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imensamente ao meu orientador, Professor Marcelo Fernandes Furtado, pela confiança
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Resumo expandido

Este trabalho aborda várias equações diferenciais não lineares e sistemas

envolvendo pesos radiais, o operador de Grushin, o operador biharmônico e um sistema

acoplado do tipo FitzHugh–Nagumo. Considera não linearidades com crescimento

superlinear ou supercŕıtico, concentrando-se em como a presença de pesos afeta as

propriedades de simetria das soluções. Novos lemas de simetria radial, adaptados aos

pesos espećıficos, são estabelecidos, juntamente com resultados referentes à existência e

multiplicidade de soluções fracas e regulares. Em certos contextos, também se demonstra

a quebra de simetria para soluções de energia mı́nima.

A seguir, explicaremos brevemente o que foi provado em cada caṕıtulo da tese.

No Caṕıtulo 2, intitulado “Equação de Hénon para o operador de Grushin”, estudamos

a equação do tipo Hénon #
�pGαuqpzq � |z|ℓfpz, uq, B,

u � 0, BB, (Pα)

onde B é a bola unitária em RN � RN1 �RN2 , f se comporta como |t|p�2t, ℓ ¡ 0, α ¥ 0,

2   p   2�α �
2Ñ

Ñ � 2
, com Ñ � N1 � p1� αqN2, e

Gαupx, yq � ∆xu� |x|2α∆yu

é o operador de Grushin. O expoente cŕıtico 2�α garante que a imersão H1
0,αpBq ãÑ LppBq

é compacta para 2   p   2�α, onde H
1
0,αpBq generaliza o espaço de Sobolev usual H1

0 pBq.
A principal dificuldade em demonstrar um resultado de imersão compacta, a

partir do qual obtemos soluções fracas radiais, foi estender uma desigualdade famosa para

funções radiais de [60]. Precisamente, provamos que

|upzq| ¤ C
}u}

|z|pÑ�2q{2
, para q.t.p. z P B,



é válida para u radialmente simétrica em C8
0 pBq, onde } � } é a norma em um certo espaço

X de funções radiais. Outra dificuldade foi provar que a solução obtida é não-negativa, já

que Gα não é invariante sob aplicações ortogonais. Por fim, é bem conhecido na literatura

que, para ℓ ¡ 0 grande e α � 0, a solução de menor energia (ground state) não é radial.

Para demonstrar um resultado semelhante quando α ¡ 0, utilizamos uma famı́lia de

dilatações inerente ao operador de Grushin, o que é particularmente interessante.

No Caṕıtulo 3, intitulado “Equação de Hénon para o operador biharmônico”,

também decompomos RN como no Caṕıtulo 2 e estudamos a seguinte classe de problemas

do tipo Hénon: $&% ∆2u � rW pzqsℓfpuq, B,

u � Bu
Bν � 0, BB,

(Px,y)

onde ∆2u � ∆p∆uq é o operator biharmônico, 3 ¤ N2 ¤ N1, ℓ ¡ 0, W px, yq se comporta

como o produto |x||y|, e f possui crescimento do tipo |t|p�2t para 2�ℓ,N1
:� r2N1{pN1 �

2qs � r2ℓ{pN1 � 2qs. O peso W nos leva a considerar o subespaço H2
0,x,ypBq de H2

0 pBq,
constitúıdo por funções radiais em cada uma das direções x e y.

Um dos pontos principais do caṕıtulo foi a demonstração de uma desigualdade

análoga à já mencionada de [60], agora envolvendo o peso em questão, a qual não foi

encontrada na literatura. Especificamente, provamos a seguinte interessante desigualdade:

|upx, yq| ¤ C
}∆u}L2pBq

|x|N1�2
2 |y|N2�2

2

, para quase todo px, yq P B,

onde u P H2
0,x,ypBq, e a constante C foi também explicitada. A técnica utilizada na

demonstração dessa desigualdade foi inspirada em [60], mas parece ser inovadora. Além

disso, tal desigualdade dá origem a um produto interno em H2
0,x,ypBq, aparentemente

desconhecido até então, a saber,

Bx,yru, vs :�
»
B

∆xupzq∆yvpzq dz, @u, v P H2
0,x,ypBq.

Essa desigualdade nos permite provar um resultado de imersão compacta em

espaços de Lebesgue com o peso W ; da qual segue a existência de solução fraca para

(Px,y), superando inclusive o expoente cŕıtico usual de H2pBq, a saber, 2�� � 2N{pN�4q.
Por fim, mostramos como nosso resultado de imersão compacta complementa um análogo

apresentado em [20].

No Caṕıtulo 4, intitulado “Kirchhoff-Boussinesq equation with Hénon

nonlinearity”, damos continuidade ao estudo de equações do tipo Hénon. No entanto,

diferentemente dos caṕıtulos anteriores, não realizamos aqui nenhuma decomposição em



RN , sendo que um vetor neste espaço é denotado por x. Estudamos o seguinte problema

do tipo Kirchhoff-Boussinesq:$&% ∆2u� divp|x|κ|∇u|p�2∇uq � |x|ℓfpuq, in B,

u � Bu
Bν � 0, on BB,

(P�)

onde κ, ℓ ¥ 0, 2 ¤ p   2�κ :� 2� � 2κ

N � 2
, e a função f possui crescimento do tipo |t|q�2t,

com p   q   2��ℓ :� 2�� � 2ℓ

N � 4
. Assim como no Caṕıtulo 1, buscamos soluções fracas

radiais para o problema (P�), ou seja, soluções pertencentes ao subespaço X de H2
0 pBq

formado por funções radiais.

Para tratar da existência de soluções fracas radiais para esse problema,

empregamos uma desigualdade de interpolação de Gagliardo-Nirenberg com pesos, a fim

de contornar a dificuldade imposta pelo termo divp|x|κ|∇u|p�2∇uq. A principal dificuldade

consistiu em determinar parâmetros adequados para κ, p e q que nos permitissem obter

soluções fracas em X.

Demonstramos que, para N ¡ 4 e ℓ ¡ 0, existe κ� � κ�pℓ,Nq ¡ 0 tal que,

para qualquer κ P r0, κ�q e 2 ¤ p   2�κ, existem constantes θ� P r1{2, 1q e q� P r2, 2��ℓ q
satisfazendo

}∇u}Lp
κpRN q ¤ C}∇2u}θ�

L2pRN q
}u}1�θ�

L
q�
ℓ pRN q

, @u P C8
0 pRNq,

sendo que os valores de κ� e q� são explicitamente determinados. O intervalo obtido para

q não é arbitrário, sendo este de modo a garantir a validade da imersão compacta de X

em espaços de Lebesgue com peso |x|ℓ, conforme [20].

Por fim, supondo certa simetria em f , pudemos empregar uma versão simétrica

do Teorema do Passo da Montanha em conjunto com a teoria espectral do operador ∆2

associada ao problema de autovalor com peso |x|ℓ, a fim de demonstrar a existência de

infinitas soluções para o problema (P�).

No Caṕıtulo 5, intitulado “FitzHugh-Nagumo system with exponential growth”,

deixamos as equações do tipo Hénon de lado para estudar um problema no R2, porém

ainda buscando soluções radiais. Precisamente, estudamos o sistema do tipo FitzHugh-

Nagumo $&%�∆u � λQp|x|qfpuq � V p|x|qv, in R2,

�∆v � V p|x|qu� V p|x|qv, in R2,
(Sλ)



onde λ ¡ 0, os potenciais V e Q são cont́ınuos e positivos em p0,�8q e se comportam

como potências de r. Precisamente, existem a, b, b0 ¡ �2 tais que

lim inf
rÑ�8

V prq
ra

¡ 0, lim sup
rÑ0

Qprq
rb0

  �8 e lim sup
rÑ�8

Qprq
rb

  �8.

A não linearidade f é cont́ınua e tem crescimento exponencial.

Para lidar com o Problema (Sλ), primeiro fixamos u P E; em que E é o espaço

apropriedade do tipo H2pR2q que envolve o peso V , e ,na segunda equação, obtemos via

Teorema da Representação de Riez, uma solução Brus. Assim, definimos um certo espaço

com base em Brus e provamos uma desigualdade do tipo Trudinger-Moser especialmente

para este, a qual é interessante por si só.

Com a estrutura variacional pronta, mostramos que existe λ0 ¡ 0 tal que, para

todo λ ¥ λ0, o sistema (Sλ) admite uma solução fraca radial não nula pu, vq. Além

disso, com uma hipótese adicional de V perto da origem, mostramos um resultado de

regularidade. Finalmente, supondo que f tem certa simetria, mostramos que o problema

(Sλ) possui infinitas soluções.



Abstract

This work addresses various nonlinear differential equations and systems

involving radial weights, the Grushin operator, the biharmonic operator, and a

coupled FitzHugh–Nagumo-type system. It considers nonlinearities with superlinear

or supercritical growth, focusing on how the presence of weights affects the symmetry

properties of solutions. New radial symmetry lemmas tailored to the specific weights

are established, along with results concerning the existence and multiplicity of weak and

regular solutions. In certain settings, symmetry breaking is also demonstrated for minimal

energy solutions.

Key words: Grushin operator, Hénon equation, symmetry breaking, supercritical

problems, variational methods, elliptic equations, biharmonic operator, elliptic system,

Trudinger-Moser inequality.
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Chapter 1

Introduction

Many physical phenomena can be described by partial differential equations

(PDE’s). In fluid mechanics and gas dynamics, the Navier-Stokes equations model

fluid flow, including air, water, and blood, as well as weather patterns (cf. [19]). In

electromagnetism and potential theory, Maxwell’s equations govern electromagnetic waves

and optics (cf. [44]). The heat equation, a parabolic PDE, describes time-dependent

diffusion processes like thermal conduction. Meanwhile, the wave equation, a hyperbolic

PDE, represents wave propagation in vibrations, sound, and light. Poisson’s equation,

an elliptic PDE, models steady-state phenomena such as electric potential and heat

distribution (cf. [40]). PDE’s also play a crucial role in elasticity, solid mechanics,

quantum mechanics, general relativity, cosmology, biology, medicine, geophysics and earth

sciences.

This thesis is specifically focused on certain types of non linear elliptic PDE’s and

our approach is variational. We briefly comment on this branch of Analysis. Generally,

the problem of finding a weak solution u of an elliptic PDE is the same as finding some

u, in a Banach space X of functions, which verifies an identity of the form

Jpu, φq � 0, @φ P X. (1.1)

The space X is generally related to the nature of the problem. The techniques in

Variational Methods mostly involve associate a functional I P C1pX,Rq to (1.1) such

that

I 1puqφ � Jpu, φq, @u, φ P X

and so, critical points of I would be weak solutions of the problem of interest. One of the

most important results in this line is the so called Mountain Pass Theorem, duo Antonio

Ambrosetti and Paul Rabinowitz (cf. [5]), which will be used in this thesis several times.

In this thesis, we investigate three distinct elliptic problems. So, the main part of

the work is organized into three chapters, each dedicated to one of these problems, which

are briefly described in the following sections. We would like to comment that, as each

chapter is independent, we may use the same notation for properties of the non linearity

term and some weighted Lebesgue space in different chapters. We also mention that the

thesis includes an appendix with general results used throughout the text.

MELO, T. G. 1 Department of Mathematics



Chapter 1. Introduction

Hénon equation with Grushin operator

The Hénon equation

�∆upzq � |z|ℓupzqp�1, z P B, upzq � 0, z P BB, (1.2)

was introduced in [43] as a model for investigating spherically symmetric clusters of stars.

In the equation, B is the unit ball of RN , N ¥ 3, ℓ ¡ 0 and p ¡ 2. Its mathematical

significance grew after Ni’s paper [60], where the existence of positive radial solutions was

established for 2   p   2� � 2ℓ{pN � 2q. The crucial idea for the existence of solutions

beyond the critical Sobolev exponent 2� :� 2N{pN � 2q lies in the following inequality

|upzq| ¤ }∇u}L2pBqa
ωNpN � 2q|z|pN�2q{2

, z P B, (1.3)

which holds for any radially symmetric u P C1pBq vanishing in the boundary of B. Here

ωN denotes the surface area of the unit ball in RN for N ¥ 3. This inequality is known

in the literature as Ni’s Radial Lemma.

Since Ni’s work, equation (1.2) has been studied in several different perspectives.

Since it is impossible to present a complete list, we only cite [7, 10, 11, 13, 21, 36, 37,

50, 52, 53, 57, 67, 70, 79] and references therein for further exploration. In addition to

Ni’s paper, the work of Smets, Su and Willem [71] strongly influenced our investigation

in Chapter 2. They proved that, for large ℓ ¡ 0 and p P p2, 2�q, the ground state solution

of (1.2) is non-radial. This phenomena was first observed via numerical computations in

[17] and it is called in literature as symmetry breaking. For more recent works on this

kind of result for Hénon type equations we refer to [6, 42, 64].

In Chapter 2, we split each vector z P RN as z � px, yq P RN1 � RN2 and define

the Grushin operator

pGαuqpzq :� ∆xupzq � |x|2α∆yupzq, (1.4)

where α ¥ 0, N1, N2 P N, and ∆x, ∆y denote the usual Laplacian in the variables x, y,

respectively. When α � 0 this operator is the usual Laplacian operator.

The operator (1.4) was first studied by Grushin in [34, 35] when α P Z and first

addressed in [29, 30] for cases where α R Z. Since then, it has been the subject of intensive

research, cf. e.g., [4, 24, 51, 56] and references therein. In addition, we remark that this

operator belongs to two more generals class of elliptic operators, cf. e.g.[39, 47, 54].

We propose the study of the following Hénon type equation

MELO, T. G. 2 Department of Mathematics



Chapter 1. Introduction

#
�pGαuqpzq � |z|ℓfpz, uq, in B,

u � 0, on BB, (Pα)

with fpz, sq behaving like |s|p�2s, for suitable values of p ¡ 2, which may exhibit

supercritical growth with respect to the critical exponent associated to the Grushin

operator.

More specifically, we fix α ¥ 0, define

rN :� N1 � p1� αqN2, 2�α :� 2 rNrN � 2
,

and require that the nonlinear term f satisfies the following assumptions:

(f1) f P CpB � R,Rq;

(f2) there exists ℓ ¡ αN2,

2   p   2�α �
2pℓ� αN2qrN � 2

and C ¡ 0 such that

|fpz, sq| ¤ C
�
1� |s|p�1

�
, @ pz, sq P B � R.

The natural space to deal with the Grushin operator is

H1
αpBq :�

!
u P L2pBq : |∇xu| P L2pBq, |x|α|∇yu| P L2pBq

)
,

which becomes a Banach space (cf. [77, Theorem 4]) when endowed with the norm

||u||H1
αpBq :�

�»
B

�|∇αu|2 � |u|2� dz
1{2

,

where

∇αupzq :� p∇xupzq, |x|α∇yupzqq P RN .

We also define the subspace H1
0,αpBq :� C8

0 pBq
||�||

H1
αpBq with the norm

}u} :�
�»

B

|∇αupzq|2 dz

1{2

,

which is equivalent to } � }H1
αpBq (cf. [47, (1.8)]). The space H1

0,αpBq is continuously

and compactly embedded in LppBq, for p P r1, 2�αs and p P r1, 2�αq, respectively (cf. [47,

Theorem 3.3 and (1.8)]). In addition, let

MELO, T. G. 3 Department of Mathematics
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C8
0,rpBq :� tu P C8

0 pBq : u is radialu

and X :� C8
0,rpBq

H1
0,αpBq.

In line with the preceding studies concerning the Grushin operator, we aim to

identify critical points of the Euler-Lagrange functional associated with Problem (Pα).

The main novelty here is that we are able to consider nonlinearities which grows beyond

the Grushin critical exponent 2�α, since we are assuming ℓ ¡ αN2. This can be done by a

careful estimate of the decay rate of radial functions of our working space together with

an embedding result in an weighted Lp-Lebesgue space. More specifically, in Section 2.1

we prove that

|upzq| ¤ C
}u}

|z|p rN�2q{2
, for a.e. z P B,

where C � CpNq ¡ 0 does not depends on u P X.

After establishing the variational framework, we revisit Problem (Pα) and impose

conditions on f to utilize the full apparatus of Critical Point Theory (cf. [66]) for obtaining

solutions. The range of problems that can be addressed is extensive. As an illustrative

example, we focus on the classical superlinear setting, wherein we assume:

(f3) there holds

lim
sÑ0

fpz, sq
s

� 0, uniformly in B;

(f4) there exists µ ¡ 2 and s0 ¡ 0 such that

0   µF pz, sq ¤ sfpz, sq, @ z P B, s ¥ s0,

where F pz, sq :�
» s

0

fpz, τqdτ .

As an application of the variational setting developed in Section 2.1, we shall

prove in Section 2.2 the following existence result:

Theorem 2.1. Suppose that α ¡ 0, N2 ¥ 2 and f satisfies pf1q-pf4q. Then Problem (Pα)

has a nonzero and radial weak solution. If in addition α ¥ 1, this solution is nonnegative.

To the best of our knowledge, there is limited literature on the Grushin operator

with Hénon-type nonlinearities. We could mention the paper by Duong and Nguyen [24],

where a nonexistence result is established for stable weak solutions of the equation:

�Gαu� r∇αw �∇αus � |z|ℓα|u|p�2u, z � px, yq P RN1 � RN2 ,

MELO, T. G. 4 Department of Mathematics



Chapter 1. Introduction

with p ¡ 2, ℓ ¥ 0, |z|α :� p|x|2pα�1q�|y|2q1{2pα�1q, and the function w satisfying appropriate

decay properties at infinity. Similar results can be found in [65, 80, 81]. Our first main

result differs from and complements these findings.

In the homogeneous case fpz, sq � |s|p�2s, it is evident that the solution can be

obtained through constrained minimization. When p P p2, 2�αq, it is natural to inquire

whether the ground state solutions of the problem are always radial. In our final result of

Chapter 2, we leverage the action of a semigroup of dilations associated with the Grushin

operator to obtain a symmetry breaking result for large values of ℓ ¡ 0. More specifically,

in Section 2.3, after performing careful estimates of the asymptotic behavior of the ground

state levels of our problem in the whole space and in the space of radial functions, we

complement [71, Theorem 3.1] by proving the following result:

Theorem 2.2. Suppose that α ¡ 0, N2 ¥ 2 and fpz, sq � |s|p�2s, for any pz, sq P B � R
and some p P p2, 2�αq. Then there exists ℓ� ¡ 0 such that the ground state solution of

Problem (Pα) is not radial provided ℓ ¥ ℓ�.

We remark that a ground state solution of Problem (Pα) is a solution that

minimizes the associated Euler–Lagrange functional over H1
0,αpBq � t0u.

Hénon equation for the biharmonic operator

In Chapter 3, we consider the Hénon equation

�∆upzq � |z|ℓup�1pzq, z P B, upzq � 0, z P BB, (1.5)

where B is the unit ball of RN , N ¥ 3, ℓ ¡ 0 and p ¡ 2. We recall that the crucial aspect

used in [60] to obtain existence of positive weak solutions for 2   p   2� � 2ℓ{pN � 2q,
with 2� :� 2N{pN � 2q lies in obtaining a constant C ¡ 0, such that

|upzq| ¤ }∇u}L2pBqa
ωNpN � 2q|z|pN�2q{2

, z P B, (1.6)

for any radially symmetric u P C1pBq vanishing in the boundary of B. With this inequality

in hands, it is possible to embed the subspace of H1
0 pBq of radial functions H1

0,rpBq into
Lebesgue spaces LspBq with the number s beyond the critical Sobolev exponent 2�.

The first aim of Chapter 3 is establishing a version of inequality (1.6) that involves

the H2
0 pBq norm, when the space RN has an specific decomposition. In order to be more

specific, in next lines we will define the appropriate spaces which will be used in Chapter

3.
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We decompose RN � RN1 �RN2 with 3 ¤ N2 ¤ N1 and write a vector z P RN as

z � px, yq with x P RN1 and y P RN2 . For any 1 ¤ p   �8 and ℓ ¥ 0, we set

Lp
ℓpBq :�

"
u P L1

locpBq :
»
B

|upzq|prW pzqsℓdz   �8
*
,

where W verifies

(W1) W P L1
locpBq and there exists cW ¡ 0, such that

0   W pzq ¤ cW |x||y|, for a.e. z P B.

This is a Banach space with the norm

}u}Lp
ℓ pBq

:�
�»

B

|upzq|prW pzqsℓdz

1{p

.

We define H2
0 pBq as the closure of C8

0 pBq under the H2pBq norm. Using Poincaré

Inequality and integration by parts, one can see that the usual norm induced by that of

H2pBq is equivalent to

}u}H2
0 pBq

:�
�� ¸

|α|�2

|Dαupzq|2 dz
�
1{2

�
�»

B

|∆upzq|2 dz

1{2

.

Finally, we denote by Opkq the group of real orthogonal k � k matrices and define

H2
0,x,ypBq :� C8

0,x,ypBq
H2

0 pBq,

where

C8
0,x,ypBq :� tu P C8

0 pBq : upx, yq � upT1pxq, T2pyqq @ Ti P OpNiq, i � 1, 2u ,

is the set of compactly supported functions in B with are coordinate-radial.

Our radial type inequality is the following:

Theorem 3.1. For any u P H2
0,x,ypBq, there holds

|upx, yq| ¤ C
}∆u}L2pBq

|x|N1�2
2 |y|N2�2

2

, for a.e. px, yq P B, (1.7)

with

C :�
d

Γ
�
N1

2

�
Γ
�
N2

2

�
4π

N
2 pN1 � 2qpN2 � 2q

,
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and Γpsq :�
» 8

0

ts�1e�t dt being the Gamma function.

Theorem 3.1 was inspired by some ideas contained in [60, p. 802] and [20,

Corollary 4.1], which considered versions of the last inequality for the Laplacian and

biharmonic operator, respectively, but with a power of |px, yq| depending on N in the

denominator. We also learn from [48, Lemma 2.1], where it is proved that there exists

C1 � C1pNq, such that

upx, yq ¤ C1

}u}1{2
L2pRN q

}∇xu}1{2L2pRN q

|x|N1�1
2 |y|N2

2

,

for any u P C8
0 pRNq such that upx, yq � φp|x|, |y|q, for φ non-increasing in |y|, and

N1 ¥ 2, N2 ¥ 1. Notice that no monotonicity conditions are assumed in our work.

As a consequence of Theorem 3.1, we prove an embedding result for the space

H2
0,x,ypBq. Actually, if we set

2�ℓ,N1
:� 2N1

N1 � 2
� 2ℓ

N1 � 2
,

for any N1 ¡ 2 and ℓ ¡ 0, we have the following:

Theorem 3.2. Suppose that N � N1 �N2, with 3 ¤ N2 ¤ N1, ℓ ¥ 0 and 1 ¤ p   2�ℓ,N1
.

Then the embedding H2
0,x,ypBq ãÑ Lp

ℓpBq is compact.

It is important to analyze situations in which the last result allows us to consider

exponents beyond the critical Sobolev exponent 2�� :� 2N{pN � 4q. We have that

2��   2�ℓ,N1
ðñ ℓ ¡ 2pN1 �N2q

N � 4
, (1.8)

and therefore we can consider supercritical growth. The most favorable situation occurs

when N1 � N2 because, in this case, the exponent 2�ℓ,N1
is supercritical for any ℓ ¡ 0.

Even when the dimensions are not equal, the condition on ℓ does not seem very restrictive,

since it can be easily shown that 3 ¤ N2   N1 implies

2pN1 �N2q
N � 4

  2,

and, therefore, supercritical growth is possible for any ℓ ¥ 2.

The embeddings obtained in Theorem 3.2 are closely related to, and complement,

the results presented in [20, Theorem 1.4 and Corollary 1.5]. For a detailed comparison,

we refer to Subsection 3.2.1, where it is shown that our result covers a strictly larger range

of the parameters p and ℓ.
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Sobolev embeddings like that in Theorem 3.2 can be used to derive the existence

of solutions for nonlinear PDE’s. As an simple example, we consider the problem$&% ∆2u � rW pzqsℓfpuq, inB,

u � Bu
Bν � 0, on BB,

(Px,y)

with the supercritical nonlinearity f satisfying:

(f1) f P CpR,Rq;

(f2) there exists cf ¡ 0 and p P p2, 2�ℓ,N1
q, such that

|fpsq| ¤ cf
�
1� |s|p�1

�
, @ s P R;

(f3) there holds

lim
sÑ0

fpsq
s

� 0;

(f4) there exist µ ¡ 2 and s0 ¡ 0, such that

0   µF psq ¤ sfpsq, @ |s| ¥ s0 ¡ 0,

where F psq :�
» s

0

fptqdt.

We prove the following:

Theorem 3.3. Suppose that ℓ ¥ 0, p P p2, 2�ℓ,N1
q and f , W satisfy pf1q-pf4q and pW1q,

respectively. Then Problem (Px,y) has a nonzero weak solution in H2
0,x,ypBq.

As far we know, equation (1.5) was not studied before with the weight |x||y|
and the biharmonic operator. As we know from Section 1.1, since Ni’s work, numerous

researchers have approached equation (1.5) from various perspectives. Specifically, we

refer to [20, 38, 84, 85] for studies involving the biharmonic operator, which had a

significant impact on our investigation.

Kirchhoff-Boussinesq equation with Hénon

nonlinearity

In this subsection, we present the mean results developed in Chapter 4.
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The class of elliptic Kirchhoff-Boussinesq-type problems can be regarded as the

stationary counterpart of the following class of time-dependent problems (see, e.g., [8, 9,

45]).

utt � kut �∆2u�∇.
�|∇u|p�2∇u

�� σ∆
�
u2
� � Fpuq,

where k ¥ 0 denotes the damping parameter and σ is a nonnegative constant,

characterizing the behavior of a scalar field within a bounded domain Ω � R2 with a

sufficiently smooth boundary. This model finds its roots in structural dynamics, notably

within the framework of the Mindlin-Timoshenko equations, which account for transverse

shear effects in plate dynamics. The reaction term Fpuq captures nonlinear phenomena

intrinsic to the system, representing a feedback force acting on the plate. For a more

comprehensive understanding and further motivation, interested readers are directed to

[18] and additional references therein.

In recent years, the analysis of biharmonic elliptical equations with p-Laplacian

has been extensively investigated. In [14], the authors consider existence and multiplicity

of solutions for the problem$&%∆2u�∆pu � fpuq � β|u|2���2u, in Ω,

u � ∆u � 0, on BΩ,

where Ω � RN is a smooth bounded domain, N ¥ 5, β P t0, 1u, f is continuous function

and

2   p   2� :� 2N

N � 2
, 2�� :� 2N

N � 4
.

In the proof, it was used minimization arguments, the Nehari method and genus theory.

Also with the Nehari method, the authors in [15] obtained existence of solution for the

problem #
∆2u�∆pu � fpuq, in Ω,

∆u � u � 0, on BΩ,
with N � 4, 2   p   4, Ω � RN and f continuous with exponential subcritical or critical

growth.

The authors in [49] studied the existence of ground state solutions for weighted

elliptic Kirchhoff–Boussinesq type problems with supercritical exponential growth of the

following equation$&% ∆pwβpxq∆uq � divpwβpxq|∇u|p�2∇uq � fpx, uq, in B,

u � Bu
Bν � 0, on BB,
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where B � R4 is the unit ball, wβpxq � log
�
e{|x|�β or wβpxq � log

�
1{|x|�β, β P p0, 1q,

2   p   4, fpx, tq � exp
�
αt

2
1�β

�hp|x|q
	
is a continuous function and h : r0, 1q Ñ r0,8q

satisfy some mild conditions.

The fourth-order Hénon type equation$''&''%
∆2u � |x|ℓ|t|p�2t, in B,

u ¡ 0, in B,
Bu
Bν � 0, on BB,

(1.9)

was considered in [84]. Regarding the p-Laplacian operator, the authors in [23] studied

local and global properties of the equation,

�divp|∇u|p�2∇uq � |x|ℓuq, in Ω, (1.10)

where 1   p   N , q ¡ p � 1, ℓ ¡ 0 and Ω is an open domain containing the origin.

Specifically, local properties refer to local behavior of solutions near a certain point, like

removable singularity and the order of isolated singularity and global properties refer to

properties of solutions in RN .

Motivated by the aforementioned works, in Chapter 4, we aim to study the

existence and multiplicity of radial solutions for the following class of problems$&% ∆2u� divp|x|κ|∇u|p�2∇uq � |x|ℓfpuq, in B,

u � Bu
Bν � 0, on BB,

(P�)

where ℓ, κ ¥ 0, B is a unit ball in RN and p ¡ 2. We require that the nonlinear term f

satisfies the following assumptions:

(f1) f P CpR,Rq;

(f2) there exists ℓ ¡ 0,

2   q   2��ℓ :� 2�� � 2ℓ

N � 4

and C ¡ 0, such that

|fpsq| ¤ C
�
1� |s|q�1

�
, @ s P R;

(f3) there holds

lim
sÑ0

fpsq
s

� 0;
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(f4) there exists µ ¡ p and s0 ¡ 0 such that

0   µF psq ¤ sfpsq, @ |s| ¥ s0,

where F psq :�
» s

0

fpτqdτ .

Now we are able to state our first result:

Theorem 4.1. Suppose that ℓ ¡ 0, N ¡ 4 and that f satisfies pf1q-pf4q. Then there

exists κ� � κ�pℓ,Nq ¡ 0 such that, for any κ P r0, κ�q, Problem (P�) has a nontrivial

radial weak solution provided

2   p   2�κ :� 2� � 2κ

N � 2
, p   q.

We note that condition pf2q requires 2   q   2��ℓ . To apply the last theorem, we

also need 2   p   2�κ and p   q. Therefore, it is desirable to ensure that the inequality

2�κ   2��ℓ holds, so that the admissible range for q is non-empty for any choice of p. We

prove in Proposition 4.5 that this condition is indeed satisfied.

In our second application, we prove that under symmetric conditions on f we can

obtain multiple solutions. More specifically, the following holds:

Theorem 4.2. Let κ� ¡ 0 be given by Theorem 4.1. Suppose that ℓ ¡ 0, N ¡ 4,

κ P r0, κ�q, 2   p   2�κ, 2   q   2��ℓ and f is an odd function satisfying pf1q, pf2q and

pf4q. Then Problem (P�) admits infinity many radial weak solutions.

This work was carried out based on an initial idea proposed by Romulo Diaz

Carlos, a postdoctoral researcher at UEMA, to whom we express our sincere gratitude.

FitzHugh-Nagumo system with exponential growth

In this subsection, we present the results of Chapter 5, obtained in collaboration

with my advisor and Prof. Jônison Lucas dos Santos Carvalho (UFS). These results can

also be found in the accepted paper [16].

We analyze the existence, multiplicity, and regularity of solutions to the following

planar FitzHugh–Nagumo system:$&%�∆u � λQp|x|qfpuq � V p|x|qv, in R2,

�∆v � V p|x|qu� V p|x|qv, in R2,
(Sλ)
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where λ ¡ 0, the potentials V, Q : p0,8q Ñ R and f : R Ñ R are continuous functions

meeting certain conditions specified later. This type of system, derived from activator-

inhibitor dynamics, is significant in neurobiology for modeling nerve conduction and the

transmission of electrical signals in neurons. Relevant background and studies can be

found in [27, 41, 59, 75].

More broadly, our problem examines the steady-state of FitzHugh–Nagumo

systems, which are described by the following ODE:

ut � u3 � v, τvt � u� a� bv, (1.11)

initially proposed by Richard FitzHugh [27] and further developed by Jinichi Nagumo and

collaborators [59]. This system models nerve impulse propagation through a simplified

activator-inhibitor framework, capturing essential neurobiological processes. Further

details on the physical background are available in [75].

Authors in [22, 46] point out that system (1.11) belongs to a more general class

of reaction-diffusion systems, namely$&%ut � D1∆u� gpuq � v, in p0,8q � Ω,

vt � D2∆v � εpu� γvq, in p0,8q � Ω,

where Ω is a bounded domain and D1, D2, ε and γ are positive constants. This type of

problem has motivated the study of the system$&%ut � D1∆u� gpuq � kv, in p0,8q � RN ,

vt � D2∆v � u� γv, in p0,8q � RN .

See, for example, [46, 62] for the one-dimensional case and more recently [26] for the

n-dimensional case, which has strongly influenced our investigation.

From a mathematical perspective, researchers have focused on problems involving

potentials and weights that may be either unbounded or vanish at infinity. We especially

emphasize the paper by Su, Wang, and Willem [73] (cf. [1–3]), which suppose, among

other conditions, that V and Q satisfy the following:

(V1) V : p0,�8q Ñ p0,�8q is continuous and there exists a ¡ �2, such that

lim inf
rÑ�8

V prq
ra

¡ 0;
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(Q1) Q : p0,�8q Ñ p0,�8q is continuous and there exist b0, b ¡ �2, such that

lim sup
rÑ0

Qprq
rb0

  �8, lim sup
rÑ�8

Qprq
rb

  �8.

In their paper, the authors consider the Schrödinger equation

�∆u� V p|x|qu � Qp|x|q|u|p�2u, in RN ,

forN ¥ 2, with an additional condition concerning the behavior of V near the origin. After

establishing the appropriate functional framework involving radially symmetric functions,

they proved some existence and non-existence results for solutions that approach zero at

infinity.

Before presenting our main results, let us briefly outline our strategy for

addressing the system (Sλ), which will be more detailed in Section 5.1. For a fixed

radial function u in an appropriate subspace of W 1,2pR2q, we consider the linear problem

�∆v � V p|x|qv � V p|x|qu, in R2.

After finding a solution v � Brus to this problem, we return to system (Sλ) and replace v

with Brus in the first equation. This substitution transforms the system into the following

problem:

�∆u� V p|x|qBrus � λQp|x|qfpuq, in R2,

in such a way that the solutions of this scalar equation provides solutions pu,Brusq for
System (Sλ).

The aim of Chapter 5 is twofold: we show how to adapt the abstract ideas

from [74] to address the System (Sλ), and we also consider the problem in the two-

dimensional case. In this setting, we expect to allow nonlinearities with exponential

growth. Specifically, we shall assume the following conditions on f :

(f1) f P CpR,Rq and there exists α0 ¡ 0, such that

lim
|s|Ñ8

|fpsq|
eαs2

�
#

0, if α ¡ α0,

8, if α   α0;

(f2) there holds

lim
sÑ0

fpsq
|s|γ�1

� 0,
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where

γ :� max

"
2,

4pb� aq
pa� 2q � 2

*
;

(f3) there exists µ ¡ γ, such that

0   µF psq :� µ

» s

0

fptq dt ¤ fpsqs, @ s � 0;

(f4) there exist C ¡ 0 and ν ¡ γ, such that

F psq ¥ C|s|ν , @ s P R.

Before stating the main results of Chapter 5, we present some examples of

functions satisfying our hypothesis. First notice that, for any a ¡ �2 and a ¥ a, the

function V : p0,�8q Ñ p0,�8q defined by V prq � ra verifies pV1q. Also, for �2   b, b0

and s0 ¥ b0, s ¤ b, the function

Qprq �
$&%r

s0 , if 0   r ¤ 1

rs, if r ¡ 1,

verifies pQ1q. More simply, in the case �2   b0 ¤ b, we can take b0 ¤ β ¤ b and see

the function Qpsq � rβ also verifies the same condition. Finally, a typical example of a

function f verifying conditions pf1q-pf4q is

fpsq � |s|p�2seα0s2 , s P R,

with p ¡ γ, α0 ¡ 0 and µ � ν � p.

The main results of Chapter 5 are:

Theorem 5.1. Suppose that pV1q, pQ1q and pf1q-pf4q hold. Then there exists λ0 ¡ 0 such

that the System (Sλ) has a radial non-zero weak solution, provided λ ¥ λ0. Moreover, if

we call pu, vq this solution, the following hold:

(a) if there exists a0 ¡ �2, such that

lim sup
rÑ0

V prq
ra0

  8,

then u, v P W 2,p
loc pR2q for any p ¡ 1 such that pa0, pb0 ¡ �2. In particular, the

functions u, v are locally Hölder continuous;

(b) if V is locally Hölder continuous, then v P C2,σ
loc pR2q for some σ P p0, 1q.
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Theorem 5.2. Suppose that pV1q, pQ1q and pf1q-pf4q hold. If additionally f is odd then,

for any given m P N, there exists λm ¡ 0 such that the System (Sλ) has at least 2m radial

nonzero weak solutions, provided λ ¥ λm.

For the proof of the first theorem, we apply the classical Mountain Pass Theorem.

It is important to establish the variational framework to correctly define the energy

functional. In particular, we prove a Trudinger-Moser type inequality (cf. Theorem 5.10),

which is interesting in itself (cf. Remark 5.11). Our abstract results actually complement

those of [71] and can be applied to other types of problems with exponential growth. For

the second theorem, we exploit the symmetry of the functional to obtain multiple critical

points. As the associated functional is even, the strategy is to obtain m distinct nonzero

critical points as the parameter λ becomes large.
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Chapter 2

Hénon equation for the Grushin

operator

In this chapter, we study the following Hénon-type problem#
�pGαuqpzq � |z|ℓfpz, uq, in B,

u � 0, on BB, (Pα)

where B � RN1 � RN2 is the unit ball, N1, N2 ¥ 1, ℓ ¡ 0 and, for each α ¥ 0 and

z � px, yq P RN1 � RN2 ,

pGαuqpzq :� ∆xupzq � |x|2α∆yupzq,

is the Grushin operator. We also recall that the critical exponent associated to Grushin

operator is

2�α :� 2 rNrN � 2
, rN :� N1 � p1� αqN2.

Concerning the nonlinear term f , we suppose the following:

(f1) f P CpB � R,Rq;

(f2) there exists ℓ ¡ αN2,

2   p   2�α �
2pℓ� αN2qrN � 2

and C ¡ 0, such that

|fpz, sq| ¤ C
�
1� |s|p�1

�
, @ pz, sq P B � R;

(f3) there holds

lim
sÑ0

fpz, sq
s

� 0, uniformly in B;

(f4) there exists µ ¡ 2 and s0 ¡ 0, such that

0   µF pz, sq ¤ sfpz, sq, @ z P B, s ¥ s0,

where F pz, sq :�
» s

0

fpz, τqdτ .
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In Section 2.1, we follow some ideas presented in the famous paper of Wei-Ming

Ni [60], where the authors proved that

|upzq| ¤ }∇u}L2pBqa
ωNpN � 2q|z|pN�2q{2

,

for any radially symmetric u P C1pBq vanishing on the boundary of B. Our version of

this inequality leads to some compact immersion results (cf. Proposition 2.4 and Theorem

2.3) when considering an appropriated Banach space pX, } � }q to deal with the Grushin

operator.

As an application of the variational setting developed in the first section, we

define u P X as being a weak solution of (Pα) if»
B

r∇αu �∇αφs dz �
»
B

|z|ℓfpz, uqφ dz, @φ P X,

where

∇αupzq :� p∇xupzq, |x|α∇yupzqq P RN .

With this definition in hands, we prove in Section 2.2 the following:

Theorem 2.1. Suppose that α ¡ 0, N2 ¥ 2 and f satisfies pf1q-pf4q. Then Problem (Pα)

has a nonzero and radial weak solution. If in addition α ¥ 1, this solution is nonnegative.

We finish this chapter in Section 2.3 by providing a detailed analysis of the

asymptotic behavior of the ground state levels of our problem, both in the whole space

and within the space of radial functions. This allows us to complement [71, Theorem 3.1]

proving the following result:

Theorem 2.2. Suppose that α ¡ 0, N2 ¥ 2 and fpz, sq � |s|p�2s, for any pz, sq P B � R
and some p P p2, 2�αq. Then there exists ℓ� ¡ 0 such that the ground state solution of

Problem (Pα) is not radial provided ℓ ¥ ℓ�.

We remark that a ground state solution of Problem (Pα) is a solution that

minimizes the associated Euler–Lagrange functional over H1
0,αpBq � t0u. In other words,

any minimizer of

inf

"»
B

|∇αupzq|2 :
»
B

|u|p|z|ℓ dz � 1, u P H1
0,αpBq

*
.
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2.1 A compact embedding for radial functions

Recall that the points z P RN are writing as z � px, yq P RN1 � RN2 . The ball

centered at z P RN with radius t ¡ 0 is denoted by Btpzq, as well as B � B1p0q. We

denote by }u}LtpBq the L
t-norm of a measurable function u P LtpBq.

As stated in the introduction, we consider

H1
αpBq :�

!
u P L2pBq : |∇xu| P L2pBq, |x|α|∇yu| P L2pBq

)
,

which is a Banach space when endowed with the norm

||u||H1
αpBq :�

�»
B

�|∇αu|2 � |u|2� dz
1{2

.

We also define the subspace H1
0,αpBq :� C8

0 pBq
||�||

H1
αpBq with the norm

}u} :�
�»

B

|∇αupzq|2 dz

1{2

,

which is equivalent to } � }H1
αpBq (cf. [47, (1.8)]). In addition, let

C8
0,rpBq :� tu P C8

0 pBq : u is radialu

and X :� C8
0,rpBq

H1
0,αpBq. The space X is continuously embedded in LppBq, for p P r1, 2�αs

(cf. [47, Theorem 3.3]).

Finally, for any 1 ¤ p�8 and m ¥ 0, we set

Lp
mpBq :�

"
u P L1

locpBq :

»
B

|upzq|p|z|mp dz   �8
*
,

which is a Banach space with the norm

}u}Lp
m
:�

�»
B

|upzq|p|z|mp dz


1{p

.

The main result of this section reads as:

Theorem 2.3. Suppose that m ¥ 0, N2 ¥ 2 and define

rm :�

$'&'%
2NrN � 2� 2m

, if m   p rN � 2q{2,

�8, if m ¥ p rN � 2q{2.
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Then, for any p P r1, rmq, the embedding X ãÑ Lp
mpBq is compact.

The key ingredient for the proof is the following radial lemma which is a version,

for our setting, of a result presented in [60, p. 802]:

Proposition 2.4. Suppose that α ¥ 0 and N2 ¥ 2. Then, for any u P X, there holds

|upzq| ¤ C
}u}

|z|p rN�2q{2
, for a.e. z P B, (2.1)

with C � CpNq ¡ 0, given by

C :�
�
pÑ � 2q

»
SN�1

|ξ|2α|η|2dσNpξ,ηq

��1

,

and σN is the surface measure on SN�1.

Proof. Let u P C8
0,rpBq and consider φ P C8

0 p�1, 1q such that upzq � φp|z|q. For any

given z0 P B � t0u and rz P BB we have that

�upz0q � uprzq � upz0q �
» 1

|z0|

φ1ptq dt.

From N2 ¥ 2, we obtain rN � N1�p1�αqN2 ¡ 2, and therefore Hölder’s inequality yields

|upz0q| ¤
» 1

|z0|

|φ1ptq| dt �
» 1

|z0|

|φ1ptq|tp rN�1q{2t�p
rN�1q{2 dt

¤
�» 1

|z0|

|φ1ptq|2t rN�1 dt


1{2�» 1

|z0|

t�p
rN�1q dt


1{2

.

After computing the last integral above, we get

|upz0q|2 ¤ 1

p rN � 2q|z0| rN�2

» 1

|z0|

|φ1ptq|2t rN�1 dt, @ z0 P B.

We now notice that N2 ¥ 2 implies» 1

|z0|

|φ1ptq|2t rN�1 dt �
» 1

|z0|

tαN2 |φ1ptq|2tN�1 dt ¤
» 1

|z0|

t2α|φ1ptq|2tN�1 dt.

We claim that » 1

|z0|

t2α|φ1ptq|2tN�1 dt � C1

»
t|z0|¤|z|¤1u

|x|2α|∇yupzq|2 dz, (2.2)
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for some C1 � C1pNq ¡ 0, independent of u. If this is true, it follows from the inequalities

above that

|upz0q|2 ¤ C1

p rN � 2q

»
B

|x|2α|∇yupzq|2 dz
|z0| rN�2

¤ C2
2

}∇αu}2L2pBq

|z0|p rN�2q
, for a.e. z0 P B.

with C2 :� rC1{p rN � 2qs1{2 ¡ 0. So, the proposition holds for smooth functions and the

result follows from the density of C8
0,rpBq in X.

It remains to prove (2.2). To do this, we denote by w � pξ, ηq P BB a general

vector in the unit sphere of RN , with ξ P RN1 and η P RN2 . Then, for any i � 1, 2, . . . , N2,»
t|z0|¤|z|¤1u

|x|2αu2yipzq dz �
» 1

|z0|

»
BBtp0q

|x|2αu2yipzq dσz dt

�
» 1

|z0|

»
SN�1

|tξ|2αu2yiptwqtN�1 dσw dt.

Thus, since uyipx, yq � φ1p|z|q yi|z| for z � px, yq P RN , it holds

»
t|z0|¤|z|¤1u

|x|2αu2yipzq dz �
» 1

|z0|

»
SN�1

t2α|ξ|2α
�
φ1p|tw|q tηi|tw|

�2
tN�1 dσw dt

�
»
SN�1

|ξ|2αη2i dσw
» 1

|z0|

t2α|φ1ptq|2tN�1 dt.

After summing on i we get»
t|z0|¤|z|¤1u

|x|2α|∇yupzq|2 dz � C3

» 1

|z0|

t2α|φ1ptq|2tN�1 dt,

where

C3 :�
»
SN�1

|ξ|2α|η|2 dσw �
»
SN�1

|ξ|2αp1� |ξ|2q dσw,

depends only on N .

We need only to check that the above integral is positive. In order to prove it,

take 0   r   s   1 and consider the spherical annular region

A � tpξ, ηq P SN�1 :
?
1� s2   |ξ|  

?
1� r2u.

Since this nonempty set is open in SN�1, we have that σNpAq ¡ 0. For pξ, ηq P A,
|η|2 � 1� |ξ|2 ¡ r2, |ξ|2 ¡ 1� s2 ¡ 0 and |ξ|2α ¡ p1� s2qα. Thus»

SN�1

|ξ|2α|η|2 dσpξ,ηq ¥
»
A
|ξ|2α|η|2 dσpξ,ηq ¡ p1� s2qαr2σNpAq ¡ 0
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and the proof is concluded.

Before presenting the proof of Theorem 2.3 we recall that, for any γ P R, there
holds »

B

|z|γ dz �

$''&''%
ωN

pγ �Nq , if γ ¡ �N,

�8, if γ ¤ �N,
(2.3)

where ωN is the surface area of the unit sphere in RN .

Proof of Theorem 2.3. We first prove the continuity of the embedding for p P r1, rmq. To

do this, pick u P X and apply (2.1) to get

}u}p
Lp
m
�
»
B

|u|p|z|mp dz ¤ Cp}u}p
»
B

|z|γ dz,

where

γ :� p

2

�
2m� rN � 2

	
.

If m   p rN � 2q{2, we may use the definition of rm and p P r1, rmq to show that γ �N ¡ 0.

Hence, we obtain from (2.3) a constant C1 � C1pm, p, α,N1, N2q ¡ 0, such that

}u}p
Lp
m
¤ C1}u}p, @u P X. (2.4)

When m ¥ p rN � 2q{2, we have that γ ¥ 0 and therefore the embedding holds for any

1 ¤ p   �8.

For the compactness, we pick β P p0, 1q to be chosen later and apply Hölder’s

inequality with exponents 1{β and 1{p1� βq, to get»
B

|u|p|z|mp dz �
»
B

|u|β|u|p�β|z|mp dz

¤ }u}βL1pBq

�»
B

|u|pp�βq{p1�βq|z|mp{p1�βq dz


1�β

.

So, if we set

pβ :� p� β

1� β
, mβ :� mp

p� β
,

we have that

}u}p
Lp
m
¤ }u}βL1pBq}u}p�β

L
pβ
mβ

. (2.5)
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Since mβ Ñ m, as β Ñ 0�, it is clear that, if m   p rN � 2q{2, then mβ   p rN � 2q{2, for
any β ¡ 0 small. So, we can use p   rm to get

lim
βÑ0�

ppβ � �mβq � lim
βÑ0

�
p� β

1� β
� 2NrN � 2� 2mβ

�
� p� 2NrN � 2� 2m

  0,

and therefore we can pick β0 ¡ 0 small in such a way that pβ0 P r1,�mβ0q. The same holds

if m ¥ p rN � 2q{2, because in this case the inequality mβ ¡ m implies �mβ � �8.

Let punq � X be a sequence such that un á 0 weakly in X. Since pβ0 P r1,�mβ0q,
we can use (2.5) and the embedding proved in the first part to get

}un}pLp
m
¤ C1}un}β0

L1pBq}un}p�β0 ¤ C2}un}β0

L1pBq,

where we also have used the boundedness of punq in X. Since the embedding X ãÑ L1pBq
is compact (cf. [47, Theorem 3.3]), up to a subsequence un Ñ 0 strongly in L1pBq. This
and the above expression imply that un Ñ 0 strongly in X. This finishes the proof of the

theorem.

Given u P X, we define u�pxq :� maxt�upxq, 0u and u� :� u � u�, the positive

and negative part of u, respectively. We finish this subsection proving that u� P X,

whenever u P X. Since we did not find a clear state of this fact in the literature, we

sketch the proof here for the sake of completeness.

Lemma 2.5. Suppose that α ¥ 1 and u P X � C8
0,rpBq

H1
0,αpBq. Then u� P X.

Proof. Let punq � C8
0,rpBq be such that un Ñ u in H1

αpBq. Since α ¥ 1, the function

fpx, yq � |x|α is locally Lipschitz. This allows us to use [39, Corollary 2.2.], in order to

obtain |un|, |u| P H1
αpBq with

∇α|un| �

$'''&'''%
∇αun, if un ¡ 0,

0, if un � 0,

�∇αun, if un   0,

and ∇αpunq� �
$&%∇αun, if un ¡ 0,

0, if un ¤ 0,
(2.6)

and the same kind of equality for u.

We intend to prove |un| Ñ |u| in H1
αpBq. Of course |un| Ñ |u| in L2pBq. For

checking that ∇α|un| Ñ ∇α|u| in L2pBq, it is enough to prove, up to an arbitrary

subsequence, point convergence occurs a.e. in B, because there exists g P L1pBq such that

|∇αun| ¤ g, a.e. in B, and ∇α|un| � �∇αun. We will consider an arbitrary subsequence

of ∇α|un| and use, without loss of generality, the same notation for it. If upzq ¡ 0 or
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upzq   0, we can use (2.6) in order to obtain ∇α|un|pzq Ñ ∇α|u|pzq. However, if upzq � 0,

we remark that u � 2u� � |u| a.e. from which we obtain

|∇α|un|pzq �∇α|u|pzq| � | �∇αunpzq| Ñ |∇αupzq| � |2∇αu
�pzq �∇α|u|pzq| � 0.

Thus |un| Ñ |u| in H1
αpBq.

From the convergence just proved, we obtain u�n � p|un| � unq{2Ñ p|u| � uq{2 �
u� in H1

αpBq. By [76, p. 6513 and 6514], u�n P H1
0,αpBq and its extension by zero vn :� u�n

in B, vn :� 0 outside B, belongs to H1
αpRNq. Of course vn is radial. Taking k ¡ 0 and

considering η1{k a standard modifier, we can use [31, Proposition 1.4] to see that, for each

n P N, vn � η1{k Ñ vn in H1
α,locpRNq as k Ñ �8. In particular, vn � η1{k Ñ u�n in H1

αpBq
as k Ñ �8. We now take kn P N such that supppvnq � supppη1{kq � B, for any k ¥ kn.

If we define wn,m :� vn � η1{pm�kn�1q, for m ¥ 1, as vn Ñ u� as n Ñ �8 and wn,m Ñ vn

as m Ñ �8; both convergences in H1
αpBq, we can use a diagonal argument to obtain a

subsequence of twn,m : n,m P Nu which converges to u� in H1
αpBq. Once wn,m P C8

0,rpBq,
we have proved that u� P X. Finally, as u� � u� u�, then u� P X.

2.2 Existence of solution

In this section, we use Theorem 2.3 to prove our existence result.

Proof of Theorem 2.1. Since we are interested in nonnegative solutions, we can suppose

without loss of generality that fpz, sq � 0 for z P B and s   0. Formally, the energy

functional associated to our problem is

Ipuq :� 1

2
}u}2 �

»
B

F pz, uq|z|ℓ dz, u P X.

To prove that I is well defined we notice that, for any given ε ¡ 0, we may use pf1q-pf3q
to obtain a positive constant C1 such that

|F pz, sq| ¤ ε

2
|s|2 � C1|s|p, @ pz, sq P B � R.

Hence, »
B

F px, uq|z|ℓ dz ¤ ε

2
}u}2L2pBq � C1}u}pLp

ℓ{p
. (2.7)

MELO, T. G. 23 Department of Mathematics



2.2. Existence of solution Chapter 2.

The last integral above is finite whenever 1 ¤ p   p�ℓ{pq. If ℓ{p ¥ p rN � 2q{2, this always
happen, since �ℓ{p � �8. In the case ℓ{p   p rN � 2q{2, the condition on p reads as

p  
�� ℓ
p



� 2NrN � 2� 2 ℓ

p

ðñ p   2�α �
2pℓ� αN2qrN � 2

.

So, we conclude that the function is well defined. Moreover, standard arguments shows

that I P C1pX,Rq with

I 1puqv �
»
B

p∇αu �∇αvq dz �
»
B

fpz, uqv|z|ℓ dz, @ u, v P X,

and therefore critical points of I are precisely the weak solutions of Problem (Pα).

Using (2.4) and (2.7) with ε � 1{p2C1q, we get

Ipuq ¥ 1

4
}u}2 � C2}u}p � }u}2

�
1

4
� C2}u}p�2



and therefore, since p ¡ 2, we can find ρ, η ¡ 0, such that

Ipuq ¥ η, @u P X, }u} � ρ.

Moreover, using pf1q and pf4q, we obtain a constant C2 ¡ 0, such that

F pz, sq ¥ C2|s|µ � C2, @ pz, sq P B � R.

So, if we choose a nonnegative function u0 P C8
0,rpBq � t0u, we have that

Ipsu0q ¤ s2

2
}u0}2 � C2s

µ

»
B

|u0|µ|z|ℓ dz � C3.

Once we can assume without loss of generality that 2   µ   2�α, it follows that Ipsu0q Ñ
�8, as sÑ �8. Thus, there exists e P X such that Ipeq ¤ 0 and }e} ¡ ρ.

The above considerations shows that it is well defined

c :� inf
γPΓ

max
tPr0,1s

Ipγptqq ¥ η ¡ 0,

with Γ :� tγ P Cpr0, 1s, X : γp0q � 0, γp1q � eu. Hence, according to the Mountain Pass

Theorem (cf. [5]), there exists punq � X such that

lim
nÑ�8

Ipunq � c, lim
nÑ�8

I 1punq � 0. (2.8)
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We claim that, along a subsequence, un Ñ u strongly in X. Actually, we first use

pf1q and pf4q to get

Ipunq � 1

µ
I 1punqun ¥

�
1

2
� 1

µ



}un}2

� 1

µ

»
t0¤|un|¤s0u

rfpz, unqun � µF pz, unqs |z|ℓ dz

¥
�
1

2
� 1

µ



}un}2 � C4.

Since µ ¡ 2, we conclude that punq is bounded in X. Hence, up to a subsequence, we

have that un á u weakly in X. Thus,

onp1q � I 1punqpun � uq � }un}2 � xun, uy � An � }un}2 � }u}2 � An � onp1q,

where onp1q denotes a quantity approaching zero as nÑ �8 and

An :�
»
B

fpz, unqpun � uq|z|ℓ dz.

To get the strong convergence claimed, we need only to check that An Ñ 0. Since

the embedding H1
0,αpBq ãÑ L1pBq is compact, we may assume un Ñ u strongly in L1pBq.

Hence, it follows from pf1q and Hölder’s inequality with exponents p and p1 :� p{pp � 1q
that

|An| ¤ C5

»
B

�
1� |un|p�1

� |un � u||z|ℓ dz

� onp1q � C5

»
B

|un|p�1|z|ℓ{p1 |un � u||z|ℓ{p dz

¤ onp1q � C5

�»
B

|un|p|z|ℓ dz

1{p1 �»

B

|un � u|p|z|ℓ dz

1{p

¤ C5}un}p{p
1

Lp
ℓ{p
}un � u}Lp

ℓ{p
.

Recalling that p   p�ℓ{pq, we may use the boundedness of punq in X and the compactness

of the embedding X ãÑ Lp
ℓ{p, to conclude that the right-hand side above goes to zero, as

nÑ �8. This concludes the proof that un Ñ u strongly in X.

From (2.8), the regularity of I and the strong convergence just proved, we obtain

Ipuq � c ¡ 0 and I 1puq � 0. This shows that u P X is a nonzero solution of Problem

(Pα). Moreover, assuming α ¥ 1, we can use Lemma 2.5 in order to obtain

0 � I 1puqu� �
»
B

�
∇αpu� � u�q �∇αu

�
�
dz �

»
tu¥0u

fpz, uqu�|z|ℓ dz � �}u�}2,
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which implies u ¥ 0 a.e. in B and concludes the proof of the theorem.

2.3 Symmetry breaking

In this section, our goal is to prove Theorem 2.2. Along all this section, we assume

that 2   p   2�α, fpz, tq � |t|p�2t and consider the ratio

Rpuq :� }u}2�»
B

|u|p|z|ℓ dz

2{p

, u P H1
0,αpBq � t0u.

We also introduce the minimizers

Sℓ,p :� inf
uPH1

0,αpBq

u�0

Rpuq � inf

"
}u}2 :

»
B

|u|p|z|ℓ dz � 1, u P H1
0,αpBq

*

and

SR
ℓ,p :� inf

uPX
u�0

Rpuq � inf

"
}u}2 :

»
B

|u|p|z|ℓ dz � 1, u P X
*
.

The principal ingredients for the proof of our last main theorem of the chapter

are the following estimates, which are versions of [71, Theorems 4.1 and 4.2]:

Proposition 2.6. Suppose that p P p2, 2�αq. Then

1. there exists Crad � CradpN, p, αq ¡ 0, such that

SR
ℓ,p ¥ Cradℓpp�2q{p, @ ℓ ¡ N2α;

2. for any given ℓ0 ¡ 2, there exists C � Cpp, ℓ0, αq ¡ 0, such that

Sℓ,p ¤ Cℓ2� rN�p2 rN{pq, @ ℓ ¥ ℓ0.

Before proving this proposition, let us show how we can use it to get our symmetry

breaking result:

Proof of Theorem 2.2. For any p P p2, 2�αq fixed, it is sufficient to obtain ℓ� ¡ 0 such

that Sℓ,p   SR
ℓ,p, for any ℓ ¥ ℓ�. Suppose, by contradiction, that this is not the case.

Then, since Sℓ,p ¤ SR
ℓ,p is always true, there exists a sequence pℓnq � p0,�8q such that

Sℓn,p � SR
ℓn,p and ℓn Ñ �8. Using Proposition 2.6 we get

Cradℓpp�2q{p
n ¤ SR

ℓn,p � Sℓn,p ¤ Cℓ2� rN�p2 rN{pq
n ,
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for any n P N large. This implies

0   Crad
C

¤ ℓ2�
rN�p2 rN{pq�1�p2{pq

n � ℓpp�2qp1� rNq{p
n ,

which is impossible since ℓn Ñ �8 and pp� 2qp1� rNq{p   0.

We devote the next two subsections to the proof of Proposition 2.6.

2.3.1 Estimating SR
ℓ,p

We start this subsection with a technical lemma which is a consequence of the

chain rule:

Lemma 2.7. Suppose that N ¥ 2, φ P C8
0 p�1, 1q and β P p0, 1s. Then the functions

vpzq :� φp|z|βq, wpzq :� φp|z|1{βq

belong to H1
0,rpBq, the space of radial functions in H1

0 pBq.

Proof. Of course v, w are radial, continuous and null on BB. Since φ is a C1-function with

bounded derivatives, we need only to check that the maps g1pzq :� |z|β and g2pzq :� |z|1{β
are in H1pBq (cf. [25, p. 308]). Clearly g1, g2 P L2pBq. Moreover, for any z � 0, we have

that

|∇g1pzq|2 � β2|z|2pβ�1q, |∇g2pzq|2 � 1

β2
|z|2p1�βq{β

and the result follows from (2.3), because N{2 ¡ 1 ¡ 1�β and 2p1�βq{β ¡ 0 ¡ �N .

Proposition 2.8. Suppose that β P p0, 1s, u P C8
0,rpBq and φ P C8

0 p�1, 1q is such that

upzq � φp|z|q. If
vpzq :� φp|z|βq, z P B,

then »
B

|∇αu|2 dz ¥ C

βωN

»
B

|∇v|2|z|pβ�1qpN�2q dz, (2.9)

for some constant C � CpNq ¡ 0. Moreover, if β � N{pℓ�Nq, then»
B

|u|p|z|ℓ dz � β

»
B

|v|p dz. (2.10)

Proof. One can easily check that

|∇αupzq|2 � rφ1p|z|qs2
� |x|2 � |x|2α|y|2

|z|2
�
.
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If we call gαpzq the expression into brackets above and denote w � pξ, ηq P SN�1, we get»
B

|∇αupzq|2 dz �
» 1

0

»
SN�1

rφ1p|rw|qs2gαprwqrN�1 dσw dr

�
» 1

0

»
SN�1

rφ1prqs2 �|ξ|2 � |rξ|2α|η|2� rN�1 dσw dr

¥
�»

SN�1

|ξ|2 dσw

» 1

0

rφ1prqs2rN�1 dr.

� C

» 1

0

rφ1prqs2rN�1 dr,

with C :�
»
SN�1

|ξ|2 dσw. To check that C ¡ 0, it is sufficient to pick 0   δ   1 and notice

that the set Aδ :� tpξ, ηq P SN�1 : |ξ| ¥ δu has positive pN � 1q-dimensional measure.

Using the change of variable r � ρβ in the last integral above and defining rvprq :�
φprβq, we obtain»

B

|∇αupzq|2 dz ¥ C

β

» 1

0

rφ1pρβqβρpβ�1qs2ρ
βpN�1qρβ�1

ρ2pβ�1q
dρ

� C

β

» 1

0

rrv1pρqs2ρβpN�1qρβ�1ρ1�N

ρ2pβ�1q
ρN�1dρ

� C

β

» 1

0

rrv1pρqs2ρrβpN�1q�β�N�2pβ�1qsρN�1dρ

� C

βωN

»
B

rrv1p|z|qs2|z|pβ�1qpN�2q dz.

Since vpzq � ṽp|z|q, it follows that |∇vpzq|2 � rrv1p|z|qs2 and the last expression yields

(2.9).

Using the change of variables r � ρβ again, we get»
B

|upzq|p|z|ℓ dz � ωN

» 1

0

|φprq|prℓrN�1 dr

� βωN

» 1

0

|φpρβq|pρrβpN�1q�βℓ�β�1�p1�NqsρN�1dρ.

Thus, if β � N{pℓ�Nq, we have that

βpN � 1q � βℓ� β � 1� p1�Nq � βpN � ℓq �N � 0,

and therefore »
B

|upzq|p|z|ℓ dz � βωN

» 1

0

|rvpρq|pρN�1dρ � β

»
B

|vpzq|p dz,
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which gives (2.10). This finishes the proof.

We are ready to present the estimation of SR
ℓ,p.

Proof of item (1) in Proposition 2.6. We first notice that, since the function gpsq :�
2s{ps� 2q is decreasing in p2,�8q and 2   N ¤ rN , we have that 2   p   2�α ¤ 2�.

Let u P C8
0,rpBq � t0u and φ P C8

0 p�1, 1q such that upzq � φp|z|q. We also define

vpzq :� φp|z|βq, with β � N{pℓ�Nq. By Lemma 2.7, we know that v P H1
0,rpBq. Hence,

it follows from Proposition 2.8 that

Rpuq ¥ C

βωN

»
B

|∇v|2|z|pβ�1qpN�2q dz

β2{p

�»
B

|v|p dz

2{p

� C1β
�pp�2q{p

»
B

|∇v|2|z|pβ�1qpN�2q dz�»
B

|v|p dz

2{p

,

where C1 � Cω�1
N . Since |z|pβ�1qpN�2q ¥ 1 for |z|   1,

Rpuq ¥ C1β
�pp�2q{p

»
B

|∇v|2 dz�»
B

|v|p dz

2{p

¥ C1Dpβ
�pp�2q{p,

with

Dp :� inf
ϕPH1

0,rpBq

"»
B

|∇ϕ|2 :
»
B

|ϕ|p � 1 dz

*
¡ 0,

because 2   p   2�α ¤ 2� and v P H1
0,rpBq � t0u (cf. Lemma 2.7). We now recall that

β � N{pℓ�Nq to obtain, for any u P C8
0,rpBq � t0u,

Rpuq ¥ C1Dp

�
ℓ�N

N


pp�2q{p

� C1Dp

N pp�2q{p
pℓ�Nqpp�2q{p ¥ Cradℓpp�2q{p,

with

Crad :� C1DpN
�pp�2q{p.

Using the continuous embedding X ãÑ LppBq and a density argument, we can prove that

the above inequality also holds in X. Thus SR
ℓ,p ¥ Cradℓpp�2q{p, for any ℓ ¡ N2α, and the

proof is complete.

2.3.2 Estimating Sℓ,p

Given ℓ ¡ 1, we introduce the map

δℓpzq :�
�
ℓx, ℓ1�αy

�
, @ z � px, yq P RN1 � RN2 .
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It is a linear transformation with linear inverse given by

δ�1
ℓ pzq :�

�x
ℓ
,
y

ℓ1�α

	
.

We now consider

zℓ :�
�
0x, ℓ

α � ℓα�1, 0y1
� P RN ,

where 0x and 0y1 are the null vector of RN1 and RN2�1, respectively. Define the maps

T, T�1 : RN Ñ RN by

T pzq :� δ�1
ℓ pz � ℓzℓq, T�1pzq :� δℓpzq � ℓzℓ. (2.11)

A simple computation shows that T�1 is the inverse of T .

Since ℓ ¡ 1 and δ�1
ℓ is linear, we have for z P B

|T pzq| ¤ |δ�1
ℓ pzq| � |δ�1

ℓ pℓzℓq| � ℓ�1

�
|x|2 � |y|2

ℓ2α


1{2

� p1� ℓ�1q

¤ ℓ�1
�|x|2 � |y|2�1{2 � p1� ℓ�1q   ℓ�1 � 1� ℓ�1 � 1.

Hence,

B � Aℓ :�
 
z P RN : |T pzq|   1

(
.

Another easy consequence of the definition of T and Aℓ is that T pBq � T pAℓq � B.

Moreover, if z P B � T pBq, then T�1pzq P Aℓ �B, which implies |T�1pzq| ¥ 1 (cf. Figure

2.1).

Figure 2.1: Application T
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We finally notice that, if w � pξ, ηq P B and z � T pwq, then

|z| ¥ ��δ�1
ℓ pℓzℓq

��� ��δ�1
ℓ pℓzℓq � T pwq�� � 1� 1

ℓ
� 1

ℓ

c
ξ2 � η2

ℓ2α
¡ 1� 1

ℓ
� 1

ℓ

a
ξ2 � η2,

and therefore (cf. Figure 2.1)

|z| ¡ ℓ� 2

ℓ
, @ z P T pBq. (2.12)

The more useful property of the map T is:

Proposition 2.9. Suppose that u P C8
0 pBq, ℓ ¡ 2, T is as in (2.11) and define v :�

pu � T�1q. Then v P C8
0 pBq and

}v}2 � ℓ2�
rN}u}2,

»
B

|v|p|z|ℓ dz ¡
�
ℓ� 2

ℓ


ℓ

ℓ�
rN}u}pLppBq.

Proof. We start proving that v P C8
0 pBq. Indeed, letK � B be the support of u and notice

that, if z R T pKq, then upT�1pzqq � 0. Thus, supppvq � T pKq � T pKq � T pBq � B. We

now compute

vxi
pzq � ℓuxi

pT�1zq, vyjpzq � ℓ1�αuyjpT�1pzqq,

for any i � 1, . . . , N1 and j � 1, . . . , N2. Thus,

|∇αvpzq|2 � |∇xvpzq|2 � |x|2α|∇yvpzq|2

� ℓ2|∇xupT�1pzqq|2 � ℓ2p1�αq|x|2α|∇yupT�1pzqq|2

� ℓ2
�|∇xupT�1pzqq|2 � |ℓx|2α|∇yupT�1pzqq|2�

� ℓ2|∇αupT�1pzqq|2

and therefore, since the Jacobian of the transformation T is ℓ�pN1�N2p1�αqq � ℓ�
rN , we can

use B � T pAℓq to obtain

»
B

|∇αvpzq|2 dz � ℓ2
»
T pAℓq

|∇αupT�1pzqq|2 dz

� ℓ2�
rN
»
Aℓ

|∇αupzq|2 dz

� ℓ2�
rN
»
B

|∇αupzq|2 dz � ℓ2�
rN
»
Aℓ�B

|∇αupzq|2 dz

� ℓ2�
rN
»
B

|∇αupzq|2 dz,
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since the derivatives uxi
, uyj have support insideB. This proves the first statement

of the proposition.

To check the second statement of the proposition, we recall that |T�1pzq| ¥ 1, for

any z P B � T pBq and so upT�1pzqq � 0 for any z P B � T pBq. Thus,

»
B

|vpzq|p|z|ℓ dz �
»
T pBq

|upT�1pzqq|p|z|ℓ dz �
»
B�T pBq

|upT�1pzqq|p|z|ℓ dz

�
»
T pBq

|upT�1pzqq|p|z|ℓ dz,

and it follows from (2.12) that

»
B

|vpzq|p|z|ℓ dz ¡
�
ℓ� 2

ℓ


ℓ »
T pBq

|upT�1pzqq|p dz

�
�
ℓ� 2

ℓ


ℓ

ℓ�
rN
»
B

|upzq|p dz,

which is exactly the second statement of the proposition.

We are ready to prove the last result of this chapter.

Proof of item (2) in Proposition 2.6. Let u0 P C8
0 pBq � t0u be fixed and v0 :� pu0 � T�1q

as in Proposition 2.9. Since it is clear that v0 P H1
0,αpBq, it follows from Proposition 2.9

that, for any ℓ ¡ 2,

Sℓ,p ¤ Rpv0q  
ℓ2�

rN
»
B

|∇αu0|2 dz��
ℓ�2
ℓ

�ℓ
ℓ� rN

»
B

|u0|p dz
�2{p � ℓ2�

rN�p2 rN{pq�
ℓ�2
ℓ

�2ℓ{p }u0}2
}u0}2LppBq

. (2.13)

We now define

gpsq :�
�
s� 2

s


s

, @ s ¥ ℓ0 ¡ 2.

By a straightforward computation one gets

g1psq � gpsq
�
ln

�
s� 2

s



� 2

s� 2

�
.

If we call hpsq the expression into the brackets above, we have that

h1psq � � 4

sps� 2q2   0, s ¡ ℓ0.
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and therefore h is decreasing. Moreover, lim
sÑ�8

hpsq � lnp1q � 0. Hence, we conclude that

h is positive, which implies that g is increasing in rℓ0,�8q. Thus, for ℓ ¥ ℓ0, we have

that rgpℓ0qs2{p ¤ rgpℓqs2{p. In other words,

0  
�
ℓ0 � 2

ℓ0


2ℓ0{p

 
�
ℓ� 2

ℓ


2ℓ{p

, @ ℓ ¥ ℓ0.

Coming back to (2.13), we get

Sℓ,p ¤ Cℓ2� rN�p2 rN{pq, @ ℓ ¥ ℓ0,

where

C :�
�
ℓ0 � 2

ℓ0


�2ℓ0{p }u0}2
}u0}2LppBq

,

and the proof is complete.
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Chapter 3

Hénon equation for the biharmonic

operator

The aim of this chapter is to consider the problem$&% ∆2u � rW pzqsℓfpuq, in B,

u � Bu
Bν � 0, on BB,

(Px,y)

where B � RN is the unit ball, and the functions W and f satisfy certain conditions

that will be specified later. To proceed, we will introduce a Sobolev space consisting of

symmetric functions and establish a pointwise inequality that holds for functions belonging

to this space.

First, as it is well know, in order to prove existence of a weak solution to the

problem

�∆upzq � |z|ℓup�1pzq, z P B, upzq � 0, z P BB,

for 2   p   2� � 2ℓ{pN � 2q, Ni in [60] proved the inequality

|upzq| ¤ }∇u}L2pBqa
ωNpN � 2q|z|pN�2q{2

, z P B, (3.1)

for any radially symmetric u P C1pBq vanishing in the boundary of B. Our idea here is

to follow a similar approach introducing a functional space with symmetry and proving

radial type lemmas.

In order to define such a space, we recall that H2
0 pBq is the closure of C8

0 pBq
under the H2pBq norm and, using Poincaré Inequality and integration by parts, one can

see that the usual norm induced by H2pBq is equivalent to

}u}H2
0 pBq

:�
�� ¸

|α|�2

|Dαupzq|2 dz
�
1{2

�
�»

B

|∆upzq|2 dz

1{2

.

Now, we decompose RN � RN1 �RN2 , denote by Opkq the group of real orthogonal k� k
matrices, consider

C8
0,x,ypBq :� tu P C8

0 pBq : upx, yq � upT1pxq, T2pyqq, @ Ti P OpNiq, i � 1, 2u ,
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the set of compactly supported functions in B with are coordinate-radial and define

H2
0,x,ypBq � C8

0,x,ypBq
H2

0 pBq.

Our first main result is a version, for our setting, of the inequality (3.1):

Theorem 3.1. For any u P H2
0,x,ypBq and N1, N2 ¥ 3, there holds

|upx, yq| ¤ C
}∆u}L2pBq

|x|N1�2
2 |y|N2�2

2

, for a.e. px, yq P B, (3.2)

with

C �
d

Γ
�
N1

2

�
Γ
�
N2

2

�
4π

N
2 pN1 � 2qpN2 � 2q

,

and Γpsq :�
» 8

0

ts�1e�t dt being the Gamma function.

In order to state our second mean result, we set, for any 1 ¤ p   �8 and ℓ ¥ 0

Lp
ℓpBq :�

"
u P L1

locpBq :
»
B

|upzq|prW pzqsℓ dz   �8
*
, (3.3)

with the weight W satisfying:

(W1) W P L1
locpBq and there exists cW ¡ 0, such that

0   W pzq ¤ cW |x||y|, for a.e. z P B.

This is a Banach space with the norm

}u}Lp
ℓ pBq

:�
�»

B

|upzq|prW pzqsℓ dz

1{p

.

As a consequence of Theorem 3.1, we can prove an embedding result for the space

H2
0,x,ypBq. Actually, if we set

2�ℓ,N1
:� 2N1

N1 � 2
� 2ℓ

N1 � 2
,

for any N1 ¡ 2 and ℓ ¥ 0, we have the following:

Theorem 3.2. Suppose that N � N1 �N2, with 3 ¤ N2 ¤ N1, ℓ ¥ 0 and 1 ¤ p   2�ℓ,N1
.

Then the embedding H2
0,x,ypBq ãÑ Lp

ℓpBq is compact.
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It is important to analyze situations in which the last result allows us to consider

exponents beyond the critical Sobolev exponent 2�� :� 2N{pN � 4q. We have that

2��   2�ℓ,N1
ðñ ℓ ¡ 2pN1 �N2q

N � 4
,

and therefore we can consider supercritical growth. The most favorable situation occurs

when N1 � N2 because, in this case, the exponent 2�ℓ,N1
is supercritical for any ℓ ¡ 0.

Even when the dimensions are not equal, the condition on ℓ does not seem very restrictive,

since it can be easily shown that 3 ¤ N2   N1 implies

2pN1 �N2q
N � 4

  2,

and, therefore, supercritical growth is possible for any ℓ ¥ 2.Also, we remark that when

N1 ¤ N2, analogous results can be obtained by simply replacing 2�ℓ,N1
with 2�ℓ,N2

.

As an application of the Theorem 3.2, we consider the problem (Px,y) with the

supercritical nonlinearity f satisfying:

(f1) f P CpR,Rq;

(f2) there exists cf ¡ 0 and p P p2, 2�ℓ,N1
q such that

|fpsq| ¤ cf
�
1� |s|p�1

�
, @ s P R;

(f3) there holds

lim
sÑ0

fpsq
s

� 0;

(f4) there exist µ ¡ 2 and s0 ¡ 0, such that

0   µF psq ¤ sfpsq, @ |s| ¥ s0,

where F psq :�
» s

0

fptq dt.

We say that a function u P H2
0 pBq is a weak solution of Problem (Px,y) if»

B

∆u∆φ dz �
»
B

rW pzqsℓfpuqφ dz, @ φ P H1
0,x,ypBq.

Finally, we shall prove the following:

Theorem 3.3. Suppose that ℓ ¥ 0, p P p2, 2�ℓ,N1
q and f , W satisfy pf1q-pf4q and pW1q,

respectively. Then Problem (Px,y) has a nonzero weak solution in H2
0,x,ypBq.
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This chapter is organized as follows. In Section 3.1, we present some notations

and preliminary results, including the proof of an integral identity in the space H2
0,x,ypBq.

In Section 3.2, we provide the proofs of Theorems 3.1 and 3.2. Finally, Section 3.3 is

devoted to the study of problem (Px,y).

3.1 Some technical results

From now on, we shall denote

D :�  ps, tq P R2 : s2 � t2   1
(

the unitary ball in R2 and

D� :� tps, tq P D : s, t ¥ 0u.

Notice that, if u P H1
0 pBq is such that u � u � pT1, T2q, for any Ti P Opiq, i � 1, 2,

then it is well defined the function

vps, tq :� upse, tfq, ps, tq P D,

with |e| � |f | � 1. From the symmetry properties of u it is clear that v is radial in each

of this components and upx, yq � vp|x|, |y|q, for any px, yq P B.

For the reader’s convenience, we state and prove below an integral identity that

was used in [7] .

Lemma 3.4. Suppose that N � N1 � N2 ¥ 2 with N1, N2 P N, and u P L1pBq be such

that upx, yq � vp|x|, |y|q, for some function v defined on D�. Then»
B

upzq dz � C

»
D�

vps, tqsN1�1tN2�1 dps, tq

where

C � 4π
N
2

Γ
�
N1

2

�
Γ
�
N2

2

� ¡ 0,

and Γpsq :�
» 8

0

ts�1e�t dt is the Gamma function.

Proof. We have that

»
B

upzq dz �
»
RN

vp|x|, |y|qχBpzq dz �
»

RN1

�� »
RN2

vp|x|, |y|qχBpzq dy
�� dx
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and there we can use polar coordinates (cf. [28, Theorem 2.9]) to get

»
B

upzq dz �
»

RN1

��» 8

0

»
SN2�1

vp|x|, |y1t|qχBpx, y1tqtN2�1dσ2
y1 dt

�� dx

�
» 8

0

»
SN2�1

�� »
RN1

vp|x|, tqχBpx, y1tqtN2�1 dx

�� dσ2
y1 dt

�
» 8

0

»
SN2�1

��» 8

0

»
SN1�1

vp|x1s|, tqχBpx1s, y1tqsN1�1tN2�1dσ1
x1 ds

�� dσ2
y1 dt

�
» 8

0

» 8

0

�� »
SN2�1

»
SN1�1

vps, tqχBpx1s, y1tqsN1�1tN2�1dσ1
x1dσ

2
y1

�� ds dt,

where SNi�1 is the surface of the unit ball Bi � RNi and dσi is the surface element.

Since for any px1, y1q P SN1�1 � SN2�1 and s, t ¥ 0 there holds

χBpx1s, y1tq � χD�ps, tq,

we obtain

»
B

upzq dz �
» 8

0

» 8

0

�� »
SN2�1

»
SN1�1

vps, tqχBpx1s, y1tqsN1�1tN2�1dσ1
x1dσ

2
y1

�� ds dt

� ωN1ωN2

» 8

0

» 8

0

vps, tqχD�s
N1�1tN2�1 ds dt

� ωN1ωN2

»
p0,8q�p0,8q

vps, tqχD�s
N1�1tN2�1dps, tq

� ωN1ωN2

»
D�

vps, tqsN1�1tN2�1dps, tq,

with ωNi
� σipSNi�1q, i � 1, 2. As proved in [28, Proposition 2.54], we have that

ωNi
� 2π

Ni
2

Γ
�
Ni

2

� , i � 1, 2,

and the proof is concluded.

We present and prove in what follows two auxiliary results which will be essential

in the proof of Theorem 3.1.
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Lemma 3.5. Suppose that ps0, t0q P D. Then there exists t̃ such that |t0|   |t̃| ¤ 1 and

ps0, t̃q P BD. Moreover, for each β P p|t0|, |t̃|q, there exists sβ such that |s0|   |sβ|   1 and

psβ, βq P BD.

Proof. Let ps0, t0q P D, define the vertical line r1ptq :� p|s0|, tq and notice that |r1pt̃q| � 1

for t̃ � �
b
1� s20, that is, ps0, t̃q P BD. Notice that |t0|   |t̃|   1. Analogously, fixing

|t0|   β   |t̃| and defining the horizontal line r2pηq :� pη, βq, we can notice that |r2psβq| �
1 for sβ � �

a
1� β2 and |s0|   |sβ|   1, because s20 � β2   s20 � t̃2 � 1 (cf. Figure

3.1).

Figure 3.1: Construction of ps0, t̃q and psβ, βq

Lemma 3.6. Suppose that N � N1 �N2 with N1, N2 ¥ 3 and φ P C2
0pDq verifies

φps1, t1q � φps2, t2q, if p|s1|, |s2|q � p|t1|, |t2|q.

Then

|φps0, t0q| ¤ C

�»
B

|Bstφp|x|, |y|q|2 dz

1{2

|s0|
N1�2

2 |t0|
N2�2

2

, @ ps0, t0q P D,

with

C �
d

Γ
�
N1

2

�
Γ
�
N2

2

�
4π

N
2 pN1 � 2qpN2 � 2q

.
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Proof. Given ps0, t0q P D, we can use Lemma 3.5 to obtain t̃ such that |t0|   |t̃|   1 and

ps0, t̃q P BD. From the equation

�φps0, t0q � φps0, |t̃|q � φps0, |t0|q �
» |t̃|

|t0|

Btφps0, βq dβ,

we get

|φps0, t0q| ¤
» |t̃|

|t0|

|Btφps0, βq| dβ. (3.4)

Now, for each β P p|t0|, |t̃|q, we can use Lemma 3.5 again to choose sβ such that |s0|  
|sβ|   1 and psβ, βq P BD. Notice that, as φps1, tq � φps2, tq, if |s1| � |s2| then Btφps1, tq �
Btφps2, tq. So, as the support of φ and Btφ are in D

Btφps0, βq � �rBtφp|sβ|, βq � Btφp|s0|, βqs � �
» |sβ |

|s0|

Bstφpα, βq dα,

which implies

|Btφps0, βq| ¤
» |sβ |

|s0|

|Bstφpα, βq| dα ¤
» 1

|s0|

|Bstφpα, βq| dα, (3.5)

for any β P p|t0|, |t̃|q. Finally, combining (3.4) with (3.5), we obtain

|φps0, t0q| ¤
» |t̃|

|t0|

» 1

|s0|

|Bstφpα, βq| dα dβ

¤
» 1

|t0|

» 1

|s0|

|Bstφpα, βq| dα dβ.

If we define It0,s0 :� p|t0|, 1q � p|s0|, 1q, we can use Hölder’s inequality to get» 1

|t0|

» 1

|s0|

|Bstφpα, βq| dα dβ �
»
It0,s0

|Bstφpα, βq|α
N1�1

2 β
N2�1

2 α
1�N1

2 β
1�N2

2 dpα, βq

¤
�»

It0,s0

|Bstφpα, βq|2αN1�1βN2�1 dpα, βq
�1{2

��»
It0,s0

α1�N1β1�N2 dpα, βq
�1{2

.
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As |s0|, |t0|   1»
It0,s0

α1�N1β1�N2 dpα, βq � 1

pN1 � 2qpN2 � 2q
�

1

|s0|N1�2
� 1


�
1

|t0|N2�2
� 1



¤ 1

pN1 � 2qpN2 � 2q|s0|N1�2|t0|N2�2
.

Therefore, for

C :� 1apN1 � 2qpN2 � 2q ,

we have that

|φps0, t0q| ¤ C

�»
It0,s0

|Bstφpα, βq|2αN1�1βN2�1 dpα, βq
�1{2

|s0|
N1�2

2 |t0|
N2�2

2

¤ C

�»
p0,1q�p0,1q

|Bstφpα, βq|2αN1�1βN2�1 dpα, βq

1{2

|s0|
N1�2

2 |t0|
N2�2

2

� C

�»
D�

|Bstφpα, βq|2αN1�1βN2�1 dpα, βq

1{2

|s0|
N1�2

2 |t0|
N2�2

2

,

because, as the support of φ is on D, then the same happens to Bstφ. Now, we apply

Lemma 3.4 to obtain

|φps0, t0q| ¤ C1

�»
B

|Bstφp|x|, |y|q|2 dz

1{2

|s0|
N1�2

2 |t0|
N2�2

2

,

where

C1 �
d

Γ
�
N1

2

�
Γ
�
N2

2

�
4π

N
2

apN1 � 2qpN2 � 2q
,

completing the proof.

3.2 Proofs of Theorems 3.1 and 3.2

We start this section by proving our version of the radial lemma.

Proof of Theorem 3.1. It suffices to prove the result for a function u P C8
0,x,ypBq. To that

end, we consider a function φ such that upx, yq � φp|x|, |y|q and φps1, t1q � φps2, t2q
whenever p|s1|, |t1|q � p|s2|, |t2|q.
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For each i � 1, ..., N1 and j � 1, ..., N2

uxiyjpx, yq � Bstφp|x|, |y|q xi|x|
yj
|y|

and therefore

N1̧

i�1

N2̧

j�1

ruxiyjpx, yqs2 � rBstφp|x|, |y|qs2. (3.6)

Since »
B

∆xu∆yu dz �
N1̧

i�1

N2̧

j�1

»
B

uxixi
uyjyj dz �

N1̧

i�1

N2̧

j�1

»
B

ruxiyjpx, yqs2 dz

we can use identity (3.6) to get»
B

∆xu∆yu dz �
»
B

rBstφp|x|, |y|qs2 dz.

and therefore we can use Lemma 3.6 to get

|upx, yq| ¤ C

�»
B

∆xu∆yu dz


1{2

|x|N1�2
2 |y|N2�2

2

, for a.e. px, yq P B. (3.7)

Using this inequality together with

|∆u|2 � |∆xu�∆yu|2 � |∆xu|2 � 2∆xu∆yu� |∆yu|2,

we conclude that (3.2) holds.

Remark 3.7. As a consequence of the previous result, we can see that the bilinear form

Bx,yru, vs :�
»
B

∆xupzq∆yvpzq dz, @u, v P H2
0,x,ypBq

is an inner product. Indeed, for any u, v P C8
0,x,ypBq, we have that

Bx,yru, vs �
N1̧

i�1

N2̧

j�1

»
B

uxixi
vyjyj dz �

N1̧

i�1

N2̧

j�1

»
B

uvxixiyjyj dz �
N1̧

i�1

N2̧

j�1

»
B

uyjyjvxixi
dz,
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which implies Bx,yru, vs � Bx,yrv, us. For u, v P H2
0,x,ypBq let un, vn P C8

0,xypBq such that

un Ñ u and vn Ñ v in H2pBq. Then,»
B

∆xun∆yvn dz �
»
B

∆xvn∆yun dz.

As punqxixi
Ñ uxixi

, punqyjyj Ñ uyjyj , pvnqxixi
Ñ vxixi

, pvnqyjyj Ñ vyjyj in L2pBq, there
exists f1, f2, f3, f4 P L2pBq such that, up to a subsequence,

|punqxixi
| ¤ f1, |punqyjyj | ¤ f2, |pvnqxixi

| ¤ f3, |pvnqyjyj | ¤ f4,

almost everywhere in B. So, |uxixi
vyjyj | ¤ f1f4 P L1pBq and |vxixi

uyjyj | ¤ f3f2 P L1pBq.
Using the Lebesgue Theorem we conclude that Bx,yru, vs � Bx,yrv, us. Moreover

Bx,yru, us �
N1̧

i�1

N2̧

j�1

»
B

ruxiyj s2dz ¥ 0

and it follows from inequality (3.7) that, if u � 0, then Bx,yru, us � 0.

Now we have proved our radial-type result, we can obtain embedding properties

for the space H2
0,x,ypBq.

Proof of Theorem 3.2. We first prove that the embedding H2
0,x,ypBq ãÑ Lp

ℓpBq is

continuous, for any 1 ¤ p   2�ℓ,N1
. To that end, we pick u P H2

0,x,ypBq and use pW1q
and (3.2) to obtain

}u}p
Lp
ℓ pBq

�
»
B

|upzq|prW pzqsℓ dz

¤ cℓW

»
B

|upzq|pp|x||y|qℓ dz

¤ cℓW }u}pH2
0 pBq

»
B

|x|� pN1�2qp
2 |y|� pN2�2qp

2 p|x||y|qℓ dz

¤ cℓW }u}pH2
0 pBq

»
B1

»
B2

|x|
�
ℓ�

pN1�2qp
2

�
|y|

�
ℓ�

pN2�2qp
2

�
dx dy

� cℓW }u}pH2
0 pBq

�»
B1

|x|
�
ℓ�

pN1�2qp
2

�
dx


�»
B2

|y|
�
ℓ�

pN2�2qp
2

�
dy



,

where we have used the inclusion B � B1 � B2 (recall that Bi is the unit ball of RNi).

Thus

}u}p
Lp
ℓ pBq

¤ C1}u}pH2
0 pBq

�» 1

0

r

�
ℓ�

pN1�2qp
2

�N1�1
�
dr


�» 1

0

r

�
ℓ�

pN2�2qp
2

�N2�1
�
dr



,
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with C1 :� cℓWωN1ωN2 . Since p P r1, 2�ℓ,N1
q and N2 ¤ N1, the integrals above are finite,

and thus the continuity of the embedding is established.

To prove the compactness, we first point out that, since H2
0,x,ypBq is a subspace

of W 2,2
0 pBq, the Rellich-Kondrachov Theorem assures that it is compactly embedded in

L1pBq. Consider β P p0, 1q to be chosen. For u P H2
0,x,ypBq, we can use Hölder’s inequality

with exponents s � β�1 and s1 � p1� βq�1 to obtain

}u}p
Lp
ℓ pBq

�
»
B

|upzq|β|upzq|p�βrW pzqsℓ dz

¤ }u}βL1pBq

�»
B

|upzq| p�β
1�β rW pzqs ℓ

1�β dz


1�β

or, equivalently,

}u}p
Lp
ℓ pBq

¤ }u}βL1pBq}u}p�β

L
qβ
ℓβ
pBq

(3.8)

with

ℓβ :� ℓ

1� β
, qβ :� p� β

1� β
.

Since p ¡ 1, it is clear that qβ ¥ 1 for any β P p0, 1q. Moreover,

lim
βÑ0�

�
qβ � 2�ℓβ ,N1

	
� lim

βÑ0�

�
p� β

1� β
� 2N1

N1 � 2
� 2ℓ

p1� βqpN1 � 2q


� �

p� 2�ℓ,N1

�   0,

and therefore qβ P r1, 2�ℓβ ,N1
q, for some β P p0, 1q sufficiently close to 0. Considering this

choice for β, we can apply the embedding proved in the first part to find C2 ¡ 0 such that

}u}
L
qβ
ℓβ
pBq

¤ C2}u}H2
0 pBq

.

Combining this estimate with (3.8), we obtain

}u}p
Lp
ℓ pBq

¤ C3}u}β0

L1pBq}u}p�β0

H2
0 pBq

, @u P H2
0,x,ypBq.

If punq � H2
0,x,ypBq is a bounded sequence, we can extract a subsequence (still

denoted by punq) such that un á u weakly in H2
0,x,ypBq. By the compact embedding of

H2
0,x,ypBq into L1pBq, we also have un Ñ u in L1pBq. Therefore,

}un � u}p
Lp
ℓ pBq

¤ C3}un � u}βL1pBq}un � u}p�β

H2
0 pBq

¤ C4}un � u}βL1pBq Ñ 0,

which shows that un Ñ u in Lp
ℓpBq, completing the proof.
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3.2.1 Further comments

We begin this section by presenting some results that are complemented by

Theorem 3.2. The following result can be found in [20, Theorem 1.4 and Corollary 1.5].

Theorem 3.8. Suppose that 2 ¤ N2 ¤ N1, 2   q   �8 and define the numbers

p0 :�

$'&'%
2pN1 � 1q
N1 � 3

, if N1 ¡ 3,

q, if N1 ¤ 3

and

q0 :� N � pN2 � 1q 2
p0

�

$'&'%
N � pN2 � 1qpN1 � 3q

N1 � 1
, if N1 ¡ 3,

N � 2pN2 � 1q
q

, if N1 ¤ 3.

Denoting by B the unit ball of RN , define also the space

H2
x,ypBq :� tu P H2pBq : upx, yq � up|x|, |y|q, @ px, yq P Bu.

Then the embedding H2
x,ypBq ãÑ LppB, |z|γq is continuous for 1 ¤ p ¤ p0 and compact if

1 ¤ p   p0, provided

γ ¡ p0q0
2

�

$'&'%
N2

1 � 4N2 � 3

N1 � 3
, if N1 ¡ 3,

Nq � 2pN2 � 1q
2

, if N1 ¤ 3.

As a consequence, we have the following result related to the space Lp
ℓpBq (cf.

(3.3)):

Corollary 3.9. With the same notation of Theorem 3.8, suppose that 2 ¤ N2 ¤ N1,

2   q   �8 and

ℓ ¡

$'&'%
N2

1 � 4N2 � 3

2pN1 � 3q , if N1 ¡ 3,

Nq � 2pN2 � 1q
4

, if N1 ¤ 3.

Then the embedding H2
x,ypBq ãÑ Lp

ℓ is compact for$'&'%1 ¤ p   2pN1 � 1q
N1 � 3

, if N1 ¡ 3,

1 ¤ p   q, if N1 ¤ 3.
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Proof. Fist, for a given ℓ ¡ 0, as |x| ¤ |z| and |y| ¤ |z|, then p|x||y|qℓ ¤ |z|2ℓ. This implies,

by pW1q, for 1 ¤ p   �8

LppB, |z|2ℓq ãÑ LppB, p|x||y|qℓq ãÑ Lp
ℓ , @ ℓ ¡ 0.

Now the result follows from Theorem 3.8 with γ � 2ℓ.

Now we can apply Corollary 3.9 with 3 ¤ N2 ¤ N1 to obtain results analogous to

those in Theorem 3.2. More precisely, the immersion H2
0,x,ypBq ãÑ Lp

ℓpBq is compact for

$''&''%
1 ¤ p   4pℓ� 2q

6
, if N1 � N2 � 3 and ℓ ¡ 1,

1 ¤ p   2pN1 � 1q
N1 � 3

, if 3 ¤ N2   N1 and ℓ ¡ ℓ� :� N2
1 � 4N2 � 3

2pN1 � 3q .

To verify that our results are sharper, we first consider the case N1 � N2 � 3. In

this situation, Theorem 3.2 ensures the compact embedding for any ℓ ¡ 0 and 1 ¤ p  
2�ℓ,N1

� 6� 2ℓ. Since
4pℓ� 2q

6
  6� 2ℓ,

for all ℓ ¡ 0, we conclude that our result encompasses a strictly wider range. A similar

improvement occurs when 3 ¤ N2   N1, because

2pN1 � 1q
N1 � 3

  2�ℓ,N1
ðñ ℓ ¡ 2pN1 � 1q

N1 � 3
,

and a straightforward computation shows that the inequality on the right-hand side is

always satisfied whenever ℓ ¡ ℓ�. In other words, ℓ� ¡ 2pN1 � 1q{pN1 � 3q is equivalent
to N1pN1 � 4q � 4N2 � 7 ¡ 0, which is always true.

3.3 Application

In this section, we prove Theorem 3.3. We first notice that, given ε ¡ 0, we may

use pf1q-pf3q to obtain

|F psq| ¤ ε|s|2 � C1|s|p, @s P R.

Thus, for any u P H2
0,x,ypBq, we can use Theorem 3.2 to guarantee that»
B

F puqrW pzqsℓ dz ¤ ε}u}2L2
ℓ pBq

� C1}u}pLp
ℓ pBq

  �8. (3.9)
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So, the functional

Ipuq :� 1

2
}u}2H2

0 pBq
�
»
B

F pupzqqrW pzqsℓ dz, u P H2
0,x,ypBq,

is well defined. Moreover, standard computations shows that I P C1pH2
0,x,ypBq,Rq and its

critical points are the weak solution of problem (Px,y).

By using (3.9), pW1q, and Theorem 3.2 again, we obtain

Ipuq ¥ 1

2
}u}2H2

0 pBq
� ε}u}2L2

ℓ pBq
� C1}u}pLp

ℓ pBq

¥ 1

2
}u}2H2

0 pBq

�
1� C2ε� 2C3}u}p�2

H2
0 pBq

	
.

Since p ¡ 2, we can choose ε ¡ 0 sufficiently small to obtain constants ρ, β ¡ 0 such that

Ipuq ¥ β, @u P H2
0,x,ypBq, }u}H2

0 pBq
� ρ.

Moreover, using pf1q, pf2q, and pf4q, we obtain C4 ¡ 0 such that

F psq ¥ C4|s|µ � C4, @ s P R.

Then, choosing a positive function u0 P H2
0,x,ypBq, we find that

Ipsu0q ¤ s2

2
}u0}2H2

0 pBq
� C4s

µ

»
B

|u0|µrW pzqℓs dz � C5.

Since µ ¡ 2, it follows that lim
sÑ�8

Ipsu0q � �8. Therefore, there exists e P H2
0,x,ypBq such

that Ipeq ¤ 0 and }e}H2
0 pBq

¡ ρ.

According to the above considerations, we can define

c :� inf
γPΓ

max
tPr0,1s

Ipγptqq ¥ β ¡ 0,

with Γ :� tγ P Cpr0, 1s, H2
0,x,ypBqq : γp0q � 0, γp1q � eu, and invoke the Mountain Pass

Theorem (cf. [5]) to obtain a sequence punq � H2
0,x,ypBq such that

lim
nÑ�8

Ipunq � c ¡ 0, lim
nÑ�8

I 1punq � 0. (3.10)
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From the above convergences and pf4q, we get

C6 ¥ Ipunq � 1

µ
I 1punqpunq

�
�
1

2
� 1

µ



}un}2H2

0 pBq
�
»
B

�
1

µ
fpunqun � F punq

�
rW pzqsℓ dz

¥
�
1

2
� 1

µ



}un}2H2

0 pBq
�
»
t|un|¤s0u

�
1

µ
fpunqun � F punq

�
rW pzqsℓ dz.

Since f is continuous, we can find C7 ¡ 0 such that���� 1µfpsqs� F psq
���� ¤ C7, @ |s| ¤ s0,

which implies����»
t|un|¤s0u

�
1

µ
fpunqun � F punq

�
rW pzqsℓ dz

���� ¤ C7

»
B

rW pzqsℓ dz �: C8.

Thus

C6 ¥
�
1

2
� 1

µ



}un}2H2

0 pBq
� C8,

and it follows from µ ¡ 2 and pf1q that the sequence punq is bounded.
Let u P H2

0,x,ypBq be the weak limit of a subsequence of punq. We aim to prove

that, along a subsequence, un Ñ u strongly in H2
0,x,ypBq. If this is true, then by the

regularity of I and (3.10), we conclude that u � 0 is a weak solution of problem (Px,y).

To prove the strong convergence, we compute

I 1punqpun � uq � }un}2H2
0 pBq

� xun, uy � An, (3.11)

where

An :�
»
B

fpunqpun � uqrW pzqsℓ dz.

Using the boundedness of B, pW1q, and pf2q, we obtain

|An| ¤ cf

»
B

p1� |un|p�1q|un � u|rW pzqsℓ dz ¤ cf pDn � Enq,

where

Dn :�
»
B

|un � u|rW pzqsℓ dz, En :�
»
B

|un|p�1|un � u|rW pzqsℓ dz.
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Clearly, Dn Ñ 0 as n Ñ �8, because W is bounded in B and un Ñ u in L1pBq.
Furthermore, using Hölder’s inequality,

En �
»
B

�
|un|p�1rW pzqsℓ{p1

	 �|un � u|rW pzqsℓ{p� dz
¤
�»

B

|un|p1pp�1qrW pzqsℓ dz

1{p1 �»

B

|un � u|prW pzqsℓ dz

1{p

�
�»

B

|un|prW pzqsℓ dz

1{p1 �»

B

|un � u|prW pzqsℓ dz

1{p

and therefore

En ¤ }un}
p
p1

Lp
ℓ pBq

}un � u}Lp
ℓ pBq

¤ C7}un}
p
p1

H2
0 pBq

}un � u}Lp
ℓ pBq

.

Since the embedding H2
0,x,ypBq ãÑ Lp

ℓpBq is compact, we conclude that En Ñ 0.

Altogether, these estimates show that An Ñ 0 as nÑ �8. Therefore, using the

second convergence in (3.10), (3.11), and the weak convergence, we obtain

lim
nÑ�8

}un}2H2
0 pBq

� }u}2H2
0 pBq

.

This implies that un Ñ u strongly in H2
0,x,ypBq, completing the proof.
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Chapter 4

Kirchhoff-Boussinesq equation with

Hénon nonlinearity

In this chapter, we will study the existence and multiplicity of radial solutions

for the following class of problems$&% ∆2u� divp|x|κ|∇u|p�2∇uq � |x|ℓfpuq, in B,

u � Bu
Bν � 0, on BB,

(P�)

where ℓ ¡ 0, κ ¥ 0, B � RN is the unit ball and p, q ¡ 2. The nonlinear term f satisfies

the following assumptions:

(f1) f P CpR,Rq;

(f2) there exists ℓ ¡ 0,

2   q   2��ℓ :� 2�� � 2ℓ

N � 4

and C ¡ 0 such that

|fpsq| ¤ C
�
1� |s|q�1

�
, @ s P R;

(f3) there holds

lim
sÑ0

fpsq
s

� 0;

(f4) there exists µ ¡ p and s0 ¡ 0 such that

0   µF psq ¤ sfpsq, @ |s| ¥ s0,

where F psq :�
» s

0

fpτqdτ .

We remark that the growth of f in pf2q may be supercritical, since 2��ℓ ¡ 2�� for

any ℓ ¡ 0.

The first main result of this chapter is:
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Theorem 4.1. Suppose that ℓ ¡ 0, N ¡ 4 and that f satisfies pf1q-pf4q. Then there

exists κ� � κ�pℓ,Nq ¡ 0 such that, for any κ P r0, κ�q, Problem (P�) has a nonzero radial

weak solution provided

2   p   2�κ :� 2� � 2κ

N � 2
, p   q.

We observe that p   q is always true in view of pf2q and pf4q. As we are assuming

2   q   2��ℓ , in order to apply the above theorem, we also need 2   p   2�κ and

p   q. Therefore, it is desirable to ensure that the inequality 2�κ   2��ℓ holds, so that the

admissible range for q is non-empty for any choice of p. We prove in Proposition 4.5 that

this condition is indeed satisfied.

In our second application, we prove that under symmetric conditions on f we can

obtain multiple solutions. More specifically, the following holds:

Theorem 4.2. Let κ� ¡ 0 be given by Theorem 4.1. Suppose that ℓ ¡ 0, N ¡ 4,

κ P r0, κ�q, 2   p   2�κ, 2   q   2��ℓ and f is an odd function satisfying pf1q, pf2q and

pf4q. Then Problem (P�) admits infinity many radial weak solutions.

This chapter is structured as follows: Section 4.1 presents the variational

framework, where several technical results are provided and proved. In Section 4.2,

Theorem 4.1 is proved, while Section 4.3 is dedicated to the proof of Theorem 4.2.

4.1 The variational framework

For 1 ¤ q   �8, we consider the following weighted Lebesgue space

Lq
ℓ :�

"
u : B Ñ R : u is measurable and

»
B

|upxq|q|x|ℓ dx   8
*
,

endowed with the norm

}u}Lq
ℓ
:�

�»
B

|upxq|q|x|ℓ dx

1{q

.

Analogously, we just write Lq for the usual Lebesgue space LqpBq.
We state in what follows a Gagliardo-Nirenberg interpolation inequality with

weights due to [68] ( cf. [33, 61]):
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Theorem 4.3. Let p, q, r P r1,�8q, θ P r1{2, 1s, p1�N{rq R NY t0u and α, β, γ P R be

such that α ¡ �N{r, β ¡ �N{q, γ ¡ �N{p and$''&''%
1

p
� 1� γ

N
� θ

�
1

r
� 2� α

N



� p1� θq

�
1

q
� β

N



0 ¤ θα � p1� θqβ � γ ¤ 2θ � 1.

Then there exists C � CpN, p, q, θ, γ, α, βq ¡ 0 such that���|x|γ∇u���
LppRN q

¤ C
���|x|α∇2u

���θ
LrpRN q

���|x|βu���1�θ

LqpRN q
, @ u P C8

0 pRNq.

As a consequence, we prove:

Theorem 4.4. Suppose that N ¡ 4 and ℓ ¡ 0. Then there exists κ� � κ�pℓ,Nq ¡ 0 such

that, for any κ P r0, κ�q and 2 ¤ p   2�κ there holds

}∇u}Lp
κpRN q ¤ C}∇2u}θ�

L2pRN q
}u}1�θ�

L
q�
ℓ pRN q

, @u P C8
0 pRNq,

with

θ� :� 2ℓp� 2p2 � 2κpℓ� κq
4p2 � ℓp2 � pκp4� ℓq , q� :� pp2� ℓq � 2ℓ� 2κ

4� p� κ
, (4.1)

where C ¡ 0 is a constant independent of u. In addition, θ� P r1{2, 1q and q� P r2, 2��ℓ q.

Proof. Let ℓ ¡ 0, κ ¥ 0 and 2 ¤ p   2�κ be fixed. The idea is to apply Theorem 4.3 with

α � 0, γ � κ{p, β � ℓ{q�, r � 2 and θ�, q� as in the statement. To do this, we first show

that, with this choice of the parameters, the couple pθ�, q�q verifies$''&''%
1

p
� 1� γ

N
� θ�

�
1

r
� 2� α

N



� p1� θ�q

�
1

q�
� β

N



θ�α � p1� θ�qβ � γ � 2θ� � 1.

Actually, replacing the values of α, γ, β and r, we can rewrite the above system as$''&''%
N � p� κ

pN
� θ�

pN � 4q
2N

� p1� θ�qpN � ℓq
q�N

p1� θ�q ℓ
q�
� κ

p
� 2θ� � 1.

(4.2)

From the second equation, we obtain

θ� � ℓp� q�pp� κq
pp2q� � ℓq . (4.3)
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After substitute this expression in the first equation of (4.2) and make a lot of calculations,

we get

N � p� κ � rℓp� q�pp� κqspN � 4q � 2pp� κqpN � ℓq
2p2q� � ℓq ,

from which we obtain

q�p4� p� κq � ℓp� 2p� 2κ� 2ℓ. (4.4)

Since N ¡ 4, one has 2�   4, and therefore

p ¤ 2� � 2κ

N � 2
  4� 2κ

N � 2
  4� κ,

that is, p4 � p � κq ¡ 0. So, we can go back to (4.4) to obtain the expression of q� in

(4.1). Replacing this value in (4.3) and performing some calculations, we conclude that

θ� needs to be as in (4.1).

We prove in what follows that all the requirements for applying Theorem 4.3 hold

true. The number p P r2, 2�κq is fixed.
Claim 1: θ� ¥ 1{2, is κ ¥ 0 is sufficiently small.

In fact, using the definition of θ�, we can see that the claimed inequality is equivalent to

h1ppq :� �ℓp2 � r4ℓ� κp4� ℓqsp� 4spℓ� κq ¥ 0, @ p P r2, 2�κs.

The derivative of h1 vanishes in p1 :� r4ℓ� κp4� ℓqs{p2ℓq, and therefore we can use ℓ ¡ 0

to conclude that p1 is decreasing in pp1,�8q. Since an easy calculation shows that p1   2,

it is sufficient to check that h1p2�κq ¥ 0.

We have that

h1 p2�κq � �ℓ
�
2� � 2κ

N � 2


2

� r4ℓ� κp4� ℓqs
�
2� � 2κ

N � 2



� 4κpℓ� κq

� �ℓ
�
2N � 2κ

N � 2


2

� r4ℓ� κp4� ℓqs
�
2N � 2κ

N � 2



� 4κpℓ� κq

� �ℓp2N � 2κq2 � r4ℓ� κp4� ℓqsp2N � 2κqpN � 2q � 4κpℓ� κqpN � 2q2
pN � 2q2

� �ℓp4N2 � 8Nκ� 4κ2q � r8ℓN � 8ℓκ� 2Np4� ℓqκ� 2p4� ℓqκ2spN � 2q
pN � 2q2

� r4κℓ� 4κ2spN � 2q2
pN � 2q2
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Thus

h1 p2�κq �
p�4ℓ� 2p4� ℓqpN � 2q � 4pN � 2q2qκ2

pN � 2q2

�r�8ℓN � p8ℓ� 2Np4� ℓqqpN � 2q � 4ℓpN � 2q2sκ
pN � 2q2

��4ℓN
2 � 8ℓNpN � 2q
pN � 2q2

from which we conclude that

h1 p2�κq � � apℓ,Nq
pN � 2q2κ

2 � bpℓ,Nq
pN � 2q2κ�

cpℓ,Nq
pN � 2q2

with $'''''&'''''%
apℓ,Nq :� 4NpN � 2q � 2ℓN ¡ 0,

bpℓ,Nq :� 16N � 8N2 � 12ℓN � 2ℓN2,

cpℓ,Nq :� 4ℓNpN � 4q ¡ 0.

(4.5)

Since apℓ,Nq ¡ 0 and cpℓ,Nq ¡ 0, the roots of the quadratic polynomial h1p2�κq
are given by

κ	 :� bpℓ,Nq 	arbpℓ,Nqs2 � 4apℓ,Nqcpℓ,Nq
2apℓ,Nq .

Notice that κ�   0   κ�. So, if we define

κ� :� bpℓ,Nq �arbpℓ,Nqs2 � 4apℓ,Nqcpℓ,Nq
2apℓ,Nq ,

we have that h1p2�κq ¥ 0, whenever κ P r0, κ�q, and Claim 1 is proved.

Claim 2: θ�   1, if κ P r0, κ�q.
Arguing as in the former claim, we notice that θ�   1 is equivalent to

h2ppq :� pℓ� 2qp2 � rκp4� ℓq � 2ℓsp� 2κpℓ� κq ¡ 0, @ p P r2, 2�κq.

The derivative of h2 vanishes in p2 � r2ℓ � κp4 � ℓqs{r2pℓ � 2qs and therefore we can use

ℓ ¡ 0 to conclude that p2 is increasing in pp2,�8q. Since an easy calculation shows that

p2 ¤ 2, it is sufficient to check that h2p2q ¡ 0. But this clearly holds true, because

h2p2q � 2pκ2 � 4κ� 4q � 2pκ� 2q2

and therefore Claim 2 is verified.
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We finally note that, for any κ P r0, κ�q, there holds

p1� θ�q ℓ
q�
� κ

p
� 2θ� � 1 ¥ 0

and therefore the first statement of the theorem is a direct consequence of Theorem 4.3.

It remains to check that q� P r2, 2��ℓ q. To do this, we first notice q�   2��ℓ is

equivalent to

rpp2� ℓq � 2ℓ� 2κspN � 4q   p2N � 2ℓqp4� p� κq,

that is,

4pN � pℓN � 2ℓN � 8p� 8κ   8N � 2ℓp� 2ℓκ.

But this is the same as

ppN � 2qp4� ℓq   2Np4� ℓq � 2κp4� ℓq.

Dividing both sides of last inequality by p4 � ℓq, we can see the above inequality is

equivalent to p   2�κ, which holds true. Finally, q� ¥ 2 is equivalent to

2p4� p� κq ¤ pp2� ℓq � 2ℓ� 2κ,

in other words,

2pℓ� 4q ¤ ppℓ� 4q,

which is also true. The theorem is proved.

We now verify that, for any choice of p P r2, 2�κq in Theorem 4.1, the range of

possible values for q is non-empty.

Proposition 4.5. Under the hypotheses of Theorem 4.1, we have that 2�κ   2��ℓ .

Proof. We first recall that

2�κ �
2pN � κq
N � 2

, 2��ℓ � 2pN � ℓq
N � 4

and so 2�κ   2��ℓ is equivalent to

κpN � 4q   ℓpN � 2q � 2N.

The above expression is trivially true if κ   ℓ. Recalling that

0   κ   κ� � bpℓ,Nq �arbpℓ,Nqs2 � 4apℓ,Nqcpℓ,Nq
2apℓ,Nq ,
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where the above quantities where defined in (4.5), it is sufficient to verify that the right-

hand side of the above expression is less than ℓ.

We first observe that κ�   ℓ is equivalent to

a
rbpℓ,Nqs2 � 4apℓ,Nqcpℓ,Nq   6N2ℓ� 4ℓ2N � 4Nℓ� 8N2 � 16N. (4.6)

Moreover,

rbpℓ,Nqs2 � 4ℓ2N4 � 64N4 � 256N2 � 144ℓ2N2 � 32ℓN4

� 256ℓN3 � 48ℓ2N3 � 256N3 � 384ℓN2,

and

4apℓ,Nqcpℓ,Nq � 64ℓN4 � 32ℓ2N3 � 384ℓN3 � 128ℓ2N2 � 512ℓN2.

Thus,

rbpℓ,Nqs2 � 4apℓ,Nqcpℓ,Nq � 4ℓ2N4 � 32ℓN4 � 64N4 � 16ℓ2N3 � 256N3

� 128ℓN3 � 256N2 � 128ℓN2 � 16ℓ2N2.

We may now square both sides of (4.6) and perform straightforward (though

lengthy) algebraic manipulations to obtain that κ�   ℓ is equivalent to

0 ¤ 64N3ℓpN � 2q � 32N2ℓ2pN2 �N � 4q � 16N2ℓ3p3N � 2q � 16N2ℓ4,

which is clearly true, since N ¡ 4.

We finish this section by presenting an embedding proved in [20], which will be

crucial in next section:

Theorem 4.6. Let H2
r pBq be the set of all functions of H2pBq which are radial. Then

each function u P H2
r pBq is a.e. equal to a function u P C1pB � t0uq. Moreover, for

any i, j � 1, ..., N , the derivative uxixj
pxq exists a.e. for |x| P p0, 1q. Also, there exists a

positive constant C such that

|upxq| ¤ C
}u}H2pBq

|x|pN�4q{2
, @x P B � t0u.

Finally, for any ℓ ¡ 0, the embedding H2
r pBq ãÑ Lq

ℓ is continuous if q P r1, 2��ℓ s and

compact if q P r1, 2��ℓ q.
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4.2 Existence of a solution

We begin this section by defining the workspace to deal with Problem (P�). Let

C8
0,rpBq be the space of all radially symmetric functions in C8

0 pBq and denote

X :� C8
0,rpBq

}�}
, }u} :�

�»
B

|∆u|2 dx


1{2

.

It is a Hilbert space with inner product given by

xu, vy :�
»
B

∆u∆v dx, @u, v P X.

In order to define the energy functional associated to our problem, we pick ε ¡ 0

and use pf1q-pf3q to obtain

|F psq| ¤ ε

2
|s|2 � C1|s|q, @ s P R.

Hence, since 2   q   2��ℓ , we can use Theorem 4.6 to obtain»
B

|x|ℓF puq dx ¤ ε

2
}u}2L2 � C1}u}qLq

ℓ
¤ C2

ε

2
}u}2 � C3}u}q   8. (4.7)

Also, since 2   p   2�κ, it follows from Theorems 4.4 and 4.6 that»
B

|x|κ|∇u|p dx ¤ C4}u}θ�}u}1�θ�
L
q�
ℓ

¤ C5}u}θ�}u}1�θ� � C5}u}   8. (4.8)

So, it is well defined I� : X Ñ R by

I�puq :� 1

2
}u}2 � 1

p

»
B

|x|κ|∇u|p dx�
»
B

|x|ℓF puq dx, u P X.

Moreover, standard arguments shows that I� P C1pX,Rq with

I 1�puqφ �
»
B

∆u∆φ dx�
»
B

|x|κ|∇u|p�2r∇u �∇φs dx�
»
B

|x|ℓfpuqφ dx,

for all u, φ P X. Thus, the critical points of I� are precisely the weak solution to our

problem. We shall obtain these critical as an application of the Mountain Pass Theorem

(cf. [5]).

We recall that I� satisfies the pPSqd condition at level d P R if any sequence

punq � X such that

lim
nÑ�8

I�punq � d, lim
nÑ�8

I 1�punq � 0 (4.9)
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has a convergent subsequence.

Proposition 4.7. Suppose that ℓ ¡ 0, N ¡ 4 and that f satisfies pf1q,pf2q and pf4q.
Then the functional I� satisfies the pPSqd condition at any level d P R.

Proof. Let punq � X be as in (4.9). Since µ ¡ p in pf4q, we have that

0   pF psq ¤ sfpsq, @ |s| ¥ s0,

from which we obtain

I�punq � 1

p
I 1�punqun �

�
1

2
� 1

p



}un}2 �

»
B

|x|ℓ
�
fpunqun

p
� F punq

�
dx

¥
�
1

2
� 1

p



}un}2 �

»
t|un|¤s0u

|x|ℓ
�
fpunqun

p
� F punq

�
dx.

From pf1q we obtain a constant M ¡ 0 verifying����fpsqsp � F psq
���� ¤M, @ |s| ¤ s0.

Thus, there exists C1 ¡ 0 such that

I�punq � 1

p
I 1�punqun ¥

�
1

2
� 1

p



}un}2 � C1.

From the convergences in (4.9) we obtain

I�punq � 1

p
I 1�punqun � d� onp1q � onp1q}un},

where onp1q denotes a sequence approaching to zero as nÑ �8. Hence,

d� onp1q � onp1q}un} ¥
�
1

2
� 1

p



}un}2 � C1.

Last inequality combined with p ¡ 2 shows that punq is bounded. Thus, up to a

subsequence, we have that un á u weakly in X.

Using (4.9) again, we obtain

onp1q � I 1�punqpun � uq � xun, un � uy �
»
B

|x|κ|∇un|p�2r∇un �∇pun � uqs dx

�
»
B

|x|ℓfpunqpun � uq dx
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and therefore

onp1q � }un}2 � xun, uy � an � bn, (4.10)

where

an :� �
»
B

|x|κ|∇un|p�2r∇un �∇pun � uqs dx

and

bn :� �
»
B

|x|ℓfpunqpun � uq dx.

Hölder Inequality, Theorems 4.4 and 4.6 and the boundedness of punq yields

|an| ¤
»
B

|x| κp1 |∇un|p�1|x|κp |∇pun � uq| dx

¤ }∇un}p{p
1

Lp
κ
}∇pun � uq}Lp

κ

¤ C1}un}θ�p{p1}un � u}1�θ�
L
q�
ℓ

¤ C2}un � u}1�θ�
L
q�
ℓ

� onp1q,

where we have used q� P r2, 2��ℓ q and the weak convergence in the last equality.

Analogously, using pf2q, we obtain

|bn| ¤ C

�
}un � u}L1 �

»
B

|x| ℓ
q1 |un|q�1|x| ℓq |un � u|

�
¤ C

�
}un � u}L1 � }un}

q
q1

Lq
ℓ
}un � u}Lq

s

�
� onp1q.

Replacing the above estimates in (4.10) and recalling the weak convergence of

punq, we get

onp1q � }un}2 � xun, uy � onp1q � }un}2 � }u}2 � onp1q,

and therefore un Ñ u strongly in X.

We are ready to prove the existence result.

Proof of Theorem 4.1 . For all u P X, we can use (4.7) with ε � 1{p2C2q and (4.8), to get

I�puq ¥ 1

4
}u}2 � C6

p
}u}p � C3}u}q � }u}2

�
1

4
� C6

p
}u}p�2 � C3}u}q�2



and

I�puq ¥ 1

4
}u}2 � C3}u}q � }u}2

�
1

4
� C3}u}q�2



.

Since p, q ¡ 2, we can find β, ρ ¡ 0 such that

I�puq ¥ β, @u P X X BBρp0q.
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Moreover, using pf1q and pf4q, we obtain C7, C8 ¡ 0 such that

F psq ¥ C7|s|µ � C8, @ s P R. (4.11)

Since 2�κ   2��ℓ (cf. Proposition 4.5) and p P r2, 2�κq, we can assume in pf4q,
without loss of generality, that p   µ   2��ℓ . So, for any u P X � t0u fixed, we can use

Theorem 4.6 in order to get

I�ptuq ¤ t2

2
}u}2 � C9t

µ}u}µ � C10

and, by Theorems 4.4 and 4.6,

I�ptuq ¤ t2

2
}u}2 � C11t

p}u}p � C9t
µ}u}µ � C10.

Recalling that 2   p   µ, we conclude that I�ptuq Ñ �8, as tÑ �8. Thus, there exists

e� P X such that Ipe�q ¤ 0 and }e�} ¡ ρ.

The above considerations show that it is well defined

c� :� inf
γPΓe

max
tPr0,1s

I�pγptqq ¥ β ¡ 0,

where Γe� :� tγ P Cpr0, 1s, Xq : γp0q � 0, γp1q � e�u. It follows from the Mountain Pass

Theorem (cf. [5]) that there exists punq � X such that

lim
nÑ�8

I�punq � c�, lim
nÑ�8

I 1�punq � 0.

It follows from Proposition 4.7 that, along a subsequence, un Ñ u strongly in X. Using

the regularity of I� we conclude that I � puq � c� ¥ β ¡ 0 and I 1�puq � 0, that is, u P X
is a nonzero solution to Problem (P�).

4.3 Multiplicity of solutions

In this section, we prove Theorem 4.2. The idea is take advantage of the symmetry

of the even functional. In order to construct the appropriated linking structure, we need

some background on the spectral theory of the biharmonic operator involving the weight

|x|ℓ.
For λ P R�, we consider the fourth-order eigenvalue problem
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$&% ∆2u � λ|x|ℓu, in B,

u � Bu
Bν � 0, on BB,

(4.12)

If it admits a nonzero weak solution u P X, then λ is called an eigenvalue and u a λ|x|ℓ-
eigenfunction. The set of all eigenvalues is called the spectrum of p∆2, |x|ℓq in X and it

is denoted by σp∆2, |x|ℓq.
Using the compact embeddingX ãÑ L2

ℓ , we can prove that the smallest eigenvalue

λ1pBq of problem (4.12) is exactly

λ1pBq :� inf
uPXzt0u

$''&''%
»
B

|∆u|2 dx»
B

|x|ℓ|u|2 dx

,//.//- .

Moreover, from the spectral theory of self-adjoint compact operators, we obtain a complete

sequence of eigenvalues

0   λ1 ¤ λ2 ¤ � � � ¤ λk ¤ � � �

such that λk Ñ �8, as k Ñ �8.

For any i P t1, 2, � � � , ku, we denote by φi a λi-eigenfunction and define the

subspaces

Vk :� spantφ1, ...., φku, Wk :� V K
k .

We have the orthogonal decomposition X � Vk `Wk and, for any k P N, the following

holds

}u}2L2
ℓ
¤ 1

λk�1

}u}2, @u P Wk. (4.13)

The following technical result will be essential in the proof of Theorem 4.2.

Lemma 4.8. Suppose that 2   r   2��ℓ and k P N. Then there exists α P p0, 1q and

C ¡ 0, independent of k, such that

}u}rLr
ℓ
¤ C

λ
p1�αq
k�1

}u}r, @u P Wk.
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Proof. Since 2   r   2��ℓ , there exist α P p0, 1q, such that r � 2p1� αq � 2��ℓ α. Thus, we

can use Hölder inequality for t � 1{α and t1 � 1{p1� αq and Theorem 4.6 to get»
B

|x|ℓ|u|r dx �
»
B

|x| ℓt1 |u|p1�αq2|x| ℓt |u|α2��ℓ dx

¤
�»

B

|x|ℓ|u|2 dx

1{t1 �»

B

|x|ℓ|u|2��ℓ dx


1{t

� }u}2p1�αq

L2
ℓ

}u}2��ℓ α

L
2��
ℓ

ℓ

¤ C}u}2p1�αq

L2
ℓ

}u}2��ℓ α.

But the second variational inequality in (4.13) implies that

}u}2p1�αq

L2
ℓ

¤ 1

λ
p1�αq
k�1

}u}2p1�αq, @u P Wk,

and therefore

}u}rLr
ℓ
¤ C

λ
p1�αq
k�1

}u}2p1�αq}u}2��ℓ α � C

λ
p1�αq
k�1

}u}r.

This lemma is proved.

To establish the existence of infinitely many solutions for Problem (P�), we will

use the following version of the Mountain Pass Theorem (cf. [55, Theorem 9.12]).

Theorem 4.9 (Symmetric Mountain Pass Theorem). Suppose that X is a real Banach

space and I P C1pX ,Rq is an even functional satisfying Ip0q � 0. Suppose also that

X � V `W, where V is finite dimensional subspace

p pI1q there are constants ρ, τ ¡ 0 such that Ipuq ¥ τ , for all u PW X BBρp0q;

p pI3q for each finite dimensional subspace pX � X , there exists R � Rp pX q such that

sup
uP pX zB

RpxX q
p0q

Ipuq ¤ 0

and the pPSqc condition for any c P R. Then I has an unbounded sequence of critical

values.

We conclude the chapter with the proof of our second main result.

Proof of Theorem 4.2. We are intending to apply Theorem 4.9 for the functional I�. Since

we are assuming f is odd, the map u ÞÑ
»
B

|x|ℓF puq dx is even in X, the same occurring
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with I�. Of course I�p0q � 0 and, by Proposition 4.7, I� satisfies pPSqc condition for

any level c P R.
It remains to verify the geometric conditions. We first deal with p pI3q. Let pX � X

be a finite-dimensional subspace. Without loss of generality we can assume p   µ   2��ℓ ,

because 2�κ   2��ℓ (cf. Proposition 4.5). Thus the norms } � } and } � }Lµ
ℓ
are equivalent inpX and we can use (4.11) in order to obtain,

I�puq ¤ 1

2
}u}2 � C1}u}µ � C2, @u P pX.

Analogously, by Theorems 4.4 and 4.6

I�puq ¤ 1

2
}u}2 � C3}u}p � C4}u}µ � C5, @u P pX.

Since 2   p   µ, we conclude that I�puq Ñ �8, as }u} Ñ �8, u P pX. Thus the

condition p pI3q also holds.

In order to verify p pI1q, we use pf2q to obtain C6 ¡ 0 such that

|F psq| ¤ C6 � C7|s|q, @ s P R.

Thus, for any u P Wk,

I�puq ¥ 1

2
}u}2 � 1

p
}|∇u|}p

Lp
κ
� C8}u}qLq

ℓ
� C9. (4.14)

Now we apply Lemma 4.8 with q and q� in order to obtain α, β P p0, 1q such that

}u}q
Lq
ℓ
¤ C10

λ
p1�αq
k�1

}u}q, }u}q�
L
q�
ℓ

¤ C11

λ
p1�βq
k�1

}u}q� (4.15)

and use Theorem 4.4 to get

}|∇u|}Lp
κ
¤ C12}u}θ�}u}1�θ�

L
q�
ℓ

¤ C12}u}θ�
�

C
1{q�
11

λ
p1�βq{q�
k�1

}u}
�1�θ�

� C13

λ
p1�βqp1�θ�q{q�
k�1

}u}.

Hence,

}|∇u|}p
Lp
κ
¤ C14

λ
p1�βqp1�θ�qp{q�
k�1

}u}p.
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This inequality combined with (4.14) and (4.15) yields

I�puq ¥ 1

2
}u}2 � C15

λ
p1�βqp1�θ�qp{q�
k�1

}u}p � C16

λ
p1�αq
k�1

}u}q � C9

� 1

2
}u}2

�
1� C17

λ
p1�βqp1�θ�qp{q�
k�1

}u}p�2 � C18

λ
p1�αq
k�1

}u}q�2

�
� C9,

for any u P Wk.

We set

ρk :� 1

2
min

$&%
�
λ
p1�βqp1�θ�qp{q�
k�1

4C17

�1{pp�2q

,

�
λ
p1�αq
k�1

4C18

�1{pq�2q
,.-

in such a way that

C17

λ
p1�βqp1�θ�qp{q�
k�1

ρp�2
k   1

4
,

C18

λ
p1�αq
k�1

ρq�2
k   1

4
.

Thus

1� C17

λ
p1�βqp1�θ�qp{q�
k�1

ρp�2
k � C18

λ
p1�αq
k�1

ρq�2
k ¡ 1

2

and consequently

I�puq ¥ 1

4
ρ2k � C9, @u P Wk X BBρkp0q.

Recalling that α, β P p0, 1q and θ�   1 (see Theorem 4.4), we may use λk Ñ �8
to conclude that ρk Ñ �8, as k Ñ �8. Thus we can find ηk0 ¡ 0 such that I�puq ¥ ηk0

for any u P Wk0 X BBρk0
p0q. Hence, the condition p pI1q holds for the decomposition

X � Vk0 `Wk0 and Theorem 4.2 is a direct consequence of Theorem 4.9.
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Chapter 5

FitzHugh-Nagumo system with

exponential growth

In this chapter, we will study the following planar FitzHugh–Nagumo system:$&%�∆u � λQp|x|qfpuq � V p|x|qv, in R2,

�∆v � V p|x|qu� V p|x|qv, in R2,
(Sλ)

where λ ¡ 0 and the potentials V, Q : p0,�8q Ñ R are such that

(V ) V P Cpp0,�8q, p0,�8qq and there exists a ¡ �2, such that :

lim inf
rÑ�8

V prq
ra

¡ 0;

(Q) Q P Cpp0,�8q, p0,�8qq is continuous and there exist b0, b ¡ �2, such that

lim sup
rÑ0

Qprq
rb0

  �8, lim sup
rÑ�8

Qprq
rb

  �8.

Concerning the nonlinearity f : RÑ R, we assume the following:

(f1) f P CpR,Rq and there exists α0 ¡ 0, such that

lim
|s|Ñ�8

|fpsq|
eαs2

�
#

0, if α ¡ α0,

�8, if α   α0;

(f2) there holds

lim
sÑ0

fpsq
|s|γ�1

� 0,

where

γ :� max

"
2,

4pb� aq
pa� 2q � 2

*
;

(f3) there exists µ ¡ γ, such that

0   µF psq :� µ

» s

0

fptq dt ¤ fpsqs, @ s � 0;
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(f4) there exist C ¡ 0 and ν ¡ γ such that

F psq ¥ C|s|ν , @ s P R.

The main results of this chapter are:

Theorem 5.1. Suppose that pV1q, pQ1q and pf1q-pf4q hold. Then there exists λ0 ¡ 0 such

that the System (Sλ) has a radial nonzero weak solution, provided λ ¥ λ0. Moreover, if

we call pu, vq this solution, the following hold:

(a) if there exists a0 ¡ �2 such that

lim sup
rÑ0

V prq
ra0

  �8,

then u, v P W 2,p
loc pR2q for any p ¡ 1 such that pa0, pb0 ¡ �2. In particular, u, v are

locally Hölder continuous;

(b) if V is locally Hölder continuous, then v P C2,σ
loc pR2q for some σ P p0, 1q.

Theorem 5.2. Suppose that pV1q, pQ1q and pf1q-pf4q hold. If additionally f is odd then,

for any given m P N, there exists λm ¡ 0 such that the System (Sλ) has at least 2m radial

nonzero weak solutions, provided λ ¥ λm.

We present now some examples of functions satisfying our hypothesis. First notice

that, for any a ¡ �2 and a ¥ a, the function V : p0,�8q Ñ p0,�8q defined by V prq � ra

verifies pV1q. Also, for �2   b, b0 and s0 ¥ b0, s ¤ b, the function

Qprq �
$&%r

s0 , if 0   r ¤ 1,

rs, if r ¡ 1,

verifies pQ1q. More simply, in the case �2   b0 ¤ b, we can take b0 ¤ β ¤ b and see

the function Qpsq � rβ also verifies the same condition. Finally, a typical example of a

function f verifying conditions pf1q-pf4q is

fpsq � |s|p�2seα0s2 , s P R,

with p ¡ γ, α0 ¡ 0 and µ � ν � p.

The chapter is organized in the following way: in Section 5.1, we established the

variational framework to correctly define the energy functional. In particular, we prove a

Trudinger-Moser type inequality (cf. Theorem 5.10 and Remark 5.11), which is interesting

in itself. In Section 5.2, we define the Euler Lagrange functional associated to the system
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(Sλ) and prove a version, for out setting, of the Principle of Symmetric Criticality. We also

prove a local compactness result for the energy functional and show it has the Mountain

Pass geometry. Finally, we reserve Section 5.3 for the proof of Theorems 5.1 and 5.2.

5.1 Variational setting

Along all this chapter, we assume that pV1q and pQ1q hold and consider the set

E :�
"
u P L2

locpR2q : |∇u| P L2pR2q,
»
R2

V p|x|qu2 dx   �8
*
.

We are going to show that it is a Hilbert space (cf. Proposition 5.3) when endowed with

the scalar product

xu,wyE :�
»
R2

�
∇u �∇w � V p|x|quw

	
dx, @u, w P E,

whose corresponding norm is }u}E :� xu, uy1{2E . We also denote by Erad the subspace of

E consisted of the radial functions, that is,

Erad :� tu P E : u � g � u, @ g P Op2qu ,

where Op2q stands for group of real orthogonal 2� 2 matrices.

For completeness, we reproduce in what follows some arguments from [3,

Proposition 2.1].

Proposition 5.3. Suppose that V P Cpp0,�8q, p0,�8qq. Then the space E is a Hilbert

space.

Proof. If punq � E is a Cauchy sequence, then for each i � 1, ..., n, punqxi
and

a
V p| � |qun

are also Cauchy sequences in L2pR2q. Hence, there exists ui, v P L2pR2q such that

punqxi
Ñ ui,

a
V p| � |qun Ñ v, in L2pR2q.

We define w � v{p
a
V p| � |q and we are going to show that wxi

� ui, w P E and }un �
w}E Ñ 0.

For any R ¡ 0, choose φ P C8
0 pR2q such that φ � 1 on BR and supppφq � BR�1.

To prove un is a Cauchy sequence in L2pBRq observe that»
BR

|un � um|2 dx �
»
BR

|φpun � umq|2 dx ¤
»
BR�1

|φpun � umq|2 dx.
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As ∇pφpun � umqq � pun � umq∇φ � φ∇pun � umq and φ is constant in BR, Poincaré’s

inequality yields constants constants C1, C2 ¡ 0 such that»
BR

|un � um|2 dx ¤ C1

»
BR�1zBR

|pun � umq∇φ|2 dx� C2

»
BR

|φ∇pun � umq|2 dx.

Rewriting the right-hand side, we obtain»
BR

|un � um|2 dx ¤ C3

»
BR�1zBR

V p|x|q |un � um|2
V p|x|q dx� C4

»
BR

|∇pun � umq|2 dx.

Let MR the minimum of V in BRzBR. Then,»
BR

|un � um|2 dx ¤ C3

MR

»
BR�1zBR

V p|x|q|pun � umq|2 dx� C4

»
BR

|∇pun � umq|2 dx,

which implies »
BR

|un � um|2 dx ¤ C5}un � um}2E. (5.1)

Since un is a Cauchy sequence in E, this inequality implies un is a Cauchy sequence in

L2pBRq. Thus, for each R ¡ 0, there exists uR P L2pBRq such that un Ñ uR in L2pBRq
and (up to a subsequence) un Ñ uR a.e. in BR. Simultaneously, since

a
V p| � |qun Ñ v

a.e. in R2, it follows that un Ñ v a.e. in R2. Therefore, uR � w, implying w P L2
locpR2q.

Finally, for an arbitrary φ P C8
0 pR2q, let R ¡ 0 such that supppφq � BR and notice that

»
R2

wφxi
dx �

»
BR

wφxi
dx �

»
BR

uRφxi
dx

� lim
nÑ�8

»
BR

unφxi
dx � � lim

nÑ�8

»
R2

punqxi
φ dx.

As punqxi
Ñ ui in L2pR2q, the weak derivative wxi

exists and equals to ui. Consequently,

}un � w}E Ñ 0, which completes the proof.

Corollary 5.4. The space E is continuously embedded in H1
locpR2q. In particular, for any

R ¡ 0, E is continuously and compactly embedded in LqpBRq, for all q ¥ 1.

Proof. Let u P E and R ¡ 0. We can follow the same step to obtain (5.1) to prove»
BR

u2 dx ¤ C1}u}2E,

what is enough to conclude }u}H1pBq ¤ C2}u}E.
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For any u P E fixed, we define the linear functional Tu : Erad Ñ R given by

Tupφq :�
»
R2

V p|x|quφ dx.

Since |Tupφq| ¤ }u}E}φ}E, we may invoke Riesz’s Theorem to obtain Brus P Erad such

that Tupφq � xBrus, φyE, for all φ P Erad. Of course, Tu can be defined on E. Therefore,

Brus is a critical point of the C1 functional Ju : E Ñ R defined by

Jupwq :� 1

2
}w}2E �

»
R2

V p|x|quw dx � 1

2
}w}2E � Tupwq, @w P E,

restricted to Erad. Indeed, since Tu is linear, we have that pTuq1pwq � Tu for every w P E.
Given an orthogonal map g P Op2q and w P E, we can define pgwqpxq :� wpg�1xq.

If we assume in addition that u P Erad, since V p| � |q is radial there holds Jupgwq � Jupwq
and }gw}E � }w}E, for all w P E. So, by the Principle of Symmetric Criticality, (cf.

Theorem 5.18) we conclude that Brus is a radial weak solution of the linear problem

�∆v � V p|x|qv � V p|x|qu, in R2. (5.2)

So, if you come come back to system (Sλ) and make the change of variable v :� Brus in
the first equation, we are led to find a radial function u solving the problem

�∆u� V p|x|qBrus � λQp|x|qfpuq, in R2. (5.3)

Actually, if u P Erad is a solution of the above equation, the couple pu,Brusq of radial
functions solves the system (Sλ).

In order to address Problem (5.3), we consider the bilinear form

xu,wyX :�
»
R2

�
∇u �∇w � V p|x|quBrws

	
dx.

Using Brus as a test function in equation (5.2), we obtain

}u}2X � xu, uyX � }Brus}2E �
»
R2

|∇u|2 dx. (5.4)

Hence, it is straightforward to prove that x�, �yX defines a scalar product in E (cf.

Proposition 5.5). From now on, we denote by X the vector space formed by the set

E endowed with the norm induced by this inner product, that is

}u}X :�
�»

R2

�
|∇u|2 � V p|x|quBrus

	
dx

�1{2
.
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As before, we set

Xrad :� tu P X, u � g � u, @ g P Op2qu

the subspace of X consisting of radial functions.

Proposition 5.5. If V P Cpp0,�8q, p0,�8qq, then X is a Hilbert space.

Proof. First we prove x�, �yX is symmetric and positive definite. For any u, w, φ P X, we

know »
R2

∇Brus �∇φ dx�
»
R2

V p|x|qBrusφ dx �
»
R2

V p|x|quφ dx,

and »
R2

∇Brws �∇ψ dx�
»
R2

V p|x|qBrwsψ dx �
»
R2

V p|x|qwψ dx.

Taking φ � Brws in the first equality above, and φ � Brus in the second one, we get»
R2

V p|x|quBrws dx �
»
R2

V p|x|qwBrus dx

and so xu,wyX � xw, uyX . By (5.4), of course xu, uyX ¥ 0 and it is zero if and only if

u � 0.

Let u P X and v :� Brus. By picking u as a test function in (5.2) and using

Young’s inequality, we get»
R2

V p|x|qu2 dx �
»
R2

p∇v �∇uq dx�
»
R2

V p|x|quv dx

¤ 1

2

»
R2

|∇v|2 dx� 1

2

»
R2

|∇u|2 dx�
»
R2

V p|x|quv dx

� 1

2

�»
R2

|∇v|2 dx�
»
R2

V p|x|quv dx�
»
R2

|∇u|2 dx
�
� 3

2

»
R2

V p|x|quv dx

� �1

2

»
R2

V p|x|qv2 dx� 1

2

»
R2

|∇u|2 dx� 3

2

»
R2

V p|x|quv dx.

Thus »
R2

|∇u|2 dx�
»
R2

V u2 dx ¤
»
R2

|∇u|2 dx� 1

2

»
R2

|∇u|2 dx� 3

2

»
R2

V p|x|quv dx

� 3

2

�»
R2

|∇u|2 dx�
»
R2

V p|x|quv dx
�

and therefore

}u}2E ¤ 3

2
}u}2X , @u P X. (5.5)

Let punq be a Cauchy sequence in X. From the inequality (5.5) we conclude that punq is
also a Cauchy sequence in the norm } �}E. Since E is a Hilbert space (cf. Proposition 5.3),
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there exists u P E such that }un � u}E � onp1q, where onp1q Ñ 0 stands for a quantity

approaching zero as n Ñ �8. Denoting vn :� Bruns, we can use the linearity of B and

(5.4) to get

}vn � vm}2E � }Brun � ums}2E � }un � um}2X �
»
R2

|∇pun � umq|2 dx ¤ }un � um}2X ,

which shows that pvnq is also a Cauchy sequence in the norm } � }E. Again, since E is a

Hilbert space, there exists v P E such that }vn � v}E � onp1q. We claim that v � Brus.
If this is true, we can use (5.4) again and the linearity of B to obtain

}un � u}2X � }vn � v}2E �
»
R2

|∇pun � uq|2 dx ¤ }vn � v}2E � }un � u}2E � onp1q,

where onp1q stands for a quantity approaching zero as nÑ �8. This shows that un Ñ u

in X.

To prove that v � Brus we notice that, for any φ P E, one has

xvn, φyE �
»
R2

V p|x|qunφ dx. (5.6)

Since vn Ñ v in E, it follows that xvn, φyE � xv, φyE � onp1q. Moreover, using Hölder’s

inequality, we obtain����»
R2

V p|x|qpun � uqφ dx

���� ¤ }un � u}E}φ}E � onp1q.

These convergences combined with (5.6) imply that»
R2

∇v �∇φ dx�
»
R2

V p|x|qvφ dx �
»
R2

V p|x|quφ dx, @φ P E,

and therefore v � Brus.

Remark 5.6. It follows from (5.5) that the embedding X ãÑ E is continuous and

therefore, by Corollary 5.4, we also conclude that E continuously immersed in H1
locpR2q.

We also have the continuous embedding X ãÑ LqpBRq, for any R ¡ 0 and q ¥ 1.

The following result will be useful in the future.

Lemma 5.7. Suppose that u P E and g P Op2q. Then Bru � g�1s � g � Brus.

Proof. As u � g�1 P E,»
R2

∇Bru � g�1s∇φ� V p|x|qBru � g�1sφ dx �
»
R2

V p|x|qpu � g�1qφ dx, @ φ P Erad.

MELO, T. G. 71 Department of Mathematics



5.1. Variational setting Chapter 5.

For φ P Erad, we can use φ � g�1 as a test function in last identity in order to obtain»
R2

V p|x|qpu � g�1qpφ � g�1q dx �
»
R2

∇Bru � g�1s∇pφ � g�1q dx

�
»
R2

V p|x|qBru � g�1spφ � g�1q dx.

As R2 � gR2, after a change of variable we get»
R2

∇pBru � g�1s � gq∇φ� V p|x|qpBru � g�1s � gqφ dx �
»
R2

V p|x|quφ dx.

By uniqueness, Bru � g�1s � g � Brus.

Next we define, for each 1 ¤ p   �8, the space

Lp
QpR2q :�

"
u : R2 Ñ R measurable :

»
R2

|u|pQp|x|q dx   �8
*
,

which is Banach space when endowed with the norm

}u}Lp
Q
:�

�»
R2

|u|pQp|x|q dx

1{p

.

We notice that a version of the classical Radial Lemma of Strauss [72] holds in

Xrad. In fact, it is proved in [73, Lemma 1] that there exist constants Cr ¡ 0 and R0 ¡ 0

such that, for any u P Xrad, the following holds:

|upxq| ¤ Cr|x|�p2�aq{4}u}E, for a.e. |x| ¥ R0. (5.7)

It is worth noticing that, in [73], the authors prove (5.7) with the additional condition

lim sup
rÑ0

V prq
ra0

¡ 0.

However, as we can see from the next result, this hypothesis is not necessary.

Lemma 5.8. Suppose that a ¡ �2 and R ¡ 0. Then there exists a constant C ¡ 0 such

that, for any u P Xrad, the following holds:

|upxq| ¤ C

�»
|x|¡R

|u|2|x|a dx

1{4�»

R2

|∇u|2 dx

1{4

|x|p2�aq{4
, for a.e. |x| ¥ R. (5.8)

In particular, if pV1q holds, there exists constants Cr ¡ 0 and R0 ¡ 0 such that (5.7) is

true for any u P Xrad.
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Proof. In fact, arguing as in [69, Lemma 2.1], it is enough proving inequality (5.8) for a

radial function u P C8
0 pR2q. In this case, write upxq � φp|x|q for some φ. For a fixed

x0 P R2zt0u with |x0| ¡ R, denote by R � |x0| and notice that

d

dr
pφ2rp

a
2
�1qq � 2φprqφ1prqrpa2�1q � φ2prq d

dr
prpa2�1qq.

As a ¡ �2, the derivative of rp
a
2
�1q is positive. Thus

2φprqφ1prqrpa2�1q ¤ d

dr
pφ2rp

a
2
�1qq.

Integrating over pR,�8q yields» �8

R

2φpsqφ1psqspa2�1qds ¤
» �8

R

d

dr
pφ2sp

a
2
�1qqds � �φ2pRqRpa

2
�1q
,

which implies

φ2pRqR
2�a
2 ¤ 2

» �8

R

|φpsqφ1psq|spa2�1qds

� 2

» �8

R

r|φpsqsa
2 s

1
2 sr|φ1psq|s 1

2 sds

¤ 2

�» �8

R

|φpsq|2sasds

1{2�» �8

R

|φ1psq|2s

1{2

,

because R   R. So, denoting by w2 the measure of the sphere S1 under its surface measure

σ2, that is, w2 � σ2pS1q,

u2pxq|x0| 2�a
2 ¤ 2

w2

�»
|x|¡R

|upxq|2|x|a dx

1{2�»

R2

|∇upxq|2 dx

1{2

, @ |x0| ¡ R,

which implies (5.8).

By pV1q, denoting β � lim inf
rÑ�8

V prq{ra, for a given ε ¡ 0, there exists δε ¡ 0 such

that rapβ � εq ¤ V prq, for any r ¡ δε. Thus for a.e. x P R2 and |x| ¡ δε

|upxq| ¤ A2|x|�p2�aq{4

�»
|x|¡δε

|upxq|2|x|adx

1{4�»

R2

|∇u|2dx

1{4

¤ A2

β � ε
|x|�p2�aq{4

�»
|x|¡δε

|upxq|2V p|x|qdx

1{4�»

R2

|∇u|2dx

1{4

¤ A2

β � ε
|x|�p2�aq{4

�»
R2

|upxq|2V p|x|qdx

1{4�»

R2

|∇u|2dx

1{4

,

which implies (5.7) for R0 � δε and Cr � A2{pβ � εq.
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By taking advantage of (5.7), we can obtain a range of compactness for the

embedding of Xrad into the above weighted Lebesgue spaces. More specifically, the

following holds:

Lemma 5.9. Let γ be defined in pf2q. Then the embedding Xrad ãÑ Lp
QpR2q is continuous

for any γ ¤ p   �8 and compact if p ¡ γ.

Proof. Let R0 ¡ 0 be like in (5.7) and R ¥ R0. In view of pQ1q and pV1q, there exists

C1 ¡ 0, C2 ¡ 0 such that$'&'%
Qpxq ¤ C1|x|b0 , if |x| ¤ R,

Qp|x|q ¤ C1|x|b, V p|x|q ¥ C2|x|a, if |x| ¥ R.

(5.9)

For any u P Xrad and γ ¤ p   �8, we have that

}u}p
Lp
Q
�
»
BR

|u|pQp|x|q dx�
»
R2zBR

|u|pQp|x|q dx.

In order to prove the continuous immersion we estimate each these integrals. Let q1 ¡ 1

be such that b0q1 ¡ �2. From (5.9), Hölder’s inequality, Remark 5.6 and (5.5) to obtain

»
BR

|u|pQp|x|q dx ¤ C1

�»
BR

|x|b0q1 dx

1{q1

}u}pLpq2 pBRq
¤ C2}u}pE ¤ C3}u}pX . (5.10)

On the other hand, using (5.7) and (5.9) again, we get»
R2zBR

|u|pQp|x|q dx �
»
R2zBR

|x|�a|u|p�2|x|a|u|2Qp|x|q dx

¤ C
pp�2q
r C1

C2

}u}p�2
E

»
R2zBR

|x|λV p|x|qu2 dx,

with

λ :� pb� aq � p2� aqpp� 2q
4

.

As p ¥ γ, one deduces λ ¤ 0. Hence, last estimate combined with (5.5) yields»
R2zBR

|u|pQp|x|q dx ¤ C4R
λ}u}pX ,

which establishes the continuity of the embedding.
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We now prove that the embedding is compact. Let punq � Xrad be a bounded

sequence such that un á u weakly in X. By Corollary 5.4, we conclude that un Ñ u in

LqpBRq, for any q ¥ 1. Replacing u by pun � uq in (5.10) yields»
BR

|un � u|qQp|x|q dx � onp1q. (5.11)

As λ ¤ 0, for ε ¡ 0, we can take R large enough such that Rλ   ε. After replacing u by

pun � uq in (5.11), we obtain»
R2zBR

|un � u|pQp|x|q dx ¤ C5ε,

because punq is bounded. This proves that un Ñ u in X.

We study now the embedding of the space Xrad into weighted Orlicz spaces. So,

we pick α ¡ 0 and define the Young function

Φαpsq :� eαs
2 �

j0�1̧

j�0

αj

j!
s2j, @ s P R,

where j0 :� inf tj P N : j ¥ γ{2u and γ ¡ 0 was defined in pf2q. We have that

Φαpsq � Φαr2

�s
r

	
, pΦαpsqqt ¤ Φtαpsq, @ s P R, r P R� t0u, t ¥ 1, (5.12)

and

Φαpsq ¤ Φβpsq, @ 0   α ¤ β, @s P R. (5.13)

Indeed, the second inequality in (5.12) was proved in [83, Lemma 2.1] and the other

inequalities above follow directly from the definition of Φα.

The following Trudinger-Moser type inequality complements the abstract results

stated in [73]:

Theorem 5.10. Suppose that α ¡ 0 and u P Xrad. Then Qp|�|qΦαpuq P L1pR2q. Moreover,

sup
tuPXrad : }u}X¤1u

»
R2

ΦαpuqQp|x|q dx   �8, (5.14)

whenever 0   α   4πpb0{2� 1q.

Proof. Considering R0 ¡ 0 as in (5.7), we fix a number R ¡ R0 and divide the proof into

three steps:

First step: for any α ¡ 0 and u P Xrad, we have that Qp| � |qΦαpuq P L1pBRq.
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Following [71] (cf. also [12]), we consider the function

vp|x|q :� β�1{2up|x|βq, x P R2,

with β :� 2{pb0 � 2q ¡ 0. We claim that v P H1pBR1{βq. In fact, a straightforward

computation shows that

»
B

R1{β

|∇vpxq|2 dx � 2π

» R1{β

0

|v1psq|2s ds � 2πβ

» R1{β

0

|u1psβq|2s2β�1 ds

and therefore the change of variables t � sβ yields»
B

R1{β

|∇vpxq|2 dx � 2π

» R

0

|u1ptq|2t dt �
»
BR

|∇upxq|2 dx   �8. (5.15)

On the other hand,

»
B

R1{β

v2pxq dx � 2πβ�1

» R1{β

0

u2psβqs ds � 2πβ�2

» R

0

t2p1�βq{βu2ptqt dt,

where we have used the change of variables t � sβ again. It follows from 2p1� βq{β � b0

that »
B

R1{β

v2pxq dx � β�2

»
BR

|x|b0u2pxq dx. (5.16)

We now recall that»
BR

|x|t dx � 2π

» R

0

st�1 ds   �8,

whenever t ¡ �2. Since the parameter b0 in pQ1q verifies b0 ¡ �2, we can pick t1 ¡ 1 close

to 1 in such a way that |x|t1b0 P L1pBRq. Thus, we may use (5.16), Hölder’s inequality

and Remark 5.6 to obtain»
B

R1{β

v2pxq dx ¤ β�2

�»
BR

|x|t1b0 dx

1{t1 �»

BR

|upxq|2t2 dx

1{t2

  �8,

where 1{t1 � 1{t2 � 1 and, of course, 2t2 ¥ 1. This and (5.15) prove that v P H1pBR1{βq,
as claimed.

Arguing as in the proof of (5.16),»
B

R1{β

eαβv
2pxq dx �

»
B

R1{β

eαu
2p|x|βq dx � 2πβ�1

» R

0

eαu
2ptqtb0t dt � β�1

»
BR

|x|b0eαu2pxq dx,
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and therefore it follows from (5.9) that»
BR

ΦαpuqQp|x|q dx ¤ C

»
BR

|x|b0eαu2pxq dx � Cβ

»
B

R1{β

eαβv
2pxq dx. (5.17)

We now define rv P H1
0 pBR1{βq as

rvp|x|q :�
$&%vp|x|q � vpR1{βq, if |x| ¤ R1{β,

0, if |x| ¥ R1{β.

For any ε ¡ 0, since vp|x|q � ṽp|x|q�vpR1{βq for |x| ¤ R1{β, we can use Young’s inequality

in order to obtain

v2p|x|q � rv2p|x|q � 2rvp|x|qvpR1{βq � v2pR1{βq
¤ rv2p|x|q � 2

�
ε1{2|rvp|x||q� �ε�1{2|vpR1{β|q�� v2pR1{βq

¤ p1� εqrv2p|x|q � Cpεqv2pR1{βq,

with Cpεq :� pε�1q{ε. This inequality, (5.17) and the classical Trudinger-Moser inequality

for bounded domain (cf. Theorem 5.19) imply that»
BR

ΦαpuqQp|x|q dx ¤ C2e
αβCpεqv2pR1{βq

»
B

R1{β

eαβp1�εqrv2p|x|q dx   �8, (5.18)

where C2 :� Cβ. The first step is proved.

Second step: if 0   α   4πpb0{2� 1q, then

sup
tuPXrad:}u}X¤1u

»
BR

ΦαpuqQp|x|q dx   �8.

Let 0   α   4πpb0{2� 1q and u P Xrad, with }u}X ¤ 1. In this case, it is possible

to take ε ¡ 0 such that αp1� εq   4πpb0{2� 1q. Recalling that β � 2{pb0 � 2q, we get

αβp1� εq   4π. (5.19)

Moreover, by the definition of v, (5.7), the assumption R ¡ R0 and (5.5), one deduces

αβCpεqv2pR1{βq � αCpεqu2pRq ¤ 3

2
αCpεqC2

rR
�p2�aq{2}u}2X ¤ C3R

�p2�aq{2.
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with C3 � 3{2αCpεqC2
r . This and (5.18) imply that»

BR

ΦαpuqQp|x|q dx ¤ C2e
C3R�p2�aq{2

»
B

R1{β

eαβp1�εqrv2pxq dx. (5.20)

From the definition of rv and (5.15), we get»
B

R1{β

|∇rv|2 dx � »
B

R1{β

|∇v|2 dx �
»
BR

|∇u|2 dx ¤ 1.

Since rv P H1
0 pB1{β

R q and }∇rv}L2pB
R1{β q ¤ 1, we may use (5.19)-(5.20) and the classical

Trudinger-Moser inequality (cf. Theorem 5.19) to obtain

sup
tuPXrad:}u}X¤1u

»
BR

ΦαpuqQp|x|q dx   �8.

The second step is finalized.

Third step: for any α ¡ 0, we have that

sup
tuPXrad:}u}X¤1u

»
R2zBR

ΦαpuqQp|x|q dx   �8.

Given u P Xrad, we first prove that Qp| � |qΦαpuq P L1pR2zBRq. To do this, we

recall that

Φαpsq �
�8̧

j�j0

αjs2j

j!
.

Thus we can use the Monotone Convergence Theorem to get

»
R2zBR

ΦαpuqQp|x|q dx �
�8̧

j�j0

αj

j!

»
R2zBR

|u|2j�γ|u|γQp|x|q dx.

For j ¥ j0, notice 2j � γ ¥ 0, because j0 ¥ γ{2. In this case, since R ¥ R0, it follows

from (5.7) combined with (5.5) that, for |x| ¡ R,

|upxq|2j�γ ¤ C2j�γ
3 |x|�p2j�γqp2�aq{4}u}2j�γ

X ,

where C3 �
a
3{2Cr. Therefore

»
R2zBR

ΦαpuqQp|x|q dx ¤
�

C3

Rp2�aq{4


�γ
�
�8̧

j�j0

�
αC2

3R
�p2�aq{2}u}2X

�j
j!

��}u}Lγ
Q

}u}X

�γ

¤
�

C3

Rp2�aq{4


�γ

eαC
2
3R

�p2�aq{2}u}2X

�}u}Lγ
Q

}u}X

�γ

.
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This, together with Lemma 5.9 and (5.5) provides C4, C5 ¡ 0 such that»
R2zBR

ΦαpuqQp|x|q dx ¤ C5e
αC2

3R
�p2�aq{2}u}2X ¤ C3e

αC4}u}2X   �8.

Moreover,

sup
tuPXrad:}u}X¤1u

»
R2zBR

ΦαpuqQp|x|q dx ¤ C4e
αC4 ,

and the proof is finished.

Remark 5.11. Let β� :� 4πpb0{2� 1q. As proved in [1, Proposition 2.5], we have

C0 :� sup
tuPErad : }u}E¤1u

»
RN

ΦβpuqQp|x|q dx   �8,

for any 0   β   β�. This inequality combined with (5.5) and (5.12) provides the

conclusion of Theorem 5.10 for 0   α   2β�{3. To see this, take u P Xrad with }u}X ¤ 1

and use (5.5) to obtain }
a
2{3u}E ¤ 1. So, for 0   β   β�

»
RN

Φβ

�c
2

3
u

�
Qp|x|q dx ¤ C0, @ u P Xrad, }u}X ¤ 1.

Using the first identity of (5.12) with r �
a
2{3, we obtain»

RN

Φp2βq{3puqQp|x|q dx ¤ C0, @ u P Xrad, }u}X ¤ 1,

for any 0   β   β�. If we make the change α � 2β{3 in this last inequality, we can see

that (5.14) works for 0   α   2β�{3. The main point is that we provided here a different

proof to encompass the entire range p0, 4πpb0{2� 1qq.

5.2 Mountain Pass structure

Using the abstract results of the former section, we are able to define the Euler-

Lagrange functional associated to equation (5.3). The first step in our analysis is proving

that Qp| � |qF puq P L1pR2q, for any u P Xrad. We shall use the following basic lemma:

Lemma 5.12. Suppose that pf1q and pf2q hold. Then, for any given ε ¡ 0, α ¡ α0, and

q ¥ 1, there exists Cf ¡ 0 such that, for any s P R,$'&'%
|fpsq| ¤ ε|s|γ�1 � Cf |s|q�1Φαpsq,

|F psq| ¤ ε|s|γ � Cf |s|qΦαpsq.
(5.21)
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Proof. By pf1q,
lim

|s|Ñ�8

|fpsq|
|s|q�1Φαpsq � 0, @ q ¥ 1, α ¡ α0, (5.22)

because

lim
|s|Ñ�8

|fpsq|
|s|q�1Φαpsq � lim

|s|Ñ�8

|fpsq|
eαs2

1

|s|q�1

eαs
2

peαs2 �°j0�1
j�0

αj

j!
s2jq � 0,

where we used that

lim
|s|Ñ�8

eαs
2

peαs2 �°j0�1
j�0

αj

j!
s2jq � 1.

For a given ε ¡ 0, we can use the limit (5.22) combined with pf2q to obtain a constant

Cε ¡ 0 such that

|fpsq| ¤ ε|s|γ�1 � Cε|s|q�1Φαpsq, @ q ¥ 1, α ¡ α0, s � 0. (5.23)

As Φα is even and increasing on p0,�8q and q ¥ 1, there holds» s

0

|t|q�1Φαptqdt ¤ 1

q
|s|qΦαpsq ¤ |s|qΦαpsq, @ s P R.

Last inequality combined with (5.23) yields

|F psq| ¤ ε|s|γ � Cε|s|qΦαpsq, @ q ¥ 1, α ¡ α0

and the lemma is proved.

Given u P Xrad, it follows from (5.21) with q ¥ γ that»
R2

F puqQp|x|q dx ¤ ε}u}γ
Lγ
QpR2q

� Cf

»
R2

|u|qΦαpuqQp|x|q dx.

For t1 ¡ 1 such that qt1 ¥ γ, we can use Hölder’s inequality to obtain»
R2

|u|qΦαpuqQp|x|q dx �
»
R2

rQp|x|qs1{t1 |u|qrQp|x|qs1{t2Φαpuq dx

¤ }u}q
L
qt1
Q

�»
R2

Φt2
α puqQp|x|q dx


1{t2

,

where 1{t1�1{t2 � 1. Since qt1 ¥ γ, we can use last property combined with Lemma 5.9,

property (5.12) with t2 and Theorem 5.10 to obtain

»
R2

|u|qΦαpuqQp|x|q dx ¤ }u}qX
�»

R2

Φt2αpuqQp|x|q dx

1{t2

  �8.
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Therefore, for any q ¥ γ

»
R2

F puqQp|x|q dx ¤ ε}u}γ
Lγ
Q
� Cf}u}qX

�»
R2

Φt2αpuqQp|x|q dx

1{t2

  �8, (5.24)

where 1{t1 � 1{t2 � 1.

According to the above considerations, it is well defined the functional

Iλpuq :� 1

2
}u}2X � λ

»
R2

F puqQp|x|q dx, u P Xrad.

Moreover, by standard arguments one may conclude that Iλ P C1 pXrad,Rq with Gateaux

derivative

I 1λpuqφ � xu, φyX � λ

»
R2

fpuqφQp|x|q dx, @u, φ P Xrad.

Since the functional Iλ is not defined in the whole space X, we cannot directly

apply Principle of Symmetric Criticality (cf. Theorem 5.18) to conclude that critical

points of Iλ weakly solves the first equation in (Sλ). However, an indirect argument

proves the following:

Proposition 5.13. Suppose that pf1q-pf2q hold and u P Xrad is a critical point of Iλ.

Then u is a weak solution of (5.3).

Proof. Let u P Xrad be such that I 1λpuq � 0 and consider the linear functional

Tupwq :� xu,wyX � λ

»
R2

fpupxqqwpxqQp|x|q dx, @w P X.

Our goal is to show that Tupwq � 0, for all w P X.

We claim that Tu is continuous. If this is true, we may apply Riesz Representation

Theorem to obtain a unique ru P X such that

Tupwq � xru,wyX , @w P X. (5.25)

It is clear that, for any orthogonal transformation g P Op2q, there holds gu � u. Since

g�1R2 � R2, we can argue as in the beginning of Section 5.1 and use Proposition 5.7 to

conclude that Tupgruq � Tupruq and }gru}X � }ru}X . This implies,

}gru� ru}2X � }gũ}2X � 2xgũ, ũyX � }ũ}2 � 2}ru}2X � 2Tupgruq � 2}ru}2X � 2Tupruq � 0

and therefore gru � ru. Since g P Op2q is arbitrary, we conclude that ru P Xrad. Hence,

0 � I 1λpuqru � Tupruq � }ru}2X and it follows from (5.25) that
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I 1λpuqw � Tupwq � x0, wyX � 0, @w P X.

In order to prove the continuity of Tu, we first pick ε � 1 and q � γ � 1 in (5.21)

to get ����»
R2

fpuqwQp|x|q dx
���� ¤ »

R2

|u|γ�1|w|Qp|x|q dx

� Cf

»
R2

|u|γΦαpuq|w|Qp|x|q dx.
(5.26)

In what follows, we are going to estimate both terms in the last inequality in the ball BR

and in its complement.

Picking t1 ¡ 1 such that t1b0 ¡ �2, it follows that |x|t1b0 P L1pBRq. So, we can

use expression (5.9), Hölder’s inequality and Remark 5.6, to get

»
BR

|u|γ�1|w|Qp|x|q dx ¤ C1

�»
BR

|x|t1b0 dx

1{t1

}u}γ�1

Lt2pγ�1qpBRq
}w}Lt3 pBRq,

with 1{t1 � 1{t2 � 1{t3 � 1. Thus,»
BR

|u|γ�1|w|Qp|x|q dx ¤ C3}w}X , (5.27)

with C3 depending on u and b0. Moreover, using (5.9) and (5.7) we obtain»
R2zBR

|u|γ�1|w|Qp|x|q dx �
»
R2zBR

|u|γ�2|u||w|Qp|x|q dx

¤ C1C
γ�2
r }u}γ�2

E

»
R2zBR

|x|b|x|�a�pγ�2qp2�aq{4|x|a|u||w| dx

¤ C1C
γ�2
r }u}γ�2

E

»
R2zBR

|x|λ1 |x|a|u||w| dx,

where

λ1 :� pb� aq � pγ � 2q
�
a� 2

4



.

From the definition of γ (cf. pf2q), we deduce that λ1 ¤ 0, and there |x|λ1 ¤ Rλ1

for |x| ¥ R. Thus, we can use the last estimate, Hölder’s inequality, (5.9) and (5.5) to

obtain»
R2zBR

|u|γ�1|w|Qp|x|q dx ¤C4

�»
R2zBR

|x|au2 dx

1{2�»

R2zBR

|x|aw2 dx


1{2

¤C5

�»
R2zBR

V p|x|qu2 dx

1{2�»

R2zBR

V p|x|qw2 dx


1{2

¤C6}w}X ,
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where C6 depends on u and γ. This inequality, combined with (5.26) and (5.27), imply

that ����»
R2

fpuqwQp|x|q dx
���� ¤ pC3 � C6q }w}X � Cf

»
R2

|u|γΦαpuq|w|Qp|x|q dx. (5.28)

We now proceed with the estimation of the last integral above. First, for any

t1, t2, t3 ¡ 0 satisfying 1{t1 � 1{t2 � 1{t3 � 1, we apply Hölder’s inequality, the second

statement in (5.12), Lemma 5.9, and Theorem 5.10 to obtain

»
BR

|u|γΦαpuq|w|Qp|x|q dx ¤}u}γ
L
t1γ
Q pBRq

�»
BR

Φt2αpuqQp|x|q dx

1{t2

}w}
L
t3
Q pBRq

¤C7}w}Lt3
Q pBRq

.

where we have used t1γ ¡ γ, for any t1 ¡ 1. By choosing t4 ¡ 1 such that |x|t4b0 P L1pBRq,
we can combine Hölder’s inequality and (5.9) to obtain

»
BR

|w|t3Qp|x|q dx ¤ C1

�»
BR

|x|t4b0 dx

1{t4

}w}t3
Lt5t3 pBRq

,

with 1{t4 � 1{t5 � 1. These last two estimates and Remark 5.6 again imply that»
BR

|u|γΦαpuq|w|Qp|x|q dx ¤ C8}w}X . (5.29)

From Hölder’s inequality, (5.12) and Theorem 5.10, we get

»
R2zBR

|u|γΦαpuq|w|Qp|x|q dx ¤ C9

�»
R2zBR

|u|2γw2Qp|x|q dx

1{2

,

where

C9 :�
�»

R2zBR

Φ2αpuqQp|x|q dx

1{2

.

Once again, using (5.7) and (5.9), we can conclude that

»
R2zBR

|u|γΦαpuq|w|Qp|x|q dx ¤ C10

�»
R2zBR

|x|λ2 |x|aw2 dx


1{2

,

where

λ2 :� pb� aq � γ

�
a� 2

2



.
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The definition of γ (cf. pf2q) and a ¡ �2, yields λ2 ¤ 0. To see this, notice that γ � 2 if,

and only if, b ¤ a, and γ � 4pb � aq{pa � 2q � 2 if, and only if, b ¡ a. So, we may argue

as before to conclude that»
R2zBR

|u|γΦαpuq|w|Qp|x|q dx ¤ C11}w}X .

This, (5.28), (5.29) and the fact that λ ¡ 0 imply that Tu is continuous on X.

We say that Iλ satisfies the pPSqc condition at level c P R if any sequence punq �
Xrad such that

lim
nÑ�8

Iλpunq � c, lim
nÑ�8

I 1λpunq � 0 (5.30)

has a convergent subsequence. We have the following local compactness result holding:

Lemma 5.14. Suppose that pf1q-pf3q hold. Then Iλ satisfies pPSqc condition at any level

0   c   pµ� 2q
2µ

4πpb0{2� 1q
α0

.

Proof. Let punq � Xrad be as in (5.30). From condition pf3q we get

c� onp1qp1� }un}Xq � Iλpunq � 1

µ
I 1λpunqun ¥

�
1

2
� 1

µ



}un}2X (5.31)

and therefore we may use µ ¡ 2 to conclude that punq is bounded in Xrad. Thus, up to a

subsequence, un á u weakly in Xrad.

We claim that »
R2

fpunqpun � uqQp|x|q dx � onp1q. (5.32)

If this is true, it follows that

onp1q � I 1λpunqpun � uq � }un}2X � }u}2X � onp1q

and therefore }un}X Ñ }u}X . This, together with the weak convergence, implies that

un Ñ u strongly in X.

For proving (5.32), we first use the first estimate of (5.21) with q � 1 to get����»
R2

fpunqpun � uqQp|x|q dx
���� ¤ εAn � CfDn, (5.33)
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where

An :�
»
R2

|un|γ�1|un � u|Qp|x|q dx, Dn :�
»
R2

Φαpunq|un � u|Qp|x|q dx.

It follows from (5.31) that

lim sup
nÑ�8

}un}2X ¤ 2µ

pµ� 2qc  
4πpb0{2� 1q

α0

.

Hence, there exits n0 P N large and t1 P p1, γ{pγ � 1qq, α ¡ α0 sufficiently close to 1 and

α0, respectively, such that

t1α}un}2X   4π

�
b0
2
� 1



, @n ¥ n0.

To see this, it is enough notice that we can chose some 0   δ   1{pγ � 1q such that

2µ

pµ� 2qc  
4πpb0{2� 1q
p1� δqpα0 � δq  

4πpb0{2� 1q
α0

,

and take t1 � 1� δ and α � α0 � δ.

Since we may also assume un � 0, for n ¥ n0, it follows from Hölder’s inequality,

(5.12) and Theorem 5.10 that

Dn ¤
�»

R2

Φt1α punqQp|x|q dx

1{t1

}un � u}
L
t2
Q

�
�»

R2

Φt1α}un}2X

�
un

}un}X



Qp|x|q dx


1{t1

}un � u}
L
t2
Q
¤ C1}un � u}

L
t2
Q
,

where 1{t1�1{t2 � 1, with t2 ¡ γ. This expression and the compactness of the embedding

Xrad ãÑ Lt2
QpR2q (cf. Lemma 5.9) proves that Dn � onp1q.

From Hölder’s inequality and Lemma 5.9, it follows that

An ¤ }un}γ�1
Lγ
Q
}un � u}Lγ

Q
¤ C2}un}γ�1

X }un � u}X .

Thus, there exists C3 ¡ 0 such that |An| ¤ C3, for any n P N. Hence, we can use Dn Ñ 0

and (5.33) to conclude that

lim sup
nÑ�8

����»
R2

fpunqpun � uqQp|x|q dx
���� ¤ εC3.

Since ε ¡ 0 is arbitrary, it follows that (5.32) holds.
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We now verify that Iλ satisfies the geometry of the Mountain Pass Theorem (cf.

[5]).

Lemma 5.15. Suppose that pf1q-pf3q hold. Then,

(i) there exist τ, ρ ¡ 0 such that Iλpuq ¥ τ , whenever }u}X � ρ;

(ii) there exists e P Xrad such that }e}X ¡ ρ and Iλpeq   0.

Proof. Let ε ¡ 0, q ¡ γ and t1, t2 ¡ 1 be such that 1{t1 � 1{t2 � 1. Using (5.24) and

Lemma 5.9, we obtain

»
R2

F puqQp|x|q dx ¤ εC1}u}γX � C1}u}qX
�»

R2

Φt2αpuqQp|x|q dx

1{t2

.

If ρ1 ¡ 0 is small in such a way that t2αρ
2
1   4πpb0{2� 1q, we can use (5.12), (5.13) and

Theorem 5.10 to get

»
R2

Φt2αpuqQp|x|q dx �
»
R2

Φt2α}u}2X

�
u

}u}X



Qp|x|q dx

¤
»
R2

Φt2αρ21

�
u

}u}X



Qp|x|q dx

¤ C2,

for all 0   }u}X ¤ ρ1. If }u}X ¤ ρ1 and ε � 1{p4λC1q, we obtain

Iλpuq ¥ }u}2X
�
1

2
� 1

4
}u}γ�2

X � C3}u}q�2
X



.

Since q ¡ γ ¥ 2, and the expression in parentheses approaches 1{2 as }u}X Ñ 0, there

exists a constant ν0 ¡ 0 limiting it from below, for any }u}X � ρ sufficiently small, and

therefore item (i) holds.

Now, let K � R2 be the support of φ P C8
0,radpR2q. By pf2q and pf3q, there exist

C4, C5 ¡ 0 such that F psq ¥ C4|s|µ � C5, for any s P R. Also notice F ptφpxqq � 0 for

x R K. Consequently, for t ¡ 0,

Iλptφq ¤ t2

2
}φ}2X � C4t

µ

»
K

|φ|µQp|x|q dx� C5

»
K

Qp|x|q dx.

Since µ ¡ γ ¥ 2, item (ii) holds for e :� t0φ, with t0 ¡ 0 large enough.
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5.3 Proofs of Theorems 5.1 and 5.2

We start this section by presenting the proof of our existence (and regularity)

result.

Proof of Theorem 5.1. In view of Lemma 5.15, we can define the minimax level

cλMP :� inf
gPG

max
tPr0,1s

Iλpgptqq ¥ τ ¡ 0,

where G :� tg P C pr0, 1s, Xradq : gp0q � 0, Iλpgp1qq   0u. By using the Mountain Pass

Theorem (cf. [5]), we obtain a sequence punq � Xrad such that

lim
nÑ�8

Iλpunq � cλMP , lim
nÑ�8

I 1λpunq � 0.

We claim that, for λ ¡ 0 large,

cλMP  
pµ� 2q
2µ

4πpb0{2� 1q
α0

.

If this is true, it follows from Lemma 5.14 that, along a subsequence, un Ñ u strongly in

X. From the regularity of Iλ we obtain I 1λpuq � 0 and Iλpuq ¥ τ ¡ 0, and therefore it

follows from Proposition 5.13 that u � 0 is a weak solution of Problem (5.3).

For proving the existence of solution, it remains to prove the upper bound on cλMP .

In order to do that, we consider ν ¡ γ given by pf4q. A standard minimization argument

together with the compactness of the embedding Xrad ãÑ Lν
QpR2q provides w0 P Xrad such

that

}w0}2X � Sν :� inf

"
}u}2X : u P Xrad,

»
R2

|u|νQp|x|q dx � 1

*
.

It follows from pf4q that

Iλpw0q ¤ 1

2
}w0}2X � λC

»
R2

|w0|νQp|x|q dx � 1

2
Sν � λC   0,

whenever λ ¡ Sν{2C. This shows that the curve g0ptq :� tw0 belongs to G. Therefore

cλMP ¤ max
tPr0,1s

Iλpg0ptqq ¤ max
t¥0

"
t2

2
Sν � λ

»
R2

F ptw0qQp|x|q dx
*
.

To show that the maximum of Iλptw0q over r0,�8q is well defined, one can proceed as

in item (ii) of Lemma 5.15, using pf4q to establish that Iλptw0q   0 for large t, while the
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fact that Iλptw0q ¡ 0 for small t can be shown as in item (i) of the same lemma. By pf4q,
we have that F ptw0q ¥ Ctν |w0|ν , for any t ¥ 0. Thus,

cλMP ¤ max
t¥0

"
t2

2
Sν � λCtν

*
� hpλq :� ν

pλCq2{pν�2q

�
Sν

ν


ν{pν�2q�
ν � 2

2ν



,

where we have used that the maximum of the function t ÞÑ t2{2Sν � λCtν is attained in

tλ � Sν{pλCνq1{pν�2q. Since ν ¡ γ ¥ 2, we have that hpλq Ñ 0, as λ Ñ �8, and the

claim is proved.

In order to obtain the regularity result, we call pu, vq P Xrad �Xrad the solution

given by the former argument. For a fixed R ¡ 0, define the function rvp|x|q :� vp|x|q �
vpRq, for x P BR. From Remark 5.6, we can infer that rv P H1

0 pBRq weakly solves

�∆rv � h, in BR, rv � 0, on BBR, (5.34)

where hpxq :� V p|x|qup|x|q � V p|x|qvp|x|q. We shall prove that h P LppBRq for a fixed

p ¡ 1 such that pa0, pb0 ¡ �2. Indeed, using that lim sup
rÑ0

V prq{ra0   �8, we obtain

C1 ¡ 0 such that»
BR

|hpxq|p dx ¤ C1

»
BR

|x|pa0 |u|p dx� C1

»
BR

|x|pa0 |v|p dx.

Since pa0 ¡ �2, we can pick t1 ¡ 1 such that |x|t1pa0 P L1pBRq. This, together with

Hölder’s inequality and Remark 5.6, yield

»
BR

|hpxq|p dx ¤ C1

�»
BR

|x|t1pa0 dx

1{t1 �

}u}t2
Lt2ppBRq

� }v}t2
Lt2ppBRq

	
  �8,

where 1{t1� 1{t2 � 1, proving the claim. Therefore, by classical elliptic regularity theory

we conclude that v � rv � vpRq P W 2,ppBRq.
Now, considering rup|x|q :� up|x|q�upRq, then ru P H1

0 pBRq is a solution of problem

�∆ru � g, in BR, ru � 0, on BBR,

where gpxq :� λQp|x|qfpup|x|qq � V p|x|qvp|x|q. Arguing as above, we can prove that

V p| � |qv P LppBRq. Moreover, from (5.21) with q � 1 and (5.12), we obtain»
BR

|fpuqQp|x|q|p dx ¤ C2

»
BR

|u|ppγ�1q|Qp|x|q|p dx� C2

»
BR

Φpαpuq|Qp|x|q|p dx. (5.35)
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Using (5.9), Hölder’s inequality and Remark 5.6, we get»
BR

|u|ppγ�1q|Qp|x|q|p dx ¤ C3

»
BR

|x|pb0 |u|ppγ�1q dx

¤ C3

�»
BR

|x|t3pb0 dx

1{t3

}u}ppγ�1q

Lt4ppγ�1qpBRq
  �8,

(5.36)

where 1{t3 � 1{t4 � 1 and t3pb0 ¡ �2. On other hand, Young’s inequality yields

up|x|q2 ¤ 2rup|x|q2 � 2upRq2.

So, we can use (5.9), the inequality Φαpsq ¤ eαs
2

, Hölder’s inequality and the classical

Trudinger-Moser inequality (cf. Theorem 5.19) to obtain»
BR

Φpαpuq|Qp|x|q|p dx ¤ C4e
2pαupRq2

»
BR

|x|pb0e2pαru2

dx

¤ C5

�»
BR

e2t4pαru2

dx


1{t4

  �8.

The above estimate, (5.35) and (5.36), show that Qp| � |qfpuq P LppBRq. Hence,

we conclude as before that u P W 2,ppBRq. Since the embedding W 2,ppBRq ãÑ CσpBRq is
continuous, for some σ P p0, 1q, then u, v are locally Hölder continuous.

Suppose now that V is locally Hölder continuous. By the former proof, the

functions u, v are locally Hölder continuous, and hence hpxq :� V p|x|qup|x|q�V p|x|qvp|x|q
belongs to CσpBRq, for some σ P p0, 1q. Since rv solves (5.34), by classical elliptic regularity

theory v � rv � vpRq P C2,σpBRq.

For the proof of our multiplicity result we shall the following abstract result (see

[5, 32]).

Theorem 5.16 (Symmetric Mountain Pass Theorem). Suppose that X is a real Banach

space and I P C1pX ,Rq is an even functional satisfying Ip0q � 0,

pI1q there are constants ρ, τ ¡ 0 such that Ipuq ¥ τ , for all u P BBρp0q;

pI3q there are κ ¡ 0 and a subspace V � X such that dimV � m P N and

max
uPV

Ipuq ¤ κ

and the pPSqc condition for any 0   c   κ. Then it possesses at least m pairs of nonzero

critical points.

We are ready to finish this chapter:
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Proof of Theorem 5.2. We are intending to apply the above theorem for the functional

Iλ. It is clear that Iλp0q � 0 and Iλ is even, since we are supposing f odd. Moreover,

condition pI1q is a consequence of the first statement in Lemma 5.15.

Given m P N, consider

Vm :� spantφ1, ..., φmu,

where tφiumi�1 � C8
0 pR2q have disjoint supports, and notice that tϕ1, ..., ϕmu is an

orthogonal set in Xrad. Since all norms are equivalent in Vm, we obtain a positive constant

C1 � C1pmq ¡ 0 such that

}u}νX ¤ C1}u}νLν
Q
, @u P Vm.

Hence, it follows from pf4q that

Iλpuq ¤ 1

2
}u}2X � λC}u}νLν

Q
¤ 1

2
}u}2X � λ

C2

ν
}u}νX , @u P Vm,

where C2 � C1C.

We now consider the function

gptq :� t2

2
� λ

C2

ν
tν , t ¥ 0.

Since ν ¡ 2, it attains its maximum value at the point t� � pλC2q�1{pν�2q, which implies

Iλpuq ¤ Am,λ :� gpt�q �
�
1

2
� 1

ν


�
1

λC2


2{pν�2q

, @u P Vm.

Since Am,λ Ñ 0, as λÑ �8, we can find λm ¡ 0 such that

0   Am,λ   pµ� 2q
2µ

4πpb0{2� 1q
α0

,

for any λ ¡ λm. It follows from Lemma 5.14 and Theorem 5.16 that Iλ has at lest m

pairs of nonzero critical points.

5.4 Appendix

In order to present the Principle of the Symmetric Criticality, we need the

following:
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Definition 5.17. The action of a topological group pG, �q with identity e on a normed

space pX, } � }q is a continuous map

A : G�X Ñ X,

with Apg, uq denoted by gu, satisfying for any g, h P G and u P X

eu � u, pg � hqu � gphuq, u ÞÑ gu is linear.

The action is isometric if

}gu} � }u}, @g P G and u P X

The space of invariant points is defined by

FixpGq :� tu P X : gu � u, @g P Gu .

A function I : X Ñ R is invariant if Ipguq � Ipuq for all g P G.

Sometimes it is of interest to find a critical point of a functional restricted to

a subspace of a Banach space that satisfies certain symmetry properties. The following

result establishes the conditions under which such a critical point is also a critical point

of the functional on the entire space. It is very important to deal with the radial solutions

of system (Sλ), in Section 5.1.

Theorem 5.18 (Principle of Symmetric Criticality, [63, 82]). Suppose that the action of

a topological group G on the Hilbert space X is isometric, I P C1pX,Rq is invariant and u
is a critical point of I restricted to FixpGq, that is I 1puqφ � 0, for all φ P FixpGq. Then
u is a critical point of I.

The following result was used in the proof of Theorems 5.10 and 5.1.

Theorem 5.19 (Classical Trudinger-Moser inequality [58, 78]). Suppose that α ¡ 0 and

Ω � RN is a bounded domain and u P W 1,N
0 pΩq, with N ¥ 2. Then eα|u|

N
N�1 P L1pΩq.

Moreover, there exists a constant C � CpNq ¡ 0 such that

sup³
Ω |∇u|N dx¤1

»
Ω

eα|u|
N

N�1
dx

$&%¤ C if α ¤ αN ;

� 8 if α ¡ αN ,

where αN � Nω
1

N�1

N , and ωN is the area of the unit sphere SN�1 � RN .
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