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ABSTRACT 

This study aimed to find optimal points to place electric vehicle chargers (EVCs) for electric 

vehicles (EVs) on the non-urban highway BR-386, part of the MOTIVA ViaSul concession. 

This work applied a Genetic Algorithm (GA) model combined with the Geographic Information 

System (GIS) to determine the optimal locations of the charging station. The work was 

implemented in three stages. The first stage was the acquisition and cleaning of the database 

because the data was obtained from several different sources. The second stage was the 

implementation of the GA model. This phase used the applied data, including traffic flow (both 

in 2025 and an estimate for 2030), electrical energy infrastructure and EV specifications. The 

third stage was the application of different scenarios to obtain the optimal solution for the 

model. The model found two optimal locations for EV charger allocation, besides to the ideal 

number of chargers, the average queue length size, and the utilization percentage of the chargers 

depending on the scenario, either the 2025 one or the 2030 scenario. 

 

 

Keywords: Electric Vehicle Charging, Optimization, Genetic Algorithm, Geographic 

Information System   
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RESUMO 

Este estudo teve como objetivo encontrar pontos ótimos para posicionar carregadores de 

veículos elétricos (CVEs) para veículos elétricos (VEs) na rodovia não urbana BR-386, parte 

da concessão da MOTIVA ViaSul. Este trabalho aplicou um modelo de Algoritmo Genético 

(AG) combinado com o Sistema de Informação Geográfica (SIG) para determinar os locais 

ótimos da estação de recarga. O trabalho foi implementado em três etapas. A primeira etapa foi 

a aquisição e limpeza do banco de dados, pois os dados foram obtidos de diversas fontes 

diferentes. A segunda etapa foi a implementação do modelo de AG. Esta fase utilizou os dados 

aplicados, incluindo o fluxo de tráfego (tanto em 2025 quanto uma estimativa para 2030), 

infraestrutura de energia elétrica e especificações de VEs. A terceira etapa foi a aplicação de 

diferentes cenários para obter a solução ótima para o modelo. O modelo encontrou dois locais 

ótimos para alocação de carregadores de VEs, além do número ideal de carregadores, o tamanho 

médio da fila e a porcentagem de utilização dos carregadores dependendo do cenário, seja o de 

2025 ou o de 2030. 

 

 

Palavras-chave: Carregamento de Veículos Elétricos, Otimização, Algoritmo Genético, 

Sistema de Informação Geográfica 
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1 INTRODUCTION 

The use of fossil fuels is the main source of the vehicle transportation worldwide (HUANG et 

al., 2018). Nowadays, however, this utilization is turning into a questionable and negative 

subject because of the effects on Earth (KARNAUSKAS et al., 2020). Therefore, the limited 

and expensive amount of fossil fuels available, makes that the search for the new and the 

renewable sources or vehicle transportation occurs in almost all of the countries (KALGHATGI 

et al., 2018). Even though Brazil’s energetic sources mainly come from renewable sources, this 

urge for replacing fossil fuels is a government proposition (LIMA et al., 2020; OLIVEIRA et 

al., 2022). 

One of the many solutions for this replacement is the use of electric vehicles (EV), avoiding the 

fossil fuels industry (SUDJOKO et al., 2021). Currently, the EV in Brazil corresponds to only 

0,64% of the total vehicles being used, being a total of 397,789 of the 61,803,369 cars 

(BRAZIL, 2022; BRAZILIAN ELECTRIC VEHICLE ASSOCIATION, 2024). That occurs 

because of the many difficulties faced in Brazil, such as greater social inequality, public security 

and transportation problems, besides the lack of logistic support once the developing countries 

do not have the same level of expertise when compared to developed ones (COSTA et al., 

2018). Moreover, the average Brazilian needs to spend 65.81 times of the minimum wage to 

buy the cheapest EV available, while only 46.50 times of the minimum wage to buy the cheapest 

fossil fuel available car (BRAZIL, 2024; RENAULT, 2024; CITROËN, 2024). It must also be 

said that in Brazil, only 29.6% of the population have access to a car, whereas 30.9% of the 

population use public transportation (BRAZILIAN CONFEDERATION OF TRANSPORT, 

2024). 

Brazil has a total of 1.720.909,00 km of highways connecting the country, because the most 

used transportation method is still the highway system (BRAZILIAN CONFEDERATION OF 

TRANSPORT, 2022). This study is going to focus on the southern part of the country, 

especially in the state of Rio Grande do Sul (RS), in the highway BR-386, concession MOTIVA 

ViaSul, connecting the city of Canoas with the city of Caraizinho, with a total of 266 km of 

extension. This is because it is a research project developed in collaboration with MOTIVA 

ViaSul. 
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Looking at the experience of other countries, it can be a natural process to substitute fossil fuels 

cars for the EV in some decades (HOLECHEK et al., 2022). One of the most challenging needs 

is the implementation of Electric Vehicle Charging (EVC) stations to deal with the demand of 

the EV fleet (DEB et al., 2018). Currently, in Brazil there are about 11,000 EVC, most of them 

only located in the urban area, and most frequently located close or inside shopping malls 

(BRAZILIAN ASSOCIATION OF ELECTRIC VEHICLES, 2024). This EVC number may be 

insufficient for the market growth of EV in the coming years in urban areas (VELANDIA 

VARGAS et al., 2020). 

It is known that the faster the EVC, the higher the installation costs (GNANN et al., 2018). 

Having those two categories, cost and charging time, being the most decisive when it comes to 

implement the  EV in a highway, this study takes this into account to decide the optimal 

locations to install the EVCs (MAHDAVIAN et al., 2021). 

The Brazilian logistics is then made through the non-urban highways, and the vehicles carrying 

the goods are mainly fossil fuels based. The switch to an electric fleet can reduce the goods 

final price for the end consumer because of the lower transportation emissions and costs (ALP 

et al., 2022).  

Since Brazil has long highways, in order to implement the EVs, including more EVC allows 

longer trips (NOEL et al., 2019). The research question of this study is then to determine where 

are the possible optimal locations for the EVCs, taking into account the maximum number of 

vehicles to be charged, the traffic flow, the queuing time, to optimize the installation of EVCs 

in a non-urban highway, particularly in the BR-386, concession MOTIVA ViaSul. 

The main objective of this study is to propose and evaluate scenarios for the placement of EVC 

stations along the BR-386 highway, in the segment between Canoas and Carazinho, by applying 

a genetic algorithm to determine optimal station locations. For the localization, a Geographic 

Information Systems (GIS) approach is also used. 

The genetic algorithm was chosen because it is widely used in similar location-allocation 

problems, particularly in highway contexts where a large number of variables and constraints 

must be considered (ZHOU et al., 2022; KROL & GRZEGORZ SIERPINSKI, 2021; CHOI et 
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al., 2024; LI et al., 2021; AKBARI et al., 2018; CHUNYAN SHUAI et al., 2024; TURAN et 

al., 2021; YENİGÜN et al., 2024; PINTO et al., 2024). 

A Geographic Information Systems (GIS) is an effective analysis tool to enhance the 

optimization and finding the best location for the EVC (BANEGAS & MAMKHEZRI, 2021). 

In addition, Python is used to create the numeric problem itself, with all the conditions and 

boundary conditions necessary to simulate the real world. And also, the use of Python is to 

create visually all the scenarios that were tested and to give a real representation of the problem. 

The specific objectives of this study include two main ones: First to analyze the growth of the 

EVs in Brazil worldwide and in the BR 386 scenario. This analysis is important to understand 

the difference between Brazil and other developed and developing countries about the 

implementation of the EV and the EVC. Moreover, it is important to forecast the future for the 

EVs in Brazil besides looking at what other countries have done to mitigate the downsides of 

the change of fossil fuels to EVs. 

The second objective is to formulate a decision-making model capable of determining the 

optimal type and quantity of EV charging stations along highways. This involves constructing 

low-growth, baseline, and high-growth scenarios derived from historical PNCT time series, and 

assessing each scenario in terms of average queue length, utilization levels, economic viability, 

and geographic siting performance throughout the entire study period. Therefore, the model 

aims to aid the decision makers to install the EVCs efficiently. 

After the development, modeling, and calibration of the genetic algorithm, the model identified 

two locations as optimal for the installation of charging stations along the BR 386 MOTIVA 

ViaSul concession. In addition, the optimal number of chargers for each year and for each of 

the proposed growth scenarios was determined. 

This study is structured into three main phases, as illustrated in Figure 1.1. The first phase 

consists of a literature review, focusing on the evolution of electric vehicles and charging 

infrastructure, as well as the theoretical foundations relevant to optimization in similar contexts, 

which is presented in Chapter 2. The second phase describes the data, methodological 

procedures, and the modeling framework adopted for this research, which is presented in 

Chapters 3 and 4. Finally, the third phase presents and evaluates the results of the proposed 
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model, including the identification of possible charging station locations and scenario 

outcomes, which is presented in Chapters 5, 6, and 7. 

 

 

Figure 1.1 Study Structure 
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2 LITERATURE REVIEW AND THE APPLIED METHOD 

In this section, a literature review about the most important topics related to this study is 

presented. A background of the EV, the EVCs and their technology are shown besides a 

description of the GIS. The implemented mathematical proposition for the optimal locations of 

the EVCs is presented, as well as the applied method used in this study. 

2.1 EVOLUTION OF THE EVS IN THE WORLD 

It is considered an Electric Vehicle (EV) those cars being propelled partially or fully by electric 

engines (RUAN & SONG, 2019). There is still no consensus of the first appearance of the EV 

in the world, but many say that it was about 1828, when a Hungarian named A´nyos Jedlik, 

invented a small-scale model car powered by an electric motor (CHAN, 2013). However, 

widespread use, and consequently commercialization, began only almost 170 years after the 

first prototype was made by Ányos Jedlik, by the year 2000 (BARBOSA et al., 2022). The 

delay between these dates was necessary due to the advance of EV technology, like any other 

conceptual design coming to the real world (SUN et al., 2019). 

The “green idea” related to the EV is to decrease the use of fossil fuels engines, because besides 

being harmful to the atmosphere it also causes damage to its recycling process (LELIEVELD 

et al., 2019). Another benefit for the EV is that the fossil fuels are finite, and with the large 

demand for its utilization, about 102 Mb/d (million barrels per day), some projections estimate 

that it will last about 50 years, if nothing new is found and the demand continues to rise at this 

accelerated rate (U.S. ENERGY INFORMATION ADMINISTRATION, 2025; 

KALGHATGI, 2018). 

Nevertheless, it does not mean that the switch to EV will happen in a few months or even years, 

due to its technology challenges including a smaller range anxiety, more  charging 

infrastructure and the decrease in the battery cost (LEE & CLARK, 2018; KUMAR & ALOK, 

2020). One of the many challenges faced to the EV implementation is the phenomenon known 

as range anxiety, being a very influential factor to decide or not to purchase an EV (NOEL et 

al., 2019). Range anxiety is the fear of running out of electricity before reaching other EVC 

(NEUBAUER & WOOD, 2014). The anxiety is amplified by the lack of EVCs in the highways. 
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Possible solutions can be devised to overcome the range anxiety. A possible solution is to 

increase the EV autonomy in a non-urban scenario, making for instance, the EV range going 

from 200 km to 500 km per charge. Another possible solution is to provide more charging 

infrastructure, EVC (PEVEC et al., 2019). The first mentioned solution is more technology 

dependent, and the second one is more economic dependent. Nowadays, there are different 

types of cars considered as EV. 

The first vehicle type, the Battery Electric Vehicles (BEVs), was developed as early as 1828 

with the creation of an electric driven motor consuming electricity as a way of transportation 

(FARAZ et al., 2020). However, it was only from 1960 to 1990 that the EV invention was 

popularized and developed to the stage as it is known today. By the year 2005, the company 

Tesla was responsible for the main EV development and the spread of the market in the USA 

and in the rest of the world (LONG et al., 2019). One of the main differences of the BEVs and 

the other EVs is that the BEV is the only one fueled only by electric power (KÖNIG et al., 

2021). Therefore, there is no need for a combustion engine because the only engine needed in 

the car is the battery one (LIU et al., 2021). Another benefit is the zero CO2 emissions since 

there is no fossil fuel being used (KAWAMOTO et al., 2019). In order to charge the BEVs 

faster, a Plug-in Charging is used, having about a 100 km to 600 km of electric range, as an 

important factor to control the range anxiety (DAS et al., 2019). The Figure 2.1 shows a  

representation of a BEV car. 

 
Figure 2.1 The Architecture and Components of BEV 

Source: HARIKRISHNAN et al., 2023. 

 

The second vehicle type is the Plug-in Hybrid Electric Vehicles (PHEVs). The PHEV was first 

developed by 2002 to 2005 aiming to merge the BEV and the fossil fuel cars, having the option 
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to recharge their battery via external power source besides the onboard electric generator 

(SINGH et al., 2020). Moreover, the PHEV decreases the operation cost and the emission of 

harmful pollutants (PLÖTZ et al., 2021). Usually, the people want to be more ecologically 

responsible, lowering their pollution, but do not want to have all the constraints, difficulties and 

range anxiety of a BEV (ADNAN et al., 2018). It has about 30 km up to 100 km of electric 

range solely on the battery, and then the internal combustion engine will take over. The Figure 

2.2 shows the PHEV car. 

 
Figure 2.2 The Architecture and Components of PHEV 

Source: HARIKRISHNAN et al., 2023. 

 

The third vehicle type, Hybrid Electric Vehicles (HEVs), was first developed in 1898 by Dr. 

Ferdinand Porsche, using an internal combustion engine to generate power to the traction 

electric motor (EHSANI et al., 2021). Nowadays, after the creation of the Toyota Prius, almost 

every other auto manufacturer has introduced HEV automobile (ORECCHINI et al., 2020). The 

difference between HEV and PHEV is that the HEV does not charge the battery externally 

(DENTON, 2020). The HEV works by using internal combustion engines and electric batteries, 

being recharged by the braking energy, which is normally wasted in other types of vehicles 

(RAHMANI & LOUREIRO, 2018). When the battery uses the braking energy the vehicle 

autonomy is only 5 km to 10 km, but the mentioned autonomy depends on the scenario, mainly 

if there is traffic jams (ZHUANG et al., 2020). The CO2 emissions are not as low as previous 

electric vehicle types because of the short electric range of HEVs and the requirement to use 

only the breaking for charging (SINGH et al., 2019). The Figure 2.3 shows the representation 

of an HEV car. 
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Figure 2.3 The Architecture and Components of HEV 

Source: HARIKRISHNAN et al., 2023. 

 

The fourth vehicle type, Fuel Cell Electric Vehicles (FCEVs) is the latest type and features the 

best technology being considered the nonpolluting transport, if it excludes the recharge of the 

batteries on electric power stations (PENG et al., 2022). The idea of the FCEVs is the 

conversion of  fuel cells. Fuel cells are electrochemical devices converting the chemical energy 

from a reaction into electrical energy, with hydrogen serving as the fuel (MUTHUKUMAR et 

al., 2020). The electric range is by far the most important feature of a FCEV, providing up to 

700 km of autonomy (PRAMUANJAROENKIJ & KAKAÇ, 2022). The Figure 2.4 shows the 

representation of a FCEV car. 

 
Figure 2.4 The Architecture and Components of FCEV 

Source: HARIKRISHNAN et al., 2023. 

 

Table 2.1 summarizes the four different types EVs, presenting their characteristics and 

distinctions to support a clearer understanding of their technical and operational differences. 
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Table 2.1 Characteristics of EVs Type 

VEHICLE 

TYPE 

ENERGY 

SOURCE 

ELECTRIC 

RANGE 

ADDITIONAL 

FUEL 

PLUG-IN 

CHARGING 

CO2 

EMISSIONS 

Battery 

Electric 

Vehicles 

(BEVs) 

Only 

electric 

battery 

High (100-

600 km) 
None Yes Zero 

Plug-in 

Hybrid 

Electric 

Vehicles 

(PHEVs) 

Battery + 

combustion 

engine 

Medium 

(30-100 km) 

Gasoline or 

diesel 
Yes Low 

Hybrid 

Electric 

Vehicles 

(HEVs) 

Battery + 

combustion 

engine 

Low (5-10 

km) 

Gasoline or 

diesel 
No Moderate 

Fuel Cell 

Electric 

Vehicles 

(FCEVs) 

Hydrogen 

fuel cell 

High (300-

700 km) 
Hydrogen No Zero 

 

This study applies the Battery Electric Vehicles (BEVs) because they are the ones requiring 

strictly Plug-in Charging to operate. Therefore, the BEVs will directly benefit from the 

construction and installation of the EVC in the highway. 

2.2 EVOLUTION OF THE EVC IN THE WORLD 

Electric Vehicle Charging (EVC) recharges the batteries of the BEVs and PHEVs. The place 

where the EVCs are installed can increase or decrease the range anxiety (XU et al., 2020). It is 

also important to evaluate the waiting time to charge the car with the waiting time to fill it up, 

observing how many more kilometers will be required to recharge the car (GNANN et al., 2018; 

SINGH et al., 2020). The competition between EVs and fuel cars was unbalanced due to the 

cost disparity and the significant time difference in refueling times, because, while an average 

fuel car can be refueled in approximately five minutes, early EVs required up to 15 hours to 

fully charge (WISHART, 2014; COLLIN et al., 2019). 
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An important issue related to the EVs is the high consumption of electricity to charge them 

(MURATORI et al., 2019). The EVC can normally charge 5 kWh up to 50 kWh, implying a 

waiting time of 11 hours to 30 minutes (HEMAVATHI & SHINISHA, 2022). The mentioned 

EV required time varies between 132 to 6 times slower than the filling of a regular fossil fuel-

based car to the EVCs. Furthermore, the flow of electricity must be considered. Nowadays, with 

the new and improved technology, there are basically four types of EVC being used worldwide: 

Slow or normal charger: Up to 7.4 kilowatts (kW) of power and can take up to six to 12 

hours to charge a vehicle. Not recommended for highways, where time to fuel needs to be as 

fast as possible. 

Semi-fast charger: Up to 22 kilowatts (kW) of power taking up to two to six hours to 

charge a vehicle. It is also not recommended for highways due to the time to charge the EV. 

Fast charger: Up to 100 kilowatts (kW) of power and lasting up to an hour and half to 

30 minutes to charge a vehicle. It is recommended and mostly used on highways, even though 

the time is still high, when compared to a normal 5 minutes to fuel a normal vehicle. 

Ultra-fast charger: Minimum of 150 kilowatts (kW) of power charging a vehicle in less 

than 30 minutes. It is recommended and mostly used on busier highways that need to charge 

their EV at the fastest time. Figure 2.5 shows an Ultra-fast charger. 

 

Figure 2.5 Typically Ultra-Fast Charger 
Source: SIEMENS, 2025. 

 

To normalize all the possible outcomes, the Ultra-fast charger is the one to be applied in this 

research. 
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2.3 OPTIMIZATION METHOD 

There are different approaches to analyze and to obtain the optimal localization for the same 

problem (ZHANG et al., 2020). It depends on the subject of study, data analysis, theory and the 

criteria besides the expected outputs of the model (ZHOU et al. 2025). Moreover, it is important 

to find the global solution for the problem (KONG et al., 2019). Some researchers have applied 

the weighted multi criteria location optimization methods, genetic algorithms or even particle 

swarm optimization methods (CSISZÁR et al., 2020; YENİGÜN et al., 2024). It must also be 

mentioned that the artificial intelligence has also been used to obtain the optimal solution for 

localization problem (JANOWICZ et al., 2019). 

The multi-criteria location optimization method has already been applied to separate the 

decision making into variables making a ponderation of the most important variables, according 

to the model (FENG et al., 2021). The multi-criteria method has been applied in the localization 

problems and in a wide scope of other problems including healthcare, energy sector, production, 

supply chain management, transportation and finance/economics (TAHERDOOST & 

MADANCHIAN, 2023). It has been applied because it has the ability to obtain the exact global 

solution of the model (MUKHAMETZYANOV & PAMUČAR, 2018). Nevertheless, the 

system lacks to obtain a specific global solution for the problem when there are many variables, 

taking a much longer time to obtain the optimal solution (DUGGER et al., 2022). 

The metaheuristic method, including the genetic algorithms (GA), has also been applied to 

solve both constrained and unconstrained optimization problems being already used to 

biological evolution processes (KATOCH et al., 2020). It is a population-based search 

algorithm applying the concept of survival of the fittest or the strongest producing new 

populations by the iterative use of genetic operators on individuals present in the population 

(MICHALEWICZ, 1996). The chromosome representation, selection, crossover, mutation, and 

fitness function computation are the key elements of the GA (PAPAZOGLOU & BISKAS, 

2023). One of the main limitations for the application of the GA in the optimization problems 

is it cannot guarantee to obtain the global solution because of the way how the populations are 

created. Nevertheless, it is able to obtain a reasonably close solution for the global one (AZIZ 

et al., 2023). An example of the GA algorithm is shown in Figure 2.6. 
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Figure 2.6 Genetic Algorithm Flowchart 

 

Finally, another algorithm applied is the particle swarm optimization (PSO) making use of 

probability, by transition rules to make parallel searches of the solution hyperspace without 

explicit assumption of derivative information (KENNEDY & EBERHART, 1995). When 

implementing a PSO, a group of particles explores the problem space having movement 

influenced by both individual history and the trajectory of the swarm. Each particle shares then 

its best position with the other ones, incorporating random perturbations, and, after updating all 

their positions in an iteration, the process continues, refining the search near the perceived 

optimum (HOUSSEIN et al., 2021). The PSO has the same limitations as the GA, once it does 

not guarantee to obtain the global solution, reaching solutions closer or near the global one. 
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This study applies the GA location optimization method because of the large number of 

variables to optimize the installation of the EVCs on specific kilometers of the BR-386, the 

studied highway in this project. 

2.4 GEOGRAPHIC INFORMATION SYSTEM (GIS) 

The Geographic Information System (GIS) is a concept, used in some software, making it 

possible to analyze the input dataset, linking it to a location on the earth's surface. Defining a 

GIS can be done by either explaining what it can do by looking at the components. Both are 

important to really understand a GIS and use it optimally (ALI, 2019). 

One of the main GIS applications is that the model can be a combination of GIS and spatial 

analysis tools applying Multi-Criteria Decision Analysis (MCDA) methods, or even GA 

methods to achieve a better spatial decision by integrating multiple criteria from various spatial 

data sources (KAZEMI & AKINCI, 2018). 

Therefore, the main benefit when implementing a GIS is that it will be trained to obtain a better 

solution, tied to a location on the earth's surface. Thus, it is through the GIS application that all 

points, coordinates and locations will be implemented in the model. 

2.5 THE APPLIED METHOD 

This study includes three different phases. The first one is the acquisition and cleaning of the 

input database. The data is obtained by multiple locations and sources:  

Length of BR-386 highway (km): MOTIVA Via Sul. 

Traffic flow: PNCT and DETRANRS. 

Electrical energy infrastructure: ONS. 

EV specification: SENATRAN 
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The main objective of this phase is to clean the dataset, checking for missing information. 

Useful information including traffic flow, traffic by period of the day, the car model, the length 

of the highway and the electrical energy infrastructure is given as input for the model. 

The second phase is the implementation of the GA to obtain the location of the charging 

stations. The third phase is the creation of different scenarios for better understanding of the 

possible solution for the model. The best solution is achieved at this phase, fitting the solution 

and the other parameters, including the queueing time and the time to fully charge an EV. The 

idea is to create scenarios to enable the decision makers to install efficiently the EVCs. 
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3 THE DATA OVERVIEW 

The main goal of this stage is to gather the data, preparing it for the model. The data analyzed 

is presented in Figure 3.1. The next sections describes the dataset showing the results from the 

implemented Python program on the data and show the result in the Python program. 

 

Figure 3.1 Data Overview Diagram 

 

3.1 THE LENGTH OF BR-386 HIGHWAY (KM) 

The first important task is to locate and plot the BR-386 highway. The gathered information 

was that the BR-386 by the MOTIVA ViaSul has a length of 266 km. Its starting point is in the 

city of Caraizinho, and its finishing point is in the city of Canoas (MOTIVA, 2025). Therefore, 

the next step was to plot this map using the Python script and the OpenStreeMap. Figure 3.2 

shows all the highways that MOTIVA operates near the BR-386. Figure 3.3 has a detailed plot 

of BR-386 in the full size and Figure 3.4 has a detailed plot of the BR-386 belonging to the 

concession of the MOTIVA ViaSul, being the case study of this dissertation. A more detailed 

view of Figure 3.3 will be provided to present the optimal locations, including further 

parameters. 
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Figure 3.2 MOTIVA’s Website 
Source: MOTIVA, 2025. 

 

 
Figure 3.3 BR-386 Full Size 

Source: MOTIVA, 2025. 

 
Figure 3.4 BR-386 MOTIVA ViaSul 

Source: MOTIVA, 2025. 
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3.2 TRAFFIC FLOW (2025) 

The traffic flow was calculated by the average measurement from the data collected in two 

different locations within the BR-386 highway, the kilometer 422-6 and the kilometer 362-8. 

This data was obtained through the PNCT (National Traffic Control Plan) being compiled from 

the 2024 measurements at these two specific kilometer locations (PNCT, 2025). 

Firstly, the annual average daily traffic from passenger cars in both locations was consolidated. 

Afterwards, there was a count of how many days there was in the data for every location. 

Finally, the flow of cars was evaluated by an average. It was considered that the evaluated 

average did not vary along the time. The expected traffic flow is yearly was then evaluated. The 

percentages of the EVs was obtained from the data of the DETRAN-RS (RS State Department 

of Transit) and the EVs represent approximately 0.13% of the fleet in circulation in RS, as 

shown in Table 3.1. (DETRAN-RS, 2025). 

Table 3.1 Traffic Flow Percentage 2025 

CATEGORY QUANTITY IN RS PERCENTAGE OF FLEET 

EVs 5,918 0.13% 

All vehicles 4,627,979 100% 

Source: DETRAN-RS, 2025. 

 

Finally, the traffic flow of EVs in the highway BR-386, annually, was calculated being 

displayed in Table 3.2. 

Table 3.2 Traffic Flow Analysis 2025 

SECTION 
CARS 

OBSERVED 

DAYS 

OBSERVED 

NUMBER 

OF CARS 

NUMBER OF 

CARS PER 

DAY 

NUMBER OF 

EVS PER DAY 

422-6 5,538 231 2,061,019 8,922 - 

362-8 5,536 334 2,132,332 6,384 - 

Combined 15,306 19.57 

Source: DETRAN-RS, 2025. 
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The Number of the EVs per year were used in the Python implemented program being changed 

in sensitivity tests to figure out the impact in the optimal location solution. 

The daily number of EVs is evaluated by multiplying the Combined Total Number of Cars per 

Day to the Percentage of EV in the fleet. It was obtained the number of 20 EVs per day. 

3.3 TRAFFIC FLOW FORECAST (2030) 

The forecasts were made to the number of EVs in the period from 2025 to 2030. The data used 

was also from DETRAN-RS. The forecasts were implemented by three different methods, 

including the Linear Projection, a Quadratic Polynomial Projection and an Autoregressive 

Integrated Moving Average (ARIMA) method. 

Linear Projection is mainly used for time series forecasting. Even though there are other more 

complex approaches, the studies have shown that the performance of complex models for the 

forecasting are often similar to the simpler linear models (ZENG et al., 2023; LI et al., 2023).  

Quadratic Polynomial Projection (QPP) is another method used to forecast once it has a better 

fit quality with fewer iterations, for instance (ALRIDHA, 2023). The QPP has advantages since 

it is a polynomial of degree two. 

ARIMA Projection is based on the assumption of stationarity of a series using a high number 

of past observations to predict the future values of the EVs (BAHUGUNA et al., 2025). 

The results of the 3 projections, both for all vehicles and for EVs, are presented in Table 3.3 to 

Table 3.6 and Figure 3.5 to Figure 3.12. 

3.3.1 Linear Projection 

The average yearly increase was calculated by taking the difference between consecutive 

historical data points and computing the mean of these differences. This value represents the 

typical growth per period. Then, starting from the most recent observed sales value, this average 

increase was added cumulatively to generate projected values for each year in the forecast 

horizon. Thus, the projection assumes that the rate of change remains constant over time, 
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producing a linear continuation of the historical growth pattern as shown in Table 3.3 and Figure 

3.5 and Figure 3.6. 

Table 3.3 Linear Projection 2026-2030 

YEAR EVS ALL VEHICLES 

2026 23,725 4,810,490 

2027 27,668 4,892,048 

2028 31,611 4,973,606 

2029 35,554 5,055,164 

2030 39,498 5,136,722 

Source: DETRAN-RS, 2025. 

 
Figure 3.5 Linear All Vehicles Fleet Projection 2026-2030 

Source: DETRAN-RS, 2025. 
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Figure 3.6 Linear EVs Fleet Projection 2026-2030 
Source: DETRAN-RS, 2025. 

 

3.3.2 Quadratic Polynomial Projection 

For the polynomial projection, a second-degree polynomial was fitted to the historical data 

using least-squares regression. Then, this function was evaluated at each of the future years to 

generate the projected values. Unlike the linear projection, which assumes a constant rate of 

change, the polynomial projection allows the growth rate to increase or decrease over time, 

resulting in a curved trend that follows the pattern observed in the historical data pattern as 

shown in Table 3.4 and Figure 3.7 and Figure 3.8. 

Table 3.4 Quadratic Polynomial Projection 2026-2030 

YEAR EVS ALL VEHICLES 

2026 30,338 4,850,020 

2027 45,735 4,996,173 

2028 64,152 5,159,252 

2029 85,591 5,339,257 

2030 110,050 5,536,186 

Source: DETRAN-RS, 2025. 
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Figure 3.7 Quadratic Polynomial All Vehicles Fleet Projection 2026-2030 
Source: DETRAN-RS, 2025. 

 

 

Figure 3.8 Quadratic Polynomial EVs Fleet Projection 2026-2030 
Source: DETRAN-RS, 2025. 

 

 

3.3.3 ARIMA Projection 

For the ARIMA projection, a time-series model was fitted to the historical sales data using an 

ARIMA(2,1,1) specification. This model incorporates autoregressive terms to account for 

dependence on past values and a moving-average term to capture short-term fluctuations. As a 
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result, the projection reflects both the underlying trend and the temporal correlation structure 

present in the historical data as shown in Table 3.5 and Figure 3.9 and Figure 3.10. 

Table 3.5 ARIMA Projection 2026-2030 

YEAR EVS ALL VEHICLES 

2026 48,213 4,837,934 

2027 90,258 4,934,731 

2028 145,004 5,012,738 

2029 211,313 5,083,206 

2030 287,847 5,138,851 

Source: DETRAN-RS, 2025. 

 

 

Figure 3.9 ARIMA All Vehicles Fleet Projection 2026-2030 
Source: DETRAN-RS, 2025. 
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Figure 3.10 ARIMA EVs Fleet Projection 2026-2030 
Source: DETRAN-RS, 2025. 

 

3.3.4 Projection Comparison 

Based on the three projections developed, Table 3.6, Figure 3.11 and Figure 3.12 were created 

to compare the three forecasting approaches analyzed in this study. 

Table 3.6 Comparison 2026-2030 

YEAR 
LINEAR 

EVS 

QUADRATIC 

EVS 

ARIMA 

EVS 

LINEAR 

ALL 

VEHICLES 

QUADRATIC 

ALL 

VEHICLES 

ARIMA ALL 

VEHICLES 

2026 23,725 30,338 48,213 4,810,490 4,850,020 4,837,934 

2027 27,668 45,735 90,258 4,892,048 4,996,173 4,934,731 

2028 31,611 64,152 145,004 4,973,606 5,159,252 5,012,738 

2029 35,554 85,591 211,313 5,055,164 5,339,257 5,083,206 

2030 39,498 110,050 287,847 5,136,722 5,536,186 5,138,851 

Source: DETRAN-RS, 2025. 
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Figure 3.11 Comparison of All Vehicles Fleet Projection 2026-2030 
Source: DETRAN-RS, 2025. 

 

 

Figure 3.12 Comparison of EVs Fleet Projection 2026-2030 
Source: DETRAN-RS, 2025. 

 

For this study, the Linear Projection and the ARIMA Projection were not the chosen method 

because of their results. The Linear requires the data to have a constant growth, not considering 

all the other variables that can occur, which led to estimates below expectations. The ARIMA 

technique is usually applied when there is a large data compiled for the forecast to be more 

accurate. Usually, with five years of data, its accuracy decreases, and the values are not the 
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most reliable ones, resulting in estimates above the expected ones. The Quadratic Polynomial 

Projection has its challenges, mainly because it can overestimate the future EV values, but it is 

the best fitting method when analyzing the growth acceleration of the EV numbers. Thus, the 

Quadratic Polynomial method is the applied method in this research. 

The total evaluated number of all vehicles for 2030 is 5,536,186  and the number of calculated 

EVs is 110,050. The EVs will then represent approximately 2% of the fleet in circulation in RS, 

as shown in Table 3.7. 

Table 3.7 Traffic Flow Percentage 2030 

CATEGORY QUANTITY IN RS 
PERCENTAGE OF 

FLEET 

EV 110,050 2% 

All vehicles 5,536,186 100% 

Source: DETRAN-RS, 2025. 

 

Finally, the traffic flow of EVs, for the BR-386 in 2030 has been displayed in Table 3.8.  

Table 3.8 Traffic Flow Analysis 2030 

SECTION 
CARS 

OBSERVED 

DAYS 

OBSERVED 

NUMBER 

OF CARS 

NUMBER 

OF CAR PER 

DAY 

COMBINED 

NUMBER OF 

EVS PER DAY 

422-6 6,608 231 2,465,479 10,673 - 

362-8 6,622 334 2,550,787 7,637 - 

Combined 18,310 366.2 

Source: DETRAN-RS, 2025. 

 

The daily number of EVs is calculated by the same way described as the traffic flow of 2025. 

This number is expected to be about 367 EVs per day. 

A Confidence Interval (CI) of 95% for the year 2030 was also calculated by using the OLS 

theory. The results are shown in Figure 3.13 and Figure 3.14 and in Table 3.9 and Table 3.10. 
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Figure 3.13 CI Quadratic Polynomial EVs Fleet Projection 2026-2030 
Source: DETRAN-RS, 2025. 

 

 

Figure 3.14 CI Quadratic Polynomial All Vehicles Fleet Projection 2026-2030 
Source: DETRAN-RS, 2025. 
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Table 3.9 Confidence Interval EVs 2026-2030 

YEAR EVS 
95% CONFIDENCE 

INTERVAL ± 

2026 30,339 14,438 

2027 45,735 24,708 

2028 64,153 37,777 

2029 85,591 53,550 

2030 110,051 71,996 

Source: DETRAN-RS, 2025. 

 

Table 3.10 Confidence Interval All Vehicles 2026-2030 

YEAR ALL VEHICLES 
95% CONFIDENCE 

INTERVAL ± 

2026 4,850,021 67,842 

2027 4,996,175 116,099 

2028 5,159,254 177,508 

2029 5,339,259 251,626 

2030 5,536,189 338,300 

Source: DETRAN-RS, 2025. 

 

To determine what would happen to the ideal number of chargers in 2030, a two-scenario 

analysis was created as well as a baseline scenario.  

The low-growth scenario and the high-growth scenario, making it possible to analyze the 

minimum and maximum percentage of EVs that can be expected in 2030, and consequently the 

number of EVs per day, respectively.  

For the low-growth scenario, the total evaluated number of the 95% IC of all vehicles for 2030 

is 5,874,489 and the number of calculated EVs is 38,055. The EVs will then represent 

approximately 0.65% of the fleet, as shown in Table 3.11. 
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Table 3.11 Low-Growth Percentage 2030 

CATEGORY QUANTITY IN RS PERCENTAGE OF FLEET 

EV 38,055 0.65% 

All vehicles 5,874,489 100% 

Source: DETRAN-RS, 2025. 

 

The traffic flow of EVs, for the low-growth scenario in 2030 has been displayed in Table 

3.12.  

Table 3.12 Low-Growth Analysis 2030 

SECTION 
CARS 

OBSERVED 

DAYS 

OBSERVED 

NUMBER 

OF CARS 

NUMBER 

OF CAR 

PER DAY 

COMBINED 

NUMBER OF 

EVS PER DAY 

422-6 7.012 231 2.616.138 11.325 - 

362-8 7.027 334 2.706.659 8.104 - 

Combined 19.429 125,9 

Source: DETRAN-RS, 2025. 

 

The daily number of EVs for the low-growth scenario is expected to be about 126 EVs per day. 

For the high-growth scenario, the total evaluated number of the 95% IC of all vehicles for 2030 

is 5,197,889 and the number of calculated EVs is 182,047. The EVs will then represent 

approximately 3.5% of the fleet, as shown in Table 3.13. 

Table 3.13 High-Growth Percentage 2030 

CATEGORY QUANTITY IN RS PERCENTAGE OF FLEET 

EV 182,047 3.5% 

All vehicles 5,197,889 100% 

Source: DETRAN-RS, 2025. 

 

The traffic flow of EVs, for the high-growth scenario in 2030 has been displayed in Table 3.14.  
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Table 3.14 High-Growth Analysis 2030 

SECTION 
CARS 

OBSERVED 

DAYS 

OBSERVED 

NUMBER 

OF CARS 

NUMBER OF 

CAR PER 

DAY 

COMBINED 

NUMBER OF 

EVS PER DAY 

422-6 6.204 231 2.314.822 10.021 - 

362-8 6.218 334 2.394.917 7.170 - 

Combined 17.191 602,1 

Source: DETRAN-RS, 2025. 

The daily number of EVs for the high-growth scenario is expected to be about 603 EVs per day. 

3.4 THE ELECTRICAL ENERGY INFRASTRUCTURE 

It is important to analyze about the electricity demand of an EVC. Firstly, all the Substations 

and Power Plants in the region were determined by the data extracted from the SIN Maps and 

the ONS (National Electrical System Operator) (ONS, 2025).  

The Table 3.15 shows the location of the existing electric Substations and Power Plants. 

Table 3.15 Substations and Power Plants Coordinates 

TYPE LATITUDE LONGITUDE 

Substation -29.877750 -51.107592 

Substation -29.266667 -51.191667 

Substation -29.141389 -51.157500 

Substation -29.132500 -51.191667 

Substation -29.165833 -51.122778 

Substation -29.649473 -52.806648 

Substation -29.951944 -51.621111 

Substation -29.970506 -51.597058 

Substation -29.891389 -51.177778 

Substation -29.947222 -51.190833 

Substation -29.877083 -51.146886 

Substation -29.146425 -51.148083 
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Continuation of Table 3.15 Substations and Power Plants Coordinates 

TYPE LATITUDE LONGITUDE 

Substation -29.059167 -51.280278 

Substation -29.218611 -51.323889 

Substation -29.237222 -51.511944 

Substation -29.465564 -51.984503 

Substation -29.431389 -51.916000 

Substation -29.039444 -51.534167 

Substation -28.805278 -51.612222 

Substation -30.008333 -51.140556 

Substation -29.971111 -51.195833 

Substation -29.823206 -51.343779 

Substation -29.869167 -51.388056 

Substation -29.719722 -51.151389 

Substation -29.719722 -51.151667 

Substation -29.712500 -52.547222 

Substation -28.283333 -52.428611 

Substation -29.633611 -52.155278 

Substation -29.181225 -51.474756 

Substation -28.541291 -52.094986 

Power Plant -29.008333 -51.379167 

Power Plant -29.016667 -51.500000 

Power Plant -29.050000 -51.666667 

Power Plant -29.982500 -51.761667 

Power Plant -29.876389 -51.146944 

Source: ONS, 2025. 
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The locations presented in Table 3.8 allowed to draw the Figure 3.15 and also Figure 3.16 

having a 75 km of radius around the Power Plants and the Substations because this radius is 

enough to supply any EVC in the area and can be more economically viable (ZHOU et al., 

2022). This distance will also be a parameter in the simulation. 

 

Figure 3.15 BR-386 with Substations and Power Plants 
Source: ONS, 2025. 
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Figure 3.16 BR-386 with Substations’ and Power Plants’ radius 
Source: ONS, 2025. 

 

Secondly, it is important to measure the energy needed for an EVC to work with a high capacity 

of utilization. It is important because the EVC has a different average power (kW). The best 

charger for highways is the Ultra-fast charger. For this study, his average power (kW) was 

defined as being 150 kW. This number is sufficient by the large number of Substations and 

Power Plants nearby the BR-386 highway. However, their distance to the optimal point will 

also be considered, for simulation and boundary conditions purposes in this study. 

3.5 EVS SPECIFICATION 

It is important to determine the model of the EVs to be considered in this study, since a vast 

number of EVs have different battery sizes, and, consequently, different autonomy and recharge 

waiting time. The accumulated data since 2015 gathered from SENATRAN show which model 

is the most used allowing the possibility to calculate the autonomy and the capacity of the 

battery (SENATRAN, 2025). Table 3.16 was then obtained showing the dominant brands in 

the EVs market in RS. 

 



33 

 

Table 3.16 Brands Analysis 

MANUFACTURER QUANTITY PERCENTAGE (%) 

BYD 4,275 61.05% 

GWM 520 7.43% 

VOLVO 479 6.84% 

JAC 431 6.16% 

RENAULT 278 3.97% 

BMW 238 3.40% 

CHERY 110 1.57% 

MINI 108 1.54% 

PORSCHE 99 1.41% 

AUDI 84 1.20% 

PEUGEOT 78 1.11% 

NISSAN 59 0.84% 

MERCEDES-BENZ 41 0.59% 

CHEVROLET 39 0.56% 

FIAT 34 0.49% 

TESLA 31 0.44% 

FORD 26 0.37% 

ZEEKR 24 0.34% 

JAGUAR 17 0.24% 

GMC 6 0.09% 

HYUNDAI 5 0.07% 

NETA 5 0.07% 

DONGFENG 3 0.04% 

GURGEL 3 0.04% 

KIA 3 0.04% 

HITECH 2 0.03% 

Source: SENATRAN, 2025. 
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Since most of the EVs are manufactured by BYD, a second analysis was made to determine 

which BYD are the most used ones (BYD, 2025). Table 3.17 presents the main used BYD 

models. 

Table 3.17 Analysis of BYD EVs Models 

MODEL 
AUTONOMY 

(KM) 

BATTERY 

CAPACITY (KW) 
QUANTITY 

PERCENTAGE 

(%) 

DOLPHIN 

MINI 

GS5EV 

280 38 1,171 27.69% 

DOLPHIN 

GS 180EV 
291 44.9 1,098 25.96% 

DOLPHIN 

MINI GS 

EV 

280 38 668 15.80% 

DOLPHIN 

PLUS 

310EV 

427 60.5 515 12.18% 

SEAL 

AWD GS 

590EV 

372 82.5 356 8.42% 

YUAN 

PLUS GL 

310EV 

294 60.48 314 7.42% 

YUAN 

PRO GS 

290EV 

250 45 107 2.53% 

Source: BYD, 2025. 

Furthermore, a weighted average for the BYD models was calculated, resulting in an Autonomy 

of 309 km and a Battery Capacity of 48 kW to be used in this study. 

The average time to charge these models was also evaluated, considering the Ultra-fast charger 

of 150 kW. The time was calculated for charge between 25% and 100% of the battery’s 

capacity. The data compiled is shown in Table 3.18. 
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Table 3.18 Analysis of Charging Time of BYD EVs 

MODEL 

BATTERY 

CAPACITY 

(KW) 

ENERGY 

TO ADD 

(KW) 

IDEAL 

TIME 

(MIN) 

QUANTITY 
PERCENTAGE 

(%) 

DOLPHIN 

MINI 

GS5EV 

38.00 28.50 11.4 1,171 27.69% 

DOLPHIN 

GS 180EV 
44.90 33.68 13.5 1,098 25.96% 

DOLPHIN 

MINI GS 

EV 

38.00 28.50 11.4 668 15.80% 

DOLPHIN 

PLUS 

310EV 

60.50 45.38 18.2 515 12.18% 

SEAL 

AWD GS 

590EV 

82.50 61.88 24.8 356 8.42% 

YUAN 

PLUS GL 

310EV 

60.48 45.36 18.1 314 7.42% 

YUAN 

PRO GS 

290EV 

45.00 33.75 13.5 107 2.53% 

Source: BYD, 2025. 

Finally, in the weighted average, the time resulted in 14,45 minutes to charge the EVs. 

3.6 CONSTRUCTION OF THE GA MODEL 

This study aims to find the optimal location for the EVC, using the GIS-based approach. 

Therefore, the expected result of the GA model will be a set of coordinates that will be plotted 

in the map showing the location of the EVCs. The boundary conditions of this model have 

factors including the autonomy and the time to charge the EVs, the battery capacity and the 

location of the Power Plants among other factors. 
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3.6.1 Boundary Conditions 

The delimitation of the BR-386 to only plot the MOTIVA concession was made by consulting 

the OpenStreetMap via Overpass API, showing a rectangle where the system finds the name 

“BR-386”. After having all the elements that were connected to “BR-386”, the script 

interconnected these points of interest resulting in one line, via LineString. Afterwards, there 

are the boundaries of the studied area, since the MOTIVA is the highway to be analyzed, 

specifying the geographic coordinates of Canoas (-51.1839, -29.9122) and Carazinho (-

52.7360, -28.2896) was made.  

The average autonomy of the EVs utilized in this study is about 309 km. However, to prevent 

the possible range anxiety of not having enough  battery capacity to finish the trip, because not 

every EV will have their battery at 100% before entering into the highway and the energy 

consumption tends to be higher on highways due to sustained higher speeds and less 

regenerative braking (LAKSHMI & GUDIPALLI, 2023). Thus, a 25% reduction in autonomy 

is imposed in this study. The autonomy used in this study is then of 230 km. 

The EVC requires a lot of energy to charge EVs. The radius of 75 km around the energy is the 

coverage circle within which the energy supply is met, and the necessary energy support is 

ensured, as shown in Figure 3.12 (ZHOU et al., 2022). 

The average battery capacity applied in this study is about 50 kW. The considered battery 

capacity is important to determine the number of ideal chargers in the EVC. 

The total number of EVs per year in 2025 is about 7,144. For 2030, however, this number is 

about 113,663. This boundary condition gives the amount of EV needed to be charged besides 

being an important factor to determine the utilization, the standby time and the queuing time 

for the BR-386 considered in this research. 

The average time to charge the EVs, from 25% or the battery capacity to 100%, is about 14.45 

minutes assuming a constant 150 kW Ultra-fast charger. Although this time is a reasonable 

estimator, it will be penalized with about 50% increase because the charging can slow down 

when the battery is at 70% or 80% of its capacity (KOSTOPOULOS et al., 2020). 

Consequently, the time increases to about 22 minutes. 
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As the annual average daily traffic flow is 7,144 it results in a daily flow of 20 EVs. Thus, this 

study assumes that the total number of chargers in each EVC will depend on the number of 

EVCs to be installed in the highway.  

The arrival pattern of the EV must then be determined. The ARENA Input Analyzer was used. 

The input to the ARENA includes the daily flow of EVs data during the year 2024 collected in 

the kilometer 422-6 and kilometer 362-8 of the highway. 

The fitting for the data was then implemented considering the EV percentage of 0.13% of the 

fleet. Results are shown in Figure 3.17 to Figure 3.20. 

 

 

Figure 3.17 Distribution Summary of All Vehicles 
Source: PNCT, 2025. 
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Figure 3.18 Graphical Representation of All Vehicle Results 
Source: PNCT, 2025. 

 

 

Figure 3.19 Distribution Summary of EVs 
Source: PNCT, 2025. 
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Figure 3.20 Graphical Representation of EVs Results 
Source: PNCT, 2025. 

 

The evaluated arrival distribution of EVs was determined as being a Poisson, having a rate 

(lambda) of 20 in 2025. 

An analysis was then made varying the assuming evaluated arrival distribution. At this phase, 

the time to charge, the daily traffic flow and the time average arrival distribution were 

considered important factors. Figure 3.21 presents the average utilization of the chargers, 

depending on the number of chargers. 

 

Figure 3.21 Charger Utilization by Number of Chargers, 2025 
Source: PNCT, 2025. 
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The ideal number of chargers had then to be evaluated. The utilization percentage of the 

chargers was fixed at 50% or lower and the average queuing time for the EVs to be charged 

was calculated. As a result, Figure 3.22 was created. 

 

Figure 3.22 Ideal Chargers, Utilization, and EV Queuing, 2025 
Source: PNCT, 2025. 

Considering the 2025 EVs demand, with only one charger, the queue would be about 5 vehicles, 

and the utilization of the charger would be 100%, being not considered a viable result. The 

queue would decreases to 1 vehicle, installing two chargers in the EVC, and the utilization 

would decrease to 62.45%. However, the optimal number of chargers obtained is three chargers 

because the queue would be numerically zero and the utilization only 42.85%. Table 3.19 shows 

the result. 

Table 3.19 EVC Utilization and Average Queue, 2025 

NUMBER OF CHARGERS UTILIZATION 
AVERAGE QUEUE 

(VEHICLES) 

1 100% 4.65 

2 62.45 % 0.61 

3 42.85% 0.10 

Source: PNCT, 2025. 
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Finally, it was simulated what would happen if the entire flow of vehicles, in this case 20 EVs 

for 2025, arrived at the EVCs at once. Figure 3.23 and Figure 3.24 show the result for this case. 

 

Figure 3.23 Charger Utilization by Number of Chargers – Arriving at Once, 2025 
Source: PNCT, 2025. 

 

Figure 3.24 Ideal Chargers, Utilization, and EV Queuing – Arriving at Once, 2025 
Source: PNCT, 2025. 

When all cars arrive at the same time for the 2025 scenario, the queue length and the average 

utilization of the chargers are almost a decreasing straight line when the number of chargers 

increase. Therefore, the optimal number of chargers would be 21 chargers once the queue length 

is zero vehicles, and the utilization equal or lower than 50%. It is interesting to note that the 
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total number of chargers is the number of the flow of vehicles, 20 EVs, plus one ensuring no 

queue length. Table 3.20, Figure 3.24 and Figure 3.25 present the results for 2030. 

Table 3.20 EVC Utilization and Average Queue – Arriving at Once, 2025 

NUMBER OF 

CHARGERS 
UTILIZATION 

AVERAGE QUEUE 

(VEHICLES) 

1 100.00% 19.00 

2 97.50% 18.00 

3 95.00% 17.00 

4 92.50% 16.00 

5 90.00% 15.00 

6 87.50% 14.00 

7 85.00% 13.00 

8 82.50% 12.00 

9 80.00% 11.00 

10 77.50% 10.00 

11 75.00% 9.00 

12 72.50% 8.00 

13 70.00% 7.00 

14 67.50% 6.00 

15 65.00% 5.00 

16 62.50% 4.00 

17 60.00% 3.00 

18 57.50% 2.00 

19 55.00% 1.00 

20 52.50% 0.00 

21 50.00% 0.00 

 
Source: PNCT, 2025. 

 

The same study was conducted including the traffic flow expectation of 367 in 2030, as shown 

in Figure 3.25 and Figure 3.26. 
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Figure 3.25 Charger Utilization by Number of Chargers, 2030 
Source: PNCT, 2025. 

 

 

Figure 3.26 Ideal Chargers, Utilization, and EV Queuing, 2030 
Source: PNCT, 2025. 

 

It was then found that, for the 2030 demand, when varying from 1 to 10 chargers the queue 

varies from 311 to 12 vehicles and the utilization of the charger varies from 100% to 63.56%, 

making the total waiting time unfeasible, because even for 10 vehicles their waiting time would 

be 264 minutes, or 4.4 hours, and the chargers utilization would still be very high, possibly 
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leading to future maintenance problems (HSU et al., 2023). When there are 11 or 12 chargers, 

the average queue length would be shorter, less than 7 vehicles. Nevertheless, the waiting time 

would be 154 minutes, a refueling time much longer than the average of 4 minutes for a 

combustion car, not even considering the necessity to have an internet connection, to access the 

mobile application, and the potential waste of time trying to find it on a highway. Therefore, 

the optimal number of chargers is considered to be 13 chargers because the queue length would 

be around 1 car and the charger’s utilization only 49.80%. Table 3.21 presents the results. 

Table 3.21 EVC Utilization and Average Queue, 2030 

NUMBER OF CHARGERS UTILIZATION 
AVERAGE QUEUE 

(VEHICLES) 

1 100.00% 311.08 

2 97.60% 257.88 

3 94.92% 208.26 

4 91.59% 160.42 

5 87.90% 119.96 

6 83.48% 85.11 

7 78.64% 57.93 

8 73.44% 36.11 

9 68.98% 21.20 

10 63.56% 11.57 

11 58.96% 6.28 

12 54.33% 2.81 

13 49.80% 0.92 

Source: PNCT, 2025. 

It was then simulated what would happen if the entire flow of vehicles, in this case 367 EVs for 

2030 arrived at the EVCs at once. Figure 3.27 and Figure 3.28 show the result for this case. 
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Figure 3.27 Charger Utilization by Number of Chargers – Arriving at Once, 2030 
Source: PNCT, 2025. 

 

Figure 3.28 Ideal Chargers, Utilization, and EV Queuing – Arriving at Once, 2030 
Source: PNCT, 2025. 

Similar to the 2025 scenario, the curve graphs obtained for the 2030 scenario has the same 

shape with the utilization of the chargers and the queuing length decreasing when the chargers 

increase, as it is expected. Thus, the optimal number of chargers would be 368 chargers because 

the utilization would be about 50%. Table 3.22 shows the compiled result for this case. 
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Table 3.22 EVC Utilization and Average Queue – Arriving at Once, 2030 

NUMBER OF CHARGERS UTILIZATION 
AVERAGE QUEUE 

(VEHICLES) 

1 100.00% 366.00 

2 99.86% 365.00 

3 99.73% 364.00 

18 97.68% 349.00 

33 95.64% 334.00 

108 85.42% 259.00 

123 83.38% 244.00 

303 58.86% 64.00 

318 56.81% 49.00 

333 54.77% 34.00 

348 52.72% 19.00 

349 52.59% 18.00 

364 50.54% 3.00 

365 50.41% 2.00 

366 50.27% 1.00 

367 50.14% 0.00 

368 50.00% 0.00 

Source: PNCT, 2025. 

The low-growth scenario and the high-growth scenario for the 2030 year were also created. For 

the low-growth scenario an ideal number of 6 chargers was found, as shown in Figure 3.29 and 

in Table 3.23. For the high-growth scenario an ideal number of 20 chargers was found, as shown 

in Figure 3.30 and in Table 3.24.  
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Figure 3.29 Low-Growth Ideal Chargers, Utilization, and EV Queuing, 2030 
Source: PNCT, 2025. 

Table 3.23 Low-Growth EVC Utilization and Average Queue, 2030 

NUMBER OF CHARGERS UTILIZATION 
AVERAGE QUEUE 

(VEHICLES) 

1 100% 82.92 

2 88.90% 47.31 

3 77.97% 24.60 

4 66.41% 11.09 

5 55.70% 3.81 

6 47.92% 1.34 

Source: PNCT, 2025. 



48 

 

 

Figure 3.30 High-Growth Ideal Chargers, Utilization, and EV Queuing, 2030 
Source: PNCT, 2025. 

Table 3.24 High-Growth EVC Utilization and Average Queue, 2030 

NUMBER OF CHARGERS UTILIZATION VEHICLES QUEUE  

1 100.00% 543.77 

2 98.92% 485.72 

3 97.67% 428.03 

4 96.33% 372.70 

5 94.84% 320.28 

6 93.08% 271.40 

7 91.19% 223.62 

8 88.93% 178.96 

9 86.41% 139.44 

10 83.51% 108.12 

11 80.23% 77.33 

12 76.69% 52.89 

13 73.38% 35.40 

14 69.42% 22.23 

15 65.42% 13.54 

16 62.76% 08.01 

17 58.87% 4.59 

18 55.99% 2.46 

19 53.47% 0.83 

20 50.84% 0.47 

Source: PNCT, 2025. 
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Finally, to facilitate the understanding, a comparative analysis of all the ideal number of 

chargers was created, as shown in Table 3.25. 

Table 3.25 Comparative Analysis of Ideal Number of Chargers  

YEARS SCENARIOS IDEAL NUMBER OF CHARGERS 

2025 
Baseline 3 

Arriving at Once 21 

2030 

Low-Growth 6 

Baseline 13 

High-Growth 20 

Arriving at Once 368 

   

3.6.2 Economic Viability of Chargers 

The economic viability is based on the cost to implement the number of chargers in the charging 

stations and the expected financial return. There are different scenarios, each one of them have 

a different number of ideal number of chargers and costs involved. 

The first step is to determine how much does it cost to implement a single 150 kW Ultra-fast 

charger in a station. This was done by calculating an average of the most commonly used Ultra-

fast charger and their current prices. The data was gathered from several sources (BRASIL 

CHARGER, 2025). The price range was between R$ 160.000 and R$ 250.000. For this study, 

the price used for an Ultra-fast charger is around R$ 200.000. Additionally, a 5% maintenance 

annually cost was implemented for the study (PACHECO, 2025). Resulting in R$ 10.000 for 

maintenance yearly per charger. 

The second step is to understand how much revenue a single Ultra-fast charger can generate. 

This was done by analyzing the purchase and sale prices of energy and the amount of energy 

consumed yearly. In Brazil, the average purchase price (kW) is around R$ 0.60 and the price 

of sales for recharging the EVs is around R$ 1.75 (DME-PC, 2025). The weighted average of 

the energy to be added between 25% and 100% was also calculated taking into consideration 

Table 3.18. The weighted average of the energy resulted in 36.09 kW.  

For all feasibility evaluations, it was necessary to include the Net Present Value (NPV) using a 

6% discount rate. This rate accounts for the time value of money, recognizing that funds 
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available today are worth more than the same amount in the future due to potential returns if 

invested elsewhere. The choice of 6% reflects the typical opportunity cost of capital in similar 

infrastructure and energy-related projects, providing a realistic benchmark for comparison. By 

discounting future cash flows to their present value, the analysis can more accurately assess 

whether each scenario represents a financially sound investment over time. 

Finally, the third step is to create the economic projection for all the different scenarios. The 

first projection, shown in Table 3.26 and Figure 3.31, is the Annual Energy Profit for all the 

years and scenarios. The second projection, shown in Table 3.27 and Figure 3.32, is the NPV 

not taking into account the Chargers installed in previous years. Thus, each year’s result 

represents an independent projection. For instance, if three chargers are installed in 2025 

baseline and four are needed in 2026 low-growth, the projection assumes four new installations 

in 2026 low-growth. The Arriving at Once was eliminated because of the notable high cost of 

installation and the long period of time exceeding the time forecast. 

Table 3.26 Annual Energy Profit for EV Charging Scenarios 

YEARS SCENARIOS 
EVS PER 

YEAR 

ENERGY 

(KW) 

ENERGY 

PURCHASE 

PRICE (R$) 

ENERGY 

SALE 

PRICE (R$) 

ENERGY 

PROFIT 

(R$) 

2025 Baseline 7300 263,457 158,074.20 461,049.75 302,975.55 

2026 

Low-Growth 19345 698,161.05 418,896.63 1,221,781.84 757,438.88 

Baseline 36865 1,330,457.85 798,274.71 2,328,301.24 1,443,421.25 

High-Growth 54385 1,962,754.65 1,177,652.79 3,434,820.64 2,129,403.63 

2027 

Low-Growth 25550 922,099.50 553,259.70 1,613,674.13 943,765.07 

Baseline 55480 2,002,273.20 1,201,363.92 3,503,978.10 2,049,318.42 

High-Growth 85045 3,069,274.05 1,841,564.43 5,371,229.59 3,141,389.43 

2028 

Low-Growth 32120 1,159,210.80 695,526.48 2,028,618.90 1,119,290.10 

Baseline 77745 2,805,817.05 1,683,490.23 4,910,179.84 2,709,190.82 

High-Growth 123370 4,452,423.30 2,671,453.98 7,791,740.78 4,299,091.53 

2029 

Low-Growth 38690 1,396,322.10 837,793.26 2,443,563.68 1,271,920.57 

Baseline 103660 3,741,089.40 2,244,653.64 6,546,906.45 3,407,787.19 

High-Growth 168265 6,072,683.85 3,643,610.31 10,627,196.74 5,531,654.56 

2030 

Low-Growth 45990 1,659,779.1 995,867.46 2,904,613.43 1,426,326.03 

Baseline 133955 4,834,435.95 2,900.661.57 8,460,262.91 4,154,457.54 

High-Growth 220095 7,943,228.55 4,765,937.13 13,900,649.96 6,825,988.82 
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Figure 3.31 Annual Energy Profit 

 

Table 3.27 Independent NPV  

YEARS SCENARIOS 

NUMBER 

OF 

CHARGERS 

CHARGERS + 

MAINTENANCE 

(R$) 

ENERGY 

PROFIT (R$) 
NPV (R$) 

2025 Baseline 3 630,000 302,975.55 -327,024.45 

2026 

Low-Growth 4 840,000 802,885.21 -35,013.95 

Baseline 5 1,050,000 1,530,026.53 452,855.22 

High-Growth 6 1,260,000 2,257,167.85 940,724.39 

2027 

Low-Growth 4 840,000 1,060,414.43 196,168.06 

Baseline 7 1,470,000 2,302,614.18 741,023.66 

High-Growth 9 1,890,000 3,529,665.16 1,459,296.16 

2028 

Low-Growth 5 1,050,000 1,333,092.42 237,689.85 

Baseline 8 1,680,000 3,226,689.61 1,298,630.42 

High-Growth 12 2,520,000 5,120,286.80 2,183,250.94 

2029 

Low-Growth 5 1,050,000 1,605,770.42 440,222.23 

Baseline 11 2,310,000 4,302,252.81 1,578,050.83 

High-Growth 16 3,360,000 6,983,586.43 2,870,219.85 

2030 

Low-Growth 6 1,260,000 1,908,745.97 484,780.73 

Baseline 13 2,730,000 5,559,601.34 2,114,442.73 

High-Growth 20 4,200,000 9,134,712.83 3,687,504.49 
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Figure 3.32 Independent NPV  

 

Other economic projections were made taking into account Chargers installed in previous years. 

Accordingly, the investment payback was also calculated and will be presented for each 

projection. For this projection, some cases were also created.  

First Case: Installing three Chargers in 2025 to understand how the NPV would change, 

following the ideal number of chargers of 2025 and for all other years and scenarios. Table 3.28 

and Figure 3.33 show the results. 

Table 3.28 3 Chargers in 2025 NPV 

YEARS SCENARIOS 
CHARGERS 

INSTALLED 

CHARGERS + 

MAINTENANCE 

(R$) 

ANNUAL 

ENERGY 

PROFIT (R$) 

NPV (R$) 

2025 Baseline 3 630,000 302,975.55 -327,024.45 

2026 

 

Low-Growth 4 240,000 802,885.21 203,999.33 

Baseline 5 450,000 1,530,026.53 691,868.50 

High-Growth 6 660,000 2,257,167.85 1,179,737.67 

2027 

 

Low-Growth 4 40,000 1,060,414.43 1,600,033.71 

Baseline 7 470,000 2,302,614.18 2,322,888.60 

High-Growth 9 690,000 3,529,665.16 3,219,160.39 

2028 

 

Low-Growth 5 250,000 1,333,092.42 3,232,273.88 

Baseline 8 280,000 3,226,689.61 4,796,986.02 

High-Growth 12 720,000 5,120,286.80 6,017,454.25 
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Continuation of Table 3.28 3 Chargers in 2025 NPV 

YEARS SCENARIOS 
CHARGERS 

INSTALLED 

CHARGERS + 

MAINTENANCE 

(R$) 

ANNUAL 

ENERGY 

PROFIT (R$) 

NPV (R$) 

2029 

 

Low-Growth 5 50,000 1,605,770.42 6,029,301.91 

Baseline 11 710,000 4,302,252.81 7,642,386.70 

High-Growth 16 960,000 6,983,586.43 9,568,230.66 

2030 

 

Low-Growth 6 260,000 1,908,745.97 8,874,425.61 

Baseline 13 530,000 5,559,601.34 11,400,797.41 

High-Growth 20 1,000,000 9,134,712.83 13,721,117.35 

 

 

Figure 3.33 3 Chargers in 2025 NPV 

 

Second Case: Installing 10 Chargers in 2025 to have a better understanding of the NPV 

after the installation of half of all the chargers needed in the scenario with the higher ideal 

number of chargers, 2030 high-growth. Table 3.29 and Figure 3.34 show the results. 
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Table 3.29 10 Chargers in 2025 NPV 

YEARS SCENARIOS 
CHARGERS 

INSTALLED 

CHARGERS + 

MAINTENANCE 

(R$) 

ANNUAL 

ENERGY 

PROFIT (R$) 

NPV (R$) 

2025 Baseline 10 2,100,000 302,975.55 -1,797,024.45 

2026 

Low-Growth 10 100,000 802,885.21 -1,133,925.20 

Baseline 10 100,000 1,530,026.53 -447,942.82 

High-Growth 10 100,000 2,257,167.85 238,039.56 

2027 

Low-Growth 10 100,000 1,060,414.43 406,822.61 

Baseline 10 100,000 2,302,614.18 1,512,375.96 

High-Growth 10 100,000 3,529,665.16 2,604,446.96 

2028 

Low-Growth 10 100,000 1,333,092.42 2,547,704.13 

Baseline 10 100,000 3,226,689.61 4,137,604.85 

High-Growth 12 520,000 5,120,286.80 5,374,865.47 

2029 

Low-Growth 10 100,000 1,605,770.42 5,330,316.06 

Baseline 11 310,000 4,302,252.81 7,299,843.00 

High-Growth 16 960,000 6,983,586.43 8,908,849.49 

2030 

Low-Growth 10 100,000 1,908,745.97 8,651,443.21 

Baseline 13 530,000 5,559,601.34 11,058,253.71 

High-Growth 20 1,000,000 9,134,712.83 13,378,573.65 

 

 

Figure 3.34 10 Chargers in 2025 NPV 

 

Third Case: Installing 20 Chargers in 2025 to have a better understanding of the NPV 

after the installation of all the chargers needed in the scenario with the higher ideal number of 

chargers, 2030 high-growth. Table 3.30 and Figure 3.35 show the results. 
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Table 3.30 20 Chargers in 2025 NPV 

YEARS SCENARIOS 
CHARGERS 

INSTALLED 

COST OF 

CHARGERS 

(R$) 

ANNUAL ENERGY 

PROFIT (R$) 
NPV (R$) 

2025 Baseline 20 4,200,000 302,975.55 -3,897,024.45 

2026 

Low-Growth 20 200,000 802,885.21 -3,328,264.82 

Baseline 20 200,000 1,530,026.53 -2,642,282.44 

High-Growth 20 200,000 2,257,167.85 -1,956,300.06 

2027 

Low-Growth 20 200,000 1,060,414.43 -1,876,516.66 

Baseline 20 200,000 2,302,614.18 -770,963.31 

High-Growth 20 200,000 3,529,665.16 321,107.70 

2028 

Low-Growth 20 200,000 1,333,092.42 180,402.94 

Baseline 20 200,000 3,226,689.61 1,770,303.65 

High-Growth 20 200,000 5,120,286.80 3,360,204.37 

2029 

Low-Growth 20 200,000 1,605,770.42 2,883,805.50 

Baseline 20 200,000 4,302,252.81 5,019,672.11 

High-Growth 20 200,000 6,983,586.43 7,143,539.48 

2030 

Low-Growth 20 200,000 1,908,745.97 6,296,546.50 

Baseline 20 200,000 5,559,601.34 9,024,678.02 

High-Growth 20 200,000 9,134,712.83 11,696,209.29 

 

 

Figure 3.35 20 Chargers in 2025 NPV 
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4 PROBLEM MODELING 

This section describes how the developed model was implemented in the GA model. 

4.1 POPULATION SIZE AND THE NUMBER OF GENERATIONS 

The objective to consider the population size is to determine how many individuals will go 

through the study. A population of 50 individuals was chosen for this study, since other 

metaheuristics applied the same number of individuals (GHORBANI et al., 2018). 

The number of generations refers to the number of interactions generated by the individuals. 

Therefore, the number of 40 generations was chosen because it is an intermediate value, without 

messing the data quality or implying a higher processing time (IBRAHIM et al., 2019). 

4.2 FIXED SEED AND CROSSOVER 

The fixed seed 42 was chosen to ensure reproducibility of the results, not having any real impact 

on the GA itself.  

The crossover is done in the GA by selecting a random point on the chromosome where the 

parents’ parts exchange will take place. Therefore, the crossover brings up a new set of 

offsprings based on the exact exchange spot chosen with particular parts of the parents 

(HASSANAT et al., 2019). Within this study, a Blend Crossover was used with an alpha of 0.5. 

4.3 MUTATION AND SELECTION 

Mutation, inside the GA study, normally is done after the crossover applies the changes 

randomly to one or more genes to produce a new offspring, creating new adaptive solution. It 

then avoids local optimization, providing the best global optimization solution (HASSANAT 

et al., 2019). For this study, the mutation type was defined as being a Gaussian mutation, with 

mean (mu) 0 and standard deviation (sigma) of 20 km and the individual probability of mutation 

is 0.3. Therefore, about 30% of mutations for all genes in 20 km is considered. 

The selection of individuals for the next generation is the most important to determine the 

pattern of the results of any GA model (Hussain et al., 2022). For this study, a Tournament 

Selection was chosen with Tournament Size of three individuals. This means that there is a 
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good balance between selecting good individuals and still maintaining diversity, because of the 

small Tournament Size. 

4.4 POSSIBLE OPTIMAL POINTS AND PENALTIES ALGORITHM 

Based on the length of the BR-386 studied, it was imposed that the GA could suggest up to five 

optimal points along the highway, depending on the individual that has proven the most 

efficient throughout the model. 

There was a high penalty for the one-sided optimization in the BR-386 concession. Therefore, 

it limits the possibility of an optimal solution to be on either extremes of the section. Another 

penalty applied was that the total distance among chargers had to be smaller than the autonomy 

of 230 km. This restriction allows the EV to recharge at one optimal charging point and being 

able to reach the next charging station with its autonomy. The distance among the chargers has 

another penalty, being the minimum distance between them of 50 km. Table 4.1 was created to 

summarize the parameters used. 

Table 4.1 Genetic Algorithm Model Parameters 

PARAMETER  VALUE  DESCRIPTION  

Population Size 50 Number of individuals per generation 

Number of Generations 40 Number of generations the GA evolves 

Fixed Seed 42 Fixed seed to ensure reproducibility 

Mutation Type Gaussian Type of mutation applied to genes 

Mutation Mean (mu) 0 Mean of the Gaussian mutation 

Mutation Std (sigma) 20 km Standard deviation of the mutation 

Individual Probability 0.3 
Probability that each gene in the individual is 

mutated 

Crossover Type Blend Crossover Type of crossover between parents 

Alpha 0.5 
Controls how far offspring can go beyond the 

parents' interval 

Selection Method 
Tournament 

Selection 
Method used to select individuals 

Tournament Size 3 Number of individuals per tournament 

Possible Optimal 

Points 

1 to 5 points per 

individual 

Each point represents a position along BR-386 

(0–266 km) 
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4.5 FINAL PLOT 

Once the model was calibrated, the optimal points within BR-386 restrictions were found. The 

two optimal charging points are shown in Table 4.2. The distance between the two points was 

calculated for both Canoas and Caraizinho 

Table 4.2 Optimal Points of the Genetic Algorithm Model 

DIRECTION POINT KM ALONG BR-386 LATITUDE LONGITUDE 

Carazinho → Canoas Point 1 74.12 -28.951891 -52.373210 

Carazinho → Canoas Point 2 196.56 -29.558211 -51.888378 

After finding the optimal points, three figures were plotted for visual understanding where the 

two optimal charging points are located. The first figure, Figure 4.1, shows the entire BR-386, 

and the other two figures, Figure 4.2 and Figure 4.3, are a more intense zoom in areas of the 

optimal points. 
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Figure 4.1 Optimal Points 
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Figure 4.2 Zoom on Optimal Point 1 

 

 

Figure 4.3 Zoom on Optimal Point 2 
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5 CONCLUSIONS 

The main objective of this study was to determine the optimal points for the EVCs. This 

objective was achieved taking into account the maximum number of vehicles, traffic flow, 

queueing time and utilization. The applied model found two optimal location points for these 

EVCs and several choices for the ideal number of chargers, depending on the analyzed scenario. 

It is now the MOTIVA’s responsibility to implement these chargers in the way that makes the 

most economic sense for them, always thinking about the 2030 projection. 

The results could be further analyzed by critically examining economic barriers, public policy 

considerations, and the applicability of the findings to other Brazilian highways. Factors such 

as implementation costs, governmental incentives, and environmental regulations can 

significantly influence the location and the number of the EVCs in highways.  

Additionally, the methodology is not limited to BR-386. All the data required for the analysis, 

such as traffic volumes, growth rates, and infrastructure characteristics, are also available for 

other highways. The differences among the roads are only the magnitude and the specific values 

of these parameters, but the structure of the model and the approach remain fully applicable. 

Another study including a socioeconomic analysis  would provide a more understanding of the 

opportunities and challenges associated with expanding the EVC network in Brazil. The 

parameters considered in the socioeconomic analysis can include, for instance, value of time 

for rich and poor commuters.  

For future studies, one proposal to overcome the limitations regarding the data uncertainty 

would be to measure the vehicle flow more specifically for the EV models and brands, with 

some tracking aligned with the toll booths and points spread across the highway. Another 

proposal would be to carry out the study with the concessionaire daily data, making the 

approximation unnecessary and the results even more robust to the studied case. Thus, making 

the study more precise in the analysis, not having to estimate the parameters. Different 

algorithms can also be applied to compare the obtained among them. Nevertheless, it is true 

that the applied algorithm in this study is the one that it has been more applied in other studies. 

Finally, this study has applied a GA algorithm to determine the best location for the charging 

stations taking into account also the revenues and costs accrued by these electric charging 

stations.  This same study can be applied to other highways being important to understand the 
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impact of the EVCs in a connected non-urban environment. The robustness and the results 

obtained by the applied GA algorithm can definitely aid the concessionaire to achieve better 

results improving its efficiency not only for the company but also for the society.  
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