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ABSTRACT

This study aimed to find optimal points to place electric vehicle chargers (EVCs) for electric
vehicles (EVs) on the non-urban highway BR-386, part of the MOTIVA ViaSul concession.
This work applied a Genetic Algorithm (GA) model combined with the Geographic Information
System (GIS) to determine the optimal locations of the charging station. The work was
implemented in three stages. The first stage was the acquisition and cleaning of the database
because the data was obtained from several different sources. The second stage was the
implementation of the GA model. This phase used the applied data, including traffic flow (both
in 2025 and an estimate for 2030), electrical energy infrastructure and EV specifications. The
third stage was the application of different scenarios to obtain the optimal solution for the
model. The model found two optimal locations for EV charger allocation, besides to the ideal
number of chargers, the average queue length size, and the utilization percentage of the chargers

depending on the scenario, either the 2025 one or the 2030 scenario.

Keywords: Electric Vehicle Charging, Optimization, Genetic Algorithm, Geographic

Information System
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RESUMO

Este estudo teve como objetivo encontrar pontos Otimos para posicionar carregadores de
veiculos elétricos (CVEs) para veiculos elétricos (VEs) na rodovia ndo urbana BR-386, parte
da concessao da MOTIVA ViaSul. Este trabalho aplicou um modelo de Algoritmo Genético
(AG) combinado com o Sistema de Informagao Geografica (SIG) para determinar os locais
otimos da estacdo de recarga. O trabalho foi implementado em trés etapas. A primeira etapa foi
a aquisicao e limpeza do banco de dados, pois os dados foram obtidos de diversas fontes
diferentes. A segunda etapa foi a implementacao do modelo de AG. Esta fase utilizou os dados
aplicados, incluindo o fluxo de trafego (tanto em 2025 quanto uma estimativa para 2030),
infraestrutura de energia elétrica e especificagdes de VEs. A terceira etapa foi a aplicagdo de
diferentes cendrios para obter a solugdo 6tima para o modelo. O modelo encontrou dois locais
otimos para alocacao de carregadores de VEs, além do numero ideal de carregadores, o tamanho
médio da fila e a porcentagem de utilizagao dos carregadores dependendo do cenario, seja o de

2025 ou o de 2030.

Palavras-chave: Carregamento de Veiculos Elétricos, Otimizag¢do, Algoritmo Genético,
Sistema de Informagao Geografica
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1 INTRODUCTION

The use of fossil fuels is the main source of the vehicle transportation worldwide (HUANG et
al., 2018). Nowadays, however, this utilization is turning into a questionable and negative
subject because of the effects on Earth (KARNAUSKAS et al., 2020). Therefore, the limited
and expensive amount of fossil fuels available, makes that the search for the new and the
renewable sources or vehicle transportation occurs in almost all of the countries (KALGHATGI
et al., 2018). Even though Brazil’s energetic sources mainly come from renewable sources, this
urge for replacing fossil fuels is a government proposition (LIMA et al., 2020; OLIVEIRA et
al., 2022).

One of the many solutions for this replacement is the use of electric vehicles (EV), avoiding the
fossil fuels industry (SUDJOKO et al., 2021). Currently, the EV in Brazil corresponds to only
0,64% of the total vehicles being used, being a total of 397,789 of the 61,803,369 cars
(BRAZIL, 2022; BRAZILIAN ELECTRIC VEHICLE ASSOCIATION, 2024). That occurs
because of the many difficulties faced in Brazil, such as greater social inequality, public security
and transportation problems, besides the lack of logistic support once the developing countries
do not have the same level of expertise when compared to developed ones (COSTA et al.,
2018). Moreover, the average Brazilian needs to spend 65.81 times of the minimum wage to
buy the cheapest EV available, while only 46.50 times of the minimum wage to buy the cheapest
fossil fuel available car (BRAZIL, 2024; RENAULT, 2024; CITROEN, 2024). It must also be
said that in Brazil, only 29.6% of the population have access to a car, whereas 30.9% of the
population use public transportation (BRAZILIAN CONFEDERATION OF TRANSPORT,
2024).

Brazil has a total of 1.720.909,00 km of highways connecting the country, because the most
used transportation method is still the highway system (BRAZILIAN CONFEDERATION OF
TRANSPORT, 2022). This study is going to focus on the southern part of the country,
especially in the state of Rio Grande do Sul (RS), in the highway BR-386, concession MOTIVA
ViaSul, connecting the city of Canoas with the city of Caraizinho, with a total of 266 km of
extension. This is because it is a research project developed in collaboration with MOTIVA

ViaSul.



Looking at the experience of other countries, it can be a natural process to substitute fossil fuels
cars for the EV in some decades (HOLECHEK et al., 2022). One of the most challenging needs
is the implementation of Electric Vehicle Charging (EVC) stations to deal with the demand of
the EV fleet (DEB et al., 2018). Currently, in Brazil there are about 11,000 EVC, most of them
only located in the urban area, and most frequently located close or inside shopping malls
(BRAZILIAN ASSOCIATION OF ELECTRIC VEHICLES, 2024). This EVC number may be
insufficient for the market growth of EV in the coming years in urban areas (VELANDIA
VARGAS et al., 2020).

It is known that the faster the EVC, the higher the installation costs (GNANN et al., 2018).
Having those two categories, cost and charging time, being the most decisive when it comes to

implement the EV in a highway, this study takes this into account to decide the optimal
locations to install the EVCs (MAHDAVIAN et al., 2021).

The Brazilian logistics is then made through the non-urban highways, and the vehicles carrying
the goods are mainly fossil fuels based. The switch to an electric fleet can reduce the goods
final price for the end consumer because of the lower transportation emissions and costs (ALP

etal.,2022).

Since Brazil has long highways, in order to implement the EVs, including more EVC allows
longer trips (NOEL et al., 2019). The research question of this study is then to determine where
are the possible optimal locations for the EVCs, taking into account the maximum number of
vehicles to be charged, the traffic flow, the queuing time, to optimize the installation of EVCs

in a non-urban highway, particularly in the BR-386, concession MOTIVA ViaSul.

The main objective of this study is to propose and evaluate scenarios for the placement of EVC
stations along the BR-386 highway, in the segment between Canoas and Carazinho, by applying
a genetic algorithm to determine optimal station locations. For the localization, a Geographic

Information Systems (GIS) approach is also used.

The genetic algorithm was chosen because it is widely used in similar location-allocation
problems, particularly in highway contexts where a large number of variables and constraints

must be considered (ZHOU et al., 2022; KROL & GRZEGORZ SIERPINSKI, 2021; CHOI et



al.,2024; Ll et al., 2021; AKBARI et al., 2018; CHUNYAN SHUAI et al., 2024; TURAN et
al., 2021; YENIGUN et al., 2024; PINTO et al., 2024).

A Geographic Information Systems (GIS) is an effective analysis tool to enhance the
optimization and finding the best location for the EVC (BANEGAS & MAMKHEZRI, 2021).
In addition, Python is used to create the numeric problem itself, with all the conditions and
boundary conditions necessary to simulate the real world. And also, the use of Python is to

create visually all the scenarios that were tested and to give a real representation of the problem.

The specific objectives of this study include two main ones: First to analyze the growth of the
EVs in Brazil worldwide and in the BR 386 scenario. This analysis is important to understand
the difference between Brazil and other developed and developing countries about the
implementation of the EV and the EVC. Moreover, it is important to forecast the future for the
EVs in Brazil besides looking at what other countries have done to mitigate the downsides of

the change of fossil fuels to EVs.

The second objective is to formulate a decision-making model capable of determining the
optimal type and quantity of EV charging stations along highways. This involves constructing
low-growth, baseline, and high-growth scenarios derived from historical PNCT time series, and
assessing each scenario in terms of average queue length, utilization levels, economic viability,
and geographic siting performance throughout the entire study period. Therefore, the model

aims to aid the decision makers to install the EVCs efficiently.

After the development, modeling, and calibration of the genetic algorithm, the model identified
two locations as optimal for the installation of charging stations along the BR 386 MOTIVA
ViaSul concession. In addition, the optimal number of chargers for each year and for each of

the proposed growth scenarios was determined.

This study is structured into three main phases, as illustrated in Figure 1.1. The first phase
consists of a literature review, focusing on the evolution of electric vehicles and charging
infrastructure, as well as the theoretical foundations relevant to optimization in similar contexts,
which is presented in Chapter 2. The second phase describes the data, methodological
procedures, and the modeling framework adopted for this research, which is presented in

Chapters 3 and 4. Finally, the third phase presents and evaluates the results of the proposed



model, including the identification of possible charging station locations and scenario

outcomes, which is presented in Chapters 5, 6, and 7.

PART 1 EV and EVC
The Review of thematic

literature

Data Methods Model
PART 2 Management Evaluations Development
Model Development

PART 3 Results of the Possible Final
Results and Model Locations Discussions
Conclusions

Figure 1.1 Study Structure



2 LITERATURE REVIEW AND THE APPLIED METHOD

In this section, a literature review about the most important topics related to this study is
presented. A background of the EV, the EVCs and their technology are shown besides a
description of the GIS. The implemented mathematical proposition for the optimal locations of

the EVCs is presented, as well as the applied method used in this study.
2.1 EVOLUTION OF THE EVS IN THE WORLD

It is considered an Electric Vehicle (EV) those cars being propelled partially or fully by electric
engines (RUAN & SONG, 2019). There is still no consensus of the first appearance of the EV
in the world, but many say that it was about 1828, when a Hungarian named A nyos Jedlik,
invented a small-scale model car powered by an electric motor (CHAN, 2013). However,
widespread use, and consequently commercialization, began only almost 170 years after the
first prototype was made by Anyos Jedlik, by the year 2000 (BARBOSA et al., 2022). The
delay between these dates was necessary due to the advance of EV technology, like any other

conceptual design coming to the real world (SUN et al., 2019).

The “green idea” related to the EV is to decrease the use of fossil fuels engines, because besides
being harmful to the atmosphere it also causes damage to its recycling process (LELIEVELD
et al., 2019). Another benefit for the EV 1is that the fossil fuels are finite, and with the large
demand for its utilization, about 102 Mb/d (million barrels per day), some projections estimate
that it will last about 50 years, if nothing new is found and the demand continues to rise at this
accelerated rate (U.S. ENERGY INFORMATION ADMINISTRATION, 2025;
KALGHATGI, 2018).

Nevertheless, it does not mean that the switch to EV will happen in a few months or even years,
due to its technology challenges including a smaller range anxiety, more charging
infrastructure and the decrease in the battery cost (LEE & CLARK, 2018; KUMAR & ALOK,
2020). One of the many challenges faced to the EV implementation is the phenomenon known
as range anxiety, being a very influential factor to decide or not to purchase an EV (NOEL et
al., 2019). Range anxiety is the fear of running out of electricity before reaching other EVC
(NEUBAUER & WOQOD, 2014). The anxiety is amplified by the lack of EVCs in the highways.



Possible solutions can be devised to overcome the range anxiety. A possible solution is to
increase the EV autonomy in a non-urban scenario, making for instance, the EV range going
from 200 km to 500 km per charge. Another possible solution is to provide more charging
infrastructure, EVC (PEVEC et al., 2019). The first mentioned solution is more technology
dependent, and the second one is more economic dependent. Nowadays, there are different

types of cars considered as EV.

The first vehicle type, the Battery Electric Vehicles (BEVs), was developed as early as 1828
with the creation of an electric driven motor consuming electricity as a way of transportation
(FARAZ et al., 2020). However, it was only from 1960 to 1990 that the EV invention was
popularized and developed to the stage as it is known today. By the year 2005, the company
Tesla was responsible for the main EV development and the spread of the market in the USA
and in the rest of the world (LONG ef al., 2019). One of the main differences of the BEVs and
the other EVs is that the BEV is the only one fueled only by electric power (KONIG et al.,
2021). Therefore, there is no need for a combustion engine because the only engine needed in
the car is the battery one (LIU ef al., 2021). Another benefit is the zero CO2 emissions since
there is no fossil fuel being used (KAWAMOTO et al., 2019). In order to charge the BEVs
faster, a Plug-in Charging is used, having about a 100 km to 600 km of electric range, as an
important factor to control the range anxiety (DAS et al., 2019). The Figure 2.1 shows a

representation of a BEV car.
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Figure 2.1 The Architecture and Components of BEV
Source: HARIKRISHNAN et al., 2023.
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The second vehicle type is the Plug-in Hybrid Electric Vehicles (PHEVs). The PHEV was first
developed by 2002 to 2005 aiming to merge the BEV and the fossil fuel cars, having the option



to recharge their battery via external power source besides the onboard electric generator
(SINGH et al., 2020). Moreover, the PHEV decreases the operation cost and the emission of
harmful pollutants (PLOTZ et al., 2021). Usually, the people want to be more ecologically
responsible, lowering their pollution, but do not want to have all the constraints, difficulties and
range anxiety of a BEV (ADNAN ef al., 2018). It has about 30 km up to 100 km of electric
range solely on the battery, and then the internal combustion engine will take over. The Figure

2.2 shows the PHEV car.
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Figure 2.2 The Architecture and Components of PHEV
Source: HARIKRISHNAN et al., 2023.

The third vehicle type, Hybrid Electric Vehicles (HEVs), was first developed in 1898 by Dr.
Ferdinand Porsche, using an internal combustion engine to generate power to the traction
electric motor (EHSANI et al., 2021). Nowadays, after the creation of the Toyota Prius, almost
every other auto manufacturer has introduced HEV automobile (ORECCHINI et al., 2020). The
difference between HEV and PHEV is that the HEV does not charge the battery externally
(DENTON, 2020). The HEV works by using internal combustion engines and electric batteries,
being recharged by the braking energy, which is normally wasted in other types of vehicles
(RAHMANI & LOUREIRO, 2018). When the battery uses the braking energy the vehicle
autonomy is only 5 km to 10 km, but the mentioned autonomy depends on the scenario, mainly
if there is traffic jams (ZHUANG et al., 2020). The CO2 emissions are not as low as previous
electric vehicle types because of the short electric range of HEVs and the requirement to use
only the breaking for charging (SINGH ef al., 2019). The Figure 2.3 shows the representation
of an HEV car.
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Figure 2.3 The Architecture and Components of HEV
Source: HARIKRISHNAN et al., 2023.

The fourth vehicle type, Fuel Cell Electric Vehicles (FCEVs) is the latest type and features the
best technology being considered the nonpolluting transport, if it excludes the recharge of the
batteries on electric power stations (PENG et al., 2022). The idea of the FCEVs is the
conversion of fuel cells. Fuel cells are electrochemical devices converting the chemical energy
from a reaction into electrical energy, with hydrogen serving as the fuel MUTHUKUMAR et
al., 2020). The electric range is by far the most important feature of a FCEV, providing up to
700 km of autonomy (PRAMUANJAROENKIJ & KAKAC, 2022). The Figure 2.4 shows the

representation of a FCEV car.
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Figure 2.4 The Architecture and Components of FCEV
Source: HARIKRISHNAN et al., 2023.

Table 2.1 summarizes the four different types EVs, presenting their characteristics and

distinctions to support a clearer understanding of their technical and operational differences.



Table 2.1 Characteristics of EVs Type

VEHICLE ENERGY ELECTRIC ADDITIONAL PLUG-IN CO2
TYPE SOURCE RANGE FUEL CHARGING EMISSIONS
Battery
Electric Only  High (100-

) electric None Yes Zero
Vehicles batte 600 km)
(BEVs) ry
Plug-in
Hybrl.d Battery.+ Medium Gasoline or
Electric =~ combustion . Yes Low
. . (30-100 km) diesel
Vehicles engine
(PHEVs)
Hybrid
Electric Battery‘+ Low (5-10 Gasoline or
. combustion ) No Moderate
Vehicles eneine km) diesel
(HEVs) &
Fuel Cell
Electric Hydrogen  High (300-
Vehicles fuel cell 700 km) Hydrogen No Zero
(FCEVs)

This study applies the Battery Electric Vehicles (BEVs) because they are the ones requiring
strictly Plug-in Charging to operate. Therefore, the BEVs will directly benefit from the

construction and installation of the EVC in the highway.
2.2 EVOLUTION OF THE EVC IN THE WORLD

Electric Vehicle Charging (EVC) recharges the batteries of the BEVs and PHEVs. The place
where the EVCs are installed can increase or decrease the range anxiety (XU et al., 2020). It is
also important to evaluate the waiting time to charge the car with the waiting time to fill it up,
observing how many more kilometers will be required to recharge the car (GNANN et al., 2018;
SINGH et al., 2020). The competition between EVs and fuel cars was unbalanced due to the
cost disparity and the significant time difference in refueling times, because, while an average
fuel car can be refueled in approximately five minutes, early EVs required up to 15 hours to

fully charge (WISHART, 2014; COLLIN et al., 2019).



An important issue related to the EVs is the high consumption of electricity to charge them
(MURATORI et al., 2019). The EVC can normally charge 5 kWh up to 50 kWh, implying a
waiting time of 11 hours to 30 minutes (HEMAVATHI & SHINISHA, 2022). The mentioned
EV required time varies between 132 to 6 times slower than the filling of a regular fossil fuel-
based car to the EVCs. Furthermore, the flow of electricity must be considered. Nowadays, with

the new and improved technology, there are basically four types of EVC being used worldwide:

Slow or normal charger: Up to 7.4 kilowatts (kW) of power and can take up to six to 12
hours to charge a vehicle. Not recommended for highways, where time to fuel needs to be as

fast as possible.

Semi-fast charger: Up to 22 kilowatts (kW) of power taking up to two to six hours to

charge a vehicle. It is also not recommended for highways due to the time to charge the EV.

Fast charger: Up to 100 kilowatts (kW) of power and lasting up to an hour and half to
30 minutes to charge a vehicle. It is recommended and mostly used on highways, even though

the time is still high, when compared to a normal 5 minutes to fuel a normal vehicle.

Ultra-fast charger: Minimum of 150 kilowatts (kW) of power charging a vehicle in less
than 30 minutes. It is recommended and mostly used on busier highways that need to charge

their EV at the fastest time. Figure 2.5 shows an Ultra-fast charger.

Figure 2.5 Typically Ultra-Fast Charger
Source: SIEMENS, 2025.

To normalize all the possible outcomes, the Ultra-fast charger is the one to be applied in this

research.
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2.3 OPTIMIZATION METHOD

There are different approaches to analyze and to obtain the optimal localization for the same
problem (ZHANG et al., 2020). It depends on the subject of study, data analysis, theory and the
criteria besides the expected outputs of the model (ZHOU et al. 2025). Moreover, it is important
to find the global solution for the problem (KONG et al., 2019). Some researchers have applied
the weighted multi criteria location optimization methods, genetic algorithms or even particle
swarm optimization methods (CSISZAR et al., 2020; YENIGUN et al., 2024). It must also be
mentioned that the artificial intelligence has also been used to obtain the optimal solution for

localization problem (JANOWICZ et al., 2019).

The multi-criteria location optimization method has already been applied to separate the
decision making into variables making a ponderation of the most important variables, according
to the model (FENG ef al., 2021). The multi-criteria method has been applied in the localization
problems and in a wide scope of other problems including healthcare, energy sector, production,
supply chain management, transportation and finance/economics (TAHERDOOST &
MADANCHIAN, 2023). It has been applied because it has the ability to obtain the exact global
solution of the model (MUKHAMETZYANOV & PAMUCAR, 201 8). Nevertheless, the
system lacks to obtain a specific global solution for the problem when there are many variables,

taking a much longer time to obtain the optimal solution (DUGGER et al., 2022).

The metaheuristic method, including the genetic algorithms (GA), has also been applied to
solve both constrained and unconstrained optimization problems being already used to
biological evolution processes (KATOCH et al., 2020). It is a population-based search
algorithm applying the concept of survival of the fittest or the strongest producing new
populations by the iterative use of genetic operators on individuals present in the population
(MICHALEWICZ, 1996). The chromosome representation, selection, crossover, mutation, and
fitness function computation are the key elements of the GA (PAPAZOGLOU & BISKAS,
2023). One of the main limitations for the application of the GA in the optimization problems
1s it cannot guarantee to obtain the global solution because of the way how the populations are
created. Nevertheless, it is able to obtain a reasonably close solution for the global one (AZIZ

et al., 2023). An example of the GA algorithm is shown in Figure 2.6.
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Figure 2.6 Genetic Algorithm Flowchart

Finally, another algorithm applied is the particle swarm optimization (PSO) making use of
probability, by transition rules to make parallel searches of the solution hyperspace without
explicit assumption of derivative information (KENNEDY & EBERHART, 1995). When
implementing a PSO, a group of particles explores the problem space having movement
influenced by both individual history and the trajectory of the swarm. Each particle shares then
its best position with the other ones, incorporating random perturbations, and, after updating all
their positions in an iteration, the process continues, refining the search near the perceived
optimum (HOUSSEIN et al., 2021). The PSO has the same limitations as the GA, once it does

not guarantee to obtain the global solution, reaching solutions closer or near the global one.
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This study applies the GA location optimization method because of the large number of
variables to optimize the installation of the EVCs on specific kilometers of the BR-386, the

studied highway in this project.

2.4 GEOGRAPHIC INFORMATION SYSTEM (GIS)

The Geographic Information System (GIS) is a concept, used in some software, making it
possible to analyze the input dataset, linking it to a location on the earth's surface. Defining a
GIS can be done by either explaining what it can do by looking at the components. Both are

important to really understand a GIS and use it optimally (ALI, 2019).

One of the main GIS applications is that the model can be a combination of GIS and spatial
analysis tools applying Multi-Criteria Decision Analysis (MCDA) methods, or even GA
methods to achieve a better spatial decision by integrating multiple criteria from various spatial

data sources (KAZEMI & AKINCI, 2018).

Therefore, the main benefit when implementing a GIS is that it will be trained to obtain a better
solution, tied to a location on the earth's surface. Thus, it is through the GIS application that all

points, coordinates and locations will be implemented in the model.

2.5 THE APPLIED METHOD

This study includes three different phases. The first one is the acquisition and cleaning of the

input database. The data is obtained by multiple locations and sources:

Length of BR-386 highway (km): MOTIVA Via Sul.

Traffic flow: PNCT and DETRANRS.

Electrical energy infrastructure: ONS.

EV specification: SENATRAN

13



The main objective of this phase is to clean the dataset, checking for missing information.
Useful information including traffic flow, traffic by period of the day, the car model, the length

of the highway and the electrical energy infrastructure is given as input for the model.

The second phase is the implementation of the GA to obtain the location of the charging
stations. The third phase is the creation of different scenarios for better understanding of the
possible solution for the model. The best solution is achieved at this phase, fitting the solution
and the other parameters, including the queueing time and the time to fully charge an EV. The

idea is to create scenarios to enable the decision makers to install efficiently the EVCs.
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3 THE DATA OVERVIEW

The main goal of this stage is to gather the data, preparing it for the model. The data analyzed
is presented in Figure 3.1. The next sections describes the dataset showing the results from the

implemented Python program on the data and show the result in the Python program.

Highway Traffic Flow
BR-386 (2025, 2030)

Electrical

Energy and Energy

EVs

Vehicles s Specification

GA Model CCR ViaSul Constraints

Figure 3.1 Data Overview Diagram

3.1 THE LENGTH OF BR-386 HIGHWAY (KM)

The first important task is to locate and plot the BR-386 highway. The gathered information
was that the BR-386 by the MOTIVA ViaSul has a length of 266 km. Its starting point is in the
city of Caraizinho, and its finishing point is in the city of Canoas (MOTIVA, 2025). Therefore,
the next step was to plot this map using the Python script and the OpenStreeMap. Figure 3.2
shows all the highways that MOTIV A operates near the BR-386. Figure 3.3 has a detailed plot
of BR-386 in the full size and Figure 3.4 has a detailed plot of the BR-386 belonging to the
concession of the MOTIVA ViaSul, being the case study of this dissertation. A more detailed
view of Figure 3.3 will be provided to present the optimal locations, including further

parameters.

15



Por qual rodovia vocé vai?

one para mais informagoes

BR-101- Rodovia Governador Mario Covas

BR-290 (Freeway) - Rodovia Oswaldo
Aranha

BR-386 - Rodovia Governador Leonel de
Moura Brizola

BR-448 (Rodovia do Parque) - Rodovia Dr.
Fabio André Koff

Sarandi Sananduva
Urubici Garopab
Topejara aropaba
Sbasso. Brage Imbituba
mbi oGarazinho, °Fass0 Fund $80 Joaquim do Norte ¥
Ni o que Marau ol oTubarsé
oVacaria o
- birubs o
Espumody

olages

Forquilhinha

Ararangud
Sato do Jacul i
©Caxias do Sul
e el
oo Gramado SIS
Sobradinho
Aroio do Sal
¥ s Candelénia _santa Cruz egr
©do Sul Capdo da
Restinga Séca 2 Canoa
0s6rio.
Rio Pardo Tramandai

Encruzilhada
do Sul

oPorto Alegre

+

Atalhos doteclado  Dados cartogrificos 2025 Google | Termos | informar e no mapa 8

(C) OpenStreetMap contributors

Figure 3.2 MOTIVA’s Website
Source: MOTIVA, 2025.
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Figure 3.3 BR-386 Full Size
Source: MOTIVA, 2025.
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Figure 3.4 BR-386 MOTIVA ViaSul
Source: MOTIVA, 2025.
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3.2 TRAFFIC FLOW (2025)

The traffic flow was calculated by the average measurement from the data collected in two
different locations within the BR-386 highway, the kilometer 422-6 and the kilometer 362-8.
This data was obtained through the PNCT (National Traffic Control Plan) being compiled from
the 2024 measurements at these two specific kilometer locations (PNCT, 2025).

Firstly, the annual average daily traffic from passenger cars in both locations was consolidated.
Afterwards, there was a count of how many days there was in the data for every location.
Finally, the flow of cars was evaluated by an average. It was considered that the evaluated
average did not vary along the time. The expected traffic flow is yearly was then evaluated. The
percentages of the EVs was obtained from the data of the DETRAN-RS (RS State Department
of Transit) and the EVs represent approximately 0.13% of the fleet in circulation in RS, as

shown in Table 3.1. (DETRAN-RS, 2025).

Table 3.1 Traffic Flow Percentage 2025

CATEGORY QUANTITY IN RS PERCENTAGE OF FLEET
EVs 5,918 0.13%
All vehicles 4,627,979 100%

Source: DETRAN-RS, 2025.

Finally, the traffic flow of EVs in the highway BR-386, annually, was calculated being
displayed in Table 3.2.

Table 3.2 Traffic Flow Analysis 2025

SECTION CARS DAYS NUMBER Ngi/[lfSEII}E(l;F NUMBER OF
OBSERVED OBSERVED OF CARS DAY EVS PER DAY
422-6 5,538 231 2,061,019 8,922 -
362-8 5,536 334 2,132,332 6,384 -
Combined 15,306 19.57

Source: DETRAN-RS, 2025.
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The Number of the EVs per year were used in the Python implemented program being changed

in sensitivity tests to figure out the impact in the optimal location solution.

The daily number of EVs is evaluated by multiplying the Combined Total Number of Cars per
Day to the Percentage of EV in the fleet. It was obtained the number of 20 EVs per day.

3.3 TRAFFIC FLOW FORECAST (2030)

The forecasts were made to the number of EVs in the period from 2025 to 2030. The data used
was also from DETRAN-RS. The forecasts were implemented by three different methods,
including the Linear Projection, a Quadratic Polynomial Projection and an Autoregressive

Integrated Moving Average (ARIMA) method.

Linear Projection is mainly used for time series forecasting. Even though there are other more
complex approaches, the studies have shown that the performance of complex models for the

forecasting are often similar to the simpler linear models (ZENG et al., 2023; L1 et al., 2023).

Quadratic Polynomial Projection (QPP) is another method used to forecast once it has a better
fit quality with fewer iterations, for instance (ALRIDHA, 2023). The QPP has advantages since

it is a polynomial of degree two.

ARIMA Projection is based on the assumption of stationarity of a series using a high number

of past observations to predict the future values of the EVs (BAHUGUNA et al., 2025).

The results of the 3 projections, both for all vehicles and for EVs, are presented in Table 3.3 to
Table 3.6 and Figure 3.5 to Figure 3.12.

3.3.1 Linear Projection

The average yearly increase was calculated by taking the difference between consecutive
historical data points and computing the mean of these differences. This value represents the
typical growth per period. Then, starting from the most recent observed sales value, this average
increase was added cumulatively to generate projected values for each year in the forecast

horizon. Thus, the projection assumes that the rate of change remains constant over time,
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producing a linear continuation of the historical growth pattern as shown in Table 3.3 and Figure

3.5 and Figure 3.6.

Table 3.3 Linear Projection 2026-2030

YEAR EVS ALL VEHICLES
2026 23,725 4,810,490
2027 27,668 4,892,048
2028 31,611 4,973,606
2029 35,554 5,055,164
2030 39,498 5,136,722

Fleet in Circulation in RS (M)

Source: DETRAN-RS, 2025.
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Figure 3.5 Linear All Vehicles Fleet Projection 2026-2030
Source: DETRAN-RS, 2025.
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Figure 3.6 Linear EVs Fleet Projection 2026-2030
Source: DETRAN-RS, 2025.

3.3.2 Quadratic Polynomial Projection

For the polynomial projection, a second-degree polynomial was fitted to the historical data
using least-squares regression. Then, this function was evaluated at each of the future years to
generate the projected values. Unlike the linear projection, which assumes a constant rate of
change, the polynomial projection allows the growth rate to increase or decrease over time,
resulting in a curved trend that follows the pattern observed in the historical data pattern as

shown in Table 3.4 and Figure 3.7 and Figure 3.8.

Table 3.4 Quadratic Polynomial Projection 2026-2030

YEAR EVS ALL VEHICLES
2026 30,338 4,850,020
2027 45,735 4,996,173
2028 64,152 5,159,252
2029 85,591 5,339,257
2030 110,050 5,536,186

Source: DETRAN-RS, 2025.
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Figure 3.8 Quadratic Polynomial EVs Fleet Projection 2026-2030
Source: DETRAN-RS, 2025.

3.3.3 ARIMA Projection

For the ARIMA projection, a time-series model was fitted to the historical sales data using an
ARIMA(2,1,1) specification. This model incorporates autoregressive terms to account for

dependence on past values and a moving-average term to capture short-term fluctuations. As a
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result, the projection reflects both the underlying trend and the temporal correlation structure

present in the historical data as shown in Table 3.5 and Figure 3.9 and Figure 3.10.

Table 3.5 ARIMA Projection 2026-2030

YEAR EVS ALL VEHICLES
2026 48,213 4,837,934
2027 90,258 4,934,731
2028 145,004 5,012,738
2029 211,313 5,083,206
2030 287,847 5,138,851

Source: DETRAN-RS, 2025.
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Figure 3.9 ARIMA All Vehicles Fleet Projection 2026-2030
Source: DETRAN-RS, 2025.
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Figure 3.10 ARIMA EVs Fleet Projection 2026-2030
Source: DETRAN-RS, 2025.

3.3.4 Projection Comparison

Based on the three projections developed, Table 3.6, Figure 3.11 and Figure 3.12 were created

to compare the three forecasting approaches analyzed in this study.

Table 3.6 Comparison 2026-2030

LINEAR QUADRATIC

LINEAR QUADRATIC ARIMA ARIMA ALL

YEAR EVS EVS EVS VEI?IL CLLES VEI:?ILCLLES VEHICLES
2026 23,725 30,338 48,213 4,810,490 4,850,020 4,837,934
2027 27,668 45,735 90,258 4,892,048 4,996,173 4,934,731
2028 31,611 64,152 145,004 4,973,606 5,159,252 5,012,738
2029 35,554 85,591 211,313 5,055,164 5,339,257 5,083,206

2030 39,498 110,050 287,847 5,136,722 5,536,186 5,138,851

Source: DETRAN-RS, 2025.
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Figure 3.11 Comparison of All Vehicles Fleet Projection 2026-2030
Source: DETRAN-RS, 2025.
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Figure 3.12 Comparison of EVs Fleet Projection 2026-2030
Source: DETRAN-RS, 2025.

For this study, the Linear Projection and the ARIMA Projection were not the chosen method
because of their results. The Linear requires the data to have a constant growth, not considering
all the other variables that can occur, which led to estimates below expectations. The ARIMA
technique is usually applied when there is a large data compiled for the forecast to be more

accurate. Usually, with five years of data, its accuracy decreases, and the values are not the
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most reliable ones, resulting in estimates above the expected ones. The Quadratic Polynomial
Projection has its challenges, mainly because it can overestimate the future EV values, but it is
the best fitting method when analyzing the growth acceleration of the EV numbers. Thus, the

Quadratic Polynomial method is the applied method in this research.

The total evaluated number of all vehicles for 2030 is 5,536,186 and the number of calculated
EVsis 110,050. The EVs will then represent approximately 2% of the fleet in circulation in RS,

as shown in Table 3.7.

Table 3.7 Traffic Flow Percentage 2030

PERCENTAGE OF

CATEGORY QUANTITY IN RS FLEET
EV 110,050 2%
All vehicles 5,536,186 100%

Source: DETRAN-RS, 2025.

Finally, the traffic flow of EVs, for the BR-386 in 2030 has been displayed in Table 3.8.

Table 3.8 Traffic Flow Analysis 2030

sEcTioN  CARS  DAYS  NUMBER (nciphpn  NUMBER OF
DAY EVS PER DAY
422-6 6,608 231 2,465,479 10,673 -
362-8 6,622 334 2,550,787 7,637 -
Combined 18,310 366.2

Source: DETRAN-RS, 2025.

The daily number of EVs is calculated by the same way described as the traffic flow of 2025.
This number is expected to be about 367 EVs per day.

A Confidence Interval (CI) of 95% for the year 2030 was also calculated by using the OLS
theory. The results are shown in Figure 3.13 and Figure 3.14 and in Table 3.9 and Table 3.10.
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Figure 3.13 CI Quadratic Polynomial EVs Fleet Projection 2026-2030
Source: DETRAN-RS, 2025.
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Figure 3.14 CI Quadratic Polynomial All Vehicles Fleet Projection 2026-2030
Source: DETRAN-RS, 2025.
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Table 3.9 Confidence Interval EVs 2026-2030

o
YEAR EVS 95% CONFIDENCE

INTERVAL =
2026 30,339 14,438
2027 45,735 24,708
2028 64,153 37,777
2029 85,591 53,550
2030 110,051 71,996

Source: DETRAN-RS, 2025.

Table 3.10 Confidence Interval All Vehicles 2026-2030

95% CONFIDENCE

YEAR ALL VEHICLES INTERVAL +
2026 4,850,021 67,842
2027 4,996,175 116,099
2028 5,159,254 177,508
2029 5,339,259 251,626
2030 5,536,189 338,300

Source: DETRAN-RS, 2025.

To determine what would happen to the ideal number of chargers in 2030, a two-scenario

analysis was created as well as a baseline scenario.

The low-growth scenario and the high-growth scenario, making it possible to analyze the
minimum and maximum percentage of EVs that can be expected in 2030, and consequently the

number of EVs per day, respectively.

For the low-growth scenario, the total evaluated number of the 95% IC of all vehicles for 2030
1s 5,874,489 and the number of calculated EVs is 38,055. The EVs will then represent
approximately 0.65% of the fleet, as shown in Table 3.11.
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Table 3.11 Low-Growth Percentage 2030

CATEGORY QUANTITY IN RS PERCENTAGE OF FLEET
EV 38,055 0.65%
All vehicles 5,874,489 100%

Source: DETRAN-RS, 2025.

The traffic flow of EVs, for the low-growth scenario in 2030 has been displayed in Table

3.12.
Table 3.12 Low-Growth Analysis 2030
CARS DAYS NUMBER NUMBER COMBINED
SECTION OBSERVED OBSERVED OF CARS OF CAR NUMBER OF
PER DAY EVS PER DAY
422-6 7.012 231 2.616.138 11.325 -
362-8 7.027 334 2.706.659 8.104 -

Combined 19.429 125,9
Source: DETRAN-RS, 2025.

The daily number of EVs for the low-growth scenario is expected to be about 126 EVs per day.

For the high-growth scenario, the total evaluated number of the 95% IC of all vehicles for 2030
1s 5,197,889 and the number of calculated EVs is 182,047. The EVs will then represent
approximately 3.5% of the fleet, as shown in Table 3.13.

Table 3.13 High-Growth Percentage 2030

CATEGORY QUANTITY IN RS PERCENTAGE OF FLEET
EV 182,047 3.5%
All vehicles 5,197,889 100%

Source: DETRAN-RS, 2025.

The traffic flow of EVs, for the high-growth scenario in 2030 has been displayed in Table 3.14.
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Table 3.14 High-Growth Analysis 2030
NUMBER OF COMBINED

CARS DAYS NUMBER

SECTION OBSERVED OBSERVED OF CARS CA§ AI;ER S\EJSN{)%%RD?:;
422-6 6.204 231 2.314.822 10.021 -
362-8 6.218 334 2.394.917 7.170 -
Combined 17.191 602,1

Source: DETRAN-RS, 2025.

The daily number of EVs for the high-growth scenario is expected to be about 603 EVs per day.

3.4 THE ELECTRICAL ENERGY INFRASTRUCTURE

It is important to analyze about the electricity demand of an EVC. Firstly, all the Substations
and Power Plants in the region were determined by the data extracted from the SIN Maps and

the ONS (National Electrical System Operator) (ONS, 2025).

The Table 3.15 shows the location of the existing electric Substations and Power Plants.

Table 3.15 Substations and Power Plants Coordinates

TYPE LATITUDE LONGITUDE
Substation -29.877750 -51.107592
Substation -29.266667 -51.191667
Substation -29.141389 -51.157500
Substation -29.132500 -51.191667
Substation -29.165833 -51.122778
Substation -29.649473 -52.806648
Substation -29.951944 -51.621111
Substation -29.970506 -51.597058
Substation -29.891389 -51.177778
Substation -29.947222 -51.190833
Substation -29.877083 -51.146886
Substation -29.146425 -51.148083
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Continuation of Table 3.15 Substations and Power Plants Coordinates

TYPE LATITUDE LONGITUDE
Substation -29.059167 -51.280278
Substation -29.218611 -51.323889
Substation -29.237222 -51.511944
Substation -29.465564 -51.984503
Substation -29.431389 -51.916000
Substation -29.039444 -51.534167
Substation -28.805278 -51.612222
Substation -30.008333 -51.140556
Substation -29.971111 -51.195833
Substation -29.823206 -51.343779
Substation -29.869167 -51.388056
Substation -29.719722 -51.151389
Substation -29.719722 -51.151667
Substation -29.712500 -52.547222
Substation -28.283333 -52.428611
Substation -29.633611 -52.155278
Substation -29.181225 -51.474756
Substation -28.541291 -52.094986

Power Plant -29.008333 -51.379167
Power Plant -29.016667 -51.500000
Power Plant -29.050000 -51.666667
Power Plant -29.982500 -51.761667
Power Plant -29.876389 -51.146944

Source: ONS, 2025.
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The locations presented in Table 3.8 allowed to draw the Figure 3.15 and also Figure 3.16
having a 75 km of radius around the Power Plants and the Substations because this radius is

enough to supply any EVC in the area and can be more economically viable (ZHOU et al.,

2022). This distance will also be a parameter in the simulation.

m— BR-386 - MOTIVA ViaSul Concession

!

g S

Figure 3.15 BR-386 with Substations and Power Plants
Source: ONS, 2025.
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Figure 3.16 BR-386 with Substations’ and Power Plants’ radius
Source: ONS, 2025.

Secondly, it is important to measure the energy needed for an EVC to work with a high capacity
of utilization. It is important because the EVC has a different average power (kW). The best
charger for highways is the Ultra-fast charger. For this study, his average power (kW) was
defined as being 150 kW. This number is sufficient by the large number of Substations and
Power Plants nearby the BR-386 highway. However, their distance to the optimal point will

also be considered, for simulation and boundary conditions purposes in this study.

3.5 EVS SPECIFICATION

It is important to determine the model of the EVs to be considered in this study, since a vast
number of EVs have different battery sizes, and, consequently, different autonomy and recharge
waiting time. The accumulated data since 2015 gathered from SENATRAN show which model
is the most used allowing the possibility to calculate the autonomy and the capacity of the
battery (SENATRAN, 2025). Table 3.16 was then obtained showing the dominant brands in
the EVs market in RS.
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Table 3.16 Brands Analysis

MANUFACTURER QUANTITY PERCENTAGE (%)

BYD 4,275 61.05%
GWM 520 7.43%
VOLVO 479 6.84%
JAC 431 6.16%
RENAULT 278 3.97%
BMW 238 3.40%
CHERY 110 1.57%
MINI 108 1.54%
PORSCHE 99 1.41%
AUDI 84 1.20%
PEUGEOT 78 1.11%
NISSAN 59 0.84%
MERCEDES-BENZ 41 0.59%
CHEVROLET 39 0.56%
FIAT 34 0.49%
TESLA 31 0.44%
FORD 26 0.37%
ZEEKR 24 0.34%
JAGUAR 17 0.24%
GMC 6 0.09%
HYUNDAI 5 0.07%
NETA 5 0.07%
DONGFENG 3 0.04%
GURGEL 3 0.04%
KIA 3 0.04%
HITECH 2 0.03%

Source: SENATRAN, 2025.



Since most of the EVs are manufactured by BYD, a second analysis was made to determine

which BYD are the most used ones (BYD, 2025). Table 3.17 presents the main used BYD

models.
Table 3.17 Analysis of BYD EVs Models
AUTONOMY BATTERY PERCENTAGE
MODEL (KM) CAPACITY (KW) QUANTITY (%)
DOLPHIN
MINI 280 38 1,171 27.69%
GS5EV
DOLPHIN 0
GS 180EV 291 44.9 1,098 25.96%
DOLPHIN
MINI GS 280 38 668 15.80%
EV
DOLPHIN
PLUS 427 60.5 515 12.18%
310EV
SEAL
AWD GS 372 82.5 356 8.42%
590EV
YUAN
PLUS GL 294 60.48 314 7.42%
310EV
YUAN
PRO GS 250 45 107 2.53%
290EV

Source: BYD, 2025.

Furthermore, a weighted average for the BYD models was calculated, resulting in an Autonomy

of 309 km and a Battery Capacity of 48 kW to be used in this study.

The average time to charge these models was also evaluated, considering the Ultra-fast charger
of 150 kW. The time was calculated for charge between 25% and 100% of the battery’s
capacity. The data compiled is shown in Table 3.18.
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Table 3.18 Analysis of Charging Time of BYD EVs

BATTERY ENERGY IDEAL
MODEL CAPACITY TOADD TIME QUANTITY
(KW) (KW) (MIN)

PERCENTAGE
(%)

DOLPHIN
MINI 38.00 28.50 11.4 1,171 27.69%
GS5EV

DOLPHIN

0
GS 180EV 44.90 33.68 13.5 1,098 25.96%

DOLPHIN
MINI GS 38.00 28.50 11.4 668 15.80%
EV

DOLPHIN
PLUS 60.50 45.38 18.2 515 12.18%
310EV

SEAL
AWD GS 82.50 61.88 24.8 356 8.42%
590EV

YUAN
PLUS GL 60.48 45.36 18.1 314 7.42%
310EV

YUAN
PRO GS 45.00 33.75 13.5 107 2.53%
290EV

Source: BYD, 2025.

Finally, in the weighted average, the time resulted in 14,45 minutes to charge the EVs.

3.6 CONSTRUCTION OF THE GA MODEL

This study aims to find the optimal location for the EVC, using the GIS-based approach.
Therefore, the expected result of the GA model will be a set of coordinates that will be plotted
in the map showing the location of the EVCs. The boundary conditions of this model have
factors including the autonomy and the time to charge the EVs, the battery capacity and the

location of the Power Plants among other factors.
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3.6.1 Boundary Conditions

The delimitation of the BR-386 to only plot the MOTIVA concession was made by consulting
the OpenStreetMap via Overpass API, showing a rectangle where the system finds the name
“BR-386”. After having all the elements that were connected to “BR-386", the script
interconnected these points of interest resulting in one line, via LineString. Afterwards, there
are the boundaries of the studied area, since the MOTIVA is the highway to be analyzed,
specifying the geographic coordinates of Canoas (-51.1839, -29.9122) and Carazinho (-
52.7360, -28.2896) was made.

The average autonomy of the EVs utilized in this study is about 309 km. However, to prevent
the possible range anxiety of not having enough battery capacity to finish the trip, because not
every EV will have their battery at 100% before entering into the highway and the energy
consumption tends to be higher on highways due to sustained higher speeds and less
regenerative braking (LAKSHMI & GUDIPALLI, 2023). Thus, a 25% reduction in autonomy
is imposed in this study. The autonomy used in this study is then of 230 km.

The EVC requires a lot of energy to charge EVs. The radius of 75 km around the energy is the
coverage circle within which the energy supply is met, and the necessary energy support is

ensured, as shown in Figure 3.12 (ZHOU et al., 2022).

The average battery capacity applied in this study is about 50 kW. The considered battery

capacity is important to determine the number of ideal chargers in the EVC.

The total number of EVs per year in 2025 is about 7,144. For 2030, however, this number is
about 113,663. This boundary condition gives the amount of EV needed to be charged besides
being an important factor to determine the utilization, the standby time and the queuing time

for the BR-386 considered in this research.

The average time to charge the EVs, from 25% or the battery capacity to 100%, is about 14.45
minutes assuming a constant 150 kW Ultra-fast charger. Although this time is a reasonable
estimator, it will be penalized with about 50% increase because the charging can slow down
when the battery is at 70% or 80% of its capacity (KOSTOPOULOS et al, 2020).

Consequently, the time increases to about 22 minutes.
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As the annual average daily traffic flow is 7,144 it results in a daily flow of 20 EVs. Thus, this

study assumes that the total number of chargers in each EVC will depend on the number of

EVCs to be installed in the highway.

The arrival pattern of the EV must then be determined. The ARENA Input Analyzer was used.
The input to the ARENA includes the daily flow of EVs data during the year 2024 collected in
the kilometer 422-6 and kilometer 362-8 of the highway.

The fitting for the data was then implemented considering the EV percentage of 0.13% of the

fleet. Results are shown in Figure 3.17 to Figure 3.20.
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Figure 3.18 Graphical Representation of All Vehicle Results
Source: PNCT, 2025.
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Source: PNCT, 2025.
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Figure 3.20 Graphical Representation of EVs Results
Source: PNCT, 2025.

The evaluated arrival distribution of EVs was determined as being a Poisson, having a rate

(lambda) of 20 in 2025.

An analysis was then made varying the assuming evaluated arrival distribution. At this phase,
the time to charge, the daily traffic flow and the time average arrival distribution were
considered important factors. Figure 3.21 presents the average utilization of the chargers,

depending on the number of chargers.
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Figure 3.21 Charger Utilization by Number of Chargers, 2025
Source: PNCT, 2025.
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The ideal number of chargers had then to be evaluated. The utilization percentage of the
chargers was fixed at 50% or lower and the average queuing time for the EVs to be charged
was calculated. As a result, Figure 3.22 was created.
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Figure 3.22 Ideal Chargers, Utilization, and EV Queuing, 2025
Source: PNCT, 2025.

Considering the 2025 EVs demand, with only one charger, the queue would be about 5 vehicles,
and the utilization of the charger would be 100%, being not considered a viable result. The
queue would decreases to 1 vehicle, installing two chargers in the EVC, and the utilization
would decrease to 62.45%. However, the optimal number of chargers obtained is three chargers
because the queue would be numerically zero and the utilization only 42.85%. Table 3.19 shows

the result.

Table 3.19 EVC Utilization and Average Queue, 2025

NUMBER OF CHARGERS  UTILIZATION AVERAGE QUEUE

(VEHICLES)
1 100% 4.65
2 62.45 % 0.61
3 42.85% 0.10

Source: PNCT, 2025.
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Finally, it was simulated what would happen if the entire flow of vehicles, in this case 20 EVs

for 2025, arrived at the EVCs at once. Figure 3.23 and Figure 3.24 show the result for this case.
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Figure 3.23 Charger Utilization by Number of Chargers — Arriving at Once, 2025
Source: PNCT, 2025.
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Figure 3.24 Ideal Chargers, Utilization, and EV Queuing — Arriving at Once, 2025
Source: PNCT, 2025.

When all cars arrive at the same time for the 2025 scenario, the queue length and the average
utilization of the chargers are almost a decreasing straight line when the number of chargers
increase. Therefore, the optimal number of chargers would be 21 chargers once the queue length

is zero vehicles, and the utilization equal or lower than 50%. It is interesting to note that the
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total number of chargers is the number of the flow of vehicles, 20 EVs, plus one ensuring no

queue length. Table 3.20, Figure 3.24 and Figure 3.25 present the results for 2030.

Table 3.20 EVC Utilization and Average Queue — Arriving at Once, 2025

NUMBER OF AVERAGE QUEUE
CHARGERS UTILIZATION (VEHICLES)
1 100.00% 19.00
2 97.50% 18.00
3 95.00% 17.00
4 92.50% 16.00
5 90.00% 15.00
6 87.50% 14.00
7 85.00% 13.00
8 82.50% 12.00
9 80.00% 11.00
10 77.50% 10.00
11 75.00% 9.00
12 72.50% 8.00
13 70.00% 7.00
14 67.50% 6.00
15 65.00% 5.00
16 62.50% 4.00
17 60.00% 3.00
18 57.50% 2.00
19 55.00% 1.00
20 52.50% 0.00
21 50.00% 0.00

Source: PNCT, 2025.

The same study was conducted including the traffic flow expectation of 367 in 2030, as shown

in Figure 3.25 and Figure 3.26.
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Source: PNCT, 2025.
Average queue length
—e— Average utilization (up to ideal)
——- Ideal = 13
0.8
0.6 5
g
E
Q
(=]
o
04z
0.2
- - - - - - - - 0.0
0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5

Number of chargers

Figure 3.26 Ideal Chargers, Utilization, and EV Queuing, 2030
Source: PNCT, 2025.

It was then found that, for the 2030 demand, when varying from 1 to 10 chargers the queue
varies from 311 to 12 vehicles and the utilization of the charger varies from 100% to 63.56%,
making the total waiting time unfeasible, because even for 10 vehicles their waiting time would

be 264 minutes, or 4.4 hours, and the chargers utilization would still be very high, possibly
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leading to future maintenance problems (HSU ef al., 2023). When there are 11 or 12 chargers,
the average queue length would be shorter, less than 7 vehicles. Nevertheless, the waiting time
would be 154 minutes, a refueling time much longer than the average of 4 minutes for a
combustion car, not even considering the necessity to have an internet connection, to access the
mobile application, and the potential waste of time trying to find it on a highway. Therefore,
the optimal number of chargers is considered to be 13 chargers because the queue length would

be around 1 car and the charger’s utilization only 49.80%. Table 3.21 presents the results.

Table 3.21 EVC Utilization and Average Queue, 2030
AVERAGE QUEUE

NUMBER OF CHARGERS UTILIZATION

(VEHICLES)
1 100.00% 311.08
2 97.60% 257.88
3 94.92% 208.26
4 91.59% 160.42
5 87.90% 119.96
6 83.48% 85.11
7 78.64% 57.93
8 73.44% 36.11
9 68.98% 21.20
10 63.56% 11.57
11 58.96% 6.28
12 54.33% 2.81
13 49.80% 0.92

Source: PNCT, 2025.

It was then simulated what would happen if the entire flow of vehicles, in this case 367 EVs for

2030 arrived at the EVCs at once. Figure 3.27 and Figure 3.28 show the result for this case.
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Figure 3.27 Charger Utilization by Number of Chargers — Arriving at Once, 2030
Source: PNCT, 2025.
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Figure 3.28 Ideal Chargers, Utilization, and EV Queuing — Arriving at Once, 2030
Source: PNCT, 2025.

Similar to the 2025 scenario, the curve graphs obtained for the 2030 scenario has the same
shape with the utilization of the chargers and the queuing length decreasing when the chargers
increase, as it is expected. Thus, the optimal number of chargers would be 368 chargers because

the utilization would be about 50%. Table 3.22 shows the compiled result for this case.
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Table 3.22 EVC Utilization and Average Queue — Arriving at Once, 2030
AVERAGE QUEUE

NUMBER OF CHARGERS UTILIZATION (VEHICLES)
100.00% 366.00
2 99.86% 365.00
3 99.73% 364.00
18 97.68% 349.00
33 95.64% 334.00
108 85.42% 259.00
123 83.38% 244.00
303 58.86% 64.00
318 56.81% 49.00
333 54.77% 34.00
348 52.72% 19.00
349 52.59% 18.00
364 50.54% 3.00
365 50.41% 2.00
366 50.27% 1.00
367 50.14% 0.00
368 50.00% 0.00

Source: PNCT, 2025.

The low-growth scenario and the high-growth scenario for the 2030 year were also created. For
the low-growth scenario an ideal number of 6 chargers was found, as shown in Figure 3.29 and
in Table 3.23. For the high-growth scenario an ideal number of 20 chargers was found, as shown

in Figure 3.30 and in Table 3.24.
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Figure 3.29 Low-Growth Ideal Chargers, Utilization, and EV Queuing, 2030
Source: PNCT, 2025.

Table 3.23 Low-Growth EVC Utilization and Average Queue, 2030

NUMBER OF CHARGERS UTILIZATION AVERAGE QUEUE

(VEHICLES)
1 100% 82.92
2 88.90% 4731
3 77.97% 24.60
4 66.41% 11.09
5 55.70% 3.81
6 47.92% 1.34

Source: PNCT, 2025.
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Figure 3.30 High-Growth Ideal Chargers, Utilization, and EV Queuing, 2030
Source: PNCT, 2025.

Table 3.24 High-Growth EVC Utilization and Average Queue, 2030

NUMBER OF CHARGERS UTILIZATION VEHICLES QUEUE
1 100.00% 543.77
2 98.92% 485.72
3 97.67% 428.03
4 96.33% 372.70
5 94.84% 320.28
6 93.08% 271.40
7 91.19% 223.62
8 88.93% 178.96
9 86.41% 139.44
10 83.51% 108.12
11 80.23% 77.33
12 76.69% 52.89
13 73.38% 35.40
14 69.42% 22.23
15 65.42% 13.54
16 62.76% 08.01
17 58.87% 4.59
18 55.99% 2.46
19 53.47% 0.83
20 50.84% 0.47

Source: PNCT, 2025.
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Finally, to facilitate the understanding, a comparative analysis of all the ideal number of

chargers was created, as shown in Table 3.25.

Table 3.25 Comparative Analysis of Ideal Number of Chargers

YEARS SCENARIOS IDEAL NUMBER OF CHARGERS
Baseline 3
2025 —
Arriving at Once 21
Low-Growth 6
Baseline 13
2030 -
High-Growth 20
Arriving at Once 368

3.6.2 Economic Viability of Chargers

The economic viability is based on the cost to implement the number of chargers in the charging
stations and the expected financial return. There are different scenarios, each one of them have

a different number of ideal number of chargers and costs involved.

The first step is to determine how much does it cost to implement a single 150 kW Ultra-fast
charger in a station. This was done by calculating an average of the most commonly used Ultra-
fast charger and their current prices. The data was gathered from several sources (BRASIL
CHARGER, 2025). The price range was between R$ 160.000 and R$ 250.000. For this study,
the price used for an Ultra-fast charger is around R$ 200.000. Additionally, a 5% maintenance
annually cost was implemented for the study (PACHECO, 2025). Resulting in R$ 10.000 for

maintenance yearly per charger.

The second step is to understand how much revenue a single Ultra-fast charger can generate.
This was done by analyzing the purchase and sale prices of energy and the amount of energy
consumed yearly. In Brazil, the average purchase price (kW) is around R$ 0.60 and the price
of sales for recharging the EVs is around R$ 1.75 (DME-PC, 2025). The weighted average of
the energy to be added between 25% and 100% was also calculated taking into consideration

Table 3.18. The weighted average of the energy resulted in 36.09 kW.

For all feasibility evaluations, it was necessary to include the Net Present Value (NPV) using a

6% discount rate. This rate accounts for the time value of money, recognizing that funds
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available today are worth more than the same amount in the future due to potential returns if
invested elsewhere. The choice of 6% reflects the typical opportunity cost of capital in similar
infrastructure and energy-related projects, providing a realistic benchmark for comparison. By
discounting future cash flows to their present value, the analysis can more accurately assess

whether each scenario represents a financially sound investment over time.

Finally, the third step is to create the economic projection for all the different scenarios. The
first projection, shown in Table 3.26 and Figure 3.31, is the Annual Energy Profit for all the
years and scenarios. The second projection, shown in Table 3.27 and Figure 3.32, is the NPV
not taking into account the Chargers installed in previous years. Thus, each year’s result
represents an independent projection. For instance, if three chargers are installed in 2025
baseline and four are needed in 2026 low-growth, the projection assumes four new installations
in 2026 low-growth. The Arriving at Once was eliminated because of the notable high cost of

installation and the long period of time exceeding the time forecast.

Table 3.26 Annual Energy Profit for EV Charging Scenarios
ENERGY ENERGY ENERGY

EVS PER ENERGY

YEARS SCENARIOS YEAR (KW) l;)gl?g;lgfﬂ;l PR?(:A]%](ERS;) Pltg:)IT
2025 Baseline 7300 263,457  158,074.20 461,049.75 302,975.55
Low-Growth 19345 698,161.05 418,896.63 1,221,781.84 757,438.88
2026 Baseline 36865 1,330,457.85 798,274.71 2,328,301.24 1,443,421.25

High-Growth 54385 1,962,754.65 1,177,652.79 3,434,820.64 2,129,403.63
Low-Growth 25550 922,099.50 553,259.70 1,613,674.13 943,765.07
2027 Baseline 55480  2,002,273.20 1,201,363.92 3,503,978.10 2,049,318.42
High-Growth 85045  3,069,274.05 1,841,564.43 5,371,229.59 3,141,389.43
Low-Growth 32120 1,159,210.80 695,526.48 2,028,618.90 1,119,290.10
2028 Baseline 77745  2,805,817.05 1,683,490.23 4,910,179.84 2,709,190.82
High-Growth 123370  4,452,423.302,671,453.98 7,791,740.78 4,299,091.53
Low-Growth 38690 1,396,322.10 837,793.26 2,443,563.68 1,271,920.57
2029 Baseline 103660  3,741,089.40 2,244,653.64 6,546,906.45 3,407,787.19
High-Growth 168265  6,072,683.85 3,643,610.31 10,627,196.74 5,531,654.56
Low-Growth 45990 1,659,779.1 995,867.46 2,904,613.43 1,426,326.03
2030 Baseline 133955  4,834,435.95 2,900.661.57 8,460,262.91 4,154,457.54
High-Growth 220095  7,943,228.55 4,765,937.13 13,900,649.96 6,825,988.82
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Figure 3.31 Annual Energy Profit

Table 3.27 Independent NPV

2030

NUMBER

CHARGERS +

YEARS SCENARIOS OF MAINTENANCE Plfggll}(gw NPV (RS)
CHARGERS (RS)
2025  Baseline 3 630,000 302,975.55  -327,024.45
Low-Growth 4 840,000 802,885.21  -35,013.95
2026  Baseline 5 1,050,000 1,530,026.53  452,855.22
High-Growth 6 1,260,000 2,257,167.85  940,724.39
Low-Growth 4 840,000 1,060,414.43  196,168.06
2027  Baseline 7 1,470,000 2,302,614.18  741,023.66
High-Growth 9 1,890,000 3,529,665.16  1,459,296.16
Low-Growth 5 1,050,000 1,333,092.42  237,689.85
2028  Baseline 8 1,680,000 3,226,689.61  1,298,630.42
High-Growth 12 2,520,000 5,120,286.80  2,183,250.94
Low-Growth 5 1,050,000 1,605,770.42  440,222.23
2029  Baseline 11 2,310,000 4,302,252.81  1,578,050.83
High-Growth 16 3,360,000 6,983,586.43  2,870,219.85
Low-Growth 6 1,260,000 1,908,745.97  484,780.73
2030  Baseline 13 2,730,000 5,559,601.34  2,114,442.73
High-Growth 20 4,200,000 9,134,712.83  3,687,504.49
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Other economic projections were made taking into account Chargers installed in previous years.

Accordingly, the investment payback was also calculated and will be presented for each

projection. For this projection, some cases were also created.

First Case: Installing three Chargers in 2025 to understand how the NPV would change,

following the ideal number of chargers of 2025 and for all other years and scenarios. Table 3.28

and Figure 3.33 show the results.

Table 3.28 3 Chargers in 2025 NPV

HARGERS +  ANNUAL
YEARS SCENARIOS ICN};{}l:(Ij’]leRg MCAINTENAECE EII:IIEII(JGY NPV (RS)
(RS) PROFIT (R$)
2025  Baseline 3 630,000 30297555  -327.024.45
Low-Growth 4 240,000 802.88521  203.999.33
2026 T g seline 5 450,000 1,530,026.53  691,868.50
High-Growth 6 660,000 2.257.167.85 1,179.737.67
Low-Growth 4 40,000 106041443 1.600,033.71
2027 T g aseline 7 470,000 2302,614.18 2,322.888.60
High-Growth 9 690,000 3.529.665.16 3.219,160.39
Low-Growth 5 250,000 1333,002.42 3.232.273.88
2028 g seline 8 280,000 3.226,689.61 4.796.986.02
High-Growth 12 720,000 5.120.286.80 6,017,454.25
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Continuation of Table 3.28 3 Chargers in 2025 NPV
CHARGERS + ANNUAL

CHARGERS

YEARS SCENARIOS MAINTENANCE ~ ENERGY NPV (RS)
INSTALLED (RS) PROFIT (R$)
Low-Growth 5 50,000 1.605.770.42  6,029.301.91
2029 T seline 1 710,000 430225281 7.642.386.70
High-Growth 16 960,000 6.983.586.43  9.568.230.66
Low-Growth 6 260,000 1.908.745.97 8.874.425.61
2030 g seline 13 530,000 5.559.601.34 11,400,797.41
High-Growth 20 1,000,000 9.134.712.83 13.721.117.35
R$ 14,000,000 A 13.72M
R$ 12,000,000 A 11.40M
-5 R$ 10,000,000 -
%’ % 80000007 —8— Baseline
2 —@— Low-Growth
¢ R$ 6,000,000 1 —®— High-Growth
g R$ 4,000,000 -
R$ 2,000,000 -
R$ 0 UG

2025 2026 2027 2028 2029 2030
Years

Figure 3.33 3 Chargers in 2025 NPV

Second Case: Installing 10 Chargers in 2025 to have a better understanding of the NPV
after the installation of half of all the chargers needed in the scenario with the higher ideal
number of chargers, 2030 high-growth. Table 3.29 and Figure 3.34 show the results.
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Table 3.29 10 Chargers in 2025 NPV

HARGERS +  ANNUAL
YEARS SCENARIOS ICN};‘ﬁ“rl:(EEERlS) MCAINTIFZ;NASICE ElljlglgGY NPV (RS)
(R$) PROFIT (RS)
2025  Baseline 10 2,100,000 302,975.55  -1,797,024.45
Low-Growth 10 100,000 802,885.21  -1,133,925.20
2026 Baseline 10 100,000 1,530,026.53  -447,942.82
High-Growth 10 100,000 2,257,167.85  238,039.56
Low-Growth 10 100,000 1,060,414.43  406,822.61
2027  Baseline 10 100,000 2,302,614.18  1,512,375.96
High-Growth 10 100,000 3,529,665.16  2,604,446.96
Low-Growth 10 100,000 1,333,092.42  2,547,704.13
2028  Baseline 10 100,000 3,226,689.61  4,137,604.85
High-Growth 12 520,000 5,120,286.80  5,374,865.47
Low-Growth 10 100,000 1,605,770.42  5,330,316.06
2029  Baseline 11 310,000 4,302,252.81  7,299,843.00
High-Growth 16 960,000 6,983,586.43  8,908,849.49
Low-Growth 10 100,000 1,908,745.97  8,651,443.21
2030  Baseline 13 530,000 5,559,601.34  11,058,253.71
High-Growth 20 1,000,000 9,134,712.83  13,378,573.65

Cumulative ROI (VPL - BRL)

R$ 14,000,000 A

R$ 12,000,000

R$ 10,000,000 -

R$ 8,000,000 -

R$ 6,000,000 A

R$ 4,000,000 A
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—8®— High-Growth

13.38M

R$ 0

R$ —2,000,000 - :

2027
Years

T
2028

T
2029

Figure 3.34 10 Chargers in 2025 NPV

T
2030

Third Case: Installing 20 Chargers in 2025 to have a better understanding of the NPV
after the installation of all the chargers needed in the scenario with the higher ideal number of

chargers, 2030 high-growth. Table 3.30 and Figure 3.35 show the results.
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Table 3.30 20 Chargers in 2025 NPV

COST OF

YEARS SCENARIOS ICNI_;I:‘I“I:(I;JEES CHA(E;})ERS ANEES{;I?\(IE;GY NPV (RS)
2025 Baseline 20 4,200,000 302,975.55 -3,897,024.45
Low-Growth 20 200,000 802,885.21 -3,328,264.82
2026 Baseline 20 200,000 1,530,026.53 -2,642,282.44
High-Growth 20 200,000 2,257,167.85 -1,956,300.06
Low-Growth 20 200,000 1,060,414.43 -1,876,516.66
2027 Baseline 20 200,000 2,302,614.18 -770,963.31
High-Growth 20 200,000 3,529,665.16 321,107.70
Low-Growth 20 200,000 1,333,092.42 180,402.94
2028 Baseline 20 200,000 3,226,689.61 1,770,303.65
High-Growth 20 200,000 5,120,286.80 3,360,204.37
Low-Growth 20 200,000 1,605,770.42 2,883,805.50
2029 Baseline 20 200,000 4,302,252.81 5,019,672.11
High-Growth 20 200,000 6,983,586.43 7,143,539.48
Low-Growth 20 200,000 1,908,745.97 6,296,546.50
2030 Baseline 20 200,000 5,559,601.34 9,024,678.02
High-Growth 20 200,000 9,134,712.83 11,696,209.29

Cumulative ROI (VPL - BRL)

R$ 12,000,000 1

R$ 10,000,000 A

R$ 8,000,000 -

R$ 6,000,000 -
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Figure 3.35 20 Chargers in 2025 NPV
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4 PROBLEM MODELING

This section describes how the developed model was implemented in the GA model.

4.1 POPULATION SIZE AND THE NUMBER OF GENERATIONS

The objective to consider the population size is to determine how many individuals will go
through the study. A population of 50 individuals was chosen for this study, since other
metaheuristics applied the same number of individuals (GHORBANI et al., 2018).

The number of generations refers to the number of interactions generated by the individuals.
Therefore, the number of 40 generations was chosen because it is an intermediate value, without

messing the data quality or implying a higher processing time (IBRAHIM et al., 2019).

4.2 FIXED SEED AND CROSSOVER

The fixed seed 42 was chosen to ensure reproducibility of the results, not having any real impact

on the GA itself.

The crossover is done in the GA by selecting a random point on the chromosome where the
parents’ parts exchange will take place. Therefore, the crossover brings up a new set of
offsprings based on the exact exchange spot chosen with particular parts of the parents

(HASSANAT et al., 2019). Within this study, a Blend Crossover was used with an alpha of 0.5.

43 MUTATION AND SELECTION

Mutation, inside the GA study, normally is done after the crossover applies the changes
randomly to one or more genes to produce a new offspring, creating new adaptive solution. It
then avoids local optimization, providing the best global optimization solution (HASSANAT
et al., 2019). For this study, the mutation type was defined as being a Gaussian mutation, with
mean (mu) 0 and standard deviation (sigma) of 20 km and the individual probability of mutation

is 0.3. Therefore, about 30% of mutations for all genes in 20 km is considered.

The selection of individuals for the next generation is the most important to determine the
pattern of the results of any GA model (Hussain et al., 2022). For this study, a Tournament

Selection was chosen with Tournament Size of three individuals. This means that there is a
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good balance between selecting good individuals and still maintaining diversity, because of the

small Tournament Size.

4.4 POSSIBLE OPTIMAL POINTS AND PENALTIES ALGORITHM

Based on the length of the BR-386 studied, it was imposed that the GA could suggest up to five
optimal points along the highway, depending on the individual that has proven the most

efficient throughout the model.

There was a high penalty for the one-sided optimization in the BR-386 concession. Therefore,
it limits the possibility of an optimal solution to be on either extremes of the section. Another
penalty applied was that the total distance among chargers had to be smaller than the autonomy
of 230 km. This restriction allows the EV to recharge at one optimal charging point and being
able to reach the next charging station with its autonomy. The distance among the chargers has
another penalty, being the minimum distance between them of 50 km. Table 4.1 was created to

summarize the parameters used.

Table 4.1 Genetic Algorithm Model Parameters

PARAMETER VALUE DESCRIPTION
Population Size 50 Number of individuals per generation
Number of Generations 40 Number of generations the GA evolves
Fixed Seed 42 Fixed seed to ensure reproducibility
Mutation Type Gaussian Type of mutation applied to genes
Mutation Mean (mu) 0 Mean of the Gaussian mutation
Mutation Std (sigma) 20 km Standard deviation of the mutation
Individual Probability 03 Probability that ea(illugi;l; in the individual is
Crossover Type Blend Crossover Type of crossover between parents
Alpha 05 Controls how f;; rcz:t;lftssl?rllrlr{[% rci/e;r; go beyond the
Selection Method Tournarpent Method used to select individuals
Selection
Tournament Size 3 Number of individuals per tournament

Possible Optimal 1 to 5 points per  Each point represents a position along BR-386
Points individual (0266 km)
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4.5 FINAL PLOT

Once the model was calibrated, the optimal points within BR-386 restrictions were found. The
two optimal charging points are shown in Table 4.2. The distance between the two points was

calculated for both Canoas and Caraizinho

Table 4.2 Optimal Points of the Genetic Algorithm Model

DIRECTION POINT KM ALONG BR-386 LATITUDE LONGITUDE
Carazinho — Canoas Point 1 74.12 -28.951891 -52.373210
Carazinho — Canoas Point 2 196.56 -29.558211 -51.888378

After finding the optimal points, three figures were plotted for visual understanding where the
two optimal charging points are located. The first figure, Figure 4.1, shows the entire BR-386,
and the other two figures, Figure 4.2 and Figure 4.3, are a more intense zoom in areas of the

optimal points.
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Figure 4.3 Zoom on Optimal Point 2

60



S CONCLUSIONS

The main objective of this study was to determine the optimal points for the EVCs. This
objective was achieved taking into account the maximum number of vehicles, traffic flow,
queueing time and utilization. The applied model found two optimal location points for these
EVCs and several choices for the ideal number of chargers, depending on the analyzed scenario.
It is now the MOTIVA’s responsibility to implement these chargers in the way that makes the

most economic sense for them, always thinking about the 2030 projection.

The results could be further analyzed by critically examining economic barriers, public policy
considerations, and the applicability of the findings to other Brazilian highways. Factors such
as implementation costs, governmental incentives, and environmental regulations can

significantly influence the location and the number of the EVCs in highways.

Additionally, the methodology is not limited to BR-386. All the data required for the analysis,
such as traffic volumes, growth rates, and infrastructure characteristics, are also available for
other highways. The differences among the roads are only the magnitude and the specific values
of these parameters, but the structure of the model and the approach remain fully applicable.
Another study including a socioeconomic analysis would provide a more understanding of the
opportunities and challenges associated with expanding the EVC network in Brazil. The
parameters considered in the socioeconomic analysis can include, for instance, value of time

for rich and poor commuters.

For future studies, one proposal to overcome the limitations regarding the data uncertainty
would be to measure the vehicle flow more specifically for the EV models and brands, with
some tracking aligned with the toll booths and points spread across the highway. Another
proposal would be to carry out the study with the concessionaire daily data, making the
approximation unnecessary and the results even more robust to the studied case. Thus, making
the study more precise in the analysis, not having to estimate the parameters. Different
algorithms can also be applied to compare the obtained among them. Nevertheless, it is true
that the applied algorithm in this study is the one that it has been more applied in other studies.
Finally, this study has applied a GA algorithm to determine the best location for the charging
stations taking into account also the revenues and costs accrued by these electric charging

stations. This same study can be applied to other highways being important to understand the
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impact of the EVCs in a connected non-urban environment. The robustness and the results
obtained by the applied GA algorithm can definitely aid the concessionaire to achieve better

results improving its efficiency not only for the company but also for the society.
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