fundamental que haja um processo sistemático de atualização e 

revisão do cadastro de modo a dar confiabilidade para o modelo a 

ser gerado, nos aspectos topológicos de operação (trechos 

conectados, registros, válvulas redutoras de pressão, reservatórios, 

boosters, etc). O modelo deve apresentar as características 

necessárias à correta representação funcional desses elementos. 

(Itonaga, 2005, p. 6) 

A partir da correta configuração de cada dispositivo em uma malha de redes 

(tubulações, válvulas, medidores, motobombas etc.) é possível implementar o 

gerenciamento otimizado de variáveis importantes como vazão, pressão dinâmica 

distribuída no setor controlado e consumo autorizado. A divisão em distritos menores 

facilita o diagnóstico de anomalias e a elevação do desempenho operacional.  

Para Novarini et al (2019: 

Os critérios topológicos de um sistema de abastecimento de água, 

como a demanda máxima de água, a diferença máxima na elevação 

do nó e o comprimento total do tubo, definem o comportamento 

hidráulico da rede. Identificar tais critérios no processo de 

clusterização pode favorecer o gerenciamento de pressão nos 

distritos. (Bernardo Novarini; Bruno Melo Brentan; Gustavo Meirelles 

and Edevar Luvizotto Junior - 2019) 

A Engenharia Hidráulica possibilitou enormes avanços na organização da vida 

civil e militar; isto desde os primórdios da sociedade humana. Aplicar conhecimentos 

especializados aumenta as chances de projetos e operações bem-sucedidas. 

Para CHAVES (2023): 

a modelagem hidráulica é uma ferramenta essencial na simulação do 

comportamento hidráulico de um sistema de abastecimento de água 

(SAA), a qual tem como objetivo verificar as condições hidráulicas da 

rede, tais como: vazão, velocidade de escoamento, perdas de carga, 

pressões estáticas. Com isso, pode-se identificar os pontos críticos 

do sistema, para assim simular cenários de intervenções que 

promovam melhoria operacional, tais como reforços na rede, 
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instalação de Válvulas Redutoras de Pressão (VRPs), boosters ou a 

realização de projetos de setorização. 

 Pelo exposto até aqui, concluímos pela importância de estudos e elaboração 

de modelos de redes que reflitam as condições reais de operação de um sistema. Isto 

facilitará o controle das perdas físicas e a elevação de eficiência em suas operações. 

(Ver apêndices A e B – modelagem e simulação)  

2.2.2 Balanço Hídrico 

O Balanço Hídrico é um instrumento de gestão que permite a construção de 

indicadores importantes no gerenciamento das perdas e consumo de água em um 

sistema.  A IWA - International Water Association desenvolveu sua estrutura básica 

contendo os fluxos e componentes principais; permitindo melhor controle dos dados e 

promoção de ações táticas e operacionais para melhor gerenciamento das redes de 

abastecimento. Segundo diretrizes do segmento, as companhias estaduais calculam 

os balanços hídricos seguindo uma periodicidade de 12 meses. 

A seguir são apresentados os elementos que compõe o Balanço Hídrico 

(Adaptado de Ministério das Cidades e International Water Association): 

Volume de água fornecido ao sistema: volume anual de água introduzido na 

parte do sistema de abastecimento que é objeto do cálculo do balanço hídrico. 

Consumo autorizado: volume anual medido e/ou não medido fornecido a 

consumidores cadastrados, à própria companhia de saneamento (usos 

administrativos ou operacionais) e a outros que estejam implícitos ou explicitamente 

autorizados a fazê-lo, para usos domésticos, comerciais ou industriais. 

Perdas de água: volume referente à diferença entre a água que entra no sistema 

e o consumo autorizado. 

Consumo autorizado faturado: volume que gera receita potencial para a 

companhia de saneamento, correspondente à somatória dos volumes constantes nas 

contas emitidas aos consumidores. É composto pelos volumes medidos nos 

hidrômetros e volumes estimados nos locais onde não há hidrômetros instalados e 

volumes previstos, segundo critérios da política de cobrança. 

Consumo autorizado não faturado: volume que não gera receita para a 

companhia de saneamento, oriundo de usos legítimos da água no sistema de 

https://iwa-network.org/
https://iwa-network.org/
https://iwa-network.org/
https://iwa-network.org/
https://iwa-network.org/
https://iwa-network.org/


 

23 

 

distribuição. É composto de volumes medidos (como uso administrativo da própria 

companhia) e volumes não medidos, a estimar, tais como a água utilizada no combate 

a incêndios, lavagem de ruas, rega de espaços públicos e a água empregada em 

algumas atividades operacionais da companhia de saneamento (lavagem de redes e 

de reservatórios, por exemplo). 

Perdas aparentes: correspondem aos volumes consumidos, porém não 

contabilizados, associados aos erros de medição, fraudes e falhas no cadastro 

comercial da companhia de saneamento. 

Perdas reais: correspondem aos volumes que escoam através de vazamentos nas 

tubulações ou reservatórios e extravasamentos nos reservatórios. 

Águas faturadas: representam a parcela de água comercializada, traduzida no 

faturamento. 

Águas não faturadas: representam a diferença entre o total anual da água que 

entra no sistema e o consumo autorizado faturado. Esses volumes incorporam as 

perdas reais e aparentes, bem como o consumo autorizado não faturado. 

 
Figura 2.4 - Estrutura Padrão do Balanço Hídrico 

Fonte: (Ministério das Cidades / IWA) 

Para um estudo e controle sistemático de demanda em um setor de 

abastecimento, é fundamental a implementação de setores de manobra nas redes. 

Variáveis importantes como pressão e vazão poder ser dinamicamente distribuídas de 

acordo com a topologia do sistema e características específicas da região geográfica 

abrangida. Em sede de Tese Doutoral, estudando previsão de demanda em tempo 
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real para sistemas de abastecimento público de água, BRETAN, Bruno Melo; 2012 

conceitua:  

Em um sistema de abastecimento setorizado, isto é, um sistema 

cujos consumidores estão agrupados em zonas de abastecimento, 

há algumas possibilidades de arranjo de distribuição. Num arranjo 

mais simples, a vazão de entrada pode ir direto aos consumidores, 

alimentando as ligações individuais faturadas, o que é caracterizado 

como o volume consumido, as ligações individuais não faturadas, 

alimentando parte das perdas aparentes e ainda as fugas e 

vazamentos. Também há a possibilidade de passagem por um 

reservatório que será responsável por estabilizar as oscilações do 

fornecimento e ainda regularizar a pressão de abastecimento ou, 

finalmente num esquema misto, alimentar consumidores e ainda ser 

responsável pelo enchimento de reservatórios. (BRETAN, Bruno 

Melo. Tese Doutoral: Sistemas de Abastecimento de Água 

inteligentes: Previsão de demanda e controle ótimo em tempo 

real. Campinas – SP, 2017).  

2.2.3 Controle de Perdas na Distribuição: gerenciando a vazão e pressão 

dinâmica nas tubulações.   

A eficiência de um sistema de abastecimento público de água potável guarda 

relação direta com parâmetros de vazão e distribuição de pressão nas redes. Nesse 

sentido, conhecer a natureza dos escoamentos dos fluidos facilita a compreensão de 

detalhes importantes. 

Gomes et al (2012) afirmam que “os escoamentos se classificam em vários 

aspectos, cujo conhecimento é indispensável para o estudo da Mecânica dos fluidos 

e da Hidráulica”. Basicamente a literatura apresenta dois tipos de escoamentos: 

laminar e turbulento. Sendo o escoamento turbulento bastante presente em sistemas 

de saneamento, vejamos uma definição clássica desse movimento:  

 

O escoamento turbulento é o mais frequente na engenharia. Neste 

as partículas movem-se segundo trajetórias erráticas, causando 

transferência de quantidade de movimento entre estas, inclusive na 

direção normal ao escoamento, causando flutuações de velocidades 

em torno de uma média que só podem ser percebidas com 

instrumentação de alta precisão e baixo tempo de resposta.  Em 

tubos, os dois regimes podem ser identificados através do parâmetro 
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adimensional conhecido como número de Reynolds. (Pimentel 

Gomes, Heber; Sampaio Gomes, Airton; Andrade Filho, Luis Simão; 

Menezes Salvino, Moisés; Cramer de Otero, Osvaldo Luiz; Oliveira 

de Carvalho, Paulo Sérgio; Soares de Alencar, Ronildo Inácio; 

Marques Bezerra, Saulo de Tarso; De Paula Coura, Sebastião; 

Arnaud da Silva, Simplício. Sistemas de Bombeamento: Eficiência 

Energética (Abastecimento de Água Livro 4) - 2012 (Portuguese 

Edition) (p. 22). Edição do Kindle. 

   

Fórmula do número de Reynolds: 

  

 

𝑅𝑒 =  
𝑉𝐷𝜌

𝜇
=  

𝑉𝐷

𝜗
 

 

(01) 

Onde: 

V = Velocidade Média 

D = Diâmetro da tubulação 

ρ = Densidade 

μ = Viscosidade 

ϑ = Viscosidade cinemática 

A velocidade média em um escoamento possui atuação direta na vazão 

volumétrica e pode ser representada gráfica e matematicamente pela ilustração da 

figura 2.5:  
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Figura 2.5 - Perfil de velocidades em um tubo e velocidade média correspondente. Fonte: 
Gomes et al (2012) 

Princípio importante em hidrodinâmica, é o da conservação de massa e 

energia. Segundo as definições de Gomes et al (2012), um feixe de linhas de corrente 

que passa através de uma seção transversal dá origem ao chamado tubo de corrente, 

em que a parede lateral é paralela às linhas de corrente adjacentes, não havendo 

fluxo através dela. Neste caso a vazão volumétrica se conserva, conforme a fórmula: 

Q = V1A1=V2A2. A figura 2.6 apresenta a ilustração deste processo 

 

Figura 2.6 - Tubo de corrente. Fonte: Gomes et al (2012) 

No que diz respeito às pressões distribuídas nas redes, um elemento 

importante é a válvula redutora de pressão – VRP. O ajuste de pressão à montante e 

jusante faz parte de um gerenciamento operacional e contribui para proteção das 

tubulações contra eventos indesejados, como vazamentos de grande intensidade e 

transientes hidráulicos. Vejamos o conceito de um dos grandes fabricantes desses 

equipamentos:  
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A Válvula Sustentadora e Redutora de Pressão Modelo 723 é uma 

válvula de controle operada hidraulicamente e acionada por 

diafragma com duas funções independentes. Ela mantém uma 

pressão mínima predefinida a montante, independentemente da 

demanda flutuante ou da variação de pressão de montante ou de 

variações da pressão de jusante, e evita que a pressão de jusante 

aumente acima do máximo predefinido, independentemente de 

flutuações na vazão ou pressão excessiva a jusante. 

(https://www.bermad.com/ - acesso em 24/09/2024) 

A figura 2.7 representa uma válvula redutora de pressão em uma versão 

bastante comercializada.  

 

 

Figura 2.7 - Válvula Redutora de Pressão – VRP. Fonte: https://www.bermad.com/ 

 

Dados do SNIS-AE 2022 apontam índice de perdas na distribuição de água 

(IN049) de 37,8%; este percentual representa uma média do território nacional 

brasileiro. Segundo o referido sistema de informação, em relação a 2021 houve 

redução de 2,9 pontos percentuais no índice de perdas, que apresentava aumento 

contínuo desde 2015. O percentual em estudo significa a fração do volume de água 

disponibilizado que não foi faturado, não contabilizado como volume utilizado pelos 

consumidores, seja por vazamentos, falhas nos sistemas de medição ou ligações 

clandestinas. Ou seja, 62,2 a cada 100 litros de água distribuída são de fato 

https://www.bermad.com/
https://www.bermad.com/
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contabilizados como consumo regular pelos habitantes da região. (Sistema Nacional 

de Informações sobre o Saneamento – Relatório 2022; Ministério das Cidades).  

O controle de vazão nos diversos pontos de um sistema de abastecimento 

consiste em fator estratégico no gerenciamento e otimização do processo. Gonçalves 

(1998) apud Itonaga (2015) afirma que “a vazão noturna é o principal indicador do 

nível de perdas em um setor, principalmente em áreas residenciais, onde o consumo 

é baixo”. A figura 2.8 apresenta a dinâmica de comportamento deste parâmetro em 

um intervalo de 24 horas. 

 

 

Figura 2.8 - Variação de vazão em uma UDA em um dia típico. Fonte: (Itonaga, 2015)  

Inteligência Geográfica na setorização de redes de abastecimento 

 

As tecnologias de geoprocessamento têm propiciado diagnósticos e decisões 

inteligentes no setor de saneamento. A partir do cadastro técnico georreferenciado de redes, 

equipamentos e unidades consumidoras, é possível fazer uma conexão com bancos de dados 

operacionais e promover um gerenciamento espacial de todas as demandas de operação e 

manutenção. A figura 2.9 representa uma imagem retirada de boletins informativos de 

Geoprocessamento e serve de base para uma explanação dos benefícios alcançados na 

gestão operacional dos sistemas por meio da setorização.  
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Figura 2.9 - Setorização de redes. Fonte: Base de Geoprocessamento, 2020 

É possível segmentar as áreas abastecidas por cada válvula e, posteriormente, 

estabelecer controles e gerenciamento remoto – por telemetria. As cores simbolizam 

zonas de pressão e abastecimento que pertencem a cada Distrito de Medição e 

Controle – DMC. 

2.2.4 Eficiência Energética em Sistemas de Saneamento 

Para Marques (2016), a energia elétrica é fundamental para a produção nos 

Sistemas de Abastecimento de Água e está presente em todas as fases, pois é 

necessária para a captação, adução, transporte, tratamento e distribuição da água 

através das redes.  

Segundo as definições de CARMO (2023), a relação entre eficiência energética 

e proteção do meio ambiente é indissociável e de extrema importância para a busca 

de um futuro mais sustentável. Isto porque a eficiência energética desempenha um 

papel fundamental na mitigação de impactos ambientais negativos e na redução das 

emissões de gases de efeito estufa, por exemplo. Ao reduzir perdas na distribuição 

de água, indiretamente é influenciada a economia de energia elétrica utilizada tanto 

na produção como na distribuição, nos perfis de consumo residencial, industrial ou 

comercial.  

No tópico anterior foi abordada a questão das perdas de sistemas de 

abastecimento de água. São elementos inerentes ao processo produtivo e que devem 
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ser gerenciados com o objetivo de mantê-los nos menores índices possíveis. A 

energia elétrica é um insumo fundamental tanto na produção como na distribuição da 

água tratada, participando do acionamento de toda infraestrutura eletromecânica 

responsável pela captação, adução, armazenamento e distribuição.  

O relatório SNIS-AE 2022 aponta o índice de consumo de energia elétrica 

em sistemas de abastecimento de água (IN058) de 0,67 kWh/m³. O consumo total 

em sistemas de abastecimento de água é de 12,6 TWh, que corresponde a 88,3% 

dos 14,3 TWh utilizados pelos serviços de água e esgoto apurados na amostra. Ainda 

de acordo com o relatório, “a energia elétrica é um dos principais custos operacionais 

dos serviços de água e esgoto. O SNIS-AE identifica crescimento constante das 

despesas com energia elétrica”. (Sistema Nacional de Informações sobre o 

Saneamento – Relatório 2022; Ministério das Cidades).  

ITONAGA (2005) apud (SOBRINHO, Renavan Andrade; BORJA, Patrícia Campos; 

2016) afirmam que: 

Apesar das experiências para o controle das perdas de água e 

eficiência energética, os prestadores de serviços de abastecimento 

de água e de esgotamento sanitário no Brasil, o que inclui a Empresa 

Baiana de Águas e Saneamento (Embasa), ainda demonstram níveis 

elevados de perdas em relação aos padrões internacionais de países 

desenvolvidos, onde esse indicador atinge patamares da ordem de 

10%, como Japão e Alemanha, por exemplo (ITONAGA, 2005). 

2.2.5 Tecnologias Aplicadas na Operação e Gerenciamento do Sistema 

O Sistema de Abastecimento de Água estudado nesta pesquisa dispõe de um 

monitoramento por telemetria e construção de Balanço Hídrico em painel de Business 

Intelligence. Sendo assim, a revisão de conceitos e tecnologias presentes em seu 

funcionamento faz necessária para a melhor compreensão de seus resultados.  

Conforme artigo publicado por empresa de desenvolvimento de automação 

industrial, a importância de sistemas automatizados e telemetria em saneamento visa, 

dentre outros, a (Adaptado de GRACHTEN (2015): 

• Garantir o abastecimento da população; 

• Monitorar em tempo real o funcionamento de estações elevatórias, 

reservatórios, medidores de vazão e demais dispositivos elétricos e hidráulicos 

do sistema; 
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• Armazenar e apresentar dados históricos sobre a qualidade do 

abastecimento; 

• Alarmar vazamentos, falhas de operação, falhas de equipamentos, intrusões, 

valores anormais de níveis, pressões e vazões; 

• Prevenir e minimizar perdas; 

• Garantir a qualidade dos serviços prestados. 

Um centro de controle de operações e manutenção gerencia a distribuição de 

pressão e vazão na UDA estabelecida para esta pesquisa. Conceitualmente consiste 

no agrupamento de dispositivos e recursos tecnológicos que facilitam o 

gerenciamento operacional, conforme ilustrado na figura 2.10. 

 

Figura 2.10 - Exemplo de um Centro de Controle e Operação. Fonte: GRACHTEN, Eduardo. 
A contribuição dos sistemas de automação na melhoria do desempenho de empresas de 

saneamento. Publicação na web, 2015. 

Os avanços tecnológicos e industriais 

 

Segundo Vermulm (2018), a Indústria 4.0 - ou Manufatura Avançada – é um 

novo estágio de desenvolvimento da produção industrial. O mesmo autor nos informa 

que “Estados Unidos, Alemanha e China se destacam em matéria de investimento e 

modernização; estando, pois, a caminho da liderança mundial”. (Vermulm, 2018, p. 4). 

O engenheiro e economista Klaus Schwab, fundador do Fórum Econômico 

Mundial, conceituou com muita propriedade o termo revolução: 

A palavra “revolução” denota mudança abrupta e radical. 

Em nossa história, as revoluções têm ocorrido quando 

novas tecnologias e novas formas de perceber o mundo 
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desencadeiam uma alteração profunda nas estruturas 

sociais e nos sistemas econômicos. Já que história é 

usada como referência, as alterações podem levar anos 

para se desdobrarem. (Schwab, 2017, p. 15) 

 

 Para este autor, o momento é de fusão dos mundos físicos, digitais e biológicos; 

mudanças de modelos operacionais e reconfiguração de sistemas de produção, 

distribuição e consumo relacionados. Isto, de fato, vai ao encontro das necessidades 

atuais dos governos e sociedades ao redor do mundo; ou seja, é possível trazer a 

Tecnologia como grande aliada das inovações que tanto almejamos.  

 É nítida a percepção de que estamos vivenciando uma profunda transformação 

digital; que por conseguinte alavanca cada vez mais possibilidades e ganhos de 

eficiência. Para Leme, Santos e Stevan Jr. (2018), a Quarta Revolução Industrial é 

impulsionada pelas tendências de conectividade, materiais avançados que permitem 

o desenvolvimento de novos sensores e tecnologias de processamento. A figura 2.11 

ilustra as fases e principais tecnologias presentes nas revoluções industriais. 

 
Figura 2.11 - Evolução e características das revoluções industriais  

Fonte: (Leme; Santos; Stevan Júnior.,   2018, p. 81) 
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Elementos impulsionadores 

 
Observa-se que a Quarta Revolução Industrial faz uma concatenação de ideias, 

conhecimentos, tecnologias e inovações; tudo convergindo em uma estrutura de 

comunicação que gera Sistemas Inteligentes. Os resultados são altas performances 

e níveis de produção em vários segmentos. Nesse sentido, conceituemos alguns 

componentes de destaque: Computação em Nuvem; Big-Data; Internet das Coisas 

(IoT); Inteligência Artificial e Sistemas Ciber-Físicos. 

Computação em Nuvem 

 Para Leme, Santos e Stevan Júnior. (2018), associado ao grande volume de 

dados gerados pela Indústria 4.0, a computação em nuvem vem facilitar todo o 

processamento de informações e, ao mesmo tempo, disponibilizá-las para qualquer 

ambiente; a figura 2.12 ilustra o conceito. A oportunidade é de parceria e redução de 

custos, tendo em vista a possibilidade de reduzir o porte da infraestrutura de 

informação e comunicação.  

 
Figura 2.12 - Computação em Nuvem – Infraestrutura e Aplicações. Fonte: (Leme; Santos; Stevan 

Júnior.,   2018, p. 74) 
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Big Data 
 

O aumento de produtividade e eficiência do ambiente industrial necessita de 

tomada de decisão e informações apropriadas. Leme, Santos e Stevan Jr. (2018), 

apresentam uma abordagem apropriada sobre big data: 

 

As grandes estruturas de comunicação geram um volume de dados 

que nenhum banco de dados convencional ou sistema de 

processamento é capaz de tratar. Big Data corresponde a grandes 

estruturas, normalmente instaladas em ambientes especializados, 

construídas para tratar dados estruturados e não estruturados de 

uma variedade de fontes, como texto, formulários, blogs da web, 

comentários, vídeos, fotografias, telemetria, GPS, chat de 

mensagens instantâneas, notícias e, ainda as estruturas de produção 

industrial como rastreamento logístico RFID, entre outros. (Leme; 

Santos; Stevan Júnior., 2018, p. 75) 

 

 Vários dispositivos e tecnologias no ambiente interconectado se tornam fonte 

de dados; assim, em plena era e sociedade da informação, é preciso – cada vez mais 

– aprimorar as capacidades e os métodos de análises para extrair informações válidas 

e relevantes para a tomada de decisões. 

 
Inteligência Artificial 

Para Klaus Schwab (2017), a inteligência artificial viabiliza a correspondência 

de padrões e a automação de processos, o que torna a tecnologia interessante para 

muitas funções em grandes organizações. Redução de custos e ganhos de eficiência 

são reflexos em toda a cadeia produtiva. 

 Segundo pesquisas da Oxford Martin School, algumas funções são suscetíveis 

de serem substituídas por máquinas automatizadas. Nessa linha, o trabalho humano 

se concentrará na análise de dados, informações e tomada de decisão. 

Sistemas Ciber-Físicos 

Segundo o artigo publicado pela empresa E-aware Technologies, “em ciber-

física, dispositivos eletrônicos com elementos de computação inteligente e 

comunicação estão integrados a componentes físicos da natureza”. A integração de 

dispositivos computacionais, sensores e comunicação estruturam a plataforma 

sensorial que controlará as variáveis de um processo – por exemplo.   
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 Como podemos compreender, a Cibernética potencializa o nível de interação 

entre máquinas e sistemas de produção permitindo a correção de falhas e o aumento 

de desempenho em diversos segmentos. Contudo, o grande desafio da Sociedade 

moderna é interpretar o grande volume de informações no intuito de validar e obter os 

benefícios almejados. A figura 2.13 ilustra os principais elementos.  

 

 
Figura 2.13 - Interação entre os principais elementos ciber-físicos 

Fonte: <https://www.eaware.com.br/sistemas-ciber-fisicos-a-nova-revolucao/> - acesso em 21 
nov. 2019 

Internet das Coisas (IoT) 

Na concepção de Indústria 4.0, um termo relevante a ser explorado é Internet 

das Coisas; Leme, Santos e Stevan Júnior. (2018, p. 77) apontam que “toda a 

integração e convergência de tecnologias de comunicação, associadas a uma grande 

quantidade de novos sensores, nos leva a um novo conceito de fábrica inteligente”. 

Essa troca de informações e interação entre processos permitem uma comunicação 

mais efetiva em toda a cadeia produtiva.  

Telemetria de dados e Telecomando de máquinas e processos (Aplicação na 

Indústria do Saneamento) 

Vissotto Junior (2004) – citado por Salles, Hermosilla e Silva (2016) – em artigo 

publicado pela Associação Brasileira de Engenharia de Produção – ABEPRO 

informam que “a origem da palavra telemetria vem de termos gregos como tele, que 

significa longe ou remoto, e metron, que se relaciona à medida, e de forma sucinta 

pode ser definida como uma técnica de obtenção de dados à distância”. Assim, 

viabiliza a coleta de dados em pontos remotos e sua posterior transferência para 

controle e monitoramento de processos.  

 Tomy Moreira dos Santos (2018), por sua vez, nos possibilita entender os 

componentes principais de um sistema de telemetria: hardware embarcado local – 

https://www.eaware.com.br/sistemas-ciber-fisicos-a-nova-revolucao/
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para coleta de dados nos pontos de medição; Sistemas de transmissão de dados; e 

software para supervisão. Nesta linha de raciocínio podemos compreender a 

telemetria e telecomando como sistemas que utilizam recursos físicos e lógicos para 

captura de dados, controle e acionamento remoto; tais recursos, de ordem 

computacional, têm apresentado significativos avanços nos últimos anos.  

 Na figura 2.14 observa-se um exemplo de unidade de produção de água 

operando com dispositivos de automatização dos processos. O supervisório do 

sistema de automação informa dados como estado das bombas (ligado ou desligado), 

níveis dos reservatórios de contato, condicionamento das válvulas e frequência dos 

motores. 

 

Figura 2.14 - Sistema de Tratamento de Água monitorado por computador. Fonte: Projetos de 
Automação Industrial. 

No âmbito do saneamento ambiental, a telemetria tem dado contribuições no 

sentido de coletar dados de forma remota agilizando processos de tomada de decisão. 

Em estudos e diagnósticos de redes de abastecimento, é possível monitorar vazão, 

pressão de montante e pressão de jusante; permitindo assim calcular alguns 

indicadores e direcionar as ações de operação e manutenção do Sistema. Nos 



 

37 

 

apêndices C e D é possível visualizar gráficos extraídos de um sistema de 

monitoramento remoto. 

Business Intelligence   

Chaudhuri et al. (2011) apud Freitas Neto (2014) apresenta uma ilustração 

muito eficiente dos elementos principais de um sistema de business intelligence; como 

exibido na figura 2.15.  

 
 

 
Figura 2.15 - Arquitetura típica de um sistema baseado em Business Intelligence 

Fonte: Chaudhuri et al. (2011) apud Freitas Neto (2014) 
 

 Este recurso computacional é um grande elemento estratégico no processo de 

tomada de decisão. Na figura 2.16 são exibidos alguns painéis de monitoramento de 

sistemas de abastecimento a partir de dados oriundos de telemetria. Conhecer o perfil 

de consumo, dados de vazão e índices de perdas é de fundamental importância para 

o gerenciamento eficaz e otimização dos processos.   
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Figura 2.16 - Painéis de monitoramento de sistemas de abastecimento 

Fonte: Sistemas de Automação e Telemetria. 

 

Citados os diversos elementos de alto nível computacional, podemos também 

mencionar os sensores de base industrial, aqueles que farão a coleta direta dos dados 

operacionais que definem o comportamento de um sistema hidráulico. A figura 2.17 

exibe uma estação de bombeamento instrumentada, com dados sendo transmitidos 

para computadores e centrais de processamento. 

Como vantagens da utilização desses recursos informacionais podemos citar:  

• Agilidade na identificação de falhas técnicas e operacionais nos sistemas de 

abastecimento (reservatórios, estações elevatórias, boosters, válvulas, etc; 

• Viabilidade de controle centralizado e tomada de decisão; 

• Dados e informações atualizados em tempo real; 

• Interface e comunicação com outras aplicações.  
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Figura 2.17 - Estação de bombeamento instrumentada. Fonte: 
https://www.abstelemetria.com/saneamento 

2.3 MODELAGEM DE SÉRIES TEMPORAIS 

 Para Illukkumbura (2021), a análise de dados de série temporal é importante 

para identificar forças e estruturas subjacentes em uma variável de série no tempo e 

para identificar um modelo adequado para fins de previsão. Neste sentido, ao planejar 

um modelo operacional baseado em métodos preditivos, faz-se uso de um recurso 

com potencialidade para alcance de bons resultados. 

Séries temporais são coleções de observações feitas em intervalos 

de tempo iguais. Uma série temporal é uma coleção de observações 

ou dados obtidos para uma variável específica durante intervalos de 

tempo específicos, definidos e sequenciais. Em um modelo de série 

temporal, observações de uma variável são registradas em intervalos 

de tempo iguais. Em estatística, dois tipos de modelos são usados 

para analisar séries de dados. Eles são modelos causais e modelos 

de séries temporais. (Illukkumbura, Anusha. Introduction to Time 

Series Analysis (Easy Statistics) (p. 8). anushabooks.com. Edição 

do Kindle.) 

 

No estudo das séries temporais, o pesquisador se depara com flutuações no 

comportamento dos dados que advém de fenômenos ocorridos de forma variada. A 
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literatura consolida quatro componentes de uma série temporal que podem descrever 

tais variações: 

1. Tendência de longo prazo 

2. Variação Sazonal 

3. Variação Cíclica 

4. Variações Irregulares 

Ilustrativamente, alguns padrões de séries temporais são apresentados na 

figura 2.18, com a presença das características de Tendência e movimento aleatório; 

Cíclico; Padrão Sazonal; e Tendência com padrão sazonal. 

 
Padrão Séries Temporais 

 
Figura 2.18 - Padrões de Séries Temporais. Fonte: (Illukkumbura, Anusha. Introduction to 

Time Series Analysis (Easy Statistics), p. 11) 
 

No estudo inicial das séries temporais, dois conceitos importantes são o ruído 

branco e filtro linear, já que objetivamente se decompõe a massa de dados em partes 

a serem avaliadas. Para MARGARIDO (2020),  

ao se trabalhar com modelos de séries de tempo, o objetivo básico 

consiste em decompor a série em diversos componentes utilizando-

se para tal tarefa os denominados filtros lineares. Essa 

decomposição se baseia no Teorema da Decomposição de Wold, o 

qual afirma que todo processo estocástico  , pode ser escrito 

como uma combinação linear de uma sequência não correlacionada 

de variáveis aleatórias.  
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O termo ruído branco (white noise) caracteriza uma série de tempo 

que é identicamente e independentemente distribuída (IID), com 

média zero. A função de Autocorrelação (ACF) da série é igual a zero 

para todas as defasagens (lags) exceto para a defasagem zero. 

Pressupõe-se que uma série ruído branco seja completamente 

aleatória e seu comportamento não pode ser previsto por qualquer 

processo de estimação. Sendo assim, uma série temporal pode ser 

representada a partir de uma soma ponderada de observações 

presente e passadas do ruído branco. (Margarido, Mario Antônio. 

MODELOS DE SÉRIES TEMPORAIS: Uma introdução com 

aplicações práticas (LIVROS DE ECONOMETRIA E MODELOS DE 

SÉRIES TEMPORAIS - APLICADOS) (Portuguese Edition) (pp. 31-

32). Mario Antônio Margarido. Edição do Kindle.) 

 

Ruído Branco (White Noise Process) 

Estudando o comportamento de séries temporais interrompidas, McDOWALL 

et al. (2019) conceituam o processo estacionário mais simples possível como ruído 

branco, assemelhando-se a uma estática de rádio ou luz branca de um tubo 

fluorescente, em casos de som e imagem, respectivamente. Sendo o ruído branco 

resultado de um processo aleatório, ocorrências de tempo passado não possuem 

informações sobre o tempo futuro. As equações 02 e 03 apresentam a formulação 

matemática do processo e dos choques aleatórios, distribuídos com média zero e 

variância constante. (Adaptado de McDOWALL, David; McCLEARY, Richard; 

BARTOS, Bradley J. Interrupted Time Series Analysis. Oxford University Press, 2019).  

𝑎 −  ∞, … 𝑎 − 1, 𝑎0, [𝑎1, 𝑎2, … 𝑎𝑁], 𝑎𝑁 + 1, 𝑎𝑁 + 2, … 𝑎 + ∞     (02) 

µ𝑎 = 𝐸(𝑎𝑡) = 0 𝑎𝑛𝑑 𝛾0 = 𝐸(𝑎2𝑡) =  𝜎²𝑎                                 (03) 

 

 

Modelos ARIMA e SARIMA 

Segundo as definições de Illukkumbura (2021), a modelagem ARIMA Sazonal 

é representada por (p, d, q) (P, D, Q) em que P = SAR ou termo autorregressivo 

sazonal; D = número de diferenças sazonais; Q = termo SMA ou termo de média móvel 

sazonal. Os dados sazonais podem ser identificados quando a assinatura MA pura ou 

AR pura ocorre em períodos de tempos iguais. Em suma, temos que p, d, q são as 
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ordens e diferença do modelo não sazonal e P, D, Q seus pares para o modelo 

sazonal. 

A variação sazonal mostra padrões repetitivos semelhantes durante períodos 

de tempos semelhantes (equivalentes) e sequenciais. Nos padrões sazonais, as 

séries de dados são influenciadas por dados com flutuações sazonais. A temperatura 

sazonal de um país durante alguns anos mostra padrões sazonais. Os padrões 

cíclicos são os movimentos alternativos para cima e para baixo em um gráfico de série 

temporal. Isto também pode ser identificado como sequências recorrentes de pontos 

acima e abaixo da linha de tendência que duram pelo menos mais de um ano. 

(Adaptado de (Illukkumbura, Anusha. Introduction to Time Series Analysis (Easy 

Statistics). 

Para Margarido (2020), apud Macaúbas (2022), 

O modelo ARIMA é um modelo univariado, ou seja, possui uma única 

variável. Nesse caso, procura-se explicar o comportamento presente 

e futuro de uma variável com base nos seus próprios valores 

passados, também denominados de parâmetros autorregressivos 

(AR) e seu próprio erro presente e passados, chamados de 

parâmetros de médias móveis (MA). 

Sazonalidade em séries temporais são padrões regulares que se 

repetem ao longo do tempo, onde S define o número de períodos até 

que o padrão volte a se repetir. A presença de sazonalidade pode 

fazer com que a série não seja estacionária. (MACAÚBAS, Flávio; 

2022).  

 

Equações matemáticas referentes aos indicadores de desempenho do modelo 

SARIMA  

 

𝑅𝑀𝑆𝐸 =  
1

𝑛
√∑ (𝑥𝑖 − 𝑥̃𝑖)²𝑁

𝑖=1                                               (04) 

 

MAPE = 
1

𝑁
∑ |(

𝑥𝑖−𝑥̃𝑖

𝒙𝒊
)|𝑁

𝑖=1                                                     (05) 

Fonte: (Adaptado de Bleidorn et al, 2024) 
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Colischonn et al. (2005) apud CHECI, Leonardo & BAYER, Fábio M (2012), em 

pesquisa de investigação climatológica, avaliaram a importância de modelos 

estocásticos como o ARIMA na previsão de parâmetros concluindo que “Os resultados 

desses modelos podem ser usados como insumo (input) em modelos complexos 

hidrológicos determinísticos para simulação de chuva e vazão”. Em relação aos 

aspectos hidrológicos a modelagem e a previsão da disponibilidade hídrica também 

são importantes para outros usos, como integridade, abastecimento e navegação. 

(CHECI, Leonardo & BAYER, Fábio M; 2012) 

Com o objetivo de avaliar o comportamento de séries temporais para previsão 

da incidência de leishmaniose visceral, PIMENTEL et al. (2021) conceituam que “o 

modelo SARIMA sazonal (p,d,q)(P,D,Q)s permite uma descrição da variabilidade dos 

processos relacionados ao tempo, linear, estacionário (d = D = 0) ou não estacionário”.  

A formulação matemática segue o seguinte padrão - SARIMA (p,d,q)(P,D,Q)s: 

∆(𝐵𝑆) φ(B)(1 − 𝐵)𝑑)(1 − 𝐵𝑠)𝐷T(𝑋𝑡) = Ѱ(𝐵𝑆)ϴ(B) 𝑍𝑡 
 

(06) 

Fonte: PIMENTEL et al. (2021) 

Cada termo equacionado representa: 

• Δ(𝐵^𝑆): Operador de variação e defasagem do componente sazonal; 

• φ(B): Polinômio operador de retrocesso B – componente autorregressivo; 

• B)^d: Diferenciação/estacionariedade; 

• (1-Bs): Diferenciação sazonal; 

• DT(Xt):Transformação/tendência determinística; 

• Ѱ(BS): Polinômio operador de retrocesso – média móvel; 

• ϴ(B): Polinômio operador de retrocesso; 

• 𝑍t: Ruído branco. 

Em sequência temos respectivamente (Adaptado de PIMENTEL et al (2021): 

• Polinômios autorregressivos; 

• Polinômios de média móvel da parte sazonal do período S; 

• T – (transformação Box Cox) utilizada para estabilização da variância (quando 

este for o caso); 
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• Zt – processo de ruído branco – processo não corrigido com média zero e 

variância constante; 

• No caso de p e q, são parâmetros autorregressivos e partes de média móvel 

com sazonalidade S; 

• P e Q representam números equivalentes a esses parâmetros entre períodos 

sazonais; 

• No caso dos parâmetros representados pelas letras d e D, são elementos que 

representam, respectivamente, graus de diferenciação simples e a 

diferenciação.  

 

Critério de Informação de Akaike (AIC)  

“O Critério de Informação (AIC) é um estimador assintótico que utiliza a 

minimização da distância de Kullback-Leibler (K – L) como base para seleção do 

modelo. Ele mede o modelo que perde menos informação entre a realidade e o modelo 

candidato”. (IMAMURA, Célia Sayuri; GOMES, Fabrício Maciel; 2018). Avaliando 

características como viés e variância das funções consegue prever a irregularidade 

em uma base de dados estudada; sendo o melhor modelo aquele que reflete um 

equilíbrio entre as duas variáveis.   

AIC = -2ln(L) + 2K.               (07) 

Na fórmula o elemento k se refere ao número de parâmetros do modelo, e ln(L) 

o seu logaritmo de verossimilhança. 

3. METODOLOGIA DE PESQUISA 

  Para alcançar os objetivos propostos, foi realizada uma análise das variáveis 

importantes no processo estudado e características tecnológicas do sistema. Os 

dados brutos foram extraídos de sistemas informatizados que contêm o Balanço 

Hídrico e o armazenamento da Telemetria.  

A produção, armazenamento e manipulação dos dados históricos utilizados 

neste estudo foi viabilizada pelas tecnologias de instrumentação e automação de 

sistemas presentes no ambiente industrial analisado. Conforme discorrido na Revisão 

Bibliográfica e na seção de Metodologia, a união de controle e automação em 
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sistemas hidráulicos e mecânicos destaca-se como elemento impulsionador de 

inovação, produtividade e eficiência operacional.  

 

3.1 INSTRUMENTAÇÃO, ARMAZENAMENTO E COLETA DOS DADOS 

Sensoriamento, registro e transmissão de dados 

A medição dos parâmetros de vazão e pressão dinâmica na linha de 

distribuição principal é realizada a partir de intrumentos (sensores) instalados para 

esta finalidade. O  registro e transmissão dos dados para central computadorizada 

(tecnologias GPRS/3G) ocorre com auxílio de equipamentos eletrônicos denominados 

“Dataloggers” (figura 3.1). Esses componentes auxiliam no monitoramento contínuo 

de transientes hidráulicos relacionados à operação dos boosters de abastecimento e 

aos fechamentos e aberturas de válvulas de controle. Os intervalos de medição 

podem ser regulados por comando remoto. 

 

Figura 3.1 – Dataloggers. Fonte: Vectora/ABStelemetria 

O sistema em estudo possui dispositivos instalados na tubulação e no sistema 

de bombeamento, conforme apresentado nas figuras 3.2 e 3.3.  
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Figura 3.2 – Instrumentação no barrilete de recalque. Fonte: Relatório de visita técnica ao 
sistema. 

 

Figura 3.3 - Instrumentação na linha de distribuição. Fonte Relatório de visita técnica ao 

sistema. 

A linha de distribuição sensoriada é abastecida por reservatórios apoiados que, 

por sua vez, recebem carga de adutora ligada ao sistema de produção. Isto viabiliza 

um bom nível de segurança operacional, dado que a função do bombeamento 

automatizado é garantir os parâmetros de pressão e vazão adequados para o 

abastecimento público na região.  
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Figura 3.4 – Reservatórios de Abastecimento da Linha. Fonte: Relatório de visita técnica ao 
sistema. 

 

Telemetria e gerenciamento da automação 

Os sistemas de automação e a telemetria são gerenciados a partir de telas 

supervisórias e bancos de dados historiadores (figuras 3.5 e 3.6). Esses recursos 

possibilitam um monitoramento contínuo das operações, o tratamento de alarmes e a 

manipulação e tratamento dos registros históricos, viabilizando relatórios de análise 

estatísticas e planejamento operacional.  

 

Figura 3.5 – Sistema Supervisório de Automação. Fonte: Sistemas de Automação e Controle. 
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Na imagem que representa o supervisório da automação temos a 

representação de dois conjuntos motor-bomba em operação (cor verde) e um em 

estado de reserva (cor vermelha). 

 

Figura 3.6 – Dados tabulados por sistema de telemetria. Fonte: Sistemas de Automação.  

Os dados de vazão podem ser visualizados na figura 3.6 referente ao dia 

21/10/2022, especificados por equipamento instalado.  

O sistema de automação armazena o histórico de operação dos conjuntos 

moto-bombas (cmbs) – figura 3.7. Esses dados são tabulados em formato de 

relatórios operacionais e servem de fonte para planos de manutenção preventiva dos 

componentes eletromecânicos do Sistema de Abastecimento de Água – SAA).  

 

Figura 3.7 – Tempos de operação de conjuntos motobombas (cmbs). Fonte: Sistemas de 
Automação. 
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Coleta e tratamento preliminar dos dados experimentais  

A Companhia de Saneamento Ambiental do Distrito Federal utiliza de sistemas 

de informação e automação para armazenamento e manipulação de dados 

operacionais que são responsáveis pelo processo de telemetria e de desenvolvimento 

de dashboards de inteligência de negócio e tomada de decisão. (figura 3.8) 

 

Figura 3.8 – Painel de extração de dados e informações. Fonte: Sistemas de Automação.  

 

O painel de gestão operacional exibido na figura 3.9 representa as diversas 

interfaces gráficas para análise de dados. Anomalias e intervenções nos sistemas de 

abastecimento também podem ser gerenciadas por esta ferramenta. Os dados de 

vazão e consumo de energia analisados neste projeto de pesquisa foram extraídos 

dessas plataformas. Dentre os painéis está o que contém o balanço hídrico do sistema 

de bombeamento automatizado, objeto de análise deste projeto. 
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Figura 3.9 – Painel de extração de dados e informações (SAA). Fonte: Sistemas de 
Automação. 

O conteúdo dos dashboards são importância fundamental para tomadas de 

decisão e representam falhas de automação, ocorrências em sistemas rurais, limpeza 

de reservatórios, entre outros.  

 

3.2 FERRAMENTAS COMPUTACIONAIS 

  O processamento, análise, modelagem e visualização dos dados de vazão, 

pressão dinâmica, índices de perdas, consumo de energia e volume distribuído foram 

realizados com o auxílio dos seguintes recursos computacionais: Linguagem de 

Programação R; Ambiente de Desenvolvimento Integrado - RStudio; Microsoft Power 

BI. Scripts e detalhes importantes estão contidos na seção de apêndice deste 

trabalho. 

  A sequência lógica e computacional para execução do modelo ARIMA foi a 

seguinte: 

• Instalação dos pacotes da linguagem R: install.packages (library('readxl') 

• Leitura dos dados de análise:  Dados_de análise <- read 

• Plotagem dos dados: - > print(Dados_Consumo) 

• Criar o vetor: str(Dados_Análise) 

• Chamar o vetor: Dados  <- as.vector 

• Modelagem da Série Temporal: > Serie <- ts 

• Plotagem da Série Temporal: print(Serie) 
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• Análise dos parâmetros conforme explanado no item 4.4 

De igual importância, seguem as formulações matemática dos parâmetros 

estatísticos avaliados na linguagem R de séries temporais: 

𝑅𝑀𝑆𝐸 =  
1

𝑛
√∑ (𝑥𝑖 − 𝑥̃𝑖)²𝑁

𝑖=1                                               (08) 

 

MAPE = 
1

𝑁
∑ |(

𝑥𝑖−𝑥̃𝑖

𝒙𝒊
)|𝑁

𝑖=1                                                     (09) 

 

AIC = -2ln(L) + 2K.                                                (10) 

3.3 PERCURSO METODOLÓGICO 

  As etapas seguintes foram implementadas:   

• Avaliar o modelo hidráulico do sistema – poligonal de estudo e as 

características operacionais do sistema; 

• Realizar a coleta de dados operacionais (vazão, consumo per capita, pressão 

de montante, pressão de jusante, índices de perda e demanda mensal); 

• Promover a análise preliminar de dados e informações; processo de 

preparação; 

• Desenvolver scripts em linguagem de programação apropriada para análise, 

tratamento e modelagem estatística dos dados referentes ao sistema de 

abastecimento;  

• Identificar características de sazonalidade e tendência no volume consumido 

dentro da zona de controle; 

• Mapear registros de vazão mínima noturna e pressões dinâmicas; sendo estes 

parâmetros importantes para o monitoramento de perdas físicas na 

distribuição; 

• Modelar séries temporais para os parâmetros de demanda mensal (m³), 

consumo per capita (l/hab/dia), vazão horária e índices de perda no contexto 

histórico das redes de abastecimento. 
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3.4 TÉCNICA E RECURSOS UTILIZADOS PARA AJUSTE DOS MODELOS 

Em princípio, segue as etapas iniciais do método computacional:  

• Importação da base de dados;  

• criação do vetor;  

• criação da série temporal.  

O modelo ARIMA com parâmetro de sazonalidade possui o formato (p, d, q) (P, 

D, Q) em que [adaptado de Barros (2021) et al]: 

• P é a ordem do polinômio autorregressivo não sazonal; 

• p é a ordem do polinômio autorregressivo sazonal; 

• q é a ordem do polinômio de médias móveis não sazonal; 

• Q é a ordem do polinômio de médias móveis sazonal 

• d é a ordem de diferença não sazonal; 

• D é a ordem de diferença sazonal. 

Visando à otimização do processo de busca, a modelagem ótima das séries 

temporais foi realizada utilizando o recurso de automatização na busca do “melhor 

modelo”, através do comando “auto.arima” (pacote forecast) da linguagem R. Este 

comando executa um processo exaustivo e por etapas (stepwise), até que se atinja 

os coeficientes ideais, ajustados para os dados do modelo.   

Com poder de processamento computacional, a linguagem R realiza inúmeros 

testes até que se atinja as melhores combinações para os coeficientes. A figura 3.10 

destaca um trecho da operação do comando. 
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Figura 3.10 - Trecho do processamento auto.arima com stepwise. Fonte: Elaborado pelo autor. 

É possível observar a alternância dos coeficientes (p, d, q) (P, D, Q) até que se 

alcance a melhor versão para o modelo ARIMA da série temporal. A escolha se baseia 

nos melhores valores para os parâmetros: Erro Percentual Médio Absoluto - MAPE; 

Erro Quadrático Médio Raíz - RMSE; Erro Médio Absoluto - MAE; e Critério de 

Informação de Akaike – AIC. 

Para avaliação da qualidade dos modelos, serão utilizados os critérios de 

independência dos resíduos a caracterização da série como distribuição normal, 

Ljung-Box test e Shapiro.wilk normaly test, concentrando a atenção nos parâmetros 

numéricos retornados e na avaliação gráfica produzida pelas saídas dos comandos.  

As variáveis do sistema que foram avaliadas e modeladas são:  

• Demanda per capita 

• Demanda mensal   

• Índice de perdas 

• Demanda de energia elétrica 

• vazão mínima noturna (Verificação da estabilidade) 

A tabela 3.1 exibe a modelagem final encontrada após todo o processamento 

computacional dos dados via comandos R. pode-se verificar os valores e as 

combinações para os coeficientes ARIMA (p, d, q) (P, D, Q). 
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VARIÁVEL ESTUDADA MODELO DEFINIDO 

Demanda Per Capita ARIMA (0,1,1) (2,0,0) 

Demanda Mensal ARIMA (0,1,2) (1,0,0) 

Índice de Perdas ARIMA (0,1,1) (1,0,0) 

Consumo de Energia Elétrica  ARIMA (0,1,2) (1,0,0) 
Tabela 3.1 – modelagem definida. Fonte: Elaborado pelo autor. 
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4. RESULTADOS E DISCUSSÕES 

Nesta seção são apresentados os resultados do processamento estatístico dos 

dados históricos do sistema de abastecimento; promovidas as discussões pertinentes 

e necessárias ao estudo e avaliação da sua performance operacional; e a utilização 

de informações produzidas para o planejamento, modelagem e previsão de cada 

variável estudada. 

4.1 DEMANDA PER CAPITA – (L/HAB/DIA) 

O consumo per capita representa a quantidade de água que cada habitante 

utiliza em um dia. Dado que sofre influência de fatores econômicos e sociais presentes 

em cada região geográfica a ser estudada. A seguir é apresentado um fragmento do 

script R, “data frame” e a série temporal do período de 8 anos, figuras 4.1 e 4.2, 

respectivamente. Como decisão na análise de dados, os valores ausentes (setembro 

a dezembro) foram atribuídos a partir da média de anos anteriores, para os respectivos 

meses.  

 

Figura 4.1   –    Data frame – demanda per capita. Fonte: Processamento Rstudio.  

 

Tempo 

Figura 4.2   –    Série temporal – consumo per capita. Eixo y – consumo per capita em l/hab/dia; eixo 
x – tempo em anos. Fonte: Elaborado pelo autor. 

Na plotagem inicial dos dados históricos é possível observar o pico de consumo 

em novembro de 2022, fato que também aparece quando da avaliação da demanda 

mensal do booster (sistema de bombeamento automatizado). Como visto na revisão 

de literatura, o padrão médio para consumo per capita em sistemas de abastecimento 
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é de 140 l/hab/dia. Todavia, por se tratar de uma região com redes de distribuição 

bem monitoradas, e de acordo com o perfil populacional da região abastecida, os 

valores médios se comportam entre 102 e 112 l/hab/dia. 

Dando sequência na apresentação de resultados, como estabelecido no 

capítulo 3 – Metodologia, os parâmetros retornados pelo algoritmo R de otimização 

computacional estão destacados na figura 4.3. Ressaltando que a melhor versão foi 

ARIMA (0,1,1)(2,0,0) [12].  

 

Fig. 4.3 Parâmetros no melhor modelo encontrado. Fonte: Elaborado pelo autor. 

Desta forma, o modelo (p, d, q) (P, D, Q) ajustado retornou os parâmetros em 

nível ótimo, referentes ao Erro Percentual Médio Absoluto; Erro Quadrático Médio 

Raíz; Erro Médio Absoluto; e Critério de Informação de Akaike. Segue o próximo passo 

de aferição do modelo que será a análise dos resíduos. 

A figura 4.4 exibe a saída do comando R utilizado para a análise de resíduos 

do modelo, já em sua versão otimizada pelo algoritmo computacional. Destaca-se a 

confirmação da hipótese H0 de normalidade dos dados.  

 

Fig. 4.4 Análise de Resíduos: Teste de normalidade Shapiro-Wilk. Fonte: Elaborado pelo autor. 
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 A análise gráfica, por sua vez, denota a independência dos resíduos e o 

comportamento da função de autocorrelação - ACF, dado que as linhas paralelas 

estão em sua quase totalidade dentro dos limites estabelecidos pelas faixas azuis.  

 

Fig. 4.5 Análise de Autocorrelação e Resíduos: informações gráficas. Fonte: Elaborado pelo autor. 

O teste de estacionariedade para a série temporal restou comprovado após 

análise dentro do ambiente Rstudio, conforme a figura 4.6. 

 

Fig. 4.6 Teste de Estacionariedade. Fonte: Processamento Rstudio. 
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Tendo a modelagem na versão ótima sido validada, as figuras 4.7 e 4.8 refletem 

as projeções realizadas para um horizonte de 12 meses, nas versões numéricas e 

gráficas, respectivamente.  

 

Figura 4.7 – Projeção de demanda per capita: valores numéricos. Elaborado pelo autor. 

Os recortes em azul mostram os dados previstos para o consumo de 12 meses 

e a escala de predição de valores; para 80% e 95%. Com valores flutuando entre 100 

e 108 l/hab/dia, o perfil individual de consumo mostra-se estabilizado.  

 

Figura 4.8 – Projeção de demanda per capita. Eixo y – consumo per capita em l/hab/dia; eixo x – 
tempo em anos. Fonte: Elaborado pelo autor. 

Para o final do ano de 2025 até 2026 a linha azul do gráfico reflete uma 

tendência de estabilização dos valores em torno da média histórica característica do 

sistema.  
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4.2 DEMANDA MENSAL – VOLUME DISTRIBUIDO PELO SISTEMA (M³) 

Para o histórico de demanda mensal, volume distribuído e medido nas unidades 

de consumo, seguem os resultados provenientes das saídas de processamento 

estatístico no software RStudio.  

Esses dados representam os volumes de água que são demandados 

mensalmente pelo sistema distribuidor, sofrendo influências dos fatores econômicos, 

sociais, climáticos e sazonais. As figuras 4.9 e 4.10 apresentam o resultado de saída 

do script R, “data frame” e a série temporal do período de 8 anos, em versões 

numéricas e gráficas, respectivamente.  

Em uma avaliação inicial dos dados históricos é possível observar o pico de 

consumo em novembro de 2022, fato que também aparece quando da avaliação da 

demanda per capita. A organização dos dados em vetores facilita a visualização do 

horizonte de tempo da pesquisa, ao passo que a escolha da unidade em metros 

cúbicos visa a facilitar a leitura e entendimento. 

  

 

Figura 4.9 – Vetor e série de dados históricos: valores numéricos. Elaborado pelo autor. 
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Tempo 

Figura 4.10 – Série Temporal – demanda de 8 anos (consumo mensal). Eixo y – consumo mensal em 

m³; eixo x – tempo em anos. Elaborado pelo autor. 

Observando o comportamento do gráfico, identificamos um pico de consumo 

no mês de setembro de 2022, outlier que representa situação possível de ocorrer dada 

a natureza do sistema, por uma elevação da demanda ou algum vazamento na rede 

de distribuição.  

Dando sequência na apresentação de resultados, como estabelecido no 

capítulo 3 – Metodologia, os parâmetros retornados pelo algoritmo R de otimização 

computacional estão destacados na figura 4.11. Ressaltando que a melhor versão dos 

modelos testados foi o ARIMA (0,1,2) (1,0,0).  

 

 

Figura 4.11 – Parâmetros do melhor modelo encontrado. Fonte: Elaborado pelo autor. 

Desta forma, o modelo (p, d, q) (P, D, Q) ajustado retornou os parâmetros em 

nível ótimo, referentes ao Erro Percentual Médio Absoluto; Erro Quadrático Médio 
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Raíz; Erro Médio Absoluto; e Critério de Informação de Akaike. Segue o próximo passo 

de aferição do modelo que será a análise dos resíduos. 

Na figura 4.12 temos a saída do comando R utilizado para a análise de resíduos 

do modelo, já em sua versão otimizada pelo algoritmo computacional. Destaca-se a 

confirmação da hipótese H0 de normalidade dos dados.  

 

Figura 4.12 – Análise de Resíduos: gráfico. Fonte: Elaborado pelo autor. 

As informações gráficas exibidas na figura 4.12, por sua vez, denotam a 

independência dos resíduos e o comportamento da função de autocorrelação - ACF, 

dado que as linhas paralelas estão em sua quase totalidade dentro dos limites 

estabelecidos pelas faixas azuis. Esse estudo pertence a uma região estabilidade em 

matéria de crescimento populacional. Neste caso, as variações são relacionadas a 

outros fatores, mais inerentes ao consumo da água distribuída.  

 

Figura 4.13 – Análise de Resíduos: informações gráficas. Fonte: Elaborado pelo autor. 



 

62 

 

O teste de estacionariedade para a série temporal restou comprovado após 

análise dentro do ambiente Rstudio, conforme a figura 4.14. 

 

Fig. 4.14 Teste de Estacionariedade. Fonte: Elaborado pelo autor. 

Tendo a modelagem na versão ótima sido validada, as figuras 4.15 e 4.16 

refletem as projeções realizadas para um horizonte de 12 meses, nas versões 

numéricas e gráficas, respectivamente.  

 

Figura 4.15 - Previsão de demanda mensal com resíduos (12 meses): valores numéricos. Fonte: 
Elaborado pelo autor. 

Os recortes em azul mostram os dados previstos para o consumo de 12 meses 

e a escala de predição de valores; para 80% e 95%. Vejamos o comportamento e a 

distribuição dos valores graficamente, observando os aspectos que caracterizam os 

dados dessa série temporal. 



 

63 

 

 

Tempo 

 

Figura 4.16 - Previsão de demanda mensal com resíduos (12 meses). Eixo y – consumo mensal em 
m³; eixo x – tempo em anos. Fonte: Elaborado pelo autor. 

Para o início do ano de 2025 até início de 2026 a linha azul do gráfico reflete 

uma tendência de estabilização dos valores em torno da média histórica característica 

do sistema. O conhecimento dessa informação facilita a realização de bons planos de 

operação e manutenção do sistema de abastecimento e seus componentes.  

4.3 ÍNDICES DE PERDAS FÍSICAS NA DISTRIBUIÇÃO - IPD  

Variável de grande importância para o Saneamento, o índice de perdas na 

distribuição deve ser monitorado e controlado ao longo das operações e vida útil dos 

sistemas. Para o histórico de oitos anos, seguem os resultados provenientes das 

saídas de processamento estatístico no software RStudio, numéricos e gráficos, 

figuras 4.17 e 4.18, respectivamente.  

 

Figura 4.17 – Índices de Perdas: valores numéricos. Fonte: Elaborado pelo autor. 
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Esses dados representam os percentuais de volumes de água que são 

perdidos de forma física pelo sistema distribuidor, impactados pelos níveis de 

operação, resistência dos materiais empregados nas tubulações, concepções de 

projeto, dentre outros. A organização dos dados em vetores facilita a visualização do 

horizonte de tempo da pesquisa, totalizando um espaço de 96 meses. 

 

 
Tempo 

Figura 4.18 – Série Temporal – índices de perdas. Eixo y – índices de perdas em %; eixo x – tempo  

em anos. Fonte: Elaborado pelo autor. 

Pela análise gráfica é possível observar que os índices de perdas acompanham 

o perfil do sistema até agora estudado. Com variações em certo padrão ao longo dos 

meses e anos; e também um nível de queda acentuada para os últimos dados 

coletados. 

Seguindo com a sequência e apresentação de resultados, como estabelecido 

no capítulo 3 – Metodologia, os parâmetros retornados pelo algoritmo R de otimização 

computacional estão destacados na figura 4.19. Ressaltando que a melhor versão dos 

modelos testados foi o ARIMA (0,1,1) (1,0,0).  

Desta forma, o modelo (p, d, q) (P, D, Q) ajustado retornou os parâmetros em 

nível ótimo, referentes ao Erro Percentual Médio Absoluto; Erro Quadrático Médio 

Raíz; Erro Médio Absoluto; e Critério de Informação de Akaike. Segue o próximo passo 

de aferição do modelo que será a análise dos resíduos. 
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Figura 4.19 – Parâmetros do modelo otimizado. Fonte: Elaborado pelo autor. 

Para validação do modelo, a figura 4.20 apresenta a saída do comando R 

utilizado para a análise de resíduos, já em sua versão otimizada pelo algoritmo 

computacional. Destaca-se a confirmação da hipótese H0 de normalidade dos dados.  

 

4.20 – Teste de resíduos: parâmetro. Fonte: Elaborado pelo autor. 

Na figura 4.21, por sua vez, temos as informações gráficas exibidas; denotando 

a independência dos resíduos e o comportamento da função de autocorrelação - ACF, 

apresentando as linhas paralelas em sua quase totalidade dentro dos limites 

estabelecidos pelas faixas azuis. Esse estudo e domínio das variáveis do processo 

permitem a adoção de medidas de prevenção e aumento da eficiência operacional. 

Analisando até este ponto, as evidências apontam na direção de um sistema com 

dados que seguem certa tendência e correlação. 

Parametrizando os planos de operação e manutenção, a conjugação dos dados 

de demanda volumétrica, consumo de energia e tendência a perdas no processo eleva 

as possibilidades de acerto nas tomadas de decisão. Implantar melhorias e conduzir 

o funcionamento de redes de abastecimento requer o uso de critérios baseados em 

informações confiáveis.  
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Figura 4.21 – Análise de resíduos: informações gráficas. Fonte: Elaborado pelo autor. 

O teste de estacionariedade para a série temporal restou comprovado após 

análise dentro do ambiente Rstudio, conforme a figura 4.22. 

 

Fig. 4.22 Teste de Estacionariedade. Fonte: Processamento Rstudio. 
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Tendo a modelagem na versão ótima sido validada, as figuras 4.23, 4.24 e 4.25 

refletem as projeções realizadas para um horizonte de 12 meses, nas versões 

numéricas e gráficas, respectivamente.  

 

Figura 4.23 – Dados de previsão (dados já consumados): valores numéricos. Fonte: Elaborado pelo 
autor. 

Essa projeção foi realizada com dados até dezembro de 2023. Ao final deste 

capítulo é exibida uma tabela contendo o cálculo do nível de assertividade da previsão.  

 

Figura 4.24 – Dados de previsão (dados projetados): valores numéricos. Fonte: Processamento 
Rstudio. 

Os recortes em azul mostram os dados previstos para o consumo de 12 meses 

e a escala de predição de valores; para 80% e 95%. Vejamos o comportamento e a 

distribuição dos valores graficamente (figura 4.24), observando os aspectos que 

caracterizam os dados dessa série temporal. 
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Figura 4.25 – Dados de previsão: gráfico. Fonte: Elaborado pelo autor. Eixo y – índices de perdas em 
%; eixo x – tempo em anos. 

Por se tratar de um sistema com assistência técnica de alto nível, a previsão 

da série temporal aponta para a redução e estabilização do índice de perda. 

Corroborando o aspecto de estabilidade na gestão de demanda, influenciada pelas 

variáveis estudadas anteriormente. 

4.4 CONSUMO DE ENERGIA ELÉTRICA  

Sendo a energia elétrica o segundo maior custo financeiro na produção de 

água, atrás apenas de produtos químicos, torna-se relevante o estudo e 

monitoramento deste insumo. Para o histórico de consumo de energia pelo sistema 

automatizado, seguem os resultados provenientes das saídas de processamento 

estatístico no software RStudio, numéricos e gráficos, nas figuras 4.26 e 4.27, 

respectivamente.  

Esses dados representam os totais de energia em kwh que são demandados 

mensalmente pelo sistema distribuidor, sofrendo influências diretas de fatores como 

volume de produção e consumo populacional.  

Em uma avaliação inicial dos dados históricos é possível observar o pico de 

consumo no primeiro semestre de 2017, seguido de uma estabilização que comprova 

as ações de melhoria na eficiência do sistema.  
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Figura 4.26 – Dados históricos - kwh. Fonte: Processamento Rstudio. 

 

Figura 4.27 – Série histórica: gráfico. Eixo x: consumo em kwh; eixo y: tempo. Fonte: Elaborado pelo 
autor. 

Dando sequência na apresentação de resultados, como estabelecido no 

capítulo 3 – Metodologia, os parâmetros retornados pelo algoritmo R de otimização 

computacional estão destacados na figura 4.28. Ressaltando que a melhor versão dos 

modelos testados foi o ARIMA (0,1,2) (1,0,0).  

 

Figura 4.28 – Teste de resíduos: parâmetro. Fonte: Elaborado pelo autor. 
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Como visto nos destaques em verde, o modelo (p, d, q) (P, D, Q) ajustado 

retornou os parâmetros em nível ótimo, referentes ao Erro Percentual Médio Absoluto; 

Erro Quadrático Médio Raíz; Erro Médio Absoluto; e Critério de Informação de Akaike. 

Segue o próximo passo de aferição do modelo que será a análise dos resíduos. 

Na figura 4.28 temos a saída do comando R utilizado para a análise de resíduos 

do modelo, já em sua versão otimizada pelo algoritmo computacional. Destaca-se a 

confirmação da hipótese H0 de normalidade dos dados.  

 

Figura 4.29 – Teste de resíduos: parâmetro. Fonte: Elaborado pelo autor. 

Para a verificação de independência dos resíduos e distribuição normal da 

série, temos as informações gráficas exibidas na figura 4.29; estas, por sua vez, 

exibem e evidenciam também o comportamento da função de autocorrelação - ACF, 

dado que as linhas paralelas estão em sua quase totalidade dentro dos limites 

estabelecidos pelas faixas azuis.  
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Figura 4.30 – Análise de resíduos - gráfico. Fonte: Elaborado pelo autor. 

O teste de estacionariedade para a série temporal restou comprovado após 

análise dentro do ambiente Rstudio, conforme a figura 4.30. 

 

 

Fig. 4.31 Teste de Estacionariedade. Fonte: Elaborado pelo autor. 
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Seguindo com a apresentação de resultados, e tendo a modelagem na versão 

ótima sido validada, as figuras 4.32, 4.33 e 4.34 refletem as projeções realizadas para 

um horizonte de 12 meses, nas versões numéricas e gráficas, respectivamente.  

 

Figura 4.32 – Dados para previsão: 2024. Fonte: Elaborado pelo autor. 

Os dados de consumo de energia elétrica referentes ao ano de 2024 já foram 

consumados e serão apresentados na seção de avaliação de assertividade das 

previsões, localizada ao final deste capítulo.  

Estendendo a previsão até final de 2025, obteve-se uma sequência estável no 

valor de 10877,30 kwh de consumo mensal para o sistema. 

 

Figura 4.33 – Dados para previsão: 2025. Fonte: Elaborado pelo autor. 

Os recortes em azul mostram os dados previstos para o consumo de 12 meses 

e a escala de predição de valores; para 80% e 95%. Vejamos o comportamento e a 

distribuição dos valores graficamente, observando os aspectos que caracterizam os 

dados dessa série temporal. 
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Figura 4.34 – Gráfico para previsão: 2025. Fonte: Elaborado pelo autor. 

Para o início do ano de 2025 até início de 2026 a linha azul do gráfico reflete 

uma tendência de estabilização dos valores. Sendo o consumo de energia 

influenciado pela demanda operacional, a correlação dos fatores aponta para a 

característica padrão do sistema de abastecimento ora estudado. Informações e 

parâmetros de desempenho alimentam e facilitam a realização de bons planos de 

operação e manutenção de sistemas de produção e seus componentes.  

4.5 VERIFICAÇÃO DA EFICIÊNCIA DO MODELO DE SÉRIES TEMPORAIS 

Tendo em vista que a modelagem de séries temporais visa ao estabelecimento 

de previsões, foi verificada a exatidão do modelo através da comparação com os 

dados de consumo referentes à demanda mensal do sistema de abastecimento, 

aferidos nos meses de janeiro de fevereiro do ano corrente (2025) – ver tabela 4.5: 

 

Tabela 4.1 – Nível de eficiência do modelo. Fonte: elaboração própria 

As diferenças encontradas nos primeiros meses, 908 e 693 metros cúbicos, 

respectivamente, geram os percentuais de eficiência apresentados na tabela.  

Ano Mês Consumo Autorizado Faturado (m³/mês) Previsão Diferença (m³) Eficiência (%)

2025 janeiro 41960 42868 908 97,88

2025 fevereiro 41472 42165 693 98,36
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Referente às variáveis de consumo de energia elétrica e índices de perdas na 

distribuição, foram realizadas projeções para 2024 e 2025, sendo as primeiras já 

verificadas e presentes nas tabelas 4.2 e 4.3 

MÊS PREVISÃO  REAL DIFERENÇA (%) 

JAN 11144,56 11080 -0,58% 

FEV 11059,02 11120 0,55% 

MAR 10960,76 11000 0,36% 

ABR 10886,23 10988 0,93% 

MAI 10848,99 10988 1,28% 

JUN 10877,3 10988 1,02% 

JUL 10877,3 11029 1,39% 

AGO 10877,3 11029 1,39% 

SET 10877,3 11029 1,39% 

OUT 10877,3 10988 1,02% 

NOV 10877,3 10988 1,02% 

DEZ 10877,3 10988 1,02% 
Tabela 4.2 – Nível de eficiência do modelo - Energia. Fonte: elaboração própria. 

MÊS PREVISÃO  REAL  DIFERENÇA (%) 

JAN 23,3 32,56 39,74% 

FEV 22 27,33 24,23% 

MAR 22 27,93 26,95% 

ABR 22 29,38 33,55% 

MAI 23 31,96 38,96% 

JUN 21 24,57 17,00% 

JUL 22 29,83 35,59% 

AGO 21 23,99 14,24% 

SET 21 25,02 19,14% 

OUT 21 22,95 9,29% 

NOV 21 20,76 -1,14% 

DEZ 20 21,37 6,85% 
Tabela 4.3 – Nível de eficiência do modelo - IPD. Fonte: elaboração própria. 

Observando as tabelas com previsões já verificadas, é evidente que para a 

previsão de demanda mensal e consumo energético houve assertividade maior, acima 

de 97%. Ao passo que, para a previsão de perdas, os níveis de eficácia situaram-se 

entre 60,25 e 99%. 
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4.6 COMPORTAMENTO DA VAZÃO MÍNIMA NOTURNA 

A vazão mínima noturna é um parâmetro importante na investigação de 

ocorrências de vazamento nas redes de abastecimento de um setor. Dada a sua 

relevância, os dados abaixo visam a comparar os valores em horários de pico no 

consumo e em horários noturnos, quais sejam, aqueles situados entre 00:00h e 

05:00h. A série temporal da figura 4.35 representa um total de 17.280 medições 

horárias, referente a um período de 24 meses. 

 

Figura 4.35 – Série Temporal – vazão mínima noturna (24 meses). Eixo x – vazão em l/s; eixo y – 
tempo. Fonte: Elaborado pelo autor. 

 

Neste caso, a série temporal indica o nível estável de vazão mínima noturna, 

que por sua vez coaduna com baixo índice de perdas e estabilidade operacional do 

sistema. A figura 4.36 apresenta os valores médios evidenciando os horários de 

menor demanda horária. 
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Figura 4.36 – Valores médios – vazão diurna (12 meses). Fonte: Elaboração própria. 

O texto de revisão bibliográfica conceitua a vazão mínima noturna como um 

parâmetro importante no estudo e combate das perdas físicas na distribuição. As 

vazões no período de madrugada variam entre 5 l/s e 6 l/s evidenciando normalidade 

para o referido período de consumo. A figuras 4.37 e 4.38 apresentam os valores 

médios evidenciando os horários de maior demanda horária. 

 

Figura 4.37 – Valores médios – horários de maior vazão. Fonte: Elaboração própria. 
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Figura 4.38 – Valores médios – horários de maior vazão. Fonte: Elaboração própria. 

Os valores de vazão nos períodos de pico no consumo foram apresentados em 

consonância com a demanda do sistema e os índices de perda entre volume de 

entrada e volume medido (autorizado).  

4.7 Equações ajustadas para os modelos ARIMA e análise dos parâmetros 

Conforme descrito no capítulo de Metodologia, o modelo ARIMA com 

parâmetro de sazonalidade possui o formato (p, d, q) (P, D, Q) em que [adaptado de 

Barros (2021) et al]: 

• P é a ordem do polinômio autorregressivo não sazonal; 

• p é a ordem do polinômio autorregressivo sazonal; 

• q é a ordem do polinômio de médias móveis não sazonal; 

• Q é a ordem do polinômio de médias móveis sazonal 

• d é a ordem de diferença não sazonal; 

• D é a ordem de diferença sazonal. 

De acordo com a Revisão de Literatura, a modelagem de Séries Temporais – 

métodos ARIMA/SARIMA busca definir parâmetros que otimizem as medidas de 

RMSE (Root Mean Square Error), MAPE (Mean Absolute Percentage Error) e AIC 

(Critério de Informação de Akaike).  

O ajuste final dos modelos, a partir dos critérios de otimização computacional 

da linguagem R, estabeleceu as equações dos modelos para Demanda Per Capita, 

Demanda Mensal, Índices de Perdas e Consumo de energia com lags de defasagem 

0, 1 e 2, a despeito de o código ter sido programado para um máximo de 5.  



 

78 

 

1. Modelo Ajustado – Demanda Per Capita: ARIMA (0,1,1) (2,0,0) 

2. Modelo Ajustado – Demanda Mensal: ARIMA (0,1,2) (1,0,0) 

3. Modelo Ajustado – Índice de Perdas: ARIMA (0,1,1) (1,0,0) 

4. Modelo Ajustado – Consumo de Energia Elétrica: ARIMA (0,1,2) (1,0,0) 
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5. CONCLUSÕES E SUGESTÃO DE TRABALHOS FUTUROS 

O processamento dos dados históricos e os resultados gerados denotam a 

evolução e estabilidade do sistema instrumentado de abastecimento de água. Planos 

de produção e operação podem ser projetados a partir dos parâmetros modelados. 

Para um planejamento operacional de produção e distribuição de água o estudo 

apontou demanda per capita variando entre 120 e 130 litros por habitante dia; 

enquanto o volume disponibilizado mensal oscila entre 41 e 43 mil metros cúbicos de 

água. 

Nos últimos 12 meses a perda máxima no processo distribuidor foi de 25%, 

índice compatível com as recomendações da literatura técnica de saneamento. O 

consumo energético caiu de 0,5 kwh/m³ para 0,3 kwh/m³, denotando ganho de 

eficiência energética. 

As séries temporais modeladas contemplaram os seguintes parâmetros de 

desempenho do sistema: vazão mínima noturna, consumo per capita, volume total 

mensal distribuído e índices de perdas físicas no processo.  

 A análise diagnóstica e prospectiva auxilia no ganho de eficiência das 

operações. Os resultados descritos na seção anterior apontam normalidade e 

consonância com a literatura. Perfil de consumo energético, índices de perdas, vazões 

e demanda populacional foram aferidos, modelados e projetados com razoável 

confiabilidade.  

A utilização de recursos computacionais no gerenciamento dos dados e 

informações técnicas garantem a celeridade de relatórios utilizados na gestão e 

tomada de decisão. Tecnologias são elementos impulsionadores da boa governança 

empresarial. 

A análise do Distrito de Medição e Controle foi realizada seguindo o método 

estabelecido para o modelo ARIMA e suas variantes. Isto no que diz respeito aos 

parâmetros operacionais. A modelagem das séries temporais para vazão horária e 

volume de consumo (mensal e per capita), comumente chamados de demanda, 

retornou valores de previsão compatíveis com as condições operacionais do Sistema; 

além de apresentar estabilidade e previsibilidade - conforme relatórios do Stúdio R 

discorridos na seção de “Resultados”. A análise da série histórica para o consumo de 
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energia elétrica e os valores consumidos por volume de água distribuída denotam 

normalidade e eficiência energética, de acordo com os preceitos da literatura.  Este 

conjunto de resultados, por sua vez, servirá de insumo básico para o planejamento de 

produção e operação do sistema. Quanto aos índices de perda física, estatisticamente 

evidenciam uma estabilidade e aproximação dos valores estabelecidos em requisitos 

regulatórios, com variação entre 16% e 25% para os últimos 12 meses. 

Avaliar a série histórica do consumo per capita e da demanda mensal do 

sistema de abastecimento possibilitou a produção de informações estratégicas para 

subsídio de planejamentos táticos e operacionais. Ao passo que o detalhamento de 

parâmetros como vazão mínima noturna e índices de perda física permitiram validar 

uma razoável estabilidade operacional do setor escolhido para realização dos 

estudos. Também restou comprovada eficiência razoável no atendimento das políticas 

de combate a perdas físicas na distribuição.  

A partir dos dados já publicados para a demanda do sistema nos meses de 

janeiro e fevereiro de 2025, foi possível verificar um grau de assertividade de 98% 

para o modelo aplicado nas séries temporais, corroborando com as variáveis 

estatísticas parametrizadas e avaliadas pelo algoritmo da linguagem R.    

Como sugestão de trabalho futuro, pode ser realizada a investigação de 

variáveis causais no aumento e redução de consumo; bem como dos fatores que 

influenciam no índice de perda física na distribuição de água tratada. Outro objeto de 

pesquisa seria avaliar, para os meses subsequentes, a eficiência das projeções de 

demanda mensal do SAA ora estudado. O resultado pretendido seria o alcance de 

melhor sustentabilidade econômica, social e ambiental das companhias estaduais de 

saneamento, incluindo a melhoria na prestação dos serviços à população atendida em 

cada região.  
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APÊNDICES 

A. Distribuição de Pressão e Vazão – 12:00h 

 

 

Fonte: Acervo Técnico – Dados de Simulação Hidráulica Software Epanet. 
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B. Distribuição de Pressão e Vazão – 03:00h 

 
Fonte: Acervo Técnico – Dados de Simulação Hidráulica Software Epanet. 
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C. Gráfico de dados hidrodinâmicos de uma rede de abastecimento 

 

Fonte: Sistema de Telemetria – Projeto de Automação Industrial. 
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D. Gráfico de dados hidrodinâmicos de uma rede de abastecimento 

 

Fonte: Sistema de Telemetria Projeto de Automação Industrial. 
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E. Região geográfica do estudo 

 

 

Fonte: Acervo Técnico Base de Geoprocessamento.  
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F. Script das análises de consumo per capita 

<<install.packages("readxl")>> 

library('readxl') 

Dados_Consumo <- 

read_excel("C:/Users/user/Documents/Dissertação_Mestrado/Análise de 

Dados/Tratamento e Modelagem/Consumo Autorizado (mensal).xlsx") 

print(Dados_Consumo) 

str(Dados_Consumo) 

ConsumoÁgua <- as.vector(t(Dados_Consumo)) 

print(ConsumoÁgua) 

Serie <- ts(ConsumoÁgua, start = c(2017,1), end = c(2024,12), frequency=12) 

print(Serie) 

plot(Serie) 

##### Média Móvel ##### 

library("forecast") 

Media_Movel <- ma(Serie, order = 7, centre = TRUE) 

plot(Media_Movel) 

print(Media_Movel) 

plot(Serie, xlab = "Tempo (meses)", col = "blue") 

lines(Media_Movel, col="red") 

### NORMALIDADE 

qqnorm(Serie) 

qqline(Serie) 

# Ho = distribuição normal : p > 0.05 

# Ha = distribuição != normal : p <= 0.05 

shapiro.test(Serie) 

#### ESTACIONARIDADE 

library("urca") 
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# Teste pp (Philips-Perron) 

# Ho = é estacionária: p > 0.05 

# Ha = não é estacionária: p <= 0.05 

estacionaridade <- ur.pp(Serie) 

summary(estacionaridade) 

#### AUTOCORRELAÇÃO 

acf(Serie) 

pacf(Serie) 

tsdisplay(Serie) 

# Teste de Autocorrelação (Ljung-Box) 

# Ho = não é autocorrelacionado: p > 0.05 

# Ha = é autocorrelacionado: p <= 0.05 

Box.test(Serie, type = "Ljung-Box") 

### DECOMPOSIÇÃO 

decomposicao <- decompose(Serie) 

plot(decomposicao, col = "brown") 

#efeito sazonal por ano 

ggseasonplot(window(Serie, start=c(2017), end=2024)) 

### AUTOARIMA 

library("forecast") 

Modelo_AUTO <- auto.arima(Serie, trace = T, stepwise = F, approximation = F, 

max.p = 5, max.q = 5, max.P = 2, max.Q = 2) 

# Trace: apresenta no console a lista dos modelos. 

# stepwise: seleção gradual(processo mais rápido, porém menos minucioso) 

# approximation: seleção do melhor modelo por aproximação 

#           (indicado para séries muito longas, diminui tempo computacional) 
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# Drift do modelo é um parâmetro que representa a tendência temporal num passeio 

aleatório. 

# Interessante dobrar as ordens máximas: max.p = 10, max.q = 10, max.P = 4, 

max.Q = 4 

### Best model: ARIMA(0,1,2)(1,0,0)[12] 

summary(Modelo_AUTO) 

# Análise dos resíduos (qualidade do modelo) 

checkresiduals(Modelo_AUTO) 

plot(resid(Modelo_AUTO)) 

qqnorm(resid(Modelo_AUTO)) 

qqline(resid(Modelo_AUTO)) 

# Ho = distribuição normal : p > 0.05 

# Ha = distribuição != normal : p <= 0.05 

shapiro.test(resid(Modelo_AUTO)) 

acf(resid(Modelo_AUTO)) 

pacf(resid(Modelo_AUTO)) 

plot(Serie) 

lines(Serie-Modelo_AUTO$resid, col= "red") 

Previsao <- forecast(Modelo_AUTO,h=12) 

plot(Previsao) 

lines(Serie-Modelo_AUTO$resid, col= "red") 

print(Previsao) 
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G. Script das análises de consumo mensal (m³) 

> library('readxl') 

Mensagen de aviso: 

pacote ‘readxl’ foi compilado no R versão 4.4.3  

>  

> Dados_Consumo <- read_excel("C:/Users/user/Documents/Dissertação_Mestrado/Análise de Dados/Tratamento e 

Modelagem/Consumo Autorizado (mensal).xlsx") 

>  

> print(Dados_Consumo) 

# A tibble: 8 × 12 

    Jan   Fev   Mar   Abr   Mai   Jun   Jul   Ago   Set   Out   Nov   Dez 

  <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> 

1 36702 34523 36854 37703 36906 37818 35506 39239 39503 37317 34030 36091 

2 36396 36279 35908 37237 37129 36579 37770 40023 39611 41950 36859 38302 

3 39320 39971 39157 39651 39166 38793 38131 41142 43604 44042 41774 40521 

4 39626 38022 39613 41009 39877 39428 41055 41208 44946 42240 37878 43895 

5 40104 37155 40400 40154 39016 40179 39001 39875 46438 40171 38420 42291 

6 38820 38850 43766 41903 40327 41560 39917 43672 51983 42746 42464 40187 

7 38759 40076 41887 39907 40078 42171 40228 43744 42619 44909 45103 44042 

8 41661 40202 41662 42871 45400 43287 43474 43903 46387 45772 40678 43099 

>  

> str(Dados_Consumo) 

tibble [8 × 12] (S3: tbl_df/tbl/data.frame) 

 $ Jan: num [1:8] 36702 36396 39320 39626 40104 ... 

 $ Fev: num [1:8] 34523 36279 39971 38022 37155 ... 

 $ Mar: num [1:8] 36854 35908 39157 39613 40400 ... 
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 $ Abr: num [1:8] 37703 37237 39651 41009 40154 ... 

 $ Mai: num [1:8] 36906 37129 39166 39877 39016 ... 

 $ Jun: num [1:8] 37818 36579 38793 39428 40179 ... 

 $ Jul: num [1:8] 35506 37770 38131 41055 39001 ... 

 $ Ago: num [1:8] 39239 40023 41142 41208 39875 ... 

 $ Set: num [1:8] 39503 39611 43604 44946 46438 ... 

 $ Out: num [1:8] 37317 41950 44042 42240 40171 ... 

 $ Nov: num [1:8] 34030 36859 41774 37878 38420 ... 

 $ Dez: num [1:8] 36091 38302 40521 43895 42291 ... 

>  

>  

> ConsumoÁgua <- as.vector(t(Dados_Consumo)) 

> print(ConsumoÁgua) 

 [1] 36702 34523 36854 37703 36906 37818 35506 39239 39503 37317 34030 36091 

[13] 36396 36279 35908 37237 37129 36579 37770 40023 39611 41950 36859 38302 

[25] 39320 39971 39157 39651 39166 38793 38131 41142 43604 44042 41774 40521 

[37] 39626 38022 39613 41009 39877 39428 41055 41208 44946 42240 37878 43895 

[49] 40104 37155 40400 40154 39016 40179 39001 39875 46438 40171 38420 42291 

[61] 38820 38850 43766 41903 40327 41560 39917 43672 51983 42746 42464 40187 

[73] 38759 40076 41887 39907 40078 42171 40228 43744 42619 44909 45103 44042 

[85] 41661 40202 41662 42871 45400 43287 43474 43903 46387 45772 40678 43099 

>  

> Serie <- ts(ConsumoÁgua, start = c(2017,1), end = c(2024,12), frequency=12) 

> print(Serie) 

       Jan   Feb   Mar   Apr   May   Jun   Jul   Aug   Sep   Oct   Nov   Dec 

2017 36702 34523 36854 37703 36906 37818 35506 39239 39503 37317 34030 36091 
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2018 36396 36279 35908 37237 37129 36579 37770 40023 39611 41950 36859 38302 

2019 39320 39971 39157 39651 39166 38793 38131 41142 43604 44042 41774 40521 

2020 39626 38022 39613 41009 39877 39428 41055 41208 44946 42240 37878 43895 

2021 40104 37155 40400 40154 39016 40179 39001 39875 46438 40171 38420 42291 

2022 38820 38850 43766 41903 40327 41560 39917 43672 51983 42746 42464 40187 

2023 38759 40076 41887 39907 40078 42171 40228 43744 42619 44909 45103 44042 

2024 41661 40202 41662 42871 45400 43287 43474 43903 46387 45772 40678 43099 

> plot(Serie) 

>  

> ##### Média Móvel ##### 

> library("forecast") 

Registered S3 method overwritten by 'quantmod': 

  method            from 

  as.zoo.data.frame zoo  

Mensagen de aviso: 

pacote ‘forecast’ foi compilado no R versão 4.4.3  

> Media_Movel <- ma(Serie, order = 7, centre = TRUE) 

> plot(Media_Movel) 

> print(Media_Movel) 

          Jan      Feb      Mar      Apr      May      Jun      Jul      Aug 

2017       NA       NA       NA 36573.14 36935.57 37647.00 37713.14 37188.43 

2018 36179.71 36152.86 36517.00 36756.86 37275.00 37751.00 38614.14 38560.14 

2019 39315.71 38918.00 39194.29 39169.86 39430.14 39949.14 40647.00 40950.29 

2020 40658.14 40063.14 39728.00 39804.29 40030.29 41019.43 41394.71 40947.43 

2021 40260.86 39800.29 40129.00 39429.86 39397.14 40723.29 40690.57 40442.86 

2022 40603.00 40625.29 41073.86 40734.71 41427.86 43304.00 43158.29 43238.43 



 

95 

 

2023 40860.86 40479.71 40437.86 40443.71 41155.86 41519.14 41950.86 42693.14 

2024 42921.43 42991.57 42732.14 42651.00 42971.29 43854.86 44442.00 44128.71 

          Sep      Oct      Nov      Dec 

2017 37072.00 36868.86 36979.29 36503.43 

2018 38727.71 39119.29 39433.71 39310.00 

2019 41143.86 41262.86 41247.29 41028.86 

2020 41521.43 41618.00 41060.86 40945.43 

2021 40910.71 40716.57 40695.00 41250.86 

2022 43218.43 42818.29 42841.00 42586.00 

2023 43259.43 43186.57 43182.86 42885.43 

2024 43800.00       NA       NA       NA 

> plot(Serie, xlab = "Tempo (meses)", col = "blue") 

> lines(Media_Movel, col="red") 

>  

> ### NORMALIDADE 

> qqnorm(Serie) 

> qqline(Serie) 

> # Ho = distribuição normal : p > 0.05 

> # Ha = distribuição != normal : p <= 0.05 

> shapiro.test(Serie) 

 

 Shapiro-Wilk normality test 

 

data:  Serie 

W = 0.97245, p-value = 0.04061 
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>  

> #### ESTACIONARIDADE 

> library("urca") 

Mensagen de aviso: 

pacote ‘urca’ foi compilado no R versão 4.4.3  

> # Teste pp (Philips-Perron) 

> # Ho = é estacionária: p > 0.05 

> # Ha = não é estacionária: p <= 0.05 

> estacionaridade <- ur.pp(Serie) 

> summary(estacionaridade) 

 

##################################  

# Phillips-Perron Unit Root Test #  

##################################  

 

Test regression with intercept  

 

 

Call: 

lm(formula = y ~ y.l1) 

 

Residuals: 

   Min     1Q Median     3Q    Max  

 -4616  -1360   -426   1457   9566  

 

Coefficients: 
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             Estimate Std. Error t value Pr(>|t|)     

(Intercept) 1.643e+04  3.355e+03   4.898 4.08e-06 *** 

y.l1        5.950e-01  8.280e-02   7.186 1.64e-10 *** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Residual standard error: 2387 on 93 degrees of freedom 

Multiple R-squared:  0.357, Adjusted R-squared:  0.3501  

F-statistic: 51.64 on 1 and 93 DF,  p-value: 1.636e-10 

 

 

Value of test-statistic, type: Z-alpha  is: -35.7503  

 

         aux. Z statistics 

Z-tau-mu            4.7679 

 

>  

>  

> #### AUTOCORRELAÇÃO 

> acf(Serie) 

> pacf(Serie) 

> tsdisplay(Serie) 

>  

> # Teste de Autocorrelação (Ljung-Box) 

> # Ho = não é autocorrelacionado: p > 0.05 

> # Ha = é autocorrelacionado: p <= 0.05 
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> Box.test(Serie, type = "Ljung-Box") 

 

 Box-Ljung test 

 

data:  Serie 

X-squared = 34.45, df = 1, p-value = 4.374e-09 

 

>  

>  

> ### DECOMPOSIÇÃO 

> decomposicao <- decompose(Serie) 

> plot(decomposicao, col = "brown") 

>  

>  

> #efeito sazonal por ano 

> ggseasonplot(window(Serie, start=c(2017), end=2024)) 

>  

>  

>  

> ### SARIMA_OTM 

> library("forecast") 

>  

> SARIMA_OTM <- auto.arima(Serie, trace = T, stepwise = F, approximation = F, 

+                           max.p = 5, max.q = 5, max.P = 2, max.Q = 2) 

 

 ARIMA(0,1,0)                               : 1769.231 
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 ARIMA(0,1,0)            with drift         : 1771.257 

 ARIMA(0,1,0)(0,0,1)[12]                    : 1754.689 

 ARIMA(0,1,0)(0,0,1)[12] with drift         : 1756.805 

 ARIMA(0,1,0)(0,0,2)[12]                    : 1755.663 

 ARIMA(0,1,0)(0,0,2)[12] with drift         : 1757.828 

 ARIMA(0,1,0)(1,0,0)[12]                    : 1753.065 

 ARIMA(0,1,0)(1,0,0)[12] with drift         : 1755.182 

 ARIMA(0,1,0)(1,0,1)[12]                    : 1755.172 

 ARIMA(0,1,0)(1,0,1)[12] with drift         : 1757.338 

 ARIMA(0,1,0)(1,0,2)[12]                    : Inf 

 ARIMA(0,1,0)(1,0,2)[12] with drift         : Inf 

 ARIMA(0,1,0)(2,0,0)[12]                    : 1755.185 

 ARIMA(0,1,0)(2,0,0)[12] with drift         : 1757.35 

 ARIMA(0,1,0)(2,0,1)[12]                    : 1757.222 

 ARIMA(0,1,0)(2,0,1)[12] with drift         : 1759.437 

 ARIMA(0,1,0)(2,0,2)[12]                    : Inf 

 ARIMA(0,1,0)(2,0,2)[12] with drift         : Inf 

 ARIMA(0,1,1)                               : 1745.036 

 ARIMA(0,1,1)            with drift         : Inf 

 ARIMA(0,1,1)(0,0,1)[12]                    : 1729.752 

 ARIMA(0,1,1)(0,0,1)[12] with drift         : Inf 

 ARIMA(0,1,1)(0,0,2)[12]                    : 1728.59 

 ARIMA(0,1,1)(0,0,2)[12] with drift         : Inf 

 ARIMA(0,1,1)(1,0,0)[12]                    : 1723.868 

 ARIMA(0,1,1)(1,0,0)[12] with drift         : Inf 

 ARIMA(0,1,1)(1,0,1)[12]                    : Inf 
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 ARIMA(0,1,1)(1,0,1)[12] with drift         : Inf 

 ARIMA(0,1,1)(1,0,2)[12]                    : Inf 

 ARIMA(0,1,1)(1,0,2)[12] with drift         : Inf 

 ARIMA(0,1,1)(2,0,0)[12]                    : 1724.166 

 ARIMA(0,1,1)(2,0,0)[12] with drift         : Inf 

 ARIMA(0,1,1)(2,0,1)[12]                    : Inf 

 ARIMA(0,1,1)(2,0,1)[12] with drift         : Inf 

 ARIMA(0,1,1)(2,0,2)[12]                    : Inf 

 ARIMA(0,1,1)(2,0,2)[12] with drift         : Inf 

 ARIMA(0,1,2)                               : 1739.953 

 ARIMA(0,1,2)            with drift         : Inf 

 ARIMA(0,1,2)(0,0,1)[12]                    : 1725.826 

 ARIMA(0,1,2)(0,0,1)[12] with drift         : Inf 

 ARIMA(0,1,2)(0,0,2)[12]                    : 1725.917 

 ARIMA(0,1,2)(0,0,2)[12] with drift         : Inf 

 ARIMA(0,1,2)(1,0,0)[12]                    : 1721.943 

 ARIMA(0,1,2)(1,0,0)[12] with drift         : Inf 

 ARIMA(0,1,2)(1,0,1)[12]                    : Inf 

 ARIMA(0,1,2)(1,0,1)[12] with drift         : Inf 

 ARIMA(0,1,2)(1,0,2)[12]                    : Inf 

 ARIMA(0,1,2)(1,0,2)[12] with drift         : Inf 

 ARIMA(0,1,2)(2,0,0)[12]                    : 1723.475 

 ARIMA(0,1,2)(2,0,0)[12] with drift         : Inf 

 ARIMA(0,1,2)(2,0,1)[12]                    : Inf 

 ARIMA(0,1,2)(2,0,1)[12] with drift         : Inf 

 ARIMA(0,1,3)                               : 1740.701 
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 ARIMA(0,1,3)            with drift         : Inf 

 ARIMA(0,1,3)(0,0,1)[12]                    : 1727.756 

 ARIMA(0,1,3)(0,0,1)[12] with drift         : Inf 

 ARIMA(0,1,3)(0,0,2)[12]                    : 1727.991 

 ARIMA(0,1,3)(0,0,2)[12] with drift         : Inf 

 ARIMA(0,1,3)(1,0,0)[12]                    : 1724.015 

 ARIMA(0,1,3)(1,0,0)[12] with drift         : Inf 

 ARIMA(0,1,3)(1,0,1)[12]                    : Inf 

 ARIMA(0,1,3)(1,0,1)[12] with drift         : Inf 

 ARIMA(0,1,3)(2,0,0)[12]                    : 1725.535 

 ARIMA(0,1,3)(2,0,0)[12] with drift         : Inf 

 ARIMA(0,1,4)                               : 1742.257 

 ARIMA(0,1,4)            with drift         : Inf 

 ARIMA(0,1,4)(0,0,1)[12]                    : 1729.526 

 ARIMA(0,1,4)(0,0,1)[12] with drift         : Inf 

 ARIMA(0,1,4)(1,0,0)[12]                    : 1725.537 

 ARIMA(0,1,4)(1,0,0)[12] with drift         : Inf 

 ARIMA(0,1,5)                               : 1743.566 

 ARIMA(0,1,5)            with drift         : Inf 

 ARIMA(1,1,0)                               : 1762.364 

 ARIMA(1,1,0)            with drift         : 1764.384 

 ARIMA(1,1,0)(0,0,1)[12]                    : 1746.43 

 ARIMA(1,1,0)(0,0,1)[12] with drift         : 1748.58 

 ARIMA(1,1,0)(0,0,2)[12]                    : 1746.148 

 ARIMA(1,1,0)(0,0,2)[12] with drift         : 1748.35 

 ARIMA(1,1,0)(1,0,0)[12]                    : 1742.042 
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 ARIMA(1,1,0)(1,0,0)[12] with drift         : 1744.201 

 ARIMA(1,1,0)(1,0,1)[12]                    : Inf 

 ARIMA(1,1,0)(1,0,1)[12] with drift         : Inf 

 ARIMA(1,1,0)(1,0,2)[12]                    : Inf 

 ARIMA(1,1,0)(1,0,2)[12] with drift         : Inf 

 ARIMA(1,1,0)(2,0,0)[12]                    : 1743.77 

 ARIMA(1,1,0)(2,0,0)[12] with drift         : 1745.975 

 ARIMA(1,1,0)(2,0,1)[12]                    : Inf 

 ARIMA(1,1,0)(2,0,1)[12] with drift         : Inf 

 ARIMA(1,1,0)(2,0,2)[12]                    : Inf 

 ARIMA(1,1,0)(2,0,2)[12] with drift         : Inf 

 ARIMA(1,1,1)                               : 1741.836 

 ARIMA(1,1,1)            with drift         : Inf 

 ARIMA(1,1,1)(0,0,1)[12]                    : 1726.681 

 ARIMA(1,1,1)(0,0,1)[12] with drift         : Inf 

 ARIMA(1,1,1)(0,0,2)[12]                    : 1726.433 

 ARIMA(1,1,1)(0,0,2)[12] with drift         : Inf 

 ARIMA(1,1,1)(1,0,0)[12]                    : 1722.27 

 ARIMA(1,1,1)(1,0,0)[12] with drift         : Inf 

 ARIMA(1,1,1)(1,0,1)[12]                    : Inf 

 ARIMA(1,1,1)(1,0,1)[12] with drift         : Inf 

 ARIMA(1,1,1)(1,0,2)[12]                    : Inf 

 ARIMA(1,1,1)(1,0,2)[12] with drift         : Inf 

 ARIMA(1,1,1)(2,0,0)[12]                    : 1723.718 

 ARIMA(1,1,1)(2,0,0)[12] with drift         : Inf 

 ARIMA(1,1,1)(2,0,1)[12]                    : Inf 
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 ARIMA(1,1,1)(2,0,1)[12] with drift         : Inf 

 ARIMA(1,1,2)                               : 1740.273 

 ARIMA(1,1,2)            with drift         : Inf 

 ARIMA(1,1,2)(0,0,1)[12]                    : 1727.466 

 ARIMA(1,1,2)(0,0,1)[12] with drift         : Inf 

 ARIMA(1,1,2)(0,0,2)[12]                    : 1727.548 

 ARIMA(1,1,2)(0,0,2)[12] with drift         : Inf 

 ARIMA(1,1,2)(1,0,0)[12]                    : 1723.347 

 ARIMA(1,1,2)(1,0,0)[12] with drift         : Inf 

 ARIMA(1,1,2)(1,0,1)[12]                    : Inf 

 ARIMA(1,1,2)(1,0,1)[12] with drift         : Inf 

 ARIMA(1,1,2)(2,0,0)[12]                    : 1724.315 

 ARIMA(1,1,2)(2,0,0)[12] with drift         : Inf 

 ARIMA(1,1,3)                               : 1742.502 

 ARIMA(1,1,3)            with drift         : Inf 

 ARIMA(1,1,3)(0,0,1)[12]                    : Inf 

 ARIMA(1,1,3)(0,0,1)[12] with drift         : Inf 

 ARIMA(1,1,3)(1,0,0)[12]                    : Inf 

 ARIMA(1,1,3)(1,0,0)[12] with drift         : Inf 

 ARIMA(1,1,4)                               : 1744.43 

 ARIMA(1,1,4)            with drift         : Inf 

 ARIMA(2,1,0)                               : 1749.99 

 ARIMA(2,1,0)            with drift         : 1751.873 

 ARIMA(2,1,0)(0,0,1)[12]                    : 1737.637 

 ARIMA(2,1,0)(0,0,1)[12] with drift         : 1739.766 

 ARIMA(2,1,0)(0,0,2)[12]                    : 1737.972 
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 ARIMA(2,1,0)(0,0,2)[12] with drift         : 1740.164 

 ARIMA(2,1,0)(1,0,0)[12]                    : 1733.789 

 ARIMA(2,1,0)(1,0,0)[12] with drift         : 1735.952 

 ARIMA(2,1,0)(1,0,1)[12]                    : Inf 

 ARIMA(2,1,0)(1,0,1)[12] with drift         : Inf 

 ARIMA(2,1,0)(1,0,2)[12]                    : Inf 

 ARIMA(2,1,0)(1,0,2)[12] with drift         : Inf 

 ARIMA(2,1,0)(2,0,0)[12]                    : 1734.88 

 ARIMA(2,1,0)(2,0,0)[12] with drift         : 1737.086 

 ARIMA(2,1,0)(2,0,1)[12]                    : Inf 

 ARIMA(2,1,0)(2,0,1)[12] with drift         : Inf 

 ARIMA(2,1,1)                               : 1742.881 

 ARIMA(2,1,1)            with drift         : Inf 

 ARIMA(2,1,1)(0,0,1)[12]                    : 1728.422 

 ARIMA(2,1,1)(0,0,1)[12] with drift         : Inf 

 ARIMA(2,1,1)(0,0,2)[12]                    : 1728.453 

 ARIMA(2,1,1)(0,0,2)[12] with drift         : Inf 

 ARIMA(2,1,1)(1,0,0)[12]                    : 1724.373 

 ARIMA(2,1,1)(1,0,0)[12] with drift         : Inf 

 ARIMA(2,1,1)(1,0,1)[12]                    : Inf 

 ARIMA(2,1,1)(1,0,1)[12] with drift         : Inf 

 ARIMA(2,1,1)(2,0,0)[12]                    : 1725.916 

 ARIMA(2,1,1)(2,0,0)[12] with drift         : Inf 

 ARIMA(2,1,2)                               : 1742.501 

 ARIMA(2,1,2)            with drift         : Inf 

 ARIMA(2,1,2)(0,0,1)[12]                    : 1728.977 
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 ARIMA(2,1,2)(0,0,1)[12] with drift         : Inf 

 ARIMA(2,1,2)(1,0,0)[12]                    : Inf 

 ARIMA(2,1,2)(1,0,0)[12] with drift         : Inf 

 ARIMA(2,1,3)                               : Inf 

 ARIMA(2,1,3)            with drift         : Inf 

 ARIMA(3,1,0)                               : 1752.135 

 ARIMA(3,1,0)            with drift         : 1754.051 

 ARIMA(3,1,0)(0,0,1)[12]                    : 1738.672 

 ARIMA(3,1,0)(0,0,1)[12] with drift         : 1740.815 

 ARIMA(3,1,0)(0,0,2)[12]                    : 1739.076 

 ARIMA(3,1,0)(0,0,2)[12] with drift         : 1741.297 

 ARIMA(3,1,0)(1,0,0)[12]                    : 1734.906 

 ARIMA(3,1,0)(1,0,0)[12] with drift         : 1737.098 

 ARIMA(3,1,0)(1,0,1)[12]                    : Inf 

 ARIMA(3,1,0)(1,0,1)[12] with drift         : Inf 

 ARIMA(3,1,0)(2,0,0)[12]                    : 1736.489 

 ARIMA(3,1,0)(2,0,0)[12] with drift         : 1738.733 

 ARIMA(3,1,1)                               : 1744.048 

 ARIMA(3,1,1)            with drift         : Inf 

 ARIMA(3,1,1)(0,0,1)[12]                    : 1730.3 

 ARIMA(3,1,1)(0,0,1)[12] with drift         : Inf 

 ARIMA(3,1,1)(1,0,0)[12]                    : 1726.248 

 ARIMA(3,1,1)(1,0,0)[12] with drift         : Inf 

 ARIMA(3,1,2)                               : 1744.141 

 ARIMA(3,1,2)            with drift         : Inf 

 ARIMA(4,1,0)                               : 1746.027 



 

106 

 

 ARIMA(4,1,0)            with drift         : 1747.689 

 ARIMA(4,1,0)(0,0,1)[12]                    : 1732.719 

 ARIMA(4,1,0)(0,0,1)[12] with drift         : 1734.74 

 ARIMA(4,1,0)(1,0,0)[12]                    : 1727.776 

 ARIMA(4,1,0)(1,0,0)[12] with drift         : 1729.926 

 ARIMA(4,1,1)                               : 1741.355 

 ARIMA(4,1,1)            with drift         : Inf 

 ARIMA(5,1,0)                               : 1744.203 

 ARIMA(5,1,0)            with drift         : 1745.592 

 

 

 

 Best model: ARIMA(0,1,2)(1,0,0)[12]                     

 

>  

> # Trace: apresenta no console a lista dos modelos. 

> # stepwise: seleção gradual(processo mais rápido, porém menos minucioso) 

> # approximation: seleção do melhor modelo por aproximação 

> #           (indicado para séries muito longas, diminui tempo computacional) 

> # Drift do modelo é um parâmetro que representa a tendência temporal num passeio aleatório. 

> # Interessante dobrar as ordens máximas: max.p = 10, max.q = 10, max.P = 4, max.Q = 4 

>  

> ### Best model: ARIMA(0,1,2)(1,0,0)[12]  

>  

> summary(SARIMA_OTM) 

Series: Serie  
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ARIMA(0,1,2)(1,0,0)[12]  

 

Coefficients: 

          ma1      ma2    sar1 

      -0.6331  -0.2217  0.4532 

s.e.   0.1085   0.1083  0.0918 

 

sigma^2 = 3960280:  log likelihood = -856.75 

AIC=1721.5   AICc=1721.94   BIC=1731.71 

 

Training set error measures: 

                   ME     RMSE      MAE       MPE    MAPE      MASE        ACF1 

Training set 285.7339 1948.145 1458.562 0.5246489 3.52805 0.7574229 -0.03567054 

>  

>  

> # Análise dos resíduos (qualidade do modelo) 

> checkresiduals(SARIMA_OTM) 

 

 Ljung-Box test 

 

data:  Residuals from ARIMA(0,1,2)(1,0,0)[12] 

Q* = 28.057, df = 16, p-value = 0.03113 

 

Model df: 3.   Total lags used: 19 

 

>  
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> plot(resid(SARIMA_OTM)) 

>  

> qqnorm(resid(SARIMA_OTM)) 

> qqline(resid(SARIMA_OTM)) 

>  

> # Ho = distribuição normal : p > 0.05 

> # Ha = distribuição != normal : p <= 0.05 

> shapiro.test(resid(SARIMA_OTM)) 

 

 Shapiro-Wilk normality test 

 

data:  resid(SARIMA_OTM) 

W = 0.97839, p-value = 0.1138 

 

>  

> acf(resid(SARIMA_OTM)) 

> pacf(resid(SARIMA_OTM)) 

>  

> plot(Serie) 

> lines(Serie-SARIMA_OTM$resid, col= "red") 

>  

> Previsao <- forecast(SARIMA_OTM,h=12) 

> plot(Previsao) 

> lines(Serie-SARIMA_OTM$resid, col= "red") 

>  

> print(Previsao) 
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         Point Forecast    Lo 80    Hi 80    Lo 95    Hi 95 

Jan 2025       42868.37 40318.02 45418.72 38967.95 46768.79 

Feb 2025       42165.61 39449.05 44882.18 38010.98 46320.25 

Mar 2025       42827.27 40085.58 45568.97 38634.21 47020.33 

Apr 2025       43375.18 40608.59 46141.78 39144.05 47606.32 

May 2025       44521.30 41730.04 47312.57 40252.43 48790.18 

Jun 2025       43563.71 40747.98 46379.44 39257.43 47869.99 

Jul 2025       43648.46 40808.48 46488.43 39305.09 47991.83 

Aug 2025       43842.88 40978.86 46706.90 39462.74 48223.02 

Sep 2025       44968.61 42080.74 47856.47 40552.00 49385.21 

Oct 2025       44689.89 41778.38 47601.40 40237.12 49142.67 

Nov 2025       42381.33 39446.36 45316.30 37892.68 46869.98 

Dec 2025       43478.51 40520.27 46436.75 38954.27 48002.75 

> Previsao <- forecast(SARIMA_OTM,h=24) 

> plot(Previsao) 

> Previsao <- forecast(SARIMA_OTM,h=24) 

> plot(Previsao) 

> print(Previsao) 

         Point Forecast    Lo 80    Hi 80    Lo 95    Hi 95 

Jan 2025       42868.37 40318.02 45418.72 38967.95 46768.79 

Feb 2025       42165.61 39449.05 44882.18 38010.98 46320.25 

Mar 2025       42827.27 40085.58 45568.97 38634.21 47020.33 

Apr 2025       43375.18 40608.59 46141.78 39144.05 47606.32 

May 2025       44521.30 41730.04 47312.57 40252.43 48790.18 

Jun 2025       43563.71 40747.98 46379.44 39257.43 47869.99 

Jul 2025       43648.46 40808.48 46488.43 39305.09 47991.83 
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Aug 2025       43842.88 40978.86 46706.90 39462.74 48223.02 

Sep 2025       44968.61 42080.74 47856.47 40552.00 49385.21 

Oct 2025       44689.89 41778.38 47601.40 40237.12 49142.67 

Nov 2025       42381.33 39446.36 45316.30 37892.68 46869.98 

Dec 2025       43478.51 40520.27 46436.75 38954.27 48002.75 

Jan 2026       43373.99 40045.29 46702.69 38283.18 48464.80 

Feb 2026       43055.51 39633.33 46477.68 37821.74 48289.27 

Mar 2026       43355.37 39891.13 46819.60 38057.28 48653.45 

Apr 2026       43603.67 40097.89 47109.46 38242.04 48965.31 

May 2026       44123.09 40576.24 47669.94 38698.65 49547.53 

Jun 2026       43689.11 40101.67 47276.56 38202.59 49175.64 

Jul 2026       43727.52 40099.93 47355.11 38179.61 49275.43 

Aug 2026       43815.63 40148.34 47482.92 38207.00 49424.26 

Sep 2026       44325.80 40619.24 48032.36 38657.10 49994.50 

Oct 2026       44199.49 40454.06 47944.92 38471.35 49927.63 

Nov 2026       43153.27 39369.38 46937.16 37366.30 48940.24 

Dec 2026       43650.50 39828.53 47472.47 37805.30 49495.70 

 

>  
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H. Script das análises de vazão horária 

install.packages("readxl") 

library('readxl') 

Vazão_Horária <- 

read_excel("C:/Users/user/Documents/Dissertação_Mestrado/Análise de 

Dados/Tratamento e Modelagem/Vazão Horária (Autorizado).xlsx") 

print(Vazão_Horária) 

print 

str(Vazão_Horária) 

Vetor_Vazão <- as.vector(t(Vazão_Horária)) 

print(Vetor_Vazão) 

> Série <- ts(Vetor_Vazão, start = c(2023,7), end = c(2024,8), frequency=694) 

> print(Série) 

Time Series: 

Start = c(2023, 7)  

End = c(2024, 8)  

Frequency = 694  

  [1] 13.74758871  9.21989527  6.28725407  5.40774498  5.05612222  6.21316790 

11.81049865 18.20873129 21.53615678 

 [10] 22.79049721 26.20466855 29.46747198 33.15254854 30.16209720 

25.18868151 23.77176189 23.65746768 26.18350910 

 [19] 28.07225355 30.88234243 31.81839555 30.09675179 26.24324881 

18.62738722 13.25647427  9.10662618  6.86420959 

 [28]  5.10440777  4.97004004  5.76834976 11.49215136 17.88260760 

21.78144302 22.27008575 26.77879060 28.46269754 

 [37] 33.49802278 31.34114555 27.57818521 27.40053555 26.29593461 

27.59428059 28.80197813 33.76416626 32.75487061 

 [46] 30.64007050 25.93689712 18.30415689 14.55536273  9.94442029  

6.61343799  5.40629826  5.44361257  6.36501734 
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 [55] 12.19334734 18.81775665 21.50499147 23.54142548 25.83230855 

29.02590895 33.97979361 31.21190227 28.16472569 

 [64] 26.62416814 25.30104650 25.83725182 28.17220052 31.69849536 

31.38050966 28.39994456 25.89421778 17.53026144 

 [73] 14.33045171  9.65253659  6.50330339  5.47833474  5.17951871  6.14426604 

11.93220723 18.71690532 21.10423896 

 [82] 23.16134990 28.25526841 30.62914875 34.19970071 31.35133340 

25.60504656 25.20025555 24.93519707 26.20738077 

 [91] 28.21867768 32.18098981 30.65682898 27.67945852 23.64529082 

17.51573356 14.69238281 10.76262290  7.62526519 

[100]  5.96179349  5.43306329  5.97505542 10.11278690 13.16659433 

18.45672978 25.06986612 32.48631652 35.94461320 

[109] 39.38711643 39.99216334 38.28546969 32.26309322 29.69720538 

28.81112582 29.92205585 30.03050241 27.52598136 

[118] 24.28234701 20.89674966 14.81258435 13.20330588  9.82783572  

7.70724816  6.74684121  5.88969665  5.95371575 

[127]  9.14846159 11.57045714 16.97223433 24.64753335 32.25766780 

37.12824306 39.30344575 37.60712045 32.91274837 

[136] 30.02863385 29.59502773 29.82162663 30.29417416 32.74160859 

28.27883889 24.97058245 23.15399551 17.44309411 

[145] 13.38963634  9.28674757  6.84913915  5.63633297  5.51974829  6.67968752 

12.26140531 18.47041392 21.37207028 

[154] 24.35564950 28.78870077 33.03716968 35.76340075 34.63849115 

29.27565610 26.49950568 26.86601817 27.57679911 

[163] 27.06398293 31.05553166 32.68410015 30.53017702 26.34856052 

18.48313330 14.25660685  8.78050252  5.83688993 

[172]  4.66694394  4.67435862  5.65031826 11.53706115 18.97937160 

21.34229129 25.22057056 27.19129756 29.46590506 

[181] 34.43968213 32.39089041 29.17552814 26.72797314 26.91098824 

26.58215170 28.55577259 33.79183524 33.72799714 

[190] 30.26511841 27.06024542 18.80684560 13.69303384  9.63746626  

6.50854796  5.35325038  5.27994792  6.31450137 
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[199] 12.24928869 18.76953127 22.39028740 23.85380484 27.15869598 

31.73888423 34.87383067 31.57425458 28.40018578 

[208] 27.33356241 26.08120728 28.15309121 28.36492093 34.05966673 

33.41145833 28.81426036 26.29490983 20.45410167 

[217] 14.44064665  9.58743247  6.51517892  5.34963349  5.01531154  6.16126542 

12.03257618 19.14562831 21.94275672 

[226] 23.60345545 27.42669751 31.54272757 35.41033729 33.84186910 

29.95454775 27.24072866 27.07917398 27.85234610 

[235] 28.98937848 33.12735122 32.17279097 29.25021687 26.89555600 

19.21941307 14.29175107  9.79835801  6.23896849 

[244]  5.14467590  5.00349634  5.95033999 11.83919265 19.55705043 

21.78216639 23.99088545 27.80442257 31.73074601 

[253] 35.83321266 31.99972289 28.35810906 28.04030415 27.34085658 

30.27615013 29.00698074 32.96049140 31.56846797 

[262] 28.38565772 24.47759940 18.70279940 15.05642360 10.19947189  

7.51929016  5.58503329  4.81186100  5.34273125 

[271]  9.54198008 14.53842357 21.64442275 26.92949454 32.63894943 

38.99227193 43.82619584 40.99748027 38.61611404 

[280] 36.72761154 34.80040770 33.85187604 33.20167821 34.09420799 

30.63368044 26.02050772 22.95994905 17.04734519 

[289] 15.88107643 12.13421100  8.85609568  6.73647285  6.34524503  

6.16018035 10.19483023 12.29009927 17.26664953 

[298] 26.66763093 34.24141604 42.70212440 44.45294399 42.95693487 

36.76474457 34.06473042 31.03925530 28.85115245 

[307] 32.48306093 35.25734221 30.66484610 27.72099247 25.31364533 

19.08848147 14.98565294  9.98342257  6.78873697 

[316]  5.68950134  5.43565537  6.31450142 12.96489212 20.42986833 

22.44951417 24.63523588 30.66852331 34.06858819 

[325] 37.09129060 31.60373252 28.71979866 27.15871525 27.39684671 

28.01102480 28.99082518 35.14612246 33.36570482 

[334] 31.05896746 28.15333233 20.44620465 15.23883591  9.54023192  

6.44827620  5.27699412  5.10054979  6.13251112 
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[343] 12.63370471 20.19772383 22.21535002 24.37704951 28.65855287 

31.53657900 34.54113614 31.52934529 28.71961829 

[352] 24.66820984 24.12609720 26.14227673 27.45490939 34.66971690 

34.06545410 31.02979116 27.92956680 20.23027585 

[361] 15.58792693 10.03104504  6.90074030  5.39146895  5.21598908  

6.25777634 12.73714795 20.98861890 21.90393515 

[370] 24.32406193 28.54118452 30.63066676 33.44431156 31.73068581 

27.98719629 26.44470984 24.19300960 24.92308067 

[379] 27.06753950 33.40271746 31.65666008 29.08709494 24.51557659 

18.35563750 13.66837859  8.44382954  5.98632809 

[388]  4.94616848  4.90807053  6.16735390 12.20468027 19.83018649 

21.39009447 22.55111879 26.92545557 29.51497399 

[397] 34.23797967 30.39158971 27.21462685 25.14624316  2.91341144  

0.87866104 46.55562782 34.66392994 32.87133512 

[406] 27.46111867 25.78664473 16.30835269 12.05741224  9.11006219  

5.68654753  4.72770784  4.34118201  5.47429591 

[415] 11.31576726 17.58855375 18.88786411 20.73766642 25.04607842 

29.25817401 32.83808471 31.01652915 29.25751130 

[424] 27.53996699 26.71266177 27.13782768 28.06833537 31.61578910 

30.97397016 27.09321950 23.18226767 17.65239201 

[433] 14.59713793 10.51643279  7.36307023  5.88903355  5.21996773  

5.65086085  9.73795563 14.03471017 20.97704458 

[442] 26.10454038 31.14655663 33.24146446 35.81157188 38.91426729 

36.84829559 35.28947245 31.89115527 31.15505644 

[451] 30.72289759 30.27138783 27.57390502 23.20023142 20.04376446 

15.66683553 13.77700624 10.94437207  7.64244549 

[460]  5.80632713  5.08324896  5.20326966  8.55571227 10.91411074 

16.84859680 23.96008142 31.32330278 37.65202999 

[469] 40.73959529 39.64391658 35.47140268 30.81976995 30.46428922 

28.96381903 33.48650872 35.19754289 28.88931084 

[478] 25.85099602 25.43010953 13.24544275 14.28270879 10.08843316  

6.36893569  5.48834155  5.35698784  6.38804494 
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[487] 12.46937689 17.85517939 19.10626456 21.29062970 25.12647092 

29.40562312 33.49524981 28.89672588 24.43455817 

[496] 22.71790466 22.39073209 23.06292083 23.97267140 29.37498771 

29.97268755 28.58032535 24.88780667 16.33744742 

[505] 12.07453422  7.78467805  5.71229881  4.96668433  4.75383994  5.83004500 

11.07121568 18.46012778 19.28680281 

[514] 19.92972664 22.58314435 26.25155423 30.61086710 28.27373905 

24.13855040 22.66623262 23.09467843 24.45944147 

[523] 25.70816208 30.88147025 31.63252306 29.69511966 26.06052872 

18.62879495 13.73516776  9.35607460  6.54382077 

[532]  5.35049855  5.19975727  6.26526532 11.96290166 17.42886165 

19.27352793 21.52261064 25.51411197 27.47279083 

[541] 31.10086335 29.16896840 25.82354660 24.53913883 24.21775427 

24.30861077 27.33751189 33.51115312 33.02541160 

[550] 29.50829279 26.77613803 19.30630202 14.87057839 10.64579413  

7.24974990  5.97828962  5.68099763  6.73941558 

[559] 12.71416858 18.94153787 20.46276207 22.91318353 27.20416207 

30.89051838 32.33060269 30.07118958 26.96212701 

[568] 24.94887011 25.92471520 27.02171543 26.62560275 32.62171257 

32.50355065 29.65103064 25.57980090 17.28015691 

[577] 13.87142032 10.08922186  7.13207103  5.65616461  5.24415671  

6.36830072 12.67543961 19.01321878 21.57143881 

[586] 23.96692648 28.09777179 31.14123058 33.71162747 30.31353995 

27.94118411 26.42026539 25.55320973 26.26369193 

[595] 25.85773520 30.14005773 29.30802903 27.30851033 23.34188745 

17.57630047 14.28973061 10.25364897  7.13397885 

[604]  5.67147612  5.08916657  5.41845805  9.51206332 13.79811580 

20.57194721 26.50628140 30.87054701 35.12501076 

[613] 35.97854095 37.52905147 36.03651959 31.81830320 26.45062711 

27.52764615 27.51941168 29.21824171 27.36521927 

[622] 23.13797972 19.91777783 14.10684321 13.49724513 10.12894840  

6.90465758  5.72377948  5.12375419  5.10929663 



 

116 

 

[631]  8.37524114 10.94671203 16.65860592 23.65792880 31.28410727 

36.67997063 40.36799353 39.86730102 34.88784794 

[640] 31.07368059 30.75125892 29.14664094 31.36020497 34.97416735 

29.29576988 25.88854532 24.14118965 18.15678342 

[649] 15.01981658 10.33512674  7.16933921  5.61745576  5.35861143  

6.67303946 12.92314293 20.29411104 22.66759705 

[658] 25.39038791 27.81619345 31.96542229 32.24893498 30.24342224 

24.49949877 20.68570861 21.98997920 23.19068981 

[667] 24.99695377  9.50216604  0.02055001 46.35308267 30.37288189 

16.65414405 12.40695527  8.60216629  6.22684178 

[676]  4.69398231  4.28983408  5.50792299 11.65872353 18.32798218 

20.78995157 23.53838119 27.52115086 28.96366536 

[685] 32.07319507 31.01529633 29.53640473 26.45928891 26.43387883 

25.30325279 27.70744932 32.24429847 32.38185227 

[694] 31.40633048 26.91590909 19.23307599 

> plot(Série) 

> plot(Série) 
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I. Script análise consumo de energia 

 

install.packages("readxl") 

 

library('readxl') 

 

Dados_Consumo <- 

read_excel("C:/Users/User/Documents/Dissertação_Mestrado/Análise de 

Dados/Tratamento e Modelagem/ConsumoEnergiaMensal.xlsx") 

 

print(Dados_Consumo) 

 

str(Dados_Consumo) 

 

ConsumoEnergia <- as.vector(t(Dados_Consumo)) 

print(ConsumoEnergia) 

 

Serie <- ts(ConsumoEnergia, start = c(2017,1), end = c(2024,12), frequency=12) 

print(Serie) 
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plot(Serie) 

 

 

 

 


