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Titulo em portugués: Solucoes simétricas para algumas equagoes elipticas.
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problemas supercriticos, métodos variacionais, equacoes elipticas, operador biharmonico,

sistema eliptico, desigualdade de Trudinger-Moser.

Resumo expandido

Este trabalho aborda varias equagoes diferenciais nao lineares e sistemas
envolvendo pesos radiais, o operador de Grushin, o operador biharmonico e um sistema
acoplado do tipo FitzHugh—Nagumo. Considera nao linearidades com crescimento
superlinear ou supercritico, concentrando-se em como a presenca de pesos afeta as
propriedades de simetria das solugoes. Novos lemas de simetria radial, adaptados aos
pesos especificos, sao estabelecidos, juntamente com resultados referentes a existéncia e
multiplicidade de solugoes fracas e regulares. Em certos contextos, também se demonstra

a quebra de simetria para solugoes de energia minima.

A seguir, explicaremos brevemente o que foi provado em cada capitulo da tese.
No Capitulo 2, intitulado “Equacdo de Hénon para o operador de Grushin”, estudamos

a equacao do tipo Hénon

{ —(Gat)(2) = |2I'f (1), B. (P.)

u =0, 0B,

onde B é a bola unitaria em RY = R™ x R™ f se comporta como [t|P7%t, £ > 0, a = 0,

2N ~
2<p<2Z=N 2,comN=N1+(1+a)N2,e

gaU(I, y) = Awu + |‘T|2aAyu

¢ o operador de Grushin. O expoente critico 2% garante que a imersao Hy ,(B) — L?(B)
¢ compacta para 2 < p < 2%, onde H; ,(B) generaliza o espago de Sobolev usual Hy(B).

A principal dificuldade em demonstrar um resultado de imersao compacta, a
partir do qual obtemos solugoes fracas radiais, foi estender uma desigualdade famosa para

fungoes radiais de [60]. Precisamente, provamos que

|

|o[(F=227  PHE q.t.p. z€ DB,

u(z)] < C



é vélida para u radialmente simétrica em C;°(B), onde |- | é a norma em um certo espago
X de fungoes radiais. Outra dificuldade foi provar que a solugao obtida é nao-negativa, ja
que G, nao é invariante sob aplicagoes ortogonais. Por fim, é bem conhecido na literatura
que, para £ > 0 grande e a = 0, a solugao de menor energia (ground state) nao é radial.
Para demonstrar um resultado semelhante quando a > 0, utilizamos uma familia de
dilatacoes inerente ao operador de Grushin, o que é particularmente interessante.

No Capitulo 3, intitulado “Fquacdo de Hénon para o operador biharmonico”,
também decompomos RY como no Capitulo 2 e estudamos a seguinte classe de problemas

do tipo Hénon:

ou (Pry)

onde A%u = A(Au) é o operator biharmonico, 3 < Ny < Ny, £ > 0, W(x,y) se comporta
como o produto |z||y|, e f possui crescimento do tipo [t['~*¢ para 2} v, = [2Ny/(Ny —
2)] + [2¢/(N1 — 2)]. O peso W nos leva a considerar o subespago Hj, (B) de H(B),
constituido por fungoes radiais em cada uma das diregoes x e y.

Um dos pontos principais do capitulo foi a demonstracao de uma desigualdade
andloga a ja mencionada de [60], agora envolvendo o peso em questdo, a qual nao foi
encontrada na literatura. Especificamente, provamos a seguinte interessante desigualdade:

Au
%, para quase todo (x,y) € B,

u(z, y)| < C
=yl

2
onde u € Hg, ,

demonstragao dessa desigualdade foi inspirada em [60], mas parece ser inovadora. Além

(B), e a constante C' foi também explicitada. A técnica utilizada na

disso, tal desigualdade da origem a um produto interno em Hg’m’y(B)7 aparentemente

desconhecido até entao, a saber,

B, ylu,v] = JB Azu(2)Ay(z)dz, VYu,ve Hj, (B).

Essa desigualdade nos permite provar um resultado de imersao compacta em
espacos de Lebesgue com o peso W; da qual segue a existéncia de solugao fraca para
(P,.,), superando inclusive o expoente critico usual de H*(B), a saber, 2** = 2N /(N —4).
Por fim, mostramos como nosso resultado de imersao compacta complementa um anédlogo

apresentado em [20].

No Capitulo 4, intitulado “Kirchhoff-Boussinesq equation with Hénon
nonlinearity”, damos continuidade ao estudo de equacoes do tipo Hénon. No entanto,

diferentemente dos capitulos anteriores, nao realizamos aqui nenhuma decomposicao em



RY, sendo que um vetor neste espaco é denotado por z. Estudamos o seguinte problema

do tipo Kirchhoff-Boussinesq:

A%y + div(|2|[*|VulP~2Vu) = |z|°f(u), in B,

ou (P+)
u=—--=0, on 0B,
ov
K
onde kK, >0,2<p<2f:=2"+ N e? funcdo f possui crescimento do tipo [t|7%t,
20
com p < q <2/ :=2"+ N1 Assim como no Capitulo 1, buscamos solugoes fracas

radiais para o problema (P.), ou seja, solucdes pertencentes ao subespaco X de H3(B)
formado por fungoes radiais.

Para tratar da existéncia de solugoes fracas radiais para esse problema,
empregamos uma desigualdade de interpolacao de Gagliardo-Nirenberg com pesos, a fim
de contornar a dificuldade imposta pelo termo div(|z|"|Vu[P~2Vu). A principal dificuldade
consistiu em determinar parametros adequados para x, p e ¢ que nos permitissem obter
solugoes fracas em X.

Demonstramos que, para N > 4 e £ > 0, existe ky = k4«(¢, N) > 0 tal que,
para qualquer k € [0,k4) € 2 < p < 2%, existem constantes 0, € [1/2,1) e q. € [2,2;)
satisfazendo

IVl gy < CIVu g L), Ve CRRY),
sendo que os valores de k, e ¢, sao explicitamente determinados. O intervalo obtido para
q nao ¢ arbitrario, sendo este de modo a garantir a validade da imersao compacta de X
em espacos de Lebesgue com peso |z|°, conforme [20].

Por fim, supondo certa simetria em f, pudemos empregar uma versao simétrica
do Teorema do Passo da Montanha em conjunto com a teoria espectral do operador A?
associada ao problema de autovalor com peso |q:|£, a fim de demonstrar a existéncia de
infinitas solugdes para o problema (Py.).

No Capitulo 5, intitulado “FitzHugh-Nagumo system with exponential growth”,
deixamos as equacdes do tipo Hénon de lado para estudar um problema no R?, porém
ainda buscando solucoes radiais. Precisamente, estudamos o sistema do tipo FitzHugh-
Nagumo

—Au = AQ([z[)f(u) = V(|z])v, in R

o, (S))
—Av = V(|z|))u — V(|z])v, in R*,



onde A > 0, os potenciais V' e ) sdo continuos e positivos em (0, 4+00) e se comportam
como poténcias de r. Precisamente, existem a, b, by > —2 tais que
Vir) Q(r)

lim inf >0, limsup—— <+o00 e limsup—;
rotoo e r—>0 T ro4ow T

A nao linearidade f é continua e tem crescimento exponencial.

Para lidar com o Problema (S,), primeiro fixamos u € E; em que E é o espaco
apropriedade do tipo H?(R?) que envolve o peso V, e na segunda equacdo, obtemos via
Teorema da Representacao de Riez, uma solugao Blu|. Assim, definimos um certo espago
com base em B[u] e provamos uma desigualdade do tipo Trudinger-Moser especialmente
para este, a qual é interessante por si so.

Com a estrutura variacional pronta, mostramos que existe \g > 0 tal que, para
todo A = A, o sistema (S,) admite uma solucao fraca radial ndo nula (u,v). Além
disso, com uma hipétese adicional de V' perto da origem, mostramos um resultado de
regularidade. Finalmente, supondo que f tem certa simetria, mostramos que o problema

(S,) possui infinitas solugoes.



Abstract

This work addresses various nonlinear differential equations and systems
involving radial weights, the Grushin operator, the biharmonic operator, and a
coupled FitzHugh—-Nagumo-type system. It considers nonlinearities with superlinear
or supercritical growth, focusing on how the presence of weights affects the symmetry
properties of solutions. New radial symmetry lemmas tailored to the specific weights
are established, along with results concerning the existence and multiplicity of weak and
regular solutions. In certain settings, symmetry breaking is also demonstrated for minimal

energy solutions.

Key words: Grushin operator, Hénon equation, symmetry breaking, supercritical
problems, variational methods, elliptic equations, biharmonic operator, elliptic system,

Trudinger-Moser inequality.



Contents

1 Introduction

2 Hénon equation for the Grushin operator
2.1 A compact embedding for radial functions . . . . ... ... ... ... ..
2.2 Existence of solution . . . . . . ... ...
2.3 Symmetry breaking . . . ... ..o
2.3.1 Estimating S7%, . .. ...
232 Estimating Sy, . . . . ..o

3 Hénon equation for the biharmonic operator
3.1 Some technical results . . . . . .. ... ... ... o
3.2 Proofs of Theorems 3.1 and 3.2 . . . . . . . .. .. ... ... ... ....
3.2.1 Further comments . . . . .. .. ... ... .. ... ... ...

3.3 Application . . . ...

4 Kirchhoff-Boussinesq equation with Hénon nonlinearity
4.1 The variational framework . . . . . . . . . . . ..
4.2 Existence of a solution . . . . . . . ..

4.3 Multiplicity of solutions . . . . . . .. ... o

5 FitzHugh-Nagumo system with exponential growth
5.1 Variational setting . . . . . . . ...
5.2 Mountain Pass structure . . . . . . ... 0oL
5.3 Proofs of Theorems 5.1 and 5.2 . . . . . .. . . .. .. ... ... .....
5.4 Appendix . . ...

Bibliography

16
18
23
26
27
29

34
37
41
45
46

50
o1
o7
60

65
67
79
87
90

92



CHAPTER 1

Introduction

Many physical phenomena can be described by partial differential equations
(PDE’s). In fluid mechanics and gas dynamics, the Navier-Stokes equations model
fluid flow, including air, water, and blood, as well as weather patterns (¢f. [19]). In
electromagnetism and potential theory, Maxwell’s equations govern electromagnetic waves
and optics (¢f. [44]). The heat equation, a parabolic PDE, describes time-dependent
diffusion processes like thermal conduction. Meanwhile, the wave equation, a hyperbolic
PDE, represents wave propagation in vibrations, sound, and light. Poisson’s equation,
an elliptic PDE, models steady-state phenomena such as electric potential and heat
distribution (c¢f. [40]). PDE’s also play a crucial role in elasticity, solid mechanics,
quantum mechanics, general relativity, cosmology, biology, medicine, geophysics and earth
sciences.

This thesis is specifically focused on certain types of non linear elliptic PDE’s and
our approach is variational. We briefly comment on this branch of Analysis. Generally,
the problem of finding a weak solution u of an elliptic PDE is the same as finding some

u, in a Banach space X of functions, which verifies an identity of the form
J(u,p) =0, VoeX. (1.1)

The space X is generally related to the nature of the problem. The techniques in
Variational Methods mostly involve associate a functional I € C'(X,R) to (1.1) such
that

I'(we = J(u,9), Yu,peX

and so, critical points of I would be weak solutions of the problem of interest. One of the
most important results in this line is the so called Mountain Pass Theorem, duo Antonio
Ambrosetti and Paul Rabinowitz (cf. [5]), which will be used in this thesis several times.

In this thesis, we investigate three distinct elliptic problems. So, the main part of
the work is organized into three chapters, each dedicated to one of these problems, which
are briefly described in the following sections. We would like to comment that, as each
chapter is independent, we may use the same notation for properties of the non linearity
term and some weighted Lebesgue space in different chapters. We also mention that the

thesis includes an appendix with general results used throughout the text.

MELO, T. G. 1 Department of Mathematics



Chapter 1. Introduction

Hénon equation with Grushin operator

The Hénon equation
—Au(z) = |2z['u(z)P"',2e B, wu(z) =0,z€ 0B, (1.2)

was introduced in [43] as a model for investigating spherically symmetric clusters of stars.
In the equation, B is the unit ball of RN, N > 3, £ > 0 and p > 2. Its mathematical
significance grew after Ni’s paper [60], where the existence of positive radial solutions was
established for 2 < p < 2* + 2¢/(N — 2). The crucial idea for the existence of solutions
beyond the critical Sobolev exponent 2* := 2N /(N — 2) lies in the following inequality

IVl L2y

< :
VN (N = 2)|z|(V-2

which holds for any radially symmetric « € C'(B) vanishing in the boundary of B. Here

ju(2)] z€ B, (1.3)

wy denotes the surface area of the unit ball in RY for N > 3. This inequality is known
in the literature as Ni’s Radial Lemma.

Since Ni’s work, equation (1.2) has been studied in several different perspectives.
Since it is impossible to present a complete list, we only cite [7, 10, 11, 13, 21, 36, 37,
50, 52, 53, 57, 67, 70, 79] and references therein for further exploration. In addition to
Ni’s paper, the work of Smets, Su and Willem [71] strongly influenced our investigation
in Chapter 2. They proved that, for large ¢ > 0 and p € (2,2%), the ground state solution
of (1.2) is non-radial. This phenomena was first observed via numerical computations in
[17] and it is called in literature as symmetry breaking. For more recent works on this
kind of result for Hénon type equations we refer to [6, 42, 64].

In Chapter 2, we split each vector z € RY as z = (x,y) € RM x R™ and define
the Grushin operator

(Gou)(2) := Au(z) + |2[**Ayu(z), (1.4)

where o = 0, Ny, No € N, and A,, A, denote the usual Laplacian in the variables z, v,
respectively. When « = 0 this operator is the usual Laplacian operator.

The operator (1.4) was first studied by Grushin in [34, 35] when « € Z and first
addressed in [29, 30] for cases where v ¢ Z. Since then, it has been the subject of intensive
research, cf. e.g., [4, 24, 51, 56] and references therein. In addition, we remark that this
operator belongs to two more generals class of elliptic operators, cf. e.g.[39, 47, 54].

We propose the study of the following Hénon type equation

MELO, T. G. 2 Department of Mathematics



Chapter 1. Introduction

{ _(gau)(z) = |Z| f(z,u), in B, (Pa)

u =0, on 0B,

with f(z,s) behaving like |s|P~%s, for suitable values of p > 2, which may exhibit
supercritical growth with respect to the critical exponent associated to the Grushin
operator.

More specifically, we fix a = 0, define

~

2N

N := Ny + (1 + a)Ny, 2= ———,
N —2

«

and require that the nonlinear term f satisfies the following assumptions:
(fl) f € Cf(E X R7R)a

(f2) there exists £ > aNy,

and C' > 0 such that

|f(z,8)| <C(1+][sP"), V(z,s) e BxR

The natural space to deal with the Grushin operator is
H\(B) := {u € L2(B) : |Voul € L*(B), |2|°|V,u| € LQ(B)},

which becomes a Banach space (cf. [77, Theorem 4]) when endowed with the norm

1/2
by = ([ 1900+ 1Pz

where

Vou(z) == (Vou(2),|2]*V,yu(z)) e RY.

We also define the subspace H ,(B) := C(‘)’O(B)H.HHCI*(B) with the norm

= ([ 1wt a:) -

which is equivalent to | - |g1(s) (¢f [47, (1.8)]). The space H;,(B) is continuously
and compactly embedded in LP(B), for p € [1,2%] and p € [1,2}), respectively (cf. [47,
Theorem 3.3 and (1.8)]). In addition, let

MELO, T. G. 3 Department of Mathematics



Chapter 1. Introduction

Cor(B) :={ue C(B) : u is radial }

and X := Co.(B) .

In line with the preceding studies concerning the Grushin operator, we aim to
identify critical points of the Euler-Lagrange functional associated with Problem (FP,).
The main novelty here is that we are able to consider nonlinearities which grows beyond
the Grushin critical exponent 2, since we are assuming ¢ > «N,. This can be done by a
careful estimate of the decay rate of radial functions of our working space together with
an embedding result in an weighted LP-Lebesgue space. More specifically, in Section 2.1

we prove that

]

|Z|(]\7—_2)/2, for a.e. ZEB,

u(z)] < C

where C' = C'(N) > 0 does not depends on u € X.

After establishing the variational framework, we revisit Problem (P, ) and impose
conditions on f to utilize the full apparatus of Critical Point Theory (cf. [66]) for obtaining
solutions. The range of problems that can be addressed is extensive. As an illustrative

example, we focus on the classical superlinear setting, wherein we assume:

(f3) there holds
lim fz5)

=0, uniformly in B;
s—0 S

(f4) there exists p > 2 and s > 0 such that

0 < pF(z,8) <sf(z,8), YzeDB, s> s,

where F(z,s) := JS f(z,T)dr.
0

As an application of the variational setting developed in Section 2.1, we shall

prove in Section 2.2 the following existence result:

Theorem 2.1. Suppose that o > 0, No = 2 and f satisfies (f1)-(f1). Then Problem (F,)

has a nonzero and radial weak solution. If in addition o = 1, this solution is nonnegative.

To the best of our knowledge, there is limited literature on the Grushin operator
with Hénon-type nonlinearities. We could mention the paper by Duong and Nguyen [24],

where a nonexistence result is established for stable weak solutions of the equation:

—Gott + [Vow - Vou] = |24 |ulfu, 2= (2,y) e RM x RN,

MELO, T. G. 4 Department of Mathematics



Chapter 1. Introduction

withp > 2,0 = 0, |2|s := (J2]* @Y 4]y|?) Y2+ and the function w satisfying appropriate
decay properties at infinity. Similar results can be found in [65, 80, 81]. Our first main
result differs from and complements these findings.

In the homogeneous case f(z,s) = |s[P™?s, it is evident that the solution can be
obtained through constrained minimization. When p € (2,2}), it is natural to inquire
whether the ground state solutions of the problem are always radial. In our final result of
Chapter 2, we leverage the action of a semigroup of dilations associated with the Grushin
operator to obtain a symmetry breaking result for large values of ¢ > 0. More specifically,
in Section 2.3, after performing careful estimates of the asymptotic behavior of the ground
state levels of our problem in the whole space and in the space of radial functions, we

complement [71, Theorem 3.1] by proving the following result:

Theorem 2.2. Suppose that a > 0, Ny =2 and f(z,s) = |s|’"2s, for any (2,5) € B xR
and some p € (2,2%). Then there exists £* > 0 such that the ground state solution of
Problem (P,) is not radial provided ¢ > (*.

We remark that a ground state solution of Problem (P,) is a solution that

minimizes the associated Euler-Lagrange functional over Hy ,(B) — {0}.

Hénon equation for the biharmonic operator

In Chapter 3, we consider the Hénon equation
—Au(z) = |z[uP7(2),2€ B, wu(z) =0,z€ 0B, (1.5)

where B is the unit ball of RY, N >3, ¢ > 0 and p > 2. We recall that the crucial aspect
used in [60] to obtain existence of positive weak solutions for 2 < p < 2* + 2¢/(N — 2),
with 2% := 2N /(N — 2) lies in obtaining a constant C' > 0, such that

IVl 228y

< , Z2€DB,
Vwn(N = 2)|z|(V=2/2

for any radially symmetric « € C*(B) vanishing in the boundary of B. With this inequality
in hands, it is possible to embed the subspace of Hj(B) of radial functions Hj,(B) into

Ju(2)]

(1.6)

Lebesgue spaces L*(B) with the number s beyond the critical Sobolev exponent 2*.
The first aim of Chapter 3 is establishing a version of inequality (1.6) that involves
the Hg(B) norm, when the space R has an specific decomposition. In order to be more

specific, in next lines we will define the appropriate spaces which will be used in Chapter
3.
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We decompose RY = RM x R™ with 3 < N, < N; and write a vector z € RY as

z = (x,y) with z € R™ and y € R*2. For any 1 < p < +o0 and £ > 0, we set

[2(B) i {u eIl (B f () [PV ()]t < —l—oo}

where W verifies

(Wl) W e Ll

loc

(B) and there exists ¢y > 0, such that

0 < W(z) <ewlz|lyl, for a.e. z € B.

This is a Banach space with the norm

/p
lullze (s = <J |u(z)[P[W zdz) .

We define H2(B) as the closure of C{°( B) under the H*(B) norm. Using Poincaré
Inequality and integration by parts, one can see that the usual norm induced by that of
H?*(B) is equivalent to

1/2

12
lull 2y = Z |Du(z)Pdz | = <JB|AU(Z’)|2 dz) .

|a|=2

Finally, we denote by O(k) the group of real orthogonal k x k matrices and define

STy o (B)

ngy( ) Cgoxy( ) )

where

Comy(B) = {ue G (B) : u(x,y) = u(Ti(x), Tao(y)) ¥ T € O(Ny),i = 1,2},

is the set of compactly supported functions in B with are coordinate-radial.

Our radial type inequality is the following:

Theorem 3.1. For any u € H{, (B), there holds

Az
|U(:E,’y)| < CLsz fOT a.e. (I,y) € Ba (17>

SN B I
471'7(]\71—2)(]\[2—2)
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Chapter 1. Introduction

0
and I'(s) := J t~le7" dt being the Gamma function.
0

Theorem 3.1 was inspired by some ideas contained in [60, p. 802] and |20,
Corollary 4.1], which considered versions of the last inequality for the Laplacian and
biharmonic operator, respectively, but with a power of |(z,y)| depending on N in the
denominator. We also learn from [48, Lemma 2.1, where it is proved that there exists
Cy = C1(N), such that

1/2 1/2
ull Vs Rmuvx ||Lé<RN

u(z,y) < Cl‘ ;

|z

for any v € CF(RY) such that u(x,y) = o(|z|,|y|), for © non-increasing in |y|, and
N; = 2, N, > 1. Notice that no monotonicity conditions are assumed in our work.

As a consequence of Theorem 3.1, we prove an embedding result for the space
HZ_ (B). Actually, if we set

0,2,y

g 2N 2
GMTTN =2 N =2

for any Ny > 2 and ¢ > 0, we have the following:

Theorem 3.2. Suppose that N = Ny + N, with 3 < Ny < Ny, £ 20 and 1 <p <2y y,.
Then the embedding H{ . (B) — L}(B) is compact.

It is important to analyze situations in which the last result allows us to consider

exponents beyond the critical Sobolev exponent 2** := 2N /(N — 4). We have that

2(Ny — Ny)
N—4 7

and therefore we can consider supercritical growth. The most favorable situation occurs

2" <2y, = (> (1.8)

when N; = N because, in this case, the exponent 27 v is supercritical for any ¢ > 0.
Even when the dimensions are not equal, the condition on ¢ does not seem very restrictive,

since it can be easily shown that 3 < Ny < Nj implies

2(N1 — Ny)
N1 < 2,

and, therefore, supercritical growth is possible for any ¢ > 2

The embeddings obtained in Theorem 3.2 are closely related to, and complement,
the results presented in [20, Theorem 1.4 and Corollary 1.5]. For a detailed comparison,
we refer to Subsection 3.2.1, where it is shown that our result covers a strictly larger range

of the parameters p and £.
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Sobolev embeddings like that in Theorem 3.2 can be used to derive the existence

of solutions for nonlinear PDE’s. As an simple example, we consider the problem

with the supercritical nonlinearity f satisfying:

(f1) feCR,R);

(f2) there exists ¢y > 0 and p € (2,27 y, ), such that

) <er (141587, VseR

(f3) there holds

lim 1(5)

s—0 8

(f4) there exist p > 2 and sg > 0, such that

0 < uF(s)<sf(s), Vls|=so>0,

where F(s) := J f(t)dt.
0
We prove the following:

Theorem 3.3. Suppose that £ > 0, p € (2,2 y,) and f, W satisfy (f1)-(f1) and (W1),

respectively. Then Problem (P,,) has a nonzero weak solution in Hj , (B).

As far we know, equation (1.5) was not studied before with the weight |z||y|
and the biharmonic operator. As we know from Section 1.1, since Ni’s work, numerous
researchers have approached equation (1.5) from various perspectives. Specifically, we
refer to [20, 38, 84, 85] for studies involving the biharmonic operator, which had a

significant impact on our investigation.

Kirchhoff-Boussinesq equation with Hénon

nonlinearity

In this subsection, we present the mean results developed in Chapter 4.
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The class of elliptic Kirchhoff-Boussinesq-type problems can be regarded as the
stationary counterpart of the following class of time-dependent problems (see, e.g., [8, 9,
45)).

g + kuy + A*u— V. (|Vu|p_2Vu) + oA (u2) = F(u),

where £ = 0 denotes the damping parameter and ¢ is a nonnegative constant,
characterizing the behavior of a scalar field within a bounded domain  — R? with a
sufficiently smooth boundary. This model finds its roots in structural dynamics, notably
within the framework of the Mindlin-Timoshenko equations, which account for transverse
shear effects in plate dynamics. The reaction term F(u) captures nonlinear phenomena
intrinsic to the system, representing a feedback force acting on the plate. For a more
comprehensive understanding and further motivation, interested readers are directed to

[18] and additional references therein.

In recent years, the analysis of biharmonic elliptical equations with p-Laplacian
has been extensively investigated. In [14], the authors consider existence and multiplicity

of solutions for the problem

A%+ Apu = f(u) + Blu)* 2u, inQ,

u=Au=0, on 052,

where Q = RY is a smooth bounded domain, N > 5, 3 € {0,1}, f is continuous function
and N N
2 2
2<p<2ti=—— 2% = ———
b N-2 N—4
In the proof, it was used minimization arguments, the Nehari method and genus theory.
Also with the Nehari method, the authors in [15] obtained existence of solution for the

problem

Alu+ Aju = f(u), inQ,
Au=u=0, on 052,

with N =4, 2 < p <4, Qc R and f continuous with exponential subcritical or critical
growth.

The authors in [49] studied the existence of ground state solutions for weighted
elliptic Kirchhoff-Boussinesq type problems with supercritical exponential growth of the

following equation

A(ws(z)Au) + div(ws(z)|VulP2Vu) = f(z,u), in B,
ou
0, on 0B,

UZEZ
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where B < R* is the unit ball, ws(r) = log (e/|x|)ﬁ or wg(z) = log (1/|x|)6, g e (0,1),
2

2 <p<d, f(x,t) ~ exp (ath’h('x')) is a continuous function and A : [0,1) — [0, 0)

satisfy some mild conditions.

The fourth-order Hénon type equation

A%y = |z|'|tP%t, in B,

u >0, in B, (1.9)
0
a—z =0, on 0B,

was considered in [84]. Regarding the p-Laplacian operator, the authors in [23] studied

local and global properties of the equation,
—div(|Vulf2Vu) = |z['u?, in Q, (1.10)

where 1 < p < N, q>p—1,¢ > 0 and € is an open domain containing the origin.
Specifically, local properties refer to local behavior of solutions near a certain point, like
removable singularity and the order of isolated singularity and global properties refer to
properties of solutions in RY.

Motivated by the aforementioned works, in Chapter 4, we aim to study the

existence and multiplicity of radial solutions for the following class of problems

A%y + div(|2|[*|VulP~2Vu) = |z|°f(u), in B,

P
= 6_u =0, on 0B, (Px)
ov

where ¢,k > 0, B is a unit ball in RY and p > 2. We require that the nonlinear term f

u

satisfies the following assumptions:

(fl) f€ C(R>R)3

(f2) there exists ¢ > 0,
20

N —4

2<qg< 2t =2

and C' > 0, such that

[f(<C(1+]s]""), VseR;

(f3) there holds
lim &

s—0 8§
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(f1) there exists p > p and sp > 0 such that

0 <puF(s) <sf(s), Vsl = s0,

where F(s) := f: f(r)dr.

Now we are able to state our first result:

Theorem 4.1. Suppose that ¢ > 0, N > 4 and that f satisfies (f1)-(f1). Then there
exists Ky = Ky((, N) > 0 such that, for any k € [0, k,), Problem (P+) has a nontrivial

radial weak solution provided

2K

2<p<2f:=2"+ ,
P %x N2

p<gq.

We note that condition (f) requires 2 < ¢ < 2;*. To apply the last theorem, we
also need 2 < p < 27 and p < ¢q. Therefore, it is desirable to ensure that the inequality
2% < 2;* holds, so that the admissible range for ¢ is non-empty for any choice of p. We
prove in Proposition 4.5 that this condition is indeed satisfied.

In our second application, we prove that under symmetric conditions on f we can

obtain multiple solutions. More specifically, the following holds:

Theorem 4.2.  Let k., > 0 be given by Theorem /J.1. Suppose that { > 0, N > 4,
KE[DR), 2<p <2 2<q<2 and [ is an odd function satisfying (f1), (f2) and
(f1). Then Problem (Ps+) admits infinity many radial weak solutions.

This work was carried out based on an initial idea proposed by Romulo Diaz

Carlos, a postdoctoral researcher at UEMA, to whom we express our sincere gratitude.

FitzHugh-Nagumo system with exponential growth

In this subsection, we present the results of Chapter 5, obtained in collaboration
with my advisor and Prof. Jonison Lucas dos Santos Carvalho (UFS). These results can
also be found in the accepted paper [16].

We analyze the existence, multiplicity, and regularity of solutions to the following

planar FitzHugh—Nagumo system:

—Au = AQ(|z]) f(u) = V(|z[)v, in R

o (S»)
—Av = V(|z|))u — V(|z|)v, in R,

MELO, T. G. 11 Department of Mathematics
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where A > 0, the potentials V, @ : (0,00) — R and f : R — R are continuous functions
meeting certain conditions specified later. This type of system, derived from activator-
inhibitor dynamics, is significant in neurobiology for modeling nerve conduction and the
transmission of electrical signals in neurons. Relevant background and studies can be
found in [27, 41, 59, 75].

More broadly, our problem examines the steady-state of FitzHugh-Nagumo

systems, which are described by the following ODE:

w =u’ —v, TV =u+a— Db, (1.11)
initially proposed by Richard FitzHugh [27] and further developed by Jinichi Nagumo and
collaborators [59]. This system models nerve impulse propagation through a simplified
activator-inhibitor framework, capturing essential neurobiological processes. Further
details on the physical background are available in [75].

Authors in [22, 46] point out that system (1.11) belongs to a more general class

of reaction-diffusion systems, namely

u = D1Au+ g(u) —v, in (0,00) x €,
vy = DoAv + e(u — yv), in (0,00) x €,

where €2 is a bounded domain and Dy, Dy, € and v are positive constants. This type of

problem has motivated the study of the system

uy = DiAu + g(u) — kv, in (0,00) x RY,
vy = Do Av + u — v, in (0,00) x R,

See, for example, [46, 62] for the one-dimensional case and more recently [26] for the
n-dimensional case, which has strongly influenced our investigation.

From a mathematical perspective, researchers have focused on problems involving
potentials and weights that may be either unbounded or vanish at infinity. We especially
emphasize the paper by Su, Wang, and Willem [73] (¢f. [1-3]), which suppose, among
other conditions, that V' and @) satisfy the following:

(V1) V :(0,400) — (0,+400) is continuous and there exists a > —2, such that

lim inf v(r)

r—+o0 ra

> 0;

MELO, T. G. 12 Department of Mathematics



Chapter 1. Introduction

(Q1) Q:(0,400) — (0,+00) is continuous and there exist by, b > —2, such that

Q(r)

rbo

< 400, limsup@ < +00.

lim sup 0
r—>+00

r—0

In their paper, the authors consider the Schrodinger equation
—Au+V(|z))u = Q(lz)|ufu, in RY,

for N = 2, with an additional condition concerning the behavior of V near the origin. After
establishing the appropriate functional framework involving radially symmetric functions,
they proved some existence and non-existence results for solutions that approach zero at
infinity.

Before presenting our main results, let us briefly outline our strategy for
addressing the system (S)), which will be more detailed in Section 5.1. For a fixed

radial function u in an appropriate subspace of W*?(R?), we consider the linear problem
—Av + V(|z|)v = V(|z|)u, in R%

After finding a solution v = B[u] to this problem, we return to system (S,) and replace v
with Blu] in the first equation. This substitution transforms the system into the following

problem:

—Au + V(|z)Blu] = AQ(|2]) f(u), in R

in such a way that the solutions of this scalar equation provides solutions (u, B[u]) for
System (S)).

The aim of Chapter 5 is twofold: we show how to adapt the abstract ideas
from [74] to address the System (S,), and we also consider the problem in the two-
dimensional case. In this setting, we expect to allow nonlinearities with exponential

growth. Specifically, we shall assume the following conditions on f:

(f1) feC(R,R) and there exists ag > 0, such that

O { 0, if a>a

2 .
|s|—o0 €4? oo, if a < ap;

(f2) there holds
f(s)

0 [sp1

Y
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where

v = maX{Q, Ab—a) +2};

(f3) there exists p > ~, such that
0 < pk(s):= Mf fHydt < f(s)s, Vs #0;
0

(f1) there exist C' > 0 and v > =, such that

F(s) = C|s|", VseR.

Before stating the main results of Chapter 5, we present some examples of
functions satisfying our hypothesis. First notice that, for any a > —2 and @ > a, the
function V : (0, 400) — (0, +o0) defined by V(r) = r® verifies (V7). Also, for —2 < b, by

and sg = by, s < b, the function

r, if0<r<1

Q(r) =

S

r®, ifr>1,

verifies (()1). More simply, in the case —2 < by < b, we can take by < [ < b and see
the function Q(s) = r” also verifies the same condition. Finally, a typical example of a

function f verifying conditions (f1)-(fy) is
F(s) = |s|P2se™*, seR,

with p > v, ap >0and p=v = p.

The main results of Chapter 5 are:

Theorem 5.1. Suppose that (V1), (Q1) and (f1)-(fs) hold. Then there exists \g > 0 such
that the System (S)) has a radial non-zero weak solution, provided A\ = A\g. Moreover, if

we call (u,v) this solution, the following hold:

(a) if there exists ag > —2, such that

lim sup vir)

< 00,
r—0 rao

then u,v € W2P(R?) for any p > 1 such that pag, pby > —2. In particular, the

loc

functions u,v are locally Holder continuous;

(b) if V is locally Hélder continuous, then v e C27 (R?) for some o € (0,1).
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Theorem 5.2. Suppose that (V1), (Q1) and (f1)-(f1) hold. If additionally f is odd then,
for any given m € N, there exists Ay, > 0 such that the System (S)) has at least 2m radial

nonzero weak solutions, provided A = \,,.

For the proof of the first theorem, we apply the classical Mountain Pass Theorem.
It is important to establish the variational framework to correctly define the energy
functional. In particular, we prove a Trudinger-Moser type inequality (cf. Theorem 5.10),
which is interesting in itself (¢f. Remark 5.11). Our abstract results actually complement
those of [71] and can be applied to other types of problems with exponential growth. For
the second theorem, we exploit the symmetry of the functional to obtain multiple critical
points. As the associated functional is even, the strategy is to obtain m distinct nonzero

critical points as the parameter A\ becomes large.
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CHAPTER 2

Hénon equation for the (Grushin
operator

In this chapter, we study the following Hénon-type problem

{ ~(Gau)(2) = o' f(zw), in B, (Pa)

u =0, on 0B,

where B ¢ RM x R™ is the unit ball, Ny, N, > 1, £ > 0 and, for each o > 0 and
z = (r,y) e RM x RV

(Gau) (2) = Agu(z) + |z[**Ayu(2),

is the Grushin operator. We also recall that the critical exponent associated to Grushin

operator is

2% = N:=N +(1+a)Ns.
Concerning the nonlinear term f, we suppose the following:
(f1) feC(BxR,R);

(f2) there exists £ > aNy,

and C' > 0, such that

1f(z, )] < C’(l + |8|}’_1)7 V(z,5) € BxR;

(f3) there holds
lim fz.8)

=0, uniformly in B;
s—0 S

(f1) there exists p > 2 and sy > 0, such that

0< uF(z,8) <sf(z,8), VYzeB, s> s,

where F(z,s) := JOS f(z,T)dr.
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Chapter 2.

In Section 2.1, we follow some ideas presented in the famous paper of Wei-Ming
Ni [60], where the authors proved that

IVl L2 (s

< ;
Vwn(N = 2)[[(V=2/2

for any radially symmetric « € C*(B) vanishing on the boundary of B. Our version of

ju(z)]

this inequality leads to some compact immersion results (¢f. Proposition 2.4 and Theorem
2.3) when considering an appropriated Banach space (X, || -||) to deal with the Grushin
operator.

As an application of the variational setting developed in the first section, we

define u € X as being a weak solution of (P,) if

J [Vau - Vapldz = J 12)“f (2, u)pdz, Vpe X,
B B

where

Vou(z) i= (Vou(2), |2]*V,u(2)) e RY.
With this definition in hands, we prove in Section 2.2 the following:

Theorem 2.1. Suppose that a > 0, Ny = 2 and f satisfies (f1)-(f1). Then Problem (F,)

has a nonzero and radial weak solution. If in addition o = 1, this solution is nonnegative.

We finish this chapter in Section 2.3 by providing a detailed analysis of the
asymptotic behavior of the ground state levels of our problem, both in the whole space
and within the space of radial functions. This allows us to complement [71, Theorem 3.1]

proving the following result:

Theorem 2.2. Suppose that a > 0, Ny =2 and f(z,s) = |s|’"2s, for any (2,8) € B xR
and some p € (2,2%). Then there exists {* > 0 such that the ground state solution of
Problem (P,) is not radial provided ¢ = (*.

We remark that a ground state solution of Problem (F,) is a solution that
minimizes the associated Euler-Lagrange functional over Hy ,(B) — {0}. In other words,

any minimizer of

inf {J Vou(2)|* J lulPlz[fdz =1, u e H&Q(B)}.
B B
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2.1. A compact embedding for radial functions Chapter 2.

2.1 A compact embedding for radial functions

Recall that the points z € RY are writing as z = (z,3) € RM x R, The ball
centered at z € RY with radius ¢ > 0 is denoted by B;(z), as well as B = B;(0). We
denote by [u|¢(p) the L-norm of a measurable function u € L'(B).

As stated in the introduction, we consider
HA(B) := {u € LA(B) : |V,u| € L¥(B), |2]°|V,ul € LQ(B)},

which is a Banach space when endowed with the norm

1/2
by = ([ 9ol )tz

We also define the subspace Hj ,(B) := C’(‘)’O(B)H'HH‘E(B) with the norm

= ([ 1wt a:) -

which is equivalent to | - ||g1(p) (¢f. [47, (1.8)]). In addition, let

Cor(B) :={ue CF(B) : u is radial}

1
and X := Cgo.(B) o
(cf. [47, Theorem 3.3]).

Finally, for any 1 < p 4 oo and m > 0, we set

. The space X is continuously embedded in LP(B), for p € [1,2%]

7 (B) = {u e Ll (B) : J ()| dx < —l—oo},
B
which is a Banach space with the norm

1/p
iz o= ([ Juaplaeaz)

The main result of this section reads as:

Theorem 2.3. Suppose that m = 0, Ny = 2 and define

2N -
T ifm< (N —-2)/2,
M= N—2-2m
+00, if m= (N —2)/2.
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Then, for any p € [1,m), the embedding X — LP (B) is compact.

The key ingredient for the proof is the following radial lemma which is a version,

for our setting, of a result presented in [60, p. 802

Proposition 2.4. Suppose that a = 0 and Ny = 2. Then, for any uw e X, there holds

for a.e. z€ B, (2.1)
with C'= C(N) > 0, given by

-1
Cm |2 [ PP, |

and oy is the surface measure on SV 1.

Proof. Let u € Cy.(B) and consider ¢ € Ci°(—1,1) such that u(z) = o(|z|). For any
given zp € B — {0} and Z € 0B we have that

—u(z9) = u(2) —ulz) = J ¢'(t) dt.

20|

From Ny > 2, we obtain N = N + (1+a)Ny > 2, and therefore Hélder’s inequality yields

1 1

01 = | T e 5

| o]

utzo) < |

|zo]

1 N 1/2 1 N 1/2
< (J | (1) PNV dt) ( J (V=D dt) .
|20 |20l

After computing the last integral above, we get

1 ! N
o) € |N_2f| WO, Ve B.
- 0 20

We now notice that Ny > 2 implies
1

1 - 1
\

20| | o] |zo0]

We claim that

1
J 2l (N At = ¢ J |z|** |V, u(2)? dz, (2.2)
|

2o {lz0[<|2|<1}
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for some C) = C(IV) > 0, independent of u. If this is true, it follows from the inequalities
above that

QaV 2d
c JB|x| |Vyu(z)| Z<C2Hvau||2L2(B)

Ju(zo)|* < —

= for a.e. zp € B.
(N —2) 20|V 2

with Cp := [C1/(N — 2)]¥? > 0. So, the proposition holds for smooth functions and the
result follows from the density of C.(B) in X.

It remains to prove (2.2). To do this, we denote by w = (£,n) € 0B a general
vector in the unit sphere of RY, with ¢ € R™ and € R™. Then, for any i = 1,2, ..., N,

1
f |z *u (2) dz = J J |z [**u (2) o dt
{lz0l<[2<1} 20| YB¢(0)

1
zjl JSN 1|1t5|2aufh_(m)sz—l do,, dt.
20 -

Thus, since w,,(x,y) = gp’(|z|)|y—7’| for z = (x,) € RY it holds
z

1 2
tn; ,
r|Tu, (Z)dz = @ {|tw Ow
2 32/1 d t20¢§2a / t n tN 1d dt
{20l <l2l<1} 20| JEN-1 |tw]
1

— | o, [ el ope
gN-1 20|

After summing on ¢ we get
1
| ePmaeRd = | re
{lzol<lzI<1} e
where

Cs = LN—l |§|2@|77|2d0w - LN_l |§|2a(1 - |§|2) doy,

depends only on V.
We need only to check that the above integral is positive. In order to prove it,

take 0 < r < s < 1 and consider the spherical annular region
A={(¢n)esS" 1 vVI-s2< | <V1—1r2}.

Since this nonempty set is open in SY' we have that onx(A) > 0. For (§,71) € A,
P> =1—[£7 > |€)* > 1— 5% >0 and |(]** > (1 — s*)*. Thus

|, JePinl o > [ 161 dogesy > (1= s (a) > 0
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and the proof is concluded. ]

Before presenting the proof of Theorem 2.3 we recall that, for any v € R, there

holds
wWN .
——, ify>—N,
J |z|"dz = (y+N) (2.3)
B +00, if vy <-—N,

where wy is the surface area of the unit sphere in RY.
Proof of Theorem 2.3. We first prove the continuity of the embedding for p € [1,m). To
do this, pick u € X and apply (2.1) to get

futty, = | fepleleaz < copulp | Jop
B B

where

7:=§(2m—ﬁ+2).

If m < (N —2)/2, we may use the definition of  and p € [1, ) to show that v+ N > 0.
Hence, we obtain from (2.3) a constant C; = Cy(m, p, a, N1, N3) > 0, such that

[ul7p, < Cillul”, VueX. (2.4)

When m > (N — 2)/2, we have that v > 0 and therefore the embedding holds for any
1 <p<+oo.

For the compactness, we pick 8 € (0,1) to be chosen later and apply Holder’s
inequality with exponents 1/5 and 1/(1 — /3), to get

| tuletras = [ ful?lul #jepr s
B B

1-8
< Jullfs s ( L (| B O=8)| /(1) dz) .

So, if we set

Pp = p=y mp = N
1-p p—p
we have that
lulf < HUH%(B)IIuIIZIZ- (2.5)
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~ ~

Since mg — m, as B — 07, it is clear that, if m < (N — 2)/2, then mg < (N — 2)/2, for

any 3 > 0 small. So, we can use p < m to get

- 2N 2N
lim (pg —mp) = lim ];_ﬁ—w =p— =——— <0,
B0 B0 BN —2—2mg N—2-2m

and therefore we can pick Sy > 0 small in such a way that pg, € [1,75,). The same holds
if m > (N — 2)/2, because in this case the inequality mg > m implies mj = +00.

Let (u,) < X be a sequence such that u,, — 0 weakly in X. Since pg, € [1,mp,),
we can use (2.5) and the embedding proved in the first part to get

lunlfy, < Crllunlf g lunlP~ < Collunl/7 ).

where we also have used the boundedness of (u,) in X. Since the embedding X — L'(B)
is compact (cf. [47, Theorem 3.3]), up to a subsequence u, — 0 strongly in L'(B). This
and the above expression imply that u,, — 0 strongly in X. This finishes the proof of the

theorem. O

Given u € X, we define u™ (z) := max{—u(z),0} and u* := u + u~, the positive
and negative part of u, respectively. We finish this subsection proving that v* € X,
whenever u € X. Since we did not find a clear state of this fact in the literature, we

sketch the proof here for the sake of completeness.

H;,(B)

Lemma 2.5. Suppose that a = 1 and u e X = Cf,.(B) . Then u* € X.

Proof. Let (u,) = C.(B) be such that w, — u in H:(B). Since o > 1, the function
f(z,y) = |z|* is locally Lipschitz. This allows us to use [39, Corollary 2.2.], in order to
obtain |u,|, |u| € HL(B) with

Vally, if u, > 0,
Vaoty, if u, >0,
Valun| =<0, ifu, =0, and V,(u,)" = (2.6)
0, if u, <0,
—Vaoty,, ifwu, <0,

and the same kind of equality for u.

We intend to prove |u,| — |u| in H:(B). Of course |u,| — |u| in L*(B). For
checking that V,|u,| — Va|u| in L*(B), it is enough to prove, up to an arbitrary
subsequence, point convergence occurs a.e. in B, because there exists g € L' (B) such that
|Vaun| < g, ae. in B, and V,|u,| = £V u,. We will consider an arbitrary subsequence

of Va|u,| and use, without loss of generality, the same notation for it. If u(z) > 0 or
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u(z) < 0, we can use (2.6) in order to obtain V,|u,|(z) — V,|u|(z). However, if u(z) = 0,

we remark that u = 2u™ — |u| a.e. from which we obtain
Valun|(2) = Valul(2)] = | £ Vaun(2)] = [Vau(2)] = [2Vau™(2) = Valul(z)] = 0.

Thus |u,| — |u| in H.(B).

From the convergence just proved, we obtain u,, = (Ju,| — u,)/2 — (Ju| —u)/2 =
u” in Hy(B). By [76, p. 6513 and 6514], u,, € H; ,(B) and its extension by zero v, := u;,
in B, v, := 0 outside B, belongs to H.(R"). Of course v, is radial. Taking & > 0 and
considering 7, /. a standard modifier, we can use [31, Proposition 1.4] to see that, for each

neN, vy #n, = vy in Hy o (RY) as k — +o0. In particular, v, = g1 — u,, in H3(B)

as k — +00. We now take k, € N such that supp(v,) + supp(mi ) < B, for any k > k,,.
If we define wy, ,m 1= Uy * Nijmkn,—1), for m =1, as v, — u~ as n — +oo and wy, y, — vV,
as m — +o0; both convergences in H(B), we can use a diagonal argument to obtain a
subsequence of {wy,, : n, m € N} which converges to v~ in HA(B). Once wy,, € C.(B),

we have proved that v~ € X. Finally, as v™ = v+ u~, then u™ € X. O

2.2 Existence of solution

In this section, we use Theorem 2.3 to prove our existence result.

Proof of Theorem 2.1. Since we are interested in nonnegative solutions, we can suppose
without loss of generality that f(z,s) = 0 for z € B and s < 0. Formally, the energy
functional associated to our problem is
Lo ¢
I(u) := §HUH — | F(z,u)|z|"dz, ue X.
B

To prove that I is well defined we notice that, for any given ¢ > 0, we may use (f1)-(f3)

to obtain a positive constant C; such that
IF(z,5)| < §|s|2 +Cy|sPP, ¥(z,5)eBxR.

Hence,
g
| Pwlalaz < Slult + Cilul, (27)
B /p
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The last integral above is finite whenever 1 < p < (%) If ¢/p = (N — 2)/2, this always
happen, since % = +00. In the case {/p < (N —2)/2, the condition on p reads as

—~—~——

(e) 2N 2(0 — aNy)
p<|l-]=n—"— <= p<2+——""5
p

N—2-29¢ N —2

So, we conclude that the function is well defined. Moreover, standard arguments shows
that I € C'(X,R) with

I'(u)v = J (Vau-Vav) dz — J flz,wv|z|'dz, Y u,ve X,
B B

and therefore critical points of I are precisely the weak solutions of Problem (P,).
Using (2.4) and (2.7) with ¢ = 1/(2C}), we get

1 1 _
1w > ol = Calal? = Juf? ( = Calul)

and therefore, since p > 2, we can find p, n > 0, such that
Iu)y=n, YuelX, |uf=np
Moreover, using (f;) and (f4), we obtain a constant Cy > 0, such that
F(z,8) = Cols|" — Cy, VY (z,5)€ B xR,

So, if we choose a nonnegative function ug € Cg,,.(B) — {0}, we have that
82 2 o w2
I(sug) < §||u0|| — Cos" | Juo|!|z|"dz + Cs.
B

Once we can assume without loss of generality that 2 < pu < 27, it follows that I(sug) —
—0, as s — 400. Thus, there exists e € X such that I(e) < 0 and |e| > p.

The above considerations shows that it is well defined

;= inf I(~v(t)) =n >0,
¢ = infmax (v(t) =n

with T :== {y € C([0,1], X : v(0) = 0,7(1) = e}. Hence, according to the Mountain Pass

Theorem (cf. [5]), there exists (u,) < X such that

lim I(u,) = c, lim ['(u,) = 0. (2.8)

n——+0o0 n——+0o0
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We claim that, along a subsequence, u,, — u strongly in X. Actually, we first use
(f1) and (f4) to get

1 1
> (55 Iwl?-Ca
2 p

Since p > 2, we conclude that (u,) is bounded in X. Hence, up to a subsequence, we

have that u,, — u weakly in X. Thus,
On(l) = I,(un)(un - U) = HunH2 - <un7 u> — A, = Hun”2 - HUHQ — A, + On(l)v

where 0,(1) denotes a quantity approaching zero as n — +oo and

= Z,U U—UZK Z.
A, fo<, )t — )]zl d

To get the strong convergence claimed, we need only to check that A, — 0. Since
the embedding Hy ,(B) < L'(B) is compact, we may assume u, — u strongly in L'(B).
Hence, it follows from (f;) and Holder’s inequality with exponents p and p’ := p/(p — 1)
that

A, < C5J (14 [tnP™) Jum — ul|2|* dz
B

= 0u1)+ G | ol el w2
B

1/’ 1/p
< on(1) + Cs U |un|p|z|€dz> (j i — u|p|z|fdz>
B B

< Cslunll7 lun = sz,
Recalling that p < (67;9), we may use the boundedness of (u,) in X and the compactness
of the embedding X — L Jp> 1O conclude that the right-hand side above goes to zero, as
n — +00. This concludes the proof that u, — u strongly in X.

From (2.8), the regularity of I and the strong convergence just proved, we obtain
I(u) = ¢ > 0 and I'(u) = 0. This shows that v € X is a nonzero solution of Problem

(P,). Moreover, assuming « > 1, we can use Lemma 2.5 in order to obtain

0=TIT'(uu" = J [Va(ut —u™) Vou | dz — J flz,u)u|zfdz = —|Ju|?,
B {u=0}
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which implies v > 0 a.e. in B and concludes the proof of the theorem. ]

2.3 Symmetry breaking

In this section, our goal is to prove Theorem 2.2. Along all this section, we assume
that 2 < p < 2%, f(z,t) = |t|P"%t and consider the ratio

Jul?

2/p’
f |u|p|z|€dz>
B

We also introduce the minimizers

R(u) := ( ue Hy (B) — {0}.

Sep:= inf R(u)=inf {||u||2 : f lulP|z|fdz =1, ue H&a(B)}
ueHg  (B) B ’
u#0

and

Spt := inf R(u) = inf {uQ : J lulP|z|*dz =1, u e X} :
? ueXxX
u#0 B

The principal ingredients for the proof of our last main theorem of the chapter

are the following estimates, which are versions of [71, Theorems 4.1 and 4.2]:
Proposition 2.6. Suppose that p € (2,2%). Then

1. there exists Crag = Craa( N, p, ) > 0, such that

SE = Craal P 0> Noay;

2. for any given £y > 2, there exists C = C(p, Ly, ) > 0, such that

Spp < CONFCND) -y p > gy

Before proving this proposition, let us show how we can use it to get our symmetry

breaking result:

Proof of Theorem 2.2. For any p € (2,2}) fixed, it is sufficient to obtain ¢* > 0 such
that S, < Sfp, for any ¢ > ¢*. Suppose, by contradiction, that this is not the case.
Then, since S, < Sfp is always true, there exists a sequence (¢,,) < (0, +00) such that

Se,p= Sﬁ’p and /¢,, — +00. Using Proposition 2.6 we get

Cmdg?(lpﬁ)/p < Se}i,p =S, < Cgi*ﬁﬂ?ﬁ/p)’
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for any n € N large. This implies

0 < Grad RN 1) _ r-2)(0-R)p
C n n )

which is impossible since ¢, — +o0 and (p — 2)(1 — N)/p < 0. O

We devote the next two subsections to the proof of Proposition 2.6.

2.3.1 Estimating Sfp

We start this subsection with a technical lemma which is a consequence of the

chain rule:

Lemma 2.7. Suppose that N =2, p € C;°(—=1,1) and 5 € (0,1]. Then the functions

v(z) =e(2l),  w(z) = (V)

belong to Hy.(B), the space of radial functions in Hy(B).

Proof. Of course v, w are radial, continuous and null on ¢B. Since ¢ is a C'-function with
bounded derivatives, we need only to check that the maps g1 (2) := |2|® and go(2) := |2|"/?
are in H'(B) (cf. [25, p. 308]). Clearly g1, g» € L*(B). Moreover, for any z # 0, we have
that
_ 1 _
Var(2)P = BP0, [Vga(2) = §|Z|2(1 e

and the result follows from (2.3), because N/2 > 1> 1—pFand 2(1-4)/8>0> —-N. O

Proposition 2.8. Suppose that € (0,1], u € Ci°.(B) and ¢ € C°(—1,1) is such that

u(z) = ¢(|2))- If
v(z) = (2",  zeB,

then
2 C 21, |(B—1)(N-2)
|Voul"dz = — | |Vv||7| dz, (2.9)
B fwn Jp
for some constant C = C(N) > 0. Moreover, if § = N/({ + N), then
f 72| dz = 5] P d. (2.10)
B B

Proof. One can easily check that

2 + Ix|2a|y|2]

TP = 1D |
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If we call g,(z) the expression into brackets above and denote w = (£,71) € SY™!, we get

[ watara= [ [ @ lrhPoeur an

1
:L LNl[sO'(T)]2 (I€[2 + |r& 2 [n[?) +¥ ! dor, dr

> ( L -~ |§|2daw> L TP

-o[ woran,

with C' := €|? do,. To check that C' > 0, it is sufficient to pick 0 < J < 1 and notice

gN-1

that the set As := {(&,n) € S¥=! . |¢] = 6} has positive (N — 1)-dimensional measure.
Using the change of variable r = p° in the last integral above and defining ¥(r) :=

©(r?), we obtain

o BN-1) -1
JB Vou(z)|2dz = 7). [w’(p")ﬁp(ﬁl>]2pp2Tﬁ))dp
_C Pl[ﬁ’( O e
g, e
O e BV N-2(5-1)] N1
—Ew[v(ﬂ)]p pe dp
C

[ PR
B

N pwn

Since v(z) = ¥(]z]), it follows that |Vo(2)]* = [¥'(]2])]* and the last expression yields
(2.9).

Using the change of variables = p° again, we get
1
[ Wpleras = ax [ ewiprtesar

B 0

1

= ﬁWNJ S R )
0
Thus, if 3 = N/({ + N), we have that
BIN—-1)+pl+5—-14+(1—N)=5(N+{)—N =0,
and therefore

1
| Pt @z = g | R0PP o= 5 | ua)pa
B 0 B
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which gives (2.10). This finishes the proof. O
We are ready to present the estimation of Sfp.

Proof of item (1) in Proposition 2.6. We first notice that, since the function g(s) :=
25/(s — 2) is decreasing in (2,4) and 2 < N < N, we have that 2 < p < 2¥ < 2*,

Let u € Cg(B) — {0} and ¢ € Ci°(—1,1) such that u(z) = ¢(|z|). We also define
v(z) := ¢(|2|”), with # = N/(¢ + N). By Lemma 2.7, we know that v € Hj,(B). Hence,

it follows from Proposition 2.8 that

2|, |(B=1)(N-2)
(7mem d

2/p
Bwn ﬁQ/p (J |U|P dz)
B

where C} = Cwy'. Since 2| VN2 > 1 for |2| < 1,

J |VU|2|Z|(B—1)(N—2) dz
B

(Lore)”

R(u) = = O, B3~y

Y

J |Vo|? dz
R(u) = C,p~ 2/ B > Cleﬁ—(zH?)/p’

(L)

D,:= inf {f Vo|? : f |o|P = ldz} > 0,
¢eH;..(B) (B B

because 2 < p < 2% < 2* and v € Hy,(B) — {0} (¢f Lemma 2.7). We now recall that
B = N/({+ N) to obtain, for any u € Cg’.(B) — {0},

with

= — P (¢4 N)(p+2)/p > Coql®T/P
N ra Y

0+ N\ oD,
NG+

Rw>&%<

with
Craq := C1D,N~P+2)/p,

Using the continuous embedding X < LP(B) and a density argument, we can prove that
the above inequality also holds in X. Thus Sfp > Cpgl PP , for any ¢ > Nya, and the

proof is complete. O

2.3.2 Estimating S,

Given ¢ > 1, we introduce the map

(z) i= (bz, ('*y) . V2= (z,y) e RM x R™.
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It is a linear transformation with linear inverse given by

_ €T Yy
7= (7o)
We now consider
zp = (0, 0% = £*71,0,) € RY,

where 0, and 0, are the null vector of RM and R !, respectively. Define the maps
T, 7' :RY - RY by

T(2) =0, (2 + Lz), T 1(2) := 64(2) — L2 (2.11)

A simple computation shows that 7! is the inverse of 7.

Since ¢ > 1 and J, 'is linear, we have for z € B

£2a
<O (2P ) -y < 1 =

9N 1/2
()| < 16 ()] + 107 (Cz0)] = £ (|:v|2 " @) NS

Hence,
Bc Ay={zeR":|T(z)| < 1}.

Another easy consequence of the definition of 7" and A, is that T(B) < T(A,) = B.
Moreover, if z € B —T(B), then T™'(z) € A, — B, which implies |T'(2)| = 1 (¢f. Figure
2.1).

Figure 2.1: Application T
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We finally notice that, if w = (§,n) € B and z = T'(w), then

1 2 1 1
|Z|> ‘ EZE ‘—‘5 KZg T(w)‘ :1_£ 52 £2a 1_Z_Z\/m’

and therefore (cf. Figure 2.1)

(-2
2| > ==, V2eT(B). (2.12)

The more useful property of the map T is:

Proposition 2.9. Suppose that w € C(B), £ > 2, T is as in (2.11) and define v =
(woT™Y). Thenve CP(B) and

(—2\" &
WP = e, [ etz > (S50) ultg

Proof. We start proving that v € C;°(B). Indeed, let K < B be the support of u and notice
that, if z ¢ T(K), then u(T~"(z)) = 0. Thus, supp(v) € T(K) = T(K) < T(B) < B. We

now compute

Ve, (2) = Clly, (Tﬁlz)a Uy, (2) = £1+auyj (Tﬁl(z))a
foranyi=1,...,Nyand j =1,..., Ny. Thus,
[Vav(2)[? = Voo (2)]* + 2| V,0(2)]*
= C|Vou(T(2))]P + CH eV u(T 1 (2)))

= C{|Vau(T7H2) P + [ Vyu(T7H(2) ]
= |V u(T7H2)]

(N1+N2(1+a)) _ é_ﬁ

and therefore, since the Jacobian of the transformation 7" is ¢~ , We can
use B = T(Ay) to obtain
J IVou(2)|?dz = £2 J Vou(T (2)[?dz
B (Ae)
~ [
=N | Vau(z)? dz
JA,
~ [ ~
=N [Vou(2))?dz + ﬁsz IV u(2)]? dz
JB A—B
~ [
=N |Vau(2)]?dz,
JB
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since the derivatives u,, , u,; have support inside B. This proves the first statement
of the proposition.

To check the second statement of the proposition, we recall that [T *(z)| > 1, for
any z € B —T(B) and so u(T~*(z)) = 0 for any z € B — T(B). Thus,

| peprira = | p@epsras s | erk

T(B) B-T(B)

:f (T (=) Pl dz,
T(B)

and it follows from (2.12) that

[ j@rera> (2 [ e

_ <£_72)€£—ﬁ JB [u(2) [P dz,

which is exactly the second statement of the proposition. O
We are ready to prove the last result of this chapter.

Proof of item (2) in Proposition 2.6. Let ug € Cf (B) — {0} be fixed and vy := (ugoT™")
as in Proposition 2.9. Since it is clear that vy € Hy o (B), it follows from Proposition 2.9

that, for any ¢ > 2,

EZNJ Vo uol? dz S (o R
B| 0| B 62—N+(2N/p) ||u0||2

2/p o\ 20/ 2 :
[y e [ e (7 Pl
B

Spp < R(vg) < (2.13)

We now define

S

—2\°
g(s) := (S ) : Vs=ly>2.

By a straightforward computation one gets

7(s) = g(s) [m (5 = 2) + 2 2] |

If we call h(s) the expression into the brackets above, we have that

W(s)= ——— <0, s>
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and therefore h is decreasing. Moreover, lim A(s) =1In(1) = 0. Hence, we conclude that
§—+00
h is positive, which implies that ¢ is increasing in [{o, +00). Thus, for ¢ > ¢y, we have

that [g(£)]*” < [9(0)]¥?. In other words,

—9 240/p -9 2¢/p
0< b < £— , V= .
4y l

Coming back to (2.13), we get

Sy < CONTCNP) > gy

<€o - 2>%/p o] *
C .= 5 ,
to HUOHLP(B)

and the proof is complete. O

where
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CHAPTER 3

Hénon equation for the biharmonic
operator

The aim of this chapter is to consider the problem

APu = [W(2)] f(u), in B,
u=— =0, on 0B,

where B — RY is the unit ball, and the functions W and f satisfy certain conditions
that will be specified later. To proceed, we will introduce a Sobolev space consisting of
symmetric functions and establish a pointwise inequality that holds for functions belonging
to this space.
First, as it is well know, in order to prove existence of a weak solution to the
problem
—Au(2) = |z['uP"(2),2€ B, wu(z) =0,z€ 0B,

for 2 < p <2* 4+ 2¢/(N —2), Ni in [60] proved the inequality

IVl L2

< )
Vwn (N = 2)|z|(N=2)/2

for any radially symmetric u € C*(B) vanishing in the boundary of B. Our idea here is

ju(2)]

€ B, (3.1)

to follow a similar approach introducing a functional space with symmetry and proving
radial type lemmas.

In order to define such a space, we recall that Hg(B) is the closure of C°(B)
under the H?(B) norm and, using Poincaré Inequality and integration by parts, one can

see that the usual norm induced by H?(B) is equivalent to

1/2

1/2
iz = | 3 1D u(2)]? dz =(L|Au<z>|2dz) .

laf=2

Now, we decompose RY = RM x R denote by O(k) the group of real orthogonal k x k
matrices, consider
C(D

0,z,y

(B) :={ueCy(B) :u(x,y) = u(Ti(z), To(y)), ¥V T; € O(N;),i = 1,2},
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the set of compactly supported functions in B with are coordinate-radial and define

e HE(B)
Hgary( ) CO:L’y( ) :

Our first main result is a version, for our setting, of the inequality (3.1):
Theorem 3.1. For any u € H, (B) and Ny, Ny = 3, there holds

Au 2
lu(z,y)| < C%, for a.e. (x,y) € B, (3.2)
T

with

Ar2 (N7 — 2)(Ny — 2)

:V/ r(5)r (%)

0
and T'(s) := J t~tet dt being the Gamma function.
0

In order to state our second mean result, we set, for any 1 < p < 4o and £ >0

Lﬂ3y={ueLm J|u )P ]dz<+w} (3.3)

with the weight W satisfying:

1 € and there exists cyr > 0, such that
(W) W e L, (B) and th i 0, such th

0 < W(z) < ewlx|lyl, for a.e. z € B.

This is a Banach space with the norm

bz = ([ TP )/p.

As a consequence of Theorem 3.1, we can prove an embedding result for the space

HZ, (B). Actually, if we set

0,z,y

2N, 20
N
6N ]\[1—24_]\/'1—27

for any N; > 2 and ¢ > 0, we have the following:

Theorem 3.2. Suppose that N = Ny + No, with 3 < Ny < Ni, £ =20 and 1 <p <2y,
Then the embedding Hj , ,(B) — L}(B) is compact.

MELO, T. G. 35 Department of Mathematics



Chapter 3.

It is important to analyze situations in which the last result allows us to consider
exponents beyond the critical Sobolev exponent 2** := 2N /(N — 4). We have that

2(N1 — NQ)

2% < 2% 0>
tn N—4

and therefore we can consider supercritical growth. The most favorable situation occurs
when N; = N because, in this case, the exponent 2 v, is supercritical for any ¢ > 0.
Even when the dimensions are not equal, the condition on ¢ does not seem very restrictive,

since it can be easily shown that 3 < Ny < N; implies

2(Ny — Ny)
N —4

and, therefore, supercritical growth is possible for any ¢ > 2.Also, we remark that when

< 2,

Ni < Ny, analogous results can be obtained by simply replacing 2j , with 27 .
As an application of the Theorem 3.2, we consider the problem (P, ,) with the

supercritical nonlinearity f satisfying:

(fl) f€ C(R>R)3

(f2) there exists ¢y > 0 and p € (2,27 y,) such that

1f(s)] < ¢ (1 + |s|p’1), VseR;

(f3) there holds
f(s)

lim 222 = 0;
s—0 8

(f1) there exist p > 2 and sp > 0, such that

0 <uF(s) < sf(s), Vls| = s,

where F(s) := f: f(t)de.

We say that a function u € H(B) is a weak solution of Problem (P,

) if

JB Audgdz — JB[W(Z)]E f(edz Ve HL, (B).

Finally, we shall prove the following:

Theorem 3.3. Suppose that £ = 0, p € (2,27 y,) and f, W satisfy (f1)-(f1) and (W),

respectively. Then Problem (P,,) has a nonzero weak solution in Hf , ,(B).
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This chapter is organized as follows. In Section 3.1, we present some notations
and preliminary results, including the proof of an integral identity in the space H§7x7y(B ).
In Section 3.2, we provide the proofs of Theorems 3.1 and 3.2. Finally, Section 3.3 is
devoted to the study of problem (P, ).

3.1 Some technical results

From now on, we shall denote
D:={(s,t)eR* : s> +¢* < 1}
the unitary ball in R? and
D, :={(s,t)e D : s, t =0}

Notice that, if u € Hy(B) is such that u = uo (T}, Ty), for any T; € O(i), i = 1,2,

then it is well defined the function
v(s,t) :=u(se,tf), (s,t)e D,

with |e| = |f| = 1. From the symmetry properties of u it is clear that v is radial in each
of this components and u(z,y) = v(|z|, |y|), for any (z,y) € B.
For the reader’s convenience, we state and prove below an integral identity that

was used in [7] .

Lemma 3.4. Suppose that N = Ny + Ny = 2 with Ny, Ny € N, and u € L'(B) be such
that u(z,y) = v(|z|, ly|), for some function v defined on D.. Then

f u(z)dz =C v(s, t)s™M N2 d(s, 1)
B

D4
where
Ny _2)
2

0 @]
and T'(s) := f tte ' dt is the Gamma function.
0

ﬂ
=
SN—r’
=
2

Proof. We have that

| wraz = [ wtial hseras = [ | | ol sy | o

RN RN1 LRN2
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and there we can use polar coordinates (c¢f. [28, Theorem 2.9]) to get

[e@]
Ju(z)dzz J J f o(lz], [y't)xs(z, y )t do), dt | da
B 0

RNI SN271

e¢]
:J J J o(lz], t)xp(z, y Ot " da | do dt
0 §N2—-1

RN1

e¢] 0
:f f J f o(l2's|, t)xp(@'s, y't)s™ 1t oy, ds | dol, dt
0 §N2—-1 0 §N1 -1

e¢] 0
:JJ J fv(s,t)XB(x's,y't)sN11tN21dUi,,dU§, dsdt,
0 Jo

No—1 SN1_1

where SV~ is the surface of the unit ball B* ¢ RY and do’ is the surface element.

Since for any (2,y') € S"~! x S~ and s, > 0 there holds

XB (xlsa y/t) = XDy (87 t)’

we obtain

o0 eo]
J u(z) dz:f J J J v(s, t)xp(@'s,y't)s" " oy, dol, | dsdt
B 0 Jo

Ng—1gN; -1
Q0 e¢]

= WN,WN, v(s, t)xp, s™ 2 dsdt
o Jo

= WN;WN, J 'U(Sv t)XD+SN1_1tN2_1d(Sv t)
(0,00)x(0,00)

= WN,WN, j v(s, t)sN N2 715 1),
Dy

with wy, = o' (SV™), i = 1,2. As proved in [28, Proposition 2.54], we have that

9 Ny
T2 ,
WN; = N\’ v = 17 27
T (%)
and the proof is concluded. O]

We present and prove in what follows two auxiliary results which will be essential

in the proof of Theorem 3.1.
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Lemma 3.5. Suppose that (so,to) € D. Then there exists t such that |to] < |t| < 1 and

(s0,t) € dD. Moreover, for each 3 € (|tol, |t|), there exists sg such that |so| < |ss| < 1 and
(Sg, 6) € oD.

Proof. Let (sg,t9) € D, define the vertical line 7, (¢) := (|so|, ) and notice that |r,(f)] = 1
for £ = +4/1 — 2, that is, (so,#) € éD. Notice that [to] < |[{| < 1. Analogously, fixing
lto] < B < |t| and defining the horizontal line r5(n) := (n, 3), we can notice that |ry(ss)| =
1 for s3 = £4/1 — 2 and |so| < |sg| < 1, because s5 + 8% < s5 +* = 1 (¢f Figure

3.1). O
1
““““““““““““ | z| Mooooo _______?
(5ﬁ7 B) B E
G 9
E [tol
—1 s%ﬂ So ]_
to
.,'.—Z ,,,,
(80, t) '.. ____________
.

Figure 3.1: Construction of (sg,?) and (sg, 3)

Lemma 3.6. Suppose that N = Ny + Ny with Ny, Ny = 3 and ¢ € C5(D) verifies

p(s1,t1) = p(s2,t2), if (Is1], [s2]) = (Jta, [t2]).

Then
1/2
( [ 10aptisl |y|>|2dz)
|90(507t0)| <C Z Ni—2 No—2 ;v (507t0) €D,
50|72 [to] 2
with

C:\/ LT

Ar2 (Ny — 2)(Ny — 2)
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Proof. Given (sg,ty) € D, we can use Lemma 3.5 to obtain # such that [to| < |f| < 1 and
(50,%) € @D. From the equation
. ]
—¢(s0,t0) = @(s0, [t]) — (s, ltol) = drp(s0, 8) dB,
ltol
we get
It
elsotol < | 10t 143 (3.4)
to
Now, for each 3 € ([to], ||), we can use Lemma 3.5 again to choose sg such that |so| <
|sg| < 1 and (sg, 8) € dD. Notice that, as ¢(s1,t) = ©(sa,1t), if |s1| = |se| then drp(s1,t) =
Orp(sa2,t). So, as the support of ¢ and ;¢ are in D

Isgl
Buo(s0,8) = —[BrpIss]. B) — dollsol B = — | dwspler, B) da,

ol
which implies
1

|sg]
(50, B)| < j " Jou(a, B da < f (e, B)]da, (3.5)

sol |sol
for any 8 € ([to|, []). Finally, combining (3.4) with (3.5), we obtain

I

1
(50, t0)] < j j Tuplor Pl dads

t0|

1 1
< ot , da dg.
<LO|LO (e B)] dadB

If we define Iy, 5, := (|to|, 1) x (|so|, 1), we can use Hélder’s inequality to get

[ No—1

Ny—1 1-N; _1—Ny
|ast90(a75)|a 2 6 2 a2 B 2 d(aaﬁ)

Llo £0| |Osep(a, B)| dadf =

tg,s9

(
L

1/2
|ast90(@aﬁ)|204Nl1ﬁN21d(&76)> -

to,so

1/2
al M d(a, 5)) :

to,so
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As [sol, [to] <1

1-N1 p1—No _ 1 1 _ #_
J, oot = g (e 1) (1)

0-50
1

< .
(N1 = 2)(Ny — 2)|so|N1=2]tg |V2=2

Therefore, for

we have that

1/2
(J [Osepax, B)Pa™ 1R d(oc,ﬁ))
< C Ito,so

|90(30>t0)| = Ni—2 No—2
[sol "2 [to] 2

1/2
( [ Joaptappa 5 e, 5))
(O,I)X(O,l)

gC Ny—2 No—2
EN e
1/2
( [ lowsta ppa¥ vt aga, 5))
— P+

|SO | N1272 |t0| N2272 ’

because, as the support of ¢ is on D, then the same happens to dyp. Now, we apply

(], 1ol oD a:) )

|90(307t0)| < N2 No—2 )
[sol = [to] 2

Lemma 3.4 to obtain

where

completing the proof. O

3.2 Proofs of Theorems 3.1 and 3.2

We start this section by proving our version of the radial lemma.

Proof of Theorem 3.1. 1t suffices to prove the result for a function u € C(fw

(B). To that
end, we consider a function ¢ such that u(z,y) = @(|z|,|y|) and ¢(s1,t1) = @(s9,t2)

whenever (|s1], [t1]) = (|sa], |t2])-
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Foreachi=1,..., Ny and j =1,..., Ny

i yi

uﬂﬁiyj (l’,y) = astgp(|x|7 |y|) |$| |y|

and therefore

2 i[uw (2, 9)1* = [2ap(l], lyD]*. (3.6)

i=1j=1

Since

N1 1
J A UA udz = ZZJ uximiuy‘jyj f umzyy z y
1= 1] 1

i=17=1

we can use identity (3.6) to get

f Auldyudz = f Bl D2 dz
B B

and therefore we can use Lemma 3.6 to get

1/2
<J AzuAyu dz)

lu(z,y)| < C , forae. (z,y)€ B. (3.7)

|z

Using this inequality together with
|Aul® = |Au+ Ayul® = [Aul? + 28 ul ju + |Ayul,

we conclude that (3.2) holds. O

Remark 3.7. As a consequence of the previous result, we can see that the bilinear form
By ylu, v] := J Agu(z)Ayv(z)dz, Yu,ve HS, (B)
B

is an inner product. Indeed, for any u,v € Cy°, ,(B), we have that

0,z,y
N1 Ny N1
Bﬂ? [ J u$z$zvyjyj dZ - Z Z J U/U$i$iyjyj J\ uygyg wlxl Zs
= 1] 1 i=17=1 = 1] 1
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which implies By y|u,v] = By y[v,u]. For u,ve Hj

0.2y (B) let uy, v, € CF

0,xy

(B) such that

U, — u and v, — v in H*(B). Then,
f Agup,Ayv, dz = f Agv, Ayuy, dz.
B B

AS (Un)iw: = Waiwes (Un)yzy; = Uysyys Un)esze = Vnizes (Un)yyy, = Uy, in L2(B), there

exists fi, fa, f3, f1 € L*(B) such that, up to a subsequence,

< f17 |(un)yjyj| < f27 |(/Un)l'11'7. < f37 |(U”)yjyj| < f47

almost everywhere in B. S0, |Ug,0,0y,,| < fifs € L'(B) and |vyp,uy,y,| < f3fo € L'(B).

Using the Lebesgue Theorem we conclude that By ,u,v] = Byy[v, u]. Moreover

1
Bxy[u u J u%yy =
i= 1 J=1

and it follows from inequality (3.7) that, if u # 0, then By ,|u,u| # 0.

Now we have proved our radial-type result, we can obtain embedding properties
for the space Hgvxjy(B).

Proof of Theorem 3.2. We first prove that the embedding Hj, (B) — Lj(B) is
continuous, for any 1 < p < 27 ,,. To that end, we pick u € Hj, (B) and use (W)
and (3.2) to obtain

il = | WPIVEY d:

<y | (el oz
(N1 —2)p _ (Ng—2)p
< il [ Jal 5 o 5 (el 0o
o WN1=2)p ¢ (Na—2)p
< il [ [l Dyl argy

o 1—2)p 0 (N2 2)p
= iy lul?ye s UB il ]dx) UB wll ]dy)

where we have used the inclusion B < B' x B? (recall that B’ is the unit ball of R™?).

Thus
1 [( (N 1 )P+N 1] 1 [Z-M+N _1]
HUHZEP(B) < Cl”““‘?{z(g) (J r e d?‘) (J r 2 2 d?") ’
I/ 0 0 0
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with C| := clywy,wy,. Since p € [1, 2 n,) and Ny < Ny, the integrals above are finite,
and thus the continuity of the embedding is established.

To prove the compactness, we first point out that, since HS’M(B) is a subspace
of W02 *(B), the Rellich-Kondrachov Theorem assures that it is compactly embedded in
LY(B). Consider 8 € (0,1) to be chosen. For u € H}

0.24(B), we can use Holder’s inequality

with exponents s = 87" and s’ = (1 — 3) " to obtain
el = | R P IV )

b—
< il ([, a2

E

Tb

()] dz) ;

or, equivalently,

0y < Vs (33)
with
(n— ¢ qs = p—Fp
Since p > 1, it is clear that gg > 1 for any € (0,1). Moreover,

| 27 =1 — _ ¥
vt (qﬁ ts: Nl) o (1 —B3 N -2 (1-B)(N -2 (p—2x) <0,

and therefore g € [1,27 y,), for some 3 € (0, 1) sufficiently close to 0. Considering this
choice for 8, we can apply the embedding proved in the first part to find C5 > 0 such that

il 35y < Collul g

Combining this estimate with (3.8), we obtain

[l sy < Callul sy lul iy, Ve H,, (B).
If (u,) < ng ,(B) is a bounded sequence, we can extract a subsequence (still

denoted by (u,)) such that u, — u weakly in HZ _ (B). By the compact embedding of

0,z,y
H; . ,(B) into L'(B), we also have u,, — u in L'(B). Therefore,

g = w2y < Chltn — gt — ] < Cilty — w31y — O,

which shows that u,, — v in L}(B), completing the proof. O
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3.2.1 Further comments

We begin this section by presenting some results that are complemented by
Theorem 3.2. The following result can be found in [20, Theorem 1.4 and Corollary 1.5].

Theorem 3.8. Suppose that 2 < Ny < Ny, 2 < q < +o0 and define the numbers

2(Ny + 1)

AT N, >3,
poi=4 Ni—3
q, ZfN1<3
and Ny + 1)(N, — 3
) N 2+N)( = )N >3,
Qo =N—(Ny+1)= = 2N, +1J
po | y-o22T) if Ny < 3.
q

Denoting by B the unit ball of RY, define also the space
H; (B) :={ue H*(B) : u(z,y) = u(|z],|y|), ¥ (z,y) € B}.

Then the embedding H. (B) — LP(B, |z|") is continuous for 1 < p < po and compact if
1 < p < pg, provided

N2+ 4Ny + 3 .
Poqo —lN 23 , ZfN1>3,
7T T Ng—2(Ny + 1)
q 22 . if Ny < 3.

As a consequence, we have the following result related to the space L}(B) (cf.
(3.3)):

Corollary 3.9. With the same notation of Theorem 3.8, suppose that 2 < Ny < Ny,

2 < q<+w and

N2 + 4N.

Nt dNa 3 ey o s)
>3 e

a=2AN+ D) ey s

4

Then the embedding H? ,(B) < L is compact for
2(N;+1)
l<p< 2T N, > 3,
p N, —3 if Ny

1<p<yq, if N1 < 3.
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Proof. Fist, for a given £ > 0, as |z| < |z| and |y| < |2], then (Jz||y|)* < |2|*. This implies,
by (W1), for 1 < p < 400

LP(B, |*) = L7(B, (|=[lyl)") = L, vV (> 0.

Now the result follows from Theorem 3.8 with v = 2. O

Now we can apply Corollary 3.9 with 3 < Ny < Nj to obtain results analogous to

those in Theorem 3.2. More precisely, the immersion Hg, ,(B) < Lj(B) is compact for

400 + 2
l<p< (6+ ) N, =Ny=3and > 1,
2(Ny +1) . N+ 4N, +3
1< , if3<Ny<Nyand £ > ¢, ;= "2 °°
p N1—3 1 o < [V1 an > 2(N1—3)

To verify that our results are sharper, we first consider the case Ny = Ny = 3. In
this situation, Theorem 3.2 ensures the compact embedding for any £ > 0 and 1 < p <

2, n, = 6+ 2(. Since
4(0 + 2)
6

for all £ > 0, we conclude that our result encompasses a strictly wider range. A similar

<6+ 2/,

improvement occurs when 3 < N, < Nj, because

2(Ny + 1)
Ny —3

2(N; — 1)

< 2¥ 0>
@,N1<:> N1—3 Y

and a straightforward computation shows that the inequality on the right-hand side is
always satisfied whenever ¢ > /,. In other words, £, > 2(N; — 1)/(N; — 3) is equivalent
to N1(N7 —4) + 4N, + 7 > 0, which is always true.

3.3 Application

In this section, we prove Theorem 3.3. We first notice that, given £ > 0, we may
use (f1)-(f3) to obtain
|F(s)] < els]* + CylslP, VseR.

Thus, for any u € Hg, ,(B), we can use Theorem 3.2 to guarantee that

L POW ] dz < elul%y ) + Cillull ) < -+ (3.9)

MELO, T. G. 46 Department of Mathematics



3.3. Application Chapter 3.

So, the functional

1) = & ulfip )~ jBFw(z))[W(z)]fdz, we HZ, (B),

is well defined. Moreover, standard computations shows that I € C'(H, (B),R) and its
critical points are the weak solution of problem (P, ).

By using (3.9), (W), and Theorem 3.2 again, we obtain
1) > >ula s — cluls ) — Cillul?
= 51Ul (s 128 ~ 1l s
| L
> el (1 Cos = 2G5 Jull )
Since p > 2, we can choose ¢ > 0 sufficiently small to obtain constants p, 5 > 0 such that
[(U) = 67 Vue Hg,x,y(B)7 HUHHS(B) = p-
Moreover, using (f1), (f2), and (f4), we obtain Cy > 0 such that
F(S) >C4|S|M—C4, VseR.

Then, choosing a positive function ug € Hg, ,(B), we find that

2

S
Isuo) < lualfgey = Cas* | o[V () az —

Since p > 2, it follows that lim I(sug) = —oo. Therefore, there exists e € H3 . (B) such

§—-+00

that I(e) < 0 and |e[ g2z > p-

>y
According to the above considerations, we can define

;= inf I(~v(t)) = 5 >0,
¢ i= inf max (v(t) = B

with I := {v € C([0,1], H}

Theorem (cf. [5]) to obtain a sequence (u,) < HZ

B)) : v(0) = 0, v(1) = e}, and invoke the Mountain Pass
(B) such that

7:B’y (

0,2,y
. . . ! _
HEIEOO I(u,) =c>0, nEI—lr—loo[ (un) = 0. (3.10)
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From the above convergences and (fy), we get

Co > I(uy) — if’(unxun)

- (2- %) Jual s + JB [% F ()t — F(un)] (W) ds

11 1
- (5 - ﬁ) [l + J{UnKso} [ﬁf(u”)u” - F(u")] Wil dz

Since f is continuous, we can find C7 > 0 such that

< 07, V |S| < S0,

which implies

U{w|<so} llf(u”)“” B F(un>] [W(2)]) dz

I

< ¢ JB[W(z)]edz Gy

Thus
1

1
Ce = (5 - ;) T2 = Cs:

and it follows from p > 2 and (f;) that the sequence (u,) is bounded.

Let u € H?

0.2 (B) be the weak limit of a subsequence of (u,). We aim to prove

that, along a subsequence, u,, — u strongly in H&z’y(B). If this is true, then by the
regularity of I and (3.10), we conclude that u # 0 is a weak solution of problem (P, ).

To prove the strong convergence, we compute
I' (un) (i = 1) = [tn 372y = Sty ) = A, (3.11)

where

Avi= | f) =0V =

Using the boundedness of B, (W), and (fs), we obtain
|A,| < ij (14 un P Y, — u|[W(2)]"dz < ¢ (D, + E,),
B

where

3

_ JB i — V()] dz, By e JB i [P~y — ][IV ()] d2

MELO, T. G. 48 Department of Mathematics



3.3. Application Chapter 3.

Clearly, D, — 0 as n — +oo, because W is bounded in B and u, — u in L'(B).

Furthermore, using Holder’s inequality,
B = | (lual VG (fun — ullW ()17 2
B
) 1y 1/p
< ([ wremvenas) ([ - aivera:)
B B
1y 1/p
= ([ mrwera) ([ - uwwer:)
B B

and therefore

P P
E, < ”unHz/?Z(B)Hun - u||L§(B) < 07”“71”;3(3)““71 - UHL’g(B)-

Since the embedding H{, (B) < Lj(B) is compact, we conclude that £, — 0.
Altogether, these estimates show that A, — 0 as n — +00. Therefore, using the

second convergence in (3.10), (3.11), and the weak convergence, we obtain

: 2 2
T a3 ) = [ulls )

This implies that wu, — u strongly in Hgﬁmyy(B), completing the proof.

MELO, T. G. 49 Department of Mathematics



CHAPTER 4

Kirchhoff-Boussinesq equation with
Hénon nonlinearity

In this chapter, we will study the existence and multiplicity of radial solutions

for the following class of problems

A%y + div(|z]*|VulP>Vu) = |z|°f(u), in B,

ou (Ps)
U = — = 07 OIl 5B,

ov

where £ > 0, k > 0, B < RY is the unit ball and p, ¢ > 2. The nonlinear term f satisfies

the following assumptions:

(f1) feCRR);

(f2) there exists ¢ > 0,
20

2<qg< 28 =2% 4
q ¢ N —4

and C' > 0 such that

lf(s)| <C (1 + |s|q’1), Vs e R;

(f3) there holds
lim @

s—0 8

(f4) there exists p > p and so > 0 such that

0 <pF(s)<sf(s), Vls|=so,
where F(s) := J f(r)dr.
0
We remark that the growth of f in (f;) may be supercritical, since 2;* > 2** for

any ¢ > 0.

The first main result of this chapter is:
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Theorem 4.1. Suppose that £ > 0, N > 4 and that f satisfies (f1)-(fs1). Then there
exists ke = Ky (l, N) > 0 such that, for any k € |0, k), Problem (P+) has a nonzero radial

weak solution provided

2K

2 <p< 2F.=2%
P o +N—2’

p<q.

We observe that p < ¢ is always true in view of (f2) and (f4). As we are assuming
2 < g < 2J*%, in order to apply the above theorem, we also need 2 < p < 2% and
p < q. Therefore, it is desirable to ensure that the inequality 2% < 2;* holds, so that the
admissible range for ¢ is non-empty for any choice of p. We prove in Proposition 4.5 that
this condition is indeed satisfied.

In our second application, we prove that under symmetric conditions on f we can

obtain multiple solutions. More specifically, the following holds:

Theorem 4.2. Let k, > 0 be given by Theorem j.1. Suppose that ¢ > 0, N > 4,
KE[0,Rks), 2<p<2f 2<q <2/ and f is an odd function satisfying (f1), (f2) and

(f1). Then Problem (Py) admits infinity many radial weak solutions.

This chapter is structured as follows: Section 4.1 presents the variational
framework, where several technical results are provided and proved. In Section 4.2,

Theorem 4.1 is proved, while Section 4.3 is dedicated to the proof of Theorem 4.2.

4.1 The variational framework

For 1 < ¢ < 400, we consider the following weighted Lebesgue space

L} = {u : B — R : u is measurable and J lu(x)|Yz| do < oo} :
B

. 1/q
e = (JB |u(z)|9|z] d$> .

Analogously, we just write L? for the usual Lebesgue space LY(B).

endowed with the norm

We state in what follows a Gagliardo-Nirenberg interpolation inequality with
weights due to [68] ( ¢f. [33, 61]):
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4.1. The variational framework Chapter 4.

Theorem 4.3. Let p, q,r € [1,+0), € [1/2,1], (1 —N/r) ¢ Nu {0} and o, B, vy € R be
such that « > —N/r, B > —=N/q, v > —N/p and

I 1—v 1 2—« 1 B
o () e (G )
0

<Oa+(1—-0)B—~v<20—1.

Then there ezists C = C(N,p,q,0,v,a,5) > 0 such that

0 1-0

vau oy V0O RY)

<cllaron

H|x|ﬁu
)

LP(RN L™ (RN

As a consequence, we prove:

Theorem 4.4. Suppose that N > 4 and ¢ > 0. Then there ezists ky = k+({, N) > 0 such
that, for any k€ [0, k) and 2 < p < 2% there holds

6 1-6
Vel ey < IV By 0500y Ve CERY),

with

_ 2p+2p* + 26(( — k) p244) =204 2K
U 4p2 4 0p? 4 pr(4 4 0) T 4—p+r

| (4.1)
where C' > 0 is a constant independent of u. In addition, 0, € [1/2,1) and g. € |2,2;™).

Proof. Let £ > 0,k > 0 and 2 < p < 2% be fixed. The idea is to apply Theorem 4.3 with
a=0,v=r/p, f=1L/q. r=2and 0, ¢, as in the statement. To do this, we first show

that, with this choice of the parameters, the couple (0., q.) verifies

1 1—x 1 2—a« 1 B
S A 1—-0) —+ =
p N 9(7’ N)+( 9)(q*+N)

Oucx + (1 —0,)5 —~v =20, — 1.

Actually, replacing the values of o, v, § and r, we can rewrite the above system as

N — N —4 N
pN 2N s N (4.2)
1—0)L 5 0, 1.
qx P
From the second equation, we obtain
14 «(p—
_ I+ ap—+r) (4.3)
p(2¢. +0)
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After substitute this expression in the first equation of (4.2) and make a lot of calculations,
we get
[lp + g(p — £)](N —4) +2(p + £)(N + 0)

N— —
px 2(2¢, + () :

from which we obtain

¢:(4—p—+K)=1Ip+2p+ 2k — 2L (4.4)

Since N > 4, one has 2* < 4, and therefore

2
r <4+

K
< 2*
PSSt N5 N_2

<4+ R,

that is, (4 —p + k) > 0. So, we can go back to (4.4) to obtain the expression of ¢, in
(4.1). Replacing this value in (4.3) and performing some calculations, we conclude that
0, needs to be as in (4.1).

We prove in what follows that all the requirements for applying Theorem 4.3 hold
true. The number p € [2,2]) is fixed.

Claim 1: 6, > 1/2, is k > 0 is sufficiently small.

In fact, using the definition of #,, we can see that the claimed inequality is equivalent to
hi(p) == —p* + [40 — k(4 + O)lp +4s({ — k) 2 0, Vpe[2,2]]

The derivative of h; vanishes in p; := [40 — k(4 + £)]/(2(), and therefore we can use ¢ > 0
to conclude that p; is decreasing in (p;, +00). Since an easy calculation shows that p; < 2,
it is sufficient to check that hy(2%) = 0.

We have that

2)2 +[4 = k(4 + 0] (2* - N2f 2) + 4k (0 — r)

2
ha (28) = —¢ (2* = "

= —/ (2]]1[[——’__?) + [40 — k(4 + 0)] (2]]1[[——’__?) + 4k(l — k)

_ —l(2N 4 2k)* + [40 — k(4 + O)](2N 4 26)(N — 2) + 46({ — K)(N — 2)?
- (N —2)?

| —((AN? 4 8Nk + 4k2) + [8IN + 80k — 2N (4 + () — 2(4 + O)r?|(N — 2)
- (N —2)?

[4k( — 4-%|(N — 2)?
(N —2)?
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Thus

. (=40 —2(4 + )(N —2) —4(N — 2)2)52

ha (2/§) = 2
(N —2)
N [-8(N + (8¢ — 2N (4 + £))(N — 2) + 44(N — 2)*|x
(N —2)?
—4¢N? + 8(N(N — 2)
(N —2)?
from which we conclude that
N N N
hl (2:) _ a(£7 I{Q + b(f, K+ C(& )

with
(40, N) = AN(N = 2) + 20N > 0,

§b(l,N) := 16N — 8N? — 12(N + 2/N?, (4.5)

c(f,N) := 4(N(N — 4) > 0.

Since a(¢, N) > 0 and ¢(¢, N) > 0, the roots of the quadratic polynomial h;(2})

are given by

. WEN) T /(GNP + da(l, N)e(l, N)

2a(¢, N)

Notice that k_ < 0 < k,. So, if we define

. UGN + /6 NP + da(l, N)e(l, N)

2a(¢, N)

we have that hi(2}) = 0, whenever k € [0, k), and Claim 1 is proved.

Claim 2: 6, < 1, if k € [0, k).

Arguing as in the former claim, we notice that 6, < 1 is equivalent to
ho(p) := (£ +2)p* + [k(4 + 0) — 20]p — 2k({ — k) > 0, Vpe[2,2F).

The derivative of hy vanishes in ps = [2¢ — k(4 + £)]/[2(¢ + 2)] and therefore we can use
¢ > 0 to conclude that p, is increasing in (py, +00). Since an easy calculation shows that
po < 2, it is sufficient to check that hy(2) > 0. But this clearly holds true, because

ho(2) = 2(k* + 4k + 4) = 2(k + 2)*

and therefore Claim 2 is verified.
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We finally note that, for any s € [0, k), there holds

(=)~ 9,120
4 P

and therefore the first statement of the theorem is a direct consequence of Theorem 4.3.
It remains to check that g. € [2,2;*). To do this, we first notice ¢, < 2;* is

equivalent to
[p(2+ €) — 204+ 26](N —4) < (2N +20)(4 — p + k),

that is,
A4pN + plN — 2N — 8p — 8k < 8N + 2lp + 2/k.

But this is the same as
p(N —2)(4+0) <2N(4+10)+2k(4 + 0).

Dividing both sides of last inequality by (4 + ¢), we can see the above inequality is

equivalent to p < 27, which holds true. Finally, ¢, = 2 is equivalent to
24—p+ k) <p(2+ ) — 20+ 2k,

in other words,
2(0+4) < p(L+4),

which is also true. The theorem is proved. O

We now verify that, for any choice of p € [2,2%) in Theorem 4.1, the range of

possible values for ¢ is non-empty.
Proposition 4.5. Under the hypotheses of Theorem 4.1, we have that 2% < 2;*.

Proof. We first recall that

and so 27 < 27" is equivalent to
K(N —4) <l(N —2)+2N.

The above expression is trivially true if k < ¢. Recalling that

b, N) 4+ A/[b(¢, N)]? + 4a(¢, N)c(¢, N)
0 <k <Ry= 2a(l, V) ,
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where the above quantities where defined in (4.5), it is sufficient to verify that the right-
hand side of the above expression is less than £.

We first observe that x, < ¢ is equivalent to

A/ [0, N2 + 4a(l, N)e(f,N) < 6N*( + 40*N — 4AN{ + 8N? — 16N. (4.6)
Moreover,

[b(¢, N)]? = 4> N* + 64N* + 256 N? + 144(*N? — 32(N*
+ 256/ N> — 480> N3 — 256 N® — 384/ N2,

and
4a(l,N)c(l, N) = 64¢(N* + 32(*N* — 384(N* — 128> N? + 512(N*.
Thus,

[b(¢, N)J> + 4a(l, N)e(f, N) = 40*N* + 32(N* + 64N* — 16/*N?® — 256 N*
— 128(N? + 256 N* + 128(N* + 16¢>N*.

We may now square both sides of (4.6) and perform straightforward (though

lengthy) algebraic manipulations to obtain that x, < ¢ is equivalent to
0 < 64N3I(N —2) + 32N?(*(N? + N — 4) + 16N?(*(3N — 2) + 16 N4,

which is clearly true, since N > 4. O]

We finish this section by presenting an embedding proved in [20], which will be

crucial in next section:

Theorem 4.6. Let H2(B) be the set of all functions of H*(B) which are radial. Then
each function v € H2(B) is a.e. equal to a function w € C*(B — {0}). Moreover, for
any i,j = 1,...,N, the derivative Uy, () exists a.e. for |x| € (0,1). Also, there exists a

positive constant C' such that

_ [FEe: =
u(z)| < CW—_Z)/)Q, Yz e B — {0},

Finally, for any { > 0, the embedding H2(B) — L} is continuous if q € [1,2;*] and
compact if g € [1,2;").
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4.2 Existence of a solution

We begin this section by defining the workspace to deal with Problem (P4). Let
Coo-(B) be the space of all radially symmetric functions in Cy°(B) and denote

R 1/2
x =B, u::(J|Am2m) |
B
It is a Hilbert space with inner product given by
{u,vy = f AuAvder, Vu,ve X.
B

In order to define the energy functional associated to our problem, we pick € > 0
and use (f1)-(f3) to obtain

W@ﬂé%bﬁ+aﬁﬁ VseR.
Hence, since 2 < ¢ < 27, we can use Theorem 4.6 to obtain
|l P ar < Sl + Calully < Coul? + Call? < = (4.7)
Also, since 2 < p < 2¥, it follows from Theorems 4.4 and 4.6 that

J "Vl de < Callul* Jul 2 < Cs|ul®™ Jul' =" = Cs|lu] < oo. (4.8)
B

%
LZ

So, it is well defined I+ : X — R by

1 1
Ii(u) = §HUH2 + p JB |z|"|VulP do — JB 2" F(u) de, ue X.

Moreover, standard arguments shows that I, € C*(X,R) with

I (u)p = JB AulAyp dz + JB |2[*|VulP~2[Vu - V| dz — JB |2 [* f(u)p da,

for all u, ¢ € X. Thus, the critical points of I, are precisely the weak solution to our
problem. We shall obtain these critical as an application of the Mountain Pass Theorem
(cf [5]).
We recall that 1. satisfies the (PS)y condition at level d € R if any sequence
(u,) © X such that
lim 14 (u,) =d, lim 7' (u,) =0 (4.9)

n—+0w n—+00
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has a convergent subsequence.

Proposition 4.7. Suppose that { > 0, N > 4 and that [ satisfies (f1),(f2) and (fs).
Then the functional I+ satisfies the (PS)q condition at any level d € R.

Proof. Let (u,) < X be as in (4.9). Since pu > p in (fy), we have that
0 <pF(s) <sf(s), Vl[s[=s0,

from which we obtain

L) = 3w = (=3 )l + [ Jaft |20 )| o

1 1
L A A e T
2 p {Junl<so} p

From (f;) we obtain a constant M > 0 verifying
‘@ —F(s)‘ <M, VY |s| < so.
p

Thus, there exists C'; > 0 such that

From the convergences in (4.9) we obtain

1
L (un) = L (un)un = d + 0 (1) + on(1)]fun,

where 0,(1) denotes a sequence approaching to zero as n — +o0. Hence,

1 1
d+ 0,(1) + 0u(1)Jun| = (5 - 5) ug | — C.

Last inequality combined with p > 2 shows that (u,) is bounded. Thus, up to a
subsequence, we have that u,, — v weakly in X.

Using (4.9) again, we obtain
0 (1) = I’ (un) (un — u) = {tp, uy — uy J |z|"|Vu, [P 2[Vu, - V(u, — u)]dx
B

— | lel’ ) = ) da
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and therefore
0n(1) = 6 = (s ) + @ + by, (4.10)

where

Ay = if |z|"|Vu, P2 [Vu, - V(u, — u)] dz
B

and

by = — JB 2] £ (un) (g, — 1) dez.

Holder Inequality, Theorems 4.4 and 4.6 and the boundedness of (u,,) yields

|an| <J |Jr|ﬁ|Vun|p_1|x|%|V(un—u)|d;p
B

/
< Va2 |V (= 1) |

1—6*
q
Ly*

< Gl — ullLy? = 0,(1),

< Oun )P e, —

where we have used ¢, € [2,2;*) and the weak convergence in the last equality.

Analogously, using (f>), we obtain

£ 7 £
mA<c[un—uhv+fLﬂﬂwﬁluwwn—w]
B
ll
<€ [ = b + o = s | = )

Replacing the above estimates in (4.10) and recalling the weak convergence of
(un)a we get
0n(1) = [[un]* = (n, ) + 0n(1) = Jun|* = Ju[* + 04(1),

and therefore u,, — u strongly in X. O]
We are ready to prove the existence result.

Proof of Theorem 4.1 . For all u € X, we can use (4.7) with £ = 1/(2C3) and (4.8), to get

Cs

1 Cs
pMW—%wW=WW(———

1 _ _
I () = gl - £ S - )

and

1 1 _
L) > lul? = Calul? = P (§ = Gl ?)

Since p,q > 2, we can find 3, p > 0 such that

Ii(u) = B, Vue X ndB,(0).
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Moreover, using (f1) and (f4), we obtain C7, Cs > 0 such that
F(S) = C7|S|M—Cg, VseR. (411)

Since 2F < 27* (¢f. Proposition 4.5) and p € [2,2%), we can assume in (fy),
without loss of generality, that p < p < 27*. So, for any v € X — {0} fixed, we can use

Theorem 4.6 in order to get

t2
I (tu) < 5 Jlul* = Cot*ul* + C1o

and, by Theorems 4.4 and 4.6,
t? 2 D, ||P H M

Recalling that 2 < p < u, we conclude that I (tu) — —o0, as t — +o0. Thus, there exists
ey € X such that I(e) <0 and |les| > p.

The above considerations show that it is well defined

[p— - >
Cs ;glfeg%gﬁfi(v(t)) > >0,
where T, := {ye C([0,1],X) : 7(0) = 0,7(1) = e4}. It follows from the Mountain Pass
Theorem (cf. [5]) that there exists (u,) < X such that

lim I:(u,) = cq, lim I’ (u,) = 0.
n—+00 n—+0 =

It follows from Proposition 4.7 that, along a subsequence, w,, — u strongly in X. Using
the regularity of I, we conclude that I + (u) = ¢y = > 0 and I, (u) = 0, that is, u e X

is a nonzero solution to Problem (P.). O

4.3 Multiplicity of solutions

In this section, we prove Theorem 4.2. The idea is take advantage of the symmetry
of the even functional. In order to construct the appropriated linking structure, we need
some background on the spectral theory of the biharmonic operator involving the weight
.

For A € R", we consider the fourth-order eigenvalue problem
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A%y = Nz|'u, in B,

4.12
u = 5_u =0, on 0B, ( )
ov

If it admits a nonzero weak solution u € X, then X is called an eigenvalue and u a |z’

eigenfunction. The set of all eigenvalues is called the spectrum of (A?,|z|) in X and it
is denoted by o(AZ, |z[%).

Using the compact embedding X — L?, we can prove that the smallest eigenvalue
A1(B) of problem (4.12) is exactly

f |Aul? dz
M(B):= inf {B—0

B ue X\{0} f |x|€|u|2 da
B

Moreover, from the spectral theory of self-adjoint compact operators, we obtain a complete
sequence of eigenvalues

D<A <A< <A<

such that Ay — 4+, as k — +c0.
For any ¢ € {1,2,---,k}, we denote by ¢; a A\;-eigenfunction and define the
subspaces

Vi := span{epr, ..., i}, Wy, = VkL-

We have the orthogonal decomposition X = Vi, @ W), and, for any k € N, the following

holds

1
Julz: < mHUH27 Vue W (4.13)

The following technical result will be essential in the proof of Theorem 4.2.

Lemma 4.8. Suppose that 2 < r < 2;* and k € N. Then there exists a € (0,1) and
C > 0, independent of k, such that

C
el

k+1

", Yue Wy

Julz, <
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Proof. Since 2 < r < 2;*, there exist a € (0, 1), such that r = 2(1 — «) + 2)*a. Thus, we
can use Holder inequality for ¢t = 1/a and ¢’ = 1/(1 — ) and Theorem 4.6 to get

| ol do = [ ol #ul® 2" da
B B

1 1/t
< (J |x|f|u|2dg;> (J ] dx)
B B

2(1-a) | 128 * e
= Jlulz “HUHL%;*

< Clul 3™ ulP?".

But the second variational inequality in (4.13) implies that

2(1—a 1 —a
[l ™ < =5 P, Yue Wi,
Akl
and therefore
C o C
lullz; < = Il a7 = —= Jul".

’ )\/(i‘-i-l ) )\](<2+1 )

This lemma is proved. O

To establish the existence of infinitely many solutions for Problem (P+), we will

use the following version of the Mountain Pass Theorem (¢f. [55, Theorem 9.12]).

Theorem 4.9 (Symmetric Mountain Pass Theorem). Suppose that X is a real Banach
space and I € C*(X,R) is an even functional satisfying T(0) = 0. Suppose also that
X =V®W, whereV is finite dimensional subspace

(fl) there are constants p, 7 > 0 such that Z(u) = 7, for all ue W n 0B,(0);

(Z3) for each finite dimensional subspace X < X, there exists R = R(X) such that

sup  Z(u) <0

ue)?\BR( (0)

and the (PS). condition for any ¢ € R. Then T has an unbounded sequence of critical

values.
We conclude the chapter with the proof of our second main result.

Proof of Theorem 4.2. We are intending to apply Theorem 4.9 for the functional /1. Since

we are assuming f is odd, the map v — | |z|°F(u)dz is even in X, the same occurring
B
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with I.. Of course 1.(0) = 0 and, by Proposition 4.7, I; satisfies (PS). condition for
any level c € R.

It remains to verify the geometric conditions. We first deal with (Z3). Let X < X
be a finite-dimensional subspace. Without loss of generality we can assume p < pu < 2™,
because 2 < 27" (c¢f. Proposition 4.5). Thus the norms | - | and || |+ are equivalent in

X and we can use (4.11) in order to obtain,
I 9 -
I,(U) < §||UH —C’1||u||”+02, YVue X.
Analogously, by Theorems 4.4 and 4.6
Lo P " v
L (w) < glul” + Gallul” = Cufjul* + G5, VueX.

Since 2 < p < p, we conclude that I.(u) — —oo, as |u| — 400, u € X. Thus the
condition (Z3) also holds.
In order to verify (Z;), we use (f2) to obtain Cg > 0 such that

|F(s)] < Cs+ Cyls]?,  VseR.

Thus, for any u € Wy,

1 1
Ls(u) = 5|ul - ;)HWUlllig = Csllulfy = Co. (4.14)

Now we apply Lemma 4.8 with ¢ and ¢, in order to obtain «, 5 € (0, 1) such that

ClO Cll
fulfy < S ul®, el <~ (4.15)
k+1 k+1
and use Theorem 4.4 to get
[IVulllzz < Cazllul ™ Jul o
1—6*
Cl/Q* C
04 11 _ 13
< Cafju] ( \(—B)/ax “) ~ A0 fax -
k+1 k+1
Hence, c
14
NP nm
k+1
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This inequality combined with (4.14) and (4.15) yields

1 015 CIG
Ii(u) = 5“““2 - A\(=B)(1=0x)p/ax |ul? — (1—a) |u]? — Co
k+1 E+1
1 9 017 _9 ClS —2
= EHUH <1 - A(l,ﬁ)(l,g*)p/q* Hqu - WHUHq — Cy,
k+1 k+1
for any u € Wj.
We set
1-B8)(1—0s)p/as \ /(P—2) 1—a)\ /(a—2)
. lmin /\l(<:+1 )(1—=0+)p/q /\l(<:+1 )
9 4045 "\ 4Cs
in such a way that
Crr o 1 Cis 42 1
A(l—ﬁ)(l—g*)P/Q*pi < Z’ )\(1—@) P < Z
k+1 k+1
Thus o o
1
1— 17 pp—2 _ 18 pq—2 -
/\561;15)(1—9*)17/11* k )‘I(<:1+_1a) k 2
and consequently
L,
I (u) = Zpk—C’g, Vue W, ndB,,(0).

Recalling that «, € (0,1) and 0, < 1 (see Theorem 4.4), we may use Ay — +o0
to conclude that p, — +o0, as k — +00. Thus we can find 7, > 0 such that I (u) = ny,
for any u € Wy, n 0B, (0). Hence, the condition (Z;) holds for the decomposition
X = Vi, ® Wy, and Theorem 4.2 is a direct consequence of Theorem 4.9. ]
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CHAPTER 5

FitzHugh-Nagumo system with
exponential growth

In this chapter, we will study the following planar FitzHugh—Nagumo system:

—Au = AQ(jz)) f(u) = V(|z[jv, in R

o, (Sx)
—Av =V(|z|))u — V(|z])v, in R

where A > 0 and the potentials V, @ : (0, 4+00) — R are such that

(V) Ve C((0,+w), (0,+0)) and there exists a > —2, such that :

.. r
lim inf ) > 0;
r—40 1t

(Q) Qe C((0,+),(0,400)) is continuous and there exist by, b > —2, such that

lim sup M < +00, lim sup% < +00.
r—0 rbo rogoo TP

Concerning the nonlinearity f: R — R, we assume the following:

(f1) fe C(R,R) and there exists o > 0, such that

. 1f(s)] 0, if a> a,
im = _
s|>+o0 € +oo, if a < ag;

(f2) there holds

tim 2L g,
s—0 |3|7—1
where n )
—a
= 2 2%
¥ max{,(a+2)+ },

(f3) there exists pu >+, such that

0 < pF(s) :zuf:f(t)dtéf(s)s, Vs #0;
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(f1) there exist C' > 0 and v >  such that

F(s) = C|s|", VseR.

The main results of this chapter are:

Theorem 5.1. Suppose that (V1), (Q1) and (f1)-(f1) hold. Then there exists Ao > 0 such
that the System (S\) has a radial nonzero weak solution, provided X = X\g. Moreover, if

we call (u,v) this solution, the following hold:

(a) if there exists ag > —2 such that

. V(r)
lim sup —— < +o00,
r—0 rao

then u,v € W2’p(R2) for any p > 1 such that pag, pby > —2. In particular, u,v are

loc

locally Holder continuous;

(b) if V is locally Hélder continuous, then v e C27(R?) for some o € (0,1).

loc

Theorem 5.2. Suppose that (V1), (Q1) and (f1)-(f1) hold. If additionally f is odd then,
for any given m € N, there exists A\, > 0 such that the System (S)) has at least 2m radial

nonzero weak solutions, provided A = \,,.

We present now some examples of functions satisfying our hypothesis. First notice
that, for any a > —2 and @ > a, the function V' : (0, +00) — (0, +0) defined by V (r) = r*

verifies (V7). Also, for —2 < b, by and s = by, s < b, the function

rfo, 0 <r<1,

Q(r) =

r®, ifr>1,
verifies (()1). More simply, in the case —2 < by < b, we can take by < < b and see
the function Q(s) = r? also verifies the same condition. Finally, a typical example of a

function f verifying conditions (f;)-(fs) is
F(s) = |s]P2se™* seR,

with p > v, ag >0 and p =v = p.

The chapter is organized in the following way: in Section 5.1, we established the
variational framework to correctly define the energy functional. In particular, we prove a
Trudinger-Moser type inequality (¢f. Theorem 5.10 and Remark 5.11), which is interesting

in itself. In Section 5.2, we define the Euler Lagrange functional associated to the system
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(S,) and prove a version, for out setting, of the Principle of Symmetric Criticality. We also
prove a local compactness result for the energy functional and show it has the Mountain

Pass geometry. Finally, we reserve Section 5.3 for the proof of Theorems 5.1 and 5.2.

5.1 Variational setting

Along all this chapter, we assume that (V7) and (@) hold and consider the set
o {u e 2 (R?) : |Vu| e L2(R?), f V(e dz < +oo} |
R2

We are going to show that it is a Hilbert space (¢f. Proposition 5.3) when endowed with

the scalar product

wwyy = |

R

(Vu -Vw + V(|x|)uw) dz, Vu, we E,

whose corresponding norm is |u|g = {(u, U>115/2 We also denote by E,.q the subspace of

E consisted of the radial functions, that is,
Erg:={ue F:uog=u, VYgeO(2)},

where O(2) stands for group of real orthogonal 2 x 2 matrices.
For completeness, we reproduce in what follows some arguments from |3,

Proposition 2.1].

Proposition 5.3. Suppose that V € C((0, +o0), (0, +0)). Then the space E is a Hilbert

space.

Proof. 1f (u,) < E is a Cauchy sequence, then for each i = 1,...,n, (up)., and A/ V(| - |Juy,

are also Cauchy sequences in L?(R?). Hence, there exists u’, v € L*(R?) such that
(Un)a; — U, V(|- Dup — v, in L*(R?).

We define w = v/(4/V(] - |) and we are going to show that w,, = v’, w € E and |u, —
For any R > 0, choose ¢ € CF(R?) such that ¢ = 1 on B and supp(¢) < Br,1.

To prove u, is a Cauchy sequence in L*(Bpg) observe that

| o= [ ot - wnPde < | o - u) P e
Br Br

Br+1
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As V(p(uy — U)) = (up, — um)Ve + oV (u, — uy) and ¢ is constant in Bp, Poincaré’s

inequality yields constants constants C, C'y > 0 such that
f |y, — U, |*dz < Oy J |(t, — um)Veo|* da + C’zf |V (1, — ) [* dz.
BR BR+1\BR BR
Rewriting the right-hand side, we obtain
f iy — |2 dz < Oy V() Ul g cqf IVt — )2
B Brai\Br (I ) B

Let Mg the minimum of V in Bg\Bg. Then,

J iy — | da < ﬁf V(|x|)|(un—um)|2dx+04j IVt — )| d.
Br Mk Br11\Br

Br

which implies
J |, — U |* Az < Ot — |5 (5.1)
Bgr

Since u, is a Cauchy sequence in F, this inequality implies u,, is a Cauchy sequence in
L*(Bg). Thus, for each R > 0, there exists uz € L*(Bg) such that u, — ug in L*(Bg)
and (up to a subsequence) u,, — ug a.e. in Bg. Simultaneously, since A/V(| - |)u, — v
a.e. in R?, it follows that u, — v a.e. in R?. Therefore, up = w, implying w € Li (R?).

Finally, for an arbitrary ¢ € C;°(R?), let R > 0 such that supp(¢) = Bg and notice that

J W, dr = f W, dr = f URP,y, Ao
R2 Br Br

= lim Unpy, dz = — lim (Un)z, p dex.
n——+00 Br n—+0o0 R2

As (up)y, — u' in L*(R?), the weak derivative w,, exists and equals to u’. Consequently,

|, —w| g — 0, which completes the proof. O

Corollary 5.4. The space E is continuously embedded in H}. .(R?). In particular, for any

loc

R > 0, E is continuously and compactly embedded in LY(Bg), for all ¢ =1

Proof. Let ue E and R > 0. We can follow the same step to obtain (5.1) to prove

f 2 de < Gl
Br

what is enough to conclude |[uf g (p) < Co|u|E- O
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For any u € F fixed, we define the linear functional T}, : F,.,q — R given by
T.(0) = | Vilslupds.
R

Since |T,(¢)| < |u|g|¢|r, we may invoke Riesz’s Theorem to obtain B|u] € E,.q such
that T,(¢) = (Blu], ¢)g, for all ¢ € Ey,q. Of course, T,, can be defined on E. Therefore,
Bl[u] is a critical point of the C* functional J, : E — R defined by

1 1
Iuw) = glol = | Vilhuwds = joly ~Tw),  VweE.

restricted to E..q. Indeed, since T, is linear, we have that (T,,)'(w) = T, for every w € FE.

Given an orthogonal map g € O(2) and w € E, we can define (gw)(x) := w(g 'z).
If we assume in addition that u € E,q, since V(] - |) is radial there holds J,(gw) = J,(w)
and |gw||g = |w|g, for all w € E. So, by the Principle of Symmetric Criticality, (cf.

Theorem 5.18) we conclude that B[u] is a radial weak solution of the linear problem
—Av + V(|z))v = V(|z|)u, in R (5.2)

So, if you come come back to system (S)) and make the change of variable v := B[u] in

the first equation, we are led to find a radial function u solving the problem
—Au+ V(|z|)Blu] = AQ(|z|) f(u), in R (5.3)

Actually, if u € E,qq is a solution of the above equation, the couple (u, Blu]) of radial
functions solves the system (S,).

In order to address Problem (5.3), we consider the bilinear form
{u, wyy 1= JRQ (Vu -Vw + V(|x|)uB[w]) dz.
Using Blu] as a test function in equation (5.2), we obtain
Julk = (u,wyx = [Blu]lE + fRQ Vul*dz. (5.4)

Hence, it is straightforward to prove that (-,-), defines a scalar product in E (cf.
Proposition 5.5). From now on, we denote by X the vector space formed by the set

FE endowed with the norm induced by this inner product, that is

Julx = UR (IVU|2 + V(|x|)uB[U]) dw] 1/2‘
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As before, we set
Xag ={ue X, uog=u, VYgeO(2)}

the subspace of X consisting of radial functions.
Proposition 5.5. If V e C((0, +o0), (0, +0)), then X is a Hilbert space.

Proof. First we prove (-, -)x is symmetric and positive definite. For any u, w, ¢ € X, we

know
VB[u] - Vi dz + f V(|]) Blu]p dz f V(|| yugp da,
RQ RQ RQ
and
VBw] - Vi d + f V(|e]) Blw] dz = f V(| )i e
R2 R2 R2

Taking ¢ = B|w] in the first equality above, and ¢ = B|u] in the second one, we get

| ViahuBlolas - |

R

) V(|z|)wB|u] dz

and so {u,wyx = {w,uyx. By (5.4), of course {u,uyx = 0 and it is zero if and only if
u = 0.
Let w € X and v := B|u]. By picking u as a test function in (5.2) and using

Young’s inequality, we get

Lp V(|z)u? dz = JR2 (Vv - Vu) dz + f V(|z|)uv da

RQ

1 1
< —J |Vol? dz + —J |Vu|2da:—|—f V(|z|)uv dz
2 R2 2 R2 R2
1 3
== J |Vv|2dx—f V(|x|)uvdx+f |Vul? dz | + —J V(|z|)uv dx
2 [ Jr2 R2 R2 2 Jpe

1

1 3
= ——J V(|x|)v2dx+—f |Vu|2d$+—j V(|x|)uv dz.
2 R2 2 R2 2 R2

Thus

1
J |Vu|2d:c+J Vuzdxéf |Vu|2d$+—f |Vu|2dx+§f V(|z|)uv dz
R2 R2 R2 2 Jpe 2 Jpe
3
:—U |Vu|2dx+f V(|x|)uvdx]
2 R2 R2

and therefore

3
[ullp < Glulk,  VueX. (5.5)

Let (u,) be a Cauchy sequence in X. From the inequality (5.5) we conclude that (u,) is

also a Cauchy sequence in the norm |- |g. Since E is a Hilbert space (¢f. Proposition 5.3),
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there exists u € E such that |u, — u|g = 0,(1), where 0,(1) — 0 stands for a quantity
approaching zero as n — +oo. Denoting v, := Blu,|, we can use the linearity of B and
(5.4) to get

[vn = vmll = | Blun — ]| = ltn — wm| % — J IV (= wn)P de < up = %,
R

which shows that (v,) is also a Cauchy sequence in the norm | - ||g. Again, since F is a
Hilbert space, there exists v € E such that |v, — v|g = 0,(1). We claim that v = Blu].

If this is true, we can use (5.4) again and the linearity of B to obtain

Jun —ulk = v — vl + f Y w)* dz < v — vlE + [un — ulp = 0a(1),
R

where o,(1) stands for a quantity approaching zero as n — +o0. This shows that u, — u
in X.

To prove that v = B|u] we notice that, for any ¢ € E, one has

(om, O35 — fRQ V(|2])une e (5.6)

Since v, — v in E, it follows that {(v,, ¢)r = (v,¢)r + 0,(1). Moreover, using Holder’s

inequality, we obtain

< un = ullglele = on(1).

| vt —upds

These convergences combined with (5.6) imply that

Vv - Vedr + J V(|z|)vedr = f V(|z|))upde, VeekFE,
R? R

R2
and therefore v = Bfu]. O

Remark 5.6. It follows from (5.5) that the embedding X — FE is continuous and
therefore, by Corollary 5.4, we also conclude that E continuously immersed in Hj. (R?).

We also have the continuous embedding X < LY(Bg), for any R > 0 and ¢ > 1.
The following result will be useful in the future.
Lemma 5.7. Suppose that u€ E and g € O(2). Then Bluog '] og = Blu).

Proof. Asuog 'eE,

VBluo gil]Vw + V(|z|)Blu o g’l]@ dz = J V(|z|)(uo g’l)godx, V ¢ € Epg.
RQ

RQ
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For ¢ € F,,q, we can use ¢ o g~ ' as a test function in last identity in order to obtain

| vibwogeos™)dr = | VBluog V(e og ) do

+ | V(zh)Bluog (pog *)da.

R2

As R? = gR?, after a change of variable we get

| 9Blucg 1o0Ve+ VilahBluog ogheds = | Vijelupds

R2
. 1 -
By uniqueness, Bluog ]| og = Blu]. O

Next we define, for each 1 < p < 400, the space

L} (R?) = {u : R? — R measurable : J

R

uPQ(|a]) dx < +oo},

which is Banach space when endowed with the norm

1/p
o= ([ Qe ar)

We notice that a version of the classical Radial Lemma of Strauss [72] holds in
Xaq- In fact, it is proved in [73, Lemma 1] that there exist constants C,. > 0 and Ry > 0

such that, for any u € X,.q, the following holds:
lu(z)| < Cyla|" 04|y, for a.e. |z| = Ry. (5.7)
It is worth noticing that, in [73], the authors prove (5.7) with the additional condition

lim sup Vir) > 0.

r—0 @0

However, as we can see from the next result, this hypothesis is not necessary.

Lemma 5.8. Suppose that a > —2 and R > 0. Then there exists a constant C' > 0 such

that, for any u € X,.q, the following holds:

1/4 1/4
U |u|2|x|“dx) (J |Vu|2dx)
|z|>R R2

|x|(2+a)/4 )

lu(z)| < C for a.e. |z| = R. (5.8)

In particular, if (V1) holds, there exists constants C,. > 0 and Ry > 0 such that (5.7) is

true for any u € X,qq-
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Proof. In fact, arguing as in [69, Lemma 2.1], it is enough proving inequality (5.8) for a
radial function v € Ci°(R?). In this case, write u(z) = ¢(|z|) for some ¢. For a fixed
7o € R*\{0} with |z¢| > R, denote by R = || and notice that

d

a a d a
2 (&) = 20()¢ () + () - (5).

(5+1)

As a > —2, the derivative of r is positive. Thus

a

o d
20(r) ' (r)rETD < —(pPrEHD),
dr
Integrating over (R, 4+-o0) yields

I ! (241) d o, (2+1) 2y pla D)
2¢(s)¢'(s)s' 2™ ds < —(p sz )ds = —p*(R)R®
i 7 dr

which implies

=2 [ llet)st I st

<o ([ lotopssas) " (] 1) -

because R < R. So, denoting by w, the measure of the sphere S' under its surface measure

09, that is, wy = UQ(Sl)a

- 9 1/2 1/2
uz(yc)|:1:0|T < — (J |u(x)|2|x|“dm) (J |Vu(:1:)|2 dx) ,  Vl|xo| > R,
|z|>R R?

Wa

which implies (5.8).
By (V1), denoting 3 = hmian(r)/r“, for a given € > 0, there exists d. > 0 such
r—+00
that (8 —¢) < V(r), for any r > d.. Thus for a.e. x € R? and |z| > 4,

1/4 1/4
u(2)] < Ayl -+ ( f' . |u<m>|2|x|adx) ( j |Vu|2das)
z|>8. 2
< Ay —(2+a)/4 2y d v Vul2d v
< gl (@) 2V (] de Vulde
|z|>6s R2

A 1/4 1/4
< 2l ([ upvehac) ([ wabas)
f—e R2 R2

which implies (5.7) for Ry = d. and C, = Ay/(5 — ¢). O
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By taking advantage of (5.7), we can obtain a range of compactness for the
embedding of X,,; into the above weighted Lebesgue spaces. More specifically, the
following holds:

Lemma 5.9. Let y be defined in (f;). Then the embedding X,qq — L) (R?) is continuous

for any v < p < 40 and compact if p > .

Proof. Let Ry > 0 be like in (5.7) and R > Ry. In view of (Q;) and (1)), there exists
C1 > 0, Cy > 0 such that

Q(z) < Cylz|™, if |z < R,
(5.9)
Q(lz]) < Cilzl’, V(|z|) = Cslz|®, if 2] = R.

For any u € X,.q and v < p < 400, we have that
fulfy, = | fuP@Qeldo+ | jupQe) da.
Bgr R:\Br

In order to prove the continuous immersion we estimate each these integrals. Let ¢; > 1
be such that byg; > —2. From (5.9), Holder’s inequality, Remark 5.6 and (5.5) to obtain

1/fh
[ wreuaar<c, ( [ oo das) ul sy < Collully < Colulfy.  (5.10)
Br Br
On the other hand, using (5.7) and (5.9) again, we get

j P QJa]) de = f 2 P2 e Q] de
R2\Bp RA\Bpr

_ ol

s e PV(elu de,
2 R:\Bp

with

A:z(b—a)—w.

As p = 7, one deduces A < 0. Hence, last estimate combined with (5.5) yields
|, wPael) de < Coruls,
R2\Bp

which establishes the continuity of the embedding.

MELO, T. G. 74 Department of Mathematics



5.1. Variational setting Chapter 5.

We now prove that the embedding is compact. Let (u,) < X;.q be a bounded
sequence such that u,, — u weakly in X. By Corollary 5.4, we conclude that u,, — u in

LY Bg), for any ¢ > 1. Replacing u by (u, —u) in (5.10) yields
f t — u1Q([2]) dz = 0,(1). (5.11)
Br

As A <0, for € > 0, we can take R large enough such that R* < e. After replacing u by

(up —u) in (5.11), we obtain
[t —arQuahar < cse
R2\Bp

because (u,) is bounded. This proves that u, — u in X. O

We study now the embedding of the space X,,4 into weighted Orlicz spaces. So,

we pick @ > 0 and define the Young function
Jo=1
o pas® & 2
D, (s):=¢ Z j!s : VseR,
j=0

where jo :=1inf {j € N: j > ~/2} and v > 0 was defined in (f5). We have that

Do (s) = Byyo (;) L (Bu(s)) < Bia(s), VseRreR—{0},t=1  (512)

and
D, (s) < Pp(s), Vo<a<f, VseR (5.13)

Indeed, the second inequality in (5.12) was proved in [83, Lemma 2.1] and the other
inequalities above follow directly from the definition of ®,,.

The following Trudinger-Moser type inequality complements the abstract results
stated in [73]:

Theorem 5.10. Suppose that o > 0 and v € X,qq. Then Q(|-|)®o(u) € L'(R?). Moreover,

sup JRQ O, (u)Q(|z|) dr < +o0, (5.14)

{u€Xrqq |ulx <1}
whenever 0 < a < 4mw(by/2 + 1).

Proof. Considering Ry > 0 as in (5.7), we fix a number R > Rj and divide the proof into

three steps:

First step: for any a > 0 and u € X,q, we have that Q(| - |)®,(u) € L'(Bg).
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Following [71] (cf. also [12]), we consider the function

v(la)) = 57 u(2l”),  weR?

with 8 := 2/(by + 2) > 0. We claim that v € H'(Bgys). In fact, a straightforward

computation shows that

RY/B Rl/ﬁ
f |Vv(x)|2dx=27rf v ()|2sds—27rﬁf ) 25251 ds
0

BRl/B

and therefore the change of variables ¢t = s° yields

R
f Vo) de = 24 ()2 it = f V()2 dz < +oo.
B 0 Br

On the other hand,

RY/B
=2 ds =2 2By ()t d
JB v (x)dr = 278~ J )sds =273~ J t (1)t dt,

Rr/B

(5.15)

where we have used the change of variables t = s” again. It follows from 2(1 — 3)/3 = b,

that
f v?(z)dz = 72 |2["u?(z) da.
R1/8 Br

We now recall that

R

f lz|" do = ZWJ s ds < +oo,
Br 0

(5.16)

whenever t > —2. Since the parameter by in (();) verifies by > —2, we can pick ¢; > 1 close

to 1 in such a way that |z[""* e L'(Bg). Thus, we may use (5.16), Holder’s inequality

and Remark 5.6 to obtain

1/t1 1/t2
j v (z)dz < 72 (J |z |P1bo dx) (J |u(z)|* dx) <+,
B Br Br

R1/B

where 1/t; + 1/t = 1 and, of course, 2t, > 1. This and (5.15) prove that v € H'(Bpgs),

as claimed.

)

Arguing as in the proof of (5.16),

R1/8 Br

R
V(@) 4 = f e (2l”) Qg = QWﬁIJ e (W boy 4t = B! |x|b°e°‘“2(‘”) dx,
1/8 0
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and therefore it follows from (5.9) that

J D, (u)Q(|z]) da < C’J e @) 4z = OB P () g, (5.17)
Bgr

Br BRl/ﬂ

We now define & € Hy(Bpis) as

v(lal) = v(RY?), if 2] < RY”,

U(|z]) =
0, if || = RY?.

For any ¢ > 0, since v(|z|) = 9(|z]) + v(RY?) for |z| < RY?, we can use Young’s inequality

in order to obtain

v*(Jz]) = P(Jal) + 20(|2])o(RY?) + v*(RY7)
< P (Jaf) + 2 [0l )] [ RYP]] + v*(RYF)
< (14 e)*(|z]) + C(e)v*(RVP),

with C'(¢) := (+1)/e. This inequality, (5.17) and the classical Trudinger-Moser inequality
for bounded domain (c¢f. Theorem 5.19) imply that

f O, (0)Q(|z]) dz < CQeaﬁC<€>v2<R”‘*>f PP () 4z < oo, (5.18)
Br

BRl/ﬁ

where Cy := C. The first step is proved.

Second step: if 0 < o < 4m(by/2 + 1), then

sup J O, (u)Q(|z|) dx < +o0.
Br

{uex'ra,d:“u”X gl}

Let 0 < oo < 4m(bo/2 + 1) and u € X,qq4, with |u|x < 1. In this case, it is possible
to take € > 0 such that a(1 4+ ¢) < 4n(by/2 + 1). Recalling that 8 = 2/(by + 2), we get

af(l+¢) <4m. (5.19)
Moreover, by the definition of v, (5.7), the assumption R > Ry and (5.5), one deduces

3
aBC (W (RYP) = aC(e)u*(R) < 5ac(g)OER—(%a)/z”qu( < CyR—(2+a)/2,
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with C3 = 3/2aC()C?. This and (5.18) imply that

f O, (u)Q(|z|) da < CoeCsR J P01+ (@) g (5.20)
Br

BRl/ﬂ

From the definition of ¥ and (5.15), we get

f V) da = J |Vo)? dz = J |Vul?dz < 1.
BRl/ﬂ BRl/ﬁ Br

Since U € H&(B}%/B) and | V0|2
Trudinger-Moser inequality (c¢f. Theorem 5.19) to obtain

B < 1, we may use (5.19)-(5.20) and the classical

sup JB O, (u)Q(|z|) dr < +o0.

{uex'rad:“u”X gl}

The second step is finalized.

Third step: for any a > 0, we have that

sup J O, (u)Q(|z|) dx < +o0.
R2\Bp

{ueX qa:|lul| x <1}

Given u € X,qq, we first prove that Q(| - |)®4(u) € L'(R*\Bg). To do this, we
recall that

+oo i 924

ol s4I
(I)a(s) = Z I
=0 I

Thus we can use the Monotone Convergence Theorem to get

+00 ;
= Oz_] 25— |7
JRZ\BR O () Q(|z]) do = ) i JRQ\BR [P |u[ Q(|2) da.

Jj=jo

For j = jg, notice 2j — v = 0, because jo = /2. In this case, since R = Ry, it follows
from (5.7) combined with (5.5) that, for |z| > R,

[ul) |7 < OF |~y 7,

where C5 = 4/3/2C,.. Therefore

_ j Y
Cs ) " & (3RO 3 | [l
d,(u z))de € | =+~ :
[, mtwothar < (s [Z ]! o

Jj=jo

— v
< ( C3 ) v eao32R—(2+a)/2HuH§( ||u||L22
R(2+a)/4 ”u”X
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This, together with Lemma 5.9 and (5.5) provides Cy, C5 > 0 such that
J O, (u)Q(|z]) do < Cpe @R T Il < CyeaCiluli < 4o,
R2\Bp

Moreover,
swp [ @, Qe de < G,
R2\Bpr

{ueX,qq:llul x <1}

and the proof is finished. O]

Remark 5.11. Let 8, := 4n(by/2 + 1). As proved in [1, Proposition 2.5/, we have

Co = sup J Ps(u)Q(|z|) dz < 400,
RN

{u€E qq: |ul|g<1}

for any 0 < B < B.. This inequality combined with (5.5) and (5.12) provides the
conclusion of Theorem 5.10 for 0 < a < 2f,/3. To see this, take u € X,uq with |ul|x <1
and use (5.5) to obtain ||\/2/3ullg < 1. So, for 0 < 8 < p.

2
f Py <\ﬁ“> Qz)dz < Co, Y ue X, Julx <1.
RN 3

Using the first identity of (5.12) with r = m, we obtain
JN Dop)3(W)Q(|2]) do < Co, Y u€ Xpga, ullx <1,
R

for any 0 < B < Bs. If we make the change o = 23/3 in this last inequality, we can see
that (5.14) works for 0 < o < 20,/3. The main point is that we provided here a different
proof to encompass the entire range (0, 4w (by/2 + 1)).

5.2 Mountain Pass structure

Using the abstract results of the former section, we are able to define the Euler-
Lagrange functional associated to equation (5.3). The first step in our analysis is proving
that Q(| - |)F(u) € L'(R?), for any u € X,qq. We shall use the following basic lemma:

Lemma 5.12. Suppose that (f1) and (f2) hold. Then, for any given € > 0, o > «, and
q = 1, there exists Cy > 0 such that, for any s € R,

1f(s)] <els|” !+ Cf|s|q’1<ba(s),
(5.21)
|F(s)| < els|” + Cyls|*®as).
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Proof. By (f1),

: MO
PR NS R (522)
because
2
el el e
lsl>-+o0 |S[971D,(5) || oo €25 [s]07L (pas® — Z§° " c;{ 527)

where we used that

. 60&82

iy as? jo—1 ad 94 =

|s|]—>+o0 (e — 2j=o FS J)

For a given ¢ > 0, we can use the limit (5.22) combined with (f;) to obtain a constant
C. > 0 such that

1f(s)] <els| 1+ Cols|? T Pu(s), Vqg=1,a>ays#0. (5.23)
As @, is even and increasing on (0, +00) and ¢ = 1, there holds
f 11D, (1)t < $|S|q<ba(s) <|5|1By(s), VseR.
Last inequality combined with (5.23) yields
|F(s)] <els|” + C.ls|®y(s), Vg=1,a>a

and the lemma is proved. O

Given u € X4, it follows from (5.21) with ¢ > v that

| Feh dz < el o)+ € [ @l Q(ie) dr

For t; > 1 such that ¢t; = 7, we can use Holder’s inequality to obtain

| Qe do = [ 1D Qi) ) da

1/t
<lulty, ([ atwqenas)

where 1/t; + 1/ty = 1. Since gt; > v, we can use last property combined with Lemma 5.9,

property (5.12) with ¢5 and Theorem 5.10 to obtain

[ ulrea (el ae < Jult ([ @uatwqel)ac) R
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Therefore, for any q = ~

1/ta
[ el e < ctuly, + Col ([ @uati@ahan) < 520
R2 Q R2

where 1/t + 1/ty = 1.

According to the above considerations, it is well defined the functional

L(u) = %||u||§( _ )\JRQ F@)Q(z)) dz,  we X

Moreover, by standard arguments one may conclude that I € Ct (Xrad, R) with Gateaux

derivative

I (u)p =u, )y — )\JRZ f(w)pQ(|z|) dz, Vu, o€ Xpaa.

Since the functional I is not defined in the whole space X, we cannot directly
apply Principle of Symmetric Criticality (¢f. Theorem 5.18) to conclude that critical
points of I weakly solves the first equation in (S)). However, an indirect argument

proves the following;:

Proposition 5.13. Suppose that (f1)-(f2) hold and u € X,uq is a critical point of I.

Then u is a weak solution of (5.3).

Proof. Let u € X,qq be such that I{(u) = 0 and consider the linear functional
T,w)i=wwx =2 | ful@)u@Q(e)ds,  YweX.
R2

Our goal is to show that T, (w) = 0, for all w e X.
We claim that T;, is continuous. If this is true, we may apply Riesz Representation

Theorem to obtain a unique @ € X such that
T.(w) = @, wyx, Vwe X. (5.25)

It is clear that, for any orthogonal transformation g € O(2), there holds gu = u. Since
¢ 'R? = R? we can argue as in the beginning of Section 5.1 and use Proposition 5.7 to

conclude that T, (gt) = T, (%) and |gi|x = |u|x. This implies,
lgti — @ilx = lgalk — 2{gu, wyx + |al* = 2% — 2Tu(g%) = 2Jul% — 2T, (@) = 0

and therefore gu = @. Since g € O(2) is arbitrary, we conclude that @ € X,,q4. Hence,
0 = I\ (w)d = T,(2) = ||[u]|5% and it follows from (5.25) that
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L (uw)w = T, (w) =0, w)x =0, Vwe X.

In order to prove the continuity of T,,, we first pick e = 1 and ¢ = v + 1 in (5.21)
to get

| #wuQqa) aa

< f | Q([]) da
R (5.26)

+ 0y [ P @a(wluiQ(le) .

In what follows, we are going to estimate both terms in the last inequality in the ball By
and in its complement.
Picking ¢; > 1 such that ,by > —2, it follows that |z|""" € L'(Bg). So, we can

use expression (5.9), Holder’s inequality and Remark 5.6, to get

1/t1
[ e ar < o ([ gattan) g el
Br Br

with 1/t1 + 1/t2 + 1/t3 = 1. ThIlS,
| ei(el) do < Cafol (527
Br

with C3 depending on u and by. Moreover, using (5.9) and (5.7) we obtain

|, P elQahds = | ?ulleiQ(e) ds
R2\Bgr RA\Bg

<01032||UII7;ZJ |||~ OO ) | A
R2\Bg

<Ol [ ol de,

R2\Bp

where

Mim (b—a)— (v —2) (“ZZ).

From the definition of v (cf. (f2)), we deduce that A\; <0, and there |z|* < RM
for |x| = R. Thus, we can use the last estimate, Holder’s inequality, (5.9) and (5.5) to

obtain

1/2 1/2
j lu| " w|Q(|z]) do <O, (j PR dx) (J 2|0 dx)
R2\Bpr R2\Bp R2\Bpr

1/2 1/2
<C (j V(|2 dx) U V(la)u? dx)
R2\Bp R2\Bp

<Cs|wl|x,
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where Cg depends on u and «. This inequality, combined with (5.26) and (5.27), imply
that

J@wQ(Jz]) dz| < (Cs + Co) |wlx + Cy f [ul"®a(w)|w]Q(lz]) d. (5.28)
R R
We now proceed with the estimation of the last integral above. First, for any

t1, to, t3 > 0 satisfying 1/t; + 1/ta + 1/t3 = 1, we apply Holder’s inequality, the second
statement in (5.12), Lemma 5.9, and Theorem 5.10 to obtain

1/t2
Y Y
[, wreatoleenas <y, ([ st as) iy,
<Ol gy

where we have used ¢, > v, for any t; > 1. By choosing t, > 1 such that |z|"4* e L'(Bg),

we can combine Hélder’s inequality and (5.9) to obtain

1/t4
[ wruaas < e ([ ermar) il
Br Bpg

with 1/t4 + 1/t5 = 1. These last two estimates and Remark 5.6 again imply that
| reawiasl) de < ulx (5.29)
Br

From Hélder’s inequality, (5.12) and Theorem 5.10, we get

1/2
f |u|w>a<u>|w|@<|x|>dx<og(j |u|2vw2@<|x|>das) |
R2\Bp RA\Bp

where

e ( fRQ\BR 2o (0Qe]) ) h

Once again, using (5.7) and (5.9), we can conclude that

1/2
| |u|7<1>a<u>|w|@<|x|>dx<cm(j |x|A2|x|aw2dx) ,
R2\Bp R

Q\BR

Ao 1= (b—a)—”y(a;2).

where
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The definition of v (¢f. (f2)) and a > —2, yields A2 < 0. To see this, notice that v = 2 if,
and only if, b < a, and 7 = 4(b — a)/(a + 2) + 2 if, and only if, b > a. So, we may argue

as before to conclude that

[ wreaia ar < cufulx.
R2\Bp
This, (5.28), (5.29) and the fact that A > 0 imply that 7, is continuous on X. O

We say that I satisfies the (PS). condition at level ¢ € R if any sequence (u,) <
X, aq such that
lim I)(u,) = ¢, lim I (u,) =0 (5.30)

n—+0oo n—+0o0

has a convergent subsequence. We have the following local compactness result holding:
Lemma 5.14. Suppose that (f1)-(f3) hold. Then I satisfies (PS). condition at any level

0<ec< (u—2)47r(bo/2+1)'
21 o)

Proof. Let (u,) € X,qq be as in (5.30). From condition (f;) we get

1 1 1
+ 01+ lnl) = D) = LB > (51 ) ulk (3

and therefore we may use p > 2 to conclude that (u,) is bounded in X,,4. Thus, up to a
subsequence, u,, — u weakly in X,..4.
We claim that

S wn) (n —uw)Q(|2]) dz = 0,(1). (5.32)
R
If this is true, it follows that

0n(1) = I} (un) (un — ) = [ualk = [ul3 + 0n(1)

and therefore ||u,|x — |u|x. This, together with the weak convergence, implies that
U, — u strongly in X.

For proving (5.32), we first use the first estimate of (5.21) with ¢ = 1 to get

fun)(un, —w)Q(|z]) dz| < €A,, + C¢ Dy, (5.33)
R2
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where
A, = f |V um — u|Q(|z]) dz, D, = f D (un)|un — u|Q(|2]) dz.
R R

It follows from (5.31) that

2 Am(bo/2 + 1
lim sup |u,|% < ( fQ c< m(bo/2 + 1)
n—+ao M ) (&%)

Hence, there exits ng € N large and ¢, € (1,7/(y — 1)), o > «p sufficiently close to 1 and

Q, respectively, such that

b
trallu, |3 < 4n (EO + 1) , Vn = ny.

To see this, it is enough notice that we can chose some 0 < § < 1/(y — 1) such that

21 A7 (bo/2 + 1) A (bo/2 + 1)
-2 " Ur0)lawtd) - a

and take t; =1+ 0 and a = ag + 6.
Since we may also assume u,, # 0, for n = ny, it follows from Hoélder’s inequality,
(5.12) and Theorem 5.10 that

l/tl
D= ([, a0 Qe ar) =l
RQ

1/t1
Uu
= ([ momen () ebas) o s < oo =l

where 1/t +1/ty = 1, with t5 > 7. This expression and the compactness of the embedding
Xrad = Lg (R?) (¢f Lemma 5.9) proves that D,, = o,(1).

From Hoélder’s inequality and Lemma 5.9, it follows that
—1 -1
An < lunl gl = vl < Coflun[x un = ullx.

Thus, there exists C3 > 0 such that |A,| < Cj, for any n € N. Hence, we can use D,, — 0
and (5.33) to conclude that

lim sup I (un)(u, — w)Q(|z]) dz| < eCs.
n— -+ R2
Since € > 0 is arbitrary, it follows that (5.32) holds. O

MELO, T. G. 85 Department of Mathematics



5.2. Mountain Pass structure Chapter 5.

We now verify that I, satisfies the geometry of the Mountain Pass Theorem (cf.

[5])-
Lemma 5.15. Suppose that (f1)-(f3) hold. Then,

(1) there exist T,p > 0 such that I\(u) = 7, whenever ||u|x = p;

(i) there exists e € X,qq such that |le| x > p and I\(e) < 0.

Proof. Let ¢ > 0, ¢ > v and t, to > 1 be such that 1/t; + 1/t = 1. Using (5.24) and

Lemma 5.9, we obtain

1/t
[ Fo@a s < st + cutult ([ | ouato@ehar)

If p; > 0 is small in such a way that t,ap] < 47(by/2 + 1), we can use (5.12), (5.13) and
Theorem 5.10 to get

u

[ et ds = [ onuue (-

]

u
<[ P (W) Qle)) da

< 027

) Q(jal) d

for all 0 < |ullx < p1. If |u|x < p1 and € = 1/(4\C), we obtain

1 1 _ _
B > Julf (5 - 1l - Calll ).

Since ¢ > v = 2, and the expression in parentheses approaches 1/2 as |ulx — 0, there
exists a constant vy > 0 limiting it from below, for any |u|x = p sufficiently small, and
therefore item (i) holds.

Now, let K < R? be the support of ¢ € C’.4(R?). By (/) and (f3), there exist
Cy,C5 > 0 such that F(s) = Cy|s|* — C5, for any s € R. Also notice F(tp(z)) = 0 for
x ¢ K. Consequently, for ¢t > 0,

2
Bite) < el — Cut* | 1oV Qe do+Cs | @lel)d,
K K

Since p >y = 2, item (ii) holds for e := top, with ¢, > 0 large enough. O
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5.3 Proofs of Theorems 5.1 and 5.2

We start this section by presenting the proof of our existence (and regularity)

result.

Proof of Theorem 5.1. In view of Lemma 5.15, we can define the minimax level

A .
= inf ILy(g(t)) =7>0,
cup 1= Inf max Ag@) =7

where G := {g € C([0,1], X,aa) : 9(0) =0, Ix(g9(1)) < 0}. By using the Mountain Pass

Theorem (cf. [5]), we obtain a sequence (u,) € X,.q such that

: A . / .
o, ) = e T, () =0

We claim that, for A > 0 large,

v (p—=2)4m(b/2 4+ 1)

If this is true, it follows from Lemma 5.14 that, along a subsequence, u,, — u strongly in
X. From the regularity of I, we obtain I}(u) = 0 and I,(u) = 7 > 0, and therefore it
follows from Proposition 5.13 that u # 0 is a weak solution of Problem (5.3).

For proving the existence of solution, it remains to prove the upper bound on 0}4 p-
In order to do that, we consider v > ~ given by (f;). A standard minimization argument
together with the compactness of the embedding X, .4 — La (]Rz) provides wg € X4 such
that

HWOH?X =S5, :=inf {||u||§( 2 U € Xpad, f lul"Q(|z|) dx = 1} )
RQ

It follows from (f,) that
1 9 y 1
I(wp) < §HU’OHX —AC | |wo|"Q(|x]) dz = QS” —A\C <0,
]RQ

whenever A\ > S,,/2C. This shows that the curve go(t) := twy belongs to G. Therefore
te[0,1] =0

2
cyp < max Iy(go(t)) < max {%S,, = )\f F(two)Q(|z|) dx} :
R2

To show that the maximum of I, (twg) over [0, +o0) is well defined, one can proceed as

in item (ii) of Lemma 5.15, using (f4) to establish that I,(tw,) < 0 for large ¢, while the
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fact that I,(twg) > 0 for small ¢ can be shown as in item (i) of the same lemma. By (f,),

we have that F(twgy) = Ct"|wy|”, for any ¢t = 0. Thus,

t2 y g v/(v—2) v—29
A — vy = = =
cyup < I?ﬁ)x {ESV ACt } h(/\) . ()\0)2/(1/—2) ( v ) ( 2v ) ’

where we have used that the maximum of the function ¢ — #*/2S, — ACt” is attained in
tx = S,/(NCV)Y""D Since v > v = 2, we have that h(\) — 0, as A — 400, and the

claim is proved.

In order to obtain the regularity result, we call (u,v) € X,qq X X,qq the solution
given by the former argument. For a fixed R > 0, define the function ¥(|z|) := v(|z|) —

v(R), for € Br. From Remark 5.6, we can infer that o € H}(Bg) weakly solves
—AV = h, in Bg, v =0, on 0Bg, (5.34)

where h(z) := V(|z|)u(|z|) — V(|z|)v(]z|). We shall prove that h € LP(Bg) for a fixed

p > 1 such that pag, pby > —2. Indeed, using that limsup V' (r)/r® < +oo, we obtain
r—0

(1 > 0 such that

J () de < clf 2P ul? d + (Jlj 2] o]? da.
Br Br

Br
Since pag > —2, we can pick ¢, > 1 such that |z|""P* e L'(Bg). This, together with

Holder’s inequality and Remark 5.6, yield

1/t1
f Ih(z)P dz < C < f |I|t1paodx) (||u|;a2p(BR)+||v\g2p(BR)) < too,
Br Br

where 1/t; + 1/ts = 1, proving the claim. Therefore, by classical elliptic regularity theory
we conclude that v = ¥ + v(R) € W*?(Bg).

Now, considering %(|z|) := u(|z|)—u(R), then & € Hy(Bg) is a solution of problem
—Au = g, in Bg, =0, on 0Bpg,

where g(x) = AQ(|z])f(u(|z])) — V(|z])v(|z]). Arguing as above, we can prove that
V(|- |)v e LP(Bgr). Moreover, from (5.21) with ¢ = 1 and (5.12), we obtain

jB F@Q(z)P dz < Cy f PO DIQ(l) P dx + C f Dpa(w)|QU) P . (5.35)

Br Br
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Using (5.9), Hélder’s inequality and Remark 5.6, we get

f |u|p(771)|Q(|x|)|p dr < Cgf |x|Pb0|u|p(7*1) dx

BR BR

1/t3
1
< Oy (JB |x|t3pb0 dq:) HuHi(thhll)(BR) < +00,
R

where 1/t3 + 1/t; = 1 and t3pby > —2. On other hand, Young’s inequality yields
u(|z])? < 2u(|2|)? + 2u(R)>

So, we can use (5.9), the inequality ®,(s) < 6“52, Holder’s inequality and the classical

Trudinger-Moser inequality (c¢f. Theorem 5.19) to obtain

J,, BreQUD < i | japinee
Br

Br

1/t4
~2
< C5 (J e2tapat dx) < 400.
Br

The above estimate, (5.35) and (5.36), show that Q(]| - |)f(u) € LP(Bgr). Hence,
we conclude as before that u € W??(Bg). Since the embedding W*?(Bg) < C?(Bg) is
continuous, for some o € (0, 1), then u, v are locally Holder continuous.

Suppose now that V is locally Holder continuous. By the former proof, the
functions u, v are locally Holder continuous, and hence h(x) := V(|z|)u(|z]) = V (|z])v(|z])
belongs to C° (Bg), for some o € (0,1). Since ¥ solves (5.34), by classical elliptic regularity
theory v = ¥ + v(R) € C*?(Bp). O

For the proof of our multiplicity result we shall the following abstract result (see
[5, 32]).

Theorem 5.16 (Symmetric Mountain Pass Theorem). Suppose that X is a real Banach
space and T € C'(X,R) is an even functional satisfying Z(0) = 0,

(Z,) there are constants p,T > 0 such that Z(u) = 7, for all uw € 0B,(0);

(Zs) there are k > 0 and a subspace ¥V < X such that dimV = m € N and

maxZ(u) < Kk
uey

and the (PS). condition for any 0 < ¢ < k. Then it possesses at least m pairs of nonzero

critical points.

We are ready to finish this chapter:
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Proof of Theorem 5.2. We are intending to apply the above theorem for the functional
I. It is clear that I,(0) = 0 and I, is even, since we are supposing f odd. Moreover,
condition (Z;) is a consequence of the first statement in Lemma 5.15.

Given m € N, consider

Vin := span{@1, ..., om},

where {¢;}7, < CF(R?) have disjoint supports, and notice that {¢y,...,¢,} is an
orthogonal set in X,,4. Since all norms are equivalent in V,,,, we obtain a positive constant
Cy = Ci(m) > 0 such that

% < Cillulty,  Vue Vi

Hence, it follows from (fy) that

1 Y 1 Cop o1
I(w) < Sl = AClully < Slulk ~ A2l Yue Vi,
where Cy = C1C.
We now consider the function
12 Cy
t) = — — A\—=t¥ t=0

—-1/(v—2

Since v > 2, it attains its maximum value at the point ¢, = (AC») ), which implies

1 1 1 2/(v-2)

Since A, » — 0, as A — +00, we can find A,,, > 0 such that

(1= 2) 4 (bo/2 + 1)
ZIU Qp

0< A, <

Y

for any A > \,,. It follows from Lemma 5.14 and Theorem 5.16 that I, has at lest m

pairs of nonzero critical points. O

5.4 Appendix

In order to present the Principle of the Symmetric Criticality, we need the

following:
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Definition 5.17. The action of a topological group (G, =) with identity e on a normed

space (X, || - |) is a continuous map
A:Gx X - X,
with A(g,u) denoted by gu, satisfying for any g,h € G and ue X
eu=u, (g=*h)u=glhu), u— gu islinear.
The action is isometric if
lgu| = |u|, VgeG andue X
The space of invariant points is defined by
Fiz(G) :={ue X : gu=u, VgeG}.

A function I : X — R is invariant if I(gu) = I(u) for all g € G.

Sometimes it is of interest to find a critical point of a functional restricted to
a subspace of a Banach space that satisfies certain symmetry properties. The following
result establishes the conditions under which such a critical point is also a critical point
of the functional on the entire space. It is very important to deal with the radial solutions

of system (S, ), in Section 5.1.

Theorem 5.18 (Principle of Symmetric Criticality, [63, 82]). Suppose that the action of
a topological group G on the Hilbert space X is isometric, I € C*(X,R) is invariant and u
is a critical point of I restricted to Fiz(G), that is I'(u)p = 0, for all p € Fix(G). Then

w s a critical point of I.
The following result was used in the proof of Theorems 5.10 and 5.1.

Theorem 5.19 (Classical Trudinger-Moser inequality [58, 78]). Suppose that o > 0 and
N

Q c RY is a bounded domain and u € W™ (Q), with N = 2. Then e*™™~" ¢ L}Q).

Moreover, there exists a constant C' = C'(N) > 0 such that

<C ifa<ay;

N-1
sup f eolul dx
Q

SQ|VU‘Ndx<1 = o0 ZfO{ > apy,

1

N-—-1

where ay = Nwy N

. and wy is the area of the unit sphere S¥ 1 < RY.
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