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Resumo

O cálculo do risco agregado, tradicionalmente mensurado por meio do Value at Risk (VaR) e

do Expected Shortfall (ES), constitui um desafio devido à complexidade das interdependências

entre diferentes categorias de risco. Este trabalho apresenta uma metodologia para a agregação

de riscos de mercado e de crédito, inovando ao adotar uma perspectiva centrada no risco de cada

contraparte, uma abordagem ainda pouco explorada na literatura.

Para o risco de mercado, o modelo GARCH(1,1) foi empregado com resíduos ajustados à

distribuição alfa-estável, que captura efetivamente as caudas pesadas e a assimetria dos retornos

financeiros. Paralelamente, o risco de crédito foi modelado com a probabilidade de default (PD)

derivada de uma extensão do Modelo de Merton que incorpora saltos do Processo de Lévy no

preço dos ativos, com a série de PD subsequente ajustada pelo GARCH(1,1) com inovações

skew-t. Uma função cópula foi utilizada para modelar a estrutura de dependência entre as duas

marginais, e a cópula t-Student revelou ser a de melhor ajuste para a maioria das empresas

analisadas.

A aplicação prática da metodologia foi ilustrada por meio de estudo de caso com dados da

Localiza e e outras empresas que compõem o índice Ibovespa. Os resultados confirmaram um

efeito positivo de diversificação em todos os cenários, indicando que o VaR e o ES agregados

da carteira foram consistentemente inferiores à soma ingênua das medidas de risco individuais.

Palavras-chave: Risco de mercado; Risco de crédito; Agregação de riscos; Cópulas; Gestão

quantitativa de riscos.
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Abstract

Aggregation of market and credit risks: stochastic and time series approaches, with copulas

The calculation of aggregate risk, usually measured by Value at Risk (VaR) and Expected

Shortfall (ES), poses a challenge due to the complexity of interdependencies among different

risk categories. This study presents a methodology for aggregating market and credit risks, in-

novating by adopting a counterparty-centered perspective — an approach still scarcely explored

in the literature.

For market risk, the GARCH(1,1) model was employed with residuals fitted to the alpha-

stable distribution, effectively capturing the heavy tails and asymmetry of financial returns. In

parallel, credit risk was modeled through the probability of default (PD), derived from an ex-

tension of Merton’s Model that incorporates Lévy Process jumps in asset prices, with the subse-

quent PD series fitted by a GARCH(1,1) with skew-t innovations. Copula function was applied

to model the dependence structure between both marginals distributions, and the Student-t co-

pula proved to be the best fit for most of the firms analyzed.

The practical application of the methodology was illustrated through a case study using

data from Localiza and other companies from Ibovespa Index. The results confirmed a positive

diversification effect across all scenarios, indicating that the aggregated portfolio VaR and ES

were consistently lower than the naïve sum of the individual risk measures.

Keywords: Market risk; Credit risk; Risk aggregation; Copulas; Quantitative risk manage-

ment.
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Capítulo 1

Introdução

A diversificação é um princípio central na gestão de risco e na teoria do portfólio, cujo objetivo é

de reduzir a exposição ao risco por meio da alocação estratégica de ativos. Seja X1, ..., Xn uma

sequência de riscos e ϱ uma medida de risco. Então, de acordo com (EMBRECHTS; FURRER;

KAUFMANN, 2009), o efeito da diversificação é expresso pela seguinte função:

Dϱ =
n∑

k=1

ϱ(Xk)− ϱ

(
n∑

k=1

Xk

)
, (1.1)

em que se compara a soma das medidas de risco individuais com a medida de risco da soma.

Quando Dϱ > 0, há um efeito positivo de diversificação, indicando que o risco total do portfó-

lio é inferior à soma dos riscos individuais. O cálculo de ϱ (
∑n

k=1Xk) para riscos dependentes

requer estimação da distribuição conjunta de X1, ..., Xn. Uma metodologia que permite a esti-

mação dessa distribuição é a teoria de cópulas.

Como exemplo de função ϱ, tem-se o Value at Risk (VaR), que representa a perda máxima

esperada em um horizonte de tempo dado certo nível de confiança. Seja c o nível de confiança

e L a perda de um ativo ou carteira, uma definição geral dada por (JORION, 2006) é

P (L > V aR) ≤ 1− c

1



cap. 1. Introdução §1.0.

Conforme discutido por (HILLEBRAND; BöCKER, 2008), a diversificação pode ocorrer

de duas formas principais:

1. Diversificação intra-risco: refere-se à distribuição do risco dentro de um mesmo con-

junto de ativos ou instrumentos financeiros, reduzindo a vulnerabilidade a eventos adver-

sos associados a um único tipo de risco; e

2. Diversificação inter-risco: envolve a alocação entre diferentes categorias de risco, como

risco de mercado, crédito e operacional, permitindo uma mitigação mais ampla da expo-

sição global.

Essa distinção é necessária para entender como estratégias de diversificação podem ser apli-

cadas tanto dentro de um tipo específico de risco quanto entre diferentes fontes de risco, influ-

enciando diretamente a robustez e a resiliência das carteiras financeiras.

A mensuração do risco total de um portfólio composto por ativos expostos a diferentes

tipos de risco deve considerar suas dependências. De acordo com (EMBRECHTS; FURRER;

KAUFMANN, 2009), a modelagem da dependência é elemento central na gestão quantitativa

do risco. Na maioria dos casos, assumir independência entre os instrumentos que compõem o

portfólio é simplista e não realista.

O desenvolvimento de metodologias mais sofisticadas para agregação de riscos tem sido

impulsionado por crises financeiras, avanços em modelagem estatística e aperfeiçoamento dos

requerimentos regulatórios impostos por órgãos como o Comitê de Basileia. A busca por abor-

dagens mais precisas e coerentes reflete a necessidade de capturar as interdependências entre

diferentes fatores de risco, evitando subestimações que possam comprometer a solvência das

instituições ou superestimações que ensejam na alocação ineficiente do capital.

Em uma carteira diversificada, é comum que as instituições possuam exposições em uma

mesma contraparte por meio de diferentes ativos como, por exemplo, ações de determinada

empresa e debêntures emitidas pela mesma empresa.

2



§1.0.

Cada título possui suas características intrínsecas e é monitorado conforme os riscos aos

quais estão sujeitos. As ações estão sujeitas ao risco de mercado, uma vez que são sensíveis

a variações de preços, taxas de juros e índices. As debêntures, por sua vez, estão sujeitas ao

risco de crédito, uma vez que o risco vinculado ao ativo é o de inadimplemento da contraparte.

Por esse motivo, este trabalho explora as característica das distribuições marginais (de risco de

mercado e de crédito), de forma que as modelagens reflitam os fatos estilizados de cada série.

Uma mesma contraparte, portanto, pode agregar riscos diferentes à carteira, e a mensuração

e acompanhamento desse risco agregado é importante para a visão consolidada do impacto de

cada contraparte na carteira sob a ótica do risco. A falta dessa visão pode levar a interpretações

equivocadas quanto ao risco de cada contraparte, se considerar apenas a exposição em termos

de valores financeiros. Assim, a mensuração do risco agregado traduz de forma mais precisa

a vulnerabilidade produzida por cada contraparte, além de mitigar, de forma mais eficiente,

concentrações excessivas que possam comprometer a solvência da instituição.

Alguns estudos de agregação inter-risco que abordam mercado e crédito se devem a (RO-

SENBERG; SCHUERMANN, 2006), que agregam, além de risco de crédito e mercado, o risco

operacional por meio das cópulas normal e t. Para os riscos de crédito e de mercado, estimam-se

os retornos em função de fatores de risco por meio de dados em painel e GARCH. Os retornos

utilizados como variáveis resposta para risco de mercado são as receitas relativas dos ativos

com negociação em relação ao saldo. Para risco de crédito, utilizou-se como proxy do retorno

a receita líquida dos títulos de crédito menos eventuais provisões (como proxy de perdas in-

corridas). (HILLEBRAND; BöCKER, 2008) combinam risco de crédito (Modelo de Merton

Fatorial) com risco de mercado (Modelo Fatorial Linear) e investigam a dependência por meio

de cópula gaussiana. Os autores utilizaram a distribuição de perdas como distribuição mar-

ginal para o risco de crédito e o histórico do indicador Preço/Lucro em função de variáveis

macroeconômicas para o risco de mercado. (ALBUQUERQUE, 2010) utiliza dados de risco

de mercado, crédito e operacional para obter o VaR agregado de uma instituição financeira. O

risco de mercado é representado por perdas e ganhos diários em transações de títulos, ações, etc.

3



cap. 1. Introdução §1.0.

O risco de crédito é representado por perdas relacionadas às operações que houveram default.

O autor utiliza a distribuição t para o risco de mercado e a lognormal para os demais, descon-

siderando a autocorrelação dos dados. Posteriormente, o autor utiliza cópula hierárquica para

agregar os três tipos de risco. (LIANG et al., 2013) ajustam um modelo de cópula condicional

aos fatores comuns para a integração do risco de crédito e de mercado. Ambas as distribuições

marginais utilizadas foram de demonstrações financeiras de instituições financeiras. (LI et al.,

2015) agregam os riscos de crédito, mercado e operacional para cálculo do VaR do portfólio.

Ao desconsiderar a autocorrelação dos dados em cada marginal, os autores utilizam as distribui-

ções de perda como sendo a beta, normal e log-normal para cada tipo de risco, respectivamente.

Algumas cópulas são ajustadas para cálculo do VaR e para a mensuração do efeito da diversifi-

cação. (MARRI; MOUTANABBIR, 2022) propuseram, para o cálculo do VaR e ES agregado

de n riscos quaisquer, a cópula Clayton com marginais Pareto e a cópula de Bernstein n-variada

com marginais Gamma.

Ante o exposto, para uma carteira exposta a risco de mercado e risco de crédito, é possível

resumir o cálculo do risco agregado da seguinte forma: a primeira etapa é definir as variáveis que

representarão cada risco; a segunda etapa é modelar cada variável para obter sua distribuição

marginal; a terceira etapa é ajustar a cópula apropriada às distribuições; e a quarta etapa é

calcular a medida de risco.

(LI et al., 2015) relata a dificuldade na obtenção de dados para a modelagem dos riscos.

Assim, comumente os autores utilizam proxies com variáveis disponíveis para representar o

risco de mercado e de crédito da melhor forma possível.

Após a definição das variáveis, para ambas as distribuições marginais, os autores geralmente

utilizam modelos fatoriais, modelos GARCH e distribuições que desconsideram a autocorrela-

ção da série. Para o risco de crédito, os artigos consideram, entre outros modelos, o Modelo de

Merton para o cálculo da PD.

Estudos posteriores desenvolveram teorias que visam superar algumas desvantagens no uso

do Modelo de Merton. O Modelo de Black-Cox de Primeira Passagem (BLACK; COX, 1976)

4
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é pioneiro nessa categoria, ao considerar que o default ocorre no primeiro evento de ultrapassa-

gem do limite, e não apenas no vencimento. (FAN; SUNDARESAN, 2000) desenvolveram um

modelo que incorpora o papel dos credores e da renegociação de dívidas na dinâmica do default.

Os autores utilizam teoria dos jogos para modelar as interações estratégicas entre acionistas e

credores, permitindo a barganha sobre a reestruturação da dívida e introduzindo um ponto de

gatilho endógeno para renegociação. Além disso, o modelo diferencia default estratégico e

default por liquidez, mostrando como cláusulas contratuais, como restrições ao pagamento de

dividendos, influenciam a capacidade da empresa de evitar a falência. (ZHOU, 2001) incorpo-

rou processos de salto à dinâmica do preço dos ativos. O estudo de (BHARATH; SHUMWAY,

2008) conclui, por meio de análise empírica, que a adição de variáveis independentes adicionais

melhora a performance de previsão do default. Para isso, os autores utilizam modelos de riscos

proporcionais de Cox em que a variável dependente é o tempo até o default.

No contexto de agregação de riscos, a metodologia de cópulas é amplamente utilizada, e os

autores comumente testam alguns ajustes. Por fim, as medidas VaR e ES são utilizadas para o

cálculo de risco agregado.

Este trabalho tem como objetivo revisar detalhadamente e aplicar uma metodologia para a

agregação dos riscos de mercado e de crédito. A abordagem adotada considera a perspectiva

do risco associado a cada contraparte que contribui com ambos os riscos em um portfólio —

visão ainda pouco explorada na literatura. Ao estender essa metodologia para uma carteira

diversificada, será possível quantificar a contribuição específica de cada contraparte para o risco

total.

De maneira marginal, no caso do risco de mercado, quando os dados são considerados

independentes e identicamente distribuídos (i.i.d.), os retornos apresentam caudas pesadas e são

bem ajustados pela família de distribuições alfa-estáveis. No entanto, na ausência da hipótese de

i.i.d., uma das formas de se ajustar os retornos é por meio de modelos de séries temporais, como

o GARCH com inovações alfa-estáveis. Para a outra componente marginal, correspondente ao

risco de crédito, a probabilidade de default será determinada com base no modelo estrutural de

5



cap. 1. Introdução §1.0.

Merton e modelada pelo GARCH com inovações t-Student assimétrica (skew-t). Além disso,

será verificada a melhor cópula que se ajusta aos dados e, posteriormente, serão calculados o

VaR e o ES.

O trabalho está organizado da seguinte forma: os capítulos 2 a 6 apresentam revisão da

teoria base. O Capítulo 2 conceitua medidas de risco, define medidas coerentes de risco (Seção

2.1) e exemplifica com o VaR (Seção 2.2) e o ES (Seção 2.3), além de destacar a importância

do cálculo de medida para risco agregado (Seção 2.4).

O Capítulo 3 apresenta, de forma sucinta, a teoria das distribuições alfa-estáveis. O Capítulo

4 conceitua a teoria de cópulas, partindo da definição de funções de distribuição (Seção 4.1) para

a definição de cópula (Seção 4.2), e as seções 4.3, 4.4 e 4.5 apresentam as categoria de cópulas

elípticas, arquimedianas e de valores extremos, respectivamente.

Os capítulos 5 e 6 conceituam aspectos sobre a gestão quantitativa de riscos. No Capítulo 5,

a Seção 5.1 trata da definição de risco de mercado e a Seção 5.2 introduz a teoria sobre GARCH.

No Capítulo 6, a Seção 6.1 trata da definição de risco de crédito, a Seção 6.2 abarca a probabi-

lidade de default calculada pelo Modelo de Merton, associado ao Modelo de Black & Scholes

e, por sua vez, ao Movimento Browniano Geométrico; a Seção 6.3 aborda a probabilidade de

default do Modelo de Merton com a adição de saltos no processo de preço do ativo, definidos

pelo Processo de Lévy.

O Capítulo 7 apresenta o processo de análise na Seção 7.1 e o método de cálculo da medida

de risco agregado, proposta por (LU; LAI; LIANG, 2014), que se refere a algoritmo baseado

em projeção das marginais GARCH (Seção 7.2).

O Capítulo 8 demonstra aplicação da teoria exposta por meio de um estudo de caso com a

contraparte Localiza S.A., entre outras.

6



Capítulo 2

Medidas de Risco

De forma intuitiva, medidas de risco são ferramentas usadas para quantificar o risco, sendo ne-

cessárias para qualquer estratégia de proteção. (ARTZNER et al., 1999) propõem axiomas que

caracterizam medida coerente de risco, importantes para que a medida seja matematicamente

bem comportada, evitando contradições ou resultados inconsistentes.

De acordo com (ROSENBERG; SCHUERMANN, 2006), risco é o potencial desvio de

resultados esperados, particularmente desvios adversos. Por trás de qualquer projeção de fluxo

de caixa, lucros esperados ou expectativa de variação no valor de ativos, há uma distribuição de

probabilidade associada aos potenciais resultados.

De acordo com os autores, a magnitude relativa do risco pode ser definida pela medida

do spread ou dispersão, como o desvio padrão ou variância. Contudo, a variância não é, ne-

cessariamente, suficiente para captar o risco, uma vez que duas distribuições com formatos

diferentes podem ter a mesma variância. Assim, as medidas como assimetria e curtose podem

ser analisadas em paralelo. Outra abordagem citada pelos autores é a avaliação dos percentis

das distribuições, o que inclui a análise de medidas como o VaR e o ES.

7



cap. 2. Medidas de Risco §2.1. Medidas Coerentes de Risco

2.1 Medidas Coerentes de Risco

(ARTZNER et al., 1999) propõem quatro axiomas das medidas coerentes de risco para garantir

que uma medida seja matematicamente consistente e adequada para a gestão de riscos.

Axioma 2.1.1. Subaditividade. Para duas carteiras X e Y, a medida de risco ρ deve satisfazer:

ρ(X + Y ) ≤ ρ(X) + ρ(Y )

Este axioma reflete a ideia de que a combinação de duas posições não deve criar um risco

maior que a soma dos riscos individuais. Este conceito é coerente com a medida do efeito da

diversificação, proposto na Equação (1.1).

Axioma 2.1.2. Homogeneidade Positiva. Para uma posição X e um escalar λ > 0, a medida

de risco ρ deve satisfazer:

ρ(λX) = λρ(X)

Este axioma implica que o risco de uma posição escalada por um fator positivo λ é propor-

cional ao risco da posição original, o que garante que a medida de risco seja consistente em

relação ao tamanho da posição.

Axioma 2.1.3. Monotonicidade. Para duas posições X e Y, se X tem sempre um valor futuro

maior ou igual a Y em todos os cenários possíveis, então:

ρ(Y ) ≥ ρ(X)

Este axioma estabelece que, se uma posição X é sempre melhor (ou igual) a uma posição Y

em termos de valor futuro, então o risco de X deve ser menor ou igual ao risco de Y. Ou seja,

uma posição com resultados sempre melhores não devem ser considerada mais arriscada.

Axioma 2.1.4. Invariância à Translação. Para uma posição X e uma quantia certa α investida
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em um ativo livre de risco, a medida de risco ρ deve satisfazer:

ρ(X + α · r) = ρ(X)− α

em que r é o retorno do ativo livre de risco. Este axioma reflete a ideia de que adicionar uma

quantia certa α a uma posição reduz o risco pela mesma quantia. É importante para garantir que

a medida de risco considere o efeito de adicionar ativos seguros a uma carteira.

2.2 Value at Risk - VaR

(JORION, 2006) define VaR como a pior perda em um horizonte de tempo dado um nível de

confiança. A medida descreve o quantil α da distribuição de perdas projetadas para o horizonte

de tempo. Formalmente, (ARTZNER et al., 1999) definem:

V aRα(X) = − inf{x|P (X ≤ x) ≥ α} (2.1)

Apesar de amplamente utilizada, a medida possui duas principais desvantagens. A primeira

é a falta de mensuração do valor da perda após o limiar dado pelo quantil. O VaR informa

apenas a perda máxima no nível de confiança escolhido, mas não possui informação sobre o

tamanho das perdas além desse ponto. Isso pode levar a uma subestimação do risco em cenários

extremos.

A segunda desvantagem é que o VaR não obedece ao axioma 2.1.1 de subaditividade e, por-

tanto, não é uma medida coerente de risco. Isso significa que o VaR de uma carteira combinada

pode ser maior que a soma dos VaRs individuais.

2.3 Expected Shortfall - ES

O Expected Shortfall (ES), é proposto pelos autores como alternativa ao VaR. O ES mede a

perda média esperada nos piores cenários, além do nível de confiança do VaR.
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cap. 2. Medidas de Risco §2.4. Medidas de Risco Agregado

ESα(X) = −E[X|X ≤ −V aRα(X)] (2.2)

O ES satisfaz todos os quatro axiomas das medidas de risco coerentes, o que o torna uma

medida mais conservadora e adequada para capturar riscos extremos.

2.4 Medidas de Risco Agregado

Em carteiras diversificadas, os diferentes tipos de risco não agem de forma isolada, mas in-

teragem de maneiras complexas. Nesse sentido, as medidas de risco podem ser calculadas

considerando a diversificação inter-risco. Sem essa medida, há o risco de sub ou superestimar

o risco total.

Assim como em (MARRI; MOUTANABBIR, 2022), seja X1, · · · , Xn componentes que

denotam as perdas oriundas de diferentes tipos de risco, então X1 + · · · + Xn representa a

perda agregada. A medida de risco agregado é calculada conforme abordado na Equação (1.1):

ϱ (
∑n

k=1Xk).

O Capítulo 8 apresentará a modelagem dos riscos de crédito e de mercado para a empresa

Localiza, entre outras, e o cálculo das medidas de risco VaR e ES considerando a estrutura de

dependência entre os riscos, que será modelada por meio de cópulas.

Os estudos em risco de mercado usualmente lidam com o comportamento de retorno dos

ativos. (MANDELBROT, 1963) demonstra que as flutuações especulativas de preços não se-

guem distribuições gaussianas, mas apresentam caudas longas compatíveis com distribuições

alfa-estáveis. O autor argumenta que a suposição de normalidade nos modelos financeiros clás-

sicos falha ao descrever eventos extremos. Sua abordagem baseada em distribuições estáveis

levou à introdução de modelos mais realistas para o comportamento de ativos financeiros.
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Capítulo 3

Distribuições Alfa-Estáveis

Enquanto a distribuição normal se impõe na modelagem de erros e flutuaçoes sob certas con-

dições, (LéVY, 1924) mostrou que existem outras distribuições que também são estáveis sob

aditivação, mas que possuem caudas mais pesadas. Em sua abordagem, a estabilidade de uma

distribuição significa que a distribuição da soma de um grande número de variáveis i.i.d. será

da mesma forma funcional, exceto por uma escala e um deslocamento.

Distribuições estáveis univariadas são caracterizadas por quatro parâmetros: α: índice de

estabilidade ou expoente característico; σ: parâmetro de escala; β: parâmetro de simetria; e µ:

parâmetro de locação.

A Figura 3.1 exemplifica o impacto dos parâmetros nas curvas de densidade.
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cap. 3. Distribuições Alfa-Estáveis §3.0.

Figura 3.1: Densidade alfa-estável

Se α < 2, a cauda da distribuição decai em uma função potência, o que implica em uma

distribuição de cauda pesada. Quando α = 2, a distribuição estável é a normal. σ é proporcional

ao desvio padrão, β pode ser considerado zero no caso de distribuições simétricas e µ é a média.

(SAMORODNITSKY; TAQQU, 1994) definem distribuições estáveis de formas diferentes.

A primeira se refere ao contexto do Teorema Central do Limite, no sentido de que distribuições

estáveis se aproximam da distribuição das somas de variáveis aleatórias i.i.d. normalizadas. A

segunda especifica a função característica de uma variável aleatória estável.

Definição 3.0.1. Uma variável aleatória X possui distribuição estável se esta possui domínio

de atração, isto é, se existe uma sequência de variáveis aleatórias Y1, Y2, ... i.i.d. e sequências

de números positivos {bn} e números reais {an} tais que

Sn − an
bn

d−→ X.

As variáveis Yi pertencem ao domínio de atração da normal X (X ∈ DA(α)) quando

bn = n1/α. Em geral, bn = n1/αh(n) em que h(x), x > 0 é uma função lentamente variante no
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infinito, ou seja, limx→∞ h(ux)/h(x) = 1 para todo u > 0 (FELLER, 1971), XVII.5.

Teorema 3.0.1. Teorema Central do Limite Generalizado, (EMBRECHTS; KLüPPELBERG;

MIKOSCH, 1997). Suponha que F ∈ DA(α) para algum α ∈ (0, 2].

Se E(Y 2) < ∞, então α = 2.

Sn − nE(Y1)√
n.var(Y1)

d−→ X ∼ N(0, 1).

Se E(X2) = ∞ ou se α < 2, então

Sn − an
n1/αh(n)

d−→ X ∼ Sα(σ, β, µ),

em que h(n) é uma função lentamente variante no infinito.

Definição 3.0.2. Uma variável aleatória X possui distribuição estável se houver 0 < α ≤ 2,

σ ≥ 0, −1 ≤ β ≤ 1 e µ real tal que sua função característica é dada por:

E(eiθX) =


exp
{
−σα|θ|α(1− iβ(signθ)tanπα

2
) + iµθ}, se α ̸= 1

exp
{
−σ|θ|(1 + iβ 2

π
(signθ) ln |θ|+ iµθ}, se α = 1

(3.1)

Em que pese a função característica definida na Equação (3.1), a densidade de probabilidade

de uma distribuição alfa-estável não possui, em geral, expressão analítica fechada. Isso torna

a sua manipulação e análise mais complexas do que as distribuições usuais. Assim, (NOLAN,

1997) propõe método numérico para determinar a densidade de probabilidade.

Para o cálculo das medida de risco de mercado e de crédito agregados, é necessário o co-

nhecimento da distribuição conjunta das séries. Nesse sentido, a distribuição será calculada

baseada no método de cópulas, considerando o melhor ajuste em termos de concentração dos

dados e de dependência caudal.
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Capítulo 4

Cópulas

4.1 Função de Distribuição

No contexto unidimensional, (JAMES, 2023) define função de distribuição da seguinte forma:

Definição 4.1.1. A função de distribuição da variável aleatória X , representada por FX ou

simplesmente por F , é definida por

FX(x) = P (X ≤ x), x ∈ R.

Ainda, se X é uma variável aleatória, sua função de distribuição F possui as seguintes

propriedades:

Propriedade 4.1.1.

1. x ≤ y ⇒ F (x) ≤ F (y), i.e., F é não decrescente;

2. Se xn ↓ y, então F (x) ↓ F (y), i.e., F é contínua à direita;

3. Se xn ↓ −∞, então F (xn) ↓ 0. Se xn ↑ +∞, então F (xn) ↑ 1. (Logo, pode-se escrever

F (−∞) = 0, F (+∞) = 1.)

No contexto n-dimensional, o autor define função de distribuição da seguinte forma:
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§4.1. Função de Distribuição

Definição 4.1.2. A função de distribuição de F = FX = FX1,...,Xn de um vetor aleatório X =

(X1, ..., Xn) é assim definida:

F (x) = F (x1, ..., xn) = P (X1 ≤ x1, ..., Xn ≤ xn), ∀(x1, ..., xn) ∈ Rn

Da mesma forma, a função de distribuição do vetor aleatório, também chamada de função de

distribuição conjunta das variáveis aleatórias X1, ..., Xn, obedecem às seguintes propriedades:

Propriedade 4.1.2.

1. F (x1, ..., xn) é não decrescente em cada uma das variáveis;

2. F (x1, ..., xn) é contínua à direita em cada uma das variáveis;

3. Para todo i,

lim
xi→−∞

F (x1, ..., xn) = 0.

Também,

lim
∀i,xi→+∞

F (x1, ..., xn) = 1;

4. ∆1,I1 . . .∆n,InF (x1, ..., xn) ≥ 0 ∀Ik = (ak, bk], ak < bk, k = 1, ..., n.

A propriedade 4, necessária quando n ≥ 2, é a formulação da propriedade P (a1 < X1 ≤

b1, ..., an < Xn ≤ bn) ≥ 0 e representa o volume da função em termos do operador de diferença

∆. Para n = 2, por exemplo, a propriedade pode ser representada da seguinte forma:

VF ([a, b]) = ∆1,I1∆2,I2F (x, y)

= ∆1,I1 (∆2,I2F (x, y))

= F (b1, b2)− F (b1, a2)− [F (a1, b2)− F (a1, a2)] ≥ 0
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Diz-se, portanto, que uma função que satisfaz as quatro propriedades listadas é uma fun-

ção de distribuição de um vetor aleatório, isto é, as quatro propriedades são suficientes para

caracterizar funções de distribuição.

De acordo com (EMBRECHTS; MCNEIL; STRAUMANN, 2002), a dependência entre as

variáveis aleatórias X1, ..., Xn é completamente descrita por sua função de distribuição conjunta

F (x1, ..., xn).

A ideia da separação de F em partes que descrevem a estrutura de dependência e em partes

que descrevem o comportamento das distribuições marginais originou o conceito de cópulas,

introduzido por (SKLAR, 1959).

4.2 Definição

Conforme (JOE, 1997), cópula é uma função de distribuição multivariada cujas marginais uni-

variadas pertencem à distribuição uniforme U(0, 1). Assim, como a cópula C é uma função de

distribuição de um vetor aleatório, obedecem às propriedades 4.1.2.

Para uma distribuição n-variada F ∈ F(F1, ..., Fn), com distribuições marginais Fj , a có-

pula associada a F é a função de distribuição C : [0, 1]n → [0, 1] que satisfaz:

F (x1, ..., xn) = C(F1(x1), ..., Fn(xn)), x ∈ Rn (4.1)

(MCNEIL; FREY; EMBRECHTS, 2015) definem cópulas como:

Definição 4.2.1. Uma cópula n-dimensional é uma função de distribuição em [0, 1]n com dis-

tribuições marginais uniformes.

De acordo com os autores, a cópula obedece as seguintes propriedades:

1. C(u1, ..., un) = 0 se ui = 0 para qualquer i;

2. C(1, ..., 1, ui, 1, ..., 1) = ui para todo i ∈ {1, ..., n}, ui ∈ [0, 1];
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3. Para todo (a1, ..., an), (b1, ..., bn) ∈ [0, 1]n com ai ≤ bi, tem-se:

2∑
i1=1

· · ·
2∑

in=1

(−1)i1+···+inC(u1i1 , ..., unin) ≥ 0,

em que uj1 = aj e uj2 = bj para todo j ∈ {1, ..., n}.

A segunda propriedade corresponde à condição de distribuição uniforme das marginais. As

três propriedades caracterizam a cópula, ou seja, se a função C às obedece, então C é cópula.

Como cópulas são funções de distribuição (em [0, 1]n), a cópula C induz uma medida de

probabilidade em [0, 1]n dada por

VC([0, u1]× · · · × [0, un]) = C(u1, ..., un).

De acordo com (EMBRECHTS; HöING; JURI, 2003), a Equação (4.1) diz que a cópula

C separa os comportamentos das marginais dadas por F1, ..., Fn da dependência contida na

função de distribuição F . A motivação para denominar a cópula como estrutura de dependência

é resultante do Teorema de Sklar, principal resultado no estudo das cópulas.

Teorema 4.2.1. Teorema de Sklar. Seja F uma função de distribuição n-dimensional com

marginais F1, ..., Fn. Então existe uma n-cópula C tal que para todo x em R̄n,

F (x1, ..., xn) = C(F1(x1), ..., Fn(xn)). (4.2)

Se F1, ..., Fn são todas contínuas, então C é única; caso contrário, C é unicamente determi-

nada em RanF1 × ... × RanFn. Por outro lado, se C é uma n-cópula e F1, ..., Fn são funções

de distribuição, então a função F é uma função de distribuição n-dimensional com marginais

F1, ..., Fn.

Pelo Teorema de Sklar, portanto, verifica-se que, para funções de distribuição multivariadas

contínuas, as marginais univariadas e a estrutura de dependência podem ser separadas, esta
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representada pela cópula.

Corolário 4.2.1. Seja F uma função de distribuição contínua n-dimensional com distribuições

marginais contínuas F1, ..., Fn e cópula C (em que C satisfaz a Equação (4.2)). Então para

qualquer u em [0, 1]n,

C(u1, ..., un) = F (F−1
1 (u1), ..., F

−n
n (un)).

Há diversas famílias de cópulas que podem ser utilizadas para modelar a dependência entre

variáveis aleatórias, cada uma com características distintas que as tornam mais adequadas a

diferentes contextos.

As cópulas elípticas, como a cópula gaussiana e a cópula t de Student, derivam de distribui-

ções elípticas e são utilizadas por sua simplicidade. No entanto, apresentam limitações, como a

falta de forma fechada e a impossibilidade de modelagem para fortes dependências entre gran-

des perdas ou grandes ganhos (valores extremos).

Há outra família de cópulas - as cópulas arquimedianas, como as cópulas de Clayton, Gum-

bel e Frank, que são construídas a partir de funções geradoras e se destacam por sua flexibilidade

e por permitirem modelar diferentes tipos de dependência assimétrica.

As cópulas de valores extremos, por sua vez, são capazes de modelar adequadamente a

dependência em situações extremas, especialmente em contextos de eventos raros.

4.3 Cópulas Elípticas

Distribuições elípticas são extensões da distribuição normal multivariada Nn(µ,Σ), ou seja,

com média µ e matriz de covariância Σ. (EMBRECHTS; LINDSKOG; MCNEIL, 2003) defi-

nem a classe de cópulas elípticas da seguinte forma:

Definição 4.3.1. Se X é um vetor aleatório n-dimensional e se, para algum µ ∈ Rn e para

alguma matriz Σ, n × n, simétrica, definida e não negativa, a função característica φX−µ(t) de
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X − µ é uma função quadrática da forma tTΣt, φX−µ(t) = ϕ(tTΣt), então diz-se que X possui

distribuição elíptica com parâmetros µ, Σ e ϕ: X ∼ En(µ,Σ, ϕ).

Distribuições elípticas são unicamente determinadas por µ, Σ e ϕ. Por outro lado, as cópulas

oriunda de vetor aleatório com distribuição elíptica não-degenerada é unicamente determinada

por R e ϕ.

A cópula referente à distribuição normal n-variada com matriz de correlação R (Rij =

Σij/
√
ΣiiΣjj) é

CGa
R (u) = Φn

R(Φ
−1(u1), ...,Φ

−1(un)),

em que Φn
R denota a função de distribuição conjunta da distribuição normal padrão n-variada

com matriz de correlação linear R, e Φ−1 denota a inversa da função de distribuição normal

padrão univariada.

No caso bivariado, a expressão da cópula pode ser escrita como

CGa
R (u, v) =

∫ Φ−1(u)

−∞

∫ Φ−1(v)

−∞

1

2π(1−R2
12)

1/2
exp

(
−s2 − 2R12st+ t2

2(1−R2
12)

)
ds dt,

em que R12 é o coeficiente de correlação linear correspondente à distribuição bivariada.

Outra cópula da classe elíptica frequentemente utilizada é a cópula t. Se X possui represen-

tação estocástica dada por

X d
= µ+

√
ν√
S

Z, (4.3)

em que µ ∈ Rn, S ∼ χ2
ν e Z ∼ Nn(0,Σ) são independentes, então X possui distribuição tν

n-variada com média µ (para ν > 1) e matriz de covariância ν
ν−2

Σ (para ν > 2). Se ν ≤ 2,

então Cov(X) não é definida. Nesse caso, Σ é interpretado como o parâmetro de forma da

distribuição de X.

19



cap. 4. Cópulas §4.4. Cópulas Arquimedianas

A cópula de X, dada na Equação (4.3), é representada por

Ct
ν,R(u) = tnν,R(t

−1
ν (u1), ..., t

−1
ν (un)),

em que Rij = Σij/
√
ΣiiΣjj, para i, j ∈ {1, ..., n}, e tnν,R denota a função de distribuição de

√
νY/

√
S, em que S ∼ χ2

ν e Y ∼ Nn(0, R) são independentes. tν denota as marginais de tnν,R,

ou seja, a função de distribuição de
√
νY1/

√
S.

No caso bivariado, a expressão da cópula pode ser escrita como

Ct
R(u, v) =

∫ t−1
ν (u)

−∞

∫ t−1
ν (v)

−∞

1

2π(1−R2
12)

1/2

{
1 +

s2 − 2R12st+ t2

ν(1−R2
12)

}−(ν+2)/2

ds dt,

em que R12 é o coeficiente de correlação linear correspondente à distribuição bivariada tν se

ν > 2.

4.4 Cópulas Arquimedianas

A classe das cópulas arquimedianas, além de possuir forma fechada, possui uma variedade de

estrutura de dependência, o que permite maior flexibilidade em adequá-la aos dados. Diferente-

mente das cópulas elípticas, as arquimedianas não são derivadas de distribuições multivariadas.

(NELSEN, 2006) define a classe de cópulas arquimedianas inicialmente pelo conceito de

função pseudo-inversa de φ.

Definição 4.4.1. Seja φ uma função contínua e estritamente decrescente de I para [0,∞] tal que

φ(1) = 0. A pseudo-inversa de φ é a função φ[−1], com Domφ[−1] = [0,∞] e Ranφ[−1] = I,

dada por

φ[−1](t) =


φ−1(t), 0 ≤ t ≤ φ(0),

0, φ(0) ≤ t ≤ ∞.
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φ[−1] é contínua e não crescente em [0,∞], e estritamente decrescente em [0, φ(0)]. Além

disso, φ[−1](φ(u)) = u em I e

φ
(
φ[−1](t)

)
=


t, 0 ≤ t ≤ φ(0),

φ(0), φ(0) ≤ t ≤ ∞,

= min(t, φ(0)).

Ainda, se φ(0) = ∞, então φ[−1] = φ−1.

Teorema 4.4.1. Seja φ uma função contínua e estritamente decrescente de I para [0,∞] tal que

φ(1) = 0, e seja φ[−1] a pseudo-inversa de φ definido em 4.4.1. Seja C a função de I2 para I

dada por

C(u, v) = φ[−1](φ(u) + φ(v)).

Então C é cópula se e somente se φ é convexa. A prova pode ser encontrada em (NELSEN,

2006).

Cópulas da forma descrita no teorema 4.4.1 são chamadas de cópulas arquimedianas, com

a função φ sendo a geradora da cópula. Se φ(0) = ∞, diz-se que φ é um gerador estrito. Nesse

caso, φ[−1] = φ−1 e C(u, v) = φ−1(φ(u) + φ(v)) é dito ser uma cópula arquimediana estrita.

A tabela 4.1 apresenta as principais cópulas arquimedianas.

Tabela 4.1: Principais cópulas arquimedianas.

Cópula φθ(t) C(u, v) Domínio de θ

Clayton 1
θ
(t−θ − 1)

[
max(u−θ + v−θ − 1, 0)

]−1/θ
[−1,+∞) \ {0}

Frank − ln
(

e−θt−1
e−θ−1

)
−1

θ
ln
(
1 + (e−θu−1)(e−θv−1)

e−θ−1

)
(−∞,+∞) \ {0}

Gumbel (− ln t)θ exp(−[(− lnu)θ + (− ln v)θ]1/θ) [1,+∞)

Joe − ln
[
(1− (1− t)θ

]
1−

[
(1− u)θ + (1− v)θ − (1− u)θ(1− v)θ

]1/θ
[1,+∞)
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4.5 Cópulas de Valores Extremos

No contexto univariado do estudo de valores extremos, a Teoria dos Valores Extremos define

a distribuição dos máximos parciais de uma sequência Mn = max(X1, ..., Xn) de variáveis

aleatórias, ou seja, valores máximos das n primeiras observações.

Enquanto o Teorema Central do Limite foca na convergência da soma de variáveis aleató-

rias, (FISHER; TIPPETT, 1928) desenvolveram versão para os máximos.

Teorema 4.5.1. Fisher-Tippet. Seja X1, ..., Xn uma sequência de variáveis aleatórias i.i.d. Se

existem as constantes an > 0 e bn ∈ R, e alguma distribuição não degenerada G, tal que

(
Mn − bn

an

)
d→G,

então G pertence a uma das três distribuições de valores extremos:

Fréchet: Φα(x) =


0, x ≤ 0,

exp(−(x−µ
σ

)−α), x > 0,

α > 0

Weibull Negativa: Ψα(x) =


exp(−(−x

σ
)α), x ≤ 0,

1, x > 0,

α > 0

Gumbel: Λ(x) = exp(− exp(−x− µ

σ
)), x ∈ R.

A Figura 4.1 ilustra as densidades das distribuições.
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Figura 4.1: Densidades das distribuições de valores extremos

(JENKINSON, 1955) consolidou as três distribuições extremais em uma, denominada Ge-

neralized Extreme Value Distribution (GEV) a depender do parâmetro ξ = 1/α. Portanto,

trata-se de uma família de distribuições.

Gξ(x) =


exp[−(1 + ξ(x−µ

σ
)]−

1
ξ , ξ ̸= 0

exp(exp(−x−µ
σ

)), ξ = 0,

em que 1 + ξx > 0. Então:

ξ = α−1 > 0 ↔ Φα (Frechet);

ξ = −α−1 < 0 ↔ Ψα (Weibull Negativa);

ξ = 0 ↔ Λ (Gumbel).

Enquanto a GEV consolida as distribuições extremais univariadas, as cópulas de valores
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extremos apresentam o tratamento conjunto bivariado por meio de uma função de dependência.

(NELSEN, 2006) apresenta técnica que possibilita a transformação de uma cópula para ou-

tra. Seja (X1, Y1), ..., (Xn, Yn) pares de variáveis aleatórias i.i.d. com função de distribuição

conjunta comum H , cópula C e marginais F (para Xi) e G (para Yi). Para avaliar a distribu-

ição dos máximos X(n) = max{Xi} e Y(n) = max{Yi}, é necessário determinar a função de

distribuição H(n) e a cópula C(n) de X(n) e Y(n).

Como P (X(n) ≤ x) = P (todo Xi ≤ x) = (P (X1 ≤ x))n, então F(n) = [F (x)]n. De forma

similar, para Y(n), G(n)(y) = [G(y)]n. Portanto:

H(n) = P (X(n) ≤ x, Y(n) ≤ y)

= P (todo Xi ≤ x, todo Yi ≤ y)

= [H(x, y)]n

= [C(F (x), G(y))]n

= [C([F(n)(x)]
1/n, G(n)(y)]

1/n)]n.

Dessa forma,

C(n)(u, v) = Cn(u1/n, v1/n)

para todo u, v em [0, 1].

O limite da sequência {C(n)} implica na noção de cópula de valores extremos, o que resulta

na seguinte definição:

Definição 4.5.1. A cópula C∗ é uma cópula de valor extremo se existe a cópula C tal que

C∗(u, v) = lim
n→∞

Cn(u1/n, v1/n)
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para u e v em [0, 1]. Ademais, C é dito pertencer ao domínio de atração de C∗.

Nesse sentido, (NELSEN, 2006) demonstra procedimento proposto por (PICKANDS, 1981)

para a construção de cópulas de valores extremos. Se X e Y são variáveis aleatórias exponenci-

ais padrão com cópula de sobrevivência C extremal, então as funções de sobrevivência de X e

Y são F̄ (x) = e−x, x > 0, e Ḡ(y) = e−y, y > 0, respectivamente, e a função de sobrevivência

conjunta é dada por

H̄(x, y) = P (X > x, Y > y)

= C(e−x, e−y).

Como C é de valor extremo,

H̄(rx, ry) = Cr(e−x, e−y)

= [H̄(x, y)]r,

para qualquer r > 0 real. Seja a função A : [0, 1] → [1/2, 1] definida como:

A(t) = − ln
(
C(e−(1−t), e−t)

)
,

ou, de forma equivalente, C(e−(1−t), e−t) = exp{−A(t)}. Ao empregar a mudança de variáveis

(x, y) = (r(1− t), rt), para r > 0 e t ∈ (0, 1), ou, de forma equivalente, (r, t) = (x+y, y/(x+

y)), tem-se:
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H̄(x, y) = H̄(r(1− t), rt)

= [H̄(1− t, t)]r

= Cr(e−(1−t), e−y)

= exp{−rA(t)}

= exp

{
−(x+ y)A

(
y

x+ y

)}
.

Como C(u, v) = H̄(− lnu,− ln v), então

C(u, v) = exp

{
ln(uv)A

(
ln v

ln(uv)

)}
(4.4)

para uma escolha apropriada da função A, denominada função de dependência da cópula de

valor extremo C, respeitada as seguintes condições:

1. A(0) = A(1) = 1;

2. max{t, 1− t} ≤ A(t) ≤ 1; e

3. A é convexa.

Verifica-se que as distribuições marginais de (X,Y ) podem ser de diversas famílias. Em

geral, X ∼ F e Y ∼ G, então H(x, y) = C(F (x), G(y)), em que C satisfaz a (4.4), é uma

distribuição bivariada baseada em uma cópula extremal cujas componentes não necessariamente

são distribuições GEV.

(ESCHENBURG, 2013) realizou pesquisa das propriedades das cópulas extremais e apre-

sentou exemplos de cópulas, resumidos na Tabela 4.2.
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Tabela 4.2: Exemplos de cópulas extremais.

Cópula A(t) Parâmetro

Marshall-Olkin max{1− α1(1− t), 1− α2t} 0 ≤ α1, α2 ≤ 1

t-EV (1− t) · Tν+1(z1−t) + t · Tν+1(zt), ν > 0,−1 < ρ < 1

zt = (1 + ν)1/2
([

t
1−t

]1/ν − ρ
)
(1− ρ2)−1/2

Tawn θt2 = θt+ 1 θ ≥ 1, α ∈ [0, 1]
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Capítulo 5

Risco de Mercado

5.1 Definição

De acordo com (JORION, 2006), risco de mercado é o risco de perdas devido a movimentos no

nível ou volatilidade de preços de mercado. Ele envolve exposições em variáveis financeiras e

suas movimentações, como preço de ações, taxa de juros, taxa de câmbio, preço de commodities,

exposições cobertas (hedge) ou a volatilidade.

(ROSENBERG; SCHUERMANN, 2006) apontam que risco de mercado é conhecido por

ser dependente do tempo, o que reflete em sua volatilidade estocástica. De acordo com (SHIM;

LEE, 2017), o modelo GARCH(1,1) é o mais comumente usado para modelar heteroscedastici-

dade em séries de dados financeiros e clusters de volatilidade. Ainda, os autores citam aumento

na literatura que indica que retornos financeiros são usualmente assimétricos e de caudas pesa-

das e, por isso, aplicam a distribuição t-Student assimétrica (skew-t) nos resíduos do GARCH.

A Seção 5.2 apresenta, de forma sucinta, a teoria envolvida.

5.2 GARCH

No contexto de modelagem de séries que apresentam heteroscedasticidade, (ENGLE, 1982)

propõe o modelo ARCH (Autoregressive Conditional Heteroscedasticity), que permite que a

28



§5.2. GARCH

variância condicional dependa das informações passadas da série.

Posteriormente, (BOLLERSLEV, 1986) generalizou o conceito ao propor o Generalized

ARCH - GARCH (Generalized Autoregressive Conditional Heteroskedasticity), no qual a vari-

ância condicional também depende de seus próprios valores passados.

Os modelos GARCH permitem capturar a dependência temporal na volatilidade, aspecto

importante na modelagem de risco. O modelo GARCH(1,1) é definido da seguinte forma:

rt = µ+ εt

εt = ηt
√
ht, ηt ∼ i.i.d.(0, 1)

ht = ω + αε2t−1 + βht−1

em que:

• rt é o retorno no tempo t;

• µ é a média condicional dos retornos;

• εt é o resíduo no tempo t;

• ηt é o resíduo padronizado, com média zero e variância unitária;

• ht é a variância condicional no tempo t; e

• ω, α, e β são parâmetros do modelo GARCH:

– ω representa a variância incondicional de longo prazo;

– α captura o impacto dos choques recentes (resíduos ao quadrado) na volatilidade

atual; e

– β captura a persistência da volatilidade, ou seja, o impacto da volatilidade passada

na volatilidade atual.
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Capítulo 6

Risco de Crédito

6.1 Definição

(JORION, 2006) define risco de crédito como risco de perda financeira devido à falha da con-

traparte em cumprir suas obrigações contratuais. Há três fatores incluídos no risco de crédito:

1. Risco de default: risco de inadimplência da contraparte, medido pela probabilidade de

default (Probability of Default - PD);

2. Risco de exposição ao crédito: risco de flutuações no valor de mercado da cobrança sobre

a contraparte. Em caso de inadimplência, também é conhecido como exposição ao default

(Exposure at Default - EAD); e

3. Risco de recuperação: incerteza na fração da cobrança recuperada após a inadimplência,

medida pelo complementar da perda dado o default (Loss Given Default - LGD).

A curva de perda esperada (Expected Loss - EL) de risco de crédito é, então, dada pela

combinação desses fatores:

EL = PD × EAD × LGD. (6.1)
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Para este trabalho, o foco da modelagem será no risco de default. Uma das formas de se

determinar a PD é por meio de modelos estruturais, cujo valor do ativo é representado por um

processo estocástico {VT}t≥0 e o default ocorre quando esse valor ultrapassa determinado limiar

(PD = P (Vt > B)), como o valor do passivo da contraparte. A abordagem de Merton para a

precificação de opções do tipo Europeia contempla o termo PD.

Este capítulo apresenta expressões para a PD oriunda de dois modelos: o Modelo de Merton,

cuja base é o Movimento Browniano Geométrico (apresentado no Apêndice A); e o Modelo de

Merton baseado no Processo de Lévy (apresentado no Apêndice E).

6.2 PD - Modelo de Merton - Movimento Browniano Geométrico

A Equação de Black & Scholes é um modelo dinâmico de precificação de ativos em tempo con-

tínuo. O modelo foi desenvolvido por Black e Scholes (BLACK; SCHOLES, 1973) e expandido

por (MERTON, 1973).

A intuição quanto à precificação de um ativo de risco é que, inicialmente, sua evolução no

tempo seria sua média, proporcional ao intervalo de tempo avaliado (µdt). Contudo, sabe-se que

ativos financeiros não possuem comportamento linear. Portanto, à essa intuição determinística,

adiciona-se um componente aleatório que representa o comportamento real dos ativos no tempo.

Uma das premissas do Modelo de Black & Scholes é que a dinâmica dos valores dos ativos

segue o Movimento Browniano Geométrico (Apêndice A). Ou seja,

dVt

Vt

= µdt+ σV dWt (6.2)

representa a variação do valor do ativo em termos do retorno médio µ e do choque aleatório

dado pelo processo estocástico {Wt}, escalonado pela volatilidade σV .

A solução da Equação (6.2), demonstrada no Apêndice B, é dada por:

VT = Vt exp

[(
µ− 1

2
σ2
V

)
(T − t) + σV (WT −Wt)

]
. (6.3)
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De (6.3), tem-se que:

ln

(
VT

Vt

)
=

(
µ− 1

2
σ2
V

)
(T − t) + σV (WT −Wt).

Isto é, no Modelo de Black & Scholes, o retorno logarítmico do ativo segue o processo

Gaussiano, conforme:

RT = ln

(
VT

Vt

)
= N

[(
µ− 1

2
σ2
V

)
(T − t), σ2

V (T − t)

]
. (6.4)

De forma equivalente,

VT = Vte
RT .

A Equação (6.3), além de precificar o ativo subjacente, permite, também, precificar deri-

vativos, que são contratos cujo pagamento é realizado em data futura e cujo valor depende de

um determinado ativo-objeto. No mercado financeiro, há derivativos com base em preço de

ação, de commodities, câmbio, índices financeiros, entre outros. O valor do título derivativo,

portanto, pode ser representado por uma função do valor do ativo-objeto f(VT ), calculado com

base no valor esperado do payoff (valor líquido recebido ou pago no vencimento) descontado a

certa taxa de desconto. Ou seja,

E(payoff) = E(f(VT )). (6.5)

O Modelo de Black & Scholes foi formulado no contexto de neutralidade do risco e, por-

tanto, o payoff do título derivativo é descontado à taxa livre de risco (r) sob capitalização em

tempo contínuo. Assim,
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PT = e−r(T−t)E(f(VT )). (6.6)

Um tipo específico de derivativo são as opções, modalidade em que o titular do título detém

um direito e o lançador uma obrigação. No caso de uma opção de compra (call), o titular

detém o direito de comprar o ativo-objeto pelo preço acordado e o titular detém a obrigação de

vendê-lo.

Merton desenvolveu a teoria para cálculo da probabilidade de default de uma contraparte

com base no Modelo de Black & Scholes para precificação de opções (MERTON, 1974). De

acordo com (MCNEIL; FREY; EMBRECHTS, 2015), o Modelo de Merton é o protótipo da

classe dos modelos estruturais, em que o default ocorre quando o ativo ultrapassa determinado

valor limite.

A empresa pode financiar seus ativos de duas formas: por meio de dívida (passivo), cujos

detentores dos direitos são os credores; e por meio de emissão de ações (patrimônio líquido),

cujos direitos pertencem aos acionistas. Os acionistas, nesse cenário, possuem responsabilidade

limitada ao capital investido. Ainda, assume-se que a companhia não paga dividendos nem

emite novas dívidas.

No Modelo de Merton, o passivo é representado por um título zero-cupom com vencimento

em T cujo valor de face é a constante B e cujo patrimônio líquido é representado por St. O

valor do ativo (passivo + patrimônio líquido) é representado pelo processo estocástico {Vt}t≥0.

O objetivo dos modelos estruturais é avaliar a variação do ativo da companhia no tempo.

Caso o valor do ativo supere o valor do passivo no vencimento, companhia possui recursos

suficientes para honrar com suas dívidas. Por outro lado, se, no tempo T , o ativo for menor que

o valor do passivo, tem-se o evento de default. Ou seja, nesse caso, a companhia não é capaz de

honrar o pagamento das dívidas. (MCNEIL; FREY; EMBRECHTS, 2015) demonstram esses

dois cenários no tempo T :

1. VT > B: o valor dos ativos da empresa supera o valor nominal do passivo. Nesse caso, os
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credores são plenamente pagos em relação ao valor da dívida B e os acionistas recebem

o valor residual ST = VT −B;

2. VT ≤ B: o valor dos ativos não é suficiente para o pagamento integral da dívida. Dada

a responsabilidade limitada dos acionistas, estes não possuem interesse em prover capital

adicional à empresa, uma vez que os recursos seriam direcionados aos credores. Assim, o

controle da companhia é transferido aos credores, que liquidam a empresa e distribuem o

valor entre si. Dessa forma, os credores recebem o valor dos ativos no tempo T (BT = VT )

e os acionistas, por zerarem suas posições, não recebem recursos (ST = 0).

As duas classificações de opções mais comuns baseadas nas regras de exercício é a ameri-

cana e a europeia. A primeira permite que o titular a exerça a qualquer momento até a data do

vencimento, enquanto a segunda permite o exercício apenas no vencimento.

A representação do Modelo de Merton implica que o valor do patrimônio líquido da empresa

no tempo T (ST ) equivale ao payoff de uma opção de compra do tipo europeia, com preço de

exercício igual a B.

Assim, caso o preço do ativo-objeto (VT ) seja maior que o preço de exercício (B) no ven-

cimento T , o payoff do titular do título é de VT − B, ou seja, o titular compra o ativo por B e

o vende no mercado por VT . Contudo, caso o preço do ativo-objeto seja menor que o preço de

exercício no vencimento, a opção não é exercida e o payoff da operação é zero.

Portanto, segundo definição do payoff em (6.5),

f(VT ) = (VT −B)I(VT>B)

= VT I(VT>B) −BI(VT>B).

Logo, conforme (6.6),
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Pcall = e−r(T−t)E((VT −K)I(VT>K)),

em que

E((VT −B)I(VT>B)) = E(VT I(VT>B))−BE(I(VT>B)). (6.7)

O segundo termo de (6.7) fornece o complementar da probabilidade de default (PD), ou seja,

a probabilidade de que o valor do ativo V da companhia seja inferior ao valor de suas dívidas

B no tempo T . Ou seja,

E(I(VT>B)) = P (VT > B)

= 1− P (VT ≤ B)

= 1− P

(
VT

Vt

≤ B

Vt

)

Da Equação (6.4), segue que:

E(I(VT>B)) = 1− P

(
ln

(
VT

Vt

)
≤ − ln

(
B

Vt

))
= 1− Φ

(
ln(Vt

B
)− (r − 1

2
σ2
V )(T − t)

σV

√
T − t

)

= Φ

(
ln(Vt

B
) + (r − 1

2
σ2
V )(T − t)

σV

√
T − t

)
,

sendo Φ(z) = P (Z ≤ z), Z ∼ N(0, 1).

Assim, de forma complementar,

P (VT ≤ B) = Φ(−d2), (6.8)
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em que

d2 =
ln(Vt

B
) + (r − 1

2
σ2
V )(T − t)

σV

√
T − t

.

No cenário brasileiro, empresas com capital aberto e que possuem negociação em bolsa

dispõem de algumas informações públicas que permitem o cálculo de sua probabilidade de

default pelo Modelo de Merton. O valor do passivo B, por exemplo, pode ser obtido por meio

das demonstrações financeiras divulgadas trimestralmente.

De acordo com (BHARATH; SHUMWAY, 2008), apesar de algumas aplicações do modelo

considerarem o valor do ativo Vt como observável, ele não é diretamente obtido pelas informa-

ções públicas e, portanto, deve ser inferido. Ainda, a volatilidade observada nas negociações

das ações no mercado equivalem à volatilidade do patrimônio líquido σS e não do ativo σV e,

então, esse valor também deve ser inferido. Conforme exposto pelos autores, é possível relacio-

nar a volatilidade do ativo σV com a volatilidade do patrimônio líquido σS por meio da seguinte

relação:

σS =

(
V

S

)
Φ(d1)σV . (6.9)

Algumas abordagens foram propostas para a otimização do sistema de equações formado

por (6.9) e (6.10) para se obter os valores de Vt e σV , como citado pelos autores.

ST = VtΦ(d1)− e−r(T−t)BΦ(d2), (6.10)

em que d1 é calculado a partir da esperança do primeiro termo de (6.7).
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E(VT I(VT>B)) = e−r(T−t)

∫ ∞

−d2

f(VT )
1√
2π

exp

[
−1

2
y2
]
dy

=
1√
2π

∫ ∞

−d2

Vt exp

[
−1

2
(y − σV

√
T − t)2

]
dy

=
1√
2π

Vt

∫ ∞

−d2−σV

√
T−t

exp

[
−1

2
y2
]
dy

= VtP (Y ≤ d2 + σV

√
T − t)

= VtΦ(d2 + σV

√
T − t)

= VtΦ(d1),

ou seja, d1 = d2 + σV

√
T − t

Contudo, em seu estudo, os autores concluem que modelos complexos de otimização não

agregam valor à capacidade preditiva do default e, assim, concluem que a importância do mo-

delo reside em sua forma funcional e não nesta resolução específica. Nesse sentido, foram

propostas aproximações ingênuas (naïves) para as volatilidades σB e σV .

Primeiramente, assume-se que o valor de mercado da dívida da empresa equivale a seu valor

de face B. Como as empresas próximas da inadimplência possuem dívidas de alto risco, e o

risco dessas dívidas está correlacionado com o risco de seu patrimônio, os autores aproximaram

a volatilidade da dívida de cada empresa por:

σB(naïve) = 0,05 + 0,25σS.

Assim, a volatilidade do valor do ativo, σV é aproximada por:

σV (naïve) =
S

S +B
σS +

B

S + F
σB(naïve).

Portanto, a probabilidade de default dada pela Equação (6.8) pode ser aproximada por:
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P (VT ≤ B)(naïve) = Φ(−d2(naïve)), (6.11)

em que

d2(naïve) =
ln(S+B

B
) + (r − 1

2
σ2
V (naïve))(T − t)

σV (naïve)
√
T − t

. (6.12)

Apesar de o Modelo de Merton apresentar resultados significativos por meio de cálculos

simples, algumas premissas assumidas não são observáveis no mundo real, como:

1. Default apenas no vencimento T : sabe-se que o evento de default pode ocorrer em qual-

quer tempo, e não apenas em um momento específico T ;

2. Default = liquidação: sabe-se que há mecanismos legais e financeiros que suportam a

existência da empresa na tentativa de reerguê-la. Assim, o evento de default considerado

pelo Modelo de Merton não necessariamente implica em imediata liquidação da compa-

nhia; e

3. Normalidade: o Modelo de Black & Scholes, base para o Modelo de Merton, assume que

o valor dos ativos segue distribuição lognormal e seu logaritmo segue distribuição normal.

Nesse sentido, o Modelo de Merton não captura a ocorrência de eventos extremos. A

Figura 6.1 ilustra esse contraste: o painel da esquerda mostra os log-retornos diários

do Ibovespa, enquanto o painel da direita apresenta série simulada com a mesma média

e variância, assumindo normalidade i.i.d., conforme modelo de Movimento Browniano

com drift. Nota-se que, embora ambas tenham a mesma variabilidade global, a série real

apresenta episódios concentrados de alta volatilidade e picos extremos — características

ausentes na simulação. Esses padrões reforçam a inadequação da hipótese de retornos

gaussianos na modelagem de ativos financeiros.

Na seção a seguir, discute-se a extensão do Modelo de Merton com a inclusão de saltos

de descontinuidade ao Movimento Browniano, modelados por processos de Lévy, conforme
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Figura 6.1: Série de log-retorno do Ibovespa (esquerda) e série simulada com Wt ∼ N(x̄, s2)

previsto inicialmente em (MERTON, 1976). Tal modificação visa aprimorar a capacidade do

modelo em capturar comportamentos extremos e proporcionar melhor ajuste aos dados empíri-

cos.

6.3 PD - Modelo de Merton - Processo de Lévy

A análise dos retornos de ativos financeiros revela padrões que desafiam a suposição clássica

de normalidade adotada por modelos baseados unicamente no Movimento Browniano. Embora

modelos como o de Black & Scholes consigam reproduzir a média e a variância observadas

em séries empíricas, eles o fazem assumindo variações suaves e contínuas nos preços, com re-

tornos de magnitude relativamente constante. No entanto, quando comparamos tais modelos

com dados reais, torna-se evidente a presença de comportamentos abruptos e dispersões acen-

tuadas. Grandes oscilações de preços, que ocorrem com frequência muito superior à prevista

por uma distribuição normal, podem indicar que os retornos possuem caudas pesadas — isto

é, que eventos extremos têm probabilidade significativamente maior do que o esperado sob o
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modelo gaussiano. Esse desajuste entre a modelagem clássica e os dados empíricos motiva

o estudo de alternativas mais flexíveis, como os processos de Lévy, que incorporam saltos de

descontinuidades e capturam melhor a estrutura estatística observada nos mercados financeiros.

Dentre os processos estocásticos com trajetórias descontínuas, destaca-se o processo de

Poisson, que desempenha um papel central na modelagem de fenômenos com saltos. Ele será

utilizado como estrutura para a construção de processos de salto mais elaborados.

Esta seção será desenvolvida com base na abordagem apresentada por (CONT; TANKOV,

2003) e (MATSUDA, 2004), cujas obras apresentam modelagem consistente com os saltos e as

caudas pesadas observados nos dados financeiros por meio do uso de processos de Lévy. De

acordo com o modelo, os saltos ocorrem conforme um Processo de Poisson composto Nt com

intensidade λ (mais detalhes sobre Processo de Poisson no Apêndice C).

O Modelo de Merton com saltos é caracterizado por incorporar o tamanho dos saltos do

preço na dinâmica do preço do ativo, sendo que a variável aleatória yt representa o tamanho

absoluto no salto do preço. O salto relativo, portanto, é representado por

dVt

Vt

=
ytVt − Vt

Vt

= yt − 1, (6.13)

em que ln(yt) ∼ i.i.d N(a, b2), o que implica que E(yt) = exp(a+ 1
2
b2) e V ar(yt) = exp(2a+

b2)(exp(b2)− 1).

Assim, o salto relativo, dado pela Equação (6.13), possui distribuição lognormal com média:

E(yt − 1) = exp(a+
b2

2
)− 1 ≡ k (6.14)

A variação do valor do ativo pode ser representada pela equação diferencial
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dVt = Vt[(α− λk)dt+ σV dWt + (yt − 1)dNt].

Ou, de forma equivalente,

dVt

Vt

= (α− λk)dt+ σV dWt + (yt − 1)dNt, (6.15)

em que α é o retorno esperado instantâneo (E(dVt

Vt
) = αdt), σV é a volatilidade instantânea do

retorno da ação condicionada a não ocorrência de saltos, Wt é o Movimento Browniano Padrão,

Nt é um Processo de Poisson com intensidade λ.

O terceiro termo da Equação (6.15) contém duas fontes de aleatoriedade. A do processo

dNt, que reflete a aleatoriedade dos saltos dos preços, e a do seu tamanho yi, uma vez que o

salto ocorre. Assume-se que ambas as fontes de aleatoriedade são independentes. Se não há

salto no preço do ativo em um intervalo pequeno de tempo dt (dNt = 0), então o processo de

difusão (6.15) é simplesmente o Movimento Browniano com drift, com processo equivalente a

(6.2), em que:

µ = α− λk. (6.16)

Da Fórmula de Itô para difusões com saltos (Equação (F.2) do Apêndice F), é obtida a

solução da Equação (6.15), em que f(Vt) = ln(Vt)

VT = Vt exp

[(
α− 1

2
σ2
V − λk

)
(T − t) + σV (WT −Wt) +

Nt∑
i=1

Yi

]
, (6.17)

em que Yt ≡ ln(yt) ∼ N(a, b2) e
∑Nt

i=1 Yi é um Processo de Poisson composto. Isso significa

que o preço dos ativos {Vt}t≤T é modelado por um Processo de Lévy exponencial da forma:

VT = Vte
Lt ,
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em que Lt é um Processo de Lévy definido como um Movimento Browniano com drift (parte

contínua) e um Processo de Poisson (parte descontínua), tal que:

Lt =

(
α− 1

2
σ2
V − λk

)
(T − t) + σV (WT −Wt) +

Nt∑
i=1

Yi (6.18)

= ln

(
VT

Vt

)
.

Destaca-se que, caso Nt = 0 ou caso os saltos negativos se cancelarem com os positivos,

então
∑Nt

i=1 ln(yi) = 0.

Na precificação de opções do tipo europeia, o preço do derivativo é

Pcall = e−r(T−t)E(VT I(VT>B))− e−r(T−t)BE(I(VT>B)).

O cálculo das esperanças de Pcall não é direto, visto que a distribuição de VT , dada em (6.17),

depende do Processo de Poisson composto. Esta seção será limitada ao cálculo da PD, dada por:

E(I(VT≤B)) = P (VT < B)

= P

(
VT

Vt

≤ B

Vt

)
= P

(
Lt ≤ − ln

(
Vt

B

))
.

Ao utilizar o Processo de Lévy (6.18), obtém-se que:
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E(I(VT≤B)) = E
[
I(Lt≤− ln(Vt

B ))

]
= E

{
E

[
I(Lt≤− ln(Vt

B ))

∣∣∣∣Nt = n

]}
=

∞∑
n=0

P

((
α− 1

2
σ2
V − λk

)
(T − t) + σV

√
T − tZ +

n∑
i=1

Yi ≤ − ln

(
Vt

B

))
P (N = n).

(6.19)

Sendo Yi ∼ N(a, b2),
∑n

i=1 Yi ∼ N(na, nb2) e σV

√
T − tZ +

∑n
i=1 Yi ∼ N(na, σ2

V (T −

t) + nb2), então

Xt =

(
α− 1

2
σ2
V − λk

)
(T − t) + σV

√
T − tZ +

Nt∑
i=1

Yi

∼ N

((
α− 1

2
σ2
V − λk

)
(T − t) + na, σ2

V (T − t) + nb2
)
. (6.20)

De (6.20),

P

(
Xt ≤ − ln

(
Vt

B

))
= Φ

(
− ln

(
Vt

B

)
−
(
α− 1

2
σ2
V − λk

)
(T − t)− na√

σ2
V (T − t) + nb2

)
= Φ(−d2(n)), (6.21)

em que

d2(n) =
ln
(
Vt

B

)
+
(
α− 1

2
σ2
V − λk

)
(T − t) + na√

σ2
V (T − t) + nb2

. (6.22)

Portanto, de (6.19) a (6.22), tem-se que:
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PD = P (VT ≤ B)

=
∞∑
n=1

e−λλn

n!
Φ(−d2(n)). (6.23)

Assim, a PD do Modelo de difusão de Merton com saltos é uma mistura infinita de distri-

buições gaussianas Φ(−d2(n)), em que os pesos são dados pela distribuição de Poisson com

intensidade λ. Isto é, mistura da PD oriunda do Modelo de Black & Scholes condicionada ao

fato de que o preço do ativo salta n vezes até o vencimento. Destaca-se que, se n = 0, a PD

equivale ao modelo da Seção 6.2.
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Capítulo 7

Método

7.1 Processo de análise

O Capítulo 1 apresentou exemplos de estudos de agregação de riscos por meio da abordagem

por cópulas. A Figura 7.1 apresenta, de forma resumida, o processo geral de análise desses

estudos para o cálculo da medida de risco agregado.

Definir variável que
representa o risco de crédito

Definir variável que
representa o risco de mercado

Obter a distribuição
marginal

Obter a distribuição
marginal

Ajustar cópula

Calcular medida de risco

Figura 7.1: Processo geral de agregação de riscos verificado na literatura
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Para este trabalho, a mensuração do risco agregado considera os fatos estilizados individuais

de cada série, além de proxies aderentes aos dados disponíveis. A Figura 7.2 apresenta com

maior detalhe o processo a ser aplicado no estudo de caso, conforme teoria exposta nos capítulos

anteriores.

Proxy para risco de crédito:
probabilidade de default
calculada pelo Modelo
de Merton com saltos

Proxy para risco de mercado:
série de retornos

Aplicar modelo GARCH (1,1)
com inovações skew-t

Aplicar modelo GARCH (1,1)
com inovações estáveis

Testar diferentes
categorias de cópulas

Calcular VaR e ES Agregados

Figura 7.2: Processo específico de agregação de riscos

A etapa final de cálculo do VaR Agregado seguirá o algoritmo detalhado na Seção 7.2. Todas

as análises foram feitas em R, versão 4.2.3 (R Core Team, 2023).

7.2 Medidas de Risco Agregado

Os passos a seguir para estimação do VaR para um passo à frente T+1 de uma carteira composta

por dois ativos por meio de cópulas estão de acordo com o proposto em (LU; LAI; LIANG,

2014). Os autores propõem algoritmo baseado em modelo Cópula-GARCH para cálculo do

VaR agregado previsto para um dia à frente.

1. Ajuste dos Modelos GARCH: ajuste dos modelos GARCH para cada série e estimação
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das distribuições marginais usando inovações com distribuição normal, t-Student ou t-

Student assimétrica;

2. Previsão de Médias e Variâncias: previsão das médias (r̂iT+1) e variâncias (ĥi
T+1) para

o período T + 1 usando os modelos ajustados;

3. Simulação de Cenários: simulação de N = 10.000 cenários para o período [T, T + 1]

usando a distribuição conjunta modelada pelas cópulas; e

(a) Estimação dos Parâmetros da Cópula: transformação dos resíduos padronizados

(ηXt e ηYt ) em variáveis uniformes (ut e vt) usando as distribuições marginais esti-

madas. Estimação dos parâmetros da copula (κ) usando (ut e vt);

(b) Simulação de Variáveis Aleatórias: simulação de N pares de variáveis aleatórias

(uj
T+1, v

j
T+1) a partir da cópula estimada;

(c) Transformação dos PITs (Probability Integral Transforms) em Resíduos Padro-

nizados: transformação dos pares (uj
T+1, v

j
T+1) em resíduos padronizados (ηX,j

T+1, η
Y,j
T+1)

usando as funções inversas das distribuições marginais;

(d) Geração dos Retornos Simulados: geração dos retornos simulados (rX,j
T+1, r

Y,j
T+1)

usando os resíduos padronizados e as previsões de média e variância; e

rX,j
T+1 = r̂XT+1 + ηX,j

T+1 ·
√

ĥX
T+1

rY,jT+1 = r̂YT+1 + ηY,jT+1 ·
√

ĥY
T+1

(e) Cálculo do P&L (Profit and Loss) Simulado: cálculo do P&L simulado para cada

cenário j:

Lj
T+1 =

1

2
PX
T (exp(rX,j

T+1)− 1) +
1

2
P Y
T (exp(rY,jT+1)− 1)
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4. Cálculo do VaR: ordenação dos N valores de Lj
T+1 em ordem crescente; e cálculo do

VaR como o percentil correspondente ao nível de confiança desejado, conforme Equação

(2.1):

VaR95% = Absoluto do 500º valor ordenado de LT+1

VaR99% = Absoluto do 100º valor ordenado de LT+1

Para o cálculo do ES, soma-se, entre os 10.000 valores simulados de LT+1, aqueles que

superam o VaR em determinado nível de confiança, conforme Equação (2.2).
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Capítulo 8

Estudo de Caso

8.1 Base de dados

Para ilustrar a teoria apresentada, considerou-se dados da empresa Localiza, representada pelo

ativo RENT3 negociado na B3. As variáveis utilizadas foram: data da posição, market cap, pas-

sivo, patrimônio líquido, volatilidade anual EWMA (Exponentially Weighted Moving Average)

e valor de fechamento da ação. Ainda, foi utilizada a série de preço do título Letra Financeira do

Tesouro para representar a taxa de juros livre de riscos em base anual. Os dados foram retirados

da plataforma Economatica.

Trata-se de dados diários do período de 30 de junho de 2005, data de início da negociação

do papel na bolsa de valores, a 30 de junho de 2025. A partir dos valores de fechamento da ação,

calculou-se o log-retorno diário do papel e, posteriormente, o log-retorno anual. Como, para a

base anual, utiliza-se a janela móvel de 252 dias, a base de dados final tem início em 04 de julho

de 2006, com 4.701 observações diárias. A Tabela 8.1 apresenta as estatísticas descritivas dos

log-retornos anuais.
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Tabela 8.1: Estatísticas descritivas do log-retorno anual de RENT3 (em %)

Mínimo 1° Quantil Mediana Média 3° Quantil Máximo

-131.82 -8.06 13.53 13.71 37.51 132.07

A Figura 8.1 representa o log-retorno anual histórico da companhia.

Figura 8.1: Gráficos do log-retorno anual de RENT3

Para representar o risco de mercado, será utilizada a série diária de log-retornos anuais,

sendo que sua marginal será calculada na Seção 8.2. Para o risco de crédito, as demais variáveis

do banco de dados serão insumo para o cálculo da probabilidade de default, que será a base de

sua marginal, calculada na Seção 8.3.

8.2 Distribuição Marginal - Risco de Mercado

O teste KPSS (KWIATKOWSKI et al., 1992) rejeita a hipótese de estacionariedade da série

de log-retornos anuais. Dessa forma, é necessária a aplicação da primeira diferença na série
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de dados. A Figura 8.2 representa a série diferenciada, que será utilizada na modelagem da

marginal.

Figura 8.2: Gráficos do log-retorno anual diferenciado de RENT3

A curtose, de 5,23, demonstra o aspecto leptocúrtico dos dados, que tende a gerar mais

outliers, e o coeficiente de assimetria, de 0,11, indica leve assimetria à direita.

8.2.1 Ajuste GARCH

Ante às características dos dados, ajustou-se o modelo GARCH(1,1), que é capaz de ajustar

a os clusters de volatilidade apresentados pelos dados e comprovados pelos gráficos e testes

anteriores. As inovações foram consideradas como distribuições alfa-estáveis, de forma a captar

a incidência de valores extremos e a assimetria dos dados. Para esse ajuste, utilizou-se o pacote

GEVStableGarch (SOUSA, 2015).
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Tabela 8.2: Parâmetros estimados - GARCH(1,1) com inovações alfa-estáveis

Parameters Estimate Std. Error t value Pr(>|t|)

mu -0.00 0.00 -0.57 0.57

omega 0.00 0.00 4.79 0.00

alpha1 0.05 0.01 10.00 0.00

beta1 0.92 0.01 105.16 0.00

skew 0.03 0.14 0.20 0.84

shape1 1.90 0.02 99.28 0.00

O valor do coeficiente shape1, que representa o índice de estabilidade α da distribuição alfa-

estável, confirma a cauda pesada dos resíduos, uma vez que seu valor é inferior a 2. A Figura

8.3 representa o ajuste dos resíduos.

Figura 8.3: Resíduos do modelo GARCH(1,1) com ajuste pela alfa-estável

A série dos resíduos, ajustada pela distribuição alfa-estável, representa a marginal referente

ao risco de mercado. Na sequência, a outra distribuição marginal, que representa o risco de
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crédito, também será ajustada pelo GARCH(1,1), porém com inovações skew-t.

8.3 Distribuição Marginal - Risco de Crédito

8.3.1 Cálculo PD - Modelo de Merton

Inicialmente, a probabilidade de default é calculada pelo Modelo de Merton considerando a

abordagem naïve de (BHARATH; SHUMWAY, 2008) representada pela Equação (6.11), em

termos de d2(naïve) dado pela Equação (6.12). A Figura 8.4 apresenta o resultado.

Figura 8.4: Probabilidade de Default da empresa Localiza - Modelo de Merton

8.3.2 Cálculo PD - Modelo de Merton com saltos

A Equação (6.21) representa a probabilidade de default calculada com a incorporação dos saltos

oriundos do Processo de Lévy. Em comparação com a Equação (6.12), a (6.22) possui os

parâmetros α, λ, k, a, e b, referentes aos saltos, que devem ser estimados. A estimação foi

realizada de forma empírica, ou seja, a partir do histórico dos retornos da empresa Localiza.
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Define-se como ocorrência de saltos aqueles retornos capazes de impactar significativa-

mente o resultado da companhia. Como a série de log-retorno anual não é estacionária, a mode-

lagem dos saltos foi realizada com base na série de log-retorno diário e convertida para a base

anual. A Figura 8.5 apresenta o histograma do log-retorno diário histórico com o ajuste pela

distribuição alfa-estável, feito com o pacote fBasics (WUERTZ; SETZ; CHALABI, 2023).

Figura 8.5: Log-retornos diários com ajuste pela alfa-estável

Foram considerados como saltos aqueles retornos inferiores ao quantil 1% e os superiores

ao 99%. A distribuição alfa-estável e seus quantis foram utilizadas por representarem adequa-

damente os eventos extremos. A Figura 8.6 apresenta a delimitação dos quantis.
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Figura 8.6: Log-retornos diários com quantis 1% e 99% da alfa-estável

Considerando o histórico da empresa Localiza e os quantis da alfa-estável, tem-se um total

de 48 saltos no período observado, de 18,86 anos, o que resulta em 2,54 saltos por ano (λ̂ =

2, 54).

A variável aleatória yt − 1, Equação (6.13), representa o salto relativo do preço, ou seja,

a variação do preço de ativo oriunda do processo de salto. Pelos saltos destacados na Figura

8.6, e dado que ln(yt) ∼ i.i.d N(a, b2), tem-se que â = −0, 0147 e b̂ = 0, 0666. A partir

dessas estimativas, é possível obter k, conforme Equação (6.14) (k = −0, 0124). O parâmetro

α, Equação (6.16), depende do retorno médio µ, que será considerado como a taxa livre de risco

(r), em linha com o entendimento do Modelo de Black & Scholes (Equação (6.6)).

Para ilustrar o processo com os parâmetros estimados, a Figura 8.7 apresenta uma simulação

dos log-retornos diários no horizonte de 252 dias (um ano em dias úteis). Inicialmente, simulou-

se um processo sem saltos oriundo do Movimento Browniano. Depois, adicionou-se o processo

de saltos em que sua quantidade é dada por um processo de Poisson com intensidade λ̂ (Equação

(C.1)).
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Figura 8.7: Log-retornos simulados com e sem saltos (Modelo de Merton)

Verifica-se que a adição do processo de saltos é importante para que a modelagem seja capaz

de incorporar os eventos descontínuos que ocorrem em séries de retornos financeiros que fogem

do padrão de um Movimento Browniano. Nesse sentido, os cálculos posteriores à essa premissa

indicam uma representação mais aderente aos fatos estilizados das séries financeiras.

Com os parâmetros estimados, é possível calcular a probabilidade de default pelo Modelo

de Merton com saltos, conforme Equação (6.23). A Figura 8.8 apresenta o resultado, em com-

paração à Figura 8.4.
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Figura 8.8: Probabilidade de Default da empresa Localiza - Modelo de Merton

Verifica-se que o processo de saltos aumentou a estimativa da probabilidade de default da

empresa Localiza, situação aderente à incorporação da possibilidade de ocorrência de eventos

extremos às simulações. A PD oriunda do Modelo de Merton com saltos foi a utilizada na

sequência da análise.

O teste KPSS (KWIATKOWSKI et al., 1992) rejeita a hipótese de estacionariedade da série

de probabilidade de default. Assim, aplicou-se a primeira diferença na série. A Figura 8.9

apresenta a série diferenciada, que será utilizada na modelagem da marginal.
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Figura 8.9: Gráficos da probabilidade de default diferenciada da empresa Localiza

A curtose, de 173,30, demonstra o aspecto leptocúrtico dos dados, que tende a gerar mais

outliers, e o coeficiente de assimetria, de 8,01, indica assimetria à direita.

8.3.3 Ajuste GARCH

Assim como ajustado para a marginal de risco de mercado, o modelo GARCH(1,1) também foi

aplicado na série de probabilidade de default diferenciada, para representar a marginal de risco

de crédito. Contudo, as inovações, neste caso, foram consideradas como skew-t, distribuição

que também capta a incidência de caudas pesadas e assimetria. O ajuste foi realizado pelo

pacote rugarch (GALANOS; KLEY, 2025).
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Tabela 8.3: Parâmetros estimados - GARCH(1,1) com inovações skew-t

Parameters Estimate Std. Error t value Pr(>|t|)

mu -0.00 0.00 -5.75 0.00

omega 0.00 0.00 0.00 1.00

alpha1 0.03 0.00 19.02 0.00

beta1 0.96 0.00 735.76 0.00

skew 2.20 0.05 40.08 0.00

shape 2.83 0.05 52.10 0.00

O coeficiente shape indica os graus de liberdade da skew-t, que controla o peso das caudas

da distribuição. Quanto maior seu valor, mais a distribuição se aproxima da normal. Nesse

caso, o valor do coeficiente indica caudas mais pesadas que a normal, mas ainda com variância

finita. A Figura 8.10 representa o ajuste dos resíduos.

Figura 8.10: Resíduos do modelo GARCH(1,1) com ajuste pela skew-t

A série dos resíduos, ajustada pela distribuição skew-t, representa a marginal referente ao

59



cap. 8. Estudo de Caso §8.4. Cópulas

risco de crédito. Diante dos ajustes das duas marginais de interesse, uma referente ao risco de

mercado e outra referente ao risco de crédito, aplica-se a metodologia da função cópula para

modelar a estrutura de dependência entre ambos os tipos de risco.

8.4 Cópulas

Para a modelagem da dependência entre as medidas, é necessário que o ajuste da cópula seja

realizada com séries i.i.d. Portanto, as distribuições marginais utilizadas foram dos resíduos

obtidos pelo ajuste do modelo GARCH para ambas as séries, sendo a de mercado ajustada pela

alfa-estável e a de crédito pela skew-t.

Figura 8.11: Gráfico de dispersão entre resíduos GARCH

Verifica-se que a série de log-retorno anual apresenta concentração em zero. Para valores

extremos, o formato côncavo do gráfico de dispersão indica maiores níveis da série de probabi-

lidade de default.

Para o ajuste da cópula, as séries dos resíduos foram transformadas em séries com distribu-

ição uniforme U [0, 1], representados na Figura 8.12.
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Figura 8.12: Gráfico de dispersão entre u e v

É possível verificar uma maior concentração de pontos na faixa em que u se aproxima de

1. Quando v também se aproxima de 1, essa concentração indica que quando a série de proba-

bilidade de default está alta, o retorno também tende a estar nos quantis mais altos. Por outro

lado, quando v se aproxima de 0, a concentração indica que quando a série de probabilidade

de default está alta, também ocorrem retornos baixos. Ou seja, valores extremos de u parecem

estar associados a extremos tanto altos quanto baixos de v.

Em termos financeiros, essa relação pode refletir que situações extremas de risco de crédito

(alta PD) podem ocorrer junto com movimentos extremos no retorno — positivos ou negativos

— por choques macroeconômicos ou eventos específicos de mercado, por exemplo.

Por meio do pacote VineCopula (NAGLER et al., 2024), foram testadas diversas cópulas

das três categorias citadas no Capítulo 4: elípticas, arquimedianas e de valores extremos. A

Tabela 8.4 apresenta a cópula que resultou no menor AIC, por categoria. O objetivo é avaliar os

diferentes ajustes de forma gráfica.
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Tabela 8.4: Cópulas ajustadas - Localiza

Categoria Cópula AIC

Arquimediana Joe -196.93

Valores Extremos Tawn type 1 -246.88

Elíptica Student t -251.75

Para verificar o ajuste da dependência nos dados originais, simulou-se a mesma quantidade

de dados originais para os vetores da cópula. A Figura 8.13 compara o ajuste com os resíduos.

(a) Cópula Joe (b) Cópula Tawn type 1

(c) Cópula t

Figura 8.13: Gráficos de dispersão das cópulas ajustadas aos resíduos

8.5 Cálculo do VaR

O algoritmo para cálculo do VaR agregado um passo à frente (T+1) foi detalhado na Seção 7.2.

O primeiro passo, de ajuste dos modelos GARCH e das distribuições marginais dos resíduos,

foi realizado nas subseções 8.2 e 8.3.
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Para calcular a medida de risco em termos anuais, ou seja, a perda estimada no horizonte de

um ano, o cálculo considerou as projeções 252 passos à frente (T + 252), o que equivale a um

ano em dias úteis.

Com os modelos ajustados, estimam-se o vetor de médias r̂T+1, ..., r̂T+252 e de variâncias

ĥT+1, ..., ĥT+252 para 1 a 252 passos à frente. Posteriormente, estimam-se as variáveis aleatórias

uT+252 e vT+252 a partir dos parâmetros da cópula ajustada e, por meio da função inversa dos

resíduos (com distribuições skew-t e alfa-estável), obtém-se os resíduos simulados (ηXT+252 =

t−1
X (uT+252)) e ηYT+252 = t−1

Y (vT+252).

Para gerar as séries simuladas (log-retorno anual e probabilidade de default, ambos diferen-

ciados), foram utilizados as médias, variâncias e resíduos estimados, em que j representa cada

simulação.

rX,j
T+252 = r̂XT+252 + ηX,j

T+252

√
ĥX
T+252

rY,jT+252 = r̂YT+252 + ηY,jT+252

√
ĥY
T+252

Em comparação ao algoritmo utilizado como referência, dois ajustes foram necessários:

1. Como a estimativa foi realizada para mais de um passo à frente, é necessário adicionar os

valores das séries diferenciadas nesse período; e

2. Como a modelagem foi realizada com a série diferenciada, é necessário adicionar o termo

anterior de log-retorno ou probabilidade de default para que a estimativa reflita o valor na

unidade original. Porém, como a projeção foi realizada para um período longo (252 dias),

o valor adicionado foi das médias do log-retorno e da probabilidade de default, para que

a memória do valor realizado de 252 dias atrás não seja carregada na estimativa.

A lógica desses ajustes pode ser explicada pela sequência de equações:
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adiff252 =a252 − a251

a252 =adiff252 + a251

a252 =adiff252 + adiff251 + a250

a252 =adiff252 + adiff251 + · · ·+ adiff1 + a0

Nesse sentido, as perdas vinculadas ao risco de crédito e de mercado, representadas por

lXT+252 e lYT+252, respectivamente, são:

lX,j
T+252 = rX,j

T+252 + r̂XT+1 + ...+ r̂XT+251 + l̄Xt

lY,jT+252 = rY,jT+252 + r̂YT+1 + ...+ r̂YT+251 + l̄Yt

Para obter a perda agregada, considerou-se uma carteira com exposição de 50% em títulos

de crédito privado e 50% em ações da mesma companhia (Localiza). Foram realizadas 10.000

simulações para o retorno e para a probabilidade de default em T + 252 e, a cada simulação,

calculou-se a perda estimada, em termos percentuais:

Lj
T+252 = 0, 5lX,j

T+252 + 0, 5lY,jT+252,

em que lX representa o log-retorno anual projetado, o que indica a perda (ou valorização) de

mercado de forma direta, ponderada pelo peso do ativo na carteira (assumido como 50%). Para

a perda vinculada ao risco de crédito, utiliza-se o entendimento da Equação (6.1), em que a LGD

é assumida como 100%. Nesse sentido, lY , ponderado pelo peso na carteira (que representa o

termo EAD), passa a representar a perda esperada (EL) de risco de crédito.

O VaR estimado para a carteira em T + 252 é, portanto, o quantil das 10.000 observações
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de LT+252. As Tabelas 8.5 a 8.7 apresentam os resultados do VaR considerando cada cópula

ajustada (Tabela 8.4).

Tabela 8.5: VaR (em %) - Cópula Joe

Nível de Confiança VaR Carteira VaR Crédito VaR Mercado

90.00 22.69 15.31 35.84

95.00 30.92 19.20 51.94

97.50 38.62 24.11 67.88

99.00 48.85 32.12 88.78

Tabela 8.6: VaR (em %) - Cópula Tawn type 1

Nível de Confiança VaR Carteira VaR Crédito VaR Mercado

90.00 23.62 15.09 37.87

95.00 31.27 18.99 53.55

97.50 38.92 23.55 68.66

99.00 48.82 30.66 88.00

Tabela 8.7: VaR (em %) - Cópula t

Nível de Confiança VaR Carteira VaR Crédito VaR Mercado

90.00 23.82 15.14 38.09

95.00 32.75 19.20 55.31

97.50 41.53 23.71 70.35

99.00 52.75 31.26 90.75

Considerando, como exemplo, a Cópula t, para o nível de confiança de 95%, espera-se uma

perda máxima de 55,31% a título de risco de mercado e de 19,20% para risco de crédito. Caso

a estimativa ingênua fosse considerada para o risco agregado da carteira, ou seja, a soma dos
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riscos sem considerar a estrutura de dependência, ao nível de confiança de 95%, o risco seria de

37,26%. Contudo, o efeito da diversificação pode ser verificado no VaR da carteira, de 32.75%.

Assim, conforme Equação (1.1), o efeito da diversificação do risco foi de 4,51%.

Para o cálculo do ES, calculou-se a média dos valores referentes aos 10.000 cenários que

superaram o VaR indicado nas Tabelas 8.8 a 8.10.

Tabela 8.8: ES (em %) - Cópula Joe

Nível de Confiança ES Carteira ES Crédito ES Mercado

90.00 35.23 22.52 61.27

95.00 44.13 28.11 78.85

97.50 53.71 34.85 98.33

99.00 70.12 45.99 131.60

Tabela 8.9: ES (em %) - Cópula Tawn type 1

Nível de Confiança ES Carteira ES Crédito ES Mercado

90.00 37.02 22.10 64.89

95.00 47.00 27.43 84.87

97.50 59.40 33.99 109.68

99.00 84.33 44.98 159.35

Tabela 8.10: ES (em %) - Cópula t

Nível de Confiança ES Carteira ES Crédito ES Mercado

90.00 37.73 22.93 63.41

95.00 47.52 29.00 80.72

97.50 58.58 36.87 99.64

99.00 77.25 52.09 130.30
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No mesmo sentido do cálculo do VaR, Para a Cópula t, a estimativa ingênua do ES agregado,

ao nível de confiança de 95%, seria de 54,86%. Contudo, o ES da carteira resultou em 47,52%,

indicando um efeito de diversificação de 7,34%.

8.6 Outras empresas

Para avaliar a aderência do método a um conjunto mais amplo de empresas, os modelos foram

aplicados às companhias que compõem o Ibovespa (IBOV), excetuando-se aquelas pertencentes

ao Subsetor Bovespa “Previdência e Seguros”. A exclusão justifica-se porque, por sua natureza,

essas empresas não atuam como contrapartes em títulos privados ofertados ao mercado.

Os dados referentes à composição do índice foram extraídos do sistema Economatica, con-

siderando a posição em 30 de junho de 2025. Naquela data, o índice era composto por 81

empresas, das quais 4 pertenciam ao subsetor excluído. Assim, o modelo foi aplicado a 77

empresas.

Tabela 8.11: Frequência das cópulas selecionadas pelo critério de menor AIC - Empresas IBOV

Categoria Cópula Quantidade Quantidade (%)

Elíptica Student t 49 63.64

Valores Extremos Tawn type 1 14 18.18

Arquimediana Joe 8 10.39

Valores Extremos Rotated Tawn type 2 (270°) 5 6.49

Arquimediana Rotated Joe (270°) 1 1.30

Total 77 100.00

Para os devidos ajustes, algumas empresas apresentaram algumas peculiaridades, que foram

tratadas da seguinte forma:

• Vale, Rede d’Or e Raia Drogasil: O ajuste da marginal para o risco de mercado pelo

modelo GARCH(1,1) com inovações alfa-estáveis não apresentaram estimativas de erro
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padrão (Tabela 8.2). Assim, a marginal foi ajustada pelo modelo GARCH(1,1) com ino-

vações normais.

• Sabesp: O algoritmo para a modelagem dos log-retornos diários pela distribuição alfa-

estável (Figura 8.5) não convergiu. Assim, nesse caso, considerou-se como limiar para os

saltos (Figura 8.6) os quantis da distribuição ajustada pela skew-t;

• Iguatemi, Vamos e Raizen: Dados os limiares ajustados pela distribuição alfa-estável,

a empresa apresentou apenas um salto no período. Assim, não foi possível calcular os

estimadores para cálculo da probabilidade de default pelo Modelo de Merton com saltos.

Portanto, considerou-se para a marginal a PD oriunda do Modelo de Merton sem saltos;

e

• Itausa, Totvs e Isa Energia: O ajuste da marginal para o risco de crédito pelo modelo

GARCH(1,1) com inovações skewt não convergiu (Tabela 8.3). Assim, a marginal foi

ajustada pelo modelo GARCH(1,1) com inovações normais assimétricas.

Ainda, há 3 empresas que possuem mais de um papel na composição do IBOV: Bradesco,

Petrobras e Eletrobras. Para essas empresas, foram consideradas as ações do tipo ordinárias

(ON).

Verifica-se pela Tabela 8.11 que 63,34% das empresas analisadas se ajustaram à cópula t.

Nesse sentido, como a cópula t representou adequadamente a maior parte das empresas e como

o cálculo das medidas de risco (comparadas pelas Tabelas 8.5 a 8.10) não variaram de forma

significativa entre as cópulas, os resultados seguintes consideraram o ajuste pela cópula t.

As Tabelas 8.12 e 8.13 apresentam o VaR e o ES, respectivamente, para as 10 maiores

empresas em termos de participação no IBOV.
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Tabela 8.12: VaR 95 % e Efeito de diversificação considerando Cópula t e 50% de exposição
em títulos privados e 50% em ações - 10 maiores empresas do IBOV

Empresa VaR (%) VaR naïve (%) Efeito de diversificação (p.p.)

Vale 9.45 9.57 0.12

ItauUnibanco 41.93 54.65 12.72

Petrobras 44.45 44.89 0.44

Sabesp 38.95 38.97 0.02

B3 48.53 48.65 0.12

Eletrobras 24.03 24.09 0.06

Itausa 28.06 28.11 0.05

Weg 46.88 47.06 0.18

Brasil 47.00 60.19 13.19

Ambev S/A 30.73 30.86 0.13

Tabela 8.13: ES 95 % e Efeito de diversificação considerando Cópula t e 50% de exposição em
títulos privados e 50% em ações - 10 maiores empresas do IBOV

Empresa ES (%) ES naïve (%) Efeito de diversificação (p.p.)

Vale 12.02 12.25 0.23

ItauUnibanco 68.60 89.44 20.84

Petrobras 59.69 60.28 0.59

Sabesp 49.82 49.86 0.04

B3 60.95 61.10 0.16

Eletrobras 39.67 39.74 0.07

Itausa 38.85 38.93 0.08

Weg 62.19 62.36 0.17

Brasil 72.78 93.83 21.05

Ambev S/A 45.63 45.82 0.19
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Em todos os casos, o cálculo do VaR e ES agregados refletiu o efeito positivo da diversifi-

cação entre os tipos de risco (Equação (1.1)), ou seja, caso o cálculo das medidas não conside-

rasse a estrutura de dependência entre o risco de mercado e o de crédito, as medidas de cada

contraparte estariam superestimadas e sua exposição ao risco não estaria sendo adequadamente

refletida.

Essa análise é útil ao considerar uma carteira bem diversificada com diversas contrapartes

em que há diversas estratégias de investimentos em curso. A diversificação mais comum em

uma carteira de investimentos é a intra-riscos, particularmente risco de mercado, em que busca-

se novas exposições no mesmo tipo de ativo porém oriundas de diferentes contrapartes. As

medidas mais usuais para mensurar o risco desses ativos são o VaR e o ES e, a partir delas, é

possível comparar o nível de risco dos papeis em uma carteira.

Contudo, ao alocar em diferentes categorias de risco (diversificação inter-risco), particular-

mente risco de mercado e de crédito, a abordagem de mensuração dos riscos difere entre si.

Para o risco de crédito, uma opção de monitoramento, consolidada no mercado, é por meio da

probabilidade de default. Porém, a combinação desta medida com o VaR de mercado, de forma

direta, torna-se inadequada. Por isso, é importante o desenvolvimento de métodos que tornem

a união das medidas possível e, consequentemente, a comparação entre diferentes contrapartes.

Assim, o VaR e o ES apresentados nas Tabelas 8.12 e 8.13, que não só consolida as medidas

de risco em uma unidade única, mas que também considera a estrutura de dependência entre

elas, reflete o risco que cada contraparte expõe à carteira.
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Capítulo 9

Conclusão

O presente trabalho abordou o desafio enfrentado por instituições alocadoras de recursos finan-

ceiros no cálculo do risco agregado decorrente de múltiplas exposições. Para isso, realizou-se

uma revisão de literatura sobre os métodos mais aplicados nesse contexto, especificamente para

a agregação de riscos de mercado e de crédito. Focou-se em uma perspectiva associada ao risco

de cada contraparte, abordagem ainda pouco explorada na literatura. Ao estender essa metodo-

logia para uma carteira diversificada, buscou-se mensurar o risco específico de cada contraparte.

A metodologia integrou abordagens estocásticas e de séries temporais. Para o risco de

mercado, utilizou-se o modelo de séries temporais GARCH, cujos resíduos foram ajustados à

distribuição alfa-estável para capturar efetivamente as caudas pesadas e a assimetria observadas

nos retornos financeiros. Quanto ao risco de crédito, a probabilidade de default (PD) foi de-

terminada com base no Modelo de Merton, com a adição de saltos definidos pelo Processo de

Lévy. A série de PD resultante foi então modelada pelo GARCH com inovações skew-t, que

também é capaz de lidar com caudas pesadas e assimetria.

A estrutura de dependência entre os riscos de mercado e de crédito foi modelada por meio de

função cópula, que permite a separação das distribuições marginais da estrutura de dependência

conjunta. Para a obtenção do VaR agregado, o estudo testou diversas famílias de cópulas, e a

cópula t-Student demonstrou o melhor ajuste para a maioria das empresas analisadas.
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A aplicação prática do modelo foi ilustrada por meio de um estudo de caso com dados da

empresa Localiza e estendida a outras empresas que compõem o índice Ibovespa. Os resultados

obtidos demonstraram consistentemente um efeito significativo de diversificação. Isso significa

que o VaR e o ES agregados para a carteira foram inferiores à soma das medidas de risco indivi-

duais, evidenciando que uma soma ingênua das perdas individuais levaria a uma superestimação

do risco total da carteira.

Em suma, este trabalho oferece um framework robusto e relevante para a gestão quantita-

tiva de riscos. Ao modelar explicitamente as características intrínsecas dos riscos de mercado

e de crédito – incluindo sua volatilidade variável no tempo, caudas pesadas e fenômenos de

salto – e suas interdependências por meio de cópulas, o trabalho contribui para um cálculo mais

preciso e coerente das métricas de risco agregado (VaR e ES). A capacidade de consolidar dife-

rentes tipos de risco em uma única medida unificada permite que as instituições obtenham uma

compreensão mais precisa da vulnerabilidade gerada por cada contraparte e mitiguem eficien-

temente concentrações excessivas de risco.

Conclui-se que a metodologia apresentada e aplicada neste trabalho oferece uma ferramenta

para que as instituições aprimorem suas práticas de gestão de riscos, ao proporcionar uma visão

integrada dos riscos de mercado e de crédito no nível da contraparte, o que é essencial para

tomadas de decisão informadas em ambientes financeiros complexos.

Como trabalhos futuros, recomenda-se investigar metodologias de estimação mais robustas

para os parâmetros de salto para o cálculo da probabilidade de default (PD). Também se des-

taca a necessidade de aprimorar o tratamento da projeção de modelos GARCH com inovações

alfa-estáveis, uma vez que a projeção da variância requer ajustes específicos para incorporar

corretamente os efeitos de potência e assimetria do modelo. Além disso, sugere-se a extensão

do cálculo do risco agregado para contemplar, conjuntamente, os riscos de mercado, crédito e

operacional. Finalmente, uma contribuição prática importante seria o desenvolvimento de um

pacote em R dedicado ao cálculo do risco agregado, o que facilitaria a aplicação da metodologia

proposta tanto em pesquisas acadêmicas quanto em práticas de mercado.
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Apêndice A

Movimento Browniano Geométrico

O Movimento Browniano, também conhecido como Processo de Wiener, é um processo esto-

cástico de tempo contínuo que descreve o movimento aleatório de uma partícula em um meio

fluido. Ele é caracterizado por incrementos aleatórios e independentes, e desempenha impor-

tante papel para diversos modelos em matemática financeira e outras disciplinas.

Um processo estocástico {Wt}, t ≥ 0 é um Processo de Wiener se satisfaz as seguintes

condições (BJöRK, 2019):

1. O processo começa em zero: W0 = 0;

2. Incrementos independentes: se r < s ≤ t < u, então Wu −Wt e Ws −Wr são variáveis

aleatórias independentes;

3. Incrementos estacionários: para s < t, a variável aleatória Wt −Ws possui distribuição

normal N(0, t− s); e

4. Trajetórias contínuas: as trajetórias de Wt são contínuas em t.

Ainda, (SHREVE, 2008) define {Wt} em termos de como o processo lida com a informação

no tempo. Assim, Seja (Ω,F ,P) o espaço de probabilidade no qual {Wt} está definido. Uma
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filtragem para o Movimento Browniano é uma coleção de σ-álgebras {F(t)}, t ≥ 0 que satisfaz

os seguintes critérios:

1. Acúmulo de informações: para 0 ≤ s < t, todo conjunto em {F(s)} também pertence

a {F(t)}. Ou seja, existe pelo menos tanta informação disponível no tempo posterior

{F(t)} quanto no tempo anterior {F(s)};

2. Adaptabilidade: para cada t ≥ 0, o Movimento Browniano {Wt} no tempo t é F(t)-

mensurável. Ou seja, a informação disponível no tempo t é suficiente para avaliar o

Movimento Browniano {Wt} naquele tempo; e

3. Independência dos incrementos futuros: para 0 ≤ t < u, o incremento W (u) − W (t)

independe de {F(t)}. Ou seja, qualquer incremento do Movimento Browniano após o

tempo t é independente da informação disponível no tempo t.

O Movimento Browniano Geométrico (MBG) é um processo estocástico amplamente uti-

lizado na modelagem de preços de ativos financeiros, taxas de juros e outras variáveis que

apresentam comportamento aleatório ao longo do tempo.

O MBG é definido como um processo estocástico em tempo contínuo, no qual o logaritmo

do valor do ativo segue um Movimento Browniano Padrão. De acordo com (BJöRK, 2019), o

MBG pode ser expresso como uma equação diferencial estocástica:

dXt = αXtdt+ σXtdWt

em que dWt representa o diferencial do Movimento Browniano Padrão, α é o parâmetro de drift

e σ > 0 o parâmetro de volatilidade.

Conforme (SCHOUTENS; CARIBONI, 2010), o MBG é um dos processos mais populares

em finanças, base para no Modelo de Black & Scholes para precificação dinâmica de ativos em

tempo contínuo.
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Apêndice B

VT (Modelo de Merton)

B.1 Fórmula de Itô geral

(BJöRK, 2019): Seja Vt processo que possui diferenciação estocástica dada pela Equação (6.2),

seja f de classe C1,2 (isto é, continuamente diferenciável uma vez em relação ao tempo t e duas

vezes em relação à variável de estado v) e Z um processo Z(t) = f(t, Vt). então Z possui uma

diferenciação estocástica dada por:

df(t, Vt) =

{
∂f

∂t
(t, Vt) + µt

∂f

∂x
(t, Vt) +

1

2
σ2
t

∂2f

∂x2
(t, Vt)

}
dt+ σ

∂f

∂x
(t, Vt)dWt

Ao assumir as seguintes propriedades:


(dt)2 = 0

dt · dWt = 0

(dWt)
2 = dt,

tem-se:
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B.2 Fórmula de Itô simplificada

df = df(t, Vt) é dado por:

df =
∂f

∂t
dt+

∂f

∂Vt

dVt +
1

2

∂2f

∂V 2
t

(dVt)
2, (B.1)

em que (dVt)
2 é a variação quadrática de (6.2).

B.3 Valor do ativo no tempo T

Seja Vt o valor de um ativo no tempo t, então sua variação logarítmica é dada por d log(Vt). Ao

aplicar esta variação na Equação (B.1), tem-se:

d log(Vt) =
∂f(Vt)

∂Vt

dVt +
1

2

∂2f(Vt)

∂Vt
2 (dVt)

2

=
∂ log(Vt)

∂Vt

+
1

2

∂2 log(Vt)

∂Vt
2 (dVt)

2

=
1

Vt

dVt −
1

2

1

(Vt)2
(dVt)

2. (B.2)

Substituindo (6.2) em (B.2), segue que:

d log(Vt) =
1

Vt

[Vt(µdt + σV dWt)]−
1

2

1

(Vt)2
[Vt(µdt + σV dWt)]

2

= µdt+ σV dWt −
1

2
[µ2(dt)2 + 2µdtdWt + σ2

V (dZt)
2]

= µdt+ σV dWt −
1

2
σ2
V dt

=

(
µ− 1

2
σ2
V

)
dt+ σV dWt, (B.3)

ao considerar que (dt)2 = 0, µdtdWt = 0 e (dWt)
2 = dt.

80



§B.3. Valor do ativo no tempo T

Pela integração de (B.3) no intervalo (t, T ), se obtém:

∫ T

t

d log(Vs) =

∫ T

t

(
µ− 1

2
σ2
V

)
ds+

∫ T

t

σV dWs

log(
VT

Vt

) =

(
µ− 1

2
σ2
V

)
(T − t) + σV (WT −Wt). (B.4)

Finalmente, o valor do ativo no tempo T é obtido de (B.4) ao aplicar exponencial:

VT

Vt

= exp

[(
µ− 1

2
σ2
V

)
(T − t) + σV (WT −Wt)

]
VT = Vt exp

[(
µ− 1

2
σ2
V

)
(T − t) + σV (WT −Wt)

]
.

A equação representa, portanto, o preço do ativo no tempo T em termos do preço do ativo

no tempo inicial t, de seu retorno médio µ, sua volatilidade σV e do Movimento Browniano

{Wt}.
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Apêndice C

Processo de Poisson

(CONT; TANKOV, 2003) apresentam a seguinte definição:

Definição C.0.1. Processo de Poisson. Seja (τi)i≥1 uma sequência de variáveis aleatórias ex-

ponenciais com parâmetro λ e Tn =
∑n

i=1 τi. O processo estocástico com valores inteiros não

negativos (Nt, t ≥ 0) definido por

Nt =
∑
n≥1

1t≥Tn (C.1)

é chamado processo de Poisson com intensidade λ, Nt ∼ Poisson(λ, t)

Nt determina o número de chegadas (0, 1, 2, ...) no tempo (0, t], τi o tempo entre a i-ésima

e a (i+1)-ésima chegada e Tn é o tempo total de n chegadas, logo, são equivalentes os eventos

(Nt ≥ n) e (Tn ≤ t). Ou seja, o processo de Poisson refere-se à modelagem de fenômenos es-

tocásticos que envolvem contagens de eventos que ocorrem de forma aleatória no tempo, sendo

caracterizado por incrementos independentes e estacionários. A seguir, seguem as principais

propriedades desse processo.

Proposição C.0.1. Seja (Nt)t≥0 um processo de Poisson.

1. Para todo t > 0, Nt é quase certamente finito.
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2. Para todo ω, a trajetória amostral t 7→ Nt(ω) é constante por partes e aumenta por saltos

de tamanho 1.

3. As trajetórias amostrais t 7→ Nt são contínuas à direita com limites à esquerda (cadlag).

4. Para todo t > 0, Nt− = Nt com probabilidade 1.

5. (Nt) é contínuo em probabilidade:

∀t > 0, Ns
P−→ Nt quando s → t.

6. Para todo t > 0, Nt segue uma distribuição de Poisson com parâmetro λt:

∀n ∈ N, P(Nt = n) =
e−λt(λt)n

n!
.

7. A função característica de Nt é dada por

E[eiuNt ] = exp{λt(eiu − 1)}, ∀u ∈ R.

8. (Nt) possui incrementos independentes: para quaisquer t1 < · · · < tn, as variáveis

Ntn −Ntn−1 , . . . , Nt2 −Nt1 , Nt1 são independentes.

9. Os incrementos de N são homogêneos: para quaisquer t > s, Nt − Ns possui a mesma

distribuição que Nt−s.

10. (Nt) possui a propriedade de Markov:

∀t > s, E[f(Nt)|Nu, u ≤ s] = E[f(Nt)|Ns].

Definição C.0.2. Processo de Poisson composto. Um processo de Poisson composto com

intensidade λ > 0 e cujo tamanho do salto possua distribuição f é um processo estocástico Xt
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definido por

Xt =
Nt∑
i=1

Yi

em que os tamanhos de salto Yi são i.i.d. com distribuição f e Nt ∼ Poisson(λ, t), independente

de (Yi)i≥1.

O processo (Nt)t≥0 é, portanto, um processo de contagem, em que T1, T2, ... é a sequência

dos tempos referentes aos saltos (chegadas) de Nt. Assim, Nt mensura a quantidade de saltos

entre 0 e t: Nt = #{i ≥ 1, Ti ∈ [0, t]}.
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Apêndice D

Medidas Aleatórias

Com base na construção do Processo de Poisson apresentado no Apêndice C, é possível definir

uma medida aleatória que associa a cada conjunto mensurável A ⊂ R+ o número de saltos do

processo cujos tempos pertencem a esse conjunto. Para uma realização ω do processo, define-

se:

M(ω,A) = #{i ≥ 1 : Ti(ω) ∈ A}. (D.1)

A função M(ω, ·) é uma medida sobre subconjuntos de R+, denominada medida aleatória,

pois depende da realização ω ∈ Ω do processo aleatório.

No caso do processo de Poisson com intensidade constante λ > 0, a esperança da medida

aleatória M associada ao conjunto A é dada por:

E[M(A)] = λ|A|,

em que |A| representa a medida de Lebesgue do conjunto A. Isso significa que, em média, o

número de saltos em um conjunto A é proporcional ao seu comprimento.

A contagem total de eventos até o tempo t pode ser expressa diretamente em termos da

medida aleatória:
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Nt(ω) = M(ω, [0, t])

=

∫
[0,t]

M(ω, ds).

A construção da medida M(ω,A), definida em (D.1), pode ser estendida para uma configu-

ração mais ampla, ao substituir R+ por E ⊂ Rd e a medida de Lebesgue pela medida de Radon

µ em E.

Definição D.0.1. Medida aleatória de Poisson. Seja (Ω,F ,P) um espaço de probabilidade,

E ⊂ Rd e µ uma medida de Radon conhecida e positiva em (E, E). A medida aleatória de

Poisson em E com medida de intensidade µ é uma medida aleatória de valor inteiro:

M : Ω× E → N

(ω,A) 7→ M(ω,A)

tal que:

1. Para cada ω, M(ω, .) : E → N é uma medida (valor inteiro) sobre E;

2. Para cada conjunto A, a variável aleatória M(A) = M(., A) : Ω → N segue distribuição

de Poisson com parâmetro µ(A):

P (M(A) = k) =
e−µ(A)µ(A)k

k!
;

3. Para conjuntos disjuntos A1, ..., An, as variáveis M(A1), ...,M(An) são independentes.

A definição D.0.1 formaliza o conceito de medida de Poisson aleatória como uma função

M : Ω×E → N, que associa a cada realização ω ∈ Ω e a cada conjunto mensurável A ∈ E um

número aleatório M(ω,A), correspondente à quantidade de pontos (saltos) em A. A equação
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(D.2) complementa essa definição ao mostrar que toda medida de Poisson aleatória pode ser

interpretada como uma medida discreta concentrada em uma sequência aleatória de pontos

(Xn)n≥1 ⊂ E. Assim, existe um processo {Xn(ω), n ≥ 1} tal que

∀A ∈ E , M(ω,A) =
∑
n≥1

1A(Xn(ω)), (D.2)

em que 1A é a função indicadora do conjunto A.

M é, portanto, uma soma de medidas de Dirac localizadas nos pontos aleatórios Xn, o que

permite interpretar M como a superposição de partículas aleatórias caindo no espaço E:

M =
∑
n≥1

δXn

A medida de Dirac δx associada a um ponto x ∈ E é definida da seguinte forma: δx(A) = 1

se x ∈ A e δx(A) = 0 se x /∈ A. De maneira geral, pode-se considerar uma soma de tais

medidas de Dirac. Dado um conjunto enumerável de pontos X = {xi, i = 0, 1, 2, . . .} ⊂ E,

a medida de contagem µX =
∑

i δxi
é definida da seguinte maneira: para qualquer A ⊂ E,

µX(A) conta o número de pontos xi em A:

µ(A) = #{i : xi ∈ A} =
∑
i≥1

1xi∈A.

No contexto da construção de processos de saltos a partir de medidas de Poisson aleatórias,

considera-se uma medida de Poisson aleatória definida no espaço E = [0, T ] × Rd \ {0}, que

representa uma coleção de saltos que ocorrem em tempos aleatórios Tn com tamanhos dos saltos

Yn ∈ Rd \ {0} v.a.’s i.i.d f .

A medida de salto associada a um processo com trajetórias cadlag (contínuo à direita e com

limites à esquerda) é uma medida aleatória que registra os instantes em que ocorrem saltos e suas

respectivas amplitudes. Formalmente, ela é construída como uma soma de medidas de Dirac

localizadas nos pares (Tn,∆Xn), em que Tn são os tempos do salto e Yn = ∆Xn = XTn −XT−
n
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representa a amplitude do salto do processo X no instante Tn.

A medida aleatória associada, denotado por JX , é chamada de medida de salto do processo

X:

JX(ω, ·) =
∑
n≥1

δ(Tn(ω),Yn(ω)) =

∆Xt ̸=0∑
t∈[0,T ]

δ(t,∆Xt).

Em termos intuitivos, para qualquer subconjunto mensurável A ⊂ Rd:

JX([0, t]×A) := número de saltos de X que ocorrem entre 0 e t cujas amplitudes pertencem a A.

A medida aleatória JX contém toda a informação sobre as descontinuidades (saltos) do

processo X: ela nos informa quando os saltos ocorrem e qual a sua magnitude. A medida JX

não nos fornece qualquer informação sobre a componente contínua de X . É fácil perceber que

X possui trajetórias amostrais contínuas se, e somente se, JX = 0 quase certamente (ou seja,

não há saltos).

No caso particular de um processo de Poisson com saltos unitários, essa medida é dada por

JN([0, t]× A) =


#{i ≥ 1 : Ti ∈ [0, t]}, se 1 ∈ A,

0, caso contrário,

o que evidencia que a medida de salto coincide com o processo de contagem Nt quando os

saltos são todos iguais a 1 e o conjunto A inclui esse valor.

Por fim, quando o processo com saltos Xt (processo de Poisson composto) é construído a

partir de uma medida de Poisson aleatória M , com a representação

M =
∑
n≥1

δ(Tn,Yn), Xt =

∫
[0,t]×Rd\{0}

f(s, y)M(ds dy),

a medida de salto JX pode ser expressa diretamente em termos da medida M e da função f por

meio de
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JX =
∑
n≥1

δ(Tn,f(Tn,Yn)).

Essa representação permite interpretar a medida de salto como o resultado da transformação

das amplitudes Yn por uma função f , mantendo os mesmos tempos de ocorrência Tn.

Proposição D.0.1. Medida de salto para o processo de Poisson composto. Seja (Xt)t≥0 é um

processo de Poisson composto, com intensidade λ e distribuição de tamanho dos saltos dada

por uma medida de probabilidade f , a medida de salto JX é uma medida de Poisson aleatória

definida sobre Rd × [0,∞), com medida de intensidade dada por

µ(dx× dt) = ν(dx) dt = λf(dx) dt.

Essa formulação fornece uma interpretação alternativa da medida de Lévy como a quanti-

dade média de saltos por unidade de tempo. Tal interpretação se mostra mais geral e útil do

que aquela baseada diretamente na distribuição de tamanho dos saltos, e pode ser estendida

para definir a medida de Lévy de processos mais gerais, não apenas dos processos de Poisson

compostos.
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Processo de Lévy

Definição E.0.1. Processo de Lévy. Um processo estocástico (Xt)t≥0 cadlag definido sobre

(Ω,F ,P) com valores em Rd, tal que X0 = 0, é denominado processo de Lévy se satisfizer as

seguintes propriedades:

1. Incrementos independentes: para toda sequência crescente de tempos t0 . . . tn, as vari-

áveis aleatórias Xt0 , Xt1 −Xt0 , . . . , Xtn −Xtn−1 são independentes.

2. Incrementos estacionários: a distribuição de Xt+h −Xt não depende de t.

3. Continuidade estocástica: ∀ε > 0, limh→0 P(|Xt+h −Xt| ≥ ε) = 0.

Definição E.0.2. Medida de Lévy. Seja (Xt)t≥0 um processo de Lévy em Rd. A medida de

Lévy ν em Rd é definida por:

ν(A) = E [# {t ∈ (0, 1] : ∆Xt ̸= 0, ∆Xt ∈ A}] , A ∈ B(Rd),

é chamada medida de Lévy de X: ν(A) é a quantidade esperada, por unidade de tempo, de

saltos cujas amplitudes pertencem ao conjunto mensurável A.

Essa medida descreve a frequência esperada com que saltos de diferentes tamanhos ocorrem,
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sendo um dos componentes fundamentais dos três parâmetros que caracterizam um processo de

Lévy.

A proposição D.0.1 implica que todo processo de Poisson composto pode ser representado

da seguinte forma:

Xt =
∑
s∈[0,t]

∆Xs

=

∫
[0,t]×Rd

xJX(ds× dx),

em que JX é uma medida aleatória de Poisson com medida de intensidade ν(dx)dt.

O processo de Lévy (Xt)t≥0 pode ser decomposto em diferentes componentes que represen-

tam distintos tipos de comportamento estocástico. X0
t denota a parte descontínua do processo,

construída a partir de uma medida aleatória de Poisson. Esse processo X0
t mantém-se constante

entre os saltos e altera seu valor apenas nos instantes de descontinuidade.

Dado um Movimento Browniano com drift γt + Wt, independente de X0, a soma Xt =

γt+Wt +X0
t define outro processo de Lévy, que pode ser decomposto como:

Xt = γt+Wt +
∑
s∈[0,t]

∆Xs

= γt+Wt +

∫
[0,t]×Rd

xJX(ds× dx),

Essa decomposição é formalizada pela chamada tripla de Lévy (γ,Σ, ν), a qual caracteriza

um processo de Lévy. Nessa tripla:

• γ ∈ Rd representa o vetor de tendência (drift), associado à variação determinística contí-

nua;
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• Σ ∈ Rd×d é uma matriz simétrica semidefinida positiva que define a covariância do mo-

vimento Browniano associado;

• ν é a medida de Lévy, uma medida sobre Rd\{0}, que descreve a frequência e distribuição

dos saltos.

Com essa estrutura, o processo de Lévy Xt pode ser representado como uma combinação de

três termos: um movimento Browniano (com covariância Σ), um termo determinístico linear

γt, e uma parte descontínua composta por uma soma (eventualmente infinita) de saltos cujas

distribuições e intensidades são controladas pela medida ν.
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Apêndice F

VT (Modelo de Merton com saltos)

F.1 Fórmula de Itô para difusões com saltos

Considere um processo de difusão com saltos Xt, definido como:

Xt = σWt + µt+ Jt

= Xc(t) + Jt,

em que Wt é um movimento Browniano padrão, σ é a volatilidade, µ é o coeficiente de drift, e Jt

representa a parte descontínua do processo, modelada como um processo de Poisson composto:

Jt =
Nt∑
i=1

∆Xi,

com Nt indicando o número de saltos até o tempo t e ∆Xi denotando a magnitude do i-ésimo

salto. A parte contínua do processo é expressa por

Xc
t = µt+ σWt.
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cap. F. VT (Modelo de Merton com saltos) §F.1. Fórmula de Itô para difusões com saltos

Seja f ∈ C2(R) e Yt = f(Xt). Considere que os saltos ocorrem nos instantes Ti, com

i = 1, . . . , Nt. No intervalo entre dois saltos consecutivos, [Ti, Ti+1), o processo Xt evolui de

forma contínua conforme a dinâmica

dXt = dXc
t

= µXc
t + σXc

t dWt.

Neste intervalo, a aplicação direta da fórmula de Itô clássica para difusões fornece:

YTi+1−
− YTi

=

∫ Ti+1−

Ti

σ2

2
f ′′(Xt)dt+

∫ Ti+1−

Ti

f ′(Xt)dXt.

Como dXt = dXc
t no intervalo contínuo, tem-se

YTi+1−
− YTi

=

∫ Ti+1−

Ti

(
σ2

2
f ′′(Xt)dt+ f ′(Xt)dX

c
t

)
.

Quando ocorre um salto no instante Ti de magnitude ∆XTi
, o processo sofre uma mudança

abrupta, de modo que a variação de Yt é dada por

f(XTi
)− f(XT−

i
) = f(XT−

i
+∆XTi

)− f(XT−
i
).

Portanto, o incremento total de f(Xt) ao longo do intervalo [0, t] é a soma das contribuições

contínuas (devidas à parte Xc) e das descontínuas (devidas aos saltos):

f(Xt)−f(X0) =

∫ t

0

f ′(Xs)dX
c
s+

∫ t

0

σ2

2
f ′′(Xs)ds+

∑
0≤s≤t,∆Xs ̸=0

[f(Xs− +∆Xs)− f(Xs−)] .

(F.1)

A Equação (F.1) é a forma integral da fórmula de Itô para processos de difusão com saltos.

Para obter sua forma diferencial, considere o incremento infinitesimal dXt composto pela parte
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contínua e pela parte descontínua, ou seja,

dXt = dXc
t +∆Xt,

em que

dXc
t = µXc

t + σXc
t dWt.

Assim, o diferencial de f(Xt) pode ser decomposto em:

df(Xt) =
∂f(Xt)

∂x
dXc

t +
σ2

2

∂2f(X2
t )

∂x2
(dXc

t )
2 + [f(Xt− +∆Xt)− f(Xt−)] . (F.2)

A Equação (F.2) expressa a contribuição da parte contínua e da parte descontínua para a

evolução instantânea da função f(Xt). A última parcela representa explicitamente a alteração

causada por um eventual salto no instante t.

F.2 Valor do ativo no tempo T

Seja Vt o valor de um ativo no tempo t que satisfaz (6.2), então o valor do ativo no tempo T ,

t < T , é dado por:

VT = Vt exp

[(
α− 1

2
σ2
V − λk

)
(T − t) + σV (WT −Wt) +

Nt∑
i=1

Yi

]
.

Demonstração. (MATSUDA, 2004):

1. Base contínua (movimento Browniano com drift): a parte contínua do retorno relativo do

ativo é modelada por um processo geométrico Browniano.

dSt

St

= αdt+ σWt,
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em que:

• α é o retorno esperado do ativo em termos contínuos;

• σ é a volatilidade; e

• Wt é um movimento Browniano padrão.

2. Inclusão de saltos (processo de Poisson composto): Para capturar saltos nos preços,

adiciona-se um processo de Poisson Nt, que modela o número de saltos até o tempo t

com intensidade λ. Cada salto multiplica o preço do ativo por um fator aleatório yt, logo,

a variação relativa por salto é yt − 1. Assim, o termo que representa os saltos é:

(yt − 1)dNt

3. Correção do drift (ajuste λk): os saltos introduzem um valor esperado adicional ao re-

torno. Para garantir que o retorno contínuo esperado ainda seja α, é necessário subtrair a

parte determinística do salto esperada no drift. Assim, define-se k como:

k = E[yt − 1] = E[yt]− 1.

Logo, a parte do drift é ajustada para α− λk, o que garante que os saltos sejam imprevi-

síveis e que o processo continue centrado.

Com esses três componentes, a equação diferencial estocástica do Modelo de Merton com

saltos é:

dVt = Vt[(α− λk)dt+ σdWt] + (yt − 1)dNt],

em que yi é assumido com distribuição lognormal. Ou seja, ln(yi) ∼ N(µ, δ2).
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4. Equação Lévy-Itô. Ao aplicar a Equação (F.2) na variação logarítmica dlogVt, tem-se:

d lnVt =
∂ lnVt

∂t
dt+ (α− λk)Vt

∂ lnVt

∂Vt

dt+
σ2V 2

t

2

∂2 lnVt

∂V 2
t

dt+ σVt
∂ lnVt

∂Vt

dWt

+ [ln ytVt − lnVt]

d lnVt = (α− λk)Vt
1

Vt

dt+
σ2V 2

t

2

(
− 1

V 2
t

)
dt+ σVt

1

Vt

dWt + [ln yt + lnVt − lnVt]

d lnVt = (α− λk)dt− σ2

2
dt+ σ dWt + ln yt

lnVT − lnVt =

(
α− σ2

2
− λk

)
(T − t) + σ(WT −Wt) +

NT−Nt∑
i=1

ln yi

lnVT = lnVt +

(
α− σ2

2
− λk

)
(T − t) + σ(WT −Wt) +

NT−Nt∑
i=1

ln yi

Ao aplicar o exponencial, tem-se:

exp(lnVT ) = exp

{
lnVt +

(
α− σ2

2
− λk

)
(T − t) + σ(WT −Wt) +

NT−Nt∑
i=1

ln yi

}

VT = Vt exp

{(
α− σ2

2
− λk

)
(T − t) + σ(WT −Wt)

}
exp

(
NT−Nt∑
i=1

ln yi

)

VT = Vt exp

[(
α− σ2

2
− λk

)
(T − t) + σ(WT −Wt)

]NT−Nt∏
i=1

yi

VT = Vt exp

[(
α− σ2

2
− λk

)
(T − t) + σ(WT −Wt) +

NT−Nt∑
i=1

ln yi

]

5. Considerando ln yt ≡ Yt, tem-se:

VT = Vt exp

[(
α− 1

2
σ2
V − λk

)
(T − t) + σV (WT −Wt) +

NT−Nt∑
i=1

Yi

]
.
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