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Resumo

Título: Superfícies de Translação e Homogêneas em 3-espaços Homogêneos.

Neste trabalho consideramos superfícies em espaços homogêneos tridimensionais, com
foco em superfícies de translação e superfícies extrinsecamente homogêneas.

Inicialmente, apresentamos uma classificação de superfícies mínimas, solitons de translação
e solitons conformes como superfícies de translação no espaço hiperbólico, considerando o
caso em que uma curva está contida em uma horosfera e a outra, em um plano hiperbólico
totalmente geodésico. Para esse cenário, demonstramos a rigidez das três classes, no sentido
de que as superfícies resultantes se reduzem a casos conhecidos na literatura, como planos
hiperbólicos e cilindros catenários no caso das superfícies mínimas. Para os solitons, além dos
planos e das horosferas, identificamos também os exemplos clássicos da literatura, como os
cilindros do tipo "grim reaper".

Para superfícies na esfera, investigamos as superfícies de translação quanto à curvatura
gaussiana e à curvatura média constantes. Nossos resultados demonstram que não existem
superfícies totalmente geodésicas e totalmente umbílicas que também sejam superfícies de
translação. Além disso, os resultados apontam para a rigidez dos toros de Clifford como
superfícies de translação mínimas e de curvatura média constante (CMC). Apresentamos ainda
uma relação útil e interessante entre superfícies de translação na esfera e o espaço Euclidiano
tridimensionais.

Outro tema abordado neste trabalho é o da homogeneidade em variedades, isto é, a existên-
cia de isometrias que levem qualquer ponto de uma variedade a outro ponto da mesma. Mais
especificamente, analisamos a classificação das hipersuperfícies extrinsecamente homogêneas
e suas folheações, as quais aparecem como órbitas de ações isométricas transitivas à esquerda
de subgrupos do grupo de isometrias das variedades em questão. Consideramos ainda as
classificações entre grupos unimodulares e não unimodulares, no contexto de grupos de Lie
tridimensionais. Tal classificação nos permite apresentar exemplos de superfícies totalmente
geodésicas e mínimas, além, é claro, de fornecer, como consequência da homogeneidade,
exemplos de superfícies de curvatura média constante (CMC).
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Abstract

In this work we consider surfaces in 3-dimensional homogeneous spaces, focusing on
translation surfaces and extrinsically homogeneous surfaces.

We begin by classifying minimal surfaces, translating solitons, and conformal solitons that
arise as translation surfaces in hyperbolic space, focusing on the case where one generating
curve lies in a horosphere and the other in a totally geodesic hyperbolic plane. For this setting,
we prove rigidity results for all three classes, showing that the resulting surfaces reduce to
known cases in the literature, such as hyperbolic planes and catenary-type cylinders in the
minimal case. For the solitons, in addition to planes and horospheres, we recover classical
examples from the literature, such as Grim Reaper-type cylinders.

For surfaces in the sphere, we investigate translation surfaces with constant Gaussian
curvature and constant mean curvature (CMC). Our results show that there are no totally
geodesic or totally umbilical surfaces that are also translation surfaces. Furthermore, the results
point to the rigidity of Clifford tori as minimal and CMC translation surfaces in the sphere. We
also present an interesting and useful relationship between translation surfaces in the sphere
and in three-dimensional Euclidean space.

Another topic addressed in this work is that of homogeneity in manifolds, that is, the exis-
tence of isometries that map any point of a manifold to any other. More specifically, we analyze
the classification of extrinsically homogeneous hypersurfaces and their foliations, which arise
as orbits of left-transitive isometric actions by subgroups of the isometry group of the ambient
manifold. We also consider the distinction between unimodular and non-unimodular groups in
the context of three-dimensional Lie groups. This classification allows us to present examples
of totally geodesic and minimal surfaces, and, as a consequence of homogeneity, examples of
constant mean curvature (CMC) surfaces.

Keywords: minimal surfaces, translators, conformal solitons, mean curvature flow, constant
mean curvature, translation surfaces, hyperbolic space, three-dimensional sphere, homoge-
neous surfaces, Lie groups, homogeneous spaces, isometric action, cohomogeneity one action,
constant principal curvatures.
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Introduction

This thesis investigates 2-dimensional surfaces in 3-dimensional metric Lie groups, focus-
ing on two distinct categories: translation surfaces and extrinsically homogeneous surfaces.
Roughly speaking, a translation surface in a 3-dimensional Lie group M is constructed from
the group product of two smooth curves in the ambient space. Specifically, given two smooth
curves α and β in M, the translation surface Σ generated by α and β is defined by the product
α ·β , where (·) denotes the Lie group product operation. Within this context, we examine
translation surfaces in the standard 3-sphere S3 and 3-dimensional hyperbolic space H3, where
our primary focus is on their extrinsic geometry, analyzing structures such as minimal surfaces,
surfaces with constant mean curvature (CMC), and solitons to the mean curvature flow.

A surface Σ in an ambient space M is defined extrinsically homogeneous if it is an orbit
under an isometric action of the ambient space. Our objective in this area is to classify
extrinsically homogeneous surfaces within 3-dimensional homogeneous spaces.

The subsequent sections will elaborate on the main topics and problems addressed in this
thesis, along with an overview of the obtained results.

Translation surfaces of H3 and S3: Minimal and CMC Sur-
faces, and Solitons to the Mean Curvature Flow

The theory of geometric flows in Riemannian manifolds was widely studied in the last
decades, especially the subject of mean curvature flow in Euclidean spaces, giving rise to a
vast literature. Following [14], but in the context of Riemannian manifolds, an immersion
of a smooth manifold Mn into a Riemannian ambient space M̃n+1 evolves under the mean
curvature flow (MCF for short) if there exists a smooth one-parameter family of immersions
that satisfy an specific evolution equation that rely on the mean curvature vector field

→
H

of such immersions. Extrinsic geometric flows constitute evolution equations that describe
hypersurfaces of a Riemannian manifold evolving in the normal direction with velocity given
by the corresponding extrinsic curvature.
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Maybe the simplest solution to the mean curvature flow is the minimal surfaces that are
the solutions where the flow is constant or static. Another special class of solutions is that
of the solitons, also known as the self-similar solutions. Self-similar solutions have played
an important role in the development of the theory of the MCF, for example, in the euclidean
space, where they serve as comparison solutions to investigate the formation of singularities.

We investigate solitons to the MCF considering a particular class of surfaces called trans-
lation surfaces. Following [25], the origin of such surfaces is in the classical text of Darboux
[13] where they are presented and later known as Darboux surfaces. Such surfaces are defined
as the movement of a curve by a uniparametric family of rigid motions of R3. Hence a param-
eterization of a such surface is given by Φ(s, t) = A(t) ·α(s)+β (t), where α : I ⊂ R→ R3

and β : J ⊂ R→ R3 are two curves and A(t) is an orthogonal matrix. More precisely, if A(t)
is the identity map, a surface S ⊂ R3 that can be locally written as the sum of two curves
Φ(s, t) = α(s)+β (t), is called a translation surface and the curves α and β are called the
generating curves of S. Darboux worked with translation surfaces in [13, pp. 137-142] and
such name is given due to the fact that the surface S is obtained by the translation of a curve
along the other.

Indeed, in a general Lie group G with product (·) one can define a translation surface
S ⊂ G as a surface in G that can be locally written as the product Ψ(s, t) = α(s) ·β (t) of two
curves α : I ⊂ R→ G and β : J ⊂ R→ G. These curves α and β are called the generating
curves of S. This work draws inspiration from previous works that have appeared on the study
of translation surfaces with constant mean curvature (CMC) as [25, 30, 33, 35, 36, 47, 55].
These prior works primarily focused on Thurston 3-dimensional geometries, which are also Lie
groups. A central aim of this thesis is to specifically investigate CMC translation surfaces in
3-dimensional non-Euclidean space forms, namely hyperbolic space H3 and the 3-sphere S3.
Chapters 2 and 3 are dedicated to these respective cases.

Regarding translation surfaces in the hyperbolic 3-space H3, Chapter 2 begins by outlining
the Lie group structure of H3 that we’ll be using. This structure is defined by considering the
upper half-space model and the group of similarities of R2. Once we establish this algebraic
framework, we present two kinds of translation surfaces that will be considered. In both cases,
the surfaces are parametrized such that one of the generating curves lies within a horosphere and
the other in a totally geodesic plane. More precisely, such kinds are given when the generating
curves are local graphs. We then apply this structure to obtain results on arbitrary curves,
provided they are contained in these specified subsets. Our results are categorized in three
classes of surfaces in H3: minimal surfaces, hyperbolic translators (see [14]) and conformal
solitons to the mean curvature flow (see [40]). The results serve as both classification and
rigidity results, since they provide conclusive information about the type of surface obtained
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when the generating curves are as described above, and these conclusions align with known
results in the existing literature. Specifically, we prove that minimal surfaces are either totally
geodesic planes or a class of minimal surfaces in H3, that were described in [34] as singular
minimal surfaces in R3. Such surfaces are weighted minimal surfaces in R3 and, when viewed
as subsets H3 in the upper half-space model, they are minimal surfaces. It is important to note
that our definition of translation surfaces is significantly more general than the one considered
in [33], where translation surfaces in H3 within the half-space model were given as translation
surfaces in R3, again for particular classes of curves. For the hyperbolic translators and
conformal solitons to the mean curvature flow, we show that when translation surfaces are
generated by curves contained in a totally geodesic plane and in a horosphere, the resulting
surfaces are either the totally geodesic planes or the so-called grim-reapers cylinders in each
corresponding context, i.e., the translators as given in [14] and the conformal solitons in [40].

In Chapter 3, we consider translation surfaces in the 3-sphere S3. It is well-known that
the unit 3-sphere S3 ⊂ R4 carries a structure of a Lie group, with a bi-invariant metric, when
viewed through its quaternionic structure. Such a structure plays a crucial role in the context
of flat surfaces, from the classical Bianchi-Spivak construction for flat surfaces (see [20] and
[53]) to a more sophisticated construction given in [31], still been significant today, as we
can see in works such as [1, 21, 38]. In this thesis, our findings on translation surfaces in S3

are presented as rigidity results. To achieve this results, we first stablish the local geometry
of generic translation surfaces in S3 by means of their generating curves, a critical element
for understanding such a local geometry, and for subsequent results, is the introduction of a
suitable frame field, which has its own interest. From such a frame, geometric objects like the
Gaussian curvature and the mean curvature are fully described, it plays a fundamental role in
proving our main results. We highlight the non-existence of minimal surfaces when torsions
and non-vanishing curvatures of the generating curves are constant, the rigidity of the CMC
Clifford tori by means of conditions on the generating curves, and a correspondence between
translating surfaces in the Euclidean 3-space R3 and in the 3-sphere S3, which also provides
some interesting applications.

Homogeneous surfaces

When studying group actions in Riemannian geometry, it is natural to focus on the isometry
group, which consists of all transformations of the manifold that preserve distances. The
action of a subgroup of the isometry group on a Riemannian manifold is called an isometric
action, and the cohomogeneity of such an action is defined as the minimal codimension among
its orbits. Each orbit of an isometric action is referred to as an (extrinsically) homogeneous
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submanifold, and the collection of all orbits defines the orbit foliation of the action. One of
the main objectives of this thesis is to study these orbit foliations in order to determine which
submanifolds are homogeneous up to isometries.

A singular Riemannian foliation is a decomposition of a Riemannian manifold into im-
mersed submanifolds, called leaves, which may vary in dimension but are locally equidistant
(see [2, 46]). Orbit foliations arising from isometric group actions provide the standard examples
of singular Riemannian foliations. In particular, the collection of homogeneous submanifolds
forms a special case, which we refer to as a homogeneous foliation.

The study of homogeneous submanifolds has developed into a significant area of research
over the past century. The classification of homogeneous hypersurfaces in space forms dates
back to the early 20th century, with foundational contributions from Cartan, Levi-Civita, Segre,
and Somigliana (see [4, 5, 32, 51, 52]). These works focused on hypersurfaces whose nearby
parallel hypersurfaces have constant mean curvature, known as isoparametric hypersurfaces.
The corresponding foliations of codimension one are called isoparametric foliations. These
structures originally appeared in problems related to geometric optics.

In space forms, Cartan demonstrated that a hypersurface has constant principal curvatures if
and only if it is isoparametric, and this property also characterizes homogeneous hypersurfaces
in Euclidean and hyperbolic spaces. However, the situation in spheres is notably different. The
classification of homogeneous hypersurfaces in spheres began with [27], where it was shown
that such hypersurfaces have exactly 1, 2, 3, 4, or 6 distinct constant principal curvatures. This
result was later extended by Münzner [48], who proved that the same numerical restriction
applies to general isoparametric hypersurfaces, though not all of them are homogeneous.
Notably, [19] provided counterexamples using representations of Clifford algebras. These
examples highlighted the complexity of the classification problem and led to its inclusion
in Yau’s list of open problems in geometry [54]. Subsequent works [6, 9, 10, 29, 44, 45]
completed the classification of isoparametric hypersurfaces in spheres.

In the more general three-dimensional setting, the classification of homogeneous surfaces
in Thurston geometries that are not space forms has been addressed in different works. In [17],
the authors provide a full classification in the so-called E(κ,τ) spaces. The classification of
isoparametric surfaces in the remaining cases, that is, in homogeneous spaces that are neither
space forms nor E(κ,τ) spaces, remains an open problem. However, the relationship between
homogeneous and isoparametric surfaces continues to hold in the context of the remaining
homogeneous spaces. The classification of homgeneous surfaces considered in Chapter 4 is
based on whether the ambient space is a unimodular or non-unimodular Lie group, a distinction
that depends on whether its Lie algebra is unimodular, i.e., whether the left and right Haar
measures coincide.
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A precise correspondence can be established between the subalgebras of the isometry
groups of these spaces and their respective Lie algebras. Utilizing this correspondence, we
classify the 2-dimensional subalgebras of such Lie algebras up to conjugacy. This classification
allows us to identify the connected subgroups that serve as homogeneous orbits passing through
the identity element of the group. With this in hand, we construct a foliation by determining
the geodesics that intersect these subgroups orthogonally at the identity. The homogeneity of
the ambient spaces ensures that this foliation is well-defined. Finally, these geodesics enable
us to study the geometry of the equidistant surfaces through the computation of the shape
operator at a given distance, thereby completing the classification of the homogeneous surfaces
in homogeneous 3-spaces. This classification provides the cohomogeneity one part of the
analysis of polar actions on these spaces given in [16].



Chapter 1

Preliminaries and conventions

In this chapter, we introduce the basic notions and conventions necessary for this thesis.
Unless otherwise stated, the notations and conventions presented here will be used throughout
the work. Section 1.1 covers fundamental concepts related to the geometry of Riemannian
submanifolds. In Section 1.2, we discuss solitons of the Mean Curvature Flow in Riemannian
manifolds and provide the definition of translation surfaces in metric Lie groups. Finally,
Section 1.3 presents key aspects of the theory of isometric group actions and homogeneous
manifolds.

1.1 Geometry of submanifolds

This section is based on [53, Chapter 7], and further details can be found there. In this
section, we review some foundational concepts from the theory of submanifolds in Riemannian
geometry.

Let M be a Riemannian submanifold of a Riemannian manifold M̃. The normal bundle of M,
denoted by νM, consists of vectors orthogonal to the tangent bundle T M. The space of smooth
sections of νM is denoted by Γ(νM). At each point p ∈ M, we have the (non-orthogonal) direct
sum decomposition TpM̃ = TpM⊕νpM. Given a vector field X on M̃ along M, we denote by
X⊥ and X⊤ its projections onto νM and T M, respectively.

While one may study the intrinsic geometry of both M̃ and M, we are also interested in the
extrinsic geometry of M, which describes how M is embedded in M̃. This is captured by the
second fundamental form.

Let ∇̃ and ∇ denote the Levi-Civita connections on M̃ and M, respectively, and let R̃ and R
be their curvature tensors. The second fundamental form II is defined via the Gauss formula:

∇̃XY = ∇XY + II(X ,Y ), ∀X ,Y ∈ Γ(T M), (1.1)



1.1 Geometry of submanifolds 7

Hence, II(X ,Y ) = (∇̃XY )⊥.
Let ξ ∈ Γ(νM) be a unit normal vector field. The shape operator associated with ξ is the

self-adjoint endomorphism defined by

⟨Sξ X ,Y ⟩= ⟨II(X ,Y ),ξ ⟩.

The normal connection is given by ∇
⊥
X ξ = (∇̃X ξ )⊥, leading to the Weingarten formula:

∇̃X ξ =−Sξ X +∇
⊥
X ξ .

The curvature tensors of M̃ and M are related by the Gauss equation:

⟨R̃(X ,Y )Z,W ⟩= ⟨R(X ,Y )Z,W ⟩−⟨II(Y,Z), II(X ,W )⟩+ ⟨II(X ,Z), II(Y,W )⟩.

A submanifold M is said to be totally geodesic if every geodesic in M is also a geodesic in
M̃, which is equivalent to II = 0. A submanifold is totally umbilical if there exists λ ∈ R such
that II = λ ⟨·, ·⟩; in particular, λ = 0 implies that M is totally geodesic.

Definition 1.1. The mean curvature vector H of a Riemannian submanifold M ⊂ M̃ is defined
as the trace of the second fundamental form. With respect to a local orthonormal frame {Ei} of
T M, we have

H = ∑
i
⟨Ei,Ei⟩II(Ei,Ei).

The submanifold M is called minimal if and only if H = 0.

Minimal submanifolds naturally arise as critical points of the volume functional and are
central objects of study in differential geometry. Moreover, the mean curvature of M with
respect to a unit normal field ξ is the trace of the associated shape operator Sξ .

Now suppose that M is a hypersurface in M̃, that is, a submanifold of codimension one.
Then, locally and up to sign, there exists a unique unit normal vector field ξ ∈ Γ(νM). Since
⟨ξ ,ξ ⟩ = 1, the second fundamental form II is simply a multiple of ξ , and the Gauss and
Weingarten formulas simplify to:

∇̃XY = ∇XY + ⟨Sξ X ,Y ⟩ξ , ∇̃X ξ =−Sξ X .

Consequently, the Gauss equation become

⟨R̃(X ,Y )Z,W ⟩= ⟨R(X ,Y )Z,W ⟩−⟨SξY,Z⟩⟨Sξ X ,W ⟩+ ⟨Sξ X ,Z⟩⟨SξY,W ⟩.
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Since the mean curvature vector H is proportional to the normal vector ξ , it is customary
for hypersurfaces to speak of the mean curvature of the hypersurface, defined as the trace of
the shape operator Sξ .

Definition 1.2. Let ξ be a unit normal vector field defined on an open subset U ⊂ M. A function
λ : U → R is called a principal curvature of M (associated with ξ ) if there exists a nonzero
vector field X ∈ Γ(TU) such that Sξ X = λX. The eigenspace at p ∈U is denoted Tλ (p) and
is referred to as the principal curvature space corresponding to λ (p). Any nonzero vector
X ∈ Tλ (p) is a principal curvature vector.

Since M̃ is Riemannian, the shape operator Sξ is self-adjoint and hence diagonalizable
at each point. In general, the dimension of the principal curvature space (its geometric
multiplicity) may vary, but in the Riemannian case, it coincides with the algebraic multiplicity
(the multiplicity of λ as a root of the characteristic polynomial). Thus, we simply speak of the
multiplicity of a principal curvature.

A connected hypersurface is said to have constant principal curvatures if the eigenvalues
of Sξ are constant across the entire hypersurface. In that case, the dimension of each principal
curvature space is constant, and we denote the distribution of eigenspaces by Tλ , with Γ(Tλ )

being the space of vector fields X ∈ Γ(T M) such that Sξ X = λX .

1.2 Solitons to the Mean Curvature Flow on Translation
Surfaces in metric Lie groups

This section is based on [14], [25], [36] and [40] and further details can be found there.
The study of geometric flows in Riemannian manifolds, particularly the mean curvature

flow (MCF) in Euclidean space, has flourished over recent decades. Following [14], let
f : Mn → M̃ n+1 be a smooth immersion of a manifold Mn into a Riemannian ambient space
M̃n+1. We say that f evolves by mean curvature flow if there exists a smooth one–parameter
family of immersions F : M× I → M̃, I = [0,T ), such that F0 = f and

∂F
∂ t

(p, t) = H⃗(p, t), (p, t) ∈ M× I, (1.2)

where H⃗(p, t) denotes the mean-curvature vector of Ft = F( · , t).
The most elementary stationary solutions of (1.2) are minimal submanifolds, for which

H⃗ ≡ 0. Beyond these, an especially important class of soltuions are the class of the solitons
(or self–similar) solutions, which model singularity formation by evolving through ambient
isometries.
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Soliton solutions are generated by the Killing field defined by one–parameter subgroups
of isometries of the ambient space. A soliton solution to the mean curvature flow (MCF) is
given by F(p, t) = Γt( f (p)) where Γt is a one-parameter subgroup of the isometry group of M̃.
According to [14], denote by ξ ∈ T M̃ the corresponding Killing vector field, it is well known
(see [28]) that a smooth immersion f : Mn → M̃n+1 evolves under a soliton solution to the MCF
associated with Γt if and only if its mean curvature H and unit normal vector N satisfy, up to
tangential diffeomorphisms,

H = ⟨N,ξ ⟩. (1.3)

An important class of such solutions is given by the translating solitons in Euclidean space
Rn+1, that is, solutions that evolve by translation in a fixed direction v ∈ Rn+1. In this case, an
immersion f : Mn → Rn+1 that satisfies equation (1.3) with ξ = v is called a translator.

Another noteworthy family, not necessarily associated to Killing fields, consists of confor-
mal solitons. However, such solitons are not related to the translators approached previously,
since their generating fields are not necessarily Killing. Indeed, all killing fields are trivially
conformal, but not all conformal fields are killing. Following [40], let f : Mn → M̃ n+1 be an
isometric immersion. If there exists a vector field ξ such that H⃗ = ξ

⊥, then f is called a soliton
with respect to ξ . When ξ is conformal, f is a conformal soliton.

In particular, for a tridimensional manifold M̃3, solitons where ξ is a conformal field that
satisfy

H = ⟨N,ξ ⟩. (1.4)

Recall that a vector field ξ is called conformal if its flow consists of conformal transfor-
mations, meaning that it preserves angles, though not necessarily distances. Formally, ξ is
conformal if the Lie derivative of the metric g with respect to ξ satisfies

Lξ g = 2λg,

where λ is a smooth function known as the potential function. If λ is constant, then ξ is called
a homothetic vector field and in particular, if λ is identically zero, then ξ is a Killing vector
field."

One of the main objectives of this work is to investigate solutions to the mean curvature flow
(MCF) that arise as translation surfaces. Following [25], the concept of translation surfaces
originates from the classical work of Darboux [13], where they were first introduced and
later became known as Darboux surfaces. Translation surfaces can be constructed via a one-
parameter family of rigid motions in R3. Given such a family, these surfaces are generated by
the motion of a curve under rigid transformations. More precisely, for an orthogonal matrix A(t)
and curves α(s) and β (t), the surface can be parametrized as Φ(s, t) = A(t) ·α(s)+β (t). In the
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special case where A(t) is the identity for all t, this expression simplifies to Φ(s, t)=α(s)+β (t),
which defines a translation surface. The curves α and β are referred to as the generating curves
of the surface S. Darboux studied such surfaces in detail in [13, pp. 137–142], and the name
translation surface reflects the fact that S is obtained by translating one curve along another.
We now present a classical example of such a surface:

Example 1.1 ([25]). Let α(s) = (0,s, p(s)) and β (t) = (t,0,q(t)). Then the corresponding
translation surface is given by

X(s, t) = α(s)+β (t) = (t,s, p(s)+q(t)).

Scherk showed that this surface is minimal only in two cases: either it is a plane, or the
functions p and q satisfy

p(s) =
ln |cos(rs)|

r
, q(t) =− ln |cos(rt)|

r
,

for some constant r > 0. Such a surface is known as a Scherk-type surface.

We now extend the concept of translation surfaces to a more general setting. Let G be a Lie
group. Recall the following definition:

Definition 1.3. Let G be a Lie group with differentiable product

p : G×G → G
(g,h) 7→ g∗h.

Then, for a fixed g ∈ G, the left and right translations by g are defined respectively as

Lg(h) = g∗h, Rg(h) = h∗g.

Definition 1.4. A surface S ⊂ G is called a translation surface in the Lie group G if, locally
around regular points, it can be written as

Ψ(s, t) = α(s) ·β (t),

where α : I ⊂ R→ G and β : J ⊂ R→ G are smooth curves, and "·" denotes the Lie group
operation. The curves α and β are called the generating curves of S.

This work is inspired by various contributions in the literature concerning translation
surfaces with constant mean curvature, including [25, 30, 33, 35, 36, 47, 24, 55].
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1.3 Isometric Actions and Homogeneous Manifolds

This section is based on [11, Chapter 3] and further details can be found there. In this
section, we review fundamental concepts related to isometric group actions on Riemannian
manifolds.

We begin with the definition of an isometric action:

Definition 1.5. Let M̃ be a Riemannian manifold and G a Lie group. An isometric action is a
smooth map

ϕ : G× M̃ → M̃
(g, p) 7→ g(p),

where for each g ∈ G, the map ϕg : M̃ → M̃ defined by ϕg(p) = gp is an isometry of M̃ and
also satisfying

(g1g2)(p) = g1(g2(p)), for all g1,g2 ∈ G, p ∈ M̃.

Let Isom(M̃) denote the group of isometries of M̃, which is a Lie group [49]. Then every
isometric action induces a Lie group homomorphism:

ρ : G → Isom(M̃)

g 7→ ϕg.

For a point p ∈ M̃, the orbit of the action through p is G · p = {gp | g ∈ G}, and the isotropy
group or stabilizer at p is Gp = {g ∈ G | gp = p}.

Definition 1.6. Let G act smoothly on M̃. Then, such action is:

1. Trivial if every orbit consists of a single point;

2. Effective if the homomorphism ρ is injective, i.e., G is isomorphic to a subgroup of
Isom(M̃);

3. Transitive if G · p = M̃ for some (and hence for every) p ∈ M̃, making M̃ a homogeneous
G-space;

4. Free if gp = hp implies g = h for all p ∈ M̃ and g,h ∈ G;

5. Simply transitive if the action is both free and transitive.

In Chapter 4, we focus on the extrinsic geometry of orbits of isometric actions:

Definition 1.7. An extrinsically homogeneous submanifold of M̃ is an orbit of an isometric
action on M̃.
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In general, such orbits are immersed submanifolds. Endowed with the induced metric, each
orbit G · p becomes a Riemannian homogeneous space isometric to the quotient G/Gp, on
which G acts transitively by isometries.

Definition 1.8. Let G× M̃ → M̃ and G′× M̃′ → M̃′ be two isometric actions. They are said
to be Conjugate (or equivalent) if there exists a Lie group isomorphism ψ : G → G′ and an
isometry f : M̃ → M̃′ such that

f (gp) = ψ(g) f (p), ∀p ∈ M̃, g ∈ G.

They are called orbit equivalent if there is an isometry f : M̃ → M̃′ mapping orbits of the
G-action to orbits of the G′-action. Every conjugate action is orbit equivalent.

Let ϕ : G× M̃ → M̃ be an isometric action, and fix a point p ∈ M̃. Since the isotropy group
Gp fixes p and preserves the orbit G · p, the differential of each ϕg with g ∈ Gp leaves invariant
both the tangent space Tp(G · p) and the normal space νp(G · p). This motivates

Definition 1.9. Under the above conditions, define:

• The isotropy representation at p:

Gp ×Tp(G · p) → Tp(G · p)
(g,X) 7→ (ϕg)∗pX .

• The slice representation at p:

Gp ×νp(G · p) → νp(G · p)
(g,ξ ) 7→ (ϕg)∗pξ .

Let M̃/G denote the space of orbits endowed with the quotient topology from the projection
M̃ → M̃/G, p 7→ G · p. In general, M̃/G is not Hausdorff, which motivates

Definition 1.10. The action of G on M̃ is called proper if for any p,q ∈ M̃ there exist neigh-
borhoods Up and Uq such that the set {g ∈ G : (gUp)∩Uq ̸= /0} is relatively compact in G.
Equivalently, the map

G× M̃ → M̃× M̃
(g, p) 7→ (p,gp),

is a proper map (i.e., the preimage of each compact set is compact).

Every compact Lie group action is proper. If G ≤ Isom(M̃), the G-action is proper if and
only if G is closed in Isom(M̃). Proper actions guarantee that M̃/G is Hausdorff, each orbit
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G · p is closed and embedded, and each isotropy group Gp is compact. Moreover, the orbits of
an isometric action are closed if and only if the action is orbit equivalent to a proper one.

Definition 1.11. An orbit G · p is called a principal orbit if for every q ∈ M̃, the isotropy
group Gp is conjugate to a subgroup of Gq. The codimension of a principal orbit is called the
cohomogeneity of the action.

The union of all principal orbits is open and dense in M̃. A principal orbit has maximal
dimension, and is principal if and only if the slice representation is trivial. We also define:

Definition 1.12.

1. A non-principal orbit of maximal dimension is called an exceptional orbit.

2. An orbit of strictly smaller dimension than a principal orbit is called a singular orbit.

Definition 1.13. A Riemannian metric on a Lie group G is said to be left-invariant if left
multiplication Lg : G → G is an isometry for all g ∈ G.

Such a metric is uniquely determined by a fixed inner product ⟨·, ·⟩ on the Lie algebra g.
We denote both the inner product on g and the associated metric on G by ⟨·, ·⟩. Lie groups
equipped with a left-invariant metric are called metric Lie groups and serve as fundamental
examples of Riemannian homogeneous spaces.



Chapter 2

Solitons to the Mean Curvature Flow as
Translation Surfaces in H3

In this chapter, we consider translation surfaces in the hyperbolic 3-space H3. The Lie group
structure of H3 is given considering the upper half-space model and the group of similarities of
R2. Once the algebraic setup is established we present two kinds of translation surfaces that will
be considered. Both are parametrized as translation surfaces where one of the generating curves
is contained in a totally geodesic plane and the other is contained in a horosphere. Our results
are divided in three classes of surfaces in H3: minimal surfaces, hyperbolic translators (see [14])
and conformal solitons to the mean curvature flow (see [40]). The results can be viewed both
as classification and rigidity results, as they provide conclusive information regarding the type
of surface obtained when the generating curves are as described above. Specifically, we prove
that minimal surfaces are either totally geodesic planes or a class of minimal surfaces in H3,
that were described in [34] as singular minimal surfaces in R3. For the hyperbolic translators
and conformal solitons to the mean curvature flow, we show that, the resulting surfaces are the
totally geodesic planes and the so-called grim-reapers cylinders in each corresponding context
(see [14] and [40]). This chapter is mainly motivated by [14], [33] and [40].

The results presented in this chapter will compose a joint work with João Paulo dos Santos.

2.1 Preliminary concepts

Initially, consider the upper half-space R3
+ = {(x,y,z) | z > 0}, where, for each point

p ∈ R3
+, we define the inner product

⟨·, ·⟩H =
1
z2 ⟨·, ·⟩, (2.1)
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with ⟨·, ·⟩ denoting the standard inner product of R3. The inner product ⟨·, ·⟩H induces a Rie-
mannian metric on R3

+ and the resulting Riemannian manifold (R3
+,⟨·, ·⟩H) is called Hyperbolic

space, denoted by H3. This particular representation is referred to as the upper half-space
model of H3. Throughout this chapter, any reference to H3 will be understood to mean this
model.

We recall that hyperbolic space Hn, for n ≥ 2, is a non-commutative metric Lie group.
Following [41], in the upper half-space model, Hn can be identified with the group of similarities
of Rn−1 via the isomorphism

ψ(x,z) : Rn−1 → Rn−1

y 7→ zy+ x
.

In general, the group operation ∗ for a semidirect product of the form R2 ⋊ϕ R is given by

(x1,z1)∗ (x2,z2) = (x1 +ϕz1(x2),z1 + z2), (2.2)

where ϕ is given by the exponential of some matrix A ∈M2(R), that is,

ϕz(x) = ezAx =
∞

∑
k=0

1
k!
(zA)k.

We denote the corresponding group by R2 ⋊A R. If A is de identity matrix I2 ∈M2(R), then
ezA = ezI2 and we recover the group of similarities of R2. Moreover, the map

(x,y,z) ∈ R3 ⋊I2 R
Φ7→ (x,y,ez) ∈ R3

+,

gives an isomorphism between the group R2 ⋊I2 R and H3, endowed with the group structure
described above. Thus

(x1,y1,w1)∗ (x2,y2,w2) = (x1 + ew1x2,y1 + ew1y2,w1 +w2)
Φ7→

Φ7→ (x1 + ew1x2,y1 + ew1y2,ew1+w2) = (x1,y1,ew1)∗ (x2,y2,ew2),

which implies that for any (x,y,z),(x′,y′,z′) ∈H3 we can define the Lie product

(x,y,z)∗ (x′,y′,z′) = (zx′+ x,zy′+ y,zz′).

In this set, considering two regular curves α , β in H3, we define their group product α ∗β as a
translation surface in H3.
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Returning to the definition of upper halfspace model, we say that two Riemannian metrics
g and g̃, defined in a smooth manifold M, are locally conformally equivalent if there exists a
function ϕ : Ω ⊂ M → R such that g̃ = e2ϕg on Ω. In what follows, let ϕ : Ω ⊂ R3 → R be a
differential function, where Ω is an open subset of R3. Let g = ⟨·, ·⟩ be the standard Euclidean
metric on R3, and consider surfaces S ⊂ R3 and S̃ ⊂ R3

+. For a point p = (X1,X2,X3) ∈ S,

setting ϕ =− lnz implies that e2ϕ =
1
z2 , which gives

⟨·, ·⟩H = e−2ϕ⟨·, ·⟩= 1
X2

3
⟨·, ·⟩.

Hence, we obtain equation (2.1).
Let N(p) be the unit normal vector field to the surface S ⊂ R at a point p = (X1,X2,X3) ∈

S ⊂ R3. It is clear that this vector field remains normal to the corresponding surface S̃ ⊂ R3
+.

Moreover, we have

g̃(N(p),N(p)) = e2ϕ⟨N,N⟩= 1
X2

3
.

Thus, the unit normal field Ñ(p) to the surface S̃ ⊂H3 at p = (X1,X2,X3) ∈ S̃ is given by

Ñ(p) =
1

eϕ
N(p) = X3N(p).

Let ∇ and ∇̃ denote the Levi-Civita connections compatible with the metrics g and g̃, respec-
tively. Then, for two vector fields X ,Y ∈ TR3, we have

∇̃XY = ∇XY +S(X ,Y ),

where
S(X ,Y ) = dϕ(X)Y +dϕ(Y )X −⟨X ,Y ⟩∇ϕ,

and ∇ϕ denotes the gradient of the function ϕ with respect to the metric g.
Recalling that, for a regular surface S ⊂ R3, the principal directions at p ∈ S are given by

orthonormal vectors {e1,e2} such that dNp(ei) =−kiei. Moreover, since Ñ = e−ϕN, it follows
that

∇̃e−ϕ eiÑ = ∇e−ϕ ei(e
−ϕN)+S(e−ϕei,e−ϕN).
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Now, we compute

∇e−ϕ ei(e
−ϕN) = −d(e−ϕN)(e−ϕei) =−e−2ϕ [dϕ(ei)N + kiei] ,

S(e−ϕei,e−ϕN) = dϕ(e−ϕei)(e−ϕN)+dϕ(e−ϕN)(e−ϕei)−⟨e−ϕei,e−ϕN⟩∇ϕ

= e−2ϕ [dϕ(ei)N +dϕ(N)ei] .

Thus
∇̃e−ϕ eiÑ =−e−2ϕ [kiei −dϕ(N)ei] = e−ϕ [ki −dϕ(N)] ẽi.

Thus {ẽ1, ẽ2}= {e−ϕe1,e−ϕe2} are principal directions for S̃, and the corresponding principal
curvatures k̃i are given by

k̃i = e−ϕ [ki −dϕ(N)] .

It follows that the mean curvature H̃ of the surface S̃ ⊂H3 is given by

H̃ =
k̃1 + k̃2

2
= e−ϕ

[
k1 + k2

2
−dϕ(N)

]
= e−ϕ(H −dϕ(N)),

where dϕ(w) = ⟨∇ϕ,w⟩, for all w ∈ TpS, and ∇ϕ(p) = (0,0,−1/X3). Hence

H̃ = X3(H +N3/X3). (2.3)

Therefore, a surface in H3 is minimal if and only it satisfies

X3H +N3 = 0. (2.4)

We now remember that a particularly important class of solutions to the mean curvature
flow (MCF) is that of solitons. These are special solutions that evolve under the flow by the
action of a one-parameter group of isometries of the ambient space. More precisely, a soliton
is generated by a Killing vector field associated with such a group. Following the exposition
in [14], in the context of hyperbolic space H3, let G := {Γt : t ∈ R} be the one-parameter
subgroup of the isometry group of H3, where G comprises the hyperbolic translations along the

x3-axis defined by Γt(p) = et p, p ∈H3. A solution to the (MCF) given by
∂

∂ t
Ft(p) = et p will

be called a translating soliton, or simply a translator, with respect to the group G. This name
reflects the self-similar evolution under the flow generated by the group action. To describe the
associated Killing field, we make a slight abuse of notation by identifying H3 with TpH3. With
his identification, the Killing field associated to the group G is given by ξ (p) = p ∈H3.

Let ξ be the Killing field determined by the subgroup G. It can be shown (see, e.g., [28])
that a surface S̃ with unit normal Ñ is the initial condition of a G-soliton generated by ξ if and
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only if the equality
H̃ = ⟨ξ , Ñ⟩, (2.5)

holds everywhere on S̃. Thus, it follows from equation (2.5) that a surface S̃⊂H3 is a translation
soliton if and only if

H̃ =
1

X3
⟨p,N(p)⟩. (2.6)

By equation (2.3), this condition is equivalent to

X2
3 H = X1N1 +X2N2. (2.7)

Another class of solutions that we will approach here is that of the conformal solitons to the
MCF in H3. Following [40], in the hyperbolic space H3, these solitons satisfy equation (1.4)
with ξ as a conformal field. In particular, for the conformal field ξ (p) =−e3, for all p ∈H3,
a surface S̃ that satisfies H̃ =−g̃(e3,N(p)). Using the conformal metric structure introduced
earlier, this equation can be rewritten as

H̃ =− 1
X3

⟨e3,N(p)⟩=−N3

X3
,

that is equivalent to
X2

3 H =−(X3 +1)N3. (2.8)

Indeed, instead of e3, this analysis can be extended to a more general conformal vector field ξ .
However, since the class of conformal fields in H3 is particularly rich, we focus here on the
case ξ = e3 case.

Now, let α : I ⊂R→H3 and β : J ⊂R→H3 be two curves in the half-space model of H3.
Suppose that α is contained in a horosphere, more precisely in the horosphere H= {(x,y,z) ∈
R3
+ : z = 1}. Then, such a curve can be locally parameterized as

α(s) = (s, f (s),1),

where f : I ⊂ R→ R is a smooth function.
Now, consider two cases where β lies in a totally geodesic hyperbolic plane. Up to parabolic

translations, such curves can be parameterized as

β (t) = (at,bt,g(t)), g(t)> 0

β (t) = (ag(t),bg(t), t), t > 0
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where a2 +b2 = 1 and g : J ⊂ R→ R is a smooth function. Thus, we consider the following
parameterizations:

1. For β (t) = (at,bt,g(t)), with g(t)> 0, we have

α(s)∗β (t) = (s+at,bt + f (s),g(t)) (First kind). (2.9)

2. For β (t) = (ag(t),bg(t), t), with t > 0, we have

α(s)∗β (t) = (ag(t)+ s,bg(t)+ f (s), t) (Second kind). (2.10)

Under the conditions stated above, we shall prove the following results in the next section.

Theorem 2.1 (Minimal case). Let S ⊂H3 be a translation surface of the first or the second kind,
with a2 +b2 = 1. Then S is minimal if and only if it is either contained in a totally geodesic
plane or is a minimal translation cylinder. Moreover, it can be parameterized as

X(s, t) = (s+at, p(s)+bt,q(t)),

where p(s) = cs+d, with c,d ∈ R, b ̸= 0, and q(t) is the solution of the differential equation

q′2(t) =
m

q4(t)
− (b−ac)2

c2 +1
, m > 0, c ̸= b

a
. (2.11)

Furthermore, a solution of such ODE with initial conditions

g(0) = y0 > 0, m =
y4

0(b−ac)2

c2 +1
, (2.12)

is defined on a interval (−r,r), is concave and symmetric with respect to the z axis, and attains
a maximum at t = 0, Additionally, lim

t→±r
g(t) = 0 and lim

t→±r
g′(t) =±∞. (see figure 2.1).

Remark 2.1. Following [34], these surfaces are referred as α-catenary translation cylinders in
R3. The case where α =−2 corresponds to a minimal surface in H3, when viewed in the upper
halfspace model.

Remark 2.2. By choosing b = 1, and hence a = 0 in the second kind theorem 2.1, we obtain the
parameterization X(s, t) = (s,g(t)+ f (s), t), which corresponds to one of the cases discussed
in [33], specifically the one he refers to as "type 2". In fact, there is a missing case in his
classification that coincides with the second case of our theorem, namely, the one that is a
minimal translation cylinder.
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As a consequence of the structure provided by Theorem 2.1, we now present a more general
result.

Theorem 2.2. Let α : I ⊂ R→H3 be a curve contained in a horosphere Ha = {(x,y,a) ∈H3 :
a is constant}, and let β : J ⊂R→H3 be a planar curve, that is, contained in a totally geodesic
hyperbolic plane. Then the translation surface X : I × J →H3, defined by X(s, t) = α(s)∗β (t)
is minimal if and only if it is either a totally geodesic hyperbolic plane or a minimal translation
cylinder.

Proof. By Theorem 2.1, we initially assume that α : I ⊂ R→H3, contained in the horosphere
H1 and β : J ⊂ R→H3, contained in a totally geodesic hyperbolic plane, are locally parame-
terized as graphs in the respective subsets of H3 in which they lie. It turns out that the only
solution in the minimal case is when α is a straight line segment and β is given by the solution
of equation (2.11). Since α can be extended to a straight line defined on all R and β is shown to
be a closed curve within H3, the result can be extended to any curves contained in these subsets
of H3. Moreover, choosing a different height horosphere Ha leads to the same conclusion, and
since parabolic translations are isometries of hyperbolic space, the result follows.

In particular, for the soliton and conformal soliton cases, we will focus on specific cases: in
the first case, we choose a = 0, and hence b = 1; in the second case we chose a = 1, and hence
b = 0. For the translation soliton we have

Theorem 2.3 (Soliton case). Let S ⊂H3 be a translation surface of the first or second kind
with b = 1, and hence a = 0. Then S is a translation soliton if and only if it is contained in a
horosphere, a totally geodesic hyperbolic plane, or it is a connected translator in H3 which, up
to an ambient isometry, is an open subset of a grim reaper surface (see Figure 2.2).

Remark 2.3. Following [14, Theorems 3.20 and 3.23], the so-called grim reaper surfaces
are described as a one-parameter family of non-congruent, complete translators, which are
horizontal parabolic cylinders.

Theorem 2.4 (Conformal soliton case). Let S ⊂ H3 be a translation surface of the first or
second kind with b = 1, and hence a = 0. Then S is a conformal translation soliton if and only
if it is contained in a totally geodesic hyperbolic plane or a Grim-reaper cylinder. Moreover,
for constants p,q,c ∈ R, it can be parameterized as

X(s, t) = (s, t + f (s), g(t)),
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where f (s) = ps+q, with p ̸= 0, and g(t) is either constant or a solution of the equation

g′±(t) =±

√
(p2 +1)t4

ce4/t − p2t4
, c > 0.

This solution is well defined for 0 < t < 1/W
(

4
√

p2/c
)

, where W (t) denotes the Lambert W

function.
Furthermore, given the initial conditions

g±(t0) = g0, g′±(t0) = y0,

we have c = c(y0), the functions g±(t) are bounded, g+ is convex, g− is concave, and the
following limits hold:

lim
t→A

g±(t) = L, lim
t→0

g±(t) = L∓ r, lim
t→0

g′±(t) = 0, lim
t→A

g′±(t) =±∞,

for some constants L,r < ∞.

Remark 2.4. The so-called Grim-reaper cylinders described in [40, Theorem C] as conformal
solitons with respect to the conformal vector field en in the upper half-space model of Hn+1,
are analogous to those described in Theorem 2.4. The solitons presented there are graphs of the
form

Γ = {(x,u(x)) ∈ Rn+1
+ = Rn × (0,+∞) : x ∈ Ω ⊂ Rn},

with u ∈C∞(Ω), although not within the context of translation surfaces.

Fig. 2.1 ODE numerical solution and surface of Theorem 2.1 .

Remark 2.5. It seems at first that minimal and conformal translation Grim-reaper cylinders are
alike but this is not true, is possible to see by the proof of theorem 2.4 that the conformal ones
are never minimal.
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Fig. 2.2 ODE numerical solution and Surface of Theorem 2.3.

2.1.1 Geometry of translation surfaces in H3

To establish the corresponding equations for each class of surfaces we are considering, we
first compute H and N in the Euclidean space and then use equation (2.7) to obtain H̃. Thus for
a surface of the form

X : I × J → R3

(s, t) 7→ α(s)∗β (t)
,

we use the classical definition to obtain the mean curvature, that is

H =
lG−2nF +Em

2(EG−F2)
.

Thus, let Xs and Xt be the derivatives of X with respect to s and t respectively we compute the
first and second fundamental forms coefficients in the standard way

E = ⟨Xs,Xs⟩ , l = ⟨Xss,N⟩,
G = ⟨Xt ,Xt⟩ , m = ⟨Xtt ,N⟩,
F = ⟨Xs,Xt⟩ , n = ⟨Xst ,N⟩,

where N(s, t) is the normal Gauss application of X(s, t).
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Fig. 2.3 ODE numerical solution and Surface of Theorem 2.4 .

To compute N, we use the classical definition of cross product in R3, that is, with x,y ∈ R3

we have
x× y = (x2y3 − x3y2,x3y1 − x1y3,x1y2 − x2y1).

Consider now the curves in H3

α(s) = (s, f (s),1) , β (t) = (at,bt,g(t)),

where a2 +b2 = 1. For such curves we have

X(s, t) = α(s)∗β (t) = (s+at,bt + f (s),g(t))

So we compute
Xs = (1, f ′,0), Xss = (0, f ′′,0),
Xt = (a,b,g′), Xtt = (0,0,g′′),
Xst = (0,0,0).

Hence we have

N =
Xs ×Xt

|Xs ×Xt |
=

( f ′g′,−g′,b−a f ′)√
(g′)2(( f ′)2 +1)+(b−a f ′)2

. (2.13)

Thus, the coefficients of the first fundamental form

E = 1+( f ′)2. G = 1+(g′)2, F = f ′,

and the coefficients of the second fundamental form

l =
− f ′′g′√

(g′)2(( f ′)2 +1)+(b−a f ′)2
, m =

g′′(b−a f ′)√
(g′)2(( f ′)2 +1)+(b−a f ′)2

, n = 0.
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Hence

lG =
− f ′′g′(1+(g′)2)√

(g′)2(( f ′)2 +1)+(b−a f ′)2
, Em =

g′′(1+( f ′)2)(b−a f ′)√
(g′)2(( f ′)2 +1)+(b−a f ′)2

, nF = 0.

Therefore

H =
− f ′′g′(1+(g′)2)+g′′(1+( f ′)2)(b−a f ′)

2[(g′)2(( f ′)2 +1)+(b−a f ′)2]3/2 . (2.14)

In particular, choosing a = 0, and thus b = 1, yields

H =
− f ′′g′(1+(g′)2)+g′′(1+( f ′)2)

2[(g′)2(( f ′)2 +1)+1]3/2 . (2.15)

Now consider the curves in H3

α(s) = (s, f (s),1) , β (t) = (ag(t),bg(t), t),

with a2 +b2 = 1. For these curves we have

X(s, t) = α(s)∗β (t) = (ag(t)+ s,bg(t)+ f (s), t).

We compute
Xs = (1, f ′,0), Xss = (0, f ′′,0),
Xt = (ag′,bg′,1), Xtt = (ag′′,bg′′,0),

Xst = (0,0,0).

The unit normal is given by

N =
Xs ×Xt

|Xs ×Xt |
=

( f ′,−1,g′(b−a f ′))√
( f ′)2 +1+(g′)2(b−a f ′)2

. (2.16)

Thus, the coefficients of the first fundamental form are

E = 1+( f ′)2, G = 1+(a2 +b2)(g′)2 = 1+(g′)2, F = g′(a+b f ′),

and the coefficients of the second fundamental form are

l =
− f ′′√

( f ′)2 +1+(g′)2(b−a f ′)2
, m =

g′′(a f ′−b)√
( f ′)2 +1+(g′)2(b−a f ′)2

, n = 0.



2.1 Preliminary concepts 25

Hence

lG =
− f ′′(1+(g′)2)√

( f ′)2 +1+(g′)2(b−a f ′)2
, Em =

g′′(1+( f ′)2)(a f ′−b)√
( f ′)2 +1+(g′)2(b−a f ′)2

, nF = 0.

Therefore

H =
− f ′′(1+(g′)2)+g′′(1+( f ′)2)(a f ′−b)

2[( f ′)2 +1+(g′)2(b−a f ′)2]3/2 . (2.17)

In particular, choosing a = 1 and thus b = 0 provides

H =
− f ′′(1+(g′)2)+g′′ f ′(1+( f ′)2)

2[( f ′)2((g′)2 +1)+1]3/2 . (2.18)

2.1.2 Auxiliary results

Initially, consider the following well known result

Theorem 2.5 (Theorem 10.12 of [15]). Let E be an open set of Rn that contains x0, f ∈C1(E)
and (α,β ) a maximal interval of existence of the following initial value problem (I.V.P. for
short)

ẋ = f (x), x(0) = x0. (2.19)

If β < ∞ (similarly α > −∞), then for every compact set K ⊂ E there exists t ∈ (α,β ) such
that x(t) ̸∈ K.

We now proceed to present some auxiliary results.

Lemma 2.1 ([34, Theorem 3]). Let g be a solution of

g′′g(1+ c2) =−2[(g′)2(1+ c2)+(b−ac)2], (2.20)

with the following initial conditions

g(0) = y0 > 0, g′(0) = 0. (2.21)

Then g is defined in an interval (−r,r), is concave and symmetrical with relation to the z axis,
with a point of maximum in t = 0. Also, lim

t→±r
g(t) = 0 and lim

t→±r
g′(t) =±∞.

Lemma 2.2 ([14, Lemma 3.19]). Given λ ≥ 0 and k > 0, the initial value problem

g′′ =−g′(k+(g′)2)
2t
g2 , (2.22)
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with initial conditions
g(0) = 1, g′(0) = λ .

has a unique smooth solution g : R→ (0,+∞) which has the following properties:

1. g is constant if λ = 0.

2. g is increasing, convex in (−∞,0), and concave in (0,+∞) if λ > 0.

3. g is bounded from above by a positive constant.

4. g is bounded from below by a positive constant

The next Lemma presents a similar ODE that is given in the proof of [40, Theorem C].
However, the structure of the proof and the assumptions are different. For the proof here, we
argue in a similar way as given in the proof of [34, Theorem 3].

Lemma 2.3. Let g be a solution of

g′′+2
(g+1)

g2 (g′)2 +2
(g+1)

g2(1+a2)
= 0, (2.23)

with the following initial conditions

g(0) = y0 > 0, g′(0) = 0. (2.24)

Then g is defined in a interval (−r,r), is concave and symmetrical with relation to z axis , with
a point of maximum in t = 0. Also lim

t→±r
g(t) = 0 and lim

t→±r
g′(t) =±∞.

Proof. We rewrite equation (2.23) as

g′′(t) =−2
(g(t)+1)

g2(t)

[
(g′(t))2 +

1
(1+a2)

]
.

Now, since g is the solution of (2.23), define h(t) = g(−t). Thus h′(t) = −g′(−t) and
h′′(t) = g′′(−t). Also, we have

h′′(t) =−2
h(t)+1

h2(t)

(
h′2(t)+

1
1+a2

)
.

Also, h satisfies the initial conditions (2.24). Therefore, by the theorem of existence and
uniqueness of ODE solutions, we conclude that g(t) = g(−t), so g is symmetric with respect to
the z-axis. Hence, g is defined on an interval of the form (−r,r). Since g is a positive function
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and satisfies g′′(t)< 0, it follows that g is concave. By symmetry, g attains a unique maximum
at t = 0. Now, since g is descending in (0,r) , it follows from the Theorem 2.5 that

lim
t→r

g(t) = 0 and lim
t→r

g′(t) =−∞.

Similarly, we have
lim

t→−r
g(t) = 0 and lim

t→−r
g′(t) = ∞.

Finally, other results that we use here are the following

Theorem 2.6 ([14, Theorem 3.20]). In hyperbolic space H3, there exists a one-parameter
family

G = {Σλ | λ ∈ [0,∞)},

of noncongruent, complete translators (to be called grim reapers) which are horizontal
parabolic cylinders generated by the solutions of (30). Σ0 is the horosphere H ⊂ H3 at
height one, and for λ > 0, each Σλ ∈ G is an entire graph over R2 which is contained
in a slab determined by two horospheres Hλ− and Hλ+ . Furthermore, there exist open
sets Σ

−
λ

and Σ
+
λ

of Σλ such that Σ
−
λ

is asymptotic to Hλ−, Σ
−
λ

is asymptotic to Hλ+ , and
Σλ = closure(Σ−

λ
)∪ closure(Σ+

λ
).

and

Theorem 2.7 (Theorem 3.23. of [14]). Any connected translator in H3 which is a parabolic
cylinder is, up to an ambient isometry, an open subset of a grim reaper or of a totally geodesic
plane containing the z-axis.

2.2 Proof of results

Before we begin this section, it is important to highlight that the technique employed here
to solve such partial differential equations (PDEs) is the method of separation of variables.
This classical technique is widely used to find local solutions for PDEs and involves specific
assumptions and procedures. For instance, in this work, it is common to encounter equations of
the form F1(s)G1(t) = 0, where, since we are seeking local solutions, we assume that either
F1(s)≡ 0 for all s in some interval I ⊂R, or G1(t)≡ 0 for all t in some interval J ⊂R. Another
typical scenario involves equations like F1(s)G1(t) = F2(s)G2(t), which we aim to rewrite as

F1(s)
F2(s)

=
G2(t)
G1(t)

.
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To proceed, we first ensure that F2(s) ̸≡ 0 for all s in some interval I ⊂R, and G1(t) ̸≡ 0 for all
t in some interval J ⊂ R. Thus, we begin by assuming the contrary and proceed accordingly.
The objective is to express each side of the equation in terms of a single variable, leading to

F1(s)
F2(s)

=
G2(t)
G1(t)

= M, (2.25)

for some real constant M.
Furthermore, when we refer to integrating equations like (2.25), we mean integrating, for

instance, F1(s) = MF2(s) with respect to s, not in the sense of the PDE.
We also establish the notation

f ′(s) =
d
ds

f (s), g′(t) =
d
dt

g(t),

which will be used throughout this work. These derivatives will often appear in the simplified
form f ′ and g′. The purpose of this simplification is to make the notation more concise in the
computations.

In this work, the assumptions and procedures outlined above are consistently followed,
unless stated otherwise.

2.2.1 Proof of Theorem 2.1

Proof. We begin considering parameterizations of the first kind (2.9). Using equations (2.4),
(2.13) and (2.14), we have

g
− f ′′g′(1+(g′)2)+g′′(1+( f ′)2)(b−a f ′)

2[(g′)2(( f ′)2 +1)+(b−a f ′)2]3/2 +
(b−a f ′)√

(g′)2(( f ′)2 +1)+(b−a f ′)2
= 0.

That is

− f ′′gg′(1+(g′)2)+g′′g(1+( f ′)2)(b−a f ′) =−2(b−a f ′)[(g′)2(( f ′)2 +1)+(b−a f ′)2].

(2.26)
We first consider f ′′ ≡ 0. Thus f = ct +d, with c,d ∈ R. Supposing that c = b/a, a ̸= 0.

then equation (2.26) is trivially satisfied and we have N = (b,−a,0), which implies that X(I,J)
is contained in a totally geodesic plane.

Suppose now that c ̸= b/a and the equation (2.26) becomes

g′′g(1+ c2) =−2[(g′)2(1+ c2)+(b−ac)2]. (2.27)
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This equation is equivalent to equation (2.20) from Lemma 2.1. Observe that if g′′ ≡ 0 then
g(t) = mt +n, thus equation (2.27) becomes

m2(1+ c2)+(b−ac)2 = 0.

Then m = 0 and thus c = b/a, a contradiction. On the other hand, if g ̸≡ 0 then, setting
v(g) = (g′)2 so that v′ = 2g′′, gives

v′g =−4(v+m), m =
(b−ac)2

c2 +1
.

A first integration of this equation gives

v(g) = b1g−4 −m.

Hence

(g′)2(t) =
b1

g4 −
(b−ac)2

c2 +1
. (2.28)

If g(t) = ct + d and c = 0, then g(t) = d and equation (2.26) becomes (b− a f ′)3 = 0,
which implies that |Xs ×Xt |= 0, a contradiction. Suppose now that c ̸= 0 then equation (2.26)
becomes

− f ′′(ct +d)c(1+ c2) =−2(b−a f ′)[c2(( f ′)2 +1)+(b−a f ′)2].

Differentiating with respect to t gives

f ′′c2(1+ c2) = 0.

Thus, f (s) = ms+n. As we saw above, this case leads to a contradiction.
From now on, suppose that f ′′ ̸≡ 0 and g′′ ̸≡ 0 . Differentiating equation (2.26) with respect

to t gives
− f ′′[gg′(1+(g′)2)]′+(1+( f ′)2)(b−a f ′)[(g′′g)′+4g′g′′] = 0. (2.29)

Since f ′′ ̸≡ 0, we divide both sides of the equation by f ′′ and differentiate with respect to s to
obtain

[(g′′g)′+4g′g′′]
[
(1+( f ′)2)(b−a f ′)

f ′′

]′
= 0.

If (g′′g)′ =−4g′g′′ then g′′g =−2(g′)2 +P. Set v(g) = (g′)2 so that v′ = 2g′′ and we have

v′ =
2
g
(−2v+P).
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Integrating the previous equation gives

(g′)2 =
k1

g4 +
P
2
,

where k1 ̸= 0, otherwise g′′ ≡ 0 and we have a contradiction. Furthermore, if (g′′g)′ =−4g′g′′,
it follows from (2.29) that [gg′(1+(g′)2)]′ = 0. Thus

M2
1 = [gg′(1+(g′)2)]2 =

(
g4 p+2k

)(
g4(p+2)+2k

)2

8g10 .

A polynomial equation in g, which implies that g is constant, a contradiction. Thus we must
have

(1+( f ′)2)(b−a f ′) = M2 f ′′.

If M2 = 0 then (b−a f ′) = 0, a contradiction as by hypothesis f ′′ ̸≡ 0. Hence, M ̸= 0. In this
case, equation (2.26) becomes

f ′′[−gg′(1+(g′)2)+g′′gM+2M(g′)2] =−2(b−a f ′)3.

Since f ′′ ̸≡ 0, we divide both sides by it and differentiate with respect to s to get

N f ′′ =−2(b−a f ′)3,

with N = 0. Then
1+( f ′)2 +

2M
N

(b−a f ′)2 = 0.

A polynomial equation in f ′, which leads to the fact that f ′ is constant, a contradiction with
f ′′ ̸= 0.

Now we consider parameterizations of the second kind (2.10). Using equations (2.4), (2.16)
and (2.17), we have

t
− f ′′(1+(g′)2)+g′′(1+( f ′)2)(a f ′−b)

2[( f ′)2 +1+(g′)2(b−a f ′)2]3/2 +
g′(b−a f ′)

[( f ′)2 +1+(g′)2(b−a f ′)2]1/2 = 0,

that simplifies as

−t f ′′(1+(g′)2)+ tg′′(1+( f ′)2)(a f ′−b) = 2g′(a f ′−b)[(( f ′)2 +1)+(g′)2(b−a f ′)2].

(2.30)
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Initially suppose that f (s) = c ∈ R, then the equation (2.30) turns into

−2g′b[1+(g′)2b2] = 0.

If b = 0 then X(s, t) = (ag(t)+ s,c, t), and the surface is contained in a totally geodesic plane.
If b ̸= 0 then g(t) ≡ d ∈ R and we have X(s, t) = (ad + s,bd + c, t), and the surface is again
contained in a totally geodesic plane.

Suppose now that g(t) = m. Then equation (2.30) turns into −t f ′′ = 0. Thus f (s) = cs+d
and X(s, t) = (ad + s,bd + cs+ d, t). Hence, the surface is contained in a totally geodesic
plane.

On the other hand, suppose that f (s) = cs+d, c ̸= 0. Hence, equation (2.30) turns into

tg′′(1+ c2)(ac−b) = 2g′(ac−b)[(c2 +1)+(g′)2(b−ac)2].

Initially, if c = b/a then N = (b,−a,0). Thus, the surface X(s, t) is contained in the totally
geodesic plane. Suppose now that c ̸= b/a. Since t > 0 we have

g′′ = 2
g′

t
+2

g′3

t
(b−ac)2

1+ c2 . (2.31)

Set v(t) = g′(t), we obtain

v′ =
2
t

v+2
(b−ac)2

(1+ c2)t
v3,

which is a Bernoulli equation. Let w(t) = v−2. Thus, w′ =−2v−3v′, that leads to

w′ =−4
t

w− 4(b−ac)2

(1+ c2)t
.

This equation is linear, which we can solve by computing

F(t) =−
∫ 4

t
dt = ln

(
t−4).

Thus

w(t) = PeF −eF
∫

e−F 4(b−ac)2

(1+ c2)t
dt = Pt−4− 4(b−ac)2

(1+ c2)
t−4/c

∫
t4−1 dt = Pt−4− (b−ac)2

(1+ c2)
.

Hence

(g′)2(t) =
t4(1+ c2)

P− (b−ac)2t4 , P > 0, (2.32)



2.2 Proof of results 32

that is defined for P > (b−ac)2t4, that is 0 < t < 4
√

P/(b−ac)2.

From now on suppose that g′ ̸≡ 0 and f ′ f ′′ ̸≡ 0. Since t(1+(g′)2)> 0 by hypothesis, we
divide both sides of equation (2.30) by t(1+(g′)2)> 0 to obtain

− f ′′+
g′′

(1+(g′)2)
(1+( f ′)2)(a f ′−b) = 2

g′

t(1+(g′)2)
(a f ′−b)[(( f ′)2+1)+(g′)2(a f ′−b)2].

Differentiating it with respect to t gives(
g′′

(1+(g′)2)

)′
(1+( f ′)2)(a f ′−b)= 2

(
g′

t(1+(g′)2)

)′
(a f ′−b)(( f ′)2+1)+2

(
g′3

t(1+(g′)2)

)′
(a f ′−b)3.

(2.33)
Since f ′ f ′′ ̸= 0, we divide both sides by (1+( f ′)2)(a f ′−b) and differentiate again with respect
to s to get (

g′′

(1+(g′)2)

)′
= 2
(

g′3

t(1+(g′)2)

)′( (a f ′−b)2

(( f ′)2 +1)

)′
. (2.34)

A further derivative with respect to s provides

2
(

g′3

t(1+(g′)2)

)′( (a f ′−b)2

(( f ′)2 +1)

)′′
= 0.

Now if (
(b−a f ′)2

(( f ′)2 +1)

)′′
= 0,

then
(b−a f ′)2

(( f ′)2 +1)
= Ms+N.

If M = 0, then (b−a f ′)2 −N(( f ′)2 +1) = 0, a polynomial equation, which implies that f ′ is
constant and thus f ′′ ≡ 0 a contradiction.

Suppose that M ̸= 0, then we return to (2.33) to get

(
g′′

(1+(g′)2)

)′
(1+( f ′)2)(a f ′−b) =

= 2
(

g′

t(1+(g′)2)

)′
(a f ′−b)(( f ′)2 +1)+2

(
g′3

t(1+(g′)2)

)′
(a f ′−b)(( f ′)2 +1)(Ms+N),

that is (
g′′

(1+(g′)2)

)′
= 2
(

g′

t(1+(g′)2)

)′
+2
(

g′3

t(1+(g′)2)

)′
(Ms+N).
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Differentiating with respect to s gives

M
(

g′3

t(1+(g′)2)

)′
= 0. (2.35)

As M ̸= 0, we conclude by equation (2.34), that(
g′3

t(1+(g′)2)

)′
=

(
g′′

(1+(g′)2)

)′
= 0. (2.36)

Nevertheless, by equation (2.33) we have(
g′

t(1+(g′)2)

)′
= 0. (2.37)

From equations (2.35), (2.36) and (2.37), we have

g′ =C1t(1+(g′)2), g′3 =C2t(1+(g′)2), g′′ =C3(1+(g′)2).

As g′ ̸= 0 then C1 ̸= 0 and C2 ̸= 0. Thus we have

t(1+(g′)2) =
g′

C1
=

g′3

C2
.

Hence, C1(g′)2 =C2, which implies that g′′ ≡C3 = 0, We return to (2.30) with g(t) = ct +d
to get

−t f ′′(1+ c2) = 2c(a f ′−b)[(( f ′)2 +1)+ c2(b−a f ′)2].

A derivative with respect to t gives − f ′′ = 0, a contradiction.
We now return to equations (2.31) and (2.32). In the following equation

g′±(t) =±

√
t4(1+ c2)

m− (b−ac)2t4 , p > 0.

Set z = g(t). Since g′ ̸= 0, there is a differential inverse of g. Hence, let t = h(z) = g−1(g(t)).
We have

[h′(z)]2 =
1

[g′(t)]2
=

1
[g′(h(z))]2

=
m− (b−ac)2(h(z))4

(h(z))4(1+ c2)
=

m
(1+ c2)

1
h4(z)

− (b−ac)2

(1+ c2)
.

We return to equation (2.28) to conclude that these solutions must be the same.
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2.2.2 Proof of Theorem 2.3

Proof of theorem 2.3. We begin by considering the parameterizations of the first kind (2.9).
Using equations (2.7), (2.13) and (2.15), we have

g2− f ′′g′(1+g′2)+g′′(1+ f ′2)
2[g′2( f ′2 +1)+1]3/2 =

s f ′g′−g′(t + f )√
g′2( f ′2 +1)+1

,

or equivalently

− f ′′g2g′(1+g′2)+g2g′′(1+ f ′2) = 2g′[g′2( f ′2 +1)+1][(s f ′− f )− t]. (2.38)

Suppose initially that g ≡ c > 0. Then N = e3 and the surface is contained in a horosphere.
Suppose now that (s f ′− f )′ ≡ 0. We have that f (s) = bs+a, with a,b ∈ R. Thus equation

(2.38) becomes
g2g′′(b2 +1) =−2g′[g′2(b2 +1)+1][a+ t], (2.39)

that has at least the constant solution. Also, Equation (2.39) with the change of variables
v = a+ t and (b2 +1)−1 = k gives [g(a+ t)]′ = g′(v) and [g(a+ t)]′′ = g′′(v). Thus

g′′ =−g′[g′2 + k]
2v
g2 .

The solution of this ODE satisfy the conditions of Lemma 2.2.
Suppose from now on that g′ ̸≡ 0, f ′ ̸≡ 0 and (s f ′− f )′ ̸≡ 0. We divide both sides by g′ to

obtain

− f ′′g2(1+g′2)+
g2g′′

g′
(1+ f ′2) = 2[g′2( f ′2 +1)+1][(s f ′− f )− t].

Expanding the right-hand side we get

− f ′′g2(1+g′2)+
g2

g′
g′′(1+ f ′2) = 2g′2( f ′2 +1)(s f ′− f )−2tg′2( f ′2 +1)+2(s f ′− f )−2t.

We now differentiate with respect to t to obtain

− f ′′[g2(1+g′2)]′+
[

g2g′′

g′

]′
(1+ f ′2) = 2(g′2)′( f ′2 +1)(s f ′− f )−2[tg′2]′( f ′2 +1)−2.

Since f ′2 +1 ̸= 0, we divide both sides by it to get

− f ′′

f ′2 +1
[g2(1+g′2)]′+

[
g2g′′

g′

]′
= 2(g′2)′(s f ′− f )−2[tg′2]′− 2

f ′2 +1
.
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A differentiation with respect to s provides

−
[

f ′′

f ′2 +1

]′
[g2(1+g′2)]′ = 2(g′2)′(s f ′− f )′−

[
2

f ′2 +1

]′
.

Now, taking the derivative with respect to t, we have

−
[

f ′′

f ′2 +1

]′
[g2(1+g′2)]′′ = 2(g′2)′′(s f ′− f )′. (2.40)

Consider the following notation

F1 = −
[

f ′′

f ′2 +1

]′
, G1 = [g2(1+g′2)]′′,

F2 = (s f ′− f )′, G2 = (g′2)′′.

Thus, equation (2.40) becomes
F1G1 = 2G2F2.

Suppose initially that G2 ̸= 0 and F1 ̸= 0. We have

F2

F1
=

G1

2G2
=−P, P ∈ R.

Since each side rely on its on variable, we get

−P
[

f ′′

f ′2 +1

]′
=−(s f ′− f )′.

If P = 0 we have F2 = (s f ′− f )′ ≡ 0, a contradiction. Suppose that P ̸= 0 and writing P = 1/P.
Then, after a first integration, the previous equation becomes

f ′′ = ( f ′2 +1)[P(s f ′− f )+Q]. (2.41)

We return to the equation (2.38) to get

− ( f ′2 +1)[P(s f ′− f )+Q]g2(1+g′2)+
g2

g′
g′′(1+ f ′2) =

= 2g′2( f ′2 +1)(s f ′− f )−2tg′2( f ′2 +1)+2(s f ′− f )−2t.
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Dividing both sides by (1+ f ′2) and differentiating them with respect to s gives

−P(s f ′− f )′g2(1+g′2) = 2g′2(s f ′− f )′+
[

2(s f ′− f )
f ′2 +1

]′
−2t

[
1

f ′2 +1

]′
.

A further differentiation, now with respect to t, provides

−P(s f ′− f )′[g2(1+g′2)]′ = 2(g′2)′(s f ′− f )′−2
[

1
f ′2 +1

]′
.

As (s f ′− f )′ ̸≡ 0 by hypothesis, on the previous equation we divide both sides by (s f ′− f )′

to obtain

−[g2(1+g′2)]′ = 2(g′2)′−2
1

(s f ′− f )′

[
1

f ′2 +1

]′
.

Differentiating with respect to s gives[
1

f ′2 +1

]′
= M(s f − f )′.

If M = 0, then f ′ is constant, a contradiction as F1 ̸= 0 by hypothesis. Thus M ̸= 0 and we have

1
P

[
f ′′

f ′2 +1

]′
= (s f ′− f )′ =

1
M

[
1

f ′2 +1

]′
,

that is

f ′′ =
P
M

+N( f ′2 +1), and (s f ′− f ) =
1+R( f ′2 +1)

M( f ′2 +1)
. (2.42)

Observe that if N = 0, then f ′′ is constant, which implies that f (s) =
P

2M
s2 + bs+ c and

f ′ =
P
M

s+b. In view of (2.41), we have

((
P
M

s+b
)2

+1
)(

P
(

P
M

s+b
)
+

(
P

2M
s2 +bs+ c

)
+Q

)
=

P
M
,

that is
P3

2M
s4 +D(s) = 0,

where D(s) is a polynomial of degree 3. As this equation must be true for every s we conclude
that P = 0, a contradiction.
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Suppose that N ̸= 0. Then we differentiate the second equation of (2.42) to obtain

s f ′′ =− 2
M

f ′ f ′′

(1+ f ′2)2 .

Since f ′′ ̸≡ 0, we have

Ms =−2
f ′

(1+ f ′2)2 .

Differentiating again with respect to s gives

M =−2 f ′′
[

1
(1+ f ′2)2 −4

f ′2

(1+ f ′2)3

]
.

By the first equation of (2.42), we have

M(1+ f ′2)3 =−2
[

P
M

+N( f ′2 +1)
][

(1+ f ′2)−4 f ′2
]
,

that is

−M2 f ′6 +(6MN −3M2) f ′4 +(4MN +6P−3M2) f ′2 −M2 −2MN −2P = 0.

Since M ̸= 0, this equation leads to the fact that f ′ is constant, a contradiction.
It remains to evaluate the case where F1 ≡ 0 and/or G2 ≡ 0. If F1 ̸≡ 0 and G2 ≡ 0, from

equation (2.40), we must have G1 ≡ 0. G2 ≡ 0 implies g′2 = K2t +N2, which has solution
given by

g(t) =
d −2(K2t +N2)

3/2

3K2
.

Moreover, G1 ≡ 0 implies g2(1+g′2) = K3t +N3. Thus we have

(d −2(K2t +N2)
3/2)2 −9K2

2 K3t −9K2
2 N3 = 0,

that vanishes for every t if K2 = 0, which means that g′2 = N2 > 0. Unless g is constant, which
is not the case, then g′ =±

√
N2 and g2(1+N2) = K3t +N3. This implies that g2 = K4t +N4,

that is
2gg′ =±2g

√
N2 = K4,

which means that g is constant, a contradiction.
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If F1 ≡ 0 we must have G2 ≡ 0 or F2 ≡ 0. As F2 = (s f ′− f )′ ̸≡ 0 by hypothesis, we must
have G2 ≡ 0. We remember also that g′ ̸≡ 0. If (g′2)′′ = 0, then g′2 = Kt +L and we have two
cases

1. If K = 0, then g(t) =
√

Lt +b. Hence, equation (2.38) becomes

− f ′′(
√

Lt +b)2
√

L(1+L) = 2
√

L[L( f ′2 +1)+1][(s f ′− f )− t].

If L = 0 we have g constant, a contradiction. Suppose now that L ̸= 0, the solution of the
equations is g(t) =

√
Lt +b, with L > 0. Differentiating again with respect to t yields

− f ′′2(
√

Lt +b)L(1+L) =−2
√

L[L( f ′2 +1)+1].

A further differentiation with respect to t gives

− f ′′2
√

LL(1+L) = 0,

which implies that f ′′ = 0, a contradiction.

2. If K ̸= 0, we remember that as F1 ≡ 0, then f ′′ = M(1+ f ′2). Also, the solution g of
g′2 = Kt +L, is given by

g(t) =
b−2(Kt +L)3/2

3K

If M = 0 we have f ′′ = 0, a contradiction as (s f ′− f )′ ̸≡ 0 by hypothesis. Thus M ̸= 0,
we return to the equation (2.38) with g′2 = Kt +L to obtain

−M( f ′2 +1)g2g′(1+g′2)+g2g′′(1+ f ′2) = 2g′[g′2( f ′2 +1)+1][(s f ′− f )− t].

We divide both sides by f ′2 +1 to get

−Mg2g′(1+g′2)+g2g′′ = 2g′[(s f ′− f )− t]+2g′
(s f ′− f )− t

1+ f ′2
.

Differentiating with respect to s gives

2g′2(s f ′+ f )′+2g′
[
(s f ′− f )
1+ f ′2

]′
−2g′t

[
1

1+ f ′2

]′
= 0.
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Since g′ ̸≡ 0, we have

2g′(s f ′− f )′+2
[
(s f ′− f )
1+ f ′2

]′
−2t

[
1

1+ f ′2

]′
= 0.

We now differentiate with respect to t to obtain

2g′′(s f ′− f )′ = 2
[

1
1+ f ′2

]′
.

Since (s f ′− f )′ ̸≡ 0 we have

g′′ =− 1
(s f ′− f )′

[
1

1+ f ′2

]′
.

This implies that g′′ is constant. Remembering that g′(t) =
√

Kt +L, we have

g′′(t) =
1
2

K√
Kt +L

,

which implies that K = 0, a contradiction.

We now consider parameterizations of the second kind (2.10). Using equations (2.7), (2.16)
and (2.18), we have

t2− f ′′(1+g′2)+g′′ f ′(1+ f ′2)
2[ f ′2(g′2 +1)+1]3/2 =

f ′(g+ s)− f√
f ′2(g′2 +1)+1

,

or equivalently

− f ′′t2(1+g′2)+g′′t2 f ′(1+ f ′2) = 2[ f ′2(g′2 +1)+1][ f ′(g+ s)− f ]. (2.43)

Suppose initially that f ′ = 0. The equation (2.43) becomes 0 = −2 f which implies that
f ≡ 0. Thus the surface is contained in a hyperbolic plane. Suppose now that f ′′ = 0 but f ′ ̸= 0.
We have f (s) = as+b, a ̸= 0, and the equation (2.43) becomes

g′′t2a(1+a2) = 2[a2g′2 +a2 +1][ag−b], (2.44)

that has at least the constant solution.
Suppose from now on that f ′ f ′′ ̸≡ 0. We expand the right-hand side to obtain

− f ′′t2(1+g′2)+g′′t2 f ′(1+ f ′2) = 2 f ′3(g′2 +1)(g+ s)−2 f f ′2(g′2 +1)+2 f ′(g+ s)−2 f .
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Differentiating with respect to t yields

−2 f ′′t(1+g′2)−2 f ′′t2g′g′′+g′′′t2 f ′(1+ f ′2)+2g′′t f ′(1+ f ′2) =

= 4 f ′3g′g′′(g+ s)+2g′ f ′3(g′2 +1)−4 f f ′2g′g′′+2g′ f ′.

Since f ′ ̸= 0, we divide both sides by f ′3 to obtain

−2
f ′′

f ′3
[t(1+g′2)+ t2g′g′′]+

(1+ f ′2)
f ′2

[g′′′t2 +2g′′t] =

= 4g′g′′(g+ s)+2g′(g′2 +1)−4
f
f ′

g′g′′+2g′
1
f ′2

.

Differentiating with respect to s gives

−2
(

f ′′

f ′3

)′
[t(1+g′2)+ t2g′g′′]−2

f ′′

f ′3
[g′′′t2 +2g′′t] =−4

(
f
f ′

)′
g′g′′−4g′

f ′′

f ′3
.

We now multiply both sides by
f ′3

f ′′
to get

−2
f ′3

f ′′

(
f ′′

f ′3

)′
[t(1+g′2)+ t2g′g′′]−2[g′′′t2 +2g′′t] =−4

f ′3

f ′′

(
f
f ′

)′
g′g′′−4g′. (2.45)

Finally, we differentiate again with respect to s to obtain[
−2

f ′3

f ′′

(
f ′′

f ′3

)′]′
[t(1+g′2)+ t2g′g′′] =−4

[
f ′3

f ′′

(
f
f ′

)′]′
g′g′′. (2.46)

We introduce now the following notation

F1(s) =
[
−2

f ′3

f ′′

(
f ′′

f ′3

)′]′
, F2(s) =−4

[
f ′3

f ′′

(
f
f ′

)′]′
, G(t) = [t(1+g′2)+ t2g′g′′].

Then, we can rewrite the previous equation as

F1(s)G(t) = F2(s)g′g′′. (2.47)

Now, we present some particular cases:
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1. If G(t)≡ 0, then t(1+g′2) =−t2g′g′′. If g′g′′ ≡ 0 we have a contradiction. Put v = g′

and since t > 0, we have

v′
v

1+ v2 =
1
t
.

A first integration of this equation gives g′(t) =±
√

ct2 −1, with c > 0. Thus

g′′ =±ct/
√

ct2 −1, g′′′(t) =±

(
c√

ct2 −1
− c2t2

(ct2 −1)3/2

)
.

Returning to equation (2.45) we have

±

[
−2

((
c√

ct2 −1
− c2t2

(ct2 −1)3/2

)
t2 +

2ct2
√

ct2 −1

)]
=±

[
cMt −4

√
ct2 −1

]
.

Simplifying we have

4(ct2 −1)1/2 (ct2 −1
)3/2

= 2ct2 (2ct2 −3
)
+ cMt

(
ct2 −1

)3/2
,

which implies that t is constant, a contradiction.

2. If F1(s)≡ 0, by the previous case we must have g′g′′ = 0 and

(a) If g′ = 0 the equation (2.43) becomes

− f ′′t2 = 2[ f ′2 +1][ f ′(c+ s)− f ].

Differentiating with respect to t yields

−2 f ′′t = 0.

Since t > 0, we must have f ′′ = 0, again a contradiction.

(b) If g′′ = 0 but g′ ̸= 0 we have g(t) = ct +d, c ̸= 0, and the equation (2.43) becomes

− f ′′t2(1+ c2) = 2[ f ′2(c2 +1)+1][ f ′(ct +d + s)− f ].

We differentiate with respect to t to get

−2 f ′′t(1+ c2) = 2[ f ′2(c2 +1)+1][c f ′].
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Differentiating again with respect to t yields

−2 f ′′(1+ c2) = 0.

Thus, we must have f ′′ = 0, once again a contradiction.

We conclude that
F1(s) = MF2(s) , G(t) = Mg′g′′, M ̸= 0.

From the first equality we get

2M
f ′3

f ′′

(
f ′′

f ′3

)′
+N =

f ′3

f ′′

(
f
f ′

)′
.

From the second one we obtain
t

t2 +2M
=

g′g′′

1+g′2
.

A first integration of both sides of this equation gives

1
2

ln
(
t2 +M

)
+d =

1
2

ln
(
1+g′2

)
,

that we may rewrite as
g′2 = e2d(t2 +M)−1.

We also have
g′′ = e2d t√

t2 +M−1
= e2d t

g′
. (2.48)

Thus, the equation (2.43) becomes

− f ′′g′e2dt2(t2 +M)+ e2dt3 f ′(1+ f ′2) = 2[e2d f ′2(t2 +M)+1][ f ′(g+ s)− f ].

We expand the right-hand side to obtain

− f ′′g′e2dt2(t2+M)+e2dt3 f ′(1+ f ′2)= 2e2d f ′3(t2+M)(g+s)−2e2d f f ′2(t2+M)+ f ′(g+s)− f .

Now, differentiating with respect to t gives

−e2d f ′′[g′t2(t2 +M)]′+3e2dt2 f ′(1+ f ′2) = 2e2d f ′3[(t2 +M)(g+ s)]′−4e2d f f ′2t + f ′g′.
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Dividing both sides by t, yields

−e2d f ′′
[g′t2(t2 +M)]′

t
+3e2dt f ′(1+ f ′2) = 2e2d f ′3

[(t2 +M)(g+ s)]′

t
−4e2d f f ′2 + f ′

g′

t
.

We differentiate twice with respect to t to obtain

−e2d f ′′
(
[g′t2(t2 +M)]′

t

)′′
= 2e2d f ′3

(
[(t2 +M)(g+ s)]′

t

)′′
+ f ′

(
g′

t

)′′
,

that we rewrite as

f ′′G1(t) = f ′3G2(t)+ f ′
(

g′

t

)′′
.

Since f ′ ̸≡ 0, if G1(t)≡ 0, we divide both sides of the previous equation by f ′ and differentiate
it with respect to s to obtain G2(t)≡ 0. Thus (g′/t)′′ ≡ 0, that is g′ = Pt2 +Qt. Squaring both
sides gives g′2 = P2t4 + 2PQt3 +Q2t2. In view of (2.48), we must have P = Q = 0. Thus
g′ ≡ 0, a contradiction.

Suppose that G1(t) ̸≡ 0 and divide both sides by it. We have

f ′′ = f ′3
G2(t)
G1(t)

+ f ′
1

G1(t)

(
g′

t

)′′
.

Differentiating with respect to t gives

f ′3
(

G2(t)
G1(t)

)′
+ f ′

(
1

G1(t)

(
g′

t

)′′)′
= 0.

Since f ′ ̸≡ 0, we divide both sides by f ′ and differentiate with respect to s to obtain

2 f ′ f ′′
(

G2(t)
G1(t)

)′
= 0.

If [G2(t)/G1(t)]
′ ̸≡ 0, then f ′′ ≡ 0, a contradiction. Thus(

G2(t)
G1(t)

)′
≡ 0 and

(
1

G1(t)

(
g′

t

)′′)′
≡ 0.

Using equation (2.48), we have(
1

G1(t)

(
g′

t

)′′)′
=

((−1+ e2d(M+ t2))(2+ e4dM(2M+3t2)−d(4M+3t2)))

G3(t)
̸≡ 0,
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where

G3(t) = (t3(−8+28e2d(M+2t2)− e4d(32M2 +113Mt2 +75t4)+

+3e6d(4M3 +19M2t2 +25Mt4 +10t6))).

A contradiction.
We now return to equation (2.44). Set z = g(t). Since g′ ̸= 0, there is a differential inverse

of g. Hence, let t = h(z) = g−1(g(t)). Thus we have

h′(z) =
1

g′(t)
=

1
g′(h(z))

.

Differentiating with respect to z gives

h′′(z) =−g′′(h(z))h′(z)
[g′(h(z))]2

=−g′′(h(z))h′3(z).

Since t = h(z)> 0, equation (2.44) becomes

h′′

h′3
h2a(1+a2) =−2

(
a2 1

h′2
+a2 +1

)
(b−az),

that is
h2h′′a(1+a2) =−2h′

(
a2 +(a2 +1)h′2

)
(b−az).

Since a ̸= 0, and choosing 1/a2 = c2 and b/a =−d, we have

h2h′′
(
c2 +1

)
=−2h′

(
h′2
(
1+ c2)+1

)
(−d − z) .

We return to equation (2.39) to conclude that these solutions must be the same.

2.2.3 Proof of Theorem 2.4

Proof. We begin by considering the parameterizations of the first kind (2.9). Using equations
(2.8), (2.13) and (2.15), we have

g2− f ′′g′(1+g′2)+g′′(1+ f ′2)
2[g′2( f ′2 +1)+1]3/2 =

−(g+1)√
g′2( f ′2 +1)+1

,
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or equivalently,

− f ′′g2g′(1+g′2)+g2g′′(1+ f ′2) =−2(g+1)[g′2( f ′2 +1)+1]. (2.49)

Suppose initially that f ′ f ′′ ≡ 0. Then f (s) = as+b and equation (2.49) becomes

g2g′′(1+a2)+2(g+1)[g′2(a2 +1)+1] = 0.

Since g(t)> 0 for all t, by hypothesis we have

g′′+2
(g+1)

g2 g′2 +2
(g+1)

g2(1+a2)
= 0. (2.50)

This equation is the same as (2.23) of Lemma 2.3. Set v(g) = (g′)2, that is v′g′ = 2g′g′′ and
equation (2.23) becomes

v′ =−4
g+1

g2 v−4
g+1

g2(1+a2)
.

The equation above is a first order linear equation that we solve by computing

F(g) =
∫

−4
g+1

g2 dg =−4ln(g)+
4
g
.

Hence

v =CeF + eF 4
1+a2

∫
e−F g+1

g2 dg =C
e4/g

g4 − 1
1+a2 .

Thus

g′2(t) =
Ce4/g(t)

g4(t)
− 1

1+a2 . (2.51)

Suppose from now on that f ′ f ′′ ̸≡ 0, we differentiate the equation (2.49) with respect to s
to obtain

− f ′′′g2g′(1+g′2)+2 f ′ f ′′g2g′′ =−4(g+1)g′2 f ′ f ′′.

Since f ′ f ′′ ̸≡ 0, we divide both sides of the previous equation by f ′ f ′′ to get

− f ′′′

f ′ f ′′
g2g′(1+g′2)+2g2g′′ =−4(g+1)g′2. (2.52)

Now, differentiating again with respect to s gives[
f ′′′

f ′ f ′′

]′
g2g′(1+g′2) = 0.
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Thus, we must have that either[
f ′′′

f ′ f ′′

]′
= 0 or g2g′(1+g′2) = 0.

If g2g′(1+g′2) = 0 we have that g′ ≡ 0, as g(t)> 0 for all t. Thus the equation (2.49) becomes
g(t)≡−1, a contradiction. Thus, we must have

f ′′′ = 2M f ′ f ′′, M ∈ R. (2.53)

1. If M = 0 we have f (s) = as2 +bs+ c where a,b,c ∈ R with a ̸= 0 . Thus the equation
(2.49) becomes

−2ag2g′(1+g′2)+g2g′′(1+(2as+b)2) =−2(g+1)[g′2((2as+b)2 +1)+1].

A differentiation with respect to s and a simplification leads to g2g′′ =−2(g+1)g′2. Set
v(g) = g′2, then v′g′ = 2g′g′′ and as g(t)> 0 for all t, we obtain

1
v

v′ =−4
(g+1)

g2 ,

that has solution

v(g) = g′2(t) =
C2

e4g(t)g4(t)
, C > 0.

Thus
g′(t) =± C

e2g(t)g2(t)
, C > 0.

Returning to (2.49) and since g2g′′ =−2(g+1)g′2, we have

ag2g′(1+g′2) = g+1.

Hence

±a
C
e2g

(
e4gg4 +C

e4gg4

)
= g+1,

that is
±aC(e4gg4 +C) = e6gg4(g+1).

A polynomial equation that leads into the fact that g is constant, a contradiction.
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2. If M ̸= 0, then a first integration of (2.53) gives f ′′ = M f ′2 +B. Thus, equation (2.49)
becomes

−(M f ′2 +B)g2g′(1+g′2)+g2g′′(1+ f ′2) =−2(g+1)[g′2( f ′2 +1)+1],

that is

f ′2[−Mg2g′(1+g′2)+g2g′′+2(g+1)g′2] = [Bg2g′−2(g+1)](1+g′2)−g2g′′.

Since by equation (2.52) we have −Mg2g′(1+g′2) =−g2g′′−2(g+1)g′2, then

[−Bg2g′+2(g+1)](1+g′2) =−g2g′′.

Replacing this in equation (2.52) gives

(B−M)g2g′(1+g′2) = 2(g+1).

Clearly if B = M we have g ≡−1, a contraction. Since g(t)> 0 for all t, we have

(B−M)g′(1+g′2) = 2(g+1)
1
g2 .

Replacing this in equation (2.52) provides

g′′ =− M
M−B

g+1
g2 −2

g+1
g2 g′2.

Set v(g) = g′2. Then v′g′ = 2g′g′′ and we have

v′ =−4
g+1

g2

(
M

2(M−B)
+ v
)
,

that has a solution

v = g′2(t) =
Ce4/g(t)−M

2(M−B)g4(t)
−, C ̸= 0.

Thus we have

(B−M)2g4g′2(1+g′2)2 =(B−M)2g4

(
Ce4/g −M
2(M−B)g4

)(
1+

Ce4/g −M
2(M−B)g4

)2

= 4(g+1)2,
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that is
(Ce4/g −M)[(M−B)g4 +Ce4/g −M]2 = 4(g+1)2(M−B)g8.

An equation that leads to the fact that g is constant, a contradiction.

We now approach the parameterizations of the second kind (2.10). Using (2.8) , (2.16) and
(2.18), we have

t2− f ′′(1+g′2)+g′′ f ′(1+ f ′2)
2[ f ′2(g′2 +1)+1]3/2 =

(t +1) f ′g′√
f ′2(g′2 +1)+1

,

or equivalently

− f ′′t2(1+g′2)+g′′t2 f ′(1+ f ′2) = 2 f ′g′(t +1)[ f ′2(g′2 +1)+1]. (2.54)

Suppose initially that f ′ ≡ 0, the equation (2.54) is trivially satisfied and the surface is
contained in a hyperbolic plane. Supposing now that f ′ ̸≡ 0 and f ′′ ≡ 0. We have f (s) = as+b
, a ̸= 0 and the equation (2.54) becomes

g′′t2(1+a2) = 2g′(t +1)[a2(g′2 +1)+1].

This ODE has at least the constant solution g′ ≡ 0. Suppose then that g′ ̸≡ 0 and consider now
the substitution v(t) = g′(t), we have

1
v(a2(v2 +1)+1)

v′ = 2
(t +1)

t2(1+a2)
.

A separable differential equation that has a solution

2ln(v)− ln
(
a2(v2 +1)+1

)
2(a2 +1)

=
2

1+a2

(
ln(t)− 1

t

)
+d,

that is

ln
(

v2

a2(v2 +1)+1

)
= 4
(

ln(t)− 1
t

)
+d,

which implies that

v2

a2(v2 +1)+1
=

t4

Ce4/t
, C = 1/ed > 0, d ∈ R.

Simplifying, we have

v2 =
(a2 +1)t4

Ce4/t −a2t4
.
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Hence

g′2(t) =
(a2 +1)t4

Ce4/t −a2t4
.

Suppose from now on that f ′ f ′′ ̸≡ 0. As t2(1+g′2) ̸= 0 we divide both sides by it in the
equation (2.54) to get

− f ′′+
g′′

(1+g′2)
f ′(1+ f ′2) = 2 f ′

g′(t +1)
t2(1+g′2)

[ f ′2(g′2 +1)+1].

As f ′ ̸≡ 0, we divide both sides by it to obtain

− f ′′

f ′
+

g′′

(1+g′2)
(1+ f ′2) = 2

g′(t +1)
t2(1+g′2)

[ f ′2(g′2 +1)+1].

Differentiating with respect to s gives[
− f ′′

f ′

]′
+2 f ′ f ′′

g′′

(1+g′2)
= 4 f ′ f ′′

g′(t +1)
t2 .

Since f ′′ ̸≡ 0, we have

1
2 f ′ f ′′

[
− f ′′

f ′

]′
=− g′′

(1+g′2)
+2

g′(t +1)
t2 .

As each side depends only on its own variable, we have

1
2 f ′ f ′′

[
− f ′′

f ′

]′
= M =− g′′

(1+g′2)
+2

g′(t +1)
t2 , M ∈ R. (2.55)

If M = 0, then f ′′ =−P f ′, P ̸= 0 and g′′t2 −2g′(t +1)(1+g′2) = 0. Thus, equation (2.54)
becomes

P f ′t2(1+g′2)+g′′t2 f ′(1+ f ′2) = 2 f ′g′(t +1)[ f ′2g′2 +( f ′2 +1)].

That can be reduced to
P f ′t2(1+g′2) = 2 f ′3g′3(t +1).

Again, as f ′ ̸≡ 0, we have
Pt2(1+g′2) = 2 f ′2g′3(t +1),

which implies that f ′ is constant, a contradiction.
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If M ̸= 0, a first integration of equation (2.55) with relation to s gives − f ′′ = M f ′3 +N f ′.
Thus, equation (2.54) becomes

(M f ′3 +N f ′)t2(1+g′2)+g′′t2 f ′3 +g′′t2 −2 f ′3g′(t +1)(g′2 +1)−2 f ′g′(t +1) = 0.

Since g′′t2 −2g′(t +1)(1+g′2) =−Mt2(1+g′2), we get

N f ′t2(1+g′2)+g′′t2 −2 f ′g′(t +1) = 0.

Since f ′ ̸≡ 0 is a contradiction, then we divide both sides of the previous equation by f ′ to
obtain

Nt2(1+g′2)+
1
f ′

g′′t2 −2g′(t +1) = 0.

Differentiating with respect to s gives

− f ′′

f ′2
g′′t2 = 0,

which implies that g′′ ≡ 0, that is g(t) = ct +d. Then equation (2.54) becomes

f ′[Nt2(1+ c2)−2c(t +1)] = 0.

Since f ′ ̸≡ 0, we must have
Nt2(1+ c2)−2c(t +1) = 0,

which implies that t is constant or c = N = 0, both contradictions.
We remember the following equation

g′2(t) =
(a2 +1)t4

Ce4/t −a2t4
.

Let c = m/a2 > 0 and consider the following change of variables z = g(t) and t = h(z) =
g−1(g(t)). Thus we have

[h′(z)]2 =
1

[g′(t)]2
=

1
[g′(h(z))]2

=
Ce4/t −a2t4

(a2 +1)t4 =
Ce4/h(z)−a2h4(z)
(a2 +1)h4(z)

,

with (1+m2) = (1+a2)/a2, and p = c/(1+a2) we have

h′2(z) =±

√
pe4/h(z)

h4(z)
− 1

1+m2 .
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An ODE equivalent to equation (2.51). Thus, the solutions are equivalent.



Chapter 3

Translation surfaces in S3

A translation surface in the three-dimensional sphere S3 is a surface generated by the
quaternionic product of two curves, called generating curves. In this chapter, we present rigidity
results for such surfaces. We introduce an associated frame for curves in S3, and by means of it,
we describe the local intrinsic and extrinsic geometry of translation surfaces in S3. The rigidity
results, concerning minimal and constant mean curvature (CMC) surfaces, are given in terms of
the curvature and torsion of the generating curves and their proofs rely on the associated frame
of such curves. Finally, we present a correspondence between translation surfaces in S3 and
translation surfaces in R3. We show that these surfaces are locally isometric, and we present a
relation between their mean curvatures.

The content of this chapter constitutes a joint work with João Paulo do Santos [18], entitled
"Rigidity of Translation Surfaces in the Three-Dimensional Sphere S3".

3.1 Preliminary Concepts

In this section, we present the quaternionic model for S3, which equips it with the structure
of a Lie group endowed with a bi-invariant metric. We also introduce basic concepts and
properties that will be useful throughout this work. For further details, we refer [20, 53] to the
interested reader.

We begin by identifying R4 with the nonzero quaternions H∗ =H\{0} in the standard way:
(x1,x2,x3,x4) is viewed as the quaternion x1 + ix2 + jx3 + kx4. Hence, for x = (x1,x2,x3,x4)
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and y = (y1,y2,y3,y4), we have

x · y =


x1y1 − x2y2 − x3y3 − x4y4

x1y2 + x2y1 + x3y4 − x4y3

x1y3 − x2y4 + x3y1 + x4y2

x1y4 + x2y3 − x3y2 + x4y1

 .

We also define the conjugate of x ∈ R4 as x = (x1,−x2,−x3,−x4).
Now, let x,y,a ∈H∗. The following summarizes the properties of this group and they follow

from the definition of quaternions and the usual metric of R4

1. x · y = y · x 3. ⟨x · y,x · y⟩= ⟨x,x⟩⟨y,y⟩.
2. ⟨x ·a,y ·a⟩= ⟨x,y⟩. 4. x−1 = x/|x|2.

(3.1)

Therefore, since S3 = {(x1,x2,x3,x4) ∈ R4 | x2
1 + x2

2 + x2
3 + x2

4 = 1}, it follows from the
previously listed properties that, for all x,y ∈ S3, we have ⟨x · y,x · y⟩= 1, that is, the product is
closed in S3. Since this product is differentiable, it endows S3 with the structure of a Lie group,
whose identity element is e1 = (1,0,0,0). We also point out that S = ({0}×R3)∩S3 can be
seen as the space of purely imaginary unit quaternions and this notation will be important as
the set S appears recursively throughout this work. Finally, we will use the notation x ⊥ y, for
x,y ∈ S3, to indicate that ⟨x,y⟩= 0.

By the property 4 in (3.1) we conclude that x−1 = x whenever x ∈ S3. Therefore, if x ⊥ y,
we have ⟨x · y,e1⟩= 0 and ⟨x,y⟩= 0. Moreover, if x1 = y1 = 0, then

x · y = (0,x3y4 − x4y3,x4y2 − x2y4,x2y3 − x3y2).

Now let x̃ = (x2,x3,x4), ỹ = (y2,y3,y4) ∈ R3, and set x = (0, x̃),y = (0, ỹ) ∈ R4. Thus

x · y = (0, x̃× ỹ),

where × denotes the cross product in R3.

Remark 3.1. One can also see this group product as a canonical product of a linear map with a
vector in R4, in the following sense

x · y =


x1 −x2 −x3 −x4

x2 x1 −x4 x3

x3 x4 x1 −x2

x4 −x3 x2 x1




y1

y2

y3

y4

=


y1 −y2 −y3 −y4

y2 y1 y4 −y3

y3 −y4 y1 y2

y4 y3 −y2 y1




x1

x2

x3

x4

 .



3.1 Preliminary Concepts 54

It is also well known that any rotation A in 4-dimensional space can be expressed in terms
of a pair of unit quaternions x and y. More precisely, given a nonzero vector v ∈ R4, a rotation
can be written as Ax,yv = x · v · y. Arbitrary rotations in four dimensions have 6 degrees of
freedom; each matrix represents 3 of those 6 degrees. Furthermore, for a translation surface
α(s) ·β (t), we have

Ax,y(α(s) ·β (t)) = (x ·α(s)) · (β (t) · y) = α̃(s) · β̃ (t).

In particular, let z,w ∈ S3, then

Ax,yα(s) ·Az,wβ (t) = x ·α(s) · y · z ·β (t) ·w,

that is not necessarily an isometry applied to α(s) ·β (t). Moreover, we can write the conjugacy
of an element α ∈ S3 as

Aα =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1




α1

α2

α3

α4

= α.

Since detA = −1 and A is an isometry, then A inverts the orientation. Since the sign of the
torsion of a curve defines such orientation, then A changes the sign of the torsion. Thus
τα =−τα .

3.1.1 Frenet-Serret equations and special frames for curves in S3

In what follows, let ∇ be the standard Levi-Civita connection in S3. Let α : I ⊂ R→ S3 be
a smooth curve parametrized by the arc length. Following [53, Chapter 7, Part B], we denote
the tangent vector of α. by tα = α

′. The curvature of α is defined as κα(s) :=
∣∣∇α ′(s)α

′(s)
∣∣.

At the points s where κα(s) ̸= 0, we define nα(s) as nα(s) = κ
−1
α (s)∇α ′(s)tα(s). Finally, at the

points where both tα and nα are well defined, we define the binormal vector field bα to α as the
unit vector in TαS3 that is orthogonal to both tα and nα , and such that the frame {tα ,nα ,bα}
is positively oriented with respect to the orientation of S3. Throughout this paper, we will
consider the orientation on S3 such that the unit normal field is given by N(p) = p. In this case,
bα ∈ TαS3 defined so that det(α, tα ,nα ,bα)> 0.
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The well-known Frenet-Serret equations for smooth curves in S3, parametrized by the arc
length are given by 

∇tα tα = καnα ,

∇tα nα = −καtα + ταbα ,

∇tα bα = −ταnα ,

where κα and τα are the curvature and torsion of α , respectively. Thus, from the definition of
∇, we derive the following equations

α
′ = tα ,

α
′′ = καnα −α.


tα ′ = καnα −α,

n′α =−καtα + ταbα ,

b′α =−ταnα .

(3.2)

Since tα is a unit vector field, we define the vector field Tα as the product Tα := α · tα . If
κα ̸= 0, the Frenet frame {tα ,nα ,bα} is well defined, and we can extend this construction to
define the vector fields Nα := α ·nα and Bα := α ·bα . It follows from (3.1) that {Tα ,Nα ,Bα}
provides an orthonormal frame. In the context of translation surfaces, it will be also useful to
consider the frame {T̂α , N̂α , B̂α} defined by T̂α = α · tα , N̂α = α ·nα and B̂α = α ·bα . Let us
formalize this construction with the following definition:

Definition 3.1. Let α : I ⊂ R→ S3 be an arc length curve with curvature κα ̸= 0 everywhere.
A quaternionic frame associated to α is defined as the orthonormal set {Tα ,Nα ,Bα}, where
Tα = α · tα , Nα = α ·nα and Bα = α ·bα . Similarly, we define the frame {T̂α , N̂α , B̂α}, where
T̂α = α · tα , N̂α = α · nα and B̂α = α · bα . We call these frames the left and right frames,
respectively.

The next proposition provides useful identifications for the frames {Tα ,Nα ,Bα} and
{T̂α , N̂α , B̂α}.

Proposition 3.1. Let α(s), be an arc length curve in S3 with κα ̸= 0. Then we have

Tα = bα ·nα , Nα = tα ·bα , Bα = nα · tα ,
T̂α =−bα ·nα , N̂α =−tα ·bα , B̂α =−nα · tα .

Proof. Since x⊥ y implies in x ·y∈S , ⟨x,y⟩= 0 and x ·y=−y ·x. Thus
{

nα ·bα ,bα · tα , tα ·nα

}
⊂

S is an orthonormal frame and we have the following

⟨α · tα , tα ·α⟩= ⟨α · tα ,−α · tα⟩=−1,
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Thus, by the same properties, we have

⟨α · tα , tα ·nα⟩= ⟨α · tα , tα ·bα⟩= 0.

Then, we proceed to compute the following

⟨α ·nα , tα ·bα⟩ = ±1 , ⟨α ·nα , tα ·α⟩ = ⟨α ·nα , tα · tα⟩ = ⟨α ·nα , tα ·nα⟩ = 0,
⟨α ·bα , tα ·nα⟩ = ±1 , ⟨α ·bα , tα ·α⟩ = ⟨α ·bα , tα · tα⟩ = ⟨α ·bα , tα ·bα⟩ = 0.

Hence, repeating this process for other possible products, we obtain the following table

⟨·, ·⟩ tα ·α tα ·nα tα ·bα nα ·α nα · tα nα ·bα bα ·α bα · tα bα ·nα

α · tα −1 0 0 0 0 ±1 0 0 ±1
α ·nα 0 0 ±1 −1 0 0 0 ±1 0
α ·bα 0 ±1 0 0 ±1 0 −1 0 0

The process is simplified in determining the signs of the following products

⟨α · tα ,bα ·nα⟩=±1, ⟨α ·nα , tα ·bα⟩=±1, ⟨α ·bα ,nα · tα⟩=±1.

We have chosen these ones as they are more relevant to the context of the computations of this
work. Hence, in order to define the correct signs of the above products, observe that it must be
true for every configuration of the frame {tα ,nα ,bα}. Up to rigid motion, we can consider that,
at a given point s0, we have α(s0) = e1, tα(s0) = e2, nα(s0) = e3 and bα(s0) = e4. In this case,
Tα = e2 and bα ·nα = e2. The other cases are similar. Proceeding this way, and repeating the
process to the other possible vectors formed by α, tα ,nα ,bα and their products, we have

⟨·, ·⟩ bα ·nα tα ·bα nα · tα
Tα 1 0 0
Nα 0 1 0
Bα 0 0 1

The procedure to the frame {T̂α , N̂α , B̂α} is analogous.

Using the equations (3.2) we derive the following Frenet-Serret type equations for the
quaternionic frame of α:

T ′
α = tα · tα +α · (καnα −α) = καNα ,

N′
α = tα ·nα +α · (−καtα + ταbα) = −καTα +(τα −1)Bα ,

B′
α = tα ·bα +α · (−ταnα) = −(τα −1)Nα .

(3.3)
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Moreover, for the frame {T̂α , N̂α , B̂α}, we have
T̂ ′

α = tα · tα +α · (καnα −α) = κα N̂α ,

N̂′
α = tα ·nα +α · (−καtα + ταbα) = −κα T̂α +(τα +1)B̂α ,

B̂′
α = tα ·bα +α · (−ταnα) = −(τα +1)N̂α .

(3.4)

3.1.2 Geometry of translation surfaces in S3

Let α : I ⊂ R → S3, α(s) and β : J ⊂ R → S3, β (t) be two arc length curves. Let X :
I × J → S3 be the map given by X(s, t) = α(s) · β (t). Since ∂sX(s, t) = α

′(s) · β (t) and
∂tX(s, t) = α(s) ·β ′(t) are non-null vectors, the condition for X to be a regular parametrization
for a surface in S3 is given by ⟨α ′(s) ·β (t),α(s) ·β ′(t)⟩ ̸=±1.

Let X : I×J → S3, X(s, t) = α(s) ·β (t) be a parametrization of a translation surface. From
now on, we will always use the left frame for the curve α and the right frame for the curve
β . In order to simplify the notation, the structure of the following computations will allow
us to denote the right frame {T̂β , N̂β , B̂β} of the curve β as {Tβ ,Nβ ,Bβ} without chance of
confusion. The parameters s and t will be omitted to make the presentation of the calculations
simpler and more pleasant for the reader. Also, from now on, we will always assume that α

and β are parametrized by the arc length.
Furthermore, throughout this work, the results are stated for α(s) ·β (t) but they are also

true for β (t) ·α(s), unless said otherwise. In particular, for the results that use τα = 1, we have
the same changing the role of α β but with τβ =−1.

Now we present the following

Theorem 3.1. Let X : I × J → S3 , X(s, t) = α(s) ·β (t), be a parametrization of a translation
surface. Then the regularity condition is given by

⟨Tα ,Tβ ⟩ ̸=±1. (3.5)

The unit normal field at X(s, t) in S3 is

N(s, t) =
α ′(s) ·β ′(t)−⟨Tα(s),Tβ (t)⟩ α(s) ·β (t)√

1−⟨Tα(s),Tβ (t)⟩2
. (3.6)

The mean curvature is given by

H =
κα⟨Bα ,Tβ ⟩−κβ ⟨Tα ,Bβ ⟩−2⟨Tα ,Tβ ⟩[⟨Tα ,Tβ ⟩2 −1]

2[1−⟨Tα ,Tβ ⟩2]3/2 , (3.7)
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and the Gaussian curvature is

K =
κακβ ⟨Bα ,Tβ ⟩⟨Tα ,Bβ ⟩

(1−⟨Tα ,Tβ ⟩2)2 (3.8)

Proof. Initially, with equations (3.3) and (3.4), we compute the coefficients of the first funda-
mental form

E = ⟨Xs,Xs⟩ = ⟨α ′ ·β ,α ′ ·β ⟩ = 1,
G = ⟨Xt ,Xt⟩ = ⟨α ·β ′,α ·β ′⟩ = 1,
F = ⟨Xs,Xt⟩ = ⟨α ′ ·β ,α ·β ′⟩ = ⟨Tα ,Tβ ⟩.

(3.9)

Let now Y (s, t) = α
′(s) ·β ′(t), we have

⟨Xs(s, t),Y (s, t)⟩ = ⟨α ′(s) ·β (t),α ′(s) ·β ′(t)⟩ = ⟨β (t),β ′(t)⟩ = 0,
⟨Xt(s, t),Y (s, t)⟩ = ⟨α(s) ·β ′(t),α ′(s) ·β ′(t)⟩ = ⟨α(s),α ′(s)⟩ = 0.

Thus, Y (s, t) is orthogonal to Xs e Xt , for every s ∈ I, t ∈ J. Also, by a similar argument, one
can see that X(s, t) is also orthogonal to Xs and Xt , for every s ∈ I, t ∈ J. Hence, X and Y are
contained in a plane that is orthogonal to the plane span{Xs,Xt} in R4.

Let N(s, t) be the unit normal field at X(s, t) in S3 ⊂ R4 that is at the same time orthogonal
to X , Xs and Xt . Thus N = aX + bY , with a2 + b2 + 2ab⟨X ,Y ⟩ = 1 and we have ⟨N,X⟩ =
a+b⟨X ,Y ⟩= 0. Then a =−b⟨X ,Y ⟩, which implies that

b2(1+ ⟨X ,Y ⟩2)−2b2⟨X ,Y ⟩2 = b2(1−⟨X ,Y ⟩2) = 1.

As we may choose b = 1/
√

1−⟨X ,Y ⟩2, and since ⟨X ,Y ⟩ = ⟨α ·β ,α ′ ·β ′⟩ = ⟨β ·β ′,α ·α ′⟩.
we get

N(s, t) =
α ′(s) ·β ′(t)−⟨Tα(s),Tβ (t)⟩ α(s) ·β (t)√

1−⟨Tα(s),Tβ (t)⟩2
.

We now recall that ∇ and ∇̃ are the Levi-Civita connections in S3 and R4, respectively.
Thus, since p = X(s0, t0) is orthogonal to the surface TpX for every s and t (as the surface is
contained in S3 ⊂ R4), and ∇̃ is known to be equivalent to the usual differentiation, we have

Xss = ∇XsXs + ⟨Xss,X⟩X ,

Xst = ∇XsXt + ⟨Xst ,X⟩X ,

Xtt = ∇Xt Xt + ⟨Xtt ,X⟩X .
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With these equations, we compute the coefficients of the second fundamental form of the
surface X(s, t) as

e = ⟨Xss,N⟩, g = ⟨Xtt ,N⟩, f = ⟨Xst ,N⟩.

Remembering that ⟨N,X⟩= 0, ⟨α ·β ,α ′′ ·β ⟩=−1, properties (3.1) and system (3.2), we
begin computing the coefficients of the second fundamental form

e = ⟨N,∇XsXs⟩=
⟨α ′ ·β ′−⟨α ′ ·β ′,α ·β ⟩α ·β ,α ′′ ·β ⟩√

1−⟨α ′ ·β ′,α ·β ⟩2
=

⟨α ′ ·β ′,α ′′ ·β +α ·β ⟩√
1−⟨α ′ ·β ′,α ·β ⟩2

=

=
⟨tα · tβ ,καnα ·β −α ·β +α ·β ⟩√

1−⟨tα · tβ ,α ·β ⟩2
=

κα⟨nα · tα ,β · tβ ⟩√
1−⟨α · tα ,β · tβ ⟩2

.

If κα ≡ 0, then α
′′ =−α and e = 0. Symmetrically we have

g = ⟨N,∇Xt Xt⟩=
⟨α ′ ·β ′,α ·β ′′+α ·β ⟩√

1−⟨α ′ ·β ′,α ·β ⟩2
=

κβ ⟨α · tα ,nβ · tβ ⟩√
1−⟨α · tα ,β · tβ ⟩2

.

Again, if κβ ≡ 0, then β
′′ =−β and g = 0. Also we have

f = ⟨N,∇Xt Xs⟩=
⟨α ′ ·β ′−⟨α ′ ·β ′,α ·β ⟩α ·β ,α ′ ·β ′⟩√

1−⟨α ′ ·β ′,α ·β ⟩2
=
√

1−⟨α · tα ,β · tβ ⟩2.

In case κα ̸≡ 0 and κβ ̸≡ 0, it follows from the first system in (3.2), Definition 3.1 and
Proposition 3.1 that the coefficients of the second fundamental form can be written as

e =
κα⟨Bα ,Tβ ⟩√
1−⟨Tα ,Tβ ⟩

, g =−
κβ ⟨Tα ,Bβ ⟩√
1−⟨Tα ,Tβ ⟩

, f =
√

1−⟨Tα ,Tβ ⟩2. (3.10)

Also, using the usual mean curvature formula, we obtain

H =
1
2

eG−2 f F +Eg
EG−F2 =

κα⟨Bα ,Tβ ⟩−κβ ⟨Tα ,Bβ ⟩−2⟨Tα ,Tβ ⟩[⟨Tα ,Tβ ⟩2 −1]

2[1−⟨Tα ,Tβ ⟩2]3/2 .

In order to obtain the Gaussian curvature we must compute the extrinsic curvature by the

classical equation Kext =
eg− f 2

EG−F2 , that is

Kext =−
κακβ ⟨Bα ,Tβ ⟩⟨Tα ,Bβ ⟩

1−⟨Tα ,Tβ ⟩2 −1. (3.11)
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then the Gaussian curvature is K = Kext +1.

Remark 3.2. From Theorem 3.1 we obtain some important equations that will be useful
throughout this work. A translation surface is minimal if and only if

κα⟨Bα ,Tβ ⟩−κβ ⟨Tα ,Bβ ⟩= 2⟨Tα ,Tβ ⟩[⟨Tα ,Tβ ⟩2 −1]. (3.12)

Furthermore, a translation surface is flat if and only if

κακβ ⟨Bα ,Tβ ⟩⟨Tα ,Bβ ⟩= 0. (3.13)

3.2 Translation surfaces with constant Gaussian curvature:
revisiting the flat case

It is well-known from the Bianchi-Spivak construction [20, 53] that a flat surface in S3 is
recovered locally as the quaternionic product of two curves in S3. In other words, every flat
surface is locally a translation surface. On the other hand, the only translation surfaces in S3

with constant Gaussian curvature are the flat ones. This is the content of the following recent
result:

Proposition 3.2 ([24]). Let G be an n-dimensional (n ≥ 3) Lie group with a bi-invariant metric,
and M be a translation surface in G with constant Gaussian curvature, then M must be flat.

This means that, as we have S3 ⊂R4 with the usual metric induced by the four-dimensional
Euclidean space, which is a bi-invariant metric, the classification of translation surfaces with
constant Gaussian curvature is reduced to the flat case.

Remark 3.3. Let x,y ∈ G = S3, and let A,B ∈ g, with A,B ̸= 0. The standard metric on R4 is
bi-invariant if and only if

⟨A,B⟩e = ⟨(dLx)eA,(dLx)eB⟩= ⟨(dRx)eA,(dRx)eB⟩.

Since each element x ∈ S3 ⊂H can be interpreted as a rotation of R4, we may identify left and
right translations by x with linear isometries Xl and Xr, respectively. That is, for y ∈ S3,

Lx(y) = x · y = Xl(y), and Rx(y) = y · x = Xr(y),

so the differentials satisfy (dLx)∗ = Xl and (dRx)∗ = Xr, respectively (see Remark 3.1).
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Identifying g\{0} with the subspace {0}×R3 ⊂ R4, we can further identify A and B with
purely imaginary quaternions a,b ∈H∗. Using the multiplicative properties of quaternions, we
obtain

⟨A,B⟩= ⟨(dLx)eA,(dLx)eB⟩= ⟨x ·a,x ·b⟩= ⟨a,b⟩,

which shows that the metric is left-invariant. The same argument applies to the right multiplica-
tion case, thus proving that the metric is bi-invariant.

A first direct consequence of Proposition 3.2 is the non-existence of totally umbilic and
totally geodesic translation surfaces in S3. In particular, the question of whether totally geodesic
spheres are minimal translation surfaces is natural due to the fact that their analogues in R3,
i.e., the planes, are a trivial example of such surfaces. In this sense, we present the following

Theorem 3.2. There is no totally umbilic surfaces or totally geodesic surfaces in S3 given as a
translation surface.

Proof. As a totally umbilic surface or a totally geodesic surface has constant principal curva-
tures equal to λ ∈ R, it has constant Gaussian curvature K by the Gauss Equation:

λ
2 +1 = K

By proposition 3.2 K must be zero, which is a contradiction with the equation above.

It is also a consequence of the Gauss Equation that flat surfaces in S3 have negative extrinsic
curvature Kext = λ1λ2, where λi, i = 1,2 denote the principal curvatures. In this sense, we have
the following well-known result

Theorem 3.3 ([20]). Let Σ be a surface and ψ : Σ → M3(c) an immersion with negative
constant extrinsic curvature Kext in a space form. Then the asymptotic curves of ψ have
constant torsion τ , with τ

2 =−Kext at points where the curvature of the curve does not vanish.
Moreover, two asymptotic curves through a point have torsions of opposite signs if they have
nonvanishing curvature at that point.

Such a result is particularly important when we recover a flat surface Σ ⊂ S3 by means of
its asymptotic lines. In fact, it is shown that the asymptotic lines are congruent to each other
within their family [20, Proposition 3], and the curves that provide the translation structure
are exactly a representative of each class [20, Theorem 9]. Our next result provides a kind of
converse of these facts

Proposition 3.3. Let X : I × J → S3 , X(s, t) = α(s) ·β (t), be a translation surface. in S3.
Suppose that κα ̸= 0 and α(s) ·β (t0) is an asymptotic line for all t0 ∈ J ⊂ R. Then τα = 1 and
either κβ = 0 or τβ =−1. If we have also κβ ̸≡ 0 then g = 0, τα ≡ 1 and τβ ≡−1.
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Proof. Suppose that α(s) ·β (t0) is an asymptotic line of X for all t0 ∈ J ⊂ R. This implies that
e = 0 and, by Theorem 3.1 we have κα⟨Bα ,Tα⟩= 0 and Kext ≡−1. It follows from Theorem
3.3 that α has torsion τ =±1 where the curvature does not vanishes, since α is congruent to
α ·β (t0), for all t0 ∈ J.

Suppose now that κα ̸= 0. In order to have e = 0 we need that ⟨Bα ,Tβ ⟩= 0. Differentiating
the previous equation with respect to s gives −(τα −1)⟨Nα ,Tβ ⟩= 0. Suppose that τα = 1, we
then differentiate again to obtain

−(τα −1)⟨(−καTα +(τα −1)Bα),Tβ ⟩= κα(τα −1)⟨Tα ,Tβ ⟩= 0.

Since κα ̸≡ 0, we must have

⟨Tα ,Tβ ⟩= ⟨Nα ,Tβ ⟩= ⟨Bα ,Tβ ⟩= 0,

a contradiction as Tα , Nα , Bα , Tβ ∈ S. Thus we must have τα = 1.
Now if τα = 1 then Bα = C a constant vector in S. If ⟨Bα ,Tβ ⟩ = 0 and as we have also

Tβ ∈ S , then Tβ is contained in the intersection of a two dimensional plane that passes through
the origin with S , that means that either Bβ or Tβ is constant and thus either κβ ≡ 0 or τβ ≡−1.
As the conjugacy inverts the orientation (Remark 3.1), this implies the change of sign of the
torsion (as this sign defines such orientation), which means that τα =−τα .

Suppose now also κβ ̸≡ 0, then τα =−1 and Bα =C so we have

e f = κα⟨C,Tβ ⟩= 0.

Differentiating with respect to t gives κβ ⟨C,Nβ ⟩ = 0. As κβ ̸= 0, we have that C ⊥ Nβ and
C ⊥ Tβ . But C ⊥ Nα and C ⊥ Tα and also Tα ,Tβ ,Nα ,Nβ ∈ S, which means that they are all
contained in a two dimensional plane in R4 that is, at the same time, orthogonal to e1 and C.
As Bβ ∈ ({0}×R3)∩S3, Bβ ⊥ Tβ and Bβ ⊥ Nβ we must have Bβ =±C and thus

⟨Tα ,Bβ ⟩=±⟨Tα ,C⟩= 0,

that is g = 0. As shown before this means that τβ =−1.

Following [3], a curve γ(s) in S3 is called a general helix if there exists a Killing vector
field V (s) with constant length along γ such that the angle between V and γ

′ is a non-zero
constant along γ . It is established in [3, Theorem 3], that a curve γ in S3 is a general helix if
and only if either τ ≡ 0 and γ is a curve in some unit 2-sphere S2 or there exists a constant b
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such that τ = bκ ±1. Therefore, a curve γ ⊂ S3 with constant curvature and torsion is a general
helix since it satisfies the more general statement τ = bκ ±1. In particular, when κ and τ are
constant we call this curve a proper helix. Now, we present

Lemma 3.1. Let α be an arc-length general helix in S3 with arc length parameter s. Then Tα ,
Nα and Bα describe circles in S.

Proof. Let α(s) be an helix in S3, then there exists a constant b ∈ R such that τα = bκα ±1.
We may suppose without loss of generality that τα = bκα +1. Initially, if κα ≡ 0 then Tα is
constant and Nα and Bα are not defined. If τα ≡ 1 then Bα is constant and Tα and Nα describe
the great circle that is orthogonal to Bα and e1. Thus, suppose from now on that κα ̸≡ 0
and τα ̸≡ 1 and consider the curve α̂(s) = Tα(s). Since α̂ is in S, then is immediate that τα̂

vanishes. We compute
d
ds

α̂(s) = T ′
α(s) = κα(s)Nα(s).

Hence, for such a curve, consider the arc length parameter

ŝ(s) =
∫ s

0
|α̂ ′(s)| ds =

∫ s

0
|κα(s)Nα(s)| ds =

∫ s

0
κα(s) ds = f (s).

Then s(ŝ) = f−1(ŝ). Hence

d
dŝ

s(ŝ) =
d
dŝ

f−1(ŝ) =
1

f ′( f−1(ŝ))
=

1
κα(ŝ)

.

Since s̃ is the arc length parameter of α̂ , we conclude that

d
dŝ

α̂(ŝ) =
1

κα(ŝ)
[κα(ŝ)Nα(ŝ)] = Nα(ŝ).

Thus, tα̂(ŝ) = Nα(ŝ). Now, we compute

t ′
α̂
=

d
dŝ

Nα(ŝ) =
1

κα(ŝ)
[−κα(ŝ)Tα(ŝ)+(τα(ŝ)−1)Bα(ŝ)] =

τα(ŝ)−1
κα(ŝ)

Bα(ŝ)− α̂(ŝ).

Since Bα ⊥ α̂ , Bα ⊥ tα̂ and equation (3.2), we get that nα̂ = Bα and κα̂(ŝ) = (τα(ŝ)−1)/κα(ŝ).
Since τα(ŝ) = bκα(ŝ)+1 we have

κα̂ =
(τα(ŝ)−1)

κα(ŝ)
=

bκα(ŝ)
κα(ŝ)

= b.

As b is constant by hypothesis, we conclude that Tα describes a circle in S.
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We remember that in S3, a small circle is always contained in a small sphere, that is, for
some v ∈ S3 we describe a small sphere as Sv = {w ∈ S3 : w ⊥ v}. Thus, for some u ∈ Sv and a
constant θ ∈R, a small circle Cv,u,θ = {w ∈ Sv : ⟨w,u⟩= cos(θ)} has pole (or spherical center)
given by v and u. Since Tα is a circle in S, then suppose that for some u ∈ S, it describes the
circle Ce1,u,θ = {w ∈ S : ⟨w,u⟩= cos(θ)}, then ⟨Tα ,u⟩= cos(θ). Differentiating with respect
to s gives κα⟨Nα ,u⟩= 0. As κα ̸≡ 0, it follows that tα̃ = Nα describes the great circle that is
orthogonal to u and e1.

Now, differentiating ⟨Nα ,u⟩ again with respect to s gives

−κα⟨Tα ,u⟩+(τα −1)⟨Bα ,u⟩= 0.

Thus
⟨Bα ,u⟩=

κα

τα −1
cos(θ) =

1
b

cos(θ),

which implies that ⟨Bα ,u⟩ is constant. Thus, Bα describes a circle in S and Tα , Nα and Bα

have the same pole.

The definition of general helix provides a nice geometric description of a translation surface
generated by curves α and β where Tα and Tβ make a constant angle. Firstly, it follows from
Theorem 3.1 that the metric components of a translation surface are given by E = G = 1 and
F = ⟨Tα ,Tβ ⟩. Therefore, when ⟨Tα ,Tβ ⟩ is constant, such a surface is flat. We can go further
and characterize the curves α and β in this case:

Furthermore, we also have

Proposition 3.4. Let X : I×J → S3 , X(s, t)=α(s) ·β (t), be a translation surface. If ⟨Tα ,Tβ ⟩=
C, then this surface is flat. Moreover, one has κβ ≡ 0 and either κα ≡ 0 or α is a general helix

satisfying τα =
C
η

κα +1 with , C,η ∈ R.

Proof. Supposing that F = ⟨Tα ,Tβ ⟩=C and knowing that Tα and Tβ are curves contained in S ,
we may see this elements as curves in S2 ⊂R3. Now, fixing t0, the condition ⟨Tα(s),Tβ (t0)⟩=C
for every s implies that either

1. Tα is constant, which implies that κα ≡ 0 , Symmetrically fixing s0 we get that Tβ is
constant or contained in a cone with center Tα .

2. Tα is contained in a cone centered in Tβ (t0). In this case the angle must remain constant
if we choose t1 ̸= t0, which implies by the geometry of the sphere S2 that Tβ is constant
and thus κβ ≡ 0.
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Now, differentiating ⟨Nα ,Tβ ⟩ with respect to s gives

κα⟨Nα ,Tβ ⟩= 0. (3.14)

If κα ̸≡ 0 we have that ⟨Nα ,Tβ ⟩= 0, and differentiating again it with respect to s gives

−κα⟨Tα ,Tβ ⟩+(τα −1)⟨Bα ,Tβ ⟩=−καC+(τα −1)⟨Bα ,Tβ ⟩= 0.

If C = 0, then (τα −1)⟨Bα ,Tβ ⟩= 0. Thus either τα = 1 or ⟨Bα ,Tβ ⟩= 0. If the second one
is true then Tα∥Tβ and C =±1, a contradiction. Hence τα = 1.

If C ̸= 0, we have two cases:

1. If τα = 1, then καC = 0, which implies that C = 0 or κα = 0, both contradictions.

2. If τα ̸= 1, then
⟨Bα ,Tβ ⟩=C

κα

τα −1
.

Differentiating this equation with respect to s, and using equation (3.14), yields

−(τα −1)⟨Nα ,Tβ ⟩=
[
C

κα

τα −1

]′
= 0,

which implies that Cκα +η = ητα , η ∈ R. It is clear that η ̸= 0, otherwise καC = 0,
which implies that C = 0 or κα = 0, both contradictions. Hence we have

C
η

κα +1 = τα .

As a consequence of this result, we can extend this result to a general context, i.e., for any
two curves in S3, in which ⟨α · tα ,β · tβ ⟩=C.

Corollary 3.1. Let α(s) and β (t) be curves in S3 such that ⟨α · tα ,β · tβ ⟩ = C, then κα ≡ 0

and either κβ ≡ 0 or β is a general helix with τβ =
C
η

κβ −1, C,η ∈ R.

3.3 On CMC translation surfaces

In the sense of the first case of Theorem 3.1, we begin this section with the following
example
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Example 3.1. We know that some of the classically known examples are the so-called Clifford
tori CR1,R2 , given by

CR1,R2 =

{
(x1,x2,x3,x4) ∈ R4

∣∣∣∣ x2
1 + x2

2 = R2
1, x2

3 + x2
4 = R2

2

}
.

Such a surface can be parameterized as

X(s, t) = (R1 cos(s+ t),R1 sin(s+ t),R2 cos(s− t),R2 sin(s− t)), R2
1 +R2

2 = 1.

Consider the rotation

MR1,R2 =


R1 0 R2 0
0 R1 0 R2

R2 0 −R1 0
0 R2 0 −R1

 , Det(MR1,R2) = 1.

Thus

MR1,R2(X(s, t))=


R2

1 cos(s+ t)+R2
2 cos(s− t)

R1 sin(s+ t)+R2 sin(s− t)
R1R2[cos(s+ t)− cos(s− t)]
R1R2[sin(s+ t)− sin(s− t)]

=


cos(s)cos(t)− (R2

1 −R2
2)sin(s)sin(t)

sin(s)cos(t)+(R2
1 −R2

2)cos(s)sin(t)
−2R1R2 sin(s)sin(t)
2R1R2 cos(s)sin(t)

 .

Thus MR1,R2(X(s, t)) = α(s) ·β (t), where

α(s) = (cos(s),sin(s),0,0),
β (t) = (cos(t),(R2

1 −R2
2)sin(t),0,2R1R2 sin(t)).

Since Tα = e2, we compute

⟨Tα ,Tβ ⟩=−(R2
1 −R2

2)[cos2(t)+ sin2(t)] =−(R2
1 −R2

2).

Also κα = κβ = 0, then by Theorem 3.1 we have

H =
−⟨Tα ,Tβ ⟩√
1−⟨Tα ,Tβ ⟩2

=
(R2

1 −R2
2)√

1− (R2
1 −R2

2)
2
.

as R1 and R2 are constant, we have that α(s) ·β (t) is a CMC Surface. It is clear that when we
have R1 = R2 = 1/

√
2, we have the minimal and flat Clifford torus (See Figure 3.1).
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Fig. 3.1 Clifford torus with mean curvatures H = 0 and H = 1/
√

3, respectively. Also with
curves α in red and β in black.

We present initially the following result

Theorem 3.4. Let X : I×J → S3, X(s, t) = α(s) ·β (t), be a translation surface. If κα = κβ = 0,
then it is a CMC Clifford torus. Moreover, we have ⟨Tα ,Tβ ⟩ = C ∈ (−1,1) and the mean
curvature is given by

H =
−C√
1−C2

.

Proof. If κα = κβ = 0, then Tα and Tβ are constant vectors and also, this surface is flat. Thus,
⟨Tα ,Tβ ⟩=C ∈ (−1,1) and equation (3.7) becomes

H =
−⟨Tα ,Tβ ⟩√
1−⟨Tα ,Tβ ⟩2

=
−C√
1−C2

.

Moreover, from the proof of [26, Proposition 3.4], we know that such surfaces must be a
standard product of circles, S1(r)×S1(ρ), and thus CMC Clifford tori.

We also prove the following

Theorem 3.5. Let X : I × J → S3, X(s, t) = α(s) · β (t), be a CMC translation surface. If
F = ⟨Tα ,Tβ ⟩ = C ∈ (−1,1) or κα = 0 (symmetrically κβ = 0), then this surface is a CMC
Clifford Torus.

Proof. If F = ⟨Tα ,Tβ ⟩ = C ∈ R, then this surface is flat. By theorem 3.1, the same occurs
when κα ≡ 0 (or κβ ≡ 0). Again, from the proof of [26, Proposition 3.4], this surface is a CMC
Clifford torus.
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3.4 Correspondence between translation surfaces in S3 and
R3

In this section we present a result that establishes a connection between translation surfaces
in S3 and translation surfaces in R3. The objective here is to understand the relationship between
these surfaces and analyze them through both their intrinsic and extrinsic geometry. We then
present some applications, drawing on examples and results from [25, 36]. Accordingly, we
state the following

Theorem 3.6. Let M ⊂ S3 be a translation surface generated by curves α and β with curvatures
κα , κβ and, when κα ̸≡ 0 and κβ ̸≡ 0, torsions τα and τβ . Then this surface is locally isometric
to a translation surface M̃ ⊂ R3, generated by curves α̃ and β̃ , whose curvatures and torsions
satisfy κ̃α = κα , κ̃β = κβ , τ̃α = (τα − 1) and τ̃β = (τβ + 1), respectively. The reciprocal
identification also holds. Moreover, the mean curvatures H̃ and H, of M̃ and M, respectively,
satisfy

H̃ = H +
⟨Tα ,Tβ ⟩√

1−⟨Tα ,Tβ ⟩2
.

Proof. Suppose initially that κα = κβ ≡ 0, then we write α · tα = Tα , which is constant. We
associate with this a curve α̃ in R3, which is a straight line in the direction of Tα . By symmetry,
we proceed similarly for β and β̃ . Now, consider a translation surface in R3 defined by
Ψ(s, t) = α̃(s)+ β̃ (t). We have that

Ẽ = ⟨Ψs(s, t),Ψs(s, t)⟩ = ⟨α̃ ′(s), α̃ ′(s)⟩ = ⟨Tα ,Tα⟩ = 1,
G̃ = ⟨Ψt(s, t),Ψt(s, t)⟩ = ⟨β̃ ′(t), β̃ ′(t)⟩ = ⟨Tβ ,Tβ ⟩ = 1,
F̃ = ⟨Ψs(s, t),Ψt(s, t)⟩ = ⟨α̃ ′(s), β̃ ′(t)⟩ = ⟨Tα ,Tβ ⟩.

By [25], we know also that

Ñ(s, t) =
Tα ×Tβ√

1−⟨Tα ,Tβ ⟩2
.

Thus
ẽ = ⟨Ψss(s, t),N(s, t)⟩ = ⟨α̃ ′′,N⟩ = 0,
g̃ = ⟨Ψtt(s, t),N(s, t)⟩ = ⟨β̃ ′′,N⟩ = 0,
f̃ = ⟨Ψst(s, t),N(s, t)⟩ = ⟨0,N⟩ = 0.

By theorem 3.1, we have Ẽ = E = G̃ = G = 1, F̃ = F and ẽ = e = g̃ = g = 0. Consequently

K̃ =− ẽg̃− f̃
ẼG̃− F̃2

= 0 = K.
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where K̃ and K are the Gaussian curvatures in R3 and S3 respectively. Moreover, we have

H̃ =
ẽG̃−2 f̃ F̃ + Ẽg̃

2(ẼG̃− F̃2)
= H +

⟨Tα ,Tβ ⟩√
1−⟨Tα ,Tβ ⟩2

= 0.

where H̃ and H are the mean curvatures in R3 and S3 respectively.
Suppose now that κα ≡ 0 and κβ ̸≡ 0 (or symmetrically κ ≡ 0, κα ̸≡ 0). With the vectors

Tβ , Nβ , Bβ and equations of Frenet-frame kind

T ′
β

= κβ Nβ ,

N′
β

= −κβ Tβ +(τβ +1)Bβ ,

B′
α = −(τβ +1)Nβ .

We can associate a unique arc length curve β̃ in R3, up to rigid motion, whose curvature and
torsion satisfy κ̃β = κβ and τ̃β = (τβ +1), respectively, and whose Frenet frame is given by
{Tβ ,Nβ ,Bβ}. As before, we associate to α a curve α̃ in R3 that is a straight line parallel to Tα .
Consider now a translation surface in R3 defined by Ψ(s, t) = α̃(s)+ β̃ (t). We have that

Ẽ = ⟨Tα ,Tα⟩= 1, G̃ = ⟨Tβ ,Tβ ⟩= 1, F̃ = ⟨Tα ,Tβ ⟩.

Again Ñ(s, t) = Tα ×Tβ/
√

1−⟨Tα ,Tβ ⟩2. Thus

ẽ = ⟨α̃ ′′,N⟩= 0, g̃ = ⟨β̃ ′′,N⟩=−
κβ ⟨Tα ,Bβ ⟩√
1−⟨Tα ,Tβ ⟩2

, f̃ = ⟨0,N⟩= 0.

Once again, by theorem (3.1), we conclude that Ẽ = E = G̃ = G = 1, F̃ = F and ẽ = e = 0,
g̃ = g. Hence, K̃ = 0 = K and also

H̃ =
−κβ ⟨Tα ,Bα⟩

2(1−⟨Tα ,Tβ ⟩2)3/2 −
⟨Tα ,Tβ ⟩√

1−⟨Tα ,Tβ ⟩2
+

⟨Tα ,Tβ ⟩√
1−⟨Tα ,Tβ ⟩2

= H +
⟨Tα ,Tβ ⟩√

1−⟨Tα ,Tβ ⟩2
.

From now on, suppose that κα ̸≡ 0 and κβ ̸≡ 0. Consider now a translation surface in R3

defined by Ψ(s, t) = α̃(s)+ β̃ (t). We have that

Ẽ = ⟨Tα ,Tα⟩= 1, G̃ = ⟨Tβ ,Tβ ⟩= 1, F̃ = ⟨Tα ,Tβ ⟩.
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One more time, by [25], we know that Ñ(s, t) = (Tα ×Tβ )/
√

1−⟨Tα ,Tβ ⟩2. Thus

ẽ = ⟨α̃ ′′,N⟩= κα⟨Bα ,Tα⟩√
1−⟨Tα ,Tβ ⟩2

, g̃ = ⟨β̃ ′′,N⟩=−
κβ ⟨Tα ,Bβ ⟩√
1−⟨Tα ,Tβ ⟩2

, f̃ = ⟨0,N⟩= 0.

Thus Ẽ = E = G̃ = G = 1, F̃ = F and ẽ = e and g̃ = g. Hence

K̃ =−
κακβ ⟨Bα ,Tα⟩⟨Tα ,Bβ ⟩

1−⟨Tα ,Tβ ⟩2 = K,

and

H̃ =
κα⟨Bα ,Tα⟩−κβ ⟨Tα ,Bα⟩

2(1−⟨Tα ,Tβ ⟩2)3/2 = H +
⟨Tα ,Tβ ⟩√

1−⟨Tα ,Tβ ⟩2
.

Now, consider a curve α̃ in R3. If α̃ is a straight line, we correspond it with a geodesic
circle in S3. Otherwise, let {Tα̃ ,Nα̃ ,Bα̃} denote its Frenet frame, κ̃α and τ̃α its curvature and
torsion, respectively. Let α be the unique curve in S3, up to rigid motion, with curvature
κα = κ̃α and torsion τα = τ̃α +1. We know that {Tα ,Nα ,Bα} satisfy (3.3), which correspond
to the Frenet formulas for α̃ in R3. Now, using Theorem (3.1) and [25], we conclude the
result.

As applications of this theorem we have the following

Corollary 3.2. Let M̃ ⊂ R3 and M ⊂ S3 be translation surfaces in the conditions of Theorem
3.6. If they both are CMC, then they are also flat, M is a CMC flat torus and M̃ is a plane or a
cylinder.

and

Example 3.2. Let M ⊂ S3 be a translation surface such that ⟨Tα ,Tα⟩=C. Then, by Theorem
3.5, this surface is a flat CMC torus, and thus the associated surface M̃ ⊂ R3 is also flat and
CMC. Therefore, M̃ must be a plane or a cylinder. Moreover, by Proposition 3.4, the condition
⟨Tα ,Tβ ⟩=C implies that either κα ≡ κβ ≡ 0, or κβ ≡ 0 and α is a general helix. In the case
κα ≡ κβ ≡ 0, M̃ is a plane. If α is a helix, then by the proof of Proposition 3.4, ⟨Bα ,Tβ ⟩ is
constant. Thus, by theorem (3.1), if M is CMC, then κα is constant, which implies that τα is
constant as well. Hence, α̃ is a helix in R3.

The next ones are motivated by the works [36, 25], in particular, they approach the case of
circular helices in R3 .
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Corollary 3.3. Let M̃ ⊂ R3 and M ⊂ S3 be translation surfaces in the conditions of Theorem
3.6. If κα ̸= 0 and |τα | ̸= 1 are constant then α(s) ·α(t) is not minimal in S3.

Proof. Following [25, Theorem 3.2], let α in R3 be an arc length curve with constant curvature
and torsion. Then a translation surface M̃ ⊂R3, locally parameterized as X̃(s, t) = α(s)+α(t),
is minimal if and only if it is a helicoid. By Theorem 3.6, we conclude that M ⊂ S3 cannot be
minimal.

Remark 3.4. For corollary 3.3, it is important to keep the regularity condition, that is, ⟨Tα ,Tβ ⟩ ≠
1.

About curves with constant curvature and torsion we have

Corollary 3.4. If M̃ ⊂R3 is minimal and one of the curves is a circular helix. Then the surface
M ⊂ S3 is neither CMC nor flat and its mean curvature is given by

H =−
⟨Tα ,Tβ ⟩√

1−⟨Tα ,Tβ ⟩2
.

Proof. By [25, Theorem 3.2], if M̃ ⊂ R3 is a minimal translation surface and one of the
generating curves has constant curvature and torsion, then the other curve is a congruent curve
with the same curvature and torsion, and M̃ is the helicoid. By Theorem 3.6, the surface M ⊂ S3

is neither CMC nor is flat, and its mean curvature is given by

H =−
⟨Tα ,Tβ ⟩√

1−⟨Tα ,Tβ ⟩2
.

3.5 On minimal translation surfaces

The first theorem of this section can be viewed as a generalization of Corollary 3.3.

Theorem 3.7. There are no minimal translation surfaces X : I × J → S3, X(s, t) = α(s) ·β (t)
with κα ≡C ∈ R, C ̸= 0 and τα = 1.

Proof. Differentiating equation (3.12) with respect to s gives

κ
′
α⟨Bα ,Tβ ⟩−κα(τα −1)⟨Nα ,Tβ ⟩−κβ κα⟨Nα ,Bβ ⟩= 2κα⟨Nα ,Tβ ⟩[3⟨Tα ,Tβ ⟩2 −1]. (3.15)
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If τα = 1 and κα ≡C ̸= 0, C ∈ R, then equation (3.15) becomes

−κβ ⟨Nα ,Bβ ⟩= 2⟨Nα ,Tβ ⟩[3⟨Tα ,Tβ ⟩2 −1].

Differentiating again with respect to s gives

κβ κα⟨Tα ,Bβ ⟩=−2κα⟨Tα ,Tβ ⟩[3⟨Tα ,Tβ ⟩2 −6⟨Nα ,Tβ ⟩2 −1]. (3.16)

We rewriting equation (3.12) as

κβ ⟨Tα ,Bβ ⟩=−2⟨Tα ,Tβ ⟩[⟨Tα ,Tβ ⟩2 −1]+κα⟨Bα ,Tβ ⟩.

Replacing the previous equation in equation (3.15) gives

κα⟨Bα ,Tβ ⟩=−2⟨Tα ,Tβ ⟩[2⟨Tα ,Tβ ⟩2 −6⟨Nα ,Tβ ⟩2].

We differentiate once again with respect to s and simplify to obtain

12κα⟨Nα ,Tβ ⟩3 +36κα⟨Tα ,Tβ ⟩2⟨Nα ,Tβ ⟩= 0.

Suppose that ⟨Nα ,Tβ ⟩ ̸= 0. Then we have ⟨Nα ,Tβ ⟩2 =−3⟨Tα ,Tβ ⟩2, and differentiating with
respect to s gives

−2κα⟨Tα ,Tβ ⟩⟨Nα ,Tβ ⟩=−6κα⟨Nα ,Tβ ⟩⟨Tα ,Tβ ⟩,

which implies that ⟨Tα ,Tβ ⟩= ⟨Nα ,Tβ ⟩= 0, a contradiction.
Suppose now that ⟨Nα ,Tβ ⟩= 0. Then differentiating with respect to s gives κα⟨Tα ,Tβ ⟩= 0.

As κα ̸= 0 by hypothesis, then ⟨Tα ,Tβ ⟩= 0. Moreover, as Tα ,Tβ ,Nα ,Nβ ,Bα ,Bβ ∈ S , and we
have here that Tβ ⊥ Tα and Tβ ⊥ Nα , then Tβ = ±Bα that is a constant vector. This implies
that κβ = 0.

Now returning to equation (3.7) we obtain

κα⟨Bα ,Tβ ⟩= 0.

Thus ⟨Bα ,Tβ ⟩= 0, a contradiction.

When τα is any constant, not necessarily equal to 1, we impose conditions on the curve β

to obtain the following result:



3.5 On minimal translation surfaces 73

Theorem 3.8. The are no minimal translation surface X : I × J → S3, X(s, t) = α(s) ·β (t),
where κα ̸= 0, κβ ̸= 0, τα and τβ are constant.

Proof. Since the case where τα = 1 and τβ = −1 was treated in Theorem 3.7, we assume
from now on that τα ̸= 1 and τβ ̸=−1. Let α(s) and β (t) be arc-length curves that are also
proper helices in S3. By lemma 3.1, the curves Tα(s), Nα(s), Bα(s), Tβ (t), Nβ (t) and Bβ (t)
all trace circles in S. Moreover, assuming without loss of generality that (1− τα) > 0 and
−(1+ τβ )> 0, the curves α̃(s) = Bα(s) and β̃ (t) = Bβ (t) have curvatures κ̃α = κα/(1− τα)

and κ̃β =−κβ/(1+ τβ ), respectively.
Now, since Tα ,Nα ,Bα ,Tβ ,Nβ ,Bβ ∈ S, to compute ⟨Tα ,Tβ ⟩, ⟨Bα ,Tβ ⟩ and ⟨Tα ,Bβ ⟩, we

reduce the problem to one in S2 ⊂ R3. This reduction is valid because the values of these inner
products depend only on the angles between the vectors involved, not on their specific positions
(see Figure 3.2).

Fig. 3.2 Relative position of the circles in Theorem 3.8.

Thus, let x(s) = (1− τα)s and y(t) = −(1+ τβ )t be arc lengths parameters for α̃ and β̃ ,
respectively. We can then choose convenient coordinates and parameterize these curves as
follows

α̃(x) = Bα(x) =

(
Qcos

(
1
Q

x
)
,Qsin

(
1
Q

x
)
,P
)
,

β̃ (y) = Bβ (y) =

(
Scos

(
1
S

y
)
,Scosθ sin

(
1
S

y
)
−Rsinθ ,S sinθ sin

(
1
S

y
)
+Rcosθ

)
,

where 0 < θ < π is a constant angle and P,Q,R,S > 0, P2 +Q2 = S2 +R2 = 1.
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Now, in order to better describe the curvatures of the generating curves, we differentiate Bα

with respect to x to obtain

B′
α = Nα =

(
− sin

(
1
Q

x
)
,cos

(
1
Q

x
)
,0
)
,

A second differentiation with respect to x gives

N′
α =− 1

Q

(
cos
(

1
Q

x
)
,sin

(
1
Q

x
)
,0
)
.

Since N′
α = κα̃nα̃ − α̃ , we have ⟨N′

α ,N
′
α⟩= κ

2
α̃ +1 = 1/Q2. Thus

κ
2
α̃ =

1−Q2

Q2 =
P2

Q2 .

Now, for the curve β , we differentiate Bβ (y) with respect to y to obtain

B′
β
= Nβ =

(
− sin

(
1
S

y
)
,cosθ cos

(
1
S

y
)
,sinθ cos

(
1
S

y
))

.

A second differentiation with respect to y gives

N′
β
=−1

S

(
cos
(

1
S

y
)
,cosθ sin

(
1
S

y
)
,sinθ sin

(
1
S

y
))

.

Since N′
β
= κ

β̃
n

β̃
− β̃ , we have ⟨N′

α ,N
′
α⟩= κ

2
α̃ +1 = 1/S2. Thus

κ
2
β̃
=

1−S2

S2 =
R2

Q2 .

It follows that
κα

1− τα

= κα̃ =
P
Q
,

κβ

1+ τβ

= κ
β̃
=

R
S
.
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Now, since
d
ds

Nα =−καTα +(τα −1)Bα , then

Tα =
1

κα

[
− d

ds
Nα +(τα −1)Bα

]
=

1
κα

[
−(1− τα)N′

α +(τα −1)Bα

]
=

=
1− τα

κα

(
1−Q2

Q
cos
(

1
Q

x
)
,
1−Q2

Q
sin
(

1
Q

x
)
,−P

)
=

=
Q
P

(
P2

Q
cos
(

1
Q

x
)
,
P2

Q
sin
(

1
Q

x
)
,−P

)
=

(
Pcos

(
1
Q

x
)
,Psin

(
1
Q

x
)
,−Q

)
.

Analogously, we have

Tβ =
1

κβ

[
− d

dt
Nβ +(τβ +1)Bβ

]
=

1
κβ

[
−(τβ +1)N′

β
+(τβ +1)Bβ

]
=

=
S
R

(
R2

S
cos
(

1
S

y
)
,
R2

S
cosθ sin

(
1
S

y
)
+Rsinθ ,

R2

S
sinθ sin

(
1
S

y
)
−Rcosθ

)
=

(
Rcos

(
1
S

y
)
,Rcosθ sin

(
1
S

y
)
+S sinθ ,Rsinθ sin

(
1
S

y
)
−Scosθ

)
.

Since κα , κβ , τα and τβ are constant, we differentiate (3.15) with respect to t to obtain

−κακβ (τα −1)⟨Nα ,Nβ ⟩+κακβ (τβ +1)⟨Nα ,Nβ ⟩= 2κακβ ⟨Nα ,Nβ ⟩[3⟨Tα ,Tβ ⟩2 −1]+

12κακβ ⟨Nα ,Tβ ⟩⟨Tα ,Tβ ⟩⟨Tα ,Nβ ⟩.

As κα ̸= 0 and κβ ̸= 0, we have

[(τβ +1)− (τα −1)]⟨Nα ,Nβ ⟩=
= 2⟨Nα ,Nβ ⟩[3⟨Tα ,Tβ ⟩2 −1]+12⟨Nα ,Tβ ⟩⟨Tα ,Tβ ⟩⟨Tα ,Nβ ⟩. (3.17)

Evaluating Tα , Nα , Bα , Tβ , Nβ and Bβ in (x/Q,y/S) = (0,π/2) gives

Tα = (P,0,−Q), Tβ = (0,Rcosθ +S sinθ ,Rsinθ −Scosθ),

Nα = (0,1,0), Nβ = (−1,0,0),
Bα = (Q,0,P), Bβ = (0,Scosθ −Rsinθ ,S sinθ +Rcosθ).

Hence,
⟨Tα ,Tβ ⟩ = Q(Scosθ −Rsinθ), ⟨Nα ,Nβ ⟩ = 0,
⟨Nα ,Tβ ⟩ = Rcosθ +S sinθ , ⟨Tα ,Nβ ⟩ = −P.
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Thus, equation (3.17) becomes

12PQ(Scosθ −Rsinθ)(Rcosθ +S sinθ) = 0. (3.18)

If Scosθ = Rsinθ then cosθ = (R/S)sinθ , with θ ̸= π . Hence

Rcosθ +S sinθ =

(
R2

S
+S
)

sinθ =
1
S

sinθ ̸= 0.

Thus, (Scosθ −Rsinθ) = 0 and (Rcosθ +S sinθ) ̸= 0. We have

Tα = (P,0,−Q), Tβ = (0,
1
S

sinθ ,0),

Nα = (0,1,0), Nβ = (−1,0,0),

Bα = (Q,0,P), Bβ = (0,0,
1
S

sinθ).

It follows that ⟨Tα ,Tβ ⟩= ⟨Bα ,Tβ ⟩= 0 and ⟨Tα ,Bβ ⟩=−(Q/S)sinθ . Evaluating in equation
(3.12) gives

κα

Q
S

sinθ = 0,

a contradiction.
Suppose now that Rcosθ =−S sinθ , then cosθ =−(S/R)sinθ , with θ ̸= π . Hence

Scosθ −Rsinθ =

(
−S2

R
−R
)

sinθ =− 1
R

sinθ ̸= 0.

Thus, (Scosθ −Rsinθ) ̸= 0 and (Rcosθ +S sinθ) = 0. We have

Tα = (P,0,−Q), Tβ = (0,0,
1
R

cosθ),

Nα = (0,1,0), Nβ = (−1,0,0),

Bα = (Q,0,P), Bβ = (0,− 1
R

sinθ ,0).

It follows that ⟨Nα ,Tβ ⟩= 0, ⟨Nα ,Bβ ⟩=− 1
R

sinθ and ⟨Tα ,Tβ ⟩=−(Q/R)sinθ . Evaluating in
equation (3.15) gives

1
R

κακβ sinθ = 0,

a contradiction. Thus, we must have (Scosθ −Rsinθ)= (Rcosθ +S sinθ)= 0, a contradiction
with equation (3.18).



Chapter 4

Homogeneous surfaces in Homogeneous
tri-spaces

In this chapter, we present a classification of homogeneous surfaces in homogeneous
3-spaces. Such classification is based on whether the ambient space is a unimodular or non-
unimodular Lie group. We use a precise correspondence between the Lie algebras of the
isometry groups of these spaces and their respective Lie algebras to classify the 2-dimensional
subalgebras of such Lie algebras up to conjugacy. This classification allows us to identify the
connected subgroups that serve as homogeneous orbits passing through the identity element of
the group. With this in hand, we construct a foliation by determining the geodesics that intersect
these subgroups orthogonally at the identity. Finally, these geodesics enable us to study the
geometry of the equidistant surfaces through the computation of the shape operator at a given
distance, thereby completing the classification of the homogeneous surfaces in homogeneous
3-spaces. For further information on homogeneous manifolds, see [39, 41, 43].

The results of this chapter compose part of a joint work with Miguel Dominguez-Vazquez
and Tomas Otero [16], entitled "Polar actions on homogeneous 3-spaces".

4.1 Riemannian homogeneous 3-manifolds and metric Lie
groups

A Riemannian metric on a Lie group G is said to be left-invariant if the left multiplication
by g, Lg, is an isometry of G for all g ∈ G (Definition 1.13). Therefore, a left-invariant metric
on G is determined by the choice of an inner product ⟨·, ·⟩ on the Lie algebra g. We will denote
by ⟨·, ·⟩ both the inner product on g and the associated Riemannian metric on G. Lie groups
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equipped with a left-invariant metric are often called metric Lie groups, and provide perhaps
the simplest examples of Riemannian homogeneous spaces.

In this special case, that is of dimension 3, it turns out that metric Lie groups are close
to exhausting all examples of Riemannian homogeneous manifolds: any simply connected
homogeneous 3-manifold different from S2×R is isometric to a 3-dimensional metric Lie group
(see Theorem 2.4 of [41]). It should be noted, however, that non-isomorphic Lie groups can give
rise to isometric Riemannian homogeneous spaces. We also note that, among simply connected
homogeneous 3-manifolds, the subclass of Riemannian symmetric spaces is constituted by
the space forms R3, S3 and H3 and the product spaces S2 ×R and H2 ×R, where the latter
correspond to E(κ,τ)-spaces with τ = 0 and κ ̸= 0.

We will summarize below Milnor’s description of 3-dimensional Lie algebras [43]. For the
sake of convenience, one distinguishes two cases depending on the unimodularity of the group:

Definition 4.1. Let G be a Lie group. G is called unimodular if its left and right invariant Haar
measures coincide Otherwise, it is called non-unimodular.

Being unimodular is equivalent to asking that the adjoint transformation

adX : g → g

Y 7→ [X ,Y ]
,

has trace 0 for every X ∈ g. Thus, a Lie algebra g that satisfies tr(adX) = 0 for all X ∈ g is
called a unimodular Lie algebra.

4.1.1 Unimodular Lie groups of dimension 3

Let G be a connected 3-dimensional Lie group with left invariant metric ⟨·, ·⟩ . Choosing
an orientation for the Lie algebra g of G, we can define a cross product × and present the
following result

Proposition 4.1 ([43]). The bracket product operation in this Lie algebra g is related to the
cross product operation by the formula

L(X ×Y ) = [X ,Y ], for all X ,Y ∈ g.

where L is a uniquely defined linear mapping from g to itself. The Lie group G is unimodular if
and only if this linear transformation L is self adjoint.

Therefore, there exists an orthonormal basis {E1,E2,E3} of g such that

[E1,E2] = λ3E3, [E2,E3] = λ1E1, [E3,E1] = λ2E2, (4.1)
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for some constants λ1,λ2,λ3 ∈ R. These constants determine the geometry and group structure
of the unique simply connected metric Lie group G with Lie algebra g and left invariant metric
⟨·, ·⟩.

Note that changing the sign of all the λi corresponds to a change in the orientation in g, but
the metric structure does not change. Also, if one multiplies all the λi by a positive number, it
corresponds to rescaling the metric in G, but again, the underlying group structure remains the
same. From now on, we will assume without loss of generality that λ1 ≥ λ2 ≥ λ3 and at most
one λi < 0. A list of the corresponding Lie groups is given in Table 4.1.

Lie group SU2 Ẽ2 S̃L2(R) Sol3 Nil3 R3

Signs of
λ1,λ2,λ3

+ + + + + 0 + + − + 0 − + 0 0 0 0 0

Table 4.1 Three-dimensional simply-connected unimodular Lie groups in terms of the structure
constants.

We remember the Koszul formula, which derives from the Levi-Civita connection of a
Riemannian metric ⟨·, ·⟩

⟨∇XY,Z⟩= 1
2
[X⟨Y,Z⟩+Y ⟨X ,Z⟩−Z⟨X ,Y ⟩−⟨[X ,Z],Y ⟩−⟨[Y,Z],X⟩−⟨[X ,Y ],Z⟩] . (4.2)

Thus, since {E1,E2,E3} is an orthonormal basis for a Riemannian metric, and with equation
(4.1), we have

⟨∇E1E1,E1⟩ =
1
2
[
E1⟨E1,E1⟩+E1⟨E1,E1⟩−E1⟨E1,E1⟩−

−⟨[E1,E1],E1⟩−⟨[E1,E1],E1⟩−⟨[E1,E1],E1⟩
]
= 0,

⟨∇E1E1,E2⟩ =
1
2
[
E1⟨E1,E2⟩+E1⟨E1,E2⟩−E2⟨E1,E1⟩−

−⟨[E1,E2],E1⟩−⟨[E1,E2],E1⟩−⟨[E1,E1],E2⟩
]
=−⟨λ3E3,E1⟩= 0,

⟨∇E1E1,E3⟩ =
1
2
[
E1⟨E1,E3⟩+E1⟨E1,E3⟩−E3⟨E1,E1⟩−

−⟨[E1,E3],E1⟩−⟨[E1,E3],E1⟩−⟨[E1,E1],E3⟩
]
= ⟨λ2E2,E1⟩= 0.

We proceed in the same way to compute the other possible inner products to obtain ∇EiE j, for
i, j = 1,2,3. Now, let µ1, µ2 and µ3 be real numbers given by

µ1 =
1
2
(−λ1 +λ2 +λ3), µ2 =

1
2
(λ1 −λ2 +λ3), µ3 =

1
2
(λ1 +λ2 −λ3).
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Hence, we have

∇E1E1 = 0 , ∇E1E2 = µ1E3 , ∇E1E3 = −µ1E2,

∇E2E1 = −µ2E3 , ∇E2E2 = 0 , ∇E2E3 = µ2E1,

∇E3E1 = µ3E2 , ∇E3E2 = −µ3E1 , ∇E3E3 = 0.
(4.3)

Remark 4.1.

1. If λ1 ̸= 0 and λ2 = λ3 ̸= λ1 , then (G,⟨·, ·⟩) is isometric to E
(

λ1λ3,
λ1

2

)
, and Isom(G)

has dimension 4.

2. If λ1 = λ2 ̸= λ3 = 0 then G is isomorphic to the universal cover Ẽ2 of the Euclidean
group of the plane (which in turn is isometric to the Euclidean space R3).

3. If λ1 = λ2 = λ3, then G is isomorphic to R3 or SU2, it has non-negative constant sectional
curvature and 6-dimensional isometry group.

4. When the three structure constants are distinct, then Isom(G) has dimension 3.

A description of the full isometry group of each unimodular group G can be found in [23].

The following groups are the object of study of this work as they all have isometry group of
dimension 3 and a full description of this groups and their left invariant metrics can be found in
[41].

• The universal cover Ẽ2 of the group E2 of orientation-preserving rigid motions of the
Euclidean plane is isomorphic to the semidirect product R2 ⋊A R with

A =

(
0 −1
1 0

)
.

• The projective special linear group is

PSL2(R) = SL2(R)/{±I2},

where SL2(R) = {A ∈ M2(R) | detA = 1} is the special linear group. Both groups
SL2(R), PSL2(R) have the same universal cover, which we denote by S̃L2(R).

• Sol3 can be described as the semidirect product R2 ⋊A R with A =

(
−1 0
0 1

)
.
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4.1.2 Non-unimodular Lie groups of dimension 3

A way to see some 3-dimensional Lie groups is to consider semidirect products R2 ⋊A R,
where A is a 2×2 real matrix. In this case, a group structure is defined by

(p1,z1) · (p2,z2) = (p1 + ez1A p2,z1 + z2), (p1,z1),(p2,z2) ∈ R2 ×R,

where the exponential matrix is defined by

ezA =
∞

∑
k=0

zk

k!
Ak.

Let g be a non-unimodular 3-dimensional Lie algebra of the group G. Then it can be defined
as a semi-direct product g=R2⋊R and, up to rescaling the metric, there exists an orthonormal
basis {E1,E2,E3} of g such that R2 = span{E1,E2}, and adE3 is given by the matrix

A =

[
(1+α) −(1−α)β

(1+α)β (1−α)

]
,

in the basis {E1,E2}, for some constants α,β ≥ 0. That is, the Lie bracket of g is given by[
E1,E2

]
= 0,[

E2,E3
]
= (1−α)βE1 +(α −1)E2,[

E3,E1
]
= (1+α)E1 +(1+α)βE2.

(4.4)

If A ̸= Id, then its determinant is given by detA = (1−α
2)(1+β

2) and provides a complete
isomorphism invariant for the Lie algebra g, that is, if det(A) = det(B) and A ̸= Id ̸= B, then
R2 ⋊A R∼= R2 ⋊B R as Lie algebras (although their metrics may differ).

Using the Koszul formula (4.2), we get

∇E1E1 = (1+α)E3, ∇E1E2 = αβE3, ∇E1E3 =−(1+α)E1 −αβE2,

∇E2E1 = αβE3, ∇E2E2 = (1−α)E3, ∇E2E3 =−αβE1 − (1−α)E2,

∇E3E1 = βE2, ∇E3E2 =−βE1, ∇E3E3 = 0.

(4.5)

Remark 4.2. It is important to distinguish some cases:

1. If α = 0, then G is isometric to H3(−1).

2. If α = 1, then G is isometric to E(−4,β ), whose isometry group has dimension 4.
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3. If α /∈ {0,1} it is possible to show that dim(Isom(G)) = 3 by looking at the eigenvalues
of the Ricci operator.

A description of the full isometry group of G can be found in [12].

4.2 Cohomogeneity one actions on 3-dimensional groups

The aim of this section is to classify cohomogeneity one actions on 3-dimensional simply
connected metric Lie groups. Along with the known result for space forms and E(κ,τ)-spaces
(see Remark 4.4 below), this completes the classification problem on all simply connected
3-dimensional homogeneous spaces.

Remark 4.3 (Cohomogeneity one actions on space forms). The classification of cohomogeneity
one H-actions on simply connected 3-dimensional space forms M is summarized in Table
4.2. This result is well known and can be obtained directly or as a consequence of classical
results on isoparametric hypersurfaces by Segre and Cartan in the 30s (see [11, p. 84] or [7,
pp. 96-99]). Actually, isoparametric hypersurfaces in Euclidean and real hyperbolic spaces are
homogeneous; this is no longer true for round spheres, but it still holds for S3(κ).

In the case of H3(κ) in Table 4.2, we use certain notation coming from the Iwasawa
decomposition of the simple Lie group G = SO0

1,3, which is the connected component of the
identity of Isom(H3(κ)). This result states that a semisimple Lie group G is diffeomorphic to a
product manifold K ×A×N, see [11, pp. 340 and 343]. In this case, K ∼= SO3 is the isotropy
at some basepoint o, A ∼= R is a certain 1-dimensional subgroup of G, and N is a 2-dimensional
abelian subgroup of G. The K-action on H3(κ) fixes the basepoint o and the other orbits are
geodesic spheres around it, the A-action gives rise to a geodesic through the basepoint o and
equidistant curves to it, and the N-action produces a horosphere foliation whose common point
at infinity is one of the limit points of the geodesic A ·o. The combination of the A-action with
certain rotational 1-dimensional subgroup of K (precisely, the identity connected component of
the centralizer of A in K), or with any 1-dimensional subgroup of N yields the second and third
actions in Table 4.2. for H3(κ), respectively.

In all cases in Table 4.2, all H-orbits are surfaces, except for at most two singular H-orbits.
If there are singular orbits, the 2-dimensional orbits are tubes of different radii around each one
of the singular orbits. By tube of radius r we mean the subset of the ambient space obtained by
traveling a fixed distance r in all normal directions to a submanifold of codimension ≥ 2.

Remark 4.4 (Cohomogeneity one actions on E(κ,τ)-spaces). The classification of cohomo-
geneity one actions in E(κ,τ)-spaces, up to orbit equivalence, is summarized in Table 4.3 and
it can be obtained from the classification of isoparametric surfaces in these spaces [17]. As
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M H Orbits

R3
R2 Parallel affine planes
SO2 ×R A straight line and coaxial cylinders around it
SO3 A fixed point and spheres around it

S3(κ)
SO3 Two antipodal fixed points and tot. geodesic 2-spheres around them
SO2 ×SO2 Two maximal circles and tori around them

H3(κ)

K ∼= SO3 A fixed point and geodesic spheres around it
SO2 ×R A geodesic and tubes around it
R⋉R Totally geodesic H2(κ) and its equidistant surfaces
N ∼= R2 Horosphere foliation

Table 4.2 Cohomogeneity one actions on 3-dimensional space forms.

stated there, a complete hypersurface in one of these spaces is homogeneous if and only if it is
isoparametric.

Recall that an E(κ,τ)-space is the total space of a fiber bundle π : E(κ,τ)→M2(κ) over
a complete, simply-connected surface of constant curvature κ . The parameter τ codifies the
curvature of the bundle. Thus E(κ,τ) is a product M2(κ)×R if and only if τ = 0. Moreover,
one requires κ −4τ

2 ̸= 0, so that dim(Isom(E(κ,τ))) = 4. Actually, one of the Killing fields
of E(κ,τ) is tangent to the fibers of π , which then turns out to be a Killing (Riemannian)
submersion.

According to [17], the only examples of homogeneous surfaces of E(κ,τ), κ −4τ
2 ̸= 0,

are: vertical cylinders over a complete curve of constant curvature in M2(κ), a horizontal slice
M2(κ)×{t0}, t0 ∈ R, when τ = 0, or a so-called parabolic helicoid when κ < 0. By vertical
cylinder over a subset of the base M2(κ) we understand the preimage of such a subset under
π . Recall that a curve of constant curvature in M2(κ) is a geodesic circle if κ > 0; a circle or
a straight line if κ = 0; or a geodesic, an equidistant curve to a geodesic, a geodesic circle or
a horocycle if κ < 0. Finally, we refer to [17] for the explicit parameterization of parabolic
helicoids (see also [50, Example 4.4] for an alternative description in the case of H2(κ)×R).

Let G be a simply connected 3-dimensional Lie group with a left invariant metric ⟨·, ·⟩
(Definition 1.13). Since the action of G on itself by left translations is a proper isometric free
action, a subgroup H of G acts on G with orbits of dimension d = dim(H). For an arbitrary
metric Lie group, one can recover its isometry group as

Isom(G,⟨·, ·⟩) = G · Isom(G,⟨·, ·⟩)e,
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M H Orbits

S2(κ)×R SO2 ×R Two vertical lines and vertical cylinders around them
SO3 Parallel horizontal slices S2(κ)×{t0}

H2(κ)×R
S̃L2(R)

SO2 ×R A vertical line and vertical cylinders around it
R×R Vertical cylinders over a geodesic and over its parallel curves
R×R Vertical cylinders over a horocycle foliation
SL2(R) Parallel horizontal slices H2(κ)×{t0} (only for H2(κ)×R)
R⋉R Parallel parabolic helicoids

Nil3
SO2 ×R A vertical geodesic and tubes around it
R×R Vertical cylinders over a foliation by parallel lines

S3
Berger SO2 ×SO2 Two vertical circles and vertical tori around them

Table 4.3 Cohomogeneity one actions on E(κ,τ)-spaces of non-constant curvature

where G is identified with its left translations and Isom(G,⟨·, ·⟩)e denotes the group of isometries
of G fixing the identity element.

Since cohomogeneity one actions on space forms and E(κ,τ)-spaces are well understood,
(see Remark 4.4), from now on we will suppose that dim(Isom(G)) = 3. Thus, the isometry
group Isom(G,⟨·, ·⟩)e can be identified with a discrete (and hence finite) subgroup of O3 via
the isotropy representation.

We now present the following Proposition.

Proposition 4.2. Let G be a simply connected metric Lie group with dim(Isom(G)) = 3. Then,
there is a one-to-one correspondence between isometric actions of connected subgroups on G
up to orbit equivalence and subalgebras of g up to conjugacy and isometric automorphisms.

Proof. Let Aut(G) be the group of automorphisms of G. It follows from [23, Corollary 2.8] that
Isom(G,⟨·, ·⟩)e = Aut(G)∩ Isom(G,⟨·, ·⟩) is precisely the group of isometric automorphisms
of G, and so, by [23, p. 192], we have

Isom(G,⟨·, ·⟩) = G⋊ (Aut(G)∩ Isom(G,⟨·, ·⟩)).

Thus, any effective isometric action of a connected Lie group on G is equivalent to the action
by left translations of some connected Lie subgroup H of G. Moreover, two subgroups H, H̃
of G give rise to orbit equivalent actions if and only if H = gϕ(H̃)g−1 for some g ∈ G and
ϕ ∈ Aut(G)∩ Isom(G,⟨·, ·⟩).

Remark 4.5. Let H be a subgroup of a 3-dimensional simply connected Lie group G. If G
is solvable, then H is closed in G (see [8, p.670]). Otherwise, G = S̃L2(R) or G = SU2, and
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every abelian subgroup of G is one-dimensional and closed. It follows from [37, Theorem 15]
that any subgroup H of G is closed. Therefore, the action of H on G by left translations is
proper, which implies that its orbits are closed embedded submanifolds, see for example [42,
pp. 66-67].

In the following, we will classify codimension one subalgebras of g up to conjugacy and
isometric automorphisms. For this, we will make use of the structure results of Section 4.1 in
order to give an explicit description of the corresponding Lie algebras g. It should be noted
that there exist classifications of 2-dimensional subgroups of 3-dimensional Lie groups in the
literature (see [41, Theorem 3.6]). However, our explicit description in terms of an orthonormal
basis of g will allow us to easily compute the geometry of the orbits and determine whether the
actions of two subgroups are orbit equivalent.

Recall that if g is a unimodular 3-dimensional Lie algebra, there exists an orthonormal basis
{E1,E2,E3} of g such that

[E1,E2] = λ3E3, [E2,E3] = λ1E1, [E3,E1] = λ2E2,

with λ1 ≥ λ2 ≥ λ3, and the corresponding Lie group structure can be recovered from the signs
of the λi.

Let h be a two dimensional subalgebra of g, and write h= span{A,B} for some A,B ∈ g

where A = a1E1 +a2E2 +a3E3 and B = b1E1 +b2E2 +b3E3. Then, h is a subalgebra of g if,
and only if

⟨[A,B],A×B⟩= (a2b3 −a3b2)
2
λ1 +(a3b1 −a1b3)

2
λ2 +(a1b2 −a2b1)

2
λ3 = 0. (4.6)

Now, if G = R3 or G = Nil3, then any left invariant metric on G has an isometry group of
dimension ≥ 4. Also, the only connected subgroups of SU2 are the trivial subgroup or SO2,
which is one-dimensional. Thus, we will exclude these cases from our study, and restrict to the
Lie groups Ẽ2, S̃L2(R) and Sol3 . Thus, we present the following

Theorem 4.1. Let G be a 3-dimensional simply-connected unimodular Lie group with 3-
dimensional isometry group and Lie algebra g. Then h is a two dimensional subalgebra of g if
and only if one of the following cases happens

1. If g= e2 then h= span{E1,E2}.

2. If g= sl2(R) then h= span{
√

λ1E1 +
√

−λ3E3,E2}.

3. If g= sol3 then h= span{E1,E3} or h= span{
√

λ1E1 +
√

−λ3E3,E2}.

Proof. We will prove this Theorem by approaching the cases separately
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1. For g= e2, we have that λ1 ≥ λ2 > 0 and λ3 = 0, so e2 = span{E1,E2}⋊RE3. Then h

is a subalgebra of e2, if and only if,

(a2b3 −a3b2)
2
λ1 +(a3b1 −a1b3)

2
λ2 = 0.

Since both λ1 > λ2 > 0, we have that h is a subalgebra if, and only if,{
a2b3 −a3b2 = 0,
a3b1 −a1b3 = 0.

Thus, h= span{E1,E2} is the only codimension one subalgebra of e2.

2. The Lie algebra sl2(R) is a real simple Lie algebra. Since any 2-dimensional Lie algebra
is solvable, it follows that any 2-dimensional subalgebra of sl2(R) is maximal solvable
and thus, by definition, a parabolic subalgebra of sl2(R), see [11, p. 340]. But since
sl2(R) has real rank equal to one, it has only one proper parabolic subalgebra, up to
conjugacy [11, p. 348]. Choosing A=

√
λ1 E1+

√
−λ3 E3 and B= E2, with λ1 > 0> λ3,

one immediately verifies (4.6):

⟨[A,B],A∧B⟩=
(
−
√

−λ3
)2

λ1 +
(√

λ1
)2

λ3 =−λ1λ3 +λ1λ3 = 0.

Hence h = span{
√

λ1 E1 +
√

−λ3E3,E2} gives us a representative for this conjugacy
class.

3. For g= sol3, we have λ1 > λ2 = 0 > λ3. Hence, h0 = span{E1,E3} is a 2-dimensional
abelian subalgebra, and sol3 = h0 ⋊RE2.

Suppose that h⊂ sol3 is some other 2-dimensional subalgebra. Since we assume h ̸= h0,
we may write h = span{A,B} for A = a1E1 + a3E3 and B = b1E1 +E2 + b3E3. Let

g = Exp(C), where Exp denotes the Lie exponential map and C =−b3

λ3
E1+

b1

λ1
E3. Then,

h is a subalgebra of sol3 if and only if h̃ = Adgh = span{Adg(A),Adg(B)} is also a
subalgebra, where Adg is the adjoint map. Since span{E1,E3} is abelian, we have
Adg(A) = A. We compute [C,B] =−b3E3 −b1E1 and hence

Adg(B) = eadCB = B+[C,B]+
1
2!
[C, [C,B]]+ · · ·= B+[C,B] =

= b1E1 +E2 +b3E3 −
b3

λ3
[E1,E2]+

b1

λ1
[E3,E2] = E2.
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Thus, h is a subalgebra if and only if h̃= span{a1E1 +a3E3,E2} is a subalgebra. Taking
now A = a1E1+a3E3 and B = E2, condition (4.6) is equivalent to (−a3)

2
λ1+(a1)

2
λ3 =

0. By rescaling the basis so that a1 =
√

λ1, we get a3 = ±
√

−λ3, and therefore h̃1 =

span{
√

λ1E1 ±
√

−λ3E3,E2}. Note that the map ϕ : sol3 → sol3 given by

E1 7−→ E1, E2 7−→ −E2, E3 7−→ −E3,

is an automorphism of sol3 preserving the metric and maps span{
√

λ1E1+
√

−λ3E3,E2}
to span{

√
λ1E1 −

√
−λ3E3,E2}.

Thus, any 2-dimensional subalgebra of sol3 is, up to conjugacy and isometric auto-
morphism, either the abelian subalgebra h0 = span{E1,E2} or the non-abelian h1 =

span{
√

λ1E1 +
√

−λ3E3,E2}.

We now proceed to classify two-dimensional subgroups of non-unimodular groups. If
g = R2 ⋊A R is a non-unimodular 3-dimensional Lie algebra, there exists an orthonormal
basis {E1,E2,E3} of g that satisfy (4.4) for some α,β ≥ 0. We will assume that α ̸= 0,1, as
otherwise one would have that dim(Isom(G))≥ 4 (see Remark 4.2).

Theorem 4.2. Let G be a 3-dimensional simply-connected non-unimodular Lie group with
3-dimensional isometry group and Lie algebra g. Then h is a two dimensional subalgebra of g
if and only if

1. h0 = span{E1,E2}.

2. If β = 0 then h1 = span{E1,E3} or h2 = span{E2,E3}

3. If β ̸= 0 and with detA = (1−α
2)(1+β

2), we have

h± = span{E1 + c±E2,E3}, c± =
α ±

√
1−detA

(1−α)β
.

If detA = 1 then clearly h− = h+.

Proof. It follows directly from the bracket relations that h0 = span{E1,E2} is an abelian
subalgebra of g. Suppose now that h ̸= h0 is a two dimensional subalgebra of g, and write
h = span{A,B} where A = a1E1 +a2E2 and B = b1E1 +b2E2 +E3. Let g = Exp(sE1 + tE2),
with s, t ∈ R. Then, h is a subalgebra of g if, and only if h̃= Adgh= span{Adg(A),Adg(B)}
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is a subalgebra of g. Since h0 = span{E1,E2} is abelian, then Adg(A) = A. We now compute

Adg(B) = exp(adsE1+tE2)B = B+[sE1 + tE2,B]+
1
2!
[sE1 + tE2, [sE1 + tE2,B]]+ · · ·=

= b1E1 +b2E2 +E3 − s[E1,E3]+ t[E2,E3] =

= (b1 − s(1+α)+ tβ (1−α))E1 +(b2 − sβ (1+α)+ t(1−α))E2 +E3.

Note that since (1+β
2)(1−α

2) ̸= 0, there exist unique s0, t0 ∈ R such that{
b1 − s0(1+α)+ t0β (1−α) = 0,
b2 − s0β (1+α)+ t0(1−α) = 0.

Thus, for g = Exp(s0E1 + t0E2) we get that h̃= Adgh= span{a1E1 +a2E2,E3}. Now, h̃ is a
subalgebra if, and only if,

⟨[a1E1 +a2E2,E3],(a1E1 +a2E2)×E3⟩= (1+α)βa1
2 +(1−α)βa2

2 −2αa1a2 = 0. (4.7)

Note that this is the equation of a degenerate conic passing through the origin, and so one might
study it according to its discriminant 1− (1−α

2)(1+β
2) = 1−detA:

• If 1−detA < 0, equation (4.7) has only the real solution a1 = a2 = 0, wich contradicts
the fact that h̃ is 2-dimensional.

• If 1−detA > 0 equation (4.7) corresponds to a pair of non-coincident intersecting lines,
and thus we get two distinct subalgebras. For β = 0, these are h1 = span{E1,E3} and
h2 = span{E2,E3}. For β ̸= 0, the solutions are given by

a2 = c±a1, c± =
α ±

√
1−detA

(1−α)β
.

The corresponding subalgebras of g will be denoted by h± = span{E1 + c±E2,E3}.

• If 1− detA = 0, the only solution to equation (4.7) corresponds to the straight line
αa1 = (1−α)βa2. As β = 0 contradicts detA = 1, then β ̸= 0 and and we get the
subalgebra h± presented before with c± = c− = α/(1−α)β ).

We have proved that any 2-dimensional Lie subalgebra of g is conjugate to the abelian
subalgebra h0, to one of the non-abelian subalgebras h1, h2 (arising when β = 0 and hence
detL < 1), to the non-abelian subalgebra h+ (when β ̸= 0 and detL = 1), or to h+, h− (if β ̸= 0
and detL < 1).
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Now we will show that no two of these subalgebras are conjugate. Fix one of the non-abelian
subalgebras h ∈ {h1,h2,h+,h−}. First note that h= span{X ,E3}, for some X ∈ span{E1,E2}.
Since h is a subalgebra and adE3 leaves span{E1,E2} invariant, that is, by eq. (4.4) we have

adE3(X) = [E3,X ] = Y ∈ span{E1.E2}, ∀X ∈ span{E1.E2}.

As h is subalgebra by hypothesis, it follows that adE3(X) = λX , that is, X is an eigenvector of
adE3 . Let Y = sE1 + tE2 + rE3, with s, t,r ∈ R, and let g = Exp(Y ) be an arbitrary element in a
neighborhood of the identity element of G. Then

[Y,X ] = [sE1 + tE2,X ]+ [rE3,X ] = rλX .

Hence,

Adg(X) = eadY X = X +[Y,X ]+
1
2!
[Y, [Y,X ]]+ · · ·= X +[Y,X ]+0 = (1+ rλX),

that is, [Y,X ] and Adg(X) are proportional to X . Since any neighborhood of the identity of
G generates G, an arbitrary element g ∈ G can be written as g = g1 · · ·gℓ, with gi = Exp(Yi),
i = 1, . . . , ℓ, as before. But then Adg(h) would contain X . However X does not belong to any
of the subalgebras h1,h2,h+,h− different from h itself. Hence, h cannot be conjugate to any of
the other subalgebras that we have determined. Finally, since we are assuming that the isometry
group of G is 3-dimensional, according to [12] we have Isom(G,⟨·, ·⟩) = G. Thus, by virtue of
Proposition 4.2, the number of orbit equivalence classes of cohomogeneity one actions on G is
one in the case detL > 1, two when detL = 1, and three in the case detL < 1.

See second column of Table 4.4 that summarizes the results of the previous theorems.

4.3 Geometry of the 2-dimensional homogeneous foliations

If H is a Lie group acting properly by isometries on a Riemannian manifold, its orbits are
mutually equidistant submanifolds. In particular, if H acts with cohomogeneity one and no
singular orbits, one may recover the geometry of all orbits by determining the geometry of
the orbit through a fixed (but arbitrary) basepoint, and then investigating the geometry of its
parallel hypersurfaces. In this section, we will make use of this idea to study the geometry of
homogeneous hypersurfaces of 3-dimensional metric Lie groups with 3-dimensional isometry
group, thus proving in particular the geometric information in the last column of Table 4.4.
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Let G be a simply connected 3-dimensional metric Lie group with dim(Isom(G)) = 3.
Recall that, by Proposition 4.2, there is a one-to-one correspondence between cohomogeneity
one actions on G up to orbit equivalence and Lie subalgebras of g up to conjugacy and isometric
automorphisms. In particular, cohomogeneity one actions on G are induced by connected
2-dimensional subgroups of G.

Thus, let H be a codimension one Lie subgroup of G. Then, the orbit through the identity
element e is precisely H. One can compute its shape operator at e with a computation at the Lie
algebra level. Note that the orbits of H are precisely the right cosets H ·g, with g ∈ G. Thus, if
v ∈ TgG is a normal vector to H ·g at a point g ∈ G, then (Lh)∗v is a normal vector to H ·g at
hg. Thus, the left-invariant field ξ ∈ g with ξg = v is a unit normal field to H ·g.

Let γ be a unit-speed normal geodesic to H with γ(0) = e and γ
′(0) = v. Since G is a

Riemannian homogeneous space, it is geodesically complete, so we can assume that γ is
defined in all R. Let ξ ∈ g be the left-invariant field with ξe = v, and write Ht for the parallel
displacement of H in the direction of ξ at distance t, that is, Ht = {exph(tξh) : h ∈ H} is the
parallel (or equidistant) surface to H at distance t, where exp is the Riemannian exponential
map. Then, Ht = H · γ(t), and the left-invariant vector field ξ

t with ξ
t
γ(t) = γ

′(t) is a unit
normal field to Ht . In order to calculate the shape operator St of Ht with respect to ξ

t , we just
need to determine the tangent vector γ

′ to the normal geodesic γ , and then use the formulas
(4.3) and (4.5) for the Levi-Civita connection of G in terms of left-invariant fields to calculate
St =−∇·ξ

t for each t ∈ R.
Before proceeding with a case-by-case analysis, we will calculate the system of ordinary

differential equations defining the geodesic equation on G, depending on whether G is unimod-
ular or non-unimodular. Thus, let {E1,E2,E3} be some left-invariant orthonormal frame, and
write

γ
′(t) = x(t)E1 + y(t)E2 + z(t)E3,

for some real functions x(t), y(t), z(t). Denoting by ∇ the Levi-Civita connection of G, we
have

∇γ ′γ
′ = x′E1 + x∇γ ′E1 + y′E2 + y∇γ ′E2 + z′E3 + z∇γ ′E3 = 0. (4.8)

If G is unimodular, {E1,E2,E3} is an orthonormal frame as in (4.1) and using (4.3), we compute

∇γ ′E1 = x∇E1E1 + y∇E2E1 + z∇E3E1 =−yµ2E3 + zµ3E2,

∇γ ′E2 = x∇E1E2 + y∇E2E2 + z∇E3E2 = xµ1E3 − zµ3E1,

∇γ ′E3 = x∇E1E3 + y∇E2E3 + z∇E3E3 =−xµ1E2 + yµ2E1,
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Recalling that µi =
1
2
(λ1 +λ2 +λ3)−λi, i = 1,2,3, we have that (x(t),y(t),z(t)) is a solution

of the following system of differential equations
x′+ yz(λ3 −λ2) = 0,
y′+ xz(λ1 −λ3) = 0,
z′+ xy(λ2 −λ1) = 0.

(4.9)

If G non-unimodular, {E1,E2,E3} satisfies (4.4) and using (4.5), we have

∇γ ′E1 = x∇E1E1 + y∇E2E1 + z∇E3E1 = x(1+α)E3 + yαβE3 + zβE2,

∇γ ′E1 = x∇E1E2 + y∇E2E2 + z∇E3E2 = xαβE3 + y(1−α)E3 − zβE1,

∇γ ′E1 = x∇E1E3 + y∇E2E3 + z∇E3E3 =−x((1+α)E1 +αβE2)− y(αβE1 +(1−α)E2).

Thus, (x(t),y(t),z(t)) is a solution of the following system of differential equations
x′− (1+α)(x+βy)z = 0,
y′− (1−α)(y−βx)z = 0,
z′+(1+α)x2 +2αβxy+(1−α)y2 = 0.

(4.10)

This way we present the next theorems as the main result of this chapter. Also, these results
are summarized in the last column of Table 4.4.

Initially, we present the results for the unimodular case. Following the Theorem 4.1 we
state

Theorem 4.3. Let G be a 3-dimensional simply-connected unimodular Lie group with 3-
dimensional isometry group and Lie algebra g. Then a homogeneous surface H · γ(t) of G ,
where t is the parameter of a geodesic that intersects H at e, satisfies the following

1. If G = Ẽ2, then the principal curvatures of H · γ(t) are ±µ1. The H-orbits are minimal,
but not totally geodesic.

2. If G = Sol3, then

(a) If h0 = span{E1,E3}, the principal curvatures of H0 · γ(t) are ±µ3. All H0-orbits
are minimal, but none of them is totally geodesic (since µ3 ̸= 0).

(b) If h1 = span{
√

λ1E1 +
√

−λ3E3,E2}, the principal curvatures of H1 · γ(t) are
given by

±
√

(λ1 +λ3)2

4
−λ1λ3 tanh

(√
−λ1λ3t

)2
.
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All H1-orbits are minimal. The only H1-orbit that is totally geodesic is H1 · e, when
λ3 =−λ1.

3. If G = S̃l2(R), then of H · γ(t) is a minimal surface and has shape operator of the form

St ≡ 1
x2 + z2

(
xyz(µ1 −µ3) −(x2

µ3 + z2
µ1)

−(x2
µ3 + z2

µ1) −xyz(µ1 −µ3)

)
.

where y is the solution of the ODE

y′2(t) = [(λ3 −λ2)y2(t)−λ3][λ1 +(λ2 −λ1)y2(t)],

and x(t) and z(t) can be defined respectively as

x(t) =

√
(λ3 −λ2)y2(t)−λ3

λ1 −λ3
, z(t) =

√
(λ2 −λ1)y2(t)+λ1

λ1 −λ3
.

The orbits of H ·γ(t) are minimal submanifolds for all t. The orbit H ·e is totally geodesic
if and only if µ2 = 0, or equivalently, λ2 = λ1 + λ3. The other orbits are not totally
geodesic as St , t ̸= 0, does not vanish.

Proof. In this proof, we will treat each case separately

1. Homogeneous surfaces of Ẽ2.

Recall that the only cohomogeneity one action on Ẽ2 =R2⋊R is the action of the abelian
normal subgroup H = R2. If {E1,E2,E3} is an orthonormal basis of e2 satisfying the
bracket relations described in (4.1), where λ1 > λ2 > 0 and λ3 = 0, then h= span{E1,E2}.
It follows from (4.3) that γ(t) = Exp(tE3) is a normal geodesic to H through e, where
Exp is the Lie exponential map. Since γ

′(t) = E3 for all t ∈R, the tangent space to H ·γ(t)
at γ(t) is the subspace hγ(t) ⊂ Tγ(t)Ẽ2 corresponding to the left-invariant distribution h.
Using (4.3), we have that the shape operator of H · γ(t) is given by

StE1 =−∇E1E3 = µ1E2, StE2 =−∇E2E3 =−µ2E1.

Since λ3 = 0, we have that µ1 = −µ2 = (λ2 − λ1)/2 ̸= 0, and the shape operator of
H · γ(t) at γ(t) in terms of the basis {E1,E2} is given by

St ≡

(
0 µ1

µ1 0

)
.



4.3 Geometry of the 2-dimensional homogeneous foliations 93

Thus, the principal curvatures of H ·γ(t) are ±µ1 ̸= 0, with respective principal directions
E1 ±E2. Therefore, all H-orbits are minimal, but not totally geodesic.

2. Homogeneous surfaces of Sol3.

Any 2-dimensional subalgebra of sol3 is, up to conjugacy and isometric automorphism,
either the abelian subalgebra h0 = span{E1,E3} or the non-abelian h1 = span{

√
λ1E1 +√

−λ3E3,E2}, where {E1,E2,E3} is an orthonormal basis of sol3 satisfying the bracket
relations described in (4.1) with λ1 > λ2 = 0 > λ3.

For h0 = span{E1,E3}, γ(t) = Exp(tE2) is a normal geodesic to H0 trough e, where H0

is the connected subgroup H0 of Sol3 with Lie algebra h0. Thus, γ
′(t) = E2 for all t ∈ R,

and the tangent space to H0 · γ(t) at γ(t) is (h0)γ(t). We have

StE1 =−∇E1E2 =−µ1E3, StE3 =−∇E3E2 = µ3E1.

As λ2 = 0, then µ1 =−µ3, and we have

St ≡

(
0 µ3

µ3 0

)
,

in terms of the orthonormal basis {E1,E3} of Tγ(t)(H0 · γ(t)). The principal curvatures
of H0 · γ(t) are ±µ3, and the corresponding principal directions are E1 ±E3. Hence, all
H0-orbits are minimal, but none of them is totally geodesic (since µ3 ̸= 0).

If h1 = span{
√

λ1E1 +
√
−λ3E3,E2} and γ(t) is a geodesic to H1 through e with

γ
′(0) =

1√
λ1 −λ3

(√
−λ3E1 −

√
λ1E3

)
⊥ h1. Solving the differential equation (4.9)

with initial conditions

x(0) =

√
−λ3

λ1 −λ3
, y(0) = 0 and z(0) =−

√
λ1

λ1 −λ3
,

gives us

γ
′(t) =

sech
(√

−λ1λ3t
)

√
λ1 −λ3

(
√

−λ3E1 −
√

λ1E3)+ tanh
(√

−λ1λ3t
)

E2.

Let V (t) =
1√

λ1 −λ3
(
√

λ1E1 +
√

−λ3E3) and
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W (t) =−
tanh

(√
−λ1λ3t

)
√

λ1 −λ3
(
√
−λ3E1 −

√
λ1E3)+ sech

(√
−λ1λ3t

)
E2.

Then, {V,W} is an orthonormal basis of Tγ(t)(H1 · γ(t)). We have

StV (t) =−∇V (t)γ
′(t) =

√
−λ1λ3 tanh

(√
−λ1λ3t

)
V (t)+

1
2
(λ1 +λ3)W (t),

StW (t) =−∇W (t)γ
′(t) =

1
2
(λ1 +λ3)V (t)−

√
−λ1λ3 tanh

(√
−λ1λ3t

)
W (t).

Thus, the shape operator of H1 · γ(r) with respect to this basis is given by

St ≡


√

−λ1λ3 tanh
(√

−λ1λ3t
) 1

2
(λ1 +λ3)

1
2
(λ1 +λ3) −

√
−λ1λ3 tanh

(√
−λ1λ3t

)
 .

The principal curvatures of H1 · γ(t) are

±
√

(λ1 +λ3)2

4
−λ1λ3 tanh

(√
−λ1λ3t

)2
.

Note that all H1-orbits are minimal. The only H1-orbit that can be totally geodesic is
H1 · e, which happens precisely when λ3 =−λ1.

3. Homogeneous surfaces of S̃L2(R).

The Lie group S̃L2(R) has a unique codimension one subgroup H up to conjugation. If
{E1,E2,E3} is an orthonormal basis of sl2(R) satisfying the bracket relations described
in (4.1), where λ1 > λ2 > 0 > λ3, a representative for the conjugacy class is given by the
connected subgroup of S̃L2(R) with Lie algebra h= span{

√
λ1 E1 +

√
−λ3E3,E2}.

Let γ(t) denote a unit normal geodesic to the corresponding connected subgroup H

passing through γ(0) = e with γ
′(0) =

1√
λ1 −λ3

(√
−λ3E1 −

√
λ1E3

)
, and write

γ
′(t) = x(t)E1 + y(t)E2 + z(t)E3. Since (x(t),y(t),z(t)) is a solution to (4.9), it satis-

fies
xx′

λ3 −λ2
=

yy′

λ1 −λ3
=

zz′

λ2 −λ1
.

Integrating the previous equation, we get that y(t) is the solution of the following
differential equation

y′2(t) = [(λ3 −λ2)y2(t)−λ3][λ1 +(λ2 −λ1)y2(t)],
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and x(t) and z(t) can be defined respectively as

x2(t) =
λ3 −λ2

λ1 −λ3
y2(t)+ k1, z2(t) =

λ2 −λ1

λ1 −λ3
y2(t)+ k2,

for some real constants k1,k2. It follows from the initial conditions that

x(t) =

√
(λ3 −λ2)y2(t)−λ3

λ1 −λ3
, z(t) =−

√
(λ2 −λ1)y2(t)+λ1

λ1 −λ3
. (4.11)

In particular, x(t)> 0 > z(t) for all t, so

V (t) =
1√

x(t)2 + z(t)2
(z(t)E1 − x(t)E3) ,

W (t) =
1√

x(t)2 + z(t)2

(
x(t)y(t)E1 − (x(t)2 + z(t)2)E2 + y(t)z(t)E3

)
.

are an orthonormal basis of Tγ(t) (H · γ(t)). Then, the shape operator of H · γ(t) is given
by

StV (t) =−∇V (t)γ
′(t) =

(µ1 −µ3)x(t)y(t)z(t)
x2(t)+ z2(t)

V (t)− µ3x2(t)+µ1z2(t)
x2(t)+ z2(t)

W (t),

StW (t) =−∇W (t)γ
′(t) =−µ3x2(t)+µ1z2(t)

x2(t)+ z2(t)
V (t)− (µ1 −µ3)x(t)y(t)z(t)

x2(t)+ z2(t)
W (t).

Thus, the matrix expression of St in terms of the orthonormal basis {V (t),W (t)} is given
by

St ≡ 1
x2 + z2

(
xyz(µ1 −µ3) −(x2

µ3 + z2
µ1)

−(x2
µ3 + z2

µ1) −xyz(µ1 −µ3)

)
.

Therefore, the orbits of H are all minimal surfaces of S̃L2(R). Using (4.11), one can
verify that the orbit through e is totally geodesic if and only if µ2 = 0, or equivalently,
λ2 = λ1 +λ3. The other orbits are not totally geodesic. Indeed, since λ1 > λ3 and x(t)>
0 > z(t) for all t, by (4.9) we get that y′(t)> 0 for all t ∈ R, as y(0) = 0, then y(t) ̸= 0
for all t ∈ R\{0} . Thus St does not vanishes for all t ̸= 0, since µ1 −µ3 = λ3 −λ1 ̸= 0.

Now we present the geometry of Homogeneous surfaces of non-unimodular groups. Fol-
lowing Theorem 4.2 we state our final result
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Theorem 4.4. Let G be a 3-dimensional simply-connected non-unimodular Lie group with
3-dimensional isometry group and Lie algebra g . Then a homogeneous surface H · γ(t) of G,
where t is the parameter of a geodesic that intersects H at e, satisfies the following

1. For h0 = span{E1,E2}, the principal curvatures of H0 · γ(t) are 1 ±α

√
1+β 2. In

particular, the mean curvature is equal to 1, and none of the orbits of H0 are minimal.

2. If β = 0 then we have two particular cases

(a) For h1 = span{E1,E3}, the principal curvatures of H1 · γ(t) are

(±α −1) tanh((1−α)t)

and it has constant mean curvature − tanh((1−α)t) ∈ (−1,1).

(b) For h2 = span{E2,E3}, the principal curvatures of H2 · γ(t) are

(±α −1) tanh((1+α)r)

and it has constant mean curvature − tanh((1+α)t) ∈ (−1,1).

In particular, the only minimal orbits are Hi · e with i = 1,2, which are actually totally
geodesic.

3. If β ̸= 0 then for h± = span{E1 + c±E2,E3}, the principal curvatures are given by

− tanh((1−α)(1+βc±)t)±
√
(1−detL) tanh2((1−α)(1+βc±)t)+β 2.

and the mean curvature of H± · γ(t) is − tanh((1−α)(1+βc±)t). Since α ̸= 1 and
1+βc± ̸= 0, the only minimal H±-orbit is H± · e but it is not totally geodesic.

Proof. The proof will be given again in separate cases
Initially for h0, we have that γ(t) = Exp(tE3) is a normal geodesic to H0 through e. Thus,

γ
′(t) = E3 for all t ∈ R, and the tangent space to H0 · γ(t) at γ(t) is hγ(t). Hence, using (4.5),

we get

StE1 =−∇E1E3 = (1+α)E1 +αβE2, StE2 =−∇E2E3 = αβE1 +(1−α)E2.

Therefore, the principal curvatures of H0 · γ(t) are 1±α

√
1+β 2. In particular, the mean

curvature is 1, and none of the orbits of H0 is minimal
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Now for the case with β = 0, let g be a non-unimodular 3-dimensional Lie algebra satisfying
(4.4) in terms of some orthonormal basis {E1,E2,E3}. If α ̸= 0,1 and β ̸= 0, any 2-dimensional
subalgebra of g is conjugate to the abelian h0 = span{E1,E2}, or the non abelian cases h1 =

span{E1,E3} and h2 = span{E2,E3}.
We then have the following cases

(h1) For h1 = span{E1,E3}, let γ be the unit normal geodesic to the corresponding connected
Lie subgroup H1 of G with γ

′(0) = E2 ⊥ h1. Solving equation (4.10) we have γ
′(t) =

sech((1−α)t)E2 − tanh((1−α)t)E3. Thus, an orthonormal basis of Tγ(t)(H1 · γ(t)) is
given by

V (t)≡ E1 , W (t) = tanh((1−α)t)E2 + sech((1−α)t)E3.

Using (4.5) we obtain

StV (t) =−∇V (t)γ
′(t) =−(1+α) tanh((1−α)t)V (t),

StW (t) =−∇W (t)γ
′(t) =−(1−α) tanh((1−α)t)W (t),

so V (t) and W (t) are principal directions of H1 · γ(t). Thus, the H1-orbit through γ(t)
has constant mean curvature − tanh((1−α)t) ∈ (−1,1). In particular, the only minimal
orbit is the one through e, which is actually totally geodesic.

(h2) For h2, if γ is the normal geodesic to H2 with γ
′(0) = E1 ⊥ h2, we have that γ

′(t) =
sech((1+α)t)E1 − tanh((1+α)t)E3, and so V = E2 and W = tanh((1+α)t)E1 +

sech((1+α)t)E3 provide an orthonormal basis for Tγ(t)(H2 · γ(t)). In this case,

StV (t) =−∇V (t)γ
′(t) =− (1−α) tanh((1+α)t)V (t),

StW (t) =−∇W (t)γ
′(t) =− (1+α) tanh((1+α)t)W (t).

Therefore, the orbit H2 · γ(t) has constant mean curvature − tanh((1+α)t) ∈ (−1,1),
and H2 · e is totally geodesic.

Finally, we consider a non-unimodular Lie algebra g with β ̸= 0, and the Lie subalgebras
h± = span{E1 + c±E2,E3}, where

c± =
α ±

√
1− (1−α2)(1+β 2)

(1−α)β
=

α ±
√

1−detL
(1−α)β

.
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We will treat both cases h+ and h− simultaneously. We have that
1√

1+ c2
±

(c±E1 −E2) is

a unit normal vector to h±. Solving the initial value problem (4.10) with initial conditions

x(0) =
c±√

1+ c2
±

, y(0) =
−1√
1+ c2

±

and z(0) = 0 yields

γ
′(t) =

sech((1−α)(1+βc±)t)√
1+ c2

±

(c±E1 −E2)− tanh((1−α)(1+βc±)t)E3.

For each t ∈ R we define V (t) =
1√

1+ c2
±

(E1 + c±E2) and compute W (t) =V (t)∧ γ
′(t), that

is

W (t) =
− tanh((1−α)(1+βc±)t)√

1+ c2
±

(c±E1 −E2)− sech((1−α)(1+βc±)t)E3.

Thus, {V (t),W (t)} is an orthonormal basis of H± · γ(t). Let D = (1−α)(1+βc±) in order to
simplify the notation. We compute

∇V (t)γ
′(t) =

1√
c2
±+1

[
sech(Dt)√

c2
±+1

(
c±(1+α)−αβ + c2

±αβ − c±(1−α)
)

E3+

+ tanh(Dt)[(1+α + c±αβ )E1 +(αβ + c±(1−α))E2]

]
.

But αβc2
±−αβ +2αc± = β (c2

±+1) and

(α +αβc±)E1 +(αβ −αc±)E2 = β (c±E1 −E2)+A(E1 + c±E2),

with A± =∓
√

α2(1−β 2)−β 2. Then

∇V (t)γ
′(t) = β

[
tanh(Dt)√

c2
±+1

(c±E1 −E2)+ sech(Dt)E3

]
+

+
tanh(Dt)√

c2
±+1

(1+A±)(E1 + c±E2).= (1+A±) tanh(Dt)V (t)−βW (t).
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Now we compute

∇W (t)γ
′(t)= sech(Dt)

tanh(Dt)
c2
±+1

[−c2
±(1+α)+2c±αβ −(1−α)]E3−

tanh2(Dt)√
c2
±+1

[c±E1−E2]+

+
tanh2(Dt)√

c2
±+1

[(αβ − c±α)E1 − (α + c±αβ )E2]−β sech2(Dt)
1√

c2
±+1

[E1 + c±E2].

But
(αβ − c±α)E1 − (α + c±αβ )E2 = B(c±E1 −E2)−β (E1 + c±E2),

with B± =∓
√

α2(β +1)−β 2 = A± and also

−c2
±(1+α)+2c±αβ − (1−α)

1+ c2
±

= B±−1 =−(1−α)(βc±+1).

We then get

∇W (t)γ
′(t) = tanh(Dt)(1−α)(bc±+1)

− tanh(Dt)√
c2
±+1

(c±E1 −E2)− sech(Dt)E3

+
− β√

c2
±+1

[
tanh2(Dt)+

1
cosh2(Dt)

]
[E1 + c±E2] =−βV (t)+ tanh(Dt)(1−A±)W (t).

Hence, we conclude that

St
± =

[
− tanh(Dt)(1+A±) β

β −(1−A±) tanh(Dt)

]
.

And the principal curvatures are − tanh(Dt)±
√

A2 tanh2(Dt)+β 2. The mean curvature of
H± · γ(t) is − tanh(Dt). Since α ̸= 1 and 1+ βc± ̸= 0, we deduce that the only minimal
H±-orbit is the one through the identity element, but it is not totally geodesic since β ̸= 0.
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G g h Orbits

Ẽ2

[E2,E3] = λ1E1

span{E1,E2}
All orbits are minimal, but no
orbit is totally geodesic.[E3,E1] = λ2E2

λ1 > λ2 > 0

S̃L2(R)

[E2,E3] = λ1E1

span{
√

λ1E1 +
√
−λ3E3,E2}

All orbits are minimal.
No orbit is totally geodesic,
except H · e precisely when
λ2 = λ1 +λ3.

[E3,E1] = λ2E2

[E1,E2] = λ3E3

λ1 > λ2 > 0 > λ3

Sol3

span{E1,E3}
All orbits are minimal, but not
totally geodesic.[E2,E3] = λ1E1

[E1,E2] = λ3E3

span{
√

λ1E1 +
√
−λ3E3,E2}

All orbits are minimal.
No orbit is totally geodesic, ex-
cept H · e when λ3 =−λ1.

λ1 > 0 > λ3

R2 ⋊R

span{E1,E2}
All orbits have constant mean
curvature 1.

[E2,E3] = (1−α)(βE1 −E2)

span{E1 +
α

(1−α)β
E2,E3},

Each orbit has constant mean
curvature in (−1,1), and the
map sending each orbit to
its mean curvature is a bijec-
tion from the orbit space to
(−1,1).
The orbit H · e is minimal, and
it is totally geodesic if and
only if β = 0.

[E3,E1] = (1+α)(E1 +βE2)

when detL = 1

span{E1,E3}, when β = 0

α,β ≥ 0, α ̸= 0,1

span{E2,E3}, when β = 0

detL = (1−α
2)(1+β

2)
span{E1 +

α +
√

1−detL
(1−α)β

E2,E3},

when β ̸= 0 and detL < 1

span{E1 +
α −

√
1−detL

(1−α)β
E2,E3},

when β ̸= 0 and detL < 1

Table 4.4 Cohomogeneity one actions on 3-dimensional metric Lie groups with
dim(Isom(G)) = 3.



Conclusions and open problems

Regarding Chapters 2 and 3, it is natural to consider some remaining cases. For translation
surfaces in H3, it would be interesting to investigate minimal surfaces and solitons of the mean
curvature flow generated by generic curves in H3, that is, without assuming the curves lie in
specific subsets. This problem appears to be particularly difficult to address using the approach
adopted here, due to the Lie group structure of H3. Concerning translation surfaces in S3, a
natural question related to the final theorem is whether there exist minimal surfaces generated
by curves that are general helices but not proper helices. One could study both situations:
when the generating curves are proper helices and when they are general helices, in the context
of constant mean curvature. Moreover, it would be worthwhile to explore how the structure
of translation surfaces can be used to construct examples and obtain classification results for
solitons of the mean curvature flow in S3.

It is natural to consider the classification of homogeneous hypersurfaces in four-dimensional
Thurston geometries that are not space forms or products of lower-dimensional space forms. In
fact, the author of this thesis, in joint work with his advisor J.P. dos Santos and M. Domínguez-
Vázquez, has partially carried out such a classification and hopes to complete this work in the
future. Another possible direction is the classification of codimension-two actions on these
geometries, that is, the study of two-dimensional homogeneous manifolds and foliations.

It is also natural to ask about the classification of homogeneous hypersurfaces in five-
dimensional Thurston geometries. Indeed, according to [22], there is a classification of such
geometries, but the number of examples is significantly larger than in lower dimensions.
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