N

Universidade de Brasilia
Instituto de Ciéncias Exatas
Departamento de Estatistica

Dissertacao de Mestrado

Agregacao de riscos de mercado e de crédito:
abordagens estocastica e de séries temporais, com
copulas

por

Ligia Louzada Freitas

Brasilia, 30 de setembro de 2025



Agregacao de riscos de mercado e de crédito:
abordagens estocastica e de séries temporais, com
copulas

por

Ligia Louzada Freitas

Dissertacdo apresentada ao Departamento de
Estatistica da Universidade de Brasilia, como
requisito parcial para obten¢do do titulo de

Mestre em Estatistica.

Orientadora: Profa. Dra. Cira Etheowalda Gue-

vara Otiniano

Brasilia, 30 de setembro de 2025



Dissertacdo submetida ao Programa de Pds-Graduagdo em Estatistica do Departamento de Esta-
tistica da Universidade de Brasilia como parte dos requisitos para a obtencao do titulo de Mestre

em Estatistica.

Texto aprovado por:

Profa. Dra. Cira Etheowalda Guevara Otiniano

Orientadora, EST/UnB

Prof. Dr. Guilherme Pumi

IME/UFRGS

Prof. Dr. Herbert Kimura

FACE/UnB

Prof. Dr. Raul Yukihiro Matsushita
Suplente, EST/UnB

11



1l est impossible que I’improbable n’arrive jamais.

(Emil Julius Gumbel)



Para o meu pai.



Agradecimentos

Em primeiro lugar, expresso minha profunda gratidao a Professora Cira, pelos ensinamentos
valiosos, pela constante disponibilidade e pela confianca depositada em mim ao longo desta
jornada. Sua orientagdo competente e generosa foi essencial para a realizacdo deste trabalho.

Agradeco aos meus pais, por me ensinarem, com exemplo e dedicacdo, o valor do estudo
e da perseveranca. Sem a base s6lida que me proporcionaram, este percurso ndo teria sido
possivel.

Registro também meu sincero agradecimento ao meu companheiro, Claudio, pelo apoio e
incentivo constantes durante essa etapa. Sua presenca foi fundamental para que eu pudesse
seguir adiante com determinagdo e serenidade.

Estendo meus agradecimentos aos colegas e amigos que compartilharam comigo momen-
tos de aprendizado, troca de experiéncias e apoio mutuo ao longo da jornada. A convivéncia
académica e pessoal foi decisiva para tornar esta caminhada mais leve e enriquecedora.

O presente trabalho foi realizado com apoio da Coordenagdo de Aperfeicoamento de Pessoal de

Nivel Superior - Brasil (CAPES) - Cédigo de Financiamento 001.

Vi



Resumo

O caélculo do risco agregado, tradicionalmente mensurado por meio do Value at Risk (VaR) e
do Expected Shortfall (ES), constitui um desafio devido a complexidade das interdependéncias
entre diferentes categorias de risco. Este trabalho apresenta uma metodologia para a agregacao
de riscos de mercado e de crédito, inovando ao adotar uma perspectiva centrada no risco de cada
contraparte, uma abordagem ainda pouco explorada na literatura.

Para o risco de mercado, o modelo GARCH(1,1) foi empregado com residuos ajustados a
distribuicdo alfa-estdvel, que captura efetivamente as caudas pesadas e a assimetria dos retornos
financeiros. Paralelamente, o risco de crédito foi modelado com a probabilidade de default (PD)
derivada de uma extensdo do Modelo de Merton que incorpora saltos do Processo de Lévy no
preco dos ativos, com a série de PD subsequente ajustada pelo GARCH(1,1) com inovacdes
skew-t. Uma funcgao copula foi utilizada para modelar a estrutura de dependéncia entre as duas
marginais, € a copula t-Student revelou ser a de melhor ajuste para a maioria das empresas
analisadas.

A aplicacdo prética da metodologia foi ilustrada por meio de estudo de caso com dados da
Localiza e e outras empresas que compdem o indice Ibovespa. Os resultados confirmaram um
efeito positivo de diversificacdo em todos os cendrios, indicando que o VaR e o ES agregados
da carteira foram consistentemente inferiores a soma ingénua das medidas de risco individuais.

Palavras-chave: Risco de mercado; Risco de crédito; Agregacdo de riscos; Copulas; Gestao

quantitativa de riscos.
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Abstract

Aggregation of market and credit risks: stochastic and time series approaches, with copulas

The calculation of aggregate risk, usually measured by Value at Risk (VaR) and Expected
Shortfall (ES), poses a challenge due to the complexity of interdependencies among different
risk categories. This study presents a methodology for aggregating market and credit risks, in-
novating by adopting a counterparty-centered perspective — an approach still scarcely explored
in the literature.

For market risk, the GARCH(1,1) model was employed with residuals fitted to the alpha-
stable distribution, effectively capturing the heavy tails and asymmetry of financial returns. In
parallel, credit risk was modeled through the probability of default (PD), derived from an ex-
tension of Merton’s Model that incorporates Lévy Process jumps in asset prices, with the subse-
quent PD series fitted by a GARCH(1,1) with skew-t innovations. Copula function was applied
to model the dependence structure between both marginals distributions, and the Student-t co-
pula proved to be the best fit for most of the firms analyzed.

The practical application of the methodology was illustrated through a case study using
data from Localiza and other companies from Ibovespa Index. The results confirmed a positive
diversification effect across all scenarios, indicating that the aggregated portfolio VaR and ES
were consistently lower than the naive sum of the individual risk measures.

Keywords: Market risk; Credit risk; Risk aggregation; Copulas; Quantitative risk manage-

ment.
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Capitulo 1

Introducao

A diversificagc@o € um principio central na gestdo de risco e na teoria do portfélio, cujo objetivo é
de reduzir a exposicao ao risco por meio da alocagao estratégica de ativos. Seja X1, ..., X,, uma
sequéncia de riscos e ¢ uma medida de risco. Entdo, de acordo com (EMBRECHTS; FURRER;

KAUFMANN, 2009), o efeito da diversificagdo € expresso pela seguinte funcao:

D, =Y o(Xi) — 0 (Z)@) , (1.1)

k=1
em que se compara a soma das medidas de risco individuais com a medida de risco da soma.
Quando D, > 0, ha um efeito positivo de diversifica¢do, indicando que o risco total do portf6-
lio é inferior a soma dos riscos individuais. O cdlculo de o (>_;_, X)) para riscos dependentes
requer estimagdo da distribui¢cdo conjunta de X7, ..., X,. Uma metodologia que permite a esti-

macao dessa distribuicdo € a teoria de copulas.

Como exemplo de fungdo p, tem-se o Value at Risk (VaR), que representa a perda méxima
esperada em um horizonte de tempo dado certo nivel de confianga. Seja c o nivel de confianca

e L a perda de um ativo ou carteira, uma definicao geral dada por (JORION, 2006) é

P(L>VaR)<1-c

1



cap. 1. Introdugdo §1.0.

Conforme discutido por (HILLEBRAND; BOCKER, 2008), a diversificacdo pode ocorrer

de duas formas principais:

1. Diversificacao intra-risco: refere-se a distribui¢ao do risco dentro de um mesmo con-
junto de ativos ou instrumentos financeiros, reduzindo a vulnerabilidade a eventos adver-

sos associados a um tUnico tipo de risco; e

2. Diversificacio inter-risco: envolve a alocacdo entre diferentes categorias de risco, como
risco de mercado, crédito e operacional, permitindo uma mitigacdo mais ampla da expo-

sicdo global.

Essa distingdo € necessdria para entender como estratégias de diversificacdo podem ser apli-
cadas tanto dentro de um tipo especifico de risco quanto entre diferentes fontes de risco, influ-
enciando diretamente a robustez e a resiliéncia das carteiras financeiras.

A mensuracdo do risco total de um portfélio composto por ativos expostos a diferentes
tipos de risco deve considerar suas dependéncias. De acordo com (EMBRECHTS; FURRER;
KAUFMANN, 2009), a modelagem da dependéncia € elemento central na gestdo quantitativa
do risco. Na maioria dos casos, assumir independéncia entre os instrumentos que compdem o
portfélio é simplista e ndo realista.

O desenvolvimento de metodologias mais sofisticadas para agregacao de riscos tem sido
impulsionado por crises financeiras, avangos em modelagem estatistica e aperfeicoamento dos
requerimentos regulatérios impostos por 6érgaos como o Comité de Basileia. A busca por abor-
dagens mais precisas e coerentes reflete a necessidade de capturar as interdependéncias entre
diferentes fatores de risco, evitando subestimacdes que possam comprometer a solvéncia das
institui¢des ou superestimagdes que ensejam na alocagdo ineficiente do capital.

Em uma carteira diversificada, € comum que as instituicdes possuam exposicoes em uma
mesma contraparte por meio de diferentes ativos como, por exemplo, acdes de determinada

empresa e debéntures emitidas pela mesma empresa.

2



§1.0.

Cada titulo possui suas caracteristicas intrinsecas e € monitorado conforme os riscos aos
quais estdo sujeitos. As agdes estdo sujeitas ao risco de mercado, uma vez que sdo sensiveis
a variacoes de precos, taxas de juros e indices. As debéntures, por sua vez, estdo sujeitas ao
risco de crédito, uma vez que o risco vinculado ao ativo € o de inadimplemento da contraparte.
Por esse motivo, este trabalho explora as caracteristica das distribuicdes marginais (de risco de
mercado e de crédito), de forma que as modelagens reflitam os fatos estilizados de cada série.

Uma mesma contraparte, portanto, pode agregar riscos diferentes a carteira, € a mensuracao
e acompanhamento desse risco agregado € importante para a visao consolidada do impacto de
cada contraparte na carteira sob a 6tica do risco. A falta dessa vis@o pode levar a interpretacdes
equivocadas quanto ao risco de cada contraparte, se considerar apenas a exposicao em termos
de valores financeiros. Assim, a mensuragdo do risco agregado traduz de forma mais precisa
a vulnerabilidade produzida por cada contraparte, além de mitigar, de forma mais eficiente,
concentragdes excessivas que possam comprometer a solvéncia da institui¢ao.

Alguns estudos de agregacgao inter-risco que abordam mercado e crédito se devem a (RO-
SENBERG; SCHUERMANN, 2006), que agregam, além de risco de crédito e mercado, o risco
operacional por meio das cépulas normal e t. Para os riscos de crédito e de mercado, estimam-se
os retornos em fun¢do de fatores de risco por meio de dados em painel e GARCH. Os retornos
utilizados como varidveis resposta para risco de mercado sdo as receitas relativas dos ativos
com negociacdo em relagdo ao saldo. Para risco de crédito, utilizou-se como proxy do retorno
a receita liquida dos titulos de crédito menos eventuais provisdes (como proxy de perdas in-
corridas). (HILLEBRAND; B6CKER, 2008) combinam risco de crédito (Modelo de Merton
Fatorial) com risco de mercado (Modelo Fatorial Linear) e investigam a dependéncia por meio
de cépula gaussiana. Os autores utilizaram a distribuicdo de perdas como distribuicdo mar-
ginal para o risco de crédito e o histérico do indicador Preco/Lucro em funcdo de varidveis
macroecondmicas para o risco de mercado. (ALBUQUERQUE, 2010) utiliza dados de risco
de mercado, crédito e operacional para obter o VaR agregado de uma instituicdo financeira. O

risco de mercado € representado por perdas e ganhos didrios em transacdes de titulos, acdes, etc.
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O risco de crédito € representado por perdas relacionadas as operagdes que houveram default.
O autor utiliza a distribuicdo t para o risco de mercado e a lognormal para os demais, descon-
siderando a autocorrelagdo dos dados. Posteriormente, o autor utiliza cdpula hierdrquica para
agregar os trés tipos de risco. (LIANG et al., 2013) ajustam um modelo de cépula condicional
aos fatores comuns para a integracao do risco de crédito e de mercado. Ambas as distribui¢des
marginais utilizadas foram de demonstracdes financeiras de institui¢des financeiras. (LI et al.,
2015) agregam os riscos de crédito, mercado e operacional para cdlculo do VaR do portfélio.
Ao desconsiderar a autocorrelacao dos dados em cada marginal, os autores utilizam as distribui-
coes de perda como sendo a beta, normal e log-normal para cada tipo de risco, respectivamente.
Algumas copulas sdo ajustadas para cédlculo do VaR e para a mensuragdo do efeito da diversifi-
cacdo. (MARRI; MOUTANABBIR, 2022) propuseram, para o cdlculo do VaR e ES agregado
de n riscos quaisquer, a copula Clayton com marginais Pareto e a copula de Bernstein n-variada
com marginais Gamma.

Ante o exposto, para uma carteira exposta a risco de mercado e risco de crédito, é possivel
resumir o cdlculo do risco agregado da seguinte forma: a primeira etapa € definir as varidveis que
representardo cada risco; a segunda etapa € modelar cada varidvel para obter sua distribui¢ao
marginal; a terceira etapa € ajustar a cOpula apropriada as distribui¢des; e a quarta etapa €
calcular a medida de risco.

(LT et al., 2015) relata a dificuldade na obtenc¢do de dados para a modelagem dos riscos.
Assim, comumente os autores utilizam proxies com varidveis disponiveis para representar o
risco de mercado e de crédito da melhor forma possivel.

ApOs a defini¢do das varidveis, para ambas as distribuigdes marginais, os autores geralmente
utilizam modelos fatoriais, modelos GARCH e distribui¢des que desconsideram a autocorrela-
¢ao da série. Para o risco de crédito, os artigos consideram, entre outros modelos, o Modelo de
Merton para o célculo da PD.

Estudos posteriores desenvolveram teorias que visam superar algumas desvantagens no uso

do Modelo de Merton. O Modelo de Black-Cox de Primeira Passagem (BLACK; COX, 1976)

4



§1.0.

€ pioneiro nessa categoria, ao considerar que o default ocorre no primeiro evento de ultrapassa-
gem do limite, e ndo apenas no vencimento. (FAN; SUNDARESAN, 2000) desenvolveram um
modelo que incorpora o papel dos credores e da renegociacao de dividas na dindmica do default.
Os autores utilizam teoria dos jogos para modelar as interacdes estratégicas entre acionistas e
credores, permitindo a barganha sobre a reestruturagdo da divida e introduzindo um ponto de
gatilho enddgeno para renegociacdo. Além disso, o modelo diferencia default estratégico e
default por liquidez, mostrando como cldusulas contratuais, como restricdes ao pagamento de
dividendos, influenciam a capacidade da empresa de evitar a faléncia. (ZHOU, 2001) incorpo-
rou processos de salto a dinamica do precgo dos ativos. O estudo de (BHARATH; SHUMWAY,
2008) conclui, por meio de andlise empirica, que a adi¢do de varidveis independentes adicionais
melhora a performance de previsao do default. Para isso, os autores utilizam modelos de riscos
proporcionais de Cox em que a varidvel dependente € o tempo até o default.

No contexto de agregacdo de riscos, a metodologia de cépulas é amplamente utilizada, e os
autores comumente testam alguns ajustes. Por fim, as medidas VaR e ES sao utilizadas para o
calculo de risco agregado.

Este trabalho tem como objetivo revisar detalhadamente e aplicar uma metodologia para a
agregacao dos riscos de mercado e de crédito. A abordagem adotada considera a perspectiva
do risco associado a cada contraparte que contribui com ambos 0s riscos em um portfélio —
visdo ainda pouco explorada na literatura. Ao estender essa metodologia para uma carteira
diversificada, serd possivel quantificar a contribuicdo especifica de cada contraparte para o risco
total.

De maneira marginal, no caso do risco de mercado, quando os dados sdo considerados
independentes e identicamente distribuidos (i.i.d.), os retornos apresentam caudas pesadas e sao
bem ajustados pela familia de distribui¢des alfa-estaveis. No entanto, na auséncia da hip6tese de
1.1.d., uma das formas de se ajustar os retornos € por meio de modelos de séries temporais, como
0 GARCH com inovagdes alfa-estdveis. Para a outra componente marginal, correspondente ao

risco de crédito, a probabilidade de default serd determinada com base no modelo estrutural de
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Merton e modelada pelo GARCH com inovagdes t-Student assimétrica (skew-t). Além disso,
serd verificada a melhor copula que se ajusta aos dados e, posteriormente, serdo calculados o
VaR e o ES.

O trabalho estd organizado da seguinte forma: os capitulos 2 a 6 apresentam revisao da
teoria base. O Capitulo 2 conceitua medidas de risco, define medidas coerentes de risco (Se¢ao
2.1) e exemplifica com o VaR (Se¢do 2.2) e o ES (Sec¢do 2.3), além de destacar a importancia
do célculo de medida para risco agregado (Secao 2.4).

O Capitulo 3 apresenta, de forma sucinta, a teoria das distribui¢des alfa-estaveis. O Capitulo
4 conceitua a teoria de copulas, partindo da defini¢do de fungdes de distribuicao (Secao 4.1) para
a defini¢do de cépula (Secdo 4.2), e as secoes 4.3, 4.4 e 4.5 apresentam as categoria de cOpulas
elipticas, arquimedianas e de valores extremos, respectivamente.

Os capitulos 5 e 6 conceituam aspectos sobre a gestdo quantitativa de riscos. No Capitulo 5,
a Secdo 5.1 trata da definicdo de risco de mercado e a Se¢do 5.2 introduz a teoria sobre GARCH.
No Capitulo 6, a Se¢ao 6.1 trata da definic@o de risco de crédito, a Secdo 6.2 abarca a probabi-
lidade de default calculada pelo Modelo de Merton, associado ao Modelo de Black & Scholes
e, por sua vez, a0 Movimento Browniano Geométrico; a Secdo 6.3 aborda a probabilidade de
default do Modelo de Merton com a adicao de saltos no processo de preco do ativo, definidos
pelo Processo de Lévy.

O Capitulo 7 apresenta o processo de analise na Se¢do 7.1 e o método de célculo da medida
de risco agregado, proposta por (LU; LAI; LIANG, 2014), que se refere a algoritmo baseado
em projecdo das marginais GARCH (Secdo 7.2).

O Capitulo 8 demonstra aplicagdo da teoria exposta por meio de um estudo de caso com a

contraparte Localiza S.A., entre outras.




Capitulo 2

Medidas de Risco

De forma intuitiva, medidas de risco s@o ferramentas usadas para quantificar o risco, sendo ne-
cessdrias para qualquer estratégia de protecao. (ARTZNER et al., 1999) propdem axiomas que
caracterizam medida coerente de risco, importantes para que a medida seja matematicamente

bem comportada, evitando contradi¢des ou resultados inconsistentes.

De acordo com (ROSENBERG; SCHUERMANN, 2006), risco é o potencial desvio de
resultados esperados, particularmente desvios adversos. Por trds de qualquer projecdo de fluxo
de caixa, lucros esperados ou expectativa de variacao no valor de ativos, ha uma distribuicao de

probabilidade associada aos potenciais resultados.

De acordo com os autores, a magnitude relativa do risco pode ser definida pela medida
do spread ou dispersdo, como o desvio padrdo ou variancia. Contudo, a variancia ndo €, ne-
cessariamente, suficiente para captar o risco, uma vez que duas distribui¢des com formatos
diferentes podem ter a mesma variancia. Assim, as medidas como assimetria e curtose podem
ser analisadas em paralelo. Outra abordagem citada pelos autores € a avaliacdo dos percentis

das distribui¢des, o que inclui a anédlise de medidas como o VaR e o ES.
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2.1 Medidas Coerentes de Risco

(ARTZNER et al., 1999) propdem quatro axiomas das medidas coerentes de risco para garantir

que uma medida seja matematicamente consistente e adequada para a gestao de riscos.

Axioma 2.1.1. Subaditividade. Para duas carteiras X e Y, a medida de risco p deve satisfazer:

p(X +Y) < p(X) + p(Y)

Este axioma reflete a ideia de que a combinacdo de duas posi¢cdes nao deve criar um risco
maior que a soma dos riscos individuais. Este conceito é coerente com a medida do efeito da

diversificacdo, proposto na Equacgdo (1.1).

Axioma 2.1.2. Homogeneidade Positiva. Para uma posicdo X e um escalar A > 0, a medida

de risco p deve satisfazer:

p(AX) = Ap(X)

Este axioma implica que o risco de uma posicao escalada por um fator positivo A é propor-
cional ao risco da posi¢do original, o que garante que a medida de risco seja consistente em

relac@o ao tamanho da posicao.

Axioma 2.1.3. Monotonicidade. Para duas posi¢des X e Y, se X tem sempre um valor futuro

maior ou igual a Y em todos os cendrios possiveis, entao:

p(Y) = p(X)

Este axioma estabelece que, se uma posi¢do X é sempre melhor (ou igual) a uma posicao Y
em termos de valor futuro, entdo o risco de X deve ser menor ou igual ao risco de Y. Ou seja,

uma posicao com resultados sempre melhores ndo devem ser considerada mais arriscada.

Axioma 2.1.4. Invaridncia a Translacdo. Para uma posi¢ao X e uma quantia certa « investida

8



§2.3. Value at Risk - VaR

em um ativo livre de risco, a medida de risco p deve satisfazer:

p(X +a-r)=pX)-a

em que 7 é o retorno do ativo livre de risco. Este axioma reflete a ideia de que adicionar uma
quantia certa o a uma posi¢ao reduz o risco pela mesma quantia. E importante para garantir que

a medida de risco considere o efeito de adicionar ativos seguros a uma carteira.

2.2 Value at Risk - VaR

(JORION, 2006) define VaR como a pior perda em um horizonte de tempo dado um nivel de
confianca. A medida descreve o quantil « da distribui¢do de perdas projetadas para o horizonte

de tempo. Formalmente, (ARTZNER et al., 1999) definem:

VaR,(X) = —inf{z|P(X < z) > a} (2.1)

Apesar de amplamente utilizada, a medida possui duas principais desvantagens. A primeira
¢ a falta de mensuracdo do valor da perda apds o limiar dado pelo quantil. O VaR informa
apenas a perda maxima no nivel de confianca escolhido, mas nao possui informagao sobre o
tamanho das perdas além desse ponto. Isso pode levar a uma subestimacao do risco em cendrios
extremos.

A segunda desvantagem é que o VaR nao obedece ao axioma 2.1.1 de subaditividade e, por-
tanto, ndo € uma medida coerente de risco. Isso significa que o VaR de uma carteira combinada

pode ser maior que a soma dos VaRs individuais.

2.3 Expected Shortfall - ES

O Expected Shortfall (ES), é proposto pelos autores como alternativa ao VaR. O ES mede a

perda média esperada nos piores cendrios, além do nivel de confianga do VaR.
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ESu(X) = —E[X|X < ~VaRa(X)] 2.2)

O ES satisfaz todos os quatro axiomas das medidas de risco coerentes, 0 que o torna uma

medida mais conservadora e adequada para capturar riscos extremos.

2.4 Medidas de Risco Agregado

Em carteiras diversificadas, os diferentes tipos de risco ndo agem de forma isolada, mas in-
teragem de maneiras complexas. Nesse sentido, as medidas de risco podem ser calculadas
considerando a diversificagdo inter-risco. Sem essa medida, ha o risco de sub ou superestimar
o risco total.

Assim como em (MARRI; MOUTANABBIR, 2022), seja X1, -, X,, componentes que
denotam as perdas oriundas de diferentes tipos de risco, entdo X; + --- + X,, representa a
perda agregada. A medida de risco agregado € calculada conforme abordado na Equacao (1.1):
0 (Xk=1 Xn)-

O Capitulo 8 apresentard a modelagem dos riscos de crédito e de mercado para a empresa
Localiza, entre outras, e o calculo das medidas de risco VaR e ES considerando a estrutura de
dependéncia entre os riscos, que serd modelada por meio de cépulas.

Os estudos em risco de mercado usualmente lidam com o comportamento de retorno dos
ativos. (MANDELBROT, 1963) demonstra que as flutuagdes especulativas de pre¢os ndo se-
guem distribuicdes gaussianas, mas apresentam caudas longas compativeis com distribui¢des
alfa-estaveis. O autor argumenta que a suposi¢ao de normalidade nos modelos financeiros clas-
sicos falha ao descrever eventos extremos. Sua abordagem baseada em distribui¢Oes estaveis

levou a introducdo de modelos mais realistas para o comportamento de ativos financeiros.
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Capitulo 3

Distribuicoes Alfa-Estaveis

Enquanto a distribui¢do normal se impde na modelagem de erros e flutuagoes sob certas con-
di¢des, (LEVY, 1924) mostrou que existem outras distribuicdes que também sdo estdveis sob
aditivacdo, mas que possuem caudas mais pesadas. Em sua abordagem, a estabilidade de uma
distribui¢do significa que a distribuicdo da soma de um grande nimero de varidveis i.i.d. serd

da mesma forma funcional, exceto por uma escala e um deslocamento.

Distribuicdes estdveis univariadas sdo caracterizadas por quatro parametros: «: indice de
estabilidade ou expoente caracteristico; o: parametro de escala; 3: parametro de simetria; e j:

parametro de locacao.

A Figura 3.1 exemplifica o impacto dos parametros nas curvas de densidade.
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avariavel (B=0,0=1,p=0) B variavel (a=1,0=1,p=0)
0.6 0.3
0.4 A 02 / \
02 o \
0.0 ——// \\ 0.0 —

5.0 25 0.0 25 5.0 -5.0 25 0.0 25 5.0
m— =05 = q=1 a=2 m— 3=() == 3=05 B=1
ovariavel (a=1,=0, u=0) M variavel (a=1,p=0,0=1)
0.3 0.3
0.2 0.2
0.1 - 0.1
/ \l
0.0 0.0
5.0 25 0.0 25 5.0 -5.0 25 0.0 25 5.0
— g=1 == g=2 0=3 = {=-1 == u=0 =1

Figura 3.1: Densidade alfa-estdvel

Se o < 2, a cauda da distribuicdo decai em uma fun¢@o poténcia, o que implica em uma
distribui¢do de cauda pesada. Quando o = 2, a distribui¢do estdvel € a normal. o € proporcional
ao desvio padrio, 5 pode ser considerado zero no caso de distribuicdes simétricas e p é a média.

(SAMORODNITSKY; TAQQU, 1994) definem distribuicdes estdveis de formas diferentes.
A primeira se refere ao contexto do Teorema Central do Limite, no sentido de que distribuicdes
estaveis se aproximam da distribuicao das somas de varidveis aleatdrias i.i.d. normalizadas. A

segunda especifica a fungdo caracteristica de uma varidvel aleatdria estavel.

Definicao 3.0.1. Uma varidvel aleatéria X possui distribuic@o estdvel se esta possui dominio
de atracdo, isto é, se existe uma sequéncia de varidveis aleatdrias Y7, Ys, ... 1.1.d. e sequéncias
de nimeros positivos {b, } e nimeros reais {a, } tais que

Sn_a'n d
— = X.
br,

As varidveis Y; pertencem ao dominio de atracdo da normal X (X € DA(«)) quando

b, = n'/*. Em geral, b, = n'/*h(n) em que h(z), 2z > 0 é uma fungio lentamente variante no
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§3.0.

infinito, ou seja, lim,_, o, h(uz)/h(xz) = 1 para todo v > 0 (FELLER, 1971), XVIL5.

Teorema 3.0.1. Teorema Central do Limite Generalizado, (EMBRECHTS; KLiiPPELBERG:;
MIKOSCH, 1997). Suponha que F' € DA(«) para algum « € (0, 2].
Se F(Y?) < oo, entdo a = 2.
S, —nE(Y)) a

— X ~ N(0,1).
n.wvar(Yy)

Se E(X?) = oo ou se a < 2, entdo

Sp—an d
nl/o‘h(n) SO[(O-7/87/’I’>7

em que h(n) é uma funcdo lentamente variante no infinito.

Definicao 3.0.2. Uma varidvel aleatéria X possui distribuicdo estdvel se houver 0 < o < 2,

o >0,—1 < < 1e preal tal que sua funcio caracteristica é dada por:

‘ expy—o®|0|*(1 — i[(signf)tan™®) +iuf}, sea #1
ey = | oL Bl = iBGigntyans) + int) o

exp{—ol6|(1 + i52(signd) In || + ipb}, sea =1
Em que pese a funcdo caracteristica definida na Equacdo (3.1), a densidade de probabilidade
de uma distribuicao alfa-estavel ndo possui, em geral, expressdo analitica fechada. Isso torna
a sua manipulacdo e andlise mais complexas do que as distribui¢des usuais. Assim, (NOLAN,
1997) propde método numérico para determinar a densidade de probabilidade.
Para o cédlculo das medida de risco de mercado e de crédito agregados, € necessério o co-
nhecimento da distribuicdo conjunta das séries. Nesse sentido, a distribui¢do serd calculada
baseada no método de cdpulas, considerando o melhor ajuste em termos de concentragao dos

dados e de dependéncia caudal.
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Capitulo 4

Copulas

4.1 Funcao de Distribuicao

No contexto unidimensional, (JAMES, 2023) define funcdo de distribui¢do da seguinte forma:

Definicao 4.1.1. A func¢ado de distribui¢do da varidvel aleatéria X, representada por F'x ou

simplesmente por F’, é definida por

Ainda, se X € uma varidvel aleatdria, sua funcdo de distribuicdo /' possui as seguintes

propriedades:
Propriedade 4.1.1.
l.  <y= F(z) < F(y), i.e., F' é ndo decrescente;
2. Se z,, | y, entdo F(x) | F(y),i.e., F' é continua a direita;

3. Se x,, | —oo, entdo F(x,) | 0. Se x,, T +00, entdo F(z,) T 1. (Logo, pode-se escrever

F(—00) =0, F(4+00) = 1.)
No contexto n-dimensional, o autor define fun¢ao de distribui¢ao da seguinte forma:
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§4.1. Fungdo de Distribuicdo

Definicao 4.1.2. A funcdo de distribuicdo de ' = Fx = F, . x, de um vetor aleatério X =

.....

(X1, ..., X,,) é assim definida:

F(x) = F(zy1,...,x,) = P(X1 < x1,....X,, < x,), Y(z1,...,2,) ER"

Da mesma forma, a fun¢do de distribui¢do do vetor aleatério, também chamada de funcao de

distribui¢do conjunta das varidveis aleatérias X1, ..., X,,, obedecem as seguintes propriedades:
Propriedade 4.1.2.

1. F(xy,...,x,) é ndo decrescente em cada uma das variaveis;

2. F(zy,...,x,) é continua a direita em cada uma das varidveis;

3. Para todo i,

lim F(zy,...,z,) =0.

T;—>—00

Também,

lim  F(zy,..,z,) = 1;

Vi,z;—+00

4. Al,h .. -An,lnF(xly ,:L'n) >0 VI, = (ak,bk],ak < bk7k3 =1,..,n.

A propriedade 4, necesséria quando n > 2, é a formulagdo da propriedade P(a; < X; <
by, ...,an, < X, <b,) > 0erepresenta o volume da fun¢do em termos do operador de diferenca

A. Paran = 2, por exemplo, a propriedade pode ser representada da seguinte forma:

Vr(la,b]) = A1 Do, F(2,y)
= Al,h (A2,12F($a y))

= F(bl, bg) — F(bl,ag) — [F(al,bg) — F(al,ag)] Z 0
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cap. 4. Copulas §4.2. Definicdo

Diz-se, portanto, que uma funcdo que satisfaz as quatro propriedades listadas € uma fun-
cdo de distribuicdo de um vetor aleatério, isto €, as quatro propriedades sdo suficientes para
caracterizar funcdes de distribuicao.

De acordo com (EMBRECHTS; MCNEIL; STRAUMANN, 2002), a dependéncia entre as
varidveis aleatérias X7, ..., X,, € completamente descrita por sua funcao de distribui¢do conjunta
F(zy,...,xy).

A ideia da separagdo de F' em partes que descrevem a estrutura de dependéncia e em partes
que descrevem o comportamento das distribui¢des marginais originou o conceito de cépulas,

introduzido por (SKLAR, 1959).

4.2 Definicao

Conforme (JOE, 1997), c6pula € uma funcao de distribui¢do multivariada cujas marginais uni-
variadas pertencem a distribui¢ao uniforme U(0, 1). Assim, como a cépula C' é uma fungdo de
distribui¢ao de um vetor aleatério, obedecem as propriedades 4.1.2.
Para uma distribui¢do n-variada F' € F(F1, ..., F,), com distribui¢cdes marginais F;, a c6-
pula associada a F' é a fungéo de distribui¢do C' : [0, 1] — [0, 1] que satisfaz:
F(zy,....,x,) = C(Fi(x1), ..., Fu(z,)), xeR" 4.1)

(MCNEIL; FREY; EMBRECHTS, 2015) definem c6pulas como:

Definicdo 4.2.1. Uma cépula n-dimensional é uma fung¢io de distribui¢do em [0, 1]” com dis-

tribui¢des marginais uniformes.
De acordo com os autores, a copula obedece as seguintes propriedades:
1. C(uy,...,u,) = 0se u; = 0 para qualquer i;

2. C(1,...,1,u;,1,...,1) = u; paratodo i € {1,...,n}, u; € [0,1];
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3. Para todo (ay, ..., a,), (b1, ...,b,) € [0,1]" com a; < b;, tem-se:

2 2
Z e Z(_l)i1+---+inc<u1il, i) > 0,

=1 ip=1
em que u;; = a; e u;jo = bj paratodo j € {1,...,n}.

A segunda propriedade corresponde a condi¢do de distribuicao uniforme das marginais. As
trés propriedades caracterizam a copula, ou seja, se a fungdo C' as obedece, entdo C' € cépula.
Como cépulas sdo fungdes de distribuicdo (em [0, 1]™), a cépula C' induz uma medida de

probabilidade em [0, 1]™ dada por

Ve ([0, 1] X -+ % [0,1n]) = C, .oy t0)-

De acordo com (EMBRECHTS; HGING; JURI, 2003), a Equagdo (4.1) diz que a c6pula
C separa os comportamentos das marginais dadas por £, ..., F,, da dependéncia contida na
funcdo de distribuicao F'. A motivagdo para denominar a cépula como estrutura de dependéncia

é resultante do Teorema de Sklar, principal resultado no estudo das cépulas.

Teorema 4.2.1. Teorema de Sklar. Seja F uma funcdo de distribui¢do n-dimensional com

marginais 1, ..., F,. Entdo existe uma n-cépula C' tal que para todo = em R",
F(z1,....,x,) = C(Fi(x1), ..., Fy(xy)). 4.2)

Se I, ..., F, s@o todas continuas, entdo C' € tnica; caso contrario, C' é unicamente determi-
nada em RanF} X ... X RankF;,. Por outro lado, se C' é uma n-cépula e Fi, ..., F}, sdo fungdes
de distribuicdo, entdo a funcdo F € uma funcao de distribuicdo n-dimensional com marginais
Fi, ... F,.

Pelo Teorema de Sklar, portanto, verifica-se que, para funcdes de distribui¢do multivariadas

continuas, as marginais univariadas e a estrutura de dependéncia podem ser separadas, esta
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representada pela cépula.

Corolario 4.2.1. Seja F' uma funcdo de distribuicdo continua n-dimensional com distribui¢des
marginais continuas Fi, ..., F,, e copula C' (em que C satisfaz a Equagdo (4.2)). Entdo para

qualquer u em [0, 1]",

Ha diversas familias de copulas que podem ser utilizadas para modelar a dependéncia entre
varidveis aleatdrias, cada uma com caracteristicas distintas que as tornam mais adequadas a
diferentes contextos.

As copulas elipticas, como a cOpula gaussiana e a cpula t de Student, derivam de distribui-
¢oes elipticas e sdo utilizadas por sua simplicidade. No entanto, apresentam limitacdes, como a
falta de forma fechada e a impossibilidade de modelagem para fortes dependéncias entre gran-
des perdas ou grandes ganhos (valores extremos).

Ha outra familia de cépulas - as copulas arquimedianas, como as cépulas de Clayton, Gum-
bel e Frank, que sio construidas a partir de funcdes geradoras e se destacam por sua flexibilidade
e por permitirem modelar diferentes tipos de dependéncia assimétrica.

As copulas de valores extremos, por sua vez, sdo capazes de modelar adequadamente a

dependéncia em situacdes extremas, especialmente em contextos de eventos raros.

4.3 Copulas Elipticas

Distribui¢oes elipticas sdo extensdes da distribui¢do normal multivariada N, (i, X), ou seja,
com média p e matriz de covariancia >.. (EMBRECHTS; LINDSKOG; MCNEIL, 2003) defi-

nem a classe de cépulas elipticas da seguinte forma:

Definicao 4.3.1. Se X ¢ um vetor aleatério n-dimensional e se, para algum p € R"™ e para

alguma matriz X, n X n, simétrica, definida e ndo negativa, a fungio caracteristica @x_,(t) de
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X — € uma fungdo quadratica da forma t” t, px_,(t) = ¢(t' St), entdo diz-se que X possui

distribuicdo eliptica com pardmetros p, X e ¢: X ~ E, (1, 2, ¢).

Distribuicdes elipticas sdo unicamente determinadas por i, > e ¢. Por outro lado, as copulas
oriunda de vetor aleatdrio com distribuicdo eliptica ndo-degenerada € unicamente determinada
por R e ¢.

A copula referente a distribuicdo normal n-variada com matriz de correlagdo R (R;; =

50/ VEET)) €

CRe () = OR(D7 (), ... @7 (),

em que ®% denota a fungdo de distribui¢do conjunta da distribui¢do normal padrido n-variada
com matriz de correlagdo linear R, e @' denota a inversa da fungiio de distribui¢io normal
padrdo univariada.

No caso bivariado, a expressao da copula pode ser escrita como

o) reTi(v) 1 s2 — 2Ryyst + t2
cGa - - 12 ds dt
7w, 0) /oo /oo on(1— L)1 eXp( 2w )T

em que R, € o coeficiente de correlagdo linear correspondente a distribui¢do bivariada.
Outra cépula da classe eliptica frequentemente utilizada € a cépula t. Se X possui represen-

tacdo estocdstica dada por

XL,y Y
s

emque u € R, S ~ x%2 e Z ~ N,(0,%) sdo independentes, entdo X possui distribui¢do ¢,

4.3)

n-variada com média p (para v > 1) e matriz de covariancia -=5>. (para v > 2). Se v < 2,
entdo Cov(X) ndo é definida. Nesse caso, ¥ € interpretado como o pardmetro de forma da

distribui¢do de X.
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A copula de X, dada na Equacdo (4.3), € representada por

Cyp() =1t gt (ur), .. t, " (un)),

em que Ry = %i;/v/X2j7, parad,j € {1,...,n}, et ; denota a fungdo de distribuicdo de
VrY/V/S, emque S ~ x2eY ~ N, (0, R) sdo independentes. t, denota as marginais de th ro
ou seja, a fungdo de distribuicdo de /vY;/ VS.

No caso bivariado, a expressao da cpula pode ser escrita como

t;l(u) t;l(v) 1 2 _ 2R t t2 —(v+2)/2
Cr(u,v) = / / > 142 1252 i ds dt,
—00 oo 2m(1— Ru)l/2 v(1 — Riy)

em que 715 € o coeficiente de correlacdo linear correspondente a distribui¢do bivariada ¢, se

v > 2.

4.4 Copulas Arquimedianas

A classe das cOpulas arquimedianas, além de possuir forma fechada, possui uma variedade de
estrutura de dependéncia, o que permite maior flexibilidade em adequa-la aos dados. Diferente-
mente das cOpulas elipticas, as arquimedianas ndo sdo derivadas de distribui¢des multivariadas.

(NELSEN, 2006) define a classe de copulas arquimedianas inicialmente pelo conceito de

func¢do pseudo-inversa de ¢.

Definicdo 4.4.1. Seja ¢ uma fungdo continua e estritamente decrescente de I para [0, co] tal que
©(1) = 0. A pseudo-inversa de ¢ é a fungdo p!~!, com Dom ¢!~ = [0, 00] e Ran pl=1 =1,
dada por

-1

e (1), 0<t<e(0),
pU(t) =

0, 0(0) <t < o0.
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¢~ ¢ continua e ndo crescente em [0, oc], e estritamente decrescente em [0, p(0)]. Além

disso, o= (p(u)) =uem I e

Ainda, se ¢(0) = oo, entdo ol = o1,

Teorema 4.4.1. Seja p uma fungdo continua e estritamente decrescente de I para [0, oo] tal que
©(1) = 0, e seja pl~!! a pseudo-inversa de ¢ definido em 4.4.1. Seja C' a fungio de I” para I
dada por

Clu,v) = o (p(u) + ¢ (v)).

Entdo C € copula se e somente se ¢ € convexa. A prova pode ser encontrada em (NELSEN,
20006).

Copulas da forma descrita no teorema 4.4.1 sdo chamadas de copulas arquimedianas, com
a fungdo ¢ sendo a geradora da cépula. Se ¢(0) = oo, diz-se que o € um gerador estrito. Nesse
caso, ol = ot e O(u,v) = o~ (p(u) + ¢(v)) é dito ser uma cépula arquimediana estrita.

A tabela 4.1 apresenta as principais cpulas arquimedianas.

Tabela 4.1: Principais cOpulas arquimedianas.

Cépula 0o(t) C(u,v) Dominio de 6
Clayton 1(t=0 — 1) [max(u= + v~ —1,0)] "’ [—1,400) \ {0}
Frank | —In(55) b (14 £l D) (00, +00) \ {0}
Gumbel (—1Int)? exp(—[(—Inu)? + (= Inwv)?]/%) 1, 4+00)
Joe | —In[1—=(1—=0)°] |1=[1=w)l+1—0v)"—(1—u0l—uv)0]" [1, +00)
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4.5 Copulas de Valores Extremos

No contexto univariado do estudo de valores extremos, a Teoria dos Valores Extremos define
a distribuicdo dos mdximos parciais de uma sequéncia M,, = maz(Xy, ..., X,,) de varidveis

aleatodrias, ou seja, valores maximos das n primeiras observacgoes.

Enquanto o Teorema Central do Limite foca na convergéncia da soma de varidveis aleato-

rias, (FISHER; TIPPETT, 1928) desenvolveram versao para os maximos.

Teorema 4.5.1. Fisher-Tippet. Seja X1, ..., X,, uma sequéncia de varidveis aleatorias i.i.d. Se

existem as constantes a,, > 0 e b,, € R, e alguma distribuicdo ndo degenerada G, tal que

M, —b
(—" ”>$G,
ap

entdo G pertence a uma das trés distribuicdes de valores extremos:

Fréchet: @,(z) = a>0

Weibull Negativa: VU, () = 7 B a>0

Gumbel: A(x) = exp(— eXp(—x — M)),

A Figura 4.1 ilustra as densidades das distribuicoes.
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0.4
0.3
0.2
0.1
0.0
-2 -1 0 1 2
Gumbel (§ =0) === Fréchet (§=0.5) === Weibull (§ =-0.5)

Figura 4.1: Densidades das distribuicdes de valores extremos

(JENKINSON, 1955) consolidou as trés distribui¢des extremais em uma, denominada Ge-
neralized Extreme Value Distribution (GEV) a depender do pardmetro £ = 1/«. Portanto,

trata-se de uma familia de distribuigdes.

ey

exp[—(1+ E(52)]F, €40

explexp(— %)), €=0,

Ge(x) =

em que 1 + &x > 0. Entdo:

E=a!'>0« &, (Frechet);

£=—-a'<0s U, (Weibull Negativa);

§E=0+ A (Gumbel).

Enquanto a GEV consolida as distribui¢cdes extremais univariadas, as copulas de valores
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extremos apresentam o tratamento conjunto bivariado por meio de uma fun¢do de dependéncia.

(NELSEN, 2006) apresenta técnica que possibilita a transformacao de uma cépula para ou-
tra. Seja (X1,Y1),...,(X,,Y,) pares de varidveis aleatdrias i.i.d. com funcdo de distribui¢do
conjunta comum H, cépula C' e marginais F' (para X;) e GG (para Y;). Para avaliar a distribu-
i¢do dos maximos X,y = max{X;} e Y,y = max{Y;}, é necessdrio determinar a funcdo de
distribui¢do H ) e a cépula C,,) de X, € V().

Como P(X(,) < ) = P(todo X; < ) = (P(X; < )", entdo F,,y = [F(x)|". De forma

similar, para Y{,,), G(»)(y) = [G(y)]". Portanto:

Hpy = P(X() < 2,Y) <)
= P(todo X; < x,todo Y; < y)
= [H(z,y)]"
= [C(F(x),G(y))]"

= [C([Fluy (@)™, Gy ()] ™))"

Dessa forma,

Ciny(u,v) = C”(ul/”, vl/")

para todo u, v em [0, 1].

O limite da sequéncia {C'y,)} implica na nogdo de copula de valores extremos, o que resulta

na seguinte defini¢do:

Definicao 4.5.1. A cépula C, € uma c6pula de valor extremo se existe a cépula C' tal que

C.(u,v) = lim C™(u'/" v'/™)

n—oo
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para u e v em [0, 1]. Ademais, C' € dito pertencer ao dominio de atra¢do de C..

Nesse sentido, (NELSEN, 2006) demonstra procedimento proposto por (PICKANDS, 1981)
para a construcao de copulas de valores extremos. Se X e Y sdo varidveis aleatdrias exponenci-
ais padrdo com cépula de sobrevivéncia C' extremal, entdo as fun¢des de sobrevivéncia de X e
Y sdo F(x) = e %, 2 > 0,e G(y) = e7¥,y > 0, respectivamente, e a funcdo de sobrevivéncia

conjunta € dada por

Como C € de valor extremo,

H(re,ry) = C"(e™",e™)

= [H(z,y)]",

para qualquer r > 0 real. Seja a fun¢do A : [0, 1] — [1/2, 1] definida como:

A(t) = —In (C(e’(l’t), e’t)),

ou, de forma equivalente, C' (e~ e7*) = exp{—A(t)}. Ao empregar a mudanga de varidveis
(x,y) = (r(1—1t),rt),parar > 0et € (0, 1), ou, de forma equivalente, (r,t) = (x +y,y/(z+

y)), tem-se:
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H(z,y) = H(r(1—1),rt)
= [ﬁ(l — 1, t)]r
= CT(G_(I_t),e_y)

= exp{—rA(t)}

el (2)}

Como C(u,v) = H(—Inu, —Inv), entdo

C(u,v) = exp {ln(uv)A ( I ) } 4.4)

In(uwv)
para uma escolha apropriada da funcdo A, denominada fung¢do de dependéncia da cépula de

valor extremo C), respeitada as seguintes condi¢des:

2. max{t,1 —t} < A(t) < 1;e

3. A é convexa.

Verifica-se que as distribuicdes marginais de (X,Y) podem ser de diversas familias. Em
geral, X ~ FeY ~ G, entdo H(z,y) = C(F(z),G(y)), em que C satisfaz a (4.4), € uma
distribui¢do bivariada baseada em uma copula extremal cujas componentes ndo necessariamente
sdo distribuicdoes GEV.

(ESCHENBURG, 2013) realizou pesquisa das propriedades das copulas extremais e apre-

sentou exemplos de copulas, resumidos na Tabela 4.2.
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Tabela 4.2: Exemplos de cépulas extremais.

Cépula A(t) Parametro

Marshall-Olkin max{l — a;(1 —1t),1 — ast} 0<aj,ay <1

t-EV (1—t) - Tya(z10) +t-Tyia(z), vr>0—-1<p<l
= ()2 ([5]7 = p) (1= p?) 172

Tawn 0t> = 0t + 1 0>1,a€l0,1]
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Capitulo 5

Risco de Mercado

5.1 Definicdo

De acordo com (JORION, 2006), risco de mercado € o risco de perdas devido a movimentos no
nivel ou volatilidade de precos de mercado. Ele envolve exposi¢des em varidveis financeiras e
suas movimentacoes, como preco de acdes, taxa de juros, taxa de cambio, preco de commodities,
exposicoes cobertas (hedge) ou a volatilidade.

(ROSENBERG; SCHUERMANN, 2006) apontam que risco de mercado é conhecido por
ser dependente do tempo, o que reflete em sua volatilidade estocdstica. De acordo com (SHIM;
LEE, 2017), o modelo GARCH(1,1) é o mais comumente usado para modelar heteroscedastici-
dade em séries de dados financeiros e clusters de volatilidade. Ainda, os autores citam aumento
na literatura que indica que retornos financeiros sao usualmente assimétricos e de caudas pesa-
das e, por isso, aplicam a distribui¢ao t-Student assimétrica (skew-t) nos residuos do GARCH.

A Secdo 5.2 apresenta, de forma sucinta, a teoria envolvida.

5.2 GARCH

No contexto de modelagem de séries que apresentam heteroscedasticidade, (ENGLE, 1982)

propde o modelo ARCH (Autoregressive Conditional Heteroscedasticity), que permite que a
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variancia condicional dependa das informacgdes passadas da série.

Posteriormente, (BOLLERSLEV, 1986) generalizou o conceito ao propor o Generalized
ARCH - GARCH (Generalized Autoregressive Conditional Heteroskedasticity), no qual a vari-
ancia condicional também depende de seus préprios valores passados.

Os modelos GARCH permitem capturar a dependéncia temporal na volatilidade, aspecto

importante na modelagem de risco. O modelo GARCH(1,1) € definido da seguinte forma:

Ty = [+ &
Et = Nt/ ht; e ~ Zld((), ]_)
ht =w + 058571 + 5ht,1

em que:

r¢ € 0 retorno no tempo t;
* 1 € amédia condicional dos retornos;
* ¢, é o residuo no tempo ¢;

* 1, € o residuo padronizado, com média zero e variancia unitaria;

h; € a variancia condicional no tempo ¢; e
* w, a, e § sdo parAmetros do modelo GARCH:

— w representa a variancia incondicional de longo prazo;

— « captura o impacto dos choques recentes (residuos ao quadrado) na volatilidade

atual; e

— [ captura a persisténcia da volatilidade, ou seja, o impacto da volatilidade passada

na volatilidade atual.
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Capitulo 6

Risco de Crédito

6.1 Definicao

(JORION, 2006) define risco de crédito como risco de perda financeira devido a falha da con-

traparte em cumprir suas obrigacdes contratuais. Ha trés fatores incluidos no risco de crédito:

1. Risco de default: risco de inadimpléncia da contraparte, medido pela probabilidade de

default (Probability of Default - PD);

2. Risco de exposi¢do ao crédito: risco de flutuacdes no valor de mercado da cobrancga sobre
a contraparte. Em caso de inadimpléncia, também é conhecido como exposicado ao default

(Exposure at Default - EAD); e

3. Risco de recuperacdo: incerteza na fracido da cobranga recuperada apds a inadimpléncia,

medida pelo complementar da perda dado o default (Loss Given Default - LGD).

A curva de perda esperada (Expected Loss - EL) de risco de crédito é, entdo, dada pela

combinagao desses fatores:

EL=PD x EAD x LGD. (6.1)
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Para este trabalho, o foco da modelagem serd no risco de default. Uma das formas de se
determinar a PD € por meio de modelos estruturais, cujo valor do ativo € representado por um
processo estocdstico {Vr }+>¢ € o default ocorre quando esse valor ultrapassa determinado limiar
(PD = P(V; > B)), como o valor do passivo da contraparte. A abordagem de Merton para a
precificacdo de opg¢des do tipo Europeia contempla o termo PD.

Este capitulo apresenta expressdes para a PD oriunda de dois modelos: o0 Modelo de Merton,
cuja base é o Movimento Browniano Geométrico (apresentado no Apéndice A); e o Modelo de

Merton baseado no Processo de Lévy (apresentado no Apéndice E).

6.2 PD - Modelo de Merton - Movimento Browniano Geométrico

A Equacdo de Black & Scholes € um modelo dindmico de precificagdo de ativos em tempo con-
tinuo. O modelo foi desenvolvido por Black e Scholes (BLACK; SCHOLES, 1973) e expandido
por (MERTON, 1973).

A intui¢do quanto a precificagdo de um ativo de risco é que, inicialmente, sua evolu¢do no
tempo seria sua média, proporcional ao intervalo de tempo avaliado (udt). Contudo, sabe-se que
ativos financeiros ndo possuem comportamento linear. Portanto, a essa intui¢ido deterministica,
adiciona-se um componente aleatdrio que representa o comportamento real dos ativos no tempo.

Uma das premissas do Modelo de Black & Scholes € que a dinamica dos valores dos ativos
segue 0 Movimento Browniano Geométrico (Apéndice A). Ou seja,

dVi

t

representa a variacdo do valor do ativo em termos do retorno médio y e do choque aleatério
dado pelo processo estocéstico {1V, }, escalonado pela volatilidade o .

A solucdo da Equacdo (6.2), demonstrada no Apéndice B, é dada por:

1
Vi = V,exp Kﬂ — 502v> (T —t) + oy (Wr —W,)| . (6.3)
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De (6.3), tem-se que:

1
In(—)=(pu—=0b | (T—1t)+oyp(Wpr—W,).
Vi 2
Isto é, no Modelo de Black & Scholes, o retorno logaritmico do ativo segue o processo

Gaussiano, conforme:

:N{(u—%a‘%) (T —t), oo (T—1)]. (6.4)

De forma equivalente,

VT = %eRT .

A Equacdo (6.3), além de precificar o ativo subjacente, permite, também, precificar deri-
vativos, que sdo contratos cujo pagamento € realizado em data futura e cujo valor depende de
um determinado ativo-objeto. No mercado financeiro, hd derivativos com base em preco de
acdo, de commodities, cambio, indices financeiros, entre outros. O valor do titulo derivativo,
portanto, pode ser representado por uma fungdo do valor do ativo-objeto f(V7r), calculado com
base no valor esperado do payoff (valor liquido recebido ou pago no vencimento) descontado a

certa taxa de desconto. Ou seja,

E(payoff) = E(f(Vr)). (6.5)

O Modelo de Black & Scholes foi formulado no contexto de neutralidade do risco e, por-
tanto, o payoff do titulo derivativo € descontado a taxa livre de risco (r) sob capitalizacdo em

tempo continuo. Assim,
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Pr = e "TOE(f(Vr)). (6.6)

Um tipo especifico de derivativo sio as op¢des, modalidade em que o titular do titulo detém
um direito e o langador uma obrigacdo. No caso de uma opc¢do de compra (call), o titular
detém o direito de comprar o ativo-objeto pelo preco acordado e o titular detém a obrigacdo de
vendé-lo.

Merton desenvolveu a teoria para cdlculo da probabilidade de default de uma contraparte
com base no Modelo de Black & Scholes para precificacdo de op¢des (MERTON, 1974). De
acordo com (MCNEIL; FREY; EMBRECHTS, 2015), o Modelo de Merton € o protétipo da
classe dos modelos estruturais, em que o default ocorre quando o ativo ultrapassa determinado
valor limite.

A empresa pode financiar seus ativos de duas formas: por meio de divida (passivo), cujos
detentores dos direitos sdo os credores; e por meio de emissdo de agcdes (patrimdnio liquido),
cujos direitos pertencem aos acionistas. Os acionistas, nesse cendrio, possuem responsabilidade
limitada ao capital investido. Ainda, assume-se que a companhia ndo paga dividendos nem
emite novas dividas.

No Modelo de Merton, o passivo € representado por um titulo zero-cupom com vencimento
em 7' cujo valor de face é a constante B e cujo patrimonio liquido é representado por S;. O
valor do ativo (passivo + patriménio liquido) é representado pelo processo estocdstico {V; }+>o.

O objetivo dos modelos estruturais € avaliar a variacdo do ativo da companhia no tempo.
Caso o valor do ativo supere o valor do passivo no vencimento, companhia possui recursos
suficientes para honrar com suas dividas. Por outro lado, se, no tempo 7', o ativo for menor que
o valor do passivo, tem-se o evento de default. Ou seja, nesse caso, a companhia nao € capaz de
honrar o pagamento das dividas. (MCNEIL; FREY; EMBRECHTS, 2015) demonstram esses

dois cendrios no tempo 7":

1. Vp > B: o valor dos ativos da empresa supera o valor nominal do passivo. Nesse caso, 0s
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credores sdo plenamente pagos em relacdo ao valor da divida B e os acionistas recebem

o valor residual Sy = Vr — B;

2. Vp < B: o valor dos ativos ndo € suficiente para o pagamento integral da divida. Dada
a responsabilidade limitada dos acionistas, estes ndo possuem interesse em prover capital
adicional a empresa, uma vez que os recursos seriam direcionados aos credores. Assim, o
controle da companhia € transferido aos credores, que liquidam a empresa e distribuem o
valor entre si. Dessa forma, os credores recebem o valor dos ativos no tempo T (B = V)

€ 0s acionistas, por zerarem suas posicoes, ndo recebem recursos (S = 0).

As duas classificagdes de op¢des mais comuns baseadas nas regras de exercicio € a ameri-
cana e a europeia. A primeira permite que o titular a exerca a qualquer momento até a data do
vencimento, enquanto a segunda permite o exercicio apenas no vencimento.

A representacdo do Modelo de Merton implica que o valor do patrimdnio liquido da empresa
no tempo 71" (S7) equivale ao payoff de uma op¢do de compra do tipo europeia, com preco de
exercicio igual a B.

Assim, caso o preco do ativo-objeto (V) seja maior que o preco de exercicio (5) no ven-
cimento 7', o payoff do titular do titulo é de Vi — B, ou seja, o titular compra o ativo por B e
o vende no mercado por V. Contudo, caso o preco do ativo-objeto seja menor que o preco de

exercicio no vencimento, a op¢ao ndo € exercida e o payoff da operagdo € zero.

Portanto, segundo definicdo do payoff em (6.5),

f(Vr) = (Vr — B)I(vy>p)

= Vrlw,>p) — Blv,>n).

Logo, conforme (6.6),
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Pcall = e_r(T_t)E((VT - K)I(VT>K))’

em que

E((Vr — B)lw,>p)) = E(Vrlv,>p)) — BE(Iv;>p))- (6.7

O segundo termo de (6.7) fornece o complementar da probabilidade de default (PD), ou seja,
a probabilidade de que o valor do ativo V' da companhia seja inferior ao valor de suas dividas

B no tempo 7. Ou seja,

E(ly,>p) = P(Vr > B)

Da Equagao (6.4), segue que:

—1-®
oy T—t
o [+ =)@ -
oy T—1t ’

sendo ®(z) = P(Z < z), Z~ N(0,1).

Assim, de forma complementar,

P(Vr < B) = ®(—dy), (6.8)
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em que

5, )+ = 5o — 1)
oy T—t

WS

No cendrio brasileiro, empresas com capital aberto e que possuem negociacdo em bolsa
dispdem de algumas informacgdes publicas que permitem o cdlculo de sua probabilidade de
default pelo Modelo de Merton. O valor do passivo B, por exemplo, pode ser obtido por meio

das demonstracdes financeiras divulgadas trimestralmente.

De acordo com (BHARATH; SHUMWAY, 2008), apesar de algumas aplicacdes do modelo
considerarem o valor do ativo V; como observével, ele ndo € diretamente obtido pelas informa-
¢Oes publicas e, portanto, deve ser inferido. Ainda, a volatilidade observada nas negociagdes
das a¢des no mercado equivalem a volatilidade do patrimdnio liquido og e ndo do ativo oy e,
entdo, esse valor também deve ser inferido. Conforme exposto pelos autores, € possivel relacio-
nar a volatilidade do ativo oy, com a volatilidade do patrimonio liquido og por meio da seguinte

relacdo:

oy = (—) ®(dy)oy. (6.9)

Algumas abordagens foram propostas para a otimizagdo do sistema de equacdes formado

por (6.9) e (6.10) para se obter os valores de V; e oy, como citado pelos autores.

Sp = V,®(d,) — e " TV Bd(dy), (6.10)

em que d; € calculado a partir da esperanca do primeiro termo de (6.7).
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> 1
E(Vrl — (T f(V;
( T (VT>B)) 0 T)\/ﬂ

V; exp [——(y - avm)ﬂ dy

1 /°°
B V2o J_q,
1

V/ exp [—— 2] dy
V 2m ' —do—oyVT—t 2

— ViP(Y < dy+ oy VT — 1)
= V,®(dy + oy VT — 1)

= Vi®(dy),

ouseja, dy = dy +oyVIT —t

Contudo, em seu estudo, os autores concluem que modelos complexos de otimiza¢do nao
agregam valor a capacidade preditiva do default e, assim, concluem que a importancia do mo-
delo reside em sua forma funcional e ndo nesta resolucdao especifica. Nesse sentido, foram

propostas aproximacdes ingénuas (naives) para as volatilidades op € oy .

Primeiramente, assume-se que o valor de mercado da divida da empresa equivale a seu valor
de face B. Como as empresas proximas da inadimpléncia possuem dividas de alto risco, e o
risco dessas dividas estd correlacionado com o risco de seu patrimonio, 0s autores aproximaram

a volatilidade da divida de cada empresa por:

O B(naive) — 0,05 + 0,2505.

Assim, a volatilidade do valor do ativo, oy € aproximada por:

S B
OV (naive) = S—i——BOS + mJB(naTve)'

Portanto, a probabilidade de default dada pela Equacgao (6.8) pode ser aproximada por:

37



cap. 6. Risco de Crédito  §6.2. PD - Modelo de Merton - Movimento Browniano Geométrico

P(VT < B)(nai‘ve) - (I)<_d2(na'1've))a (611)

em que

ln(s—’_?B) + (T - %O—‘z/(na'l've))(T - t)

OV (naive) T—t

da(naive) = (6.12)

Apesar de o Modelo de Merton apresentar resultados significativos por meio de cdlculos

simples, algumas premissas assumidas ndo sdo observdveis no mundo real, como:

1. Default apenas no vencimento 7': sabe-se que o evento de default pode ocorrer em qual-

quer tempo, € ndo apenas em um momento especifico 7'

2. Default = liquidacdo: sabe-se que hd mecanismos legais e financeiros que suportam a
existéncia da empresa na tentativa de reergué-la. Assim, o evento de default considerado
pelo Modelo de Merton ndo necessariamente implica em imediata liquidacdo da compa-

nhia; e

3. Normalidade: o Modelo de Black & Scholes, base para o Modelo de Merton, assume que
o valor dos ativos segue distribui¢cao lognormal e seu logaritmo segue distribui¢ao normal.
Nesse sentido, o0 Modelo de Merton ndo captura a ocorréncia de eventos extremos. A
Figura 6.1 ilustra esse contraste: o painel da esquerda mostra os log-retornos didrios
do Ibovespa, enquanto o painel da direita apresenta série simulada com a mesma média
e variancia, assumindo normalidade i.i.d., conforme modelo de Movimento Browniano
com drift. Nota-se que, embora ambas tenham a mesma variabilidade global, a série real
apresenta episédios concentrados de alta volatilidade e picos extremos — caracteristicas
ausentes na simulacdo. Esses padrdes reforcam a inadequacdo da hipétese de retornos

gaussianos na modelagem de ativos financeiros.

Na secdo a seguir, discute-se a extensdo do Modelo de Merton com a inclusdo de saltos

de descontinuidade ao Movimento Browniano, modelados por processos de Lévy, conforme
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Ibovespa Simulado (Black-Scholes)

Figura 6.1: Série de log-retorno do Ibovespa (esquerda) e série simulada com W; ~ N(z, s?)

previsto inicialmente em (MERTON, 1976). Tal modificacdo visa aprimorar a capacidade do
modelo em capturar comportamentos extremos e proporcionar melhor ajuste aos dados empiri-

COsS.

6.3 PD - Modelo de Merton - Processo de Lévy

A andlise dos retornos de ativos financeiros revela padroes que desafiam a suposicao classica
de normalidade adotada por modelos baseados unicamente no Movimento Browniano. Embora
modelos como o de Black & Scholes consigam reproduzir a média e a varidncia observadas
em séries empiricas, eles o fazem assumindo varia¢des suaves e continuas nos precos, com re-
tornos de magnitude relativamente constante. No entanto, quando comparamos tais modelos
com dados reais, torna-se evidente a presenca de comportamentos abruptos e dispersdes acen-
tuadas. Grandes oscilacdes de pregos, que ocorrem com frequéncia muito superior a prevista
por uma distribuicdo normal, podem indicar que os retornos possuem caudas pesadas — isto

€, que eventos extremos t€m probabilidade significativamente maior do que o esperado sob o
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modelo gaussiano. Esse desajuste entre a modelagem cldssica e os dados empiricos motiva
o estudo de alternativas mais flexiveis, como os processos de Lévy, que incorporam saltos de

descontinuidades e capturam melhor a estrutura estatistica observada nos mercados financeiros.

Dentre os processos estocdsticos com trajetérias descontinuas, destaca-se o processo de
Poisson, que desempenha um papel central na modelagem de fendmenos com saltos. Ele serad

utilizado como estrutura para a construcio de processos de salto mais elaborados.

Esta secdo serd desenvolvida com base na abordagem apresentada por (CONT; TANKOV,
2003) e (MATSUDA, 2004), cujas obras apresentam modelagem consistente com os saltos e as
caudas pesadas observados nos dados financeiros por meio do uso de processos de Lévy. De
acordo com o modelo, os saltos ocorrem conforme um Processo de Poisson composto /V; com

intensidade A (mais detalhes sobre Processo de Poisson no Apéndice C).

O Modelo de Merton com saltos € caracterizado por incorporar o tamanho dos saltos do
preco na dindmica do prego do ativo, sendo que a varidvel aleatoria y; representa o tamanho

absoluto no salto do preco. O salto relativo, portanto, € representado por

%:yt%_vt
Vi Vi

=y — 1 (6.13)

em que In(y;) ~ 1.i.d N(a, b?), 0 que implica que E(y;) = exp(a+ 1b?) e Var(y) = exp(2a+
b%)(exp(b?) — 1).

Assim, o salto relativo, dado pela Equagdo (6.13), possui distribui¢cao lognormal com média:

2
E(y —1) = exp(a+ %) —1=k (6.14)

A variagao do valor do ativo pode ser representada pela equacao diferencial
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AV, = V,[(oc — Ak)dt + o dW, + (y, — 1)dN,].

Ou, de forma equivalente,

av,

Vt = (a — \k)dt + oydW, + (g — 1)d Ny, (6.15)
t

em que « € o retorno esperado instantaneo (E(dv‘f) = adt), oy € a volatilidade instantdnea do

retorno da a¢do condicionada a nao ocorréncia de saltos, W; € o Movimento Browniano Padrao,

N, é um Processo de Poisson com intensidade .

O terceiro termo da Equacdo (6.15) contém duas fontes de aleatoriedade. A do processo
dNy, que reflete a aleatoriedade dos saltos dos pregos, e a do seu tamanho y;, uma vez que o
salto ocorre. Assume-se que ambas as fontes de aleatoriedade sdo independentes. Se ndo hd
salto no preco do ativo em um intervalo pequeno de tempo dt (dN; = 0), entdo o processo de
difusdo (6.15) é simplesmente 0 Movimento Browniano com drift, com processo equivalente a

(6.2), em que:

= a— A\k. (6.16)

Da Férmula de It6 para difusdes com saltos (Equacdo (F.2) do Apéndice F), é obtida a

solucdo da Equagdo (6.15), em que f(V;) = In(V;)

Nt
1
Vi = V,exp (a— 50"2/—>\]€> (T—t)—i—UV(WT—Wt)—i-ZYZ- , (6.17)

=1

em que V; = In(y,) ~ N(a,b?) e SN Y; é um Processo de Poisson composto. Isso significa

que o prego dos ativos {V; };<7 € modelado por um Processo de Lévy exponencial da forma:

_ L
VT—V;e t?
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em que L; € um Processo de Lévy definido como um Movimento Browniano com drift (parte

continua) e um Processo de Poisson (parte descontinua), tal que:

N
1

i=1
_m(Vr

Destaca-se que, caso N; = 0 ou caso os saltos negativos se cancelarem com 0s positivos,

entio SN In(y,) = 0.

Na precificagcdo de opg¢des do tipo europeia, o preco do derivativo é

P = e_T(T_t)E(VTI(VT>B)) — G_T(T_t)BE(](VT>B))-

O calculo das esperangas de F.,; ndo € direto, visto que a distribui¢cdo de Vi, dada em (6.17),

depende do Processo de Poisson composto. Esta secdo serd limitada ao cdlculo da PD, dada por:

E(lvy<p) = P(Vr < B)
_p(lr B
Vi Vi

~p (o (¥),

Ao utilizar o Processo de Lévy (6.18), obtém-se que:

42



§6.3. PD - Modelo de Merton - Processo de Lévy

:ip(@-%aa—xk) (T—t)+av\/ﬁz+i§:ﬁ <—In (%)) P(N =n).

(6.19)

Sendo Y; ~ N(a,b?), > " | Vi ~ N(na,nb?) e oy/T —tZ + > | Y; ~ N(na,op (T —

t) + nb?), entdo

Nt
1
X, = (a—ﬁa‘z/—)\k> (T—t)+ovVT —tZ+ Y,
=1

~ N ((a — %aa — )\k> (T —t) +na, o8 (T —t) + nb2> : (6.20)

De (6.20),

P(th —In (E)) —® <_ln(%) — (o= 500 = M) (T—t)—na>

Vo2 (T —t) + nb?

= ®(~dy(n)), (6.21)

em que
In (

s

)+ (a— 308 — M) (T —t) + na

2

VoZ (T —t) + nb?

da(n) = (6.22)

Portanto, de (6.19) a (6.22), tem-se que:
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PD = P(Vy < B)

o —)\/\n
=y ° —=B(—dy(n)). (6.23)
n=1

Assim, a PD do Modelo de difusdo de Merton com saltos € uma mistura infinita de distri-
buicdes gaussianas ®(—dy(n)), em que os pesos sdo dados pela distribui¢do de Poisson com
intensidade A. Isto €, mistura da PD oriunda do Modelo de Black & Scholes condicionada ao
fato de que o preco do ativo salta n vezes até o vencimento. Destaca-se que, se n = 0, a PD

equivale ao modelo da Sec¢do 6.2.
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Capitulo 7

Método

7.1 Processo de analise

O Capitulo 1 apresentou exemplos de estudos de agregacdo de riscos por meio da abordagem
por copulas. A Figura 7.1 apresenta, de forma resumida, o processo geral de andlise desses

estudos para o cédlculo da medida de risco agregado.

Definir varidvel que Definir varidvel que
representa o risco de crédito representa o risco de mercado
Y Y
Obter a distribuicao Obter a distribuicao
marginal marginal

{ Ajustar cépula }

{Calcular medida de risco}

Figura 7.1: Processo geral de agregacdo de riscos verificado na literatura
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Para este trabalho, a mensurac¢ao do risco agregado considera os fatos estilizados individuais
de cada série, além de proxies aderentes aos dados disponiveis. A Figura 7.2 apresenta com
maior detalhe o processo a ser aplicado no estudo de caso, conforme teoria exposta nos capitulos

anteriores.

Proxy para risco de crédito:

probabilidade de default Proxy para risco de mercado:
calculada pelo Modelo série de retornos

de Merton com saltos

Y
Aplicar modelo GARCH (1,1)
com inovacoes estiveis

Y
Aplicar modelo GARCH (1,1)
com inovacdes skew-t

AN

Testar diferentes
categorias de copulas

)

Y

{Calcular VaR e ES Agregados}

Figura 7.2: Processo especifico de agregacio de riscos

A etapa final de calculo do VaR Agregado seguird o algoritmo detalhado na Secao 7.2. Todas

as andlises foram feitas em R, versdo 4.2.3 (R Core Team, 2023).

7.2 Medidas de Risco Agregado

Os passos a seguir para estimagao do VaR para um passo a frente 7'+ 1 de uma carteira composta
por dois ativos por meio de copulas estdo de acordo com o proposto em (LU; LAI; LIANG,
2014). Os autores propdem algoritmo baseado em modelo Cépula-GARCH para calculo do

VaR agregado previsto para um dia a frente.

1. Ajuste dos Modelos GARCH: ajuste dos modelos GARCH para cada série e estimacao
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§7.2. Medidas de Risco Agregado

das distribui¢cdes marginais usando inovagdes com distribuicdo normal, t-Student ou t-

Student assimétrica;

. Previsdo de Médias e Variancias: previsdo das médias (77 ;) e varidncias (h; ;) para

o periodo 71" + 1 usando os modelos ajustados;

. Simulacdo de Cenarios: simulagdo de N = 10.000 cendrios para o periodo [T, 7 + 1]

usando a distribui¢ao conjunta modelada pelas copulas; e

(a) Estimacao dos Parametros da Cépula: transformacio dos residuos padronizados
(nX e nY) em varidveis uniformes (u; e v;) usando as distribui¢des marginais esti-

madas. Estimacao dos parametros da copula (x) usando (u; € vy);

(b) Simulacao de Variaveis Aleatorias: simulagdo de /V pares de varidveis aleatdrias

J J ; 4 ; .
(wp.yq, v7yq) a partir da cOpula estimada;

(c) Transformacao dos PITs (Probability Integral Transforms) em Residuos Padro-
nizados: transformacao dos pares (uT 1 UT +1) emresiduos padronizados (77T N +1)

usando as fung¢des inversas das distribui¢cdes marginais;

(d) Geraciio dos Retornos Simulados: geracio dos retornos simulados (7 T +1)

usando os residuos padronizados e as previsdes de média e variancia; e

X:.] I ~ X

Tpiy =Ty + 77T “\ hT+1
Yj _

Tri = TT+1 + 77T+1 \/ hT+1

(e) Calculo do P&L (Profit and Loss) Simulado: célculo do P&L simulado para cada

cendrio 7:

. 1 , 1
sz+1 = §P§(exp(r7)§f1) - 1)+ QPY(GXP(TTH) 1)
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4. Calculo do VaR: ordenacio dos N valores de L3, 41 em ordem crescente; e célculo do
VaR como o percentil correspondente ao nivel de confianca desejado, conforme Equacgao
(2.1):

VaRgs9, = Absoluto do 500° valor ordenado de L4

VaRgg9, = Absoluto do 100° valor ordenado de L4

Para o céalculo do ES, soma-se, entre os 10.000 valores simulados de Ly, aqueles que

superam o VaR em determinado nivel de confianca, conforme Equagdo (2.2).
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Capitulo 8

Estudo de Caso

8.1 Base de dados

Para ilustrar a teoria apresentada, considerou-se dados da empresa Localiza, representada pelo
ativo RENT3 negociado na B3. As varidveis utilizadas foram: data da posicao, market cap, pas-
sivo, patrimonio liquido, volatilidade anual EWMA (Exponentially Weighted Moving Average)
e valor de fechamento da acdo. Ainda, foi utilizada a série de preco do titulo Letra Financeira do
Tesouro para representar a taxa de juros livre de riscos em base anual. Os dados foram retirados

da plataforma Economatica.

Trata-se de dados diérios do periodo de 30 de junho de 2005, data de inicio da negociagao
do papel na bolsa de valores, a 30 de junho de 2025. A partir dos valores de fechamento da a¢do,
calculou-se o log-retorno diario do papel e, posteriormente, o log-retorno anual. Como, para a
base anual, utiliza-se a janela moével de 252 dias, a base de dados final tem inicio em 04 de julho
de 2006, com 4.701 observagdes didrias. A Tabela 8.1 apresenta as estatisticas descritivas dos

log-retornos anuais.
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Tabela 8.1: Estatisticas descritivas do log-retorno anual de RENT3 (em %)

Minimo 1° Quantil Mediana Média 3° Quantil Maximo

-131.82 -8.06 13.53 1371 37.51  132.07

A Figura 8.1 representa o log-retorno anual histérico da companhia.

5 1.0
< 05
S
<]
c
< g
g 0.0 D
S S
ﬁ:'lJ O o5
> -0.5
o
-
1.0
0.0
2010 2015 2020 2025 1.0 0.5 0.0 0.5 1.0 1.5
Data Log-Retorno Anual (%)

Figura 8.1: Gréficos do log-retorno anual de RENT3

Para representar o risco de mercado, sera utilizada a série didria de log-retornos anuais,
sendo que sua marginal serd calculada na Secdo 8.2. Para o risco de crédito, as demais varidveis
do banco de dados serdo insumo para o calculo da probabilidade de default, que serd a base de

sua marginal, calculada na Sec¢do 8.3.

8.2 Distribuicao Marginal - Risco de Mercado

O teste KPSS (KWIATKOWSKI et al., 1992) rejeita a hipdtese de estacionariedade da série

de log-retornos anuais. Dessa forma, € necessdria a aplica¢do da primeira diferenga na série
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de dados. A Figura 8.2 representa a série diferenciada, que serd utilizada na modelagem da

marginal.
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Data Log-Retorno Anual (diff)

Figura 8.2: Gréficos do log-retorno anual diferenciado de RENT3

A curtose, de 5,23, demonstra o aspecto leptoctrtico dos dados, que tende a gerar mais

outliers, e o coeficiente de assimetria, de 0,11, indica leve assimetria a direita.

8.2.1 Ajuste GARCH

Ante as caracteristicas dos dados, ajustou-se o modelo GARCH(1,1), que é capaz de ajustar
a os clusters de volatilidade apresentados pelos dados e comprovados pelos gréaficos e testes
anteriores. As inovacgdes foram consideradas como distribuicdes alfa-estdveis, de forma a captar

a incidéncia de valores extremos e a assimetria dos dados. Para esse ajuste, utilizou-se o pacote

GEVStableGarch (SOUSA, 2015).
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Tabela 8.2: Parametros estimados - GARCH(1,1) com inovacdes alfa-estaveis

Parameters Estimate Std. Error tvalue Pr(>|t|)

mu -0.00 0.00  -0.57 0.57
omega 0.00 0.00 4.79 0.00
alphal 0.05 0.01  10.00 0.00

betal 0.92 0.01 10s.16 0.00
skew 0.03 0.14 0.20 0.84
shapel 1.90 0.02  99.28 0.00

O valor do coeficiente shapel, que representa o indice de estabilidade o da distribuicdo alfa-
estdvel, confirma a cauda pesada dos residuos, uma vez que seu valor € inferior a 2. A Figura

8.3 representa o ajuste dos residuos.

0.3

Densidade
o
N

o
o

0.0
-10 -5 0 5
Residuos - Log-Retorno Anual (diff)

= Alfa-Estavel

Figura 8.3: Residuos do modelo GARCH(1,1) com ajuste pela alfa-estavel

A série dos residuos, ajustada pela distribuicao alfa-estdvel, representa a marginal referente

ao risco de mercado. Na sequéncia, a outra distribuicdo marginal, que representa o risco de
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crédito, também serd ajustada pelo GARCH(1,1), porém com inovagdes skew-t.

8.3 Distribuicdo Marginal - Risco de Crédito

8.3.1 Calculo PD - Modelo de Merton

Inicialmente, a probabilidade de default € calculada pelo Modelo de Merton considerando a
abordagem naive de (BHARATH; SHUMWAY, 2008) representada pela Equacdo (6.11), em

termos de da(naive) dado pela Equagdo (6.12). A Figura 8.4 apresenta o resultado.

0.4
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w

Probabilidade de Default
o
o

o
o

0.0

2010 2015 2020 2025
Data

Figura 8.4: Probabilidade de Default da empresa Localiza - Modelo de Merton

8.3.2 Calculo PD - Modelo de Merton com saltos

A Equacdo (6.21) representa a probabilidade de default calculada com a incorporagdo dos saltos
oriundos do Processo de Lévy. Em comparacdo com a Equagdo (6.12), a (6.22) possui 0s
parametros «, A, k, a, e b, referentes aos saltos, que devem ser estimados. A estimacdo foi

realizada de forma empirica, ou seja, a partir do histérico dos retornos da empresa Localiza.
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Define-se como ocorréncia de saltos aqueles retornos capazes de impactar significativa-
mente o resultado da companhia. Como a série de log-retorno anual nao € estaciondria, a mode-
lagem dos saltos foi realizada com base na série de log-retorno didrio e convertida para a base
anual. A Figura 8.5 apresenta o histograma do log-retorno didrio histérico com o ajuste pela

distribui¢do alfa-estavel, feito com o pacote fBasics (WUERTZ; SETZ; CHALABI, 2023).

20

Densidade
S

0.2 -0.1 0.0 0.1 0.2
Log-Retorno Diario

= Alfa-Estavel

Figura 8.5: Log-retornos didrios com ajuste pela alfa-estavel

Foram considerados como saltos aqueles retornos inferiores ao quantil 1% e os superiores
a0 99%. A distribuicdo alfa-estdvel e seus quantis foram utilizadas por representarem adequa-

damente os eventos extremos. A Figura 8.6 apresenta a delimita¢do dos quantis.
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Figura 8.6: Log-retornos diarios com quantis 1% e 99% da alfa-estdvel

Considerando o histérico da empresa Localiza e os quantis da alfa-estdvel, tem-se um total
de 48 saltos no periodo observado, de 18,86 anos, o que resulta em 2,54 saltos por ano O\ =
2,54).

A varidvel aleatéria y; — 1, Equacdo (6.13), representa o salto relativo do preco, ou seja,
a variacao do preco de ativo oriunda do processo de salto. Pelos saltos destacados na Figura
8.6, e dado que In(y;) ~ iid N(a,b?), tem-se que @ = —0,0147 ¢ b = 0,0666. A partir
dessas estimativas, € possivel obter £, conforme Equacao (6.14) (k = —0,0124). O parametro
a, Equacdo (6.16), depende do retorno médio p, que serd considerado como a taxa livre de risco
(r), em linha com o entendimento do Modelo de Black & Scholes (Equacdo (6.6)).

Para ilustrar o processo com os parametros estimados, a Figura 8.7 apresenta uma simulacao
dos log-retornos didrios no horizonte de 252 dias (um ano em dias uteis). Inicialmente, simulou-
se um processo sem saltos oriundo do Movimento Browniano. Depois, adicionou-se o processo

de saltos em que sua quantidade é dada por um processo de Poisson com intensidade A (Equacao

(C.1)).
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Figura 8.7: Log-retornos simulados com e sem saltos (Modelo de Merton)

Verifica-se que a adi¢do do processo de saltos € importante para que a modelagem seja capaz
de incorporar os eventos descontinuos que ocorrem em séries de retornos financeiros que fogem
do padrao de um Movimento Browniano. Nesse sentido, os cdlculos posteriores a essa premissa

indicam uma representacao mais aderente aos fatos estilizados das séries financeiras.

Com os parametros estimados, € possivel calcular a probabilidade de default pelo Modelo
de Merton com saltos, conforme Equacdo (6.23). A Figura 8.8 apresenta o resultado, em com-

paracdo a Figura 8.4.
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Figura 8.8: Probabilidade de Default da empresa Localiza - Modelo de Merton

Verifica-se que o processo de saltos aumentou a estimativa da probabilidade de default da
empresa Localiza, situa¢do aderente a incorporagdo da possibilidade de ocorréncia de eventos
extremos as simulacdes. A PD oriunda do Modelo de Merton com saltos foi a utilizada na

sequéncia da anélise.

O teste KPSS (KWIATKOWSKI et al., 1992) rejeita a hip6tese de estacionariedade da série
de probabilidade de default. Assim, aplicou-se a primeira diferenca na série. A Figura 8.9

apresenta a série diferenciada, que serd utilizada na modelagem da marginal.

57



cap. 8. Estudo de Caso §8.3. Distribuicdo Marginal - Risco de Crédito

300

£
z
= 0.05
o}
] 200
[«)] [}
c s
& g
[<}] c
5 g
2 0.00
S 100
©
fo)
<
a
-0.05 0 —
2010 2015 2020 2025 -0.02 -0.01 0.00 0.01 0.02
Data Probabilidade de Default (diff)

Figura 8.9: Gréficos da probabilidade de default diferenciada da empresa Localiza

A curtose, de 173,30, demonstra o aspecto leptocurtico dos dados, que tende a gerar mais

outliers, e o coeficiente de assimetria, de 8,01, indica assimetria a direita.

8.3.3 Ajuste GARCH

Assim como ajustado para a marginal de risco de mercado, o modelo GARCH(1,1) também foi
aplicado na série de probabilidade de default diferenciada, para representar a marginal de risco
de crédito. Contudo, as inovagdes, neste caso, foram consideradas como skew-t, distribuicdo
que também capta a incidéncia de caudas pesadas e assimetria. O ajuste foi realizado pelo

pacote rugarch (GALANOS; KLEY, 2025).
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Tabela 8.3: Parametros estimados - GARCH(1,1) com inovacgdes skew-t

Parameters Estimate Std. Error tvalue Pr(>|t|)

mu -0.00 0.00 -5.75 0.00
omega 0.00 0.00 0.00 1.00
alphal 0.03 0.00 19.02 0.00

betal 0.96 0.00 735.76 0.00
skew 2.20 0.05 40.08 0.00
shape 2.83 0.05 52.10 0.00

O coeficiente shape indica os graus de liberdade da skew-t, que controla o peso das caudas
da distribuicdo. Quanto maior seu valor, mais a distribuicdo se aproxima da normal. Nesse
caso, o valor do coeficiente indica caudas mais pesadas que a normal, mas ainda com variancia

finita. A Figura 8.10 representa o ajuste dos residuos.
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Figura 8.10: Residuos do modelo GARCH(1,1) com ajuste pela skew-t

A série dos residuos, ajustada pela distribuicdo skew-t, representa a marginal referente ao
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risco de crédito. Diante dos ajustes das duas marginais de interesse, uma referente ao risco de
mercado e outra referente ao risco de crédito, aplica-se a metodologia da fun¢do c6pula para

modelar a estrutura de dependéncia entre ambos os tipos de risco.

8.4 Copulas

Para a modelagem da dependéncia entre as medidas, € necessério que o ajuste da copula seja
realizada com séries i.i.d. Portanto, as distribuicdes marginais utilizadas foram dos residuos
obtidos pelo ajuste do modelo GARCH para ambas as séries, sendo a de mercado ajustada pela

alfa-estdvel e a de crédito pela skew-t.

Residuos - Log-Retorno Anual (diff)

-20 0 20
Residuos - Probabilidade de Default (diff)

Figura 8.11: Gréfico de dispersdo entre residuos GARCH

Verifica-se que a série de log-retorno anual apresenta concentracdo em zero. Para valores
extremos, o formato concavo do gréfico de dispersao indica maiores niveis da série de probabi-
lidade de default.

Para o ajuste da copula, as séries dos residuos foram transformadas em séries com distribu-

icao uniforme U0, 1], representados na Figura 8.12.
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Figura 8.12: Grafico de dispersdo entre v e v

E possivel verificar uma maior concentracio de pontos na faixa em que u se aproxima de
1. Quando v também se aproxima de 1, essa concentrac¢ao indica que quando a série de proba-
bilidade de default esta alta, o retorno também tende a estar nos quantis mais altos. Por outro
lado, quando v se aproxima de 0, a concentracdo indica que quando a série de probabilidade
de default esta alta, também ocorrem retornos baixos. Ou seja, valores extremos de u parecem

estar associados a extremos tanto altos quanto baixos de v.

Em termos financeiros, essa relacao pode refletir que situagdes extremas de risco de crédito
(alta PD) podem ocorrer junto com movimentos extremos no retorno — positivos ou negativos

— por choques macroecondmicos ou eventos especificos de mercado, por exemplo.

Por meio do pacote VineCopula (NAGLER et al., 2024), foram testadas diversas cépulas
das trés categorias citadas no Capitulo 4: elipticas, arquimedianas e de valores extremos. A
Tabela 8.4 apresenta a cOpula que resultou no menor AIC, por categoria. O objetivo € avaliar os

diferentes ajustes de forma gréfica.
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Tabela 8.4: Cépulas ajustadas - Localiza

Categoria Cépula AlIC

Arquimediana Joe -196.93
Valores Extremos Tawn type 1 -246.88
Eliptica Student t -251.75

Para verificar o ajuste da dependéncia nos dados originais, simulou-se a mesma quantidade

de dados originais para os vetores da copula. A Figura 8.13 compara o ajuste com os residuos.
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Probabilidade de Default
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Figura 8.13: Griéficos de dispersdo das copulas ajustadas aos residuos

8.5 Calculo do VaR

O algoritmo para calculo do VaR agregado um passo a frente (7'+ 1) foi detalhado na Se¢do 7.2.

O primeiro passo, de ajuste dos modelos GARCH e das distribui¢des marginais dos residuos,

foi realizado nas subse¢des 8.2 e 8.3.
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Para calcular a medida de risco em termos anuais, ou seja, a perda estimada no horizonte de
um ano, o cdlculo considerou as projecdes 252 passos a frente (7" + 252), o que equivale a um
ano em dias uteis.

Com os modelos ajustados, estimam-se o vetor de médias 771, ..., 11250 € de variancias
iLT+1, e BT+252 para 1 a 252 passos a frente. Posteriormente, estimam-se as varidveis aleatorias
U252 € Uryose a partir dos parametros da cOpula ajustada e, por meio da fun¢do inversa dos
residuos (com distribui¢des skew-t e alfa-estdvel), obtém-se os residuos simulados (77, 5, =
tx' (urios2)) Mp25s = ty' (v y252)-

Para gerar as séries simuladas (log-retorno anual e probabilidade de default, ambos diferen-
ciados), foram utilizados as médias, variancias e residuos estimados, em que j representa cada

simulagdo.

X?j - X?] AX
T7iose = TTiase T NMriosa\/ P pos0

Y7j _pY Y7] AY
TTas2 = T'ri2s52 + T 52/ W 4950
Em comparagdo ao algoritmo utilizado como referéncia, dois ajustes foram necessdrios:

1. Como a estimativa foi realizada para mais de um passo a frente, é necessdrio adicionar os

valores das séries diferenciadas nesse periodo; e

2. Como a modelagem foi realizada com a série diferenciada, é necessdrio adicionar o termo
anterior de log-retorno ou probabilidade de default para que a estimativa reflita o valor na
unidade original. Porém, como a projecdo foi realizada para um periodo longo (252 dias),
o valor adicionado foi das médias do log-retorno e da probabilidade de default, para que

a memoria do valor realizado de 252 dias atrds ndo seja carregada na estimativa.

A l6gica desses ajustes pode ser explicada pela sequéncia de equagdes:
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Qdif fos0 =252 — A251
(252 =0dif fa5, T G251
U252 =Adif foso T Adif f251 T 4250

(252 =Qdif fa50 T Adif fos1 T *** + Aaiff, + Ao

Nesse sentido, as perdas vinculadas ao risco de crédito e de mercado, representadas por

X Y : .
I 050 € 7, 959, TESPECtivamente, sdo:

X,j _ Xv] ~ X - 7X
Upiose = Triose + 71 o+ P05 T

Yj o _ Y A Y 7Y
lrlose = Trlose + Proq + oo+ P51

Para obter a perda agregada, considerou-se uma carteira com exposicao de 50% em titulos

de crédito privado e 50% em ac¢des da mesma companhia (Localiza). Foram realizadas 10.000

simulagdes para o retorno e para a probabilidade de default em T' + 252 e, a cada simulagao,

calculou-se a perda estimada, em termos percentuais:

J — X,j Y,
Lip 950 =0, Sl7 52 1 0,907 950,

em que [~ representa o log-retorno anual projetado, o que indica a perda (ou valorizagio) de
mercado de forma direta, ponderada pelo peso do ativo na carteira (assumido como 50%). Para
a perda vinculada ao risco de crédito, utiliza-se o entendimento da Equacao (6.1), em que a LGD
é assumida como 100%. Nesse sentido, [¥', ponderado pelo peso na carteira (que representa o

termo EAD), passa a representar a perda esperada (EL) de risco de crédito.

O VaR estimado para a carteira em 7' + 252 é, portanto, o quantil das 10.000 observagdes
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de Lpyo50. As Tabelas 8.5 a 8.7 apresentam os resultados do VaR considerando cada cépula

ajustada (Tabela 8.4).

Tabela 8.5: VaR (em %) - Cépula Joe

Nivel de Confianca VaR Carteira VaR Crédito VaR Mercado

90.00 22.69 15.31 35.84
95.00 30.92 19.20 51.94
97.50 38.62 24.11 67.88
99.00 48.85 32.12 88.78

Tabela 8.6: VaR (em %) - Cépula Tawn type 1

Nivel de Confianga VaR Carteira VaR Crédito VaR Mercado

90.00 23.62 15.09 37.87
95.00 31.27 18.99 53.55
97.50 38.92 23.55 68.66
99.00 48.82 30.66 88.00

Tabela 8.7: VaR (em %) - Cépula t

Nivel de Confianga VaR Carteira VaR Crédito VaR Mercado

90.00 23.82 15.14 38.09
95.00 32.75 19.20 55.31
97.50 41.53 23.71 70.35
99.00 52.75 31.26 90.75

Considerando, como exemplo, a Cépula t, para o nivel de confianca de 95%, espera-se uma
perda maxima de 55,31% a titulo de risco de mercado e de 19,20% para risco de crédito. Caso

a estimativa ingénua fosse considerada para o risco agregado da carteira, ou seja, a soma dos
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riscos sem considerar a estrutura de dependéncia, ao nivel de confianca de 95%, o risco seria de
37,26%. Contudo, o efeito da diversificagdo pode ser verificado no VaR da carteira, de 32.75%.
Assim, conforme Equacio (1.1), o efeito da diversificacdo do risco foi de 4,51%.

Para o cdlculo do ES, calculou-se a média dos valores referentes aos 10.000 cendrios que

superaram o VaR indicado nas Tabelas 8.8 a 8.10.

Tabela 8.8: ES (em %) - Cépula Joe

Nivel de Confianca ES Carteira ES Crédito ES Mercado

90.00 35.23 22.52 61.27
95.00 44.13 28.11 78.85
97.50 53.71 34.85 98.33
99.00 70.12 45.99 131.60
Tabela 8.9: ES (em %) - Cépula Tawn type 1
Nivel de Confianca ES Carteira ES Crédito ES Mercado
90.00 37.02 22.10 64.89
95.00 47.00 27.43 84.87
97.50 59.40 33.99 109.68
99.00 84.33 44.98 159.35

Tabela 8.10: ES (em %) - Copula t

Nivel de Confianca ES Carteira ES Crédito ES Mercado

90.00 37.73 22.93 63.41
95.00 47.52 29.00 80.72
97.50 58.58 36.87 99.64
99.00 77.25 52.09 130.30
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No mesmo sentido do cdlculo do VaR, Para a Cépulart, a estimativa ingénua do ES agregado,
ao nivel de confianca de 95%, seria de 54,86%. Contudo, o ES da carteira resultou em 47,52%,

indicando um efeito de diversificagdo de 7,34%.

8.6 Outras empresas

Para avaliar a aderéncia do método a um conjunto mais amplo de empresas, os modelos foram
aplicados as companhias que compdem o Ibovespa (IBOV), excetuando-se aquelas pertencentes
ao Subsetor Bovespa “Previdéncia e Seguros”. A exclusio justifica-se porque, por sua natureza,
essas empresas ndo atuam como contrapartes em titulos privados ofertados ao mercado.

Os dados referentes a composi¢cdo do indice foram extraidos do sistema Economatica, con-
siderando a posicao em 30 de junho de 2025. Naquela data, o indice era composto por 81
empresas, das quais 4 pertenciam ao subsetor excluido. Assim, o modelo foi aplicado a 77

empresas.

Tabela 8.11: Frequéncia das cépulas selecionadas pelo critério de menor AIC - Empresas IBOV

Categoria Cépula Quantidade Quantidade (%)
Eliptica Student t 49 63.64
Valores Extremos Tawn type 1 14 18.18
Arquimediana Joe 8 10.39
Valores Extremos Rotated Tawn type 2 (270°) 5 6.49
Arquimediana Rotated Joe (270°) 1 1.30
Total 77 100.00

Para os devidos ajustes, algumas empresas apresentaram algumas peculiaridades, que foram

tratadas da seguinte forma:

* Vale, Rede d’Or e Raia Drogasil: O ajuste da marginal para o risco de mercado pelo

modelo GARCH(1,1) com inovacdes alfa-estdveis ndo apresentaram estimativas de erro
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padrdo (Tabela 8.2). Assim, a marginal foi ajustada pelo modelo GARCH(1,1) com ino-

vacdes normais.

» Sabesp: O algoritmo para a modelagem dos log-retornos didrios pela distribuicao alfa-
estavel (Figura 8.5) ndo convergiu. Assim, nesse caso, considerou-se como limiar para os

saltos (Figura 8.6) os quantis da distribuicdo ajustada pela skew-t;

* Jguatemi, Vamos e Raizen: Dados os limiares ajustados pela distribuicdo alfa-estdvel,
a empresa apresentou apenas um salto no periodo. Assim, ndo foi possivel calcular os
estimadores para cdlculo da probabilidade de default pelo Modelo de Merton com saltos.
Portanto, considerou-se para a marginal a PD oriunda do Modelo de Merton sem saltos;

(¢

* Jtausa, Totvs e Isa Energia: O ajuste da marginal para o risco de crédito pelo modelo
GARCH(1,1) com inovacdes skewt ndo convergiu (Tabela 8.3). Assim, a marginal foi

ajustada pelo modelo GARCH(1,1) com inovagdes normais assimétricas.

Ainda, ha 3 empresas que possuem mais de um papel na composi¢cao do IBOV: Bradesco,
Petrobras e Eletrobras. Para essas empresas, foram consideradas as acdes do tipo ordindrias
(ON).

Verifica-se pela Tabela 8.11 que 63,34% das empresas analisadas se ajustaram a cOpula t.
Nesse sentido, como a cépula t representou adequadamente a maior parte das empresas € como
o célculo das medidas de risco (comparadas pelas Tabelas 8.5 a 8.10) ndo variaram de forma

significativa entre as cOpulas, os resultados seguintes consideraram o ajuste pela copula t.

As Tabelas 8.12 e 8.13 apresentam o VaR e o ES, respectivamente, para as 10 maiores

empresas em termos de participa¢ao no IBOV.
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Tabela 8.12: VaR 95 % e Efeito de diversificagdo considerando Cépula t e 50% de exposi¢ao

em titulos privados e 50% em acdes - 10 maiores empresas do IBOV

Empresa VaR (%) VaR naive (%) Efeito de diversifica¢io (p.p.)
Vale 9.45 9.57 0.12
ItauUnibanco 41.93 54.65 12.72
Petrobras 44.45 44.89 0.44
Sabesp 38.95 38.97 0.02
B3 48.53 48.65 0.12
Eletrobras 24.03 24.09 0.06
Itausa 28.06 28.11 0.05
Weg 46.88 47.06 0.18
Brasil 47.00 60.19 13.19
Ambev S/A 30.73 30.86 0.13

Tabela 8.13: ES 95 % e Efeito de diversificacdo considerando Copula t e 50% de exposi¢cao em

titulos privados e 50% em acdes - 10 maiores empresas do IBOV

Empresa ES (%) ES naive (%) Efeito de diversificacdo (p.p.)
Vale 12.02 12.25 0.23
ItauUnibanco  68.60 89.44 20.84
Petrobras 59.69 60.28 0.59
Sabesp 49.82 49.86 0.04
B3 60.95 61.10 0.16
Eletrobras 39.67 39.74 0.07
Itausa 38.85 38.93 0.08
Weg 62.19 62.36 0.17
Brasil 72.78 93.83 21.05
Ambev S/A 45.63 45.82 0.19
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Em todos os casos, o cdlculo do VaR e ES agregados refletiu o efeito positivo da diversifi-
cacgdo entre os tipos de risco (Equacgdo (1.1)), ou seja, caso o cdlculo das medidas ndo conside-
rasse a estrutura de dependéncia entre o risco de mercado e o de crédito, as medidas de cada
contraparte estariam superestimadas e sua exposi¢@o ao risco ndo estaria sendo adequadamente
refletida.

Essa andlise € util ao considerar uma carteira bem diversificada com diversas contrapartes
em que hé diversas estratégias de investimentos em curso. A diversificacdo mais comum em
uma carteira de investimentos € a intra-riscos, particularmente risco de mercado, em que busca-
se novas exposi¢des no mesmo tipo de ativo porém oriundas de diferentes contrapartes. As
medidas mais usuais para mensurar o risco desses ativos sao o VaR e o ES e, a partir delas, é
possivel comparar o nivel de risco dos papeis em uma carteira.

Contudo, ao alocar em diferentes categorias de risco (diversificagdo inter-risco), particular-
mente risco de mercado e de crédito, a abordagem de mensuracido dos riscos difere entre si.
Para o risco de crédito, uma opcao de monitoramento, consolidada no mercado, é por meio da
probabilidade de default. Porém, a combinac¢do desta medida com o VaR de mercado, de forma
direta, torna-se inadequada. Por isso, é importante o desenvolvimento de métodos que tornem
a unido das medidas possivel e, consequentemente, a comparacdo entre diferentes contrapartes.

Assim, o VaR e o ES apresentados nas Tabelas 8.12 e 8.13, que nao s6 consolida as medidas
de risco em uma unidade unica, mas que também considera a estrutura de dependéncia entre

elas, reflete o risco que cada contraparte expde a carteira.
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Conclusao

O presente trabalho abordou o desafio enfrentado por instituicdes alocadoras de recursos finan-
ceiros no cdlculo do risco agregado decorrente de multiplas exposicoes. Para isso, realizou-se
uma revisao de literatura sobre os métodos mais aplicados nesse contexto, especificamente para
a agregacdo de riscos de mercado e de crédito. Focou-se em uma perspectiva associada ao risco
de cada contraparte, abordagem ainda pouco explorada na literatura. Ao estender essa metodo-
logia para uma carteira diversificada, buscou-se mensurar o risco especifico de cada contraparte.

A metodologia integrou abordagens estocdsticas e de séries temporais. Para o risco de
mercado, utilizou-se o modelo de séries temporais GARCH, cujos residuos foram ajustados a
distribui¢do alfa-estdvel para capturar efetivamente as caudas pesadas e a assimetria observadas
nos retornos financeiros. Quanto ao risco de crédito, a probabilidade de default (PD) foi de-
terminada com base no Modelo de Merton, com a adi¢c@o de saltos definidos pelo Processo de
Lévy. A série de PD resultante foi entdo modelada pelo GARCH com inovacdes skew-t, que
também € capaz de lidar com caudas pesadas e assimetria.

A estrutura de dependéncia entre os riscos de mercado e de crédito foi modelada por meio de
func¢do copula, que permite a separacao das distribuicdes marginais da estrutura de dependéncia
conjunta. Para a obtencdo do VaR agregado, o estudo testou diversas familias de copulas, e a

copula t-Student demonstrou o melhor ajuste para a maioria das empresas analisadas.
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A aplicacdo pratica do modelo foi ilustrada por meio de um estudo de caso com dados da
empresa Localiza e estendida a outras empresas que compdem o indice Ibovespa. Os resultados
obtidos demonstraram consistentemente um efeito significativo de diversificacao. Isso significa
que o VaR e o ES agregados para a carteira foram inferiores a soma das medidas de risco indivi-
duais, evidenciando que uma soma ingénua das perdas individuais levaria a uma superestimacao
do risco total da carteira.

Em suma, este trabalho oferece um framework robusto e relevante para a gestdo quantita-
tiva de riscos. Ao modelar explicitamente as caracteristicas intrinsecas dos riscos de mercado
e de crédito — incluindo sua volatilidade varidvel no tempo, caudas pesadas e fendmenos de
salto — e suas interdependéncias por meio de cépulas, o trabalho contribui para um célculo mais
preciso e coerente das métricas de risco agregado (VaR e ES). A capacidade de consolidar dife-
rentes tipos de risco em uma tnica medida unificada permite que as institui¢des obtenham uma
compreensdo mais precisa da vulnerabilidade gerada por cada contraparte e mitiguem eficien-
temente concentracdes excessivas de risco.

Conclui-se que a metodologia apresentada e aplicada neste trabalho oferece uma ferramenta
para que as institui¢des aprimorem suas praticas de gestdo de riscos, a0 proporcionar uma visao
integrada dos riscos de mercado e de crédito no nivel da contraparte, o que € essencial para
tomadas de decisdo informadas em ambientes financeiros complexos.

Como trabalhos futuros, recomenda-se investigar metodologias de estimacdo mais robustas
para os parametros de salto para o cdlculo da probabilidade de default (PD). Também se des-
taca a necessidade de aprimorar o tratamento da projecao de modelos GARCH com inovacoes
alfa-estdveis, uma vez que a projecdo da variancia requer ajustes especificos para incorporar
corretamente os efeitos de poténcia e assimetria do modelo. Além disso, sugere-se a extensao
do célculo do risco agregado para contemplar, conjuntamente, os riscos de mercado, crédito e
operacional. Finalmente, uma contribuicao prética importante seria o desenvolvimento de um
pacote em R dedicado ao cdlculo do risco agregado, o que facilitaria a aplicacdo da metodologia

proposta tanto em pesquisas académicas quanto em praticas de mercado.
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Apéndice A

Movimento Browniano Geométrico

O Movimento Browniano, também conhecido como Processo de Wiener, € um processo esto-
castico de tempo continuo que descreve o movimento aleatério de uma particula em um meio
fluido. Ele é caracterizado por incrementos aleatérios e independentes, e desempenha impor-
tante papel para diversos modelos em matematica financeira e outras disciplinas.

Um processo estocdstico {WW;},¢t > 0 é um Processo de Wiener se satisfaz as seguintes

condi¢des (BJORK, 2019):

1. O processo comega em zero: Wy = 0;

2. Incrementos independentes: se r < s < t < u, entdo W,, — W; e W, — W,. sdo varidveis

aleatdrias independentes;

3. Incrementos estaciondrios: para s < t, a varidvel aleatéria W; — W possui distribui¢do

normal N (0,t — s); e

4. Trajetérias continuas: as trajetérias de W; sdo continuas em t.

Ainda, (SHREVE, 2008) define {1V, } em termos de como o processo lida com a informagao

no tempo. Assim, Seja (€2, F,P) o espago de probabilidade no qual {W;} estd definido. Uma
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cap. A. Movimento Browniano Geométrico §A.O.

filtragem para o Movimento Browniano é uma colegdo de o-dlgebras { F(t)}, ¢ > 0 que satisfaz

0s seguintes critérios:

1. Acimulo de informagdes: para 0 < s < ¢, todo conjunto em {F(s)} também pertence
a {F(t)}. Ou seja, existe pelo menos tanta informagao disponivel no tempo posterior

{F(t)} quanto no tempo anterior {F(s)};

2. Adaptabilidade: para cada t > 0, o Movimento Browniano {W;} no tempo t é F(t)-
mensurdvel. Ou seja, a informagdo disponivel no tempo ¢ € suficiente para avaliar o

Movimento Browniano {W;} naquele tempo; e

3. Independéncia dos incrementos futuros: para 0 < ¢ < w, o incremento W (u) — W (t)
independe de {F(t)}. Ou seja, qualquer incremento do Movimento Browniano apés o

tempo ¢ € independente da informacao disponivel no tempo ¢.

O Movimento Browniano Geométrico (MBG) € um processo estocédstico amplamente uti-
lizado na modelagem de precos de ativos financeiros, taxas de juros e outras varidveis que
apresentam comportamento aleatério ao longo do tempo.

O MBG ¢ definido como um processo estocdstico em tempo continuo, no qual o logaritmo
do valor do ativo segue um Movimento Browniano Padrao. De acordo com (BJ6RK, 2019), o

MBG pode ser expresso como uma equagdo diferencial estocdstica:

dXt = OéXtdt + O'Xtth

em que dW,; representa o diferencial do Movimento Browniano Padrdo, o é o parametro de drift
e o > 0 o parAmetro de volatilidade.

Conforme (SCHOUTENS; CARIBONI, 2010), o MBG € um dos processos mais populares
em finangas, base para no Modelo de Black & Scholes para precificagdao dindmica de ativos em

tempo continuo.
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Apéndice B

V1 (Modelo de Merton)

B.1 Formula de It6 geral

(BJORK, 2019): Seja V; processo que possui diferenciacio estocéstica dada pela Equacao (6.2),
seja f de classe C'1+2 (isto &, continuamente diferencidvel uma vez em rela¢do ao tempo ¢ e duas
vezes em relac@o a varidvel de estado v) e Z um processo Z(t) = f(t,V;). entdo Z possui uma

diferenciacdo estocdstica dada por:

of of 1 ,0%f af
a7t = { S )+ gl 070 + 5025 L0 e+ o P e v,
Ao assumir as seguintes propriedades:
(dt)> =0
dt-dW, =0
\ (dW;)? = dt,

tem-se:
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cap. B. Vi (Modelo de Merton) §B.3. Formula de Ito simplificada

B.2 Formula de It6 simplificada
df = df(t,V;) é dado por:

2
O g+ 9 gy, L9

_ Y5 - J 2
ot oY, 20V (V)" ®-D

df

em que (dV;)? € a variagdo quadrética de (6.2).

B.3 Valor do ativo no tempo T

Seja V; o valor de um ativo no tempo ¢, entdo sua variagao logaritmica é dada por dlog(V;). Ao

aplicar esta variacdo na Equacao (B.1), tem-se:

rog(vi) = 2L av,+ 20D vy
_ 81088‘;/(;4) %(92 ?‘ig‘/}) (d%)Q
- %dv; - %(V—ty(dvt)? (B.2)
Substituindo (6.2) em (B.2), segue que:
T108(Vi) = - [Vilud, + ovdWo)] = 3 o Vi, + ovd W)
Vi 2 (V)2

1

= pdt + oydW; — §[p2(dt)2 + 2udtdW; + o3 (dZ;)?]
1

= pdt + oydW, — iaadt

1
_ (M - 5@) gt + oy dlV,, (B.3)

ao considerar que (dt)? = 0, udtdW, = 0 e (dW,)? = dt.
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§B.3. Valor do ativo no tempo T

Pela integracdo de (B.3) no intervalo (¢,7"), se obtém:

T T 1 T
/ dlog(Vs) = / <,u - 50%,) ds +/ oydW,
t t t

Vi 1
1og(7i) = (u - 50‘2,) (T —t) 4+ oy (Wp — ). (B.4)

Finalmente, o valor do ativo no tempo 7' € obtido de (B.4) ao aplicar exponencial:

% = exp [(M - %U%/) (T'=1) + ov(Wr — Wt)]

Vi — Vi exp K“ - %ﬁ) (T — 1) + oy (Wi — Wt)] |

A equacdo representa, portanto, o preco do ativo no tempo 7' em termos do preco do ativo
no tempo inicial ¢, de seu retorno médio p, sua volatilidade oy e do Movimento Browniano

{Wi}.
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Apéndice C

Processo de Poisson

(CONT; TANKOV, 2003) apresentam a seguinte definicao:

Definicio C.0.1. Processo de Poisson. Seja (7;);>1 uma sequéncia de varidveis aleatérias ex-
ponenciais com pardmetro A e 7, = Y " | 7;. O processo estocdstico com valores inteiros ndao
negativos (N, t > 0) definido por

Ne=) ler, (C.1)

n>1

¢ chamado processo de Poisson com intensidade A, N; ~ Poisson(), t)

N, determina o ndmero de chegadas (0, 1,2, ...) no tempo (0, t], 7; o tempo entre a i-ésima
e a (1 + 1)-ésima chegada e T,, € o tempo total de n chegadas, logo, sdo equivalentes os eventos
(Ny > n)e (T, <t). Ou seja, o processo de Poisson refere-se a modelagem de fendmenos es-
tocdsticos que envolvem contagens de eventos que ocorrem de forma aleatéria no tempo, sendo
caracterizado por incrementos independentes e estaciondrios. A seguir, seguem as principais

propriedades desse processo.
Proposicdo C.0.1. Seja (N;):>o um processo de Poisson.

1. Paratodo ¢t > 0, N, é quase certamente finito.
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2. Para todo w, a trajetéria amostral ¢ — N;(w) é constante por partes e aumenta por saltos

de tamanho 1.
3. As trajetdrias amostrais ¢ — /N, sdo continuas a direita com limites a esquerda (cadlag).
4. Paratodot > 0, N, = N; com probabilidade 1.

5. (V;) é continuo em probabilidade:

Vi >0, N L N quando s — t.

6. Paratodo t > 0, IV, segue uma distribui¢do de Poisson com parametro \i:

efx\t(At)n

n!

Vn € N, P(Nt = n) =

7. A funcdo caracteristica de /V; é dada por

Ele™N] = exp{Mt(e™ — 1)}, VYucR.

8. (IV;) possui incrementos independentes: para quaisquer ¢; < --- < t,, as varidveis

Ny, — Ny, ,y..., Ny, — Ny, Ny, sdo independentes.

9. Os incrementos de N sdo homogéneos: para quaisquer ¢ > s, Ny — N, possui a mesma

distribui¢do que N;_g.

10. (V;) possui a propriedade de Markov:

Wt > s, E[f(N)|Nuu < 5] = E[f(N)|N,).

Definicao C.0.2. Processo de Poisson composto. Um processo de Poisson composto com

intensidade A > 0 e cujo tamanho do salto possua distribuicdo f é um processo estocdstico X;

83



cap. C. Processo de Poisson §C.0.

definido por
Ny
K-y
i=1
em que os tamanhos de salto Y; sdo i.i.d. com distribui¢do f e N; ~ Poisson(), ), independente

de (}/1)121

O processo (N;):>o €, portanto, um processo de contagem, em que 77,75, ... é a sequéncia
dos tempos referentes aos saltos (chegadas) de N;. Assim, /V; mensura a quantidade de saltos

entre 0 e t: N, = #{i > 1,T; € [0,t]}.
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Apéndice D

Medidas Aleatorias

Com base na constru¢ao do Processo de Poisson apresentado no Apéndice C, € possivel definir
uma medida aleatéria que associa a cada conjunto mensurdvel A C R™ o nimero de saltos do
processo cujos tempos pertencem a esse conjunto. Para uma realizacio w do processo, define-

Se:

M(w,A)=#{i>1:T;(w) € A} (D.1)

A func@o M (w,-) é uma medida sobre subconjuntos de R*, denominada medida aleatéria,
pois depende da realizacdo w € €2 do processo aleatorio.
No caso do processo de Poisson com intensidade constante A > 0, a esperanca da medida

aleatdria M associada ao conjunto A € dada por:

EIM(A)] = AlA],

em que |A| representa a medida de Lebesgue do conjunto A. Isso significa que, em média, o
nimero de saltos em um conjunto A é proporcional ao seu comprimento.

A contagem total de eventos até o tempo ¢ pode ser expressa diretamente em termos da

medida aleatoria:
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cap. D. Medidas Aleatorias $D.0.

= M(w, ds).
[0,¢]

A construgdo da medida M (w, A), definida em (D.1), pode ser estendida para uma configu-
ragdio mais ampla, ao substituir R* por £ C R? e a medida de Lebesgue pela medida de Radon

pem F.

Definiciao D.0.1. Medida aleatéria de Poisson. Seja (2, F,P) um espacgo de probabilidade,
E C R? e y uma medida de Radon conhecida e positiva em (E,£). A medida aleatéria de

Poisson em E' com medida de intensidade ;+ € uma medida aleatéria de valor inteiro:

M:Ox €& =N

(w,A) = M(w, A)

tal que:
1. Para cadaw, M(w,.) : € — N é uma medida (valor inteiro) sobre F;

2. Para cada conjunto A, a variavel aleatéria M (A) = M (., A) : Q — N segue distribuicdo
de Poisson com pardmetro pi(A):

6_#(A)/J/(A>k .

P(M(A) = k) = 15

3. Para conjuntos disjuntos Ay, ..., A,,, as varidveis M (A;), ..., M (A,) sdo independentes.

A defini¢do D.0.1 formaliza o conceito de medida de Poisson aleatéria como uma fungao
M : Q) x & — N, que associa a cada realizacdo w € {2 e a cada conjunto mensurdavel A € £ um

nimero aleatério M (w, A), correspondente a quantidade de pontos (saltos) em A. A equag@o

86



$D.0.

(D.2) complementa essa defini¢do ao mostrar que toda medida de Poisson aleatéria pode ser
interpretada como uma medida discreta concentrada em uma sequéncia aleatéria de pontos

(Xp)n>1 C E. Assim, existe um processo { X, (w),n > 1} tal que

VA&, Mw A) =) 14(X,(w)), (D.2)

n>1
em que 14 é a fun¢io indicadora do conjunto A.
M é, portanto, uma soma de medidas de Dirac localizadas nos pontos aleatdrios X,,, 0 que

permite interpretar M/ como a superposicao de particulas aleatérias caindo no espago £:

M= 6y,

n>1
A medida de Dirac 6, associada a um ponto x € E ¢ definida da seguinte forma: 6,(A) =1
sex € Aed,(A) = 0sex ¢ A. De maneira geral, pode-se considerar uma soma de tais
medidas de Dirac. Dado um conjunto enumeravel de pontos X = {z;,i = 0,1,2,...} C E,
a medida de contagem px = ). 0,, ¢ definida da seguinte maneira: para qualquer A C E,

ttx (A) conta o nimero de pontos z; em A:

pA) = #{i oz € Ay =) 1ea
i>1

No contexto da construcao de processos de saltos a partir de medidas de Poisson aleatorias,
considera-se uma medida de Poisson aleatéria definida no espago E = [0, 7] x R4\ {0}, que
representa uma cole¢do de saltos que ocorrem em tempos aleatdrios 7;, com tamanhos dos saltos
Y, € R4\ {0} v.a’siid f.

A medida de salto associada a um processo com trajetdrias cadlag (continuo a direita e com
limites a esquerda) € uma medida aleatdria que registra os instantes em que ocorrem saltos e suas
respectivas amplitudes. Formalmente, ela é construida como uma soma de medidas de Dirac

localizadas nos pares (7., AX,,), em que 7T, sdo os tempos do salto e Y, = AX,, = X7, — Xy
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cap. D. Medidas Aleatorias $D.0.

representa a amplitude do salto do processo X no instante 7},.

A medida aleatdria associada, denotado por Jx, é chamada de medida de salto do processo

X:
AX 0
Ix(w,-) = 25(Tn(w),yn(w)) = Z O(t,AX,)-
n>1 t€[0,T]

Em termos intuitivos, para qualquer subconjunto mensurdvel A C R%:

Jx([0,t]x A) := nimero de saltos de X que ocorrem entre 0 e ¢ cujas amplitudes pertencem a A.

A medida aleatéria Jx contém toda a informacdo sobre as descontinuidades (saltos) do
processo X: ela nos informa quando os saltos ocorrem e qual a sua magnitude. A medida Jx
ndo nos fornece qualquer informacdo sobre a componente continua de X. E fécil perceber que
X possul trajetdrias amostrais continuas se, € somente se, Jx = 0 quase certamente (ou seja,

ndo ha saltos).

No caso particular de um processo de Poisson com saltos unitérios, essa medida é dada por

>1T11 O,t , 1 A,
Jn([0,t] x A) = #{i = €[0,t]}, sele

0, caso contrdrio,
o que evidencia que a medida de salto coincide com o processo de contagem /N; quando os

saltos sdo todos iguais a 1 e o conjunto A inclui esse valor.

Por fim, quando o processo com saltos X; (processo de Poisson composto) € construido a

partir de uma medida de Poisson aleatéria M, com a representagcdo

M= v, X = / F(s,y) M (ds dy),

o1 [0,] xR4\ {0}
a medida de salto Jx pode ser expressa diretamente em termos da medida M e da funcdo f por

meio de
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JX - Z 6(Tn7f(Tn7Yn))'

n>1
Essa representacio permite interpretar a medida de salto como o resultado da transformacao

das amplitudes Y, por uma fun¢io f, mantendo os mesmos tempos de ocorréncia 7},.

Proposicao D.0.1. Medida de salto para o processo de Poisson composto. Seja (X;);>o € um
processo de Poisson composto, com intensidade A e distribuicdo de tamanho dos saltos dada
por uma medida de probabilidade f, a medida de salto Jx é uma medida de Poisson aleatdria

definida sobre R¢ x [0, 00), com medida de intensidade dada por

pu(dz x dt) = v(dx)dt = \f(dx) dt.

Essa formulacdo fornece uma interpretacdo alternativa da medida de Lévy como a quanti-
dade média de saltos por unidade de tempo. Tal interpretacdo se mostra mais geral e util do
que aquela baseada diretamente na distribuicdo de tamanho dos saltos, e pode ser estendida
para definir a medida de Lévy de processos mais gerais, ndo apenas dos processos de Poisson

compostos.
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Apéndice E
Processo de Lévy

Definicdo E.0.1. Processo de Lévy. Um processo estocastico (X;);>o cadlag definido sobre
(2, F,P) com valores em R?, tal que X, = 0, é denominado processo de Lévy se satisfizer as

seguintes propriedades:

1. Incrementos independentes: para toda sequéncia crescente de tempos %y . . . ¢, as vari-

aveis aleatérias X, Xy, — Xy, ..., Xy, — Xy, , sdo independentes.
2. Incrementos estacionarios: a distribuicdo de X;,, — X; ndo depende de .

3. Continuidade estocastica: Ve > 0, limy,_,o P(| X1, — Xi| > ¢) = 0.

Defini¢iio E.0.2. Medida de Lévy. Seja (X;);>0 um processo de Lévy em R%. A medida de
Lévy v em R? ¢ definida por:
v(A) = E[#{tc (0,1 : AX, #0, AX, € A}, Ac BR?,

¢ chamada medida de Lévy de X: v(A) é a quantidade esperada, por unidade de tempo, de

saltos cujas amplitudes pertencem ao conjunto mensuravel A.

Essa medida descreve a frequéncia esperada com que saltos de diferentes tamanhos ocorrem,
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sendo um dos componentes fundamentais dos trés parametros que caracterizam um processo de
Lévy.
A proposi¢ao D.0.1 implica que todo processo de Poisson composto pode ser representado

da seguinte forma:

X, = Z AX,

s€0,t]
= / rJx(ds X dz),
[0,t] xR

em que Jy é uma medida aleatdria de Poisson com medida de intensidade v (dz)dt.

O processo de Lévy (X;);>o pode ser decomposto em diferentes componentes que represen-
tam distintos tipos de comportamento estocdstico. X denota a parte descontinua do processo,
construida a partir de uma medida aleatéria de Poisson. Esse processo X} mantém-se constante

entre os saltos e altera seu valor apenas nos instantes de descontinuidade.

Dado um Movimento Browniano com drift vyt + W,, independente de X°, a soma X; =

vt + W, + X7 define outro processo de Lévy, que pode ser decomposto como:

Xp=t+W,+ > AX,

s€[0,t]

:7t+Wt+/ rJx(ds x dx),

[0,t] xRd
Essa decomposigdo é formalizada pela chamada tripla de Lévy (v, %, v), a qual caracteriza

um processo de Lévy. Nessa tripla:

» ~ € R? representa o vetor de tendéncia (drift), associado a variacdo deterministica conti-

nua;
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cap. E. Processo de Lévy SE.O.

* 3 € R¥9 ¢ uma matriz simétrica semidefinida positiva que define a covariancia do mo-

vimento Browniano associado;

* v ¢ amedida de Lévy, uma medida sobre R\ {0}, que descreve a frequéncia e distribui¢io

dos saltos.

Com essa estrutura, o processo de Lévy X, pode ser representado como uma combinacao de
trés termos: um movimento Browniano (com covaridncia X), um termo deterministico linear
~t, e uma parte descontinua composta por uma soma (eventualmente infinita) de saltos cujas

distribui¢des e intensidades sdo controladas pela medida v.
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Apéndice F
Vr (Modelo de Merton com saltos)

F.1 Foérmula de It6 para difusoes com saltos

Considere um processo de difusdo com saltos X, definido como:

XtZO'VVt—}—,UJt—}—Jt

= Xt) + Jy,

em que W; é um movimento Browniano padrdo, o € a volatilidade, 1 € o coeficiente de drift, e J;

representa a parte descontinua do processo, modelada como um processo de Poisson composto:

Nt
Jy = Z AX;,
=1

com /V,; indicando o nimero de saltos até o tempo ¢ e AX; denotando a magnitude do ¢-ésimo

salto. A parte continua do processo € expressa por
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Seja f € C*(R) eY; = f(X;). Considere que os saltos ocorrem nos instantes 7}, com
i = 1,..., N;. No intervalo entre dois saltos consecutivos, [T}, T;,1), o processo X; evolui de

forma continua conforme a dindmica

= uX{ + o XCdW,.

Neste intervalo, a aplicacdo direta da férmula de It6 cldssica para difusdes fornece:

T, .-

T’L'+17 0'2 i+
YTi_‘_lf - YTi - / f//(Xt)dt+/ f,(Xt)dXt

T; 2 T

Como dX,; = dX no intervalo continuo, tem-se

Yo,

+1—

Ti+17 2
~vn= [ (G e+ reeax;).

Quando ocorre um salto no instante 7; de magnitude A X7, o processo sofre uma mudanga
abrupta, de modo que a variagdo de Y; € dada por

f(XT,) - f(XTf) = f(XT; + A)(Ti) - f(XTf)'

7 k3

Portanto, o incremento total de f(X;) ao longo do intervalo [0,¢] é a soma das contribui¢des

continuas (devidas a parte X ) e das descontinuas (devidas aos saltos):

t t 2
F= 100 = [ peeiaxss [ G edse 3 (A £ AX) - X ),
0<s<t,AX,#£0
(E.1)

A Equacdo (F.1) é a forma integral da férmula de It6 para processos de difusdo com saltos.

Para obter sua forma diferencial, considere o incremento infinitesimal d X; composto pela parte
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continua e pela parte descontinua, ou seja,

dXt — de ‘I— AXt,

em que

dX{ = pX{ + o X dW,.

Assim, o diferencial de f(X;) pode ser decomposto em:

91X e, 0 PLXY)

ox 2 Ox?

df (X;) = (dXF)? + [f (X + AX) — F(X0)]. (F2)

A Equacgdo (F.2) expressa a contribui¢do da parte continua e da parte descontinua para a
evolucdo instantinea da fungdo f(X;). A dltima parcela representa explicitamente a alteragdo

causada por um eventual salto no instante .

F.2 Valor do ativo no tempo T

Seja V; o valor de um ativo no tempo ¢ que satisfaz (6.2), entdo o valor do ativo no tempo 7,
t < T, édado por:

Ny

(a—%aa—m> (T —t)+ov(Wr— W) + > Yi.

i=1

Vr = Viexp

Demonstracdo. (MATSUDA, 2004):

1. Base continua (movimento Browniano com drift): a parte continua do retorno relativo do

ativo € modelada por um processo geométrico Browniano.

ﬁ = adt + O'Wt,
St
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em que:

* « € o retorno esperado do ativo em termos continuos;
e o ¢é a volatilidade; e

* V; € um movimento Browniano padrio.

2. Inclusdo de saltos (processo de Poisson composto): Para capturar saltos nos pregos,
adiciona-se um processo de Poisson /V;, que modela o nimero de saltos até o tempo ¢
com intensidade \. Cada salto multiplica o preco do ativo por um fator aleatério ¥, logo,

a variacdo relativa por salto € 1, — 1. Assim, o termo que representa os saltos é:

(yt - 1)dNt

3. Corre¢ao do drift (ajuste A\k): os saltos introduzem um valor esperado adicional ao re-
torno. Para garantir que o retorno continuo esperado ainda seja «, € necessario subtrair a

parte deterministica do salto esperada no drift. Assim, define-se k£ como:

k=El[y,—1] = Ely] - 1.

Logo, a parte do drift é ajustada para o — Ak, o que garante que os saltos sejam imprevi-

siveis e que o processo continue centrado.

Com esses trés componentes, a equagao diferencial estocdstica do Modelo de Merton com

saltos é:

dVy = Vi[(a — Ak)dt + odWi] + (y: — 1)dNy,

em que y; € assumido com distribui¢do lognormal. Ou seja, In(y;) ~ N (u, 62).
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4. Equacgdo Lévy-Itd. Ao aplicar a Equacdo (F.2) na variacdo logaritmica dlogV;, tem-se:

dlnV, =

dn'V,

dIn'V;

InVyp —InV, =

— (0= M) Vmdt +

olnV; olnV, UQVtzazant oV,
o dt + (o — Ak)V, o dt + — a7 dt + oV, o

AW,

+ [Iny,V; — InV]

2‘/;2
Vi 2

1
< V2> dt—i—aV}Vth + [Iny; + InV; — In V]

2
= (o — \k)dt — %dt +odW, +Iny,

o2
((x—?—)\k)(T—t)—i—JWT—Wt Z In y;

2

InVy =V, + @—%—Ak) (T —t)+o(Wr —W)+ Y Iny,

Ao aplicar o exponencial, tem-se:

2

Np—N¢
exp(In V) = exp {ant + (oz — % — Ak’) (T —t)+ o(Wp — W) + Z lnyl}

Vi = V,exp { (a — %2 - )\k:) (T —t) +o(Wr — VVt)} exp (NTZ_:M lnyz)

r 2
Vr = Viexp (a—a——)\k>( —t)+aWT—Wt] H Ui

2

o2
Vp = Viexp (a—?—)\k)(T—t)—i—aWT—Wt Z lnyZ]

5. Considerando In y; = Y, tem-se:

Vi = Viexp

1
(a—§UV )\k>(T—t)+O'VWT—Wt Z Y
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