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ABSTRACT

The use of geotextile filters in geotechnical engineering and environmental protection
works has increased in recent decades due to the advantages in project execution
and environmental preservation, reducing the use of natural materials such as sands and
gravels. However, concerns about their long-term performance, such as reduced
permeability and clogging, persist. The behaviour of a geotextile filter is influenced
by various conditions, especially soil type, particularly in internally unstable soils, where
suffusion can compromise filter performance. Therefore, it is necessary to seek
alternative methods for predicting filter behaviour under such conditions. This
dissertation proposes the use of Artificial Neural Network (ANN) to predict the
permeability of soil-geotextile systems based on 352 research results. A Multilayer
Perceptron (MLP) architecture was used to configure the model, and the
Backpropagation (BP) algorithm was adopted. In addition, multiple linear regression
(MR) and ANN predictions for the permeability coefficient of internally unstable-soil
systems were compared . The accuracy of the ANN and MR methods was compared
using statistical tools. The results obtained show that these techniques can satisfactorily

predict the permeability coefficient of internally unstable-geotextile filter systems.

KEYWORDS: Attificial Neural Network (ANN), Geotextile, Internally Unstable Soils,
Multiple Linear Regression (MR)
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RESUMO

O uso de filtros geotéxteis em atividades de engenharia geotécnica e protegdo ambiental
tem sido crescente nas ultimas décadas devido as vantagens na execucao de
empreendimentos e na preservagdo ambiental, reduzindo o uso de materiais naturais
como areia e brita. No entanto, preocupagdes sobre seu desempenho a longo prazo,
como a reducdo de permeabilidade e colmatacao, persistem. O comportamento de um
filtro geotéxtil pode ser influenciado por diversas condi¢des, especialmente o tipo de
solo, sobretudo em solos internamente instaveis, onde a sufusdo pode comprometer o
seu desempenho. Portanto, ¢ necessario buscar métodos alternativos de previsdo de
comportamento sob tais condi¢des. Esta dissertacdo investigou o uso de Rede Neural
Artificial (RNA) para prever a permeabilidade do sistema solo-geotéxtil com base em
352 resultados de ensaios de laboratério obtidos por diferentes autores. Foi utilizada
uma arquitetura de Perceptron Multicamada (PMC) para configurar o modelo e adotou-
se o algoritmo de Retropropagacdo (RP). Além disso, previsdes por regressdo linear
multipla (RM) e RNA para a permeabilidade de sistemas solo internamente instavel-
geotéxtil foram comparadas. As acuracias dos métodos RNA e RM foram avaliadas
por meio de técnicas estatisticas. Os resultados obtidos mostram que tais técnicas
podem ser utilizadas para prever satisfatoriamente o coeficiente de permeabilidade de

sistemas solo internamente instavel-filtro geotéxtil.

PALAVRAS-CHAVE: Rede Neural Artificial (RNA), Geotéxtil, Solos internamente
instaveis, Regressao Multipla (RM)
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1 INTRODUCAO

O uso de filtros geotéxteis em atividades de engenharia geotécnica e protecdo ambiental tem
sido crescente ao longo das ultimas décadas devido as varias vantagens que sua utilizagao
apresenta. Isso ocorre tanto durante a execugdo de um empreendimento, com maior facilidade
no transporte e instalagdo, quanto nos aspectos ambientais, ao evitar ou reduzir o uso de
materiais naturais como areia e brita, pois favorece a conservacdo do meio ambiente. Assim,
tais filtros oferecem vantagens econOmicas ¢ ambientais, pois, segundo Frischknecht et al.
(2012), um filtro geotéxtil reduz o impacto ambiental, em mais de 80% em comparagdo com os
filtros de areia. No entanto, a sua aplicagdo em projetos maiores e complexos ainda apresenta
certos obstaculos, por isso ¢ importante entender melhor o seu desempenho a longo prazo sob

condigdes que possam causar um mau desempenho (Palmeira, 2018).

De forma geral, o sistema solo/filtro geotéxtil, na sua condicdo estavel, deve atender aos
critérios de retengdo, permeabilidade, anticolmatacdo e sobrevivéncia e durabilidade. Ao
garantir os cumprimentos desses critérios e a boa execucao, a probabilidade de o filtro geotéxtil
apresentar problemas no seu desempenho ao longo da sua vida 1til ¢ muito baixa (Palmeira,
2018; Khan et al., 2022;). Com o aumento da utilizagdo de geotéxteis, inimeros estudos foram
realizados para entender a interacdo entre o solo, fluidos e filtros geotéxteis e garantir os
critérios mencionado acima. Porém, certos aspectos ainda exigem investigagdes abrangentes
para compreender melhor o desempenho desses filtros. Um estudo realizado por Qureshi et al.
(1990) apresenta resultados nos quais se obteve redugdo significativa do coeficiente de
permeabilidade do sistema solo/geotéxtil, para um solo internamente instavel. Esse estudo
também sugere que as redugdes foram causadas pela impregnacdo dos vazios do geotéxtil por

particulas do solo em contato.

Outro estudo, realizado por Koerner & Koerner (2015), apresentou as possiveis falhas que
levaram a um comportamento inadequado do sistema solo/geotéxtil. Entre essas falhas,
encontra-se o contato entre o filtro com solos atipicos, especialmente solos internamente
instdveis, os quais sdo solos de graduacdo ampla que se caracterizam por ter uma curva
granulométrica com concavidade voltada para cima ou solos descontinuos (gap grapped). Esses
tipos de solos podem sofrer sufusdo, com consequéncias danosas para o desempenho do filtro,
reduzindo a permeabilidade do sistema solo/geotéxtil (Chang & Zhang, 2013; Koerner &
Koerner, 2015; Palmeira, 2018)



Diante do exposto, a procura por métodos alternativos para prever o comportamento do sistema
solo-geotéxtil sob tais condigdes se torna importante para a engenharia geotécnica. Com o
crescente uso de ferramentas avancadas computacionais, o uso de inteligéncia artificial (IA)
vem se tornando bem-sucedido nos diferentes setores da engenharia geotécnica, devido a sua
eficacia na analise de previsdes de relacdes ndo lineares. Trata-se de uma solugdo para
elaboragdo de modelos de previsdo mais precisos em comparacao com o uso de métodos
tradicionais. Entre os métodos de IA utilizados, as Redes Neurais Artificiais (RNA) parecem
ser as mais amplamente utilizadas e preferidas, de modo que compreendem 52% dos estudos
revisados (Baghbani et al., 2022). Por outro lado, o uso de andlises de regressao multivariada
vem apresentado, também, previsdes acuradas devido a sua capacidade de aproximar e
expressar de forma matematica a relagao entre os parametros envolvidos, uma vez que ¢ capaz
de gerar modelos de facil interpretacdo em problemas geotécnicos nos quais existem relagdes

mais complexas entre as varidveis envolvidas.

A presente dissertagdo visa utilizar os métodos apresentados acima para estimar a
permeabilidade de um conjunto solo/geotéxtil e correlacionar as propriedades do solo, a ser
estudado (internamente instavel), e as propriedades do filtro, com a finalidade de obter uma

previsdo mais acurada do desempenho do geotéxtil.

1.1 OBJETIVOS

O principal objetivo desta dissertacdo € avaliar a eficacia de métodos alternativos, como
Rede Neural Artificial (RNA) e Métodos de Regressao Multivariada (MRM), para prever
o comportamento filtrante de geotéxtil em contato com solos internamente instaveis. A
avalia¢do desse comportamento seré realizada por meio do coeficiente de permeabilidade
do conjunto solo/geotéxtil, de forma que esse pardmetro ¢ crucial para compreender a

interacdo entre estes materiais € seu impacto no desempenho do filtro geotéxtil.

Para atingir o objetivo principal da dissertacdo, os seguintes objetivos especificos foram
desenvolvidos:
e Identificar os fatores que influenciam o comportamento filtrante do geotéxtil nos
ensaios de laboratorio compilados na literatura;
e Realizar analises estatisticas com base no banco de dados de ensaios de filtracao
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para correlacionar as propriedades do filtro com as propriedades do solo;

e Elaborar modelos baseados nos pardmetros de entrada, no nimero de camadas
ocultas e na arquitetura ideal para redes neurais;

e Avaliar o desempenho dos modelos RNA no comportamento de geotéxteis, a fim
de comparar os valores previstos com dados reais (os resultados dos ensaios
laboratoriais);

e Comparar os resultados do modelo RNA com os resultados obtido por modelos

estatisticos.

1.2 ESTRUTURACAO DA DISSERTACAO
O estudo estad dividido em cinco capitulos. Nesse sentido, o Capitulo 1 apresenta, de
forma concisa, as consideragdes iniciais da pesquisa, a justificativa e o objetivo do
trabalho. Entdo, o Capitulo 2 ¢ dedicado a revisdo da literatura, assim, destaca as
principais caracteristicas e aplicagoes do filtro geotéxtil, seu comportamento com o solo,
além de definir e explorar os conceitos fundamentais de Redes Neurais Artificiais (RNA)

aplicados a engenharia civil e geotecnia.

Além disso, o Capitulo 3 descreve em detalhe a metodologia e as técnicas utilizadas para
desenvolver, implementar, processar ¢ avaliar o modelo de Redes Neurais Artificiais
(RNA), que ¢ destinado a prever a resisténcia na interface. Este capitulo expde, passo a
passo, desenvolver um modelo de RNA, incluindo a selecdo de parametros de entrada e

definindo a arquitetura adequada.

O Capitulo 4 apresenta os resultados da metodologia aplicada para a previsdo do
comportamento filtrante do solo/geotéxtil. Os dados coletados sdao analisados e
correlacionados, e as caracteristicas dos modelos implementados sdo descritas
detalhadamente, acompanhadas de suas respectivas avaliagdes de desempenho. Os
modelos finais sdo comparados com os resultados experimentais obtidos em laboratorio,
a fim de determinar sua acurécia. No final, o modelo com o melhor desempenho, em
termos de acuracia na previsdo do comportamento filtrante (k), foi identificado e

selecionado.

Finalmente, o Capitulo 5 oferece uma sintese abrangente dos achados do estudo, de
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modo que destaca as principais conclusdes. Além disso, discute as limitagdes da

pesquisa e sugere direcdes para estudos futuros.

As referéncias bibliograficas utilizadas no estudo estao listadas apos o ultimo capitulo.



2 REVISAO BIBLIOGRAFICA

2.1 FUNCOES E APLICACOES DE GEOSSINTETICOS

De acordo com a Sociedade Internacional de Geossintéticos (IGS, 2024), os geossintéticos sao
materiais poliméricos, naturais ou sintéticos, utilizados como materiais em obras de construcao
civil e geotécnicos., em contato com solos, rochas ou outros materiais geotécnicos. O uso desses
materiais tem apresentado um aumento significativo nas ultimas décadas, devido a uma série
de fatores, entre os quais se destacam as vantagens técnicas, econdmicas ¢ ambientais que

oferecem.

Do ponto de vista técnico, os geossintéticos se destacam pela agilidade e simplicidade de
aplicagdo, além da ampla variedade de produtos disponiveis para diferentes finalidades. No
aspecto econdmico, esses materiais sao valorizados por seu baixo custo, enquanto, sob a oOtica
ambiental, apresentam um impacto ambiental reduzido, tornando-se uma alternativa mais
sustentavel. Com todos esses beneficios, os geossintéticos se consolidaram como uma excelente

opc¢do em comparacdo com as metodologias e aos materiais tradicionais de construgao civil.

Este material geotécnico tém a capacidade de substituir, parcial ou totalmente, recursos naturais
em obras civis € geotécnicas. Suas caracteristicas, como resisténcia a corrosao, flexibilidade,
facilidade de transporte, armazenamento e instalacdo, além de sua durabilidade, refor¢am sua
adocdo em uma ampla gama de aplicagdes. Na Tabela 2.1, apresenta-se de forma resumida suas

principais fungdes.

Tabela 2.1-Principais Fun¢des do Geossintéticos (Adaptado de Palmeira, 2018)

Funcao Finalidade Exemplo Geossintético
GeossSinkético comdy
Separar materiais geotécnicos separadar
’p & - / e Geomembrana
S N diferentes com o objetivo de Geotéxtil
eparacao . . . . eotéxti
parag garantir a funcionalidade de cada ﬁ
. e  Geocomposto
material.
- = = mgggimnm ° GeOtéthl
O geossintético atua como uma OO Sy barreira e Geomembranas
Barreira barreira relativamente L e  Geocompostos
—
impermeavel a fluidos e gases. e Geocompostos
argilosos(GCL’s)




Funcio Finalidade Exemplo Geossintético

Permitir simultaneamente o livre
escoamento do fluido assim .
. ~ e  Geotéxtil
Filtragdo como bloquear a passagem de
, . e  Geocomposto
particulas de solo (agindo como
um filtro granular)
e  Geotéxtil
Coletar e conduzir o fluido por e  Georredes
Drenagem . g
meio do geossintético. e  Geocomposto
e Geotubos
Controlar a erosdo superficial de et e  Georredes;
diversas estruturas devido a estar e Mantas Geotéxtil,
Controle de L
Erosio expostos a agentes como chuvas, e  Geotéxtil;
fluxo superficial e transporte e Geomembrana;
sedimentar. o  Geocélulas
Aumentar a Resistencia e/ou o  Geogrelha;
diminuir os recalques, e  Geotéxtil;
Reforgo —— e
melhorando o comportamento e  Geocomposto
mecéanico do solo. e  Geocélulas

Entre suas principais aplicagdes estio reservatorios e barragens, depositos de residuos liquidos,
depositos de residuos solidos, canais, obras rodoviarias e ferroviarias, fundagdes, obras de
controle de erosdo, estruturas subterrdneas como tuneis e sistemas de drenagem (NBR ISO

10318, 2013).

Destaca-se que esta pesquisa tem como foco principal a anélise do comportamento filtrante do
geotéxtil, sendo que, nos proximos capitulos, haverd uma énfase maior neste material e na sua

funcao.

2.2 FILTRO GEOTEXTIL

O geotéxtil ¢ um geossintético plano e permeavel de natureza téxtil. Ele pode ser classificado
como geotéxtil tecido ou ndo tecido, e ¢ manufaturado a partir de diversos polimeros,
predominantemente polietileno, poliamida (nylon), poliéster (polietileno tereftalato) e

polipropileno (Freitas, 2003).

A fabricagdo de geotéxteis tecidos (GT) consiste no entrelacamento de fios em direcdes

ortogonais, formando uma estrutura planar continua. J& os geotéxteis ndo tecidos (GTN) sdo
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produzidos pela distribui¢ao aleatoria de fibras sobre uma superficie rolante, em que a espessura
¢ controlada pela velocidade que ela roda. No processo de fabricagdo do GTN, as fibras sofrem
um processo de ligagdo, que pode ocorrer de forma mecénica (como agulhamento), térmica

(fusdo das fibras) ou quimica (utilizacdo de ligantes) (Freitas, 2003).

A = "/ L

Esse elemento ¢ comumente utilizado em obras geotécnicas como substituicdo do filtro
granular (Figura 1). Essa substituicdo traz varias vantagens em relacdo a um filtro granular.
Entre essas vantagens, apresentam-se facilidade na fase construtiva da obra, pois possuem
facilidade, rapidez e baixo custo na instalacdo; menor ocupacdo de volume e reducio de uso
material granular e, por consequéncia, menor impacto ambiental; maior confiabilidade no uso

devido a repetibilidade e uniformidade das propriedades do material.

Solo base Solo Base
Geotéxtil

Zona de Camada

Transicdo drenante

Solo Base
Geocomposto
para drenagem

Camada
Drenante

Figura 2.2-Filtro Granular vs. Filtro Geotéxtil (Modificado de Palmeira, 2023).

Tanto o filtro geotéxtil como o granular t€m como objetivo reter o solo e permitir a passagem
da 4gua ao mesmo tempo e de forma equilibrada. Assim, as abordagens de projeto para os
filtros geotéxteis geralmente devem considerar critérios geométricos e hidraulicos. O primeiro
define os valores limites para os diametros dos poros do geotéxtil para impedir o transporte
de particulas menores por eles. O segundo define um valor limite para o gradiente hidraulico

no qual o transporte das particulas do solo comega (Koerner, 2016).

A elaboragdo de um projeto adequado com uma correta selecdo de filtros depende das

condi¢des de contorno, da criticidade da aplicacdo e das caracteristicas geotécnicas do solo
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base (sobretudo da distribuicao do tamanho dos graos, estabilidade interna e permeabilidade).
As condi¢cdes de contorno estdo intimamente relacionadas aos gradientes hidraulicos
aplicados, as condigdes de fluxo e ao comportamento do sistema solo-geotéxtil. Infelizmente,
os critérios de projeto de filtro comumente usados ndo consideram todos esses fatores, mas
muitas vezes sdo resultado de um compromisso necessario entre requisitos (Giroud, 2010;

Moraci, 2010).

Outro ponto de observacao ¢ o tipo de geotéxtil que vai ser utilizado, pois, segundo Palmeira
(2018), os geotéxteis nao tecidos apresentam melhor desempenho em relagdo com o geotéxtil
tecido. Entre essas vantagens, encontram-se: menor susceptibilidade a danos mecanicos,
maior estabilidade com relacdo as dimensdes das aberturas do filtro € menor impacto na

funcionalidade do filtro caso ele fosse danificado.

Para garantir o funcionamento adequado do filtro varios autores propuseram critérios para
garantir um adequado comportamento do filtro, mas de forma geral um geotéxtil seja ele

tecido ou ndo tecido, deve atender aos seguintes critérios (Bathia “& Smith, 1996):

e C(Critério de Retencdo: Esse critério deve garantir que as aberturas de filtro sejam
suficientemente pequenas para impedir a erosao das particulas de solo, a fim de evitar
a erosao interna (pipping)

e Critério de Permeabilidade: Visa assegurar que o filtro manterd o valor de coeficiente
de permeabilidade maior que o solo em contato e que seja compativel com as condigdes
de fluxo da obra;

e Critério de Anticolmatacdo: Deve garantir que o filtro ndo sofrerd algum tipo de
mecanismo de colmatagdo que reduza a sua permeabilidade.

e Critério de sobrevivéncia e durabilidade: Garantir que o filtro possua as propriedades
mecanicas e de resisténcia a degradag¢do adequadas durante toda a vida util da obra

(Palmeira, 2018; Khan et al., 2022).

Em relagdo a esses critérios, Palmeira (2020) enfatiza que os primeiros trés critérios se
relacionam mais com as propriedades do geotéxtil e o tltimo aspecto com as condig¢des a que o
geotéxtil € submetido. Quanto a capacidade de retencdo do geotéxtil, Palmeira (2018) compila
alguns dos critérios encontrados na literatura, destacando o elaborado por Lafleur (1999).
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Segundo esse autor, os solos com C,> 6 com curva granulométrica com concavidade voltada
para cima, assim como os solos descontinuos com C, > 6, podem apresentar problemas de
retencdo pelo geotéxtil. Em solos ndo coesivos, os solos descontinuos e a solos com curvas
granulométrica com concavidade para cima, apresentam risco significativo de migragdo de

finos.

O critério de permeabilidade visa garantir que a permeabilidade inicial do filtro seja igual ou
superior a do solo, a fim de permitir o livre fluxo da dgua, de modo a cumprir a sua fungado de
filtracdo. Dentre os critérios relevantes, Carroll (1983) e Christopher ¢ Holtz (1985) propdem
que, sob condig¢des hidraulicas e de solos criticas e severas, a permeabilidade do geotéxtil deve
atender a condi¢do kgr>10ks. Os autores Christopher e Holtz (1985) também recomendam a
adocdo de kgr>100ks em cenérios com potencial de ocorréncia de colmatacdo bioldgica. O
departamento de transporte do Reino Unido (1993) também contribui com os seguintes
critérios: para geotéxteis (tecido ou ndo tecido) com espessura (tgr) inferior a 2 mm, a condi¢ao
atendida ¢ kgt >10ks; para geotéxteis ndo tecidos com tgr superior a 2 mm, o critério € kgr >
100k s.

O critério de anticolmata¢do, por sua vez, tem como objetivo prevenir a ocorréncia de
mecanismos de redu¢do de permeabilidade, como cegamento, bloqueamento e obstru¢cao dos
poros do geotéxtil. Esse critério sera detalhado nos proximos itens. Em situagdes criticas ou
severas, Christopher e Holtz (1985) enfatizam a importincia da realizacdo de ensaios de
infiltracao que utilizem o solo de contato com o geotéxtil e simulem as condi¢des de campo a
que o filtro sera exposto. A Tabela 2.2 apresenta as situagdes consideradas severas ou criticas

para a aplicagdo destes critérios.



Tabela 2.2-Avaliagdo da criticidade e severidade (Modificado de Carroll, 1983, Palmeira,

2018)

Situacao Critica

Situacio

Condic¢ao Critica

Condic¢ao Nao Critica

Risco de perder a vida ou danos

estruturais devido a falha do dreno.

Alto

Nenhum

Custo de preparo vs. Custo de
instalacdo do dreno

Muito maior

Igual ou menor

Evidéncia de colmatagdo do dreno
antes de uma falha catastrofica

Nenhuma

Sim

Situacio Severa

Situacao

Condicao Severa

Condicao Nao Severa

Solo a ser drenado

Solos descontinuos,
sujeitos a piping

Solos bem graduados ou
uniformes

Gradiente Hidraulico

Alto

Baixo

Dinamico ou ciclico

Fluxo Permanente

Condig¢des de fluxo

Por fim, considerando os critérios de sobrevivéncia e durabilidade, o geotéxtil deve possuir
propriedades mecanicas adequadas, abrangendo resisténcia a tragdo, deformagdo sob carga e
resisténcia ao puncionamento. Adicionalmente, deve apresentar durabilidade a degradacao
induzida por radiagdo ultravioleta e agentes quimicos presentes no ambiente, de modo a garantir
a integridade do material durante as fases de instalagdo, execucao e ao longo da vida util da

obra (Christopher & Fischer, 1992).

2.2.1 PROPRIEDADES DO GEOTEXTIL

Em funcdo do tipo de projeto, o geotéxtil deve apresentar caracteristicas especificas que
assegurem seu desempenho adequado para a finalidade proposta. Dessa forma, as propriedades
do material funcionam como critérios determinantes na selecdo de um geotéxtil, o qual deve

responder de maneira eficaz as diversas condicdes e solicitagdes a que serd submetido.

Para isso, nos ultimos anos, diversos tipos de ensaios laboratoriais foram realizados com o
objetivo de estudar e compreender de forma mais detalhada o comportamento e o desempenho
dos filtros geotéxteis, além de quantificar as propriedades mais relevantes (Palmeira, 2020).
Esses ensaios podem ser classificados tanto pela propriedade avaliada quanto pelos critérios de
garantia. Nesse contexto, Villar (2014) os categorizou em quatro grupos principais:

I) Ensaios para determinacao das propriedades fisicas: incluem ensaios de filtracdo de
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solo/geotéxtil, ensaios de indice fisicos (Christopher & Holtz, 1985; Melo, 2018)

1) Ensaios para determinacdo das propriedades mecanicas: ensaios de resisténcia a
tragcdo, deformacao e resisténcia a agentes quimicos;

III)  Ensaios para determinagdo das propriedades hidraulicas: compreendem a analise da
distribuicdo granulométrica do solo de contato, ensaio de peneiramento e analise de
imagem;

IV)  Ensaios de desempenho: englobam o ensaio de filtracao de longa duragao, o Ensaio
de Razdo de Gradientes (ASTM D5101) e o Ensaio de Condutividade Hidraulica
(ASTM D5567).

Em relagdo aos critérios de anticolmatag@o, os ensaios a serem conduzidos englobam ensaios
de infiltracdo, a avaliacdo dos indices fisicos do geotéxtil e os ensaios de desempenho
previamente mencionados. No que concerne aos ensaios indice, o objetivo ¢ determinar a
propriedades filtrantes do geotéxtil, independente das caracteristicas do solo base e das
condigdes da obra, a fim de avaliar a abertura de infiltragdo (FOS) e a distribui¢ao de constrigdes

(Christopher & Holtz, 1985; Melo, 2018).

Considerando que este estudo se concentra na analise do desempenho do geotéxtil, uma maior
atencdo sera dedicada aos ensaios que avaliam essa caracteristica, dentre os quais se destacam
o ensaio de peneiramento, o ensaio de razdo entre gradientes, o ensaio de condutividade
hidraulica e o Ensaio do Ponto de Bolha (Bubble Point Test). Dessa forma, nos itens
subsequentes, serdo apresentadas as principais propriedades fisicas e hidraulicas do geotéxtil

que exercem influéncia sobre o desempenho do material.

2.2.1.1 PROPRIEDADES FISICAS

As grandezas como a espessura, porosidade, massa por unidade de area (gramatura) e o
diametro das fibras ou filamentos sdo consideradas como as propriedades fisicas do
geossintéticos (Palmeira, 2018). A seguir, apresenta-se uma breve descricdo dessas

propriedades:

e Gramatura (Ma): Também conhecida como massa por unidade de area, a gramatura ¢
um parametro relevante para avaliar a uniformidade e a qualidade do geossintético. Ela
expressa a quantidade de material por unidade de 4rea, sendo medida em g/m? (Moreira,
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2009). Segundo Koerner (2005), a maioria dos geotéxteis apresenta valores de
gramatura entre 150 e 750 g/m?;

Espessura (tct): Representa a distdncia entre as superficies inferior e superior do
geossintético, expressa em milimetros (mm) sob uma pressao especifica. A espessura
nominal € obtida ao se aplicar uma pressao de 2 kPa, com valores tipicos para geotéxteis
que variam entre 0,25 mm e 7,5 mm. A relagdo entre espessura e pressao permite avaliar

a compressibilidade do material (Lopes & Lopes, 2010);

Porosidade (n): Define-se como a razao entre o volume de vazios e o volume total do
geossintético. A porosidade pode ser calculada em fun¢do da gramatura (Ma), da massa

especifica das fibras (py e da espessura (tgr), conforme a Eq. (2.1).

n=1 Eq. (2.1)

Constri¢do (D¢): Corresponde ao diametro equivalente da menor abertura no canal de
fluxo em um geotéxtil, ¢ equivalente ao didmetro da maior particula que consegue
atravessar a espessura do material. Particulas do solo podem ser retidas nesses canais de
fluxo quando a constri¢do ¢ menor que o didmetro da particula. Em geotéxteis nao
tecidos, a capacidade de retencdo de particulas é particularmente sensivel a tensao

vertical (ov) aplicada no material.

2.2.1.2 PROPRIEDADES HIDRAULICAS

As propriedades hidraulicas desempenham um papel crucial na avaliacdo do desempenho de

um filtro, seja ele granulares ou sintéticos. Como este estudo se concentra no desempenho

filtrante do geotéxtil, essas propriedades serdo analisadas detalhadamente.

Entre as caracteristicas hidraulicas relevantes, destacam-se a distribuicao ¢ a dimensao das

aberturas, a permeabilidade normal ao plano (ks) e a permeabilidade ao longo do plano (k).

Abertura de filtracdo (Or): Embora diversos autores classifiquem essa caracteristica

como uma propriedade fisica dos geossintéticos, seu impacto significativo no
12



comportamento hidraulico e sua funciao definidora no potencial de filtragdo a tornam
um parametro primordial para o dimensionamento de filtros geotéxteis (Rigo et al.,
1990). Portanto, nesta dissertagdo, ela sera abordada como uma propriedade hidraulica

do geotéxtil.

Essa propriedade ¢ fundamental, pois o filtro geotéxtil deve desempenhar duas fungdes
simultaneamente: permitir o fluxo de fluido através de seu plano, em contato com o solo, ¢
impedir a passagem de particulas solidas que possam obstruir seus poros. A determinagao da
abertura de filtracdo ¢ realizada por meio de diferentes ensaios, classificados em métodos

indiretos e diretos, conforme ilustrado na Figura 2.3

tanque
solo ou microesferas de vidro [I jato d’agua
L
geotéxtil I
i
material passante geotéxtil  material passante
(a) Peneiramento seco (b) Penetramento umido  (c) Peneiramento hidrodinimico

(d) Métodos de intrusio (e) Analise de imagens

Figura 2.3: Ensaios diretos e indiretos para determinagdo de abertura de infiltracao do
geotéxtil (Palmeira, 2003)

Entre os ensaios indiretos, apresentam-se os métodos de peneiramento (a, b e c) e as analises
de imagem (d). J4 entre os ensaios diretos, destaca-se o ensaio de capilaridade (Ponto de Bolha)

(Melo, 2018).

A abertura de filtracdo ¢ frequentemente representada pela dimensao equivalente de abertura
On, que corresponde a maior dimensdo de abertura que retém n% das particulas. Geralmente,
adota-se o valor de 95% para n, e o didmetro de abertura ¢ medido em milimetros (mm)
(Carneiro, 2009; Lopes & Lopes, 2010);

e Permeabilidade normal ao plano (k) e Permissividade (¥): A permeabilidade normal

13



ao plano ¢ uma propriedade intrinseca do geotéxtil que caracteriza a passagem do fluxo
de fluido perpendicularmente ao plano do geotéxtil. Essa propriedade depende das
caracteristicas fisicas do geotéxtil, como a distribui¢do ¢ a dimensao das aberturas.
(Carneiro, 2009; Lopes & Lopes, 2010). No caso de geotéxtil, Moraes Filho (2018)
considera que ¢ mais interessante trabalhar com a permissividade (¥), um parametro
mais relevante, pois representa a relacdo da permeabilidade normal ao plano e a

espessura do geotéxtil, conforme a Eq. (2.2) e como ¢ ilustrado na Figura 2.4 :
kn

Y= Eq. (2.2)

Fluxo narmal ao plano

N N T T
REL B

% B B B |

Figura 2.4- Representacdo da permissividade (Palmeira, 2003)

E importante ressaltar que, para dois geotéxteis com estrutura e porosidade semelhantes, o valor

da permeabilidade normal ao plano (k,) serd o mesmo. Consequentemente, se esses materiais

apresentarem espessuras distintas, suas permissividades serdo diferentes (Gourc, 1982).

Permeabilidade ao longo do plano (k,) e Transmissividade (8): Essa propriedade
descreve as condigdes de escoamento no plano do geotéxtil e ¢ geralmente expressa
como transmissividade (). A transmissividade relaciona a permeabilidade ao longo do
plano (k) e a espessura do geotéxtil sob uma determinada tensdo normal de
confinamento, sendo depende do gradiente hidraulico (i) atuante. A transmissividade ¢

descrita pela Eq. (2.3) e ¢ apresentada na Figura 2.5
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reservatorios
' Fluxo ao longo do plano

geossintético

Figura 2.5: Representacdo da Transmissividade (Adaptado de Palmeira & Gardoni, 2002).

2.3 FATORES QUE INFLUENCIAM O COMPORTAMENTO DO GEOTEXTIL
Como foi mencionado, o comportamento do filtro geotéxtil ¢ influenciado por diversos
fatores, como o tipo de solo base, tipo de fluido, tipo de geotéxtil, estrutura do meio filtrante
e solicitagdes externas. E, conforme Giroud (1996) e Rollin e Lombard (1988), os fatores que
influenciam o desempenho de filtracdo dos geotéxteis podem ser classificados em categorias

principais, as quais estdo apresentadas de forma resumidas na Tabela 2.3.

Tabela 2.3: Fatores que influem no comportamento do filtro geotéxtil (Adaptado de Rollin &
Lombard, 1988)

Propriedades do Solo Propriedades do Geotéxtil | Condicées hidromecanicas

e Cocficiente de e Tamanho de abertura
uniformidade (C.) de filtragdo (FOS) ou

e (Coeficiente de tamanho de abertura Gradiente hidraulico
curvatura (C,) aparente (AOS); (0);

e Distribuicdo e Gramatura (Ma); Estado de tensdo
granulométrica e Porosidade (n); vertical (oy);

e Forma das e Espessura do tecido Contato solo-filtro
particulas e dureza (tar); (continuo ou ndo);
dos gréaos e Diametro das fibras Tipo do Fluido

e Estado de (dp);
compactagdo e grau e Tipo de Geotéxtil
de saturagdo

Notas: C, = deo/dioe Cc = (d30)2/(d60A dio)

Por outro lado, Palmeira (2023) apresenta os fatores fisicos que influem no comportamento

filtrante. Esses estdo relacionados com a impregnacao do geotéxtil e ao estado de tensdo a que
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sdo submetidos (confinamento e tragdo). O confinamento e a presenga de particulas de solo na
estrutura do geotéxtil influenciam o seu comportamento. Esse tipo de obstrucdo interna por
particulas no filtro pode ocorrer durante o espalhamento da camada de solos € compactagao
deles sobre o geotéxtil e/ou devido as particulas trazidas pelas forcas de percolagao durante o

fluxo (Palmeira, 2018; 2023).

Cabe destacar que o nivel de impregnagdo ou obstrucao interna depende das caracteristicas do
solo base e do geotéxtil. As particulas nos vazios do geotéxtil podem diminuir a sua
compressibilidade, sua permeabilidade e gerar condigdes para obstrugdes adicionais devido a
alteracdo das aberturas iniciais do geotéxtil. Um estudo realizado por Qureshi et al. (1990)
apresenta resultados nos quais se obtiveram redugdes significativas do coeficiente de
permeabilidade do sistema solo-geotéxtil no caso de solos internamente instaveis, e sugerem
que as reducdes foram causadas pela impregnacdo dos vazios do geotéxtil por particulas de
solo. A influéncia de outros fatores como solicitagdes de trafegos sobre o geotéxtil, contato
entre solo e filtro e mecanismos de colmatagdo fisica, quimica e bioldgica interferem no

comportamento filtrante do geotéxtil.

Prever a ocorréncia de colmatagao do filtro sob certas condigdes ¢ dificil, e segundo
Palmeira (2023), existem trés causas para colmatac¢ao fisica (apresentadas na Figura 2.6):
bloqueamento, obstru¢do interna, e cegamento. O bloqueamento (Figura 2.6a) ¢ um
mecanismo que ocorre quando particulas se localizam na entrada dos poros do geotéxtil,
sendo a sua ocorréncia pouco provavel em geotéxteis nao tecidos, isso devido a
variabilidade de formas, tamanhos e nimero de poros que este tipo de geotéxtil
apresenta. Ja o cegamento (Figura 2.6b) acontece quando as particulas finas sdo retidas
na superficie do geotéxtil e se acumulam, criando uma camada fina e de baixa
permeabilidade. Esse mecanismo acontece comumente em filtros em contato com solos
internamente instaveis. E, por ultimo, a obstrug¢do interna pode ocorrer devido a
impregnacao excessiva dos poros do geotéxtil (ndo tecido) por intrusdo de particulas do
solo base (Figura 2.6 c). Outros mecanismos de colmatacido envolvem a formacao de
filmes bacterianos (colmatacdo bioldgica) ou a precipitagdo de produtos quimicos

(colmatagao quimica) (Markiewicz et al., 2022; Palmeira, 2023).
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Figura 2.6- Mecanismo de colmatagao fisica: (a) Bloqueamento; (b)Cegamento; € (c)
Obstrucao interna (Adaptado de Markiewicz et al., 2022).

2.4 FILTRO GEOTEXTIL EM SOLOS INTERNAMENTE INSTAVEIS

Solos internamente instaveis sdo um desafio para filtros, seja granulares ou geotéxteis, devido
a serem solos susceptiveis ao fenomeno de sufusao, no qual as particulas menores do solo sdo
transportadas pela dgua através dos vazios entre graos maiores. Assim, o tamanho das particulas
capazes de atravessarem o geotéxtil ¢ um aspecto essencial a sua especificagdo para uma obra
(Khan et al., 2022). Chang e Zhang (2013) realizaram a identificacdo de estabilidade interna do
solo baseados em 131 solos. Eles adotaram trés métodos de identificacdo: (a) Perda de fracao

de finos, (b) varia¢do da permeabilidade, e (c) piping.

No primeiro método, considera-se que o solo € instavel se ocorrer perda continua de finos,
autores como Kenney e Lau (1985),Lafleur et al. (1989), Wan &Fell (2008), Chang & Zhang
(2011), entre outros, seguiram esse método. De acordo com Kenney & Lau (1985) e Wan &
Fell (2008), a fragdo de perda de finos pode ser feita medindo a distribuicdo granulométrica
apos a realizacdo do teste. No segundo método, uma amostra considera-se instavel se existir
uma mudanca brusca na permeabilidade do sistema durante o processo de teste, autores como
Sun (1989), Liu (2005) e Kaoser et al. (2006) se basearam nesse método. No terceiro método,
adotado por Adel et al. (1988), os solos instaveis sdo aqueles que apresentam piping sob

gradientes hidraulicos menores.

Os dois primeiros métodos se complementam entre si, pois uma perda significativa de finos
causa uma mudanga repentina na permeabilidade da amostra e uma mudanga nas curvas
granulométricas. No entanto, as condigdes hidraulicas nos ensaios foram mais severas que a

que se esperam na realidade (Chang & Zang, 2013).
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Assim, a estabilidade interna ¢ influenciada significativamente pela granulometria dos solos e
pela caracteristica da curva granulométrica. Os solos com granulometria descontinua (gap-
graded) apresentados na curva C e D da Figura 2.7 os bem graduados, com a curva
granulométrica voltada para cima (curva B) e altos valores de coeficiente de uniformidade (Cu)
se apresentam como solos com alta possibilidade de instabilidade interna. Na Figura 2.7,
apresentam-se as curvas granulométricas tipicas de solos internamente instaveis (Chang &

Zhang, 2013; Palmeira, 2018).
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Figura 2.7: Curvas granulométricas tipicas de solos internamente instavel (Adaptado de
Chang e Zhang, 2013).

Em relagdo aos solos bem graduados, sua estabilidade interna ¢ determinada pela capacidade
de suas particulas grossas em reter a perda de suas particulas de tamanho médio, o que, por
conseguinte, impede a perda de suas particulas finas. Dessa forma, o teor de finos exerce uma
influéncia significativa na estabilidade interna de um solo amplamente graduado (Bendahmane
etal., 2008; Wan & Fell, 2008). Em contraste, um solo com graduagao descontinua caracteriza-
se por apresentar uma ampla graduacdo na qual uma faixa de tamanhos ¢ significativamente
sub-representada (como o solo C na Figura 2.7) ou completamente ausente (como o solo D na
Figura 2.7)essa parte ausente frequentemente € areia ou silte. Assim, a estabilidade interna de
um solo com graduagdo descontinua reside na capacidade das particulas grossas poder impedir
a perda das particulas finas. Caso a fracdo mais fina consiga preencher totalmente os poros
formados pela fragdo mais grossa, o solo geralmente tende ser internamente estavel. O teor de
finos, ao igual ao do solo bem graduado, tem uma influéncia significativa na estabilidade interna

de solos com graduacao descontinua (Chang & Zhang, 2013).

A estabilidade interna dos solos descontinuos pela razdo de descontinuidade (Gy) € ilustrada na
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Figura 2.7. Essa razdo ¢ definida como a proporg¢ao entre o tamanho maximo (dmax) € 0 tamanho
minimo (dmin) das particulas na por¢ao severamente sub-representada da curva de distribuicao
granulométrica. Uma elevada razdo de descontinuidade indica que a fragdo grossa ndo atua
eficazmente como filtro para a fragdo mais fina, o que facilita a erosao das particulas finas

mesmo sob baixos gradientes hidraulicos.

A literatura apresenta diversos critérios conservadores para avaliar a suscetibilidade de um solo
internamente instavel (Kenney & Lau, 1985; Lafleur, 1999). Moraci et al. (2014) realizaram
um estudo ao avaliar e comparar os diferentes métodos para determinar a instabilidade de um
solo, de modo que chegaram a conclusdo de que o método de Kenney & Lau (1985) apresentou

previsoes satisfatorias.

Segundo Istomina (1957), o coeficiente de uniformidade (Cu) de um solo pode indicar sua
estabilidade interna. Esse coeficiente, calculado pela razdo entre o didmetro da particula com
60% mais fino em peso (deo) € o didmetro da particula com 10% mais fino em peso (dio), ou
seja, Cu = dso/d10, avalia se as particulas finas podem percolar pelos poros formados pela fragao
grossa do solo. De acordo com o critério, solos com Cy < 10 s3o considerados internamente
estaveis, enquanto aqueles com Cy > 20 sdo provavelmente internamente instaveis. Essa anélise

¢ aplicavel a cascalhos arenosos.

Kezdi (1969) propos um critério geométrico, baseado no conceito de filtro de Terzaghi (1939),
para avaliar a estabilidade interna. O solo ¢ dividido em fra¢gdes mais fina e mais grossa em um
ponto arbitrario da curva granulométrica (tamanho de particula d) na curva de distribui¢ao
granulométrica. O solo ¢ dividido em fragdes mais fina e mais grossa em um ponto arbitrario
da curva granulométrica (tamanho de particula dn). A fracdo mais grossa atua como filtro para
a mais fina. O critério estabelece que o solo ¢ internamente estavel se a relacdo méxima
(di5¢/dgsp)max< 4). Sherard (1979) defendeu essa abordagem, propondo uma modificagdo do
critério para (dise/dsspmax< 5), em que particulas com tamanho inferior a um dado valor d
(constituindo uma fragcdo de massa F) tenderiam a erodir se a fragdo de massa H de particulas
com tamanho entre d e 4d fosse insuficiente. A razdo H/F pode ser obtida da curva
granulométrica considerando a por¢ao mais fina do solo, com F<20% para solos bem graduados

(Cv>3) e F<30% para solos mal graduados (Cy<3).
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Segundo esse critério, um solo ¢ considerado internamente instavel se a razao minima (H/F) min
for superior a 1,3. Posteriormente, em 1986, Kenney & Lau revisaram esse limite para

A Tabela 2.4 apresenta um resumo de outros critérios para identificar a instabilidade interna
dos solos.

Tabela 2.4: Outros critérios para verificagao do potencial de instabilidade do solo (Modificado

de Palmeira 2018)
Referéncia Condicao
Bathia & Huang (1995) Solos com C>7
Cristopher & Holtz Solos com C,>20 e curva granulométrica
(1985) com concavidade voltada para cima
Lafleur (1999) Solos com Cu>’6 e curva granulom.étrica com
concavidade voltada para cima

Devido ao desafio que apresentam esses tipos de solos, muitos autores tém investigado o
comportamento do geotéxtil em contato com solos internamente instaveis, sob diferentes
condi¢des, por meio de diferentes tipos de ensaios, diferentes condi¢des hidraulicas, tipos de
geotéxtil, diversos tamanhos de corpo de prova etc. Em geral, observa-se que a redugdo das
aberturas dos poros do geotéxtil aumenta sua capacidade de retencdo de particulas, prevenindo
fendmenos como o piping. Contudo, essa diminuig¢do pode gerar incertezas quanto ao potencial
de colmatacdo do filtro, especialmente em contato com solos internamente instaveis. Particulas
finas e moveis podem nao atravessar o filtro conforme projetado, o que resulta na impregnagao

ou cegamento progressivo do geotéxtil (Palmeira & Trejos Galvis, 2018).

Com base na literatura existente (Bhatia & Huang, 1995; Lafleur, 1999; Palmeira &
Gardoni,2000; Lee et al., 2002; Palmeira et al., 2005; Hong & Wu, 2011; Du et al., 2022;
Odabeasi et al., 2023; Santos, 2023), o desempenho de filtros geotéxteis em solos internamente
instaveis pode ser significativamente comprometido ao longo da vida 1til da obra. Os principais
resultados dessas investigagdes sdo apresentados em termos da razdo entre os coeficientes de
permeabilidade finais (ksys) € iniciais (ksys0) do sistema (solo e geotéxtil) em ensaios de
filtracdo. E importante ressaltar que a dispersdo observada para os resultados experimentais
decorre das diferentes técnicas utilizada para a medig@o das aberturas do geotéxtil (FOS), dos

distintos gradientes hidraulicos (i) e da variedade de equipamentos e metodologias
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experimentais adotadas por diferentes autores.

2.5 APRENDIZAGEM DE MAQUINA (ML)

De forma geral, o aprendizado de maquina usa as informagdes disponiveis para encontrar a
solugdo de um problema. Como mencionado anteriormente, considerando que cada problema
tem caracteristicas diferentes, ¢ necessario estabelecer o melhor algoritmo que se adapte melhor
a solucao desejada. Nesse sentido, 0o ML e comumente ¢ categorizado em trés tipos de analises

que se baseiam na regra de aprendizado (Abraham, 2005).

2.5.1 TIPOS DE APRENDIZAGEM

Os algoritmos de aprendizagem sdo divididos em trés grupos principais: a aprendizagem
supervisionada, aprendizagem nao supervisionada e aprendizagem refor¢ada. A supervisionada
¢ utilizada para elaborar modelos preditivos, pois corresponde a um tipo de treinamento em que
as informacdes de entrada e saida sdo conhecidas, sendo possivel realizar uma previsao mais
acurada. Por outro lado, a ndo supervisionada desenvolve modelos descritivos. Esses modelos
precisam de interpretacdo humana, devido ao fato de que se baseiam s6 nos dados de entrada

sem ter conhecimento do resultado esperado (Lantz, 2013).

O tipo de algoritmo a ser utilizado depende do tipo de andlise que o problema esteja precisando

resolver e das informagdes disponiveis. A Figura 2.8 apresenta algumas das técnicas de

aprendizagem supervisionada que se usa no ML.

TIPOS DE
APRENDIZAGEM

APREDIZAGEM

APRENDIZAGEM NAO

SUPERVIONADA SUPERVIOSIONADA

APREDIZAGEM
REFORCADA

REGRESSAO CLASS\FIU@D AGRUPAMENTO Dimi NUI@D DE
DIMENSIONALIDADE

Figura 2.8: Tipos de Aprendizagem
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2.5.1.1 APRENDIZAGEM SUPERVISIONADA

No aprendizado supervisionado, tanto os dados de entrada quanto os de saida (resposta
desejada) sao conhecidos, o que permite estabelecer a precisdao da analise (com base no erro de
comparagao). Esse tipo de aprendizado ¢ conhecido como aprendizado supervisionado por um
professor (Haykin, 1999), em que o conhecimento ¢ representado por uma entrada e um
exemplo de saida (resultado). O aprendizado supervisionado pode ser dividido em dois tipos de
tarefas: a primeira corresponde a Classifica¢ao, na qual o algoritmo atua como um filtro para
definir a saida desejada; a segunda tarefa ¢ a Predi¢dao, em que um valor alvo ¢ gerado a partir
de um conjunto de dados de entrada, também conhecidos como preditores, que sdo treinados
por meio de exemplos (Géron, 2019). Entdo, a estatistica de regressao estabelece uma relacao

entre as variaveis independentes (preditores) e o resultado previsto.

Existem diferentes tipos de algoritmos de aprendizado supervisionado. A seguir, descreve-se

brevemente alguns dos mais comumente utilizados.

Tabela 2.5: Tipos de algoritmos de aprendizagem supervisionada (Modificado de Al-Atroush,
2024)

Tipo de Algoritmo Descricao

A arvore de decisdo ¢ um método popular para classificagio e regressao.
Ela organiza as decisdes como uma arvore, onde cada ponto de decisdo
Arvore de Decisdo (nd interno) usa uma caracteristica dos dados. Cada escolha leva a um
ramo, ¢ o ponto final (n6 folha) indica a previsdo: a classe (para
classificagdo) ou o valor previsto (para regressdo) (Hastie et al., 2009).

Este algoritmo de classificacdo utiliza o teorema de Bayes, uma abordagem
probabilistica para prever resultados. Ele considera cada dado independente

Naive Bayes (NB) ("naive"), o que simplifica os calculos e torna o algoritmo mais eficiente,
especialmente em grandes conjuntos de dados (Ray, 2019).
A regressao linear ¢ um algoritmo simples e amplamente usado para modelar
Regressdo Linear a relagdo entre uma variavel dependente e uma ou mais variaveis

independentes em dados continuos (James et al, 2013)

Algoritmo amplamente utilizado em analises de classificagdo. A varidvel de

R do Logisti
eeressao Logistica resposta adota valores binarios (Bishop,2006)

O algoritmo K-Nearest Neighbors (KNN) ¢ um método ndo paramétrico que
K- Nearest neighbor (KNN) | classifica dados com base na proximidade e semelhanga com outros dados ja
existentes (Ray, 2019).
Algoritmo ¢ usado para classificagdo e regressdo. Ele cria linhas
(hiperplanos) para separar os dados em diferentes categorias (Cortes &

Maéquinas de Vetores de

Suporte (SVM) Vapnik, 1995).
Um algoritmo usado para classificagdo e regressao que combina varias
arvores de decisdo para aumentar a acuracia e a estabilidade. Ele cria vérias
Random Forest (RF) amostras aleatorias dos dados, construindo uma "floresta" de arvores. Cada

arvore faz uma previsdo, e a média dessas previsdes define o resultado final
do modelo (Breiman, 2001).
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Tipo de Algoritmo Descricao

Inspirada no cérebro humano (Fausett, 1994), a Rede Neural Artificial
(RNA) usa neurdnios artificiais organizados em camadas, com camadas
ocultas entre a entrada e a saida. Fla realiza uma regressdo nao linear, onde
cada valor da camada anterior ¢ ponderado, determinando sua importancia
para a saida (Haykin, 1999).

Redes Neurais Artificiais
(RNA)

De maneira geral, ¢ necessario seguir alguns passos padrdes para resolver problemas com a
Aprendizagem Supervisionada. A Figura 2.9 mostra passo a passo de como funciona a estrutura

basica da Aprendizagem Supervisionada.

Dados de Algoritmo de
—_— —_—
/ Treinamento Apredizagem
Aprende o relacionamento o
Dados entre os valores de entrada e S cliek
Processados saida esperada
\ Modelo
Dados de Preditivo
Teste
Validacdo do
Modelo

Dados Novos

Figura 2.9: Funcionamento bésico da Aprendizagem Supervisionada
(Adaptada de Escovedo & Koshiyama, 2020)

Utilizando a Figura 2.9 como exemplo, € possivel visualizar que uma das primeiras partes da
Aprendizagem Supervisionada, ¢ o processamento dos dados, logo ap0s, € necessario separar
os dados em dados de treino e dados de teste, fazendo assim, com que seja possivel construir
um modelo e assim, executar a validacdo e a predicdo. Na literatura, essa separagdo ¢
denominada de método holdout. Esse método, holdout, € uma técnica simples e comum que
avalia o desempenho dos modelos de ML. Divide os dados em dois subconjuntos: um para
treinar seu modelo e outro para testd-lo. O conjunto de treinamento ¢ usado para ajustar os
parametros do modelo, enquanto o conjunto de teste ¢ usado para avaliar o quao bem o modelo
prevé dados ndo vistos. A ideia € simular como seu modelo se comportaria em um cenario real,

onde voce precisa fazer previsdes sobre novos dados.

Para este presente trabalho, foi necessario utilizar a Aprendizagem Supervisionada. Entdo,
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foram utilizados os seguintes passos:

e Fazer um tratamento dos dados, de modo a retirar todos os dados que podem atrapalhar
o treinamento do algoritmo (removendo outliers). Os dados precisam ser
representativos;

e Determinar a estrutura da fung¢do de aprendizagem correspondente ao algoritmo
utilizado, no caso deste trabalho: o algoritmo de Retropropagacao (Backpropagation);

e Executar o algoritmo escolhido no conjunto de dados de treino e no conjunto de dados
de teste para avaliar a acuracia;

e Utilizar uma validagdo para os resultados (um exemplo € o k fold cross-validation, que
foi utilizado neste trabalho e visa avaliar a capacidade de generalizagdo dos modelos);

e Verificar a acurécia da aprendizagem em cada um dos conjuntos de dados por meio de

métricas estatisticas.

2.5.1.2 APRENDIZAGEM NAO SUPERVISIONADA

Ao contrario do tipo de aprendizado anterior, neste método, ndo ha valores de saida
predefinidos, de modo que os resultados sdo gerados com base na analise dos dados de entrada.
Os algoritmos implementados aprendem a partir dos dados existentes de forma independente,
ou seja, sem a necessidade de um “instrutor”, e ao encontrar padrdes no conjunto de dados e
classificar os dados de acordo com esses padrdes (Mahesh, 2020; Samreen et al., 2023). Assim
como no aprendizado supervisionado, existem diferentes algoritmos de tarefa e de desempenho,

conforme apresentado na Tabela 2.6.

Tabela 2.6: Tipos de aprendizagem ndo supervisionada (Adaptado de Géron, 2019; Al-
Atroush, 2024).

Tipo de Algoritmo Descriciao Exemplos

Permite a formacao de grupos de dados com
Agrupamento caracteristicas semelhantes. Existem K-means, Anélise

(Clustering) diferentes formas de agrupamento (Cohn & Hierarquica (HCA)
Holm, 2021; IBM, 2023b)

Técnica para encontrar relagdes interessantes

Detecgiio de Anomalias entre diferentes elementos em um conjunto de One-class SVM, Isolation
dados (Kabir & Luo, 2020; Prasad et al., Forest
2022).
Utiliza Redes Neurais para representar os
Visualizagdo e Reducao de dados de forma simplificada e, a partir Analise de Componentes
dimensao dessa representacdo, reconstruir os dados Principais (PCA)
originais.
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Tipo de Algoritmo

Descricao Exemplos

mostrar valores especificos dentro de um

Reducdo de Dimensionalidade: Diminui

parametros com caracteristicas parecidas

Visualizac¢do: Permite encontrar e
grupo (cluster).

a quantidade de informagao a ser
analisada, combinando ou reduzindo

(Lever et al., 2017; DeepAl, 2023a)

2.5.1.3 APRENDIZAGEM REFORCADA

Esse algoritmo ¢ baseado em classes de recompensas positivas ou negativas. Ele utiliza um

valor X como um agente no meio dos dados (ambiente) para encontrar diferentes acdes e

aprender com cada resultado, até identificar a saida mais bem-sucedida com base nas

recompensas mais favoraveis (Géron, 2019). A Tabela 2.7 apresenta diferentes tipos de

aprendizado por refor¢o, no qual uma decisdo final ¢ tomada com base no aprendizado

acumulado.

Tabela 2.7: Tipos de aprendizagem refor¢ada (Modificada de Géron, 2019; Al-Atroush, 2024)

dardo mais recompensa, segundo o que a rede neural
aprendeu. Roderick et al. (2017)

Tipo de Algoritmo Descricao Exemplos
Permite que um agente aprenda as melhores agdes em um
ambiente por tentativa e erro, sem conhecer as regras. Ele Robdtica e
. aprende uma fungdo Q, que estima a recompensa futura ao Automagao
QO -Learning ~ tion A
fazer uma a¢do em um estado. O objetivo é que o agente Jogos
melhore essa fungdo Q explorando o ambiente até encontrar Finangas
as melhores agdes Jang et al. (2019)
Combina aprendizado profundo com Q-Learning, usando uma
rede neural para estimar o valor de cada agdo possivel em cada Robdtica e
situagdo. Essa rede neural aprende a prever recompensas Automagao
Deep Q-Networks (DQN) futuras com base nas experiéncias do agente, guardadas para Jogos
treinar a rede. O agente escolhe as a¢des que provavelmente Finangas

Controle e Otimizagao

Actor-Critic

Utiliza duas redes neurais, onde o ator aprende a politica,
ou seja, a probabilidade de cada acdo e o critico, avalia o
quao boas sdo as agdes do ator.O ator decide as agdes, o
critico as avalia, e essa avaliacdo ajuda o ator a melhorar

suas escolhas Flet-Berliac et al. (2021).

Robotica e
Automacgao
Jogos
Finangas
Controle e
Otimizagao

2.6 NEURAL ARTIFICIAL (RNA)
As Redes Neurais Artificiais (RNAs), também conhecidas como Artificial Neural Networks

(ANN), sao um tipo de inteligéncia artificial (AI) que usa técnicas computacionais baseadas na

estrutura de neurdnios biolodgicos para resolver problemas complexos (ndo lineares), por isso,
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vem sendo a técnica mais utilizada na ML, pois ajudam resolver problemas do mundo real. Sua
popularidade radica em como processam a informagao para modelar relagdes complexas e nao

lineares entre parametros (Baghbani et al., 2022b).

Por meio da experiéncia, essas redes artificiais adquirem conhecimento e se tornam sistemas
adaptativos, de modo a permitir a absor¢ao e aplicagdo de informagdes ao longo do tempo. Isso
¢ possivel por meio uso de algoritmos de aprendizagem. Esses algoritmos operam com dados e
resultados existentes para antecipar uma resposta desejada, fundamentando-se na experiéncia

acumulada para realizar suas previsdes (Abraham, 2005).

N

A AR
R
SRR

1\"]\\\‘&"

N

\

Figura 2.10: Exemplificagdo de RNA.

Assim, de forma geral as RNAs sdo estruturas compostas por elementos identificados como
neurdnios, que armazenam informagdes e sdo conectadas entre si por meio de links
(conhecidos como pesos), que atuam como sinapses. Essas conexdes geram sinais ativados
por uma funcao, até que o sinal de saida (neurdnio de saida) apresente o resultado desejado

(Fausett,1994; Jain et al., 1996; Haykin, 1999; Abraham, 2005).

De acordo com Fausett (1994), uma RNA tem trés elementos principais: a arquitetura da rede,
aregra de aprendizagem e a funcao de ativacao (Figura 2.11). A arquitetura da rede, estabelece
o numero de neurdnios, as conexoes presentes entre eles e das disposicdes deles; ja a regra de
aprendizagem define o algoritmo que sera utilizado para analisar o problema; e, por ltimo,

ha a fun¢ao de ativacgao.
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Figura 2.11: Exemplos dos Elementos principais da RNA: (a) Arquitetura de rede; (b)
algoritmo de aprendizagem; (c) fun¢do de ativagdo

De forma geral, o modelo artificial de um neur6énio de RNA ¢ apresentado na Figura 2.12 esse
neurdnio tipico inclui um sinal adicional bias (6,), o qual favorece a possibilidade de ativagao
do neurdnio. A conexao dos neuronios (sinapses) € realizada pelos pesos (w), o qual amplifica
cada um dos sinais recebidos. Ja A fungdo de ativagdo (f{1;)) modela a forma que um neuroénio

responde ao nivel de excitagdo, limitando e definindo a saida da rede.

tlo

X1

Xn

Figura 2.12: Representacdo esquematica de um neurdnio artificial (Villamil Gonzélez 2023).

Na Figura 2.12, apresenta-se as entradas (X7, X,...,X»), 0s pesos sinapticos correspondentes
(w1,w2,..., wn), 0 bias (fo), a funcdo de combinagdo linear (/=) (Xiwi+6o)) e a fungdo de

ativacdo (y=f(1;)) que produz a saida do neuronio.

As Redes Neurais Artificiais (RNAs) podem ser classificadas de diversas maneiras,
considerando sua arquitetura, o tipo de algoritmo de aprendizado, a direcao da analise dos dados

e a sua aplicacao (Charytoniuk, 2000).

Quanto a sua aplicacdo, as RNAs se dividem principalmente em duas categorias: classificagao

e aproximagao de fungdo (previsao). A primeira ¢ usada para reconhecer padrdes de dados e/ou
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classifica em categorias predefinidas. E a segunda, a rede, ¢ treinada para aprender e generalizar
relacdes ndo lineares complexas entre certos parametros de entrada e saida, a fim de tornar
possivel a previsao de parametros de saida para determinados dados de entrada. Esta ultima ¢

muito utilizada na engenharia geotécnica (Baghbani et al., 2022b).

Em relacdo a sua arquitetura, as RNAs se classificam fundamentalmente em
monocamadas ¢ multicamadas. Essa distin¢ao se baseia no nimero de camadas existentes
entre a camada de entrada e a camada de saida da rede (Charytoniuk, 2000). Os RNAs
monocamada possuem apenas de uma camada de neurdnios de saida que recebem
diretamente os sinais de entrada. Cada neurdnio de saida recebe sinais de todos os
neurdnios de entrada. Assim, a saida de cada neurdnio ¢ calculada aplicando uma fungao
de ativagao a soma ponderada de todas as entradas. Esse tipo de redes aprende apenas
relagdes lineares entre as entradas e as saidas. Por outro lado, o desempenho de uma RNA
multicamada ¢é caracterizado pela presenca de uma a mais camadas intermedidarias,

também chamada de camadas ocultas (hidden layers).

Embora as RNAs multicamadas geralmente apresentem uma capacidade de modelagem
superior as monocamadas, o desempenho global de uma rede neural € intrinsecamente
dependente de diversos fatores :
¢ Qualidade e quantidade dos dados de treinamento: A eficicia da aprendizagem esta
diretamente ligada a riqueza e a quantidade de dados fornecidos;
e Arquitetura da rede: O niimero e a organizagdo das conexdes entre 0s neuronios
definem a capacidade da rede;
¢ Intensidade das conexdes (pesos): A forca das sinapses neurais, representada pelos
pesos, determina a influéncia de cada sinal;
e Algoritmos de aprendizagem: O método de ajuste dos pesos durante o treinamento

afeta a convergéncia e a qualidade do modelo.

Entre as RNAs multicamadas, o Perceptron Multicamada (MLP) se destaca por seu alto poder
computacional (Braga et al., 2007). Um MLP é composto por neurdnios interconectados em um
sistema organizado em pelo menos trés camadas: uma camada de entrada, uma ou mais camadas
ocultas e uma camada de saida (Siddique & Adeli, 2013; Goodfellow et al., 2016). Os neurénios
da camada de entrada atuam como meros transmissores do vetor de entrada para as camadas
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subsequentes, isto €, ndo realizam calculos proprios. Nas camadas ocultas e de saida, cada
neurdnio executa uma transformacdo nao linear simples sobre a soma ponderada de suas
entradas, utilizando uma fung¢ao de ativagao como ReLU, tanh ou sigmoid. Essa ndo linearidade

permite ao MLP a capacidade de aproximar fungdes complexas (Gardner & Dorling, 1998).

De acordo com Gardner & Dorling (1998), o MLP aprende essa fungdo de mapeamento de
forma supervisionada, ao utilizar um conjunto de dados de treinamento com pares de entrada e
saida desejada. Em problemas de regressao, o objetivo do treinamento € aproximar a fungao f
de tal modo que o valor previsto f(xi, #) seja o mais proximo possivel do valor alvo yi. A
diferenca entre o valor previsto e o valor alvo constitui o sinal de erro. Durante o treinamento,
esse sinal de erro € utilizado para determinar como os pesos (h) da rede devem ser modificados,

com vistas a minimizar o erro global do MLP.

O treinamento de redes MLP geralmente envolve processos iterativos baseados em gradientes
(Rumelhart, Hinton, Willians, 1986), como o Descida de Gradiente Estocastico (SGD) ou
métodos Quasi-Newton (como o Broyden-Fletcher-Goldfarb-Shanno L-BFGS). O objetivo ¢
minimizar a fungo de erro global. Embora o SGD seja simples de implementar, sua otimizacao
e treinamento podem ser desafiadores em cenarios com dados esparsos ou de baixa
dimensionalidade, comuns em computacdo de alto desempenho (HPC). Nesses casos, o L-
BFGS emerge como uma alternativa altamente competitiva e, por vezes, superior ao SGD

(Ngiam et al., 2011).

E importante notar que o treinamento do MLP nio garante a convergéncia para minimo global
e ¢ sensivel a escolha dos hiperparametros (Goodfellow et al., 2016). Esses hiperparametros
incluem a funcao de ativagdo, o nimero de camadas ocultas, o nimero de neurdnios por camada
(hidden layer) o otimizador (método iterativo baseado em gradientes) € o nimero maximo de

iteragoes (Goodfellow et al.2016).

Desde os anos 80, as redes neurais tém sido aplicadas na engenharia civil (Chou &Pham, 2013;
Chou et al., 2016). Nos ultimos tempos, a engenharia geotécnica tem adotado os métodos
computacionais em resposta a heterogeneidade em solos e rochas e ao seu comportamento com
matérias geotécnicos. Segundo Baghbani et al (2022), essa heterogeneidade resulta em

consideravel incerteza de suas propriedades mecanicas, o que dificulta a previsdo do
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comportamento desses materiais. Nesse contexto, hd a mecanica computacional principalmente
computadores e métodos numéricos para simular, analisar e prever o comportamento mecanico
de materiais geoldgicos. As técnicas computacionais modernas possibilitam lidar com muitos
problemas complexos de engenharia, levando em consideragao muitas das propriedades tipicas
dos materiais geotécnicos, como o comportamento acoplado da 4gua nos poros e dos materiais

solidos, o comportamento elastoplastico ndo linear e os processos de transporte.

2.6.1 ARQUITETURA DA REDE NEURAL
Os autores Jain et al (1996) e Braga et al. (2007) comentam que ¢ crucial delimitar o tipo de
problema tratavel pela rede. Sua defini¢do abrange caracteristicas como o numero de
camadas, a quantidade de neuronios por camada, o tipo de conexao entre os nds e a tipologia
geral da rede. Essas caracteristicas, em conjunto, determinam a dimensao da rede e a forma

como seus neurdnios se. A Figura 2.13 ilustra algumas arquiteturas de RNAs.
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Figura 2.13: Arquiteturas de Redes Neurais Artificiais (Braga et al.,2007)

Quanto ao numero de Camadas, as RNAs sdo classificadas em monocamadas e multicamadas:
e As Redes Monocamadas: Se caracterizam pela conexdo direta entre a camada de
entrada e a camada de saida, sem a presenca de camadas intermedidrias. Essa arquitetura
limita sua capacidade de resolu¢do a problemas linearmente separaveis. Esse tipo de
redes sdo presentadas na Figura 2.13a e Figura 2.13e,

e As Redes Multicamadas incorporam uma ou mais camadas intermedidrias (hidden
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layers) (Figura 2.13b, Figura 2.13c e Figura 2.13d). A introdug¢do dessas camadas
permite que a rede modele relagdes complexas e ndo lineares, tornando-as adequadas
para uma vasta gama de aplicagdes, incluindo visdo computacional, processamento de
linguagem natural e reconhecimento de padrdes. Contudo, o emprego de um numero
excessivo de camadas ocultas ndo ¢ recomendado. Isso se deve ao fendmeno da
dissipagdo do gradiente durante o treinamento: a medida que o erro medido na saida ¢
propagado para camadas anteriores, sua acuracia diminui progressivamente (Braga et
al., 2007). Apenas a camada de saida possui uma nog¢ao precisa do erro cometido pela
rede; a ultima camada oculta recebe apenas uma estimativa desse erro, e a penultima

camada, uma estimativa da estimativa

No que diz respeito ao tipo de conexao entre os neurdnios (ou nos). A arquitetura das RNAs

pode ser categorizada em feedforward (alimentacdo direta) e recorrente (ou feedback):
e As Redes Feedforward processam a informa¢do de maneira unidirecional, onde a
saida de um neuronio nao serve como entrada para outros neurénios na mesma camada
ou em camadas precedentes. O fluxo de informagao ocorre em uma Unica dire¢ao, da
entrada para a saida, sem a formagdo de ciclos ou realimentagao (Figura 2.13a, Figura
2.13b e Figura 2.13c¢)
e As Redes Feedbacks ou Recorrente): se distinguem pela sua capacidade de
“memoria”, uma vez que permitem que informagdes de entradas passadas influenciem
o processamento de entradas subsequentes. Essa caracteristica as torna adequadas para
lidar com dados sequenciais, como séries temporais e texto, em que a ordem dos
elementos ¢ fundamental. As redes recorrentes apresentam um comportamento que
busca simular de forma mais realista a dindmica temporal dos dados e sdo apresentadas

(Figura 2.13d e Figura 2.13e¢)

O processamento em uma RNA ¢ iniciado na camada de entrada, que contém os valores iniciais
definidos em n neurdnios (X7). A informag¢ao entdo flui sequencialmente através das camadas
ocultas, mediada por conexdes, também conhecidas como pesos sindpticos (wi). Cada neurénio
recebe um sinal ponderado e o transmite para o neurénio da camada seguinte (Xi+/). Em cada
camada, a informacao precedente € transformada em um valor numérico por meio da aplica¢do
de uma funcao de ativacgao (f). Esse processo iterativo continua até a camada de saida, em que

o valor final do modelo (y) ¢ obtido. Para evitar a ocorréncia de saidas nulas em cada neurénio,
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um valor conhecido como “bias” (6o) pode ser incorporado entre as transformagdes de cada
camada (Haykin, 1999; Shahin et al., 2009). A

resume o processo descrito Eq. (2.4)

y = f(&iz1 Xiwi + 6,) Eq. (2.4)

2.6.2 PERCEPTRON DE MULTIPLAS CAMADAS — MLP
Como mencionado anteriormente, as redes monocamada ( Figura 2.13a) sdo utilizadas para
resolver problemas linearmente separaveis, ja as redes perceptron de multiplas camadas MLP
(Figura 2.13b) s3o utilizados para problemas ndo linearmente separdveis e complexos.
Segundo Braga et al. (2007), a acuracia obtida e a implementacdo da fungdo objetivo ¢

influenciada pelo nimero de nés utilizados nas camadas ocultas.
Assim, no caso de RNA’s com mais de uma camada intermediaria, o processo realizado em

cada no ¢ definido pela combinacao dos processos realizados pelos noés da camada anterior

que estao conectados a ele, tornando o processo de uma MLP dependente em cada camada.

Camadas Ocultas

Conexdes ou pesos Xi+1) /.\
Cﬂ';”adﬂ de sinapticos (wi) Q ﬁ&/
Saida O LS Camada de
Said <> /AN A_/ Saida
Camada de_ ~arda Camada de A VA N Said
Entrada (Xi) O Entrada (Xi) O AN n_J A
bias S
: 7 R
o o { k/ bias
o Conexdesou,  (00) = 3 e (o)
pesos sindpticos ( > o o
(wi) - 'q \7 ( D

bias biak

(Bo) (Bo)

Figura 2.14: (a)RNA monocamada e (b) RNA multicamada (MLP) (Adaptado de
Villamall,2024)

A definicao da arquitetura de uma Rede Neural Artificial (RNA) envolve diversos parametros
de projeto, como o nimero de neurdnios na camada de entrada, o nimero de camadas ocultas,
a quantidade de neurdnios em cada camada oculta e o nlimero de neurdnios na camada de saida.
A determinagdo desses parametros frequentemente se baseia em multiplas execugdes do
sistema, empregando o método de tentativa e erro. Embora ndo exista uma estrutura unificada
para a selecdo da arquitetura 6tima e de seus parametros (Chung & Kusiak, 1994; Kusiak &
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Lee, 1996), pesquisas tém contribuido para a definicdo do niimero de camadas ocultas, do

nimero de neurdnios por camada e da taxa de aprendizado, entre outros aspectos.

A selecdo de parametros de entrada adequados para uma RNA ¢ um dos processos mais
desafiadores e pode ser influenciada pelos seguintes critérios (Park, 2011):

o Interdependéncias e redundincias entre os parametros: a presenca de variaveis
altamente correlacionadas ou que fornecem informagdes semelhantes pode prejudicar o
desempenho ¢ a interpretacao da rede;

e Necessidade de otimizacdo da complexidade: Em em alguns casos, a omissdo de
certos parametros pode ser benéfica para reduzir o numero total de entradas,
simplificando a topologia da rede e diminuindo a complexidade computacional do
problema.

e Auséncia de conhecimento prévio dos dados: frequentemente, as RNAs sdo aplicadas
em problemas em que as relagdes subjacentes entre as variaveis de entrada e saida ndo
sao bem compreendidas, o que dificulta a identificacdo a priori dos parametros mais

relevantes.

Ja o nimero de camadas ocultas, o nimero de neuronios nas camadas ocultas € o nimero de
neurdnios na camada de saida sdo encontrados usando varias execugdes repetidas do sistema
com base no método de tentativa e erro. Nao ha uma estrutura clara para selecionar a arquitetura
otima da RNA e seus parametros (Chung & Kusiak, 1994; Kusiak & Lee, 1996). No entanto,
alguns trabalhos de pesquisa contribuiram para determinar o nimero de camadas ocultas, o

numero de neurdnios em cada camada, a sele¢do do parametro da taxa de aprendizado e outros.

Como mencionado anteriormente, a definicdo do nimero de camadas ocultas requer de cuidado,
pois um numero excessivo de camadas intermediarias pode comprometer a acuracia do erro
durante o treinamento. Em relagdo a essa questdo, autores como os de Cybenko (1989), Hertz
et al. (1991) e Funahashi (1989) investigaram o numero de camadas necessarias para a
implementac¢ao eficaz de uma RNA. Suas conclusdes apontam que um Perceptron Multicamada
(MLP) com apenas uma camada oculta ¢ capaz de aproximar qualquer fungdo continua. A
utilizacdo de duas a trés camadas ocultas, por sua vez, demonstram-se suficiente para aproximar

virtualmente qualquer fun¢do matematica.
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E importante destacar que determinar o niimero de camadas ocultas e o niimero de neurdnios
em cada camada oculta ¢ uma tarefa consideravel. O nimero de camadas ocultas geralmente ¢
um passo critico. O namero de camadas ocultas necessario depende da complexidade da relacao
entre os parametros de entrada e o valor de saida. A maioria dos problemas requer apenas uma
camada oculta e, se a relagdo entre as entradas e a saida for linear, a rede ndo precisa de nenhuma
camada oculta adicional. E improvavel que qualquer problema pratico exija mais de duas
camadas ocultas. Cybenko (1989) e Bounds et al. (1988) sugeriram que uma camada oculta ¢

suficiente para classificar padrdes de entrada em diferentes grupos.

Chester (1990) argumentou que uma rede com duas camadas ocultas deveria ter um
desempenho melhor do que uma rede com uma camada oculta. Mais de uma camada oculta
pode ser util em certas arquiteturas, como correlacdo em cascata (Fahlman & Lebiere, 1990) e

outras.

Uma explicacdo simples para o porqué de redes maiores as vezes proporcionarem treinamento
aprimorado e menor erro de generalizag@o ¢ que os graus de liberdade extras podem auxiliar na
convergéncia; ou seja, a adi¢do de parametros extras pode diminuir a chance de ficar preso em
minimos locais ou em “platds”. Os métodos de treinamento mais comumente usados para redes
de retropropagacao sdo baseados no gradiente descendente, ou seja, o erro ¢ reduzido até que
um minimo seja alcangado, seja um minimo global ou local. No entanto, ndo ha uma teoria clara
para dizer quantas unidades ocultas sdo necessarias para aproximar qualquer fun¢do dada. Se
apenas uma entrada estiver disponivel, ndo se observa nenhuma vantagem em usar mais de uma
camada oculta. Mas as coisas ficam muito mais complicadas quando duas ou mais entradas sao
fornecidas. A regra pratica para decidir o nimero de camadas ocultas ¢ normalmente comegar
com uma camada intermediaria (Lawrence, 1994). Se a rede com uma camada oculta ndo treinar
bem, tente aumentar o nimero de neurdnios. Adicionar mais camadas ocultas deve ser a tiltima

op¢ao.

Ademais, além da determinacdao do niimero de camadas ocultas, a definicdo do nimero de nos
ou neuronios nas camadas intermedidrias ¢ um aspecto crucial. Embora ndo haja uma
padronizacao universal para essa quantidade, Braga et al. (2007) observam que o nimero ideal
de nos por camada estd intrinsecamente ligado a distribuicdo dos padrdes presentes nos

conjuntos de treinamento e valida¢do da rede. Entretanto, abordagens mais recentes tém
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ganhado destaque, como a defini¢do do nimero de neurdnios em funcdo da quantidade de

unidades de entrada (input) e de saida (output).

Segundo Park (2011), a escolha do tamanho da camada oculta ¢ dependente do problema. Por
exemplo, qualquer rede que requeira compressao de dados deve ter uma camada oculta menor
que a camada de entrada (Swingler, 1996). Uma abordagem conservadora ¢ selecionar um
numero entre o numero de neurdnios de entrada e o nimero de neuronios de saida. Uma boa
regra pratica ¢ comegar com um numero de neurénios ocultos igual a metade do nimero de
neurdnios de entrada e, entdo, adicionar neurdnios se o erro de treinamento permanecer acima
da tolerancia de erro de treinamento, ou reduzir neurénios se o erro de treinamento cair
rapidamente para a tolerancia de erro de treinamento. A Tabela 2.8 apresenta de forma

resumida os critérios para definicdo do numero de neurdnios por camada oculta.

Tabela 2.8: Critério para Selecionar o Niimero de Neurdnios na Camada Oculta
(modificado de Park,2011)

Formula Autor
h=2i+1 Hecht-Nelson (1987)
i+o
D)
2 Lawrence & Fredrickson (1988)
faixalON —i—0 <h<2N-i—o
Ph =ilog,P Marchandani & Cao (1989)
Notas: h = nimero de neurdnios ocultos, i = nimero de neurdnios de entrada o = nimero de neuronios de

saida, P= ntimero de padrdes de treinamento

Um numero inadequado de neurdnios por camada pode acarretar problemas significativos no
modelo, como overfitting e underfitting. O overfitting esta relacionado a capacidade excessiva
da rede de memorizar os dados de treinamento, incluindo ruidos e varia¢des especificas, o que
compromete sua capacidade de generalizagao para novos dados. Por outro lado, o underfitting
geralmente estd associado a uma convergéncia inadequada da rede, frequentemente afetada por
um numero excessivo de neurdnios em relagdo ao nimero de conexdes disponiveis (ou seja,

uma arquitetura com mais neuroénios do que conexdes significativas).

2.6.3 ALGORITMO DE TREINAMENTO - BACKPROPAGATION (BP)

Como mencionado anteriormente, a RNA utiliza aprendizado supervisionado, o que permite a
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rede controlar os resultados obtidos a partir de dados de saida conhecidos. Nesse processo de
aprendizado, a rede ajusta iterativamente os pesos € o vié€s (parametros de ajuste) até alcangar o
resultado com o menor erro possivel, de modo que esse ajuste € realizado por meio de algoritmos

de treinamento.

Existem diferentes arquiteturas de redes neurais, classificadas segundo o tipo de algoritmo de
treinamento empregado, ou seja, de acordo com a maneira como os pesos € 0 viés sao ajustados.
No caso de redes neurais multicamadas, o algoritmo de Retropropagacao (Backpropagation —
BP) tem sido amplamente utilizado em problemas de engenharia (Riedmiller & Braun, 1993).
Desenvolvido em 1986 por David Rumelhart, Geoffrey Hinton e Ronald William, esse
algoritmo se baseia no método de descida de gradiente de primeira ordem. O método de descida
de gradiente ¢ um algoritmo de otimizagdo utilizado para encontrar o minimo de uma funcao,
nesse caso, a fun¢ao de erro (a diferenca entre o valor previsto e o valor real). Assim, o algoritmo
ajusta os parametros do modelo, como os pesos e o viés, de forma a reduzir esse erro. O
gradiente indica a taxa de variacdo da funcdo de erro em relacdo aos pardmetros do modelo,
informando se o erro aumenta ou diminui (Basheer & Hajmeer, 2000; Soleimanbeigi & Hataf,

2006).

De forma resumida, a retropropagagdo opera em duas fases principais, apresentado na Figura
2.15, percorrendo a rede em sentidos opostos: forward (para frente) e backward (para tras). Na
primeira fase, denominada forward, realiza-se uma analise inicial dos dados de entrada até a
camada de saida, definindo-se os valores iniciais dos pesos sindpticos e do viés. Na segunda
fase, chamada backward, calcula-se a diferenca entre o valor previsto e o valor real, ou seja, o
erro (E). Esse erro ¢, entdo, retropropagado para cada camada da rede, ajustando-se os pesos e
o viés das camadas com base no erro encontrado na saida, utilizando-se o gradiente da fun¢do

de erro.

Esses ajustes sdo realizados em cada camada, da saida para a entrada, o que permite que a rede
aprenda e melhore suas previsdes. Além disso, esses processos iterativos de avango e retrocesso
sao chamados de épocas, durante as quais o algoritmo ¢ ajustado para reduzir o erro. A cada
época, a rede ajusta os pesos e o viés para minimizar o erro (E) e aproximar ao maximo o valor

obtido pela rede () do valor real (y;) (Camarena-Martinez et al., 2021).
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Fase fordward

v =
-

Fase feedward

Figura 2.15: Algoritmo de Retropropagagdo ou Back-propagation (Adaptado de Braga et
al.,2007).

O Erro ¢ representado pela Eq. (2.5)onde ¥; é o valor obtido pelo modelo (valor previsto), y;,

valor real obtido por meio de resultados de ensaios; e n os numeros de neurdnios.

n
15 Eq. 2.5
E=—> G-’ % (2:5)
i=1

O algoritmo de treinamento inicia atribuindo valores aleatdrios aos pesos e ao viés. A cada
iteragdo, o valor anterior do peso sinaptico ¢ ajustado incremento variavel, que pode ser positivo
ou negativo e ¢ determinado pela regra delta (Zupan & Gasteiger, 1993; Abraham, 2005). A

Eq. (2.6) apresenta esse ajuste do peso:

l l l l OE
Wji(t) = Wji(t -1+ AWji(t)i iji(t) =1 Eq. (2.6)

l(previo)
—+uldw
awi]- B

ji

Nessa equagao, ¢ € cada iteracado, j e i sdo os neurdnios (ou os nos) de c]ellda camada /, w € o peso
sinaptico, E ¢ a média dos erros quadraticos totais, ) ¢ a taxa de aprendizado e u € o coeficiente

de momento.

A taxa de aprendizado (1) define a magnitude do passo durante o ajuste do peso; um valor alto
pode causar oscilagdes e uma convergéncia lenta, enquanto uma taxa muito baixa exige varias
iteracdes. Em relacdo ao coeficiente de momento (), ele modifica o valor da iteragdo anterior
para diminuir o erro do valor atual; se o valor for baixo, o treinamento se torna lento. Assim,

um valor adequado de n e p garante um treinamento apropriado e um aprendizado rapido. Esse
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mesmo procedimento € utilizado para o parametro de viés (Abraham, 2005)

Embora o uso do algoritmo BP apresente bons resultados no RNA, tem algumas limitagdes as

quais serao detalhadas na se¢ao 0 deste trabalho.

A funcdo de ativacdo constitui outro conceito fundamental em redes neurais. Essas fungdes,
aplicadas no interior dos neurdnios, introduzem propriedades nao lineares ao sistema,
conferindo-lhe a capacidade de aprendizado a partir de intrincados padroes de dados (Azoor et
al, 2022). Sua relevancia na estimativa dos resultados se acentua progressivamente ao longo
das épocas de treinamento. Tal importancia reside no fato de que a funcao de ativagdo modula
a soma ponderada de todos os sinais de entrada de um neur6nio, determinando a intensidade de
sua ativagdo (Basheer & Hajmeer, 2000). Uma variedade de fungdes de ativacdo esta
disponivel, incluindo a sigmoidal, a hiperboélica (ou tangencial) e a ReLU (Rectified Linear Unit

— Unidade Linear Retificada).

Embora as duas primeiras fun¢des sejam amplamente aplicaveis, elas ndo apresentam simetria
em relacdo ao eixo central das coordenadas (eixo zero). Glorot et al. (2011) sugerem que a
fun¢do ReLU ¢ preferivel por ser unilateralmente antissimétrica, o que resulta em uma resposta

nula para uma entrada real oposta.

A funcdo sigmoide também conhecido como fungdo logistica executa a transformagdo na
entrada x, de modo a gerar um valor de saida entre 0 e 1. Na Figura 2.16, apresenta-se a equagao

e o grafico que descreve esta func¢ao.

1 /
1te—* /

flx) =

=100 =15 =50 =25 00 25 5.0 75 0.0

Figura 2.16:Equacao e Grafico da Fungdo Sigmoide

J& a funcdo tanh (tangente hiperbodlica) transforma a entrada x para gerar um valor de saida entre

-1 e 1. Apresenta-se, na Figura 2.17 a equagdo e o grafico que descreve esta funcao.
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Figura 2.17 — Grafico e Equacao da Fung¢ao Tanh

Por ultimo, a funcdo de ativacdo ReLU (unidade linear retificada) transforma a saida usando o

seguinte algoritmo:
. Se o valor de entrada x for menos que 0, retornara ao valor de 0;

o Se o valor de entrada x for maior ou igual a 0, retorne ao valor de entrada.

Na Figura 2.18, apresenta-se a equagdo e o grafico que definem a fun¢do ReLU.

10] / '
o] //
f(x) = max(0,x) “1 /
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Figura 2.18: Equagdo e Grafico da Fungao ReLU

Neste estudo, a fun¢do de ativagdo “ReLU” (Unidade Linear Retificada) foi escolhida em ambas
as camadas ocultas, pois ¢ atualmente considerada a func¢ao de ativagdo que produz as melhores
solucdes, porque ¢ menos suscetivel ao problema de gradiente nulo na fase de treinamento da
rede. Uma vantagem do ReL.U ¢ que ele pode convergir em um curto periodo em comparagao

com as funcdes Sigmoid ou Tanh. A equagdo para o ReLU pode ser vista na Figura 2.18

2.7 RNA APLICADO A ENGENHARIA GEOTECNICA
Esta secdo apresenta uma breve compilagdo de artigos que abordam a aplicacdo da IA na

Engenharia Civil, especificamente as Redes Neurais Artificiais (RNA). Assim, serd destacado
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seu uso na Engenharia Geotécnica € no comportamento de geossintéticos.

A inteligéncia artificial aprimora os métodos computacionais na engenharia geotécnica,
oferecendo vantagens sobre os métodos convencionais como Método de Elementos Finitos,
Método dos Elementos de Contorno e o Método de Elementos Discretos. As vantagens
aumentam a acurécia e eficiéncia dos célculos, complementando e otimizando as abordagens
tradicionais. Pois, ao lidar com relagdes nao lineares, os métodos de calculos convencionais
exigem premissa simplificadoras e varios ajustes manuais dos parametros utilizados resultando
em valores menos precisos.

Em contrapartida os algoritmos de IA e ML processam dados multidimensionais
complexos, extraem caracteristicas de forma automatica e constroem modelos nao lineares de
alta precisdo. Por exemplo, segundo (Shao et al. 2023), os algoritmos como Maquinas de
Vetores de Suporte (SMV) e as Redes Neurais Aritficiais (ANN), sobressaem na previsao de
capacidade de carga de fundagdo e na andlises de estabilidades de taludes, melhorando a

acuracia das previsoes.

No caso a engenharia geotécnica, a maioria de propriedades dos materiais exibem
caracteristicas altamente ndo lineares, assim a coleta de dados de andlise geotécnico, seja por
meio de ensaios laboratoriais ou na literatura requer de muito tempo e investimento financeiro.
Portanto a identificacdo de parametros de entradas que impactam significativamente na
modelagem de IA se torna essencial. Os autores Liu et al.(2024) apresentaram um resumo dos
parametros de entrada muito utilizados nas éareas de engenharia geotécnica baseado em
resultados de uma revisdo bibliografica, os quais serviram como orientagdo inicial para a
selecdo dos principais pardmetros de entrada durante a coleta de dados. Este resumo dos

parametros de entradas, encontram-se na Tabela 2.9.

Tabela 2.9: Sele¢ao de parametros de entrada e saida para modelos de IA em diferentes areas
da engenharia geotécnica (Liu et al., 2024)

Area de A 2 g g
pesquisa Parametros de entrada comumente usados Parametros previstos (saida)
Propriedades fundamentais de amostras TR i
.. . . Distribuicdo granulométrica, forma das
geotécnicas brutas, dados experimentais . L s
. s C . . . particulas e caracteristicas geométricas,
Propriedades historicos, condigdes, imagens de microscopia ) . - ~
. . .. S porosidade ou indice de vazios, saturagdo
Fisicas de materiais geotécnicos, localizagdo . L
, . - . ou teor de umidade, e varios tipos de
geografica e informacgdes estratigraficas das .
amostras densidade
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Area de A A q G
2 Parametros de entrada comumente usados Parametros previstos (saida)
pesquisa
Distribuicdo granulométrica de amostras As resisténcias maximas de materiais
Resisténcia geotécnicas, dados experimentais historicos geotécnicos, resisténcia a tragdo,
(tensdo-deformagdo) e condigdes ambientais | resisténcia & compressdo e resisténcia ao
como temperatura, umidade e pressdo cisalhamento
Informagdes microestruturais de amostras
. geotécnicas, historico e ciclos de Modulo de elasticidade, méodulo de
Modulo ~ . .
carregamento, ¢ resultados de testes deformagdo e coeficiente de Poisson .
laboratoriais
Modelo Incluindo histérico de tensdao-deformacgéao
o (como caminhos de carregamento, taxas e ~ ~ ~
constitutivo . L . A relagdo tensdo-deformacgao dos
dados de diferentes estagios), juntamente com ..
baseado em N ARG . materiais
parametros para distribuicao de trincas e
dados . .
micro trincas
Parametros de estado inicial (como Curva de compressdao, mddulo de
. porosidade inicial, teor de umidade e indice compressdo e indice de compressdo,
Propriedade de ~ - . . .
Compressio de compressdo), condi¢des de carregamento ¢ | porosidade e teor de umidade previstos
p condigdes ambientais (como temperatura, sob pressdes variaveis, e outros
umidade e pressdo confinante) pardmetros relevantes
Propriedades fundamentais do solo (como Coecficiente de permeabilidade, curvas de
distribui¢@o do tamanho das particulas e propriedade de permeabilidade
Propriedade de | estrutura dos poros), teor de umidade inicial e relacionadas a saturacdo, e outros
Permeabilidade | grau de saturagdo, condi¢des ambientais como parametros relacionados a
temperatura e pressao, e condi¢des de permeabilidade (como porosidade efetiva
carregamento e coeficiente de difusdo)
Parametros sismicos, caracteristicas tipo de . . ~ ~
. , s Potencial de liquefacao e deformacdes
Propriedade de solo e tamanho das particulas, condigdes do . . . ~
. ~ (. A do solo induzidas pela liquefacdo, como
Liquefagao lengol fredtico, parametros de estado do solo e A
. ~ subsidéncia e fissuras
eventos de liquefacdo

Assim, a [A tem atraido interesse em diversos campos profissionais devido a sua versatilidade,
simplicidade de aplicagdo e capacidade de resolver problemas complexos a partir de resultados
de dados existentes. Um dos primeiros autores a compilar registros de publica¢des sobre IA na
Engenharia Civil foi Sriram, em 1984, que apresentou uma série de titulos relacionados a
arquitetura, engenharia civil e geologia, que utilizavam a metodologia de Sistemas Especialistas
Baseados em Conhecimento (KBES). Posteriormente, outros autores publicaram pesquisas de
ponta, que compilavam a aplicacdo da IA na engenharia civil, o que evidenciou um grande
interesse na analise e resolucao de problemas (Reich, 1997; Adeli, 2001; Lu et al., 2012; Shahin,
2013; Salehi & Burguetio, 2018; Dede et al., 2019; Huang & Fu, 2019; Lagaros & Plevris,
2022).

Reich (1997), desenvolveu um trabalho em que propos um processo de sete etapas para a
implementa¢do bem-sucedida de solucdes de ML. Através de exemplos em engenharia civil,
demonstrou que, embora o ML tenha um potencial imenso ainda a ser explorado, seu sucesso ¢

intrinsecamente ligado a adesdo cuidadosa e ao tratamento das complexidades inerentes a cada
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fase desse processo proposto.

O trabalho desenvolvido por Lu et al. (2012) explora uma gama de métodos e teorias de TA
desenvolvidos para aplicagdes em engenharia civil. Isso inclui desde técnicas amplamente
conhecidas como computacao evolutiva, redes neurais, sistemas fuzzy e sistemas especialistas,
Ao final, o artigo também identifica as principais tendéncias de pesquisa, fornecendo uma visao

abrangente do progresso da inteligéncia artificial no contexto da engenharia civil.

Shanin, em 2013 realizou um estudo que revisa de forma abrangente o uso, vantagens, desafios
e potencial da Inteligéncia Artificial em diversas subareas da engenharia civil, com énfase na
engenharia geotécnica. O trabalho concentra-se em trés técnicas de IA tidas como as mais
eficazes para essa area: Redes Neurais Artificiais (ANNs), Programacdo Genética (GP) e

Regressao Polinomial Evolutiva (EPR), com as ANNs sendo a mais empregada.

Em 2019, os autores Dede et al. (2019), apresentaram um estudo que se concentra nas aplicagdes
da Inteligéncia Artificial (IA) na engenharia civil, destacando seu papel crescente e potencial.
Reuniu artigos de revisdo que abordam técnicas como Redes Neurais Artificiais (ANN),

sistemas fuzzy, sistemas especialistas e inteligéncia de enxame também foram incluidos.

Uma pesquisa realizada por Lagaros & Plevris, 2022 na base de dados Scopus, em junho de
2022, utilizando termos como "inteligéncia artificial" e "engenharia civil", revelou mais de
14.000 artigos publicados desde 2000. Esse crescimento acelerado indica que o uso da IA na
engenharia civil esta em ascensdo e trara inovagoes significativas nos proximos e revelou mais

de 14.000 artigos publicados desde 2000.

As primeiras pesquisas publicadas sobre o uso de RNAs na area de engenharia geotécnica foram
apresentadas nos primeiros anos da década dos 90. Trabalhos como “Uso de RNAs para
determinagdo de coeficiente de condutividade hidraulica em solos ndo saturados” por Gribb &
Gribb, em 1994, entre outros (Lee & Sterling, 1992; Kaseko & Ritchie, 1993; Pachepsky et al.,
1996, Schaap & Bouten, 1996) apresentaram resultados interessantes € deram um bom impulso

para o uso do RNA em mais problemas geotécnicos.

Baghbani et al. (2022), também, realizam uma revisao de artigos, publicacdes e trabalhos de
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aplicagdo IA nessa area da engenharia. A Figura 2.19 apresenta o numero de estudos realizados

usando os métodos de [A em nove campos da engenharia geotécnica

Unsaturated soils

Dams

Tunnelling and TBM
Shallow and pile foundation
Slope stability

Landslide and liquefaction
Subgrade soil and pavement
Rock mechanic

Frozen soils and soils thermal properties

0 50 100 150 200 250

Key areas of geotechnical engineering

The number of studies
M ANN FIS MANFIS = SVM MLSTM MResNet BMCNN M GAN M Other Al methods

Figura 2.19: Distribuicao do uso de diferentes técnicas de IA na engenharia geotécnica em
nove areas de aplicacdo (Adaptado de Baghani et al.,2022)

Além de apresentar o numero de estudos realizados por cada campo, foi realizada uma
comparagao entre as técnicas de IA usadas nas publicac¢des, de modo que se destacou o uso da

técnica de redes neurais.

Na literatura, foram examinados trabalhos que empregaram o método de Redes Neurais

Artificiais como uma ferramenta de analise em geossintéticos:

O artigo desenvolvido por Sardehaei e Mehjardi (2017) apresenta um modelo de rede neural de
tipo backpropagation para prever a resisténcia a tragdo retida em geotéxteis ndo tecidos apos a
instalacdo. Usando dados de 34 testes de campo, a rede neural previu com acurécia a resisténcia,
superando um modelo de regressdao. O estudo revela que os danos de instalagdo do geotéxtil
aumentam apoOs a compactagado, especialmente em condi¢des de menor resisténcia inicial, maior

estresse aplicado e condigdes especificas do material de enchimento e do subleito.

Silva et al. (2021) realizaram um estudo na previsao da resisténcia a tracdo e eficacia erosional
de geotéxteis naturais utilizando Redes Neurais Artificiais (ANN, do inglés Artificial Neural
Network). Claro, este estudo se concentrou na previsdo da resisténcia e eficacia erosional de
geotéxteis naturais usando Redes Neurais Artificiais (RNAs). Trés tipos de fibras naturais —

coco, abaca e aguapé — foram usados como geotéxteis. Foram desenvolvidos modelos para
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entender como essas fibras influenciam a resisténcia e a capacidade de reduzir a erosdo. Os
modelos de RNA demonstraram uma excelente capacidade de previsao, com correlagdes altas

e erros baixos.

Outro estudo realizado por Chao et al. (2021) avalia a resisténcia ao cisalhamento pico entre a
interface solo-geocomposto (GDL) em estruturas de engenharia. Com base em uma grande base
de dados de 316 testes diretos de cisalhamento solo-GDL, diferentes modelos de aprendizado
de maquina foram utilizados para prever essa resisténcia. Os modelos BPANN, SVM, ELM,
otimizados por PSO, GA e método exaustivo, foram comparados, o que revelou que o BPANN
otimizado por PSO teve a melhor acuracia preditiva. O estudo identificou a influéncia de varios
parametros e destacou a pressao normal como o fator de maior impacto. Uma equagdo empirica
foi desenvolvida para estimar essa resisténcia, de modo a fornecer uma ferramenta util para

engenheiros geotécnicos com pouco conhecimento em técnicas de aprendizado de maquina.

Os autores Tanga et al. (2023), também, investigaram a aplica¢do da regressdao Random Forest
(um algoritmo de Machine Learning) para prever o angulo de atrito em interfaces
geomembrana-areia. O estudo incluiu 495 interfaces de geomembranas lisas e rugosas em
contato com areia, utilizando dados de diversas fontes nacionais e internacionais. Os resultados
principais revelaram uma forte correlacdo entre os angulos de atrito laboratoriais e as
estimativas da Random Forest, com coeficientes de determinacdo (R?) de 0,93 para o conjunto
de treinamento e 0,92 para o conjunto de teste, confirmando a alta eficiéncia da técnica

empregada.

Assim, observa-se um crescente uso e potencial da Inteligéncia Artificial (IA) e de seus estudos
derivados na engenharia civil, especialmente no campo geotécnico, o que tem possibilitado
analises cada vez mais precisas e fundamentadas. Contudo, ainda h4d uma lacuna significativa
de pesquisas especificas que explorem a aplicacdo da IA no desempenho dos geotéxteis. A
escassez de artigos, dissertagdes e teses que utilizam abordagens de machine learning para
investigar os parametros que influenciam a funcdo filtrante desses materiais evidencia essa
necessidade. Diante disso, existe um a necessidade de desenvolver pesquisas nesta area, o que

constitui o objetivo central da presente dissertacao.

2.8 REGRESSAO MULTIVARIADA (RM)
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Esta ferramenta aborda um conjunto de métodos e técnicas estatisticas utilizadas para
compreender melhor as varidveis que influenciam o problema a ser analisado. Essa avaliagdo
das variaveis ¢ feita por meio da analise de um conjunto de dados (Santos, 2019 apud

Mingoti, 2013).

2.8.1 APLICADA A ENGENHARIA GEOTECNICA

A analise multivariada ¢ frequentemente utilizada em estudos de engenharia geotécnica, em que
¢ necessario compreender as interagdes entre diferentes propriedades do solo, como resisténcia,
permeabilidade, densidade, entre outras. Essa analise pode ser aplicada em diferentes contextos,

como projetos de fundagdes, estabilidade de taludes, comportamento de aterros, entre outros.

Existem vdrias técnicas de andlise multivariada que podem ser aplicadas na geotecnia. De forma
geral, as técnicas sdo divididas em dois tipos: técnicas de interdependéncia e técnicas de
dependéncia. A primeira ¢ baseada na interrelagdo entre varias variaveis, com a finalidade de
analisar a existéncia de correlagdes entre ela. Ja a outra determina modelos em que uma ou mais

variaveis sao dependentes de outras variaveis.

Entre essas técnicas, destaca-se componentes principais € regressao linear multipla, pois foram
técnicas adotadas em inumeros trabalhos aplicadas a geotecnia (Gardoni, 2000; Bera et al.,
2005; Marrapu & Jakka, 2027; Palmeira et al.,2024; Santos et al., 2025). A analise de
componentes principais explica a estrutura de variancias e covariancia dos dados por meio de
combinagdes lineares. Essa analise permite uma redugao das varidveis independentes originais
que ndo se correlacionam com a varidvel dependente, para obter variaveis conhecidas como
componentes principais. (Pearson,1901). Cabe destacar que esse tipo de analise € caracterizado
mais por servir como um passo intermedidrio para realizar outras andlises, como regressoes,

agrupamentos etc.

Por outro lado, a andlise de regressdo multipla ¢ uma técnica estatistica usada para entender a
relacdo entre uma varidvel dependente (ou critério) e diversas varidveis independentes (ou
preditoras). Seu objetivo € usar os valores conhecidos das variaveis independentes para prever
os valores da variavel dependente escolhida. Cada variavel independente ¢ ponderada durante

o processo de analise de regressao para garantir uma previsdo eficaz baseada no conjunto delas.
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Esses pesos representam a contribuigdo relativa de cada variavel independente para a previsao
total, mas interpretar sua influéncia pode ser desafiador quando hé correlacdo entre as varidveis
independentes. A combinagdo ponderada das varidveis independentes forma a variavel
estatistica de regressao, também chamada de equacdo ou modelo de regressao. Esse modelo

representa uma varidvel estatistica fundamental nas técnicas multivariadas.

Y:ﬁo+ﬂlx1+ﬂzx2+++ﬁpxp+6 Eq (27)

Onde Y ¢ a varidvel dependente ou variavel que se deseja prever; [, varidveis independentes;
, Bo, intercepto; B, , coeficiente de regressdo parciais; ¢ €, variavel de erro.

A regressdo multipla sera abordada no item 5.3 e servird como metodologia de comparacao
com a rede neural (rna), a fim de avaliar os diferentes métodos para prever o comportamento

filtrante do geotéxtil

3 METODOLOGIA
Neste capitulo, detalha-se a metodologia adotada para avaliar o uso de Redes Neurais Artificiais
(RNA) como ferramenta de previsdo do desempenho filtrante de geotéxteis, especificamente
em termos de permeabilidade do sistema solo/geotéxtil. A Figura 3.1 ilustra as trés etapas
gerais, que compreendem a defini¢do de um banco de dados, desenvolvimento de um modelo

treinado ¢ a validagdo desse modelo treinado.
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Prever o desempenho do sistema solo/geotéxtil

usando modelos de RNA.
Proposta |

Comparagdo dos modelos de predigdo

l

Banco de Dados

l

Processo Defini¢ao do Modelo Treinado

l

Generalhizagdo do Modelo de RNA

Redes Neurais | Regressao
Artificias Linear

Avwvaliar os resultados de predig¢do das técnicas

I

Conclusao e Sugestoes

Figura 3.1: Metodologia Geral adotada em este estudo.

De forma mais especifica, a primeira etapa, dedicada a formagdo do banco de dados, inicia-se
com a coleta de dados, seguida por andlises preliminares € um pré-processamento dados para a
selecdo dos parametros de interesse (parametros de entrada e saida). Essas etapas iniciais,
relacionadas aos dados fornecidos, sao realizadas de maneira iterativa, conforme detalhado no
item 4.2, dada a influéncia da qualidade e da quantidade dos dados na modelagem da RNA.

Somente apds a definicao de um banco de dados consistente, a etapa seguinte € iniciada.

Na segunda etapa, voltada a defini¢do do modelo treinado, e ap6s a conclusdo da primeira,
inicia-se o treinamento do modelo. Isso envolve a defini¢do da fung¢do de perda, do otimizador
para os pardmetros do modelo e do método de inicializagdo desses pardmetros. Em seguida, a
validacao cruzada ¢ empregada na fase de otimizagao de hiperparametros, com o modelo sendo
treinado em multiplas particdes (utilizou-se a validacdo cruzada k-fold). Paralelamente,
aplicam-se técnicas de regularizag@o para mitigar o overfitting durante a fase de treinamento do

modelo.
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Na terceira etapa, apds a obtencdo do modelo treinado, ou seja, um modelo baseado em uma
rede neural artificial que aprendeu a partir dos dados ao ajustar iterativamente os pesos das
conexoes entre os neurdnios para minimizar os erros nas previsoes, avalia-se seu desempenho
final utilizando um conjunto de dados especifico (conjunto de validagdo). Essa validacao ¢
conduzida por meio de analises graficas e de residuos, e ¢ complementada por uma avaliagdo
da importancia dos parametros. Esta avaliacao tem como objetivo identificar quais variaveis de
entrada mais influenciam nas decisdoes do modelo, permitindo maior entendimento e a possivel
eliminacdo de variaveis irrelevantes. Entre os métodos utilizados, destacam-se abordagens

como a permutacgao de variaveis.

E importante ressaltar que essa metodologia possui um carater iterativo. Isto ¢, caso ndo se
alcance uma acuracia considerada aceitavel durante o desenvolvimento, diversas variaveis
podem ser modificadas, o que exige a repeticdo de toda a metodologia para garantir a obtengao

de um modelo 6timo.

Os passos para o desenvolvimento do modelo de RNA sdo apresentados graficamente na Figura

3.2

_______________ Dados de Dados de H
7 Treinamento Validacdo H
Banco de !
! P
! Dados ! Validacdo
» Cruzada
l Funcdo de
B o Perda
USS:SO: € — Treinamento do 1
| 1 SR Inicializacdo modelo
[ ! dos
Selecdo de | parametros
= 1
Parametros p— Otimizacdo de
1 i Otlr:mza or Hiperparametros !
Divisgo de i parametros
| Dados i
e ! i Regularizacdo
I, d
e —————— e ssssss s - -1
Dados de !
Anélise de Teste :
! Importancia de
Parametros Avaliacéo de
Modelo - 1 Desempenho
final Analises H
Graficas i
H Calculo de i
: Métricas
R et A

Figura 3.2: Passos para desenvolvimento do modelo RNA adotado neste estudo.
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3.1 BANCO DE DADOS
FF Os dados de entrada (inpuf) e os valores de permeabilidade final do sistema foram
definidos com base nos resultados obtidos em investigacdes anteriores conduzidas por

diversos autores, totalizando uma coleta de 352 amostras.

Conforme mencionado anteriormente, as Redes Neurais Artificiais (RNAs) representam
uma abordagem eficaz fundamentada no aprendizado de dados de entrada e saida (Shabin,
2013; Al-Atroush, 2024). E crucial destacar a influéncia do niimero de variaveis de
entrada no tempo de processamento da rede: um maior nimero de variaveis implica em
uma rede de maior dimensao e, consequentemente, em um tempo de analise mais extenso
para a resolu¢do do problema (Lachtermacher & Fuller, 1994). Contudo, Shanin et al.
(2000) sugerem que um numero elevado de varidveis pode, paradoxalmente, aprimorar o
desempenho da rede. Nesse contexto, o presente trabalho empregard uma RNA para
prever o desempenho filtrante do sistema solo/geotéxtil, quantificado pela sua

permeabilidade.

A primeira etapa desta pesquisa consistiu na busca e coleta de dados, especificamente
dados e resultados de ensaios laboratoriais destinados a avaliacdo da permeabilidade do
sistema solo/geotéxtil. Essas informagdes foram extraidas de publicagdes como artigos de
periddicos internacionais, teses, dissertagdes e acervos pessoais de dados. Através das
informacdes compiladas, foi possivel identificar e estabelecer os parametros de entrada
relevantes e os respectivos valores de saida. Ao final dessa etapa, foram reunidos um total
de 352 dados para o treinamento e a validacdo do modelo de RNA. A Tabela 3.1 detalha

os trabalhos consultados e o nimero de dados obtidos de cada fonte.
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Tabela 3.1: Quantidades de dador por trabalho

Nome do Trabalho/Paper Autor/ Ano Pais Numero de
dados coletados
Evaluation of geotextile/soil filtration i
characteristics using the hydraulic Williams & USA 10
. - . Abouzakhm (1989)
conductivity ratio analysis
Geotextile filter perforrpance with Lawson (1990) Reino Unido 4
fine grained soils
Long term filtration behgviour of Qureshi et al (1990) USA 30
non-woven geotextiles.
Laboratory measurement of Williams & Luettich USA 5
geotextile filtration characteristics (1990)
Correlation between long term flow
testing and current geotextile Wayne & Koerner USA ]
filtration design practice. (1993)
Proceedings of Geosynthetics
Geotextile Filters for Internally Bhatia & Huang USA 2%
Stable/Unstable Soils (1996)
Avaliacao da aplicabilidade de
ensaios de labqrgtériNO e critéri?s d.e Gardoni (1995) Brasil 3
filtros para a utilizacao de geotéxteis
em solos do Distrito Federal.
A study on the behaviour of soil- : .
geotexti}lle systems in filtration tests Palmeira et al. (1996) Brasil >
Acervo Pessoal Gardorzll (59}9);1 Imeira Brasil 1
Selection of geotextiles to filter ,
broadly graded cohesionless soils Lafleur (1999) Canada 0
Clogging phenomena of the residual | 1 o1 (2002) | Korea e USA 3
soil-geotextile filter system.
Comportamento do filtro drenante de
geotéxteis em barragens de rejeitos Beirigo (2005) Brasil 5
de mineragdo
Soil-geotextile filter interaction .
under high stress levels in the Palmeira ct ?l' (2005) Brasil 22
. . & Gardoni (2000)
gradient ratio test
Filter Perfomance and Design for Lee & Bourdeau USA 12
Highway Drains (2006)
Filtration behaviour of soil-
nonwoven geotextile combinations Hong & Wu (2011) Taiwan 19
subjected to various loads
Changes of Permeability of
Nonwoven Geotextiles due to Miszkowska et al. Polonia 6
Clogging and Cyclic Water Flow in (2017)
Laboratory Conditions
Filtration Performance of Nonwoven
Geotextile Filtering Fine-Grained .
Soil under Normal Compressive Duetal. (2022) China 4
Stresses
Influence of physical clogging on L
filtration performance of soil- Markiewicz et al. Polonia 16

geotextile interaction.

(2022)
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Numero de

Nome do Trabalho/Paper Autor/ Ano Pais dados coletados

Long-term hydraulic performance of
geotextiles filtering recycled Odabasi et al. (2022) Turquia 75
materials

Comportamento de Filtros geotéxteis

em solos internamente instaveis sob Carvalho (2023)- Brasil 81
Dellane
confinamento
Acervo Pessoal Gardoni (2023) Brasil 8
Total de Dados 352

Os parametros de entrada foram selecionados com base nas informagdes extraidas dos
trabalhos listados na Tabela 3.1, a fim de identificar os fatores que podem influenciar no
desempenho filtrante do geotéxtil. Inicialmente, foram definidos 16 parametros de

entrada, detalhados na Tabela 3.2.

Tabela 3.2 — Parametros iniciais de interesse

Tipo de parametros/ Variaveis Parametros

Tipo de Geotéxtil (WG/NWG); dio, dis. dso; dso; deo,dss;

Parametros de Entrada (/nput)/Independentes .
Ce, Cy; Tt My, FOS; LS; igys,; v, Keys-o

Parametros de Saida (Output)/Dependentes Ksys

WG=Woven geotextile, WG=Nowoven geotextile, dx=Didmetro de particula do solo base para xx% de
passagem, C., C=coef. de curvatura C,=coef. de uniformidade, Tgr=espessura do geotéxtil, Ma=gramatura do
geotéxtil, FOS= abertura de filtragdo do geotéxtil, LS=espessura do corpo de prova; isys= gradiente hidraulico
do sistema (solo-geotéxtil),o,=tensdo vertical ksys.o = Coeficiente de permeabilidade inicial do sistema solo-

geotéxtil, keys = Coeficiente e permeabilidade final do sistema solo- geotéxtil.

A Tabela 3.3 por sua vez, detalha a quantidade de dados coletados para cada um dos

parametros de entrada e saida estabelecidos.

Tabela 3.3 — Quantidade de dados iniciais por pardmetros

Simbolo Parametros # Dados Simbolo Parametros # Dados

Parametros de Entrada (Inputs)

Diametro da particula

de solo correspondente Espessura do geotéxtil

dio a 10% do material mais 333 tor (mm) (g/cm?3) 343
fino (mm)
Diametro da particula
dis de solo correspondente Gramatura do geotéxtil
a 15% do material mais 333 M (g/m2) 348
fino (mm)
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Simbolo Parametros # Dados Simbolo Parametros # Dados
Parametros de Entrada (Inputs)
Didmetro da particula
dso de solo correspondente Abertura de filtragdo do
a 30% do material mais 341 FOS geotéxtil (mm) 347
fino (mm)
Diametro da particula
dso de solo correqundenpe 341 Ls Espessura do corpo de 333
a 50% do material mais prova (cm)
fino (mm)
Diametro da particula
deo de solo correspondente 341 ; Gradiente hidraulico do 312
a 60% do material mais sistema solo/geotéxtil
fino (mm)
Diametro da particula
dss de solo correspondente ~ .
2 85% do material mais 341 oy Tensao vertical (kPa) 341
fino (mm)
Didmetro da lacuna ou Cocficiente de
dgap do espagamento entre 56 Ksys-o permeabilidade inicial do 287
particulas (mm) sistema solo- geotéxtil
C. Coeficiente de 335 WG/NW Tipo de Geotéxtil 352
curvatura G (Tecido/Néo Tecido)
Ca Cocficiente de 335
uniformidade
Parametro de Saida (Output)
Coeficiente de
ksys permeabilidade final do 303
sistema solo- geotéxtil

Para prevenir o sobreajuste (overfitting) durante o treinamento da rede, o conjunto de dados foi
depurado, removendo-se valores discrepantes (outliers) e amostras com dados faltantes
relevantes, especialmente para ksys-o e ksys. A auséncia desses dados comprometeria a
avaliacdo do desempenho do filtro geotéxtil, pois impossibilitaria determinar se ocorreu
colmatacdo e, consequentemente, analisar sua eficdcia. Dessa forma, foram consideradas
principalmente 287 amostras Uteis para as analises, as quais abrangeram os dois tipos de
geotéxteis (224 amostras de geotéxtil nao tecido e 63 de geotéxtil tecido). Inicialmente, realizou-
se uma analise estatistica foi realizada uma anélise estatistica exploratoria, avaliando-se os
valores minimo, maximo, média, desvio padrdo, covaridncia e assimetria, com o objetivo de
verificar a influéncia de todos os parametros listados na Tabela 3.2 sobre o desempenho do

filtro geotéxtil, cujos resultados sdo apresentados no subitem 0 deste trabalho.

Ap0s essa andlise, constatou-se que o tipo de geotéxtil exercia pouca influéncia no desempenho.
Consequentemente, o presente estudo focou na analise de geotéxteis nao tecidos, de modo a

constituir um banco de dados de 224 amostras. A Tabela 3.4 apresenta a quantidade de dados
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coletados para os pardmetros de entrada e saida finais que serdo utilizados nesta pesquisa.

Tabela 3.4 — Quantidade de dados finais por parametros

Simb Parametros ‘ # Dados ‘ Simbolo ‘ Parametros # Dados
Parametros de Entrada (Inputs)
Diametro da particula
de solo
dio correspondente a 224 toT E(S)}:ée;filllr(?lig) 224
10% do material mais &
fino (mm)
Diametro da particula
de solo Gramatura do
dis correspondente a 224 Ma cotéxtil (¢/m2) 224
15% do material mais & &
fino (mm)
Diametro da particula
de solo Abertura de
dso correspondente a 224 FOS filtragdo do 224
30% do material mais geotéxtil (mm)
fino (mm)
Diametro da particula
de solo Espessura do corpo
dso correspondente a 224 Ls de prova (cm) 224
50% do material mais P
fino (mm)
Diametro da particula Gradiente
de solo . hidratlico do
deo correspondente a 224 i sistema 224
60% do material mais solo/eeotéxtil
fino (mm) £
Diametro da particula
de solo Tensdo vertical
dss correspondente a 224 oy (kPa) 224
85% do material mais
fino (mm)
Diametro da lacuna Ce(r)zizltfirllitga(iiee
deap ou do espacamento 224 Ksys-o ; I’Il) cial do sistema 224
entre particulas (mm) solo- geotéxtil
C. Coeficiente de 224
curvatura
Coeficiente de
G uniformidade 224
Parametro de Saida (Output)
Coeficiente de
s permegblhdade final 294
do sistema solo-
geotéxtil

Depois da defini¢ao do banco de dados final, foram propostos trés modelos distintos,

baseados nos tipos de solos a serem analisados, conforme o resumo apresentado na Tabela
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3.5.

Tabela 3.5 — Modelos a serem desenvolvidos

Modelo Tipo de solo Numero de Dados
Solos com concavidade para
1 ) , 224
cima e solos descontinuos
) Solos com cqncawdade para 149
cima
3 Solos descontinuos 75

3.1.1 NORMALIZACAO

A normalizacdo de dados foi aplicada no conjunto de dados, pois este método ajuda a definir
parametros mais uniformes, o que diminui a probabilidade de que valores menores sejam
sobrepostos e evita a saturagao de informacao nos nos da rede (James et al. ,2021). Neste estudo,
foi utilizada a normalizagdo minima ¢ maxima, a qual ¢ expressa pela Eq. (3.1), onde X, €
o valor normalizado de X;, ¢ X;nim € Xjnax S30 os valores minimo ¢ maximo de X;,

respectivamente, no banco de dados:

X: — X
Xnorm = l =2 Eq. (3.1)

Xméx - Xml'n

3.1.2 CORRELACAO DE DADOS — COEFICIENTE DE PEARSON (pr)

O coeficiente de correlagdo de Pearson foi empregado para analisar a relagdo linear entre os
parametros de entrada e a variavel de saida. Esse coeficiente, uma medida estatistica que varia
de -1 a+1, permite quantificar a intensidade e a dire¢ao da relacdo linear monotonica entre duas
varidveis continuas e aleatorias. Valores proximos de +1 indicam uma forte correlagao positiva,
enquanto valores proximos de -1 indicam uma forte correlagdo negativa. Valores proximos de

zero sugerem uma fraca ou nenhuma correlagdo linear entre as variaveis analisadas (Mukaka,

2012).

O célculo do coeficiente de correlacdo de Pearson entre duas variaveis € realizado por meio da
Eq. (3.2), na qual cov(x, y) € a covariancia entre dois variaveis € gy € g, s30 os desvios padrio

de cada varidvel. Além disso, para auxiliar na interpretagdo dos resultados obtidos, a Tabela 3.6

apresenta as faixas de correlacao e seus respectivos significados.
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_cov(x,y)
pr(x,y) = 020, Eq. (3.2)

E importante ressaltar que a interpretagio do coeficiente de Pearson pode variar dependendo do
contexto de cada estudo a que ele ¢ aplicado. Essa interpretagcdo € subjetiva e, portanto, deve
ser justificada claramente as faixas de correlagdo a serem utilizadas. Portanto, neste estudo,

serdo adotadas as faixas apresentadas na Tabela 3.6.

Tabela 3.6 — Faixas de valores para interpretacdo do coeficiente de correlagcdo de Pearson
(Schober et al.,2018).

Faixas de Correlacio Interpretacio
0.00—-0.10 Correlagdo Inexistente
0.10-0.39 Correlacao Fraca
0.40 - 0.69 Correlagcao Moderada
0.70 - 0.89 Correlacao Forte
0.90 - 1.00 Correlagao Muito Forte

3.2 CONFIGURACAO DO MODELO RNA

Neste estudo, a andlise da Rede Neural Artificial (RNA) foi realizada utilizando uma rede
Perceptron Multicamadas (MLP) feedforward, treinada com o algoritmo de aprendizagem de
retropropagacao (backpropagation - BP). Para a otimizacao da rede, o algoritmo de otimizagdo

bayesiano (BOA) foi adotado no modelo.

Para o desenvolvimento da metodologia de RNA, os algoritmos de aprendizado de maquina
serdo implementados e executados utilizando o moédulo de Aprendizado de Maquina do
software Tyche (Tyche, 2023), desenvolvido no Laboratério de Modelagem Computacional
Inteligéncia Artificial (LAMCIA) da Universidade de Brasilia. O software também incluira a

otimizagdo de hiperparametros (HPO).

Todos os modelos foram treinados com paralelizagdo em uma GPU basica NVIDIA GeForce
MX110 de 2 GB de memodria dedicada, com auxilio do CUDA, uma plataforma criada pela
NVIDIA que facilita a computacdo em paralelo. Os cédigos serdo programados em linguagem

Python®, os quais foram aplicados com sucesso em outros estudos para fins de previsao
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(Chaves et al.,2023; Evangelista Junior; Almeida, 2021; V. P. Silva et al., 2023).

3.2.1 ARQUITETURA DA REDE NEURAL (RNA)

Segundo Abraham (2005), uma rede MLP ¢ dividida em trés partes: camada de entrada,
camadas intermediarias ou ocultas € camada de saida. Nesse sentido, os dados foram
processados através de uma Rede Neural Artificial (RNA) feedforward totalmente conectada,
conhecida como arquitetura Perceptron Multicamadas (MLP). A camada de entrada e cada
camada oculta do MLP foram construidas sequencialmente com uma transformacao linear (em
que se aplicou pesos e bias), uma camada de normalizagdo em lote e uma funcdo de ativagdo
ReLU (Unidade Linear Retificada). Em razdo dessa escolha de fungdo de ativacdo, a
inicializacdo dos pesos das camadas lineares foi feita com a Inicializacdo de Kaiming He,
enquanto os bias foram inicializados com zero. Nas camadas de normalizagdao em lote, os pesos
foram inicializados com 1 e os bias com 0. O treinamento foi realizado com a variante AMSGrad

do otimizador Adam até a convergéncia.

Os critérios de convergéncia foram tanto o niimero maximo de épocas quanto o numero de
épocas de paciéncia na técnica de parada antecipada (early stopping). Para os conjuntos de
dados utilizados , todos os modelos definiram 10.000 como o nimero méaximo de épocas e 200
como paciéncia. Esses altos valores de épocas maximas foram utilizados para garantir a
convergéncia durante o treinamento, uma vez que a implementagdo da parada antecipada
preveniu o overfitting e interrompeu o treinamento muito antes do maximo de épocas

estabelecido.

O conjunto de dados foi separado em 80% para treinamento e 20% para teste. A funcdo de perda
utilizada foi o Mean Squared Error (MSE), por ser o usual para modelos de regressdao. O
otimizador usado para treinar as redes foi um otimizador baseado em gradiente chamado
AMSGrad, uma variagdo do otimizador Adam que propde melhor convergéncia. A funcao de
ativacdo empregada nas camadas ocultas foi a Rectified Linear Unit (ReLU), por ser a
recomendagao padrao para otimizadores baseados em gradiente, dado seu formato quase linear.
Foi utilizada valida¢do-cruzada k-fold com k = 5 e os hiperparametros dos modelos foram
otimizados utilizando Otimizagdo Bayesiana (OB). Essa técnica, com base em um modelo
surrogado probabilistico, calcula a cada iteragdo qual o melhor proximo ponto da funcao

objetivo a ser avaliado, assim, performa bem em problemas em que a funcao objetivo € custosa.
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A fungdo objetivo em questao foi a média do MSE dos 5 folds de validagdo. Os hiperparametros

otimizados e seus intervalos de busca (rango) estdo definido na Tabela 3.7

Tabela 3.7: Hiperparametro otimizados e seus espagos de busca

Hiperparametro Rango
Taxa de aprendizado (o) [10_4, 10_1]
Decaimento de peso () [10_9, 1]

Camadas Ocultas [1,4]

Neuronios em cada camada [10, 1000]
oculta

Foram empregadas 3 técnicas de regularizacdo, a fim de evitar o overfitting e de garantir boa
generalizacdo dos modelos. Sao elas:

e FEarly Stopping: ela consiste em parar o treinamento do modelo quando o erro do
conjunto de validagdo ndo estd mais baixando apés um dado nimero de iteracdes
consecutivas, de modo a evitar, assim, treinamento e€xcessivo;

e Decaimento de peso: a técnica penaliza pesos grandes com base no quadrado da norma
L2 e em um hiperpardmetro lambda, que controla o quanto os pesos grandes sdo
penalizados;

e Batch Normalization: um método de reparametrizacdo que acelera e estabiliza o
treinamento, o que melhora performance do modelo. Ela normaliza os inputs de cada
camada para média 0 e varidncia 1. Em seguida, para manter a capacidade de

representacdo do modelo, aprende parametros de escala e deslocamento do resultado.

Gragas a essa divisdo de dados, foi possivel determinar os valores 6timos de pesos sinapticos
e vieses que minimizam o erro na previsao do modelo. A fase de teste, por sua vez, avalia o

desempenho do modelo com base nos parametros finais obtidos durante a fase de treinamento.

3.2.2 ALGORITMO DE OTIMIZACAO BAYESIANA

Em aprendizado de méaquina, um hiperparametro € um parametro cujo valor precisa ser definido
antes do treinamento do modelo, dessa forma, € raro encontrar algoritmos que nao os utilizem.
Para algoritmos como XGBoost, Random Forest (RF) e outros métodos de Machine Learning
(ML) comparativos, diversos hiperparametros impactam significativamente a acuracia

preditiva. Portanto, o ajuste adequado desses hiperparametros, processo conhecido como
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otimizagdo de hiperparametros, ¢ crucial.

Cada vez mais, essa otimizacao ¢ realizada por métodos automatizados que buscam os melhores
hiperparametros de forma eficiente, utilizando estratégias de busca informada. Esses métodos
dispensam operagdes manuais adicionais ap6s a configuragdo inicial. A Otimizagao Bayesiana
(OB) se destaca como a principal escolha para otimizar fungdes objetivo (Snoek et al., 2012;
Ghahramani, 2015; Xia et al., 2017). Ela opera através da constru¢do de um modelo
probabilistico (substituto) da fung¢ao objetivo com base em avaliagdes anteriores, buscando o
ponto que minimiza essa fun¢do. Recentemente, a BO tem sido amplamente adotada para o

ajuste de hiperparametros em aprendizado de maquina.

A Otimizag¢do Bayesiana (BO) tem suas raizes nos trabalhos de Kushner (1964), Mockus (1975)
e Zhilinskas (1975). Jones et al. (1998) realizaram uma das primeiras aplicagdes significativas
da BO, ao desenvolverem um algoritmo de otimizacdo global eficiente para problemas de
engenharia em que o nimero de avaliacdes da fungdo objetivo € severamente limitado por

tempo ou custo.

Em modelos de ML, o ajuste de hiperparametros pode ser formulado como um problema de
otimizagdo de funcdo caixa-preta, desconhecida e sem derivadas, o que impede o uso de
técnicas tradicionais, como o método de Newton ou o gradiente descendente (Wu et al., 2019).
Os métodos Bayesianos sdo particularmente eficazes nesse cenario, pois incorporam uma
estrutura probabilistica a informagao obtida através das avaliagdes da funcao (Betro & Rotondi,

1991).

De acordo com Turner et al. (2021), a Otimiza¢do Bayesiana (OB) ¢ um algoritmo de
otimizagdo de caixa-preta que se fundamenta na constru¢do de um modelo probabilistico
substituto da fungdo objetivo, fornecendo, também, uma medida de incerteza. Este modelo
substituto ¢ implementado por meio de Processos Gaussiano (GP), que empregam uma fungao
de aquisi¢do para determinar o ponto mais promissor a ser avaliado na proxima iteracdo. Em
geral, esse algoritmo demostra eficicia em problemas onde as avaliagdes da funcdo objetivo
sao trabalhosas, direcionando o tempo computacional de forma estratégica para identificacao

de parametros 6timos (Snoek et al., 2012).
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Para aplicagdo OB, o usudrio precisa definir os intervalos do espaco de busca e estabelecer um
critério de parada, o qual pode ser determinado por um nimero maximo de interagcdes ou pela
convergéncia. Esses requisitos demandam um conhecimento prévio do problema ou da
execug¢ao de multiplos testes de configuracdo para definir o espaco de busca de maneira
adequada. Essa definicdo cuidadosa visa evitar otimizagdes ineficientes em espagos de busca
excessivamente amplos ou a exclusdo do ponto 6timo em espagos restritos (Nguyen, 2019).
Nao obstante essas exigéncias iniciais, uma vez que os intervalos sdo definidos de forma
razoavel e um critério de parada ¢ estabelecido (seja por nimero de iteragdes suficiente ou por
convergéncia satisfatoria), o algoritmo se torna capaz de encontrar solugdes 6timas de maneira

automatica. Na Figura 3.3 é mostrado geralmente como o algoritmo BO funciona.

_4; Funcio Objetivo
Observagio (x) fn(f(.))

v Aquisi¢do maxima

funcdo de aquisicao (u(.)

t=3

r SSeaa=-="

Nova observagido

(xi)

meédia posterior (u(-))

incerteza posterior
(u(-) o)) v

Figura 3.3 :Ilustragdo de 3 iteracdo do algoritmo de otimizagdo bayesiano (modificado de
Brochu et al., 2010)

Na Figura 3.3, a parte inferior dos graficos exibe a fun¢do de aquisicdo, enquanto a parte
superior ilustra uma aproximagao da func¢ao objetivo por meio de Processos Gaussianos (GP).
A figura inicia na iteragdo 2, a figura demostra duas avaliagdes da fung¢do, representadas pelos
pontos pretos. Com base nessas observagdes iniciais, sao calculadas a média e o desvio padrao
do GP, que resultam em uma aproximacao da fungdo objetivo e fornecem a area azul que indica

a incerteza da distribui¢do posterior. Subsequente, ao utilizar a regressao GP, avalia-se a fungao
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de aquisi¢do, e seu ponto maximo ¢ selecionado como o préximo ponto a ser avaliado. Essa
nova avaliacdo gera uma nova observagao, a qual sera incluida em uma nova aproximagao GP,
reiniciando o processo iterativo. Dessa forma, mesmo que a nova observacao nao corresponda
a um minimo local, ela adiciona informagdes ao GP, de modo a contribuir para a busca pelo

minimo nas proximas iteragdes.

Em outras palavras, a Otimizacdo Bayesiana opera em um ciclo iterativo para encontrar o
minimo de uma funcdo objetivo desconhecida e dispendiosa de avaliar. Inicialmente, ela
constroi um modelo substituto probabilistico, tipicamente um Processo Gaussiano, que nao
apenas estima o valor da funcdo objetivo em diferentes pontos, mas também quantifica a
incerteza associada a essas estimativas. Em seguida, uma funcao de aquisi¢cao ¢ empregada para
guiar a selecdo do préximo ponto a ser avaliado na fung@o objetivo real. Essa funcdo crucial
equilibra a necessidade de explorar regides do espaco de busca com alta incerteza (onde o
minimo pode estar escondido) com a exploracdo de areas onde o modelo substituto prevé
valores baixos (proximos ao minimo). Apds a avaliacdo da funcdo objetivo no ponto escolhido,
o modelo substituto ¢ atualizado com essa nova informacao, refinando suas estimativas e
reduzindo a incerteza. Esse processo de selecdao de ponto via fungdo de aquisi¢do e atualizacao
do modelo substituto € repetido iterativamente até que um critério de parada predefinido seja
atingido, como um numero maximo de avaliacdes da fun¢do objetivo ou a detec¢do de

convergéncia nos resultados obtidos.

Assim como em outros problemas de otimizag¢ao, a solucao desejada ¢ o minimo de uma fungdo
f(x) em algum conjunto limitado X. A otimizag¢do bayesiana, especificamente, constrdéi um
modelo probabilistico para f(x) com a finalidade de utilizar toda a informacao fornecida pelas
avaliagdes anteriores da fungdo. Por isso, o custo computacional, de determinar o préoximo
ponto a ser avaliado ¢ justificavel devido ao custo de realizar cada avaliacao (Snoek et al.,

2012).

Os Processos Gaussianos (PGs) sdo uma colecdo de variaveis aleatdrias, qualquer nimero finito
das quais possui uma distribui¢do Gaussiana conjunta, € sdo completamente especificados por
fungdes de média e covariancia. A funcao de média m(x), representada pela Eq. (3.3), e a fungao
de covariancia C(x,x'), pela Eq. (3.4), de um processo real f(x) sdo definidas, de acordo com

William & Rassmussen (1996) e Bishop (2006), como:
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m(x) = E [f(%)] Eq. (3.3)

Clo,x) = E[(f(x) —mO))(f(x) —m(x")] Eq. (3.4)

E o Processo Gaussiano, ¢ descrito pela Eq. (3.5), onde a funcao de média m(x) € considerada

nula, para simplificar o modelo:

f(x)~GP(m(x),C(x,x")) Eq. (3.5)

Para aplicar PG ao problema de regressao, precisa-se considerar o ruido aleatério (€,) nos
valores alvos observados. O processo de ruido é considerado ao adotar uma distribuicao
Gaussiana e ser baseado em um hiperparametro (3¢ ) que representa a precisao do ruido, para,
assim, prever variaveis alvo para novas entradas, dado um conjunto de dados de treinamento.
Supondo que o conjunto de treinamento seja dado por alvos yx=(y1,...,yx)T que correspondem
aos valores de entrada x;, ..., x,, com o objetivo de prever yy dado xy+;, para isso, precisa-se
avaliar a distribuicao preditiva p(yn+:l yn), dado por uma Gaussiana com média e covariancia,
representadas pela Eq. (3.6) e Eq. (3.7) respectivamente.
m(xys1) = k"Cyly Eq. (3.6)

0?(xy41) = c—kTCyly Eq. 3.7)

Onde o vetor k tem elementos k (x,,xy+7) para n=1, ..., N, o escalar c= k (x,,xn+1)+ fce Cneéa
matriz de covariancia N X NC(xn,Xm ) =k (Xu,%m ) + fo! dumparan,m =1, ..., N. Onde 6,m é um
delta de Kronecker, que ¢ 1 se n=m e 0 caso contrario. Ja k (x,,x» ) € uma funcdo kernel para

regressao GP, que pode assumir muitas formas.

A partir dos Processos Gaussianos e a Regressao de Processos Gaussiano definidos, ¢ possivel
entender como as técnicas quantificam as incertezas de areas ndo observadas com base em
observacgdes anteriores, de modo a fornecer uma distribui¢do de probabilidade Bayesiana. Essas
técnicas combinam informagdes sobre a fun¢ao desconhecida com informagdes da amostra para
obter informagdes posteriores da distribui¢do da funcao com a formula de Bayes. A localizagao
do valor 6timo ¢ deduzida com base na informacao posterior (Betro, 1991). Embora esse valor
otimo seja baseado em uma fungao de aquisi¢@o e nao na fungdo original, devido ao fato de que

a funcdo de aquisicdo a (x) € conhecida, portanto, ela fornece o proximo ponto a ser avaliada
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na fungdo original.

Brochu et al. (2010) comentam que funcao de aquisi¢ao conhecida ¢ a de Melhoria Esperada.

Essa funcao de melhoria / (x) ¢ dada pela Eq. (3.8):

1(x) = max(0, fy1(x) — f* Eq. (3.8)

Onde fy+:(x) € a avali¢ao de um determinado ponto x e f* ¢ o melhor valor conhecido até esse
momento. Desse modo, ao escolher um proximo ponto x para ser avaliado, ele retorna a
diferenga entre sua avaliagdo f{x) e f*(x)>f*, caso contrario, retorna zero. O novo ponto de

consulta x é encontrado maximizando a melhoria esperada (Eq. (3.9))

x = argmax E[max(0, fy4+1(x) — f*)|Dyl Eq. (3.9)

Onde Dy, ¢ a distribuigdo a priori. A probabilidade de melhoria / em uma distribui¢do posterior
normalmente descrita por x(x) e o°(x) que pode ser computada a partir da equagdo de densidade

de probabilidade normal (Eq. (3.10))

_jM@—ﬂ@—ﬂ)> b G0

1
V2ma(x) exp( 20%(x)

A integral da Eq. (3.10) ¢ a Melhoria Esperada, expressada pela Eq. (3.11) a seguir:

_ _ 2
() - f) —ED )dl Eq. G.11)

I=e0 1
Bh= ]1=o V2o (x) exp< 20%(x)

Os autores Jones et al.(1998), comentam que a fungao EI (Eq. (3.11)) pode ser avaliada de
forma analitica o que resulta na Eq. (3.12) e Eq. (3.13):

(g(x) —fIP@) + c()p(Z) sea(x) >0 Eq. (3.12)

seo(x)=0

EI(x) = {
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=M(X)—f*

z o(x)

Eq. (3.13)

Onde ¢ e @, sdo a fungdo de densidade de probabilidade e a fungdo de distribui¢ao acumulativa

de distribui¢dao normal padrao, respectivamente.

Como ja mencionado, esse processo € iterativo até que o modelo convirja, ou seja, encontre o
melhor valor de acurécia, logo, varia-se os hiperparametros da rede. Assim, para este estudo,
foram definidos como hiperparametros da rede:

e  Numero de neuronios;

e Tipo de fun¢ao de ativagao;

e Taxa de aprendizado;

e Coeficiente de momento.

Para todos os casos de treinamento, foi definido um pardmetro de parada antecipada, com um

valor maximo de 3000 iteragdes (€pocas).

Os dados de entrada foram divididos na proporcao de 80 e 20 para as fases de treinamento e
teste, respectivamente. Na fase de treinamento, os dados foram organizados em subconjuntos
de estimativa e validagdo, utilizando o método de validagdo cruzada (k-fold), com um valor
de k igual a 5 (20% dos dados em cada subgrupo). Assim, o modelo foi treinado no
subconjunto de estimativa e testado no subconjunto de validagdo, por meio de diferentes

combinagdes de hiperparametros, até identificar o modelo com o menor erro.

Gragas a essa divisdo de dados, foi possivel determinar os valores 6timos de pesos sinapticos
e vieses que minimizam o erro na previsdo do modelo. A fase de teste, por sua vez, avalia o

desempenho do modelo com base nos parametros finais obtidos durante a fase de treinamento.

3.2.3 METRICAS DE VALIDACAO DE MODELO
Apos a definicdo do modelo de Rede Neural Artificial (RNA) para prever o desempenho
filtrante do sistema geotéxtil/solo, a acuracia foi avaliada ao comparar-se os valores reais com
os valores previstos. Essa avaliagdo ¢ feita de maneira visual, por meio de um grafico que

compara os valores previstos pelo modelo desenvolvido com os valores reais obtidos a partir
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da coleta de dados, como apresenta-se na Figura 3.4. Com esse grafico, é possivel estabelecer
uma linha de regressdo para os dados. Essa linha, por sua vez, funciona como um limite entre

os dois conjuntos de valores.

Assim, valores mais proximos da linha de regressao sio interpretados como o que apresentam
menor diferenca entre si, ou seja, um erro menor, o que indica que o modelo possui um bom
desempenho de previsdo. Destaca-se que um modelo perfeito ¢ alcangado quando a linha de
regressao apresenta uma inclinagao de 45 graus a partir da intercepcao dos eixos do grafico,

ou seja, valor previsto ¢ igual a valor real.

A
Baixo desempenho

do modelo XS

Valores Previstos
oéd‘
b
“%

Valores Reais

Figura 3.4 — Grafico dos valores reais versus os valores previstos
(Adaptado de Villamil, 2023)

Para avaliacdo do desempenho de previsdo do modelo foram utilizados trés métricas

estatisticas. Essas trés sdo as mais usadas para avaliar este o desempenho de uma RNA. Sao
elas:

e Coeficiente de determinaciao R- quadrado (R?): permite avaliar a qualidade

do ajuste de um modelo de regressao entre um valor real e o valor obtido pela

RNA. Este coeficiente varia entre 0 e 1. Assim, quanto maior o R% 0 modelo se

ajusta melhor ao dado. No entanto, ele ndo indica a acuracia preditiva do modelo

e deve ser interpretado em conjunto com outras métricas como o Erros quadratico

médio (Wagqas et al., 2023). Este coeficiente € representado pela Eq. (3.14)
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X —)°

RZ=1 !
i = w)?

Eq. (3.14)

Onde y; € o valor observado (valor real); ¥; , valor estimado pelo modelo (valor previsto); e y,,
média dos valores observados.

e Raiz do Erro Quadratico Médio (The Root Mean Squared Error — RMSE):

permite estabelecer o erro quadratico entre os valores previsto € os valores

observados (reais) em relacdo ao valor médio dos dados. Essa métrica estatistica

indica quao proximo os dados estdo da linha de melhor ajuste.

n
1
RMSE = Zz(y" — )2 Eq. (3.15)
i=1

e Erro Percentual Médio Absoluto (Mean Absolute Percentage Error — MAPE):
mede a acuracia do modelo de previsdo em termos percentuais. Essa métrica é
calculada pela média das diferengas absolutas entre os valores reais € os valores
previstos, dividido pelos valores reais, ¢ depois multiplicada por 100. Essa

métrica ¢ expressa pela Eq. (3.16)

n
1
MAPE = —Z
n
i=1

@* 100‘ Eq. (3.16)

4

O coeficiente de determinacao (R?) mede a propor¢do da variancia na variavel dependente que
¢ explicada pelas variaveis independentes. Em outras palavras, ele fornece uma medida de
quanto o modelo se ajusta aos dados. Assim, um valor de R? proximo de 1 indica um bom
desempenho do modelo, ou seja, o modelo pode prever com precisdo a variavel dependente

(output) com base nas varidveis independentes (inputs).

Por outro lado, os valores médios de erro (RMSE ¢ MAPE) fornecem informagdes sobre a
proximidade entre o valor calculado pelo modelo e o valor real. Quando os valores de erro
estdo proximos de 0, isso indica que os valores obtidos pelo modelo sdo semelhantes aos
valores reais, sugerindo que o modelo se ajusta bem aos dados. Portanto, a analise conjunta
dessas quatro métricas permite uma avaliagdo completa do modelo. Quando o valor de R? esté
proximo de 1 e os valores médios de erro estdo proximos de 0, o modelo demonstra um 6timo

desempenho e pode prever com precisdo os valores da varidvel dependente (output).
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Além das trés métricas apresentadas acima, Altroush et al. (2024) comentam que, para os

modelos de IA, eles podem ser avaliados complementarmente com as seguintes ferramentas

tanto visuais como estatisticas:

Erro Quadratico Médio (Mean Squared Error — MSE): permite estabelecer o
erro quadratico entre os valores previsto ¢ os valores observados (reais) em
relacdo ao valor médio dos dados. Essa métrica estatistica quantifica a
magnitude média dos erros e indica quao proximo os dados estdo da linha de

melhor ajuste (Dodge, 2008). Esse erro ¢ calculado por meio da Eq. (3.17).

n
1
MSE = = (3= 9)? Eq. (3.17)
i=1

J4

Histograma de erros: ¢ crucial para visualizar a distribuicdo dos erros de
predicao, identificando padrdes ou vieses nos erros cometidos pelo modelo. Um
histograma assimétrico pode indicar subestimagdo ou superestimacdo do
modelo, entretanto, requer de dados suficientes para ser significativo e sua
interpretacdo pode ser subjetiva e menos precisa (Nassar et al., 2023)

Grafico de correlaciao de valores previsto versus valores previsto: esse
grafico fornece uma avaliagdo visual da predi¢do preditiva do modelo, pois um
alto grau de correlagdo linear sugere que as predi¢des do modelo estdo proximas
dos valores reais, o que indica um bom desempenho do modelo. E importante
mencionar que esse meétodo ndo quantifica o grau de erro ou de acuracia, e ¢
menos eficaz para modelos que apresentam relagdes nao lineares, de forma que
podem ser enganosos em casos de overfitting ou underfitting (Walter et al.,

2015).

Com o modelo finalmente ajustado, emprega-se uma técnica denominada Importancia de

Atribuicdo por Permutagdo (PFI), para identificar quais atributos exercem maior impacto nas

previsoes da variavel esperada. Autores como Breiman (2001) e Fisher et al. (2019) comentam

que o algoritmo PFI quantifica a importancia de um atributo ao avaliar o efeito de perturbagdes

aleatdrias em seus valores sobre o desempenho do modelo. Uma diminuigdo significativa no

desempenho do modelo com as perturbagdes indica a importancia desse atributo. Enquanto, se

o desempenho do modelo ndo se vé afetado, entdo, esse modelo ¢ irrelevante para as previsoes.
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Em problemas de regressdo, o desempenho do modelo ¢ comumente avaliado pela métrica

estatistica Erro Quadratico Médio (MSE).

A Figura 3.5 ilustra o funcionamento do PFI, em que as instancias de uma tnica coluna de
atributo sdo embaralhadas aleatoriamente, e a varia¢ao no erro do modelo antes e depois dessa
permutacao (AMSE) ¢ medida. Esse processo ¢ repetido por N vezes, e a importancia do atributo

¢ determinada pela média dos valores AMSE das N repeti¢des.

X4 xz Xq
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‘1' 3 ; Treinado do Atributo
4144
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_________________________________________________

Figura 3.5: Técnica de Importancia de Atribuicdo por Permuta¢do (PFI) (Modificado de
Carvalho, 2025)

3.2.4 LIMITACOES E PROBLEMAS
Os modelos preditivos de RNA podem apresentar dois problemas principais: overfitting e

underfitting, tal como ¢ exemplificado na Figura 3.6a e Figura 3.6b, respectivamente.

O overfitting (Figura 3.6a) ocorre quando, para uma determinada amostra de treinamento, o
modelo demonstra um bom desempenho. No entanto, ao utilizar dados de teste, o desempenho
¢ comprometido. Isso se deve ao fato de que o modelo aprendeu as relagdes especificas
existentes durante o treinamento e, ao receber informacdes dos dados de teste, aplica essas

regras memorizadas, o que gerou erros (overfitting).

Em contrapartida, o underfitting (Figura 3.6b) € o processo oposto, o desempenho da rede ¢
insatisfatorio na fase de treinamento, pois 0 modelo ndo consegue ajustar adequadamente as
relacdes entre as varidveis (devido aos poucos dados ou a inadequagcdo do modelo). Esse

fendmeno cria situagdes em que o modelo pode melhorar suportando uma maior quantidade de
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dados de treinos que os inicialmente fornecidos (Li et al., 2021) Portanto, um modelo que
apresenta esse tipo de problema ndo deve ser utilizado, assim, ¢ necessario buscar outras

fungdes de ativagao ou algoritmos (Haykin, 1999; Shahin et al., 2008; Géron, 2019)

Na Figura 3.6, ilustra-se ambos os problemas de overfitting e underfitting. Assim, conforme
apresentado por Pothuganti (2023), para evitar esses dois problemas, deve-se realizar diversos
testes com a finalidade de atingir um equilibrio chamado de justiffiting (Figura 3.6¢). Quando
¢ atingido a etapa de justifitting, o modelo € capaz de realizar dete¢des complexas, que permitem

a adaptacdo precisa ao contato com novos dados (dados de teste).

Overfitting Undefitting Justifitting
-~
2 o g c
4% Validagio s Validagio E
fahdagio
Treinamento Treinamento
> N Tremamento N
Epocas Epocas Epocas
(a) (b) (c)

Figura 3.6: Exemplificagdo grafica do overfitting, underfitting e justfitting.

Como mencionado anteriormente, o desenvolvimento de um modelo precisa ser verificado
quanto a erros de generalizagdo. Para isso, existem diversos métodos para evitar ou
contornar a ocorréncia de overfitting ou underfitting, entre esses métodos, destaca-se o
aumento de dados, divisao de dados entre teste, treino e validacdo, paragem antecipada

(Early Stopping ) ou remog¢ao do nimero de camadas

Em relacdo a divisdo de dados, o processo de anélise de RNA ¢ baseado principalmente em
duas fases: a fase de treinamento e validagdo. Na fase de treinamento, a rede ajusta seus
pesos através do uso do algoritmo de treinamento, como apresentado na Figura 3.7, onde a
do RNA ¢ comparada com a saida desejada (alvo) e, entdo, o residuo ¢ utilizado para ajustar
0s pesos sinapticos de acordo com o algoritmo de treinamento. Por outro lado, a fase de
teste, que envolve a verificagdo ou validagao do modelo, ou seja, a rede, calcula a saida

com base nos valores de entrada e nos pesos ajustados da fase de treinamento.
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Alvo

REDE NEURAL ARTIFICIAL COMPARAGAO

Ajuste de Pesos

Figura 3.7: Esquema do Treinamento de uma Rede Neural Artificial

Para realizar a analise, os dados sdo divididos em conjuntos de treinamento e validagdo. Uma
divisdo comumente utilizada ¢ de 70/30% ou 80/20%, respectivamente (Jeremiah et al., 2021),
embora seja crucial verificar o tamanho do banco de dados para determinar a propor¢do mais
adequada (Géron, 2019). Com vistas a projetar uma RNA com bom poder de generalizagao, a
fase de treinamento pode ser subdividida em estimacao e teste (Figura 3.8), um procedimento

conhecido como validagdo cruzada na estatistica.

Base de Dados
20% 20% 20% 20% 20%
Conjunto de Conjunto de Conjunto de
| Treinamento Validagao | | Teste |
Fase de Treinamento Fase de Teste
(80%) (20%)

Figura 3.8: Divisdo da base de dados em conjuntos de treinamento, validacao e teste.
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Dessa forma, um conjunto de teste pode ser utilizado durante o treinamento para determinar o
momento ideal de interrupgdo. Esse método, denominado Parada Antecipada (Early Stopping),
consiste em testar a rede com os dados de validacao apds cada época. Caso nao se observem
melhoras significativas, ou o Erro Quadratico Médio (MSE) comece a aumentar, o processo ¢
interrompido, conforme ilustrado na Figura 3.9. Assim, nessa etapa, define-se o nimero de
épocas (epochs) durante as quais o modelo sera treinado até a sua interrup¢ao (Haykin, 1999;

Silva et al., 2016).

Underfitting  Overfitting

A

Q

= o

= Validag
Ponto de

arada Trei t
Antecipada remamento
Epocas

Figura 3.9: Método da Parada Antecipada com conjunto de validacao (Adaptado de Haykin,
1999).

Ressalta-se que, entre os problemas existentes no treinamento de redes MLP, encontra-se
(Haykin, 1999):

e Definicio dos parametros de entrada: a sensibilidade do modelo a variagdes nos
parametros de entrada implica que pequenas alteracdes podem induzir divergéncias
significativas tanto na fase de treinamento quanto na capacidade de generalizagdo da
rede neural. A selecdo e o ajuste criteriosos desses parametros sdo, portanto, etapas

cruciais no desenvolvimento de modelos robustos.

e Dimensionamento das entradas (Feature Scaling): a magnitude (quantidade) das
variaveis de entrada influencia diretamente a escala efetiva dos pesos na camada de
entrada da rede. Essa disparidade de escalas pode impactar a qualidade da solucao final
e a eficiéncia do processo de otimizagdo. Inicialmente, recomenda-se a padronizagdo
das entradas, de forma a garantir que todas as features contribuam equitativamente

durante a aplicagdo de técnicas de regularizagdo. Essa normalizagdo também estabelece
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um intervalo significativo para a inicializagcdo aleatoria dos pesos, facilitando a
exploragdo do espago de busca e potencialmente acelerando a convergéncia do

treinamento.

Nimero neurdnios e de camadas ocultas: em linhas gerais, arquiteturas de redes
neurais com um numero elevado de neuronios ocultos tendem a apresentar melhor
capacidade de aproximagao de fungdes complexas do que aquelas com poucas unidades.
Uma quantidade subdimensionada de unidades ocultas pode restringir a flexibilidade do
modelo, de forma a limitar sua habilidade de capturar as ndo linearidades inerentes aos
dados. Por outro lado, embora um nimero excessivo de unidades ocultas aumente a
capacidade representacional da rede, o risco de overfitting pode ser mitigado através da
aplicagdo de técnicas de regularizagcdo adequadas. Nesses casos, 0s pesos associados as
unidades redundantes podem ser efetivamente penalizados, tendendo a valores
proximos de zero durante o processo de treinamento. Empiricamente, o nimero ideal de
unidades ocultas geralmente se situa em uma faixa que varia entre 5 ¢ 100 —
comumente, escalonando-se em propor¢do ao numero de variaveis de entrada e ao
volume do conjunto de dados de treinamento. Uma pratica comum e eficaz consiste em
definir uma arquitetura com um numero relativamente grande de unidades ocultas e,
subsequentemente, empregar métodos de regularizacdo robustos durante o treinamento

para controlar a complexidade do modelo e evitar o overfitting.

o Multiplicidade de Minimos Locais: a funcdo de erro associada a redes neurais
profundas tipicamente exibe uma natureza ndo convexa, caracterizada pela presenca de
multiplos minimos locais. Consequentemente, a solugdo otimizada resultante do
processo de treinamento demonstra uma sensibilidade significativa a inicializagdo dos
pesos sinapticos. Para mitigar essa dependéncia, recomenda-se a avaliacdo de um
conjunto diversificado de configuragdes iniciais aleatérias, em que se seleciona a
arquitetura que apresentar o menor erro de generalizagdo, possivelmente incorporando
um termo de penalizacdo para regularizagcdo. Uma estratégia robusta para a obtencdo da
predi¢do final consiste em empregar a média das previsdes geradas por um ensemble
(conjunto) de redes independentemente treinadas (Ripley, 1996). Essa abordagem ¢é

preferivel a média dos pesos individuais das redes, dado que a ndo linearidade intrinseca
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ao modelo pode resultar em um desempenho sub6timo da solugdo média dos pesos.
Adicionalmente, a técnica de bagging emerge como uma alternativa eficaz, ao computar
a média das predi¢des de modelos treinados em versdes aleatoriamente perturbadas do
conjunto de dados de treinamento, promovendo a robustez ¢ a estabilidade das

previsoes.

Outra maneira de controlar a probabilidade de overfitting no modelo ¢ realizar a regularizagao
de hiperparametros. Em ML, os parametros de entrada utilizados durante o treinamento
controlam parte do aprendizado, andlise e o resultado a ser previsto. No entanto, certos
pardmetros do algoritmo permanecem constantes durante a fase de treinamento. Esses
parametros sao conhecidos como hiperparametros, que podem ser otimizados para reduzir o
esforco e melhorar o desempenho do algoritmo aplicado (Hutter et al., 2019). A otimizacao
permite encontrar o(s) parametro(s) que ajudam a minimizar uma funcdo desejada (Das &
Suganthan, 2011).De acordo com Bilal et al. (2020) alguns hiperparametros comumente
empregados em modelos de Redes Neurais Artificiais (RNAs) sdo:

e Numero de camadas

e Funcao de ativagao;

e Fungdo de perda;

e Algoritmo de Otimizacdo

e Numero de épocas

Desta forma, o algoritmo de otimizagdo tem como objetivo ajustar os valores dos
parametros de um modelo, de modo de minimizar sua fun¢do de perda. O otimizador Adam,
que significa “adaptive moment estimation”, combina as melhores caracteristicas dos
algoritmos AdaGrad (Adaptive Gradient Descent ) € RMSProp (Root Mean Square), o que
resulta em um método de otimizagao eficaz para lidar com gradientes esparsos em problemas
ruidosos (Brownlee, 2021). Segundo Kingma & Ba (2014), o algoritmo Adam ¢ uma escolha
popular entre os cientistas de dados, sendo utilizado na etapa de retropropagacdo. Esse
algoritmo calcula taxas de aprendizado adaptativas individuais para diferentes pardmetros,
baseando-se em estimativas dos primeiros e segundos momentos dos gradientes. O algoritmo
rastreia uma média movel exponencialmente ponderada (Exponentially Weighted Moving
Averages -EWMA) tanto do gradiente quanto dos gradientes quadrados. As etapas desse

algoritmo sdo apresentadas nas equagdes a seguir:
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v < yav + (1 -y2) (Vo) (0))° Eq. (3.19)

m < ym+ (1—y)VeJ(0) Eq. (3.18)
v« yu+ (1 —72) (V] (0))? Eq. (3.19)
R m
(_
m T Eq. (3.20)
R m
v 1—7,t Eq. (3.21)
m
0«0—a— Eq. (3.22)
v4+46

Onde y1 e y2 representam as taxas de decaimento exponencial para as estimativas de
momento; m e v sdo as estimativas enviesadas do primeiro e segundo momento; VaJ(6) € o
gradiente da fungdo de perda J(0), em relagdo aos parametros 0. Por outro lado, m e ¥ sdo as
estimativas de primeiro e segundo momentos com correcdo de viés; 0, € uma pequena

constante adicionada para garantir a estabilidade numérica; e a € a taxa de aprendizado.

Em contrapartida, Reddi et al. (2019) observaram que o algoritmo Adam nem sempre
converge para a solu¢do 6tima e propuseram AMSGrad (Adaptive Moment Estimation with
improved convergence guarantees), uma variante de Adam com convergéncia garantida. Essa
variante introduz uma nova média mével exponencial, que considera o maximo de todas as
estimativas do segundo momento até¢ o instante atual, normalizando a média movel do

gradiente.
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4 RESULTADOS

Este capitulo apresenta e analisa os resultados obtidos ap0s a aplica¢ao da metodologia de Rede
Neural Artificial (RNA) para prever o desempenho filtrante dos sistemas solo/geotéxtil.
Primeiramente, realiza-se uma interpretagao e correlagao dos dados coletados. Em seguida, faz-
se uma descricao das caracteristicas dos modelos implementados, a qual ¢ seguida da avaliacao

da eficiéncia obtida para cada modelo, a fim de identificar qual apresenta a melhor performance.

4.1 ANALISE DOS DADOS

4.1.1 INTERPRETACAO DE DADOS

Como apresentado no Capitulo 4, foram coletadas 352 amostras de 19 publicacdes
bibliograficas e 2 acervos pessoais de pesquisadores. Esses dados foram selecionados ao se
considerar fatores de influéncia similares, sendo que, inicialmente, foram estabelecidos 16
parametros. A Figura 4.1 apresenta uma visualizacdo da distribuicdo dos dados presentes e
ausentes no conjunto de dados coletados. Cada coluna representa uma variavel diferente e os
espacos em branco indicam dados ausentes para cada pardmetro. E possivel observar que o
diametro de intervalo (dgap) apresenta a menor quantidade de informacgdes reportadas, o que se

deve ao fato de ser um parametro caracteristico do tipo de solo a ser analisado.

Por outro lado, a maioria das varidveis apresenta uma quantidade significativa de dados
presentes. No entanto, deve-se atentar-se aos dados ausentes na varidvel de permeabilidade
inicial do sistema solo/geotéxtil (ksys-o), pois a auséncia desses dados compromete o uso na

analise desta pesquisa.
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Figura 4.1 :Distribui¢do de dados presentes e ausentes nas variaveis do conjunto de dados

A Tabela 4.1 apresenta os dados estatisticos dos pardmetros de influéncia utilizados apos a

limpeza dos dados de outliers ou valores atipicos (que resultaram em 287 amostras uteis). Para
cada parametro, sdo calculados os valores maximo, minimo e médio, juntamente com a
distribuicdo dos dados, medida pelo desvio padrdo, coeficiente de variagdo e coeficiente de
assimetria. O desvio padrao mensura o desvio dos dados em relagdo ao valor médio, de modo
que um valor menor indica uma concentracao mais estreita em torno da média. Por outro lado,
o coeficiente de variacdo indica o nivel de homogeneidade dos dados, com uma porcentagem
mais alta sugerindo maior heterogeneidade. O coeficiente de assimetria indica a simetria da
distribuicdo dos dados, de forma que um valor mais alto indica uma assimetria mais
significativa, e o sinal representa sua dire¢ao (positivo: a direita, negativo: a esquerda). Para o

parametro “Tipo Geotéxtil”, ¢ apresentada a quantidade de cada teste realizado.
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Tabela 4.1 :Dados estatisticos dos parametros de entrada

Simb.

Parametro

Min.

Max.

Média

Desvio
Padrao
o

Coef. de
Variancia

Cv

Assimetria

Variavel

de Entrada

(Inputs)

le

Diametro da
particula de solo
correspondente a
10% do material
mais fino (mm)

0,001

0,489

0,083

0,144

173,826
%

2,056

Didmetro da
particula de solo
correspondente a
15% do material
mais fino (mm)

0,002

0,748

0,139

0,201

147,877
%

1,807

dso

Diametro da
particula de solo
correspondente a
30% do material
mais fino (mm)

0,003

1,849

0,423

0,571

134,742
%

1,487

Diametro da
particula de solo
correspondente a
50% do material
mais fino (mm)

0,004

5,986

1,112

1,726

154,859
%

1,811

deo

Didmetro da
particula de solo
correspondente a
60% do material
mais fino (mm)

0,006

8,635

1,607

2,586

160,28%

1,808

dss

Diametro da
particula de solo
correspondente a
85% do material
mais fino (mm)

0,034

16,833

3,350

5,449

162,370
%

1,735

dgap

Diametro da
particula de solo
correspondente a
10% do material
mais fino (mm)

0,008

0,023

0,013

0,005

41,276%

0,737

Coeficiente de
curvatura

0,106

19,079

3,588

3,970

110,459
%

1,603

Cu

Coeficiente de
uniformidade

1,725

106,965

35,400

28,191

79,502%

0,535

ter

Espessura de
geotéxtil (mm)

0,330

5,600

2,058

1,115

54,085%

0,791

My

Gramatura do
geotéxtil (g/m?)

95

627

254,515

126,978

49,806%

1,257

FOS

Abertura de
filtragdo do
geotéxtil (mm)

0,03

0,6

0,184

0,144

78,412%

1,783

Ls.

Espessura do corpo
de prova (cm)

L5

16

7,205

3,565

49,400%

0,561

Gradiente
hidraulico

20

5,365

5,151

1,280

ay

Tensao vertical
(kPa)

0,961

2012,4

149,966

434,52
6

3,676
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Desvio | Coef. de
Simb. Parametro Min. Max. Média Padriao | Variincia | Assimetria
o CV
Variavel de Entrada (Inputs)
Coeficiente de
permeabilidade 591377
ksys-o inicial do sistema 4,.27x107 6,10x10" | 9,56x10° | 0,057 (; 9,300
solo- geotéxtil °
(cm/s)
Variavel de Saida (Output)
Coeficiente de
permeabilidade 557 840
ksys final do sistema 2,80x107 4,20x102 | 7,00x103 | 0,039 0/ 8,728
solo- geotéxtil °
(cm/s)

A Tabela 4.1 de dados estatisticos apresenta uma andlise descritiva de diversas variaveis de
entrada (propriedades do solo, do geotéxtil e condicdes do ensaio) e da varidvel de saida
(coeficiente de permeabilidade final do sistema solo-geotéxtil — ksys). A andlise dos pardmetros
revela uma alta variabilidade geral nos dados, evidenciada pelos elevados coeficientes de
variancia (CV), que sdo maiores que 100%, observados para a maioria das variaveis de entrada
e para a variavel de saida. Essa dispersao significativa sugere que o conjunto de dados abrange
uma ampla gama de cendrios e condigdes experimentais, o que € crucial para o desenvolvimento

de modelos preditivos robustos com boa capacidade de generalizagao.

A assimetria das distribui¢cdes também € uma caracteristica notavel. A maioria das variaveis de
entrada, especialmente os didmetros das particulas do solo (dio a dgs) e os coeficientes de
curvatura (C.) e uniformidade (C,), apresentam uma assimetria positiva consideravel. Isso
indica que as distribui¢cdes dessas variaveis tendem a ter uma cauda mais longa, estendendo-se
para valores mais altos, com a maioria dos dados concentrados em valores abaixo da média.
Essa assimetria pode influenciar o desempenho de modelos estatisticos que assumem
distribui¢cdes simétricas, de modo que podem exigir transformagdes de dados para melhor

adequacgao.

Em relagdo aos parametros do solo, a analise dos didmetros das particulas (dio a dss) reflete a
esperada progressao no tamanho das particulas correspondentes a fragdes crescentes do solo
mais fino. Observa-se que esses didmetros podem variar em ordens de grandeza (poténcias de
10), mesmo dentro de uma mesma curva granulométrica, evidenciando a ampla distribui¢do de

tamanhos presentes em algumas amostras. A alta variabilidade (CV > 130%) nesses pardmetros
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demonstra a diversidade das granulometrias dos solos investigados. A assimetria positiva
acentuada sugere que, embora haja uma predominancia de particulas menores, algumas
amostras apresentam proporcdes significativas de particulas maiores. O pardmetro dgap,
especifico para solos com granulometria descontinua, exibe uma variabilidade menor, o que
pode ser atribuido a sua natureza mais restrita a um tipo especifico de solo. Os coeficientes de
forma da curva granulométrica (C. e C,) também apresentam variabilidade consideravel,

indicando uma ampla gama de formas de distribuicao de particulas entre os solos estudados.

Por outro lado, os parametros do geotéxtil em comparacdo com os pardmetros do solo, ¢ as
propriedades do geotéxtil (espessura — tgr, gramatura — Ma e abertura de filtragdo — FOS)
mostram uma variabilidade geralmente menor (CVs entre 49% e 78%). Isso sugere uma gama
menos extensa de geotéxteis utilizados nos testes em comparacao com a diversidade dos solos.
No entanto, a abertura de filtracdo (FOS) ainda apresenta uma variabilidade consideravel. A
assimetria positiva para esses parametros indica uma tendéncia para valores menores de
espessura, gramatura e abertura, com alguns geotéxteis que apresentam valores

significativamente maiores.

J& os parametros relacionados com as condi¢des do ensaio, as condicdes de teste revelam uma
ampla gama de configuragdes experimentais. A espessura do corpo de prova (Ls) apresenta uma
variabilidade moderada. O gradiente hidrdulico (i) e, especialmente, a tensdo vertical (o))
mostram uma dispersdo muito alta, o que indica que os testes foram realizados sob uma
variedade de condi¢des de fluxo e confinamento. A permeabilidade inicial do sistema solo-
geotéxtil (kss-0) exibe a maior variabilidade de todas as variaveis de entrada, abrangendo varias
ordens de magnitude. Essa extrema variabilidade reflete a sensibilidade da permeabilidade

inicial as caracteristicas do solo e do geotéxtil.

A variavel de saida (kss), coeficiente de permeabilidade final do sistema solo-geotéxtil, também
apresenta uma variabilidade muito alta, comparavel a da permeabilidade inicial. Isso demonstra
que o resultado da permeabilidade do sistema varia significativamente entre os diferentes
ensaios, provavelmente em resposta a combinacao das diversas propriedades do solo, do
geotéxtil e das condi¢des do ensaio. A alta assimetria positiva para ks sugere que a maioria dos
sistemas tende a apresentar uma permeabilidade final baixa, com alguns casos isolados de

permeabilidade final significativamente maior.
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A andlise estatistica detalhada desses dados ressalta a complexidade do comportamento de
sistemas solo-geotéxtil em solos internamente instaveis. A alta variabilidade e a assimetria das
distribuicdes das variaveis de entrada e saida implicam que modelos preditivos simples podem

ndo ser suficientes para capturar as relacdes subjacentes.

A extrema variabilidade observada em /kys.o € kys sugere a necessidade de considerar
transformagdes de dados, ou modelos, que sejam robustos a essa ampla gama de valores. Em
ultima andlise, uma compreensdo aprofundada dessas caracteristicas estatisticas ¢ fundamental
para a selegdo e o desenvolvimento de modelos preditivos eficazes para o desempenho de filtros

geotéxteis em solos internamente instaveis.

Para o desenvolvimento do modelo de Rede Neural Artificial (RNA), conforme detalhado ao
longo deste capitulo, foram considerados apenas geotéxteis do tipo ndo tecido, os quais
totalizaram 224 amostras que abrangem dois tipos de solos classificados como internamente

instaveis. Assim, foram analisados estatisticamente os 3 modelos desenvolvidos.
Nesse sentido, a Tabela 4.2 e a Tabela 4.3, apresentam as analises estatisticas dos parametros

de entrada e do parametro de saida, respectivamente, para o Modelo 1 (que considera os dois

tipos de solo).
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Tabela 4.2 :

Dados estatisticos dos parametros de entrada considerando os solos descontinuos e com concavidade para cima

Sim Min Mix Media | DI | Assimetria | Mediana | Q1 Q3 Qr | *Oudlier 21??02‘”)5 # Osz;lier ?l:‘l:?;:)s
d1o 0,001 0,489 0,059 0,123 2,793 0,015 0,006 0,0405 0,035 0 0 33 14,73
dis 0,002 0,748 0,103 0,176 2,494 0,039 0,007 0,0842 0,077 0 0 38 16,96
dso 0,008 1,849 0,284 0,510 2,089 0,053 0,015 0,17 0,155 0 0 42 18,75
Cu 2,616 106,965 31,553 28,214 0,838 19,333 8,840 55,268 46,428 0 0 0 0
ter 0,51 5,6 2,268 0,920 0,388 2,3 1,9 2,6 0,7 12 5,36 23 10,27
FOS 0,03 0,5 0,147 0,0916 3,007 0,13 0,117 0,143 0,026 18 8,04 33 14,73

i 1 20 5,181 5,492 1,376 2,5 1 10 9 0 0 0 0
o 0,961 2012,436 149,966 434,526 3,676 7,271 3,63 51,484 47,854 0 0 31 13,84
ksys-o 7,86x107 0,61 0,010 0,0627 8,466 5,00x10* | 7,60x10 | 2,16x107 | 2,08x1073 0 0 32 14,29
Tabela 4.3: Dados estatisticos dos parametros de saida considerando os solos mal graduados e com concavidade para cima

Sim Min Max Média II’):;:;:) Assimetria | Mediana Q1 Q3 IQR i Oil:t:‘lier (l):;(l(l;;;s #Osl:l;l)ier (s)u:g?;:)s

ksys 2,76x1077 0,097 1,87x1073 8,81 x1073 8,528 1,55x10* | 2,97x10° | 7,83x10* | 7,54 x10* 0 0 33 14,73
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As informagdes estatisticas obtidas dos diferentes estudos apresentados revelam o uso de varios
tipos de solos com altas porcentagem de finos (silte e argila) e pequenas porcdes de areias (areia
fina e média) em relagdo as propriedades do solo. Os solos finos variam entre argila e silte com
um tamanho médio de 0,06 mm (conforme relatado por Mello, 2001), a areia fina e, com um

tamanho de 0,10 mm (de acordo com Vangla & Gali, 2016), e uma areia média, de 1,85 mm.

Os solos apresentam também pequenas porc¢des de areias (finas e média) com 16,52%, 22,77%
e 40,18% respectivamente A distribuicdo dos dados ¢ heterogénea, com uma tendéncia de os
valores serem inferiores a média (assimetria entre 2,09 ¢ 2,79). Segundo os autores Kenney &
Lau (1985), solos com fragdo mais fina (30%) podem apresentar comportamentos instaveis,
sendo que os solos estudos apresentam uma porcentagem maior de 50% de finos, de modo que
s30 solos com alto potencial de apresentar instabilidade. Portanto, para a definicdo de um solo

instavel, precisam ser analisados outros parametros, como o coeficiente de uniformidade (Cy).

Pode-se observar que o coeficiente de uniformidade (Cy.) varia entre 2,62 e 106,97. Este valor
maximo explica a dispersdo significativa dos dados com um desvio padrdao de 28,21 e uma
assimetria de 0,84, que pode ser confirmado pela divergéncia da média de 31,55 com a mediana

de 19,33.

Por outro lado, esses dados estatisticos confirmam que a maioria das amostras podem ser
considerados solos instaveis, pois, segundo Lafleur (1999), solos com C, > 6 com curva
granulométrica com concavidade para cima atendem ao critério de serem considerados solos
instaveis. Assim, 79.91% dos dados totais cumprem esses critérios. Cristopher & Holtz (1985)
consideram que os solos que apresentam Cy> 20 com concavidade para cima sdo considerados

como solos instaveis, de forma que 54,91% das amostras apresentam essa condi¢ao.

A faixa de tensdo aplicada nos testes ¢ ampla, pois varia de 1 kPa a valores significativos de
2012 kPa, com a maioria dos valores se concentrando em uma faixa muito inferior a média.
Isso se deve principalmente aos ensaios onde ndo se aplicam tensdo vertical, mas € considerada

a tensdo vertical proveniente da for¢a de percolacao devido ao fluxo da 4gua através do sistema.

Os dados exibem uma tendéncia altamente dispersa, o que significa que os valores da tensdo

vertical variam drasticamente. O Intervalo Interquartil (IQR), com um valor de 47,854 kPa, ¢
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consideravel e evidencia a alta dispersdo da metade central dos dados. Este fato, somado a
discrepancia significativa entre a média (149,97 kPa) e a mediana (7,27 kPa), sugere uma
distribuicao assimétrica. Considera-se como valor central tipico dos dados a mediana (7.27

kPa), ja que ¢ menos sensivel a outliers.

Com relagdo a assimetria (3,676), ¢ muito alta e positiva, o que indica uma distribuicao
extremamente assimétrica a direita. Isso significa que ha uma longa cauda de valores altos que
puxam a média para cima. Ha um nimero consideravel de outliers superiores (13,84%), o que

indica a presenca de valores de tensao vertical muito acima da faixa tipica.

A abertura de filtragdo do geotéxtil (FOS) varia entre 0,03 mm e 0.5 mm, de modo que a maioria
dos valores se concentra em torno de 0,13 mm a 0,147mm. Ass,m, observa-se uma tendéncia a
aberturas do geotéxtil menores, o que pode ser devido ao fato de o tipo de solo em contato
apresentar uma granulometria mais fina. O desvio padrao de 0,092 mm indica uma dispersao
moderada dos dados em relacdo a média 0,147 mm. Isso significa que os valores da abertura de
filtracdo do geotéxtil variam, mas ndo de forma extrema. O IQR de 0,026 mm também indica
uma dispersdo moderada dos 50% dos dados, concentrando-se em uma faixa estreita. A média
de 0,147 mm e a mediana de 0,13 mm sdo préoximas, o que confirma uma distribui¢ao

relativamente simétrica, embora a assimetria indique o contrario.

A assimetria (3,007) ¢ alta e positiva, o que indica que a distribuicao dos dados ¢ fortemente
assimétrica a direita. Isso sugere a presenca de alguns valores significativamente maiores que a

média, aproximadamente 37% dos dados totais dos parametros de entrada FOS.

Com relacdo aos outliers, destaca-se uma quantidade consideravel tanto inferiores (8,04%)
quanto superiores (14,73%). Isso indica que existem valores de abertura de filtracdo do geotéxtil

que se desviam significativamente da faixa tipica.

De acordo com os resultados, a espessura do geotéxtil estd dentro dos valores nominais
comumente usados na industria, variando de 0,5 a 5,6 mm. Com um desvio padrao de 0,920mm,
os dados indicam uma dispersao moderada em relacao a média (2,268mm), com a maiorias dos
valores se concentrado em torno de 2,3mm. A assimetria de 0,388 € positiva, proxima de zero,

0 que confirma uma distribuicdo relativamente simétrica dos dados, com uma leve tendéncia
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para os valores altos. Observam-se outliers tanto inferiores (5,35%) quanto superiores
(10,27%), o que indica diferentes tipos de geotéxteis utilizados nos testes realizados por

diferentes autores.

Com relagdo as condi¢des em que o geotéxtil ¢ submetido, os gradientes hidraulicos variam de
1 a 20, de modo que a maioria dos valores se concentra em uma faixa mais baixa. O desvio
padrao (5,49) € relativamente alto em comparacao com a média (5,18), indicando uma dispersao
moderada dos dados. Isso significa que os valores do gradiente hidraulico variam

consideravelmente.

O IQR de 9 também refor¢a essa moderada dispersdo, uma vez que mostra que os 50% dos
dados tém uma faixa de variagdo consideravel. A distribuicdo de dados ndo ¢ perfeitamente
simétrica, devido ao fato de que a média (5,18) ¢é significativamente diferente da mediana de
2,5. Nao ha outliers presentes, tanto inferiores quanto superiores. Isso sugere que os dados,
apesar da dispersao, estdo dentro de uma faixa considerada normal para o gradiente hidraulico.
A auséncia de outliers pode indicar que os testes foram feitos com maior controle. Pode-se
entender que a variabilidade dos valores de gradiente hidraulicos ¢ devido aos diferentes
tamanhos de corpos de prova e cargas hidraulicas totais utilizadas nos testes realizados por

diferentes autores.

Em relacdo a permeabilidade inicial do sistema solo/geotéxtil, ou seja, a permeabilidade no
inicio do ensaio, os valores variam entre 7,96 x10”7 cm/s e 0,61 cm/s, de forma que a maioria
dos valores se concentra em uma faixa muito inferior a média. Essa faixa de valores apresenta
uma dispersao alta dos dados, pois apresenta um desvio padrdo de 0,063cm/s em comparagao
com a média de 0,010cm/s. Essa dispersdao dos dados ¢ confirmada pelo valor do IQR de

2,08x107 cm/s, que reforga a variabilidade dos 50% dos dados.

A diferenga da média (0,010 cm/s) com a mediana € consideravel (5,00x10-4 cm/s), sugerindo
a influéncia por valores extremos. A assimetria € muito alta e positiva (8,47), o que significa a
presenca de valores altos. H4 um numero consideravel de outliers superiores (14,29%), o que
indica a presenga de valores de permeabilidade inicial muito acima da faixa tipica. A grande
variagdo dos valores de permeabilidade pode ser devido a grande variedade de solos e geotéxteis

utilizados nos testes.
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As Tabela 4.4 e Tabela 4.5 apresentam as andlises estatisticas dos parametros de entrada e do

parametro de saida, respectivamente, para o Modelo 2 (solos com concavidade para cima)
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Tabela 4.4 — Dados estatisticos dos parametros de entrada considerando os solos com concavidade para cima

Sim Min Miix Média l],):;::(’) Assimetria | Mediana Q1 Q3 QR | * Oi;‘ltf“er 21??02‘”)5 #Os‘l‘lgier ?l:‘l:?;:)s
dio 0,001 0,489 0,084 0,144 2,100 0,022 0,006 0,068 0,062 0 0 26 17,45
dis 0,005 0,748 0,140 0,203 1,942 0,065 0,010 0,141 0,131 0 0 17 11,41
dso 0,015 1,849 0,399 0,577 1,579 0,142 0,028 0,45 0,422 0 0 23 15,444
Cu 2,627 106,965 21,389 23,965 1,988 9,505 8,840 19,333 10,493 0 0 34 22,82
ter 0,51 5,6 2,322 0,946 0,243 2,3 1,59 2,65 1,06 0 0 2 1,34
FOS 0,06 0,5 0,166 0,105 2,526 0,13 0,117 0,158 0,041 0 0 12 8,053

i 1 20 5,198 5,730 1,575 2,5 1 5 4 0 0 16 10,74

o 0,971 2012,436 213,146 521,496 2,857 7,271 3,516 101,643 98,127 0 0 20 13,42

Kksys-o 7,86x107 0,61 0,014 0,077 6,369 3,33x10* | 4,07x10° 2,03x10° | 1,99x107 0 0 20 13,42
Tabela 4.5: Dados estatisticos do parametro de saida considerando os solos mal graduados e com concavidade para cima

Sim Min Mix Média II,):;::(’) Assi‘;‘etr Mediana 01 Q3 QR | * Oi:‘ltf“er (i:l“ft;f,zr)s #Os'l‘ltll)ier (s)l:‘;:f;:)s
ksys 2,76 x107 0,097 2,64x1073 0,011 6,942 1,76 x10* 1,28 x10° 1,17x1073 1,16x10 0 0 17 11,41
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De acordo com Tabela 4.4, os valores médios dos didmetros das particulas correspondentes a
10%, 15% e 30% do material mais fino (dio, dis e d3o), respectivamente 0,084 mm, 0,140 mm
e 0,399 mm, indicam uma composicao granulométrica que tende a particulas finas, alinhando-
se com a descri¢ao de solos com alta porcentagem de siltes e argilas. A dispersao desses dados,
avaliada pelo desvio padrao (0,144 mm para dio, 0,203 mm para dis ¢ 0,577 mm para D3o),
aumenta progressivamente com o tamanho da particula. A assimetria positiva observada (2,100
para dio, 1,942 para dis e 1,579 para dzo) sugere que a distribuicdo dos tamanhos de particula
tende a concentrar-se em valores inferiores a média, com uma cauda alongada para valores

maiores.

O coeficiente de uniformidade (Cu) apresenta uma média de 21,389 e uma mediana de 9,505, o
que revela uma distribuigdo assimétrica, corroborada pela assimetria calculada de 1,988. A
ampla faixa de variagdo do Cy (2,627 a 106,965) indica a inclusao de solos com diferentes graus
de uniformidade, que abrange desde solos bem graduados até solos com uma distribui¢ao
granulométrica mais extensa. A presenca de uma porcentagem significativa de outliers
superiores (22,82%) enfatiza a existéncia de amostras com uma grande variedade de tamanhos

de particulas.

A tensdo vertical (o) aplicada nos testes varia consideravelmente, de 0,97 kPa a 2012,4 kPa. A
média de 149,97 kPa ¢ significativamente maior que a mediana de 7,27 kPa, o que indica uma
forte influéncia de valores extremos ¢ de uma distribui¢cdo altamente assimétrica a direita, com
uma assimetria de 2,857. A alta dispersao, evidenciada pelo desvio padrao de 521,496 kPa e
pelo intervalo interquartil (IQR) de 98,127 kPa, confirma a heterogeneidade das condi¢des de
confinamento aplicadas. A presenga de outliers superiores (13,42%) destaca a ocorréncia de

testes sob tensOes verticais muito elevadas.

A abertura de filtracdo do geotéxtil (FOS) varia entre 0,03 mm e 0,6 mm, com uma tendéncia
para valores menores, conforme indicado pela média de 0,166 mm e pela mediana de 0,13 mm.
A dispersdo dos dados, com um desvio padrao de 0,105 mm, ¢ moderada e a assimetria positiva
de 2,526 sugere uma distribuicdo com uma concentracdo de valores menores € uma cauda
alongada para valores maiores. A presenga de outliers inferiores (8,04%) e superiores (10,74%)

indica desvios significativos da faixa tipica de abertura de filtra¢do.
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Por outro lado, a espessura do geotéxtil (tgr) apresenta uma faixa de variacao de 0,51 mm a 5,6
mm, com uma média de 2,322 mm e uma mediana de 2,3 mm, o que sugere uma distribuicao
relativamente simétrica, confirmada pela baixa assimetria de 0,243. A presenca de outliers
inferiores (5,35%) e superiores (1,34%) reflete a variedade de geotéxteis utilizados nos testes.

O gradiente hidraulico (i) varia de 1 a 20, com uma tendéncia para valores mais baixos,
conforme a média de 5,198 e a mediana de 2,5. A dispersdao dos dados ¢ alta, com um desvio
padrao de 5,730. A assimetria positiva de 1,575 indica uma distribui¢do com uma cauda longa
para valores mais altos. A auséncia de outliers inferiores e superiores sugere uma maior

consisténcia nas condigdes de fluxo aplicadas.

A permeabilidade inicial do sistema solo/geotéxtil (ksys-0) exibe uma ampla faixa de variacao,
de 7,86 x 1077 cm/s a 0,61 cm/s, com uma concentragdo de valores inferiores a média de 0,014
cm/s e a mediana de 3,33 x 10~* cm/s. A alta dispersdo, com um desvio padrao de 0,077 cm/s,
e a assimetria muito alta e positiva, de 6,869, indicam a influéncia de valores extremos. A
presenca de uma porcentagem consideravel de outliers superiores (13,42%) enfatiza a grande

variabilidade na permeabilidade inicial dos sistemas testados.

Finalmente, o coeficiente de permeabilidade final do sistema solo-geotéxtil (ksys) apresenta uma
faixa de variagdo de 2,76x1077 cm/s a 0,097 cm/s, com uma tendéncia para valores baixos,
evidenciada pela média de 2,64x107* cm/s e pela mediana de 1,76x10* cm/s. A dispersao dos
dados ¢ alta, com um desvio padrdo de 0,011 cm/s. A assimetria positiva de 6,942 sugere uma
distribuicdo com uma cauda longa para valores mais altos. A presenga de outliers superiores

(11,41%) indica alguns casos com permeabilidade final significativamente maior que a maioria.

As andlises estatisticas dos parametros de entrada e do pardmetro de saida para o Modelo 3
(solos descontinuos) sdo apresentados na Tabela 4.6 e

Tabela 4.7, respectivamente.
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Tabela 4.6: Dados estatisticos dos parametros de entrada considerando os solos mal graduados (gap graded)

Sim Min Mix. Média l],):;:;‘(’) AssImett | Mediana 01 Q3 QR | * (::gier O(?g)er #Oszgfer sggt(l%
o
dio 0,002 0,045 0,010 0,009 2,094 0,005 0,005 0,011 0,006 0 0 11 14,67
dis 0,002 0,257 0,029 0,053 2,754 0,006 0,006 0,014 0,009 0 0 14 18,67
dgap 0,008 1,008 0,056 0,196 4,728 0,011 0,008 0,0159 0,008 0 0 7 9,33
Cu 2,616 76,712 51,746 25,081 -0,461 55,268 27,070 76,712 49,642 0 0 0 0
ter 0,55 4,2 2,16 0,862 0,715 1,9 1,9 2,1 0,2 9 12 18 24
FOS 0,03 0,13 0,110 0,031 -1,449 0,13 0,1 0,13 0,03 5 6,67 0 0
Isys 1 20 5,147 5,021 0,772 1 1 10 9 0 0 0 0
oy 0,961 105,461 24,449 32,676 1,713 5,461 3,707 27,883 24,176 0 0 10 13,33
ksys-o 2,13x10°7 0,0226 2,38 x10° 3,90x1073 2,888 8,31 x10* 1,46 x10* 0,00243 2,284x1073 0 0 11 14,67
Tabela 4.7 — Dados estatisticos do parametro de saida considerando os solos descontinuos (gap gradded)

Sim Min Mix Média II,):;:;‘(’) Assi‘;‘etr Mediana Q1 Q3 QR | * Oi‘l‘ltf“er glflt(l(:Z; #Os:gfer g:;)ﬂ(lf/z ;

kesys 1,98 x10 3,09 x10°3 3,38 x10* 5,93 x10* 3,074 1,27 x10* 4,85 x107 2,51x10* 2,03 x10* 0 0 11 14,67
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De acordo com a Tabela 4.6, os valores médios dos didmetros das particulas correspondentes a
10% e 15% do material mais fino (dio e dis), respectivamente 0,010 mm e 0,029 mm, indicam
a presenca de particulas finas nos solos mal graduados. O diametro da lacuna (dgs) apresenta
uma média de 0,056 mm. A dispersao desses dados, avaliada pelo desvio padrao (0,009 mm
para dio, 0,053 mm para dis e 0,196 mm para dgp), varia entre os parametros. A assimetria
positiva observada (2,09 para dio, 2,75 para dis € 4,72 para dgqp) sugere uma concentragdo dos
tamanhos de particula em valores inferiores a média, com uma cauda alongada para valores

maiores.

O coeficiente de uniformidade (C,) apresenta uma média elevada de 51,746 e uma mediana de
27,070, o que revela uma distribuicdo assimétrica, corroborada pela assimetria negativa de -
0,461. A ampla faixa de variagdo do Cy (2,62 a 76,71) indica a inclusdo de solos com diferentes
graus de uniformidade. A presenga de uma porcentagem significativa de outliers superiores
(24,00%) enfatiza a existéncia de amostras com uma grande variedade de tamanhos de

particulas.

J& a espessura do geotéxtil (tgT) apresenta uma faixa de varia¢ao de 0,5 mm a 4,2 mm, com uma
média de 2,16 mm e uma mediana de 1,9 mm. A assimetria positiva de 0,72 sugere uma
distribui¢do levemente inclinada para valores maiores. Observa-se uma presenca consideravel
de outliers inferiores (12,00%) e superiores (18,00%), que refletem a variedade de geotéxteis

utilizados.

A abertura de filtracdo do geotéxtil (FOS) varia entre 0,03 mm e 0,13 mm, com uma tendéncia
para valores menores, conforme indicado pela média de 0,11 mm e pela mediana de 0,13 mm.
A dispersdo dos dados, com um desvio padrao de 0,03 mm, ¢ moderada. A assimetria negativa
de -1,45 sugere uma distribui¢do com uma concentragdo de valores maiores € uma cauda

alongada para valores menores. A presenca de outliers inferiores (6,67%) € notavel.

Igualmente aos outros modelos, o gradiente hidraulico (7) varia de 1 a 20, com uma média de
5,15 e uma mediana de 1. A dispersdao dos dados ¢ alta, com um desvio padrdao de 5,02. A
assimetria positiva de 0,77 indica uma distribuicdo com uma cauda longa para valores mais

altos. Nao se observam outliers para este parametro.
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A tensdo vertical (o) aplicada nos testes varia consideravelmente, de 0,96 kPa a 105,46 kPa. A
média de 24,45 kPa ¢ significativamente maior que a mediana de 5,46 kPa, o que indica uma
forte influéncia de valores extremos ¢ uma distribuicao assimétrica a direita, com uma
assimetria de 1,713. A alta dispersao, evidenciada pelo desvio padrao de 32,68 kPa e pelo IQR
de 24,176 kPa, confirma a heterogeneidade das condigdes de confinamento aplicadas. A
presenca de outliers superiores (13,33%) destaca a ocorréncia de testes sob tensdes verticais

mais elevadas.

Por outro lado, a permeabilidade inicial do sistema solo/geotéxtil (ks s-0) exibe uma ampla faixa
de variagdo, de 2,13 x 10° cm/s a 0,0226 cm/s, com uma concentragdo de valores inferiores a
média de 3,903 x 107 cm/s e a mediana de 8,31 x 10™* cm/s. A alta dispersdo, com um desvio
padrao de 3,903 x 103 cm/s, e a assimetria muito alta e positiva de 2,888 indicam a influéncia
de valores extremos. A presenca de outliers superiores (14,67%) enfatiza a grande variabilidade

na permeabilidade inicial dos sistemas testados.

Finalmente, o coeficiente de permeabilidade final do sistema solo-geotéxtil (kyys), conforme a
Tabela 4.7, apresenta uma faixa de variacdo de 1,98 x 10° cm/s a 3,09 x 10 cm/s, com uma
tendéncia para valores baixos, evidenciada pela média de 3,38 x 10 cm/s e pela mediana de
1,27 x 10~* cm/s. A dispers@o dos dados ¢ alta, com um desvio padrao de 5,93 x 10 cm/s. A
assimetria positiva de 3,074 sugere uma distribui¢do com uma cauda longa para valores mais
altos. A presenga de outliers superiores (14,67%) indica alguns casos com permeabilidades

finais significativamente maiores que a maioria.

4.12 CORRELACAO DE DADOS - PEARSON (pr)

O coeficiente de Pearson ¢ uma ferramenta estatistica comumente utilizada para estabelecer ou
compreender correlagcdes lineares monotdnicas estatisticamente significativas entre duas
variaveis. De acordo com Schober et al. (2018), a matriz define se essa relacao ¢ diretamente
proporcional (correlagdo direta, valor positivo) ou inversamente proporcional (correlacao
inversa, valor negativo). Neste estudo, o coeficiente de Pearson serd empregado para estabelecer
a correlagdo linear entre os parametros de entrada e os resultados da permeabilidade final do

sistema solo-geotéxtil (Kyys-o).

Contudo, ¢ importante destacar que o coeficiente de Pearson mede apenas relacdes lineares entre
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varidveis. Em casos onde a associacdo ¢ ndo linear, esse coeficiente pode ndo refletir
adequadamente a verdadeira relagdo entre os parametros. Além disso, a existéncia de correlacao
nao implica, necessariamente, em uma relagao de causa e efeito (causalidade) entre as variaveis

analisadas.

Dessa forma, a analise estatistica deve ser complementada com a compreensdo do
comportamento fisico do sistema, por meio de ensaios laboratoriais, que possibilitam avaliar os
mecanismos envolvidos. No caso da permeabilidade do sistema solo-geotéxtil (ksys-0), esta
depende intrinsecamente de fatores como o FOS (que caracteriza o tipo de geotéxtil, seja ndo
tecido — NW — ou tecido — W), da espessura do geotéxtil (tgT) — que, por sua vez, ¢ influenciada
pelo tipo de geotéxtil e pelo proprio FOS — e das tensdes confinantes, as quais afetam tanto a
espessura quanto o comportamento do geotéxtil. Esses fatores mostram que a interpretacao
estatistica isolada ndo ¢ suficiente para capturar a complexidade do comportamento hidraulico

do sistema, sendo indispensavel a avaliagdo experimental.

Apesar da existéncia de diferentes faixas de classificacao de correlagdo de Pearson, este estudo
adotara a faixa apresentada na Tabela 3.6 , na qual valores proximos de zero indicam uma

correlagdo fraca, e valores proximos de um indicam uma correlagao forte.

A Figura 4.2 e a Figura 4.3 ilustram a correlacdo entre 16 parametros e a permeabilidade final
do sistema solo-geotéxtil, com base nos dados compilados da literatura. Essa analise preliminar
auxilia na definicdo dos parametros que serdo incorporados aos diferentes modelos a serem
desenvolvidos, cuja classificacdo das faixas de correlagdo para cada um dos 16 parametros de

entrada ¢ apresentada na

Tabela 4.8.
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Figura 4.2— Matriz de Coeficiente de correlagcdo de Pearson considerando 16 parametros de

entrada
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Figura 4.3: Influéncia dos parametros de entrada segundo o coeficiente de Pearson (pr)

Tabela 4.8: Faixas de Correlagdo de Pearson para os 16 parametros de entrada em relacdo a
permeabilidade final do sistema £y

Faixas de Correlacao Interpretacao Parametros
Correlagao Tipo de Geotéxtil, C, tar,
0.00-0.10 Inexistente Ma, FOS
0.10-0.39 Correlacgdo Fraca dap. dSO’dS?’ ngdSS’ Cu Ls,
syss Ov
Correlagao
0.40 - 0.69 Moderada dio,dis
0.70 —0.89 Correlagao Forte -
Correlacao Muito
0.90 - 1.00 Forte ksys-o

Baseados nos resultados apresentados na Figura 4.3 e na Tabela 4.8, observa-se que tipo de
geotéxtil tem uma correlagdo muito baixa com a permeabilidade final do sistema (pr de -0,06
para WG e pr de 0,06 para NWGQG). Em relagdo as propriedades do solo Ce, apresenta uma
correlagdo inexistente com pr=0,09. Ja os parametros de dso, dgap, dso, dso, dgs € Cy apresentam
uma correlagdo fraca (com pr=0-32, pr=0,15, p=0,13, pr=-0,34, respectivamente) e o0s
parametros dio e dis apresentam uma relagdo moderada (com p—=-0,41, p=-0,40,

respectivamente).
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Por outro lado, a matriz de correlagdo apresentada Figura 4.2 revela uma forte associagdo entre
os diferentes diametros caracteristicos das particulas do solo, indicando que os diametros se
influenciam mutuamente. Observa-se, por exemplo, que ha correlagdo muito forte entre d30 e
d50 (pr =0,78), d30 e d60 (pr = 0,67), bem como entre d15 e d30 (pr =0,88) e d10 e d15 (pr
= 0,80). Esses valores elevados de correlagdo sugerem que, a medida que o valor de um
diametro aumenta, os demais também tendem a aumentar, refletindo uma progressao

granulométrica consistente nas amostras analisadas.

De acordo com Palmeira et al. (2024), deve ser dada uma atencao aos didmetros das particulas
do solo que sdo tradicionalmente associados a diferentes aspectos do comportamento de filtros
geotéxteis em solos internamente instaveis, como dio € dis e dzo. Este ultimo ¢ considerado um
diametro de particula do solo indicativo apropriado em critérios de retencao para solos nao
coesivos internamente instaveis (Lafleur et al., 1989; Lafleur, 1999; Khan et al., 2022). Isso
também se aplica ao dgap para solos com granulometria descontinua, onde dgap ¢ 0 tamanho
minimo da lacuna granulométrica (Lafleur, 1999). Assim, apesar do dso € dgap terem uma

correlacdo fraca, ela dever ser levada em conta como um pardmetro de influéncia.

Em relacdo as propriedades do geotéxtil, os parametros tct, Ma e FOS apresentaram uma
correlacdio muito baixa (com pr=0,09, pr=0,07 e pr=—0,03, respectivamente) com a
permeabilidade final do sistema. Isso sugere que variagdes lineares nessas propriedades nao
estdo fortemente associadas aos valores da permeabilidade final. Entretanto, Santos (2023),
comenta que os geotéxteis ndo tecidos espessos com pequena abertura de filtracdo tendem a
exibir um desempenho de filtragdo insatisfatorio. Embora esses pardmetros apresentem baixo
correlagdo de pearson, esses estudos indicam que o FOS influencia o resultado da

permeabilidade tanto quanto a espessura do geotéxtil (Gardoni, 2000).

Os parametros relacionados as condigdes do ensaio, como Ls, isys, o5, presentaram uma
correlacdo fraca com a permeabilidade final (pr=-0,15, pr=-0,30, p=-0,13, respectivamente). No
entanto, autores como Gardoni (2000) e Melo (2018) ja comprovaram a influéncia do

confinamento no comportamento filtrante de geotéxteis ndo tecidos.

A permeabilidade inicial do sistema (kys-0) demonstra uma correlagdo positiva muito forte (pr
=0.92) com a permeabilidade final, o que indica que ¢ o fator mais linearmente relacionado ao
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desempenho final do sistema.

Na Figura 4.4 e na Figura 4.5 apresentam-se a correlagao entre os 10 parametros selecionados
a partir da andlise prévia e a permeabilidade final do sistema solo-geotéxtil. Essa andalise
preliminar foi fundamental para a redu¢do dos pardmetros de entrada que serdo incorporados

aos diferentes modelos a serem desenvolvidos.

Destaca-se que, embora o parametro FOS apresente correlagdo muito baixa com a variavel de
interesse, ele sera mantido na modelagem em razdo de sua relevancia para o comportamento

filtrante do geotéxtil, conforme evidenciado em estudos como o de Gardoni (2000).

Assim, reforca-se a importancia de complementar a andlise estatistica preliminar com o
entendimento do comportamento fisico dos materiais, dada a complexidade envolvida na
interagdo solo-geotéxtil e as limitagdes da analise estatistica isolada para capturar todos os

fatores relevantes.

A classifica¢ao das faixas de correlacdo para cada um desses 10 parametros ¢ detalhada na

Tabela 4.9.

95



1.00

L=
@
o 0.75
=
(]
u
—
a 0.50
R 0.86
a
-0.25
=
(]
"@ - 0.00
u
o
(¥
- —0.25
[T]
=
.
—0.50
=
(1]
=]
g
) —0.75
£
¢ --001 030 034 025 -017 015 006 031 -0.26
i
i i i —-1.00

| | | | | |
Solo D10 D15 D30 Cu tGT FOS isys sV Ksyso Ksysm
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Figura 4.5: Influéncia dos parametros de entrada segundo o coeficiente de Pearson (p;) para o

Modelo 1

Tabela 4.9: Faixas de Correlagao de Pearson para os 10 parametros de entrada em relagdo a

0.25

0.3 0.34

D30

2017 0I5

Cu tGT

0,31
0’['6 l
||
-0.26
FOS isys 5V

permeabilidade final do sistema ksys (Modelo 1)

Faixas de Correlacao Interpretacao Parametros

0.00 - 0.10 Correlagao FOS
Inexistente

0.10-0.39 Correlagdo Fraca dio,dis dso, a“’ torLS, Ly,
Correlagao

0.40 - 0.69 Moderada -

0.70 —0.89 Correlacao Forte -

Correlacao Muito
0.90 - 1.00 Forte ksys-o

Ksyso

A influéncia dos parametros de entrada na permeabilidade final do sistema solo-geotéxtil (Ksys)

para o Modelo 1, que engloba todos os tipos de solos analisados, foi avaliada por meio do

coeficiente de correlagdo de Pearson (p:), conforme ilustrado na Figura 4.5 e categorizado na

Tabela 4.9.



A andlise da Figura 4.5 revela que a permeabilidade inicial do sistema (kss0) apresenta a
correlacdo positiva mais forte com a permeabilidade final (p:=0.91), o que indica que sistemas
com maior permeabilidade inicial tendem a manter uma maior permeabilidade ao final do

teste.

Observou-se que os diametros das particulas do solo (dio e dis e d3o) possuem correlagdes
positivas fracas com kg (o- = 0.30, 0.34 e 0.25, respectivamente). Tal resultado sugere que
solos com particulas mais finas tendem a apresentar uma permeabilidade final ligeiramente

menor.

Por outro lado, o coeficiente de uniformidade do solo (C.) (p-=-0.17), a espessura do geotéxtil
(taT) (p-=-0.15) e a tensdo vertical (a,) (p-=-0.26) demonstraram correlagcdes negativas fracas
com kyy. Essa tendéncia indica que valores maiores para esses pardmetros estdo associados a

uma permeabilidade final ligeiramente reduzida.

O gradiente hidrdulico do sistema (i) exibe uma correlag@o positiva fraca com ksys (o= 0.31),
0 que sugere que gradientes hidraulicos mais elevados podem estar relacionados a uma

permeabilidade final ligeiramente maior.

Notavelmente, o tamanho de abertura de filtragdo do geotéxtil (FOS) demonstra uma correlagdo
positiva praticamente inexistente com ksys (o- = 0.06). Isso aponta que, para o conjunto de dados
total, tal propriedade do geotéxtil ndo possui uma influéncia linear significativa na
permeabilidade final do sistema. A Tabela 4.9., que categoriza a for¢a dessas correlagdes,
confirma que FOS apresenta uma correlagdo inexistente e dio, dis, dso, Cu, tGT, isps € Ov
apresentam correlagdes fracas. Destaca-se que a permeabilidade inicial do sistema (Ksys-o) exibe

uma correlagdo muito forte com a permeabilidade final.

Em suma, para o Modelo 1, que considera todos os solos em conjunto, a permeabilidade inicial
do sistema emerge como o fator preditivo mais importante da permeabilidade final. As
caracteristicas granulométricas do solo e o gradiente hidrdulico mostram uma influéncia
positiva modesta, enquanto as propriedades do geotéxtil (com excecdo do FOS) e a tensdo
vertical exibem uma influéncia negativa discreta. Por outro lado, segundo o valor de correlagao
de Pearson, a abertura de filtragdo do geotéxtil ndo manifesta uma relagao linear expressiva com
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a permeabilidade final no total dos dados analisados. Esta analise sugere que o comportamento
da massa de solo e as condic¢des iniciais do sistema podem ser mais determinantes para a
permeabilidade final do que as propriedades intrinsecas do geotéxtil, quando se consideram

diferentes tipos de solos em conjunto.

No caso do Modelo 2, esse modelo considera o tipo de solos com concavidade para cima. Na
Figura 4.6 e na Figura 4.7 apresentam-se a correlagdao entre os 10 parametros selecionados a
partir da analise prévia e a permeabilidade final do sistema solo-geotéxtil. A classificagdao das

faixas de correlagdo para cada um desses 10 parametros ¢ detalhada na Tabela 4.10
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Figura 4.7: Influéncia dos parametros de entrada segundo o coeficiente de Pearson (pr) para o
Modelo 2

Tabela 4.10: Faixas de Correlagao de Pearson para os 10 parametros de entrada em relacao a
permeabilidade final do sistema ksys (Modelo 2)

Faixas de Correlaciao Interpretacao Parametros

0.00—0.10 Correlagao FOS
Inexistente

0.10-0.39 Correlagdo Fraca dio, dis, o, iu’ tor, Ls, Iy,
Correlagao .

0.40 — 0.69 Moderada Lsys

0.70 - 0.89 Correlacao Forte -

0.90 — 1.00 Correlagdo Muito s

Forte

A influéncia dos parametros de entrada na permeabilidade final do sistema solo-geotéxtil (kiys)
para o Modelo 2, que considera especificamente os solos com concavidade para cima, foi
avaliada por meio do coeficiente de correlacao de Pearson (p,), conforme apresentado na Figura

4.6 e categorizado na Tabela 4.10

A andlise da Figura 4.6 revela que a permeabilidade inicial do sistema (ksys0) demonstra uma
correlagdo positiva muito forte com a permeabilidade final (o= 0.94), o que indica uma relagao
ainda mais acentuada do que quando todos os tipos de solo sdo considerados. Isso sugere que a
condi¢do inicial de permeabilidade ¢ um forte indicador do desempenho final para esse tipo de

solo.

Os diametros das particulas do solo (dio, di5 € d3p) exibem correlagdes positivas fracas com iy
(p- = 0.32, 0.34 e 0.28, respectivamente), o que indica que solos com particulas mais finas
tendem a apresentar uma permeabilidade final ligeiramente menor. A forga dessas correlagdes

¢ ligeiramente maior em comparagdo com a analise que inclui todos os solos.

O coeficiente de uniformidade do solo (Cu) (p- = -0.24) e a tensdo vertical (av) (pr = -0.28)
mostram correlagdes negativas fracas com ksys, de modo que essas sdo correlagdes um pouco
mais fortes do que na anélise geral. Isso sugere que, para solos com concavidade para cima, um
maior coeficiente de uniformidade e uma maior tensao vertical podem estar mais associados a

uma reducao na permeabilidade final.
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O gradiente hidraulico do sistema (iss) apresenta uma correlagdo positiva moderada com ks
(p- = 0.39), o que indica uma influéncia mais significativa do que quando todos os solos sdo
considerados. Isso sugere que, para solos com concavidade para cima, gradientes hidraulicos

mais elevados tendem a favorecer uma maior permeabilidade final.

Similarmente a analise geral, o tamanho de abertura de filtracdo do geotéxtil (FOS) demonstra
uma correlagdo positiva praticamente inexistente com kg (p- = 0.05). Isso sugere que essa
propriedade do geotéxtil tem uma influéncia linear minima na permeabilidade final, mesmo

considerando apenas solos com concavidade para cima.

A Tabela 4.10, que categoriza a forca dessas correlagdes para o Modelo 2, confirma que FOS
apresenta uma correlagdo inexistente, dio, dis, d3o, Cu € 0, apresentam correlagdes fracas, isys
apresenta uma correlagdo moderada, e kg5, exibe uma correlagio muito forte com a

permeabilidade final do sistema.

Em resumo, ao analisar especificamente os solos com concavidade para cima, a permeabilidade
inicial do sistema (ksys-0) emerge como o fator mais determinante da permeabilidade final. O
gradiente hidraulico (iss) também demonstra uma influéncia mais relevante do que na anélise
geral. As caracteristicas granulométricas do solo e as condi¢des de confinamento (C, e 0v)
apresentam uma influéncia fraca, ligeiramente mais pronunciada do que na anélise com todos
os solos. A abertura de filtragdo do geotéxtil (FOS), no entanto, continua a ndo mostrar uma
correlagdo linear significativa com a permeabilidade final para este tipo de solo. Essa anélise
enfatiza a importancia da condi¢do inicial do sistema e das condi¢oes de fluxo para o

desempenho da permeabilidade final em solos com concavidade para cima.

Finalmente o Modelo 3 similarmente ao Modelo 2, considera a separacao dos dois tipos de
solos. Na Figura 4.8 ¢ na Figura 4.9 apresentam-se a correlacao entre os 10 parametros. A
classificagdo das faixas de correlagdo para cada um desses 10 parametros ¢ detalhada na Tabela

4.11.

102



1.00

o
H
[}
0.75
u
H
o
% 0.50
5 .
=
]
0.25
l—
(G}
]
0.00
W0
o
[V
—0.25
i
=
.
> -0.50
o
(7]
=)
o —0.75
E
g 0.02 -0.21 0.12 -0.04
¥,
I | i —-1.00

| | |
D0 D15 Dgap Cu  tGT  FOS  isys sv  Ksyso Ksysm
Figura 4.8— Coeficiente de correlagdo de Pearson dos fatores de influéncia e dos

resultados laboratoriais de permeabilidade do sistema solo/geotéxtil — Solos Gap-
Gradded

103



Influéncia dos Parametros- Solos Gap-Gradded
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Figura 4.9: Influéncia dos parametros de entrada segundo o coeficiente de Pearson (pr) para o
Modelo 3

Tabela 4.11: Faixas de Correlagdo de Pearson para os 9 parametros de entrada em relagdo a
permeabilidade final do sistema ksys (Modelo 3)

Faixas de Correlacao Interpretacao Parametros

Correlagao .

0.00-0.10 Inexistente dgap , Cu, Lsys

0.10-0.39 Correlacao Fraca tgt, FOS, o
Correlagao

0.40 — 0.69 Moderada dis

0.70 - 0.89 Correlacao Forte dio

Correlagdo Muito
0.90 — 1.00 Forte kesys-o

A influéncia dos parametros de entrada na permeabilidade final do sistema solo-geotéxtil (kys)
para o Modelo 3, que considera especificamente os solos com granulometria descontinua (gap-
graded), foi avaliada em funcdo do coeficiente de correlagdo de Pearson (pr), conforme

apresentado na Figura 4.8 e categorizado na Tabela 4.11

A andlise da Figura 4.8 revela que a permeabilidade inicial do sistema (kys-o) demonstra uma
correlacdo positiva e muito forte com a permeabilidade final (p, = 0.85), mantendo-se como um
dos principais fatores de influéncia. No entanto, para esse tipo de solo, as caracteristicas

104



granulométricas da fragdo fina ganham maior relevancia. O didmetro das particulas
correspondente a 10% do material mais fino (dio) apresenta uma forte correlagdo positiva com
ksys (pr = 0,71), o que indica que, em solos gap-graded, um menor djo esta significativamente
associado a uma menor permeabilidade final. O didmetro das particulas correspondente a 15%
do material mais fino (dis) também exibe uma correlacdo positiva moderada a forte com kiys (pr

=0.61).

Em contraste, o tamanho da lacuna granulométrica (dgap) (pr = 0,02) e o gradiente hidraulico do
sistema (igs) (pr = -0.04) mostram correlagdes lineares praticamente inexistentes com a

permeabilidade final.

A espessura do geotéxtil (tgr) (pr = -0.21) e a tensdo vertical (a,) (pr = -0.34) apresentam
correlacdes negativas fracas com ksys, o que sugere uma leve tendéncia de que valores maiores
desses parametros estejam associados a uma menor permeabilidade final. O tamanho de abertura

de filtracao do geotéxtil (FOS) exibe uma correlacdo positiva fraca com ksys (pr = 0.12).

A Tabela 4.11, que categoriza a forga dessas correlagdes para o Modelo 3, confirma que dgap €
isys apresentam correlagdes inexistentes, tct, FOS e o, apresentam correlacdes fracas, dis
apresenta uma correlacdo moderada, dio apresenta uma correlacdo forte, e ks s-o apresenta uma

correlagdo muito forte com a permeabilidade final do sistema.

Em resumo, para solos com granulometria descontinua, a permeabilidade inicial do sistema (kys-
o) continua sendo um fator importante. No entanto, o tamanho das particulas mais finas do solo
(D10 e pis) emerge como um preditor mais relevante da permeabilidade final do que para os
outros tipos de solos analisados. As propriedades do geotéxtil e as condigdes de fluxo e
confinamento exibem influéncias lineares mais fracas para este tipo de solo. Essa andlise destaca
a maior sensibilidade da permeabilidade final de sistemas com solos gap-graded as

caracteristicas granulométricas da fragao fina do solo.

4.2 ANALISES DO MODELO RNA

4.2.1 ARQUITETURA RNA

A definigao da arquitetura da rede neural ¢ uma fase preliminar a fase de treinamento da rede.
Portanto, com o algoritmo de otimizagdo de hiperpardmetro OB ¢ possivel achar a arquitetura
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ideal para os dados de treinamento. Assim, a definicdo da estrutura da rede ¢ importante, pois
estabelece o numero de camadas intermediarias assim como numero de neurdnios que compoe
cada camada. Neste trabalho, a metodologia adotada para RNA ¢ o Perceptron Multicamadas
(MLP), uma vez que, segundo Haykin (1999), a arquitetura para esse tipo de analise deve ter
pelo menos uma camada oculta. Com relagdo ao nimero de neuronios para cada camada oculta,

ele ¢ influenciado pelos parametros de entrada e de saida.

Como mencionado no item 3.2, o conjunto de dados foi separado em 80% para treinamento e
20% para teste. A fungdo de perda utilizada foi o Mean Squared Error (MSE), por ser o usual
para modelos de regressao. O otimizador usado para treinar as redes foi um otimizador baseado
em gradiente chamado AMSGrad, uma variacdo do otimizador Adam que propde melhor
convergéncia. A fun¢do de ativagdo empregada nas camadas ocultas foi a Rectified Linear Unit
(ReLU), por ser a recomendagdo padrao para otimizadores baseados em gradiente, dado seu
formato quase linear. Foi utilizada validagao-cruzada k-fold com k = 5 e os hiperpardmetros
dos modelos foram otimizados utilizando Otimizag¢ao Bayesiana (OB). Essa técnica, com base
em um modelo surrogado probabilistico, calcula a cada iteragdo qual o melhor préoximo ponto
da fun¢do objetivo a ser avaliado, assim performando bem em problemas em que a funcdo
objetivo € custosa. A fun¢do objetivo em questdo foi a média do MSE dos 5 folds de validagao.
Os hiperparametros otimizados e seus intervalos estdo definidos na Tabela 3.7, em que €
estabelecido um espago de busca para camadas ocultas entre de 1 a 4, com nimero de neuroénios

de 10 a 1000.

Para os conjuntos de dados utilizados, todos os modelos definiram 10.000 como o ntimero
maximo de épocas e 200 como paciéncia. Esses altos valores de épocas maximas foram
utilizados para garantir a convergéncia durante o treinamento, uma vez que a implementacao da
parada antecipada preveniu o overfitting e interrompeu o treinamento muito antes do maximo

de épocas estabelecido.

Com relacdo aos parametros, o tipo de solo foi considerado como uma varidvel nominal e os
parametros que apresentam menor influéncia, observada na matriz de correlagdo inicial (Tabela
4.8) foram desconsiderados. Isso resultou em um total de dez parametros de entrada para o

modelo 1, e 9 parametros de entrada para o modelo 2 e 3.
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Ao realizar a validacdo cruzada k-fold com parada antecipada, cada dobra terd seu treinamento
interrompido em um numero diferente de épocas. Portanto, apds realizar a otimizagdo de
hiperparametros, se todo o conjunto de treinamento estiver sendo usado e ndao houver um
conjunto de validagdo separado, ndo € intuitivo em quantas épocas o treinamento deve ser
interrompido. Motivado por esse problema, todos os modelos desenvolvidos neste trabalho
atuam como um ensemble de cinco modelos, utilizando os conjuntos de treinamento e validagdo

de cada dobra da validacao cruzada.
Assim, o treinamento ¢ interrompido com base em cada conjunto de validacdo, e a inferéncia é
realizada calculando a média das previsdes fornecidas por cada modelo. A partir disso, foram

obtidos os seguintes modelos de treinamento RNA apresentados na Tabela 4.12

Tabela 4.12:Arquitetura Otima para cada modelo de treinamento de RNA

Tipo de Ne- Camadas Neuronios | Neuronios | Neuronios Ne-
Modelo Solo Inputs | Ocultas na na na Output
Camadal | Camada 2 | Camada 3
Solos com
concavidade
1 para cima e 9 3 554 136 186 1
solos
descontinuos
Solos com
2 concavidade 9 3 890 850 209 1
para cima
Solos
3 descontinuos 14 2 557 835 - 1

Notas: CC: solos com concavidade para cima., CG = solos grap graded ou solos descontinuos

4.2.2 FASE DE TREINAMENTO/TESTE E AVALIACAO DO MODELO RNA

As fases de treinamento e teste foram realizadas para cada arquitetura definida na Tabela 4.12,
entdo, foi utilizada uma distribuicao aleatéria de 80% e 20 % dos dados, respectivamente.
Assim, a Tabela 4.13 apresenta de forma resumida a quantidade de dados utilizados para a

fase de treinamento como a fase de teste para cada modelo
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Tabela 4.13: Numero de dados para as fases de treinamento/ teste por modelo.

. #Dados de #Dados de
bAREEE i dle i Treinamento Teste
Solos com
1 concavidade para cima 179 45
e solos descontinuos
2 Solos com 119 30
concavidade para cima
3 Solos descontinuos 60 75

Notas: CC: solos com concavidade para cima ., CG = solos grad graded ou solos descontinuos

Na Figura 4.10 apresenta-se o grafico de comparacdo dos valores reais e previstos para o
Modelo 1 na fase de treinamento como de teste, onde a linha central no grafico representa uma

linha de regressao, que ilustra a relacdo entre os dois conjuntos de dados. Quanto mais proximos

os pontos de dados da linha de tendéncia, mais precisas sdo as previsdes do modelo.

1.00E-01

9,00E-02

8,00E-02

7.00E-02

6,00E-02

5,00E-02

4,00E-02

Valores Previstos (cm/s)

3,00E-02

2,00E-02 .

1.00E-02

0.00E+00
0,00E+00

e Valores de Treinamento

Figura 4.10: Valores Observados e Previstos pelo Modelo RNA- Para todos os tipos de solos
na fase de treinamento e na fase de teste.

A Figura 4.10 exibe a relacdo entre os valores observados (reais) e os valores previstos pelo

1.00E-02  2.00E-02

R? Treinamento = 0,94
R? Teste = 0,85

3.00E-02 4.,00E-02  5,00E-02 6,00E-02 7,00E-02 B8.00E-02  9.00E-02
Valores Medidos (cm/s)
e Valores de Teste Linear (x=v) - — —Linear (+20%) - — -Linear (-20%)
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modelo de rede neural. O eixo X representa os valores observados, enquanto o eixo Y
representa os valores previstos. Os pontos azuis representam os dados de treinamento, € 0s
pontos vermelhos representam os dados de teste. A linha diagonal (x = y) representa a relagao
ideal entre os valores observados e os valores previstos. Assim, quanto mais proximos os
pontos estiverem da linha diagonal (y = x), melhor o desempenho do modelo. Por outro lado,
as linhas tracejadas (+/- 20%) apresentam um intervalo de 20% em torno da linha de regressao,

oferecendo uma referéncia visual para avaliar a acuracia das previsoes.

Com relagdo ao coeficiente de determinagdo (R?) em cada fase, obteve-se R?*=0,94 na fase de
treinamento, o que indica que o modelo explica 94% de variabilidade nos dados de
treinamento. J& na fase de teste, foi obtido um R?= 0, 85, explicando 85% da variabilidade nos
dados de teste. Com base nos valores de R?, tanto para os dados de treinamento quanto para
os dados de teste, apresenta-se um bom ajuste do modelo com uma boa generalizagio para os
dados ndo vistos. E possivel notar que os valores de R? obtidos durante a fase de teste nio
exibem uma diferenca significativa em comparacdo com aqueles obtidos na fase de
treinamento, o que sugere que o modelo ndo esta sofrendo sobreajuste (overfitting) (Haykin,

1999; Nunes da Silva et al., 2016).

A Figura 4.11(a) e a Figura 4.11 (b) apresentam de forma individual o desempenho da RNA,

na fase de treinamento e de teste, respectivamente, para o Modelo 1.

1,00E-01
(a)

9,00E-02
£,00E-02
7.00E-02
6,00E-02
5,00E-02

4,00E-02

Valores Previstos (cm/s)

3,00E-02

2,00E-02 .

. - R2 Treinamento = 0,94
1.00E-02 = RMSE=0,239
MAPE =4,72%

0,00E+00
0,00E+00 1,00E-02 2,00E-02 3.00E-02 4,00E-02 5,00E-02 6,00E-02 7.00E-02 8,00E-02 9,00E-02 1,00E-01

Valores Medidos (cm/s)

e Valores de Treinamento = ——Linear (x=y) - — -Linear (+20%) - - -Linear (-20%)
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(b)

1.60E-02
1.40E-02
1.20E-02
1.00E-02

8,00E-03

Valores Previstos (cm/s)

6,00E-03

4,00E-03

2 005-03 * . - -~ R? Treinamento = 0,85
- - RMSE = 0,380
MAPE = 7,37%
0.00E+00
0,00E+00 2.00E-03 4.00E-03 6.00E-03 8.00E-03 1.00E-02 1.20E-02 1.40E-02 1.60E-02
Valores Medidos (cm/s)
e Valores de Teste =~ ——Linear (x=y) - — = Linear (+20%) - — = Linear (-20%) Linear (Valores de Teste)

Figura 4.11: Grafico de correlagdo dos valores reais e previstos da permeabilidade final
do sistema (ksys-0) em RNA com modelo de 3 camadas ocultas e 10 neurdnios de entrada:
(a) Fase de treinamento e (b) Fase de teste.

A Tabela 4.14 apresenta um resumo das métricas obtidas na fase de treinamento ¢ teste

para o Modelo 1

Tabela 4.14: Métricas de avaliacdo de regressao do modelo preditivos de k;ys do conjunto de

Modelo 1
Métricas de lTase de Fase de teste
Desempenho Treinamento
R? 0,94 0,85
RMSE 0,234 0,380
MAPE% 4,72 7,43

Conforme as informagdes observadas na Figura 4.11 e Tabela 4.14, os graficos de
correlagdo e das métricas de desempenho revelam que o modelo de RNA com 3 camadas
ocultas e 10 neurdnios de entrada demonstra um bom ajuste aos dados de treinamento,
com alta correlagdo entre os valores reais e previstos (R? de 0,94, RMSE de 0,239 e MAPE
de 4,72%). Ao ser avaliado em dados ndo vistos na fase de teste, o modelo apresenta uma
capacidade razoavel de generalizacdo, embora com um desempenho ligeiramente inferior,
evidenciado por uma maior dispersao dos pontos em relacdo a linha de igualdade e
métricas ligeiramente piores (R? de 0,85, RMSE de 0,380 e MAPE de 7,37%). Essa

pequena diferenca no desempenho entre as fases sugere um leve indicio de overfitting. No
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geral, o modelo captura a tendéncia positiva dos dados e oferece um desempenho preditivo

aceitavel, cuja adequacao final dependera dos requisitos especificos da aplicagao.

O Modelo 2 analisa o solo com concavidade para cima (CC), considerando um total de 149
amostras, as quais foram divididas em 119 amostras para a fase de treinamento e 30 amostras
para a fase de teste. A Figura 4.12 exibe a relacdo entre os valores observados (reais) e os

valores previstos pelo modelo 2 de rede neural nas duas fases.
5,00E-02
4,00E-02

3,00E-02

2,00E-02

Valores Previstos (cm/s)

1,00E-02 %

R? Treinamento = 0,98
R2 Teste = 0,78

0,00E+00
0,00E+00 1,00E-02 2,00E-02 3.00E-02 4,00E-02 5.00E-02

Valores Medidos (cm/s)

¢ Valores Treinamento ® Valores de Teste Linear (X=Y) — — -Linear (+20%) — — -Linear (-20%)

Figura 4.12: Comparagao entre Valores Observados e Previstos pelo Modelo RNA - Solos
com concavidade para cima na fase de treinamento e na fase de teste

A Figura4.13(a) e Figura 4.13(b) apresentam de forma individual o desempenho da RNA,

na fase de treinamento e de teste respectivamente, para o Modelo 2.
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0,00E+00
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Figura 4.13: Gréafico de correlacao dos valores reais e previstos da permeabilidade final
do sistema (ksys) em RNA com Modelo 2 de 3 camadas ocultas e 9 neurdnios de entrada:
(a) Fase de treinamento e (b) Fase de teste.

A

Tabela 4.15 apresenta um resumo das métricas obtidas na fase de treinamento e teste para o

Modelo 2.
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Tabela 4.15: Métricas de avaliacdo de regressao do modelo preditivos de ks do conjunto de

Modelo 2
Métricas de Fase de Fase de teste
Desempenho Treinamento
R? 0,98 0,78
RMSE 0,143 0,583
MAPE% 2,24 10,84

O Modelo 2 alcangou um ajuste 6timo aos dados de treinamento, conforme evidenciado por um
coeficiente de determinagdo muito alto (R? de 0,98) e erros notavelmente baixos (RMSE de
0,143 e MAPE% de 2,24%), o que demonstra um excelente aprendizado dos padrdes presentes
nesses dados. Ao ser avaliado em dados ndo vistos na fase de teste, o modelo ainda apresenta
uma capacidade razoavel de explicar a variabilidade (R? de 0,78), embora com um aumento nos
erros (RMSE para 0,583 ¢ MAPE% para 10,84%). Essa diferenga nas métricas, entre as fases
de treinamento ¢ teste, pode indicar uma oportunidade para otimizar a capacidade de

generaliza¢ao do modelo para dados futuros.

Ja o Modelo 3 analisa os solos descontinuos, considerando um total de 75 amostras, divididas
em 60 e 15 amostras, para a fase de treinamento e teste, respectivamente. A Figura 4.14
apresenta a comparagao entre os valores observados e previstos para o modelo 3, tanto para a

fase de treinamento como de teste.
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Figura 4.14: Comparacdo entre Valores Observados e Previstos pelo Modelo RNA - Solos
descontinuos na fase de treinamento e na fase de teste.

A Figura 4.15(a) e a Figura 4.15(b) apresentam de forma individual o desempenho da RNA, na

fase de treinamento e de teste, respectivamente, para o Modelo 3.
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(b) JOE-04
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Figura 4.15: Grafico de correlagdo dos valores reais e previstos da permeabilidade final
do sistema (ksys) em RNA com Modelo de 3 camadas ocultas ¢ 9 neurdnios de entrada:
(a) Fase de treinamento e (b) Fase de teste.

A Tabela 4.16 apresenta um resumo das métricas obtidas na fase de treinamento e teste para o

Modelo 3

Tabela 4.16: Métricas de avaliacio de regressao do modelo preditivo de kg5 do conjunto de

Modelo 3
Meétricas de P:ase de Fase de teste
Desempenho Treinamento
R? 0,94 0,74
RMSE 0,142 0,249
MAPE% 3,24 5,15

Os resultados de desempenho do Modelo 3 revelam um bom ajuste aos dados de treinamento,
com um elevado coeficiente de determinacao (R? de 0,94) e erros relativamente baixos (RMSE
de 0,142 e MAPE% de 3,24%). Ao ser avaliado em dados ndo vistos na fase de teste, o modelo
demonstra uma capacidade de generalizagcdo razoavel, com uma pequena reduc¢dao no R? para
0,74 e um aumento moderado nos erros (RMSE para 0,249 e MAPE% para 5,15%). Essa menor
disparidade entre as métricas de treinamento e teste, quando comparado ao Modelo 2, sugere

um menor grau de overfitting e uma melhor capacidade de aplicar o aprendizado a novos dados.
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Em termos gerais, o Modelo 3 apresenta um desempenho sélido, e sua adequacdo para a
aplicacdo dependera da analise comparativa com outros modelos e da avaliagdo se as métricas

de desempenho na fase de teste atendem aos requisitos especificos do problema.

As Figura 4.16 a Figura 4.18 apresentam os graficos de Importancia de Atributos por
Permutagdo (PFI) avaliadas com N = 30 permutacdes, dos Modelos 1, 2 e 3, respectivamente.
Esses graficos permitem identificar a relevancia de cada varidvel de entrada no desempenho de
cada modelo. Por meio da avaliagdo do aumento da média do Erro Quadratico Médio (MSE),
resultante da permutacdo aleatéria dos valores de cada atributo, ¢ possivel quantificar sua
influéncia na acuracia das previsoes. Atributos com maiores aumentos no MSE apos a

permutagdo sao considerados mais importantes para o modelo.
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Figura 4.16: Importancia dos Pardmetros de Entrada no Modelo 1 de Rede Neural (Analise de
AMSE)- Todos os solos

Analisando a Figura 4.16, a permeabilidade inicial do sistema (kys-0) apresenta o maior AMSE,
o que indica que ¢ o parametro mais importante para o modelo e que a remoc¢ao desse parametro

causa o maior aumento no erro de previsao.

Com relagdo ao coeficiente de uniformidade (C,), esse pardmetro também tem um AMSE
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relativamente alto, o que sugere que ¢ um parametro importante para o modelo. O parametro
nominal do tipo de solo (Tecido — GW e Nao Tecido- NWGQG) apresenta um AMSE moderado,
indicando que tem alguma importancia para o modelo. J& o resto dos parametros, como
Espessura do Geotextil (tgT), Abertura de Filtracdo (FOS), D19, Gradiente Hidraulico (i), Dis,
D30, Tensdo Vertical (av), apresentam valores baixos, proximos de zero, o que indica que t€ém
pouca importancia para o modelo e a remogao desses parametros ndo afetaria significativamente

o erro de previsao.
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Figura 4.17: Importancia dos Parametros de Entrada no Modelo 2 de Rede Neural
(Analise de AMSE)- Solos com concavidade para cima (Solos CC).

Na Figura 4.17, ha a andlise da Importancia de Atributos por Permutacao (PFI) para o Modelo
2 de RNA, aplicado a solos com concavidade para cima (Solos CC). O parametro k-, € 0 fator
de maior importancia para o desempenho preditivo do modelo, seguido por C,, que também
demonstra uma influéncia significativa, embora menor. Os parametros dis € dio contribuem para
a acurécia do modelo, mas em menor grau que kyys-o € Cu, enquanto D3o apresenta uma influéncia
ainda mais reduzida. Surpreendentemente, os parametros iy, tgr, 0, ¢ FOS exibem uma
importancia nula, com a permutagdo de seus valores a resultar em variagdes minimas ou até
mesmo negativas no erro do modelo, o que sugere sua irrelevancia para as previsdes em Solos
CC. Essa avaliacdo destaca a dominéncia de k-0 € Cy na determinagdo da saida do Modelo 2

para esse tipo especifico de solo.
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Figura 4.18: Importancia dos Parametros de Entrada no Modelo 3 de Rede Neural
(Andlise de AMSE)- Solos Descontinuos (Solos GG)

A analise de Importancia de Atributos por Permutacao (PFI) para o Modelo 3, aplicado a solos
descontinuos (Solos GG), revela que kyso € 0 pardmetro de entrada mais crucial para o
desempenho preditivo. A tensdo vertical (c,) também se destaca como um atributo importante,
mas de menor influéncia. Além disso, D15 e i5s apresentam uma contribuicdo moderada para o
modelo. Em contraste, os parametros tgr, dio, Cu, dgsp € FOS demonstram ter pouca ou nenhuma
relevancia para as previsdes realizadas pelo Modelo 3 em Solos GG, de modo a enfatizar a

dominancia de k50 € 6, na determinagdo da saida para esse tipo especifico de solo.

A avaliagdo dos trés modelos por meio da importancia de atributos permite relacionar a
influéncia de certos parametros. O k5., demonstra ser um fator chave no desempenho do filtro
geotéxtil, independentemente do tipo de solo. O parametro C. apresenta importancia nos
Modelos 1 e 2, mas sua influéncia ¢ limitada no Modelo 3. Inversamente, a tensao vertical (c,)
exibe baixa relevancia nos Modelos 1 e 2, mas emerge como o segundo parametro mais

importante no Modelo 3.

A andlise revelou que o tipo de solo (atributo "Solo") exerce uma influéncia consideravel no
modelo, destacando sua relevancia para o desempenho do filtro. Diante disso, optou-se por
realizar uma divisdo dos dados com base nos tipos de solo. Essa segmentagdo permitiu uma

compreensdo mais aprofundada da importancia dos parametros, independentemente da
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categoria geral do solo. Os parametros dio e di5s apresentam influéncia moderada nos Modelos
2 e 3 (que representam diferentes categorias de solo resultantes dessa divisdo), sugerindo que
as caracteristicas granulométricas impactam o desempenho em ambos o tipo de solo. Ja o
parametro dg.p mostrou-se relevante especificamente para o Modelo 3, o que era esperado por
se tratar de um descritor de solos descontinuos. Curiosamente, os parametros correspondentes

as caracteristicas do geotéxtil (tgT € FOS) se mostraram irrelevantes nesses modelos.

A menor relevancia de tgr € FOS no PFI pode ser atribuida a diferenca de unidades e as escalas
em relagdo a permeabilidade, o que pode gerar variagdes pequenas na saida do modelo durante
a permutacdo. Outros fatores que podem contribuir para essa baixa relevancia incluem a
redundancia de informagdo com outras variaveis, a presenca de relagdes nao lineares nao
capturadas pelo PFI, e a limitada variagdao desses parametros nos dados. Embora a
normalizac¢do dos dados possa atenuar o efeito das diferentes unidades, a baixa relevancia no
PFI sugere que a influéncia direta de tgr € FOS, na permeabilidade final, pode ser menos
evidente no modelo treinado, apesar de sua importancia fisica no processo de colmatacao. Em
outras palavras, embora esses parametros exibam baixa influéncia, a inclusdo desses
parametros na andlise auxilia a capturar a complexidade dos dados utilizados, pois estdo
diretamente correlacionados com o tipo de geotéxtil e sdo importantes para a constru¢ao do

modelo.

Para validar a acuracia dos resultados do modelo, os valores residuais foram calculados ao se
encontrar a diferenca entre os valores previstos e os reais. As Figura 4.19 a Figura 4.21,
mostram a distribuicdo dos valores medidos em laboratorio, bem como os valores residuais
(diferenca entre medidos e previstos) obtidos para cada modelo. Assim, ¢ possivel validar a
acuracia dos resultados do modelo. As linhas horizontais representam a variagdo na
permeabilidade final do sistema solo — geotéxtil. Para a definigdo das faixas de variabilidade,

foi considerada a faixa de distribuicdo normal de média + 2 desvios padrao.

Neste trabalho, para determinar tais critérios estatisticos, baseou-se em Kuperman et al.
b b

(2003). Segundo os autores, para um determinado grau de confianga, a “regido de aceitagdo”

se encontra delimitada no eixo das abscissas da distribui¢ao por “u —eo” e “u + eo”, em que:

e n=amédia dos dados do estudo;
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e c¢o =Pr.Sd (Sd ¢ o desvio padrao e Pr ¢ um valor que depende do grau de

confianca adotado e do numero de dados do estudo em questao).

Os graus de confianga e as “regides de aceitacdo” correlacionadas foram, entdo, associados as
regides em que a acuracia do modelo se considera aceitavel, conforme mostrado na
Tabela 4.17. Salienta-se que os dados foram analisados estatisticamente de maneira separada,

por cada modelo de RNA.

Tabela 4.17 —Faixa de aceitacao dos erros residuais estabelecidos por analise estatistica.

Faixa de Aceitacio Grau de Confianca (%) Pr le}tes ~d ¢
Aceitacio
Adotada 95,45 2,00 p+/- 2,00 Sd

Notas:

p = a média dos dados de monitoramento do instrumento;

Sd = desvio padrao dos dados;

Pr = valor que depende do grau de confianca adotado ¢ do ntimero de dados do estudo em questdo (tabela ¢-
Student).

A Tabela4.18 ¢

Tabela 4.19 apresentam as faixas de aceitacdo adotadas neste trabalho tanto na fase treinamento

como de teste, respectivamente.

Tabela 4.18: Faixas de Aceitagdo dos Erros Residuais para a Fase de Treinamento

Média dos Erro Desvio Padrao Limite inferior | Limite superior
Modelo Residual (cm/s), dos Erros p-2,00 Sd p+2,00 Sd
Residuais (cm/s) (cm/s) (cm/s)
1 -1,67x10™ 3,17 x10% -6,50 x10 6,17 x10%
2 -9,31x10% 7,27 x10™ -1,36 x10* 1,55 x10
3 7,84 x10% 2,36 x10™ -3,93x10™ 5,50x10%

Tabela 4.19: Faixas de Aceitagdao dos Erros Residuais para a Fase de Teste

Média dos Erro Desvio Padrao Limite inferior | Limite superior
Modelo Residual (cm/s), dos Erros p-2,00 Sd p+2,00Sd
Residuais (cm/s) (cm/s) (cm/s)
1 -4,70 x10°% 2,74 x10 -5,95 x10°% 5,01 x10*
2,10 x10% 1,12 x10 -2,03 x10% 2,45 x10
3 2,71 x10°% 9,64 x10°% -1,66 x10"% 2,20 x10%

A acuracia dos modelos de RNA propostos neste estudo pode ser avaliada por meio da anélise

120



dos valores residuais, que representam a diferenca entre os valores previstos e os medidos. Essa

avaliagdo ¢ detalhada nas Tabela 4.18 ¢

Tabela 4.19. Para ilustrar visualmente, as Figura 4.19 a Figura 4.21 mostram a distribui¢cao dos
valores medidos em laboratorio (identificados por pontos azuis), juntamente com os valores
previstos (simbolos vermelhos) e seus respectivos residuos para cada modelo (barras verdes).
Nessas representagdes graficas, as linhas horizontais delimitam a faixa de aceitacdo da
permeabilidade final do sistema geotéxtil/solo. Vale destacar que o eixo vertical esta em escala
logaritmica, o que permite uma melhor visualizagdo e interpretagdo dos dados, especialmente

devido a ampla varia¢do dos valores analisados.

As discrepancias observadas nos valores previstos podem ser atribuidas a significativa
variabilidade dos dados de entrada de certos parametros, onde o desvio padrao excede a média
e os coeficientes de variagdo ultrapassam 100%. Embora essa heterogeneidade dos dados
contribua para um aprendizado mais robusto da rede, o modelo emprega fatores de aproximacgao
internos que modulam a influéncia de cada pardmetro na correlagdo com o resultado desejado,

0 qual, por sua propria natureza, varia entre as amostras.
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Figura 4.21: Valores reais, previstos e residuais para Modelo 3 (Solos GG) de 2
camadas ocultas e 9 pardmetros de entrada: (a) Fase de Treinamento e (b) Fase de Teste

Os percentuais de dados previstos que foram observados fora da faixa aceitavel considerada nas

Tabela4.18 ¢

Tabela 4.19 foram determinados por meio do célculo da quantidade de residuos. Para a fase de
treinamento, o percentual de residuos fora da faixa ¢ de 2,79%, 4,20% e 5,00% para cada
modelo, respectivamente. Por outro lado, na fase de teste, os valores foram de 4,44%, 3,33%, e

13,33% para cada modelo, respectivamente.

Os valores de frequéncia do percentual de residuos podem ser visualizados nas Figura 4.22 a
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Figura 4.24 , que correspondem aos histogramas de frequéncia dos valores residuais. De
maneira geral, pode-se observar que a ocorréncia de valores residuais fora da faixa aceitavel ¢
minima, € uma proporcao consideravel dos desvios dos dados previstos estd centrada na faixa
de 0 cm/s. Essa concentracao sugere que o modelo fornece uma aproximacao satisfatoria dos

resultados.
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Figura 4.22: Histograma dos valores absolutos para o Modelo 1: (a) Fase de
Treinamento, 5 de 179 dados (b) Fase de Teste, 2 de 45 dados
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Figura 4.24: Histograma dos valores absolutos para o Modelo 3 (Solos GG): (a) Fase de
Treinamento, 3 de 60, (b) Fase de Teste, 2 de 15.

A Figura 4.25 até a Figura 4.28 apresentam outra maneira de analisar os residuos obtidos pelos
modelos de RNA. Esse método avalia a relagdo entre as previsdes dos modelos e os residuos
(erros) das previsdes. Os pontos vermelhos apresentam os dados de treinamento e a dispersao
dos dados indica a variabilidade dos residuos em relacdo as previsdes. A linha vertical sélida,
conhecida como zero residual, representa o ponto em que os residuos sao nulos, ou seja, o valor

previsto ¢ igual ao valor real. J& a linha horizontal tracejada, representa a médias dos valores
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previstos, fornecendo uma referéncia para comparar a distribuicdo dos residuos em relagdo a
média das previsdes. O Figura 4.25 (a), apresenta a relacdo entre os valores previsto € 0s
residuos relativos, ou seja, os residuos sdo normalizados em relagdo aos valores previstos ou
reais. Ja o Figura 4.25 (b) apresenta os erros absolutos dos dados de teste (diferenga entre os

valores previstos e reais).
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Figura 4.25: Gréfico de dispersao mostrando a relag@o entre previsdes e residuos (erros)
do Modelo 1 ( Todos os Solos): (a) Valores de Treinamento, 5 de 179 (b) Valores de
Teste, 2 de 45.4.26

127



0,075

0,070

0,065

0,060

0,055

0,050

0,045

0.040

0,035

0,030

0,025

0,020

0,015

0,010 .

0,005 . o

0,000 Ko s
20,005 -0,004 0,003 -0,002 -0001 0000 0001 0002 0,003 0004 0005

Erro Absoluto (cim/s)

Valores Previsto (cm/s)

(2)

0,040
0,035
0,030
0,025
0,020

0,015

Valores Previsto (cm/s)

0,010

0,005

.
0.000 : v
-0,030  -0,020 -0,010 0,000 0,010 0,020 0,030 0,040 0,050 0,060 0,070
FErro Absoluto (cm/s)

(b)
Figura 4.27: Grafico de dispersao mostrando a relagao entre previsoes e residuos (erros)
do Modelo 2 (Solos com Concavidade para Cima): ): (a) Valores de Treinamento, 5 de
119 (b) Valores de Teste, 1 de 45.

128



0.0030
0.0028
0,0025
0,0023

< 0,0020

g

= 0.0018

4

Z 0,0015
&
40,0013
2

= 0,0010

=
0,0008

0,0005 o

. L]
.
00
L ]
0,0000 v }
-0,0020  -0,0015 -0,0010 -0,0005  0,0000  0,0005 0,0010  0,0015 0,0020
Erro Absoluto (cnv/s)

0,0003

(2)

0,0006
0,0004

0.0002

Valores Previsto (cim/s)

0,0000 :
-0,0002 -0,0001 0,0000 0,0001 0,0002 0,0003
Erro Absoluto (ci/s)

(b)

Figura 4.28: Grafico de dispersdo mostrando a relagdo entre previsdes e residuos (erros)
do Modelo 3 (Solos Descontinuos): (a) Valores de Treinamento, 2 de 60 (b) Valores de
Teste, 2 de 15.

Analisando a Figura 4.28 (a), observa-se que a maioria dos residuos esta concentrada em torno
de zero, o que indica que as previsdes sdo, em geral, precisas. Em relacdo a distribui¢do dos
residuos, o histograma apresentado na Figura 4.22(a) ¢ simétrico em torno de zero, sugerindo
que a maioria dos residuos relativos esta proxima de zero. Isso significa que a diferenca entre
os valores previstos pelo modelo e os valores reais € pequena, o que indica um bom desempenho
do modelo. Por outro lado, a Figura 4.28 (a) também apresenta residuos relativamente grandes,

o que pode indicar erros de previsdo significativos para esses casos.
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Adicionalmente, a fim de avaliar o desempenho de cada modelo implementado na previsao dos

valores de resisténcia ao cisalhamento da interface, erros estatisticos como RMSE, MAE e

MAPE foram calculados conforme descrito no Capitulo 3. A Tabela 4.20 ¢ a

Tabela 4.21 resumem os resultados dos trés critérios de avaliagdo estatistica mencionados

acima.
Tabela 4.20: Analise de sensibilidade usando RNA para a fase de treinamento
Model Tipo de Ql(liant. Parimetros N g{ﬂ:&;’gaﬁe Métricas de Desempenho
0001 solo ¢ | deEntrada R* | RMSE | MAPE%
Dados Ocultas
1 CC+GG | 179 10 3 0,94 0,239 4,27
2 CC 119 9 3 0,94 0,142 3,24
3 GG 60 9 2 0.98 0,143 2,24
Tabela 4.21: Analise de sensibilidade usando RNA para a fase de teste
Modelo Tipo de Ql;tnt. Parimetros N(ljli:nme;gatie Métricas de Desempenho
solo de Entrada R? RMSE | MAPE%
Dados QOcultas
1 CC+GG 45 10 3 0,85 0,38 7,43
2 CC 30 9 3 0,78 0,583 10,84
3 GG 15 9 2 0,74 0,249 5,15

As Tabela 4.20 e

Tabela 4.21 apresentam os resultados da analise de sensibilidade utilizando Redes Neurais
Artificiais (RNA) nas fases de treinamento e teste, respectivamente. Foram avaliados trés
modelos distintos, diferenciados pelo tipo de solo considerado (CC+GG: solos com
concavidade para cima e gap-graded combinados; CC: apenas solos com concavidade para
cima; GG: apenas solos gap-graded) e pela arquitetura da RNA (niimero de parametros de

entrada e nimero de camadas ocultas).

Na fase de treinamento, todos os modelos demonstraram um bom ajuste aos dados utilizados
para o aprendizado, com valores elevados de R? e relativamente baixos de RMSE e MAPE%.
O Modelo 3 (apenas solos GG) apresentou o melhor desempenho nesta fase (R* = 0,98, MAPE
=2,24%). Os Modelos 1 (CC+GGQG) e 2 (apenas solos CC) tiveram desempenhos semelhantes,
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com R? de 0,94, sendo o Modelo 2 ligeiramente melhor em termos de RMSE e MAPE%.

Na fase de teste, foi avaliada a capacidade de generalizacdo dos modelos para dados ndo vistos,
e percebeu-se que o Modelo 1 (CC+GG) manteve um desempenho razoavel (R = 0,85, MAPE
=17,43%), o que sugere uma boa capacidade de lidar com novos dados. Ja os Modelos 2 (apenas
solos CC) e 3 (apenas solos GG) apresentaram uma queda no desempenho em compara¢do com
a fase de treinamento. O Modelo 2 obteve um R? de 0,78 e um MAPE de 10,84%, enquanto o
Modelo 3 alcangou um R2 de 0,74 ¢ um MAPE de 5,15%. E importante notar que o Modelo 3
foi testado com um numero significativamente menor de amostras (apenas 15), o que pode

influenciar as métricas de desempenho.

Em termos comparativos, o0 Modelo 1 (treinado com ambos os tipos de solo) parece ser o mais
robusto em termos de capacidade de generalizacdo, pois mantém um desempenho aceitavel
tanto no treinamento quanto no teste. Os Modelos 2 e 3, embora excelentes no ajuste aos seus
dados de treinamento especificos, mostraram dificuldades em prever a permeabilidade para
novos dados, possivelmente devido a overfitting ou a menor quantidade de dados de teste para

cada tipo de solo.

Em conclusdo, a andlise de sensibilidade indica que um modelo de RNA treinado com uma
variedade maior de tipos de solo (Modelo 1) pode ser mais promissor para prever a
permeabilidade final do sistema solo-geotéxtil em diferentes cendrios. No entanto, a otimizagado
da arquitetura da RNA e a expansao dos conjuntos de dados de treinamento e teste para cada

tipo de solo sdo etapas importantes para melhorar a acurécia e a confiabilidade das previsdes.

4.3 ANALISES DO MODELO RM

O uso de regressao multipla identificou o nivel de importancia de parametros relevantes para
avaliar o potencial mau funcionamento do sistema solo-geotéxtil e foi possivel elaborar
equacdes para prever valores de limite inferior e estimativas do coeficiente de permeabilidade

do sistema solo-geotéxtil para anélises preliminares.

Os resultados obtidos indicam que redugdes significativas no coeficiente de permeabilidade e
na taxa de fluxo do sistema solo-geotéxtil podem ocorrer independentemente do tipo de teste.

Frequentemente, essas reducdes sdo atribuidas a um comportamento hidraulico inadequado do

131



solo, e ndo ao entupimento do filtro geotéxtil. Essa observagdo é corroborada pelos resultados
das RNAs, onde a andlise de Importancia de Atributos por Permutagdo (PFI) revelou que os

parametros relacionados ao geotéxtil exerceram pouca influéncia no desempenho do sistema.

Para o desenvolvimento das equacdes de regressdo apresentados no estudo por RM conduzido
por Palmeira et al. (2025), os solos foram separados em dois grupos: solos com curvas
granulométricas concavas para cima e solos com granulometria descontinua, uma vez que
diferentes mecanismos de instabilidade interna seriam esperados em massas de solo continuas
e descontinuas. Além disso, a consideragao de todos os solos juntos resultou em menor acuracia
da regressdo. Para solos com granulometria descontinua, o menor diametro de particula da
lacuna (dgap) também foi considerado para a condi¢do dgap > dis. Com base nessas suposigoes,
as equacdes resultantes tém as seguintes formas:
Para solo com concavidade para cima, foi encontrada a Eq. (4.1),
kgys = Ag + Arkgys_o + Axdig + Asdys + Agdzg + AsCy + Aglsys + A70,  Eq. (4.1)
+ Agter + AgFOS

J& para os solos descontinuos foi achada a Eq. (4.2)
ksys = AO + Alksys—o + A2d10 + A3d15 + A4,d30 + A5Cu + A6isys + A70-1J Eq (42)
+ Agtgr + AgFOS

Onde Ao a A9 e Boa By sdo os coeficientes de regressdo obtidos das andlises para solos com
curvas granulométricas concavas para cima e solos com granulometria descontinua,
respectivamente, com Ky € Kgys-0 €m cm/s, dio, dis, dso, ter € FOS em mm e 6, em kPa.

A comparagao entre as previsdes obtidas para solos com curvas granulométricas concavas para

cima e os resultados dos testes de filtracdo (149 testes) ¢ apresentada na Figura 4.29.
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Figura 4.29: ksys previsto versus ksys medido — Para todos os solos com concavidade para
cima (Modificado de Palmeira et al., 2025)

Percebe-se distintos padrdes de variagdo entre os valores previstos e medidos para valores de
ksys maiores € menores que 2 x 1073 cm/s, que também correspondem a valores de Kgys-o
aproximadamente maiores e menores que 2 X 1073 cm/s. Assim, os autores propuseram a adog¢ao
de diferentes equagdes de regressdo para ki, maior € menor que 2 x 107 cm/s, obtendo o
resultado apresentado na Figura 4.30, em que uma melhor concordincia entre os valores
previstos e medidos pode ser notada. Nesse caso, para os coeficientes Aj, obtidos para solos

com concavidade para cima, a Eq. (4.1) se torna:
Para 7,5 x10-> cm/s < kyys-o <2 x 107* cm/s com R?= 0,87, obteve-se a:

ksys = —9,19x107° 4 7,58x10 kg5, — 9,57x107*dy + 4,86x107*d;s  Eq. (4.3)
+9,50x1076d3o — 2,71x1077C,, — 3,72x107 iy
—5,11x107%, + 2,73x10 °t;r + 7,40x107°FOS

Para kys.0> 2 % 107 cm/s com R*= 0,89 obteve-se a:
ksys = —5,96x1073 + 1,09x10  kgy5_ — 5,62x1072dyo + 8,47x107%d,5  Eq. (4.4)
—1,50x107%d30 + 3,69x107*C,, + 3,31x10™ iy
—4,45x107 %0, — 2,81x10"*t;; — 8,56x1073F0S

Na Figura 4.30 mostra-se que em aproximadamente 90% dos casos o ksys medido ficou na faixa
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de kg previsto/3 a 3k previsto. Isso significa que em 90% dos casos as previsdes pela Eq.
(4.3) e Eq. (4.4) subestimariam ou superestimariam o coeficiente de permeabilidade do sistema
por um fator de até 3. Em aproximadamente 98% dos casos as previsdes subestimariam ou
superestimariam as medicdes por um fator de até 10. Essas faixas de variagao do coeficiente de

permeabilidade podem ser consideradas bastante satisfatorias para andlises preliminares.
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Figura 4.30: kys previsto versus ks medido — Para todos os solos com concavidade para cima
com kiyso< 2,00 x 107 cm/s (Modificado de Palmeira et al., 2025)

Para solos com granulometria descontinua, as previsdes de duas regressdes estatisticas
diferentes, neste caso, para ksys-o menor ou maior que 5 x 10~* cm/s, compararam-se melhor com
as medi¢des, semelhante ao que foi observado para solos com concavidade para cima. Assim,

para solos com granulometria descontinua, para os valores de Bi calculados, a Eq. (4.2) , adota

as seguintes formas:
Para 10-> cm/s < kg0 < 5 x 10~ cm/s com R?= 0,68, obteve-se:

koys = 4,92x1075 + 2,10x10  kgys_o — 2,23x107%dyo + 9,45x1073d;s  Eq. (4.5)
+1,01x10 5d gy, + 4,56x1077C,, — 4,69x10 6l
—5,89x1077q, + 3,95x10 %t¢; + 3,38x107*FOS

Para kg0 > 5 x 10* cm/s com R?= 0,82 obteve-se:
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gys = —1,1121072 + 1,26x10 kyys_, + 0,0ds0 — 713210 2d, 5 — 1,23x10 2 dgy Eq. (4.6)
— 2,18x1075¢, + 331210 ¥ +3,05x10 >0, — 1,91x10 > t;r

—4,22x107%F0S

A Figura 4.31 apresenta o valores medidos e o previstos pelas equagdes para solos com
granulometria descontinua, € possivel perceber uma maior dispersao dos dados comparado com
os solos de concavidade para cima, sendo comprovado pelo um menor R?. Destaca-se que, para

este esse tipo de solo, o nimero de amostras ¢ menor que o outro tipo de solo.
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Figura 4.31: ksys previsto versus ksys medido — Para os solos descontinuos (Modificado de
Palmeira et al., 2025)

A Figura 4.31apresenta uma dispersdo maior comparado com os solos com concavidade para
cima, sendo o que ¢ corroborado pelo menor valor de R? obtido para o primeiro tipo de solo.
Deve-se também salientar que foram encontrados menos dados experimentais para solos com
granulometria descontinua. Em 87% dos casos, a Eq. (4.5) e Eq. (4.6) subestimaram ou

superestimaram o ksys medido por um fator de até 3 e, em 98% dos casos, por um fator de até

10.

As equacgdes consideram propriedades do solo e do geotéxtil, além de condi¢gdes hidraulicas e
de confinamento, e foram desenvolvidas separadamente para diferentes tipos de solo para

melhorar a acuracia. Os resultados mostram uma concordancia razoavel entre as previsdes € 0s
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dados experimentais, especialmente ao dividir os dados com base na permeabilidade inicial do
sistema. Isso indica a utilidade dessas equagdes para andlises preliminares em engenharia

geotécnica.
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44 COMPARACAO DO MODELO DE RNA E O MODELO RM

Com a finalidade de comparar o desempenho dos modelos desenvolvidos por RNA e do modelo
obtido pela regressao linear multipla. A Figura 4.32 apresenta um grafico de dispersao que
compara os valores previstos com os valores medidos do coeficiente de permeabilidade (cm/s),
igualmente realizado no item 4.3, utilizando uma escala /og-log em ambos os eixos para

abranger a ampla varia¢do de magnitude dos dados.
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Figura 4.32: Valores previstos pelo modelo e os valores medidos para os dois tipos de solos
(Modelo 1) com a metodologia RNA.

Na Figura 4.32, os pontos azuis representam os valores utilizados no treinamento do modelo
de previsdo, enquanto os pontos vermelhos correspondem aos valores de teste empregados para
avaliar a capacidade de generalizagdo do modelo a dados ndo previamente utilizados. A linha
vermelha solida, que representa a condicao de igualdade (y=x), demonstra que a maioria dos
pontos, tanto de treinamento quanto de teste, agrupa-se em torno dela. Isso indica uma
concordancia geral razodvel entre as previsdes do modelo e os valores efetivamente medidos

do coeficiente de permeabilidade.

Alguns pontos se situam acima da linha, o que indica que o modelo subestimou o valor real,

enquanto outros estdo abaixo, sinalizando uma superestimagao. As linhas tracejadas em azul (y
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=0.1x ey =10x) e roxo (y = 0.33x e y = 3x) definem faixas de erro. A analise, consistente com
os dados apresentados na Figura 4.32 do estudo, revela que aproximadamente 94% dos casos
se encontram dentro da faixa delimitada pelas linhas roxas (erro de até um fator de 3).
Adicionalmente, quase 100% dos casos se situam dentro da faixa mais ampla definida pelas

linhas azuis (erro de até uma ordem de magnitude).

A dispersdo dos pontos de teste (vermelhos) ¢ similar a dos pontos de treinamento (azuis), o
que sugere que o modelo apresenta uma capacidade de generalizacdo aceitavel e provavelmente
ndo sofre de overfitting, ou seja, ndo se ajustou excessivamente aos dados de treinamento em
detrimento do desempenho em dados novos. A andlise visual da escala /og-log indica que o
desempenho do modelo parece relativamente consistente em diferentes ordens de magnitude
dos valores de permeabilidade, embora possa haver uma ligeira tendéncia de maior

variabilidade nos valores mais elevados.

Para o modelo 2 desenvolvido neste estudo, a Figura 4.33 mostra que, em aproximadamente
95% dos casos, 0 kss medido ficou na faixa de ksys previsto/3 a 3ksys previsto. Isso significa que,
em 95% dos casos, as previsdes pelo Modelo 2 subestimariam ou superestimariam o coeficiente
de permeabilidade (ou taxa de fluxo) do sistema por um fator de até 3. Em aproximadamente

99% dos casos, as previsdes subestimariam ou superestimariam as medi¢des por um fator de

até 10.
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Figura 4.33— Comparagao entre os valores previstos pelo modelo e os valores medidos- solos
com concavidade para cima
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Ja com relagdo ao Modelo 3, a Figura 4.34 mostra que, em aproximadamente 99% dos casos, o
ksys medido ficou na faixa de ksys previsto/3 a 3ksys previsto. Isso significa que, em 99% dos
casos, as previsoes pelo Modelo 3 subestimariam ou superestimariam o coeficiente de
permeabilidade (ou taxa de fluxo) do sistema por um fator de até 3. Em aproximadamente 100%

dos casos, as previsdes subestimariam ou superestimariam as medig¢des por um fator de até 10.
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Figura 4.34:Comparagdo entre os valores previstos pelo modelo e os valores medidos- solos
descontinuos.

O desempenho dos modelos de Redes Neurais Artificiais (RNA) foi avaliado quantitativamente
por meio da andlise da porcentagem de previsdes que se encontram dentro de faixas de erro
predefinidas em relagdo aos valores medidos do coeficiente de permeabilidade. Para o Modelo
1, treinado com dados de ambos os tipos de solo (com concavidade para cima e descontinuos),
aproximadamente 94% das previsdes ficaram dentro de um fator de até 3 dos valores medidos.
Além disso, quase 100% das previsdes apresentaram um erro de até uma ordem de magnitude
(fator de até 10). O Modelo 2, desenvolvido especificamente para solos com concavidade para
cima, demonstrou uma ligeira melhoria, com aproximadamente 95% das previsdes dentro de
um fator de até 3 € 99% dentro de um fator de até 10 dos valores medidos. O Modelo 3, treinado
para solos com granulometria descontinua, apresentou o melhor desempenho entre os trés
modelos, com cerca de 99% das previsdes dentro de um fator de até¢ 3 dos valores medidos e

100% das previsdes dentro de um fator de até 10.
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Essas porcentagens indicam que todos os modelos conseguem prever o coeficiente de
permeabilidade com uma acuracia razoavel, de modo que a grande maioria das previsodes se
situa dentro de uma ordem de magnitude dos valores reais. Os modelos treinados
especificamente para um tipo de solo (Modelos 2 e 3) tendem a apresentar uma ligeira vantagem

em termos de acuracia para o tipo de solo para o qual foram otimizados.

Assim com a finalidade de avaliar o desempenho dos modelos de regressao multipla (RM) e de
rede neural artificial (RNA), desenvolvidos nos itens 4.2 ¢ no item 4.3, foi realizada uma
comparagdo e apresenta-se de forma resumida na Tabela 4.22 . Esta analise se concentrou nos

Modelos 2 e 3 para permitir uma avaliacdo mais detalhada e individualizada de cada tipo de

solo.
Tabela 4.22: Resumo da comparagdo entre os modelos de MR ¢ RNA
Modelo Faixas RM RNA
1 Entre kgysm/3 € 3kgysm - 94%
(Solos com concavidade
para cima e gap graded) Entre Ky /10 € 10 Kyyom - 100%
2 . Entre kysm/3 € 3ksysm 90% 95%
(Solos com concavidade Y Y
para cima) Entre Ko /10 € 10 ke 98% 99%
3 Entre kysm/3 € 3ksysm 87% 99%
(Solos descontinuos ou | g p 10610 ko 98% 100%
grap graded) i

A Tabela 4.22 revela que os modelos de RNA tendem a prever o comportamento filtrante do
sistema solo/geotéxtil com maior precisdo. A diferenca ¢ pequena no Modelo 2, mas torna-se
consideravel no Modelo 3, onde a acuracia da RNA ¢ 12% maior (99% contra 87%) na faixa

de ksysm/ 3a 3ksysm.

E importante notar que os Modelos 2 e 3 superam a acuracia do Modelo 1, o que refor¢a a
hipotese inicial de que a separacdo dos tipos de solo ¢ uma estratégia eficaz para o

desenvolvimento de modelos preditivos, tanto para RNA quanto para regressao multipla.

Em resumo, embora a metodologia de RNA tenha apresentado os melhores resultados, ambas
as abordagens demonstram um excelente desempenho na tarefa de previsdo do comportamento

filtrante do sistema solo/ geotéxtil.
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5 CONCLUSOES

5.1

CONCLUSOES GERAIS

O foco deste estudo foi avaliar a eficacia do uso da metodologia RNA para prever o desempenho

do sistema solo/geotéxtil em contato com solos internamente instaveis. Uma arquitetura MLP foi

escolhida para configurar os modelos de RNA, e o processo de treinamento € supervisionado, o

que envolve um algoritmo de treinamento BP acoplado ao algoritmo de otimizagao BOA.

Os dados de entrada para os modelos implementados foram definidos a partir de testes de

laboratorio relatados em pesquisas anteriores. Duzentos e vinte e quatro dados (224), incluindo 16

pardmetros de entrada e os resultados da permeabilidade final do sistema solo/geotéxtil (kiys),

foram finalmente utilizados. Uma vez que os resultados obtidos nas varias andlises realizadas

foram avaliados, € possivel estabelecer as seguintes conclusdes:

A informagao estatistica dos dados coletados revela uma ampla distribuigdo para cada
parametro, o que permite uma melhor caracterizacdo e analise para diferentes condi¢des
de solo, geotéxtil e condi¢des externas.

Para esse estudo, a andlise de correlagdo dos dados coletados mostrou que as caracteristicas
do solo (dio, di5 e C,) t€ém a maior correlagdo com a permeabilidade final do sistema solo-
geotéxtil. Em contraste, condi¢cdes do ensaio como tensdo vertical e gradiente hidraulico
apresentam uma correlagdo média. enquanto a espessura do geotéxtil e a abertura de
filtragdo exibiram os menores coeficientes de correlagdo. E importante destacar que esses
resultados refletem o comportamento observado neste conjunto especifico de dados e ndo
devem ser generalizados sem cautela. Assim, no contexto deste estudo, esta analise
permitiu reforgar que, na maioria dos casos, a diminui¢do do desempenho do sistema solo-
geotéxtil ndo foi causada apenas pelas propriedades do geotéxtil, mas, sim, pelo

comportamento do solo internamente instavel sob as condig¢des hidraulicas impostas;

Trés modelos de RNA foram analisados, diferenciados em termos do seu ntimero de
entradas (9 ou 10) e do nimero de camadas ocultas (2 ou 3). Os modelos com mais
parametros de entrada apresentaram maior acuracia com base na analise de distribuicao,
valores residuais e critérios estatisticos obtidos pela comparagao entre valores previstos e
reais.

Nao foi alcancada uma correlacdo perfeita entre os dados previstos e reais provavelmente
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devido a auséncia de alguns valores nos parametros de entrada durante o treinamento da
rede. Essa limitagcdo reflete a complexidade inerente a esses sistemas, que envolvem
multiplas regressoes ndo lineares ¢ muitas varidveis explicativas, tornando inviavel a
inclusdo de todas elas no modelo. Portanto, essa complexidade dificulta a modelagem
precisa, exigindo abordagens que conciliem simplificagdo e representatividade dos dados;

e O Modelo 1 de RNA, com a arquitetura 10-554-136-186-1, apresentou resultados
satisfatorios em termos da distribui¢do dos valores previstos em compara¢ao com a linha
de tendéncia, um menor numero de valores residuais fora da faixa aceitavel (2,8% para
treinamento e 4,4% para teste) e excelente desempenho de previsdo de acordo com as
métricas estatisticas para ambas as fases.

e O Modelo 2 de RNA, com a arquitetura 9-890-850-209-1, também apresentou resultados
satisfatorios com um numero de valores residuais fora da faixa aceitavel (4,2% para
treinamento e 3,3% para teste) e excelente desempenho de previsdo de acordo com as
métricas estatisticas para ambas as fases;

e Ja o Modelo 3 de RNA, apresentou uma arquitetura 9-557-835-1, desenvolveu resultados
aceitaveis com um numero de valores residuais fora da faixa aceitavel, sendo 5,00% para
a fase de treinamento e de 13,33% na fase de teste e desempenho moderado de previsdo
de acordo com as métricas estatisticas para ambas as fases;

e Pode-se concluir que o algoritmo de RNA ¢ um método adequado para prever os valores
de desempenho do sistema solo/geotéxtil (k) para os dados coletados.

e A andlise de regressao multipla (MR) apresentou resultados preliminares promissores e as
equacdes obtidas permitem quantificar e utilizar esses métodos de forma complementar
para compreender os fatores que influenciam o comportamento do sistema solo

internamente instavel-geotéxtil.

Por fim, ressalta-se que os dados matematicos isolados ndo oferecem a sensibilidade necessaria
para compreender integralmente o funcionamento real do sistema. Sem a observagdo direta em
campo ou em laboratério, tais dados apenas simulam relacdes numéricas, sem captar a
complexidade e as nuances do comportamento fisico, o que evidencia a importancia fundamental

de analises experimentais complementares.

5.2 LIMITACOES DO MODELO
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A principal limitacdo do modelo reside nas propriedades dos materiais sob avaliagdo.
Especificamente, o modelo se concentra unicamente na interagdo entre solo internamente
instavel e geotéxtil. Adicionalmente, ¢ necessario dispor da maior quantidade de informacao
possivel sobre os parametros de entrada, os quais devem estar dentro das faixas dos dados

utilizados nos algoritmos de aprendizagem.

5.3 SUGESTOES PARA PESQUISAS FUTURAS

As conclusdes deste estudo fornecem algumas recomendagdes para pesquisas futuras sobre o
uso de RNA e Regressdo Linear Multipla para avaliar o desempenho filtrante do sistema
solo/geotéxtil:

e Complementar a base de dados atual e fornecer mais amostras para treinamento e
validacao.

o Implementar diferentes algoritmos de treinamento e/ou otimizagdo e outras técnicas de
Machine Learning (Aprendizado de Maquina), para comparar os resultados obtidos e
estabelecer a metodologia mais precisa.

 Iniciar pesquisas com outros solos e geotéxteis, a fim de estabelecer um comportamento

geral para diferentes tipos de filtro geossintéticos.
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