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"On becoming famililar with difference equations
and their close relation to differential equations, I

was in hopes that the theory of difference
equations could be brought completely abreast
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Abstract

In this work, we introduce a general concept of almost periodicity for functions de-

fined on isolated time scales. Our concept is consistent with the existing concepts of

almost periodicity on quantum calculus and on Z. Also, we prove important properties

such as the equivalence between different definitions for almost periodic functions, as

well as results ensuring the existence of almost periodic solutions for dynamic equa-

tions on time scales under certain properties. We present several examples to illustrate

our definition and main results. All the results can be found in [4, 5, 7, 9, 10].

Keywords: almost periodicity; isolated time scales.
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Resumo

Neste trabalho, introduzimos um conceito geral de quase-periodicidade para

funções definidas em escalas temporais isoladas. Nosso conceito é compatível com

os já existentes conceitos de quase-periodicidade no cálculo quântico e em Z. Ade-

mais, provamos propriedades importantes, como a equivalência entre diferentes tipos

de definições de funções quase-periódicas, juntamente com resultados garantindo a

existência de soluções quase-periódicas para equações dinâmicas em escalas tempo-

rais sob certas condições. Todos os resultados podem ser encontrados em [4, 5, 7, 9,

10].

Palavras-chave: quase-periodicidade; escalas temporais isoladas.
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Notation

T Time scale

σ Forward jump operator

µ Graininess function

Tκ Tκ scale

x∆(t) Delta derivative of x on t

G(T,R) Set of all regulated functions

Crd(T,R) Set of all rd-continuous functions∫ b

a
x(t)∆t Delta integral of x from a to b

ξh(z) Cylinder transformation

R Set of all regressive and rd-continuous functions

⊕ Circle plus addition

⊖ Circle minus subtraction

R+ Set of all positively regressive and rd-continuous functions

ep(t, s) Exponential function on time scale

ν(t) Iterated shift operator

P Set of all periodic functions

APB Set of all Bochner almost periodic and regressive functions

AP Set of all almost periodic functions
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Introduction

The class of almost periodic functions was introduced by Harald Bohr [11, 12, 13] in
1925 as a natural extension of periodicity to describe more general kinds of phenomena
that may not be captured by the concept of periodicity, by calling a continuous function
f almost periodic if for any ε > 0, there exists a length l(ε) > 0 with the property
that any interval of length l(ε) on the real line contains at least one point ω such that
|f(t+ ω)− f(t)| < ε for all t ∈ R.

Later, in 1927, Salomon Bochner [2] gave another definition of almost periodic func-
tions, stating that a continuous function is almost periodic if it can be approximated by
a trigonometric polynomial (see [14, Page 9]). This definition is equivalent to saying
that for any sequence {f(t + hn)}n∈N, where {hn}n∈N ⊂ R, one can extract a uniformly
convergent subsequence on R. Also, it is equivalent to Bohr's definition (see [14, Page
14]).

A good example of almost periodicity lies in celestial mechanics, as the description
of motion of planets. For instance, let us consider the method of epicycles to describe
the motion of the moon provided by Ptolemy: Assume E is the earth and M is the
moon. For Ptolemy, a good way to describe this motion was by using two circles for
his epicycle model, where the motion of M can be described by the function p(t) =

π1e
iλ1t + π2e

iλ2t for some constants λ1, λ2 ∈ R.

π1

E

M

π2

Figure 1: Ptolemy epicycle model
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Later, Copernicus showed that by adding a second epicycle, one could get a better
approximation to the observed data. This suggests that considering the function p(t) =∑n

j=1 πje
iλjt we can get a better approximation for this motion. In this scenario, if

λ1, . . . , λn are not all rational multiples of just one real number, then the function p is
not periodic. However, p is always almost periodic (in Bohr's and Bochner's sense, see
[18]).

π1

E

M

π2

π3

Figure 2: Copernicus epicycle model

The theory of almost periodic functions gave an important input to the develop-
ment of harmonic analysis on groups, being crucial in this treatment (see [17]). On the
other hand, general versions of averaging principles when the function is not periodic
were provided, only addressing almost periodicity condition to the function (see [20]).

In recent years, this theory has been developed in connection with problems of
differential equations, stability theory, dynamical system, amongs others (see [4, 17,
27]).

On the other hand, the theory of dynamic equations on time scales was first intro-
duced by Stefan Hilger in 1988 in his PhD thesis (see [21]) in order to unify continuous
and discrete analysis, as well as all the cases "in between". This theory, which has gar-
nered significant attention for its power of generalization and applicability since then
(see [1, 6, 7, 8, 15, 16, 24]), will be explored in the first chapter in order to study the
concepts of periodicity and almost periodicity on isolated time scales. Despite this,
some basic questions within the theory remain open. For instance, a general definition
of almost periodic functions on any time scales is not clear yet. Recent progress in re-
lated frameworks includes the adaptation of almost periodicity to quantum calculus
by Li [24] and Bohner and Mesquita [4] to deal with q-difference equations, since such
equations hold substantial potential for applications in quantum physics, including
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thermostatics of q-bosons, black hole dynamics and other topics (see [23, 28]), and it is
not included among the additivity time scales.

Moreover, the almost periodicity concept on time scales was first introduced in the
literature requiring T to be an almost periodic time scale, that is, Π := {τ ∈ R : t± τ ∈
T, ∀t ∈ T} ̸= {0} (see [26]). With this definition, for an almost periodic time scale, one
can define a function f : T ×H → R (where H is open in Rn or Cn) as almost periodic
in t uniformly for x ∈ H if the ε-translation set of f

E{ε, f, S} := {τ ∈ Π : |f(t+ τ, x)− f(t, x)| < ε, ∀(t, x) ∈ T× S}

is relatively dense set in T for all ε > 0 and for each compact subset S ⊂ H . This
concept of almost periodicity depends on the definition of almost periodic time scale,
which is extremely restritive and does not cover one of the most interesting examples
of time scales, the quantum time scale. Thus, the main challenge here for the general-
ization is due to the additive property that appears in the definition of almost periodic
functions. Since there are many interesting time scales which do not have such prop-
erty, it is necessary to find a definition which can fit in all these cases, and can include
also the ones that do not have the additivity property.

Alternatively, a specific definition of almost periodic functions for the quantum
case was established in 2018 by Bohner and Mesquita [4], based on the conservation
of area property for periodic functions (see [3]), to study q-difference equations within
this framework. Also, in 2019, Li [24] gave a definition of almost periodicity for the
quantum time scale. Moreover, another advance on almost periodicity on time scales
includes the new definition of almost periodicity on any time scale provided by Li and
Huang, which are equivalent to Bohr's and Bochner's definition on almost periodic
time scales (see [25]).

Based on the study of almost periodicity on quantum calculus from [4] and with
the analogue techniques used to describe periodicity by means of area in [7] (where
both will be explored in Chapter 2 of this work), our primary goal is to generalize the
concept of almost periodicity from the quantum case to any isolated time scale (i.e.,
all points of the time scale are right-scattered and left-scattered, except when the time
scale has a minimum or maximum (or both). In this case, the minimum point must
be right-scattered and the maximum point must be left-scattered) in the last chapter of
this work, in order to extend the study for more tools in the setting of time scale the-
ory. The two classical definitions of almost periodicity (the Bochner's and Bohr's ones)
presented here for isolated time scales are consistent with the known ones for the dis-
crete and quantum calculus settings. Establishing those definitions, we prove that any
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Bohr almost periodic function is also Bochner almost periodic and the reciprocal also
remains true under more general hypothesis, allowing us to call those functions just as
almost periodic. Moreover, we prove many properties for this class of almost periodic
functions. Also, we show that the set of Bochner almost periodic functions with oper-
ation ⊕ is a subgroup of (R,⊕), which shows that our definition makes sense in the
time scale context. In addition, we explicit the relation between the exponential func-
tion and the almost periodicity concept, and we state some others equivalences for this
class of functions, using almost periodic functions defined on Z and R. Furthermore,
we establish the hypothesis for the first order linear dynamic equation

X∆(t) = A(t)X(t) + f(t)

to have an Bochner almost periodic solution, where A,B : T → Rn×n. All the results
concerning almost periodicity on isolated time scales presented in the last chapter are
completely new in the literature and they are contained in [5].



Chapter

1
Preliminaries on time scale theory

In this chapter, we recall fundamental concepts within the framework of time scale
theory, which will be necessary through the text. The first section will deal with the
calculus theory in this setting and we present the foundations for derivation and in-
tegration, the mean value theorem, chain rule theorems and a substitution rule in this
context. Moreover, the class of regressive functions and the definition of the exponen-
tial function on time scales will be introduced, along with the Variation of Constants
Formula which will be useful later in the next chapter. The main references for this
chapter are both [9] and [10].

1.1 Calculus on time scales

This first section provides a detailed introduction to differential and integral calcu-
lus in the context of time scales.

1.1.1 Basic definitions and the induction principle

First, some fundamental definitions will be presented, followed by the classification
of points that will be used in the whole text. After, we provide some examples for
illustrate and we prove the induction principle.

Definition 1.1.1 (See [10, Page 1]). A time scale is any nonempty closed subset of real
numbers (with the usual topology). The notation T ⊂ R will be used in the whole text.

To avoid confusion dealing with intervals, we will adopt the notation (a, b)T, [a, b)T,
(a, b]T and [a, b]T to represent (a, b) ∩ T, [a, b) ∩ T, (a, b] ∩ T and [a, b] ∩ T, respectively.

Some simple examples of time scales are R,Z and hZ := {hk : k ∈ Z}, for h > 0.
Furthermore, an interesting example of time scale is qZ = qZ ∪ {0} for q > 1, where
qZ := {qk : k ∈ Z}. Also, the time scale qN0 for q > 1 will be widely used in this
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text and it is known as the quantum time scale, which plays a crucial role for quantum
calculus theory and its applications for quantum physics (see [19]). Also, Cantor set is
an example of time scale which is useful to find counterexamples.

Next, we define two important operators used to introduce certain basic concepts
in the theory.

Definition 1.1.2 (See [10, Definition 1.1]). Let T be a time scale. The forward jump oper-
ator is a function σ : T → T given by

σ(t) := inf{s ∈ T : s > t}

and, analogously, we also define the backward jump operator ρ : T → T as

ρ(t) := sup{s ∈ T : s < t}.

Since T is closed, it is clear that these operators are well-defined. Moreover, for the cases when
the sets {s ∈ T : s > t} and {s ∈ T : s < t} are empty, we consider

inf{s ∈ T : s > t} = inf ∅ = supT,

sup{s ∈ T : s < t} = sup ∅ = inf T.

Once defined the operators, we will denote the following classification for the
points t ∈ T as follow:

Table 1.1: Classification of points

Definition Property

t right-scattered t < σ(t)

t right-dense t = σ(t) and t < supT

t left-scattered t > ρ(t)

t left-dense t = ρ(t) and t > inf T

t isolated ρ(t) < t < σ(t)

t dense ρ(t) = t = σ(t)

Definition 1.1.3 (See [10, Page 2]). Let T be a time scale. The graininess function µ : T →
[0,+∞) is defined as µ(t) := σ(t)− t.
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In what follows, we give some examples for the forward jump and backward jump
operators and also for the graininess function for some time scales.

Table 1.2: Some basic examples

T R Z hZ qZ

ρ(t) t t− 1 t− h t
q

σ(t) t t+ 1 t+ h qt

µ(t) 0 1 h t(q − 1)

We state and prove the induction principle, which will be crucial for the proof of
the mean value theorem presented later.

Theorem 1.1.4 (See [10, Theorem 1.7]). (Induction Principle). Let t0 ∈ T and assume that

{S(t) : t ∈ [t0,∞)T}

is a family of statements satisfying:

(i) The statement S(t0) is true;

(ii) If t ∈ [t0,∞)T is right-scattered and S(t) is true, then S(σ(t)) is true;

(iii) If t ∈ [t0,∞)T is right-dense and S(t) is true, then there exists a neighborhood U of t such
that S(s) is true for all s ∈ U ∩ (t,∞)T;

(iv) If t ∈ (t0,∞)T is left-dense and S(s) is true for all s ∈ [t0, t)T, then S(t) is true.

Then, S(t) is true for all t ∈ [t0,∞)T.

Proof. Let
S∗ = {t ∈ [t0,∞)T : S(t) is not true}

and assume that S∗ ̸= ∅. Since S∗ is nonempty and limited above, there exists t∗ :=

inf S∗ and since T is closed, we have t∗ ∈ T. Thus, S(t∗) is true. Indeed, if t∗ = t0, then,
from (i), S(t∗) is true. If t∗ ̸= t0 and ρ(t∗) = t∗, then S(t∗) is true from (iv). Also, if
ρ(t∗) < t∗, then S(ρ(t∗)) is true and then, from (ii), S(σ(ρ(t∗))) = S(t∗) is true. Hence, in
any case, t∗ ̸∈ S∗. Therefore, t∗ cannot be right-scattered (because if t∗ is right-scattered,
from (ii), S(σ(t∗)) is true and σ(t∗) ∈ S∗, which cannot happen) and t∗ ̸= maxT either (it
follows from the fact that S∗ ̸= ∅, t∗ is its infimum and t∗ ̸∈ S∗). Hence t∗ is right-dense
and it is a contradiction by (iii). Thus, S∗ = ∅ and we have the desired.
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1.1.2 Differentiation and integration

We now introduce the derivative and the integral in this context, the so-called delta
derivative and delta integral, respectively, and will be established some of its proper-
ties.

Definition 1.1.5 (See [10, Page 2]). Let f : T → R be a function. Then we define the function
fσ : T → R by fσ(t) = f(σ(t)) for all t ∈ T.

Definition 1.1.6 (See [10, Page 2]). We define the Tκ set by

Tκ :=

T− (ρ(supT), supT], if supT < +∞,

T, if supT = +∞.

In other words, the above definition removes the maximum point of the time scale
T if this maximum exists and is left-scattered. This is needed to have a well-defined
derivative in this context, which will be justified later after its definition.

Definition 1.1.7 (See [10, Definition 1.10]). Let f : T → R be a function and t ∈ Tκ. Then
we define f∆(t) to be the number with the property that given ε > 0, there exists a neighborhood
U of t (i.e., U = (t− δ, t+ δ)T for some δ > 0) such that

∣∣[f(σ(t))− f(s)]− f∆(t)[σ(t)− s]
∣∣ ≤ ε |σ(t)− s|

for all s ∈ U . We call f∆(t) as delta derivative of f at t. Moreover, we say that f is delta
differentiable (or just differentiable) on Tκ provided f∆(t) exists for all t ∈ Tκ. Also, the
function f∆ : Tκ → R is called the derivative of f on Tκ.

Remark 1.1.8. The above definition is well-defined. Indeed, let f : T → R and t ∈ Tκ. If
α, β ∈ R both satisfy the definition of delta derivative of f at t, then for every ε > 0, there
exists a neighborhood U = (t− δ, t+ δ)T, for some δ > 0, such that

|(α− β)[σ(t)− s]| = |f(σ(t))− f(s)− f(σ(t)) + f(s) + (α− β)[σ(t)− s]|

≤ |f(σ(t))− f(s)− α[σ(t)− s]|+ |f(σ(t))− f(s)− β[σ(t)− s]|

≤ 2ε|σ(t)− s|

for all s ∈ U . Since ε > 0 is arbitrary, we have α = β or σ(t) = s for all s ∈ U . This second
option cannot happen for t ∈ Tκ and hence α = β.

The next remark shows that the delta derivative is not well defined on T \ Tκ.
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Remark 1.1.9. Suppose T \ Tκ ̸= ∅ and let t ∈ T \ Tκ. Thus, t is left-scattered and the
maximum of T. Then, for every ε > 0, there exists δ > 0 such that U = (t − δ, t + δ)T = {t}
and for any α ∈ R, we have

|[f(σ(t))− f(s)]− α[σ(t)− s]| = |[f(t)− f(s)]− α[t− s]| = 0 ≤ ε|σ(t)− s|,

for all s ∈ U .

The next theorem plays an important role for computation of the delta derivative
explicitly and shows its relation with the well-known derivatives in the continuous
and discrete cases.

Theorem 1.1.10 (See [10, Theorem 1.16]). Let f : T → R be a function and t ∈ Tκ. Then,
the following statements hold:

(i) If f is ∆-differentiable at t, then f is continuous at t;

(ii) If f is continuous at t and t is right-scattered, then f is ∆-differentiable at t with

f∆(t) =
f(σ(t))− f(t)

µ(t)
; (1.1)

(iii) If t is right-dense, then f is ∆-differentiable at t if, and only if, the limit

lim
s→t

f(t)− f(s)

t− s

exists as a finite number. In this case

f∆(t) = lim
s→t

f(t)− f(s)

t− s
; (1.2)

(iv) If f is ∆-differentiable at t, then

f(σ(t)) = f(t) + µ(t)f∆(t). (1.3)

Proof. (i) Let ε ∈ (0, 1), without loss of generality, and define

ε∗ :=
ε

[2µ(t) + 1 + |f∆(t)|]
∈ (0, 1).

Since f is ∆-differentiable at t, there exists a neighborhood U = (t − δ, t +
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δ)T, for some δ > 0 with δ < ε∗ (without loss of generality), of t such that

∣∣f(σ(t))− f(s)− f∆(t)[σ(t)− s]
∣∣ ≤ ε∗ |σ(t)− s| ,

holds for all s ∈ U . Note that

|f(t)− f(s)| = |f(t)− f(s) + f(σ(t))− f(σ(t)) + f∆(t)[σ(t)− s]− f∆(t)[σ(t)− s]|

= |f(t)− f(s) + f(σ(t))− f(σ(t)) + f∆(t)[µ(t) + t− s]

− f∆(t)[σ(t)− s]|

≤ |f(σ(t))− f(s)− f∆(t)[σ(t)− s]|+ |f(σ(t))− f(t)− f∆(t)µ(t)|

+ |f∆(t)[t− s]|

≤ ε∗|σ(t)− s|+ ε∗|µ(t)|+ |f∆(t)| · |t− s|.

But since

|σ(t)− s| = |σ(t)− t+ t− s| ≤ |σ(t)− t|+ |t− s| = |µ(t)|+ |t− s|,

we conclude

|f(t)− f(s)| ≤ ε∗(|µ(t)|+ |t− s|) + ε∗|µ(t)|+ |f∆(t)| · |t− s|

< ε∗(|µ(t)|+ |t− s|) + ε∗|µ(t)|+ |f∆(t)|ε∗

< ε∗[2µ(t) + 1 + |f∆(t)|] = ε.

This shows that f is continuous at t.

(ii) Since f is continuous at t, lims→t f(s) = f(t). On the other hand, since t is right-
scattered, σ(t) > t and µ(t) ̸= 0. Hence, we have

lim
s→t

f(σ(t))− f(s)

σ(t)− s
=

f(σ(t))− f(t)

σ(t)− t
=

f(σ(t))− f(t)

µ(t)
.

By the definition of limit, given ε > 0, there exists a neighborhood U = (t−δ, t+δ)T

of t such that if s ∈ U , then∣∣∣∣f(σ(t))− f(s)

σ(t)− s
− f(σ(t))− f(t)

µ(t)

∣∣∣∣ ≤ ε.
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Thus, multiplying this inequality by |σ(t)− s|, we conclude that∣∣∣∣f(σ(t))− f(s)− f(σ(t))− f(t)

µ(t)
[σ(t)− s]

∣∣∣∣ ≤ ε|σ(t)− s|,

i.e., f∆(t) = f(σ(t))−f(t)
µ(t)

.

(iii) If f is ∆-differentiable at t and t is right-dense, then given ε > 0 there exists a
neighborhood U = (t− δ, t+ δ)T of t such that if s ∈ U , then

|f(σ(t))− f(s)− f∆(t)[σ(t)− s]| ≤ ε|σ(t)− s|,

i.e.,
|f(t)− f(s)− f∆(t)[t− s]| ≤ ε|t− s|.

Multiplying this expression by
∣∣ 1
t−s

∣∣ (for s ̸= t), we have∣∣∣∣f(t)− f(s)

t− s
− f∆(t)

∣∣∣∣ ≤ ε,

for all s ∈ U . Therefore, f∆(t) = lims→t
f(t)−f(s)

t−s
.

Reciprocally, if the limit lims→t
f(σ(t))−f(s)

t−s
exists, then given ε > 0, there is a neigh-

borhood U = (t− δ, t+ δ)T of t such that if s ∈ U with s ̸= t, then∣∣∣∣f(t)− f(s)

t− s
− f∆(t)

∣∣∣∣ ≤ ε,

for some value f∆(t). Thus, note that

|f(σ(t))− f(s)− f∆(t)[σ(t)− s]| = |f(t)− f(s)− f∆(t)[t− s]| |t− s|
|t− s|

=

∣∣∣∣f(t)− f(s)

t− s
− f∆(t)

∣∣∣∣ |t− s|

≤ ε|t− s|

for all s ∈ U with s ̸= t. Therefore, f is ∆-differentiable at t and

f∆(t) = lim
s→t

f(σ(t))− f(s)

t− s
.
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(iv) If t is right-dense the equality is trivially satisfied.

Moreover, if t is right-scattered and since f is ∆-differentiable at t, by (i) f is
continuous at t and by (ii), we have

f∆(t) =
f(σ(t))− f(t)

µ(t)
,

i.e.,
f(σ(t)) = f(t) + µ(t)f∆(t).

The usual calculus rules for ∆-derivatives also holds with similarity in this context
as it can be viewed in the next theorem.

Theorem 1.1.11 (See [10, Theorem 1.20]). Let f, g : T → R be ∆-differentiable functions at
t ∈ Tκ. Then, the following statements hold:

(i) f + g is ∆-differentiable at t with

(f + g)∆(t) = f∆(t) + g∆(t);

(ii) For any constant α ∈ R, αf is ∆-differentiable at t with

(αf)∆(t) = αf∆(t);

(iii) The product fg is ∆-differentiable at t with

(fg)∆(t) = f∆(t)g(t) + f(σ(t))g∆(t) = f(t)g∆(t) + f∆(t)g(σ(t)); (1.4)

(iv) If f(t)f(σ(t)) ̸= 0, then 1
f

is ∆-differentiable at t with

(
1

f

)∆

(t) = − f∆(t)

f(t)f(σ(t))
; (1.5)

(v) If g(t)g(σ(t)) ̸= 0, then f
g

is ∆-differentiable at t and

(
f

g

)∆

(t) =
f∆(t)g(t)− f(t)g∆(t)

g(t)g(σ(t))
. (1.6)
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Proof. (i) Since f and g are ∆-differentiable at t ∈ Tκ, given ε > 0, there exist neigh-
borhoods U1 and U2 of t such that

|f(σ(t))− f(s)− f∆(t)[σ(t)− s]| ≤ ε

2
|σ(t)− s| for all s ∈ U1

and
|g(σ(t))− g(s)− g∆(t)[σ(t)− s]| ≤ ε

2
|σ(t)− s| for all s ∈ U2.

Thus, for U = U1 ∩ U2 and s ∈ U , we have

|(f + g)(σ(t))− (f + g)(s)− [f∆(t) + g∆(t)][σ(t)− s]|

≤ |f(σ(t))− f(s)− f∆(t)[σ(t)− s]|+ |g(σ(t))− g(s)− g∆(t)[σ(t)− s]|

≤ ε

2
|σ(t)− s|+ ε

2
|σ(t)− s|

= ε|σ(t)− s|.

Therefore, f + g is ∆-differentiable at t and (f + g)∆(t) = f∆(t) + g∆(t).

(ii) If α = 0, the equality is trivially satisfied, since (αf)∆(t) = αf∆(t) = 0. Now, if
α ̸= 0, since f is ∆-differentiable at t ∈ Tκ, given ε > 0, there exists a neighbor-
hood U of t such that

|f(σ(t))− f(s)− f∆(t)[σ(t)− s]| ≤ ε

|α|
|σ(t)− s| for all s ∈ U.

Thus,

|(αf)(σ(t))− (αf)(s)− [αf∆(t)][σ(t)− s]| = |α| · |f(σ(t))− f(s)− f∆(t)[σ(t)− s]|

≤ |α| · ε

|α|
|σ(t)− s|

= ε|σ(t)− s|.

Therefore, αf is ∆-differentiable at t and (αf)∆(t) = αf∆(t).

(iii) Let ε ∈ (0, 1) and define

ε∗ =
ε

|g(σ(t))|+ |f(t)|+ 1 + |g∆(t)|
∈ (0, 1).

Since f and g are ∆-differentiable at t ∈ Tκ, there exist neighborhoods U1 and U2
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of t such that

|f(σ(t))− f(s)− f∆(t)[σ(t)− s]| ≤ ε∗ |σ(t)− s| for all s ∈ U1

and
|g(σ(t))− g(s)− g∆(t)[σ(t)− s]| ≤ ε∗ |σ(t)− s| for all s ∈ U2.

Moreover, by Theorem 1.1.10 (i), f and g are continuous at t and there exists a
neighborhood U3 of t such that

|f(t)− f(s)| ≤ ε∗ for all s ∈ U3.

Thus, for U = U1 ∩ U2 ∩ U3 and s ∈ U , then

|(fg)(σ(t))− (fg)(s)− [f∆(t)g(σ(t)) + f(t)g∆(t)][σ(t)− s]|

= |f(σ(t))g(σ(t))− f(s)g(s)− f∆(t)[σ(t)− s]g(σ(t))− f(t)[σ(t)− s]g∆(t)|

= |f(σ(t))g(σ(t))− f(s)g(s)− f∆(t)[σ(t)− s]g(σ(t))− f(t)[σ(t)− s]g∆(t)

+ f(s)g(σ(t))− f(s)g(σ(t)) + g(σ(t))f(t)− g(σ(t))f(t) + g(s)f(t)

− g(s)f(t) + g∆(t)[σ(t)− s][f(s)− f(t)]− g∆(t)[σ(t)− s][f(s)− f(t)]|

= |[f(σ(t))− f(s)− f∆(t)[σ(t)− s]]g(σ(t)) + [g(σ(t))− g(s)

− g∆(t)[σ(t)− s]]f(t) + [g(σ(t))− g(s)− g∆(t)[σ(t))− s]][f(s)− f(t)]

+ [σ(t)− s]g∆(t)[f(s)− f(t)]|

≤ |[f(σ(t))− f(s)− f∆(t)[σ(t)− s]]g(σ(t))|+ |[g(σ(t))− g(s)

− g∆(t)[σ(t)− s]]f(t)|+ |[g(σ(t))− g(s)− g∆(t)[σ(t))− s]][f(s)− f(t)]|

+ |[σ(t)− s]g∆(t)[f(s)− f(t)]|

≤ ε∗|σ(t)− s| · |g(σ(t))|+ ε∗|σ(t))− s| · |f(t)|+ ε∗|σ(t)− s| · ε∗

+ |[σ(t)− s]g∆(t)|ε∗

= ε∗|σ(t)− s|[|g(σ(t))|+ |f(t)|+ ε∗ + |g∆(t)|]

< ε∗|σ(t)− s|[|g(σ(t))|+ |f(t)|+ 1 + |g∆(t)|]

≤ ε|σ(t)− s|.

Therefore, fg is ∆-differentiable at t and (fg)∆(t) = f(t)g∆(t) + f∆(t)g(σ(t)). The
proof of the second equality follows analogous, thus we omit it here.
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(iv) Firstly, suppose that t is right-dense. Since f is ∆-differentiable at t, we have

f∆(t)
(1.2)
= lim

t→s

f(t)− f(s)

t− s
.

Thus, we conclude that the limit

lim
s→t

(
1
f

)
(t)−

(
1
f

)
(s)

t− s
= lim

s→t

f(s)− f(t)

f(t)f(s)(t− s)

= − lim
s→t

1

f(t)f(s)

f(t)− f(s)

t− s

= − f∆(t)

f(t)f(t)
= − f∆(t)

f(t)f(σ(t))

exists and, therefore, (
1

f

)∆

(t) = − f∆(t)

f(t)f(σ(t))
.

Now, if t is right-scattered, we have

f∆(t)
(1.1)
=

f(σ(t))− f(t)

µ(t)
.

Since f is continuous at t, the function 1/f is continuous at t and we get

(
1

f

)∆

(t)
(1.1)
=

(
1
f

)
(σ(t))−

(
1
f

)
(t)

µ(t)

=
f(t)− f(σ(t))

f(t)f(σ(t))µ(t)
= − f∆(t)

f(t)f(σ(t))
.

(v) Since f and g are ∆-differentiable at t and g(t)g(σ(t)) ̸= 0, by the previous items
(iii) and (iv), we have(

f

g

)∆

(t) =

(
f · 1

g

)∆

(t) = f(t)

(
1

g

)∆

(t) + f∆(t)

(
1

g(σ(t))

)
= f(t)

[
− g∆(t)

g(t)g(σ(t))

]
+

f∆(t)

g(σ(t))

= −f∆(t)g(t)− f(t)g∆(t)

g(t)g(σ(t))
,

getting the desired result.
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Now, we present the fundamental definitions of functions defined on time scales,
in order to introduce the concept of delta integral.

Definition 1.1.12 (See [10, Definition 1.57]). A function f : T → R is called regulated
provided its right-sided limit exist at all right-dense points in T and its left-sided limit exist at
left-dense points in T. The set of all regulated functions f : T → R will be denoted by G(T,R)
or simply G.

Definition 1.1.13 (See [10, Definition 1.58]). A function f : T → R is called rd-continuous
provided it is continuous at right-dense points in T and its left-sided limit exist at left-dense
points in T. The set of all rd-continuous functions f : T → R will be denoted by Crd(T,R) or
simply Crd.

The next theorem states some straightforward, but useful implications.

Theorem 1.1.14 (See [10, Theorem 1.60]). Let f : T → R be a function. Then:

(i) If f is continuous, then f is rd-continuous;

(ii) If f is rd-continuous, then f is regulated;

(iii) The forward jump operator σ is rd-continuous;

(iv) If f is regulated or rd-continuous, then fσ has the same property.

Proof. (i) and (ii) follows directly by its definition.

(iii) Let t ∈ T be a right-dense point. Given ε > 0, there exists 0 < δ < ε such that
σ(s) = s for all s ∈ U = (t− δ, t+ δ). Then, for s ∈ U , we have

σ(s)− σ(t) = s− t < δ < ε.

Also, since t− δ < s < t+ δ, we get −δ < s− t. Thus,

−ε < −δ < s− t = σ(s)− σ(t).

Hence, for s ∈ U , we conclude that |σ(s)− σ(t)| < ε, i.e., σ is continuous for all its
right-dense points. Furthermore, it is easy to see that the left-sided limit always
exists for its left-dense points.

Therefore, we conclude that σ is rd-continuous.
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(iv) Suppose f is regulated. By the previous item, since σ is also regulated, the lateral
limits lims→t+ f(s) and lims→t+ σ(s) both exist for all right-dense points t. Also,
the lateral limits lims→t− f(s) and lims→t− σ(s) both exist for all left-dense points
t. Thus, the limit lims→t+ f(σ(t)) exists for all right-dense points t and the limit
lims→t− f(σ(t)) exists for all left-dense points t, i.e., fσ is regulated.

If f is rd-continuous, it is easy to prove that fσ is also rd-continuous.

Now, we are ready to define the concept of pre-differentiable function.

Definition 1.1.15 (See [10, Definition 1.62]). A continuous function f : T → R is called
pre-differentiable with region of differentiation D, provided D satisfy: (i) D ⊂ Tκ; (ii) Tκ \D
is countable; (iii) Tκ \D contains no right-scattered elements of T; (iv) f is ∆-differentiable at
each t ∈ D.

The next theorem is an analogue version of the Mean Value Theorem for time scales,
which its corollary will be extremely useful.

Theorem 1.1.16 (See [10, Theorem 1.67]). (Mean Value Theorem). Let f, g : T → R be
pre-differentiable functions with region of differentiation D satisfying

|f∆(t)| ≤ g∆(t) for all t ∈ D.

Then, for all r, s ∈ T such that r ≤ s, we have

|f(s)− f(r)| ≤ g(s)− g(r).

Proof. Let r, s ∈ T with r ≤ s and denote [r, s)T \D = {tn;n ∈ N} (Tκ \D is countable,
implying [r, s)T \D is also countable). Given ε > 0, we just need to show that

S(t) : |f(t)− f(r)| ≤ g(t)− g(r) + ε

(
t− r +

∑
tn<t

1

2n

)

holds for all t ∈ [r, s]T. Indeed, note that:

(i) S(r) holds, because

|f(r)− f(r)| = 0 ≤ g(r)− g(r) + ε

(
r − r +

∑
tn<r

1

2n

)
= ε

(∑
tn<r

1

2n

)
.



20 Preliminaries on time scale theory

(ii) If t is right-scattered and S(t) holds, then t ∈ D (because Tκ \ D contains no
right-scattered elements of T) and we have

|f(σ(t))− f(r)| (1.3)
= |f(t) + µ(t)f∆(t)− f(r)|

≤ |µ(t)f∆(t)|+ |f(t)− f(r)|

≤ µ(t)g∆(t) + g(t)− g(r) + ε

(
t− r +

∑
tn<t

1

2n

)
= g(σ(t))− g(r) + ε

(
t− r +

∑
tn<t

1

2n

)
< g(σ(t))− g(r) + ε

(
σ(t)− r +

∑
tn<σ(t)

1

2n

)
.

Thus, S(σ(t)) holds.

(iii) If t is right-dense, with t ̸= s, and S(t) holds, considering t ∈ D, we have that f
and g are ∆-differentiable at t, i.e., there exists a neighborhood U of t such that

|f(t)− f(τ)− f∆(t)[t− τ ]| ≤ ε

2
|t− τ | for all τ ∈ U,

and

|g(t)− g(τ)− g∆(t)[t− τ ]| ≤ ε

2
|t− τ | for all τ ∈ U.

Thus, by reverse triangle inequality, we have

|f(t)− f(τ)| ≤
[
|f∆(t)|+ ε

2

]
|t− τ | for all τ ∈ U,

and also we get

g∆(t)[τ − t] ≤ g(τ)− g(t) +
ε

2
|t− τ | for all τ ∈ U.

Therefore, for all τ ∈ U ∩ (t,∞)T, we have

|f(τ)− f(r)| ≤ |f(τ)− f(t)|+ |f(t)− f(r)|

≤
[
|f∆(t)|+ ε

2

]
|t− τ |+ |f(t)− f(r)|
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≤
[
g∆(t) +

ε

2

]
|t− τ |+ g(t)− g(r) + ε

(
t− r +

∑
tn<t

1

2n

)
≤ g(τ)− g(t) +

ε

2
|t− τ |+ ε

2
(τ − t) + g(t)− g(r) + ε(t− r) + ε

∑
tn<t

1

2n

= g(τ)− g(r) + ε

(
τ − r +

∑
tn<t

1

2n

)
≤ g(τ)− g(r) + ε

(
τ − r +

∑
tn<τ

1

2n

)
.

Moreover, if t ̸∈ D then, by the definition of pre-differentiable function, t = tm

for some m ∈ N. Also, by hypothesis, f and g are continuous, i.e, there exists a
neighborhood U of t such that

|f(τ)− f(t)| ≤ ε

2
· 1

2m
for all τ ∈ U,

and also
|g(τ)− g(t)| ≤ ε

2
· 1

2m
for all τ ∈ U,

i.e.,
g(t) ≤ g(τ) +

ε

2
· 1

2m
for all τ ∈ U.

Therefore, for all τ ∈ U ∩ (t,∞)T, we have

|f(τ)− f(r)| ≤ |f(τ)− f(t)|+ |f(t)− f(r)|

≤ ε

2
· 1

2m
+ g(t)− g(r) + ε

(
t− r +

∑
tn<t

1

2n

)
≤ ε

2
· 1

2m
+ g(τ) +

ε

2
· 1

2m
− g(r) + ε

(
t− r +

∑
tn<t

1

2n

)
≤ ε

2
· 1

2m
+ g(τ) +

ε

2
· 1

2m
− g(r) + ε

(
τ − r +

∑
tn<t

1

2n

)
≤ g(τ)− g(r) + ε

(
τ − r +

∑
tn<τ

1

2n

)
.

Thus, either for t ∈ D or t ̸∈ D, we have concluded that S(τ) holds for all τ ∈
U ∩ (t,∞)T.
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(iv) Finally, if t is left-dense and S(τ) holds for all τ < t, then

|f(τ)− f(r)| ≤ g(τ)− g(r) + ε

(
τ − r +

∑
tn<t

1

2n

)
.

Thus, since f and g are continuous, taking the limit when τ → t− we have

|f(t)− f(r)| ≤ lim
τ→t−

[
g(τ)− g(r) + ε

(
τ − r +

∑
tn<t

1

2n

)]

= g(t)− g(r) + ε

(
t− r +

∑
tn<t

1

2n

)
,

i.e., S(t) holds.

Therefore, by Theorem 1.1.4, we have the desired.

Corollary 1.1.17 (See [10, Corollary 1.68]). Let f, g : T → R be pre-differentiable functions
with region of differentiation D. Then:

(i) If U is a compact interval with endpoints r, s ∈ T, then

|f(s)− f(r)| ≤

{
sup

t∈Uκ
T ∩D

|f∆(t)|

}
|s− r|;

(ii) If f∆(t) = 0 for all t ∈ D, then f is a constant function;

(iii) If f∆(t) = g∆(t) for all t ∈ D, then

g(t) = f(t) + C for all t ∈ T,

where C is a constant.

Proof. (i) Let r, s ∈ T with r ≤ s and define g : T → R by

g(t) :=

{
sup

τ∈[r,s]κT∩D
|f∆(τ)|

}
(t− r) for t ∈ T.

Thus,
g∆(t) = sup

τ∈[r,s]κT∩D
|f∆(τ)| ≥ |f∆(t)| for all t ∈ [r, s]κT ∩D
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and, by Theorem 1.1.16, we have

|f(t)− f(r)| ≤ g(t)− g(r) = g(t) for all t ∈ [r, s]

and we conclude that

|f(s)− f(r)| ≤ g(s) =

{
sup

τ∈[r,s]κT∩D
|f∆(τ)|

}
(s− r).

(ii) Since f∆(t) = 0 for all t ∈ D then, by item (i), we have

|f(s)− f(r)| ≤

{
sup

t∈Uκ
T ∩D

|0|

}
|r − s| = 0,

i.e., f(s) = f(r). Thus, changing the endpoints s and r along D it is easy to
conclude that f is constant.

(iii) Taking h(t) = f(t)− g(t), since

h∆(t) = f∆(t)− g∆(t) = 0,

we have by item (ii) that h(t) ≡ C, where C is a constant, i.e.,

f(t) = g(t) + C.

With sufficient foundations established, we now introduce the integration on time
scales. Firstly, for regulated functions, the following holds:

Theorem 1.1.18 (See [10, Theorem 1.70]). (Existence of Pre-Antiderivatives). Let f be a reg-
ulated function. Then, there exists a pre-differentiable function F with region of differentiation
D such that

F∆(t) = f(t) for all t ∈ D.

Proof. The proof can be found in [10, Theorem 1.70].

The next definition, together with Theorem 1.1.18, provides the concepts of pre-
antiderivative, indefinite integral and Cauchy integral.

Definition 1.1.19 (See [10, Definition 1.71]). Let f : T → R be a regulated function. Any
function F as in Theorem 1.1.18 is called pre-antiderivative of f . We define the indefinite
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integral of f by ∫
f(t)∆t = F (t) + C,

where C is an arbitrary constant and F is a pre-antiderivative of f .

Definition 1.1.20. We define the Cauchy integral by∫ s

r

f(t)∆t = F (s)− F (r) for all r, s ∈ T.

Definition 1.1.21. A function F : T → R is called antiderivative of f : T → R provided

F∆(t) = f(t) for all t ∈ Tκ.

The next theorem provides the existence of antiderivatives for the class of all rd-
continuous functions.

Theorem 1.1.22 (See [10, Theorem 1.74]). (Existence of Antiderivatives). Every rd-
continuous function has an antiderivative. In particular, if t0 ∈ T, then F defined by

F (t) :=

∫ t

t0

f(τ)∆τ for t ∈ T

is an antiderivative of f .

Proof. Suppose f is an rd-continuous function. Then, by Theorem 1.1.14 (ii), we have
that f is regulated. Also, by Theorem 1.1.18, since f is regulated, there exists a pre-
differentiable function F with region of differentiation D such that F∆(t) = f(t) for all
t ∈ D. We want to show that F∆(t) = f(t) holds for all t ∈ Tκ. Thus, let t ∈ Tκ \D. It
follows that t is right-dense (because Tκ \D contains no right-scattered elements). So,
since f is rd-continuous and t is right-dense, f is continuous at t, i.e., given ε > 0 there
exists a neighborhood U of t such that

|f(s)− f(t)| ≤ ε for all s ∈ U.

Now, define
h(τ) := F (τ)− f(t)(τ − t0) for all τ ∈ T.

Thus, h is pre-differentiable with D and we have

h∆(τ) = F∆(τ)− f(t) = f(τ)− f(t) for all τ ∈ D.
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Then, |h∆(s)| = |f(s)− f(t)| ≤ ε for all s ∈ D ∩U and sups∈D∩U |h∆(s)| ≤ ε. Thus, since
h(t) = F (t)− f(t)(t− t0), for r ∈ U , we have

|F (t)− F (r)− f(t)(t− r)| = |h(t) + f(t)(t− t0)− [h(r) + f(t)(r − t0)]− f(t)(t− r)|

= |h(t) + f(t)t− f(t)t0 − h(r)− f(t)r + f(t)t0 − f(t)t+ f(t)r|

= |h(t)− h(r)|

and, by Corollary 1.1.17 (i), we conclude that

|h(t)− h(r)| ≤
[

sup
s∈D∩U

|h∆(s)|
]
|t− r| ≤ ε|t− r|,

i.e.,
|F (t)− F (r)− f(t)(t− r)| ≤ ε|t− r| for all r ∈ U.

Therefore, F is ∆-differentiable at t with F∆(t) = f(t) for all t ∈ T.

Some simple and useful properties for the integral on time scales are given in the
next two theorems.

Theorem 1.1.23 (See [10, Theorem 1.75]). If f ∈ Crd(T,R) and t ∈ Tκ, then∫ σ(t)

t

f(τ)∆τ = µ(t)f(t). (1.7)

Proof. Since f is rd-continuous, by Theorem 1.1.22, there exists an antiderivative F of
f . Thus, we have ∫ σ(t)

t

f(τ)∆τ = F (σ(t))− F (t)

(1.3)
= F (t) + µ(t)F∆(t)− F (t)

= µ(t)f(t).

Theorem 1.1.24 (See [10, Theorem 1.76]). If f∆ ≥ 0, then f is nondecreasing.

Proof. Suppose f∆(t) ≥ 0 for all t ∈ Tκ and let r, s ∈ T such that r ≥ s. Thus,

f(r) = f(s) + f(r)− f(s) = f(s) +

∫ r

s

f∆(τ)∆τ ≥ f(s),

because f∆(t) ≥ 0 and r ≥ s imply
∫ r

s
f∆(τ)∆τ ≥ 0.
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The usual properties for integration also holds for time scales, as in the next result.
Since the proof is direct, we omit its proof here.

Theorem 1.1.25 (See [10, Theorem 1.77]). Let a, b, c ∈ T, α ∈ R and f, g ∈ Crd(T,R).
Then:

(i)
∫ b

a
[f(t) + g(t)]∆t =

∫ b

a
f(t)∆t+

∫ b

a
g(t)∆t;

(ii)
∫ b

a
(αf(t))∆t = α

∫ b

a
f(t)∆t;

(iii)
∫ b

a
f(t)∆t = −

∫ a

b
f(t)∆t;

(iv)
∫ b

a
f(t)∆t =

∫ c

a
f(t)∆t+

∫ b

c
f(t)∆t;

(v)
∫ b

a
f(σ(t))g∆(t)∆t = (fg)(b)− (fg)(a)−

∫ b

a
f∆(t)g(t)∆t;

(vi)
∫ b

a
f(t)g∆(t)∆t = (fg)(b)− (fg)(a)−

∫ b

a
f∆(t)g(σ(t))∆t;

(vii)
∫ a

a
f(t)∆t = 0;

(viii) If |f(t)| ≤ g(t) on [a, b), then
∣∣∣∫ b

a
f(t)∆t

∣∣∣ ≤ ∫ b

a
g(t)∆t;

(ix) If f(t) ≥ 0 for all t ∈ [a, b)T, then
∫ b

a
f(t)∆t ≥ 0.

The following theorem shows how this new recently defined integral depends on
the time scale and it gives a precise formula for sets that only has dense points or
isolated points, together with the formula for hZ.

Theorem 1.1.26 (See [10, Theorem 1.79]). Let a, b ∈ T and f ∈ Crd(T,R). Then:

(i) If T = R, then ∫ b

a

f(t)∆t =

∫ b

a

f(t)dt

where the integral on the right hand side is the usual Riemann integral.

(ii) If [a, b]T consists of only isolated points, then

∫ b

a

f(t)∆t =


∑

t∈[a,b)T µ(t)f(t) if a < b,

0 if a = b,

−
∑

t∈[b,a)T µ(t)f(t) if a > b.

(1.8)
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(iii) If T = hZ = {hk : k ∈ Z}, where h > 0, then

∫ b

a

f(t)∆t =


∑ b

h
−1

k= a
h
f(kh)h if a < b,

0 if a = b,

−
∑ a

h
−1

k= b
h

f(kh)h if a > b.

Proof. (i) Since f ∈ Crd(T,R), by Theorem 1.1.22, f has an antiderivative F . Thus

F∆(t) = f(t) for all t ∈ Tκ.

On the other hand, for T = R we have F∆(t) = F ′(t) and it implies that F ′(t) =

f(t) for all t ∈ Tκ. Therefore, by Cauchy integral∫ b

a

f(t)∆t = F (b)− F (a)

and by the Fundamental Theorem of Calculus∫ b

a

f(t)dt = F (b)− F (a),

concluding that ∫ b

a

f(t)∆t =

∫ b

a

f(t)dt.

(ii) Considering a < b and denoting [a, b]T = {a = t0, t1, t2, · · · , tn = b} (with t0 < t1 <

t2 < · · · < tn) we have, by Theorem 1.1.25 (iv), the following

∫ b

a

f(t)∆t =
n−1∑
k=0

∫ tk+1

tk

f(t)∆t =
n−1∑
k=0

∫ σ(tk)

tk

f(t)∆t

(1.7)
=

n−1∑
k=0

µ(tk)f(tk) =
∑

t∈[a,b)T

µ(t)f(t).

Moreover, if a > b the proof is analogous and if a = b the proof follows directly
from Theorem 1.1.25 (vii).
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(iii) If a < b, directly from item (ii), we have

∑
t∈[a,b)

µ(t)f(t) =
∑
t∈[a,b)

f(t)h =
n−1∑
k=0

f(tk)h =

b
h
−1∑

k= a
h

f(kh)h,

which implies the desired. The cases a > b and a = b are analogous.

Some examples for derivative of functions defined on time scales R, Z and qZ, q > 1,
are given next. It can be viewed as a direct application of Theorem 1.1.26.

Table 1.3: Examples for R, Z and qZ.

T R Z qZ

f∆(t) f ′(t) ∆f(t) f(qt)−f(t)
t(q−1)∫ b

a
f(t)∆t for a < b

∫ b

a
f(t)dt

∑b−1
t=a f(t) (q − 1)

∑
t∈[a,b)T tf(t)

f rd-continuous f continuous any function f any function f

1.1.3 Chain rules and substitution rule

The chain and substitution rules are essential calculus tools and now its versions on
time scale theory will be examined. We first demonstrate via counterexample that it is
not possible to replace the usual derivative by the delta derivative in the usual chain
rule. After that, we state a different version of chain rule for this theory. Afterwards,
the derivative of inverse will be discussed in order to prove the substitution rule.

Example 1.1.27 (See [10, Example 1.85]). Let f, g : Z → Z be functions given by f(t) = t2

and g(t) = 2t. Note that

(f ◦ g)∆(t) = (4t2)∆ = 4(σ(t) + t) = 4(2t+ 1) = 8t+ 4.

On the other hand,

f∆(g(t))g∆(t) = (2(2t) + 1)2 = (4t+ 1)2 = 8t+ 2,

i.e., (f ◦ g)∆(t) ̸= f∆(g(t))g∆(t) for all t ∈ Z and the usual chain rule does not hold in this
context.
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Remark 1.1.28. Let T be a time scale. For the remainder of this section, consider ν : T → R as
an strictly increasing function such that T̃ := ν(T) is also a time scale, σ̃ as the forward jump
operator on T̃ and ∆̃ as the delta derivative on T̃.
With those information, ν(σ(t)) = σ̃(ν(t)) holds for all t ∈ T. Indeed, the case when t =

maxT is trivial. Now, let t ∈ T and suppose that t is right-scattered, i.e., σ(t) > t. Then,
since ν is strictly increasing, ν(σ(t)) > ν(t). If we assume that there exists s̃ ∈ T̃ such that
ν(σ(t)) > s̃ > ν(t), then there will be a unique (since ν is injective) s ∈ T such that ν(s) = s̃.
Thus, σ(t) > s > t, which is a contradiction, implying that there is no elements between
ν(t) and ν(σ(t)), and hence, σ̃(ν(t)) = ν(σ(t)). Now, if t is right-dense, i.e., σ(t) = t, then
ν(σ(t)) = ν(t) and since t = inf{s ∈ T : s > t} for all ε > 0, there exists s ∈ (t, t + ε) ∩ T
and ν(t) < ν(s) holds for that s. Hence, for all ε > 0, there is an ν(s) ∈ (ν(t), ν(t) + ε) ∩ T̃
for some s ∈ T with s > t, i.e., ν(t) is right-dense and σ̃(ν(t)) = ν(t) = ν(σ(t)).

The next theorem is the last chain rule that we will present and it will be the most
useful one for this text.

Theorem 1.1.29 (See [10, Theorem 1.93]). (Chain Rule). Let w : T̃ → R. If ν∆(t) and
w∆̃(ν(t)) exist for t ∈ Tκ, then

(w ◦ ν)∆(t) = (w∆̃ ◦ ν)(t)ν∆(t). (1.9)

Proof. Let ε ∈ (0, 1) and define

ε∗ =
ε

1 + |ν∆(t)|+ |w∆̃(ν(t))|
∈ (0, 1).

Since ν∆(t) and w∆̃(ν(t)) exist for t ∈ Tκ, there exist neighborhoods U1 of t and U2 of
ν(t) such that

|ν(σ(t))− ν(s)− (σ(t)− s)ν∆(t)| ≤ ε∗|σ(t)− s| for all s ∈ U1

and

|w(σ̃(ν(t)))− w(s)− (σ̃(ν(t))− s)w∆̃(ν(t))| ≤ ε∗|σ̃(ν(t))− s| for all s ∈ U2.

Thus, for s ∈ U = U1 ∩ ν−1(U2), we have that ν(s) ∈ U2 and

|w(ν(σ(t)))− w(ν(s))− (σ(t)− s)[w∆̃(ν(t))ν∆(t)]|

= |w(ν(σ(t)))− w(ν(s))− (σ(t)− s)[w∆̃(ν(t))ν∆(t)]
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+ (σ̃(ν(t))− ν(s))w∆̃(ν(t))− (σ̃(ν(t))− ν(s))w∆̃(ν(t))|

= |w(ν(σ(t)))− w(ν(s))− (σ̃(ν(t))− ν(s))w∆̃(ν(t))

+ [σ̃(ν(t))− ν(s)− (σ(t)− s)ν∆(t)]w∆̃(ν(t))|

≤ |w(σ̃(ν(t)))− w(ν(s))− (σ̃(ν(t))− ν(s))w∆̃(ν(t))|

+ |ν(σ(t))− ν(s)− (σ(t)− s)ν∆(t)||w∆̃(ν(t))|

≤ ε∗|σ̃(ν(t))− ν(s)|+ ε∗|σ(t)− s||w∆̃(ν(t))|

≤ ε∗[|ν(σ(t))− ν(s)− (σ(t)− s)ν∆(t)|+ |σ(t)− s||ν∆(t)|

+ |σ(t)− s||w∆̃(ν(t))|]

= ε∗|σ(t)− s|[ε∗ + |ν∆(t)|+ |w∆̃(ν(t))|]

≤ ε∗|σ(t)− s|[1 + |ν∆(t)|+ |w∆̃(ν(t))|]

=
ε

1 + |ν∆(t)|+ |w∆̃(ν(t))|
|σ(t)− s|[1 + |ν∆(t)|+ |w∆̃(ν(t))|]

= ε|σ(t)− s|,

getting the desired result.

The derivative of the inverse formula is given next.

Theorem 1.1.30 (See [10, Theorem 1.97]). (Derivative of the Inverse). If ν∆(t) and
(ν−1)∆̃(ν(t)) exist for t ∈ Tκ and if ν∆(t) ̸= 0, then

1

ν∆(t)
= ((ν−1)∆̃ ◦ ν)(t). (1.10)

Proof. We have
(ν−1 ◦ ν)∆(t) (1.9)

= ((ν−1)∆̃ ◦ ν)(t)ν∆(t),

i.e.,
1

ν∆(t)
= ((ν−1)∆̃ ◦ ν)(t).

To complete the calculus section, we state and prove the substitution rule for the
time scale theory.

Theorem 1.1.31 (See [10, Theorem 1.98]). (Substitution). Let f ∈ Crd(T,R) and a, b ∈ T.
If ν is ∆-differentiable with rd-continuous derivative, then∫ b

a

f(t)ν∆(t)∆t =

∫ ν(b)

ν(a)

(f ◦ ν−1)(s)∆̃s. (1.11)
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Proof. Since f, ν∆ ∈ Crd(T,R), the product fν∆ is also rd-continuous and, by Theorem
1.1.22, there exists F such that F∆ = fν∆. Thus, we have∫ b

a

f(t)ν∆(t)∆t =

∫ b

a

F∆(t)∆t

= F (b)− F (a)

= (F ◦ ν−1)(ν(b))− (F ◦ ν−1)(ν(a))

=

∫ ν(b)

ν(a)

(F ◦ ν−1)∆̃(s)∆̃s

(1.9)
=

∫ ν(b)

ν(a)

(F∆ ◦ ν−1)(s)(ν−1)∆̃(s)∆̃s

=

∫ ν(b)

ν(a)

((fv∆) ◦ ν−1)(s)(ν−1)∆̃(s)∆̃s

=

∫ ν(b)

ν(a)

(f ◦ ν−1)(s)v∆(ν−1(s))(ν−1)∆̃(s)∆̃s

(1.10)
=

∫ ν(b)

ν(a)

(f ◦ ν−1)(s)v∆(ν−1(s))
1

ν∆(ν−1(s))
∆̃s

=

∫ ν(b)

ν(a)

(f ◦ ν−1)(s)∆̃s.

1.2 First order linear equations

This section establishes the necessary theory to define the exponential function on
time scales and examine its properties. We also analyze some basic dynamic equa-
tions on time scales, namely the first order homogeneous and inhomogeneous dynamic
equations.

1.2.1 Hilger's complex plane

First, we introduce the Hilger's complex plane in order to define the cylinder trans-
formation, which will be useful to define the exponential function.

Definition 1.2.1 (See [10, Definition 2.2]). For h > 0, we define the Hilger complex num-
bers as

Ch :=

{
z ∈ C : z ̸= −1

h

}
.
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Theorem 1.2.2 (See [10, Theorem 2.7]). Let z, w ∈ Ch, we define the circle plus addition
⊕ on Ch by

z ⊕ w := z + w + zwh.

Then, (Ch,⊕) is an Abelian group.

Proof. Let z, w ∈ Ch and note that

1 + h(z ⊕ w) = 1 + h(z + w + zwh) = (1 + hz)(1 + hw) ̸= 0,

i.e., Ch is closed under the circle plus addition ⊕. Moreover, it is easy to see that 0
satisfies z ⊕ 0 = z = 0 ⊕ z. Also, the associative and commutative properties follows
trivially. Finally, given z ∈ Ch, to find an element w ∈ Ch such that z ⊕ w = 0 = w ⊕ z

we just need to solve z + w + zwh = 0 to obtain w = − z
1+zh

(it is easy to verify that
w ∈ Ch), which will be denoted as ⊖z. Therefore, (Ch,⊕) is an Abelian group.

Definition 1.2.3 (See [10, Definition 2.13]). Let z, w ∈ Ch. We define the circle minus
subtraction ⊖ on Ch by

z ⊖ w := z ⊕ (⊖w).

Definition 1.2.4 (See [10, Page 57]). For h > 0, we define the set Zh as

Zh :=
{
z ∈ C : −π

h
< Im(z) ≤ π

h

}
.

Finally, we consider the cylinder transformation defined as follow.

Definition 1.2.5 (See [10, Definition 2.21]). For h > 0, we define the cylinder transforma-
tion ξh : Ch → Zh by

ξh(z) :=
1

h
Log(1 + zh), (1.12)

where Log is the principal logarithm function. For h = 0, we define ξ0(z) := z for all z ∈ C.

The inverse of the cylinder transformation is given next and it will be useful later.

Example 1.2.6. It is easy to verify that the inverse of the cylinder transformation is given by

ξ−1
h (z) =

1

h
(ezh − 1). (1.13)

1.2.2 Regressive functions and its properties

In this section, we define the regressive functions and the analogue "circle plus
addition" and "circle minus subtraction" operations for this class of functions. This
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class of functions will be really importante to introduce the concept of exponential
function on time scales.

Definition 1.2.7 (See [10, Definition 2.25]). We call a function p : T → R regressive pro-
vided

1 + µ(t)p(t) ̸= 0 for all t ∈ Tκ.

The set of all regressive and rd-continuous functions will be denoted by R(T,R) or simply R.

Theorem 1.2.8. Let p, q ∈ R and define the circle plus addition on R by

(p⊕ q)(t) := p(t) + q(t) + µ(t)p(t)q(t) for all t ∈ Tκ.

Then, (R,⊕) is an Abelian group called the regressive group .

Proof. Let p, q ∈ R and note that

1 + µ(t)(p⊕ q)(t) = 1 + µ(t)[p(t) + q(t) + µ(t)p(t)q(t)]

= [1 + µ(t)q(t)][1 + µ(t)p(t)] ̸= 0,

i.e., p⊕ q ∈ R. Moreover, the associative and commutative properties follows directly
from the definition of the circle plus addition and the element 0 satisfies (p ⊕ 0)(t) =

p(t) = (0⊕ p)(t) for all t ∈ T. Also, note that

(p⊕ (⊖p))(t) = p(t) + (⊖p)(t) + µ(t)p(t)(⊖p)(t) = p(t) + (⊖p)(t)[1 + µ(t)p(t)],

which implies that (p⊕ (⊖p))(t) = 0 = ((⊖p)⊕ p)(t) if, and only if,

(⊖p)(t) = − p(t)

1 + µ(t)p(t)

and (⊖p)(t) = − p(t)
1+µ(t)p(t)

(⊖p ∈ R by the following proposition) is the element such
that (p⊕ (⊖p))(t) = 0 = ((⊖p)⊕ p)(t) for all t ∈ Tκ.

Definition 1.2.9. Let p, q ∈ R. We define the circle minus subtraction on R by

(p⊖ q)(t) := (p⊕ (⊖q))(t) for all t ∈ Tκ.

The next result shows some elementary properties for the group of regressive func-
tions.

Proposition 1.2.10. Let p, q ∈ R. Then:
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(i) p⊖ p = 0;

(ii) ⊖(⊖p) = p;

(iii) ⊖p ∈ R;

(iv) p⊖ q ∈ R;

(v) p⊖ q =
p− q

1 + µq
;

(vi) ⊖(p⊖ q) = q ⊖ p;

(vii) ⊖(p⊕ q) = (⊖p)⊕ (⊖q).

Proof. Let p, q ∈ R and t ∈ Tκ. Then:

(i) By direct computation, we have

(p⊖ p)(t) = (p⊕ (⊖p))(t) = p(t) + (⊖p)(t) + µ(t)p(t)(⊖p)(t)

= p(t)− p(t)

1 + µ(t)p(t)
− µ(t)p(t)

p(t)

1 + µ(t)p(t)

= p(t)−
[

p(t)

1 + µ(t)p(t)

]
[1 + µ(t)p(t)] = p(t)− p(t) = 0.

(ii) Again with direct computation

(⊖(⊖p))(t) =

(
⊖
(
− p(t)

1 + µ(t)p(t)

))
(t) = −

 − p(t)
1+µ(t)p(t)

1 + µ(t)
[
− p(t)

1+µ(t)p(t)

]


=

p(t)
1+µ(t)p(t)

1+µ(t)p(t)−µ(t)p(t)
1+µ(t)p(t)

= p(t).

(iii) We need to show that 1 + µ(t)(⊖p)(t) ̸= 0. Indeed, we have

1 + µ(t)(⊖p)(t) = 1 + µ(t)

[
− p(t)

1 + µ(t)p(t)

]
= 1− µ(t)p(t)

1 + µ(t)p(t)

=
1 + µ(t)p(t)− µ(t)p(t)

1 + µ(t)p(t)
=

1

1 + µ(t)p(t)
̸= 0.

(iv) Analogously to item (iii), we get

1 + µ(t)(p⊖ q)(t) = 1 + µ(t)[p(t) + (⊖q)(t) + µ(t)p(t)(⊖q)(t)]

= [1 + µ(t)(⊖q)(t)][1 + µ(t)p(t)] ̸= 0.

(v) By direct computation, we obtain

(p⊖ q)(t) = p(t) + (⊖q)(t) + µ(t)p(t)(⊖q)(t)
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= p(t)− q(t)

1 + µ(t)q(t)
− µ(t)p(t)

q(t)

1 + µ(t)q(t)

=
p(t)[1 + µ(t)q(t)]− q(t)− µ(t)p(t)q(t)

1 + µ(t)q(t)

=
p(t) + µ(t)p(t)q(t)− q(t)− µ(t)p(t)q(t)

1 + µ(t)q(t)

=
p(t)− q(t)

1 + µ(t)q(t)
.

(vi) From item (v), note that

⊖(p⊖ q)(t) = − (p⊖ q)(t)

1 + µ(t)(p⊖ q)(t)
= − p(t)− q(t)

1 + µ(t)p(t)

=
q(t)− p(t)

1 + µ(t)p(t)
=

q(t)[1 + µ(t)p(t)]− p(t)− µ(t)q(t)p(t)

1 + µ(t)p(t)

= q(t)− p(t)

1 + µ(t)p(t)
− µ(t)q(t)p(t)

1 + µ(t)p(t)

= q(t) + (⊖p)(t) + µ(t)q(t)(⊖p)(t) = (q ⊖ p)(t).

(vii) Finally, we get

(⊖(p⊕ q))(t) = − (p⊕ q)(t)

1 + µ(t)(p⊕ q)(t)

=
−p(t)− q(t)− µ(t)p(t)q(t)

[1 + µ(t)q(t)][1 + µ(t)p(t)]

=
−p(t)[1 + µ(t)q(t)]− q(t)[1 + µ(t)p(t)] + µ(t)p(t)q(t)

[1 + µ(t)q(t)][1 + µ(t)p(t)]

= − p(t)

1 + µ(t)p(t)
− q(t)

1 + µ(t)q(t)
+

µ(t)p(t)q(t)

[1 + µ(t)p(t)][1 + µ(t)q(t)]

= (⊖p)(t) + (⊖q)(t) + µ(t)(⊖p)(t)(⊖q)(t)

= [(⊖p)⊕ (⊖q)](t).

We can also consider the set of positively regressive functions and define a "circle
product" between an scalar and a regressive or positively regressive function, depend-
ing if the scalar is natural or not.

Definition 1.2.11 (See [9, Page 34]). The set of all rd-continuous functions p : T → R that
satisfies

1 + µ(t)p(t) > 0 for all t ∈ T
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will be called the set of positively regressive functions and will be denoted by R+. With this
definition, we can introduce the notation

R(α) =

{
R if α ∈ N,
R+ if α ∈ R \ N.

Definition 1.2.12 (See [9, Definition 2.35]). For α ∈ R and p ∈ R(α), we define

(α⊙ p)(t) := αp(t)

∫ 1

0

(1 + µ(t)p(t)h)α−1dh.

The following example will be useful later in chapter 2 to exemplify some periodic
functions on isolated time scales.

Example 1.2.13. For p ∈ R(α) we have

2⊙ p = p⊕ p and
1

2
⊙ p =

p

1 +
√
1 + µp

.

Indeed, by Definition 1.2.12, note that

(2⊙ p)(t) = 2p(t)

∫ 1

0

[1 + µ(t)p(t)h]2−1dh = 2p(t)

[
h|10 + µ(t)p(t)

h2

2

∣∣∣∣1
0

]
= 2p(t) + µ(t)(p(t))2 = (p⊕ p)(t),

and (
1

2
⊙ p

)
(t) =

1

2
p(t)

∫ 1

0

[1 + µ(t)p(t)h]
1
2
−1dh =

1

2
p(t)

∫ 1

0

1√
1 + µ(t)p(t)h

dh

=
1

2
p(t)

∫ 1+µ(t)p(t)

1

1√
u

du

µ(t)p(t)
=

1

2µ(t)

∫ 1+µ(t)p(t)

1

1√
u
du

=
1

µ(t)

(√
1 + µ(t)p(t)− 1

)
=

1 + µ(t)p(t)− 1

µ(t)
(√

1 + µ(t)p(t) + 1
)

=
p(t)

1 +
√

1 + µ(t)p(t)
.

1.2.3 The exponential function and homogeneous dynamic equations

Firstly, we define the concept of first-order dynamic equations on time scales.
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Definition 1.2.14 (See [10, Definition 2.1]). Suppose f : T × R2 → R. Then, the equation
y∆ = f(t, y, yσ) is called a first order dynamic equation. If

f(t, y, yσ) = f1(t)y + f2(t) or f(t, y, yσ) = f1(t)y
σ + f2(t),

for functions f1 and f2, then y∆ = f(t, y, yσ) is called a linear dynamic equation . Moreover,
for t0 ∈ T and y0 ∈ R, the problem y∆ = f(t, y, yσ),

y(t0) = y0

is called initial value problem (IVP) and a solution y of this equation with y(t0) = y0 is called
the solution of this IVP.

Definition 1.2.15 (See [10, Definition 2.32]). Let p ∈ R. Then, the first order dynamic
equation

y∆ = p(t)y

is called regressive .

Now, we define the exponential function on time scales.

Definition 1.2.16 (See [10, Definition 2.30]). Let s, t ∈ T and p ∈ R, then we define the
exponential function by

ep(t, s) := exp

(∫ t

s

ξµ(τ)(p(τ))∆τ

)
. (1.14)

The next example is an specific case for the exponential function for the quantum
calculus.

Example 1.2.17. Consider T = qN0 := {qn : n ∈ N0} for q > 1. It is easy to verify that

σ(t) = qt and µ(t) = t(q − 1) for all t ∈ T.

Thus, for t, s ∈ T with t > s and p ∈ R, we have

ep(t, s)
(1.14)
= exp

(∫ t

s

ξµ(τ)(p(τ))∆τ

)
(1.8)
= exp

 ∑
τ∈[s,t)T

µ(τ)ξµ(τ)(p(τ))


(1.12)
= exp

 ∑
t∈[s,t)T

µ(τ)
1

µ(τ)
ln (1 + µ(τ)p(τ))

 = exp

 ∑
τ∈[s,t)T

ln(1 + µ(τ)p(τ))


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= exp

 ∑
τ∈[s,t)T

ln(1 + (q − 1)τp(τ))

 = exp

 ∑
τ∈[s,t)T

ln(1 + (q − 1)qlogq τp(qlogq τ ))


= exp

logq t−1∑
k=logq s

ln(1 + (q − 1)qkp(qk))

 =

logq t−1∏
k=logq s

exp(ln(1 + (q − 1)qkp(qk)))

=

logq t−1∏
k=logq s

[1 + (q − 1)qkp(qk)].

Once defined the concept of exponential function in this context, we can also define
the analogue cosh and sinh functions on time scales. It is also possible to define the sin

and cos functions in this setting, but there will be no use for those later in this text.

Definition 1.2.18 (See [10, Definition 3.17]). (Hyperbolic Functions). Let p ∈ Crd(T,R)
and −µp2 ∈ R (i.e., p,−p ∈ R). The hyperbolic functions coshp and sinhp are defined as

coshp :=
ep + e−p

2
and sinhp :=

ep − e−p

2
.

The next lemma is one of the most important property of the exponential function,
the semigroup property.

Lemma 1.2.19 (See [10, Lemma 2.31]). If p ∈ R, then the semigroup property

ep(t, r)ep(r, s) = ep(t, s) for all r, s, t ∈ T (1.15)

is satisfied.

Proof. Let r, s, t ∈ T then, we have

ep(t, r)ep(r, s)
(1.14)
= e

∫ t
r ξµ(τ)∆τe

∫ r
s ξµ(τ)∆τ = e

∫ t
r ξµ(τ)∆τ+

∫ r
s ξµ(τ)∆τ = e

∫ t
s ξµ(τ)∆τ = ep(t, s).

In sequel, we prove that the exponential function on time scales has the expected
property to be the derivative of itself, up to a power.

Theorem 1.2.20 (See [10, Theorem 2.62]). Let p ∈ R, t0 ∈ T and y0 ∈ R. Then, y(t) =

y0ep(t, t0) is the solution of the following IVPy∆(t) = p(t)y(t),

y(t0) = y0.
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Proof. Consider y(t) = y0ep(t, t0). If y0 = 0, then it follows trivially, thus suppose y0 ̸= 0

in the entire proof. It is easy to see that y(t0) = y0. Thus, we just need to show that
y(t) = y0ep(t, t0) satisfies y∆(t) = p(t)y(t) for all t ∈ Tκ. Indeed, let t ∈ Tκ. If σ(t) > t,
then

[y0ep(·, t0)]∆(t)
(1.1)
= y0

ep(σ(t), t0)− ep(t, t0)

µ(t)

(1.15)
= y0

ep(σ(t), t)ep(t, t0)− ep(t, t0)

µ(t)

= y0
ep(σ(t), t)− 1

µ(t)
ep(t, t0) = y0

exp
(∫ σ(t)

t
ξµ(τ)(p(τ))∆τ

)
− 1

µ(t)
ep(t, t0)

(1.13)
= y0ξ

−1
µ(t)(ξµ(t)(p(t))) · ep(t, t0) = p(t)y0ep(t, t0) = p(t)y(t).

Now, if σ(t) = t, then

|y(σ(t))− y(s)− p(t)y(t)[σ(t)− s]| = |y(t)− y(s)− p(t)y(t)[t− s]|

= |y0ep(t, t0)− y0ep(s, t0)− p(t)y0ep(t, t0)[t− s]|
(1.15)
= |y0ep(t, t0)− y0ep(s, t)ep(t, t0)− p(t)y0ep(t, t0)[t− s]|

= |y0ep(t, t0)| · |1− ep(s, t)− p(t)[t− s]|

≤ |y0ep(t, t0)| ·
[∣∣∣∣1− ∫ t

s

ξµ(τ)(p(τ))∆τ − ep(s, t)

∣∣∣∣
+

∣∣∣∣ ∫ t

s

ξµ(τ)(p(τ))∆τ − p(t)[t− s]

∣∣∣∣]
= |y0ep(t, t0)| ·

∣∣∣∣1− ∫ t

s

ξµ(τ)(p(τ))∆τ − ep(s, t)

∣∣∣∣
+ |y0ep(t, t0)| ·

∣∣∣∣ ∫ t

s

[ξµ(τ)(p(τ))− ξ0(p(t))]∆τ

∣∣∣∣. (1.16)

Thus, since σ(t) = t and p ∈ Crd(T,R), we have

lim
r→t

ξµ(r)(p(r)) = ξ0(p(t)),

i.e., given ε > 0, there exists a neighborhood U1 of t such that

|ξµ(τ)(p(τ))− ξ0(p(t))| <
ε

3|y0ep(t, t0)|
for all τ ∈ U1. (1.17)

Thus, by Theorem 1.1.25 (viii) and the inequality (1.17), for s ∈ U1 the following holds∣∣∣∣∫ t

s

[ξµ(τ)(p(τ))− ξ0(p(t))]∆τ

∣∣∣∣ ≤ ∫ t

s

|ξµ(τ)(p(τ))− ξ0(p(t))|∆τ
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<

∫ t

s

ε

3|y0ep(t, t0)|
∆τ

=
ε(t− s)

3|y0ep(t, t0)|
,

≤ ε|t− s|
3|y0ep(t, t0)|

,

from where, we have

|y0ep(t, t0)|
∣∣∣∣∫ t

s

[ξµ(τ)(p(τ))− ξ0(p(t))]∆τ

∣∣∣∣ ≤ ε

3
|t− s|. (1.18)

Moreover, by L'Hôpital's rule

lim
z→0

1− z − e−z

z
= lim

z→0
(−1 + e−z) = 0.

Thus, taking z =
∫ t

s
ξµ(τ)(p(τ))∆τ and applying the limit definition it follows that, for

every ε∗ > 0, there exists a neighborhood U2 of t such that if s ∈ U2, then∣∣∣∣∣1−
∫ t

s
ξµ(τ)(p(τ))∆τ − e−

∫ t
s ξµ(τ)(p(τ))∆τ∫ t

s
ξµ(τ)(p(τ))∆τ

∣∣∣∣∣ =
∣∣∣∣∣1−

∫ t

s
ξµ(τ)(p(τ))∆τ − e

∫ s
t ξµ(τ)(p(τ))∆τ∫ t

s
ξµ(τ)(p(τ))∆τ

∣∣∣∣∣
=

∣∣∣∣∣1−
∫ t

s
ξµ(τ)(p(τ))∆τ − ep(s, t)∫ t

s
ξµ(τ)(p(τ))∆τ

∣∣∣∣∣ < ε∗, (1.19)

where
ε∗ = min

{
1,

ε

1 + 3|p(t)y0ep(t, t0)|

}
.

Hence, from (1.19), we have∣∣∣∣1− ∫ t

s

ξµ(τ)(p(τ))∆τ − ep(s, t)

∣∣∣∣ < ε∗
∣∣∣∣∫ t

s

ξµ(τ)(p(τ))∆τ

∣∣∣∣
≤ ε∗

∣∣∣∣∫ t

s

ξµ(τ)(p(τ))∆τ −
∫ t

s

ξ0(p(t))∆τ +

∫ t

s

ξ0(p(t))∆τ

∣∣∣∣
= ε∗

∣∣∣∣∫ t

s

[ξµ(τ)(p(τ))− ξ0(p(t))]∆τ + ξ0(p(t))

∫ t

s

∆τ

∣∣∣∣
= ε∗

∣∣∣∣∫ t

s

[ξµ(τ)(p(τ))− ξ0(p(t))]∆τ + p(t)[t− s]

∣∣∣∣
≤ ε∗

∣∣∣∣∫ t

s

[ξµ(τ)(p(τ))− ξ0(p(t))]∆τ

∣∣∣∣+ ε∗|p(t)| · |t− s|.

(1.20)
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Thus, from (1.20), we get

|y0ep(t, t0)|
∣∣∣∣1− ∫ t

s

ξµ(τ)(p(τ))∆τ − ep(s, t)

∣∣∣∣
≤ |y0ep(t, t0)|

[
ε∗
∣∣∣∣∫ t

s

[ξµ(τ)(p(τ))− ξ0(p(t))]∆τ

∣∣∣∣+ ε∗|p(t)| · |t− s|
]

≤ |y0ep(t, t0)|
∣∣∣∣∫ t

s

[ξµ(τ)(p(τ))− ξ0(p(t))]∆τ

∣∣∣∣+ |y0ep(t, t0)|ε∗|p(t)| · |t− s]

≤ |y0ep(t, t0)|
∣∣∣∣∫ t

s

[ξµ(τ)(p(τ))− ξ0(p(t))]∆τ

∣∣∣∣+ ε

3
|t− s]

≤ ε

3
|t− s|+ ε

3
|t− s]

=
2ε

3
(1.21)

where the last inequality holds for s ∈ U1 by (1.18). Thus, substituting (1.18) and (1.21)
in (1.16), we get

|y(σ(t))− y(s)− p(t)y(t)[t− s]| ≤ 2ε

3
|t− s|+ ε

3
|t− s| = ε|t− s|,

for all s ∈ U = U1 ∩ U2, obtaining the desired result.

Theorem 1.2.21 (See [10, Theorem 2.62]). Let t0 ∈ T, p ∈ R and y0 ∈ R. Then, y(t) =

ep(t, t0)y0 is the unique solution of the IVPy∆(t) = p(t)y(t),

y(t0) = y0.

Proof. By Theorem 1.2.20, we know that y(t) = ep(t, t0)y0 is indeed a solution of the
IVP. Thus, assuming x is any solution of the IVP, consider x

ep(t,t0)
and note that

(
x

ep(t, t0)

)∆

=
x∆(t)ep(t, t0)− x(t)e∆p (t, t0)

ep(t, t0)eσp(t, t0)

=
p(t)x(t)ep(t, t0)− p(t)x(t)ep(t, t0)

ep(t, t0)eσp(t, t0)
= 0,

and, therefore, x
ep(t,t0)

is constant. On the other hand, since x(t0)
ep(t0,t0)

= y0, we get
x(t)

ep(t,t0)
≡ y0, which implies that x is given by x(t) = ep(t, t0)y0, which verifies that

y(t) = ep(t, t0)y0, showing that y(t) is the unique solution.

Some useful properties of the exponential function are given next.
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Theorem 1.2.22 (See [10, Theorem 2.36]). Let p, q ∈ R. Then:

(i) e0(t, s) ≡ 1 and ep(t, t) ≡ 1;

(ii) ep(σ(t), s) = [1 + µ(t)p(t)]ep(t, s);

(iii) 1
ep(t,s)

= e⊖p(t, s);

(iv) ep(t, s) =
1

ep(s,t)
= e⊖p(s, t);

(v) ep(t, s)ep(s, r) = ep(t, r);

(vi) ep(t, s)eq(t, s) = ep⊕q(t, s);

(vii) ep(t,s)

eq(t,s)
= ep⊖q(t, s);

(viii)
(

1
ep(t,s)

)∆
= − p(t)

eσp (t,s)
.

Proof. Let p, q ∈ R. Then:

(i) By the definition of cylinder transformation and the exponential function, we
have

e0(t, s) = exp

(∫ t

s

ξµ(τ)(0)∆τ

)
= exp

(∫ t

s

1

µ(τ)
ln(1 + 0µ(τ))∆τ)

)
= 1

and

ep(t, t) = exp

(∫ t

t

ξµ(τ)(p(τ))∆τ

)
= 1.

(ii) By Theorem 1.2.20, we have

ep(σ(t), s)
(1.3)
= ep(t, s) + µ(t)e∆p (t, s)

= ep(t, s) + µ(t)p(t)ep(t, s)

= [1 + µ(t)p(t)]ep(t, s).

(iii) Consider the following IVP y∆(t) = (⊖p)(t)y(t),

y(s) = 1.
(1.22)

Thus, by Proposition 1.2.10 (iii), we know that ⊖p ∈ R. Then, the equation in
(1.22) is regressive. So, y(t) = 1

ep(t,s)
satisfies the IVP. Indeed, by item (i), y(s) =

1
ep(s,s)

= 1. Furthermore, by Theorem 1.2.20 and item (ii), we have

y∆(t) =

(
1

ep(t, s)

)∆

(t)
(1.5)
= −

e∆p (t, s)

ep(t, s)ep(σ(t), s)

= − p(t)ep(t, s)

ep(t, s)ep(σ(t), s)
= − p(t)

ep(σ(t), s)
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= − p(t)

[1 + µ(t)p(t)]ep(t, s)
= − p(t)

1 + µ(t)p(t)
· 1

ep(t, s)

= (⊖p)(t)y(t)

and y(t) = 1
ep(t,s)

is indeed a solution of the IVP (1.22). However, by Theorem
1.2.21, the unique solution of the IVP (1.22) is given by y(t) = e⊖p(t, s). Hence,
since y(t) = 1

ep(t,s)
is also a solution, 1

ep(t,s)
= e⊖p(t, s).

(iv) From Definition 1.2.16 and by item (iii), we have

ep(t, s) = exp

(∫ t

s

ξµ(τ)(p(τ))∆τ

)
= exp

(
−
∫ s

t

ξµ(τ)(p(τ))∆τ

)
=

1

exp
(∫ s

t
ξµ(τ)(p(τ))∆τ

) =
1

ep(s, t)
= e⊖p(s, t).

(v) It has been already shown in Lemma 1.2.19.

(vi) Consider the IVP y∆(t) = (p⊕ q)(t)y(t),

y(s) = 1.
(1.23)

Thus, the equation in (1.23) is regressive and y(t) = ep(t, s)eq(t, s) is a solution of
the IVP. Indeed, y(s) = ep(s, s)eq(s, s) = 1. Moreover, by Theorem 1.2.20 and item
(ii), we have

y∆(t) = [ep(·, s)eq(·, s)]∆(t)
(1.4)
= e∆p (t, s)eq(t, s) + ep(σ(t), s)e

∆
q (t, s)

= p(t)ep(t, s)eq(t, s) + ep(σ(t), s)q(t)eq(t, s)

= p(t)ep(t, s)eq(t, s) + [1 + µ(t)p(t)]ep(t, s)q(t)eq(t, s)

= ep(t, s)eq(t, s)[p(t) + q(t) + µ(t)p(t)q(t)]]

= ep(t, s)eq(t, s)(p⊕ q)(t)

= (p⊕ q)(t)y(t).

Therefore, ep⊕q(t, s) = ep(t, s)eq(t, s), since the unique solution of the IVP (1.23) is
ep⊕q(t, s) by Theorem 1.2.21.
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(vii) By items (iii) and (vi), we have that

1

eq(t, s)
= e⊖q(t, s)

implies
ep(t, s)

eq(t, s)
= ep(t, s)e⊖q(t, s) = ep⊕(⊖q)(t, s) = ep⊖q(t, s).

(viii) By Theorem 1.2.20 and items (ii) and (iii), we have(
1

ep(t, s)

)∆

= [e⊖p(t, s)]
∆ = (⊖p)(t)e⊖p(t, s)

= − p(t)

1 + µ(t)p(t)
e⊖p(t, s) = − p(t)

[1 + µ(t)p(t)]ep(t, s)

= − p(t)

ep(σ(t), s)
= − p(t)

eσp(t, s)
.

1.2.4 Inhomogeneous dynamic equations

Next, we define a first order inhomogeneous linear dynamic equation and we solve
two different types of IVP, both by the Variation of Constants Formula.

Definition 1.2.23 (See [10, Page 75]). Let f : T → R be a function. We call a first order
inhomogeneous linear dynamic equation by equations of type

y∆ = p(t)y + f(t).

First, let us consider the following IVPx∆ = −p(t)xσ(t) + f(t),

x(t0) = x0.
(1.24)

Assume (1.24) has a solution x(t). Then, multiplying the equation in (1.24) by
ep(t, t0), we have

ep(t, t0)f(t) = ep(t, t0)[x
∆(t) + p(t)xσ(t)]

= ep(t, t0)x
∆(t) + ep(t, t0)p(t)x

σ(t)

= [ep(·, t0)x]∆(t).
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Thus, integrating this inequality from t0 to t, we obtain∫ t

t0

[ep(·, t0)x]∆(τ)∆τ =

∫ t

t0

ep(τ, t0)f(τ)∆τ,

i.e.,

ep(t, t0)x(t)− ep(t0, t0)x(t0) =

∫ t

t0

ep(τ, t0)f(τ)∆τ,

which implies

ep(t, t0)x(t)− x0 =

∫ t

t0

ep(τ, t0)f(τ)∆τ.

Therefore, we can write

x(t) =
x0

ep(t, t0)
+

1

ep(t, t0)

∫ t

t0

ep(τ, t0)f(τ) = e⊖p(t, t0)x0 +

∫ t

t0

e⊖p(t, τ)f(τ)∆τ.

This method is called the Variation of Constants Formula. This is very useful in the
study of inhomogeneous equation.

Theorem 1.2.24 (See [10, Theorem 2.74]). (Variation of Constants Formula). Let p ∈ R,
t0 ∈ T and x0 ∈ R. Then,

x(t) = e⊖p(t, t0)x0 +

∫ t

t0

e⊖p(t, τ)f(τ)∆τ

is the unique solution of the IVP (1.24).

Proof. From the calculations above, we already know that the solutions of (1.24) have
the form

x(t) = e⊖p(t, t0)x0 +

∫ t

t0

e⊖p(t, τ)f(τ)∆τ.

Moreover, for the initial value, note that

x(t0) = e⊖p(t0, t0)x0 +

∫ t0

t0

e⊖p(t0, τ)f(τ)∆τ = 1 · x0 + 0 = x0.

For the formulation of the IVP without the composition with σ, we have a similar
solution and it can be seen as an immediate consequence of Theorem 1.2.24, since the
same construction can be made in order to get a solution by the Variation of Constants
Formula.
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Theorem 1.2.25 (See [10, Theorem 2.77]). (Variation of Constants Formula). Let p ∈ R,
t0 ∈ T and y0 ∈ R. Then,

y(t) = ep(t, t0)y0 +

∫ t

t0

ep(t, σ(τ))f(τ)∆τ (1.25)

is the unique solution of the following IVPy∆(t) = p(t)y(t) + f(t),

y(t0) = y0.
(1.26)

Proof. Firstly, we have
yσ(t)

(1.3)
= y(t) + µ(t)y∆(t),

i.e., y(t) = yσ(t)− µ(t)y∆(t). Thus we can rewrite the equation in (1.26) as

y∆(t) = p(t)[yσ(t)− µ(t)y∆(t)] + f(t),

i.e., y∆(t)[1 + p(t)µ(t)] = p(t)yσ(t) + f(t) and we conclude

y∆(t) =
p(t)

1 + p(t)µ(t)
yσ(t) +

f(t)

1 + p(t)µ(t)

= −(⊖p)(t)yσ(t) +
f(t)

1 + p(t)µ(t)
. (1.27)

Thus, equation (1.27) satisfies the hypothesis on Theorem 1.2.24. Therefore, we have
the following unique solution

y(t) = e⊖(⊖p)(t, t0)y0 +

∫ t

t0

e⊖(⊖p)(t, τ)
f(τ)

1 + µ(τ)p(τ)
∆τ

= ep(t, t0)y0 +

∫ t

t0

ep(t, τ)
f(τ)

1 + µ(τ)p(τ)
∆τ

= ep(t, t0)y0 +

∫ t

t0

f(τ)

ep(τ, t)[1 + µ(τ)p(τ)]
∆τ.

= ep(t, t0)y0 +

∫ t

t0

f(τ)

ep(σ(τ), t)
∆τ

= ep(t, t0)y0 +

∫ t

t0

ep(t, σ(τ))f(τ)∆τ,

concluding the desired result.
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1.3 Regressive Matrices

In this section we discuss some fundamental definitions and results concerning re-
gressive matrices, which will be useful later to give sufficient conditions to the first
order linear dynamic equation to have an almost periodic solution.

Definition 1.3.1 (See [10, Definition 5.1]). An m×n-matrix-valued function A : T → Rn×m

is called rd-continuous provided each entry of A(t) is rd-continuous on T. The set of all rd-
continuous m× n-matrix-valued functions A : T → Rn×m will be denoted by Crd(T,Rn×m).

Definition 1.3.2 (See [10, Definition 5.1]). An m×n-matrix-valued function A : T → Rn×m

is ∆-differentiable on T provided each entry of A(t) is ∆-differentiable on T. In this case, we
put

A∆(t) = (a∆ij(t))1≤i≤m,1≤j≤n, where A(t) = (aij(t))1≤i≤m,1≤j≤n.

Theorem 1.3.3 (See [10, Theorem 5.2]). If A is ∆-differentiable at t ∈ Tκ, then

Aσ(t) = A(t) + µ(t)A∆(t).

Proof. With direct computation, we have

Aσ = (aσij)
(1.3)
= (aij + µa∆ij)

= (aij) + µ(a∆ij) = A+ µA∆.

Definition 1.3.4 (See [10, Definition 5.5]). We call an m×n-matrix-valued function A : T →
Rn×m regressive provided

I + µ(t)A(t) is invertible for all t ∈ Tκ.

The set of all regressive and rd-continuous m × n-matrix-valued functions will be denoted by
R(T,Rn×m) or simply R.

Definition 1.3.5 (See [10, Definition 5.10]). Assume A and B are regressive n timesn-
matrix-valued functions on T. Then we define A⊕B by

(A⊕B)(t) = A(t) +B(t) + µ(t)A(t)B(t) for all t ∈ Tκ,

and we define ⊖A by

(⊖A)(t) = −[I + µ(t)A(t)]−1A(t) for all t ∈ Tκ.
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Proposition 1.3.6 (See [10, Lemma 5.12]). (R(T,Rn×n), ⊕) is a group.

Theorem 1.3.7 (See [10, Theorem 5.8]). (Existence and Uniqueness Theorem). Let A ∈ R
be an n × n-matrix-valued function on T and suppose that f : T → Rn is rd-continuous. Let
t0 ∈ T and y0 ∈ Rn. Then the initial value problem{

y∆(t) = A(t)y(t) + f(t),

y(t0) = y0

has a unique solution y : T → Rn.

Proof. The proof can be found in [10, Theorem 5.8].

Remark 1.3.8. It follows from Theorem 1.3.7 that the matrix initial value problem{
Y ∆(t) = A(t)Y (t),

Y (t0) = Y0,

where Y0 is a constant n × n-matrix, has a unique matrix-valued solution. In particular, for
Y0 = I , we also have a unique solution and it motivates the next definition.

Definition 1.3.9 (See [10, Definition 5.18]). (Matrix Exponential Function). Let t0 ∈ T and
assume that A ∈ R is an n× n-matrix-valued function. The unique matrix-valued solution of
the IVP {

Y ∆(t) = A(t)Y (t),

Y (t0) = I

is called the matrix exponential function and it is denoted by eA(·, t0).

Remark 1.3.10 (See [10, Exercise 5.17]). It is not difficult to show that, using the notation
A∗ to denote its conjugate transpose, A∗ is regressive and ⊖A∗ = (⊖A)∗.

Remark 1.3.11 (See [10, Theorem 5.3]). Let A,B ∈ R be ∆-differentiable n × n-matrix-
valued functions on T. Then

(AB)∆ = A∆Bσ + AB∆ = AσB∆ + A∆B.

Indeed, if A = (aij) and B = (bij), then

AB =

(
n∑

k=1

aikbkj

)
1≤i,j≤n
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and it follows that the ijth entry of (AB)∆ is(
n∑

k=1

aikbkj

)∆

=
n∑

k=1

(aikbkj)
∆ (1.4)

=
n∑

k=1

(a∆ikb
σ
kj + aikb

∆
kj)

=
n∑

k=1

a∆ikb
σ
kj +

n∑
k=1

aikb
∆
kj,

which is the ijth entry of the matrix A∆Bσ+AB∆. Analogously, we also obtain that (AB)∆ =

AσB∆ + A∆B.

Theorem 1.3.12 (See [10, Theorem 5.21]). Let A,B ∈ R be matrix-valued functions on T.
Then:

(i) e0(t, s) ≡ I and eA(t, t) ≡ I ;

(ii) eA(σ(t), s) = (I + µ(t)A(t))eA(t, s);

(iii) e−1
A (t, s) = e∗⊖A∗(t, s);

(iv) eA(t, s) = e−1
A (s, t) = e∗⊖A∗(s, t);

(v) eA(t, s)eA(s, r) = eA(t, r);

(vi) eA(t, s)eB(t, s) = eA⊕B(t, s) if eA(t, s) and B(t) commute.

Proof. The proof is analogous to Theorem 1.2.22, but making use of Theorem 1.3.7,
Theorem 1.3.3, Remark 1.3.10 and Remark 1.3.11

Theorem 1.3.13 (See [10, Theorem 5.24]). (Variation of Constants). Let a ∈ R be an n× n-
matrix-valued-funciton on T and suppose that f : T → Rn is rd-continuous. Let t0 ∈ T and
y0 ∈ Rn. Then the IVP {

y∆(t) = A(t)y(t) + f(t),

y(t0) = y0
(1.28)

has a unique solution y : T → Rn. Moreover, this solution is given by

y(t) = eA(t, t0)y0 +

∫ t

t0

eA(t, σ(τ))f(τ)∆τ. (1.29)

Proof. Using Theorem 1.3.12 (v) and Remark 1.3.11, it is not difficult to verify that (1.29)
is indeed a solution of (1.28). Moreover, for the uniqueness of solution, it is just another
application of 1.3.12 (v).



Chapter

2
Preliminaries on periodicity and almost

periodicity

In this chapter, we give some fundamental definitions and results concerning pe-
riodicity on isolated time scales, following the main reference [7]. In special, we in-
troduce the iterated shifts, some useful formulas for the iterated shift operator and its
properties for compositions with the exponential function on isolated time scales.

Furthermore, we present the Bochner's and Bohr's definitions of almost periodicity
for quantum calculus, along with several results. All the proofs for the quantum case
can be found in [4] and it will not be explored in this chapter, since the next chapter
we give a generalization of almost periodicity on any isolated time scale and we prove
those results in a more general context.

Those two concepts will be inspiring to generalize the almost periodicity from the
quantum calculus to any isolated time scale.

2.1 Periodicity on isolated time scales

This section develops the basic results around the theory of periodicity on isolated
time scales (i.e., time scales which all of its points are right-scattered and left-scattered,
except when the time scale has a minimum or maximum (or both). In this case, the
minimum point must be right-scattered and the maximum point must be left-scattered)
and it can be summarized as follows: Subsection 1 introduces the iterated shifts as the
fundamental tool for generalizing periodicity on isolated time scales and subsection 2
defines the periodicity on the isolated case. In this whole section, consider T an isolated
time scale.
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2.1.1 Iterated shifts

We start with the definition of the iterated shift operator.

Definition 2.1.1 (See [7, Page 262]). Let ω ∈ N. We define the iterated shift operator
ν : T → T by

ν := σω := σ ◦ σ ◦ · · · ◦ σ︸ ︷︷ ︸
ω times

.

Notation 2.1.2 (See [7, Page 262]). Let f : T → R. Analogously to the notation fσ = f ◦ σ,
we will use the notation

f ν = f ◦ ν.

Remark 2.1.3 (See [7, Page 262]). With the previous notation, we have that

f νσ = f ν◦σ = fσω◦σ = fσ◦σω

= fσ◦ν = fσν . (2.1)

Moreover, note that
σ ◦ ν = σ ◦ σω = σω ◦ σ = ν ◦ σ, (2.2)

i.e., σν = νσ with the previous notation. Thus, σ and ν commute.

Remark 2.1.4. Since we are dealing with isolated time scales, we have that every function
defined on these time scales is continuous. Also, since all the points are right-scattered, it
follows that µ is never zero.

The following lemma gives an useful expression of the derivative of the iterated
shift ν.

Lemma 2.1.5 (See [7, Lemma 3.1]). We have

ν∆ =
µν

µ
. (2.3)

Proof. Let t ∈ T. By direct computation, we have

ν∆(t)
(1.1)
=

ν(σ(t))− ν(t)

µ(t)

(2.2)
=

σ(ν(t))− ν(t)

µ(t)
=

µ(ν(t))

µ(t)
,

as desired.

The next lemma is a chain rule for compositions between any real valued function
defined on a time scale and the iterated shift ν. We call the attention of the reader that
in the case of isolated time scales, such property is valid.
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Lemma 2.1.6 (See [7, Lemma 3.2]). Let f : T → R. We have

f ν∆ = ν∆f∆ν . (2.4)

Proof. Let t ∈ T. Then,

(f ν)∆(t)
(1.1)
=

(f ν)σ(t)− f ν(t)

µ(t)

(2.1)
=

(fσ)ν(t)− f ν(t)

µ(t)
=

µν(t)

µν(t)

(fσ)ν(t)− f ν(t)

µ(t)

(2.3)
= ν∆(t)

(fσ)ν(t)− f ν(t)

µν(t)
= ν∆(t)

(
fσ − f

µ

)ν

(t)
(1.1)
= ν∆(t)(f∆)ν(t),

confirming the result.

An useful expression for the second derivative of the iterated shift ν is given next.

Lemma 2.1.7 (See [7, Lemma 3.3]). We have

ν∆∆ = ν∆σ∆ν − σ∆

µσ
.

Proof. Let t ∈ T. Firstly, since µ(t) = σ(t)− t, it follows

µ∆(t) = σ∆(t)− 1. (2.5)

Thus, by Theorem 1.1.11 (v), we find

ν∆∆(t)
(2.3)
=

(
µν

µ

)∆

(t)
(1.6)
=

(µν)∆(t)µ(t)− µν(t)µ∆(t)

µ(t)µσ(t)

(2.4)
=

ν∆(t)(µ∆)ν(t)µ(t)− µν(t)µ∆(t)

µ(t)µσ(t)

(2.3)
=

ν∆(t)(µ∆)ν(t)µ(t)− ν∆(t)µ(t)µ∆(t)

µ(t)µσ(t)
= ν∆(t)

(µ∆)ν(t)− µ∆(t)

µσ(t)

(2.5)
= ν∆(t)

σ∆(ν(t))− 1− [σ∆(t)− 1]

µσ(t)
= ν∆(t)

(σ∆)ν(t)− σ∆(t)

µσ(t)
,

as desired.

Remark 2.1.8 (See [7, Remark 3.4]). Note that

µ(σ(t))
(1.3)
= µ(t) + µ(t)µ∆(t) = µ(t)[1 + µ∆(t)] = µ(t)σ∆(t) for all t ∈ T,

i.e., µσ = µσ∆.

Next, we show three simple examples of isolated time scales followed by the com-
putation of ν∆ and ν∆∆.
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Example 2.1.9 (See [7, Example 3.5]). If T = Z, then

σ(t) = t+ 1, µ(t) = 1 and ν(t) = t+ ω for all t ∈ T.

Hence, ν∆(t) = 1 and ν∆∆(t) = 0 for all t ∈ T.

Example 2.1.10 (See [7, Example 3.6]). If T = hZ, with h > 0, then

σ(t) = t+ h, µ(t) = h and ν(t) = t+ hω for all t ∈ T.

Thus, ν∆(t) = 1 and ν∆∆(t) = 0 for all t ∈ T.

Example 2.1.11 (See [7, Example 3.7]). If T = qN0 with q > 1, then

σ(t) = qt, µ(t) = (q − 1)t and ν(t) = qωt for all t ∈ T.

Therefore, ν∆(t) = qω and ν∆∆(t) = 0 for all t ∈ T.

Remark 2.1.12. Considering q > 1, the time scale qN0 is not isolated, since 1 ∈ qN0 is not
left-scattered. But, it does not matter for our calculations, since we only use the forward jump
operator in this whole chapter and all the results holds for qN0

Remark 2.1.13. Note that in all of these examples, we have ν∆ as a constant, implying ν∆∆

being zero. It is not a general rule (e.g., T = {
√
n : n ∈ N0}), but in most cases this holds.

The next lemma shows a useful result about the derivative of an integral from t to
ν(t).

Lemma 2.1.14 (See [7, Lemma 3.8]). Let f : T → R and define

Fν(t) :=

∫ ν(t)

t

f(τ)∆τ.

Then
F∆
ν = ν∆f ν − f. (2.6)

Proof. Let t0 ∈ T and define F : T → R by

F (t) :=

∫ t

t0

f(τ)∆τ for all t ∈ T.

Let t ∈ T. By Theorem 1.1.22, we have F∆(t) = f(t) and note that

F ν(t)− F (t) =

∫ ν(t)

t0

f(τ)∆τ −
∫ t

t0

f(τ)∆τ =

∫ ν(t)

t0

f(τ)∆τ +

∫ t0

t

f(τ)∆τ
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=

∫ ν(t)

t

f(τ)∆τ = Fν(t).

Hence, we conclude

F∆
ν (t) = (F ν)∆(t)− F∆(t)

(2.4)
= ν∆(t)(F∆)ν(t)− F∆(t) = ν∆(t)f ν(t)− f(t).

The next two following lemmas brings two helpful formulas for composition of the
exponential function and the iterated shift.

Lemma 2.1.15 (See [7, Lemma 3.9]). Let t0 ∈ T. For f ∈ R, we have

h(t) := ef (ν(t), t) implies h∆(t) = ((ν∆f ν)⊖ f)(t)h(t) (2.7)

and
ef (ν(t), t) = ef (ν(t0), t0)

eν∆fν (t, t0)

ef (t, t0)
for all t ∈ T. (2.8)

Proof. Defining h : T → R by

h(t) := ef (ν(t), t) for all t ∈ T,

we have
h(t) = ef (ν(t), t)

(1.15)
= ef (ν(t), t0)ef (t0, t),

from where, since f is regressive, we get

h(t) = ef (ν(t), t0)e⊖f (t, t0).

Thus, we have

h∆(t)
(1.4)
= [ef (ν(t), t0)]

∆e⊖f (σ(t), t0) + ef (ν(t), t0)[e⊖f (t, t0)]
∆

(1.9)
= ν∆(t)f(ν(t))ef (ν(t), t0)e⊖f (σ(t), t0) + ef (ν(t), t0)(⊖f)(t)e⊖f (t, t0),

where we could apply Theorem 1.1.29 because ν is strictly increasing and ν(T) = T is
also a time scale. Hence, we obtain

h∆(t) = ν∆(t)f(ν(t))ef (ν(t), t0)e⊖f (σ(t), t0) + ef (ν(t), t0)(⊖f)(t)e⊖f (t, t0)

= ν∆(t)f(ν(t))ef (ν(t), t0)[1 + µ(t)(⊖f)(t)]e⊖f (t, t0) + ef (ν(t), t0)(⊖f)(t)e⊖f (t, t0)

= [ν∆(t)f(ν(t))[1 + µ(t)(⊖f)(t)] + (⊖f)(t)]ef (ν(t), t0)e⊖f (t, t0)

= [ν∆(t)f(ν(t))[1 + µ(t)(⊖f)(t)] + (⊖f)(t)]h(t)
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= [ν∆(t)f(ν(t)) + (⊖f)(t) + µ(t)ν∆(t)f(ν(t))(⊖f)(t)]h(t)

= [ν∆(t)f(ν(t))⊕ (⊖f)(t)]h(t)

= [ν∆(t)f(ν(t))⊖ f(t)]h(t)

= ((ν∆f ν)⊖ f)(t)h(t),

concluding (2.7).
Furthermore, consider the following IVPg∆(t) = ((ν∆f ν)⊖ f)(t)g(t),

g(t0) = h(t0)
(2.9)

and notice that g(t) = h(t) is a solution of (2.9). Moreover, since f ∈ R, we have that
1 + µ(t)f(t) ̸= 0 for all t ∈ T and hence

1 + ν∆(t)f(ν(t))
(2.3)
= 1 + µ(ν(t))f(ν(t)) ̸= 0 for all t ∈ T,

i.e., ν∆f ν ∈ R, which implies that (ν∆f ν) ⊖ f ∈ R and the equation (2.9) is regres-
sive. Thus, by Theorem 1.2.20, g(t) = e((ν∆fν)⊖f)(t, t0)h(t0) satisfies (2.9) and since the
solution is unique, we have that

h(t) = e((ν∆fν)⊖f)(t, t0)h(t0),

i.e.,

ef (ν(t), t) = ef (ν(t0), t0)
eν∆fν (t, t0)

ef (t, t0)
for all t ∈ T,

proving the desired result.

Lemma 2.1.16 (See [7, Lemma 3.10]). For f ∈ R, we have

ef (ν(t), ν(s)) = eν∆fν (t, s) for all s, t ∈ T. (2.10)

Proof. As an immediate consequence of Lemma 2.1.15, we have

ef (ν(t), ν(s))
(1.15)
= ef (ν(t), t)ef (t, s)ef (s, ν(s)) =

ef (ν(t), t)

ef (ν(s), s)
ef (t, s)

(2.8)
=

eν∆fν (t, s)

ef (t, s)
ef (t, s) = ev∆fν (t, s) for all t, s ∈ T.
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2.1.2 Periodicity

In this subsection, the definition of periodic functions on isolated time scales will be
given, together with some simple examples. Moreover, the preservation of area prop-
erty for periodic functions and some properties for the exponential function when it is
composed with the iterated shift ν and the exponent is periodic (and also regressive)
will be seen.

The next definition provides the so-expected definition of periodic functions on
isolated time scales.

Definition 2.1.17 (See [7, Definition 4.1]). A function p : T → R is called ω-periodic pro-
vided

ν∆pν = p. (2.11)

The set of all ω-periodic functions p : T → R is denoted by Pω = P = P(T,R).

Remark 2.1.18 (See [7, Remark 4.2]). By Lemma 2.1.5 we have that ν∆ = µν

µ
. Thus, p ∈ P

(i.e., p is ω-periodic) if and only if µνpν = µp, i.e., if and only if

(µp)ν = µp.

Now, we give three examples expressing the definition of periodic functions for Z,
hZ and qN0 .

Example 2.1.19 (See [7, Example 4.3]). If T = Z, then µ ≡ 1 and ν(t) = t+ ω for all t ∈ T.
Thus, p ∈ P provided

p(t) = p(t+ ω) for all t ∈ T,

which is the usual definition of ω-periodicity.

Example 2.1.20 (See [7, Example 4.4]). If T = hZ, then µ ≡ h and ν(t) = t + hω, ∀t ∈ T.
Thus, p ∈ P provided

p(t) = p(t+ hω) for all t ∈ T.

Example 2.1.21 (See [7, Example 4.5]). If T = qN0 , then µ(t) = (q−1)t and ν(t) = qωt, ∀t ∈
T. Thus, p ∈ P provided

(q − 1)ν(t)p(ν(t)) = (q − 1)tp(t),

i.e., when
p(t) = qωp(qωt) for all t ∈ T,
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which is the definition of periodicity from quantum calculus (see [3, Definition 3.1]).

The next lemma expresses the expected property for periodic functions.

Lemma 2.1.22 (See [7, Lemma 4.6]). We have Pω ⊂ P2ω.

Proof. Let ν̂ : T → T defined by

ν̂(t) = σ2ω(t) = (σ ◦ · · · ◦ σ︸ ︷︷ ︸
2ω times

)(t) = ν(ν(t))

and let p : T → R be a ω-periodic function. It is sufficiently to show that ν̂∆pν̂ = p.
More precisely, let t ∈ T and note that

ν̂∆(t)p(ν̂(t)) = (νν)∆(t)p(ν̂(t))
(2.4)
= ν∆(t)ν∆(ν(t))p(ν(ν(t)))

(2.11)
= ν∆(t)p(ν(t))

(2.11)
= p(t),

showing the desired result.

The next two theorems show the preservation of area, also an expected property for
periodic functions.

Theorem 2.1.23 (See [7, Theorem 4.7]). If p ∈ P , then the integral∫ ν(t)

t

p(τ)∆τ

is independent of t ∈ T.

Proof. Define h : T → R by

h(t) =

∫ ν(t)

t

p(τ)∆τ.

From Corollary 1.1.17 (ii), it is sufficient to show that h is constant. Indeed,

h∆(t)
(2.6)
= ν∆(t)p(ν(t))− p(t)

(2.11)
= 0.

Theorem 2.1.24 (See [7, Theorem 4.8]). If p ∈ P , then∫ ν(t)

ν(s)

p(τ)∆τ =

∫ t

s

p(τ)∆τ for all s, t ∈ T.
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Proof. Consider h : T → R given by

h(t) =

∫ ν(t)

t

p(τ)∆τ

and note that∫ ν(t)

ν(s)

p(τ)∆τ =

∫ s

ν(s)

p(τ)∆τ +

∫ t

s

p(τ)∆τ +

∫ ν(t)

t

p(τ)∆τ

= −
∫ ν(s)

s

p(τ)∆τ +

∫ t

s

p(τ)∆τ +

∫ ν(t)

t

p(τ)∆τ

= −h(s) +

∫ t

s

p(τ)∆τ + h(t),

from where, since h is constant by Theorem 2.1.23, we conclude∫ ν(t)

ν(s)

p(τ)∆τ =

∫ t

s

p(τ)∆τ.

Finally, two important properties for the exponential function follows.

Theorem 2.1.25 (See [7, Theorem 4.9]). If p ∈ P ∩R, then

ep(ν(t), t) is independent of t ∈ T (2.12)

and
ep(ν(t), ν(s)) = ep(t, s) for all s, t ∈ T. (2.13)

Proof. Since p ∈ R, for any t0 ∈ T, we have

ep(ν(t), t)
(2.8)
= ep(ν(t0), t0)

eν∆pv(t, t0)

ep(t, t0)
for all t ∈ T,

and since p ∈ P we conclude that

ep(ν(t0), t0)
eν∆pv(t, t0)

ep(t, t0)

(2.11)
= ep(ν(t0), t0)

ep(t, t0)

ep(t, t0)
= ep(ν(t0), t0) for all t ∈ T,

i.e., ep(ν(t), t) = ep(ν(t0), t0) for all t ∈ T and (2.12) holds.
Now, since p ∈ R, by Lemma 2.1.16, we get

ep(ν(t), ν(s))
(2.10)
= eν∆pν (t, s)

(2.11)
= ep(t, s) for all t ∈ T
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and (2.13) holds.

2.2 Almost periodicity in quantum calculus

This section develops the theory of almost periodicity for the quantum time scale,
following the main reference [4]. Thus, consider T = qN0 for q > 1 in this whole section.

The first subsection establishes the Bochner definition of almost periodicity in quan-
tum calculus along with some expected properties. Next, it examines some results
surrounding this concept, along with its relation with the exponential function and a
condition for a linear type of dynamic equation to has a Bochner almost periodic solu-
tion. For the second subsection, a more natural definition of almost periodicity will be
seen, i.e., the Bohr definition, along with some characterizations for this class of Bohr
almost periodic functions. Then, the equivalence between those two definitions will be
proved, as the main result of this chapter. There will be no examples in this chapter, but
several examples will be seen in the next chapter, when we provide a generalization of
almost periodicity for isolated time scales.

2.2.1 Bochner almost periodicity in quantum calculus

We start with the Bochner definition for the quantum time scale.

Definition 2.2.1 (See [4, Definition 3.1]). The function f : T → R is called Bochner almost
periodic on T if for every sequence {t′n} ⊂ T, there exists a subsequence {tn} ⊂ {t′n} such that
the limit

lim
n→∞

tnf(ttn)

exists uniformly on T.

We state some elementary properties surrounding this definition.

Theorem 2.2.2 (See [4, Theorem 3.2]). If f, g : T → R are Bochner almost periodic on T,
then

(i) f + g is Bochner almost periodic on T;

(ii) cf is Bochner almost periodic on T, for every c ∈ R;

(iii) fk : T → R defined by fk(t) := f(tqk) is Bochner almost periodic on T, for each k ∈ N0.

Next, we provide a definition of a q-bounded function.
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Definition 2.2.3 (See [4, Definition 3.3]). A function f : T → R is called q-bounded if

t|f(t)| ≤ K for all t ∈ T,

for some K > 0.

The next result shows that any Bochner almost periodic function is q-bounded, an
expected property.

Theorem 2.2.4 (See [4, Theorem 3.4]). If f : T → R is Bochner almost periodic on T, then f

is q-bounded.

Remark 2.2.5 (See [4, Remark 3.5]). We will denote Ttnf = f to represent that

lim
n→∞

tnf(ttn) = f(t) for every t ∈ T.

Definition 2.2.6 (See [4, Definition 3.6]). The set

H(f) := {g : T → R : there exists {tn} ⊂ T with Ttnf = g uniformly}

is called the hull of f : T → R.

The following theorem states a similar property of Bochner almost periodicity for
the exponential function. Moreover, it is possible to determine the convergence of its
subsequence in terms of the regressivity of f on a particular set.

Theorem 2.2.7 (See [4, Theorem 3.7]). Assume f : T → R is regressive and Bochner almost
periodic on T. Then, for every sequence {t′n} ⊂ T, there exists a subsequence {tn} ⊂ {t′n} such
that for all t, s ∈ T, denoting Ttnf = f , we have

lim
n→∞

ef (ttn, stn) =

{
ef (t, s), if f is regressive on K,

0, otherwise,

where K = {min{t, s}} ∪ [min{t, s},max{t, s})T.

Remark 2.2.8 (See [4, Remark 3.8]). If we assume that f : T → R is Bochner almost periodic
on T and positive, then f = Ttnf is also a positive function. Thus, if f is also regressive, the
same will happen to f .

As an immediately consequence of the previous theorem, but with also asking −f

to be regressive, we have the same results for the coshf and sinhf depending on two
parameters.
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Corollary 2.2.9 (See [4, Corollary 3.9]). Let f : T → R be regressive with −f also being
regressive. If f is Bochner almost periodic on T, then for every sequence {t′n} ⊂ T, there exists
a subsequence {tn} ⊂ {t′n} such that

lim
n→∞

coshf (ttn, stn) and lim
n→∞

sinhf (ttn, stn)

exist uniformly on T.

The next theorem states a condition for a solution of the following linear dynamic
equation to be Bochner almost periodic, depending on the almost periodicity of the
initial value of the problem.

Theorem 2.2.10 (See [4, Theorem 3.10]). Let a, b : T → R be Bochner almost periodic func-
tions on T with a regressive. If x : T → R solves

x∆(t) = a(t)x(t) +
b(t)

t

and if for every {t′n} ⊂ T, there exists a subsequence {tn} ⊂ {t′n} such that

lim
n→∞

tnx(t0tn) = x(t0)

holds uniformly on T, then x is Bochner almost periodic on T.

Proof. Let {t′n} ⊂ T be an arbitrary sequence. Since a and b are Bochner almost periodic
on T, there exists a subsequence {tn} ⊂ {t′n} such that

lim
n→∞

tna(ttn) = a(t) and lim
n→∞

tnb(ttn) = b(t)

exist uniformly on T. Moreover, by Theorem 1.2.25, we have

x(t) = ea(t, t0tn)x(t0tn) +

∫ t

t0tn

ea(t, σ(s))
b(s)

s
∆s.

Therefore, note that

tnx(ttn) = tn

[
ea(ttn, t0tn)x(t0tn) +

∫ ttn

t0tn

ea(ttn, σ(s))
b(s)

s
∆s

]
= ea(ttn, t0tn)tnx(t0tn) + tn

∫ ttn

t0tn

ea(ttn, σ(s))
b(s)

s
∆s

(1.11)
= ea(ttn, t0tn)tnx(t0tn) + tn

∫ t

t0

tnea(ttn, σ(stn))
b(stn)

stn
∆s



62 Preliminaries on periodicity and almost periodicity

= ea(ttn, t0tn)tnx(t0tn) +

∫ t

t0

ea(ttn, σ(stn))
tnb(stn)

s
∆s

= ea(ttn, t0tn)tnx(t0tn) +

∫ t

t0

ea(ttn, σ(s)tn)
tnb(stn)

s
∆s

and then

lim
n→∞

tnx(ttn) = lim
n→∞

[
ea(ttn, t0tn)tnx(t0tn) +

∫ t

t0

ea(ttn, tnσ(s))
tnb(stn)

s
∆s

]
= ea(t, t0)x(t0) +

∫ t

t0

ea(t, σ(s))
b(s)

s
∆s,

by Theorem 2.2.7, i.e., x is Bochner almost periodic on T.

For functions with two variables, we give the definition of Bochner almost periodic-
ity depending on one variable. Similarly, it is possible to state this same definition (also
with the following two results) for functions with more variables, with the periodicity
depending on a certain variable.

Definition 2.2.11 (See [4, Definition 3.12]). The function f : T× R → R is called Bochner
almost periodic on t for each x ∈ R if for every sequence {t′n} ⊂ T, there exists a subsequence
{tn} ⊂ {t′n} such that the limit

lim
n→∞

tnf(ttn, x)

exists uniformly on T for each x ∈ R.

Remark 2.2.12 (See [4, Remark 3.13]). We will use the same notation Ttnf = f to represent
that

lim
n→∞

tnf(ttn, x) = f(t, x) for each x ∈ R.

The elementary properties of Bochner almost periodicity also holds with this defi-
nition.

Theorem 2.2.13 (See [4, Theorem 3.14]). If f, g : T × R → R are Bochner almost periodic
with respect to the first variable for each x ∈ R, then

(i) f + g is Bochner almost periodic with respect to the first variable, for each x ∈ R;

(ii) cf is Bochner almost periodic with respect to the first variable, for each x ∈ R and for
every c ∈ R.
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The next result shows that for a Bochner almost periodic function, as in the previous
definition, which satisfies the Lipschitz condition in respect to a Bochner almost peri-
odic funciton L (with one variable), the Lipschitz condition also holds for f in respect
to L.

Theorem 2.2.14 (See [4, Theorem 3.15]). Assume f : T×R → R is Bochner almost periodic
for each x ∈ R and suppose that f satisfies Lipschitz condition

|f(t, x)− f(t, y)| ≤ L(t)|x− y| for all t ∈ T and x, y ∈ R,

where L : T → (0,∞) is Bochner almost periodic, i.e., for every sequence {t′n} ⊂ T, there exists
a subsequence {tn} ⊂ {t′n} such that

lim
n→∞

tnL(ttn) = L(t)

exists uniformly on T. Then, f given by Tαnf = f satisfies the Lipschitz condition with the
function L.

2.2.2 Bohr almost periodicity in quantum calculus

We start with the Bohr's definition of almost periodicity, which is a more natural
generalization of the periodicity concept.

Definition 2.2.15 (See [4, Definition 4.1]). We say that f : T → R is Bohr almost periodic
if for every ε > 0, there exists Nε ∈ N such that any Nε consecutive elements of T contain at
least one s with

|sf(ts)− f(t)| < ε for all t ∈ T.

With this definition in hands, it is simple to show that any periodic function is Bohr
almost periodic.

Remark 2.2.16 (See [4, Remark 4.2]). If f : T → R is ω-periodic, that is,

qωf(qωt) = f(t) for all t ∈ T,

then f is Bohr almost periodic. Indeed, let t ∈ T and note that for every ε > 0, there exists
Nε = ω + 1 ∈ N such that any Nε consecutive elements of T contain at least one s with

|sf(ts)− f(t)| = 0 < ε,
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i.e., for any Nε consecutive numbers, it is possible to find a multiple of ω, kω, such that s = qkω

and thus

sf(ts) = qkωf(tqkω) = q(k−1)ωf(qω(q(k−1)ωt))

= q(k−1)ωf(q(k−1)ωt),

from where, proceeding with this, we have that sf(ts) = f(t).

Now, we start to show some results in order to show the equivalence between Bohr
and Bochner definitions. The next result shows a characterization of Bohr almost peri-
odic functions defined on T with some particular ones defined on N0.

Theorem 2.2.17 (See [4, Theorem 4.3]). A necessary and sufficient condition for a function
g : T → R to be Bohr almost periodic on T is the existence of a Bohr almost periodic function
f : N0 → R such that g(t) = f(logq t)

t
for every t ∈ T.

Theorem 2.2.18 (See [14, Theorem 1.27]). A necessary and sufficient condition for a function
g : Z → R to be Bohr almost periodic is the existence of a Bohr almost periodic f : R → R such
that g(n) = f(n) for all n ∈ Z.

The following result shows a characterization of Bohr almost periodic functions
defined on T with some particular ones defined on R.

Theorem 2.2.19 (See [4, Theorem 4.5]). A necessary and sufficient condition for g : T → R
to be Bohr almost periodic on T is the existence of a Bohr almost periodic function f : R → R
such that g(t) = f(logq t)

t
for every t ∈ T.

Before proceeding to the next result, let us define the Bochner and Bohr almost
periodicity concept for functions defined on Z. Also, we state a result showing their
equivalence in this case.

Definition 2.2.20 (See [14, Page 45]). A function f : Z → R is Bohr almost periodic if for
every ε > 0, there exists Nε ∈ N such that any Nε consecutive elements of Z contain at least
one s with

|f(t+ s)− f(t)| < ε for all t ∈ Z.

Moreover, f is Bochner almost periodic if for every sequence {tn} ⊂ Z, there exists a subse-
quence {tn} ⊂ {t′n} such that the limit

lim
n→∞

f(t+ tn)

exists uniformly on Z.
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Theorem 2.2.21 (See [14, Theorem 1.26]). A function f : Z → R is Bohr almost periodic if,
and only if, f is Bochner almost periodic.

Remark 2.2.22. Note that if a function f is defined on a subset of Z, then Theorem 2.2.21 also
holds, where the Bochenr's and Bohr's definitions are analogue.

The next result shows the so expected equivalence between the two definitions of
almost periodicity and it is the main result of the paper [4].

Theorem 2.2.23 (See [4, Theorem 4.6]). A function f : T → R is Bochner almost periodic if,
and only if, f is Bohr almost periodic.

Proof. Suppose f is Bochner almost periodic on T, but f is not Bohr almost periodic.
Therefore, there exists at least one ε > 0 such that for any Nε ∈ N, the set of Nε consec-
utive numbers in T does not contain any element t satisfying

|sf(ts)− f(t)| < ε for all t ∈ T. (2.14)

Let τ ∈ T\{1, q} and any arbitrary number α1 ∈ N, then there are no elements satisfying
(2.14) on [τ, τqα1) ∩ T. Also, for α2 = logq(τ)α1, there are no elements satisfying (2.14)
on [τqα1 , τqα1+α2) ∩ T. Proceeding with this, we can construct a sequence {tk}k∈N with
tk = qαk such that {tk} is strictly increasing and tk → ∞ when k → ∞. Therefore, for
any i > j > 1, we have

sup
t∈T

|tif(tti)− tjf(ttj)| = sup
t∈T

∣∣∣∣tjtj tif(tti)− tjf(ttj)

∣∣∣∣
= tj sup

t∈T

∣∣∣∣ titj f
(

t

tj
ti

)
− f

(
t

tj
tj

)∣∣∣∣
= tj sup

t∈T

∣∣∣∣ titj f
(
t
ti
tj

)
− f(t)

∣∣∣∣
≥ sup

t∈T

∣∣∣∣ titj f
(
t
ti
tj

)
− f(t)

∣∣∣∣ ≥ ε.

Thus, {tnf(ttn)} cannot contain any uniformly convergent sequence, which is a con-
tradiction for the fact that f is Bochner almost periodic on T. Then, f is Bohr almost
periodic.
Reciprocally, if f is Bohr almost periodic, then, by Theorem 1.1.16, the function g : N0 →
R given by

g(n) = qnf(qn) for n ∈ N0
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is Bohr almost periodic. Hence, by Theorem 2.2.21, g is Bochner almost periodic, i.e.,
for every sequence {n′

k} ⊂ N0, there exists a subsequence {nk} such that the limit

lim
k→∞

g(n+ nk)

exists uniformly for every n ∈ N0. Thus, since

g(n+ nk) = qn+nkf(qn+nk) = qnqnkf(qnqnk) for all n ∈ N0,

the limit limk→∞ qnqnkf(qnqnk) also exists uniformly. Now, let {t′n} ⊂ T be a sequence.
Then, t′k = qn

′
k for some n′

k ∈ N0 and we can construct a sequence {n′
k} ⊂ N0. Hence,

there exists a subsequence {nk} ⊂ {n′
k} such that the limit limk→∞ qnqnkf(qnqnk) exists

uniformly for every n ∈ N0, i.e., since qn ≥ 1, the limit

lim
k→∞

qnkf(qnqnk)

also exists uniformly for every n ∈ N0. Therefore, considering the subsequence {tk} ⊂
{t′k} given by tk = qnk and denoting t = qn, we obtain that the limit

lim
k→∞

tkf(ttk)

exists uniformly for every t ∈ T and f is Bochner almost periodic.



Chapter

3
Almost periodicity on isolated time

scales

This chapter is the most important of this work and generalize the theory of al-
most periodicity from the quantum time scale to any isolated time scale. All the results
found here are completely new in the literature and they can be found in [5]. Section 1
introduces a new definition of iterated shift. Section 2 gives the Bochner's definition of
almost periodic functions, we prove several properties and we discuss Bochner almost
periodic solutions of a first order linear dynamic equation. In Section 3, we provide
the Bohr's definition of the almost periodicity, we prove that any ω-periodic function
(in the sense of [7]) is also Bohr almost periodic, we state some equivalences regard-
ing this definition and clarify its relation with the almost periodicity from Bochner.
Section 4 exemplifies those concepts for different types of functions and for some of
the most classical isolated time scales, e.g., Z, hZ and qN0 . In this entire chapter, T
will be considered an isolated time scale (i.e., all points in T are right-scattered and
left-scattered, except when the time scale has a minimum or maximum (or both). In
this case, the minimum point must be right-scattered and the maximum point must be
left-scattered).

3.1 Iterated shifts

In order to be able to present the definition of an almost periodic function on iso-
lated time scales, we need to introduce a new iterated shift operator.

Definition 3.1.1. Let α ∈ Z and define the iterated shift operator να : T → T by

να(t) =


σα(t), α > 0,

t, α = 0,

ρα(t), α < 0.
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For f : T → R, we use the notation
f να = f ◦ να.

To this new iterated shift operator, the following lemmas also extend the analogue
ones for the similar shift operator presented in the previous chapter. Therefore, we
omit their proofs here.

Lemma 3.1.2. For all α ∈ Z, we have

ν∆
α =

µνα

µ
.

Proof. The proof is analogous to the proof of Lemma 2.1.5.

Lemma 3.1.3. For f : T → R, we have

f να∆ = ν∆
α f

∆να . (3.1)

Proof. The proof is analogous to the proof of Lemma 2.1.6.

Lemma 3.1.4. For f ∈ R, we have

ef (να(t), να(s)) = eν∆α fνα (t, s) for all s, t ∈ T. (3.2)

Proof. The proof is analogous to the proof of Lemma 2.1.16.

Remark 3.1.5. Analogously, it is possible to prove the Lemma 3.1.4 changing f by a regressive
n× n-matrix-valued-function A defined on T, but using the properties from Theorem 1.3.12.

3.2 Bochner almost periodicity on isolated time scales

In this section, our goal is to investigate the Bochner almost periodic functions in
the framework of isolated time scales.

Definition 3.2.1. A function f : T → R is called Bochner almost periodic on T if
for every sequence {α′

n} ⊂ D, there exists a subsequence {αn} ⊂ {α′
n} such that

limn→∞ ν∆
αn
(t)f(ναn(t)) exists uniformly on T, for D defined by

D :=


Z, if supT = +∞ and inf T = −∞,

N0, if supT = +∞ and inf T > −∞,

−N0, if supT < +∞ and inf T = −∞,
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where N0 = N∪{0} and −N0 = {−n : n ∈ N0}. We will denote the set of all Bochner almost
periodic and regressive functions f : T → R by APB(T,R) or simply APB.

Remark 3.2.2. The set D was constructed in order to admit a directly bijection with the re-
spective time scale, which further we will state an equivalence between D and T within Bohr's
framework of almost periodicity.

Remark 3.2.3. The set D in Definition 3.2.1 does not consider the case when supT < +∞
and inf T > −∞ at the same time because in this case D should take values in a finite subset of
Z, from which any sequence in D will have at least one of its values repeating infinitely many
times (by the Dirichlet's principle), and, hence, any function in this case will be Bochner almost
periodic. Thus, from now on, we will only consider isolated time scales T with supT = +∞ or
inf T = −∞ (or both).

Remark 3.2.4. It is also possible to define a Bochner almost periodic n × n-matrix-valued-
function defined on T in analogy, i.e., an n × n-matrix-valued-function A(t) defined on T is
Bochner almost periodic on T if for every sequence {α′

n} ⊂ D, there exists a subsequence
{αn} ⊂ {α′

n} such that limn→∞ ν∆
αn
(t)A(ναn(t)) exists uniformly on T.

Remark 3.2.5. By Lemma 3.1.2, the definition above can be rewritten as follows: A function
f : T → R is called Bochner almost periodic on T if for every sequence {α′

n} ⊂ D, there
exists a subsequence {αn} ⊂ {α′

n} such that limn→∞
µναn (t)
µ(t)

f(ναn(t)) exists uniformly on T.

Remark 3.2.6. Although the Definition 3.2.1 is presented for functions taking value in R, it is
possible to extend this notion for functions taking value in any arbitrary Banach space X . The
definition follows similarly. The same happens to the other properties.

A first look at this definition may be different from the known ones for the discrete
cases, but below we bring some examples which show that our definition is consistent
with the eixsting ones.

Example 3.2.7. Let T = Z. Then Definition 3.2.1 can be read as follows: A function f : Z → R
is called Bochner almost periodic if for every sequence {α′

n} ⊂ Z, there exists a subsequence
{αn} ⊂ {α′

n} such that
lim
n→∞

f(t+ αn)

exists uniformly on Z. This happens since ναn(t) = t + αn for t ∈ Z by definition of shifted
operator. This definition is consistent with the definition for discrete case (see [14, Page 45]).
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Example 3.2.8. Let T = qN0 , q > 1. The Definition 3.2.1 can be read as follows: A function
f : qN0 → R is called Bochner almost periodic on qN0 if for every sequence {α′

n} ⊂ N0, there
exists a subsequence {αn} ⊂ {α′

n} such that

lim
n→∞

qαnf(qαnt)

exists uniformly on qN0 . Again, it is consistent with the known one (see [4, Definition 3.1]).

Remark 3.2.9. A careful examination at the Definition 3.2.1 shows that the changing on D

does not affect significantly the proofs of the results. Therefore, in order to avoid repetitions, we
will state and prove the results for the case when D = Z, since the other ones follow analogously.

In the sequel, we prove some elementary properties of Bochner almost periodicity.

Theorem 3.2.10. If f, g : T → R are Bochner almost periodic functions, then

(i) f + g is Bochner almost periodic;

(ii) cf is Bochner almost periodic for every c ∈ R;

(iii) Let fω : T → R be defined by fω(t) := f(νω(t)). If for every sequence {α′
n} ⊂ Z, there

exists a subsequence {αn} ⊂ {α′
n} such that the limit

lim
n→∞

ν∆
αn
(t)

ν∆
αn
(νω(t))

exists uniformly, then fω is Bochner almost periodic for each ω ∈ Z.

Proof. (i) Let {α′
n} ⊂ Z be an arbitrary sequence. Since f and g are Bochner almost

periodic functions, there exists a subsequence {αn} ⊂ {α′
n} such that

lim
n→∞

ν∆
αn
(t)f(ναn(t)) and lim

n→∞
ν∆
αn
(t)g(ναn(t))

exist uniformly. Therefore,

lim
n→∞

ν∆
αn
(t)(f + g)(ναn(t)) = lim

n→∞
ν∆
αn
(t)f(ναn(t)) + lim

n→∞
ν∆
αn
(t)g(ναn(t))

also exists uniformly and f + g is Bochner almost periodic.

(ii) Let {α′
n} ⊂ Z be an arbitrary sequence. Since f is Bochner almost periodic, there

exists a subsequence {αn} ⊂ {α′
n} such that

lim
n→∞

ν∆
αn
(t)f(ναn(t))
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exists uniformly. Therefore,

lim
n→∞

ν∆
αn
(t)(cf)(ναn(t)) = c lim

n→∞
ν∆
αn
(t)f(ναn(t)),

also exists uniformly and cf is Bochner almost periodic.

(iii) Let {α′
n} ⊂ Z be an arbitrary sequence. Since f is Bochner almost periodic func-

tion, there exists a subsequence {αn} ⊂ {α′
n} such that

lim
n→∞

ν∆
αn
(t)f(ναn(t))

exists uniformly. Therefore, for each ω ∈ Z, we have

lim
n→∞

ν∆
αn
(t)fω(ναn(t)) = lim

n→∞
ν∆
αn
(t)f(ναn(νω(t)))

= lim
n→∞

ν∆
αn
(t)

ν∆
αn
(νω(t))

ν∆
αn
(νω(t))f(ναn(νω(t)))

exists uniformly. Thus, fω is Bochner almost periodic for each ω ∈ Z.

We provide a definition of a ν-bounded function, which is similar to the definition
of a q-bounded function, but here it is in a more general setting.

Definition 3.2.11. For each t ∈ T, a function f : T → R is called ν-bounded if there exists
K > 0 such that

ν∆
α (t)|f(να(t))| < K for all α ∈ Z.

Remark 3.2.12. Notice that if T = Z, then it coincides to the concept of bounded functions.
The next result shows that the same way as the boundedness is a consequence of the classical
almost periodic functions, the ν-boundedness is a consequence of almost periodicity for any
isolated time scale. It is the content of the next result.

Theorem 3.2.13. Bochner almost periodic functions f : T → R are ν-bounded.

Proof. Let t ∈ T and f : T → R be a Bochner almost periodic function which is not
ν-bounded. Then, there exists a sequence {α′

n} ⊂ Z such that for every subsequence
{αn} ⊂ {α′

n}, we have
ν∆
αn
(t)|f(ναn(t))| → ∞.

Thus, the limit
lim
n→∞

ν∆
αn
(t)f(ναn(t))
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does not converges for any subsequence of {α′
n}, which contradicts the fact that f is

Bochner almost periodic. Therefore, f should be ν-bounded, proving the desired re-
sult.

Example 3.2.14. Let T = Z. Then the function f : Z → R given by

f(n) = cos(nπ) + sin(
√
nπ)

is Bochner almost periodic and, by Theorem 3.2.13, f is also ν-bounded.

Remark 3.2.15. We will denote Tαnf = f to represent

lim
n→∞

ν∆
αn
(t)f(ναn(t)) = f(t) for every t ∈ T.

Definition 3.2.16. The set

H(f) := {g : T → R | there exists {αn} ⊂ D with Tαnf = g uniformly}

is called the hull of f : T → R.

Below, we prove some properties of Bochner almost periodicity related to the circle
minus and circle plus operations on time scales. This result shows consistency of the
definition introduced in the framework of isolated time scales.

Theorem 3.2.17. If f, g : T → R are Bochner almost periodic and regressive functions, then

(i) f ⊕ g is Bochner almost periodic;

(ii) f ⊖ g is Bochner almost periodic;

(iii) ⊖f is Bochner almost periodic.

Proof. Let {α′
n} ⊂ Z be an arbitrary sequence. Since f and g are Bochner almost peri-

odic functions, there exists a subsequence {αn} ⊂ {α′
n} such that

lim
n→∞

ν∆
αn
(t)f(ναn(t)) = f(t) and lim

n→∞
ν∆
αn
(t)g(ναn(t)) = g(t) (3.3)

exist uniformly. Using this, let us prove each item.

(i) For f ⊕ g, applying Lemma 3.1.2, we get

ν∆
αn
(t)(f ⊕ g)(ναn(t)) = ν∆

αn
(t)f(ναn(t)) + ν∆

αn
(t)g(ναn(t))
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+ µ(t)ν∆
αn
(t)f(ναn(t))ν

∆
αn
(t)g(ναn(t)),

and, hence, by (3.3),

lim
n→∞

ν∆
αn
(t)(f ⊕ g)(ναn(t)) = f(t) + g(t) + µ(t)f(t)g(t) = (f ⊕ g)(t).

Therefore, f ⊕ g is Bochner almost periodic.

(ii) For f ⊖ g, by Lemma 3.1.2, it follows that

ν∆
αn
(t)(f ⊖ g)(ναn(t)) =

ν∆
αn
(t)f(ναn(t))− ν∆

αn
(t)g(ναn(t))

1 + µ(t)ν∆
αn
(t)g(ναn(t))

,

and, thus, again by (3.3),

lim
n→∞

ν∆
αn
(t)(f ⊖ g)(ναn(t)) =

f(t)− g(t)

1 + µ(t)g(t)
= (f ⊖ g).

Therefore, f ⊖ g is Bochner almost periodic.

(iii) By Lemma 3.1.2, we have

ν∆
αn
(t)(⊖f)(ναn(t)) = −

ν∆
αn
(t)f(ναn(t))

1 + µ(t)ν∆
αn
(t)f(ναn(t))

,

and, then,

lim
n→∞

ν∆
αn
(t)(⊖f)(ναn(t)) = − f(t)

1 + µ(t)f(t)
= (⊖f)(t).

As an immediate consequence, we get the following result.

Corollary 3.2.18. (APB,⊕) is a subgroup of (R,⊕).

Proof. It is clear that APB is nonempty and APB ⊂ R. Also, from Theorem 3.2.17,
APB is closed under the given operation. Thus, since any function f ∈ APB has a
symmetric element ⊖f ∈ APB, the zero function is clearly the identity element for
this operation and the associativity holds for this operation, then APB is a group and,
hence, a subgroup of R.

The next lemma provides a different way to write the definition of Bochner almost
periodicity.
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Lemma 3.2.19. A function f : T → R is Bochner almost periodic if, and only if, for every
sequence {α′

n} ⊂ Z, there exists a subsequence {αn} ⊂ {α′
n} such that

lim
n→∞

µ(ναn(t))f(ναn(t)) = µ(t)f(t)

uniformly for all t ∈ T.

Proof. It follows directly by Lemma 3.1.2.

The next result shows that linear combinations of Bochner almost periodic func-
tions and some other expressions involving Bochner almost periodic functions are also
Bochner almost periodic.

Theorem 3.2.20. Under the same assumptions of Theorem 3.2.17, one has:

af + bg ∈ APB and µfg ∈ APB, for all a, b ∈ R.

Also, if a+ µ(t)g(t) ̸= 0 and a+ µ(t)g(t) ̸= 0 for all t ∈ T, then

f

a+ µg
∈ APB.

Proof. Assuming a, b ∈ R and f, g ∈ APB, for every sequence {α′
n} ⊂ Z, there exists a

subsequence {αn} ⊂ {α′
n} such that

[µ(af + bg)]ναn = a(µf)ναn + b(µg)ναn
n→∞−−−→ a(µf) + b(µg)

uniformly. Also,
[µ(µfg)]ναn = (µf)ναn (µg)ναn

n→∞−−−→ µf · µg

uniformly. Finally, if a+ µ(t)g(t) ̸= 0 and a+ µ(t)g(t) ̸= 0 for all t ∈ T, then[
µ · f

a+ µg

]ναn

=
(µf)ναn

a+ (µg)ναn

n→∞−−−→ µf

a+ µg

uniformly, proving the desired result.

In what follows, we show a very interesting property for exponential function.

Theorem 3.2.21. Assume f ∈ APB(T,R). Then for every sequence {α′
n} ⊂ Z, there exists a

subsequence {αn} ⊂ {α′
n} such that for all t, s ∈ T, denoting Tαnf = f , we have

lim
n→∞

ef (ναn(t), ναn(s)) =

{
ef (t, s), if f is regressive on R,

0, otherwise,
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where R = {min{t, s}} ∪ [min{t, s},max{t, s})T.

Proof. If f : T → R is Bochner almost periodic, then for every sequence {α′
n} ⊂ Z, there

exists a subsequence {αn} ⊂ {α′
n} such that

lim
n→∞

ν∆
αn
(t)f(ναn(t)) = f(t) for every t ∈ T

uniformly, i.e., Tαnf = f . Therefore, for s < t,

ef (ναn(t), ναn(s))
(3.2)
= eν∆αn

fναn (t, s)

= exp

∑
τ∈[s,t)

µ(τ)
1

µ(τ)
ln
(
1 + µ(τ)ν∆

αn
(τ)f(ναn(τ))

)
=

∏
τ∈[s,t)

(
1 + µ(τ)ν∆

αn
(τ)f(ναn(τ))

)
which implies

lim
n→∞

ef (ναn(t), ναn(s)) = lim
n→∞

∏
τ∈[s,t)

(
1 + µ(τ)ν∆

αn
(τ)f(ναn(τ))

)
=
∏

τ∈[s,t)

(
1 + µ(τ)f(τ)

)
= ef (t, s),

if f is regressive on R. Otherwise, we obtain

lim
n→∞

ef (ναn(t), ναn(s)) =
∏

τ∈[s,t)

[1 + µ(τ)f(τ)] = 0.

Now, if t = s, then
ef (ναn(t), ναn(t)) = 1 = ef (t, t),

where f is regressive at t by hypothesis. Finally, if t < s, then

lim
n→∞

ef (ναn(t), ναn(s)) = lim
n→∞

1

ef (ναn(s), ναn(t))
=

1

ef (s, t)
= ef (t, s),

if f is regressive on R.

Remark 3.2.22. It is possible to prove the Theorem 3.2.21 changing f by an regressive and
Bochner almost periodic n×n-matrix-valued-function A defined on T (Remark 3.2.4), by using
Remark 3.1.5.
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Remark 3.2.23. Assuming that f : T → R is a nonnegative Bochner almost periodic function,
then f = Tαnf is also a nonnegative function. Thus, if f is also regressive, the same happen to
f , because

1 + µ(t)f(t) > 0 for all t ∈ T,

since µ(t) > 0 and f(t) ≥ 0 for all t ∈ T.

As an immediately consequence of the previous theorem, the following holds.

Corollary 3.2.24. Let f : T → R be regressive with −f being also regressive. If f is Bochner
almost periodic, then for every sequence {α′

n} ⊂ Z, there exists a subsequence {αn} ⊂ {α′
n}

such that
lim
n→∞

coshf (ναn(t), ναn(s)) and lim
n→∞

sinhf (ναn(t), ναn(s))

exist uniformly on T.

Proof. Let {α′
n} ⊂ Z be an arbitrary sequence. Thus, by Theorem 3.2.21,

there exists a subsequence {αn} ⊂ {α′
n} such that limn→∞ ef (ναn(t), ναn(s)) and

limn→∞ e−f (ναn(t), ναn(s)) both exist uniformly for every t, s ∈ T. Therefore, since

coshf (ναn(t), ναn(s)) =
ef (ναn(t), ναn(s)) + e−f (ναn(t), ναn(s))

2

and
sinhf (ναn(t), ναn(s)) =

ef (ναn(t), ναn(s))− e−f (ναn(t), ναn(s))

2
,

we conclude that both

lim
n→∞

coshf (ναn(t), ναn(s)) and lim
n→∞

sinhf (ναn(t), ναn(s))

exist uniformly for each t, s ∈ T.

We now establish the definition of exponential dichotomy and some preliminary
results in order to derive the sufficient conditions to the first order linear dynamic
equation to have a Bochner almost periodic solution.

Definition 3.2.25. Let A(t) be a n × n rd-continuous and regressive matrix-valued function
on T. We say that the linear system

X∆(t) = A(t)X(t) (3.4)

has an exponential dichotomy on T if there exist positive constants K and γ, and a projection
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P , which commutes with X(t), t ∈ T, where X(t) is a fundamental matrix of (3.4) satisfying

|X(t)PX−1(s)| ≤ Ke⊖ γ
µ
(t, s) for all s, t ∈ T, t ≥ s,

and

|X(t)(I − P )X−1(s)| ≤ Ke⊖ γ
µ
(s, t) for all s, t ∈ T, s ≥ t.

Remark 3.2.26. A first look for the definition of exponential dichotomy may be different, since
it appears γ

µ
instead of γ. However, since we are dealing with isolated time scales, we have

γ
µ
> 0 whenever γ > 0. Therefore, here we have a generalization in the sense that we have

a positive functions appearing instead of a positive constant. This will be necessary to our
purposes. Notice that if µ is constant, as in the case of Z, hZ and N, this definition colapses
with the classical one, bringing novelty only in the cases that µ is not constant.

The next result describes a solution of (3.4) when it admits an exponential di-
chotomy.

Theorem 3.2.27 (See [26, Lemma 2.13]). If the linear system (3.4) admits an exponential
dichotomy, then the system

X∆(t) = A(t)X(t) + f(t)

has a bounded solution x(t) as follows:

x(t) =

∫ t

−∞
X(t)PX−1(σ(s))f(s)∆s−

∫ +∞

t

X(t)(I − P )X−1(σ(s))f(s)∆s,

where X(t) is the fundamental matrix of (3.4).

Remark 3.2.28. Notice that the fundamental matrix X(t) is a solution of{
X∆(t) = A(t)X(t),

X(t0) = X0.

Therefore, by the uniqueness of solution

X(t)X−1(t0) = eA(t, t0).

Lemma 3.2.29. If A : T → Rn×n is an almost periodic function, then for every sequence
{α′

n} ⊂ D, there exists a subsequence {αn} ⊂ {α′
n} such that

lim
n→∞

X(ναn(t))X
−1(ναn(t0))
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exists uniformly on T.

Proof. It follows directly from Remark 3.2.28 and Remark 3.2.22.

Finally, we give sufficient conditions to the first order linear dynamic equation to
have a Bochner almost periodic solution.

Theorem 3.2.30. Let A ∈ R(T,Rn×n) be Bochner almost periodic and nonsingular on T.
Suppose (3.4) admits an exponential dichotomy with positive constants K and γ and for every
sequence {α′

n} ⊂ Z, there exists a subsequence {αn} ⊂ {α′
n} such that

lim
n→+∞

ν∆
αn
(t)ν∆σ

αn
(t)f(ναn(t)) = f(t) (3.5)

exists uniformly for all t ∈ T. Also, assume that ν∆αn
(t)

ν∆αn (σ(s))
, for t, s ∈ T, is bounded for each

n ∈ N. Then, the equation
X∆(t) = A(t)X(t) + f(t) (3.6)

has an almost periodic solution.

Proof. By Theorem 3.2.27, the following function

x(t) =

∫ t

−∞
X(t)PX−1(σ(s))f(s)∆s−

∫ +∞

t

X(t)(I − P )X−1(σ(s))f(s)∆s

is a bounded solution of (3.6). It remains to show that the solution is almost periodic.
Since A is almost periodic and (3.5) holds, for every {α′

n} ⊂ D, there exists a subse-
quence {αn} ⊂ {α′

n} such that

X(ναn(t))X
−1(ναn(σ(s)))

and
ν∆
αn
(t)ν∆σ

αn
(t)f(ναn(t))

converges uniformly as n → ∞ for every t, s ∈ T. The first convergence follows as a
consequence of Lemma 3.2.29. Therefore, we get

ν∆
αn
(t)x(ναn(t))

=

∫ ναn (t)

−∞
ν∆
αn
(t)X(ναn(t))PX−1(σ(s))f(s)∆s

−
∫ +∞

ναn (t)

ν∆
αn
(t)X(ναn(t))(I − P )X−1(σ(s))f(s)∆s
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=

∫ t

−∞
ν∆
αn
(t)X(ναn(t))PX−1(σ(ναn(s)))ν

∆
αn
(s)f(ναn(s))∆s

−
∫ +∞

t

ν∆
αn
(t)X(ναn(t))(I − P )X−1(σ(ναn(s)))ν

∆
αn
(s)f(ναn(s))∆s

=

∫ t

−∞

ν∆
αn
(t)

ν∆
αn
(σ(s))

X(ναn(t))X
−1(ναn(σ(s)))Pν∆

αn
(s)ν∆σ

αn
(s)f(ναn(s))∆s

−
∫ +∞

t

ν∆
αn
(t)

ν∆
αn
(σ(s))

X(ναn(t))X
−1(ναn(σ(s)))(I − P )ν∆

αn
(s)ν∆σ

αn
(s)f(ναn(s))∆s.

Applying the limit from both sides when n → ∞, we get that since the integrals
from the right hand side converges duo to the exponential dichotomy property and
the functions are bounded for each n ∈ N, the Dominated Convergence Theorem for
∆-integrals implies that

lim
n→∞

ν∆
αn
(t)x(ναn(t))

converges uniformly for each t ∈ T. It implies that x is almost periodic solution, prov-
ing the desired result.

For functions with two variables, we give the definition of Bochner almost period-
icity depending on one variable analogously.

Definition 3.2.31. A function f : T × R → R is called Bochner almost periodic on t ∈ T
for each x ∈ R, if for every sequence {α′

n} ⊂ D, there exists a subsequence {αn} ⊂ {α′
n} such

that
lim
n→∞

ν∆
αn
(t)f(ναn(t), x)

exists uniformly on T for each x ∈ R.

Remark 3.2.32. As before, we use the notation Tαnf = f to represent

lim
n→∞

ν∆
αn
(t)f(ναn(t), x) = f(t, x) for each x ∈ R.

Now, we present some similar properties of Bochner almost periodic functions for
this type of functions. Since the proofs follow almost identical, we omit it here.

Theorem 3.2.33. If f, g : T × R → R are Bochner almost periodic functions with respect to
the first variable for each x ∈ R, then

(i) f + g is Bochner almost periodic with respect to the first variable, for each x ∈ R;

(ii) cf is Bochner almost periodic with respect to the first variable, for each x ∈ R, where
c ∈ R;
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(iii) Let fω : T × R → R defined by fω(t, x) := f(νω(t), x). If for every sequence {α′
n} ⊂ Z,

there exists a subsequence {αn} ⊂ {α′
n} such that the limit

lim
n→∞

ν∆
αn
(t)

ν∆
αn
(νω(t))

exists uniformly for each t ∈ T, then fω is Bochner almost periodic with respect to the
first variable, for each ω ∈ Z.

Theorem 3.2.34. If f, g : T × R → R are Bochner almost periodic and regressive functions
with respect to the first variable for each x ∈ R, then

(i) f ⊕ g is Bochner almost periodic with respect to the first variable, for each x ∈ R;

(ii) f ⊖ g is Bochner almost periodic with respect to the first variable, for each x ∈ R;

(iii) ⊖f is Bochner almost periodic with respect to the first variable, for each x ∈ R.

In sequel, we state a result concerning Bochner almost periodic functions, which
satisfy the Lipschitz condition.

Theorem 3.2.35. Let f : T × R → R be Bochner almost periodic for each x ∈ R and suppose
f satisfies Lipschitz condition

|f(t, x)− f(t, y)| ≤ L(t)|x− y| for all t ∈ T and x, y ∈ R,

where L : T → (0,∞) is Bochner almost periodic, i.e., for every sequence {α′
n} ⊂ Z, there

exists a subsequence {αn} ⊂ {α′
n} such that

lim
n→∞

ν∆
αn
(t)L(ναn(t)) = L(t)

exists uniformly on T. Then, f given by Tαnf = f satisfies the Lipschitz condition with the
function L.

Proof. Let t ∈ T and x, y ∈ R such that x ̸= y. Let ε > 0. Since f and L are Bochner
almost periodic, for every sequence {α′

n} ⊂ Z, there exists a subsequence {αn} ⊂ {α′
n}

such that

|f(t, x)− ν∆
αn
(t)f(ναn(t), x)| ⩽

ε

3
,

|f(t, y)− ν∆
αn
(t)f(ναn(t), y)| ⩽

ε

3
,
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|L(t)− ν∆
αn
(t)L(ναn(t))| ⩽

ε

3|x− y|

for n sufficiently large and for each t ∈ T and x, y ∈ R. Therefore, we obtain by the
Lipschitz assumption of f

|f(t, x)− f(t, y)| ≤ |f(t, x)− ν∆
αn
(t)f(ναn(t), x)|+ |f(t, y)− ν∆

αn
(t)f(ναn(t), y)|

+ |ν∆
αn
(t)f(ναn(t), x)− ν∆

αn
(t)f(ναn(t), y)|

≤ |f(t, x)− ν∆
αn
(t)f(ναn(t), x)|+ |f(t, y)− ν∆

αn
(t)f(ναn(t), y)|

+ ν∆
αn
(t)L(ναn(t))|x− y|

= |f(t, x)− ν∆
αn
(t)f(ναn(t), x)|+ |f(t, y)− ν∆

αn
(t)f(ναn(t), y)|

+ ν∆
αn
(t)|f(ναn(t), x)− f(ναn(t), y)|

≤ 2ε

3
+ |ν∆

αn
(t)L(ναn(t))[x− y]|

=
2ε

3
+ |[ν∆

αn
(t)L(ναn(t)) + L(t)− L(t)][x− y]|

≤ 2ε

3
+ |L(t)− ν∆

αn
(t)L(ναn(t))| · |x− y|+ L(t)|x− y|

≤ ε+ L(t)|x− y|,

from where letting ε → 0+, we conclude the desired.

3.3 Bohr almost periodicity on isolated time scales

In this section, we aim to study the Bohr's definition of almost periodic functions
on the isolated time scales context, and provide a relation between this concept with
the Bochner almost periodicity definition.

Remark 3.3.1. Let t0 ∈ T. We can write

T =
⋃
n∈Z

νn(t0).

Note that if T has a minimum or maximum (or both), we can also write T as above, since
ρ(t) = t if t = inf T > −∞ and σ(t) = t if t = supT < +∞.

We start with the Bohr's definition of almost periodicity.

Definition 3.3.2. A function f : T → R is Bohr almost periodic if for every ε > 0, there
exists Nε ∈ N such that any Nε consecutive elements of D contain at least one ω ∈ D such
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that
|ν∆

ω (t)f(νω(t))− f(t)| < ε for all t ∈ T.

Remark 3.3.3. Again, we will only state and prove the results for the case when D = Z, since
the other cases follow analogous.

Remark 3.3.4. If f : T → R is ω-periodic, in the sense of

ν∆
ω (t)f(νω(t)) = f(t) for all t ∈ T,

for some ω ∈ N, then f is Bohr almost periodic. Indeed, let t ∈ T and note that for every ε > 0,
there exists Nε = ω + 1 ∈ N such that any Nε consecutive elements of Z contain at least one
s ∈ Z with

|ν∆
s (t)f(νs(t))− f(t)| = 0 < ε,

i.e., for any Nε consecutive numbers, it is possible to find a multiple of ω, s = kω, and thus

ν∆
s (t)f(νs(t)) = ν∆

kω(t)f(νkω(t))

(3.1)
= ν∆

(k−1)ω(t)ν
∆
ω (ν(k−1)ω(t))f(νω(ν(k−1)ω(t)))

= ν∆
(k−1)ω(t)f(ν(k−1)ω(t)),

from where proceeding this way, we have that ν∆
s (t)f(νs(t)) = f(t), getting the desired result.

The next result shows a strong correspondence between Bohr almost periodic func-
tions defined on T and Z. We recall the definition of Bohr almost periodic functions in
this context: a function f : Z → R is called Bohr almost periodic, if for every ε > 0,
there exists Nε ∈ N such that any Nε consecutive elements of Z contains at least one an
integer ω with the property

|f(t+ ω)− f(t)| < ε for all t ∈ Z.

Theorem 3.3.5. A necessary and sufficient condition for a function g : T → R to be Bohr
almost periodic on T is the existence of a Bohr almost periodic function f : Z → R such that
ν∆
n (t0)g(νn(t0)) = f(n) for every n ∈ Z.

Proof. Suppose g : T → R is Bohr almost periodic on T and define f : Z → R by f(n) =

ν∆
n (t0)g(νn(t0)) for n ∈ Z. Let ε > 0. Given n ∈ Z, since g is Bohr almost periodic, there

exists Nε ∈ N such that any Nε consecutive elements of Z contain at least one ω with

|ν∆
ω (t)g(νω(t))− g(t)| < ε

ν∆
n (t0)

for all t ∈ T.
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Let t ∈ T be such that t = νn(t0), we have

|f(n+ ω)− f(n)| = |ν∆
n+ω(t0)g(νn+ω(t0))− ν∆

n (t0)g(νn(t0))|
(3.1)
= |ν∆

n (t0)ν
∆
ω (νn(t0))g(νω(νn(t0)))− ν∆

n (t0)g(νn(t0))|

= |ν∆
n (t0)ν

∆
ω (t)g(νω(t))− ν∆

n (t0)g(t)|

< ν∆
n (t0)

ε

ν∆
n (t0)

= ε.

obtaining that f is Bohr almost periodic on Z.
On the other hand, suppose f is Bohr almost periodic. Let ε > 0 and t ∈ T. Then, there
exists n0 ∈ Z such that t = νn0(t0) and also, there exists Nε ∈ N such that among any
Nε consecutive integers, there exists ω ∈ Z such that

|f(n+ ω)− f(n)| < εν∆
n0
(t0) for all n ∈ Z.

Thus, we have

|f(n0 + ω)− f(n0)| = |ν∆
n0+ω(t0)g(νn0+ω(t0))− ν∆

n0
(t0)g(νn0(t0))|

(3.1)
= |ν∆

n0
(t0)ν

∆
ω (νn0(t0))g(νω(νn0(t0)))− ν∆

n (t0)g(νn0(t0))|

= ν∆
n0
(t0)|ν∆

ω (t)g(νω(t))− g(t)|,

i.e.,

|ν∆
ω (t)g(νω(t))− g(t)| = |f(n0 + ω)− f(n0)|

ν∆
n0
(t0)

<
εν∆

n0
(t0)

ν∆
n0
(t0)

= ε,

that is, g is Bohr almost periodic.

Remark 3.3.6. Theorem 3.3.5 can be extended for other cases when D ̸= Z for f also defined
on D, obtaining a direct bijection to T.

We also have a correspondence between Bohr almost periodic functions defined on
Z and R.

Theorem 3.3.7 (See [14, Theorem 1.27]). A necessary and sufficient condition for a function
g : Z → R to be Bohr almost periodic is the existence of a Bohr almost periodic f : R → R such
that g(n) = f(n) for all n ∈ Z.

The next result is a consequence of Theorems 3.3.5 and 3.3.7.
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Theorem 3.3.8. A necessary and sufficient condition for g : T → R to be Bohr almost periodic
on T is the existence of a Bohr almost periodic function f : R → R such that ν∆

n (t0)g(νn(t0)) =

f(n) for every n ∈ Z.

Proof. If g : T → R is Bohr almost periodic, then Theorem 3.3.5 implies that there exists
a Bohr almost periodic function φ : Z → R such that ν∆

n (t0)g(νn(t0)) = φ(n) for every
n ∈ Z. Thus, by Theorem 3.3.7, there exists a Bohr almost periodic function f : R → R
such that φ(n) = f(n). Therefore, there exists f : R → R such that ν∆

n (t0)g(νn(t0)) =

f(n) for every n ∈ Z.
On the other hand, if there exists a Bohr almost periodic function f : R → R such that
ν∆
n (t0)g(νn(t0)) = f(n) for every n ∈ Z, we can consider φ : Z → R given by φ = f |Z

and by Theorem 3.3.5, it follows the desired result.

The next result states an equivalence of Bochner almost periodic functions and Bohr
almost periodic functions on isolated time scales.

Theorem 3.3.9. Suppose f : T → R is Bochner almost periodic and there exists M > 0 such
that

µνk(t)

µ(t)
> M for all t ∈ T and k ∈ Z. (3.7)

Then f is Bohr almost periodic. Conversely, if f is Bohr almost periodic, then f is Bochner
almost periodic.

Proof. Suppose f is Bochner almost periodic, but f is not Bohr almost periodic. There-
fore, there exists at least one ε > 0 such that for any Nε ∈ N, the set of Nε consecutive
numbers in Z does not contain any element ω satisfying

|ν∆
ω (t)f(νω(t))− f(t)| < ε

M
for all t ∈ T. (3.8)

Consider an arbitrary number α1 ∈ N, then (3.8) is not satisfied for all t ∈ B :=

[ν−α1(t0), t0)T ∪ [t0, να1(t0))T. Take α2 = n · α1 (for some n ∈ N \ {1}), then (3.8) is
not satisfied for all t ∈ [ν−(α1+α2)(t0), ν−α1(t0))T ∪ [να1(t0), να1+α2(t0))T. Proceeding in
this way, we can construct a sequence {αk}k∈N where αk = n · αk−1 (k = 2, 3, . . .) and
such that the set

B ∪

(
∞⋃
n=2

([ν−∑n
i=1 αi

(t0), ν−∑n−1
i=1 αi

(t0))T ∪ [ν∑n−1
i=1 αi

(t0), ν∑n
i=1 αi

(t0))T)

)

covers all T. Therefore, for any i, j ∈ N such that i > j > 1 and considering i = j + h
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(h ∈ N), we obtain

sup
t∈T

|ν∆
αi
(t)f(ναi

(t))− ν∆
αj
(t)f(ναj

(t))| (3.9)

= sup
t∈T

|ν∆
αj+h

(t)f(ναj+h
(t))− ν∆

αj
(t)f(ναj

(t))|

= sup
t∈T

|ν∆
nhαj

(t)f(νnhαj
(t))− ν∆

αj
(t)f(ναj

(t))|

= sup
t∈T

ν∆
αj
(t)|ν∆

(nh−1)αj
(ναj

(t))f(ν(nh−1)αj
(ναj

(t)))− f(ναj
(t))|

≥ sup
t∈T

µναj (t)

µ(t)

ε

M
> ε,

where the second equality follows from the definition of the sequence {αk}. Hence,
the sequence {ν∆

αk
(t)f(ναk

(t))} cannot contain any uniformly convergent subsequence,
which contradicts the fact that f is Bochner almost periodic. Reciprocally, if f is Bohr
almost periodic, then given ε > 0, there exists Nε ∈ N such that any Nε consecutive
elements of Z contain at least one ω with

|ν∆
ω (t)f(νω(t))− f(t)| < ε for all t ∈ T.

Let t ∈ T and i ∈ Z be such that t = νi(t0). Defining g : Z → R by

g(n) := ν∆
n (t0)f(νn(t0)), n ∈ Z,

we obtain from Theorem 3.3.5 that g is Bohr almost periodic, and hence, by Theorem
2.2.21, g is Bochner almost periodic, i.e., for every sequence {α′

k} ⊂ Z, there exists a
subsequence {αk} ⊂ {α′

k} such that

lim
k→∞

g(n+ αk)

exists uniformly for every n ∈ Z. Hence,

lim
n→∞

g(i+ αn) = lim
n→∞

ν∆
i+αn

(t0)f(νi+αn(t0))

= lim
n→∞

ν∆
αn
(νi(t0))ν

∆
i (t0)f(ναn(νi(t0)))

= lim
n→∞

ν∆
αn
(t)ν∆

i (t0)f(ναn(t)),

= ν∆
i (t0) lim

n→∞
ν∆
αn
(t)f(ναn(t)),
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exists uniformly, i.e., the limit

lim
n→∞

ν∆
αn
(t)f(ναn(t))

exists uniformly for all t ∈ T, obtaining the desired result.

Remark 3.3.10. The hypothesis (3.7) for a Bochner almost periodic function to be a Bohr almost
periodic function is reasonable. Indeed, for Z, hZ and qN0 this condition is trivially satisfied
for M < 1. Thus, all the previous results show that all properties for Bochner almost periodic
functions that satisfies (3.7) also holds for Bohr almost periodic functions. This motivates us
to call just almost periodic functions all the ones that are Bohr/Bochner almost periodic
functions.

3.4 Examples and Applications

In this section, we provide some examples of almost periodic functions on isolated
time scales. Also, we present an application of Theorem 3.2.30.

Example 3.4.1. Let f : R → R be any almost periodic function on R. For t ∈ T, there exists
n ∈ Z such that t = νn(t0). Thus, by Theorem 3.3.8, the function F : T → R given by

F (t) =
f(n)

ν∆
n (t0)

,

is also an almost periodic function on T.

Example 3.4.2. The function f : R → R given by f(t) = cos t + cos(
√
2t) is almost periodic

on R (see [17, Page 3]). Therefore, by Example 3.4.1, we have

(i) If T = Z, let t ∈ T. Then, if t > t0, there exists n ∈ N such that t = νn(t0) = t0 + n for
n = t − t0 and ν∆

n (t0) = 1 (the cases when t < t0 or t = t0 follow similarly). Thus, the
function F : T → R given by

F (t) =


f(t− t0) if t > t0,

f(t0 − t) if t < t0,

f(0) if t = t0,

i.e.,

F (t) =


cos(t− t0) + cos(

√
2(t− t0)) if t > t0,

cos(t0 − t) + cos(
√
2(t0 − t)) if t < t0,

2 if t = t0
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is almost periodic on Z.

(ii) If T = hZ with h > 0, let t ∈ T. Hence,

F (t) =


cos
(
t−t0
h

)
+ cos

(√
2
(
t−t0
h

))
if t > t0,

cos
(
t0−t
h

)
+ cos

(√
2
(
t0−t
h

))
if t < t0,

2 if t = t0

is almost periodic on hZ.

(iii) If T = qN0 , then given t ∈ T and considering t0 = 1, there exists n ∈ N0 such that t = qn.
Hence, the function F : T → R given by

F (t) =
f(logq t)

t
=

cos(logq t) + cos(
√
2 logq t)

t

is almost periodic on qN0 , since ν∆
n (t0) = qn = t.

Example 3.4.3. The function f : R → R given by f(t) = sin t+ sin(πt) is almost periodic on
R (see [14, Page 107]). Therefore, analogously, we have

(i) If T = Z, the function F : T → R given by

F (t) =


sin(t− t0) + sin(π(t− t0)) if t > t0,

sin(t0 − t) + sin(π(t0 − t)) if t < t0,

2 if t = t0

is almost periodic on Z.

(ii) If T = hZ with h > 0, the function F : T → R given by

F (t) =


sin
(
t−t0
h

)
+ sin

(
π
(
t−t0
h

))
if t > t0,

sin
(
t0−t
h

)
+ sin

(
π
(
t0−t
h

))
if t < t0,

2 if t = t0

is almost periodic on hZ.

(iii) If T = qN0 , for t ∈ T and considering t0 = 1, the function F : T → R given by

F (t) =
f(logq t)

t
=

sin(logq t) + sin(π logq t)

t



88 Almost periodicity on isolated time scales

is almost periodic on qN0 .

Example 3.4.4. Consider T = qN0 and t ∈ T. By Examples 3.4.2 and 3.4.3 and Theorem
3.2.10 (i), the function F : T → R given by

F (t) =
cos(logq t) + cos(

√
2 logq t) + sin(logq t) + sin(π logq t)

t
.

is almost periodic on qN0 . Thus, since for any sequence {αn} ⊂ Z the limit

lim
n→∞

ν∆
αn
(t)

ν∆
αn
(νω(t))

= lim
n→∞

qαn

qαn
= 1

always exists uniformly on T, by Theorem 3.2.10 (iii), the function fω : T → R defined by

fω(t) = F (νω(t)) =
1

νω(t)
[cos(logq νω(t)) cos(

√
2 logq νω(t))+

+ sin(logq νω(t)) + sin(π logq νω(t))],

i.e.,

fω(t) =
1

qωt
[cos(ω + logq t) + cos(

√
2(ω + logq t))

+ sin(ω + logq t) + sin(π(ω + logq t))]

is almost periodic on qN0 .

Example 3.4.5. Let g : Z → R be a normal ω-periodic function. Then, for T = {
√
n : n ∈

N0}, the function f : T → R

f(t) =
g(t2)√

t2 + 1− t

is ω-periodic [7, See Example 5.5]. Thus, by Remark 3.3.4, f is almost periodic.

Example 3.4.6. Consider the following equation:

x∆(t) = Ax(t) + f(t) (3.10)

on T = 2Z. Consider

A =

[
−4 0

0 −4

]
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and f(t) = cos(πt)+sin
(
π
2
t
)
. Then, clearly f satisfies the hypothesis of Theorem 3.2.30. Also,

I + µ(t)A =

[
−1 0

0 −1

]

is invertible. Using the fact that the eigenvalues of the coefficient matrix are λ1 = λ2 = −4 and
applying Putzer Algorithm, we obtain that the P -matrices are given by

P0 = I =

[
1 0

0 1

]

and P1 = (A− λ1I)P0 = (A+ 4I)P0. Again, by Putzer Algorithm, we get

r∆1 (t) = −4r1(t), r1(t0) = 1,

r∆2 (t) = r1(t)− 4r2(t), r2(t0) = 0.

From this, we obtain
r1(t) = e⊖4(t, t0) = e⊖ 8

µ
(t, t0).

Now, applying the Variation Constant Formula, we get the following expression to r2

r2(t) = e⊖4(t, t0)r2(t0) +

∫ t

t0

e⊖4(t, σ(s))4r1(s)∆s

=

∫ t

t0

e⊖4(t, σ(s))4e⊖4(s, t0)∆s

=

∫ t

t0

e⊖4(t, s)e⊖4(s, σ(s))4e⊖4(s, t0)∆s

= e⊖4(t, t0)

∫ t

t0

4

[
1− 4µ(s)

1 + 4µ(s)

]
∆s

= e⊖4(t, t0)

∫ t

t0

4
1

1 + 4µ(s)
∆s.

Finally, applying Putzer Algorithm again, we get

eA(t, t0) = r1(t)P0 + r2(t)P1

= e⊖4(t, t0)

[
1 0

0 1

]
+

(
4e⊖4(t, t0)

∫ t

t0

∆s

1 + 4µ(s)

)
(A+ 4I)

=

[
e⊖4(t, t0) 0

0 e⊖4(t, t0)

]
.
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Hence, for t ≥ s, we obtain

∥∥X(t)P0X
−1(s)

∥∥ =

∥∥∥∥∥e⊖4(t, t0)

[
1 0

0 1

]
e4(s, t0)

[
1 0

0 1

]∥∥∥∥∥
=

∥∥∥∥∥
[

e⊖4(t, t0) 0

0 e⊖4(t, t0)

][
e4(s, t0) 0

0 e4(s, t0)

]∥∥∥∥∥
=

√
2e⊖4(t, s).

Taking K =
√
2 and γ = 8, we obtain that the equation (3.4) admits exponential dichotomy.

Therefore, we can check that all the conditions of Theorem 3.2.30 are satisfied, then the equation
(3.10) has an almost periodic solution.
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