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ABSTRACT 

The use of geotextile filters in geotechnical engineering and environmental protection 

works has  increased  in  recent  decades  due  to  the  advantages  in  project  execution  

and  environmental preservation, reducing the use of natural materials such as sands and 

gravels. However, concerns about their long-term performance, such  as reduced  

permeability  and clogging, persist.  The behaviour  of a geotextile  filter  is influenced 

by various conditions, especially soil type, particularly in internally unstable soils, where 

suffusion can  compromise filter performance.  Therefore, it  is necessary  to seek  

alternative methods  for predicting filter behaviour under such conditions. This 

dissertation proposes the use of Artificial Neural Network (ANN) to predict the 

permeability of soil-geotextile systems based on 352 research results. A Multilayer 

Perceptron (MLP) architecture was used to configure the model, and the 

Backpropagation (BP) algorithm was adopted. In addition, multiple linear regression 

(MR) and ANN predictions for the permeability coefficient of internally unstable-soil 

systems were compared . The accuracy of the ANN and MR methods was compared 

using statistical tools. The results obtained show that these techniques can satisfactorily 

predict the permeability coefficient of internally unstable-geotextile filter systems.  

 

KEYWORDS: Artificial Neural Network (ANN), Geotextile, Internally Unstable Soils, 

Multiple Linear Regression (MR) 
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RESUMO 

O uso de filtros geotêxteis em atividades de engenharia geotécnica e proteção ambiental 

tem sido crescente nas últimas  décadas devido às vantagens  na  execução  de 

empreendimentos  e  na  preservação ambiental, reduzindo o uso  de materiais naturais  

como areia  e brita. No entanto, preocupações sobre seu desempenho a longo prazo, 

como a redução de permeabilidade e colmatação, persistem. O comportamento de um 

filtro geotêxtil pode ser influenciado por diversas condições, especialmente o tipo de 

solo, sobretudo em solos internamente instáveis, onde a sufusão pode comprometer o 

seu desempenho. Portanto, é necessário buscar métodos alternativos de previsão de 

comportamento sob tais condições. Esta dissertação investigou o uso de Rede Neural 

Artificial (RNA) para prever a permeabilidade do sistema solo-geotêxtil com base em 

352 resultados de ensaios de laboratório obtidos por diferentes autores. Foi utilizada 

uma arquitetura de Perceptron Multicamada (PMC) para configurar o modelo e adotou-

se o algoritmo de Retropropagação (RP). Além disso, previsões por regressão linear 

múltipla (RM) e RNA para a permeabilidade de sistemas solo internamente instável-

geotêxtil foram comparadas. As acurácias dos métodos RNA  e  RM  foram avaliadas 

por  meio  de  técnicas estatísticas.  Os resultados obtidos mostram que tais técnicas 

podem ser utilizadas para  prever satisfatoriamente o coeficiente de permeabilidade de 

sistemas solo internamente instável-filtro geotêxtil. 

 

PALAVRAS-CHAVE: Rede  Neural Artificial  (RNA), Geotêxtil,  Solos internamente 

instáveis, Regressão  Múltipla (RM)  
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1 INTRODUÇÃO 

O uso de filtros geotêxteis em atividades de engenharia geotécnica e proteção ambiental tem 

sido crescente ao longo das últimas décadas devido às várias vantagens que sua utilização 

apresenta. Isso ocorre tanto durante a execução de um empreendimento, com maior facilidade 

no transporte e instalação, quanto nos aspectos ambientais, ao evitar ou reduzir o uso de 

materiais naturais como areia e brita, pois favorece a conservação do meio ambiente. Assim, 

tais filtros oferecem vantagens econômicas e ambientais, pois, segundo Frischknecht et al. 

(2012), um filtro geotêxtil reduz o impacto ambiental, em mais de 80% em comparação com os 

filtros de areia. No entanto, a sua aplicação em projetos maiores e complexos ainda apresenta 

certos obstáculos, por isso é importante entender melhor o seu desempenho a longo prazo sob 

condições que possam causar um mau desempenho (Palmeira, 2018).  

 

De forma geral, o sistema solo/filtro geotêxtil, na sua condição estável, deve atender aos 

critérios de retenção, permeabilidade, anticolmatação e sobrevivência e durabilidade. Ao 

garantir os cumprimentos desses critérios e a boa execução, a probabilidade de o filtro geotêxtil 

apresentar problemas no seu desempenho ao longo da sua vida útil é muito baixa (Palmeira, 

2018; Khan et al., 2022;). Com o aumento da utilização de geotêxteis, inúmeros estudos foram 

realizados para entender a interação entre o solo, fluidos e filtros geotêxteis e garantir os 

critérios mencionado acima. Porém, certos aspectos ainda exigem investigações abrangentes 

para compreender melhor o desempenho desses filtros. Um estudo realizado por Qureshi et al. 

(1990) apresenta resultados nos quais se obteve redução significativa do coeficiente de 

permeabilidade do sistema solo/geotêxtil, para um solo internamente instável. Esse estudo 

também sugere que as reduções foram causadas pela impregnação dos vazios do geotêxtil por 

partículas do solo em contato.  

 

Outro estudo, realizado por Koerner & Koerner (2015), apresentou as possíveis falhas que 

levaram a um comportamento inadequado do sistema solo/geotêxtil. Entre essas falhas, 

encontra-se o contato entre o filtro com solos atípicos, especialmente solos internamente 

instáveis, os quais são solos de graduação ampla que se caracterizam por ter uma curva 

granulométrica com concavidade voltada para cima ou solos descontínuos (gap grapped). Esses 

tipos de solos podem sofrer sufusão, com consequências danosas para o desempenho do filtro, 

reduzindo a permeabilidade do sistema solo/geotêxtil (Chang & Zhang, 2013; Koerner & 

Koerner, 2015; Palmeira, 2018) 
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Diante do exposto, a procura por métodos alternativos para prever o comportamento do sistema 

solo-geotêxtil sob tais condições se torna importante para a engenharia geotécnica. Com o 

crescente uso de ferramentas avançadas computacionais, o uso de inteligência artificial (IA) 

vem se tornando bem-sucedido nos diferentes setores da engenharia geotécnica, devido a sua 

eficácia na análise de previsões de relações não lineares. Trata-se de uma solução para 

elaboração de modelos de previsão mais precisos em comparação com o uso de métodos 

tradicionais. Entre os métodos de IA utilizados, as Redes Neurais Artificiais (RNA) parecem 

ser as mais amplamente utilizadas e preferidas, de modo que compreendem 52% dos estudos 

revisados (Baghbani et al., 2022). Por outro lado, o uso de análises de regressão multivariada 

vem apresentado, também, previsões acuradas devido a sua capacidade de aproximar e 

expressar de forma matemática a relação entre os parâmetros envolvidos, uma vez que é capaz 

de gerar modelos de fácil interpretação em problemas geotécnicos nos quais existem relações 

mais complexas entre as variáveis envolvidas.  

 

A presente dissertação visa utilizar os métodos apresentados acima para estimar a 

permeabilidade de um conjunto solo/geotêxtil e correlacionar as propriedades do solo, a ser 

estudado (internamente instável), e as propriedades do filtro, com a finalidade de obter uma 

previsão mais acurada do desempenho do geotêxtil. 

 

1.1 OBJETIVOS 

O principal objetivo desta dissertação é avaliar a eficácia de métodos alternativos, como 

Rede Neural Artificial (RNA) e Métodos de Regressão Multivariada (MRM), para prever 

o comportamento filtrante de geotêxtil em contato com solos internamente instáveis. A 

avaliação desse comportamento será realizada por meio do coeficiente de permeabilidade 

do conjunto solo/geotêxtil, de forma que esse parâmetro é crucial para compreender a 

interação entre estes materiais e seu impacto no desempenho do filtro geotêxtil. 

 

Para atingir o objetivo principal da dissertação, os seguintes objetivos específicos foram 

desenvolvidos: 

• Identificar os fatores que influenciam o comportamento filtrante do geotêxtil nos 

ensaios de laboratório compilados na literatura; 

• Realizar análises estatísticas com base no banco de dados de ensaios de filtração 
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para correlacionar as propriedades do filtro com as propriedades do solo; 

• Elaborar modelos baseados nos parâmetros de entrada, no número de camadas 

ocultas e na arquitetura ideal para redes neurais; 

• Avaliar o desempenho dos modelos RNA no comportamento de geotêxteis, a fim 

de comparar os valores previstos com dados reais (os resultados dos ensaios 

laboratoriais); 

• Comparar os resultados do modelo RNA com os resultados obtido por modelos 

estatísticos. 

 

1.2 ESTRUTURAÇÃO DA DISSERTAÇÃO 

O estudo está dividido em cinco capítulos. Nesse sentido, o Capítulo 1 apresenta, de 

forma concisa, as considerações iniciais da pesquisa, a justificativa e o objetivo do 

trabalho. Então, o Capítulo 2 é dedicado à revisão da literatura, assim, destaca as 

principais características e aplicações do filtro geotéxtil, seu comportamento com o solo, 

além de definir e explorar os conceitos fundamentais de Redes Neurais Artificiais (RNA) 

aplicados à engenharia civil e geotecnia. 

 

Além disso, o Capítulo 3 descreve em detalhe a metodologia e as técnicas utilizadas para 

desenvolver, implementar, processar e avaliar o modelo de Redes Neurais Artificiais 

(RNA), que é destinado a prever a resistência na interface. Este capítulo expõe, passo a 

passo, desenvolver um modelo de RNA, incluindo a seleção de parâmetros de entrada e 

definindo a arquitetura adequada. 

 

O Capítulo 4 apresenta os resultados da metodologia aplicada para a previsão do 

comportamento filtrante do solo/geotêxtil. Os dados coletados são analisados e 

correlacionados, e as características dos modelos implementados são descritas 

detalhadamente, acompanhadas de suas respectivas avaliações de desempenho. Os 

modelos finais são comparados com os resultados experimentais obtidos em laboratório, 

a fim de determinar sua acurácia. No final, o modelo com o melhor desempenho, em 

termos de acurácia na previsão do comportamento filtrante (k), foi identificado e 

selecionado. 

 

Finalmente, o Capítulo 5 oferece uma síntese abrangente dos achados do estudo, de 



 

 

4 

modo que destaca as principais conclusões. Além disso, discute as limitações da 

pesquisa e sugere direções para estudos futuros. 

 

As referências bibliográficas utilizadas no estudo estão listadas após o último capítulo. 
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2 REVISÃO BIBLIOGRÁFICA 

2.1 FUNÇÕES E APLICAÇÕES DE GEOSSINTÉTICOS  

De acordo com a Sociedade Internacional de Geossintéticos (IGS, 2024), os geossintéticos são 

materiais poliméricos, naturais ou sintéticos, utilizados como materiais em obras de construção 

civil e geotécnicos., em contato com solos, rochas ou outros materiais geotécnicos. O uso desses 

materiais tem apresentado um aumento significativo nas últimas décadas, devido a uma série 

de fatores, entre os quais se destacam as vantagens técnicas, econômicas e ambientais que 

oferecem. 

 

Do ponto de vista técnico, os geossintéticos se destacam pela agilidade e simplicidade de 

aplicação, além da ampla variedade de produtos disponíveis para diferentes finalidades. No 

aspecto econômico, esses materiais são valorizados por seu baixo custo, enquanto, sob a ótica 

ambiental, apresentam um impacto ambiental reduzido, tornando-se uma alternativa mais 

sustentável. Com todos esses benefícios, os geossintéticos se consolidaram como uma excelente 

opção em comparação com as metodologias e aos materiais tradicionais de construção civil. 

 

Este material geotécnico têm a capacidade de substituir, parcial ou totalmente, recursos naturais 

em obras civis e geotécnicas. Suas características, como resistência à corrosão, flexibilidade, 

facilidade de transporte, armazenamento e instalação, além de sua durabilidade, reforçam sua 

adoção em uma ampla gama de aplicações. Na Tabela 2.1, apresenta-se de forma resumida suas 

principais funções. 

 

Tabela 2.1-Principais Funções do Geossintéticos (Adaptado de Palmeira, 2018) 

Função Finalidade Exemplo Geossintético 

Separação 

Separar materiais geotécnicos 

diferentes com o objetivo de 

garantir a funcionalidade de cada 

material. 
 

• Geomembrana 

• Geotêxtil 

• Geocomposto 

Barreira 

O geossintético atua como uma 

barreira relativamente 

impermeável a fluídos e gases. 

 

• Geotêxtil 

• Geomembranas 

• Geocompostos 

• Geocompostos 

argilosos(GCL’s) 
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Função Finalidade Exemplo Geossintético 

Filtração 

Permitir simultaneamente o livre 

escoamento do fluido assim 

como bloquear a passagem de 

partículas de solo (agindo como 

um filtro granular)  

• Geotêxtil 

• Geocomposto 

Drenagem 
Coletar e conduzir o fluido por 

meio do geossintético. 

 

• Geotêxtil 

• Georredes 

• Geocomposto 

• Geotubos 

Controle de 

Erosão 

Controlar a erosão superficial de 

diversas estruturas devido a estar 

expostos a agentes como chuvas, 

fluxo superficial e transporte 

sedimentar.  

• Georredes; 

• Mantas Geotêxtil; 

• Geotêxtil; 

• Geomembrana; 

• Geocélulas 

Reforço 

Aumentar a Resistencia e/ou 

diminuir os recalques, 

melhorando o comportamento 

mecânico do solo. 
 

• Geogrelha; 

• Geotêxtil; 

• Geocomposto 

• Geocélulas 

 

Entre suas principais aplicações estão reservatórios e barragens, depósitos de resíduos líquidos, 

depósitos de resíduos sólidos, canais, obras rodoviárias e ferroviárias, fundações, obras de 

controle de erosão, estruturas subterrâneas como tuneis e sistemas de drenagem (NBR ISO 

10318, 2013). 

 

Destaca-se que esta pesquisa tem como foco principal a análise do comportamento filtrante do 

geotêxtil, sendo que, nos próximos capítulos, haverá uma ênfase maior neste material e na sua 

função. 

 

2.2 FILTRO GEOTÊXTIL 

O geotêxtil é um geossintético plano e permeável de natureza têxtil. Ele pode ser classificado 

como geotêxtil tecido ou não tecido, e é manufaturado a partir de diversos polímeros, 

predominantemente polietileno, poliamida (nylon), poliéster (polietileno tereftalato) e 

polipropileno (Freitas, 2003). 

 

A fabricação de geotêxteis tecidos (GT) consiste no entrelaçamento de fios em direções 

ortogonais, formando uma estrutura planar contínua. Já os geotêxteis não tecidos (GTN) são 
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produzidos pela distribuição aleatória de fibras sobre uma superfície rolante, em que a espessura 

é controlada pela velocidade que ela roda. No processo de fabricação do GTN, as fibras sofrem 

um processo de ligação, que pode ocorrer de forma mecânica (como agulhamento), térmica 

(fusão das fibras) ou química (utilização de ligantes) (Freitas, 2003). 

 

Figura 2.1:Tipo de Geotêxtil: (a) Tecido (GT) e (b) Não Tecido (GNT) (Freitas,2003) 

 

Esse elemento é comumente utilizado em obras geotécnicas como substituição do filtro 

granular (Figura 1). Essa substituição traz várias vantagens em relação a um filtro granular. 

Entre essas vantagens, apresentam-se facilidade na fase construtiva da obra, pois possuem 

facilidade, rapidez e baixo custo na instalação; menor ocupação de volume e redução de uso 

material granular e, por consequência, menor impacto ambiental; maior confiabilidade no uso 

devido a repetibilidade e uniformidade das propriedades do material. 

 

Figura 2.2-Filtro Granular vs. Filtro Geotêxtil (Modificado de Palmeira, 2023). 

 

Tanto o filtro geotêxtil como o granular têm como objetivo reter o solo e permitir a passagem 

da água ao mesmo tempo e de forma equilibrada. Assim, as abordagens de projeto para os 

filtros geotêxteis geralmente devem considerar critérios geométricos e hidráulicos. O primeiro 

define os valores limites para os diâmetros dos poros do geotêxtil para impedir o transporte 

de partículas menores por eles. O segundo define um valor limite para o gradiente hidráulico 

no qual o transporte das partículas do solo começa (Koerner, 2016).  

 

A elaboração de um projeto adequado com uma correta seleção de filtros depende das 

condições de contorno, da criticidade da aplicação e das características geotécnicas do solo 
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base (sobretudo da distribuição do tamanho dos grãos, estabilidade interna e permeabilidade). 

As condições de contorno estão intimamente relacionadas aos gradientes hidráulicos 

aplicados, às condições de fluxo e ao comportamento do sistema solo-geotêxtil. Infelizmente, 

os critérios de projeto de filtro comumente usados não consideram todos esses fatores, mas 

muitas vezes são resultado de um compromisso necessário entre requisitos (Giroud, 2010; 

Moraci, 2010).  

 

Outro ponto de observação é o tipo de geotêxtil que vai ser utilizado, pois, segundo Palmeira 

(2018), os geotêxteis não tecidos apresentam melhor desempenho em relação com o geotêxtil 

tecido. Entre essas vantagens, encontram-se: menor susceptibilidade a danos mecânicos, 

maior estabilidade com relação as dimensões das aberturas do filtro e menor impacto na 

funcionalidade do filtro caso ele fosse danificado.  

 

Para garantir o funcionamento adequado do filtro vários autores propuseram critérios para 

garantir um adequado comportamento do filtro, mas de forma geral um geotêxtil seja ele 

tecido ou não tecido, deve atender aos seguintes critérios (Bathia ¨& Smith, 1996): 

 

• Critério de Retenção: Esse critério deve garantir que as aberturas de filtro sejam 

suficientemente pequenas para impedir a erosão das partículas de solo, a fim de evitar 

a erosão interna (pipping) 

• Critério de Permeabilidade: Visa assegurar que o filtro manterá o valor de coeficiente 

de permeabilidade maior que o solo em contato e que seja compatível com as condições 

de fluxo da obra; 

• Critério de Anticolmatação: Deve garantir que o filtro não sofrerá algum tipo de 

mecanismo de colmatação que reduza a sua permeabilidade. 

• Critério de sobrevivência e durabilidade: Garantir que o filtro possua as propriedades 

mecânicas e de resistência à degradação adequadas durante toda a vida útil da obra 

(Palmeira, 2018; Khan et al., 2022). 

 

Em relação a esses critérios, Palmeira (2020) enfatiza que os primeiros três critérios se 

relacionam mais com as propriedades do geotêxtil e o último aspecto com as condições a que o 

geotêxtil é submetido. Quanto à capacidade de retenção do geotêxtil, Palmeira (2018) compila 

alguns dos critérios encontrados na literatura, destacando o elaborado por Lafleur (1999). 
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Segundo esse autor, os solos com Cu > 6 com curva granulométrica com concavidade voltada 

para cima, assim como os solos descontínuos com Cu > 6, podem apresentar problemas de 

retenção pelo geotêxtil. Em solos não coesivos, os solos descontínuos e a solos com curvas 

granulométrica com concavidade para cima, apresentam risco significativo de migração de 

finos. 

 

O critério de permeabilidade visa garantir que a permeabilidade inicial do filtro seja igual ou 

superior a do solo, a fim de permitir o livre fluxo da água, de modo a cumprir a sua função de 

filtração. Dentre os critérios relevantes, Carroll (1983) e Christopher e Holtz (1985) propõem 

que, sob condições hidráulicas e de solos críticas e severas, a permeabilidade do geotêxtil deve 

atender à condição kGT>10kS. Os autores Christopher e Holtz (1985) também recomendam a 

adoção de kGT>100kS em cenários com potencial de ocorrência de colmatação biológica. O 

departamento de transporte do Reino Unido (1993) também contribui com os seguintes 

critérios: para geotêxteis (tecido ou não tecido) com espessura (tGT) inferior a 2 mm, a condição 

atendida é kGT >10kS; para geotêxteis não tecidos com tGT superior a 2 mm, o critério é kGT > 

100k S. 

O critério de anticolmatação, por sua vez, tem como objetivo prevenir a ocorrência de 

mecanismos de redução de permeabilidade, como cegamento, bloqueamento e obstrução dos 

poros do geotêxtil. Esse critério será detalhado nos próximos itens. Em situações críticas ou 

severas, Christopher e Holtz (1985) enfatizam a importância da realização de ensaios de 

infiltração que utilizem o solo de contato com o geotêxtil e simulem as condições de campo a 

que o filtro será exposto. A  Tabela 2.2 apresenta as situações consideradas severas ou críticas 

para a aplicação destes critérios. 
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Tabela 2.2-Avaliação da criticidade e severidade (Modificado de Carroll, 1983, Palmeira, 

2018) 

Situação Crítica 

Situação Condição Crítica Condição Não Crítica 

Risco de perder a vida ou danos 

estruturais devido à falha do dreno. 
Alto Nenhum 

Custo de preparo vs. Custo de 

instalação do dreno 
Muito maior Igual ou menor 

Evidência de colmatação do dreno 

antes de uma falha catastrófica 
Nenhuma Sim 

Situação Severa 

Situação Condição Severa Condição Não Severa 

Solo a ser drenado 
Solos descontínuos, 

sujeitos a piping 

Solos bem graduados ou 

uniformes 

Gradiente Hidráulico Alto Baixo 

Condições de fluxo Dinâmico ou cíclico Fluxo Permanente 

 

Por fim, considerando os critérios de sobrevivência e durabilidade, o geotêxtil deve possuir 

propriedades mecânicas adequadas, abrangendo resistência à tração, deformação sob carga e 

resistência ao puncionamento. Adicionalmente, deve apresentar durabilidade à degradação 

induzida por radiação ultravioleta e agentes químicos presentes no ambiente, de modo a garantir 

a integridade do material durante as fases de instalação, execução e ao longo da vida útil da 

obra (Christopher & Fischer, 1992). 

 

2.2.1 PROPRIEDADES DO GEOTÊXTIL 

Em função do tipo de projeto, o geotêxtil deve apresentar características específicas que 

assegurem seu desempenho adequado para a finalidade proposta. Dessa forma, as propriedades 

do material funcionam como critérios determinantes na seleção de um geotêxtil, o qual deve 

responder de maneira eficaz às diversas condições e solicitações a que será submetido.  

 

Para isso, nos últimos anos, diversos tipos de ensaios laboratoriais foram realizados com o 

objetivo de estudar e compreender de forma mais detalhada o comportamento e o desempenho 

dos filtros geotêxteis, além de quantificar as propriedades mais relevantes (Palmeira, 2020). 

Esses ensaios podem ser classificados tanto pela propriedade avaliada quanto pelos critérios de 

garantia. Nesse contexto, Villar (2014) os categorizou em quatro grupos principais: 

I) Ensaios para determinação das propriedades físicas:  incluem ensaios de filtração de 
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solo/geotêxtil, ensaios de índice físicos (Christopher & Holtz, 1985; Melo, 2018) 

II) Ensaios para determinação das propriedades mecânicas: ensaios de resistência a 

tração, deformação e resistência à agentes químicos; 

III) Ensaios para determinação das propriedades hidráulicas: compreendem a análise da 

distribuição granulométrica do solo de contato, ensaio de peneiramento e análise de 

imagem; 

IV) Ensaios de desempenho: englobam o ensaio de filtração de longa duração, o Ensaio 

de Razão de Gradientes (ASTM D5101) e o Ensaio de Condutividade Hidráulica 

(ASTM D5567). 

 

Em relação aos critérios de anticolmatação, os ensaios a serem conduzidos englobam ensaios 

de infiltração, a avaliação dos índices físicos do geotêxtil e os ensaios de desempenho 

previamente mencionados. No que concerne aos ensaios índice, o objetivo é determinar a 

propriedades filtrantes do geotêxtil, independente das características do solo base e das 

condições da obra, a fim de avaliar a abertura de infiltração (FOS) e a distribuição de constrições 

(Christopher & Holtz, 1985; Melo, 2018). 

 

Considerando que este estudo se concentra na análise do desempenho do geotêxtil, uma maior 

atenção será dedicada aos ensaios que avaliam essa característica, dentre os quais se destacam 

o ensaio de peneiramento, o ensaio de razão entre gradientes, o ensaio de condutividade 

hidráulica e o Ensaio do Ponto de Bolha (Bubble Point Test). Dessa forma, nos itens 

subsequentes, serão apresentadas as principais propriedades físicas e hidráulicas do geotêxtil 

que exercem influência sobre o desempenho do material. 

 

2.2.1.1 PROPRIEDADES FÍSICAS 

As grandezas como a espessura, porosidade, massa por unidade de área (gramatura) e o 

diâmetro das fibras ou filamentos são consideradas como as propriedades físicas do 

geossintéticos (Palmeira, 2018). A seguir, apresenta-se uma breve descrição dessas 

propriedades: 

 

• Gramatura (MA): Também conhecida como massa por unidade de área, a gramatura é 

um parâmetro relevante para avaliar a uniformidade e a qualidade do geossintético. Ela 

expressa a quantidade de material por unidade de área, sendo medida em g/m² (Moreira, 
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2009). Segundo Koerner (2005), a maioria dos geotêxteis apresenta valores de 

gramatura entre 150 e 750 g/m²; 

• Espessura (tGT): Representa a distância entre as superfícies inferior e superior do 

geossintético, expressa em milímetros (mm) sob uma pressão específica. A espessura 

nominal é obtida ao se aplicar uma pressão de 2 kPa, com valores típicos para geotêxteis 

que variam entre 0,25 mm e 7,5 mm. A relação entre espessura e pressão permite avaliar 

a compressibilidade do material (Lopes & Lopes, 2010); 

 

• Porosidade (n): Define-se como a razão entre o volume de vazios e o volume total do 

geossintético. A porosidade pode ser calculada em função da gramatura (MA), da massa 

específica das fibras (ρf) e da espessura (tGT), conforme a Eq. (2.1). 

 

𝑛 = 1 −  
𝑀𝐴

𝜌𝑓𝑡𝐺𝑇
 

 

Eq. (2.1) 

 

• Constrição (Dc): Corresponde ao diâmetro equivalente da menor abertura no canal de 

fluxo em um geotêxtil, é equivalente ao diâmetro da maior partícula que consegue 

atravessar a espessura do material. Partículas do solo podem ser retidas nesses canais de 

fluxo quando a constrição é menor que o diâmetro da partícula. Em geotêxteis não 

tecidos, a capacidade de retenção de partículas é particularmente sensível à tensão 

vertical (𝝈v) aplicada no material.  

 

2.2.1.2 PROPRIEDADES HIDRÁULICAS 

As propriedades hidráulicas desempenham um papel crucial na avaliação do desempenho de 

um filtro, seja ele granulares ou sintéticos. Como este estudo se concentra no desempenho 

filtrante do geotêxtil, essas propriedades serão analisadas detalhadamente. 

 

Entre as características hidráulicas relevantes, destacam-se a distribuição e a dimensão das 

aberturas, a permeabilidade normal ao plano (kn) e a permeabilidade ao longo do plano (kp).  

 

• Abertura de filtração (Of): Embora diversos autores classifiquem essa característica 

como uma propriedade física dos geossintéticos, seu impacto significativo no 
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comportamento hidráulico e sua função definidora no potencial de filtração a tornam 

um parâmetro primordial para o dimensionamento de filtros geotêxteis (Rigo et al., 

1990). Portanto, nesta dissertação, ela será abordada como uma propriedade hidráulica 

do geotêxtil. 

 

Essa propriedade é fundamental, pois o filtro geotêxtil deve desempenhar duas funções 

simultaneamente: permitir o fluxo de fluido através de seu plano, em contato com o solo, e 

impedir a passagem de partículas sólidas que possam obstruir seus poros. A determinação da 

abertura de filtração é realizada por meio de diferentes ensaios, classificados em métodos 

indiretos e diretos, conforme ilustrado na Figura 2.3 

 

Figura 2.3: Ensaios diretos e indiretos para determinação de abertura de infiltração do 

geotêxtil (Palmeira, 2003) 

 

Entre os ensaios indiretos, apresentam-se os métodos de peneiramento (a, b e c) e as análises 

de imagem (d). Já entre os ensaios diretos, destaca-se o ensaio de capilaridade (Ponto de Bolha) 

(Melo, 2018). 

 

A abertura de filtração é frequentemente representada pela dimensão equivalente de abertura 

On, que corresponde à maior dimensão de abertura que retém n% das partículas. Geralmente, 

adota-se o valor de 95% para n, e o diâmetro de abertura é medido em milímetros (mm) 

(Carneiro, 2009; Lopes & Lopes, 2010); 

• Permeabilidade normal ao plano (kn) e Permissividade (𝛹): A permeabilidade normal 
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ao plano é uma propriedade intrínseca do geotêxtil que caracteriza a passagem do fluxo 

de fluido perpendicularmente ao plano do geotêxtil. Essa propriedade depende das 

características físicas do geotêxtil, como a distribuição e a dimensão das aberturas. 

(Carneiro, 2009; Lopes & Lopes, 2010). No caso de geotêxtil, Moraes Filho (2018) 

considera que é mais interessante trabalhar com a permissividade (𝛹), um parâmetro 

mais relevante, pois representa a relação da permeabilidade normal ao plano e a 

espessura do geotêxtil, conforme a Eq. (2.2) e como é ilustrado na Figura 2.4 : 

𝜓 =
𝑘𝑛

𝑡𝐺𝑇
 

 

Eq. (2.2) 

 

Figura 2.4- Representação da permissividade (Palmeira, 2003) 

 

É importante ressaltar que, para dois geotêxteis com estrutura e porosidade semelhantes, o valor 

da permeabilidade normal ao plano (kn) será o mesmo. Consequentemente, se esses materiais 

apresentarem espessuras distintas, suas permissividades serão diferentes (Gourc, 1982). 

 

• Permeabilidade ao longo do plano (kp) e Transmissividade (𝜃): Essa propriedade 

descreve as condições de escoamento no plano do geotêxtil e é geralmente expressa 

como transmissividade (𝜃). A transmissividade relaciona a permeabilidade ao longo do 

plano (kp) e a espessura do geotêxtil sob uma determinada tensão normal de 

confinamento, sendo depende do gradiente hidráulico (i) atuante. A transmissividade é 

descrita pela Eq. (2.3) e é apresentada na Figura 2.5
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𝜽 =  𝒌𝒑. 𝒕𝑮𝑻 Eq. (2.3) 

 

 

Figura 2.5: Representação da Transmissividade  (Adaptado de Palmeira & Gardoni, 2002). 

 

2.3 FATORES QUE INFLUENCIAM O COMPORTAMENTO DO GEOTÉXTIL 

Como foi mencionado, o comportamento do filtro geotêxtil é influenciado por diversos 

fatores, como o tipo de solo base, tipo de fluido, tipo de geotêxtil, estrutura do meio filtrante 

e solicitações externas. E, conforme Giroud (1996) e Rollin e Lombard (1988), os fatores que 

influenciam o desempenho de filtração dos geotêxteis podem ser classificados em categorias 

principais, as quais estão apresentadas de forma resumidas na Tabela 2.3.  

 

Tabela 2.3: Fatores que influem no comportamento do filtro geotêxtil (Adaptado de Rollin & 

Lombard, 1988) 

Propriedades do Solo Propriedades do Geotêxtil Condições hidromecânicas 

• Coeficiente de 

uniformidade (Cu) 

• Coeficiente de 

curvatura (Cc) 

• Distribuição 

granulométrica 

• Forma das 

partículas e dureza 

dos grãos 

• Estado de 

compactação e grau 

de saturação 

• Tamanho de abertura 

de filtração (FOS) ou 

tamanho de abertura 

aparente (AOS); 

• Gramatura (MA); 

• Porosidade (n); 

• Espessura do tecido 

(tGT); 

• Diâmetro das fibras 

(df); 

• Tipo de Geotêxtil 

 

• Gradiente hidráulico 

(i); 

• Estado de tensão 

vertical (𝜎v); 

• Contato solo-filtro 

(contínuo ou não); 

• Tipo do Fluído 

 

 Notas: Cu = d60/d10 e Cc = (d30)2/(d60. d10) 

 

Por outro lado, Palmeira (2023) apresenta os fatores físicos que influem no comportamento 

filtrante. Esses estão relacionados com a impregnação do geotêxtil e ao estado de tensão a que 
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são submetidos (confinamento e tração). O confinamento e a presença de partículas de solo na 

estrutura do geotêxtil influenciam o seu comportamento. Esse tipo de obstrução interna por 

partículas no filtro pode ocorrer durante o espalhamento da camada de solos e compactação 

deles sobre o geotêxtil e/ou devido às partículas trazidas pelas forças de percolação durante o 

fluxo (Palmeira, 2018; 2023).  

 

Cabe destacar que o nível de impregnação ou obstrução interna depende das características do 

solo base e do geotêxtil. As partículas nos vazios do geotêxtil podem diminuir a sua 

compressibilidade, sua permeabilidade e gerar condições para obstruções adicionais devido a 

alteração das aberturas iniciais do geotêxtil. Um estudo realizado por Qureshi et al. (1990) 

apresenta resultados nos quais se obtiveram reduções significativas do coeficiente de 

permeabilidade do sistema solo-geotêxtil no caso de solos internamente instáveis, e sugerem 

que as reduções foram causadas pela impregnação dos vazios do geotêxtil por partículas de 

solo. A influência de outros fatores como solicitações de tráfegos sobre o geotêxtil, contato 

entre solo e filtro e mecanismos de colmatação física, química e biológica interferem no 

comportamento filtrante do geotêxtil. 

 

 Prever a ocorrência de colmatação do filtro sob certas condições é difícil, e segundo 

Palmeira (2023), existem três causas para colmatação física (apresentadas na Figura 2.6): 

bloqueamento, obstrução interna, e cegamento. O bloqueamento (Figura 2.6a) é um 

mecanismo que ocorre quando partículas se localizam na entrada dos poros do geotêxtil, 

sendo a sua ocorrência pouco provável em geotêxteis não tecidos, isso devido à 

variabilidade de formas, tamanhos e número de poros que este tipo de geotêxtil 

apresenta. Já o cegamento (Figura 2.6b) acontece quando as partículas finas são retidas 

na superfície do geotêxtil e se acumulam, criando uma camada fina e de baixa 

permeabilidade. Esse mecanismo acontece comumente em filtros em contato com solos 

internamente instáveis. E, por último, a obstrução interna pode ocorrer devido à 

impregnação excessiva dos poros do geotêxtil (não tecido) por intrusão de partículas do 

solo base (Figura 2.6 c). Outros mecanismos de colmatação envolvem a formação de 

filmes bacterianos (colmatação biológica) ou a precipitação de produtos químicos 

(colmatação química) (Markiewicz et al., 2022; Palmeira, 2023). 



 

 

17 

 

Figura 2.6- Mecanismo de colmatação física: (a) Bloqueamento; (b)Cegamento; e (c) 

Obstrução interna (Adaptado de Markiewicz et al., 2022). 

 

2.4 FILTRO GEOTÊXTIL EM SOLOS INTERNAMENTE INSTÁVEIS 

 Solos internamente instáveis são um desafio para filtros, seja granulares ou geotêxteis, devido 

a serem solos susceptíveis ao fenômeno de sufusão, no qual as partículas menores do solo são 

transportadas pela água através dos vazios entre grãos maiores. Assim, o tamanho das partículas 

capazes de atravessarem o geotêxtil é um aspecto essencial a sua especificação para uma obra 

(Khan et al., 2022). Chang e Zhang (2013) realizaram a identificação de estabilidade interna do 

solo baseados em 131 solos. Eles adotaram três métodos de identificação: (a) Perda de fração 

de finos, (b) variação da permeabilidade, e (c) piping. 

 

No primeiro método, considera-se que o solo é instável se ocorrer perda contínua de finos, 

autores como Kenney e Lau (1985),Lafleur et al. (1989), Wan &Fell (2008), Chang & Zhang 

(2011), entre outros, seguiram esse método. De acordo com Kenney & Lau (1985) e Wan & 

Fell (2008), a fração de perda de finos pode ser feita medindo a distribuição granulométrica 

após a realização do teste. No segundo método, uma amostra considera-se instável se existir 

uma mudança brusca na permeabilidade do sistema durante o processo de teste, autores como 

Sun (1989), Liu (2005) e Kaoser et al. (2006) se basearam nesse método. No terceiro método, 

adotado por Adel et al. (1988), os solos instáveis são aqueles que apresentam piping sob 

gradientes hidráulicos menores.  

 

Os dois primeiros métodos se complementam entre si, pois uma perda significativa de finos 

causa uma mudança repentina na permeabilidade da amostra e uma mudança nas curvas 

granulométricas. No entanto, as condições hidráulicas nos ensaios foram mais severas que a 

que se esperam na realidade (Chang & Zang, 2013). 
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Assim, a estabilidade interna é influenciada significativamente pela granulometria dos solos e 

pela característica da curva granulométrica. Os solos com granulometria descontínua (gap-

graded) apresentados na curva C e D da Figura 2.7 os bem graduados, com a curva 

granulométrica voltada para cima (curva B) e altos valores de coeficiente de uniformidade (Cu) 

se apresentam como solos com alta possibilidade de instabilidade interna. Na Figura 2.7, 

apresentam-se as curvas granulométricas típicas de solos internamente instáveis (Chang & 

Zhang, 2013; Palmeira, 2018). 

 

Figura 2.7: Curvas granulométricas típicas de solos internamente instável (Adaptado de 

Chang e Zhang, 2013). 

 

Em relação aos solos bem graduados, sua estabilidade interna é determinada pela capacidade 

de suas partículas grossas em reter a perda de suas partículas de tamanho médio, o que, por 

conseguinte, impede a perda de suas partículas finas. Dessa forma, o teor de finos exerce uma 

influência significativa na estabilidade interna de um solo amplamente graduado (Bendahmane 

et al., 2008; Wan & Fell, 2008). Em contraste, um solo com graduação descontínua caracteriza-

se por apresentar uma ampla graduação na qual uma faixa de tamanhos é significativamente 

sub-representada (como o solo C na Figura 2.7) ou completamente ausente (como o solo D na 

Figura 2.7)essa parte ausente frequentemente é areia ou silte. Assim, a estabilidade interna de 

um solo com graduação descontínua reside na capacidade das partículas grossas poder impedir 

a perda das partículas finas. Caso a fração mais fina consiga preencher totalmente os poros 

formados pela fração mais grossa, o solo geralmente tende ser internamente estável. O teor de 

finos, ao igual ao do solo bem graduado, tem uma influência significativa na estabilidade interna 

de solos com graduação descontínua (Chang & Zhang, 2013). 

 

A estabilidade interna dos solos descontínuos pela razão de descontinuidade (Gr) é ilustrada na 
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Figura 2.7. Essa razão é definida como a proporção entre o tamanho máximo (dmax) e o tamanho 

mínimo (dmin) das partículas na porção severamente sub-representada da curva de distribuição 

granulométrica. Uma elevada razão de descontinuidade indica que a fração grossa não atua 

eficazmente como filtro para a fração mais fina, o que facilita a erosão das partículas finas 

mesmo sob baixos gradientes hidráulicos. 

 

A literatura apresenta diversos critérios conservadores para avaliar a suscetibilidade de um solo 

internamente instável (Kenney & Lau, 1985; Lafleur, 1999). Moraci et al. (2014) realizaram 

um estudo ao avaliar e comparar os diferentes métodos para determinar a instabilidade de um 

solo, de modo que chegaram à conclusão de que o método de Kenney & Lau (1985) apresentou 

previsões satisfatórias.  

 

Segundo Istomina (1957), o coeficiente de uniformidade (Cu) de um solo pode indicar sua 

estabilidade interna. Esse coeficiente, calculado pela razão entre o diâmetro da partícula com 

60% mais fino em peso (d60) e o diâmetro da partícula com 10% mais fino em peso (d10), ou 

seja, Cu = d60/d10, avalia se as partículas finas podem percolar pelos poros formados pela fração 

grossa do solo. De acordo com o critério, solos com Cu < 10 são considerados internamente 

estáveis, enquanto aqueles com Cu > 20 são provavelmente internamente instáveis. Essa análise 

é aplicável a cascalhos arenosos. 

 

Kezdi (1969) propôs um critério geométrico, baseado no conceito de filtro de Terzaghi (1939), 

para avaliar a estabilidade interna. O solo é dividido em frações mais fina e mais grossa em um 

ponto arbitrário da curva granulométrica (tamanho de partícula d) na curva de distribuição 

granulométrica. O solo é dividido em frações mais fina e mais grossa em um ponto arbitrário 

da curva granulométrica (tamanho de partícula dn). A fração mais grossa atua como filtro para 

a mais fina. O critério estabelece que o solo é internamente estável se a relação máxima 

(d15c/d85f)max≤ 4). Sherard (1979) defendeu essa abordagem, propondo uma modificação do 

critério para (d15c/d85f)max≤ 5), em que partículas com tamanho inferior a um dado valor d 

(constituindo uma fração de massa F) tenderiam a erodir se a fração de massa H de partículas 

com tamanho entre d e 4d fosse insuficiente. A razão H/F pode ser obtida da curva 

granulométrica considerando a porção mais fina do solo, com F≤20% para solos bem graduados 

(Cu>3) e F≤30% para solos mal graduados (Cu≤3).  
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Segundo esse critério, um solo é considerado internamente instável se a razão mínima (H/F) min 

for superior a 1,3. Posteriormente, em 1986, Kenney & Lau revisaram esse limite para 

(H/F)min>1.0.  

 

A Tabela 2.4 apresenta um resumo de outros critérios para identificar a instabilidade interna 

dos solos. 

Tabela 2.4: Outros critérios para verificação do potencial de instabilidade do solo (Modificado 

de Palmeira 2018) 

Referência Condição 

Bathia & Huang (1995) Solos com Cc>7 

Cristopher & Holtz 

(1985) 

Solos com Cu>20 e curva granulométrica 

com concavidade voltada para cima 

Lafleur (1999) 
Solos com Cu>6 e curva granulométrica com 

concavidade voltada para cima 

 

Devido ao desafio que apresentam esses tipos de solos, muitos autores têm investigado o 

comportamento do geotêxtil em contato com solos internamente instáveis, sob diferentes 

condições, por meio de diferentes tipos de ensaios, diferentes condições hidráulicas, tipos de 

geotêxtil, diversos tamanhos de corpo de prova etc. Em geral, observa-se que a redução das 

aberturas dos poros do geotêxtil aumenta sua capacidade de retenção de partículas, prevenindo 

fenômenos como o piping. Contudo, essa diminuição pode gerar incertezas quanto ao potencial 

de colmatação do filtro, especialmente em contato com solos internamente instáveis. Partículas 

finas e móveis podem não atravessar o filtro conforme projetado, o que resulta na impregnação 

ou cegamento progressivo do geotêxtil (Palmeira &Trejos Galvis, 2018).  

 

Com base na literatura existente (Bhatia & Huang, 1995; Lafleur, 1999; Palmeira & 

Gardoni,2000; Lee et al., 2002; Palmeira et al., 2005; Hong & Wu, 2011; Du et al., 2022; 

Odabasi et al., 2023; Santos, 2023), o desempenho de filtros geotêxteis em solos internamente 

instáveis pode ser significativamente comprometido ao longo da vida útil da obra. Os principais 

resultados dessas investigações são apresentados em termos da razão entre os coeficientes de 

permeabilidade finais (ksys) e iniciais (ksys-o) do sistema (solo e geotêxtil) em ensaios de 

filtração. É importante ressaltar que a dispersão observada para os resultados experimentais 

decorre das diferentes técnicas utilizada para a medição das aberturas do geotêxtil (FOS), dos 

distintos gradientes hidráulicos (i) e da variedade de equipamentos e metodologias 
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experimentais adotadas por diferentes autores. 

 

2.5 APRENDIZAGEM DE MÁQUINA (ML) 

De forma geral, o aprendizado de máquina usa as informações disponíveis para encontrar a 

solução de um problema. Como mencionado anteriormente, considerando que cada problema 

tem características diferentes, é necessário estabelecer o melhor algoritmo que se adapte melhor 

à solução desejada. Nesse sentido, o ML e comumente é categorizado em três tipos de análises 

que se baseiam na regra de aprendizado (Abraham, 2005). 

 

2.5.1 TIPOS DE APRENDIZAGEM 

Os algoritmos de aprendizagem são divididos em três grupos principais: a aprendizagem 

supervisionada, aprendizagem não supervisionada e aprendizagem reforçada. A supervisionada 

é utilizada para elaborar modelos preditivos, pois corresponde a um tipo de treinamento em que 

as informações de entrada e saída são conhecidas, sendo possível realizar uma previsão mais 

acurada. Por outro lado, a não supervisionada desenvolve modelos descritivos. Esses modelos 

precisam de interpretação humana, devido ao fato de que se baseiam só nos dados de entrada 

sem ter conhecimento do resultado esperado (Lantz, 2013). 

 

O tipo de algoritmo a ser utilizado depende do tipo de análise que o problema esteja precisando 

resolver e das informações disponíveis. A  Figura 2.8 apresenta algumas das técnicas de 

aprendizagem supervisionada que se usa no ML. 

 

Figura 2.8: Tipos de Aprendizagem 
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2.5.1.1 APRENDIZAGEM SUPERVISIONADA 

No aprendizado supervisionado, tanto os dados de entrada quanto os de saída (resposta 

desejada) são conhecidos, o que permite estabelecer a precisão da análise (com base no erro de 

comparação). Esse tipo de aprendizado é conhecido como aprendizado supervisionado por um 

professor (Haykin, 1999), em que o conhecimento é representado por uma entrada e um 

exemplo de saída (resultado). O aprendizado supervisionado pode ser dividido em dois tipos de 

tarefas: a primeira corresponde à Classificação, na qual o algoritmo atua como um filtro para 

definir a saída desejada; a segunda tarefa é a Predição, em que um valor alvo é gerado a partir 

de um conjunto de dados de entrada, também conhecidos como preditores, que são treinados 

por meio de exemplos (Géron, 2019). Então, a estatística de regressão estabelece uma relação 

entre as variáveis independentes (preditores) e o resultado previsto. 

 

Existem diferentes tipos de algoritmos de aprendizado supervisionado. A seguir, descreve-se 

brevemente alguns dos mais comumente utilizados. 

Tabela 2.5: Tipos de algoritmos de aprendizagem supervisionada (Modificado de Al-Atroush, 

2024) 

Tipo de Algoritmo Descrição 

Árvore de Decisão 

A árvore de decisão é um método popular para classificação e regressão. 

Ela organiza as decisões como uma árvore, onde cada ponto de decisão 

(nó interno) usa uma característica dos dados. Cada escolha leva a um 

ramo, e o ponto final (nó folha) indica a previsão: a classe (para 

classificação) ou o valor previsto (para regressão) (Hastie et al., 2009). 

Naïve Bayes (NB) 

Este algoritmo de classificação utiliza o teorema de Bayes, uma abordagem 

probabilística para prever resultados. Ele considera cada dado independente 

("naive"), o que simplifica os cálculos e torna o algoritmo mais eficiente, 

especialmente em grandes conjuntos de dados (Ray, 2019). 

Regressão Linear 

A regressão linear é um algoritmo simples e amplamente usado para modelar 

a relação entre uma variável dependente e uma ou mais variáveis 

independentes em dados contínuos (James et al, 2013) 

Regressão Logística 
Algoritmo amplamente utilizado em análises de classificação. A variável de 

resposta adota valores binários (Bishop,2006) 

K- Nearest neighbor (KNN) 

O algoritmo K-Nearest Neighbors (KNN) é um método não paramétrico que 

classifica dados com base na proximidade e semelhança com outros dados já 

existentes (Ray, 2019). 

Máquinas de Vetores de 

Suporte (SVM) 

Algoritmo é usado para classificação e regressão. Ele cria linhas 

(hiperplanos) para separar os dados em diferentes categorias (Cortes & 

Vapnik, 1995). 

Random Forest (RF) 

Um algoritmo usado para classificação e regressão que combina várias 

árvores de decisão para aumentar a acurácia e a estabilidade. Ele cria várias 

amostras aleatórias dos dados, construindo uma "floresta" de árvores. Cada 

árvore faz uma previsão, e a média dessas previsões define o resultado final 

do modelo (Breiman, 2001). 
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Tipo de Algoritmo Descrição 

Redes Neurais Artificiais 

(RNA) 

Inspirada no cérebro humano (Fausett, 1994), a Rede Neural Artificial 

(RNA) usa neurônios artificiais organizados em camadas, com camadas 

ocultas entre a entrada e a saída. Ela realiza uma regressão não linear, onde 

cada valor da camada anterior é ponderado, determinando sua importância 

para a saída (Haykin, 1999). 

 

De maneira geral, é necessário seguir alguns passos padrões para resolver problemas com a 

Aprendizagem Supervisionada. A Figura 2.9 mostra passo a passo de como funciona a estrutura 

básica da Aprendizagem Supervisionada.  

 

Figura 2.9: Funcionamento básico da Aprendizagem Supervisionada 

(Adaptada de Escovedo & Koshiyama, 2020) 

 

Utilizando a Figura 2.9 como exemplo, é possível visualizar que uma das primeiras partes da 

Aprendizagem Supervisionada, é o processamento dos dados, logo após, é necessário separar 

os dados em dados de treino e dados de teste, fazendo assim, com que seja possível construir 

um modelo e assim, executar a validação e a predição. Na literatura, essa separação é 

denominada de método holdout. Esse método, holdout, é uma técnica simples e comum que 

avalia o desempenho dos modelos de ML. Divide os dados em dois subconjuntos: um para 

treinar seu modelo e outro para testá-lo. O conjunto de treinamento é usado para ajustar os 

parâmetros do modelo, enquanto o conjunto de teste é usado para avaliar o quão bem o modelo 

prevê dados não vistos. A ideia é simular como seu modelo se comportaria em um cenário real, 

onde você precisa fazer previsões sobre novos dados. 

 

Para este presente trabalho, foi necessário utilizar a Aprendizagem Supervisionada. Então, 
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foram utilizados os seguintes passos: 

• Fazer um tratamento dos dados, de modo a retirar todos os dados que podem atrapalhar 

o treinamento do algoritmo (removendo outliers). Os dados precisam ser 

representativos; 

• Determinar a estrutura da função de aprendizagem correspondente ao algoritmo 

utilizado, no caso deste trabalho: o algoritmo de Retropropagação (Backpropagation); 

• Executar o algoritmo escolhido no conjunto de dados de treino e no conjunto de dados 

de teste para avaliar a acurácia; 

• Utilizar uma validação para os resultados (um exemplo é o k fold cross-validation, que 

foi utilizado neste trabalho e visa avaliar a capacidade de generalização dos modelos); 

• Verificar a acurácia da aprendizagem em cada um dos conjuntos de dados por meio de 

métricas estatísticas. 

 

2.5.1.2 APRENDIZAGEM NÃO SUPERVISIONADA 

Ao contrário do tipo de aprendizado anterior, neste método, não há valores de saída 

predefinidos, de modo que os resultados são gerados com base na análise dos dados de entrada. 

Os algoritmos implementados aprendem a partir dos dados existentes de forma independente, 

ou seja, sem a necessidade de um “instrutor”, e ao encontrar padrões no conjunto de dados e 

classificar os dados de acordo com esses padrões (Mahesh, 2020; Samreen et al., 2023). Assim 

como no aprendizado supervisionado, existem diferentes algoritmos de tarefa e de desempenho, 

conforme apresentado na Tabela 2.6. 

 

Tabela 2.6: Tipos de aprendizagem não supervisionada (Adaptado de Géron, 2019; Al-

Atroush, 2024). 

Tipo de Algoritmo Descrição Exemplos 

Agrupamento  

(Clustering) 

Permite a formação de grupos de dados com 

características semelhantes. Existem 

diferentes formas de agrupamento (Cohn & 

Holm, 2021; IBM, 2023b) 

K-means, Análise 

Hierárquica (HCA) 

Detecção de Anomalias 

Técnica para encontrar relações interessantes 

entre diferentes elementos em um conjunto de 

dados (Kabir & Luo, 2020; Prasad et al., 

2022). 

One-class SVM, Isolation 

Forest 

Visualização e Redução de 

dimensão 

Utiliza Redes Neurais para representar os 

dados de forma simplificada e, a partir 

dessa representação, reconstruir os dados 

originais. 

Análise de Componentes 

Principais (PCA) 
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Tipo de Algoritmo Descrição Exemplos 

Visualização: Permite encontrar e 

mostrar valores específicos dentro de um 

grupo (cluster). 

Redução de Dimensionalidade: Diminui 

a quantidade de informação a ser 

analisada, combinando ou reduzindo 

parâmetros com características parecidas 

(Lever et al., 2017; DeepAI, 2023a) 

 

2.5.1.3 APRENDIZAGEM REFORÇADA 

Esse algoritmo é baseado em classes de recompensas positivas ou negativas. Ele utiliza um 

valor X como um agente no meio dos dados (ambiente) para encontrar diferentes ações e 

aprender com cada resultado, até identificar a saída mais bem-sucedida com base nas 

recompensas mais favoráveis (Géron, 2019). A Tabela 2.7 apresenta diferentes tipos de 

aprendizado por reforço, no qual uma decisão final é tomada com base no aprendizado 

acumulado. 

Tabela 2.7: Tipos de aprendizagem reforçada (Modificada de Géron, 2019; Al-Atroush, 2024) 

Tipo de Algoritmo Descrição Exemplos 

Q -Learning 

Permite que um agente aprenda as melhores ações em um 

ambiente por tentativa e erro, sem conhecer as regras. Ele 

aprende uma função Q, que estima a recompensa futura ao 

fazer uma ação em um estado. O objetivo é que o agente 

melhore essa função Q explorando o ambiente até encontrar 

as melhores ações Jang et al. (2019) 

Robótica e 

Automação 

Jogos 

Finanças 

Deep Q-Networks (DQN) 

Combina aprendizado profundo com Q-Learning, usando uma 

rede neural para estimar o valor de cada ação possível em cada 

situação. Essa rede neural aprende a prever recompensas 

futuras com base nas experiências do agente, guardadas para 

treinar a rede. O agente escolhe as ações que provavelmente 

darão mais recompensa, segundo o que a rede neural 

aprendeu. Roderick et al. (2017) 

Robótica e 

Automação 

Jogos 

Finanças 

Controle e Otimização 

Actor-Critic 

Utiliza duas redes neurais, onde o ator aprende a política, 

ou seja, a probabilidade de cada ação e o crítico, avalia o 

quão boas são as ações do ator.O ator decide as ações, o 

crítico as avalia, e essa avaliação ajuda o ator a melhorar 

suas escolhas Flet-Berliac et al. (2021). 

Robótica e 

Automação 

Jogos 

Finanças 

Controle e 

Otimização 

 

2.6 NEURAL ARTIFICIAL (RNA) 

As Redes Neurais Artificiais (RNAs), também conhecidas como Artificial Neural Networks 

(ANN), são um tipo de inteligência artificial (AI) que usa técnicas computacionais baseadas na 

estrutura de neurônios biológicos para resolver problemas complexos (não lineares), por isso, 
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vem sendo a técnica mais utilizada na ML, pois ajudam resolver problemas do mundo real. Sua 

popularidade radica em como processam a informação para modelar relações complexas e não 

lineares entre parâmetros (Baghbani et al., 2022b). 

 

Por meio da experiência, essas redes artificiais adquirem conhecimento e se tornam sistemas 

adaptativos, de modo a permitir a absorção e aplicação de informações ao longo do tempo. Isso 

é possível por meio uso de algoritmos de aprendizagem. Esses algoritmos operam com dados e 

resultados existentes para antecipar uma resposta desejada, fundamentando-se na experiência 

acumulada para realizar suas previsões (Abraham, 2005). 

 

Figura 2.10: Exemplificação de RNA.  

 

Assim, de forma geral as RNAs são estruturas compostas por elementos identificados como 

neurônios, que armazenam informações e são conectadas entre si por meio de links 

(conhecidos como pesos), que atuam como sinapses. Essas conexões geram sinais ativados 

por uma função, até que o sinal de saída (neurônio de saída) apresente o resultado desejado 

(Fausett,1994; Jain et al., 1996; Haykin, 1999; Abraham, 2005). 

 

De acordo com Fausett (1994), uma RNA tem três elementos principais: a arquitetura da rede, 

a regra de aprendizagem e a função de ativação (Figura 2.11). A arquitetura da rede, estabelece 

o número de neurônios, as conexões presentes entre eles e das disposições deles; já a regra de 

aprendizagem define o algoritmo que será utilizado para analisar o problema; e, por último, 

há a função de ativação. 



 

 

27 

 

Figura 2.11: Exemplos dos Elementos principais da RNA: (a) Arquitetura de rede; (b) 

algoritmo de aprendizagem; (c) função de ativação 

 

De forma geral, o modelo artificial de um neurônio de RNA é apresentado na Figura 2.12 esse 

neurônio típico inclui um sinal adicional bias (𝜃o), o qual favorece a possibilidade de ativação 

do neurônio. A conexão dos neurônios (sinapses) é realizada pelos pesos (w), o qual amplifica 

cada um dos sinais recebidos. Já A função de ativação (f(Ij)) modela a forma que um neurônio 

responde ao nível de excitação, limitando e definindo a saída da rede. 

 

Figura 2.12: Representação esquemática de um neurônio artificial (Villamil González 2023). 

 

Na Figura 2.12, apresenta-se as entradas (X1,X2,...,Xn), os pesos sinápticos correspondentes 

(w1,w2,..., wn), o bias (θo), a função de combinação linear (Ij=∑(Xiwi+θo)) e a função de 

ativação (y=f(Ij)) que produz a saída do neurônio. 

 

As Redes Neurais Artificiais (RNAs) podem ser classificadas de diversas maneiras, 

considerando sua arquitetura, o tipo de algoritmo de aprendizado, a direção da análise dos dados 

e a sua aplicação (Charytoniuk, 2000).  

 

Quanto à sua aplicação, as RNAs se dividem principalmente em duas categorias: classificação 

e aproximação de função (previsão). A primeira é usada para reconhecer padrões de dados e/ou 
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classifica em categorias predefinidas. E a segunda, a rede, é treinada para aprender e generalizar 

relações não lineares complexas entre certos parâmetros de entrada e saída, a fim de tornar 

possível a previsão de parâmetros de saída para determinados dados de entrada. Esta última é 

muito utilizada na engenharia geotécnica (Baghbani et al., 2022b). 

 

Em relação à sua arquitetura, as RNAs se classificam fundamentalmente em 

monocamadas e multicamadas. Essa distinção se baseia no número de camadas existentes 

entre a camada de entrada e a camada de saída da rede (Charytoniuk, 2000). Os RNAs 

monocamada possuem apenas de uma camada de neurônios de saída que recebem 

diretamente os sinais de entrada. Cada neurônio de saída recebe sinais de todos os 

neurônios de entrada. Assim, a saída de cada neurônio é calculada aplicando uma função 

de ativação à soma ponderada de todas as entradas. Esse tipo de redes aprende apenas 

relações lineares entre as entradas e as saídas. Por outro lado, o desempenho de uma RNA 

multicamada é caracterizado pela presença de uma a mais camadas intermediárias, 

também chamada de camadas ocultas (hidden layers).  

 

Embora as RNAs multicamadas geralmente apresentem uma capacidade de modelagem 

superior às monocamadas, o desempenho global de uma rede neural é intrinsecamente 

dependente de diversos fatores :  

• Qualidade e quantidade dos dados de treinamento: A eficácia da aprendizagem está 

diretamente ligada à riqueza e à quantidade de dados fornecidos; 

• Arquitetura da rede: O número e a organização das conexões entre os neurônios 

definem a capacidade da rede; 

• Intensidade das conexões (pesos): A força das sinapses neurais, representada pelos 

pesos, determina a influência de cada sinal; 

• Algoritmos de aprendizagem: O método de ajuste dos pesos durante o treinamento 

afeta a convergência e a qualidade do modelo. 

 

Entre as RNAs multicamadas, o Perceptron Multicamada (MLP) se destaca por seu alto poder 

computacional (Braga et al., 2007). Um MLP é composto por neurônios interconectados em um 

sistema organizado em pelo menos três camadas: uma camada de entrada, uma ou mais camadas 

ocultas e uma camada de saída (Siddique & Adeli, 2013; Goodfellow et al., 2016). Os neurônios 

da camada de entrada atuam como meros transmissores do vetor de entrada para as camadas 
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subsequentes, isto é, não realizam cálculos próprios. Nas camadas ocultas e de saída, cada 

neurônio executa uma transformação não linear simples sobre a soma ponderada de suas 

entradas, utilizando uma função de ativação como ReLU, tanh ou sigmoid. Essa não linearidade 

permite ao MLP a capacidade de aproximar funções complexas (Gardner & Dorling, 1998). 

 

De acordo com Gardner & Dorling (1998), o MLP aprende essa função de mapeamento de 

forma supervisionada, ao utilizar um conjunto de dados de treinamento com pares de entrada e 

saída desejada. Em problemas de regressão, o objetivo do treinamento é aproximar a função f 

de tal modo que o valor previsto f(xi, h) seja o mais próximo possível do valor alvo yi. A 

diferença entre o valor previsto e o valor alvo constitui o sinal de erro. Durante o treinamento, 

esse sinal de erro é utilizado para determinar como os pesos (h) da rede devem ser modificados, 

com vistas a minimizar o erro global do MLP. 

 

O treinamento de redes MLP geralmente envolve processos iterativos baseados em gradientes 

(Rumelhart, Hinton, Willians, 1986), como o Descida de Gradiente Estocástico (SGD) ou 

métodos Quasi-Newton (como o Broyden-Fletcher-Goldfarb-Shanno L-BFGS). O objetivo é 

minimizar a função de erro global. Embora o SGD seja simples de implementar, sua otimização 

e treinamento podem ser desafiadores em cenários com dados esparsos ou de baixa 

dimensionalidade, comuns em computação de alto desempenho (HPC). Nesses casos, o L-

BFGS emerge como uma alternativa altamente competitiva e, por vezes, superior ao SGD 

(Ngiam et al., 2011). 

 

É importante notar que o treinamento do MLP não garante a convergência para mínimo global 

e é sensível à escolha dos hiperparâmetros (Goodfellow et al., 2016). Esses hiperparâmetros 

incluem a função de ativação, o número de camadas ocultas, o número de neurônios por camada 

(hidden layer) o otimizador (método iterativo baseado em gradientes) e o número máximo de 

iterações (Goodfellow et al.2016). 

 

Desde os anos 80, as redes neurais têm sido aplicadas na engenharia civil (Chou &Pham, 2013; 

Chou et al., 2016). Nos últimos tempos, a engenharia geotécnica tem adotado os métodos 

computacionais em resposta à heterogeneidade em solos e rochas e ao seu comportamento com 

matérias geotécnicos. Segundo Baghbani et al (2022), essa heterogeneidade resulta em 

considerável incerteza de suas propriedades mecânicas, o que dificulta a previsão do 



 

 

30 

comportamento desses materiais. Nesse contexto, há a mecânica computacional principalmente 

computadores e métodos numéricos para simular, analisar e prever o comportamento mecânico 

de materiais geológicos. As técnicas computacionais modernas possibilitam lidar com muitos 

problemas complexos de engenharia, levando em consideração muitas das propriedades típicas 

dos materiais geotécnicos, como o comportamento acoplado da água nos poros e dos materiais 

sólidos, o comportamento elastoplástico não linear e os processos de transporte. 

 

2.6.1 ARQUITETURA DA REDE NEURAL 

Os autores Jain et al (1996) e Braga et al. (2007) comentam que é crucial delimitar o tipo de 

problema tratável pela rede. Sua definição abrange características como o número de 

camadas, a quantidade de neurônios por camada, o tipo de conexão entre os nós e a tipologia 

geral da rede. Essas características, em conjunto, determinam a dimensão da rede e a forma 

como seus neurônios se. A Figura 2.13 ilustra algumas arquiteturas de RNAs. 

 

 

Figura 2.13: Arquiteturas de Redes Neurais Artificiais (Braga et al.,2007) 

 

Quanto ao número de Camadas, as RNAs são classificadas em monocamadas e multicamadas: 

• As Redes Monocamadas: Se caracterizam pela conexão direta entre a camada de 

entrada e a camada de saída, sem a presença de camadas intermediárias. Essa arquitetura 

limita sua capacidade de resolução a problemas linearmente separáveis. Esse tipo de 

redes são presentadas na Figura 2.13a e Figura 2.13e, 

• As Redes Multicamadas incorporam uma ou mais camadas intermediárias (hidden 
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layers) (Figura 2.13b, Figura 2.13c e Figura 2.13d). A introdução dessas camadas 

permite que a rede modele relações complexas e não lineares, tornando-as adequadas 

para uma vasta gama de aplicações, incluindo visão computacional, processamento de 

linguagem natural e reconhecimento de padrões. Contudo, o emprego de um número 

excessivo de camadas ocultas não é recomendado. Isso se deve ao fenômeno da 

dissipação do gradiente durante o treinamento: à medida que o erro medido na saída é 

propagado para camadas anteriores, sua acurácia diminui progressivamente (Braga et 

al., 2007). Apenas a camada de saída possui uma noção precisa do erro cometido pela 

rede; a última camada oculta recebe apenas uma estimativa desse erro, e a penúltima 

camada, uma estimativa da estimativa 

 

No que diz respeito ao tipo de conexão entre os neurônios (ou nós). A arquitetura das RNAs 

pode ser categorizada em feedforward (alimentação direta) e recorrente (ou feedback): 

• As Redes Feedforward processam a informação de maneira unidirecional, onde a 

saída de um neurônio não serve como entrada para outros neurônios na mesma camada 

ou em camadas precedentes. O fluxo de informação ocorre em uma única direção, da 

entrada para a saída, sem a formação de ciclos ou realimentação (Figura 2.13a, Figura 

2.13b e Figura 2.13c) 

• As Redes Feedbacks ou Recorrente): se distinguem pela sua capacidade de 

“memória”, uma vez que permitem que informações de entradas passadas influenciem 

o processamento de entradas subsequentes. Essa característica as torna adequadas para 

lidar com dados sequenciais, como séries temporais e texto, em que a ordem dos 

elementos é fundamental. As redes recorrentes apresentam um comportamento que 

busca simular de forma mais realista a dinâmica temporal dos dados e são apresentadas 

(Figura 2.13d e Figura 2.13e) 

 

O processamento em uma RNA é iniciado na camada de entrada, que contém os valores iniciais 

definidos em n neurônios (Xi). A informação então flui sequencialmente através das camadas 

ocultas, mediada por conexões, também conhecidas como pesos sinápticos (wi). Cada neurônio 

recebe um sinal ponderado e o transmite para o neurônio da camada seguinte (Xi+1). Em cada 

camada, a informação precedente é transformada em um valor numérico por meio da aplicação 

de uma função de ativação (𝑓). Esse processo iterativo continua até a camada de saída, em que 

o valor final do modelo (y) é obtido. Para evitar a ocorrência de saídas nulas em cada neurônio, 
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um valor conhecido como “bias” (θo) pode ser incorporado entre as transformações de cada 

camada (Haykin, 1999; Shahin et al., 2009). A  

 resume o processo descrito Eq. (2.4) 

 

𝑦 = 𝑓(∑ 𝑋𝑖𝑤𝑖
𝑛
𝑖=1 + 𝜃𝑜)  Eq. (2.4) 

 

 

 

2.6.2 PERCEPTRON DE MÚLTIPLAS CAMADAS – MLP 

Como mencionado anteriormente, as redes monocamada ( Figura 2.13a) são utilizadas para 

resolver problemas linearmente separáveis, já as redes perceptron de múltiplas camadas MLP 

(Figura 2.13b) são utilizados para problemas não linearmente separáveis e complexos. 

Segundo Braga et al. (2007), a acurácia obtida e a implementação da função objetivo é 

influenciada pelo número de nós utilizados nas camadas ocultas. 

  

Assim, no caso de RNA’s com mais de uma camada intermediaria, o processo realizado em 

cada nó é definido pela combinação dos processos realizados pelos nós da camada anterior 

que estão conectados a ele, tornando o processo de uma MLP dependente em cada camada. 

 
Figura 2.14: (a)RNA monocamada e (b) RNA multicamada (MLP) (Adaptado de 

Villamall,2024)

  

 

A definição da arquitetura de uma Rede Neural Artificial (RNA) envolve diversos parâmetros 

de projeto, como o número de neurônios na camada de entrada, o número de camadas ocultas, 

a quantidade de neurônios em cada camada oculta e o número de neurônios na camada de saída. 

A determinação desses parâmetros frequentemente se baseia em múltiplas execuções do 

sistema, empregando o método de tentativa e erro. Embora não exista uma estrutura unificada 

para a seleção da arquitetura ótima e de seus parâmetros (Chung & Kusiak, 1994; Kusiak & 
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Lee, 1996), pesquisas têm contribuído para a definição do número de camadas ocultas, do 

número de neurônios por camada e da taxa de aprendizado, entre outros aspectos. 

 

A seleção de parâmetros de entrada adequados para uma RNA é um dos processos mais 

desafiadores e pode ser influenciada pelos seguintes critérios (Park, 2011): 

• Interdependências e redundâncias entre os parâmetros: a presença de variáveis 

altamente correlacionadas ou que fornecem informações semelhantes pode prejudicar o 

desempenho e a interpretação da rede; 

• Necessidade de otimização da complexidade: Em em alguns casos, a omissão de 

certos parâmetros pode ser benéfica para reduzir o número total de entradas, 

simplificando a topologia da rede e diminuindo a complexidade computacional do 

problema. 

• Ausência de conhecimento prévio dos dados: frequentemente, as RNAs são aplicadas 

em problemas em que as relações subjacentes entre as variáveis de entrada e saída não 

são bem compreendidas, o que dificulta a identificação a priori dos parâmetros mais 

relevantes. 

 

Já o número de camadas ocultas, o número de neurônios nas camadas ocultas e o número de 

neurônios na camada de saída são encontrados usando várias execuções repetidas do sistema 

com base no método de tentativa e erro. Não há uma estrutura clara para selecionar a arquitetura 

ótima da RNA e seus parâmetros (Chung & Kusiak, 1994; Kusiak & Lee, 1996). No entanto, 

alguns trabalhos de pesquisa contribuíram para determinar o número de camadas ocultas, o 

número de neurônios em cada camada, a seleção do parâmetro da taxa de aprendizado e outros. 

 

Como mencionado anteriormente, a definição do número de camadas ocultas requer de cuidado, 

pois um número excessivo de camadas intermediárias pode comprometer a acurácia do erro 

durante o treinamento. Em relação a essa questão, autores como os de Cybenko (1989), Hertz 

et al. (1991) e Funahashi (1989) investigaram o número de camadas necessárias para a 

implementação eficaz de uma RNA. Suas conclusões apontam que um Perceptron Multicamada 

(MLP) com apenas uma camada oculta é capaz de aproximar qualquer função contínua. A 

utilização de duas à três camadas ocultas, por sua vez, demonstram-se suficiente para aproximar 

virtualmente qualquer função matemática. 
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É importante destacar que determinar o número de camadas ocultas e o número de neurônios 

em cada camada oculta é uma tarefa considerável. O número de camadas ocultas geralmente é 

um passo crítico. O número de camadas ocultas necessário depende da complexidade da relação 

entre os parâmetros de entrada e o valor de saída. A maioria dos problemas requer apenas uma 

camada oculta e, se a relação entre as entradas e a saída for linear, a rede não precisa de nenhuma 

camada oculta adicional. É improvável que qualquer problema prático exija mais de duas 

camadas ocultas. Cybenko (1989) e Bounds et al. (1988) sugeriram que uma camada oculta é 

suficiente para classificar padrões de entrada em diferentes grupos. 

 

Chester (1990) argumentou que uma rede com duas camadas ocultas deveria ter um 

desempenho melhor do que uma rede com uma camada oculta. Mais de uma camada oculta 

pode ser útil em certas arquiteturas, como correlação em cascata (Fahlman & Lebiere, 1990) e 

outras.  

 

Uma explicação simples para o porquê de redes maiores às vezes proporcionarem treinamento 

aprimorado e menor erro de generalização é que os graus de liberdade extras podem auxiliar na 

convergência; ou seja, a adição de parâmetros extras pode diminuir a chance de ficar preso em 

mínimos locais ou em “platôs”. Os métodos de treinamento mais comumente usados para redes 

de retropropagação são baseados no gradiente descendente, ou seja, o erro é reduzido até que 

um mínimo seja alcançado, seja um mínimo global ou local. No entanto, não há uma teoria clara 

para dizer quantas unidades ocultas são necessárias para aproximar qualquer função dada. Se 

apenas uma entrada estiver disponível, não se observa nenhuma vantagem em usar mais de uma 

camada oculta. Mas as coisas ficam muito mais complicadas quando duas ou mais entradas são 

fornecidas. A regra prática para decidir o número de camadas ocultas é normalmente começar 

com uma camada intermediaria (Lawrence, 1994). Se a rede com uma camada oculta não treinar 

bem, tente aumentar o número de neurônios. Adicionar mais camadas ocultas deve ser a última 

opção. 

 

Ademais, além da determinação do número de camadas ocultas, a definição do número de nós 

ou neurônios nas camadas intermediárias é um aspecto crucial. Embora não haja uma 

padronização universal para essa quantidade, Braga et al. (2007) observam que o número ideal 

de nós por camada está intrinsecamente ligado à distribuição dos padrões presentes nos 

conjuntos de treinamento e validação da rede. Entretanto, abordagens mais recentes têm 
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ganhado destaque, como a definição do número de neurônios em função da quantidade de 

unidades de entrada (input) e de saída (output). 

 

Segundo Park (2011), a escolha do tamanho da camada oculta é dependente do problema. Por 

exemplo, qualquer rede que requeira compressão de dados deve ter uma camada oculta menor 

que a camada de entrada (Swingler, 1996). Uma abordagem conservadora é selecionar um 

número entre o número de neurônios de entrada e o número de neurônios de saída. Uma boa 

regra prática é começar com um número de neurônios ocultos igual à metade do número de 

neurônios de entrada e, então, adicionar neurônios se o erro de treinamento permanecer acima 

da tolerância de erro de treinamento, ou reduzir neurônios se o erro de treinamento cair 

rapidamente para a tolerância de erro de treinamento. A Tabela 2.8 apresenta de forma 

resumida os critérios para definição do número de neurônios por camada oculta. 

 

Tabela 2.8: Critério para Selecionar o Número de Neurônios na Camada Oculta  

(modificado de Park,2011) 

Fórmula Autor 

ℎ = 2𝑖 + 1 Hecht-Nelson (1987) 

ℎ =
(𝑖 + 𝑜)

2
 

faixa 10𝑁 − 𝑖 − 𝑜 ≤ ℎ ≤ 2𝑁 − 𝑖 − 𝑜 

Lawrence & Fredrickson (1988) 

P ℎ = 𝑖𝑙𝑜𝑔2𝑃 Marchandani & Cao (1989) 

Notas: h = número de neurônios ocultos, i = número de neurônios de entrada o = número de neurônios de 

saída, P= número de padrões de treinamento 

 

Um número inadequado de neurônios por camada pode acarretar problemas significativos no 

modelo, como overfitting e underfitting. O overfitting está relacionado à capacidade excessiva 

da rede de memorizar os dados de treinamento, incluindo ruídos e variações específicas, o que 

compromete sua capacidade de generalização para novos dados. Por outro lado, o underfitting 

geralmente está associado a uma convergência inadequada da rede, frequentemente afetada por 

um número excessivo de neurônios em relação ao número de conexões disponíveis (ou seja, 

uma arquitetura com mais neurônios do que conexões significativas). 

 

2.6.3 ALGORITMO DE TREINAMENTO – BACKPROPAGATION (BP) 

Como mencionado anteriormente, a RNA utiliza aprendizado supervisionado, o que permite à 
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rede controlar os resultados obtidos a partir de dados de saída conhecidos. Nesse processo de 

aprendizado, a rede ajusta iterativamente os pesos e o viés (parâmetros de ajuste) até alcançar o 

resultado com o menor erro possível, de modo que esse ajuste é realizado por meio de algoritmos 

de treinamento. 

 

Existem diferentes arquiteturas de redes neurais, classificadas segundo o tipo de algoritmo de 

treinamento empregado, ou seja, de acordo com a maneira como os pesos e o viés são ajustados. 

No caso de redes neurais multicamadas, o algoritmo de Retropropagação (Backpropagation – 

BP) tem sido amplamente utilizado em problemas de engenharia (Riedmiller & Braun, 1993). 

Desenvolvido em 1986 por David Rumelhart, Geoffrey Hinton e Ronald William, esse 

algoritmo se baseia no método de descida de gradiente de primeira ordem. O método de descida 

de gradiente é um algoritmo de otimização utilizado para encontrar o mínimo de uma função, 

nesse caso, a função de erro (a diferença entre o valor previsto e o valor real). Assim, o algoritmo 

ajusta os parâmetros do modelo, como os pesos e o viés, de forma a reduzir esse erro. O 

gradiente indica a taxa de variação da função de erro em relação aos parâmetros do modelo, 

informando se o erro aumenta ou diminui (Basheer & Hajmeer, 2000; Soleimanbeigi & Hataf, 

2006). 

 

De forma resumida, a retropropagação opera em duas fases principais, apresentado na Figura 

2.15, percorrendo a rede em sentidos opostos: forward (para frente) e backward (para trás). Na 

primeira fase, denominada forward, realiza-se uma análise inicial dos dados de entrada até a 

camada de saída, definindo-se os valores iniciais dos pesos sinápticos e do viés. Na segunda 

fase, chamada backward, calcula-se a diferença entre o valor previsto e o valor real, ou seja, o 

erro (E). Esse erro é, então, retropropagado para cada camada da rede, ajustando-se os pesos e 

o viés das camadas com base no erro encontrado na saída, utilizando-se o gradiente da função 

de erro.  

 

Esses ajustes são realizados em cada camada, da saída para a entrada, o que permite que a rede 

aprenda e melhore suas previsões. Além disso, esses processos iterativos de avanço e retrocesso 

são chamados de épocas, durante as quais o algoritmo é ajustado para reduzir o erro. A cada 

época, a rede ajusta os pesos e o viés para minimizar o erro (E) e aproximar ao máximo o valor 

obtido pela rede (ŷi) do valor real (yi) (Camarena-Martinez et al., 2021). 
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𝑗𝑖 

 

Figura 2.15: Algoritmo de Retropropagação ou Back-propagation (Adaptado de Braga et 

al.,2007). 

 

O Erro é representado pela  Eq. (2.5)onde 𝑦̂𝑖 é o valor obtido pelo modelo (valor previsto), 𝑦𝑖, 

valor real obtido por meio de resultados de ensaios; e n os números de neurônios. 

 

𝑬 =
𝟏

𝒏
∑(𝒚̂𝒊 − 𝒚𝒊)

𝟐

𝒏

𝒊=𝟏

 

 

 

Eq. (2.5) 

O algoritmo de treinamento inicia atribuindo valores aleatórios aos pesos e ao viés. A cada 

iteração, o valor anterior do peso sináptico é ajustado incremento variável, que pode ser positivo 

ou negativo e é determinado pela regra delta (Zupan & Gasteiger, 1993; Abraham, 2005). A 

Eq. (2.6) apresenta esse ajuste do peso: 

𝒘𝒋𝒊
𝒍 (𝒕) = 𝒘𝒋𝒊

𝒍 (𝒕 − 𝟏) + ∆𝒘𝒋𝒊
𝒍 (𝒕); ∆𝒘𝒋𝒊

𝒍 (𝒕) = 𝜼
𝝏𝑬

𝝏𝒘𝒊𝒋
+ 𝝁 ∆𝒘𝒋𝒊

𝒍(𝒑𝒓𝒆𝒗𝒊𝒐)
 Eq. (2.6) 

 

Nessa equação, t é cada iteração, j e i são os neurônios (ou os nós) de cada camada l, w é o peso 

sináptico, E é a média dos erros quadráticos totais, η é a taxa de aprendizado e 𝜇 é o coeficiente 

de momento. 

 

A taxa de aprendizado (η) define a magnitude do passo durante o ajuste do peso; um valor alto 

pode causar oscilações e uma convergência lenta, enquanto uma taxa muito baixa exige várias 

iterações. Em relação ao coeficiente de momento (μ), ele modifica o valor da iteração anterior 

para diminuir o erro do valor atual; se o valor for baixo, o treinamento se torna lento. Assim, 

um valor adequado de η e μ garante um treinamento apropriado e um aprendizado rápido. Esse 
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mesmo procedimento é utilizado para o parâmetro de viés (Abraham, 2005) 

 

Embora o uso do algoritmo BP apresente bons resultados no RNA, tem algumas limitações as 

quais serão detalhadas na seção 0 deste trabalho. 

 

A função de ativação constitui outro conceito fundamental em redes neurais. Essas funções, 

aplicadas no interior dos neurônios, introduzem propriedades não lineares ao sistema, 

conferindo-lhe a capacidade de aprendizado a partir de intrincados padrões de dados (Azoor et 

al, 2022). Sua relevância na estimativa dos resultados se acentua progressivamente ao longo 

das épocas de treinamento. Tal importância reside no fato de que a função de ativação modula 

a soma ponderada de todos os sinais de entrada de um neurônio, determinando a intensidade de 

sua ativação (Basheer & Hajmeer, 2000). Uma variedade de funções de ativação está 

disponível, incluindo a sigmoidal, a hiperbólica (ou tangencial) e a ReLU (Rectified Linear Unit 

– Unidade Linear Retificada).  

 

Embora as duas primeiras funções sejam amplamente aplicáveis, elas não apresentam simetria 

em relação ao eixo central das coordenadas (eixo zero). Glorot et al. (2011) sugerem que a 

função ReLU é preferível por ser unilateralmente antissimétrica, o que resulta em uma resposta 

nula para uma entrada real oposta. 

 

A função sigmoide também conhecido como função logística executa a transformação na 

entrada x, de modo a gerar um valor de saída entre 0 e 1. Na Figura 2.16, apresenta-se a equação 

e o gráfico que descreve esta função. 

 

Figura 2.16:Equação e Gráfico da Função Sigmoide 

 

Já a função tanh (tangente hiperbólica) transforma a entrada x para gerar um valor de saída entre 

-1 e 1. Apresenta-se, na Figura 2.17 a equação e o gráfico que descreve esta função. 
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Figura 2.17 — Gráfico e Equação da Função Tanh 

 

 

Por último, a função de ativação ReLU (unidade linear retificada) transforma a saída usando o 

seguinte algoritmo: 

• Se o valor de entrada x for menos que 0, retornará ao valor de 0; 

• Se o valor de entrada x for maior ou igual a 0, retorne ao valor de entrada. 

 

Na Figura 2.18, apresenta-se a equação e o gráfico que definem a função ReLU. 

 

Figura 2.18: Equação e Gráfico da Função ReLU 

 

Neste estudo, a função de ativação “ReLU” (Unidade Linear Retificada) foi escolhida em ambas 

as camadas ocultas, pois é atualmente considerada a função de ativação que produz as melhores 

soluções, porque é menos suscetível ao problema de gradiente nulo na fase de treinamento da 

rede. Uma vantagem do ReLU é que ele pode convergir em um curto período em comparação 

com as funções Sigmoid ou Tanh. A equação para o ReLU pode ser vista na Figura 2.18   

 

2.7 RNA APLICADO À ENGENHARIA GEOTÉCNICA 

Esta seção apresenta uma breve compilação de artigos que abordam a aplicação da IA na 

Engenharia Civil, especificamente as Redes Neurais Artificiais (RNA). Assim, será destacado 
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seu uso na Engenharia Geotécnica e no comportamento de geossintéticos. 

 

A inteligência artificial aprimora os métodos computacionais na engenharia geotécnica, 

oferecendo vantagens sobre os métodos convencionais como Método de Elementos Finitos, 

Método dos Elementos de Contorno e o Método de Elementos Discretos. As vantagens 

aumentam a acurácia e eficiência dos cálculos, complementando e otimizando as abordagens 

tradicionais. Pois, ao lidar com relações não lineares, os métodos de cálculos convencionais 

exigem premissa simplificadoras e vários ajustes manuais dos parâmetros utilizados resultando 

em valores menos precisos. 

Em contrapartida os algoritmos de IA e ML processam dados multidimensionais 

complexos, extraem características de forma automática e constroem modelos não lineares de 

alta precisão. Por exemplo, segundo (Shao et al. 2023), os algoritmos como Maquinas de 

Vetores de Suporte (SMV) e as Redes Neurais Aritficiais (ANN), sobressaem na previsão de 

capacidade de carga de fundação e na análises de estabilidades de taludes, melhorando a 

acurácia das previsões.  

 

No caso a engenharia geotécnica, a maioria de propriedades dos materiais exibem 

características altamente não lineares, assim a coleta de dados de análise geotécnico, seja por 

meio de ensaios laboratoriais ou na literatura requer de muito tempo e investimento financeiro. 

Portanto a identificação de parâmetros de entradas que impactam significativamente na 

modelagem de IA se torna essencial. Os autores Liu et al.(2024) apresentaram um resumo dos 

parâmetros de entrada muito utilizados nas áreas de engenharia geotécnica baseado em 

resultados de uma revisão bibliográfica, os quais serviram como orientação inicial para a 

seleção dos principais parâmetros de entrada durante a coleta de dados. Este resumo dos 

parâmetros de entradas, encontram-se na Tabela 2.9. 

 

Tabela 2.9: Seleção de parâmetros de entrada e saída para modelos de IA em diferentes áreas 

da engenharia geotécnica (Liu et al., 2024) 

Área de 

pesquisa 
Parâmetros de entrada comumente usados Parâmetros previstos (saída) 

Propriedades 

Físicas 

Propriedades fundamentais de amostras 

geotécnicas brutas, dados experimentais 

históricos, condições, imagens de microscopia 

de materiais geotécnicos, localização 

geográfica e informações estratigráficas das 

amostras 

Distribuição granulométrica, forma das 

partículas e características geométricas, 

porosidade ou índice de vazios, saturação 

ou teor de umidade, e vários tipos de 

densidade  
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Área de 

pesquisa 
Parâmetros de entrada comumente usados Parâmetros previstos (saída) 

Resistência 

Distribuição granulométrica de amostras 

geotécnicas, dados experimentais históricos 

(tensão-deformação) e condições ambientais 

como temperatura, umidade e pressão 

As resistências máximas de materiais 

geotécnicos, resistência à tração, 

resistência à compressão e resistência ao 

cisalhamento 

Módulo 

Informações microestruturais de amostras 

geotécnicas, histórico e ciclos de 

carregamento, e resultados de testes 

laboratoriais 

Módulo de elasticidade, módulo de 

deformação e coeficiente de Poisson . 

Modelo 

constitutivo 

baseado em 

dados 

Incluindo histórico de tensão-deformação 

(como caminhos de carregamento, taxas e 

dados de diferentes estágios), juntamente com 

parâmetros para distribuição de trincas e 

micro trincas 

A relação tensão-deformação dos 

materiais 

Propriedade de 

Compressão 

Parâmetros de estado inicial (como 

porosidade inicial, teor de umidade e índice 

de compressão), condições de carregamento e 

condições ambientais (como temperatura, 

umidade e pressão confinante) 

Curva de compressão, módulo de 

compressão e índice de compressão, 

porosidade e teor de umidade previstos 

sob pressões variáveis, e outros 

parâmetros relevantes 

Propriedade de 

Permeabilidade 

Propriedades fundamentais do solo (como 

distribuição do tamanho das partículas e 

estrutura dos poros), teor de umidade inicial e 

grau de saturação, condições ambientais como 

temperatura e pressão, e condições de 

carregamento 

Coeficiente de permeabilidade, curvas de 

propriedade de permeabilidade 

relacionadas à saturação, e outros 

parâmetros relacionados à 

permeabilidade (como porosidade efetiva 

e coeficiente de difusão) 

Propriedade de 

Liquefação 

Parâmetros sísmicos, características tipo de 

solo e tamanho das partículas, condições do 

lençol freático, parâmetros de estado do solo e 

eventos de liquefação 

Potencial de liquefação e deformações 

do solo induzidas pela liquefação, como 

subsidência e fissuras 

 

Assim, a IA tem atraído interesse em diversos campos profissionais devido a sua versatilidade, 

simplicidade de aplicação e capacidade de resolver problemas complexos a partir de resultados 

de dados existentes. Um dos primeiros autores a compilar registros de publicações sobre IA na 

Engenharia Civil foi Sriram, em 1984, que apresentou uma série de títulos relacionados à 

arquitetura, engenharia civil e geologia, que utilizavam a metodologia de Sistemas Especialistas 

Baseados em Conhecimento (KBES). Posteriormente, outros autores publicaram pesquisas de 

ponta, que compilavam a aplicação da IA na engenharia civil, o que evidenciou um grande 

interesse na análise e resolução de problemas (Reich, 1997; Adeli, 2001; Lu et al., 2012; Shahin, 

2013; Salehi & Burgueño, 2018; Dede et al., 2019; Huang & Fu, 2019; Lagaros & Plevris, 

2022). 

 

Reich (1997), desenvolveu um trabalho em que propos um processo de sete etapas para a 

implementação bem-sucedida de soluções de ML. Através de exemplos em engenharia civil, 

demonstrou que, embora o ML tenha um potencial imenso ainda a ser explorado, seu sucesso é 

intrinsecamente ligado à adesão cuidadosa e ao tratamento das complexidades inerentes a cada 
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fase desse processo proposto. 

 

O trabalho desenvolvido por Lu et al. (2012) explora uma gama de métodos e teorias de IA 

desenvolvidos para aplicações em engenharia civil. Isso inclui desde técnicas amplamente 

conhecidas como computação evolutiva, redes neurais, sistemas fuzzy e sistemas especialistas, 

Ao final, o artigo também identifica as principais tendências de pesquisa, fornecendo uma visão 

abrangente do progresso da inteligência artificial no contexto da engenharia civil. 

 

Shanin, em 2013 realizou um estudo que revisa de forma abrangente o uso, vantagens, desafios 

e potencial da Inteligência Artificial em diversas subáreas da engenharia civil, com ênfase na 

engenharia geotécnica. O trabalho concentra-se em três técnicas de IA tidas como as mais 

eficazes para essa área: Redes Neurais Artificiais (ANNs), Programação Genética (GP) e 

Regressão Polinomial Evolutiva (EPR), com as ANNs sendo a mais empregada. 

  

Em 2019, os autores Dede et al. (2019), apresentaram um estudo que se concentra nas aplicações 

da Inteligência Artificial (IA) na engenharia civil, destacando seu papel crescente e potencial. 

Reuniu artigos de revisão que abordam técnicas como Redes Neurais Artificiais (ANN), 

sistemas fuzzy, sistemas especialistas e inteligência de enxame também foram incluídos. 

 

Uma pesquisa realizada  por Lagaros & Plevris, 2022 na base de dados Scopus,  em junho de 

2022, utilizando termos como "inteligência artificial" e "engenharia civil", revelou mais de 

14.000 artigos publicados desde 2000. Esse crescimento acelerado indica que o uso da IA na 

engenharia civil está em ascensão e trará inovações significativas nos próximos e revelou mais 

de 14.000 artigos publicados desde 2000.  

 

As primeiras pesquisas publicadas sobre o uso de RNAs na área de engenharia geotécnica foram 

apresentadas nos primeiros anos da década dos 90. Trabalhos como “Uso de RNAs para 

determinação de coeficiente de condutividade hidráulica em solos não saturados” por Gribb & 

Gribb, em 1994, entre outros (Lee & Sterling, 1992; Kaseko & Ritchie, 1993; Pachepsky et al., 

1996; Schaap & Bouten, 1996) apresentaram resultados interessantes e deram um bom impulso 

para o uso do RNA em mais problemas geotécnicos. 

 

Baghbani et al. (2022), também, realizam uma revisão de artigos, publicações e trabalhos de 
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aplicação IA nessa área da engenharia. A Figura 2.19 apresenta o número de estudos realizados 

usando os métodos de IA em nove campos da engenharia geotécnica 

 

 

Figura 2.19: Distribuição do uso de diferentes técnicas de IA na engenharia geotécnica em 

nove áreas de aplicação (Adaptado de Baghani et al.,2022) 

 

Além de apresentar o número de estudos realizados por cada campo, foi realizada uma 

comparação entre as técnicas de IA usadas nas publicações, de modo que se destacou o uso da 

técnica de redes neurais. 

 

 Na literatura, foram examinados trabalhos que empregaram o método de Redes Neurais 

Artificiais como uma ferramenta de análise em geossintéticos: 

 

O artigo desenvolvido por Sardehaei e Mehjardi (2017) apresenta um modelo de rede neural de 

tipo backpropagation para prever a resistência à tração retida em geotêxteis não tecidos após a 

instalação. Usando dados de 34 testes de campo, a rede neural previu com acurácia a resistência, 

superando um modelo de regressão. O estudo revela que os danos de instalação do geotêxtil 

aumentam após a compactação, especialmente em condições de menor resistência inicial, maior 

estresse aplicado e condições específicas do material de enchimento e do subleito. 

 

Silva et al. (2021) realizaram um estudo na previsão da resistência à tração e eficácia erosional 

de geotêxteis naturais utilizando Redes Neurais Artificiais (ANN, do inglês Artificial Neural 

Network). Claro, este estudo se concentrou na previsão da resistência e eficácia erosional de 

geotêxteis naturais usando Redes Neurais Artificiais (RNAs). Três tipos de fibras naturais — 

coco, abacá e aguapé — foram usados como geotêxteis. Foram desenvolvidos modelos para 
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entender como essas fibras influenciam a resistência e a capacidade de reduzir a erosão. Os 

modelos de RNA demonstraram uma excelente capacidade de previsão, com correlações altas 

e erros baixos. 

 

Outro estudo realizado por Chao et al. (2021) avalia a resistência ao cisalhamento pico entre a 

interface solo-geocomposto (GDL) em estruturas de engenharia. Com base em uma grande base 

de dados de 316 testes diretos de cisalhamento solo-GDL, diferentes modelos de aprendizado 

de máquina foram utilizados para prever essa resistência. Os modelos BPANN, SVM, ELM, 

otimizados por PSO, GA e método exaustivo, foram comparados, o que revelou que o BPANN 

otimizado por PSO teve a melhor acurácia preditiva. O estudo identificou a influência de vários 

parâmetros e destacou a pressão normal como o fator de maior impacto. Uma equação empírica 

foi desenvolvida para estimar essa resistência, de modo a fornecer uma ferramenta útil para 

engenheiros geotécnicos com pouco conhecimento em técnicas de aprendizado de máquina. 

 

Os autores Tanga et al. (2023), também, investigaram a aplicação da regressão Random Forest 

(um algoritmo de Machine Learning) para prever o ângulo de atrito em interfaces 

geomembrana-areia. O estudo incluiu 495 interfaces de geomembranas lisas e rugosas em 

contato com areia, utilizando dados de diversas fontes nacionais e internacionais. Os resultados 

principais revelaram uma forte correlação entre os ângulos de atrito laboratoriais e as 

estimativas da Random Forest, com coeficientes de determinação (R²) de 0,93 para o conjunto 

de treinamento e 0,92 para o conjunto de teste, confirmando a alta eficiência da técnica 

empregada. 

 

Assim, observa-se um crescente uso e potencial da Inteligência Artificial (IA) e de seus estudos 

derivados na engenharia civil, especialmente no campo geotécnico, o que tem possibilitado 

análises cada vez mais precisas e fundamentadas. Contudo, ainda há uma lacuna significativa 

de pesquisas específicas que explorem a aplicação da IA no desempenho dos geotêxteis. A 

escassez de artigos, dissertações e teses que utilizam abordagens de machine learning para 

investigar os parâmetros que influenciam a função filtrante desses materiais evidencia essa 

necessidade. Diante disso, existe um a necessidade de desenvolver pesquisas nesta área, o que 

constitui o objetivo central da presente dissertação. 

 

2.8 REGRESSÃO MULTIVARIADA (RM) 
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Esta ferramenta aborda um conjunto de métodos e técnicas estatísticas utilizadas para 

compreender melhor as variáveis que influenciam o problema a ser analisado. Essa avaliação 

das variáveis é feita por meio da análise de um conjunto de dados (Santos, 2019 apud 

Mingoti, 2013). 

 

2.8.1 APLICADA À ENGENHARIA GEOTÉCNICA 

A análise multivariada é frequentemente utilizada em estudos de engenharia geotécnica, em que 

é necessário compreender as interações entre diferentes propriedades do solo, como resistência, 

permeabilidade, densidade, entre outras. Essa análise pode ser aplicada em diferentes contextos, 

como projetos de fundações, estabilidade de taludes, comportamento de aterros, entre outros. 

 

Existem várias técnicas de análise multivariada que podem ser aplicadas na geotecnia. De forma 

geral, as técnicas são divididas em dois tipos: técnicas de interdependência e técnicas de 

dependência. A primeira é baseada na interrelação entre várias variáveis, com a finalidade de 

analisar a existência de correlações entre ela. Já a outra determina modelos em que uma ou mais 

variáveis são dependentes de outras variáveis.  

 

Entre essas técnicas, destaca-se componentes principais e regressão linear múltipla, pois foram 

técnicas adotadas em inúmeros trabalhos aplicadas à geotecnia (Gardoni, 2000; Bera et al., 

2005; Marrapu & Jakka, 2027; Palmeira et al.,2024; Santos et al., 2025). A análise de 

componentes principais explica a estrutura de variâncias e covariância dos dados por meio de 

combinações lineares. Essa análise permite uma redução das variáveis independentes originais 

que não se correlacionam com a variável dependente, para obter variáveis conhecidas como 

componentes principais. (Pearson,1901). Cabe destacar que esse tipo de análise é caracterizado 

mais por servir como um passo intermediário para realizar outras análises, como regressões, 

agrupamentos etc.  

 

Por outro lado, a análise de regressão múltipla é uma técnica estatística usada para entender a 

relação entre uma variável dependente (ou critério) e diversas variáveis independentes (ou 

preditoras). Seu objetivo é usar os valores conhecidos das variáveis independentes para prever 

os valores da variável dependente escolhida. Cada variável independente é ponderada durante 

o processo de análise de regressão para garantir uma previsão eficaz baseada no conjunto delas.  
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Esses pesos representam a contribuição relativa de cada variável independente para a previsão 

total, mas interpretar sua influência pode ser desafiador quando há correlação entre as variáveis 

independentes. A combinação ponderada das variáveis independentes forma a variável 

estatística de regressão, também chamada de equação ou modelo de regressão. Esse modelo 

representa uma variável estatística fundamental nas técnicas multivariadas.  

 

𝒀 = 𝜷𝟎 + 𝜷𝟏𝒙𝟏 + 𝜷𝟐𝒙𝟐 + ⋯ + +𝜷𝒑𝒙𝒑 + 𝝐 Eq. (2.7) 

 

Onde Y é a variável dependente ou variável que se deseja prever; 𝛽𝑝, variáveis independentes; 

, 𝛽0, intercepto; 𝛽𝑝 , coeficiente de regressão parciais; e 𝜖, variável de erro. 

A regressão múltipla será abordada no item 5.3 e servirá como metodologia de comparação 

com a rede neural (rna), a fim de avaliar os diferentes métodos para prever o comportamento 

filtrante do geotêxtil 

 

3 METODOLOGIA 

Neste capítulo, detalha-se a metodologia adotada para avaliar o uso de Redes Neurais Artificiais 

(RNA) como ferramenta de previsão do desempenho filtrante de geotêxteis, especificamente 

em termos de permeabilidade do sistema solo/geotêxtil. A Figura 3.1 ilustra as três etapas 

gerais, que compreendem a definição de um banco de dados, desenvolvimento de um modelo 

treinado e a validação desse modelo treinado. 
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Figura 3.1: Metodologia Geral adotada em este estudo. 

 

De forma mais específica, a primeira etapa, dedicada à formação do banco de dados, inicia-se 

com a coleta de dados, seguida por análises preliminares e um pré-processamento dados para a 

seleção dos parâmetros de interesse (parâmetros de entrada e saída). Essas etapas iniciais, 

relacionadas aos dados fornecidos, são realizadas de maneira iterativa, conforme detalhado no 

item 4.2, dada a influência da qualidade e da quantidade dos dados na modelagem da RNA. 

Somente após a definição de um banco de dados consistente, a etapa seguinte é iniciada. 

 

Na segunda etapa, voltada à definição do modelo treinado, e após a conclusão da primeira, 

inicia-se o treinamento do modelo. Isso envolve a definição da função de perda, do otimizador 

para os parâmetros do modelo e do método de inicialização desses parâmetros. Em seguida, a 

validação cruzada é empregada na fase de otimização de hiperparâmetros, com o modelo sendo 

treinado em múltiplas partições (utilizou-se a validação cruzada k-fold). Paralelamente, 

aplicam-se técnicas de regularização para mitigar o overfitting durante a fase de treinamento do 

modelo. 
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Na terceira etapa, após a obtenção do modelo treinado, ou seja, um modelo baseado em uma 

rede neural artificial que aprendeu a partir dos dados ao ajustar iterativamente os pesos das 

conexões entre os neurônios para minimizar os erros nas previsões, avalia-se seu desempenho 

final utilizando um conjunto de dados específico (conjunto de validação). Essa validação é 

conduzida por meio de análises gráficas e de resíduos, e é complementada por uma avaliação 

da importância dos parâmetros. Esta avaliação tem como objetivo identificar quais variáveis de 

entrada mais influenciam nas decisões do modelo, permitindo maior entendimento e a possível 

eliminação de variáveis irrelevantes. Entre os métodos utilizados, destacam-se abordagens 

como a permutação de variáveis.  

 

É importante ressaltar que essa metodologia possui um caráter iterativo. Isto é, caso não se 

alcance uma acurácia considerada aceitável durante o desenvolvimento, diversas variáveis 

podem ser modificadas, o que exige a repetição de toda a metodologia para garantir a obtenção 

de um modelo ótimo. 

 

Os passos para o desenvolvimento do modelo de RNA são apresentados graficamente na Figura 

3.2 

 

Figura 3.2: Passos para desenvolvimento do modelo RNA adotado neste estudo. 
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3.1 BANCO DE DADOS 

FF Os dados de entrada (input) e os valores de permeabilidade final do sistema foram 

definidos com base nos resultados obtidos em investigações anteriores conduzidas por 

diversos autores, totalizando uma coleta de 352 amostras. 

 

Conforme mencionado anteriormente, as Redes Neurais Artificiais (RNAs) representam 

uma abordagem eficaz fundamentada no aprendizado de dados de entrada e saída (Shabin, 

2013; Al-Atroush, 2024). É crucial destacar a influência do número de variáveis de 

entrada no tempo de processamento da rede: um maior número de variáveis implica em 

uma rede de maior dimensão e, consequentemente, em um tempo de análise mais extenso 

para a resolução do problema (Lachtermacher & Fuller, 1994). Contudo, Shanin et al. 

(2000) sugerem que um número elevado de variáveis pode, paradoxalmente, aprimorar o 

desempenho da rede. Nesse contexto, o presente trabalho empregará uma RNA para 

prever o desempenho filtrante do sistema solo/geotêxtil, quantificado pela sua 

permeabilidade. 

 

A primeira etapa desta pesquisa consistiu na busca e coleta de dados, especificamente 

dados e resultados de ensaios laboratoriais destinados à avaliação da permeabilidade do 

sistema solo/geotêxtil. Essas informações foram extraídas de publicações como artigos de 

periódicos internacionais, teses, dissertações e acervos pessoais de dados. Através das 

informações compiladas, foi possível identificar e estabelecer os parâmetros de entrada 

relevantes e os respectivos valores de saída. Ao final dessa etapa, foram reunidos um total 

de 352 dados para o treinamento e a validação do modelo de RNA. A  Tabela 3.1 detalha 

os trabalhos consultados e o número de dados obtidos de cada fonte.  
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Tabela 3.1: Quantidades de dador por trabalho 

Nome do Trabalho/Paper Autor/ Ano Pais 
Número de 

dados coletados 

Evaluation of geotextile/soil filtration 

characteristics using the hydraulic 

conductivity ratio analysis 

Williams & 

Abouzakhm (1989) 
USA 10 

Geotextile filter performance with 

fine grained soils 
Lawson (1990) Reino Unido 4 

Long term filtration behaviour of 

non-woven geotextiles. 
Qureshi et al (1990) USA 30 

Laboratory measurement of 

geotextile filtration characteristics 

Williams & Luettich 

(1990) 
USA 5 

Correlation between long term flow 

testing and current geotextile 

filtration design practice. 

Proceedings of Geosynthetics 

Wayne & Koerner 

(1993) 
USA 8 

Geotextile Filters for Internally 

Stable/Unstable Soils 

Bhatia & Huang 

(1996) 
USA 26 

Avaliação da aplicabilidade de 

ensaios de laboratório e critérios de 

filtros para a utilização de geotêxteis 

em solos do Distrito Federal. 

Gardoni (1995) Brasil 3 

A study on the behaviour of soil-

geotextile systems in filtration tests 
Palmeira et al. (1996) Brasil 5 

Acervo Pessoal 
Gardoni & Palmeira 

(1999) 
Brasil 1 

Selection of geotextiles to filter 

broadly graded cohesionless soils 
Lafleur (1999) Canadá 9 

Clogging phenomena of the residual 

soil-geotextile filter system. 
Lee et al. (2002) Korea e USA 3 

Comportamento do filtro drenante de 

geotêxteis em barragens de rejeitos 

de mineração 

Beirigo (2005) Brasil 5 

Soil–geotextile filter interaction 

under high stress levels in the 

gradient ratio test 

Palmeira et al. (2005) 

& Gardoni (2000) 
Brasil 22 

Filter Perfomance and Design for 

Highway Drains 

Lee & Bourdeau 

(2006) 
USA 12 

Filtration behaviour of soil-

nonwoven geotextile combinations 

subjected to various loads 

Hong & Wu (2011) Taiwan 19 

Changes of Permeability of 

Nonwoven Geotextiles due to 

Clogging and Cyclic Water Flow in 

Laboratory Conditions 

Miszkowska et al. 

(2017) 
Polonia 6 

Filtration Performance of Nonwoven 

Geotextile Filtering Fine-Grained 

Soil under Normal Compressive 

Stresses 

Du et al. (2022) China 4 

Influence of physical clogging on 

filtration performance of soil-

geotextile interaction. 

Markiewicz et al. 

(2022) 
Polonia 16 
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Nome do Trabalho/Paper Autor/ Ano Pais 
Número de 

dados coletados 

Long-term hydraulic performance of 

geotextiles filtering recycled 

materials 

Odabasi et al. (2022) Turquia 75 

Comportamento de Filtros geotêxteis 

em solos internamente instáveis sob 

confinamento 

Carvalho (2023)-

Dellane 
Brasil 81 

Acervo Pessoal Gardoni (2023) Brasil 8 

Total de Dados 352 

 

Os parâmetros de entrada foram selecionados com base nas informações extraídas dos 

trabalhos listados na Tabela 3.1, a fim de identificar os fatores que podem influenciar no 

desempenho filtrante do geotêxtil. Inicialmente, foram definidos 16 parâmetros de 

entrada, detalhados na Tabela 3.2. 

 

Tabela 3.2 — Parâmetros iniciais de interesse 

Tipo de parâmetros/ Variáveis Parâmetros 

Parâmetros de Entrada (Input)/Independentes 
Tipo de Geotêxtil (WG/NWG); d10; d15; d30; d50; d60;d85; 

Cc; Cu; TGT;MA; FOS; LS; isys,; σv, ksys-o 

Parâmetros de Saída (Output)/Dependentes ksys 

WG=Woven geotextile, WG=Nowoven geotextile, dxx=Diâmetro de partícula do solo base para xx% de 

passagem, Cc; C=coef. de curvatura Cu=coef. de uniformidade, TGT=espessura do geotêxtil, MA=gramatura do 

geotêxtil, FOS= abertura de filtração do geotêxtil, LS=espessura do corpo de prova; isys= gradiente hidráulico 

do sistema (solo-geotêxtil),σv=tensão vertical,ksys-o = Coeficiente de permeabilidade inicial do sistema solo- 

geotêxtil, ksys = Coeficiente e permeabilidade final do sistema solo- geotêxtil. 

 

A  Tabela 3.3 por sua vez, detalha a quantidade de dados coletados para cada um dos 

parâmetros de entrada e saída estabelecidos. 

 

Tabela 3.3 — Quantidade de dados iniciais por parâmetros 

Símbolo Parâmetros # Dados Símbolo Parâmetros # Dados 

Parâmetros de Entrada (Inputs) 

d10 

Diâmetro da partícula 

de solo correspondente 

a 10% do material mais 

fino (mm) 

335 tGT 
Espessura do geotêxtil 

(mm) (g/cm³) 
345 

d15 

Diâmetro da partícula 

de solo correspondente 

a 15% do material mais 

fino (mm) 

355 MA 
Gramatura do geotêxtil 

(g/m2) 
348 
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Símbolo Parâmetros # Dados Símbolo Parâmetros # Dados 

Parâmetros de Entrada (Inputs) 

d30 

Diâmetro da partícula 

de solo correspondente 

a 30% do material mais 

fino (mm) 

341 FOS 
Abertura de filtração do 

geotêxtil (mm) 
347 

d50 

Diâmetro da partícula 

de solo correspondente 

a 50% do material mais 

fino (mm) 

341 Ls 
Espessura do corpo de 

prova (cm) 
333 

d60 

Diâmetro da partícula 

de solo correspondente 

a 60% do material mais 

fino (mm) 

341 i 
Gradiente hidraúlico do 

sistema solo/geotêxtil 
312 

d85 

Diâmetro da partícula 

de solo correspondente 

a 85% do material mais 

fino (mm) 

341 𝜎v Tensão vertical (kPa) 341 

dgap 
Diâmetro da lacuna ou 

do espaçamento entre 

partículas (mm) 

56 ksys-o 

Coeficiente de 

permeabilidade inicial do 

sistema solo- geotêxtil 

287 

Cc Coeficiente de 

curvatura 
335 

WG/NW

G 

Tipo de Geotêxtil  

(Tecido/Não Tecido) 
352 

Cu Coeficiente de 

uniformidade 
335    

Parâmetro de Saída (Output) 

ksys 

Coeficiente de 

permeabilidade final do 

sistema solo- geotêxtil 

303 

 

Para prevenir o sobreajuste (overfitting) durante o treinamento da rede, o conjunto de dados foi 

depurado, removendo-se valores discrepantes (outliers) e amostras com dados faltantes 

relevantes, especialmente para ksys-o e ksys. A ausência desses dados comprometeria a 

avaliação do desempenho do filtro geotêxtil, pois impossibilitaria determinar se ocorreu 

colmatação e, consequentemente, analisar sua eficácia. Dessa forma, foram consideradas 

principalmente 287 amostras úteis para as análises, as quais abrangeram os dois tipos de 

geotêxteis (224 amostras de geotêxtil não tecido e 63 de geotêxtil tecido). Inicialmente, realizou-

se uma análise estatística foi realizada uma análise estatística exploratória, avaliando-se os 

valores mínimo, máximo, média, desvio padrão, covariância e assimetria, com o objetivo de 

verificar a influência de todos os parâmetros listados na  Tabela 3.2 sobre o desempenho do 

filtro geotêxtil, cujos resultados são apresentados no subitem 0 deste trabalho.  

 

Após essa análise, constatou-se que o tipo de geotêxtil exercia pouca influência no desempenho. 

Consequentemente, o presente estudo focou na análise de geotêxteis não tecidos, de modo a 

constituir um banco de dados de 224 amostras. A  Tabela 3.4 apresenta a quantidade de dados 
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coletados para os parâmetros de entrada e saída finais que serão utilizados nesta pesquisa. 

Tabela 3.4 — Quantidade de dados finais por parâmetros 

Símb Parâmetros # Dados Símbolo Parâmetros # Dados 

Parâmetros de Entrada (Inputs) 

d10 

Diâmetro da partícula 

de solo 

correspondente a 

10% do material mais 

fino (mm) 

224 tGT 
Espessura do 

geotêxtil (mm) 
224 

d15 

Diâmetro da partícula 

de solo 

correspondente a 

15% do material mais 

fino (mm) 

224 MA 
Gramatura do 

geotêxtil (g/m2) 
224 

d30 

Diâmetro da partícula 

de solo 

correspondente a 

30% do material mais 

fino (mm) 

224 FOS 

Abertura de 

filtração do 

geotêxtil (mm) 

224 

d50 

Diâmetro da partícula 

de solo 

correspondente a 

50% do material mais 

fino (mm) 

224 Ls 
Espessura do corpo 

de prova (cm) 
224 

d60 

Diâmetro da partícula 

de solo 

correspondente a 

60% do material mais 

fino (mm) 

224 i 

Gradiente 

hidraúlico do 

sistema 

solo/geotêxtil 

224 

d85 

Diâmetro da partícula 

de solo 

correspondente a 

85% do material mais 

fino (mm) 

224 𝜎v 
Tensão vertical 

(kPa) 
224 

dgap 

Diâmetro da lacuna 

ou do espaçamento 

entre partículas (mm) 

224 ksys-o 

Coeficiente de 

permeabilidade 

inicial do sistema 

solo- geotêxtil 

224 

Cc 
Coeficiente de 

curvatura 
224    

Cu 
Coeficiente de 

uniformidade 
224    

Parâmetro de Saída (Output) 

ksys 

Coeficiente de 

permeabilidade final 

do sistema solo- 

geotêxtil 

224    

 

Depois da definição do banco de dados final, foram propostos três modelos distintos, 

baseados nos tipos de solos a serem analisados, conforme o resumo apresentado na Tabela 
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3.5.  

 

Tabela 3.5 — Modelos a serem desenvolvidos 

Modelo Tipo de solo Número de Dados 

1 
Solos com concavidade para 

cima e solos descontínuos 
224 

2 
Solos com concavidade para 

cima 
149 

3 Solos descontínuos 75 

 

3.1.1 NORMALIZAÇÃO 

A normalização de dados foi aplicada no conjunto de dados, pois este método ajuda a definir 

parâmetros mais uniformes, o que diminui a probabilidade de que valores menores sejam 

sobrepostos e evita a saturação de informação nos nós da rede (James et al. ,2021). Neste estudo, 

foi utilizada a normalização mínima e máxima, a qual é expressa pela  Eq. (3.1), onde 𝑋𝑛𝑜𝑟𝑚 é 

o valor normalizado de 𝑋𝑖, e 𝑋𝑚í𝑛 e 𝑋𝑚á𝑥 são os valores minimo e máximo de 𝑋𝑖, 

respectivamente, no banco de dados: 

𝑋𝑛𝑜𝑟𝑚 =
𝑋𝑖 − 𝑋𝑚í𝑛

𝑋𝑚á𝑥 − 𝑋𝑚í𝑛
 Eq. (3.1) 

 

3.1.2 CORRELAÇÃO DE DADOS – COEFICIENTE DE PEARSON (𝝆𝒓) 

O coeficiente de correlação de Pearson foi empregado para analisar a relação linear entre os 

parâmetros de entrada e a variável de saída. Esse coeficiente, uma medida estatística que varia 

de -1 a +1, permite quantificar a intensidade e a direção da relação linear monotônica entre duas 

variáveis contínuas e aleatórias. Valores próximos de +1 indicam uma forte correlação positiva, 

enquanto valores próximos de -1 indicam uma forte correlação negativa. Valores próximos de 

zero sugerem uma fraca ou nenhuma correlação linear entre as variáveis analisadas (Mukaka, 

2012). 

 

O cálculo do coeficiente de correlação de Pearson entre duas variáveis é realizado por meio da 

Eq. (3.2), na qual 𝑐𝑜𝑣(𝑥, 𝑦) é a covariância entre dois variáveis e 𝜎𝑥 e 𝜎𝑦 são os desvios padrão 

de cada variável. Além disso, para auxiliar na interpretação dos resultados obtidos, a Tabela 3.6 

apresenta as faixas de correlação e seus respectivos significados.  
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𝜌𝑟(𝑥, 𝑦) =
𝑐𝑜𝑣(𝑥, 𝑦)

𝜎𝑥𝜎𝑦
 Eq. (3.2) 

 

É importante ressaltar que a interpretação do coeficiente de Pearson pode variar dependendo do 

contexto de cada estudo a que ele é aplicado. Essa interpretação é subjetiva e, portanto, deve 

ser justificada claramente as faixas de correlação a serem utilizadas. Portanto, neste estudo, 

serão adotadas as faixas apresentadas na Tabela 3.6. 

 

Tabela 3.6 — Faixas de valores para interpretação do coeficiente de correlação de Pearson 

(Schober et al.,2018). 

Faixas de Correlação Interpretação 

0.00 – 0.10 Correlação Inexistente 

0.10 – 0.39 Correlação Fraca 

0.40 – 0.69 Correlação Moderada 

0.70 – 0.89 Correlação Forte 

0.90 – 1.00 Correlação Muito Forte 

 

3.2 CONFIGURAÇÃO DO MODELO RNA 

Neste estudo, a análise da Rede Neural Artificial (RNA) foi realizada utilizando uma rede 

Perceptron Multicamadas (MLP) feedforward, treinada com o algoritmo de aprendizagem de 

retropropagação (backpropagation - BP). Para a otimização da rede, o algoritmo de otimização 

bayesiano (BOA) foi adotado no modelo. 

 

Para o desenvolvimento da metodologia de RNA, os algoritmos de aprendizado de máquina 

serão implementados e executados utilizando o módulo de Aprendizado de Máquina do 

software Tyche (Tyche, 2023), desenvolvido no Laboratório de Modelagem Computacional 

Inteligência Artificial (LAMCIA) da Universidade de Brasília. O software também incluirá a 

otimização de hiperparâmetros (HPO).  

 

Todos os modelos foram treinados com paralelização em uma GPU básica NVIDIA GeForce 

MX110 de 2 GB de memória dedicada, com auxílio do CUDA, uma plataforma criada pela 

NVIDIA que facilita a computação em paralelo. Os códigos serão programados em linguagem 

Python®, os quais foram aplicados com sucesso em outros estudos para fins de previsão 
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(Chaves et al.,2023; Evangelista Junior; Almeida, 2021; V. P. Silva et al., 2023).  

 

3.2.1 ARQUITETURA DA REDE NEURAL (RNA) 

Segundo Abraham (2005), uma rede MLP é dividida em três partes: camada de entrada, 

camadas intermediárias ou ocultas e camada de saída. Nesse sentido, os dados foram 

processados através de uma Rede Neural Artificial (RNA) feedforward totalmente conectada, 

conhecida como arquitetura Perceptron Multicamadas (MLP). A camada de entrada e cada 

camada oculta do MLP foram construídas sequencialmente com uma transformação linear (em 

que se aplicou pesos e bias), uma camada de normalização em lote e uma função de ativação 

ReLU (Unidade Linear Retificada). Em razão dessa escolha de função de ativação, a 

inicialização dos pesos das camadas lineares foi feita com a Inicialização de Kaiming He, 

enquanto os bias foram inicializados com zero. Nas camadas de normalização em lote, os pesos 

foram inicializados com 1 e os bias com 0. O treinamento foi realizado com a variante AMSGrad 

do otimizador Adam até a convergência. 

 

Os critérios de convergência foram tanto o número máximo de épocas quanto o número de 

épocas de paciência na técnica de parada antecipada (early stopping). Para os conjuntos de 

dados utilizados , todos os modelos definiram 10.000 como o número máximo de épocas e 200 

como paciência. Esses altos valores de épocas máximas foram utilizados para garantir a 

convergência durante o treinamento, uma vez que a implementação da parada antecipada 

preveniu o overfitting e interrompeu o treinamento muito antes do máximo de épocas 

estabelecido. 

 

O conjunto de dados foi separado em 80% para treinamento e 20% para teste. A função de perda 

utilizada foi o Mean Squared Error (MSE), por ser o usual para modelos de regressão. O 

otimizador usado para treinar as redes foi um otimizador baseado em gradiente chamado 

AMSGrad, uma variação do otimizador Adam que propõe melhor convergência. A função de 

ativação empregada nas camadas ocultas foi a Rectified Linear Unit (ReLU), por ser a 

recomendação padrão para otimizadores baseados em gradiente, dado seu formato quase linear. 

Foi utilizada validação-cruzada k-fold com 𝑘 = 5 e os hiperparâmetros dos modelos foram 

otimizados utilizando Otimização Bayesiana (OB). Essa técnica, com base em um modelo 

surrogado probabilístico, calcula a cada iteração qual o melhor próximo ponto da função 

objetivo a ser avaliado, assim, performa bem em problemas em que a função objetivo é custosa. 
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A função objetivo em questão foi a média do MSE dos 5 folds de validação. Os hiperparâmetros 

otimizados e seus intervalos de busca (rango) estão definido na Tabela 3.7 

 

Tabela 3.7: Hiperparâmetro otimizados e seus espaços de busca 

Hiperparâmetro Rango 

Taxa de aprendizado (α) [10
-4

, 10
-1

] 

Decaimento de peso (λ) [10
-9

, 1] 

Camadas Ocultas [1, 4] 

Neurônios em cada camada 

oculta 
[10, 1000] 

 

Foram empregadas 3 técnicas de regularização, a fim de evitar o overfitting e de garantir boa 

generalização dos modelos. São elas: 

• Early Stopping: ela consiste em parar o treinamento do modelo quando o erro do 

conjunto de validação não está mais baixando após um dado número de iterações 

consecutivas, de modo a evitar, assim, treinamento excessivo; 

• Decaimento de peso: a técnica penaliza pesos grandes com base no quadrado da norma 

L2 e em um hiperparâmetro lambda, que controla o quanto os pesos grandes são 

penalizados; 

• Batch Normalization: um método de reparametrização que acelera e estabiliza o 

treinamento, o que melhora performance do modelo. Ela normaliza os inputs de cada 

camada para média 0 e variância 1. Em seguida, para manter a capacidade de 

representação do modelo, aprende parâmetros de escala e deslocamento do resultado. 

 

Graças a essa divisão de dados, foi possível determinar os valores ótimos de pesos sinápticos 

e vieses que minimizam o erro na previsão do modelo. A fase de teste, por sua vez, avalia o 

desempenho do modelo com base nos parâmetros finais obtidos durante a fase de treinamento. 

 

3.2.2 ALGORITMO DE OTIMIZAÇÃO BAYESIANA 

Em aprendizado de máquina, um hiperparâmetro é um parâmetro cujo valor precisa ser definido 

antes do treinamento do modelo, dessa forma, é raro encontrar algoritmos que não os utilizem. 

Para algoritmos como XGBoost, Random Forest (RF) e outros métodos de Machine Learning 

(ML) comparativos, diversos hiperparâmetros impactam significativamente a acurácia 

preditiva. Portanto, o ajuste adequado desses hiperparâmetros, processo conhecido como 
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otimização de hiperparâmetros, é crucial. 

 

Cada vez mais, essa otimização é realizada por métodos automatizados que buscam os melhores 

hiperparâmetros de forma eficiente, utilizando estratégias de busca informada. Esses métodos 

dispensam operações manuais adicionais após a configuração inicial. A Otimização Bayesiana 

(OB) se destaca como a principal escolha para otimizar funções objetivo (Snoek et al., 2012; 

Ghahramani, 2015; Xia et al., 2017). Ela opera através da construção de um modelo 

probabilístico (substituto) da função objetivo com base em avaliações anteriores, buscando o 

ponto que minimiza essa função. Recentemente, a BO tem sido amplamente adotada para o 

ajuste de hiperparâmetros em aprendizado de máquina. 

 

A Otimização Bayesiana (BO) tem suas raízes nos trabalhos de Kushner (1964), Močkus (1975) 

e Zhilinskas (1975). Jones et al. (1998) realizaram uma das primeiras aplicações significativas 

da BO, ao desenvolverem um algoritmo de otimização global eficiente para problemas de 

engenharia em que o número de avaliações da função objetivo é severamente limitado por 

tempo ou custo. 

 

Em modelos de ML, o ajuste de hiperparâmetros pode ser formulado como um problema de 

otimização de função caixa-preta, desconhecida e sem derivadas, o que impede o uso de 

técnicas tradicionais, como o método de Newton ou o gradiente descendente (Wu et al., 2019). 

Os métodos Bayesianos são particularmente eficazes nesse cenário, pois incorporam uma 

estrutura probabilística à informação obtida através das avaliações da função (Betrò & Rotondi, 

1991). 

 

De acordo com Turner et al. (2021), a Otimização Bayesiana (OB) é um algoritmo de 

otimização de caixa-preta que se fundamenta na construção de um modelo probabilístico 

substituto da função objetivo, fornecendo, também, uma medida de incerteza. Este modelo 

substituto é implementado por meio de Processos Gaussiano (GP), que empregam uma função 

de aquisição para determinar o ponto mais promissor a ser avaliado na próxima iteração. Em 

geral, esse algoritmo demostra eficácia em problemas onde as avaliações da função objetivo 

são trabalhosas, direcionando o tempo computacional de forma estratégica para identificação 

de parâmetros ótimos (Snoek et al., 2012). 
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Para aplicação OB, o usuário precisa definir os intervalos do espaço de busca e estabelecer um 

critério de parada, o qual pode ser determinado por um número máximo de interações ou pela 

convergência. Esses requisitos demandam um conhecimento prévio do problema ou da 

execução de múltiplos testes de configuração para definir o espaço de busca de maneira 

adequada. Essa definição cuidadosa visa evitar otimizações ineficientes em espaços de busca 

excessivamente amplos ou a exclusão do ponto ótimo em espaços restritos (Nguyen, 2019). 

Não obstante essas exigências iniciais, uma vez que os intervalos são definidos de forma 

razoável e um critério de parada é estabelecido (seja por número de iterações suficiente ou por 

convergência satisfatória), o algoritmo se torna capaz de encontrar soluções ótimas de maneira 

automática. Na Figura 3.3 é mostrado geralmente como o algoritmo BO funciona. 

 

Figura 3.3 :Ilustração de 3 iteração do algoritmo de otimização bayesiano (modificado de 

Brochu et al., 2010) 

 

Na Figura 3.3, a parte inferior dos gráficos exibe a função de aquisição, enquanto a parte 

superior ilustra uma aproximação da função objetivo por meio de Processos Gaussianos (GP). 

A figura inicia na iteração 2, a figura demostra duas avaliações da função, representadas pelos 

pontos pretos. Com base nessas observações iniciais, são calculadas a média e o desvio padrão 

do GP, que resultam em uma aproximação da função objetivo e fornecem a área azul que indica 

a incerteza da distribuição posterior. Subsequente, ao utilizar a regressão GP, avalia-se a função 
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de aquisição, e seu ponto máximo é selecionado como o próximo ponto a ser avaliado. Essa 

nova avaliação gera uma nova observação, a qual será incluída em uma nova aproximação GP, 

reiniciando o processo iterativo. Dessa forma, mesmo que a nova observação não corresponda 

a um mínimo local, ela adiciona informações ao GP, de modo a contribuir para a busca pelo 

mínimo nas próximas iterações. 

 

Em outras palavras, a Otimização Bayesiana opera em um ciclo iterativo para encontrar o 

mínimo de uma função objetivo desconhecida e dispendiosa de avaliar. Inicialmente, ela 

constrói um modelo substituto probabilístico, tipicamente um Processo Gaussiano, que não 

apenas estima o valor da função objetivo em diferentes pontos, mas também quantifica a 

incerteza associada a essas estimativas. Em seguida, uma função de aquisição é empregada para 

guiar a seleção do próximo ponto a ser avaliado na função objetivo real. Essa função crucial 

equilibra a necessidade de explorar regiões do espaço de busca com alta incerteza (onde o 

mínimo pode estar escondido) com a exploração de áreas onde o modelo substituto prevê 

valores baixos (próximos ao mínimo). Após a avaliação da função objetivo no ponto escolhido, 

o modelo substituto é atualizado com essa nova informação, refinando suas estimativas e 

reduzindo a incerteza. Esse processo de seleção de ponto via função de aquisição e atualização 

do modelo substituto é repetido iterativamente até que um critério de parada predefinido seja 

atingido, como um número máximo de avaliações da função objetivo ou a detecção de 

convergência nos resultados obtidos. 

 

Assim como em outros problemas de otimização, a solução desejada é o mínimo de uma função 

f(x) em algum conjunto limitado X. A otimização bayesiana, especificamente, constrói um 

modelo probabilístico para f(x) com a finalidade de utilizar toda a informação fornecida pelas 

avaliações anteriores da função. Por isso, o custo computacional, de determinar o próximo 

ponto a ser avaliado é justificável devido ao custo de realizar cada avaliação (Snoek et al., 

2012). 

 

Os Processos Gaussianos (PGs) são uma coleção de variáveis aleatórias, qualquer número finito 

das quais possui uma distribuição Gaussiana conjunta, e são completamente especificados por 

funções de média e covariância. A função de média m(x) , representada pela Eq. (3.3), e a função 

de covariância C(x,x′), pela Eq. (3.4), de um processo real f(x) são definidas, de acordo com 

William & Rassmussen (1996) e Bishop (2006), como: 



 

 

61 

𝑚(𝑥) =  𝔼 [𝑓(𝑥)] Eq. (3.3) 

 

𝐶(𝑥, 𝑥′) =  𝔼 [(𝑓(𝑥) − 𝑚(𝑥))(𝑓(𝑥′) − 𝑚(𝑥′)] Eq. (3.4) 

 

E o Processo Gaussiano, é descrito pela Eq. (3.5), onde a função de média m(x) é considerada 

nula, para simplificar o modelo: 

𝑓(𝑥)~𝐺𝑃(𝑚(𝑥), 𝐶(𝑥, 𝑥′)) Eq. (3.5) 

 

Para aplicar PG ao problema de regressão, precisa-se considerar o ruído aleatório (ϵn) nos 

valores alvos observados. O processo de ruído é considerado ao adotar uma distribuição 

Gaussiana e ser baseado em um hiperparâmetro (βG ) que representa a precisão do ruído, para, 

assim, prever variáveis alvo para novas entradas, dado um conjunto de dados de treinamento. 

Supondo que o conjunto de treinamento seja dado por alvos yN=(y1,…,yN)T que correspondem 

aos valores de entrada x1, ..., xn, com o objetivo de prever yN dado xN+1 , para isso, precisa-se 

avaliar a distribuição preditiva p(yN+1∣ yN), dado por uma Gaussiana com média e covariância, 

representadas pela Eq. (3.6) e Eq. (3.7) respectivamente. 

𝑚(𝑥𝑁+1) =  𝑘𝑇𝐶𝑁
−1𝑦 Eq. (3.6) 

 

𝜎2(𝑥𝑁+1) =  𝑐 − 𝑘𝑇𝐶𝑁
−1𝑦 Eq. (3.7) 

 

Onde o vetor k tem elementos k (xn ,xN+1) para n=1, ..., N, o escalar c= k (xn ,xN+1)+ βG e CN é a 

matriz de covariância N x NC(xn ,xm ) = k (xn ,xm ) + βG
-1 δnm para n,m = 1, ..., N. Onde δnm é um 

delta de Kronecker, que é 1 se n=m e 0 caso contrário. Já k (xn ,xm ) é uma função kernel para 

regressão GP, que pode assumir muitas formas. 

 

A partir dos Processos Gaussianos e a Regressão de Processos Gaussiano definidos, é possível 

entender como as técnicas quantificam as incertezas de áreas não observadas com base em 

observações anteriores, de modo a fornecer uma distribuição de probabilidade Bayesiana. Essas 

técnicas combinam informações sobre a função desconhecida com informações da amostra para 

obter informações posteriores da distribuição da função com a fórmula de Bayes. A localização 

do valor ótimo é deduzida com base na informação posterior (Betrò, 1991). Embora esse valor 

ótimo seja baseado em uma função de aquisição e não na função original, devido ao fato de que 

a função de aquisição a (x) é conhecida, portanto, ela fornece o próximo ponto a ser avaliada 
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na função original. 

 

Brochu et al. (2010) comentam que função de aquisição conhecida é a de Melhoria Esperada. 

Essa função de melhoria I (x) é dada pela Eq. (3.8): 

 

𝐼(𝑥) = max(0, 𝑓𝑁+1(𝑥) − 𝑓∗ Eq. (3.8) 

 

Onde fN+1(x) é a avalição de um determinado ponto x e f* é o melhor valor conhecido até esse 

momento. Desse modo, ao escolher um próximo ponto x para ser avaliado, ele retorna a 

diferença entre sua avaliação f(x) e f*(x)>f*, caso contrário, retorna zero. O novo ponto de 

consulta x é encontrado maximizando a melhoria esperada (Eq. (3.9)) 

 

𝑥 = argmax  𝔼[𝑚𝑎𝑥(0, 𝑓𝑁+1(𝑥) − 𝑓∗)|𝒟𝑁| Eq. (3.9) 

 

Onde 𝒟𝑁 é a distribuição a priori. A probabilidade de melhoria I em uma distribuição posterior 

normalmente descrita por μ(x) e σ2(x) que pode ser computada a partir da equação de densidade 

de probabilidade normal  (Eq. (3.10)) 

𝜙 =  
1

√2𝜋𝜎(𝑥)
𝑒𝑥𝑝 (−

(𝜇(𝑥) − 𝑓(𝑥) − 𝐸𝐼)2

2𝜎2(𝑥)
) Eq. (3.10) 

 

A integral da Eq. (3.10) é a Melhoria Esperada, expressada pela Eq. (3.11) a seguir: 

  

𝐸𝐼 =  ∫
1

√2𝜋𝜎(𝑥)
𝑒𝑥𝑝 (−

(𝜇(𝑥) − 𝑓(𝑥) − 𝐸𝐼)2

2𝜎2(𝑥)
) 𝑑𝐼

𝐼=∞

𝐼=0

 Eq. (3.11) 

 

 Os autores Jones et al.(1998), comentam que a função EI (Eq. (3.11)) pode ser avaliada de 

forma analítica o que resulta na Eq. (3.12) e Eq. (3.13): 

 

𝐸𝐼(𝑥) =  {
(𝜇(𝑥) − 𝑓∗)Φ(𝑍) +  𝜎(𝑥)𝜙(𝑍)     𝑠𝑒 𝜎(𝑥) > 0 

0                                                           𝑠𝑒 𝜎(𝑥) = 0
 Eq. (3.12) 
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𝑍 =
𝜇(𝑥) − 𝑓∗

𝜎(𝑥)
 Eq. (3.13) 

 

Onde 𝜙 e Φ, são a função de densidade de probabilidade e a função de distribuição acumulativa 

de distribuição normal padrão, respectivamente. 

 

Como já mencionado, esse processo é iterativo até que o modelo convirja, ou seja, encontre o 

melhor valor de acurácia, logo, varia-se os hiperparâmetros da rede. Assim, para este estudo, 

foram definidos como hiperparâmetros da rede: 

• Número de neurônios; 

• Tipo de função de ativação; 

• Taxa de aprendizado; 

• Coeficiente de momento. 

 

Para todos os casos de treinamento, foi definido um parâmetro de parada antecipada, com um 

valor máximo de 3000 iterações (épocas). 

 

Os dados de entrada foram divididos na proporção de 80 e 20 para as fases de treinamento e 

teste, respectivamente. Na fase de treinamento, os dados foram organizados em subconjuntos 

de estimativa e validação, utilizando o método de validação cruzada (k-fold), com um valor 

de k igual a 5 (20% dos dados em cada subgrupo). Assim, o modelo foi treinado no 

subconjunto de estimativa e testado no subconjunto de validação, por meio de diferentes 

combinações de hiperparâmetros, até identificar o modelo com o menor erro. 

 

Graças a essa divisão de dados, foi possível determinar os valores ótimos de pesos sinápticos 

e vieses que minimizam o erro na previsão do modelo. A fase de teste, por sua vez, avalia o 

desempenho do modelo com base nos parâmetros finais obtidos durante a fase de treinamento. 

 

3.2.3 MÉTRICAS DE VALIDAÇÃO DE MODELO 

Após a definição do modelo de Rede Neural Artificial (RNA) para prever o desempenho 

filtrante do sistema geotêxtil/solo, a acurácia foi avaliada ao comparar-se os valores reais com 

os valores previstos. Essa avaliação é feita de maneira visual, por meio de um gráfico que 

compara os valores previstos pelo modelo desenvolvido com os valores reais obtidos a partir 
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da coleta de dados, como apresenta-se na Figura 3.4. Com esse gráfico, é possível estabelecer 

uma linha de regressão para os dados. Essa linha, por sua vez, funciona como um limite entre 

os dois conjuntos de valores.  

 

Assim, valores mais próximos da linha de regressão são interpretados como o que apresentam 

menor diferença entre si, ou seja, um erro menor, o que indica que o modelo possui um bom 

desempenho de previsão. Destaca-se que um modelo perfeito é alcançado quando a linha de 

regressão apresenta uma inclinação de 45 graus a partir da intercepção dos eixos do gráfico, 

ou seja, valor previsto é igual a valor real. 

 

 
 

Figura 3.4 — Gráfico dos valores reais versus os valores previstos 

(Adaptado de Villamil, 2023) 

 

Para avaliação do desempenho de previsão do modelo foram utilizados três métricas 

estatísticas. Essas três são as mais usadas para avaliar este o desempenho de uma RNA. São 

elas: 

• Coeficiente de determinação R- quadrado (R²): permite avaliar a qualidade 

do ajuste de um modelo de regressão entre um valor real e o valor obtido pela 

RNA. Este coeficiente varia entre 0 e 1. Assim, quanto maior o R2, o modelo se 

ajusta melhor ao dado. No entanto, ele não indica a acurácia preditiva do modelo 

e deve ser interpretado em conjunto com outras métricas como o Erros quadrático 

médio (Waqas et al., 2023). Este coeficiente é representado pela  Eq. (3.14) 
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𝑅2 = 1 −
∑ (𝑦𝑖 − 𝑦̂𝑖)

2𝑛
𝑖=1

∑ (𝑦𝑖 − 𝑦𝑖̅)2𝑛
𝑖=1

 Eq. (3.14) 

 

Onde 𝑦𝑖 é o valor observado (valor real); 𝑦̂𝑖 , valor estimado pelo modelo (valor previsto); e 𝑦𝑖̅, 

média dos valores observados. 

• Raiz do Erro Quadrático Médio (The Root Mean Squared Error – RMSE): 

permite estabelecer o erro quadrático entre os valores previsto e os valores 

observados (reais) em relação ao valor médio dos dados. Essa métrica estatística 

indica quão próximo os dados estão da linha de melhor ajuste.  

𝑹𝑴𝑺𝑬 = √ 
𝟏

𝒏
∑(𝒚𝒊 − 𝒚̂𝒊)𝟐

𝒏

𝒊=𝟏

 Eq. (3.15) 

• Erro Percentual Médio Absoluto (Mean Absolute Percentage Error – MAPE): 

mede a acurácia do modelo de previsão em termos percentuais. Essa métrica é 

calculada pela média das diferenças absolutas entre os valores reais e os valores 

previstos, dividido pelos valores reais, e depois multiplicada por 100. Essa 

métrica é expressa pela Eq. (3.16) 

𝑴𝑨𝑷𝑬 =  
𝟏

𝒏
∑ |

(𝒚𝒊 − 𝒚̂𝒊)

𝒚𝒊
∗ 𝟏𝟎𝟎|

𝒏

𝒊=𝟏

 Eq. (3.16) 

 

O coeficiente de determinação (R²) mede a proporção da variância na variável dependente que 

é explicada pelas variáveis independentes. Em outras palavras, ele fornece uma medida de 

quanto o modelo se ajusta aos dados. Assim, um valor de R² próximo de 1 indica um bom 

desempenho do modelo, ou seja, o modelo pode prever com precisão a variável dependente 

(output) com base nas variáveis independentes (inputs). 

  

Por outro lado, os valores médios de erro (RMSE e MAPE) fornecem informações sobre a 

proximidade entre o valor calculado pelo modelo e o valor real. Quando os valores de erro 

estão próximos de 0, isso indica que os valores obtidos pelo modelo são semelhantes aos 

valores reais, sugerindo que o modelo se ajusta bem aos dados. Portanto, a análise conjunta 

dessas quatro métricas permite uma avaliação completa do modelo. Quando o valor de R² está 

próximo de 1 e os valores médios de erro estão próximos de 0, o modelo demonstra um ótimo 

desempenho e pode prever com precisão os valores da variável dependente (output). 
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Além das três métricas apresentadas acima, Altroush et al. (2024) comentam que, para os 

modelos de IA, eles podem ser avaliados complementarmente com as seguintes ferramentas 

tanto visuais como estatísticas: 

• Erro Quadrático Médio (Mean Squared Error – MSE): permite estabelecer o 

erro quadrático entre os valores previsto e os valores observados (reais) em 

relação ao valor médio dos dados. Essa métrica estatística quantifica a 

magnitude média dos erros e indica quão próximo os dados estão da linha de 

melhor ajuste (Dodge, 2008). Esse erro é calculado por meio da  Eq. (3.17). 

𝑀𝑆𝐸 =  
1

𝑛
∑(𝑦𝑖 − 𝑦̂𝑖)

2

𝑛

𝑖=1

 Eq. (3.17) 

 

• Histograma de erros: é crucial para visualizar a distribuição dos erros de 

predição, identificando padrões ou vieses nos erros cometidos pelo modelo. Um 

histograma assimétrico pode indicar subestimação ou superestimação do 

modelo, entretanto, requer de dados suficientes para ser significativo e sua 

interpretação pode ser subjetiva e menos precisa (Nassar et al., 2023) 

• Gráfico de correlação de valores previsto versus valores previsto: esse 

gráfico fornece uma avaliação visual da predição preditiva do modelo, pois um 

alto grau de correlação linear sugere que as predições do modelo estão próximas 

dos valores reais, o que indica um bom desempenho do modelo. É importante 

mencionar que esse método não quantifica o grau de erro ou de acurácia, e é 

menos eficaz para modelos que apresentam relações não lineares, de forma que 

podem ser enganosos em casos de overfitting ou underfitting (Walter et al., 

2015). 

 

Com o modelo finalmente ajustado, emprega-se uma técnica denominada Importância de 

Atribuição por Permutação (PFI), para identificar quais atributos exercem maior impacto nas 

previsões da variável esperada. Autores como Breiman (2001) e Fisher et al. (2019) comentam 

que o algoritmo PFI quantifica a importância de um atributo ao avaliar o efeito de perturbações 

aleatórias em seus valores sobre o desempenho do modelo. Uma diminuição significativa no 

desempenho do modelo com as perturbações indica a importância desse atributo. Enquanto, se 

o desempenho do modelo não se vê afetado, então, esse modelo é irrelevante para as previsões. 
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Em problemas de regressão, o desempenho do modelo é comumente avaliado pela métrica 

estatística Erro Quadrático Médio (MSE).  

 

A Figura 3.5 ilustra o funcionamento do PFI, em que as instâncias de uma única coluna de 

atributo são embaralhadas aleatoriamente, e a variação no erro do modelo antes e depois dessa 

permutação (ΔMSE) é medida. Esse processo é repetido por N vezes, e a importância do atributo 

é determinada pela média dos valores ΔMSE das N repetições. 

 

Figura 3.5: Técnica de Importância de Atribuição por Permutação (PFI) (Modificado de 

Carvalho, 2025) 

 

3.2.4 LIMITAÇÕES E PROBLEMAS 

Os modelos preditivos de RNA podem apresentar dois problemas principais: overfitting e 

underfitting, tal como é exemplificado na Figura 3.6a e Figura 3.6b, respectivamente.  

 

O overfitting (Figura 3.6a) ocorre quando, para uma determinada amostra de treinamento, o 

modelo demonstra um bom desempenho. No entanto, ao utilizar dados de teste, o desempenho 

é comprometido. Isso se deve ao fato de que o modelo aprendeu as relações específicas 

existentes durante o treinamento e, ao receber informações dos dados de teste, aplica essas 

regras memorizadas, o que gerou erros (overfitting). 

 

Em contrapartida, o underfitting (Figura 3.6b) é o processo oposto, o desempenho da rede é 

insatisfatório na fase de treinamento, pois o modelo não consegue ajustar adequadamente as 

relações entre as variáveis (devido aos poucos dados ou à inadequação do modelo). Esse 

fenômeno cria situações em que o modelo pode melhorar suportando uma maior quantidade de 

Mesclar 
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dados de treinos que os inicialmente fornecidos (Li et al., 2021) Portanto, um modelo que 

apresenta esse tipo de problema não deve ser utilizado, assim, é necessário buscar outras 

funções de ativação ou algoritmos (Haykin, 1999; Shahin et al., 2008; Géron, 2019) 

 

Na Figura 3.6, ilustra-se ambos os problemas de overfitting e underfitting. Assim, conforme 

apresentado por Pothuganti (2023), para evitar esses dois problemas, deve-se realizar diversos 

testes com a finalidade de atingir um equilíbrio chamado de justiffiting (Figura 3.6c). Quando 

é atingido a etapa de justifitting, o modelo é capaz de realizar deteções complexas, que permitem 

a adaptação precisa ao contato com novos dados (dados de teste). 

 

Figura 3.6: Exemplificação gráfica do overfitting, underfitting e justfitting. 

 

Como mencionado anteriormente, o desenvolvimento de um modelo precisa ser verificado 

quanto a erros de generalização. Para isso, existem diversos métodos para evitar ou 

contornar a ocorrência de overfitting ou underfitting, entre esses métodos, destaca-se o 

aumento de dados, divisão de dados entre teste, treino e validação, paragem antecipada 

(Early Stopping ) ou remoção do número de camadas  

 

Em relação à divisão de dados, o processo de análise de RNA é baseado principalmente em 

duas fases: a fase de treinamento e validação. Na fase de treinamento, a rede ajusta seus 

pesos através do uso do algoritmo de treinamento, como apresentado na Figura 3.7, onde a 

do RNA é comparada com a saída desejada (alvo) e, então, o resíduo é utilizado para ajustar 

os pesos sinápticos de acordo com o algoritmo de treinamento. Por outro lado, a fase de 

teste, que envolve a verificação ou validação do modelo, ou seja, a rede, calcula a saída 

com base nos valores de entrada e nos pesos ajustados da fase de treinamento. 
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Figura 3.7: Esquema do Treinamento de uma Rede Neural Artificial 

 

 

Para realizar a análise, os dados são divididos em conjuntos de treinamento e validação. Uma 

divisão comumente utilizada é de 70/30% ou 80/20%, respectivamente (Jeremiah et al., 2021), 

embora seja crucial verificar o tamanho do banco de dados para determinar a proporção mais 

adequada (Géron, 2019). Com vistas a projetar uma RNA com bom poder de generalização, a 

fase de treinamento pode ser subdividida em estimação e teste (Figura 3.8), um procedimento 

conhecido como validação cruzada na estatística.  

 

 

Figura 3.8: Divisão da base de dados em conjuntos de treinamento, validação e teste. 
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Dessa forma, um conjunto de teste pode ser utilizado durante o treinamento para determinar o 

momento ideal de interrupção. Esse método, denominado Parada Antecipada (Early Stopping), 

consiste em testar a rede com os dados de validação após cada época. Caso não se observem 

melhoras significativas, ou o Erro Quadrático Médio (MSE) comece a aumentar, o processo é 

interrompido, conforme ilustrado na Figura 3.9. Assim, nessa etapa, define-se o número de 

épocas (epochs) durante as quais o modelo será treinado até a sua interrupção (Haykin, 1999; 

Silva et al., 2016). 

 

Figura 3.9: Método da Parada Antecipada com conjunto de validação (Adaptado de Haykin, 

1999). 

 

Ressalta-se que, entre os problemas existentes no treinamento de redes MLP, encontra-se 

(Haykin, 1999): 

• Definição dos parâmetros de entrada: a sensibilidade do modelo a variações nos 

parâmetros de entrada implica que pequenas alterações podem induzir divergências 

significativas tanto na fase de treinamento quanto na capacidade de generalização da 

rede neural. A seleção e o ajuste criteriosos desses parâmetros são, portanto, etapas 

cruciais no desenvolvimento de modelos robustos. 

 

• Dimensionamento das entradas (Feature Scaling): a magnitude (quantidade) das 

variáveis de entrada influencia diretamente a escala efetiva dos pesos na camada de 

entrada da rede. Essa disparidade de escalas pode impactar a qualidade da solução final 

e a eficiência do processo de otimização. Inicialmente, recomenda-se a padronização 

das entradas, de forma a garantir que todas as features contribuam equitativamente 

durante a aplicação de técnicas de regularização. Essa normalização também estabelece 
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um intervalo significativo para a inicialização aleatória dos pesos, facilitando a 

exploração do espaço de busca e potencialmente acelerando a convergência do 

treinamento. 

 

• Número neurônios e de camadas ocultas: em linhas gerais, arquiteturas de redes 

neurais com um número elevado de neurônios ocultos tendem a apresentar melhor 

capacidade de aproximação de funções complexas do que aquelas com poucas unidades. 

Uma quantidade subdimensionada de unidades ocultas pode restringir a flexibilidade do 

modelo, de forma a limitar sua habilidade de capturar as não linearidades inerentes aos 

dados. Por outro lado, embora um número excessivo de unidades ocultas aumente a 

capacidade representacional da rede, o risco de overfitting pode ser mitigado através da 

aplicação de técnicas de regularização adequadas. Nesses casos, os pesos associados às 

unidades redundantes podem ser efetivamente penalizados, tendendo a valores 

próximos de zero durante o processo de treinamento. Empiricamente, o número ideal de 

unidades ocultas geralmente se situa em uma faixa que varia entre 5 e 100 — 

comumente, escalonando-se em proporção ao número de variáveis de entrada e ao 

volume do conjunto de dados de treinamento. Uma prática comum e eficaz consiste em 

definir uma arquitetura com um número relativamente grande de unidades ocultas e, 

subsequentemente, empregar métodos de regularização robustos durante o treinamento 

para controlar a complexidade do modelo e evitar o overfitting. 

 

• Multiplicidade de Mínimos Locais: a função de erro associada a redes neurais 

profundas tipicamente exibe uma natureza não convexa, caracterizada pela presença de 

múltiplos mínimos locais. Consequentemente, a solução otimizada resultante do 

processo de treinamento demonstra uma sensibilidade significativa à inicialização dos 

pesos sinápticos. Para mitigar essa dependência, recomenda-se a avaliação de um 

conjunto diversificado de configurações iniciais aleatórias, em que se seleciona a 

arquitetura que apresentar o menor erro de generalização, possivelmente incorporando 

um termo de penalização para regularização. Uma estratégia robusta para a obtenção da 

predição final consiste em empregar a média das previsões geradas por um ensemble 

(conjunto) de redes independentemente treinadas (Ripley, 1996). Essa abordagem é 

preferível à média dos pesos individuais das redes, dado que a não linearidade intrínseca 
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ao modelo pode resultar em um desempenho subótimo da solução média dos pesos. 

Adicionalmente, a técnica de bagging emerge como uma alternativa eficaz, ao computar 

a média das predições de modelos treinados em versões aleatoriamente perturbadas do 

conjunto de dados de treinamento, promovendo a robustez e a estabilidade das 

previsões. 

 

Outra maneira de controlar a probabilidade de overfitting no modelo é realizar a regularização 

de hiperparâmetros. Em ML, os parâmetros de entrada utilizados durante o treinamento 

controlam parte do aprendizado, análise e o resultado a ser previsto. No entanto, certos 

parâmetros do algoritmo permanecem constantes durante a fase de treinamento. Esses 

parâmetros são conhecidos como hiperparâmetros, que podem ser otimizados para reduzir o 

esforço e melhorar o desempenho do algoritmo aplicado (Hutter et al., 2019). A otimização 

permite encontrar o(s) parâmetro(s) que ajudam a minimizar uma função desejada (Das & 

Suganthan, 2011).De acordo com Bilal et al. (2020) alguns hiperparâmetros comumente 

empregados em modelos de Redes Neurais Artificiais (RNAs) são: 

• Número de camadas 

•  Função de ativação; 

• Função de perda; 

• Algoritmo de Otimização 

• Número de épocas 

 

Desta forma, o algoritmo de otimização tem como objetivo ajustar os valores dos 

parâmetros de um modelo, de modo de minimizar sua função de perda. O otimizador Adam, 

que significa “adaptive moment estimation”, combina as melhores características dos 

algoritmos AdaGrad (Adaptive Gradient Descent ) e RMSProp (Root Mean Square), o que 

resulta em um método de otimização eficaz para lidar com gradientes esparsos em problemas 

ruidosos (Brownlee, 2021). Segundo Kingma & Ba (2014), o algoritmo Adam é uma escolha 

popular entre os cientistas de dados, sendo utilizado na etapa de retropropagação. Esse 

algoritmo calcula taxas de aprendizado adaptativas individuais para diferentes parâmetros, 

baseando-se em estimativas dos primeiros e segundos momentos dos gradientes. O algoritmo 

rastreia uma média móvel exponencialmente ponderada (Exponentially Weighted Moving 

Averages -EWMA) tanto do gradiente quanto dos gradientes quadrados. As etapas desse 

algoritmo são apresentadas nas equações a seguir: 
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𝑣 ← 𝛾2𝑣 + (1 − 𝛾2)(∇𝜃𝐽(𝜃))2 Eq. (3.19) 

 

 

𝑚 ← 𝛾1𝑚 + (1 − 𝛾1)∇𝜃𝐽(𝜃) Eq. (3.18) 

 

𝑣 ← 𝛾2𝑣 + (1 − 𝛾2)(∇𝜃𝐽(𝜃))2 Eq. (3.19) 

 

𝑚̂ ←
𝑚

1 − 𝛾1
𝑡
 Eq. (3.20) 

 

𝑣 ←
𝑚

1 − 𝛾2
𝑡
 Eq. (3.21) 

 

𝜃 ← 𝜃 − 𝛼
𝑚̂

√𝑣 + 𝛿
 Eq. (3.22) 

 

Onde γ1 e γ2 representam as taxas de decaimento exponencial para as estimativas de 

momento; m e v são as estimativas enviesadas do primeiro e segundo momento; ∇θJ(θ) é o 

gradiente da função de perda J(θ), em relação aos parâmetros θ. Por outro lado, 𝑚̂ e 𝑣 são as 

estimativas de primeiro e segundo momentos com correção de viés; δ, é uma pequena 

constante adicionada para garantir a estabilidade numérica; e α é a taxa de aprendizado.  

 

Em contrapartida, Reddi et al. (2019) observaram que o algoritmo Adam nem sempre 

converge para a solução ótima e propuseram AMSGrad (Adaptive Moment Estimation with 

improved convergence guarantees), uma variante de Adam com convergência garantida. Essa 

variante introduz uma nova média móvel exponencial, que considera o máximo de todas as 

estimativas do segundo momento até o instante atual, normalizando a média móvel do 

gradiente. 
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4 RESULTADOS 

Este capítulo apresenta e analisa os resultados obtidos após a aplicação da metodologia de Rede 

Neural Artificial (RNA) para prever o desempenho filtrante dos sistemas solo/geotêxtil. 

Primeiramente, realiza-se uma interpretação e correlação dos dados coletados. Em seguida, faz-

se uma descrição das características dos modelos implementados, a qual é seguida da avaliação 

da eficiência obtida para cada modelo, a fim de identificar qual apresenta a melhor performance. 

 

4.1 ANÁLISE DOS DADOS 

4.1.1 INTERPRETAÇÃO DE DADOS 

Como apresentado no Capítulo 4, foram coletadas 352 amostras de 19 publicações 

bibliográficas e 2 acervos pessoais de pesquisadores. Esses dados foram selecionados ao se 

considerar fatores de influência similares, sendo que, inicialmente, foram estabelecidos 16 

parâmetros. A Figura 4.1 apresenta uma visualização da distribuição dos dados presentes e 

ausentes no conjunto de dados coletados. Cada coluna representa uma variável diferente e os 

espaços em branco indicam dados ausentes para cada parâmetro. É possível observar que o 

diâmetro de intervalo (dgap) apresenta a menor quantidade de informações reportadas, o que se 

deve ao fato de ser um parâmetro característico do tipo de solo a ser analisado.  

 

Por outro lado, a maioria das variáveis apresenta uma quantidade significativa de dados 

presentes. No entanto, deve-se atentar-se aos dados ausentes na variável de permeabilidade 

inicial do sistema solo/geotêxtil (ksys-o), pois a ausência desses dados compromete o uso na 

análise desta pesquisa. 
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Figura 4.1 :Distribuição de dados presentes e ausentes nas variáveis do conjunto de dados 

 

 

A Tabela 4.1 apresenta os dados estatísticos dos parâmetros de influência utilizados após a 

limpeza dos dados de outliers ou valores atípicos (que resultaram em 287 amostras úteis). Para 

cada parâmetro, são calculados os valores máximo, mínimo e médio, juntamente com a 

distribuição dos dados, medida pelo desvio padrão, coeficiente de variação e coeficiente de 

assimetria. O desvio padrão mensura o desvio dos dados em relação ao valor médio, de modo 

que um valor menor indica uma concentração mais estreita em torno da média. Por outro lado, 

o coeficiente de variação indica o nível de homogeneidade dos dados, com uma porcentagem 

mais alta sugerindo maior heterogeneidade. O coeficiente de assimetria indica a simetria da 

distribuição dos dados, de forma que um valor mais alto indica uma assimetria mais 

significativa, e o sinal representa sua direção (positivo: à direita, negativo: à esquerda). Para o 

parâmetro “Tipo Geotêxtil”, é apresentada a quantidade de cada teste realizado. 

 

 

 

d10       d15      d30      d50       d60      d85      dgap 
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Tabela 4.1 :Dados estatísticos dos parâmetros de entrada 

Simb. Parâmetro Mín. Máx. Média 

Desvio 

Padrão 

𝝈 

Coef. de 

Variância  

CV 
Assimetria 

Variável de Entrada (Inputs) 

d10 

Diâmetro da 

partícula de solo 

correspondente a 

10% do material 

mais fino (mm) 

0,001 0,489 0,083 0,144 
173,826

% 
2,056 

d15 

Diâmetro da 

partícula de solo 

correspondente a 

15% do material 

mais fino (mm) 

0,002 0,748 0,139 0,201 
147,877

% 
1,807 

d30 

Diâmetro da 

partícula de solo 

correspondente a 

30% do material 

mais fino (mm) 

0,003 1,849 0,423 0,571 
134,742

% 
1,487 

d50 

Diâmetro da 

partícula de solo 

correspondente a 

50% do material 

mais fino (mm) 

0,004 5,986 1,112 1,726 
154,859

% 
1,811 

d60 

Diâmetro da 

partícula de solo 

correspondente a 

60% do material 

mais fino (mm) 

0,006 8,635 1,607 2,586 160,28% 1,808 

d85 

Diâmetro da 

partícula de solo 

correspondente a 

85% do material 

mais fino (mm) 

0,034 16,833 3,350 5,449 
162,370

% 
1,735 

dgap 

Diâmetro da 

partícula de solo 

correspondente a 

10% do material 

mais fino (mm) 

0,008 0,023 0,013 0,005 41,276% 0,737 

Cc 
Coeficiente de 

curvatura 
0,106 19,079 3,588 3,970 

110,459

% 
1,603 

Cu 
Coeficiente de 

uniformidade 
1,725 106,965 35,400 28,191 79,502% 0,535 

tGT 
Espessura de 

geotêxtil (mm) 
0,330 5,600 2,058 1,115 54,085% 0,791 

MA 
Gramatura do 

geotêxtil (g/m2) 
95 627 254,515 126,978 49,806% 1,257 

FOS 

Abertura de 

filtração do 

geotêxtil (mm) 

0,03 0,6 0,184 0,144 78,412% 1,783 

Ls. 
Espessura do corpo 

de prova (cm) 
1,5 16 7,205 3,565 49,400% 0,561 

isys 
Gradiente 

hidráulico 
1 20 5,365 5,151  1,280 

𝜎v 
Tensão vertical 

(kPa) 
0,961 2012,4 149,966 

434,52

6 
 3,676 
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Simb. Parâmetro Mín. Máx. Média 

Desvio 

Padrão 

𝝈 

Coef. de 

Variância  

CV 
Assimetria 

Variável de Entrada (Inputs) 

ksys-o 

Coeficiente de 

permeabilidade 

inicial do sistema 

solo- geotêxtil 

(cm/s) 

4,27x10-7 6,10x10-1 9,56x10-3 0,057 
591,377

% 
9,300 

Variável de Saída (Output) 

ksys 

Coeficiente de 

permeabilidade 

final do sistema 

solo- geotêxtil 

(cm/s) 

2,80x10-7 4,20x10-2 7,00x10-3 0,039 
557,840

% 
8,728 

 

A Tabela 4.1 de dados estatísticos apresenta uma análise descritiva de diversas variáveis de 

entrada (propriedades do solo, do geotêxtil e condições do ensaio) e da variável de saída 

(coeficiente de permeabilidade final do sistema solo-geotêxtil – ksys). A análise dos parâmetros 

revela uma alta variabilidade geral nos dados, evidenciada pelos elevados coeficientes de 

variância (CV), que são maiores que 100%, observados para a maioria das variáveis de entrada 

e para a variável de saída. Essa dispersão significativa sugere que o conjunto de dados abrange 

uma ampla gama de cenários e condições experimentais, o que é crucial para o desenvolvimento 

de modelos preditivos robustos com boa capacidade de generalização. 

 

A assimetria das distribuições também é uma característica notável. A maioria das variáveis de 

entrada, especialmente os diâmetros das partículas do solo (d10 a d85) e os coeficientes de 

curvatura (Cc) e uniformidade (Cu), apresentam uma assimetria positiva considerável. Isso 

indica que as distribuições dessas variáveis tendem a ter uma cauda mais longa, estendendo-se 

para valores mais altos, com a maioria dos dados concentrados em valores abaixo da média. 

Essa assimetria pode influenciar o desempenho de modelos estatísticos que assumem 

distribuições simétricas, de modo que podem exigir transformações de dados para melhor 

adequação. 

 

Em relação aos parâmetros do solo, a análise dos diâmetros das partículas (d10 a d85) reflete a 

esperada progressão no tamanho das partículas correspondentes a frações crescentes do solo 

mais fino. Observa-se que esses diâmetros podem variar em ordens de grandeza (potências de 

10), mesmo dentro de uma mesma curva granulométrica, evidenciando a ampla distribuição de 

tamanhos presentes em algumas amostras. A alta variabilidade (CV > 130%) nesses parâmetros 
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demonstra a diversidade das granulometrias dos solos investigados. A assimetria positiva 

acentuada sugere que, embora haja uma predominância de partículas menores, algumas 

amostras apresentam proporções significativas de partículas maiores. O parâmetro dgap, 

específico para solos com granulometria descontínua, exibe uma variabilidade menor, o que 

pode ser atribuído à sua natureza mais restrita a um tipo específico de solo. Os coeficientes de 

forma da curva granulométrica (Cc e Cu) também apresentam variabilidade considerável, 

indicando uma ampla gama de formas de distribuição de partículas entre os solos estudados. 

 

Por outro lado, os parâmetros do geotêxtil em comparação com os parâmetros do solo, e as 

propriedades do geotêxtil (espessura – tGT, gramatura – MA e abertura de filtração – FOS) 

mostram uma variabilidade geralmente menor (CVs entre 49% e 78%). Isso sugere uma gama 

menos extensa de geotêxteis utilizados nos testes em comparação com a diversidade dos solos. 

No entanto, a abertura de filtração (FOS) ainda apresenta uma variabilidade considerável. A 

assimetria positiva para esses parâmetros indica uma tendência para valores menores de 

espessura, gramatura e abertura, com alguns geotêxteis que apresentam valores 

significativamente maiores. 

 

Já os parâmetros relacionados com as condições do ensaio, as condições de teste revelam uma 

ampla gama de configurações experimentais. A espessura do corpo de prova (Ls) apresenta uma 

variabilidade moderada. O gradiente hidráulico (i) e, especialmente, a tensão vertical (σv) 

mostram uma dispersão muito alta, o que indica que os testes foram realizados sob uma 

variedade de condições de fluxo e confinamento. A permeabilidade inicial do sistema solo-

geotêxtil (ksys-o) exibe a maior variabilidade de todas as variáveis de entrada, abrangendo várias 

ordens de magnitude. Essa extrema variabilidade reflete a sensibilidade da permeabilidade 

inicial às características do solo e do geotêxtil. 

 

A variável de saída (ksys), coeficiente de permeabilidade final do sistema solo-geotêxtil, também 

apresenta uma variabilidade muito alta, comparável à da permeabilidade inicial. Isso demonstra 

que o resultado da permeabilidade do sistema varia significativamente entre os diferentes 

ensaios, provavelmente em resposta à combinação das diversas propriedades do solo, do 

geotêxtil e das condições do ensaio. A alta assimetria positiva para ksys sugere que a maioria dos 

sistemas tende a apresentar uma permeabilidade final baixa, com alguns casos isolados de 

permeabilidade final significativamente maior. 
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A análise estatística detalhada desses dados ressalta a complexidade do comportamento de 

sistemas solo-geotêxtil em solos internamente instáveis. A alta variabilidade e a assimetria das 

distribuições das variáveis de entrada e saída implicam que modelos preditivos simples podem 

não ser suficientes para capturar as relações subjacentes.  

 

A extrema variabilidade observada em ksys-o e ksys sugere a necessidade de considerar 

transformações de dados, ou modelos, que sejam robustos a essa ampla gama de valores. Em 

última análise, uma compreensão aprofundada dessas características estatísticas é fundamental 

para a seleção e o desenvolvimento de modelos preditivos eficazes para o desempenho de filtros 

geotêxteis em solos internamente instáveis. 

 

Para o desenvolvimento do modelo de Rede Neural Artificial (RNA), conforme detalhado ao 

longo deste capítulo, foram considerados apenas geotêxteis do tipo não tecido, os quais 

totalizaram 224 amostras que abrangem dois tipos de solos classificados como internamente 

instáveis. Assim, foram analisados estatisticamente os 3 modelos desenvolvidos.  

 

Nesse sentido, a Tabela 4.2 e a Tabela 4.3, apresentam as análises estatísticas dos parâmetros 

de entrada e do parâmetro de saída, respectivamente, para o Modelo 1 (que considera os dois 

tipos de solo). 
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Tabela 4.2 : Dados estatísticos dos parâmetros de entrada considerando os solos descontínuos e com concavidade para cima 

Sím Min Máx Média 
Desvio 

Padrão 
Assimetria Mediana Q1 Q3 IQR 

# Outlier 

inf 

Outliers 

inf (%) 

# Outlier 

sup 

Outliers 

sup(%) 

d10 0,001 0,489 0,059 0,123 2,793 0,015 0,006 0,0405 0,035 0 0 33 14,73 

d15 0,002 0,748 0,103 0,176 2,494 0,039 0,007 0,0842 0,077 0 0 38 16,96 

d30 0,008 1,849 0,284 0,510 2,089 0,053 0,015 0,17 0,155 0 0 42 18,75 

Cu 2,616 106,965 31,553 28,214 0,838 19,333 8,840 55,268 46,428 0 0 0 0 

tGT 0,51 5,6 2,268 0,920 0,388 2,3 1,9 2,6 0,7 12 5,36 23 10,27 

FOS 0,03 0,5 0,147 0,0916 3,007 0,13 0,117 0,143 0,026 18 8,04 33 14,73 

i 1 20 5,181 5,492 1,376 2,5 1 10 9 0 0 0 0 

𝜎v 0,961 2012,436 149,966 434,526 3,676 7,271 3,63 51,484 47,854 0 0 31 13,84 

ksys-o 7,86x10-7 0,61 0,010 0,0627 8,466 5,00x10-4 7,60x10-5 2,16x10-3 2,08x10-3 0 0 32 14,29 

 

Tabela 4.3: Dados estatísticos dos parâmetros de saída considerando os solos mal graduados e com concavidade para cima 

Sím Min Máx Média 
Desvio 

Padrâo 
Assimetria Mediana Q1 Q3 IQR 

# Outlier 

inf 

Outliers 

inf(%) 

#Outlier 

sup 

Outliers 

sup(%) 

ksys 2,76x10-7 0,097 1,87x10-3 8,81 x10-3 8,528 1,55 x10-4 2,97 x10-5 7,83 x10-4 7,54 x10-4 0 0 33 14,73 
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As informações estatísticas obtidas dos diferentes estudos apresentados revelam o uso de vários 

tipos de solos com altas porcentagem de finos (silte e argila) e pequenas porções de areias (areia 

fina e média) em relação às propriedades do solo. Os solos finos variam entre argila e silte com 

um tamanho médio de 0,06 mm (conforme relatado por Mello, 2001), a areia fina e, com um 

tamanho de 0,10 mm (de acordo com Vangla & Gali, 2016), e uma areia média, de 1,85 mm.  

 

Os solos apresentam também pequenas porções de areias (finas e média) com 16,52%, 22,77% 

e 40,18% respectivamente A distribuição dos dados é heterogênea, com uma tendência de os 

valores serem inferiores à média (assimetria entre 2,09 e 2,79). Segundo os autores Kenney & 

Lau (1985), solos com fração mais fina (30%) podem apresentar comportamentos instáveis, 

sendo que os solos estudos apresentam uma porcentagem maior de 50% de finos, de modo que 

são solos com alto potencial de apresentar instabilidade. Portanto, para a definição de um solo 

instável, precisam ser analisados outros parâmetros, como o coeficiente de uniformidade (Cu). 

 

Pode-se observar que o coeficiente de uniformidade (Cu) varia entre 2,62 e 106,97. Este valor 

máximo explica a dispersão significativa dos dados com um desvio padrão de 28,21 e uma 

assimetria de 0,84, que pode ser confirmado pela divergência da média de 31,55 com a mediana 

de 19,33.  

 

Por outro lado, esses dados estatísticos confirmam que a maioria das amostras podem ser 

considerados solos instáveis, pois, segundo Lafleur (1999), solos com Cu > 6 com curva 

granulométrica com concavidade para cima atendem ao critério de serem considerados solos 

instáveis. Assim, 79.91% dos dados totais cumprem esses critérios. Cristopher & Holtz (1985) 

consideram que os solos que apresentam Cu > 20 com concavidade para cima são considerados 

como solos instáveis, de forma que 54,91% das amostras apresentam essa condição. 

 

A faixa de tensão aplicada nos testes é ampla, pois varia de 1 kPa a valores significativos de 

2012 kPa, com a maioria dos valores se concentrando em uma faixa muito inferior à média. 

Isso se deve principalmente aos ensaios onde não se aplicam tensão vertical, mas é considerada 

a tensão vertical proveniente da força de percolação devido ao fluxo da água através do sistema.  

 

Os dados exibem uma tendência altamente dispersa, o que significa que os valores da tensão 

vertical variam drasticamente. O Intervalo Interquartil (IQR), com um valor de 47,854 kPa, é 
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considerável e evidencia a alta dispersão da metade central dos dados. Este fato, somado à 

discrepância significativa entre a média (149,97 kPa) e a mediana (7,27 kPa), sugere uma 

distribuição assimétrica. Considera-se como valor central típico dos dados a mediana (7.27 

kPa), já que é menos sensível a outliers.  

 

Com relação à assimetria (3,676), é muito alta e positiva, o que indica uma distribuição 

extremamente assimétrica à direita. Isso significa que há uma longa cauda de valores altos que 

puxam a média para cima. Há um número considerável de outliers superiores (13,84%), o que 

indica a presença de valores de tensão vertical muito acima da faixa típica.  

 

A abertura de filtração do geotêxtil (FOS) varia entre 0,03 mm e 0.5 mm, de modo que a maioria 

dos valores se concentra em torno de 0,13 mm a 0,147mm. Ass,m, observa-se uma tendência a 

aberturas do geotêxtil menores, o que pode ser devido ao fato de o tipo de solo em contato 

apresentar uma granulometria mais fina. O desvio padrão de 0,092 mm indica uma dispersão 

moderada dos dados em relação à média 0,147 mm. Isso significa que os valores da abertura de 

filtração do geotêxtil variam, mas não de forma extrema. O IQR de 0,026 mm também indica 

uma dispersão moderada dos 50% dos dados, concentrando-se em uma faixa estreita. A média 

de 0,147 mm e a mediana de 0,13 mm são próximas, o que confirma uma distribuição 

relativamente simétrica, embora a assimetria indique o contrário.  

 

A assimetria (3,007) é alta e positiva, o que indica que a distribuição dos dados é fortemente 

assimétrica à direita. Isso sugere a presença de alguns valores significativamente maiores que a 

média, aproximadamente 37% dos dados totais dos parâmetros de entrada FOS.  

 

Com relação aos outliers, destaca-se uma quantidade considerável tanto inferiores (8,04%) 

quanto superiores (14,73%). Isso indica que existem valores de abertura de filtração do geotêxtil 

que se desviam significativamente da faixa típica. 

 

De acordo com os resultados, a espessura do geotêxtil está dentro dos valores nominais 

comumente usados na indústria, variando de 0,5 a 5,6 mm. Com um desvio padrão de 0,920mm, 

os dados indicam uma dispersão moderada em relação à média (2,268mm), com a maiorias dos 

valores se concentrado em torno de 2,3mm. A assimetria de 0,388 é positiva, próxima de zero, 

o que confirma uma distribuição relativamente simétrica dos dados, com uma leve tendência 
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para os valores altos. Observam-se outliers tanto inferiores (5,35%) quanto superiores 

(10,27%), o que indica diferentes tipos de geotêxteis utilizados nos testes realizados por 

diferentes autores. 

 

Com relação às condições em que o geotêxtil é submetido, os gradientes hidráulicos variam de 

1 a 20, de modo que a maioria dos valores se concentra em uma faixa mais baixa. O desvio 

padrão (5,49) é relativamente alto em comparação com a média (5,18), indicando uma dispersão 

moderada dos dados. Isso significa que os valores do gradiente hidráulico variam 

consideravelmente.  

 

O IQR de 9 também reforça essa moderada dispersão, uma vez que mostra que os 50% dos 

dados têm uma faixa de variação considerável. A distribuição de dados não é perfeitamente 

simétrica, devido ao fato de que a média (5,18) é significativamente diferente da mediana de 

2,5. Não há outliers presentes, tanto inferiores quanto superiores. Isso sugere que os dados, 

apesar da dispersão, estão dentro de uma faixa considerada normal para o gradiente hidráulico. 

A ausência de outliers pode indicar que os testes foram feitos com maior controle. Pode-se 

entender que a variabilidade dos valores de gradiente hidráulicos é devido aos diferentes 

tamanhos de corpos de prova e cargas hidráulicas totais utilizadas nos testes realizados por 

diferentes autores. 

 

Em relação à permeabilidade inicial do sistema solo/geotêxtil, ou seja, a permeabilidade no 

início do ensaio, os valores variam entre 7,96 x10-7 cm/s e 0,61 cm/s, de forma que a maioria 

dos valores se concentra em uma faixa muito inferior à média. Essa faixa de valores apresenta 

uma dispersão alta dos dados, pois apresenta um desvio padrão de 0,063cm/s em comparação 

com a média de 0,010cm/s. Essa dispersão dos dados é confirmada pelo valor do IQR de 

2,08x10-3 cm/s, que reforça a variabilidade dos 50% dos dados.  

 

A diferença da média (0,010 cm/s) com a mediana é considerável (5,00x10-4 cm/s), sugerindo 

a influência por valores extremos. A assimetria é muito alta e positiva (8,47), o que significa a 

presença de valores altos. Há um número considerável de outliers superiores (14,29%), o que 

indica a presença de valores de permeabilidade inicial muito acima da faixa típica. A grande 

variação dos valores de permeabilidade pode ser devido à grande variedade de solos e geotêxteis 

utilizados nos testes. 
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As  Tabela 4.4 e Tabela 4.5 apresentam as análises estatísticas dos parâmetros de entrada e do 

parâmetro de saída, respectivamente, para o Modelo 2 (solos com concavidade para cima) 
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Tabela 4.4 — Dados estatísticos dos parâmetros de entrada considerando os solos com concavidade para cima 

Sím Min Máx Média 
Desvio 

Padrâo 
Assimetria Mediana Q1 Q3 IQR 

# Outlier 

inf 

Outliers 

inf (%) 

#Outlier 

sup 

Outliers 

sup(%) 

d10 0,001 0,489 0,084 0,144 2,100 0,022 0,006 0,068 0,062 0 0 26 17,45 

d15 0,005 0,748 0,140 0,203 1,942 0,065 0,010 0,141 0,131 0 0 17 11,41 

d30 0,015 1,849 0,399 0,577 1,579 0,142 0,028 0,45 0,422 0 0 23 15,444 

Cu 2,627 106,965 21,389 23,965 1,988 9,505 8,840 19,333 10,493 0 0 34 22,82 

tGT 0,51 5,6 2,322 0,946 0,243 2,3 1,59 2,65 1,06 0 0 2 1,34 

FOS 0,06 0,5 0,166 0,105 2,526 0,13 0,117 0,158 0,041 0 0 12 8,053 

i 1 20 5,198 5,730 1,575 2,5 1 5 4 0 0 16 10,74 

𝜎v 0,971 2012,436 213,146 521,496 2,857 7,271 3,516 101,643 98,127 0 0 20 13,42 

ksys-o 7,86x10-7 0,61 0,014 0,077 6,869 3,33 x10-4 4,07 x10-5 2,03x10-3 1,99x10-3 0 0 20 13,42 

 

Tabela 4.5: Dados estatísticos do parâmetro de saída considerando os solos mal graduados e com concavidade para cima 

Sím Min Máx Média 
Desvio 

Padrâo 

Assimetr

ia 
Mediana Q1 Q3 IQR 

# Outlier 

inf 

Outliers 

inf (%) 

#Outlier 

sup 

Outliers 

sup(%) 

ksys 2,76 x10-7 0,097 2,64x10-3 0,011 6,942 1,76 x10-4 1,28 x10-5 1,17x10-3 1,16x10-3 0 0 17 11,41 
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De acordo com Tabela 4.4, os valores médios dos diâmetros das partículas correspondentes a 

10%, 15% e 30% do material mais fino (d10, d15 e d30), respectivamente 0,084 mm, 0,140 mm 

e 0,399 mm, indicam uma composição granulométrica que tende a partículas finas, alinhando-

se com a descrição de solos com alta porcentagem de siltes e argilas. A dispersão desses dados, 

avaliada pelo desvio padrão (0,144 mm para d10, 0,203 mm para d15 e 0,577 mm para D30), 

aumenta progressivamente com o tamanho da partícula. A assimetria positiva observada (2,100 

para d10, 1,942 para d15 e 1,579 para d30) sugere que a distribuição dos tamanhos de partícula 

tende a concentrar-se em valores inferiores à média, com uma cauda alongada para valores 

maiores. 

 

O coeficiente de uniformidade (Cu) apresenta uma média de 21,389 e uma mediana de 9,505, o 

que revela uma distribuição assimétrica, corroborada pela assimetria calculada de 1,988. A 

ampla faixa de variação do Cu (2,627 a 106,965) indica a inclusão de solos com diferentes graus 

de uniformidade, que abrange desde solos bem graduados até solos com uma distribuição 

granulométrica mais extensa. A presença de uma porcentagem significativa de outliers 

superiores (22,82%) enfatiza a existência de amostras com uma grande variedade de tamanhos 

de partículas. 

 

A tensão vertical (σv) aplicada nos testes varia consideravelmente, de 0,97 kPa a 2012,4 kPa. A 

média de 149,97 kPa é significativamente maior que a mediana de 7,27 kPa, o que indica uma 

forte influência de valores extremos e de uma distribuição altamente assimétrica à direita, com 

uma assimetria de 2,857. A alta dispersão, evidenciada pelo desvio padrão de 521,496 kPa e 

pelo intervalo interquartil (IQR) de 98,127 kPa, confirma a heterogeneidade das condições de 

confinamento aplicadas. A presença de outliers superiores (13,42%) destaca a ocorrência de 

testes sob tensões verticais muito elevadas. 

 

A abertura de filtração do geotêxtil (FOS) varia entre 0,03 mm e 0,6 mm, com uma tendência 

para valores menores, conforme indicado pela média de 0,166 mm e pela mediana de 0,13 mm. 

A dispersão dos dados, com um desvio padrão de 0,105 mm, é moderada e a assimetria positiva 

de 2,526 sugere uma distribuição com uma concentração de valores menores e uma cauda 

alongada para valores maiores. A presença de outliers inferiores (8,04%) e superiores (10,74%) 

indica desvios significativos da faixa típica de abertura de filtração. 
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Por outro lado, a espessura do geotêxtil (tGT) apresenta uma faixa de variação de 0,51 mm a 5,6 

mm, com uma média de 2,322 mm e uma mediana de 2,3 mm, o que sugere uma distribuição 

relativamente simétrica, confirmada pela baixa assimetria de 0,243. A presença de outliers 

inferiores (5,35%) e superiores (1,34%) reflete a variedade de geotêxteis utilizados nos testes. 

O gradiente hidráulico (i) varia de 1 a 20, com uma tendência para valores mais baixos, 

conforme a média de 5,198 e a mediana de 2,5. A dispersão dos dados é alta, com um desvio 

padrão de 5,730. A assimetria positiva de 1,575 indica uma distribuição com uma cauda longa 

para valores mais altos. A ausência de outliers inferiores e superiores sugere uma maior 

consistência nas condições de fluxo aplicadas. 

 

A permeabilidade inicial do sistema solo/geotêxtil (ksys-o) exibe uma ampla faixa de variação, 

de 7,86 x 10⁻⁷ cm/s a 0,61 cm/s, com uma concentração de valores inferiores à média de 0,014 

cm/s e à mediana de 3,33 x 10⁻⁴ cm/s. A alta dispersão, com um desvio padrão de 0,077 cm/s, 

e a assimetria muito alta e positiva, de 6,869, indicam a influência de valores extremos. A 

presença de uma porcentagem considerável de outliers superiores (13,42%) enfatiza a grande 

variabilidade na permeabilidade inicial dos sistemas testados. 

 

Finalmente, o coeficiente de permeabilidade final do sistema solo-geotêxtil (ksys) apresenta uma 

faixa de variação de 2,76x10⁻⁷ cm/s a 0,097 cm/s, com uma tendência para valores baixos, 

evidenciada pela média de 2,64x10⁻³ cm/s e pela mediana de 1,76x10⁻⁴ cm/s. A dispersão dos 

dados é alta, com um desvio padrão de 0,011 cm/s. A assimetria positiva de 6,942 sugere uma 

distribuição com uma cauda longa para valores mais altos. A presença de outliers superiores 

(11,41%) indica alguns casos com permeabilidade final significativamente maior que a maioria. 

 

As análises estatísticas dos parâmetros de entrada e do parâmetro de saída para o Modelo 3 

(solos descontínuos) são apresentados na Tabela 4.6 e 

Tabela 4.7, respectivamente. 
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Tabela 4.6: Dados estatísticos dos parâmetros de entrada considerando os solos mal graduados (gap graded)  

Sím Min Máx. Média 
Desvio 

Padrão 

Assimetr

ia 
Mediana Q1 Q3 IQR 

# Outlier 

inf. 

Outlier 

inf. 

(%) 

#Outlier 

sup. 

Outlier 

sup.(%) 

d10 0,002 0,045 0,010 0,009 2,094 0,005 0,005 0,011 0,006 0 0 11 14,67 

d15 0,002 0,257 0,029 0,053 2,754 0,006 0,006 0,014 0,009 0 0 14 18,67 

dgap 0,008 1,008 0,056 0,196 4,728 0,011 0,008 0,0159 0,008 0 0 7 9,33 

Cu 2,616 76,712 51,746 25,081 -0,461 55,268 27,070 76,712 49,642 0 0 0 0 

tGT 0,55 4,2 2,16 0,862 0,715 1,9 1,9 2,1 0,2 9 12 18 24 

FOS 0,03 0,13 0,110 0,031 -1,449 0,13 0,1 0,13 0,03 5 6,67 0 0 

isys 1 20 5,147 5,021 0,772 1 1 10 9 0 0 0 0 

𝜎v 0,961 105,461 24,449 32,676 1,713 5,461 3,707 27,883 24,176 0 0 10 13,33 

ksys-o 2,13x10-5 0,0226 2,38 x10-3 3,90x10-3 2,888 8,31 x10-4 1,46 x10-4 0,00243 2,284x10-3 0 0 11 14,67 

 

Tabela 4.7 — Dados estatísticos do parâmetro de saída considerando os solos descontínuos (gap gradded) 

Sím Min Máx Média 
Desvio 

Padrão 

Assimetr

ia 
Mediana Q1 Q3 IQR 

# Outlier 

inf 

Outlier

inf (%) 

#Outlier 

sup. 

Outliers 

sup (%) 

ksys 1,98 x10-5 3,09 x10-3 3,38 x10-4 5,93 x10-4 3,074 1,27 x10-4 4,85 x10-5 2,51x10-4 2,03 x10-4 0 0 11 14,67 
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De acordo com a Tabela 4.6, os valores médios dos diâmetros das partículas correspondentes a 

10% e 15% do material mais fino (d10 e d15), respectivamente 0,010 mm e 0,029 mm, indicam 

a presença de partículas finas nos solos mal graduados. O diâmetro da lacuna (dgap) apresenta 

uma média de 0,056 mm. A dispersão desses dados, avaliada pelo desvio padrão (0,009 mm 

para d10, 0,053 mm para d15 e 0,196 mm para dgap), varia entre os parâmetros. A assimetria 

positiva observada (2,09 para d10, 2,75 para d15 e 4,72 para dgap) sugere uma concentração dos 

tamanhos de partícula em valores inferiores à média, com uma cauda alongada para valores 

maiores. 

 

O coeficiente de uniformidade (Cu) apresenta uma média elevada de 51,746 e uma mediana de 

27,070, o que revela uma distribuição assimétrica, corroborada pela assimetria negativa de -

0,461. A ampla faixa de variação do Cu (2,62 a 76,71) indica a inclusão de solos com diferentes 

graus de uniformidade. A presença de uma porcentagem significativa de outliers superiores 

(24,00%) enfatiza a existência de amostras com uma grande variedade de tamanhos de 

partículas. 

 

Já a espessura do geotêxtil (tGT) apresenta uma faixa de variação de 0,5 mm a 4,2 mm, com uma 

média de 2,16 mm e uma mediana de 1,9 mm. A assimetria positiva de 0,72 sugere uma 

distribuição levemente inclinada para valores maiores. Observa-se uma presença considerável 

de outliers inferiores (12,00%) e superiores (18,00%), que refletem a variedade de geotêxteis 

utilizados. 

 

A abertura de filtração do geotêxtil (FOS) varia entre 0,03 mm e 0,13 mm, com uma tendência 

para valores menores, conforme indicado pela média de 0,11  mm e pela mediana de 0,13 mm. 

A dispersão dos dados, com um desvio padrão de 0,03  mm, é moderada. A assimetria negativa 

de -1,45 sugere uma distribuição com uma concentração de valores maiores e uma cauda 

alongada para valores menores. A presença de outliers inferiores (6,67%) é notável. 

 

Igualmente aos outros modelos, o gradiente hidráulico (i) varia de 1 a 20, com uma média de 

5,15 e uma mediana de 1. A dispersão dos dados é alta, com um desvio padrão de 5,02. A 

assimetria positiva de 0,77 indica uma distribuição com uma cauda longa para valores mais 

altos. Não se observam outliers para este parâmetro. 
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A tensão vertical (σv) aplicada nos testes varia consideravelmente, de 0,96 kPa a 105,46 kPa. A 

média de 24,45 kPa é significativamente maior que a mediana de 5,46 kPa, o que indica uma 

forte influência de valores extremos e uma distribuição assimétrica à direita, com uma 

assimetria de 1,713. A alta dispersão, evidenciada pelo desvio padrão de 32,68 kPa e pelo IQR 

de 24,176 kPa, confirma a heterogeneidade das condições de confinamento aplicadas. A 

presença de outliers superiores (13,33%) destaca a ocorrência de testes sob tensões verticais 

mais elevadas. 

 

Por outro lado, a permeabilidade inicial do sistema solo/geotêxtil (ksys-o) exibe uma ampla faixa 

de variação, de 2,13 x 10⁻⁵ cm/s a 0,0226 cm/s, com uma concentração de valores inferiores à 

média de 3,903 x 10⁻³ cm/s e à mediana de 8,31 x 10⁻⁴ cm/s. A alta dispersão, com um desvio 

padrão de 3,903 x 10⁻³ cm/s, e a assimetria muito alta e positiva de 2,888 indicam a influência 

de valores extremos. A presença de outliers superiores (14,67%) enfatiza a grande variabilidade 

na permeabilidade inicial dos sistemas testados. 

 

Finalmente, o coeficiente de permeabilidade final do sistema solo-geotêxtil (ksys), conforme a  

Tabela 4.7, apresenta uma faixa de variação de 1,98 x 10⁻⁵ cm/s a 3,09 x 10⁻³ cm/s, com uma 

tendência para valores baixos, evidenciada pela média de 3,38 x 10⁻⁴ cm/s e pela mediana de 

1,27 x 10⁻⁴ cm/s. A dispersão dos dados é alta, com um desvio padrão de 5,93 x 10⁻⁴ cm/s. A 

assimetria positiva de 3,074 sugere uma distribuição com uma cauda longa para valores mais 

altos. A presença de outliers superiores (14,67%) indica alguns casos com permeabilidades 

finais significativamente maiores que a maioria. 

 

4.1.2 CORRELAÇÃO DE DADOS - PEARSON (𝝆𝒓) 

O coeficiente de Pearson é uma ferramenta estatística comumente utilizada para estabelecer ou 

compreender correlações lineares monotônicas estatisticamente significativas entre duas 

variáveis. De acordo com Schober et al. (2018), a matriz define se essa relação é diretamente 

proporcional (correlação direta, valor positivo) ou inversamente proporcional (correlação 

inversa, valor negativo). Neste estudo, o coeficiente de Pearson será empregado para estabelecer 

a correlação linear entre os parâmetros de entrada e os resultados da permeabilidade final do 

sistema solo-geotêxtil (ksys-o). 

 

Contudo, é importante destacar que o coeficiente de Pearson mede apenas relações lineares entre 
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variáveis. Em casos onde a associação é não linear, esse coeficiente pode não refletir 

adequadamente a verdadeira relação entre os parâmetros. Além disso, a existência de correlação 

não implica, necessariamente, em uma relação de causa e efeito (causalidade) entre as variáveis 

analisadas. 

 

Dessa forma, a análise estatística deve ser complementada com a compreensão do 

comportamento físico do sistema, por meio de ensaios laboratoriais, que possibilitam avaliar os 

mecanismos envolvidos. No caso da permeabilidade do sistema solo-geotêxtil (ksys-o), esta 

depende intrinsecamente de fatores como o FOS (que caracteriza o tipo de geotêxtil, seja não 

tecido – NW – ou tecido – W), da espessura do geotêxtil (tGT) – que, por sua vez, é influenciada 

pelo tipo de geotêxtil e pelo próprio FOS – e das tensões confinantes, as quais afetam tanto a 

espessura quanto o comportamento do geotêxtil. Esses fatores mostram que a interpretação 

estatística isolada não é suficiente para capturar a complexidade do comportamento hidráulico 

do sistema, sendo indispensável a avaliação experimental. 

 

Apesar da existência de diferentes faixas de classificação de correlação de Pearson, este estudo 

adotará a faixa apresentada na Tabela 3.6 , na qual valores próximos de zero indicam uma 

correlação fraca, e valores próximos de um indicam uma correlação forte.  

 

A Figura 4.2 e a Figura 4.3  ilustram a correlação entre 16 parâmetros e a permeabilidade final 

do sistema solo-geotêxtil, com base nos dados compilados da literatura. Essa análise preliminar 

auxilia na definição dos parâmetros que serão incorporados aos diferentes modelos a serem 

desenvolvidos, cuja classificação das faixas de correlação para cada um dos 16 parâmetros de 

entrada é apresentada na  

 

Tabela 4.8. 
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Figura 4.2– Matriz de Coeficiente de correlação de Pearson considerando 16 parâmetros de 

entrada 
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Figura 4.3: Influência dos parâmetros de entrada segundo o coeficiente de Pearson (ρr) 

 

 

Tabela 4.8: Faixas de Correlação de Pearson para os 16 parâmetros de entrada em relação a 

permeabilidade final do sistema ksys 

Faixas de Correlação Interpretação Parâmetros 

0.00 – 0.10 
Correlação 

Inexistente 

Tipo de Geotêxtil, Cc, tGT, 

MA, FOS 

0.10 – 0.39 Correlação Fraca 
dgap, d30,d50, d60,d85, Cu, LS, 

isys, 𝜎v 

0.40 – 0.69 
Correlação 

Moderada 
d10,d15 

0.70 – 0.89 Correlação Forte - 

0.90 – 1.00 
Correlação Muito 

Forte 
ksys-o 

 

Baseados nos resultados apresentados na Figura 4.3 e na Tabela 4.8, observa-se que tipo de 

geotêxtil tem uma correlação muito baixa com a permeabilidade final do sistema (𝜌𝑟 de -0,06 

para WG e 𝜌𝑟 de 0,06 para NWG). Em relação às propriedades do solo Cc, apresenta uma 

correlação inexistente com 𝜌𝑟=0,09. Já os parâmetros de d30, dgap, d50, d60, d85 e Cu apresentam 

uma correlação fraca (com 𝜌𝑟=0-32, 𝜌𝑟=0,15, 𝜌𝑟=0,13, 𝜌𝑟=-0,34, respectivamente) e os 

parâmetros d10 e d15 apresentam uma relação moderada (com 𝜌𝑟=-0,41, 𝜌𝑟=-0,40, 

respectivamente).  

Influência dos Parâmetros de Entrada 
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Por outro lado, a matriz de correlação apresentada Figura 4.2 revela uma forte associação entre 

os diferentes diâmetros característicos das partículas do solo, indicando que os diâmetros se 

influenciam mutuamente. Observa-se, por exemplo, que há correlação muito forte entre d30 e 

d50 (𝜌𝑟 = 0,78), d30 e d60 (𝜌𝑟 = 0,67), bem como entre d15 e d30 (𝜌𝑟 = 0,88) e d10 e d15 (𝜌𝑟 

= 0,80). Esses valores elevados de correlação sugerem que, à medida que o valor de um 

diâmetro aumenta, os demais também tendem a aumentar, refletindo uma progressão 

granulométrica consistente nas amostras analisadas. 

 

De acordo com Palmeira et al. (2024), deve ser dada uma atenção aos diâmetros das partículas 

do solo que são tradicionalmente associados a diferentes aspectos do comportamento de filtros 

geotêxteis em solos internamente instáveis, como d10 e d15 e d30. Este último é considerado um 

diâmetro de partícula do solo indicativo apropriado em critérios de retenção para solos não 

coesivos internamente instáveis (Lafleur et al., 1989; Lafleur, 1999; Khan et al., 2022). Isso 

também se aplica ao dgap para solos com granulometria descontínua, onde dgap é o tamanho 

mínimo da lacuna granulométrica (Lafleur, 1999). Assim, apesar do d30 e dgap terem uma 

correlação fraca, ela dever ser levada em conta como um parâmetro de influência. 

 

Em relação às propriedades do geotêxtil, os parâmetros tGT, MA e FOS apresentaram uma 

correlação muito baixa (com 𝜌𝑟=0,09, 𝜌𝑟=0,07 e 𝜌𝑟=−0,03, respectivamente) com a 

permeabilidade final do sistema. Isso sugere que variações lineares  nessas propriedades não 

estão fortemente associadas aos valores da permeabilidade final. Entretanto, Santos (2023), 

comenta que os geotêxteis não tecidos espessos com pequena abertura de filtração tendem a 

exibir um desempenho de filtração insatisfatório. Embora esses parâmetros apresentem baixo 

correlação de pearson, esses estudos indicam que o FOS influencia o resultado da 

permeabilidade tanto quanto a espessura do geotêxtil (Gardoni, 2000). 

 

Os parâmetros relacionados às condições do ensaio, como LS, isys, 𝜎v, presentaram uma 

correlação fraca com a permeabilidade final (𝜌𝑟=-0,15, 𝜌𝑟=-0,30, 𝜌𝑟=-0,13, respectivamente). No 

entanto, autores como Gardoni (2000) e Melo (2018) já comprovaram a influência do 

confinamento no comportamento filtrante de geotêxteis não tecidos. 

 

A permeabilidade inicial do sistema (ksys-o) demonstra uma correlação positiva muito forte (𝜌𝑟 

= 0.92) com a permeabilidade final, o que indica que é o fator mais linearmente relacionado ao 
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desempenho final do sistema. 

 

Na Figura 4.4 e na Figura 4.5 apresentam-se a correlação entre os 10 parâmetros selecionados 

a partir da análise prévia e a permeabilidade final do sistema solo-geotêxtil. Essa análise 

preliminar foi fundamental para a redução dos parâmetros de entrada que serão incorporados 

aos diferentes modelos a serem desenvolvidos.  

 

Destaca-se que, embora o parâmetro FOS apresente correlação muito baixa com a variável de 

interesse, ele será mantido na modelagem em razão de sua relevância para o comportamento 

filtrante do geotêxtil, conforme evidenciado em estudos como o de Gardoni (2000). 

 

Assim, reforça-se a importância de complementar a análise estatística preliminar com o 

entendimento do comportamento físico dos materiais, dada a complexidade envolvida na 

interação solo-geotêxtil e as limitações da análise estatística isolada para capturar todos os 

fatores relevantes. 

 

A classificação das faixas de correlação para cada um desses 10 parâmetros é detalhada na 

Tabela 4.9. 
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Figura 4.4– Matriz do Coeficiente de correlação de Pearson dos fatores de influência e dos 

resultados laboratoriais de permeabilidade do sistema solo/geotêxtil do Modelo 1 
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Figura 4.5: Influência dos parâmetros de entrada segundo o coeficiente de Pearson (ρr) para o 

Modelo 1 

 

Tabela 4.9: Faixas de Correlação de Pearson para os 10 parâmetros de entrada em relação a 

permeabilidade final do sistema ksys (Modelo 1) 

Faixas de Correlação Interpretação Parâmetros 

0.00 – 0.10 
Correlação 

Inexistente 
FOS 

0.10 – 0.39 Correlação Fraca 
d10, d15 ,d30, Cu, tGT,LS, isys, 

𝜎v 

0.40 – 0.69 
Correlação 

Moderada 
- 

0.70 – 0.89 Correlação Forte - 

0.90 – 1.00 
Correlação Muito 

Forte 
ksys-o 

 

A influência dos parâmetros de entrada na permeabilidade final do sistema solo-geotêxtil (ksys) 

para o Modelo 1, que engloba todos os tipos de solos analisados, foi avaliada por meio do 

coeficiente de correlação de Pearson (ρr), conforme ilustrado na  Figura 4.5 e categorizado na 

Tabela 4.9. 
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A análise da Figura 4.5 revela que a permeabilidade inicial do sistema (ksyso) apresenta a 

correlação positiva mais forte com a permeabilidade final (ρr = 0.91), o que indica que sistemas 

com maior permeabilidade inicial tendem a manter uma maior permeabilidade ao final do 

teste. 

 

Observou-se que os diâmetros das partículas do solo (d10 e d15 e d30) possuem correlações 

positivas fracas com ksys (ρr = 0.30, 0.34 e 0.25, respectivamente). Tal resultado sugere que 

solos com partículas mais finas tendem a apresentar uma permeabilidade final ligeiramente 

menor. 

 

Por outro lado, o coeficiente de uniformidade do solo (Cu) (ρr = -0.17), a espessura do geotêxtil 

(tGT) (ρr = -0.15) e a tensão vertical (𝜎v) (ρr = -0.26) demonstraram correlações negativas fracas 

com ksys. Essa tendência indica que valores maiores para esses parâmetros estão associados a 

uma permeabilidade final ligeiramente reduzida. 

 

O gradiente hidráulico do sistema (isys) exibe uma correlação positiva fraca com ksys (ρr = 0.31), 

o que sugere que gradientes hidráulicos mais elevados podem estar relacionados a uma 

permeabilidade final ligeiramente maior. 

 

Notavelmente, o tamanho de abertura de filtração do geotêxtil (FOS) demonstra uma correlação 

positiva praticamente inexistente com ksys (ρr = 0.06). Isso aponta que, para o conjunto de dados 

total, tal propriedade do geotêxtil não possui uma influência linear significativa na 

permeabilidade final do sistema. A Tabela 4.9., que categoriza a força dessas correlações, 

confirma que FOS apresenta uma correlação inexistente e d10, d15, d30, Cu, tGT, isys e 𝜎v  

apresentam correlações fracas. Destaca-se que a permeabilidade inicial do sistema (ksys-o) exibe 

uma correlação muito forte com a permeabilidade final. 

 

Em suma, para o Modelo 1, que considera todos os solos em conjunto, a permeabilidade inicial 

do sistema emerge como o fator preditivo mais importante da permeabilidade final. As 

características granulométricas do solo e o gradiente hidráulico mostram uma influência 

positiva modesta, enquanto as propriedades do geotêxtil (com exceção do FOS) e a tensão 

vertical exibem uma influência negativa discreta. Por outro lado, segundo o valor de correlação 

de Pearson, a abertura de filtração do geotêxtil não manifesta uma relação linear expressiva com 
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a permeabilidade final no total dos dados analisados. Esta análise sugere que o comportamento 

da massa de solo e as condições iniciais do sistema podem ser mais determinantes para a 

permeabilidade final do que as propriedades intrínsecas do geotêxtil, quando se consideram 

diferentes tipos de solos em conjunto. 

 

No caso do Modelo 2, esse modelo considera o tipo de solos com concavidade para cima. Na 

Figura 4.6 e na Figura 4.7 apresentam-se a correlação entre os 10 parâmetros selecionados a 

partir da análise prévia e a permeabilidade final do sistema solo-geotêxtil. A classificação das 

faixas de correlação para cada um desses 10 parâmetros é detalhada na Tabela 4.10 
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Figura 4.6– Coeficiente de correlação de Pearson dos fatores de influência e dos 

resultados laboratoriais de permeabilidade do sistema solo/geotêxtil  do Modelo 2 – 

Solos com concavidade para cima 
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Figura 4.7: Influência dos parâmetros de entrada segundo o coeficiente de Pearson (ρr) para o 

Modelo 2 

 

Tabela 4.10: Faixas de Correlação de Pearson para os 10 parâmetros de entrada em relação a 

permeabilidade final do sistema ksys (Modelo 2) 

Faixas de Correlação Interpretação Parâmetros 

0.00 – 0.10 
Correlação 

Inexistente 
FOS 

0.10 – 0.39 Correlação Fraca 
d10, d15, d30, Cu, tGT, LS, isys, 

𝜎v 

0.40 – 0.69 
Correlação 

Moderada 
isys 

0.70 – 0.89 Correlação Forte - 

0.90 – 1.00 
Correlação Muito 

Forte 
ksys-o 

 

A influência dos parâmetros de entrada na permeabilidade final do sistema solo-geotêxtil (ksys) 

para o Modelo 2, que considera especificamente os solos com concavidade para cima, foi 

avaliada por meio do coeficiente de correlação de Pearson (ρr), conforme apresentado na Figura 

4.6 e categorizado na Tabela 4.10 

 

A análise da  Figura 4.6 revela que a permeabilidade inicial do sistema (ksyso) demonstra uma 

correlação positiva muito forte com a permeabilidade final (ρr = 0.94), o que indica uma relação 

ainda mais acentuada do que quando todos os tipos de solo são considerados. Isso sugere que a 

condição inicial de permeabilidade é um forte indicador do desempenho final para esse tipo de 

solo. 

 

Os diâmetros das partículas do solo (d10, d15 e d30) exibem correlações positivas fracas com ksys 

(ρr = 0.32, 0.34 e 0.28, respectivamente), o que indica que solos com partículas mais finas 

tendem a apresentar uma permeabilidade final ligeiramente menor. A força dessas correlações 

é ligeiramente maior em comparação com a análise que inclui todos os solos. 

 

O coeficiente de uniformidade do solo (Cu) (ρr = -0.24) e a tensão vertical (𝜎v) (ρr = -0.28) 

mostram correlações negativas fracas com ksys, de modo que essas são correlações um pouco 

mais fortes do que na análise geral. Isso sugere que, para solos com concavidade para cima, um 

maior coeficiente de uniformidade e uma maior tensão vertical podem estar mais associados a 

uma redução na permeabilidade final. 
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O gradiente hidráulico do sistema (isys) apresenta uma correlação positiva moderada com ksys 

(ρr = 0.39), o que indica uma influência mais significativa do que quando todos os solos são 

considerados. Isso sugere que, para solos com concavidade para cima, gradientes hidráulicos 

mais elevados tendem a favorecer uma maior permeabilidade final. 

 

Similarmente à análise geral, o tamanho de abertura de filtração do geotêxtil (FOS) demonstra 

uma correlação positiva praticamente inexistente com ksys (ρr = 0.05). Isso sugere que essa 

propriedade do geotêxtil tem uma influência linear mínima na permeabilidade final, mesmo 

considerando apenas solos com concavidade para cima.  

 

A Tabela 4.10, que categoriza a força dessas correlações para o Modelo 2, confirma que FOS 

apresenta uma correlação inexistente, d10, d15, d30, Cu e 𝜎v apresentam correlações fracas, isys 

apresenta uma correlação moderada, e ksys-o exibe uma correlação muito forte com a 

permeabilidade final do sistema. 

 

Em resumo, ao analisar especificamente os solos com concavidade para cima, a permeabilidade 

inicial do sistema (ksys-o) emerge como o fator mais determinante da permeabilidade final. O 

gradiente hidráulico (isys) também demonstra uma influência mais relevante do que na análise 

geral. As características granulométricas do solo e as condições de confinamento (Cu e 𝜎v) 

apresentam uma influência fraca, ligeiramente mais pronunciada do que na análise com todos 

os solos. A abertura de filtração do geotêxtil (FOS), no entanto, continua a não mostrar uma 

correlação linear significativa com a permeabilidade final para este tipo de solo. Essa análise 

enfatiza a importância da condição inicial do sistema e das condições de fluxo para o 

desempenho da permeabilidade final em solos com concavidade para cima. 

 

Finalmente o Modelo 3 similarmente ao Modelo 2, considera a separação dos dois tipos de 

solos. Na Figura 4.8 e na Figura 4.9 apresentam-se a correlação entre os 10 parâmetros. A 

classificação das faixas de correlação para cada um desses 10 parâmetros é detalhada na Tabela 

4.11. 
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Figura 4.8– Coeficiente de correlação de Pearson dos fatores de influência e dos 

resultados laboratoriais de permeabilidade do sistema solo/geotêxtil – Solos Gap-

Gradded 
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Figura 4.9: Influência dos parâmetros de entrada segundo o coeficiente de Pearson (ρr) para o 

Modelo 3 

 

Tabela 4.11: Faixas de Correlação de Pearson para os 9 parâmetros de entrada em relação a 

permeabilidade final do sistema ksys (Modelo 3) 

Faixas de Correlação Interpretação Parâmetros 

0.00 – 0.10 
Correlação 

Inexistente 
dgap , Cu, isys 

0.10 – 0.39 Correlação Fraca tGT, FOS, 𝜎v 

0.40 – 0.69 
Correlação 

Moderada 
d15 

0.70 – 0.89 Correlação Forte d10 

0.90 – 1.00 
Correlação Muito 

Forte 
ksys-o 

 

A influência dos parâmetros de entrada na permeabilidade final do sistema solo-geotêxtil (ksys) 

para o Modelo 3, que considera especificamente os solos com granulometria descontínua (gap-

graded), foi avaliada em função do coeficiente de correlação de Pearson (ρr), conforme 

apresentado na Figura 4.8 e categorizado na Tabela 4.11 

 

A análise da Figura 4.8  revela que a permeabilidade inicial do sistema (ksys-o) demonstra uma 

correlação positiva e muito forte com a permeabilidade final (ρr = 0.85), mantendo-se como um 

dos principais fatores de influência. No entanto, para esse tipo de solo, as características 
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granulométricas da fração fina ganham maior relevância. O diâmetro das partículas 

correspondente a 10% do material mais fino (d10) apresenta uma forte correlação positiva com 

ksys (ρr = 0,71), o que indica que, em solos gap-graded, um menor d10 está significativamente 

associado a uma menor permeabilidade final. O diâmetro das partículas correspondente a 15% 

do material mais fino (d15) também exibe uma correlação positiva moderada à forte com ksys (ρr  

= 0.61). 

 

Em contraste, o tamanho da lacuna granulométrica (dgap) (ρr = 0,02) e o gradiente hidráulico do 

sistema (isys) (ρr = -0.04) mostram correlações lineares praticamente inexistentes com a 

permeabilidade final. 

 

A espessura do geotêxtil (tGT) (ρr = -0.21) e a tensão vertical (𝜎v) (ρr = -0.34) apresentam 

correlações negativas fracas com ksys, o que sugere uma leve tendência de que valores maiores 

desses parâmetros estejam associados a uma menor permeabilidade final. O tamanho de abertura 

de filtração do geotêxtil (FOS) exibe uma correlação positiva fraca com ksys (ρr = 0.12). 

 

A Tabela 4.11, que categoriza a força dessas correlações para o Modelo 3, confirma que dgap e 

isys apresentam correlações inexistentes, tGT, FOS e 𝜎v apresentam correlações fracas, d15 

apresenta uma correlação moderada, d10  apresenta uma correlação forte, e ksys-o apresenta uma 

correlação muito forte com a permeabilidade final do sistema. 

 

Em resumo, para solos com granulometria descontínua, a permeabilidade inicial do sistema (ksys-

o) continua sendo um fator importante. No entanto, o tamanho das partículas mais finas do solo 

(D10 e D15) emerge como um preditor mais relevante da permeabilidade final do que para os 

outros tipos de solos analisados. As propriedades do geotêxtil e as condições de fluxo e 

confinamento exibem influências lineares mais fracas para este tipo de solo. Essa análise destaca 

a maior sensibilidade da permeabilidade final de sistemas com solos gap-graded às 

características granulométricas da fração fina do solo. 

 

4.2 ANÁLISES DO MODELO RNA 

4.2.1 ARQUITETURA RNA 

A definição da arquitetura da rede neural é uma fase preliminar à fase de treinamento da rede. 

Portanto, com o algoritmo de otimização de hiperparâmetro OB é possível achar a arquitetura 
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ideal para os dados de treinamento. Assim, a definição da estrutura da rede é importante, pois 

estabelece o número de camadas intermediárias assim como número de neurônios que compõe 

cada camada. Neste trabalho, a metodologia adotada para RNA é o Perceptron Multicamadas 

(MLP), uma vez que, segundo Haykin (1999), a arquitetura para esse tipo de análise deve ter 

pelo menos uma camada oculta. Com relação ao número de neurônios para cada camada oculta, 

ele é influenciado pelos parâmetros de entrada e de saída. 

 

Como mencionado no item 3.2, o conjunto de dados foi separado em 80% para treinamento e 

20% para teste. A função de perda utilizada foi o Mean Squared Error (MSE), por ser o usual 

para modelos de regressão. O otimizador usado para treinar as redes foi um otimizador baseado 

em gradiente chamado AMSGrad, uma variação do otimizador Adam que propõe melhor 

convergência. A função de ativação empregada nas camadas ocultas foi a Rectified Linear Unit 

(ReLU), por ser a recomendação padrão para otimizadores baseados em gradiente, dado seu 

formato quase linear. Foi utilizada validação-cruzada k-fold com 𝑘 = 5 e os hiperparâmetros 

dos modelos foram otimizados utilizando Otimização Bayesiana (OB). Essa técnica, com base 

em um modelo surrogado probabilístico, calcula a cada iteração qual o melhor próximo ponto 

da função objetivo a ser avaliado, assim performando bem em problemas em que a função 

objetivo é custosa. A função objetivo em questão foi a média do MSE dos 5 folds de validação. 

Os hiperparâmetros otimizados e seus intervalos estão definidos na Tabela 3.7, em que é 

estabelecido um espaço de busca para camadas ocultas entre de 1 a 4, com número de neurônios 

de 10 a 1000.  

 

Para os conjuntos de dados utilizados, todos os modelos definiram 10.000 como o número 

máximo de épocas e 200 como paciência. Esses altos valores de épocas máximas foram 

utilizados para garantir a convergência durante o treinamento, uma vez que a implementação da 

parada antecipada preveniu o overfitting e interrompeu o treinamento muito antes do máximo 

de épocas estabelecido. 

 

Com relação aos parâmetros, o tipo de solo foi considerado como uma variável nominal e os 

parâmetros que apresentam menor influência, observada na matriz de correlação inicial (Tabela 

4.8) foram desconsiderados. Isso resultou em um total de dez parâmetros de entrada para o 

modelo 1, e 9 parâmetros de entrada para o modelo 2 e 3. 
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Ao realizar a validação cruzada k-fold com parada antecipada, cada dobra terá seu treinamento 

interrompido em um número diferente de épocas. Portanto, após realizar a otimização de 

hiperparâmetros, se todo o conjunto de treinamento estiver sendo usado e não houver um 

conjunto de validação separado, não é intuitivo em quantas épocas o treinamento deve ser 

interrompido. Motivado por esse problema, todos os modelos desenvolvidos neste trabalho 

atuam como um ensemble de cinco modelos, utilizando os conjuntos de treinamento e validação 

de cada dobra da validação cruzada.  

 

Assim, o treinamento é interrompido com base em cada conjunto de validação, e a inferência é 

realizada calculando a média das previsões fornecidas por cada modelo. A partir disso, foram 

obtidos os seguintes modelos de treinamento RNA apresentados na Tabela 4.12 

 

Tabela 4.12:Arquitetura Ótima para cada modelo de treinamento de RNA 

Modelo 
Tipo de 

Solo 

No. 

Inputs 

Camadas 

Ocultas 

Neurônios 

na 

Camada 1 

Neurônios 

na 

Camada 2 

Neurônios 

na 

Camada 3 

No. 

Output 

1 

Solos com 

concavidade 

para cima e 

solos 

descontínuos 

9 3 554 136 186 1 

2 

Solos com 

concavidade 

para cima  

9 3 890 850 209 1 

3 
Solos 

descontínuos 
14 2 557 835 - 1 

Notas: CC: solos com concavidade para cima., CG = solos grap graded ou solos descontínuos 

 

4.2.2 FASE DE TREINAMENTO/TESTE E AVALIAÇÃO DO MODELO RNA 

As fases de treinamento e teste foram realizadas para cada arquitetura definida na Tabela 4.12, 

então, foi utilizada uma distribuição aleatória de 80% e 20 % dos dados, respectivamente. 

Assim, a Tabela 4.13 apresenta de forma resumida a quantidade de dados utilizados para a 

fase de treinamento como a fase de teste para cada modelo 
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Tabela 4.13: Número de dados para as fases de treinamento/ teste por modelo. 

Modelo Tipo de Solo 
#Dados de 

Treinamento 

#Dados de 

Teste 

1 

Solos com 

concavidade para cima 

e solos descontínuos 

179 45 

2 
Solos com 

concavidade para cima  
119 30 

3 Solos descontínuos 60 75 

Notas: CC: solos com concavidade para cima ., CG = solos grad graded ou solos descontínuos  

 

 

Na  Figura 4.10 apresenta-se o gráfico de comparação dos valores reais e previstos para o 

Modelo 1 na fase de treinamento como de teste, onde a linha central no gráfico representa uma 

linha de regressão, que ilustra a relação entre os dois conjuntos de dados. Quanto mais próximos 

os pontos de dados da linha de tendência, mais precisas são as previsões do modelo. 

 

  

 

Figura 4.10: Valores Observados e Previstos pelo Modelo RNA- Para todos os tipos de solos 

na fase de treinamento e na fase de teste. 

 

A Figura 4.10 exibe a relação entre os valores observados (reais) e os valores previstos pelo 
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modelo de rede neural. O eixo X representa os valores observados, enquanto o eixo Y 

representa os valores previstos. Os pontos azuis representam os dados de treinamento, e os 

pontos vermelhos representam os dados de teste. A linha diagonal (x = y) representa a relação 

ideal entre os valores observados e os valores previstos. Assim, quanto mais próximos os 

pontos estiverem da linha diagonal (y = x), melhor o desempenho do modelo. Por outro lado, 

as linhas tracejadas (+/- 20%) apresentam um intervalo de 20% em torno da linha de regressão, 

oferecendo uma referência visual para avaliar a acurácia das previsões.  

 

Com relação ao coeficiente de determinação (R²) em cada fase, obteve-se R²=0,94 na fase de 

treinamento, o que indica que o modelo explica 94% de variabilidade nos dados de 

treinamento. Já na fase de teste, foi obtido um R²= 0, 85, explicando 85% da variabilidade nos 

dados de teste. Com base nos valores de R², tanto para os dados de treinamento quanto para 

os dados de teste, apresenta-se um bom ajuste do modelo com uma boa generalização para os 

dados não vistos. É possível notar que os valores de R² obtidos durante a fase de teste não 

exibem uma diferença significativa em comparação com aqueles obtidos na fase de 

treinamento, o que sugere que o modelo não está sofrendo sobreajuste (overfitting) (Haykin, 

1999; Nunes da Silva et al., 2016).  

 

A Figura 4.11(a) e a Figura 4.11 (b) apresentam de forma individual o desempenho da RNA, 

na fase de treinamento e de teste, respectivamente, para o Modelo 1. 

 

 

(a) 
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Figura 4.11: Gráfico de correlação dos valores reais e previstos da permeabilidade final 

do sistema (ksys-o) em RNA com modelo de 3 camadas ocultas e 10 neurônios de entrada: 

(a) Fase de treinamento e (b) Fase de teste.  

 

A Tabela 4.14 apresenta um resumo das métricas obtidas na fase de treinamento e teste 

para o Modelo 1 

 

Tabela 4.14: Métricas de avaliação de regressão do modelo preditivos de ksys do conjunto de 

Modelo 1 

Métricas de 

Desempenho 

Fase de 

Treinamento 
Fase de teste 

R² 0,94 0,85 

RMSE 0,234 0,380 

MAPE% 4,72 7,43 

 

Conforme as informações observadas na  Figura 4.11 e  Tabela 4.14, os gráficos de 

correlação e das métricas de desempenho revelam que o modelo de RNA com 3 camadas 

ocultas e 10 neurônios de entrada demonstra um bom ajuste aos dados de treinamento, 

com alta correlação entre os valores reais e previstos (R² de 0,94, RMSE de 0,239 e MAPE 

de 4,72%). Ao ser avaliado em dados não vistos na fase de teste, o modelo apresenta uma 

capacidade razoável de generalização, embora com um desempenho ligeiramente inferior, 

evidenciado por uma maior dispersão dos pontos em relação à linha de igualdade e 

métricas ligeiramente piores (R² de 0,85, RMSE de 0,380 e MAPE de 7,37%). Essa 

pequena diferença no desempenho entre as fases sugere um leve indício de overfitting. No 

(b) 
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geral, o modelo captura a tendência positiva dos dados e oferece um desempenho preditivo 

aceitável, cuja adequação final dependerá dos requisitos específicos da aplicação. 

 

O Modelo 2 analisa o solo com concavidade para cima (CC), considerando um total de 149 

amostras, as quais foram divididas em 119 amostras para a fase de treinamento e 30 amostras 

para a fase de teste. A Figura 4.12 exibe a relação entre os valores observados (reais) e os 

valores previstos pelo modelo 2 de rede neural nas duas fases. 

 

Figura 4.12: Comparação entre Valores Observados e Previstos pelo Modelo RNA - Solos 

com concavidade para cima na fase de treinamento e na fase de teste 

 

A  Figura 4.13(a) e Figura 4.13(b) apresentam de forma individual o desempenho da RNA, 

na fase de treinamento e de teste respectivamente, para o Modelo 2. 
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Figura 4.13: Gráfico de correlação dos valores reais e previstos da permeabilidade final 

do sistema (ksys) em RNA com Modelo 2 de 3 camadas ocultas e 9 neurônios de entrada: 

(a) Fase de treinamento e (b) Fase de teste. 

 

A  

 

Tabela 4.15 apresenta um resumo das métricas obtidas na fase de treinamento e teste para o 

Modelo 2. 
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Tabela 4.15: Métricas de avaliação de regressão do modelo preditivos de ksys do conjunto de 

Modelo 2 

Métricas de 

Desempenho 

Fase de 

Treinamento 
Fase de teste 

R² 0,98 0,78 

RMSE 0,143 0,583 

MAPE% 2,24 10,84 

 

O Modelo 2 alcançou um ajuste ótimo aos dados de treinamento, conforme evidenciado por um 

coeficiente de determinação muito alto (R² de 0,98) e erros notavelmente baixos (RMSE de 

0,143 e MAPE% de 2,24%), o que demonstra um excelente aprendizado dos padrões presentes 

nesses dados. Ao ser avaliado em dados não vistos na fase de teste, o modelo ainda apresenta 

uma capacidade razoável de explicar a variabilidade (R² de 0,78), embora com um aumento nos 

erros (RMSE para 0,583 e MAPE% para 10,84%). Essa diferença nas métricas, entre as fases 

de treinamento e teste, pode indicar uma oportunidade para otimizar a capacidade de 

generalização do modelo para dados futuros.  

 

 Já o Modelo 3 analisa os solos descontínuos, considerando um total de 75 amostras, divididas 

em 60 e 15 amostras, para a fase de treinamento e teste, respectivamente. A Figura 4.14 

apresenta a comparação entre os valores observados e previstos para o modelo 3, tanto para a 

fase de treinamento como de teste. 
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Figura 4.14: Comparação entre Valores Observados e Previstos pelo Modelo RNA - Solos 

descontínuos na fase de treinamento e na fase de teste. 

 

A Figura 4.15(a) e a Figura 4.15(b) apresentam de forma individual o desempenho da RNA, na 

fase de treinamento e de teste, respectivamente, para o Modelo 3. 

 

(a) 
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Figura 4.15: Gráfico de correlação dos valores reais e previstos da permeabilidade final 

do sistema (ksys) em RNA com Modelo de 3 camadas ocultas e 9 neurônios de entrada: 

(a) Fase de treinamento e (b) Fase de teste. 

 

A Tabela 4.16 apresenta um resumo das métricas obtidas na fase de treinamento e teste para o 

Modelo 3 

 

Tabela 4.16: Métricas de avaliação de regressão do modelo preditivo de ksys do conjunto de 

Modelo 3 

Métricas de 

Desempenho 

Fase de 

Treinamento 
Fase de teste 

R² 0,94 0,74 

RMSE 0,142 0,249 

MAPE% 3,24 5,15 

 

Os resultados de desempenho do Modelo 3 revelam um bom ajuste aos dados de treinamento, 

com um elevado coeficiente de determinação (R² de 0,94) e erros relativamente baixos (RMSE 

de 0,142 e MAPE% de 3,24%). Ao ser avaliado em dados não vistos na fase de teste, o modelo 

demonstra uma capacidade de generalização razoável, com uma pequena redução no R² para 

0,74 e um aumento moderado nos erros (RMSE para 0,249 e MAPE% para 5,15%). Essa menor 

disparidade entre as métricas de treinamento e teste, quando comparado ao Modelo 2, sugere 

um menor grau de overfitting e uma melhor capacidade de aplicar o aprendizado a novos dados. 

(b) 
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Em termos gerais, o Modelo 3 apresenta um desempenho sólido, e sua adequação para a 

aplicação dependerá da análise comparativa com outros modelos e da avaliação se as métricas 

de desempenho na fase de teste atendem aos requisitos específicos do problema. 

 

As Figura 4.16 à Figura 4.18 apresentam os gráficos de Importância de Atributos por 

Permutação (PFI) avaliadas com N = 30 permutações, dos Modelos 1, 2 e 3, respectivamente. 

Esses gráficos permitem identificar a relevância de cada variável de entrada no desempenho de 

cada modelo. Por meio da avaliação do aumento da média do Erro Quadrático Médio (MSE), 

resultante da permutação aleatória dos valores de cada atributo, é possível quantificar sua 

influência na acurácia das previsões. Atributos com maiores aumentos no MSE após a 

permutação são considerados mais importantes para o modelo. 

 

 

 

Figura 4.16: Importância dos Parâmetros de Entrada no Modelo 1 de Rede Neural (Análise de 

ΔMSE)- Todos os solos 

 

Analisando a Figura 4.16, a permeabilidade inicial do sistema (ksys-o) apresenta o maior ΔMSE, 

o que indica que é o parâmetro mais importante para o modelo e que a remoção desse parâmetro 

causa o maior aumento no erro de previsão.  

 

Com relação ao coeficiente de uniformidade (Cu), esse parâmetro também tem um ΔMSE 

ksys-o 

Cu 

Solo 

tGT 

FOS 

d10 

isys 

d15 

d30 

𝜎v 
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Cu 

Solo 

tGT 

FOS 

d10 
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𝜎v 



 

 

117 

relativamente alto, o que sugere que é um parâmetro importante para o modelo. O parâmetro 

nominal do tipo de solo (Tecido – GW e Não Tecido- NWG) apresenta um ΔMSE moderado, 

indicando que tem alguma importância para o modelo. Já o resto dos parâmetros, como 

Espessura do Geotextil (tGT), Abertura de Filtração (FOS), D10, Gradiente Hidráulico (isys), D15, 

D30, Tensão Vertical (𝜎v), apresentam valores baixos, próximos de zero, o que indica que têm 

pouca importância para o modelo e a remoção desses parâmetros não afetaria significativamente 

o erro de previsão. 

 

Figura 4.17: Importância dos Parâmetros de Entrada no Modelo 2 de Rede Neural 

(Análise de ΔMSE)- Solos com concavidade para cima (Solos CC). 

 

Na Figura 4.17, há a análise da Importância de Atributos por Permutação (PFI) para o Modelo 

2 de RNA, aplicado a solos com concavidade para cima (Solos CC). O parâmetro ksys-o é o fator 

de maior importância para o desempenho preditivo do modelo, seguido por Cu, que também 

demonstra uma influência significativa, embora menor. Os parâmetros d15 e d10 contribuem para 

a acurácia do modelo, mas em menor grau que ksys-o e Cu, enquanto D30 apresenta uma influência 

ainda mais reduzida. Surpreendentemente, os parâmetros isys, tGT, 𝜎v e FOS exibem uma 

importância nula, com a permutação de seus valores a resultar em variações mínimas ou até 

mesmo negativas no erro do modelo, o que sugere sua irrelevância para as previsões em Solos 

CC. Essa avaliação destaca a dominância de ksys-o e Cu na determinação da saída do Modelo 2 

para esse tipo específico de solo.  
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Figura 4.18: Importância dos Parâmetros de Entrada no Modelo 3 de Rede Neural 

(Análise de ΔMSE)- Solos Descontínuos (Solos GG) 

 

A análise de Importância de Atributos por Permutação (PFI) para o Modelo 3, aplicado a solos 

descontínuos (Solos GG), revela que ksys-o é o parâmetro de entrada mais crucial para o 

desempenho preditivo. A tensão vertical (σv) também se destaca como um atributo importante, 

mas de menor influência. Além disso, D15 e isys apresentam uma contribuição moderada para o 

modelo. Em contraste, os parâmetros tGT, d10, Cu, dgap e FOS demonstram ter pouca ou nenhuma 

relevância para as previsões realizadas pelo Modelo 3 em Solos GG, de modo a enfatizar a 

dominância de ksys-o e σv na determinação da saída para esse tipo específico de solo. 

 

A avaliação dos três modelos por meio da importância de atributos permite relacionar a 

influência de certos parâmetros. O ksys-o demonstra ser um fator chave no desempenho do filtro 

geotêxtil, independentemente do tipo de solo. O parâmetro Cu apresenta importância nos 

Modelos 1 e 2, mas sua influência é limitada no Modelo 3. Inversamente, a tensão vertical (σv) 

exibe baixa relevância nos Modelos 1 e 2, mas emerge como o segundo parâmetro mais 

importante no Modelo 3. 

 

A análise revelou que o tipo de solo (atributo "Solo") exerce uma influência considerável no 

modelo, destacando sua relevância para o desempenho do filtro. Diante disso, optou-se por 

realizar uma divisão dos dados com base nos tipos de solo. Essa segmentação permitiu uma 

compreensão mais aprofundada da importância dos parâmetros, independentemente da 
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categoria geral do solo. Os parâmetros d10 e d15 apresentam influência moderada nos Modelos 

2 e 3 (que representam diferentes categorias de solo resultantes dessa divisão), sugerindo que 

as características granulométricas impactam o desempenho em ambos o tipo de solo. Já o 

parâmetro dgap mostrou-se relevante especificamente para o Modelo 3, o que era esperado por 

se tratar de um descritor de solos descontínuos. Curiosamente, os parâmetros correspondentes 

às características do geotêxtil (tGT e FOS) se mostraram irrelevantes nesses modelos. 

 

A menor relevância de tGT e FOS no PFI pode ser atribuída à diferença de unidades e as escalas 

em relação à permeabilidade, o que pode gerar variações pequenas na saída do modelo durante 

a permutação. Outros fatores que podem contribuir para essa baixa relevância incluem a 

redundância de informação com outras variáveis, a presença de relações não lineares não 

capturadas pelo PFI, e a limitada variação desses parâmetros nos dados. Embora a 

normalização dos dados possa atenuar o efeito das diferentes unidades, a baixa relevância no 

PFI sugere que a influência direta de tGT e FOS, na permeabilidade final, pode ser menos 

evidente no modelo treinado, apesar de sua importância física no processo de colmatação. Em 

outras palavras, embora esses parâmetros exibam baixa influência, a inclusão desses 

parâmetros na análise auxilia a capturar a complexidade dos dados utilizados, pois estão 

diretamente correlacionados com o tipo de geotêxtil e são importantes para a construção do 

modelo. 

 

Para validar a acurácia dos resultados do modelo, os valores residuais foram calculados ao se 

encontrar a diferença entre os valores previstos e os reais. As Figura 4.19 à  Figura 4.21, 

mostram a distribuição dos valores medidos em laboratório, bem como os valores residuais 

(diferença entre medidos e previstos) obtidos para cada modelo. Assim, é possível validar a 

acurácia dos resultados do modelo. As linhas horizontais representam a variação na 

permeabilidade final do sistema solo – geotêxtil. Para a definição das faixas de variabilidade, 

foi considerada a faixa de distribuição normal de média + 2 desvios padrão. 

 

Neste trabalho, para determinar tais critérios estatísticos, baseou-se em Kuperman et al. 

(2003). Segundo os autores, para um determinado grau de confiança, a “região de aceitação” 

se encontra delimitada no eixo das abscissas da distribuição por “μ – eo” e “μ + eo”, em que: 

• μ = a média dos dados do estudo; 
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• eo = Pr . Sd (Sd é o desvio padrão e Pr é um valor que depende do grau de 

confiança adotado e do número de dados do estudo em questão). 

 

Os graus de confiança e as “regiões de aceitação” correlacionadas foram, então, associados às 

regiões em que a acurácia do modelo se considera aceitável, conforme mostrado na  

Tabela 4.17. Salienta-se que os dados foram analisados estatisticamente de maneira separada, 

por cada modelo de RNA. 

 

Tabela 4.17 –Faixa de aceitação dos erros residuais estabelecidos por análise estatística.  

Faixa de Aceitação Grau de Confiança (%) Pr 
Limites de 

Aceitação 

Adotada 95,45 2,00 μ +/- 2,00 Sd 

Notas:  

μ = a média dos dados de monitoramento do instrumento; 

Sd = desvio padrão dos dados; 

Pr = valor que depende do grau de confiança adotado e do número de dados do estudo em questão (tabela t-

Student). 

 

A Tabela 4.18 e  

 

Tabela 4.19 apresentam as faixas de aceitação adotadas neste trabalho tanto na fase treinamento 

como de teste, respectivamente.  

 

Tabela 4.18: Faixas de Aceitação dos Erros Residuais para a Fase de Treinamento 

Modelo 
Média dos Erro 

Residual (cm/s) 

Desvio Padrão 

dos Erros 

Residuais (cm/s) 

Limite inferior 

μ - 2,00 Sd 

(cm/s) 

Limite superior 

μ + 2,00 Sd 

(cm/s) 

1 -1,67x10-04 3,17 x10-03 -6,50 x10-03 6,17 x10-03 

2 -9,31x10-05 7,27 x10-04 -1,36 x10-03 1,55 x10-03 

3 7,84 x10-05 2,36 x10-04 -3,93x10-04 5,50x10-04 

 

 

Tabela 4.19: Faixas de Aceitação dos Erros Residuais para a Fase de Teste  

Modelo 
Média dos Erro 

Residual (cm/s) 

Desvio Padrão 

dos Erros 

Residuais (cm/s) 

Limite inferior 

μ - 2,00 Sd 

(cm/s) 

Limite superior 

μ + 2,00 Sd 

(cm/s) 

1 -4,70 x10-04 2,74 x10-03 -5,95 x10-03 5,01 x10-03 

2 2,10 x10-03 1,12 x10-02 -2,03 x10-02 2,45 x10-02 

3 2,71 x10-05 9,64 x10-05 -1,66 x10-04 2,20 x10-04 

 

A acurácia dos modelos de RNA propostos neste estudo pode ser avaliada por meio da análise 
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dos valores residuais, que representam a diferença entre os valores previstos e os medidos. Essa 

avaliação é detalhada nas Tabela 4.18 e  

 

Tabela 4.19. Para ilustrar visualmente, as Figura 4.19 à Figura 4.21 mostram a distribuição dos 

valores medidos em laboratório (identificados por pontos azuis), juntamente com os valores 

previstos (símbolos vermelhos) e seus respectivos resíduos para cada modelo (barras verdes). 

Nessas representações gráficas, as linhas horizontais delimitam a faixa de aceitação da 

permeabilidade final do sistema geotêxtil/solo. Vale destacar que o eixo vertical está em escala 

logarítmica, o que permite uma melhor visualização e interpretação dos dados, especialmente 

devido à ampla variação dos valores analisados. 

 

As discrepâncias observadas nos valores previstos podem ser atribuídas à significativa 

variabilidade dos dados de entrada de certos parâmetros, onde o desvio padrão excede a média 

e os coeficientes de variação ultrapassam 100%. Embora essa heterogeneidade dos dados 

contribua para um aprendizado mais robusto da rede, o modelo emprega fatores de aproximação 

internos que modulam a influência de cada parâmetro na correlação com o resultado desejado, 

o qual, por sua própria natureza, varia entre as amostras. 
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Figura 4.19: Valores reais, previstos e residuais para Modelo 1 (Todos os solos) de 3 

camadas ocultas e 10 parâmetros de entrada: (a) Fase de Treinamento e (b) Fase de 

Teste 

 

 

 

Figura 4.20: Valores reais, previstos e residuais para Modelo 2 (Solos CC) de 3 camadas 

ocultas e 9 parâmetros de entrada: (a) Fase de Treinamento e (b) Fase de Teste 
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Figura 4.21: Valores reais, previstos e residuais para Modelo 3  (Solos GG) de 2 

camadas ocultas e 9 parâmetros de entrada: (a) Fase de Treinamento e (b) Fase de Teste 

 

Os percentuais de dados previstos que foram observados fora da faixa aceitável considerada nas 

Tabela 4.18 e  

 

Tabela 4.19 foram determinados por meio do cálculo da quantidade de resíduos. Para a fase de 

treinamento, o percentual de resíduos fora da faixa é de 2,79%, 4,20% e 5,00% para cada 

modelo, respectivamente. Por outro lado, na fase de teste, os valores foram de 4,44%, 3,33%, e 

13,33% para cada modelo, respectivamente. 

 

Os valores de frequência do percentual de resíduos podem ser visualizados nas Figura 4.22  a 
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Figura 4.24 , que correspondem aos histogramas de frequência dos valores residuais. De 

maneira geral, pode-se observar que a ocorrência de valores residuais fora da faixa aceitável é 

mínima, e uma proporção considerável dos desvios dos dados previstos está centrada na faixa 

de 0 cm/s. Essa concentração sugere que o modelo fornece uma aproximação satisfatória dos 

resultados. 

 

 

(a) 

 

(b) 

Figura 4.22: Histograma dos valores absolutos para o Modelo 1: (a) Fase de 

Treinamento, 5 de 179 dados (b) Fase de Teste, 2 de 45 dados 
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(a) 

 

(b) 

Figura 4.23: Histograma dos valores absolutos para o Modelo 2: (a) Fase de 

Treinamento, 5 dados de 119 (b) Fase de Teste, 1 de 30  
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(a) 

 

(b) 

Figura 4.24: Histograma dos valores absolutos para o Modelo 3 (Solos GG): (a) Fase de 

Treinamento, 3 de 60,  (b) Fase de Teste, 2 de 15. 

 

A Figura 4.25 até a Figura 4.28  apresentam  outra maneira de analisar os resíduos obtidos pelos 

modelos de RNA. Esse método avalia a relação entre as previsões dos modelos e os resíduos 

(erros) das previsões. Os pontos vermelhos apresentam os dados de treinamento e a dispersão 

dos dados indica a variabilidade dos resíduos em relação às previsões. A linha vertical sólida, 

conhecida como zero residual, representa o ponto em que os resíduos são nulos, ou seja, o valor 

previsto é igual ao valor real. Já a linha horizontal tracejada, representa a médias dos valores 
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previstos, fornecendo uma referência para comparar a distribuição dos resíduos em relação à 

média das previsões. O Figura 4.25 (a), apresenta a relação entre os valores previsto e os 

resíduos relativos, ou seja, os resíduos são normalizados em relação aos valores previstos ou 

reais. Já o Figura 4.25 (b) apresenta os erros absolutos dos dados de teste (diferença entre os 

valores previstos e reais).  

 

 

(a) 

 

(b) 

Figura 4.25: Gráfico de dispersão mostrando a relação entre previsões e resíduos (erros) 

do Modelo 1 ( Todos os Solos): (a) Valores de Treinamento, 5 de 179 (b) Valores de 

Teste, 2 de 45.4.26 
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:  

(a) 

 

(b) 

Figura 4.27: Gráfico de dispersão mostrando a relação entre previsões e resíduos (erros) 

do Modelo 2 (Solos com Concavidade para Cima): ): (a) Valores de Treinamento, 5 de 

119 (b) Valores de Teste, 1 de 45. 
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(a) 

 

(b) 

Figura 4.28: Gráfico de dispersão mostrando a relação entre previsões e resíduos (erros) 

do Modelo 3 (Solos Descontínuos): (a) Valores de Treinamento, 2 de 60 (b) Valores de 

Teste, 2 de 15. 

 

Analisando a Figura 4.28 (a), observa-se que a maioria dos resíduos está concentrada em torno 

de zero, o que indica que as previsões são, em geral, precisas. Em relação à distribuição dos 

resíduos, o histograma apresentado na Figura 4.22(a) é simétrico em torno de zero, sugerindo 

que a maioria dos resíduos relativos está próxima de zero. Isso significa que a diferença entre 

os valores previstos pelo modelo e os valores reais é pequena, o que indica um bom desempenho 

do modelo. Por outro lado, a Figura 4.28 (a) também apresenta resíduos relativamente grandes, 

o que pode indicar erros de previsão significativos para esses casos.  
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Adicionalmente, a fim de avaliar o desempenho de cada modelo implementado na previsão dos 

valores de resistência ao cisalhamento da interface, erros estatísticos como RMSE, MAE e 

MAPE foram calculados conforme descrito no Capítulo 3. A Tabela 4.20 e a  

Tabela 4.21 resumem os resultados dos três critérios de avaliação estatística mencionados 

acima. 

 

Tabela 4.20: Análise de sensibilidade usando RNA para a fase de treinamento 

Modelo 
Tipo de 

solo 

Quant. 

de 

Dados 

Parâmetros 

de Entrada 

Número de 

Camadas 

Ocultas 

Métricas de Desempenho 

R² RMSE MAPE% 

1 CC+GG 179 10 3 0,94 0,239 4,27 

2 CC 119 9 3 0,94 0,142 3,24 

3 GG 60 9 2 0.98 0,143 2,24 

 

Tabela 4.21: Análise de sensibilidade usando RNA para a fase de teste 

Modelo 
Tipo de 

solo 

Quant. 

de 

Dados 

Parâmetros 

de Entrada 

Número de 

Camadas 

Ocultas 

Métricas de Desempenho 

R² RMSE MAPE% 

1 CC+GG 45 10 3 0,85 0,38 7,43 

2 CC 30 9 3 0,78 0,583 10,84 

3 GG 15 9 2 0,74 0,249 5,15 

 

As Tabela 4.20 e  

Tabela 4.21 apresentam os resultados da análise de sensibilidade utilizando Redes Neurais 

Artificiais (RNA) nas fases de treinamento e teste, respectivamente. Foram avaliados três 

modelos distintos, diferenciados pelo tipo de solo considerado (CC+GG: solos com 

concavidade para cima e gap-graded combinados; CC: apenas solos com concavidade para 

cima; GG: apenas solos gap-graded) e pela arquitetura da RNA (número de parâmetros de 

entrada e número de camadas ocultas).  

 

Na fase de treinamento, todos os modelos demonstraram um bom ajuste aos dados utilizados 

para o aprendizado, com valores elevados de R² e relativamente baixos de RMSE e MAPE%. 

O Modelo 3 (apenas solos GG) apresentou o melhor desempenho nesta fase (R² = 0,98, MAPE 

= 2,24%). Os Modelos 1 (CC+GG) e 2 (apenas solos CC) tiveram desempenhos semelhantes, 
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com R² de 0,94, sendo o Modelo 2 ligeiramente melhor em termos de RMSE e MAPE%. 

 

Na fase de teste, foi avaliada a capacidade de generalização dos modelos para dados não vistos, 

e percebeu-se que o Modelo 1 (CC+GG) manteve um desempenho razoável (R² = 0,85, MAPE 

= 7,43%), o que sugere uma boa capacidade de lidar com novos dados. Já os Modelos 2 (apenas 

solos CC) e 3 (apenas solos GG) apresentaram uma queda no desempenho em comparação com 

a fase de treinamento. O Modelo 2 obteve um R² de 0,78 e um MAPE de 10,84%, enquanto o 

Modelo 3 alcançou um R² de 0,74 e um MAPE de 5,15%. É importante notar que o Modelo 3 

foi testado com um número significativamente menor de amostras (apenas 15), o que pode 

influenciar as métricas de desempenho. 

 

Em termos comparativos, o Modelo 1 (treinado com ambos os tipos de solo) parece ser o mais 

robusto em termos de capacidade de generalização, pois mantém um desempenho aceitável 

tanto no treinamento quanto no teste. Os Modelos 2 e 3, embora excelentes no ajuste aos seus 

dados de treinamento específicos, mostraram dificuldades em prever a permeabilidade para 

novos dados, possivelmente devido a overfitting ou à menor quantidade de dados de teste para 

cada tipo de solo. 

 

Em conclusão, a análise de sensibilidade indica que um modelo de RNA treinado com uma 

variedade maior de tipos de solo (Modelo 1) pode ser mais promissor para prever a 

permeabilidade final do sistema solo-geotêxtil em diferentes cenários. No entanto, a otimização 

da arquitetura da RNA e a expansão dos conjuntos de dados de treinamento e teste para cada 

tipo de solo são etapas importantes para melhorar a acurácia e a confiabilidade das previsões.  

 

4.3 ANÁLISES DO MODELO RM 

O uso de regressão múltipla identificou o nível de importância de parâmetros relevantes para 

avaliar o potencial mau funcionamento do sistema solo-geotêxtil e foi possível elaborar 

equações para prever valores de limite inferior e estimativas do coeficiente de permeabilidade 

do sistema solo-geotêxtil para análises preliminares.  

 

Os resultados obtidos indicam que reduções significativas no coeficiente de permeabilidade e 

na taxa de fluxo do sistema solo-geotêxtil podem ocorrer independentemente do tipo de teste. 

Frequentemente, essas reduções são atribuídas a um comportamento hidráulico inadequado do 
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solo, e não ao entupimento do filtro geotêxtil. Essa observação é corroborada pelos resultados 

das RNAs, onde a análise de Importância de Atributos por Permutação (PFI) revelou que os 

parâmetros relacionados ao geotêxtil exerceram pouca influência no desempenho do sistema. 

 

Para o desenvolvimento das equações de regressão apresentados no estudo por RM conduzido 

por Palmeira et al. (2025), os solos foram separados em dois grupos: solos com curvas 

granulométricas côncavas para cima e solos com granulometria descontínua, uma vez que 

diferentes mecanismos de instabilidade interna seriam esperados em massas de solo contínuas 

e descontínuas. Além disso, a consideração de todos os solos juntos resultou em menor acurácia 

da regressão. Para solos com granulometria descontínua, o menor diâmetro de partícula da 

lacuna (dgap) também foi considerado para a condição dgap > d15. Com base nessas suposições, 

as equações resultantes têm as seguintes formas: 

Para solo com concavidade para cima, foi encontrada a Eq. (4.1), 

𝑘𝑠𝑦𝑠 =  𝐴0 + 𝐴1𝑘𝑠𝑦𝑠−𝑜 + 𝐴2𝑑10 + 𝐴3𝑑15 + 𝐴4𝑑30 + 𝐴5𝐶𝑢 + 𝐴6𝑖𝑠𝑦𝑠 + 𝐴7𝜎𝑣

+ 𝐴8𝑡𝐺𝑇 + 𝐴9𝐹𝑂𝑆 

Eq. (4.1) 

 

Já para os solos descontínuos foi achada a Eq. (4.2) 

𝑘𝑠𝑦𝑠 =  𝐴0 + 𝐴1𝑘𝑠𝑦𝑠−𝑜 + 𝐴2𝑑10 + 𝐴3𝑑15 + 𝐴4𝑑30 + 𝐴5𝐶𝑢 + 𝐴6𝑖𝑠𝑦𝑠 + 𝐴7𝜎𝑣

+ 𝐴8𝑡𝐺𝑇 + 𝐴9𝐹𝑂𝑆 

Eq. (4.2) 

 

Onde A0 a A9 e B0 a B9 são os coeficientes de regressão obtidos das análises para solos com 

curvas granulométricas côncavas para cima e solos com granulometria descontínua, 

respectivamente, com ksys e ksys-o em cm/s, d10, d15, d30, tGT e FOS em mm e σv em kPa. 

A comparação entre as previsões obtidas para solos com curvas granulométricas côncavas para 

cima e os resultados dos testes de filtração (149 testes) é apresentada na Figura 4.29.  
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Figura 4.29: ksys previsto versus ksys medido – Para todos os solos com concavidade para 

cima (Modificado de Palmeira et al., 2025) 

 

Percebe-se distintos padrões de variação entre os valores previstos e medidos para valores de 

ksys maiores e menores que 2 × 10⁻³ cm/s, que também correspondem a valores de ksys-o 

aproximadamente maiores e menores que 2 × 10⁻³ cm/s. Assim, os autores propuseram a adoção 

de diferentes equações de regressão para ksys-o maior e menor que 2 × 10⁻³ cm/s, obtendo o 

resultado apresentado na Figura 4.30, em que uma melhor concordância entre os valores 

previstos e medidos pode ser notada. Nesse caso, para os coeficientes Ai, obtidos para solos 

com concavidade para cima, a Eq. (4.1) se torna: 

 

Para 7,5 x10-5 cm/s < ksys-o <2 × 10⁻³ cm/s com R2= 0,87, obteve-se a: 

  

𝑘𝑠𝑦𝑠 =  −9,19𝑥10−5 + 7,58𝑥10−1𝑘𝑠𝑦𝑠−𝑜 − 9,57𝑥10−4𝑑10 + 4,86𝑥10−4𝑑15

+ 9,50𝑥10−6𝑑30 − 2,71𝑥10−7𝐶𝑢 − 3,72𝑥10−6𝑖𝑠𝑦𝑠

− 5,11𝑥10−9𝜎𝑣 + 2,73𝑥10−5𝑡𝐺𝑇 + 7,40𝑥10−5𝐹𝑂𝑆 

 

Eq. (4.3) 

 

Para ksys-o > 2 × 10⁻³ cm/s com R2 = 0,89 obteve-se a: 

𝑘𝑠𝑦𝑠 =  −5,96𝑥10−3 + 1,09𝑥10−1𝑘𝑠𝑦𝑠−𝑜 − 5,62𝑥10−2𝑑10 + 8,47𝑥10−2𝑑15

− 1,50𝑥10−2𝑑30 + 3,69𝑥10−4𝐶𝑢 + 3,31𝑥10−4𝑖𝑠𝑦𝑠

− 4,45𝑥10−6𝜎𝑣 − 2,81𝑥10−4𝑡𝐺𝑇 − 8,56𝑥10−3𝐹𝑂𝑆 

 

Eq. (4.4) 

 

Na Figura 4.30 mostra-se que em aproximadamente 90% dos casos o ksys medido ficou na faixa 
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de ksys previsto/3 a 3ksys previsto. Isso significa que em 90% dos casos as previsões pela Eq. 

(4.3) e Eq. (4.4) subestimariam ou superestimariam o coeficiente de permeabilidade do sistema 

por um fator de até 3. Em aproximadamente 98% dos casos as previsões subestimariam ou 

superestimariam as medições por um fator de até 10. Essas faixas de variação do coeficiente de 

permeabilidade podem ser consideradas bastante satisfatórias para análises preliminares. 

 

 

Figura 4.30: ksys previsto versus ksys medido – Para todos os solos com concavidade para cima 

com ksys-o < 2,00 x 10-3 cm/s (Modificado de Palmeira et al., 2025) 

 

Para solos com granulometria descontínua, as previsões de duas regressões estatísticas 

diferentes, neste caso, para ksys-o menor ou maior que 5 × 10⁻⁴ cm/s, compararam-se melhor com 

as medições, semelhante ao que foi observado para solos com concavidade para cima. Assim, 

para solos com granulometria descontínua, para os valores de Bi calculados, a Eq. (4.2) , adota 

as seguintes formas: 

 

Para 10-5 cm/s < ksys-o < 5 × 10⁻4 cm/s com R2 = 0,68, obteve-se: 

  

𝑘𝑠𝑦𝑠 =  4,92𝑥10−5 + 2,10𝑥10−1𝑘𝑠𝑦𝑠−𝑜 − 2,23𝑥10−2𝑑10 + 9,45𝑥10−3𝑑15

+ 1,01𝑥10−5𝑑𝑔𝑎𝑝 + 4,56𝑥10−7𝐶𝑢 − 4,69𝑥10−6𝑖𝑠𝑦𝑠

− 5,89𝑥10−7𝜎𝑣 + 3,95𝑥10−6𝑡𝐺𝑇 + 3,38𝑥10−4𝐹𝑂𝑆 

Eq. (4.5) 

 

Para ksys-o > 5 × 10-4 cm/s com R2= 0,82 obteve-se: 
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𝑘𝑠𝑦𝑠 =  −1,11𝑥10−2 + 1,26𝑥10−1𝑘𝑠𝑦𝑠−𝑜 + 0,0𝑑10 − 7,13𝑥10−2𝑑15 − 1,23𝑥10−2𝑑𝑔𝑎𝑝

− 2,18𝑥10−5𝐶𝑢 + 3,31𝑥10−4𝑖𝑠𝑦𝑠 + 3,05𝑥10−5𝜎𝑣 − 1,91𝑥10−3𝑡𝐺𝑇

− 4,22𝑥10−2𝐹𝑂𝑆 

Eq. (4.6) 

 

A Figura 4.31 apresenta o valores medidos e o previstos pelas equações para solos com 

granulometria descontinua, é possivel perceber uma maior dispersão dos dados comparado com 

os solos de concavidade para cima, sendo comprovado pelo um menor R2. Destaca-se que, para 

este esse tipo de solo, o número de amostras é menor que o outro tipo de solo.  

 

 

Figura 4.31: ksys previsto versus ksys medido – Para os solos descontínuos (Modificado de 

Palmeira et al., 2025) 

 

A Figura 4.31apresenta uma dispersão maior comparado com os solos com concavidade para 

cima, sendo o que é corroborado pelo menor valor de R² obtido para o primeiro tipo de solo. 

Deve-se também salientar que foram encontrados menos dados experimentais para solos com 

granulometria descontínua. Em 87% dos casos, a Eq. (4.5) e Eq. (4.6) subestimaram ou 

superestimaram o ksys medido por um fator de até 3 e, em 98% dos casos, por um fator de até 

10. 

 

As equações consideram propriedades do solo e do geotêxtil, além de condições hidráulicas e 

de confinamento, e foram desenvolvidas separadamente para diferentes tipos de solo para 

melhorar a acurácia. Os resultados mostram uma concordância razoável entre as previsões e os 
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dados experimentais, especialmente ao dividir os dados com base na permeabilidade inicial do 

sistema. Isso indica a utilidade dessas equações para análises preliminares em engenharia 

geotécnica. 
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4.4 COMPARAÇÃO DO MODELO DE RNA E O MODELO RM 

Com a finalidade de comparar o desempenho dos modelos desenvolvidos por RNA e do modelo 

obtido pela regressão linear múltipla. A Figura 4.32 apresenta um gráfico de dispersão que 

compara os valores previstos com os valores medidos do coeficiente de permeabilidade (cm/s), 

igualmente realizado no item 4.3, utilizando uma escala log-log em ambos os eixos para 

abranger a ampla variação de magnitude dos dados. 

 

 

Figura 4.32: Valores previstos pelo modelo e os valores medidos para os dois tipos de solos 

(Modelo 1) com a metodologia RNA. 

 

 Na Figura 4.32, os pontos azuis representam os valores utilizados no treinamento do modelo 

de previsão, enquanto os pontos vermelhos correspondem aos valores de teste empregados para 

avaliar a capacidade de generalização do modelo a dados não previamente utilizados. A linha 

vermelha sólida, que representa a condição de igualdade (y=x), demonstra que a maioria dos 

pontos, tanto de treinamento quanto de teste, agrupa-se em torno dela. Isso indica uma 

concordância geral razoável entre as previsões do modelo e os valores efetivamente medidos 

do coeficiente de permeabilidade. 

 

Alguns pontos se situam acima da linha, o que indica que o modelo subestimou o valor real, 

enquanto outros estão abaixo, sinalizando uma superestimação. As linhas tracejadas em azul (y 
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= 0.1x e y = 10x) e roxo (y = 0.33x e y = 3x) definem faixas de erro. A análise, consistente com 

os dados apresentados na Figura 4.32 do estudo, revela que aproximadamente 94% dos casos 

se encontram dentro da faixa delimitada pelas linhas roxas (erro de até um fator de 3). 

Adicionalmente, quase 100% dos casos se situam dentro da faixa mais ampla definida pelas 

linhas azuis (erro de até uma ordem de magnitude). 

 

A dispersão dos pontos de teste (vermelhos) é similar à dos pontos de treinamento (azuis), o 

que sugere que o modelo apresenta uma capacidade de generalização aceitável e provavelmente 

não sofre de overfitting, ou seja, não se ajustou excessivamente aos dados de treinamento em 

detrimento do desempenho em dados novos. A análise visual da escala log-log indica que o 

desempenho do modelo parece relativamente consistente em diferentes ordens de magnitude 

dos valores de permeabilidade, embora possa haver uma ligeira tendência de maior 

variabilidade nos valores mais elevados. 

 

Para o modelo 2 desenvolvido neste estudo, a Figura 4.33 mostra que, em aproximadamente 

95% dos casos, o ksys medido ficou na faixa de ksys previsto/3 a 3ksys previsto. Isso significa que, 

em 95% dos casos, as previsões pelo Modelo 2 subestimariam ou superestimariam o coeficiente 

de permeabilidade (ou taxa de fluxo) do sistema por um fator de até 3. Em aproximadamente 

99% dos casos, as previsões subestimariam ou superestimariam as medições por um fator de 

até 10. 

 

Figura 4.33– Comparação entre os valores previstos pelo modelo e os valores medidos- solos 

com concavidade para cima 
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Já com relação ao Modelo 3, a Figura 4.34 mostra que, em aproximadamente 99% dos casos, o 

ksys medido ficou na faixa de ksys previsto/3 a 3ksys previsto. Isso significa que, em 99% dos 

casos, as previsões pelo Modelo 3 subestimariam ou superestimariam o coeficiente de 

permeabilidade (ou taxa de fluxo) do sistema por um fator de até 3. Em aproximadamente 100% 

dos casos, as previsões subestimariam ou superestimariam as medições por um fator de até 10. 

 

 

Figura 4.34:Comparação entre os valores previstos pelo modelo e os valores medidos- solos 

descontínuos. 

 

O desempenho dos modelos de Redes Neurais Artificiais (RNA) foi avaliado quantitativamente 

por meio da análise da porcentagem de previsões que se encontram dentro de faixas de erro 

predefinidas em relação aos valores medidos do coeficiente de permeabilidade. Para o Modelo 

1, treinado com dados de ambos os tipos de solo (com concavidade para cima e descontínuos), 

aproximadamente 94% das previsões ficaram dentro de um fator de até 3 dos valores medidos. 

Além disso, quase 100% das previsões apresentaram um erro de até uma ordem de magnitude 

(fator de até 10). O Modelo 2, desenvolvido especificamente para solos com concavidade para 

cima, demonstrou uma ligeira melhoria, com aproximadamente 95% das previsões dentro de 

um fator de até 3 e 99% dentro de um fator de até 10 dos valores medidos. O Modelo 3, treinado 

para solos com granulometria descontínua, apresentou o melhor desempenho entre os três 

modelos, com cerca de 99% das previsões dentro de um fator de até 3 dos valores medidos e 

100% das previsões dentro de um fator de até 10. 
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Essas porcentagens indicam que todos os modelos conseguem prever o coeficiente de 

permeabilidade com uma acurácia razoável, de modo que a grande maioria das previsões se 

situa dentro de uma ordem de magnitude dos valores reais. Os modelos treinados 

especificamente para um tipo de solo (Modelos 2 e 3) tendem a apresentar uma ligeira vantagem 

em termos de acurácia para o tipo de solo para o qual foram otimizados. 

 

Assim com a finalidade de avaliar o desempenho dos modelos de regressão múltipla (RM) e de 

rede neural artificial (RNA), desenvolvidos nos itens 4.2 e no item 4.3, foi realizada uma 

comparação e apresenta-se de forma resumida na Tabela 4.22 . Esta análise se concentrou nos 

Modelos 2 e 3 para permitir uma avaliação mais detalhada e individualizada de cada tipo de 

solo. 

Tabela 4.22: Resumo da comparação entre os modelos de MR e RNA 

Modelo Faixas RM RNA 

1 

(Solos com concavidade 

para cima e gap graded) 

Entre ksysm/3 e 3ksysm - 94% 

Entre ksysm /10 e 10 ksysm - 100% 

2  

(Solos com concavidade 

para cima) 

Entre ksysm/3 e 3ksysm 90% 95% 

Entre ksysm /10 e 10 ksysm 98% 99% 

3 

 (Solos descontínuos  ou 

grap graded) 

Entre ksysm/3 e 3ksysm 87% 99% 

Entre ksysm /10 e 10 ksysm 98% 100% 

 

A Tabela 4.22 revela que os modelos de RNA tendem a prever o comportamento filtrante do 

sistema solo/geotêxtil com maior precisão. A diferença é pequena no Modelo 2, mas torna-se 

considerável no Modelo 3, onde a acurácia da RNA é 12% maior (99% contra 87%) na faixa 

de ksysm/3 a 3ksysm. 

 

É importante notar que os Modelos 2 e 3 superam a acurácia do Modelo 1, o que reforça a 

hipótese inicial de que a separação dos tipos de solo é uma estratégia eficaz para o 

desenvolvimento de modelos preditivos, tanto para RNA quanto para regressão múltipla. 

 

Em resumo, embora a metodologia de RNA tenha apresentado os melhores resultados, ambas 

as abordagens demonstram um excelente desempenho na tarefa de previsão do comportamento 

filtrante do sistema solo/ geotêxtil. 
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5 CONCLUSÕES 

 

5.1 CONCLUSÕES GERAIS 

O foco deste estudo foi avaliar a eficácia do uso da metodologia RNA para prever o desempenho 

do sistema solo/geotêxtil em contato com solos internamente instáveis. Uma arquitetura MLP foi 

escolhida para configurar os modelos de RNA, e o processo de treinamento é supervisionado, o 

que envolve um algoritmo de treinamento BP acoplado ao algoritmo de otimização BOA.  

 

Os dados de entrada para os modelos implementados foram definidos a partir de testes de 

laboratório relatados em pesquisas anteriores. Duzentos e vinte e quatro dados (224), incluindo 16 

parâmetros de entrada e os resultados da permeabilidade final do sistema solo/geotêxtil (ksys), 

foram finalmente utilizados. Uma vez que os resultados obtidos nas várias análises realizadas 

foram avaliados, é possível estabelecer as seguintes conclusões: 

• A informação estatística dos dados coletados revela uma ampla distribuição para cada 

parâmetro, o que permite uma melhor caracterização e análise para diferentes condições 

de solo, geotêxtil e condições externas. 

• Para esse estudo, a análise de correlação dos dados coletados mostrou que as características 

do solo (d10, d15 e Cu) têm a maior correlação com a permeabilidade final do sistema solo-

geotêxtil. Em contraste, condições do ensaio como tensão vertical e gradiente hidráulico 

apresentam uma correlação média. enquanto a espessura do geotêxtil e a abertura de 

filtração exibiram os menores coeficientes de correlação. É importante destacar que esses 

resultados refletem o comportamento observado neste conjunto específico de dados e não 

devem ser generalizados sem cautela. Assim, no contexto deste estudo, esta análise 

permitiu reforçar que, na maioria dos casos, a diminuição do desempenho do sistema solo-

geotêxtil não foi causada apenas pelas propriedades do geotêxtil, mas, sim, pelo 

comportamento do solo internamente instável sob as condições hidráulicas impostas; 

 

• Três modelos de RNA foram analisados, diferenciados em termos do seu número de 

entradas (9 ou 10) e do número de camadas ocultas (2 ou 3). Os modelos com mais 

parâmetros de entrada apresentaram maior acurácia com base na análise de distribuição, 

valores residuais e critérios estatísticos obtidos pela comparação entre valores previstos e 

reais. 

• Não foi alcançada uma correlação perfeita entre os dados previstos e reais provavelmente 
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devido à ausência de alguns valores nos parâmetros de entrada durante o treinamento da 

rede. Essa limitação reflete a complexidade inerente a esses sistemas, que envolvem 

múltiplas regressões não lineares e muitas variáveis explicativas, tornando inviável a 

inclusão de todas elas no modelo. Portanto, essa complexidade dificulta a modelagem 

precisa, exigindo abordagens que conciliem simplificação e representatividade dos dados;  

• O Modelo 1 de RNA, com a arquitetura 10-554-136-186-1, apresentou resultados 

satisfatórios em termos da distribuição dos valores previstos em comparação com a linha 

de tendência, um menor número de valores residuais fora da faixa aceitável (2,8% para 

treinamento e 4,4% para teste) e excelente desempenho de previsão de acordo com as 

métricas estatísticas para ambas as fases. 

• O Modelo 2 de RNA, com a arquitetura 9-890-850-209-1, também apresentou resultados 

satisfatórios com um número de valores residuais fora da faixa aceitável (4,2% para 

treinamento e 3,3% para teste) e excelente desempenho de previsão de acordo com as 

métricas estatísticas para ambas as fases; 

• Já o Modelo 3 de RNA, apresentou uma arquitetura 9-557-835-1, desenvolveu resultados 

aceitáveis com um número de valores residuais fora da faixa aceitável, sendo 5,00% para 

a fase de treinamento e de 13,33% na fase de teste e desempenho moderado de previsão 

de acordo com as métricas estatísticas para ambas as fases; 

• Pode-se concluir que o algoritmo de RNA é um método adequado para prever os valores 

de desempenho do sistema solo/geotêxtil (ksys) para os dados coletados. 

• A análise de regressão múltipla (MR) apresentou resultados preliminares promissores e as 

equações obtidas permitem quantificar e utilizar esses métodos de forma complementar 

para compreender os fatores que influenciam o comportamento do sistema solo 

internamente instável-geotêxtil. 

 

Por fim, ressalta-se que os dados matemáticos isolados não oferecem a sensibilidade necessária 

para compreender integralmente o funcionamento real do sistema. Sem a observação direta em 

campo ou em laboratório, tais dados apenas simulam relações numéricas, sem captar a 

complexidade e as nuances do comportamento físico, o que evidencia a importância fundamental 

de análises experimentais complementares. 

 

 

5.2 LIMITAÇÕES DO MODELO 
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A principal limitação do modelo reside nas propriedades dos materiais sob avaliação. 

Especificamente, o modelo se concentra unicamente na interação entre solo internamente 

instável e geotêxtil. Adicionalmente, é necessário dispor da maior quantidade de informação 

possível sobre os parâmetros de entrada, os quais devem estar dentro das faixas dos dados 

utilizados nos algoritmos de aprendizagem. 

 

5.3 SUGESTÕES PARA PESQUISAS FUTURAS 

As conclusões deste estudo fornecem algumas recomendações para pesquisas futuras sobre o 

uso de RNA e Regressão Linear Múltipla para avaliar o desempenho filtrante do sistema 

solo/geotêxtil: 

• Complementar a base de dados atual e fornecer mais amostras para treinamento e 

validação. 

• Implementar diferentes algoritmos de treinamento e/ou otimização e outras técnicas de 

Machine Learning (Aprendizado de Máquina), para comparar os resultados obtidos e 

estabelecer a metodologia mais precisa. 

• Iniciar pesquisas com outros solos e geotêxteis, a fim de estabelecer um comportamento 

geral para diferentes tipos de filtro geossintéticos. 
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