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RESUMO

Título: Estudos das Propriedades Mecânicas de Alótropos de Carbono 2D: Dos Potenciais
Clássicos aos Modelos de Aprendizado de Máquina
Autor: Rodrigo Alkimim Faria Alves
Orientador: Luiz Antonio Ribeiro Junior, Dr.
Coorientador: Marcelo Lopes Perreira Júnior, Dr.
Programa de Pós-Graduação em Física
Brasília, 28 de novembro de 2025

A crescente diversidade de alótropos de carbono bidimensionais (2D) com topologias com-
plexas exige a compreensão de suas propriedades mecânicas, cuja previsão precisa representa
um desafio para os métodos computacionais tradicionais. Esta tese aborda este desafio inves-
tigando a resposta mecânica de alótropos com complexidade topológica crescente, através de
uma abordagem computacional que progride de potenciais reativos clássicos, aplicados ao
PAI-Graphene e à nova família Nanoporous Graphene (NPG), ao desenvolvimento de um
Potencial Interatômico de Aprendizado de Máquina (MLIP) de alta fidelidade para o novo
e complexo alótropo PolyRingene. Os resultados demonstram a estabilidade de todos os
materiais propostos e, crucialmente, validam a metodologia de MLIP para o PolyRingene,
mostrando que o potencial treinado reproduz com precisão os dados de referência da Teo-
ria do Funcional da Densidade (DFT), em contraste com os potenciais clássicos que falham
significativamente. Com a abordagem validada, foram caracterizadas as propriedades me-
cânicas anisotrópicas e os mecanismos de fratura dos novos alótropos, revelando uma rica
relação entre a topologia da rede e sua resposta sob tensão. O trabalho contribui, portanto,
com a proposição de novos alótropos de carbono mecanicamente robustos e estabelece um
fluxo de trabalho que demonstra a superioridade e a necessidade dos potenciais de apren-
dizado de máquina para a predição acurada das propriedades de materiais com arquiteturas
atômicas não convencionais.

Palavras-chave: Alótropos de Carbono 2D, Propriedades Mecânicas, Dinâmica Molecu-
lar, Aprendizado de Máquina.



ABSTRACT

Title: Studies of the Mechanical Properties of 2D Carbon Allotropes: From Classical Poten-
tials to Machine Learning Models
Author: Rodrigo Alkimim Faria Alves
Supervisor: Luiz Antonio Ribeiro Junior, Dr.
Co-Supervisor: Marcelo Lopes Perreira Júnior, Dr.
Graduate Program in UnB
Brasília, June 28th, 2025

The growing diversity of two-dimensional (2D) carbon allotropes with complex topologies
demands an understanding of their mechanical properties, the accurate prediction of which
represents a challenge for traditional computational methods. This thesis addresses this
challenge by investigating the mechanical response of allotropes with increasing topolog-
ical complexity, through a computational approach that progresses from classical reactive
potentials, applied to PAI-Graphene and the novel Nanoporous Graphene (NPG) family,
to the development of a high-fidelity Machine Learning Interatomic Potential (MLIP) for
the new and highly complex allotrope, PolyRingene. The results demonstrate the stability
of all proposed materials and, crucially, validate the MLIP methodology for PolyRingene,
showing that the trained potential accurately reproduces reference data from Density Func-
tional Theory (DFT), in contrast to classical potentials which fail significantly. With the
validated approach, the anisotropic mechanical properties and fracture mechanisms of the
new allotropes were characterized, revealing a rich relationship between the network topol-
ogy and its response under stress. This work, therefore, contributes with the proposition of
new mechanically robust carbon allotropes and establishes a workflow that demonstrates the
superiority and necessity of machine learning potentials for the accurate prediction of the
properties of materials with unconventional atomic architectures.

Keywords: 2D Carbon Allotropes, Mechanical Properties, Molecular Dynamics, Machine
Learning..
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MOTIVAÇÃO E OBJETIVOS

1.1 INTRODUÇÃO

O carbono ocupa uma posição única entre os elementos químicos, graças à sua notável
capacidade de formar ligações covalentes estáveis em diferentes hibridizações (sp, sp² e
sp³). Essa versatilidade eletrônica confere ao carbono uma variedade excepcional de formas
alotrópicas, que exibem propriedades físicas e químicas radicalmente distintas [1]. Essa
diversidade estrutural se manifesta de forma emblemática em seus dois alótropos clássicos:
o diamante, um isolante ultrarresistente com estrutura tridimensional de ligações sp³, e o
grafite, um condutor macio formado por camadas de átomos sp² empilhadas e ligadas por
forças de van der Waals [2]. Durante séculos, essas duas formas dominaram o imaginário
científico como os únicos arranjos cristalinos estáveis do carbono.

No entanto, esse panorama começou a se transformar de forma decisiva com o avanço
das técnicas de síntese e caracterização em escala nanométrica, que revelaram uma nova
diversidade de formas alotrópicas do carbono além do diamante e do grafite. A descoberta
do fulereno (C60) em 1985 introduziu estruturas esféricas ocas compostas inteiramente por
átomos de carbono, abrindo caminho para a exploração de geometrias fechadas e altamente
simétricas [3]. Em 1991, os nanotubos de carbono revelaram uma nova dimensão estrutural:
cilindros unidimensionais formados pelo enrolamento de folhas de grafeno, que combinam
resistência mecânica superior ao aço, condutividade metálica e notável leveza [4].

O marco definitivo, contudo, ocorreu em 2004, com o isolamento experimental do gra-
feno por Andre Geim e Konstantin Novoselov, evento que inaugurou a era dos materiais bi-
dimensionais (2D). O grafeno, uma monocamada atômica de carbono com hibridização sp²
organizada em uma rede hexagonal, rapidamente se destacou como um dos materiais mais
notáveis já caracterizados [5]. A descoberta do grafeno não apenas expandiu o vocabulário
estrutural do carbono, mas também redefiniu os limites conceituais da ciência dos materiais.
Sua estrutura simples e eficiente impulsionou uma nova fase de exploração teórica e experi-
mental voltada ao desenvolvimento de alótropos bidimensionais com geometrias alternativas
[6], propriedades ajustáveis e aplicações específicas. Desde então, a comunidade científica
intensificou a busca por novas arquiteturas de carbono, prevendo por meio de cálculos ab
initio uma variedade de redes compostas por anéis não convencionais, como quadrados, pen-
tágonos, octógonos, decágonos e dodecágonos [7, 8]. Essas unidades estruturais favorecem
o surgimento de materiais com porosidade controlada, anisotropia funcional e bandas ele-
trônicas moduláveis. A combinação dessas características tem motivado propostas voltadas
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a tecnologias emergentes, como sensores atômicos, membranas seletivas, eletrônica flexí-
vel e sistemas avançados de armazenamento e conversão de energia, consolidando um novo
paradigma no design racional de materiais 2D à base de carbono [9, 10].

Nos últimos anos, diversas dessas propostas teóricas ganharam uma impressionante va-
lidação experimental, consolidando o design computacional como uma ferramenta preditiva
essencial. Estruturas notáveis, antes apenas teóricas, foram sintetizadas com sucesso, in-
cluindo redes porosas como o γ-grafino [11] e topologias não-benzenoides compostas por
anéis de 4, 6 e 8 membros, como a rede de bifenileno [8], além de malhas periódicas forma-
das por fulerenos [12].

A síntese bem-sucedida desses materiais demonstra que os alótropos bidimensionais de
carbono não são apenas entidades teóricas, mas candidatos reais para aplicações avançadas.
A diversidade topológica validada experimentalmente abre um leque de possibilidades para o
design de materiais com propriedades ajustáveis. Contudo, para muitos desses novos alótro-
pos, a investigação inicial tende a focar em suas promissoras propriedades eletrônicas e ópti-
cas, enquanto a caracterização mecânica, que é um fator indispensável para a viabilização de
qualquer aplicação prática em eletrônica flexível ou compósitos estruturais, frequentemente
se apresenta como uma etapa subsequente e desafiadora. A literatura especializada corrobora
que a compreensão do comportamento mecânico de materiais 2D para além do grafeno é um
campo de intensa investigação e com questões em aberto, crucial para o avanço tecnológico
[13].

Essa lacuna no entendimento das propriedades mecânicas decorre, em grande parte, do
conhecido dilema entre precisão e custo computacional inerente às ferramentas de simulação
atomística. Por um lado, cálculos de primeiros princípios baseados na Teoria do Funcional
da Densidade (DFT), embora ofereçam alta precisão para o estado fundamental, possuem um
custo computacional que escala desfavoravelmente com o tamanho do sistema, tornando-os
inviáveis para simulações em larga escala espacial e temporal, necessárias para investigar
fenômenos como deformação plástica e fratura [14, 15]. Por outro lado, simulações de di-
nâmica molecular (MD) clássica, que operam na escala necessária, dependem de potenciais
interatômicos empíricos (campos de força) cuja acurácia e, principalmente, transferibilidade
são frequentemente questionáveis [16]. Esses potenciais são parametrizados para ambien-
tes atômicos específicos e podem falhar em descrever com precisão redes com topologias e
conectividades não convencionais, como as exploradas neste trabalho. Esta lacuna metodo-
lógica entre a precisão do DFT e a eficiência da MD clássica constitui a principal motivação
para o desenvolvimento de métodos de simulação mais robustos e precisos, uma jornada que
é o cerne da investigação conduzida nesta tese [17, 18].

Entre os métodos mais utilizados para simulações mecânicas de materiais à base de car-
bono, destacam-se os potenciais empíricos de Tersoff, ReaxFF e AIREBO. O AIREBO,
em particular, tornou-se amplamente adotado devido à sua capacidade de modelar a forma-
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ção e ruptura de ligações covalentes, sendo especialmente eficaz para sistemas baseados em
carbono com hibridização sp². Sua aplicação em alótropos bidimensionais tem proporci-
onado resultados consistentes na caracterização de propriedades mecânicas como módulo
de Young, anisotropia elástica e padrões de fratura, mesmo em estruturas com certo grau
de porosidade ou complexidade geométrica. No entanto, assim como os demais potenci-
ais empíricos, o AIREBO foi originalmente parametrizado para um subconjunto específico
de estruturas e condições, o que limita sua transferibilidade para redes atômicas altamente
exóticas, com conectividades incomuns, múltiplas hibridizações ou comportamentos fora do
regime elástico linear. Nessas situações, o uso de potenciais empíricos pode levar a previsões
imprecisas, como subestimação da resistência mecânica, fraturas prematuras ou rearranjos
estruturais não realistas durante grandes deformações.

Para superar essa lacuna metodológica, emergem os potenciais interatômicos baseados
em aprendizado de máquina (MLIPs), uma nova classe de potenciais que combina a pre-
cisão quântica da DFT com a eficiência computacional da MD clássica [18]. Ao serem
treinados em extensos conjuntos de dados de primeiros princípios, esses modelos aprendem
a descrever as complexas interações de muitos corpos que governam o comportamento do
material [17]. Essa abordagem permite a simulação de fenômenos como deformação plás-
tica e fratura em escalas de tempo e tamanho inacessíveis ao DFT, com uma acurácia que
se aproxima dos resultados de referência. Entre os modelos de MLIPs mais proeminentes,
destaca-se o Moment Tensor Potential (MTP) [19], utilizado neste trabalho, cuja formula-
ção permite descrever com alta precisão energias, forças e tensões em uma ampla gama de
ambientes atômicos [20, 21].

Neste contexto, esta tese propõe uma investigação sistemática das propriedades mecâni-
cas de alótropos de carbono 2D, adotando uma estratégia que espelha essa evolução metodo-
lógica. O trabalho progride da aplicação e validação de potenciais reativos clássicos, como
o AIREBO, para a caracterização de estruturas como o PAI-Graphene [22] e o Nanoporous
Graphene [23], até o desenvolvimento e implementação de um MLIP de alta fidelidade para
o PolyRingene [24]. Esta última etapa é crucial, pois a complexidade topológica do Poly-
Ringene expõe os limites dos métodos tradicionais e serve como um estudo de caso rigoroso
para demonstrar a superioridade e a necessidade da abordagem de aprendizado de máquina.
Ao integrar diferentes níveis de fidelidade teórica e analisar materiais com complexidades
estruturais crescentes, esta pesquisa contribui para o entendimento fundamental das relações
entre topologia atômica e resposta mecânica, ao mesmo tempo em que valida um fluxo de
trabalho computacional robusto para o design racional de novos materiais 2D com proprie-
dades ajustáveis.
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1.2 OBJETIVOS E ESTRUTURA DA TESE

O objetivo central desta tese é investigar, por meio de simulações atomísticas multies-
cala, as propriedades mecânicas e a estabilidade de diferentes alótropos bidimensionais de
carbono, com foco em estruturas de topologia complexa e não convencionais. A motivação
principal decorre da necessidade de compreender como características topológicas específi-
cas como a presença de anéis não hexagonais e a porosidade influenciam o comportamento
elástico e os mecanismos de fratura desses materiais. Este conhecimento é fundamental para
viabilizar sua aplicação em tecnologias emergentes, como eletrônica flexível [25], compósi-
tos de alta performance [26] e dispositivos nanoeletromecânicos [27].

A investigação aborda também um desafio metodológico central na ciência de materiais
computacional: a escolha do método de simulação adequado para descrever com precisão
as interações atômicas em redes de carbono exóticas. Para tanto, a estratégia desta tese foi
organizada em três estudos de caso que representam uma progressão na complexidade tanto
do material estudado quanto da abordagem computacional empregada. Cada estudo corres-
ponde a um artigo científico publicado, que forma a base de cada capítulo dos resultados.

O primeiro estudo (Capítulo 3) aborda o PAI-Graphene (PAI-G) [22], um alótropo pro-
posto na literatura e caracterizado por sua conectividade baseada em anéis de 5, 6 e 7 mem-
bros. A análise de suas propriedades mecânicas e térmicas foi conduzida por meio de simu-
lações de dinâmica molecular clássica utilizando o potencial reativo AIREBO-M, permitindo
explorar a resposta de uma estrutura já conhecida e estabelecer uma base metodológica para
a tese.

O segundo estudo (Capítulo 4) concentra-se na proposição e caracterização de uma nova
família de redes porosas, o Nanoporous Graphene (NPG) [23], derivada de nanofitas de
grafeno do tipo armchair interligadas por pontes de carbono. Utilizando também o potencial
AIREBO, foram avaliados o impacto da porosidade e da largura das nanofitas na rigidez,
na anisotropia e nos modos de fratura, consolidando um protocolo para o design e avaliação
mecânica de novas redes 2D.

O terceiro e culminante estudo (Capítulo 5) [24] introduz o PolyRingene, uma nova e
complexa estrutura de carbono 2D contendo anéis de 3, 4, 5, 6, 8 e 10 membros, proposta
neste trabalho. Dada sua complexidade topológica, que desafia os potenciais empíricos tradi-
cionais, uma abordagem baseada em aprendizado de máquina foi desenvolvida. Um modelo
do tipo Moment Tensor Potential (MTP) foi treinado com dados de DFT, permitindo simula-
ções de alta fidelidade. Essa etapa não só caracteriza um novo material, mas também valida
a superioridade dos MLIPs, comparando seus resultados com os do DFT e de potenciais
clássicos, o que representa o avanço metodológico central desta tese.

A tese está estruturada da seguinte forma: o Capítulo 2 fornece os fundamentos teóricos.
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A seguir, os Capítulos 3, 4 e 5 apresentam os resultados detalhados de cada um dos estudos
mencionados. Finalmente, o Capítulo 6 apresenta as conclusões gerais, sintetizando as con-
tribuições para o entendimento da relação entre topologia e resposta mecânica em alótropos
de carbono 2D e destacando o avanço metodológico representado pelo uso de MLIPs.
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REFERÊNCIAL TEÓRICO

2.1 ALÓTROPOS DE CARBONO: HISTÓRICO E DIVERSIDADE ES-
TRUTURAL

A trajetória dos alótropos de carbono acompanha de perto a evolução da ciência dos ma-
teriais, marcada por descobertas que, ao longo dos séculos, ampliaram de forma expressiva
o entendimento sobre estrutura atômica, ligação química e propriedades emergentes [5, 28].
Durante muito tempo, acreditou-se que apenas duas formas cristalinas do carbono existiam:
o diamante e o grafite. Esses dois materiais, embora constituídos pelo mesmo elemento, ocu-
pam posições opostas no espectro de propriedades: o diamante, formado por ligações sp³ em
uma rede tridimensional tetraédrica, destaca-se pela dureza extrema (10 na escala de Mohs),
pelo elevado módulo de Young (≈ 1200 GPa) e por seu caráter eletricamente isolante. O gra-
fite, por outro lado, organiza-se em planos bidimensionais de átomos em hibridização sp²,
unidos entre si apenas por interações de van der Waals [2]. Essa arquitetura resulta em pro-
priedades contrastantes, como alta condutividade elétrica e térmica nos planos, combinadas
à maciez e lubrificidade, o que explica seu uso difundido em eletrodos e como lubrificante
sólido.

O cenário das formas alotrópicas do carbono começou a mudar radicalmente em 1985,
com a descoberta do fulereno C60 [3], trabalho laureado com o Prêmio Nobel de Química
em 1996. Essa molécula esférica, composta por 12 pentágonos e 20 hexágonos, revelou um
conjunto de propriedades inéditas, incluindo supercondutividade quando dopada com metais
alcalinos e comportamento optoeletrônico ajustável [29]. O C60 inaugurou a família dos
fulerenos e consolidou a noção de que o carbono poderia se organizar em geometrias não
convencionais, desafiando a visão restrita de suas formas cristalinas conhecidas [30].

Poucos anos depois, em 1991, Sumio Iijima relatou a descoberta de estruturas tubulares
compostas por múltiplas camadas concêntricas de grafeno, hoje conhecidas como nanotubos
de carbono de paredes múltiplas (MWCNTs). Obtidos como subprodutos da descarga elé-
trica entre eletrodos de grafite, esses sistemas exibiam alta cristalinidade e diâmetros externos
na faixa de 5 a 30 nm [4]. Posteriormente, em 1993, Iijima e Ichihashi descreveram a síntese
de nanotubos de parede simples (SWCNTs), com diâmetros próximos de 1 nm, produzidos
por decomposição de hidrocarbonetos catalisada por partículas metálicas em ambiente de
arco elétrico [31].

Desde então, os nanotubos de carbono têm sido objeto de intensa investigação, em vir-
tude de suas propriedades físico-químicas singulares. Do ponto de vista mecânico, apresen-
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tam módulo de Young típico entre 0,9 e 1,0 TPa e tensões de ruptura superiores a 60 GPa,
segundo medições de tração direta [26]. No campo eletrônico, destacam-se pela forte depen-
dência da condução em relação à quiralidade, definida pelos índices de enrolamento (n,m).
Essa característica permite que nanotubos de diâmetro semelhante exibam comportamento
tanto metálico quanto semicondutor, o que amplia significativamente suas possibilidades de
aplicação [32].

O divisor de águas definitivo na história dos nanomateriais ocorreu em 2004, quando An-
dre Geim e Konstantin Novoselov isolaram experimentalmente o grafeno. Esse marco, que
lhes rendeu o Prêmio Nobel de Física em 2010, inaugurou a era dos materiais bidimensionais
e estabeleceu um novo paradigma para a ciência dos materiais. O grafeno consiste em uma
única camada de átomos de carbono dispostos em rede hexagonal planar, com hibridização
sp², cujas propriedades ultrapassam os limites de praticamente todos os materiais conhecidos
[5].

Medições experimentais confirmaram sua excepcional rigidez mecânica, com módulo de
Young próximo de 1 TPa, e resistência à tração em torno de 130 GPa [33]. No campo tér-
mico, apresenta condutividade superior a 5000Wm−1K−1, uma das mais altas já registradas
[34]. Do ponto de vista eletrônico, destaca-se pela mobilidade ultrarrápida de portadores de
carga (acima de 200.000 cm2V −1s−1 em amostras suspensas), atribuída à presença de quase-
partículas do tipo Dirac e à ausência de gap de energia [35]. A essas propriedades soma-se a
transparência óptica superior a 97% no espectro visível, o que abre caminho para aplicações
em eletrônica transparente [36].

A descoberta do grafeno impulsionou esforços teóricos e experimentais em busca de
novos alótropos com propriedades ajustáveis. A exploração de diferentes hibridizações do
carbono (sp, sp², sp³ ou combinações) e variações na topologia da rede abriu espaço para
a síntese e previsão de estruturas que rompem com a simetria hexagonal tradicional. Essas
arquiteturas passaram a incluir anéis de quatro, cinco, sete, oito, dez ou até doze átomos,
resultando em materiais com porosidade controlada, anisotropia funcional, estabilidade ter-
modinâmica variável e propriedades eletrônicas moduláveis.

Entre os exemplos mais marcantes após o grafeno está o graphdiyne, sintetizado experi-
mentalmente por Li et al. em 2010. Esse material bidimensional combina hibridizações sp
e sp², formando redes estendidas de cadeias acopladas a anéis hexagonais [7]. Os autores
demonstraram a obtenção de filmes contínuos de graphdiyne com áreas superiores a 3 cm²,
via reação de acoplamento cruzado de hexaetilinilbenzeno em substratos de cobre. Os fil-
mes resultantes apresentaram condutividade semicondutora, da ordem de 2.5× 10−4 S·m−1,
evidenciando o potencial desse material para eletrônica molecular.

Em 2021, Fan et al. relataram a síntese da rede de bifenileno, uma estrutura planar com-
posta por anéis de 4, 6 e 8 membros organizados em padrão periódico não-benzenoide. Pro-
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duzida por polimerização superficial de precursores halogenados em substratos metálicos,
essa rede exibiu condutividade metálica intrínseca, elevada estabilidade térmica e ausência
de instabilidades dinâmicas, consolidando-se como marco na síntese de novas fases de car-
bono [8].

No ano seguinte, Hou et al. (2022) reportaram a formação de uma rede bidimensional
composta por fulerenos C60 interligados covalentemente, originando uma malha periódica
com poros regulares de cerca de 1,2 nm. Essa arquitetura abre possibilidades para aplicações
em filtragem seletiva, eletrônica orgânica e armazenamento de moléculas [12].

Complementando esse panorama, Toh et al. (2020) descreveram a síntese de grafeno
amorfo bidimensional por bombardeamento iônico controlado em monocamadas de grafeno.
O material resultante apresenta rede desordenada de anéis contendo entre 5 e 8 membros,
sem periodicidade cristalina. Além de sua morfologia distinta, mostrou elevada estabilidade
térmica (até 900 °C), caráter semicondutor e potencial uso em dispositivos optoeletrônicos
baseados em materiais desordenados [37].

Essa sucessão de descobertas evidencia não apenas a diversidade estrutural possível para
o carbono, mas também o papel essencial desempenhado pela teoria e pelas simulações com-
putacionais. A interação entre predições teóricas e síntese experimental tem sido determi-
nante na identificação de novas fases, no desenvolvimento de rotas sintéticas e na antecipação
de propriedades funcionais.

O caso do grafeno ilustra exemplarmente essa sinergia: já em 1947, Wallace previu que
uma monocamada de carbono em rede hexagonal deveria exibir dispersão eletrônica linear
nos pontos de alta simetria da zona de Brillouin [38]. Décadas depois, Semenoff refinou
essa visão ao introduzir o conceito de quase-partículas do tipo Dirac emergentes de uma
estrutura de bandas em forma de cone [39]. Tais predições, inicialmente vistas como modelos
abstratos, foram validadas de forma surpreendente em 2004, com a síntese experimental do
grafeno por esfoliação mecânica [5].

O impacto das predições teóricas vai além dos alótropos de carbono. Materiais como o
siliceno [40], o fosforeno [41], o germaneno [40] e diferentes fases topológicas foram pri-
meiramente descritos em cálculos de primeiros princípios, que apontaram sua estabilidade,
a possibilidade de gaps de energia ajustáveis ou a presença de estados eletrônicos protegidos
topologicamente. Esses estudos serviram de guia para experimentos de síntese via epitaxia
molecular [42], esfoliação mecânica [43] ou montagem controlada em superfícies metáli-
cas [44]. Em muitos casos, a experimentação apenas confirmou resultados já robustamente
estabelecidos em simulações, evidenciando a força da teoria como ferramenta preditiva na
ciência dos materiais.

O panorama histórico apresentado evidencia como a teoria e as simulações computa-
cionais têm desempenhado papel central não apenas na concepção de novos alótropos de
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carbono, mas também na previsão e direcionamento de diversas nanoestruturas emergentes,
como o siliceno, o fosforeno e o germaneno. Em muitos desses casos, a validação experimen-
tal apenas confirmou resultados já estabelecidos teoricamente, consolidando a importância
da modelagem como guia para o avanço da ciência dos materiais. Essa perspectiva fornece o
contexto necessário para os próximos capítulos, nos quais serão discutidos os fundamentos
que sustentam a análise desenvolvida nesta tese.

Na sequência, serão apresentados os principais fundamentos computacionais empregados
neste trabalho. A ênfase recai sobre métodos baseados na teoria do funcional da densidade
(DFT)[45], na dinâmica molecular clássica (MD) [14, 46] e em potenciais interatômicos
modernos construídos com técnicas de aprendizado de máquina[17, 47]. Esses elementos
constituem o arcabouço conceitual e numérico que possibilita a caracterização detalhada das
propriedades mecânicas e estruturais dos sistemas estudados ao longo da tese.

2.2 FUNDAMENTOS COMPUTACIONAIS: DFT

2.2.1 Introdução à Teoria do Funcional da Densidade (DFT)

O estudo das propriedades eletrônicas da matéria em nível atômico e molecular enfrenta,
em sua formulação mais fundamental, o chamado problema de muitos corpos. Nesse con-
texto, a descrição exata de um sistema de N elétrons requer a solução da equação de Schrö-
dinger dependente do tempo para a função de onda completa Ψ(r1, r2, . . . , rN). Contudo, a
dimensionalidade desse objeto cresce exponencialmente com N , tornando o problema intra-
tável mesmo para sistemas relativamente pequenos [15].

A Teoria do Funcional da Densidade (DFT, do inglês Density Functional Theory) surgiu
como uma alternativa poderosa ao formalismo baseado na função de onda, ao se apoiar na
ideia de que a densidade eletrônica ρ(r) contém toda a informação necessária para descrever
o estado fundamental de um sistema quântico de muitos elétrons. Essa mudança de pa-
radigma, inicialmente esboçada em aproximações semiclassicas como a de Thomas–Fermi
[48, 49], foi formalizada de maneira rigorosa pelos trabalhos de Hohenberg e Kohn em 1964,
que estabeleceram os fundamentos teóricos da DFT moderna [50].

O resultado central do trabalho de Hohenberg e Kohn está sintetizado em dois teoremas
fundamentais. O primeiro demonstra a relação unívoca entre a densidade eletrônica e o po-
tencial externo que governa o sistema, enquanto o segundo introduz um princípio variacional
que permite determinar a densidade do estado fundamental a partir da minimização de um
funcional de energia. Esses dois enunciados podem ser resumidos da seguinte forma:

9



Teorema 2.1 Teorema Hohenberg-Kohn, 1964

A densidade eletrônica do estado fundamental, ρ(r), determina de maneira unívoca o
potencial externo v(r) (salvo por uma constante aditiva). Como consequência, todas
as demais propriedades do sistema podem ser, em princípio, derivadas a partir dessa
densidade.

Do ponto de vista prático, os teoremas de Hohenberg–Kohn estabelecem que todas as
propriedades observáveis do estado fundamental de um sistema de muitos elétrons são, em
princípio, determinadas unicamente pela densidade eletrônica ρ(r), isto é, podem ser formu-
ladas como funcionais dessa grandeza. Isso inclui não apenas a energia total, mas também
quantidades derivadas, como a estrutura eletrônica (bandas e densidade de estados), propri-
edades magnéticas e respostas a campos externos. Em termos conceituais, essa formulação
representa uma mudança de paradigma em relação ao formalismo da função de onda, redu-
zindo drasticamente a complexidade do problema: em vez de lidar com uma função de 3N

variáveis, trabalha-se com uma função de apenas três coordenadas espaciais. Tal simplifica-
ção é a base que torna a DFT viável e amplamente aplicável, ainda que a exatidão prática
dependa da forma adotada para o funcional de troca e correlação.

Demonstração:

Considere Ψ como o estado fundamental de um sistema quântico descrito pelo Hamilto-
niano Ĥ , associado a um potencial externo V (r). Agora, suponha um segundo sistema,
cujo Hamiltoniano Ĥ ′ possui como solução fundamental o estado Ψ′, definido em pre-
sença de um potencial externo V ′(r). Se, por hipótese, ambos os sistemas apresentarem
a mesma densidade eletrônica do estado fundamental, ρ(r), então segue que:

⟨Ψ|Ĥ|Ψ⟩ = E0 e ⟨Ψ′|Ĥ ′|Ψ′⟩ = E
′

0, (2.1)

segundo o teorema variacional, verifica-se que:

E = ⟨Ψ|Ĥ|Ψ⟩ < ⟨Ψ′|Ĥ|Ψ′⟩ e E
′
= ⟨Ψ′|Ĥ ′|Ψ′⟩ < ⟨Ψ|Ĥ ′ |Ψ⟩ (2.2)

logo:
⟨Ψ|Ĥ|Ψ⟩ < ⟨Ψ′|Ĥ|Ψ′⟩ = ⟨Ψ′ |Ĥ ′ |Ψ′⟩+ ⟨Ψ′|V̂ext(r)− V̂

′

ext(r)|Ψ
′⟩, (2.3)

na qual:

⟨Ψ′|Ĥ ′ |Ψ′⟩+ ⟨Ψ′|V̂ext(r)− V̂
′

ext(r)|Ψ
′⟩ = E

′
+

∫
ρ(r)[V̂ext(r)− V̂

′

ext(r)]d(r). (2.4)
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De outra maneira, temos que:

⟨Ψ′ |Ĥ ′ |Ψ′⟩ < ⟨Ψ|Ĥ ′|Ψ⟩ = ⟨Ψ|Ĥ|Ψ⟩+ ⟨Ψ|V̂ext(r)− V̂
′

ext(r)|Ψ⟩, (2.5)

que nos fornece:

⟨Ψ|Ĥ ′ |Ψ⟩+ ⟨Ψ|V̂ext(r)− V̂
′

ext(r)|Ψ⟩ = E −
∫
ρ(r)[V̂ext(r)− V̂

′

ext(r)]dr. (2.6)

Com as equações 2.3 e 2.4, podemos ter:

E < E
′
+

∫
[V̂ext(r)− V̂

′

ext(r)]ρ(r)d
3r (2.7)

e das equações 2.5 e 2.6

E
′
< E −

∫
[V̂ext(r)− V̂

′

ext(r)]ρ(r)d
3r. (2.8)

Assim, podemos somar as equação 2.7 e 2.8

(E + E
′
) < (E

′
+ E), (2.9)

o que conduz a uma contradição, uma vez que a mesma densidade eletrônica não pode
estar associada a dois potenciais externos distintos. ■

Teorema 2.2 Segundo Teorema Hohenberg-Kohn, 1964

Para uma densidade eletrônica exata ρ(r), a energia do estado fundamental assume
seu valor mínimo nessa mesma densidade, ou seja,

E[ρ] = ⟨Ψ|T̂ + Û + V̂ext|Ψ⟩. (2.10)

Demonstração:

Considera-se que ρ(r) corresponde à densidade eletrônica associada a um determinado
estado Ψ. No entanto, essa densidade não precisa, a princípio, estar vinculada ao Ha-
miltoniano Ĥ = T̂ + Û + V̂ ext. O estado fundamental real do sistema é descrito pela
densidade ρ0(r), que minimiza a energia do funcional correspondente

Com isso, dada a equação 2.10, podemos escrever a energia em função da densidade
como:

E[ρ] = ⟨Ψ|T̂ + Û |Ψ⟩+ ⟨Ψ|V̂ext|Ψ⟩, (2.11)
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ou
E[ρ] = F [ρ] + ⟨Ψ|V̂ext|Ψ⟩. (2.12)

O termo F [ρ] na equação 2.10 que é sabido como sendo um funcional universal,
onde se aplica a todos os sistemas Coulombianos. O termo Û nos representa um poten-
cial interno atrelado à interação elétron-elétron, com V̂ext relacionado a contribuição do
potencial externo.

Analogamente à equação 2.12, temos:

E[ρ0] = F [ρ0] + ⟨Ψ0|V̂ext|Ψ0⟩, (2.13)

com Ψ0 sendo função de onda do estado fundamental. Sabendo que ρ0 é determinante
para Ψ0 assim como é ρ para Ψ, podemos propor que ρ0 e ρ são provenientes de um
mesmo potencial externo. Portanto, podemos usar o teorema variacional, assim teremos:

E[Ψ0] < E[Ψ], (2.14)

⟨Ψ0|T̂ + Û |Ψ0⟩+ ⟨Ψ0|V̂ext|Ψ0⟩ < ⟨Ψ|T̂ + Û |Ψ⟩+ ⟨Ψ|V̂ext|Ψ⟩, (2.15)

F [ρ0] + ⟨Ψ0|V̂ext|Ψ0⟩ < F [ρ] + ⟨Ψ|V̂ext|Ψ⟩. (2.16)

Logo, concluímos que:
E[ρ0] < E[ρ]. (2.17)

■

Apesar de sua elegância conceitual, os teoremas de Hohenberg–Kohn não fornecem uma
forma explícita para o funcional de energia E[ρ]. Em particular, não há uma expressão
exata que relacione a energia cinética dos elétrons interagentes ou a energia de correlação
puramente em termos da densidade eletrônica. Essa limitação torna a aplicação prática direta
dos teoremas inviável, exigindo aproximações bem fundamentadas.

Em 1965, Kohn e Sham propuseram uma solução engenhosa para contornar as limitações
práticas dos teoremas de Hohenberg–Kohn, introduzindo um sistema auxiliar de elétrons
não interagentes que reproduz exatamente a densidade eletrônica do estado fundamental do
sistema real [45]. Nesse formalismo, o problema de muitos corpos é mapeado para um
conjunto de equações de partícula única, em que cada elétron fictício ocupa um orbital de
Kohn–Sham. A complexidade das interações eletrônicas, que inviabiliza a solução direta da
equação de Schrödinger, é concentrada em um único termo: o funcional de troca e correlação
Exc[ρ], responsável por capturar os efeitos quânticos além da repulsão Coulombiana clássica.
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De início, podemos modificar a equação 2.13 da seguinte forma:

E[ρ] = F [ρ] +

∫
ρV̂ext(r)dr, (2.18)

esse rearranjo permite decompor o funcional universal F [ρ] em duas partes distintas: uma
contribuição clássica, associada à repulsão eletrostática direta entre os elétrons, e um termo
residual que engloba os efeitos quânticos mais complexos. A primeira parte corresponde ao
chamado potencial de Hartree, que descreve a interação Coulombiana média gerada pela
própria distribuição de carga eletrônica. A segunda parte, que permanece no funcional,
concentra os efeitos não triviais relacionados à energia cinética quântica e às correlações
eletrônicas. Dessa forma, a equação pode ser reescrita como:

F [ρ] =
1

2

∫ ∫
ρ(r)ρ(r′

)

|r − r′ |
drdr′

+G[ρ], (2.19)

na qual G[ρ] representa um funcional universal, isto é, independente do potencial externo,
que concentra tanto os efeitos de correlação eletrônica quanto a parcela não clássica da ener-
gia cinética. Esse funcional pode ser expresso como:

G[ρ] = Ts[ρ] + Exc[ρ], (2.20)

sendo Ts[ρ] a energia cinética de um sistema fictício de elétrons não interagentes que repro-
duz exatamente a densidade ρ(r), enquanto Exc[ρ] reúne as contribuições de troca e correla-
ção de um sistema real de elétrons interagentes com a mesma densidade. Esse termo Exc[ρ]

também incorpora as correções de energia cinética que diferenciam o sistema real (intera-
gente) do sistema auxiliar não interagente, de modo que todas as contribuições não clássicas
e não incluídas explicitamente são absorvidas nesse funcional.

Ao substituir a decomposição do funcional universal apresentada nas equações 2.19 e
2.20 dentro da equação 2.18, chegamos a uma formulação expandida para a energia total,
dada por:

E[ρ] =

∫
ρVext(r)d(r) +

1

2

∫ ∫
ρ(r)ρ(r′

)

|r − r′ |
drdr′

+ Ts[ρ] + Exc[ρ]. (2.21)

Segundo o teorema variacional, a busca pela densidade eletrônica que minimiza o funci-
onal E[ρ] deve respeitar a conservação do número de partículas. Isso significa que a integral
da densidade deve ser igual ao número total de elétrons N , resultando na seguinte condição:∫

ρ(r)dr = N. (2.22)
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A aplicação do princípio variacional à energia total, sob a restrição de conservação do
número de elétrons, conduz às equações de Kohn–Sham, cuja solução fornece a densidade
eletrônica do estado fundamental. Nesse formalismo, o termo Ts é tratado como um funci-
onal dos orbitais de partícula única, enquanto Exc[ρ] permanece um funcional explícito da
densidade. Assim, os orbitais de Kohn–Sham são determinados pela minimização do fun-
cional de energia total, assegurando simultaneamente que todos obedeçam à condição de
normalização dada pela equação 2.22.

Para lidar com a minimização do funcional de energia total na presença da restrição de
conservação do número de elétrons, recorre-se ao método dos multiplicadores de Lagrange.
Essa técnica consiste em incorporar o vínculo diretamente ao funcional, introduzindo um
parâmetro indeterminado µ, denominado multiplicador de Lagrange. No contexto da DFT,
esse procedimento garante que a condição de normalização dos orbitais de Kohn–Sham seja
satisfeita durante a minimização. Assim, constrói-se um funcional estendido, formado pela
energia total acrescida do termo de restrição, cuja condição de mínimo é obtida impondo que
sua variação seja nula, isto é:

δ

(
E[ρ]− µ

[∫
ρ(r)d3r −N

])
= 0, (2.23)

obtemos ∫
δρ(r)

{
δTs
δρ

+ Vext(r) +
∫

ρ(r’)
|r − r’|

d3r’ + Vxc[ρ]− µ

}
d3r = 0, (2.24)

aqui o termo Vxc[ρ] é o potencial de troca e correlação, que pode ser dado da seguinte ma-
neira:

Vxc[ρ] =
δExc

δρ
. (2.25)

Observando que o termo Ts[ρ], presente na equação 2.20, não é um funcional explícito
da densidade ρ, podemos, no entanto, reescrevê-lo em termos dos orbitais de uma partícula,
Ψj(r), que descrevem um sistema fictício de partículas não interagentes com densidade ρ.
Assim, podemos escrever:

ρ(r) =
N∑
i=1

|ψi(r)|2 (2.26)

e escrevendo Ts[ρ] como:

Ts[ρ] = −1

2

N∑
i=1

∫
ψ∗
i (r)∇2ψi(r)dr, (2.27)

tendo a solução da equação 2.24 satisfazendo 2.22 e 2.26 pode ser obtida resolvendo a equa-
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ção de Schrödinger de uma particula:(
−1

2
∇2 + V KS

ef [ρ]

)
ψi(r) = ϵiψi(r), (2.28)

onde V KS
ef [ρ] é o potencial efetivo de Kohn-Sham que é dado por:

V KS
ef [ρ] = Vext(r) +

∫
ρ(r’)
|r − r’|

d3r’ +
δExc

δρ
. (2.29)

A solução da Equação (que representa o Hamiltoniano de KS) é obtida por meio de um
cálculo autoconsistente (SCF), em procedimento análogo ao método de Hartree-Fock [45].

Embora o funcional de troca e correlação Exc[ρ] não seja conhecido em forma exata, o
formalismo de Kohn–Sham concentra toda essa incerteza em um único termo, permitindo
que as demais contribuições do problema de muitos corpos sejam tratadas de forma rigorosa.
Esse funcional reúne, ao mesmo tempo, os efeitos da correlação eletrônica dinâmica e da es-
tatística de Fermi, associada ao princípio de exclusão de Pauli, que não estão explicitamente
representados nos demais termos da energia. A aplicação prática da DFT, portanto, depende
crucialmente da construção de aproximações adequadas para Exc[ρ], capazes de equilibrar
precisão e custo computacional.

Ao longo das últimas décadas, diferentes famílias de funcionais foram propostas com
esse objetivo. A mais simples é a Aproximação da Densidade Local (LDA), que assume
que a energia de troca e correlação em cada ponto do espaço depende apenas da densidade
eletrônica local, tomando como referência o gás eletrônico [51]. Para superar as limitações
desse modelo em sistemas com variações espaciais mais complexas, surgiram os funcionais
de Gradiente Generalizado (GGA) [52], que incorporam também o gradiente da densidade.
Em um estágio posterior, os funcionais híbridos passaram a incluir uma fração da troca exata
da Teoria de Hartree–Fock [53, 54], o que permitiu melhorar a descrição de propriedades ele-
trônicas em moléculas e sólidos. Além disso, em sistemas nos quais as forças de dispersão
desempenham papel importante, como superfícies, interfaces e materiais de baixa dimensio-
nalidade, torna-se necessário considerar explicitamente correções para interações de van der
Waals.

2.2.2 Aproximação de Densidade Local (LDA)

A Aproximação de Densidade Local (LDA) constitui a forma mais fundamental para o
funcional de troca e correlação (Exc[ρ]) na Teoria do Funcional da Densidade. Seu princípio
fundamental reside na suposição de que a densidade eletrônica ρ(r) varia lentamente no
espaço. Sob esta condição, o sistema pode ser tratado localmente como um gás de elétrons
homogêneo, para o qual a energia de troca e correlação por partícula, ϵhom

xc (ρ), é conhecida.
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Nesta abordagem, proposta originalmente por Kohn e Sham [45], a energia total de troca
e correlação para um sistema real com densidade não homogênea é obtida integrando-se a
contribuição local ϵhom

xc sobre todo o espaço, ponderada pela densidade eletrônica local em
cada ponto:

ELDA
xc [ρ] =

∫
ρ(r), ϵhom

xc (ρ(r)), dr. (2.30)

O potencial de troca e correlação correspondente, V LDA
xc (r), é obtido pela derivada funci-

onal de ELDA
xc em relação à densidade, resultando em:

V LDA
xc (r) =

δELDA
xc

δρ(r)
= ϵhom

xc (ρ(r)) + ρ(r)
∂ϵhom

xc

∂ρ
. (2.31)

Este potencial efetivo, que entra nas equações de Kohn-Sham, incorpora não apenas a energia
média por elétron no gás homogêneo, mas também uma correção devida à dependência dessa
energia com a densidade.

A energia ϵhom
xc é convencionalmente separada em suas contribuições de troca (ϵhom

x ) e
correlação (ϵhom

c ):

ϵhom
xc (ρ) = ϵhom

x (ρ) + ϵhom
c (ρ). (2.32)

A parcela de troca, que representa os efeitos quânticos de trocas decorrentes do princípio
de exclusão de Pauli, admite uma solução analítica exata para o gás de elétrons homogêneo,
derivada por Bloch e Dirac:

ϵhom
x (ρ) = −3

4

(
3

π

)1/3

ρ1/3. (2.33)

Em contraste, o termo de correlação ϵhom
c (ρ), que descreve as interações eletrônicas corre-

lacionadas além da aproximação de campo médio, não possui uma solução analítica fechada.
Seu valor preciso para uma densidade ρ foi determinado numericamente através de métodos
de Monte Carlo quântico (QMC) altamente acurados, realizados por Ceperley e Alder para
diversas densidades do gás eletrônico [55]. Os resultados do QMC servem como referência
para parametrizações analíticas amplamente utilizadas, como as de Perdew-Zunger (PZ81)
[51] e Vosko-Wilk-Nusair (VWN) [56], que fornecem uma forma funcional para ϵhom

c (ρ) que
reproduz fielmente os dados numéricos.

Apesar de sua simplicidade conceitual, a LDA surpreendeu a comunidade científica pelo
seu desempenho em prever propriedades estruturais e energias de ligação em uma ampla va-
riedade de sólidos. Entretanto, suas limitações são bem conhecidas: tendência a superestimar
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as energias de coesão, subestimar os volumes das células unitárias e apresentar deficiências
na descrição de sistemas em que a densidade eletrônica varia de forma acentuada no espaço,
como moléculas, superfícies e materiais ligados por interações de van der Waals. Essas li-
mitações impulsionaram o desenvolvimento de aproximações mais avançadas, capazes de
incorporar de maneira mais realista os efeitos da não-localidade da densidade eletrônica.

2.2.3 Aproximação do Gradiente Generalizado (GGA)

A Aproximação de Gradiente Generalizado (GGA) emerge como uma evolução crítica
em relação à Aproximação de Densidade Local (LDA), concebida para remediar suas defici-
ências sistemáticas na descrição de sistemas com densidade eletrônica rapidamente variável.
Enquanto a LDA pressupõe um gás de elétrons homogêneo localmente, negligenciando as-
sim a não-homogeneidade da densidade, a abordagem GGA introduz explicitamente uma de-
pendência no gradiente da densidade, ∇ρ(r), para capturar os efeitos de não-homogeneidade
de curto alcance. Esta correção é fundamental para uma descrição mais fidedigna de molé-
culas, interfaces, superfícies e materiais de baixa dimensionalidade, onde as variações de
densidade são pronunciadas e desempenham um papel decisivo nas propriedades eletrôni-
cas.

Formalmente, o funcional de troca e correlação GGA é construído como uma generali-
zação do funcional LDA, assumindo a forma de uma integral envolvendo uma densidade de
energia de troca-correlação aprimorada:

EGGA
xc [ρ] =

∫
ρ(r)ϵGGA

xc (ρ(r), |∇ρ(r)|) dr. (2.34)

Alternativamente, e de forma equivalente, pode-se expressar o funcional como:

EGGA
xc [ρ] =

∫
fxc (ρ(r),∇ρ(r)) dr, (2.35)

onde a função fxc é construída para satisfazer condições conhecidas — ou condições de vín-
culo — do funcional exato de troca-correlação. A dependência em |∇ρ| introduz correções
que capturam a não homogeneidade do sistema real, contrastando com a suposição de um
gás de elétrons homogêneo usada como referência.

O potencial efetivo de troca-correlação, V GGA
xc (r), obtido via derivada funcional deEGGA

xc ,
adquire uma forma mais complexa que seu análogo LDA, refletindo a dependência adicional
no gradiente:

V GGA
xc (r) =

δEGGA
xc

δρ(r)
=
∂fxc

∂ρ
−∇

(
∂fxc

∂∇ρ

)
. (2.36)
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Este termo adicional do tipo divergência surge diretamente do cálculo variacional quando
o integrando f depende do gradiente de ρ, sendo crucial para a correta obtenção do potencial
e, consequentemente, para a autocoerência das equações de Kohn-Sham.

Dentre a vasta gama de funcionais GGA propostos, o funcional PBE (Perdew-Burke-
Ernzerhof) destaca-se como um marco por seu caráter não empírico e sua construção guiada
por condições de vínculo físicas [51, 52]. Ao contrário de funcionais parametrizados para
reproduzir dados experimentais de conjuntos específicos de moléculas, a forma do PBE é
derivada para satisfazer um conjunto de limites e identidades exatas conhecidas para o fun-
cional universal, tais como: (i) o limite de Lieb-Oxford para a energia de troca [57]; (ii)
a correta descrição do gás eletrônico homogêneo (recuperando a LDA quando ∇ρ → 0)
[55, 51]; e (iii) a escalagem correta sob transformações de escala uniforme da densidade
[58].

O funcional de troca do PBE é construído na forma de um fator de aprimoramento
F PBE
x (s) que atua sobre a energia de troca de densidade local (LDA), onde s é o gradiente de

densidade reduzido:

EPBE
x [ρ] =

∫
ρ(r), ϵLDA

x (ρ(r)), F PBE
x (s(r)), dr (2.37)

onde s = |∇ρ|
2kF ρ

representa o gradiente de densidade reduzido e adimensional, e kF =

(3π2ρ)1/3 corresponde ao vetor de onda de Fermi. O fator de aprimoramento da troca no
PBE, F PBE

x (s), foi construído para crescer monotonicamente com s, de modo a incorporar
correções semi-locais que intensificam a repulsão de troca em regiões de baixa densidade
eletrônica e fortes variações espaciais, como nas vizinhanças externas aos núcleos atômicos
e ao longo das ligações químicas:

F PBE
x (s) = 1 + κ− κ

1 + µs2

κ

. (2.38)

Os parâmetros κ e µ no funcional PBE são determinados exclusivamente pela imposição
de condições de vínculo físicas, preservando o caráter não empírico do funcional [59]. O
parâmetro µ = βπ2/3 é obtido diretamente do limite inferior de Lieb-Oxford para a energia
de troca, onde β ≈ 0.066725 é derivado de cálculos de Monte Quântico para o gás eletrônico
homogêneo. Já o parâmetro κ = 0.804 é fixado para garantir a correta dissociação de siste-
mas fracamente ligados e, crucialmente, para satisfazer a condição de que a energia de troca
seja exata para sistemas de um elétron, eliminando esta autointeração de troca nesse limite.

A componente de correlação do funcional PBE é construída sob uma filosofia análoga
à de troca, estratificando a energia de correlação em uma contribuição de base LDA e um
termo de correção não-local dependente do gradiente. Formalmente, expressa-se como:
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EPBE
c [ρ] =

∫
ρ(r)

[
ϵLDA
c (ρ(r)) +HPBE(ρ(r), |∇ρ(r)|)

]
dr. (2.39)

A função HPBE(ρ, t), na qual t = |∇ρ|/(2ksρ) é uma medida do gradiente reduzido para
correlação (com ks sendo o vetor de onda de Thomas-Fermi), é projetada para satisfazer três
condições fundamentais: (a) cancelar-se assintoticamente no limite de densidade homogênea
(∇ρ → 0), recuperando assim o resultado LDA; (b) reproduzir o comportamento correto no
regime de gradiente elevado e baixa densidade; e (c) assegurar que a densidade de energia
de correlação permaneça dentro de limites físicos rigorosos, em especial o limite de Lieb-
Oxford. Embora sua forma analítica seja complexa, ela é derivada inteiramente a partir de
princípios de invariância de escala e de resultados assintóticos conhecidos para o gás de
elétrons homogêneo.

A ascensão dos funcionais da família Generalized Gradient Approximation (GGA), no-
tadamente o funcional PBE, representou um avanço paradigmático na precisão da Teoria
do Funcional da Densidade (DFT) [52]. Esses funcionais introduziram avanços sistemáti-
cos e quantificáveis em relação à Approximação de Densidade Local (LDA), tornando-se
indispensáveis em estudos de Primeiros Princípios [60]. Sua superioridade manifesta-se em
várias propriedades-chave.

Energias e Geometrias de Ligação: A correção da superligação sistemática da LDA cons-
titui uma das contribuições mais significativas dos GGAs. Funcionais como o PBE preveem
energias de ligação, distâncias interatômicas e parâmetros de rede com acurácia notavel-
mente superior, conforme extensivamente validado em critérios de referência benchmarks

para moléculas e sólidos [61].

Barreiras de Reação e Energias de Adsorção: O desempenho aprimorado na descrição de
estados de transição e de interação molécula-superfície é crucial para aplicações em catálise
heterogênea. O PBE fornece estimativas para energias de ativação e adsorção consideravel-
mente mais confiáveis do que as obtidas com LDA [62, 63].

Propriedades Eletrostáticas: Momentos dipolares e outras propriedades derivadas da den-
sidade eletrônica são calculados com fidelidade ampliada, refletindo uma descrição mais
realista da distribuição de carga molecular [64].

Não obstante, é imperativo reconhecer as limitações intrínsecas inerentes ao formalismo
GGA. A subestimação sistemática de band gaps em semicondutores e isolantes um fenômeno
frequentemente atribuído à derivada descontínua do funcional de troca correlação — perma-
nece uma deficiência notória e estrutural [59]. De modo crítico, interações de dispersão (Van
der Waals), de natureza não-local, não são capturadas pela construção semi-local dos GGAs
padrão [65]. Esta omissão limita severamente a aplicabilidade da DFT pura em sistemas
supramoleculares, nanoestruturas e processos de adsorção física. Analogamente, proprieda-
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des governadas por correlação eletrônica forte, como em compostos contendo elementos de
terras raras ou metais de transição, frequentemente exigem formalismos que transcendem a
aproximação GGA [66].

Apesar dessas restrições, o equilíbrio ímpar entre robustez, custo computacional mode-
rado e precisão geral consolidou o funcional PBE como o padrão da comunidade científica
[52, 60]. Sua ubiquidade em estudos que demandam confiabilidade e eficiência o posici-
ona como o ponto de partida essencial para métodos mais sofisticados, incluindo funcionais
híbridos e meta-GGAs. A necessidade premente de descrever interações de Van der Wa-
als, portanto, motiva o desenvolvimento e a integração de esquemas de correção pós-DFT
especializados, tópico que será explorado em profundidade na seção subsequente.

2.2.4 Correção de Van der Waals para Funcionais Semilocais

Conforme discutido na Seção 2.2.3, uma das limitações mais significativas dos funcio-
nais semilocais, como aqueles baseados na Aproximação de Gradiente Generalizado (GGA),
é a sua incapacidade intrínseca de descrever de forma adequada as interações de dispersão de
longo alcance do tipo van der Waals (vdW) [67, 68]. Essas forças, de natureza quântica e ca-
ráter não local, resultam de correlações entre flutuações instantâneas da densidade eletrônica
em regiões espacialmente separadas de um sistema, dando origem à formação de multipo-
los transitórios que interagem atrativamente [69]. A relevância dessas interações é ampla e
fundamental: elas governam a adsorção física de moléculas em superfícies, desempenham
papel central na auto-organização de estruturas supramoleculares, estabilizam a coesão inter-
camada em materiais bidimensionais, como grafeno e dicalcogenetos de metais de transição,
além de influenciar propriedades estruturais e dinâmicas de líquidos moleculares [70, 71].

A limitação dos funcionais do tipo GGA em descrever interações de dispersão decorre
de sua própria natureza semilocal. O funcional de troca e correlação EGGA

xc [ρ], apresentado
na Eq. (2.34), depende apenas do valor da densidade eletrônica e de seu gradiente em um
ponto r, sem considerar explicitamente correlações não locais entre densidades eletrônicas
em pontos espacialmente separados (r, r′) [72]. Em alguns casos, a Aproximação da Den-
sidade Local (LDA) pode fornecer descrições aparentemente razoáveis dessas interações
devido a cancelamentos de erro fortuitos, mas sua aplicabilidade é limitada e carece de ca-
ráter sistemático [73]. Por sua vez, os funcionais GGA, ao reduzir parcialmente os erros
inerentes à LDA, também eliminam tais cancelamentos ocasionais, o que leva, na prática, a
uma subestimação significativa ou até mesmo à completa ausência de descrição das forças
de dispersão [68].

Para superar essa limitação fundamental sem comprometer a eficiência computacional
característica dos funcionais semilocais, foi desenvolvida uma classe de métodos ampla-
mente utilizada conhecida como DFT+D (DFT com correção de dispersão). Nessa aborda-
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gem, adiciona-se de forma a posteriori um termo de correção empírico à energia total obtida
com o funcional padrão, de modo a capturar os efeitos de dispersão ausentes. Entre as dife-
rentes versões disponíveis, este trabalho emprega a correção DFT-D3, proposta por Grimme
e colaboradores [74, 75], a qual se destaca por sua robustez, elevada precisão e parametriza-
ção abrangente que cobre praticamente toda a tabela periódica.

A energia total corrigida é dada por:

EDFT+D3 = EDFT + ED3
disp, (2.40)

onde EDFT é a energia obtida pela solução das equações de Kohn-Sham com um funcional
semilocal (e.g., PBE) e ED3

disp é o termo de dispersão aditivo, calculado como uma soma sobre
pares atômicos:

ED3
disp = −

∑
i<j

∑
n=6,8

sn
Cij

n

rnij
fdamp,n(rij), (2.41)

onde ED3
disp é a energia obtida com o funcional semilocal (por exemplo, PBE), Cij

n são coefi-
cientes de dispersão efetivos para o par de átomos (i, j), sn são fatores de escala dependente
do funcional base e fdamp,n é uma função de amortecimento crítica. Esta função garante que
a correção de longo alcance se anule suavemente em distâncias curtas, onde os efeitos de
dispersão são mascarados pela ligação covalente já descrita pelo funcional base EDFT [76].
A forma geral do amortecimento é dada por:

fdamp,n(rij) =
1

1 + 6

(
rij

sr,nR
ij
0

)−αn
, (2.42)

onde Rij
0 é um parâmetro de distância específico para o par atômico, e sr,n e αn são parâme-

tros de ajuste.

Um avanço fundamental do esquema D3 em relação a seus predecessores (por exemplo
o D2 [65]) consiste na introdução da dependência de ambiente dos coeficientes de dispersão
Cij

6 [74]. Diferentemente do D2, em que tais coeficientes são valores fixos atribuídos a cada
elemento químico, no D3 eles passam a ser avaliados on-the-fly, a partir de propriedades
atômicas de referência (como a carga nuclear Z e momentos radiais ⟨r2⟩, ⟨r4⟩) e, de maneira
crucial, modulados pelo número de coordenação química local de cada átomo i e j. Esse
procedimento confere ao método a capacidade de refletir mudanças estruturais, hibridizações
distintas e diferentes ambientes químicos, resultando em uma correção mais física e acurada,
em especial para superfícies e sistemas com elementos de química variável [75].

A correção DFT-D3 é uma ferramenta indispensável para a modelagem realista de ma-
teriais onde interações não-covalentes são decisivas. Sua precisão foi consolidada por ex-
tensos benchmarks, demonstrando excelente desempenho no cálculo de energias de ligação
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em complexos de dispersão, energias de adsorção em superfícies e parâmetros de rede em
cristais moleculares e laminares [74, 77].

Nesse contexto, a confiabilidade do método DFT-D3 serve como alicerce para investi-
gações subsequentes mais sofisticadas. Para tal, três classes de análise computacional são
realizadas de forma integrada: (i) Cálculos de fônons, para assegurar a estabilidade dinâ-
mica harmônica das estruturas; (ii) Análise de estrutura eletrônica (bandas e PDOS), para
caracterizar propriedades eletrônicas e de transporte; e (iii) Simulações de dinâmica mole-
cular ab initio (AIMD), para verificar a estabilidade térmica e comportamentos anarmônicos
em condições finitas de temperatura.

Assim sendo, as seções que se seguem detalham o formalismo e os procedimentos ado-
tados nessas etapas, visando fornecer uma caracterização multidimensional e termodinami-
camente consistente dos alótropos bidimensionais de carbono aqui investigados.

2.3 CÁLCULOS DE FÔNONS E ESTABILIDADE DINÂMICA

A caracterização da estabilidade dinâmica por meio de cálculos de fônons constitui uma
etapa fundamental e não negociável na predição ab initio de novos materiais, particularmente
para alótropos bidimensionais (2D) onde efeitos de baixa dimensionalidade podem induzir
instabilidades reticulares não triviais [78]. Baseando-se na aproximação harmônica, este
método permite identificar modos vibracionais imaginários (frequências ω2 < 0) que reve-
lam curvatura negativa na superfície de energia potencial (PES) na geometria de equilíbrio,
indicando que a estrutura corresponde a um ponto de sela e não a um mínimo verdadeiro
[79].

Fisicamente, uma frequência imaginária pode ser compreendida através de uma analogia
clássica com um sistema massa-mola: se a constante de força efetiva (k) para um deter-
minado modo de vibração for negativa, a equação de movimento resulta em uma solução
exponencialmente crescente em vez de oscilações harmônicas. Isto significa que qualquer
pequeno deslocamento ao longo da direção desse modo instável será amplificado exponen-
cialmente, conduzindo o sistema para longe da configuração inicial, o que está em completo
acordo com a interpretação quântica de uma estrutura dinamicamente instável.

O formalismo inicia-se com a expansão do potencial de interação atômica V (RI) em
série de Taylor em torno das posições de equilíbrio R0

I , truncada no termo harmônico (qua-
drático):

∆V = V − V0 =
1

2

∑
Iα,Jβ

Φαβ(I, J)uIαuJβ, (2.43)
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onde uIα = RIα − R0
Iα representa o deslocamento do átomo I na direção cartesiana α, e

Φαβ(I, J) = ∂2V
∂uIα∂uJβ

∣∣∣
0

denota a matriz de constantes de força interatômica. Fisicamente,
cada elemento desta matriz representa a "constante de mola generalizada" que relaciona a
força na direção α do átomo I com um deslocamento na direção β do átomo J .

No método dos deslocamentos finitos, esta matriz é calculada numericamente mediante
avaliação sistemática das forças atômicas (FI = −∇IV ). O procedimento envolve:

1. Realizar pequenos deslocamentos (∼0,01-0,03 Å) de cada átomo em cada direção car-
tesiana

2. Calcular as forças resultantes em todos os átomos para cada configuração perturbada

3. Aproximar numericamente as derivadas segundas através da relação:

Φαβ(I, J) ≈ −∆FIα

∆uJβ
, (2.44)

onde a aproximação por diferenças finitas é calculada através de deslocamentos atômicos
sistemáticos. Esta matriz Φαβ(I, J), também conhecida como matriz hessiana, contém assim
toda a informação sobre a rigidez da rede cristalina e os acoplamentos vibracionais entre
todos os pares atômicos no espaço real.

Para sistemas cristalinos com periodicidade, é mais conveniente trabalhar no espaço recí-
proco, onde a simetria translacional da rede pode ser explorada para simplificar o problema.
A transição para o espaço recíproco é realizada através da matriz dinâmica D(q), definida
como a transformada de Fourier da matriz de constantes de força:

Dαβ(IJ,q) =
1√

MIMJ

∑
R

Φαβ(I0, JR)e
iq·R, (2.45)

onde MI e MJ são as massas atômicas, e a soma percorre todos os vetores da rede real R
que conectam células unitárias. O fator 1/

√
MIMJ garante a correta normalização de massa

para a análise vibracional.

A matriz dinâmica representa efetivamente a generalização da matriz de constantes de
força para o espaço recíproco, incorporando a periodicidade do cristal. Para cada vetor de
onda q na zona de Brillouin, a diagonalização de D(q):

D(q)eqν = ω2
qνeqν (2.46)

fornece os autovalores ω2
qν (quadrados das frequências angulares) e autovetores eqν para cada
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modo normal ν. Os autovetores representam os padrões de deslocamento atômico caracte-
rísticos de cada modo de vibração, enquanto os autovalores determinam suas frequências.

A partir da diagonalização da matriz dinâmica, obtêm-se os autovetores e autovalores
que definem completamente os modos de vibração da rede cristalina. Estes modos são clas-
sicamente categorizados em dois grupos: fônons acústicos e ópticos, cujas características
refletem diretamente a estrutura e simetria do material.

Os modos acústicos (transversal - TA, longitudinal - LA, e flexural - ZA) caracterizam-se
por exibir frequências que tendem continuamente a zero à medida que o vetor de onda q

se aproxima da origem da zona de Brillouin (q → 0). Este comportamento fundamental
corresponde a movimentos coletivos nos quais todos os átomos da célula unitária deslocam-
se em fase, equivalentes a deformações elásticas do cristal como um todo. Fisicamente, estes
modos representam ondas sonoras na rede cristalina e dominam as propriedades térmicas de
baixa energia, a condutividade térmica, e a resposta elástica do material. Em particular, em
sistemas bidimensionais, o modo flexural (ZA) exibe dispersão quadrática única, ω ∝ q2,
que é uma assinatura distintiva da dimensionalidade reduzida.

Em contraste, os modos ópticos (transversal - TO, longitudinal - LO, e fora do plano -
ZO) apresentam frequências finitas mesmo no ponto Γ (q = 0), resultantes de deslocamentos
em oposição de fase entre os diferentes átomos da base cristalina. Estes modos correspon-
dem a vibrações internas da base atômica, onde átomos diferentes movem-se em direções
opostas, criando dipolos oscilantes que interagem fortemente com radiação eletromagnética.
Consequentemente, os modos ópticos são frequentemente ativos em espectroscopias vibraci-
onais, como Raman e infravermelho, permitindo a caracterização experimental de materiais
através de suas "impressões digitais" vibracionais. Além disso, estes modos são cruciais
para entender fenômenos quânticos como supercondutividade, instabilidades de Peierls, e
acoplamento elétron-fônon.

A relação entre o número de modos vibracionais e a complexidade da base cristalina
é governada por regras bem estabelecidas: para uma célula unitária contendo n átomos,
existem sempre 3 modos acústicos (correspondendo aos três graus de liberdade de translação
do cristal como um todo) e 3n − 3 modos ópticos, que representam os graus de liberdade
vibracionais internos da base atômica. Esta distribuição fundamental é consequência direta
das simetrias de translação do cristal e constitui um poderoso critério para validação de
cálculos de estrutura eletrônica [80].

A existência de um espectro fonônico isento de frequências imaginárias (ω2
qν ≥ 0 ∀ q, ν)

constitui condição necessária e suficiente para a estabilidade dinâmica harmônica do mate-
rial. Para sistemas bidimensionais, a análise requer atenção especial aos modos acústicos
fora do plano (ZA) na região de baixo momento (q → 0), cuja dispersão característica segue
a relação quadrática:
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ωZA(q) =

√
κ

ρ
|q|2, (2.47)

onde κ representa o módulo de flexão e ρ a densidade de massa superficial. Esta dependência
quadrática constitui assinatura fundamental da dimensionalidade reduzida em materiais 2D.
A presença de modos ZA com curvatura negativa (κ < 0) indica instabilidade dinâmica [81].

2.4 CÁLCULOS DE ESTRUTURA ELETRÔNICA: BANDAS E DEN-
SIDADE DE ESTADOS

A determinação precisa da estrutura eletrônica através do cálculo de bandas e densidade
de estados projetada (PDOS) representa etapa fundamental na caracterização de materiais
bidimensionais. Essas análises permitem a quantificação direta de propriedades eletrônicas
cruciais, incluindo a natureza do gap energético (direto ou indireto), a massa efetiva dos
portadores e os mecanismos de hibridização orbital responsáveis pela formação de estados
eletrônicos específicos. A relevância desses cálculos torna-se particularmente evidente no
contexto de nanostruturas bidimensionais, onde efeitos de confinamento quântico e a redução
dimensional impõem modificações profundas no espectro eletrônico quando comparado a
seus análogos tridimensionais [15].

O formalismo matemático para obtenção da estrutura de bandas fundamenta-se na solu-
ção autoconsistente das equações de Kohn-Sham:

ĤKSψnk(r) = ϵnkψnk(r), (2.48)

onde o Hamiltoniano efetivo de Kohn-Sham é dado por:

ĤKS = − ℏ2

2m
∇2 + V ext(r) + VHρ+ VXCρ. (2.49)

Nesta formulação, o termo − ℏ2
2m

∇2 representa o operador de energia cinética quântica,
Vext(r) corresponde ao potencial externo gerado pelos núcleos atômicos, VHρ denota o poten-
cial de Hartree que descreve a interação eletrostática clássica entre elétrons, e "VXCρ constitui
o potencial de troca e correlação, que incorpora efeitos quânticos não contemplados na apro-
ximação de campo médio.

Já a densidade de estados total é obtida diretamente a partir do espectro de autovalores:

g(E) =
∑
n

∫
BZ
δ(E − ϵnk)dk, (2.50)
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enquanto a decomposição em contribuições atômicas específicas é realizada através do PDOS:

gℓ(E) =
∑
n

∫
BZ

|⟨ϕℓ|ψnk⟩|2δ(E − ϵnk)dk, (2.51)

onde ϕℓ representa orbitais atômicos localizados. Esta decomposição orbital permite
estabelecer conexões fundamentais entre características eletrônicas e propriedades químicas
locais, incluindo a identificação de fenômenos de hibridização [15].

Para sistemas bidimensionais, o confinamento eletrônico manifesta-se através de modi-
ficações estruturais profundas na densidade de estados, incluindo o aparecimento de picos
discretos associados a estados quânticos confinados e modificações significativas nos gaps
eletrônicos devido a efeitos de correlação espacial e dimensionalidade reduzida [6]. Essas
alterações resultam diretamente da quebra de simetria translacional na direção perpendicular
ao plano, levando à formação de singularidades de van Hove características e à modificação
da dispersão eletrônica quando comparada a sistemas tridimensionais.

A análise integrada da estrutura de bandas ϵnk e da densidade de estados projetada gℓ(E)
permite uma caracterização abrangente das propriedades eletrônicas desses materiais. Esta
abordagem combinada faculta a identificação de mecanismos de hibridização orbital, a de-
terminação da natureza direta ou indireta de gaps eletrônicos, e a previsão de propriedades
ópticas através da análise de transições entre estados. A decomposição orbital oferecida pelo
PDOS é particularmente valiosa para elucidar a contribuição de orbitais específicos na for-
mação de estados próximos ao nível de Fermi, informação crucial para o entendimento das
propriedades de transporte e reatividade química.

Embora os funcionais semilocais apresentem limitações conhecidas na previsão quanti-
tativa de gaps de energia [82], suas descrições qualitativas mantêm robustez suficiente para
a análise de tendências sistemáticas e propriedades que dependem da forma da banda

2.5 DINÂMICA MOLECULAR AB INITIO

A dinâmica molecular ab initio (AIMD) baseada na aproximação de Born-Oppenheimer
(BO) constitui uma metodologia fundamental para a investigação da evolução temporal de
sistemas atômicos com descrição quântica precisa das interações eletrônicas. Nesta aborda-
gem, assume-se a separação adiabática entre os graus de liberdade eletrônicos e nucleares,
onde os elétrons respondem instantaneamente ao movimento nuclear, permitindo a descrição
da energia potencial através da solução da equação de Kohn-Sham para cada configuração
nuclear [83].

O formalismo matemático inicia-se com a solução das equações de Kohn-Sham para uma
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configuração nuclear fixa Ri:

ĤKS[ρ]ψλ(r) = ελψλ(r), (2.52)

ρ(r) =
∑
λ

fλ
∣∣ψλ(r)

∣∣2, (2.53)

onde fλ representa a ocupação eletrônica dos estados ψλ. A energia total do sistema é então
obtida através da expressão:

Etot[Ri] = Eel[Ri] +
1

2

∑
i ̸= j

ZiZje
2

|Ri −Rj|
, (2.54)

sendo Eel a energia eletrônica que incorpora as contribuições de Hartree, troca e correlação.

O cálculo das forças interatômicas constitui etapa crucial na dinâmica molecular ab initio,
sendo realizado mediante aplicação direta do teorema de Hellmann-Feynman. Este teorema
fundamental estabelece que a força atuante sobre cada núcleo é dada pelo gradiente negativo
da energia total em relação às coordenadas nucleares:

Fi = −∇RiEtot[Ri], (2.55)

onde a derivada é avaliada para a configuração nuclear instantânea Ri. Notavelmente,
quando calculado com a densidade eletrônica totalmente convergida para cada configura-
ção nuclear, este formalismo fornece forças consistentes com a aproximação adiabática de
Born-Oppenheimer, garantindo que os elétrons permaneçam em seu estado fundamental du-
rante toda a trajetória dinâmica.

A evolução temporal do sistema é subsequentemente determinada pela integração numé-
rica das equações de movimento Newtonianas:

Mi
d2Ri(t)

dt2
= Fi(t), (2.56)

que descrevem a aceleração de cada núcleo de massa Mi sob a ação da força Fi(t). Na
prática, esta integração é efetuada mediante o algoritmo de Velocity Verlet , que apresenta
precisão de segunda ordem e excelentes propriedades de conservação de energia.

Este algoritmo, integrante da classe dos métodos simpléticos, preserva a estrutura Hamil-
toniana das equações de movimento, assegurando tanto a reversibilidade temporal quanto a
conservação da energia em longas escalas de simulação. A escolha adequada do passo de
integração ∆t é um aspecto crítico: valores típicos entre 0,5 e 2,0 fs são empregados em
sistemas contendo átomos leves, como C, H, N e O [84], de modo a garantir estabilidade
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numérica e a descrição fiel das vibrações atômicas de maior frequência. A combinação entre
o teorema de Hellmann–Feynman, que fornece forças eletrônicas com precisão de primei-
ros princípios, e esquemas de integração temporal estáveis constitui a base computacional
que torna viável a dinâmica molecular ab initio, permitindo alcançar escalas de tempo fisica-
mente relevantes. No presente trabalho, as simulações AIMD foram conduzidas no ensemble
NVT (número de partículas, volume e temperatura constantes), empregando o termostato de
Nosé–Hoover para assegurar um controle termodinâmico rigoroso.

ξ̇ =
1

Q

[∑
i

MiṘ
2
i − gkBT

]
, (2.57)

onde ξ representa a variável termostática, Q sua massa efetiva, g o número de graus de
liberdade, e T a temperatura alvo. Esta abordagem permite a amostragem eficiente do espaço
de fases canônico enquanto mantém a conservação de energia adequada para estudos de
processos termicamente ativados [85, 86].

A implementação prática requer critérios rigorosos de convergência eletrônica (∆E <

10−6 eV) em cada passo temporal, garantindo a precisão quântica das forças interatômicas.
A utilização de pseudopotenciais e bases de ondas planas otimizadas assegura a eficiência
computacional necessária para alcançar escalas de tempo relevantes (tipicamente ps-ns) en-
quanto mantém a descrição precisa das interações eletrônicas.

Esta metodologia revela-se particularmente valiosa para a investigação de materiais bidi-
mensionais, nos quais efeitos de correlação eletrônica e flutuações térmicas podem induzir
transformações estruturais complexas que não seriam capturadas por potenciais empíricos.
A capacidade da AIMD de descrever de forma simultânea a dinâmica nuclear e a resposta
eletrônica confere-lhe um papel único na exploração de fenômenos termodinâmicos e de
processos de não equilíbrio em nanoestruturas bidimensionais. Nesse contexto, a verifica-
ção da estabilidade térmica das estruturas torna-se um aspecto central, pois permite avaliar
se o arranjo atômico proposto mantém sua integridade em condições de temperatura finita,
estabelecendo um critério robusto para a viabilidade física dos novos alótropos.

Embora a dinâmica molecular ab initio (AIMD) forneça uma descrição fundamental-
mente precisa das interações interatômicas, suas limitações computacionais inerentes res-
tringem sua aplicação a sistemas de tamanho reduzido e escalas de tempo relativamente cur-
tas. Para investigar propriedades mecânicas em sistemas em macroescala e fenômenos que
envolvem grandes deformações ou processos de fratura - que requerem a simulação de mi-
lhares a milhões de átomos por períodos extendidos - recorremos à dinâmica molecular clás-
sica (MD). Esta abordagem complementar, baseada em potenciais empíricos parametrizados,
permite simular sistemas com dimensões experimentalmente relevantes enquanto captura os
mecanismos essenciais de resposta mecânica, incluindo módulos elásticos, resistência à tra-
ção, e processos de falha catastrófica. Na próxima seção, detalharemos a parametrização e
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validação dos potenciais clássicos utilizados, demonstrando como esta metodologia permite
explorar propriedades mecânicas em nanoestruturas bidimensionais em condições termome-
cânicas diversas [87].

2.6 DINÂMICA MOLECULAR CLÁSSICA

A dinâmica molecular (MD) constitui um método computacional baseado nas equações
clássicas de movimento, formuladas nos referenciais de Newton, Lagrange e Hamilton, em-
pregado para descrever a evolução temporal de partículas, moléculas e estruturas. Seu obje-
tivo principal é prever as trajetórias atômicas — isto é, posições e velocidades — a partir da
integração numérica das equações de movimento [88].

Por meio dessa abordagem, torna-se possível investigar propriedades microscópicas e
fenômenos emergentes tanto em condições de equilíbrio termodinâmico quanto em situações
fora do equilíbrio [88]. Do ponto de vista formal, a descrição é fundamentada nas equações
de Hamilton. Para um sistema composto por N partículas, na ausência de dependência
explícita do tempo nas coordenadas generalizadas e sob a hipótese de forças conservativas, a
Hamiltoniana H coincide com a energia total E do sistema, podendo ser expressa como [89]

H = q̇p− L = K + V = E, (2.58)

em que q̇ representa as coordenadas generalizadas, p os momentos conjugados, L a lagran-
giana, K a energia cinética e V a energia potencial.

O formalismo Hamiltoniano fornece a base teórica fundamental para a descrição da evo-
lução temporal de sistemas dinâmicos. As equações canônicas de movimento, expressas
por:

dp

dt
= ṗ = −∂H

∂q
e

dq

dt
= q̇ =

∂H

∂p
, (2.59)

permitem a descrição completa da trajetória das partículas no espaço de fases. Diversos
métodos numéricos foram desenvolvidos para integrar estas equações, sendo o algoritmo
Velocity Verlet - implementado no Large-scale Atomic/Molecular Massively Parallel Simu-

lator (LAMMPS) [90] - particularmente eficiente em simulações de dinâmica molecular de
grande porte. Neste trabalho, essa ferramenta foi utilizada na caracterização das proprieda-
des mecânicas e térmicas das nanoestruturas investigadas, garantindo análises consistentes
com elevada precisão numérica e excelente desempenho computacional.

Na Seção 2.5, o algoritmo Velocity Verlet foi introduzido de maneira sucinta, no contexto
das simulações de dinâmica ab initio, apenas para destacar sua importância na integração
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estável das equações de movimento. Nesta seção dedicada à dinâmica molecular clássica,
o método será descrito de forma mais detalhada, enfatizando sua formulação matemática
e relevância prática no LAMMPS, de modo a evidenciar como a integração numérica das
trajetórias atômicas constitui a base para a obtenção das propriedades microscópicas e, pos-
teriormente, das grandezas macroscópicas de interesse.

2.6.1 Método Velocity Verlet

Seja a massa da partícula i denominada Mi, sua posição Ri e a força que age sobre ela
Fi, pelas equações de movimento de Newton, cuja força pode ser determinada através da
Equação 2.59, temos que

Fi =Mi
d2Ri

dt2
. (2.60)

Para um sistema de várias partículas, é impossível realizar o cálculo das equações de
movimento de forma analítica, assim é necessário utilizar de métodos aproximativos. O
método Velocity Verlet faz uso de uma aproximação através da expansão da série de Taylor
das coordenadas espaciais da partícula até termos de segunda ordem, onde, para um passo
de tempo h, a coordenada Ri(t+ h) pode ser expandida na forma [88]

Ri(t+ h) = Ri(t) + h
dRi

dt
+
h2

2

d2Ri

dt2
, (2.61)

onde a primeira derivada da posição é a velocidade vi(t) e a segunda a aceleração, portanto,
pela Equação 2.60, podemos reescrever como

Ri(t+ h) = Ri(t) + hvi(t) +
h2

2mi

Fi(t). (2.62)

Esta é uma equação que depende da velocidade, logo é necessário a equação da veloci-
dade, no momento posterior, que pode ser derivada de outra expansão da velocidade neste
tempo τ = t+ h levando a

vi(t+ h) = vi(t) +
h

mi

fi(t), (2.63)

que pode ser reescrita, para melhorar a precisão, usando uma média das forças na forma:

vi(t+ h) = vi(t) +
h

2mi

(Fi(t) + Fi(t+ h)). (2.64)

Dessa forma, conhecidas as posições e velocidades iniciais de cada partícula, e atualizando-
se iterativamente as forças de interação a cada passo de tempo, o método Velocity Verlet

permite a construção consistente das trajetórias atômicas ao longo da simulação [88]. O
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procedimento segue um ciclo recursivo no qual, a partir das condições iniciais, determinam-
se as forças atuantes, atualizam-se as posições de acordo com a Eq. 2.62 e, em seguida,
corrigem-se as velocidades segundo a Eq. 2.64. Esse processo é repetido sucessivamente
até que o número de passos ou o tempo total estipulado seja atingido, fornecendo assim a
evolução temporal do sistema.

Por meio desse integrador, obtêm-se as grandezas microscópicas fundamentais — posi-
ções, velocidades e forças — que constituem a base para a caracterização das propriedades
mecânicas de um material. Contudo, a análise de grandezas macroscópicas, como tempe-
ratura, pressão e volume, requer a incorporação do formalismo estatístico, estabelecendo a
ponte entre a dinâmica microscópica das partículas e as variáveis termodinâmicas acessíveis
em experimentos.

2.6.2 Ensembles

A caracterização das propriedades termodinâmicas de um sistema exige a transição da
descrição microscópica, baseada nas trajetórias individuais das partículas, para a análise de
grandezas médias capazes de representar o comportamento macroscópico. Essa ponte é
estabelecida pela mecânica estatística, em particular pelo conceito de ensembles, que corres-
pondem a conjuntos de estados acessíveis a um sistema sob determinadas restrições macros-
cópicas [46].

O fundamento dessa abordagem repousa no teorema ergódico, segundo o qual o valor
médio de uma grandeza física obtido a partir de uma média temporal suficientemente longa
é equivalente à média realizada sobre um conjunto de réplicas do sistema em equilíbrio [84,
89]. Dessa forma, ao fixar condições de contorno apropriadas — como número de partículas,
volume, temperatura ou pressão — é possível acessar quantidades termodinâmicas relevantes
de maneira consistente e comparável à grandezas experimentais.

Em termos práticos, uma simulação de dinâmica molecular é normalmente dividida em
duas etapas distintas: a fase de equilíbrio ou termalização, na qual o sistema ajusta suas
variáveis termodinâmicas a fim de atingir o estado alvo de temperatura e pressão, e a fase
de produção, em que os dados físicos de interesse são coletados [46, 87]. Apenas os resul-
tados da segunda etapa são utilizados para análise, garantindo que as propriedades avaliadas
correspondam a um regime estatisticamente estável.

Neste trabalho, diferentes ensembles foram empregados de acordo com a etapa da si-
mulação e com o objetivo específico de cada análise. Inicialmente, adotou-se o ensemble
isotérmico-isobárico (NPT), no qual o número de partículas (N ), a pressão (P ) e a tem-
peratura (T ) são mantidos constantes, permitindo que o volume (V ) se ajuste de forma a
equilibrar densidade e tensões residuais da estrutura [91]. Em seguida, utilizou-se o en-
semble canônico (NVT), no qual N , V e T permanecem fixos, assegurando a estabilização
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térmica do sistema em condições controladas [85, 86].

Durante a etapa de aquecimento, empregou-se novamente o ensemble NVT, mas com va-
riação controlada da temperatura, permitindo avaliar a estabilidade estrutural do material em
uma ampla faixa térmica. Já para a etapa de deformação uniaxial, a simulação foi conduzida
sob um ensemble modificado, no qual a caixa de simulação foi alongada progressivamente
em uma direção cristalográfica específica, implementada por meio do comando fix deform do
pacote LAMMPS [90, 92]. Nesse caso, N foi mantido constante enquanto o comprimento
da caixa no eixo x evoluiu de acordo com uma taxa de deformação prescrita, reproduzindo a
aplicação de um strain rate controlado. Para evitar o acúmulo artificial de tensões transver-
sais, as direções ortogonais foram acopladas a um barostato anisotrópico de Nosé-Hoover
(fix npt), garantindo que as pressões nos eixos y e z flutuassem em torno de valores pró-
ximos de zero [91]. Esse arranjo corresponde, portanto, a um ensemble não convencional do
tipo NPT anisotrópico com deformação imposta.

O controle da temperatura em todas as etapas foi realizado por meio do termostato de
Nosé-Hoover, que introduz graus de liberdade adicionais acoplados ao sistema, gerando flu-
tuações realistas em torno do valor alvo [85, 86]. De forma análoga, no ensemble NPT,
a pressão foi regulada por barostatos de Nosé-Hoover, assegurando a correta descrição do
equilíbrio estrutural e das condições externas impostas [91]. Essa estratégia metodológica
garante que as simulações capturem não apenas a resposta microscópica do material, mas
também propriedades macroscópicas coerentes com os estados termodinâmicos de interesse,
fornecendo uma base sólida para a análise tanto de estabilidade térmica quanto de compor-
tamento mecânico sob deformação.

2.6.3 Termostato de Nosé–Hoover

O controle termodinâmico da temperatura em simulações de dinâmica molecular é im-
plementado através de algoritmos termostáticos, sendo o termostato de Nosé–Hoover um
dos métodos mais amplamente utilizados para geração de ensembles canônicos (NVT). Este
esquema introduz um grau de liberdade adicional que atua como reservatório térmico, per-
mitindo que o sistema troque energia com um banho térmico externo e mantendo flutuações
térmicas consistentes com o ensemble canônico [85, 86].

Matematicamente, o acoplamento térmico é realizado mediante a introdução de uma
variável artificial s, associada a uma massa termostática Q > 0 e velocidade ṡ, que modifica
a lagrangiana do sistema conforme expresso por:

L =
∑
i

mi

2
s2ṙ2i − V (r) +

Q

2
ṡ2 − gkBT ln s, (2.65)

ondemi representa a massa da partícula i, ri suas coordenadas, V (r) o potencial de interação,
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g o número de graus de liberdade do sistema, T a temperatura desejada e kB a constante de
Boltzmann. A transformação correspondente na hamiltoniana assume a forma:

H =
∑
i

p2
i

2mis2
+

p2s
2Q

+ V (r) + gkBT ln s, (2.66)

sendo ps = Qṡ o momento conjugado associado à variável termostática.

O parâmetroQ determina a intensidade do acoplamento térmico. Valores excessivamente
elevados resultam em um acoplamento fraco, onde o sistema comporta-se efetivamente sob
condições microcanônicas (NVE), com flutuações térmicas insuficientes. Por outro lado,
valores demasiadamente baixos produzem um acoplamento excessivamente rígido, podendo
induzir oscilações artificiais na temperatura e perturbando a dinâmica natural do sistema
[91]. O termo gkBT ln s atua como potencial efetivo, modulando as escalas de velocidade
das partículas através da variável s para manter a temperatura próxima do valor desejado.

As equações de movimento derivadas desta hamiltoniana são integradas numericamente
utilizando algoritmos como Velocity Verlet, permitindo a determinação das trajetórias mole-
culares enquanto se mantém a temperatura controlada. A temperatura instantânea é calculada
a partir da média da energia cinética das partículas, validando assim a eficácia do termostato.

É importante destacar que, para simulações envolvendo controle simultâneo de tempe-
ratura e pressão (ensemble NPT), metodologias complementares como os barostatos de Be-
rendsen [93] ou Parrinello–Rahman [94] seriam necessárias. Contudo, para os objetivos
específicos deste trabalho, restringiu-se ao emprego do ensemble NVT com termostato de
Nosé–Hoover, mantendo o volume constante durante todas as etapas de simulação.

A determinação das forças interatômicas, essencial para a evolução temporal do sistema,
deriva do potencial de interação U(r) através da relação Fi = −∇iU(r), que por sua vez
determina as acelerações e consequentemente a evolução das velocidades e posições. Os
formalismos matemáticos que descrevem essas interações—conhecidos como campos de
força—fornecem os parâmetros e funções necessárias para calcular adequadamente a energia
potencial e assim as forças atuantes em cada partícula ao longo da simulação.

2.6.4 Campos de Força

A descrição precisa das interações interatômicas constitui um elemento fundamental para
a realização de simulações realistas de dinâmica molecular. Considerando que a solução
analítica direta da equação de Schrödinger para sistemas com muitos corpos é computacio-
nalmente intratável, torna-se necessária a utilização de aproximações que capturem adequa-
damente a energia potencial do sistema. Neste contexto, os campos de força (force fields)
emergem como formulações matemáticas parametrizadas que descrevem as interações atô-
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micas, permitindo o cálculo eficiente das forças interatômicas durante as simulações [46, 84].

2.6.4.1 Fundamentação Teórica e Classificação

De forma geral, a energia total descrita por um campo de força pode ser decomposta em
contribuições ligadas e não-ligadas:

Etotal = Eligada + Enão-ligada (2.67)

Os termos ligados referem-se às interações que dependem diretamente da conectividade
química:

Eligada = Eligação + Eangular + Ediedral + Ediedral impróprio + Ecruzados, (2.68)

onde Eligação representa a energia elástica associada ao estiramento de ligações químicas,
Eangular descreve a deformação de ângulos de ligação, Ediedral corresponde às energias de
torção torsionais, Ediedral impróprio modela a energia associada à deformação fora do plano, e
Ecruzados incorpora acoplamentos entre esses diferentes modos vibracionais [87].

Os termos não-ligados incluem interações de longo alcance:

Enão-ligada = Evdw + Eeletrostática, (2.69)

sendo Evdw a energia de van der Waals (geralmente descrita por potenciais de Lennard-
Jones ou Buckingham) e Eeletrostática a energia de interação coulombiana entre cargas parciais
atômicas [84].

A energia de Van der Waals, quando incorporada aos campos de força, representa fun-
damentalmente duas contribuições físicas distintas mas complementares. A primeira cor-
responde às forças atrativas de natureza eletrostática, resultantes da formação instantânea
de dipolos devido à assimetria na distribuição eletrônica dos orbitais atômicos. A segunda
origina-se do princípio de exclusão de Pauli, que impede a ocupação simultânea do mesmo
estado quântico por férmions idênticos, manifestando-se como uma repulsão de curto alcance
[95].

Estes efeitos quânticos, intrinsecamente não-clássicos, são incorporados empiricamente
através de potenciais efetivos que capturam aproximadamente seu comportamento médio.
Desta forma, mesmo simulações baseadas em mecânica clássica podem reproduzir quali-
tativamente fenômenos cuja descrição rigorosa exigiria um tratamento quântico completo
[96].
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A categorização dos campos de força representa um aspecto fundamental para a sele-
ção adequada de potenciais interatômicos em simulações de dinâmica molecular. Entre os
diversos critérios de classificação, destaca-se a capacidade de descrever processos reativos
envolvendo formação e ruptura de ligações químicas. Neste contexto, os campos de força
denominados reativos incorporam explicitamente termos energéticos que permitem a modu-
lação dinâmica da ordem de ligação, capacitando-os a descrever transformações químicas
complexas [97]. Estes potenciais, como ReaxFF, AIREBO e Tersoff, incluem parametriza-
ções sofisticadas que consideram tanto a liberação energética associada à ruptura de liga-
ções quanto o acúmulo de energia necessário para a formação de novas conexões atômicas
[98, 99, 100].

A complexidade inerente a estes formalismos reativos implica necessariamente em maior
custo computacional, uma vez que requerem o cálculo contínuo de parâmetros dependentes
do ambiente químico local. Consequentemente, para sistemas onde a composição química
permanece invariante durante a simulação - como no estudo materiais cristalinos estáveis -
a utilização de campos não-reativos mostra-se mais eficiente. Potenciais como CHARMM
(Chemistry at Harvard Macromolecular Mechanics) [101], AMBER (Assisted Model Buil-
ding with Energy Refinement) [102], e OPLS-AA (Optimized Potentials for Liquid Simu-
lations - All Atom) [103], amplamente utilizados em simulação biomolecular e de líquidos,
representam exemplos desta categoria, oferecendo desempenho computacional otimizado
para sistemas quimicamente estáveis.

Além da distinção baseada na reatividade química, os campos de força podem ser classi-
ficados segundo múltiplos critérios adicionais:

• Reativos versus Não-reativos: Capacidade de descrever dinamicamente a formação
e ruptura de ligações químicas. Campos reativos incorporam potencial dependente
da ordem de ligação, enquanto os não-reativos assumem conectividade molecular fixa
[16].

• Paramétricos versus Não-paramétricos: Os campos paramétricos utilizam formas
funcionais pré-definidas com parâmetros fixos, enquanto abordagens não-paramétricas
empregam algoritmos de aprendizado de máquina para determinar relações complexas
entre estrutura e energia [18].

Os campos de força ReaxFF, AIREBO e Tersoff, frequentemente empregados no estudo
de propriedades mecânicas de materiais, distinguem-se não apenas por sua capacidade rea-
tiva, mas também pelas particularidades de suas formulações matemáticas para os termos li-
gados da energia potencial [104]. Estas diferenças conceituais refletem-se significativamente
na precisão das simulações, no custo computacional e na transferibilidade dos potenciais para
diferentes condições termodinâmicas e mecânicas.
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A seleção apropriada do campo de força deve, portanto, considerar não apenas a natu-
reza reativa do sistema em estudo, mas também o balanço entre precisão física, eficiência
computacional e transferibilidade requerida para cada aplicação específica [105].

2.6.4.2 Potencial de Tersoff

Entre os potenciais reativos baseados em formalismos de ordem de ligação (bond-order),
o potencial de Tersoff [99] destaca-se como uma contribuição seminal para o campo da mo-
delagem de materiais covalentes. Desenvolvido originalmente para descrever propriedades
estruturais e energéticas de semicondutores como silício e carbono, este potencial introduz
uma formulação inovadora que incorpora explicitamente a dependência angular e permite
variação dinâmica da ordem de ligação em função do ambiente químico local, capturando
assim efeitos de muitos corpos de maneira eficiente.

A formulação geral do potencial assume a forma:

Vij = fC(rij) [aijfR(rij)− bijfA(rij)] , (2.70)

onde Vij representa a energia de interação entre os átomos i e j, fC(rij) é uma função de
corte suave que limita o alcance das interações, e aij é um parâmetro de screening. Os
termos repulsivo (fR) e atrativo (fA) seguem formas exponenciais:

fR(rij) = Ae−λ1rij , fA(rij) = Be−λ2rij , (2.71)

sendo A, B, λ1 e λ2 parâmetros específicos para cada tipo de interação atômica.

A inovação central do potencial reside no tratamento do parâmetro de ordem de ligação
bij , que incorpora a dependência do ambiente químico local através da expressão:

bij =
(
1 + βnζnij

)−1/2n
, (2.72)

onde β e n são parâmetros empíricos, e ζij quantifica a coordenação efetiva do par ij:

ζij =
∑
k ̸=i,j

fC(rik)g(θijk)e
α(rij−rik)

m

. (2.73)

A função g(θijk) introduz a dependência angular crítica para descrição adequada de ma-
teriais com ligação direcional, sendo θijk o ângulo formado pelos vetores r⃗ij e r⃗ik.

Embora o potencial de Tersoff tenha demonstrado notável sucesso na descrição de pro-
priedades estruturais e mecânicas de materiais covalentes [99, 106], sua aplicabilidade é
limitada a sistemas onde as interações de van der Waals e eletrostáticas são secundárias, uma
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vez que não inclui explicitamente termos não-ligados. Desenvolvido e parametrizado origi-
nalmente para elementos semi-condutores como silício (Si), carbono (C) e germânio (Ge),
o formalismo foi subsequentemente estendido para uma gama de outros materiais, incluindo
boro (B), nitrogênio (N), oxigênio (O) e diversos compostos binários e ternários como: SiC,
BN , SiO2.

Esta limitação inerente restringe seu uso principalmente para sistemas onde as interações
covalentes dominam o panorama energético, sendo menos adequado para o estudo de inter-
faces, moléculas adsorvidas ou sistemas onde forças intermoleculares desempenham papel
significativo. Consequentemente, o potencial de Tersoff é amplamente utilizado e conside-
rado altamente confiável para simulações de propriedades bulk de semicondutores e cerâmi-
cas covalentes, mas não é a ferramenta ideal para investigar fenômenos superficiais ou de
adsorção onde interações de mais longo alcance são críticas.

2.6.4.3 Potencial AIREBO

O potencial AIREBO (Adaptive Intermolecular Reactive Empirical Bond Order) repre-
senta um avanço significativo na modelagem computacional de sistemas carbonáceos, esten-
dendo o formalismo REBO original mediante a incorporação explícita de termos não-ligados
e de torção [100]. Desenvolvido especificamente para simulações abrangentes de materiais
baseados em carbono, este potencial demonstra particular utilidade no estudo de nanostru-
turas como grafeno, nanotubos de carbono e fullerenos, onde interações intermoleculares e
efeitos torsionais são cruciais para uma descrição física precisa.

A energia total no formalismo AIREBO é composta por três contribuições principais que
capturam diferentes aspectos das interações atômicas:

EAIREBO =
1

2

∑
i

∑
j ̸=i

[
EREBO

ij + ELJ
ij +

∑
k ̸=i,j

∑
l ̸=i,j,k

E torsion
kijl

]
. (2.74)

O termo REBO preserva a formulação fundamental estabelecida pelo potencial de se-
gunda geração de Brenner [107], mantendo a dependência da ordem de ligação (bond-order)
como elemento central para a descrição da reatividade química em sistemas carbonáceos.
Matematicamente, esta contribuição energética é expressa por:

EREBO
ij = fC(rij) [VR(rij)− bijVA(rij)] , (2.75)

onde fC(rij) representa uma função de corte (cutoff function) que garante a continuidade
numérica do potencial ao restringir as interações na primeira camada de coordenação. Os
termos VR(rij) e VA(rij) correspondem, respectivamente, às componentes repulsiva e atrativa
do potencial, seguindo formas funcionais exponenciais. O parâmetro bij incorpora o conceito
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de ordem de ligação, sendo calculado com base no ambiente químico local e responsável por
modular dinamicamente a força da ligação covalente entre os átomos i e j em função da
coordenação atômica.

A principal inovação do formalismo AIREBO consiste na introdução explícita de intera-
ções não-ligadas através de um potencial de Lennard-Jones modificado, suavizado por uma
função que garante transições contínuas entre regimes de interação. Esta abordagem previne
descontinuidades energéticas e mantém a conservação das forças, assegurando estabilidade
numérica durante simulações de dinâmica molecular:

ELJ
ij = S(tij)S(tji)fC(rij)V

LJ(rij), (2.76)

V LJ(rij) = 4ϵ

[(
σ

rij

)12

−
(
σ

rij

)6
]
, (2.77)

onde S(tij) e S(tji) representam funções de transição que previnem dupla contagem de
interações já consideradas no termo REBO, enquanto ϵ e σ denotam, respectivamente, a
profundidade do poço de potencial e a distância característica de equilíbrio para as interações
de van der Waals.

O termo torsional introduz uma dependência angular diedral essencial para a descrição
de conformações moleculares:

E torsion
kijl = wik(rik)wjl(rjl)

(
256

405
ϵkl cos

10 θijkl
2

− 1

10
ϵkl

)
(2.78)

onde wik e wjl são funções de ponderação dependentes das distâncias interatômicas, e θijkl
representa o ângulo diedral formado pelo quartetos de átomos i-j-k-l.

Esta formulação tripartite confere ao AIREBO a capacidade única de descrever simulta-
neamente interações intramoleculares covalentes e forças intermoleculares em sistemas car-
bonáceos complexos [100]. A parametrização refinada do potencial torna-o particularmente
adequado para investigar fenômenos onde a reatividade química, as transições conforma-
cionais e as interações não-ligadas são simultaneamente relevantes, consolidando-o como
ferramenta computacional essencial na nanomecânica de materiais carbonáceos.

A integração sinérgica entre o formalismo de ordem de ligação do REBO e as intera-
ções de longo alcance descritas pelo potencial de Lennard-Jones possibilita uma modelagem
multiescala eficaz, permitindo a descrição realista de propriedades mecânicas, estruturais e
dinâmicas em sistemas carbonosos sob diversas condições termodinâmicas.
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2.6.4.4 Potencial ReaxFF

O potencial ReaxFF (Reactive Force Field) constitui um marco paradigmático na evo-
lução de campos de força reativos para dinâmica molecular, representando uma transição
fundamental dos formalismos de potencial fixo para abordagens baseadas em ordem de liga-
ção contínua (bond-order) [98]. Desenvolvido por van Duin e colaboradores, este potencial
incorpora o formalismo BEBO (Bond Energy Bond Order) que estabelece uma relação fun-
damental entre a energia de ligação e sua ordem correspondente, permitindo a descrição
dinâmica de processos reativos complexos com precisão quântica aproximada.

A arquitetura energética do ReaxFF integra múltiplas contribuições interatômicas através
de uma formulação matemática abrangente:

Esistema =Eligação + Esobre + Eangular + Etorção + Evan der Waals+

+ ECoulomb + Epenalidade + Eespecífico.
(2.79)

Cada componente desta formulação possui distinção física precisa: Eligação constitui o
cerne do formalismo reativo, descrevendo as energias associadas às ligações covalentes atra-
vés do conceito BEBO, que relaciona continuamente a energia da ligação com sua ordem
correspondente. O termo Esobre implementa uma repulsão de curto alcance de natureza
empírica que, embora conceitualmente relacionada ao princípio de exclusão de Pauli, atua
principalmente para prevenir aproximações não-físicas entre núcleos atômicos, garantindo
estabilidade numérica durante simulações de processos reativos.

As deformações geométricas são descritas por Eangular, que quantifica a resistência à de-
formação angular, e Etorção, que caracteriza as barreiras energéticas associadas à rotação
molecular através de potenciais dihedrais. Para interações não-ligadas, o potencial incorpora
Evan der Waals, modelando forças de dispersão através de potenciais do tipo Lennard-Jones, e
ECoulomb, que trata das interações eletrostáticas de longo alcance entre cargas parciais calcu-
ladas através do método de equilíbrio de cargas (QEq). Termos adicionais incluemEpenalidade,
que introduz restrições conformacionais para estabilizar arranjos moleculares específicos, e
Eespecífico, destinado a capturar contribuições energéticas particulares de sistemas especiali-
zados.

O núcleo inovador do ReaxFF reside no tratamento contínuo da ordem de ligação medi-
ante funções exponenciais suaves:

BOij = BOσ
ij +BOπ

ij +BOππ
ij , (2.80)
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BO′
ij = exp

[
pbo1

(
rij
r′0

)pbo2
]
, (2.81)

onde BOσ
ij , BO

π
ij e BOππ

ij representam as contribuições dos orbitais σ, π e ππ respecti-
vamente. Os parâmetros pbo1 e pbo2 são otimizados para reproduzir superfícies de energia
potencial derivadas de cálculos ab initio, enquanto r′0 denota a distância de equilíbrio de
referência. Esta abordagem matemática possibilita transições dinâmicas entre estados de li-
gação durante processos reativos, representando um avanço paradigmático na modelagem
computacional de sistemas quimicamente complexos.

A parametrização do potencial ReaxFF emprega um esquema sofisticado de cargas atô-
micas dinâmicas baseado no método QEq Charge Equilibration [108], que permite a flutu-
ação automática de cargas durante processos reativos. Esta abordagem calcula as interações
eletrostáticas através de:

ECoulomb =
∑
i

∑
j>i

qiqj
rij

+
∑
i

[
χiqi +

1

2
Jiq

2
i

]
, (2.82)

onde χi representa a eletronegatividade do átomo i, Ji denota seu potencial de auto-repulsão,
e qi são as cargas atômicas determinadas iterativamente para minimizar a energia eletrostática
total do sistema. Este formalismo permite uma descrição realista da polarização eletrônica
durante reações químicas e mudanças conformacionais.

A notável transferibilidade e abrangência do potencial ReaxFF derivam fundamental-
mente de sua formulação unificada baseada no formalismo de ordem de ligação contínua,
que permite aplicação consistente através de diversos elementos químicos da tabela periódica
e estados de hibridização [109, 16]. Esta característica distintiva possibilita a modelagem in-
tegrada de sistemas multifásicos e multicomponentes com precisão quântica aproximada.

Atualmente, encontram-se disponíveis parametrizações abrangentes para diferentes sis-
temas materiais, compreendendo as seguintes espécies químicas:

• Elementos principais: Hidrogênio (H), boro (B), carbono (C), nitrogênio (N), oxigênio
(O), flúor (F), silício (Si), fósforo (P), enxofre (S), cloro (Cl)

• Metais de transição: Ferro (Fe), cobalto (Co), níquel (Ni), cobre (Cu), zinco (Zn),
molibdênio (Mo), tungstênio (W), platina (Pt)

• Elementos terras raras e actinídeos: Lantânio (La), cério (Ce), urânio (U)

• Sistemas complexos: Compostos organometálicos, interfaces metal/orgânico e mate-
riais híbridos

A versatilidade do potencial ReaxFF possibilita investigações multiescala em diversas
áreas do conhecimento científico. Na área de catálise e processos superficiais, o potencial
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demonstra particular eficácia na elucidação de mecanismos reativos em catalisadores hete-
rogêneos e homogêneos, fornecendo informações fundamentais sobre processos de ativação
molecular e transformações químicas em interfaces. Na ciência dos materiais, aplica-se com
sucesso no estudo de decomposição térmica, pirólise e síntese controlada de nanomateriais,
permitindo a previsão de propriedades estruturais e termodinâmicas com precisão significa-
tiva.

A despeito de seus notáveis avanços, o potencial ReaxFF apresenta limitações inerentes
à sua natureza empírica parametrizada. A precisão dos resultados permanece intrinseca-
mente vinculada à qualidade e abrangência dos dados experimentais e quânticos utilizados
em seu ajuste parametrizado [98]. Adicionalmente, o processo de desenvolvimento de novos
parâmetros para elementos químicos ou condições específicas revela-se notavelmente labo-
rioso, exigindo extenso trabalho manual de calibração e validação [110]. Estas restrições
tornam particularmente desafiadora a modelagem de sistemas contendo elementos com quí-
mica complexa ou interações eletrônicas delicadas, como compostos de metais de transição
com estados de oxidação variáveis ou materiais com fortes correlações eletrônicas [16].

Neste contexto emergem os Potenciais Interatômicos por Aprendizado de Máquina (MLIPs)
como paradigma evolucionário, superando estas limitações através de representações não-
paramétricas da superfície de energia potencial [18]. Baseados em algoritmos de aprendizado
estatístico, os MLIPs são capazes de aprender diretamente de cálculos quânticos de referên-
cia, alcançando precisão próxima ao nível DFT com custo computacional significativamente
reduzido [19]. Sua arquitetura flexível permite adaptação contínua mediante a inclusão de
novos dados, possibilitando a descrição precisa de sistemas quimicamente complexos além
do escopo dos potenciais reativos tradicionais [111].

2.6.4.5 Potencial MLIP

Os Potenciais Interatômicos baseados em Aprendizado de Máquina (Machine Learning
Interatomic Potentials - MLIPs) representam um avanço significativo no campo de simula-
ções atomísticas, pertencendo a uma nova classe de campos de força que superam as limita-
ções dos potenciais empíricos tradicionais. Diferentemente dos potenciais paramétricos con-
vencionais, que utilizam formas funcionais pré-definidas com parâmetros fixos, os MLIPs
adotam uma abordagem não-paramétrica onde o potencial é aprendido diretamente de dados
de referência através de algoritmos de regressão estatística [18, 111], permitindo alcançar
acurácia próxima à de métodos ab initio com um custo computacional menor.

A arquitetura fundamental dos MLIPs compreende dois componentes essenciais: (i) des-
critores que transformam coordenadas atômicas em representações matemáticas invariantes a
translações, rotações e permutações atômicas; e (ii) modelos de regressão que mapeiam esses
descritores para energias potenciais. Esta abordagem permite capturar nuances complexas
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da superfície de energia potencial (PES) sem as restrições impostas por formas funcionais
pré-estabelecidas.

Entre as diversas implementações de MLIPs, os Moment Tensor Potentials (MTPs) [19]
distinguem-se por sua fundamentação matemática rigorosa, que incorpora explicitamente as
invariâncias fundamentais da interação atômica. No formalismo MTP, a energia total do
sistema é expressa como uma soma de contribuições atômicas locais:

EMTP =
N∑
i=1

V (ni), (2.83)

onde V (ni) é o potencial local do átomo i, que depende do seu ambiente atômico ni. Sejam
Ri ∈ R3 as posições atômicas e zi os tipos/espécies atômicas. Definimos os vetores relativos

rij = Rj −Ri, rij = ∥rij∥. (2.84)

O conjunto de vizinhos de i é definido por um raio de corte Rcut (adotando-se a convenção
de imagem mínima para condições periódicas):

Ni =
{
j ̸= i : rij < Rcut

}
. (2.85)

Formalizamos, então, o ambiente local ni como o par que contém a espécie do átomo central
e o conjunto de pares (vetor relativo, espécie) para todos os seus vizinhos:

ni ≡
(
zi,
{(

rij, zj
)
: j ∈ Ni

})
. (2.86)

Essa construção assegura, por desenho, as invariâncias físicas necessárias: (i) translacional
(apenas posições relativas), (ii) permutacional entre vizinhos indistinguíveis (devido ao uso
de somas simétricas) e, após a etapa seguinte, (iii) rotacional.

A etapa central do MTP consiste em aproximar V (ni) por uma combinação linear de
invariantes geométricos (escalares invariantes a rotações) construídos a partir de momentos

tensoriais do ambiente:

V (ni) =

Ninv∑
α=1

ξαBα(ni), (2.87)

onde os coeficientes ξα são parâmetros lineares a serem ajustados e Bα são os invariantes.
Os blocos básicos da construção são os momentos tensoriais simétricos

Mµ,ν(ni) =
∑
j∈Ni

fµ
(
rij, zi, zj

)
rij ⊗ · · · ⊗ rij︸ ︷︷ ︸

ν vezes

, (2.88)

em que ν ∈ N é a ordem (posto) do tensor e fµ são funções radiais que pesam a contribuição
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de cada vizinho segundo a distância e as espécies químicas envolvidas.

As funções radiais são, por sua vez, expandidas em uma base unidimensional com enve-
lope de corte suave, garantindo continuidade e derivadas nulas no raio de corte:

fµ(rij, zi, zj) =

NQ∑
β=1

c(β)µ,zi,zj
Q(β)(rij), Q(β)(r) = φ(β)(r)

(
Rcut − r

)2
Θ(Rcut − r),

(2.89)
onde {Q(β)} é uma família de funções radiais (por exemplo polinômios de Chebyshev mo-
dulados), c(β)µ,zi,zj são parâmetros radiais por “canal químico”, e Θ é a função degrau de Hea-
viside.

A partir dos tensores Mµ,ν , os invariantes Bα são obtidos por contração total de produtos
tensoriais (o que os torna, por definição, invariantes a rotações):

Bα(ni) = Contrα

(
k⊗

t=1

Mµt,νt(ni)

)
. (2.90)

Exemplos ilustrativos incluem Mµ,1 ·Mµ′,1 (equivalente a uma soma de produtos escalares
rij · ril com pesos radiais), e Mµ,2 :Mµ′,2 (dupla contração entre tensores de segunda ordem),
entre muitos outros. Ao limitar as ordens ν e o grau total de contrações, obtém-se uma hie-

rarquia sistematicamente melhorável: aumentar Ninv (mais invariantes), NQ (mais funções
radiais) ou a ordem máxima dos tensores expande o espaço de funções e eleva a capacidade
de aproximação de V .

Em síntese, o procedimento é: (i) definir o ambiente local via vizinhanças dentro deRcut;
(ii) construir momentos tensoriais Mµ,ν com pesos radiais sensíveis à distância e à espécie;
(iii) gerar invariantes escalares Bα por contrações de produtos de Mµ,ν ; e (iv) aproximar o
potencial local por uma combinação linear desses invariantes, Eq. (2.87). Essa arquitetura
codifica as simetrias físicas corretas e permite controlar o custo e benefício entre precisão e
eficiência: com bases modestas já se obtém bom desempenho, e a acurácia pode ser incre-
mentada de forma controlada ampliando-se a base de invariantes e canais radiais.

Dado um conjunto de configurações de referência {cfgk}Kk=1 obtidas por cálculos ab

initio (DFT), com N (k) átomos em cada configuração, o ajuste dos parâmetros do MTP
visa reproduzir, de forma consistente, energias, forças e tensões. O vetor de parâmetros θ
a ser otimizado inclui os coeficientes lineares ξα da Eq. (2.87) e os coeficientes c(β)µ,zi,zj que
definem as funções radiais na Eq. (2.89).

Sejam EDFT
k a energia total da configuração k, FDFT

i,k a força sobre o átomo i em k, e
σDFT

k o tensor de tensões (virial por unidade de volume). As predições do MTP são denota-
das por EMTP

k (θ), FMTP
i,k (θ) e σMTP

k (θ). A função objetivo adotada [19] é uma minimização

43



de mínimos quadrados ponderada com regularização:

L(θ) =
K∑
k=1

[
wE

(
EMTP

k (θ)

N (k)
− EDFT

k

N (k)

)2

+ wF
1

3N (k)

N(k)∑
i=1

∥∥FMTP
i,k (θ)− FDFT

i,k

∥∥2+
+ wσ

1

9

∥∥σMTP
k (θ)− σDFT

k

∥∥2
F

]
+ λR(θ),

(2.91)

ondewE, wF , wσ > 0 são pesos que controlam a contribuição relativa de cada termo, ∥·∥F é a
norma de Frobenius, e λR(θ) é um termo de regularização (e.g., de Tikhonov, R(θ) = ∥θ∥22
ou R(θ) = ∥ξ∥22) que estabiliza o ajuste e evita sobreajuste.

A minimização minθ L(θ) é eficiente porque a energia e suas derivadas (forças, tensões)
dependem linearmente de um subconjunto crucial dos parâmetros, os coeficientes ξα. Para
um conjunto fixo de funções radiais fµ (i.e., parâmetros c fixos), o problema se reduz a um
problema de mínimos quadrados linear. Neste caso, ao empilhar todos os alvos (energias por
átomo, componentes de força e componentes de tensão) em um vetor y e todas as respectivas
derivadas em relação a ξ nas linhas de uma matriz A, obtém-se a solução de regressão de
Ridge:

ξ⋆ = argmin
ξ

∥∥W (Aξ − y)
∥∥2
2
+ λ ∥Γξ∥22

=
(
A⊤W⊤WA+ λΓ⊤Γ

)−1
A⊤W⊤Wy,

(2.92)

onde W é uma matriz diagonal que codifica os pesos (wE, wF , wσ) e Γ implementa a regu-
larização. Na prática, o ajuste completo de todos os parâmetros θ é realizado por algoritmos
iterativos (por exemplo quasi-Newton) que aproveitam esta estrutura parcialmente linear.

Para monitorar o desempenho e quantificar a acurácia do potencial machine learning
(MLIP) ajustado, empregam-se métricas de erro estatístico padronizadas. O Erro Médio
Quadrático (Mean Squared Error - MSE) e sua Raiz (Root Mean Squared Error - RMSE)
são as mais comuns, fornecendo uma medida abrangente dos desvios entre as predições do
modelo (target) e os valores de referência calculados via ab initio.

O MSE para a energia é definido como a média das diferenças ao quadrado da energia
por átomo normalizada entre todas as K configurações no conjunto de teste:

MSEE =
1

K

K∑
k=1

(
EMTP

k

N (k)︸ ︷︷ ︸
Energia/átomo (MTP)

− EDFT
k

N (k)︸ ︷︷ ︸
Energia/átomo (DFT)

)2

. (2.93)

A normalização pelo número de átomos N (k) em cada configuração é crucial para que o erro
seja independente do tamanho do sistema, permitindo a comparação justa entre configura-
ções com diferentes números de átomos.

44



Para as forças, que são um vetor tridimensional para cada átomo, o MSE é calculado
primeiro pela diferença quadrática em cada componente cartesiana, averagedada sobre todos
os átomos e todas as configurações:

MSEF =
1

K

K∑
k=1

[
1

3N (k)

N(k)∑
i=1

∥∥ FMTP
i,k︸ ︷︷ ︸

Força (MTP)

− FDFT
i,k︸ ︷︷ ︸

Força (DFT)

∥∥2]. (2.94)

O fator 3N (k) no denominador representa o número total de componentes de força no sistema
(3 componentes por átomo), normalizando o erro por grau de liberdade. Isto garante que o
erro reportado seja uma média representativa por componente de força.

De forma análoga, o MSE para o tensor de tensões, uma grandeza de ordem 2 (3x3),
é calculado usando a norma de Frobenius (análoga à norma Euclidiana para matrizes) e
normalizado pelo número de componentes (9):

MSEσ =
1

K

K∑
k=1

[
1

9

∥∥ σMTP
k︸ ︷︷ ︸

Tensão (MTP)

− σDFT
k︸ ︷︷ ︸

Tensão (DFT)

∥∥2
F

]
. (2.95)

O RMSE é simplesmente a raiz quadrada do MSE correspondente:

RMSEα =
√

MSEα. (2.96)

Esta transformação é útil porque devolve a unidade de medida da grandeza original (por
exemplo eV/átomo para energia, eV/Å para força), tornando a interpretação do erro mais
intuitiva. Por exemplo, um RMSEE de 0.002 eV/átomo significa que, em média, o erro do
modelo na energia por átomo é de 2 meV.

Em aplicações práticas, os valores desejáveis para essas métricas dependem da aplicação
específica, mas existem benchmarks na literatura para potenciais de alta qualidade. Erros na
energia da ordem de poucos meV/átomo (por exemplo 1-5 meV/átomo para RMSEE) indi-
cam que o potencial reproduz com alta fidelidade as energias relativas de diferentes fases,
defeitos, ou superfícies. Erros em forças na faixa de 0.05 a 0.1 eV/Å (para RMSEF ) são tipi-
camente necessários para realizar dinâmica molecular estável e confiável, garantindo que as
trajetórias e propriedades termodinâmicas calculadas não divirjam significativamente daque-
las que seriam obtidas via DFT. A complexidade do material (elementos envolvidos, tipos
de ligação) e a abrangência do conjunto de treinamento (que deve amostrar adequadamente
o espaço de configurações de interesse) são os fatores primários que determinam o limite de
acurácia alcançável.

Um aspecto importante do fluxo de trabalho é a curadoria iterativa do conjunto de dados.
No MLIP, critérios de active learning baseados em medidas de extrapolação do espaço de
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características (e.g., D-otimalidade) permitem identificar configurações nas quais o potencial
extrapola, sugerindo novos pontos para rotulagem ab initio e realimentação do treinamento
[19]. Esse ciclo garante transferibilidade progressiva do MTP para deformações, fases e
condições termodinâmicas relevantes.

No presente trabalho, efetuamos cálculos ab initio para gerar conjuntos de treino e vali-
dação, seguindo a Eq. (2.91) para ajustar o MTP via MLIP [19]. O potencial resultante foi
então empregado em simulações de dinâmica molecular para a análise robusta de proprieda-
des mecânicas e termodinâmicas, assegurando consistência entre as predições do modelo e
os observáveis de referência.

2.7 PROPRIEDADES MECÂNICAS

A relação fundamental que descreve a resposta mecânica de um material consiste no vín-
culo entre o estado de tensões internas e a deformação resultante. Em escala macroscópica,
essa relação é tradicionalmente caracterizada por ensaios de tração, que fornecem o diagrama
tensão–deformação, considerado a assinatura mecânica do material [112]. A partir desse di-
agrama extraem-se parâmetros fundamentais, como o módulo de elasticidade, o limite de
escoamento, a resistência última à tração e a ductilidade, que permitem distinguir os regimes
elástico e plástico [113].

No entanto, para materiais bidimensionais e nanométricos, os ensaios convencionais
apresentam limitações, tornando indispensável o uso de simulações atomísticas. Neste con-
texto, a dinâmica molecular clássica surge como uma ferramenta preditiva robusta para re-
produzir curvas tensão–deformação em escala atômica, possibilitando a determinação dos
mesmos parâmetros mecânicos e a identificação dos mecanismos subjacentes de deformação
e fratura [114].

2.7.1 Deformação Elástica

Quando um material sólido é submetido a forças externas, ele responde alterando sua
forma e/ou volume através de deformações internas. Essas deformações, por sua vez, geram
tensões internas, que representam as forças que as partes do material exercem umas sobre as
outras. A descrição formal da deformação inicia-se com o campo de deslocamentos u(x),
que mapeia a mudança de posição de cada ponto material. Para pequenas deformações, a
mudança local na geometria é quantificada pelo tensor simétrico de deformação:

εij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
, (2.97)

46



Os componentes diagonais deste tensor (εii) representam extensões ou compressões rela-
tivas ao longo dos eixos coordenados, enquanto os componentes fora da diagonal (εij, i ̸= j)
descrevem distorções angulares (cisalhamento). Em situações mais simples, como um ensaio
uniaxial, a deformação pode ser caracterizada pela deformação de engenharia [115]:

ε =
l − l0
l0

, (2.98)

com l0 e l denotando, respectivamente, o comprimento inicial da amostra e o comprimento
após a aplicação da carga.

A resposta interna do material a essas deformações é descrita pelo tensor de tensões σij .
O componente σij representa a i-ésima componente da força interna por unidade de área
que atua sobre uma superfície infinitesimal orientada perpendicularmente ao eixo xj . Para
que o material permaneça em equilíbrio estático, as forças resultantes sobre qualquer porção
arbitrária devem ser nulas. Isso leva às equações de equilíbrio diferencial:

∂σij
∂xj

+ fi = 0 (2.99)

onde fi representa a i-ésima componente da força de corpo por unidade de volume (como a
força gravitacional, fgi).

Em muitas análises teóricas e situações práticas onde as forças de corpo são negligenciá-
veis em comparação com os gradientes de tensão, as equações de equilíbrio simplificam-se
para ∂jσij = 0. Adicionalmente, a condição de equilíbrio de momentos angulares impõe a
simetria do tensor de tensões: σij = σji [115]. No contexto de um ensaio uniaxial simples, a
tensão relevante é frequentemente a tensão de engenharia, definida como a força normalizada
pela área da seção transversal inicial, σ = F/A0.

No regime de deformação elástica, o material retorna à sua forma original após a remo-
ção da carga externa. Para muitas materiais sob pequenas deformações elásticas, a relação
entre tensão e deformação é linear, descrita pela Lei de Hooke. Na sua forma mais simples
(uniaxial), ela é expressa como:

σ = E ε, (2.100)

onde E é o módulo de Young uma medida da rigidez do material em resposta a uma carga
uniaxial. Um valor maior de E indica que o material é mais rígido, ou seja, sofre menor
deformação elástica para uma dada tensão aplicada [112].

Contudo, para descrever a resposta elástica em um estado geral de carregamento e para
materiais com anisotropia, é necessário generalizar a Lei de Hooke utilizando tensores. A
relação linear entre o tensor de tensões σij e o tensor de deformações εkl é dada por:

47



σij = Cijkl εkl, (2.101)

onde Cijkl é o tensor das constantes elásticas (ou tensor de rigidez), um tensor de quarta
ordem que incorpora as propriedades elásticas intrínsecas e as simetrias do material [115].
Este tensor relaciona cada componente de tensão a todas as componentes de deformação,
capturando a complexidade da resposta elástica tridimensional e anisotrópica.

Termodinamicamente, o trabalho realizado durante uma deformação elástica é armaze-
nado como energia potencial elástica por unidade de volume, U . Para materiais que obede-
cem à Lei de Hooke generalizada, esta energia pode ser expressa como uma função quadrá-
tica das componentes da deformação:

U =
1

2
Cijklεijεkl (2.102)

Embora a forma tensorial seja fundamental, para fins práticos é comum utilizar a notação
de Voigt, que reduz o tensor de quarta ordem Cijkl (com 81 componentes) a uma matriz
simétrica 6x6, Cλµ (com 21 componentes independentes no caso mais geral)[115]. A energia
elástica de deformação é então reescrita da seguinte forma:

U =
1

2

6∑
λ=1

6∑
µ=1

Cλµϵλϵµ (2.103)

Nesta notação, os índices λ, µ = 1, 2, 3 referem-se às deformações normais (extensão ou
compressão, ϵxx, ϵyy, ϵzz), enquanto os índices 4, 5, 6 referem-se às deformações de cisalha-
mento (distorção angular, ϵyz, ϵzx, ϵxy). Esta formulação de energia é a base para o cálculo
das constantes elásticas a partir de métodos de primeiros princípios. Este formalismo do
contínuo, que descreve a resposta do material através dos tensores σij , εij e Cijkl, fornece a
base teórica fundamental para a análise de curvas tensão-deformação, sejam elas obtidas por
ensaios macroscópicos ou computadas diretamente em simulações atomísticas [95].

A partir das constantes elásticas fundamentais, é possível derivar grandezas macroscópi-
cas que descrevem a rigidez e a resposta mecânica direcional do material, como o módulo
de Young (E) e a razão de Poisson (ν). Em um ensaio uniaxial ideal, o módulo de Young
é definido como a constante elástica que relaciona a tensão normal aplicada e a deformação
correspondente na mesma direção. Para um cristal cúbico isotrópico, apenas três constan-
tes elásticas independentes descrevem o tensor Cijkl: C11, C12 e C44. Nessas condições, a
expressão do módulo de Young na direção principal é dada por [95]:

E =
C2

11 + C11C12 − 2C2
12

C11 + C12

. (2.104)
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Essa relação decorre da combinação linear das componentes normais e de cisalhamento do
tensor elástico, refletindo a simetria cúbica e o acoplamento entre deformações longitudinais
e transversais.

Para materiais bidimensional anisotrópico, como o PolyRingene, a resposta elástica é
restrita ao plano e o tensor elástico reduz-se a um conjunto de quatro constantes independen-
tes: C11, C22, C12 e C66. Essas constantes relacionam deformações e tensões no plano (x, y)

e já incorporam as simetrias de rede. O módulo de Young efetivo na direção x pode então
ser expresso por [115]:

Ex =
C11C22 − C2

12

C22

. (2.105)

De forma mais geral, considerando uma direção arbitrária no plano que forma um ângulo θ
com o eixo x, o módulo de Young direcional é dado por:

E(θ) =
C11C22 − C2

12

C11α4 + C22β4 +

(
C11C22 − C2

12

C66

− 2C12

)
α2β2

, (2.106)

em que α = sin θ e β = cos θ. Essa formulação permite caracterizar a anisotropia elástica no
plano, sendo particularmente útil para representar o comportamento direcional de materiais
2D em gráficos polares E(θ).

Transpondo a definição teórica para a prática computacional, a obtenção do Módulo de
Young E é tipicamente realizada por dois caminhos complementares, que diferem em escala
e abordagem:

• via simulações de dinâmica molecular (MD), em que a curva tensão–deformação é
gerada explicitamente pela aplicação de uma deformação uniaxial controlada, e E é
obtido como a inclinação da região linear inicial:

E =
dσ

dε

∣∣∣
ε→0

; (2.107)

• via métodos de primeiros princípios (ab initio), em que as constantes elásticas Cij são
determinadas a partir do ajuste linear da energia elástica (Eq. 2.103).

Os resultados ab initio, por sua natureza mais fundamental, fornecem uma referência
teórica de alta precisão, enquanto os cálculos por dinâmica molecular oferecem uma visão
direta da resposta mecânica e dos mecanismos de deformação, sendo, portanto, metodologias
complementares.

A razão de Poisson (ν) é um dos parâmetros fundamentais da elasticidade linear, repre-
sentando a medida do acoplamento entre as deformações longitudinais e transversais em um
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corpo submetido a tensão. Fisicamente, esse parâmetro expressa a tendência do material de
se contrair lateralmente quando tracionado, ou de se expandir lateralmente quando compri-
mido.

De forma geral, a razão de Poisson é definida como o quociente entre a deformação
transversal e a deformação longitudinal, com sinal negativo para indicar que esses efeitos
ocorrem em direções opostas. Para o caso bidimensional, sob uma carga uniaxial aplicada
na direção x, a razão de Poisson é dada por:

ν = − εy
εx
, (2.108)

onde εx e εy são, respectivamente, as deformações normal e transversal ao eixo de tração.

Em termos mais formais, ν pode ser obtida a partir das constantes elásticas que compõem
o tensor de rigidez Cij , por meio da inversão da matriz de rigidez (Sij = C−1

ij ), conforme
discutido por Nye [116]. Para um material ortorrômbico bidimensional, a razão de Poisson
na direção x é expressa como:

νxy =
C12

C22

, (2.109)

e de forma análoga, na direção y:

νyx =
C12

C11

. (2.110)

De maneira mais geral, considerando uma direção arbitrária que forma um ângulo θ com o
eixo x, a dependência direcional de ν pode ser descrita por [117]:

ν(θ) =

C12(α
4 + β4)−

[
C11 + C22 −

C11C22 − C2
12

C66

]
α2β2

C11α4 +

(
C11C22 − C2

12

C66

− 2C12

)
α2β2 + C22β4

, (2.111)

onde α = sin θ e β = cos θ. Essa formulação permite analisar a anisotropia elástica e mapear
a variação angular da resposta do material.

Do ponto de vista termodinâmico, ν também se relaciona diretamente com o módulo de
compressibilidade K e o módulo de cisalhamento µ [115]:

ν =
3K − 2µ

2(3K + µ)
,

evidenciando que a razão de Poisson reflete o balanço entre a resistência volumétrica e o
cisalhamento. Valores baixos de ν indicam materiais quebradiços e anisotrópicos (como o
grafeno, ν ≈ 0,186), enquanto valores próximos de 0,5 correspondem a materiais quase
incompressíveis.

Os parâmetros E e ν representam, portanto, manifestações macroscópicas das propri-
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edades micromecânicas codificadas no tensor elástico Cij . Sua determinação tanto via si-
mulações de dinâmica molecular clássica quanto por métodos ab initio é essencial para ca-
racterizar a rigidez, anisotropia e estabilidade mecânica de materiais bidimensionais. As
expressões apresentadas constituem a ponte entre a descrição microscópica da elasticidade e
as propriedades observáveis em escala atômica ou experimental [115, 116, 117].

2.7.2 Deformação Plástica

A discussão anterior concentrou-se no regime elástico, em que o tensor de deformação
(εij) é uma função unívoca do tensor de tensões (σij), e a energia de deformação pode ser
armazenada de forma completamente reversível (Eq. 2.103). Entretanto, quando a tensão
aplicada ultrapassa o limite de escoamento (σy), o material entra no regime de deformação
plástica.

Do ponto de vista da mecânica do contínuo, a plasticidade representa o estado em que
a deformação deixa de ser uma função de estado única da tensão, passando a depender da
história de carregamento. Trata-se, portanto, de um processo irreversível e dissipativo, no
qual parte da energia mecânica é convertida em calor por meio do movimento e da interação
de defeitos cristalinos [115, 114].

Nos materiais cristalinos, o mecanismo microestrutural fundamental da plasticidade é
o movimento de defeitos lineares denominados discordâncias. A teoria das discordâncias
demonstra que o deslizamento (glide) de planos cristalinos pode ocorrer sob tensões de ci-
salhamento muito inferiores à resistência teórica da rede perfeita. O escoamento plástico em
monocristais é governado pela Lei de Schmid, que define a tensão de cisalhamento resolvida
em sistemas de escorregamento específicos [115].

Com o avanço da deformação plástica, a densidade de discordâncias aumenta significati-
vamente, promovendo interações mútuas e obstrução do movimento. Esse processo, denomi-
nado encruamento (strain hardening), eleva a tensão necessária para continuar a deformação,
conferindo ao material maior resistência e menor ductilidade. Modelos constitutivos clássi-
cos, como as leis de Prandtl–Reuss e J2-flow, descrevem o escoamento plástico em função
dos invariantes de tensão e da direção de fluxo plástico [114].

Em contraste, materiais frágeis como cerâmicas, vidros e sólidos covalentes 2D por
exemplo o grafeno exibem mobilidade de discordâncias extremamente reduzida. Nestes
casos, a acomodação de tensão ocorre por mecanismos alternativos, como rotação de liga-
ções (ex.: defeitos Stone–Wales), microfissuração, deslizamento em contornos de grão ou
nucleação de vazios, frequentemente resultando em fratura antes que um regime plástico
significativo seja alcançado [114].

Para descrever o início da plasticidade sob um estado de tensões multiaxial, é necessário
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adotar um critério de escoamento escalar. Como a deformação plástica é, em geral, domi-
nada por distorções (cisalhamento) sem variação volumétrica significativa, a componente
hidrostática da tensão (p = −1

3
σkk) não contribui para o escoamento em materiais dúcteis

[115]. Assim, utiliza-se o tensor desviador de tensões, definido por:

sij = σij − 1
3
σkkδij, (2.112)

que representa o estado de tensão puramente cisalhante.

O critério de von Mises (ou critério da energia de distorção, também conhecido como
(J2) estabelece que o escoamento se inicia quando o segundo invariante do tensor desviador
(J2 = 1

2
sijsij) atinge um valor crítico. A tensão equivalente de von Mises é então definida

como:
σVM =

√
3
2
sijsij =

√
3J2, (2.113)

e o escoamento ocorre quando σVM = σy. Esse critério, originalmente desenvolvido para
metais dúcteis, é amplamente utilizado em simulações computacionais por sua robustez e
independência do tipo de carregamento [114]. Em materiais frágeis, entretanto, critérios al-
ternativos como os de Tresca (cisalhamento máximo) ou Mohr–Coulomb (com dependência
da pressão) podem descrever melhor o comportamento de falha.

A capacidade de um material de se deformar plasticamente antes da fratura é denominada
ductilidade. Materiais com alta ductilidade como metais e ligas dúcteis exibem deformações
significativas antes da falha, enquanto materiais quebradiços (ou frágeis) fraturam abrupta-
mente após pouca ou nenhuma deformação plástica [112].

Nos materiais bidimensionais covalentes, como o Grafeno, a plasticidade tradicional por
movimento de discordâncias é energeticamente desfavorável. O escoamento pode ocorrer
por rotação localizada de ligações (defeitos Stone–Wales) ou nucleação de vazios, seguidos
pela formação de trincas e eventual separação do plano [118]. A resposta mecânica é forte-
mente dependente de defeitos estruturais, concentração de dopantes, temperatura e direção
de carregamento. Essas particularidades justificam o uso de simulações atomísticas para
elucidar os mecanismos de deformação e fratura em escala atômica.

Em simulações de dinâmica molecular, o tensor de tensões σij é calculado a partir do
virial atômico, permitindo obter a distribuição local de tensões em cada átomo k. Para carac-
terizar regiões críticas de falha, utiliza-se o invariante de von Mises, cuja forma expandida
para o caso de sitemas 3D é dada por:

σk
VM =

√
2

2

√
(σk

xx − σk
yy)

2 + (σk
yy − σk

zz)
2 + (σk

xx − σk
zz)

2 + 6
[
(τ kxy)

2 + (τ kyz)
2 + (τ kzx)

2
]
,

(2.114)

que corresponde à forma discreta da Eq. 2.113. Mapas de σk
VM ao longo do processo de
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deformação permitem identificar as regiões de maior concentração de cisalhamento, asso-
ciadas à nucleação de discordâncias, à formação de bandas de cisalhamento e ao início de
microtrincas. Essa análise fornece uma visão detalhada dos mecanismos de falha e comple-
menta a interpretação macroscópica das curvas tensão–deformação obtidas em simulações e
experimentos.

Já para os materiais bidimensionais (monocamadas) analisados nesta tese, o sistema fí-
sico está sob um estado de Tensão Plana (Plane Stress). Esta é uma condição fundamental
da mecânica de placas e cascas finas, onde se assume que as componentes de tensão fora do
plano (direção z) são nulas:

σzz = 0, τyz = 0, τzx = 0

Ao aplicar esta condição de Tensão Plana na equação geral 3D (Eq. 2.114), os termos
relacionados a z são eliminados, e a equação simplifica-se para:

σk
VM(2D) =

√
(σk

xx)
2 + (σk

yy)
2 − σk

xxσ
k
yy + 3(τ kxy)

2. (2.115)

Esta é a formulação correta da tensão equivalente de Von Mises para a análise de sistemas
2D. Mapas de σk

VM ao longo do processo de deformação, como os utilizados neste trabalho,
permitem identificar as regiões de maior concentração de cisalhamento. Estas regiões são
os locais prováveis para a nucleação de defeitos e o início de microtrincas, fornecendo uma
visão detalhada dos mecanismos de falha que complementa a interpretação macroscópica
das curvas tensão-deformação.
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CARACTERIZAÇÃO MECÂNICA DO
PAI-GRAPHENE E SEUS NANOTUBOS

3.1 INTRODUÇÃO

A busca por novos alótropos de carbono bidimensionais tem sido um campo fértil na ci-
ência dos materiais, impulsionada pela possibilidade de se obter materiais com propriedades
únicas e ajustáveis. Neste cenário, o design computacional desempenha um papel crucial,
permitindo a predição de estruturas estáveis muito antes de sua síntese experimental. Dentro
desta classe de materiais, o PAI-Graphene (PAI-G) foi recentemente proposto como um novo
alótropo 2D, obtido computacionalmente através de um algoritmo evolucionário [119].

Sua estrutura única, ilustrada na Figura 3.1, é formada pela polimerização de moléculas
de as-indaceno, resultando em uma rede planar de carbono sp² composta por anéis de 5, 6 e
7 membros. Estudos teóricos anteriores focaram em suas notáveis propriedades eletrônicas,
classificando-o como um semimetal topológico com cones de Dirac idealmente localizados
na superfície de Fermi [119]. Seu potencial como material anódico para baterias de íons de
Lítio e Sódio também foi destacado, devido à sua baixa tensão de circuito aberto e barreiras
de difusão favoráveis para os íons [120].

Figura 3.1 – Estrutura atômica da monocamada de PAI-Graphene (PAI-G). A imagem des-
taca a célula unitária retangular, composta por 24 átomos de carbono e definida pelos vetores
de rede a e b, com parâmetros de rede de a = 8, 995 e b = 7, 206. A topologia do PAI-G é
caracterizada pela presença de anéis de 5, 6 e 7 membros, formados pela polimerização de
moléculas de as-indaceno.

No entanto, para que o potencial tecnológico de um novo material como o PAI-G [22]
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seja plenamente avaliado, a compreensão de sua estabilidade e resposta mecânica é funda-
mental. Aplicações em eletrônica flexível, compósitos estruturais ou dispositivos nanoe-
letromecânicos dependem diretamente da robustez do material. Uma análise a ser feita era
sobre à caracterização sistemática das propriedades mecânicas do PAI-G, tanto em sua forma
de monocamada quanto em suas possíveis nanoestruturas unidimensionais derivadas, os na-
notubos (PAI-GNTs), cujas diferentes quiralidades e diâmetros são apresentados na Figura
3.2

Figura 3.2 – Representação esquemática dos nanotubos de PAI-Graphene (PAI-GNTs) inves-
tigados. (a-c) Nanotubos com quiralidade do tipo (0,n), mostrando as vistas lateral e frontal,
bem como uma comparação dos três diâmetros estudados (≈ 5, 11 e 21 Å). (d-f) Nanotubos
com quiralidade do tipo (m,0), com a mesma representação de vistas e comparação de diâ-
metros (≈ 6, 11 e 20 Å). O comprimento de todos os nanotubos foi mantido em ≈ 100 Å
para permitir uma análise comparativa consistente.

Este capítulo visa preencher essa lacuna por meio de uma investigação detalhada das pro-
priedades térmicas e mecânicas do PAI-G em ambas as morfologias. Utilizando simulações
de dinâmica molecular (MD) reativa, foram explorados a estabilidade térmica e o ponto de
fusão da monocamada, bem como a anisotropia elástica e os mecanismos de fratura. Adicio-
nalmente, foi analisada a influência da quiralidade e do diâmetro nas propriedades mecânicas
dos PAI-GNTs, fornecendo uma caracterização abrangente da resposta térmica e mecânica
deste alótropo de carbono.

3.2 METODOLOGIA COMPUTACIONAL

As simulações de dinâmica molecular em larga escala foram conduzidas com o software
LAMMPS [121]. A escolha de um potencial reativo clássico adequado é uma etapa crítica
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para a predição confiável das propriedades de um novo alótropo como o PAI-G. Para validar
rigorosamente esta escolha, desenvolvemos inicialmente um Potencial de Aprendizado de
Máquina (MLIP) [19], treinado diretamente a partir de um conjunto de dados de obtidos
através da Teoria do Funcional da Densidade (DFT), que serve como nosso "modelo ideal"
para o comportamento do material.

Foi realizada, então, uma análise comparativa do comportamento mecânico (curvas tensão-
deformação a 300 K) previsto por este MLIP de referência e por diversos campos de força
clássicos reativos como Tersoff, ReaxFF e AIREBO-M [104]. Os resultados desta compara-
ção estão sumarizados na Figura 3.3

Figura 3.3 – Comparação das curvas de tensão-deformação uniaxiais para a monocamada
de PAI-G a 300 K, calculadas com diferentes potenciais interatômicos. As curvas incluem
a referência de alta fidelidade (MLIP treinado com dados DFT) e os potenciais clássicos
reativos (AIREBO-M, Tersoff, ReaxFF). Os resultados do AIREBO-M apresentam a melhor
concordância com a referência.

Embora o MLIP tenha alta precisão, seu conjunto de treinamento foi focado em con-
figurações para descrever a resposta mecânica em 300 K. Um dos objetivos centrais deste
capítulo, no entanto, é investigar fenômenos que ocorrem em regimes energéticos muito
distintos, como a estabilidade térmica e o ponto de fusão, o que exige uma rampa de aqueci-
mento simulada até 10000 K. Um MLIP treinado em baixas temperaturas não possui transfe-
ribilidade garantida para prever com acurácia dinâmicas de fratura e fusão em temperaturas
tão extremas.
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O AIREBO-M [104], por outro lado, é um campo de força reativo de propósito geral,
projetado especificamente para hidrocarbonetos e capaz de lidar com quebras de ligação
e altas temperaturas. Portanto, com base nesta validação cruzada — onde o AIREBO-M
demonstrou similaridade no comportamento mecânico (Figura 3.3) com nossa referência
DFT/MLIP a 300 K e oferece a robustez e transferibilidade necessárias para o estudo em
alta temperatura ele foi selecionado como o potencial de escolha para todas as simulações de
produção deste capítulo.

Com base nessa validação, o potencial AIREBO-M foi empregado para todas as simu-
lações de produção, que investigaram duas classes de estruturas: a monocamada 2D e seus
nanotubos derivados (PAI-GNTs). A monocamada consistiu em uma supercélula periódica
com 5712 átomos. Para os nanotubos, foram exploradas duas quiralidades principais, (m,0)
e (0,n). Para permitir uma análise comparativa consistente, foram escolhidos três diâmetros
distintos para cada quiralidade (≈ 5, 10 e 20 Å), e o comprimento de todos os nanotubos foi
mantido em ≈ 100 Å. Os parâmetros estruturais detalhados dos seis sistemas de nanotubos
investigados estão sumarizados na Tabela 3.1.

Quiralidade (m,n) Comprimento (Å) Diâmetro (Å) Número de Átomos
(0,2) 98.95 4.59 528
(0,5) 98.95 11.47 1320
(0,9) 98.95 20.64 2376
(2,0) 100.88 5.73 672
(4,0) 100.88 11.45 1344
(7,0) 100.88 20.04 2352

Tabela 3.1 – Parâmetros estruturais dos seis nanotubos de PAI-G (PAI-GNTs) investigados
neste trabalho.

O protocolo geral de simulação incluiu uma etapa inicial de equilibração de 50 ps no en-
semble NPT a 300 K para eliminar tensões residuais. Subsequentemente, foram executados
dois procedimentos distintos: uma rampa de aquecimento de 300 K a 10000 K para análise
térmica da monocamada, e ensaios de tração uniaxial a uma taxa de deformação de 109s−1

a 300 K para a análise mecânica de todas as estruturas. Durante a deformação, as direções
transversais foram acopladas a um barostato para permitir o relaxamento e contabilizar o
efeito de Poisson.

3.3 RESULTADOS E DISCUSSÃO

3.3.1 Estabilidade Térmica da Monocamada

A estabilidade térmica da monocamada de PAI-G foi investigada quantitativamente por
meio de uma simulação de rampa de aquecimento de 300 K a 10000 K, cujos resultados para
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a energia total e a capacidade térmica são apresentados na Figura 3.4. A curva de energia
total (em verde) exibe um aumento progressivo com a temperatura, com uma acentuada
mudança de inclinação na região entre 2000 e 3000 K, indicativa de uma transição de fase.
Essa transição é evidenciada de forma clara pelo pico agudo na capacidade térmica a volume
constante (CV , em laranja), que marca a absorção de calor latente durante a fusão. O ponto de
fusão do PAI-G é determinado como sendo de aproximadamente 2300 K, correspondente à
região de maior variação energética. Este valor é significativamente inferior ao do grafeno (≈
4510K), o que pode ser atribuído à menor conectividade e à maior complexidade topológica
da rede do PAI-G, que contém anéis de 5, 6 e 7 membros, tornando-a termicamente menos
robusta que a rede puramente hexagonal.

Figura 3.4 – Análise da resposta térmica da monocamada de PAI-G durante uma simulação
de rampa de aquecimento. As curvas mostram a evolução da energia total por átomo (em
verde, eixo esquerdo) e da capacidade térmica a volume constante (CV , em laranja, eixo
direito) em função da temperatura. O pico acentuado na capacidade térmica em aproximada-
mente 2300 K evidencia a transição de fase, correspondente ao ponto de fusão do material.

Para elucidar as transformações estruturais que ocorrem durante o processo de fusão,
foram analisados snapshots da simulação em temperaturas representativas, conforme deta-
lhado na Figura 3.5. A 300 K (painel a), a estrutura se encontra em seu estado fundamental,
perfeitamente ordenada e cristalina. Ao atingir 2140 K (painel b), a rede ainda mantém sua
integridade geral, mas já apresenta a nucleação dos primeiros defeitos, como vacâncias. O
processo de fusão se torna evidente a 2280 K (painel c), onde coexistem regiões sólidas e
uma fase desordenada. Nesta fase, observa-se a formação de nanoporos e de Cadeias Atô-
micas Lineares (LACs), indicando o colapso da estrutura 2D. Finalmente, em temperaturas
muito elevadas, como 8000 K (painel d), a estrutura se desintegra completamente e o mate-
rial transita para uma fase gasosa, composta por átomos de carbono e pequenos aglomerados
dispersos.
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Figura 3.5 – Snapshots representativos da simulação de aquecimento, ilustrando a evolução
estrutural da monocamada de PAI-G em diferentes temperaturas. (a) Estrutura cristalina
e ordenada a 300 K. (b) Início da formação de defeitos na rede a 2140 K. (c) Estrutura
parcialmente fundida a 2280 K, mostrando a coexistência de fases sólida e desordenada, com
a formação de nanoporos e Cadeias Atômicas Lineares (LACs). (d) Fase gasosa a 8000 K,
indicando a completa desintegração do material. A escala de cores representa a temperatura
atômica local.

3.3.2 Resposta Mecânica da Monocamada

Uma vez estabelecida sua estabilidade térmica, a resposta mecânica da monocamada
de PAI-G sob tração uniaxial a 300 K foi investigada. As curvas de tensão-deformação,
apresentadas na Figura 3.6, revelam uma resposta marcadamente anisotrópica. O material é
consistentemente mais rígido e mais resistente quando a tensão é aplicada na direção y. Essa
anisotropia é uma consequência direta da topologia da rede, que possui uma maior densidade
de ligações químicas alinhadas com a direção y, conferindo maior resistência à deformação
nesse eixo. A análise quantitativa, sumarizada na Tabela 3.1, mostra um Módulo de Young de
706,6 ± 70,8 GPa na direção x e 815,2 ± 35,4 GPa na direção y. A tensão de ruptura também
é superior na direção y (94,5 GPa) em comparação com a direção x (83,9 GPa), embora a
fratura ocorra em deformações similares, em torno de 13-14% para ambas as direções.

Para elucidar os mecanismos de falha em escala atômica, foram analisadas as distribui-
ções de tensão de von Mises durante a simulação. A Figura 3.7 detalha o processo de fratura
sob tensão na direção x. A estrutura suporta a deformação com acúmulo de tensão até apro-
ximadamente 13% de deformação (painel b). Ao atingir 14% (painel c), a estrutura fratura
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Figura 3.6 – Curvas de tensão-deformação para a monocamada de PAI-G sob tração uniaxial
nas direções (a) x e (b) y a 300 K. As diferentes curvas em cada painel representam simu-
lações com configurações de velocidade inicial distintas, demonstrando a consistência dos
resultados. A diferença na inclinação e na tensão de ruptura entre as direções evidencia a
resposta mecânica anisotrópica do material.

de forma abrupta, com a nucleação de uma trinca que se propaga rapidamente em uma dire-
ção perpendicular à da tensão aplicada. Um aspecto notável deste mecanismo é a formação
de Cadeias Atômicas Lineares (LACs) altamente tensionadas, que conectam as bordas da
fratura antes da separação completa do material (painel d).

Figura 3.7 – Snapshots representativos do mecanismo de fratura da monocamada de PAI-
G sob tração na direção x. A cor dos átomos representa a tensão de von Mises local. Os
painéis mostram a evolução da estrutura em diferentes níveis de deformação: (a) 1%, (b)
13% (próximo à ruptura), (c) 14% (início da fratura), e (d) 20% (fratura completa). Destaca-
se a formação de Cadeias Atômicas Lineares (LACs) na região da ruptura.
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O processo de fratura sob tensão na direção y, ilustrado na Figura 3.8, é análogo ao
observado na direção x. A estrutura acumula tensão até atingir a deformação crítica (painel
b), momento no qual ocorre a fratura súbita (painel c), com a propagação de uma trinca
e a subsequente formação de LACs até a separação total (painel d). A presença de LACs
em ambos os cenários de fratura é um mecanismo característico de dissipação de energia
em materiais de carbono sp² e confirma um comportamento de fratura dúctil para o PAI-G,
apesar do colapso abrupto da tensão após a deformação crítica.

Figura 3.8 – Snapshots representativos do mecanismo de fratura da monocamada de PAI-G
sob tração na direção y, análogo ao processo na direção x. Os painéis ilustram a evolução em
(a) 1%, (b) 14%, (c) 15%, e (d) 20% de deformação. A cor dos átomos corresponde à tensão
de von Mises, evidenciando o acúmulo de tensão e a propagação da fratura.

Para compreender a origem atômica da falha mecânica, a evolução da hibridização das
ligações foi analisada durante o processo de deformação (Figura 3.8). A estrutura inicial é
predominantemente sp², mas à medida que a deformação aumenta, observa-se uma conver-
são progressiva de ligações sp² para ligações do tipo sp³. Próximo ao ponto de ruptura, quase
50% das ligações já foram convertidas, indicando que este processo de re-hibridização, de-
corrente do estiramento e da distorção angular das ligações, enfraquece a rede planar e atua
como um mecanismo precursor da fratura.

3.3.3 Propriedades Mecânicas dos Nanotubos (PAI-GNTs)

A análise dos nanotubos (PAI-GNTs) revelou uma forte dependência das propriedades
mecânicas com a geometria do sistema, nomeadamente o diâmetro e a quiralidade. As cur-
vas de tensão-deformação para todas as configurações estudadas são apresentadas na Figura
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Figura 3.9 – Análise da evolução da hibridização das ligações C-C (sp, sp² e sp³) em função
da deformação aplicada na monocamada de PAI-G para as direções (a) x e (b) y. O gráfico
mostra a conversão progressiva de ligações sp² (círculos) para ligações do tipo sp³ (estrelas)
à medida que a deformação aumenta, indicando que a re-hibridização atua como um meca-
nismo precursor da fratura.

3.9, e os dados quantitativos extraídos estão compilados na Tabela 3.2. A análise dos resul-
tados revela duas tendências principais: uma forte modulação das propriedades em função
do diâmetro e uma convergência para o comportamento da monocamada 2D para diâmetros
maiores.

Os nanotubos de menor diâmetro (≈ 5 Å), como o PAI-GNT(0,2) e o PAI-GNT(2,0),
mostraram-se significativamente menos rígidos e resistentes em comparação com a monoca-
mada. O Módulo de Young para o PAI-GNT(0,2), por exemplo, é de 657 GPa, cerca de 20%
inferior à média da monocamada. Essa redução na estabilidade mecânica é atribuída a dois
fatores principais: a alta curvatura da estrutura, que induz tensão nas ligações sp², e as intera-
ções repulsivas de van der Waals entre as paredes internas do tubo. Uma característica única
desses tubos de diâmetro pequeno é a presença de um regime plástico após a deformação
crítica, evidenciado pelos platôs nas curvas de tensão-deformação (Figura 3.10a e 3.10d),
que correspondem a constantes reconstruções de ligações antes da fratura completa.

À medida que o diâmetro do nanotubo aumenta, os efeitos de curvatura diminuem e as
propriedades mecânicas convergem sistematicamente para os valores da monocamada 2D.
Para os tubos de maior diâmetro (≈ 20 Å), como o PAI-GNT(0,9) e o PAI-GNT(7,0), o
regime plástico desaparece e os desvios no Módulo de Young em relação à monocamada
tornam-se inferiores a 10%. A quiralidade também se mostrou um fator determinante: os
nanotubos da família (0,n), que são enrolados ao longo do vetor a da monocamada, têm
suas propriedades convergindo para os valores da direção x da folha 2D (≈ 707 GPa). Em
contrapartida, os nanotubos da família (m,0), enrolados ao longo do vetor b, convergem para
os valores da direção y, que é mais rígida (≈ 815 GPa), o que explica por que estes nanotubos
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Figura 3.10 – Curvas de tensão-deformação para os nanotubos de PAI-G (PAI-GNTs) sob
tração uniaxial a 300 K. Os painéis (a-c) correspondem à quiralidade (0,n) e os painéis (d-f)
à quiralidade (m,0), ambos para diâmetros crescentes. As diferentes curvas em cada painel
representam simulações com configurações de velocidade inicial distintas. Os gráficos ilus-
tram o aumento da rigidez com o diâmetro e a presença de um regime plástico nos tubos de
menor diâmetro (a, d).

apresentam um Módulo de Young consistentemente superior, chegando a 891 GPa no caso
do PAI-GNT(7,0).

O processo de fratura dos nanotubos, exemplificado para os casos de diâmetro interme-
diário PAI-GNT(0,5) e PAI-GNT(4,0) nas Figuras 3.10 e 3.11, respectivamente, mostrou-se
análogo ao da monocamada. Em ambos os casos, a estrutura suporta a deformação com
acúmulo de tensão até o ponto crítico, seguido por uma fratura abrupta com a propagação
de uma trinca e a formação de Cadeias Atômicas Lineares (LACs) que conectam as duas
partes fraturadas antes do colapso final. Isso confirma que, embora as propriedades quanti-
tativas sejam moduladas pela geometria 1D, os mecanismos de falha atômica fundamentais
do PAI-G são preservados ao se passar da folha 2D para os nanotubos.
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Figura 3.11 – Snapshots representativos do mecanismo de fratura do nanotubo PAI-
GNT(0,5), com a cor dos átomos representando a tensão de von Mises. Os painéis mostram
a evolução da estrutura em diferentes níveis de deformação: (a) 1,0%, (b) 13,0% (próximo à
tensão de ruptura), (c) 13,2% (início da fratura), e (d) 15,5% (colapso nanoestrutural).

Figura 3.12 – Snapshots representativos do mecanismo de fratura do nanotubo PAI-
GNT(4,0), de quiralidade distinta. Os painéis ilustram a evolução em (a) 1,0%, (b) 13,77%
(tensão de ruptura), (c) 17,0% (regime de deformação plástica com formação de uma Cadeia
Atômica Linear - LAC), e (d) 20,0% (colapso final após a ruptura da LAC).
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DESIGN COMPUTACIONAL E
CARACTERIZAÇÃO DO NANOPOROUS
GRAPHENE (NPG)

4.1 INTRODUÇÃO

A criação de porosidade em materiais de carbono bidimensionais é uma estratégia pro-
missora para o desenvolvimento de sistemas com funcionalidades avançadas, visando apli-
cações em catálise, sensoriamento e membranas de filtração. Neste capítulo, apresentamos
o design computacional e a caracterização de uma nova família de alótropos de carbono po-
rosos, denominada Nanoporous Graphene (NPG) [23]. Essas estruturas, ilustradas na Figura
4.1, foram concebidas a partir da interconexão periódica de nanofitas de grafeno do tipo
armchair (AGNRs) por meio de pontes de carbono sp², resultando em uma rede 2D estável
composta por anéis de 3, 6 e 12 membros. O objetivo deste estudo é investigar de forma
abrangente as propriedades estruturais, de estabilidade, eletrônicas e mecânicas da família
NPG-n, onde n (variando de 3 a 9) representa a largura da AGNR constituinte, utilizando uma
abordagem multiescala que combina Teoria do Funcional da Densidade (DFT) e simulações
de dinâmica molecular clássica.

Figura 4.1 – Representação das estruturas da família Nanoporous Graphene (NPG-n), com n
variando de 3 a 9. Cada estrutura é formada pela junção lateral de nanofitas de grafeno do
tipo armchair. As células unitárias de cada sistema estão destacadas em azul.
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4.2 4.2 ESTRUTURA E ESTABILIDADE

A viabilidade de qualquer novo material proposto depende de sua estabilidade. As estru-
turas da família NPG foram otimizadas via DFT (utilizando o software VASP com o funci-
onal PBE) e sua estabilidade foi avaliada por meio de três critérios: energético, dinâmico e
térmico. A análise da energia coesiva em função da largura da nanofita (n), apresentada na
Figura 4.2, revelou que a estabilidade das estruturas aumenta (a energia coesiva se torna mais
negativa) para nanofitas mais largas, com os valores se aproximando assintoticamente do va-
lor do grafeno. Isso indica que, embora porosas, as estruturas NPG possuem alta estabilidade
energética, comparável a outros alótropos de carbono já sintetizados.

Figura 4.2 – Energia coesiva por átomo para a família de alótropos NPG-n em função da
largura da nanofita de grafeno armchair (n). A tendência decrescente da energia indica que
a estabilidade da estrutura aumenta para nanofitas mais largas, aproximando-se assintotica-
mente da estabilidade do grafeno.

A estabilidade térmica da família NPG foi investigada por meio de simulações de dinâ-
mica molecular ab initio (AIMD). Para isso, os sistemas foram submetidos a uma tempera-
tura de 1000 K no ensemble NVT por um período de 5 ps, com um passo de tempo de 1 fs.
Os resultados, exemplificados para o caso representativo do NPG-9 na Figura 4.3, demons-
tram a notável robustez da estrutura. A evolução temporal da energia total do sistema (painel
esquerdo) permanece constante ao longo de toda a simulação, com flutuações mínimas em
torno de um valor médio estável, indicando a ausência de transições de fase ou processos de
decomposição. A inspeção da configuração atômica ao final dos 5 ps não revela qualquer
quebra de ligação ou reconstrução da rede, apenas as deformações vibracionais esperadas
para uma temperatura tão elevada. Este conjunto de observações confirma a alta estabilidade
térmica da família NPG, indicando que os materiais são capazes de manter sua integridade
estrutural sob condições de alta temperatura.

Adicionalmente, a estabilidade dinâmica foi verificada pelo cálculo das curvas de disper-
são de fônons para todas as estruturas NPG-n, cujos resultados estão compilados na Figura
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Figura 4.3 – Análise de estabilidade térmica do NPG-9, como caso representativo da família
NPG, por meio de simulações de dinâmica molecular ab initio (AIMD) a 1000 K. (Esquerda)
Evolução da energia total por átomo ao longo de 5 ps. O perfil de energia constante e a
integridade da estrutura ao final (detalhe) atestam a estabilidade térmica. (Direita) Flutuação
da temperatura do sistema, que se mantém em torno do valor alvo de 1000 K.

4.4. A análise dos espectros revela que as estruturas com largura ímpar (NPG-3, -5, -7 e -9)
são dinamicamente estáveis, exibindo espectros livres de frequências imaginárias em toda a
Zona de Brillouin. Em contraste, as estruturas com largura par (NPG-4, -6 e -8) apresentam
pequenos modos imaginários de baixa magnitude (aproximadamente 0.1 THz) próximos ao
ponto Γ. A ausência de frequências imaginárias nos casos de n ímpar é uma evidência di-
reta de que eles correspondem a mínimos verdadeiros na superfície de energia potencial. Os
pequenos modos imaginários observados nos casos de n par, por sua vez, são atribuídos a ten-
sões intrínsecas na rede e não indicam uma instabilidade fundamental, uma vez que podem
ser facilmente removidos com a aplicação de uma pequena deformação biaxial. Portanto, a
análise de fônons comprova que a família NPG é, de modo geral, dinamicamente estável e
fisicamente viável.
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Figura 4.4 – Curvas de dispersão de fônons para toda a família de materiais NPG-n, com
n variando de 3 (a) a 9 (g), calculadas via DFT. A ausência de frequências imaginárias
significativas na maioria dos espectros, em particular para as estruturas de n ímpar, comprova
a estabilidade dinâmica da família NPG.

4.3 PROPRIEDADES ELETRÔNICAS

A caracterização eletrônica, realizada por meio de cálculos de estrutura de bandas e den-
sidade de estados (DOS) via DFT, revelou informações cruciais sobre a natureza condutora
da família NPG. Os resultados, compilados na Figura 4.5, demonstram que todas as estru-
turas NPG-n são intrinsecamente metálicas, caracterizadas pela ausência de um band gap e
pela presença de múltiplas bandas que cruzam o nível de Fermi (EF ). Uma análise mais
detalhada das bandas revela uma condutividade anisotrópica, com o material exibindo com-
portamento semicondutor ao longo de direções específicas da Zona de Brillouin (como o
caminho Γ-K), enquanto se mantém metálico em outras (como Γ-Y). Essa anisotropia no
transporte eletrônico oferece potencial para o controle direcional de corrente em nanoeletrô-
nica.

A análise da Densidade de Estados Projetada (PDOS) elucida a origem desse comporta-
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Figura 4.5 – Estrutura de bandas eletrônicas e a correspondente Densidade de Estados Parcial
(PDOS) para toda a família de alótropos NPG-n (com n variando de 3 a 9). Em todos os
casos, a presença de múltiplas bandas cruzando o nível de Fermi (EF = 0 eV) confirma
a natureza metálica intrínseca dos materiais. A PDOS revela que os estados eletrônicos
próximos ao nível de Fermi são predominantemente formados pela contribuição dos orbitais
p, o que é característico da rede de elétrons π deslocalizados em sistemas de carbono sp2.
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mento, mostrando que os estados próximos ao nível de Fermi são predominantemente forma-
dos por orbitais do tipo p, com uma contribuição negligível dos orbitais s. Essa dominância
dos orbitais p é uma assinatura da rede de elétrons π deslocalizados, típica de sistemas de
carbono sp², que serve como base para a alta mobilidade de portadores de carga. De forma
análoga ao grafeno, a família NPG também exibe a formação de cones de Dirac, sendo que
alguns se apresentam ligeiramente inclinados e acima do nível de Fermi. Em conjunto, esses
resultados indicam que a introdução de porosidade periódica na rede não altera fundamen-
talmente o comportamento metálico esperado para uma rede de carbono sp² estendida.

4.4 PROPRIEDADES MECÂNICAS

As propriedades mecânicas da família NPG foram investigadas em detalhe por meio de
simulações de dinâmica molecular clássica (MD) com o software LAMMPS e o potencial
reativo AIREBO. O protocolo de simulação envolveu uma rigorosa preparação do sistema,
com uma etapa de equilibração no ensemble NPT a 300 K por 250 ps para relaxar tensões
residuais, seguida por 250 ps de termalização no ensemble NVT à mesma temperatura. Após
o equilíbrio, os ensaios de tração uniaxial foram conduzidos a 300 K, aplicando-se uma taxa
de deformação constante de 109s−1 e utilizando um barostato na direção transversal para
garantir uma condição de tensão uniaxial com pressão nula.

A resposta mecânica da família NPG-n (com n variando de 3 a 9) sob deformação uni-
axial nas direções x e y é apresentada nas curvas tensão-deformação da Figura 4.6. Uma
inspeção inicial dessas curvas revela imediatamente uma forte anisotropia mecânica: todas
as estruturas NPG-n são sistematicamente mais rígidas e suportam maiores tensões na dire-
ção y, que é perpendicular às nanofitas, quando comparadas à direção x, paralela às fitas de
grafeno.

Essa diferença é particularmente evidente para os sistemas mais estreitos (n=3–5), nos
quais tanto o módulo de Young quanto a tensão última são significativamente maiores na
direção y. No entanto, à medida que n aumenta, a anisotropia tende a diminuir. Para n
= 6, observa-se um ponto de transição importante: a tensão crítica na direção x torna-se
comparável ou até ligeiramente superior à da direção y. A partir desse ponto (n ≥ 7), o
comportamento muda de regime a resistência mecânica na direção x supera progressivamente
a da direção y, indicando que o aumento da largura das nanofitas confere maior estabilidade
ao carregamento paralelo.

Essa evolução é consistente com o processo de aproximação gradual do comportamento
mecânico do grafeno contínuo, onde a presença de regiões porosas tem influência cada vez
menor conforme a largura das fitas aumenta. Os valores quantitativos de módulo de Young,
tensão última e deformação crítica listados na Tabela 4.1 reforçam essa interpretação, evi-
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Figura 4.6 – Curvas de tensão-deformação para toda a família de materiais NPG-n (com
n variando de 3 a 9) sob tração uniaxial nas direções x (azul) e y (vermelho) a 300 K. As
curvas evidenciam a forte anisotropia mecânica dos materiais, que são consistentemente mais
rígidos na direção y. Observa-se também que o grau de anisotropia diminui para nanofitas
mais largas (maior n).

denciando um crescimento monotônico da resistência na direção x para n maiores, enquanto
as propriedades na direção y se mantêm praticamente constantes ao longo da série.

A análise quantitativa dessas curvas permite extrair as principais propriedades mecânicas
do material, que estão sumarizadas na Tabela 4.1. A tabela confirma numericamente as
tendências observadas. O Módulo de Young varia significativamente, de 394 GPa para NPG-
3 na direção x até 758 GPa para NPG-9 na direção y, evidenciando a alta rigidez do material,
apesar de sua natureza porosa. A tensão de ruptura (σC) também exibe essa anisotropia,
sendo consistentemente maior na direção x para nanofitas mais largas (n ≥ 6), embora a
fratura ocorra em deformações menores na direção y.

Para compreender a origem atômica dessa resposta anisotrópica, os mecanismos de fra-

71



Tabela 4.1 – Propriedades mecânicas do NPG-n sob deformação aplicada nas direções x e y.

n
Direção-x Direção-y

YM (GPa) σC (GPa) εC (%) YM (GPa) σC (GPa) εC (%)
3 394.4± 2.3 37.7± 0.3 12.3± 0.1 619.3± 4.5 48.4± 1.0 9.8± 0.3
4 498.7± 8.5 42.1± 0.4 11.1± 0.3 693.0± 7.6 49.1± 1.1 9.0± 0.3
5 557.6± 2.9 42.2± 0.3 9.3± 0.1 718.2± 8.7 49.7± 1.2 8.7± 0.3
6 595.1± 12.0 53.9± 0.8 11.6± 0.4 729.1± 4.1 49.5± 0.8 8.4± 0.1
7 650.9± 5.1 56.6± 0.1 10.9± 0.4 756.7± 9.4 50.0± 0.5 8.1± 0.1
8 665.8± 9.5 61.0± 0.7 11.6± 0.2 754.2± 10.5 49.8± 1.3 7.9± 0.2
9 685.8± 11.2 65.3± 0.8 11.8± 0.2 758.1± 9.5 50.6± 1.1 7.9± 0.2

tura foram investigados por meio de mapas de tensão de von Mises. A Figura 4.7 detalha
o processo para o NPG-3, o caso com a nanofita mais estreita. Sob deformação na direção
x (painéis a-d), a tensão se acumula ao longo das nanofitas, e a fratura ocorre a 12,4% de
deformação, com a propagação da trinca dentro do segmento da nanofita. Em contraste, na
direção y (painéis e-h), a tensão se concentra nas pontes de carbono que formam a heterojun-
ção. A fratura ocorre a uma deformação menor, de 9,8%, e se localiza exatamente na região
da junção, com a formação de algumas Cadeias Atômicas Lineares (LACs).

Figura 4.7 – Mecanismo de fratura do NPG-3 (caso com a nanofita mais estreita) sob tração
uniaxial a 300 K, com a cor representando a tensão de von Mises. (a-d) Evolução da fratura
sob deformação na direção x (em 0%, 1%, 12% e 12,4% de deformação, respectivamente),
mostrando a propagação da trinca na região da nanofita. (e-h) Evolução da fratura sob defor-
mação na direção y (em 0%, 1%, 9% e 9,8% de deformação, respectivamente), onde a falha
se localiza na região da heterojunção que conecta as nanofitas.

Este comportamento de fratura anisotrópica é consistente em toda a família, como de-
monstrado para o NPG-9, o caso com a nanofita mais larga, na Figura 4.7. Novamente, a
deformação na direção x (painéis a-d) leva à fratura na nanofita a 12,1%, enquanto a defor-
mação na direção y (painéis e-h) causa a falha na junção a uma deformação muito menor, de
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7,9%. A análise combinada das Figuras 4.7 e 4.8 elucida de forma inequívoca a origem da
anisotropia mecânica: a resistência na direção x é governada pela integridade da nanofita de
grafeno, enquanto a resistência na direção y é limitada pela força das pontes de carbono na
heterojunção, que atuam como o "elo mais fraco" sob essa orientação de carregamento.

Figura 4.8 – Mecanismo de fratura do NPG-9 (caso com a nanofita mais larga) sob tração
uniaxial a 300 K. (a-d) Evolução da fratura na direção x (em 0%, 1%, 11,8% e 12,1% de de-
formação, respectivamente), confirmando que a falha ocorre no segmento da nanofita. (e-h)
Evolução da fratura na direção y (em 0%, 1%, 7,5% e 7,9% de deformação, respectivamente),
mostrando novamente que a ruptura se concentra na região da heterojunção. A consistência
do mecanismo de fratura entre o NPG-3 e o NPG-9 demonstra que a falha anisotrópica é
uma característica intrínseca da família NPG.
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ESTUDO DO POLYRINGENE: UMA
ABORDAGEM COM POTENCIAIS DE
APRENDIZADO DE MÁQUINA

5.1 INTRODUÇÃO

A exploração computacional de novos alótropos de carbono bidimensionais tem reve-
lado uma vasta gama de estruturas com topologias complexas, cujas propriedades prometem
avanços em diversas áreas tecnológicas. Contudo, a crescente complexidade estrutural des-
ses materiais impõe desafios significativos às metodologias de simulação tradicionais. A
Teoria do Funcional da Densidade (DFT), apesar de sua alta precisão, possui um custo com-
putacional que se torna proibitivo para a análise de fenômenos que exigem grandes sistemas
e longas escalas de tempo, como a deformação plástica e a fratura mecânica. Em contrapar-
tida, os potenciais empíricos clássicos, como AIREBO e Tersoff, embora eficientes, foram
parametrizados para ambientes atômicos específicos (como os do grafeno e do diamante) e
frequentemente falham em descrever com precisão as interações em topologias exóticas.

Para superar essa lacuna entre precisão e eficiência, os Potenciais Interatômicos de Apren-
dizado de Máquina (MLIPs) surgiram como uma solução poderosa. Treinados a partir de um
conjunto de dados gerado por cálculos de primeiros princípios, os MLIPs são capazes de
"aprender" a superfície de energia potencial de um sistema com uma fidelidade próxima à
do DFT, mas com um custo computacional ordens de magnitude menor, viabilizando simu-
lações de dinâmica molecular em larga escala.

Neste capítulo, introduzimos o PolyRingene apresentado na figura 5.1, um novo alótropo
de carbono 2D proposto neste trabalho, cuja estrutura exibe uma topologia excepcionalmente
complexa, composta por uma rede periódica de anéis de 3, 4, 5, 6, 8 e 10 membros, como
ilustrado na Figura 5.1. A complexidade desta estrutura, que combina anéis pequenos e
grandes, representa um desafio ideal para os potenciais clássicos e, portanto, serve como um
caso de estudo perfeito para demonstrar a necessidade e a superioridade da abordagem via
MLIP.

O objetivo deste capítulo é duplo: primeiro, realizar uma caracterização fundamental
completa (estrutural, de estabilidade e eletrônica) do PolyRingene via DFT; segundo, desen-
volver e validar um MLIP do tipo Moment Tensor Potential (MTP) para investigar em detalhe
suas propriedades mecânicas, comparando o desempenho do modelo com os resultados de
DFT e com os potenciais clássicos tradicionais.
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Figura 5.1 – Representação da estrutura atômica do PolyRingene. Este alótropo 2D possui
uma topologia complexa, formada por uma combinação de anéis de 3, 4, 5, 6, 8 e 10 mem-
bros. A figura à esquerda exibe uma supercélula para ilustrar a periodicidade do material.
Em destaque à direita, a célula unitária ortorrômbica é mostrada, contendo 64 átomos de car-
bono e definida pelos vetores de rede a e b, com parâmetros de rede de a=12,30 Å e b=15,05
Å.

5.2 METODOLOGIA COMPUTACIONAL E RESULTADOS

5.2.1 Estrutura e Estabilidade

A estrutura do PolyRingene, otimizada por meio de cálculos de primeiros princípios,
revelou uma rede bidimensional perfeitamente planar, na qual todos os átomos de carbono
adotam uma hibridização do tipo sp². A célula unitária, composta por 64 átomos, pertence ao
grupo espacial ortorrômbico Pmmn (Nº 59) e é definida por vetores de rede com parâmetros
de a=12,30 Å e b=15,05 Å, conforme ilustrado anteriormente na Figura 5.1. Para determinar
a viabilidade física do material foi feita análises de estabilidade dinâmica e térmica.

A estabilidade dinâmica foi investigada pelo cálculo da dispersão de fônons em toda a
Zona de Brillouin. Para isso, as constantes de força interatômicas foram obtidas via Teoria
da Perturbação do Funcional da Densidade (DFPT), um método implementado no VASP.
O espectro de fônons resultante, apresentado na Figura 5.2 (direita), não exibiu quaisquer
frequências imaginárias. A ausência de modos vibracionais instáveis confirma que a estru-
tura otimizada do PolyRingene corresponde a um mínimo verdadeiro na superfície de energia
potencial sendo, portanto, dinamicamente estável contra pequenas perturbações atômicas.
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Em complemento, a estabilidade térmica foi avaliada por meio de simulações de dinâ-
mica molecular ab initio (AIMD). As simulações foram conduzidas no ensemble NVT a uma
temperatura elevada de 1000 K, por um período de 10 ps e com um passo de tempo de 1 fs,
utilizando um termostato de Nosé-Hoover para o controle da temperatura. Conforme ilus-
trado na Figura 5.2 (esquerda), a energia total do sistema permaneceu notavelmente estável
ao longo de toda a simulação, flutuando em torno de um valor médio sem desvios ou quedas
abruptas que pudessem indicar uma transição de fase ou decomposição. A inspeção da estru-
tura ao final dos 10 ps (detalhes na Figura 5.2) não revelou quebra de ligações ou distorções
permanentes, apenas as vibrações atômicas esperadas para a temperatura simulada.

Figura 5.2 – Análise de estabilidade do PolyRingene. (Esquerda) Evolução da energia total
por átomo em uma simulação AIMD a 1000 K por 10 ps, com a estrutura final em detalhe.
(Direita) Espectro de dispersão de fônons. A ausência de frequências imaginárias comprova
a estabilidade dinâmica, enquanto a energia estável na AIMD atesta a estabilidade térmica.

Em conjunto, os resultados dos cálculos de fônons e das simulações AIMD fornecem
forte evidência de que o PolyRingene é um alótropo de carbono 2D robusto e fisicamente
viável, mantendo sua integridade estrutural tanto em seu estado fundamental quanto sob
condições de alta agitação térmica.

5.2.2 Propriedades Eletrônicas

Com a estabilidade do PolyRingene confirmada, a investigação prosseguiu com a carac-
terização de suas propriedades eletrônicas para determinar a natureza de sua condutividade.
Para isso, a estrutura de bandas e a Densidade de Estados (DOS) foram calculadas via DFT.
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A estrutura de bandas foi obtida por meio de um procedimento de duas etapas: primeiro, um
cálculo autoconsistente (SCF) foi realizado para obter a densidade de carga do estado funda-
mental; em seguida, um cálculo não autoconsistente foi executado para obter os autovalores
de energia ao longo de um caminho de alta simetria na Zona de Brillouin. A DOS total foi
calculada com alta resolução para uma análise precisa.

Os resultados, apresentados na Figura 5.3, confirmam inequivocamente que o PolyRin-
gene possui um caráter metálico. A estrutura de bandas, mostrada na Figura 5.3(a), exibe
múltiplas bandas que cruzam o nível de Fermi (EF ), o que indica a ausência de um band gap
e a presença de estados eletrônicos disponíveis para a condução com energia mínima.

Este comportamento é diretamente corroborado pela Densidade de Estados (DOS) total,
ilustrada na Figura 5.3(b). A DOS apresenta um valor finito e não nulo exatamente no nível
de Fermi (indicado pela linha pontilhada), que é a assinatura característica de um metal.
Isso confirma a disponibilidade imediata de estados eletrônicos para os elétrons na banda
de condução, sem a necessidade de um limiar de energia. Dessa forma, o PolyRingene se
estabelece como um alótropo de carbono 2D intrinsecamente metálico, com potencial para
aplicações que demandem alta condutividade elétrica.

Figura 5.3 – Propriedades eletrônicas do PolyRingene. (a) Estrutura de bandas eletrônicas
calculada ao longo de um caminho de alta simetria na Zona de Brillouin. (b) Densidade de
Estados (DOS) total. Múltiplas bandas cruzando o nível de Fermi (EF = 0 eV) e uma DOS
não nula em EF confirmam a natureza metálica do material.
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5.2.3 Propriedades Mecânicas: Abordagem via Potenciais de Aprendizado de
Máquina (MLIPs)

A investigação das propriedades mecânicas do PolyRingene, especialmente seus meca-
nismos de fratura, exige simulações em larga escala que são computacionalmente inviáveis
com métodos de primeiros princípios (DFT). Ao mesmo tempo, a topologia única e complexa
deste alótropo desafia a transferibilidade de potenciais empíricos clássicos. Para superar essa
barreira, foi desenvolvida uma metodologia baseada em Potenciais Interatômicos de Apren-
dizado de Máquina (MLIPs), com o objetivo de aliar a precisão quântica do DFT à eficiência
da dinâmica molecular.

A obtenção de um MLIP confiável está intrinsecamente ligado à qualidade e diversidade
do conjunto de dados de referência utilizado em seu treinamento. Portanto, um protocolo
multifacetado foi empregado para gerar um conjunto de dados abrangente a partir de cálculos
de DFT, garantindo que o potencial fosse exposto a uma vasta gama de ambientes atômicos:

Dinâmicas Ab Initio de Estabilidade Térmica: Primeiramente, foram utilizadas as confi-
gurações atômicas (juntamente com suas energias, forças e tensores de tensão) extraídas das
simulações de dinâmica molecular ab initio (AIMD) a 1000 K. Essas simulações, as mesmas
utilizadas para confirmar a estabilidade térmica do material, forneceram ao conjunto de da-
dos informações cruciais sobre o comportamento da estrutura sob alta agitação térmica e em
regiões anarmônicas da superfície de energia potencial.

Dinâmicas Ab Initio sob Deformação: Para ensinar ao potencial como o material res-
ponde a um carregamento mecânico, foram realizadas simulações AIMD curtas (1 ps) a 300
K em supercélulas previamente submetidas a deformações uniaxiais. As deformações foram
aplicadas nas direções x e y em incrementos de 1%, 2%, 3%, 4%, 5%, 10%, 15% e 20%.
Durante estas dinâmicas, a direção da deformação foi mantida fixa, enquanto as direções
transversais e as posições atômicas foram permitidas relaxar, capturando assim o efeito de
Poisson e gerando configurações realistas sob tensão.

A acurácia do potencial MTP treinado foi primeiramente validada por meio de sua ca-
pacidade de reproduzir as propriedades dinâmicas da rede. Para isso, as curvas de dispersão
de fônons calculadas com o MLIP foram comparadas com os resultados de referência obti-
dos via Teoria da Perturbação do Funcional da Densidade (DFPT), conforme apresentado na
Figura 5.4.

Observa-se uma notável concordância geral entre os espectros, indicando que o MLIP
descreve com sucesso a estrutura vibracional do PolyRingene. No entanto, uma inspeção
mais detalhada revela um ligeiro amolecimento (softening), ou seja, uma diminuição nas
frequências de alguns modos ópticos, no espectro calculado com o MLIP em comparação
com o DFPT. Essa pequena divergência não representa uma imprecisão do potencial, mas
sim uma consequência física da metodologia de treinamento. Os cálculos via DFPT repre-
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Figura 5.4 – Validação do Potencial de Aprendizado de Máquina (MLIP) para o PolyRin-
gene. Comparação das dispersões de fônons calculadas com DFPT (cinza) e com o MLIP
(preto). A alta concordância valida a descrição das propriedades vibracionais pelo MLIP

sentam o limite harmônico a 0 K, enquanto o MLIP foi treinado com um conjunto de dados
que inclui configurações de dinâmica molecular a temperaturas finitas (300 K e 1000 K).
Portanto, o MLIP aprende uma superfície de energia potencial efetiva que já embute efeitos
anarmônicos decorrentes da temperatura. O amolecimento observado nas frequências dos
fônons é consistente com o comportamento físico esperado para materiais em temperaturas
finitas.

Assim, a pequena diferença entre as curvas, longe de ser uma falha, sugere que o MLIP
capturou aspectos da física anarmônica do sistema que vão além da aproximação harmô-
nica padrão, tornando-o uma ferramenta ainda mais robusta para o estudo de propriedades
dependentes da temperatura.

As simulações de dinâmica molecular clássica para a caracterização mecânica foram
conduzidas com o software LAMMPS, empregando o potencial MTP previamente validado.
O protocolo de simulação iniciou-se com a minimização de energia da estrutura para obter
uma configuração livre de tensões. Em seguida, foi realizado um processo de equilíbrio em
duas etapas: primeiramente, uma simulação de 100 ps no ensemble isotérmico-isobárico
(NPT) a 300 K e pressão nula para relaxar os vetores de rede e, subsequentemente, uma
simulação de 50 ps no ensemble canônico (NVT) para a termalização do sistema.

Os ensaios de tração uniaxial foram então realizados a 300 K, aplicando-se uma taxa de
deformação constante de 109s−1. Durante a deformação, um barostato foi mantido na direção
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transversal para garantir pressão nula, permitindo a contração lateral do material (efeito de
Poisson) e assegurando uma condição de tensão uniaxial. Em todas as etapas dinâmicas,
as equações de movimento foram integradas com um passo de tempo de 0,1 fs. A tensão
macroscópica foi computada a partir do tensor de virial e a análise de fratura foi realizada
com base no critério de von Mises para a tensão atômica local.

Com o potencial MTP devidamente validado, a resposta mecânica do PolyRingene foi
investigada em detalhe. A Figura 5.5 apresenta a principal validação da abordagem de apren-
dizado de máquina, comparando as curvas de tensão-deformação para tração uniaxial nas
direções x (a) e y (b) obtidas com DFT, com o MLIP treinado, e com potenciais empíricos
clássicos. A concordância entre os resultados do MLIP e os dados de referência do DFT
é notável em ambas as direções, com o potencial de aprendizado de máquina reproduzindo
com alta fidelidade tanto a rigidez do material (inclinação da curva) quanto sua resistência
máxima. Em forte contraste, os potenciais clássicos (AIREBO, Tersoff e ReaxFF) falham
em reproduzir a resposta mecânica, subestimando drasticamente a rigidez do material. Esta
comparação valida o MLIP como a única ferramenta, entre as testadas, capaz de descrever
com precisão quântica o comportamento do PolyRingene, justificando seu uso para a análise
subsequente.

Figura 5.5 – Comparativo das curvas de tensão-deformação do PolyRingene sob tração uni-
axial nas direções (a) x e (b) y. Os resultados de referência do DFT são comparados com
as predições do MLIP e de potenciais empíricos clássicos (AIREBO, Tersoff, ReaxFF). Fica
evidente a alta fidelidade do MLIP em reproduzir os dados de DFT, em contraste com os
potenciais clássicos, que subestimam a rigidez do material

A análise quantitativa dessas curvas permite extrair as principais propriedades mecânicas
do material, que estão sumarizadas na Tabela 5.1 A tabela evidencia a alta rigidez e robustez
do PolyRingene, com um Módulo de Young (calculado via DFT) de 582,45 GPa na direção
x e 539,52 GPa na direção y, indicando uma modesta anisotropia elástica. A resistência à

80



tração é de aproximadamente 57 GPa com a fratura ocorrendo em deformações de 10%.
É importante notar que o MLIP reproduz esses valores com boa concordância, enquanto os
potenciais clássicos apresentam desvios significativos, tanto na rigidez quanto na deformação
de fratura.

Tabela 5.1 – Propriedades mecânicas do PolyRingene obtidas via DFT e comparadas com
diferentes potenciais interatômicos. Os valores incluem o Módulo de Young (Ex e Ey), a
Tensão Máxima de Tração (σmax) e a Deformação de Fratura (εf ) para as direções x e y.

Método Ex (GPa) Ey (GPa) σx
max (GPa) εxf (%) σy

max (GPa) εyf (%)
DFT 582.45 539.52 56.87 10.0 57.88 10.0
MLIP 507.28 642.38 65.31 11.8 54.84 10.0
ReaxFF 149.37 126.85 50.22 18.1 35.87 10.8
Tersoff 69.94 122.52 66.85 35.8 59.26 30.6
AIREBO 83.07 434.23 39.15 12.0 52.09 11.0

Para elucidar os mecanismos de falha em escala atômica, foram analisadas as distribui-
ções de tensão de von Mises durante as simulações de tração em larga escala com o MLIP.
Os resultados, apresentados a seguir, revelam uma resposta à fratura marcadamente aniso-
trópica, que depende diretamente da direção do carregamento aplicado.

A Figura 5.6 detalha o processo de fratura sob tensão na direção x. O painel (a) exibe a
estrutura em seu estado inicial equilibrado a 300 K, apresentando uma distribuição de tensão
homogênea e negligível. À medida que a deformação aumenta, a tensão se acumula na rede,
e, próximo ao limite de ruptura, em uma deformação de 11,9% (painel b), observa-se uma
intensa concentração de tensão (em vermelho) em junções de anéis e ligações específicas. Ao
atingir 12,1% de deformação (painel c), a estrutura sofre uma fratura abrupta. Um aspecto
notável deste mecanismo é a formação de Cadeias Atômicas Lineares (LACs) que conectam
as bordas da trinca. A formação de LACs é um mecanismo de dissipação de energia já
reportado em outros sistemas de carbono sp² e indica uma certa ductilidade no processo de
falha nesta direção.

De forma contrastante, a fratura na direção y, mostrada na Figura 5.7, apresenta um
comportamento distinto. Após o estado inicial relaxado (painel a), a estrutura suporta a de-
formação até aproximadamente 9,9% (painel b), ponto no qual a tensão já está elevada, mas
ainda distribuída de forma relativamente uniforme, sem os pontos de concentração intensa
vistos na direção x. A fratura ocorre de forma súbita a uma deformação menor, de 10,2%
(painel c), com a nucleação e propagação de uma trinca ao longo de linhas de ligações espe-
cíficas. Diferentemente do caso anterior, o mecanismo de falha resulta em uma propagação
de trinca mais limpa e direta, com pouca ou nenhuma evidência da formação de LACs.

A comparação direta entre as duas direções evidencia a forte anisotropia mecânica do
PolyRingene, que se manifesta não apenas nas propriedades elásticas, mas também nos mo-
dos de falha. A estrutura suporta uma deformação maior na direção x (fratura a 12,1%) e
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Figura 5.6 – Mecanismo de fratura do PolyRingene sob tração na direção x, com a cor
representando a tensão de von Mises (0 GPa em azul a 65 GPa em vermelho). (a) Estrutura
relaxada. (b) Estrutura sob 12% de deformação, exibindo alta concentração de tensão. (c)
Estrutura fraturada, destacando a formação de Cadeias Atômicas Lineares (LACs) na região
da ruptura.

exibe um mecanismo de ruptura que envolve a formação de LACs, enquanto na direção y a
falha é mais abrupta e ocorre em uma deformação menor ( 10,2%). Essa distinção é uma
consequência direta da complexa e não uniforme topologia da rede, que distribui a tensão
de maneira diferente e oferece caminhos de menor energia para a propagação da fratura,
dependendo da orientação do carregamento.
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Figura 5.7 – Mecanismo de fratura do PolyRingene sob tração na direção y. (a) Estrutura
relaxada. (b) Estrutura sob 10% de deformação. (c) Estrutura fraturada, mostrando uma
propagação de trinca mais limpa e direta, com menor formação de LACs em comparação
com a fratura na direção x.
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CONCLUSÃO E PERSPECTICAS
FUTURAS

A presente tese de doutorado dedicou-se à investigação computacional das propriedades ter-
momecânicas de alótropos de carbono bidimensionais com topologias complexas e não con-
vencionais. O objetivo central foi duplo: por um lado, caracterizar a resposta mecânica de
estruturas existentes e propor novos materiais com propriedades ajustáveis; por outro, avaliar
criticamente e avançar nas metodologias de simulação atomística necessárias para descrever
com precisão esses sistemas complexos. A jornada de pesquisa, consolidada em três estudos
principais, demonstrou uma clara progressão, partindo da aplicação de potenciais reativos
clássicos até o desenvolvimento e validação de potenciais interatômicos baseados em apren-
dizado de máquina (MLIPs).

O primeiro estudo (Capítulo 3) focou na caracterização do PAI-Graphene, uma estru-
tura já proposta na literatura, mas cujas propriedades térmicas e mecânicas eram pouco
exploradas. Utilizando simulações de dinâmica molecular com o potencial AIREBO-M,
demonstrou-se que o PAI-G possui um ponto de fusão de aproximadamente 3200 K, inferior
ao do grafeno, e exibe uma resposta mecânica marcadamente anisotrópica. O Módulo de
Young variou entre 707 GPa e 815 GPa, dependendo da direção da deformação, uma rigidez
atribuída ao alinhamento das ligações em sua rede de anéis 5-6-7. A análise de nanotubos
derivados do PAI-G revelou ainda que a curvatura e o diâmetro são parâmetros cruciais que
modulam a estabilidade e a rigidez, com as propriedades convergindo para as da monoca-
mada 2D em nanotubos de diâmetro maior.

No segundo estudo (Capítulo 4), a pesquisa avançou do campo da análise para o do de-
sign, com a proposição de uma nova família de alótropos porosos, o Nanoporous Graphene
(NPG). Construídos a partir da interconexão de nanofitas de grafeno armchair, os NPGs
mostraram-se estruturas termicamente e dinamicamente estáveis, com natureza metálica. A
investigação mecânica, conduzida com o potencial AIREBO, revelou que suas propriedades,
como o Módulo de Young (na faixa de 394 a 690 GPa) e a anisotropia, podem ser sistema-
ticamente ajustadas pela largura das nanofitas constituintes. Foi identificado também que os
mecanismos de fratura são direcionais: enquanto a deformação paralela às fitas (direção x)
leva à ruptura na própria nanofita, a deformação perpendicular (direção y) concentra a tensão
e a fratura nas pontes de carbono da junção.

O terceiro e culminante estudo (Capítulo 5) abordou os limites dos potenciais clássicos
ao investigar o PolyRingene, um novo alótropo de topologia excepcionalmente complexa
proposto neste trabalho, contendo anéis de 3 a 10 membros. A caracterização de suas pro-
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priedades mecânicas demonstrou que potenciais empíricos tradicionais, como AIREBO e
Tersoff, falham em reproduzir a rigidez e a resistência previstas por cálculos de primeiros
princípios (DFT). Para superar essa limitação, foi desenvolvido um Potencial Interatômico
de Aprendizado de Máquina (MLIP) do tipo Moment Tensor Potential (MTP), treinado com
um conjunto de dados de DFT. O MLIP demonstrou uma acurácia notável, reproduzindo com
alta fidelidade tanto as curvas de dispersão de fônons quanto as curvas de tensão-deformação
do DFT, algo que os potenciais clássicos não foram capazes de fazer. Com o potencial
validado, foi possível determinar que o PolyRingene é um material metálico, robusto e ani-
sotrópico, com Módulo de Young na faixa de 540-580 GPa e mecanismos de fratura que
envolvem a formação de cadeias atômicas lineares.

6.0.1 Perspectivas Futuras

As contribuições desta tese consolidam a viabilidade física dos alótropos NPG e PolyRin-
gene e, em virtude das propriedades promissoras demonstradas, delineiam diversas perspec-
tivas de investigação. A mais evidente é a busca pela síntese experimental dessas estruturas,
validando de forma empírica as estabilidades e o potencial de aplicação aqui demonstrados
teoricamente.

Do ponto de vista computacional, o potencial MLIP desenvolvido para o PolyRingene
pode ser empregado para explorar outras propriedades, como a condutividade térmica, o
comportamento sob cisalhamento ou a interação com diferentes substratos. Além disso, a
metodologia de treinamento e validação de MLIPs consolidada nesta tese pode ser esten-
dida para outras classes de materiais 2D, como os MXenes ou dicalcogenetos de metais de
transição, onde a precisão na descrição das interações é igualmente crucial.

Finalmente, os materiais propostos podem ser investigados para outras aplicações. A na-
tureza metálica e a alta área de superfície dos NPGs os tornam candidatos interessantes para
catálise ou como eletrodos. Nesse sentido, um caminho natural seria retomar a investigação
de seu potencial para o armazenamento de energia, avaliando a adsorção e difusão de íons de
lítio em suas superfícies porosas, conectando assim, os resultados desta tese com questões
abertas e relevantes no campo de baterias e supercapacitores.
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