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RESUMO

Neste trabalho apresentamos diversas classes de problemas elipticos nao-lineares e encon-
tramos para eles resultados de existéncia, nao-existéncias, multiplicidade e regularidade
de solugoes. Utilizamos principalmente técnicas de Métodos Variacionais e Métodos To-
polégicos, mas também fazemos uso de técnicas da Teoria de Morse e de Regularidade

Eliptica para Equacoes Diferenciais Parciais.

Palavras-chave: Equacoes Diferenciais Parciais Elipticas. Existéncia, nao-existéncia e

multiplicidade de solugoes. Métodos Variacionais. Métodos Topoldgicos.



ABSTRACT

In this work, we present various classes of nonlinear elliptic problems and obtain results
on the existence, non-existence, multiplicity, and regularity of solutions. We primarily
use techniques from Variational Methods and Topological Methods, but we also employ

techniques from Morse Theory and Elliptic Regularity for Partial Differential Equations.

Keywords: Elliptical Partial Differential Equations. Existence, non-existence and mul-

tiplicity of solutions. Variational Methods. Topological Methods.
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LISTA DE NOTACOES E SIMBOLOS

0, (1) denota um termo que se aproxima de zero quando n — +oc.
0c(1) denota um termo que se aproxima de zero quando € — 0F.

Para © um aberto do RY (nao necessariamente limitado), denota-se por v o vetor

normal unitario exterior a 0f).

Para t € R um parametro real e f, g : R — R aplicagoes, escrevemos f(t) = O(g(t))
para simbolizar que |f(t)| < Cg(t), para todo t € R, isto é, que f tém crescimento

controlado por g. Quando f é limitada, escrevemos f(t) = O(1).

Para p > 1, denota-se por p’ o expoente conjugado de p, o qual satisfaz p’ = +00 se

1 1
p=le—-+—-=1sep>1
p p

Para k > 0 e Q C RY, consideramos C*(Q) como o espago das funcoes definidas
em €2, k vezes diferenciaveis, de maneira que todas as suas derivadas parciais até
a ordem k sejam continuas. No caso em que k = 0, este espaco corresponde ao
espaco das fungoes continuas. Quando §2 é um aberto limitado, podemos definir

sobre C*(€2) a norma

lullex = sup|D*u(w)],

la| <k S

onde @ = (q, ..., ay) é um multi-indice e |a| = a3+ - -+ ay. Além disso, definimos

C>(Q) = () C*(Q)

k>0

e C(Q) = {u € C>() : supp(u) é compacto}, onde supp(u) = {z € Q : u(z) # 0}

é o suporte de u.
Seja o € (0,1) e k € N. Definimos o espago de Holder

C"‘”“(Q) ={u e Ck(Q) : ”U/Hck,a(g) < 400},
em que

DPu(z) — Du(y)|
|z —yl|*

|
[ullcra@) = lluller + Z sup
181=k “7Y

e = (..., fn) é um multi-indice com |G| = By + -+ - + Bn.
Seja 1 < p < 400 e © C RY um conjunto mensuravel. Definimos o espaco de

Lebesgue
LP(Q) = {u : Q — R mensuravel : ||ul|zr(q) < 00},



em que

1/p
lul| o) = (/ |u|pdx> )
Q

Quando p = +o0, definimos
L>(Q) = {u : Q@ — R mensuravel : ||u| =) < +oo},

onde
||| Loy = inf{C > 0 : |u(z)| < C, q.t.p. x € Q}.

Para k € Ne 1 < p < +00, consideramos o espaco de Sobolev
WkEP(Q) = {u € LP(Q) : D*u € LP(Q),V|a| < k},

em que D denota a a-ésima derivada fraca de u, para cada a = («q, ..., ay) multi-
indice com |a] = a3 + -+ + ay < k. Neste caso, a norma de Sobolev é dada

por
1/p

lullip = | D 1D ullfq

o] <k



Introducao

Neste trabalho, estudamos diversas classes de problemas elipticos. Em cada
uma delas, trabalharemos com técnicas unicas e muito diferentes entre si. Deste modo,
organizaremos esse texto em 3 capitulos independentes, para buscar trazer uma melhor
sistematizacao dos resultados. As trés secoes a seguir apresentam os resultados de cada

um destes capitulos.

Problemas com fluxo superlinear na fronteira

No primeiro capitulo, comecamos por estudar

—Au—%(a:-Vu):(), em RY,
ou (1)

— = pa(2)|u|"?u + b(z")|u|*"*u, sobre ORY ~ RN,

ov

onde RY := {(a:’, ay) 2’ € RV oy > O} ¢ o semi-espaco superior e v é o vetor normal

exterior & fronteira ORY, a qual pode ser identificada com o espago RV, Além disso,

2N — 1)

l<qg<?2, p>0, 2, :=
q<2, p>0, N5

e a,b: RV"! = R sdo potenciais que satisfazem

(ag) a€ LY N LNfl(RN_l), com (2./q) <o, <(2/q);

loc
(bo) be LOO<RN_1);

(ab) existem 6 >0, by >0 ey > N — 1 tais que

By :={a' e RY"": |2| <0} C (QF n&y)



1blloc := [|b]| oo @1y < b(2") + bol2'|”,  q.t.p em By,

em que ) e Q) representam os subconjuntos de RY~! em que a, b sao positivas.
O primeiro resultado provado no Capitulo 1 é o seguinte:

Teorema A. Suponha que N > 4 e que a e b satisfazem (ag), (bo) e (ab). Entdo, existe
w* > 0 tal que, para todo pu € (0,u*), o problema possui pelo menos duas solugoes

fracas nao-nulas e nao-negativas.

Observacao. Com as hipoteses acima, no caso em que N = 3, € possivel obter a
existéncia de ao menos uma solugcao fraca nao-nula e ndao-negativa para valores peque-
nos de ;t > 0. Na realidade, ao invés da condigao basta nesse caso que o conjunto

Q:{ tenha interior nao-vazio.

A primeira solucao é obtida com um argumento de minimizac¢ao, enquanto a segunda
requer argumentos mais sofisticados, uma vez que a imersao do trago perde a compacidade
no expoente critico. O ponto principal para superar essa dificuldade vem de estimativas
refinadas a partir de uma certa modificacao das fungoes instanton exploradas por Escobar

em [38] e por Beckner em [15].

O funcional energia associado ao problema (/1)) é claramente par. Consequentemente,
assim como em Bartsch e Willem [I4], seria esperado obter uma quantidade infinita de

solugoes (sem sinal prescrito). No nosso segundo resultado, inspirados pelos trabalhos
2,-2

[55] [74], substituimos o termo critico b(z’)|u|*~*u por uma fungao mais geral f que seja

impar perto do zero. Mais especificamente, consideramos o problema

1
—Au—§(x-Vu):0, em RY,

ou , (2)
= pa(x)|u|"?u + f(u), sobre RN~
v

em que 4 e ¢ permanecem como antes e as funcoes a, f satisfazem
(fo) f € CR,R);

(f1) existe p € (2,2,) de modo que

f(s)

s—0 ‘3‘1771

(@) a € LY NL¥RY"), em que (p/q) < 04 < (2/9)";



(a1) QF possui um ponto interior.

Usando as condicoes acima, provamos o seguinte:

Teorema B. Suponha que a e f satisfazem|(ap)l [(a1)l, ((fo)l e|(f1)] Além disso, suponha

que f € impar no intervalo [—Cx.p, Cn |, em que

2, +2— p) (24+2-p)/2(2+—p)?

Cnyp = max {1, 252_*1}1/(2*710) ( 5

Entao existe i > 0 tal que, para cada p € (0, i), o problema possui um numero infinito

de solugoes fracas.

A prova também é variacional, porém apresenta um desafio significativo a ser supe-
rado. Se F(s) := fos f(t)dt, o funcional energia formal associado ao problema ([2)) possui o
termo [ F(u)do, o qual pode ser infinito, uma vez que nao se tem controle sobre o com-
portamento de f no infinito. Mesmo na definicao de solucao fraca, temos que considerar
que estamos com solucoes no sentido distribucional. Para superar essa dificuldade, ado-
tamos ideias dos artigos [10], (13, [55] [74]. Isto envolve aplicar um truncamento a funcao f
de modo que o funcional truncado seja bem definido e coercivo em um espago de Sobolev
apropriado. Depois de mostrar a existéncia de infinitos pontos criticos para este funcional,
aplicamos uma variagao da Iteragdo de Moser [60] para provar que, se p > 0 é pequeno,
estes pontos criticos possuem norma L pequena na fronteira e, portanto, sao solugoes

fracas do problema original.

Os dois problemas que estudamos neste capitulo recaem numa classe mais geral de

problemas que pode ser modelada por

ov

—Av = g(z,v,Vv), em Rf, "
v

= h(a2',v), sobre RV,

Nesse sentido, falando um pouco sobre estudos relacionados, os autores em [42] conside-

raram o problema acima com
1 ! -2
g([L‘7’l},VU) :[LU+§(ZEV'U), h([E,’U) = |U|q U,

com 2 < q < 2,. Além de obter resultados de existéncia de solucoes para certos valores de
i > 0, eles mostraram a relagao entre o problema e a existéncia de solucoes auto-similares

para a equacao do calor nao-linear

0
wy — Aw =0, em RY x (0, +00), v lw|7 2w, sobre RN~ x (0, 4+-00).

ov

Para outras escolhas apropriadas das fungoes g e h, este problema modela problemas



em glaciologia [66], genética populacional [9], mecanica de fluidos nao-Newtonianos [35],
elasticidade nao-linear [29], entre outros. De uma perspectiva matemadtica, também se
relaciona ao estudo de obter as melhores constantes em imersoes de traco de Espagos de
Sobolev [34] [38] assim como no estudo de deformagao conforme de variedades Riemanni-
anas 39, 40].

Em um trabalho recente, Furtado e Silva [47] consideraram

2*72,0

?

1
gz, Vo) = 5@ Vo), h('v) = plol 20+ o

com 2 < g < 2,, e mostraram a existéncia de solugoes nao-nulas em dois casos: 2 < ¢ < 2,
pw>0;eq=2,u€(0,u), onde g > 0 é o primeiro autovalor de um problema linear
associado. Em virtude destes resultados, é natural perguntar o que acontece no caso
sublinear 1 < ¢ < 2. Daremos uma resposta parcial ao que acontece nesse caso ao provar

o Teorema [Al

Devido a natureza assimétrica do termo de fronteira nao linear, os nossos problemas
recaem numa classe conhecida como problemas do tipo concavo-convexo. Com o objetivo
de fazer uma perspectiva histérica, podemos considerar:

—Au = g(x,u), em €, o+ 042% = h(x,u), sobre 012,
em que Q C RY, N > 3, é um dominio limitado. No seu artigo classico, Ambrosetti,
Brezis e Cerami [7] obtiveram duas solugoes positivas quando ap = 0, h =0, e g(x, s) =
pus®t 4P com 1 < ¢ <2< p < 2*:=2N/(N—2), e u> 06 pequeno. Em [44],
de Figueiredo, Gossez e Ubilla generalizaram esses resultados ao considerar g(z,s) =
pc(z)|s|9%s + d(x)|s[P~2s, com ¢ e d nao possuindo sinal constante. No contexto de

condigoes de fronteira de Dirichlet, podemos mencionar [4, 63, [75] e suas referéncias.

Para o caso Neumann, quando a; = 0, podemos citar o trabalho de Azorezo, Peral e
Rossi [12], que consideraram g(z, s) = |s|[P~2s — s, h(x, s) = p|s|?7?s e obteram resultados
similares aos de [7]. Em [48], os autores consideraram g = 0 e h(xz,s) = pc(z)|s|?2s +
d(z)|s[P7%s, com 1 < ¢ < 2 < p < 2,. Os potenciais ¢ e d sao limitados e verificam
as seguintes condigdes de sinal: [, c(x)do < 0, [,,d(x)do # 0. Sob outras condiges
mais técnicas, eles mostraram a existéncia de duas solugoes positivas se p > 0 é pequeno.
Alguns outros resultados acerca de existéncia de infinitas solucoes podem ser encontrados

[13, 149, 55| [73], [74] e em suas referéncias.

Os dois resultados provados neste capitulo estendem e/ou complementam os traba-
lhos acima mencionados de diversas formas: consideramos um operador diferente, poten-

ciais que podem mudar de sinal, o semi-espaco superior e condigoes locais de simetria.



Eles foram recentemente publicados no artigo [46].

Vale ressaltar que uma versao inicial do Teorema [A] estd explorada com muitos
detalhes na dissertacao de mestrado do estudante (veja [62]). Ld, provamos este resultado
para N > 5. Aqui, conseguimos estender também o resultado para N = 4, deixando-o

mais completo.

Problemas com fluxo concavo na fronteira

No segundo capitulo, investigamos a multiplicidade de solugoes para duas classes de
problemas elipticos com condi¢gao de Neumann nao-linear contendo um termo natureza
concava. Como comentado antes, no Capitulo 1 também estudamos problemas com a
presenca desse termo, que embora sejam voltados ao contexto de problemas concavo-

convexos, possuem similaridades com as duas equagoes que tratamos aqui.

Nas tultimas décadas, esse tipo de nao-linearidade tem ganhado destaque nas pes-
quisas. Trabalhos como os de Abreu, Carrido e Miyagaki [1], Perera [68] e Wang [74]
contribuiram de forma decisiva para a consolidacao de métodos voltados a existéncia de

multiplas solucoes para esses tipos de problema.

Considere  C RY um dominio regular, 1 < p < 400, —A,u = —div(|Vu[P"?>Vu) o

operador p-laplaciano e o seguinte problema nao-linear

—Ayu+ |ulP~?u =0, em €,

(3)
|Vu|p2% = AMu|72u + g(2',u), sobre 02,

comA>0,comA>01<g<peg:I2xR— R cumprindo

(90) g € C(0Q2 x R, R);
(g1) existe 6 > 0 tal que g(a’, s) = g(z’, —s) para todo 2’ € I e para todo s € [0, d];

(g2) vale

=0, uniformemente em 2’ € Of).

im
s|=0  |s|?

O primeiro resultado do Capitulo 2 é:

Teorema C. Suponha que g satisfaz . Entao, para qualquer A > 0, o pro-
blema (3) admite uma sequéncia (u,) C WHP(Q) N L>(0Q) de solucdes fracas tais que
\|tn || Lo 00y = 0, quando n — +oo.



A motivagdo para estudar este problema foi o trabalho de Z-Q. Wang [74], em
que o autor estuda os efeitos de uma nao-linearidade concava e fmpar perto da origem
atuando juntamente com a poténcia concava pura. Neste trabalho, o autor mostrou a
existéncia de uma quantidade infinita de solugoes com norma L*° pequena. Com as
técnicas desenvolvidas por ele, somos capazes de definir um truncamento conveniente que
permite deixar a nao-linearidade concava em toda a parte. Isso, somado a paridade e ao

emprego de técnicas de simetria, garante uma infinidade de solugoes.

Assim como no segundo problema do Capitulo 1, também nao temos aqui hipéteses
para o comportamento do termo nao-linear no infinito, o que demandou a aplicacao de
uma técnica de regularidade combinada com estimativas a priori para garantir que as
solucoes do problema truncado sao do original. No entanto, nao fizemos iteragao de
Moser, como no primeiro capitulo. Ao invés disso, mostramos a validade um resultado
que pode ser aplicado para realizar um iteracao do tipo bootstrap para problemas com
o p-laplaciano, que generaliza um resultado ja conhecido da literatura ([I0, Proposigao

4.1]). Mais especificamente, provamos o seguinte:

Lema. Sejam

p(N—1) Ns(p—1)
1 1 - - < = —
p>1, 8>maX{’(p—1)N , N_1
h € L#(0R2) e € WHP(Q) uma solugdo fraca de
_pr + |¢‘p_21/1 = 07 em Q7
|V¢|p_20—1/} = h, sobre 0.
v

Entdo, v € WY(Q) e existe uma constante universal C = C(N,s,) > 0 tal que

It < Clinl

L5 (89)-

No problema , a nao-linearidade no bordo apresenta um parametro com sinal
positivo. Como forma de ter uma certa dualidade, inspirados pelos trabalhos de [59] 64} 68]
buscamos também fazer o estudo de uma equacao semelhante, porém com parametro

negativo. Assim, neste trabalho, consideramos o seguinte problema:

—Au+u=0, em (2,

(4)
% = —\|u|"2u + g(u), sobre 012,
v

onde A > 0 e, agora, a nao-linearidade g : R — R satisfaz



(93) g e Cl(RvR);

(94) g(0) =0e ¢’ (0) > A\, em que A\; > 0 é o primeiro autovalor do problema de Steklov
(ver (2.2)));

(g5) existe C7; > 0er € (2,2,) de modo que
lg(s)l < Cr(1+]s]""), Vs €R;

2G(s)

(96) limsupyy 4o o2 < Ar.

Inspirados nas técnicas desenvolvidas e/ou utilizadas nos trabalhos de Perera [67,
68], Paiva, do O e Medeiros [64] e Azorero, Peral e Manfredi [I1], mostramos existéncia
e multiplicidade de solugoes para o problema . Convém ressaltar que os trabalhos de
Perera [67, 68] sao um divisor de dguas para o estudo de algumas classes de problemas
elipticos, pois a partir deles, permitiu-se aliar ferramentas de dlgebra e (co)-homologia de

grupos a obtencao de resultados de natureza variacional.

Nosso primeiro resultado para o problema (4)) é

Teorema D. Suponha a validade de|(gs)H(ge). Entao, existe \* > 0 tal que se A € (0, \*),

o problema possut pelo menos 4 solucoes nao-triviais.

Em alguns casos, é possivel obter uma quinta solugao, conforme pode-se ver no

resultado abaixo

Teorema E. Suponha a validade de e|(gs) Além disso, suponha que existe k > 2
tal que

(g1) 9(0) =0 e g'(0) > A,
) 1,
(gs) G(s) < §Ak+1s , para todo s € R.

Entao, existe \* > 0 tal que se A € (0, \*), o problema possui H solugoes nao triviais.

Em [68], Perera estudou o efeito da presenga do parametro negativo juntamente
com uma nao-linearidade sublinear. No nosso caso, pedimos que a fonte que acompanha
a poténcia pura na condi¢ao de contorno tenho crescimento subcritico, assim como é feito

em [64], o que caracteriza nosso problema como uma espécie de concavo-convexo.



O nosso trabalho é inovador, por transferir para o bordo os efeitos das nao-linearidades.
Além disso, é muito importante frisar que foi necessario desenvolver uma nova versao do
resultado que compara minimos locais nas topologias Sobolev e Holder, peca essencial
para o estudo deste tipo de problema, como é destacado por Perera [68]. De fato, este
tipo de resultado nao é natural e é bastante surpreendente obté-lo, apesar de ja ser algo
conhecido na literatura, pois requer uma estrutura bem particular do funcional, como

enfatizam Brezis e Niremberg em seu trabalho [21].

Uma caracteristica marcante deste capitulo estda na analise detalhada do papel do
parametro que multiplica o termo concavo na fronteira. Consideramos tanto o caso em
que esse parametro é positivo, reforcando a contribuicao da nao linearidade sublinear,
quanto o caso negativo, em que o termo concavo passa a agir contra o aparecimento
de solugoes. Essa mudanca de sinal nao apenas altera profundamente a geometria do
funcional associado ao problema, mas também demanda uma grande mudanca nas técnicas

empregadas para resolveé-lo.

Nosso objetivo, portanto, é compreender como essa inversao no sinal do parametro
impacta a existéncia e multiplicidade de solugoes, propondo métodos adequados a cada
configuracao. Ampliamos os resultados previamente conhecidos para problemas com ter-
mos concavos na fronteira e oferecemos uma analise comparativa que evidencia a sensibi-

lidade do problema em relagao ao sinal do parametro envolvido.

Problema de autovalor com operador quase-linear

No terceiro capitulo, tratamos da seguinte equacao estacionaria de reagao-difusao-adveccao

—div(a(z)D;(u)Vu) + Dy(u)[b(z) - Vu] = Au em Q,
u=>0 sobre 02,

(5)

onde Q C RY é um dominio limitado e regular, a € C**(€, [ag, +00)), para algum ag > 0,
e be Co(Q;RY). As fungdes Dy, Dy € C([0,400), [0, +00)) satisfazem

(dy) D;(s) > 0, para qualquer s > 0 e ¢ € {1,2},

(dy) Di(00) :=limg_ 1o D1(s) > 0.



Consideramos a fungao h : [0, +00) — (0, 4+00) definida por

Dy(s) se s >0

h(S) = D1(8)7 7
lim,_,q Da(s) se s=10

l)1 (s> ) bl

€ assumimos que
(Hy) h e CY((0,+00)) e h(0) := lim, o+ I(s) € R.

Os dois primeiros resultados do Capitulo 3 sao:

Teorema F. Suponha que h satisfaca[(Hy)], h(co) < 400 e 09D (0) < 0°Dy(00). Entio,
para qualquer X € (9D1(0),05°D;1(00)), o problema admite uma solugdo cldssica

positiva.

Teorema G. Suponha que h satisfaca h(co) = 400, €
(b)) existe v € C2(Q) tal que [b(x) - V] > 0, para todo x € Q.
Entao, para qualquer X\ > oY D(0), o problema admite uma solucdo cldssica positiva.

Na demonstragao, realizamos uma mudanca de variavel bem conhecida. No entanto,
como nao assumimos que Dy = D,, o problema equivalente permanece quase-linear. Ainda
assim, provamos que os métodos de sub e supersolucao podem ser aplicados para obtencao
das solugoes. Destacamos que, diferentemente de trabalhos anteriores, permitimos os casos

em que Dq(0) =0 ou D;(c0) = 0.

A condigao [(by)| é usada para construir uma supersolu¢do no caso mais delicado,
onde h(oo) = 400. Se b for um campo conservativo regular, ou seja, se b = V) para
algum v € C?(Q), entdo [5 V| = |g|2, e, portanto, ¢ satisfeita desde que b ndo se

anule em ().

Fazemos também o estudo do problema via Teoria de Bifurcagao, para conseguir
uma andlise detalhada do comportamento global das solugoes. O primeiro resultado nesse

sentido é

Teorema H. Suponha que D(0) > 0.

(i) Entdo existe uma componente ilimitada €, C R x CL(Q) de solugdes positivas para
que emana da solugdo trivial em (o9 D1(0),0).
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(ii) Se, adicionalmente, 0 < D;(0c0) < +00 para todoi € {1,2}, entdo existe uma compo-
nente ilimitada €., C RxC}(Q) de solucdes para (5] que intercepta (05°D;(00), 00).
Além disso, se be CHQ;RYN) eh satisfaz entao €, consiste em solucoes po-
sitivas para .

Além disso, sob uma das seguintes hipoteses adicionais:

(by) existe £ € (HE() N L*(2)) \ {0} tal que div(£2b) tem sinal constante quase sempre

em €,

ou
(d3) existe C'> 0 tal que [~ Do(t)t~tdt < C,

obtemos um resultado de nao existéncia de solucoes positivas de para A > 0 suficien-

temente grande (ver Proposigao . Na verdade, se definirmos
A :=min{o?D;(0),0°Di(c0)} e X:=max{c'D;(0),0°D;(c0)},

podemos estabelecer o seguinte resultado de existéncia:

Teorema 1. Suponha que D1(0) > 0, 0 < D;(c0) < +oo para todo i € {1,2}, que h
satz'sfaga e que b € CY;RYN). Entdo, para qualquer X € (\,\), o problema
admite uma solugao cldssica positiva. Se, adicionalmente, ou |(ds)| for satisfeita,

entao os continuos €y e € dados pelo Teorema [H coincidem.

Também destacamos que, pelo Teorema da Divergéncia, a condi¢ao implica que
div(€2b(x)) = 0 q.t.p em Q.

Por fim, vale ressaltar que estudamos as direcoes de bifurcacao tanto da solucao
trivial quanto do infinito (ver Teoremas , e . Essa analise ¢ particularmente
desafiadora devido a presenca do termo gradiente. Além disso, como um subproduto da
classificagao discutida acima, conseguimos estabelecer a existéncia de pelo menos duas

solugoes positivas para (3.1)) sob certas condigbes adequadas sobre a fungao D; (ver Teo-

rema 7).

A equagao () é de interesse tanto do ponto de vista matematico quanto do ponto
de vista de aplicagoes. Por exemplo, pode ser interpretada como um modelo de estado
estacionario de uma equacao de reacao-difusao-adveccao na Dinamica de Populagoes,
onde () representa o habitat de uma espécie, e a densidade populacional em cada ponto

r € Q é dada por u(x). Neste contexto, —div(a(z)D;(u)Vu) é denominado termo de
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difusdo, descrevendo o movimento espacial da espécie. A fungao d(z,u) = a(x)D;(u)
representa a taxa de difusao, indicando que a velocidade de deslocamento depende da
posicao = e da densidade populacional u(x), tornando o modelo mais realista do que
no caso semilinear. Por outro lado, Ds(u)[b(z) - Vu] representa o termo de adveccao,
que considera o movimento preferencial da espécie. Esse movimento pode resultar de
comportamentos individuais ou processos fisicos de transporte, como ventos ou correntes
de rios. Finalmente, Au representa o termo de reacao, interpretado como a taxa de
reproducao local dos individuos, assumindo que essa taxa é proporcional a densidade
populacional (de acordo com a lei de Malthus). Para maiores detalhes, veja [25, 32, [61] e

as referéncias neles contidas.

Do ponto de vista matematico, esta é uma equacao eliptica quase-linear, onde o
termo nao linear em u aparece tanto nas derivadas de segunda ordem quanto no termo de
gradiente. Isso introduz desafios técnicos significativos na andlise, especialmente devido

a auséncia de informacgao sobre o sinal do termo de gradiente.

Por exemplo, este problema nao possui estrutura variacional, o que significa que
os métodos classicos utilizados para provar nao-existéncia de solucoes positivas nao sao
aplicaveis aqui. Além disso, até onde sabemos, nao existem resultados de estimativas a
priori para esta classe de problemas. Ademais, desde que nds permitimos que as funcoes

D1 e Dy degenerem na origem ou no infinito, isso introduz dificuldades técnicas adicionais.

O caso onde D; = D, foi estudado em [65], onde o autor aplica uma mudanca
de variaveis e transforma o problema em uma equacao semilinear equivalente. Isso

permite a aplicacao de métodos classicos de sub e supersolugoes a essa classe de problemas.

No trabalho [§], os autores desenvolvem teoremas globais de bifurca¢do para o caso

em que Dy = 0. Entre outros resultados, eles estudam a seguinte equacao:
—div(A(z,u)Vu) = Au, em €2,  u =0, sobre 02,

onde A(z,s) é uma matriz simétrica, positiva definida, cujos coeficientes sao fungoes de
Carathéodory limitadas. O estudo desse problema com coeficientes nao limitados foi

realizado em [27].

A equagao logistica com um termo de difusao nao linear e adveccao linear foi estu-
dada em [24]. Destacamos também os trabalhos [22, 23], nos quais os autores estudam a

equacao logistica com difusao nao linear na auséncia de um termo de adveccao.

Mais recentemente, em [30], um dos autores examinou o caso em que D; = 1 e
Dy = puP~!, com p > 1, na presenca do termo cldssico de reacao logistica. Nesse artigo,

os autores estabelecem resultados sobre a existéncia e multiplicidade de solugoes positivas,
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além de um novo resultado de unicidade para essa classe de problemas. Subsequentemente,

o caso em que p < 1 foi analisado em [58)].

Os resultado apresentados neste capitulo final contaram com a colaboracao de Wil-
lian Cintra (UnB) e José Carmona (Universidad de Almeria, Espanha) e podem ser en-

contrados no artigo [26].



Capitulo 1

Problemas com fluxo superlinear na

fronteira

Ao longo deste capitulo, trabalhamos com o semi-espaco superior
RY = {(2/,ay) : 2/ e R¥" 2y > 0}.

Denotando por v o vetor normal exterior a fronteira 8Rf , estudamos dois problemas da

forma

ou

—Au = g(x,u, Vu), em ]Rf, Em
v

= h(2,u), sobre ORY,
No primeiro deles, consideramos o problema

1
—Au—§(9c-Vu):(), em RY, L)
1.1
ou _ pa(x’)|ul%u + b(x')|u|*>*2u, sobre RNV7!

ov

2N — 1)

emque 1 < q < 2,2, = , > 0 é um parametro real e os potenciais a e b

possuem sinal indefinido e satisfazem certas condigoes.

Conforme veremos na préxima secao, as solugoes fracas do problema (|1.1]) pertencem

ao espago X definido como o fecho de C2°(RY) com relagdo & norma

1/2
Huuz(/ K<x>|w2dx> ,
y

K(z) =/t 2 e RV

onde

13
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Este tipo de espaco foi primeiramente introduzido em [41], com o espaco todo RY no lugar

de RY. E importante destacar que X estd imerso continuamente em

1/r
e = {u e Li (RN ul, := ( K(m’,0)|u|Tda) < oo} :
RN-1

para todo r € [2,2,], em que 2, :=2(N —1)/(N — 2) (ver [43, Teorema 1.1]).

Assim, estamos aptos a apresentar as hipdteses nos potenciais a e b, que podem
inclusive mudar de sinal. Para isso, denotamos por s’ > 1 o expoente conjugado de s > 1,
isto é, 1/s + 1/s’ = 1. Definimos

QF ={2 eR" ' a(a) >0}, Qf :={2' eRY":p(z') >0}
e assumimos que:

(ag) a€ LY N LN_I(]RN_l), com (2,/q) <o, <(2/q);

loc
(bg) be LOO(RN_I);

(ab) existem 6 >0, by >0 ey > N — 1 tais que

B :={a' € RN . |2'| < 6} C (Qz{ QQ;)

10| poe -1y < b(2) + bol2'|”,  q.t.p. em By.

Provamos o seguinte:

Teorema A. Suponha que N > 4 e que a e b satisfazem (ag), (bo) e (ab). Entdo, existe
p* > 0 tal que, para todo p € (0, 1*), o problema (L.1)) possui pelo menos duas solugoes

fracas nao-nulas e nao-negativas.

Observacao 1.1. Com as hipdteses acima, no caso em que N = 3, € possivel obter a
ezxisténcia de ao menos uma solugao fraca nao-nula e nao-negativa para valores pequenos
de ;v > 0. Na realidade, ao invés da condi¢ao basta nesse caso que o conjunto QF

tenha interior nao-vazio.

Na segunda parte do capitulo estudamos o problema

1
—Au—a(x~Vu):0, em RY,

e pa(x)|u|?u + f(u), sobre RN-1
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em que 4 > 0el < q <2 Com relacao ao potencial a e a nao-linearidade f : R — R,

vamos supor o seguinte:

(fo) f € CRR);

(f1) existe p € (2,2,) de modo que

)

50 s 0
(ap) a € LY N L¥(RN) em que (p/q) < o, < (2/q);

(a1) QF possui um ponto interior.

Veremos adiante na Proposicao que a imersao do tragco X — L% é continua.

Assim, fica bem definido o niimero

*

Sy, 1= inf{ K(z)|Vul|®dr : v € X, |ula, = 1}
RY

e podemos enunciar o nosso segundo resultado principal:

Teorema B. Suponha que a e f satisfazem |(ao)|, |(a1)], |(fo)| e|(f1)} Além disso, suponha

que f € impar no intervalo [—Cx.p, Cn ], em que

2, +2— p) (2442-p)/2(2:—p)* 13

Cn,p = max {1, 252_*1}1/(2*710) ( 5

Entao existe i > 0 tal que, para cada pn € (0,f1), o problema (1.2)) possui um nimero

infinito de solugoes fracas.

Vale ressaltar alguns exemplos vélidos para a nao-linearidade f. Além do classico

2
Fcomr > 2 0

exemplo f(s) = |s|""2s, com r > 2, podemos considerar f(s) = |s|""2se
qual possui crescimento exponencial. Na verdade, nao existe restricao no crescimento de

f quando |s| é grande.

1.1 Prova do Teorema [A]

Esta segao é dedicada & prova do Teorema [A] Como ji mencionado na Introdugao, uma

versao inicial deste resultado pode ser encontrada com grande riqueza maior de detalhes
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na dissertacdo de mestrado do estudante (ver [62]). Porém, uma parte importante da
demonstracao nao foi feita nesse trabalho e estd sendo complementada aqui (ver Lema,
além de que naquela época s6 conseguimos mostrar a existéncia da segunda solugao no
Teorema [A] quando N > 5. Complementamos assim aquele trabalho mostrando também
essa multiplicidade no caso N = 4. Como o resultado mostra a existéncia de duas solucoes
e a forma de obté-las é completamente distinta uma da outra, iremos dividir a se¢ao em

duas partes.

1.1.1 Primeira solugao

Nesta subsecao, iniciaremos a prova do primeiro resultado principal deste capitulo. Nesta

e na subsegao seguinte, assumiremos que |(ag)), |(bo) e |(ab)| sdo validas. Além disso, ao

longo de todo o capitulo, escreveremos ||v||« para representar a norma de uma funcao v

essencialmente limitada definida q.t.p. sobre RV,

Como falado na secao anterior, consideramos a funcio peso K : RY — R, dada por
K(x) = eltl*/4,
Um céalculo direto mostra que se u é uma funcgao suave, entao
. 1
div(K (z)Vu) = K(z) |Au + 5(3: -Vu)| .

Assim, para resolver ([1.1)) com uma abordagem variacional, é natural considerarmos o

espaco X definido anteriormente.

O seguinte resultado abstrato foi provado em [43, Teorema 1.1] (veja também [42] e

[62, Teorema 3.5] para uma maior riqueza de detalhes).

Proposicao 1.1. Se r € [2,2,], entao

Jon K (2)|Vul*dx
S, := inf Ry

T < oo, (14)
weX\O) ([, K (', 0)uldo)

e portanto a imersao do traco X — L. € continua. Além disso, ser € [2,2,) esta imersao

também € compacta.

Multiplicando a primeira equagao de ((1.1)) por K, obtemos o funcional energia as-

sociado a este problema, a saber

I(u) := %||u||2 — g / K(2',0)a(z")(u™)do — 2i / K(2',0)b(2")(u")**do.

k
RN-1
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E possivel verificar que I estéd bem definido, I € C'(X,R) e seus pontos criticos sao

exatamente solugoes fracas do problema.

Comecgamos com o seguinte resultado de regularidade

Lema 1.1. Se u € X € um ponto critico de I, entao u >0 q.t.p. em Rf. Além disso, se

m (bo)| valem, entdo u € L, (RY) N Li (RN, para qualquer s > 1.

Demonstragao. Sejam ut := max{u,0} e u~ := u™ —u as partes positiva e negativa de u,
respectivamente. Uma vez que utu™ = 0 q.t.p. em ]R , um calculo simples mostra que

0=TI"(u)u” = —|ju"||?. Isto prova que u = u™ > 0, como enunciado.

Para a regularidade, primeiro note que v := K?u € VV;C2 (RN ) é uma solugao fraca

do problema

—Av = gi(z,v), emRY

9, ;
(9_Z = go(2',v),  sobre RN-1

emquegl:foR—ﬂRegg:RNflxR—)Rséodadaspor
(z. 5) |z|? + 4N
x,8):=— —— s
gi\x, 16

gz(x’,s) — a($,)6(2_q)|x,|2/8|8‘q_28 + b($/)6(2_2*)|x,|2/8|U(£E,,0) 2.—2

S.

Ao definirmos

2*2

X 2 + 4N _ /
D)= (P )L Bale) = Jala)e 0 ot 0

temos para todo x € RY, 2/ € RVt e s € R que

91(z, 5)] < Li(z)(1+[s]),  [ga(a', )] < La(z")(1 + |s]).

Sabemos que Ly € L2 (RY) e Ly € LY71(R¥-1), onde esta tltima inclusdo se deve a

e ao fato de que v € LZ* (RV~1). Assim, podemos aplicar [I, Lema 4.1] para concluir

loc

ue L (RY)N L; (RV-1), para todo s > 1. 0

Na primeira parte da prova do Teorema [A] utilizaremos um argumento de mini-
mizacao para obter uma solucao u, com energia negativa. Assim, precisamos provar o

seguinte:

Lema 1.2. Ezistem p* = p1*(q,1al ., [|b]|os) > 0, p = p(q, ||b]lsc) >0 € . = a(p) > 0 tais
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que, para todo p € (0, u*), vale
I(u) > o, Yue XNJIB,(0).
Demonstracao. Segue da desigualdade de Holder, e que

K(a',0)a(@’)(u®)%do <lalaJu 14, < S alq,|lu]".

RN-1

Isso, combinado com (|1.4]), implica que

2.—q

Y

1 _ 2
10 2 gl [l = 25,4 al, ~ Cill

onde Cy = (2/2,)55."*||b]|o > 0.

Com um cdlculo simples, vemos que a funcao h(t) = t>79 — C1t*~9, para t > 0,

atinge seu maximo global no ponto

1/(24—2
92— y¢ ]/( )>0

a [m

Dessa forma, se considerarmos Cy := h(p), teremos que

1 2 2 Cgpq
I(u) > §Pq [02 — M&Sqaqé/ Ialaq:| > 1 @ > 0,
sempre que |ul]| =p e
* qCQ q/2
O < < = S )
2 H 4|6L| o q0},
o que finaliza a prova. O

O préximo resultado fornece a primeira solugao do problema ([1.1)).

Proposicao 1.2. Sejam pu* e p > 0 dados no Lema . Entao, para qualquer p € (0, ),
o infimo

¢, = inf I(u) <0
u€B,(0)

€ atingido em um ponto critico nao-negativo u, € B,(0).

Demonstragao. Utilizando , e a Proposicao , mostramos que ¢, > —oo. Sejam
0 > 0 dado na condicao e p € CX(Bs(0)) uma fungao nao-negativa tal que ¢ = 1 em
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Bs2(0). Desde que B;(0) N ORY C QF, obtemos

K(2',0)a(x)pldo > / K(2',0)a(z")do > 0.

RN-1 Bs /2(0)NORY

Note agora que

I@@) _ t2iq||gol|2 ,u

K(a',0)b(z")¢™ do,

tq 2 q JrN-1 * RN-1

donde segue que

lim sup < K K(z',0)a(x")pldo < 0,
q

tsor 4T RN-1

e, portanto, I(tp) < 0, para t > 0 pequeno. Isso prova que ¢, < 0.

Seja (u,) C B,(0) tal que I(u,) — ¢,. Como (u,) é limitada, existe u, € X de
forma que w, — u, fracamente em X, u, — u, fortemente em LY, para todo r € [2,2,),
e up(2/,0) = u,(2/,0) q.t.p. em RY7'. Ademais, pelo Lema (1.2, temos que (u,) C B,(0),
para todo n > ng. Assim, {u,} é uma sequéncia minimizante para I, POk Dessa forma,
podemos aplicar o Principio Variacional de Ekeland [37] para assumir que I'(u,) — 0, se

n — +0o0.

Veja que I'(u,) = 0. De fato, desde que o, > (2,/q)’, temos que
1o, +(¢—1)/2, < 1L

Consequentemente, existem r € (2,2,) e 7 > 1 tais que

1 ¢g—1 1
—+ +-=1
O'q T T

Da convergéncia forte u,, — w, em L}, extraimOﬁo € Ly tal que |u,(2',0)] < no(2)
q.t.p. em RY~1. Assim, para qualquer v € C°(RY), podemos usar a desigualdade de

Young para obter

al® qg—1 . |v|7
e
op r T

|Ka(u ) o] < K[ } q.t.p. sobre RNV™1.
Sendo que v possui suporte compacto, o lado direito da desigualdade acima pertence a
LY(RN=1). Segue do Teorema da Convergéncia Dominada de Lebesgue que

lim K(z',0)a(z')(u)) " v do = K(z',0)a(z’)(u}) v do. (1.5)

n—-+o0o RN-1 n RN-1 »
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Utilizando que b € L>°(RY~!) e um argumento simples, podemos verificar que

lim K(2',0)b(2")(u))**tvdo = K (2',0)b(x") (ut)* v do. (1.6)
n—+0o JpN-1 RN-1

Combinando as convergeéncias dadas em (1.5)) e (L.6) com a convergéncia fraca u, — w,,
concluimos que
0= lim I'(u,)v=1I"(u,)v, Yove O RY),

n—-+4o0o

e segue por argumentos de densidade que I'(u,) = 0. Pelo Lema , sabemos que u,, €

nao-negativa.

Uma vez que qoy, € [2,2.), existe n; € ng" de modo que |u,(2,0)| < ni(2') q.t.p. em
RYN-1. Portanto, podemos utilizar a desigualdade de Young juntamente com o Teorema

da Convergéncia Dominada de Lebesgue como antes para mostrar que

lim K(z')a(z")(u))ido = K(z')a(x")(u))do.

n—+00 JpN-1 RN-1

2.
= lriLI—I}inf [(% — %) |Junl|? + (2% — l)u o K(2',0)a(z")(u))do
> (55 i+ (5= ) [ KGOl
= I(uu) — Zi*['(u”)u” = I(u,)
Como ja sabemos que I(u,) > ¢,, concluimos que I(u,) = c,. O

1.1.2 Segunda solugao

Em vistas de obter a segunda solugao, adaptaremos argumentos de [49]. Dado ¢ € R,
relembre que dizer que [ satisfaz a condicao de Palais-Smale no nivel ¢ significa que
qualquer sequéncia (u,) C X tal que I(u,) — ¢ e I'(u,) — 0 possui uma subsequéncia

convergente.

Lema 1.3. Suponha que u, dada na Proposi¢ao seja o unico ponto critico nao-nulo

de I. Entao, I satisfaz a condicdo Palais-Smale em qualquer nivel ¢ € R que satisfaca

1 1 N-1
2(N = 1) [lpfl5=>

c<c:=1I(u,)+
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Demonstracao. Seja (u,) de tal modo que I(u,) — ¢ <¢e I'(u,) — 0. Pela desigualdade
de Hélder e denotando por 0,(1) uma quantidade que vai a zero quando n — +00, temos

que

1
cton(Dlunll = I(un) = 5-I'(un)un

1 1 1 1 —q/2
> (53l = (5 32 s ot

e, portanto, (u,) é limitada. Assim, existe u € X tal que u,, — u fracamente em X.

Argumentando do mesmo jeito que na prova da Proposicao [I.2] podemos mostrar que

lim K(2',0)a(z")(u))do = K(2',0)a(z")(u")do.

n—+00 [pN-1 RN-1
Definindo vy, := u,, — u e aplicando o Lema de Brezis-Lieb [20], obtemos que

0= I"(up)u, = I'(u)u + ||v,|* — K(2',0)b(2")(v})*do + 0,(1).

RN-1

Assim como na prova da Proposi¢ao [L.2, temos que I’(u) = 0. Portanto, existe I > 0 de
forma que
lim ||v,||>=1= lim K(z',0)b(z")(v;})*do.

n
n—-4o0o n—-+o0o RN-1

Por conta da imersao do trago X « L3 (RN™1), vale que

RN-1

2,/2
K(x’,O)b(x’)(v;)2*da§||b||0052:2*/2< / K(x)|an]2dx) .
RY

Se | > 0, podemos tomar n — 400 na expressao acima para deduzir que

1

> N-L 1.
Z ol D
Por outro lado,
1 2 1 / / +\2
¢+ 0n(1) = I(un) = I(u) + gllva]” = 5 K(2',0)b(z") (v, )™ do,
* RN-1

em que o,(1) denota uma quantidade que se aproxima de zero quando n — +oo. Desde
que I'(u) = 0, segue que u € {0,u,} e, portanto, I(u) > I(u,). Assim, tomando o limite

quando n — +o0 na igualdade acima e utilizando (1.7]), obtemos que

1 1

> 7
c2 Wty e

N—1 < =
Sy T >T,
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o que é uma contradicao. Consequentemente, [ = 0 e temos que

lim ||u, —ul|* = lim |jv,|* =1=0,
n—-+oo +oo
o que mostra que u,, — u fortemente em X. ]

Para cada € > 0, considere a funcao

) (N—2)/2 N
/ — /
Uclx' xy) = (]x’]2+(xN+e)2) , (o' zn) e RY.

A familia {U,}.> consiste exatamente das fun¢oes que atingem a melhor constante da

imersao do trago DM*(RY) < L*(RN™1) (veja [38] para maiores detalhes). Agora, defina
Uel2) = K(2) Po(e)Ux), =R, (18)

em que p € 030(@) étal que 0 < ¢ < 1, ¢ = 1 em Bs2(0) ﬂ@, ¢ = 0 fora de
Bs(0) N ]R_f, e 0 > 0 é o dado na condigao .

Considerando

AN::/ |VU.|*dx, By := (/ U,
RY RN-1

foi provado em [47, Lema 2.2] que Ay/By = S,,. Além disso, se € — 07, temos que

2/2.
2*da) ,

O(€’|Inel), se N =4, , o
el = An + e Ively = By'™ +O(€).
O(€?), se N >5,

O proximo resultado serd utilizado para determinar, de forma precisa, o nivel mini-
max do funcional energia associado ao problema ([I.1]). E neste resultado que fica clara
a hipétese de N > 4 no Teorema [A] Ressaltamos que tudo o que foi feito na primeira

subsecao é valido ainda quando N = 3.

Lema 1.4. Suponha que N > 4 e considere

Lt
‘ Iw6|2*7

em que . foi definida em (1.8)). Entdo, se e — 0%, vale

O(e’|lne|), se N =4,
loelP® 0 = 537t +
O(€?), se N > 5,
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O (EN—I—S(N—Q)/Q)

Iveliz )

para todo 2, /2 < s < 2,.

Demonstracao. Se N > 5, podemos usar a definicao de v., o Teorema do Valor Médio e

a expressao acima para obter que

2D [[he] [PV -D _ [Av+ O(e?)|V 1 _ AN 4+ 0(€)
W Y B+ o@-2 By L o)
. A%_l —|— 0(62) . (AN

N-1
——— = | — O(e?) = SY1 4+ O(é?).
3%71 +0(e2) BN> + O(€”) 2, T ()

Em relagao ao caso N = 4, podemos proceder de maneira analoga para obter

AV + 01 AV T+ O]
Jupv-n = Av_+O0telned) AT+ Ol ]ne) _ gnor ) o)1),
By 4+ 0O(e?) By 4+ O(e?| Inel) *

Agora, vejamos a estimativa para a norma |v.]%. Desde que 0 < ¢ <1 e ¢ se anula fora
de uma bola, podemos fazer uso da mudanca de varidveis =’ = ey’ para obter C; > 0 tal

que

. s(N—=2)/2
1< C < do
Vel = 1/{x’§6} LCC'P*‘EQ}

s(N—-2)/2
< CleN—l—s(N—2)/2/ { 1 }( /
- tyi<osey LIY1?+1

< CleN—l—s(N—Q)/Q |:O2 +/ |y/|—s(N—2)dyl:| )
{

dy’

ly'|>1}

O termo entre colchetes é finito se, e somente se, s > (N — 1)/(N — 2), o que estd de
acordo com nossa hipétese. Assim, a ultima parte do lema segue da expressao anterior e
de [9cl5. = B + o(1). 0

Lema 1.5. Suponha N > 4 e, para cada € > 0, considere v. definida no lema anterior e
u,, 0 minimo local de I dado pela Proposicao [1.9, Entao

tl}inoo I(u, + tv.) = —o0.
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Demonstracao. Primeiramente, note que

1
I +to) = 3 K(2)|V (up + tve) Pdz — £ K(2',0)a() (uo + tv)1do
RY q JrN-1
1

- — K(2',0)b(z") (up + tve)Pdo
2* RN-1

1 12
_ —Hu0||2—|—t/ K (2)VuoVoudz + = o]
2 R_‘]\_f 2

1
£ K(2',0)a(2)(uo + tv)?do — — K(@',0)b(z') (up + tv) > do
q JrN-1 x JRN-1
< O +0M)+0() — 1 | K@ 0)a(e’)(uo + tp)'do
RN-1
- 2l K(z',0)b(z")(ug + tv.)** do. (1.9)
* RN-1

Como u, > 0 e v. = 0 no complementar de B := B;(0) ﬂ@ e a,b > 0 no suporte de v,

obtemos
K(2',0)a(z")(u, + tv)ido = / K(',0)a(z")uldo
RN-1 RN— 1\B
+ /K 2’ 0)a(z")(u, + tue)?do
> +tq/ K(2',0)a(x")vldo
— O(1) +O(t9). (1.10)
Analogamente,

K(2',0)b(2")(u, + tv)*do = / K(2',0)b(z")u2 do
RN-1 RN— 1\B

- /Kx 0)b(z") (uy + tve)*do

> O(1) + t* / K(z wrdo.  (1.11)
Combinando as desigualdades (|1.9)), (1.10]) e (1.11)), temos que
t2
I + 1) < O() + O(17) + O(1) + O(1) - / K (&, 0)b(z/ v da’.
«JB

Uma vez que a integral na desigualdade acima é positiva, ao fazermos ¢t — +o0, obtemos

o resultado. O

Lema 1.6. Suponha que N > 4. Para cada € > 0, considere novamente v, dada pelo
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Lema[I.4] e defina t. > 0 tal que
me := I(u, +tv.) = max I(uy, + tu.).
Entao (t.)eso € limitado.

Demonstragdo. Para cada € > 0, seja h, : [0, +00) — R a aplicacao de classe C* dada por
he(t) = I(u, + tv.).

Do Lema , limy o0 he(t) = —o0. Além disso, como u, é minimo local de I, existe
d > 0 tal que h(t) > h(0) para t € (0,0). Portanto, h. atinge um méximo em algum
te > 0. Isso mostra que o niimero m, estd bem definido. Suponha, por contradicao, que

te, — 400, para alguma sequéncia €, — 0%. De I'(u,)v,, = 0, temos

K(x)Vu, Vv, dr = p K (2, 0)a(z")ul v, do + K (2, 0)b(z")uZ v, do.
RY RN-1 RN-1

(1.12)
Ao combinar (1.12) com 0 = A (t.,) = I'(u, + te, v, )ve, € recordando que a e b sado

positivos no suporte de v, (pela construcao de v.), obtemos

tellve, |I? = K(2',0)a(x’) (u, + te,ve,)? 'v.,do — u K (2',0)a(a")ul v, do
RN-1 RN-1
+ K(2',0)b(2") (u, + te,ve,)* 1o, do — K(, O)b(m’)ui*_lwgnda
RN-1 RN-1
> K(2',0)a(x")ul v, do — p K(2',0)a(x")ul v, do
RN-1 RN-1
+ K(z',0)b(z')(te,ve, ) 1o, do — K (2, 0)b(z")u v, do
RN-1 RN-1
= ! K(2',0)b(z" v do — K (2',0)b(z")uy v, do,
RN-1 RN-1

donde segue que

“w n

K(',0)b(2 )2 do < 27 |Jve, ||+t / K(z',0)b(z")u* v, do.
RN-1

RN-1

Segue da desigualdade de Holder, de |v., |2, = 1 e do Lema [1.4] que

lim K(2',0)b(z")v? do = 0.

n—+00 [pN-1

Por outro lado, da condicao temos que

b(z") > |bllee — bolZ’|”,  q.t.p. em {|2'] < 4§},
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com by > 0. Consequentemente,

on(1) = K(2',0)b(z")vZ*do > ||b]|sc — bo K(z',0)|z|"v? do. (1.13)

RN-1 RN

Desde que |, %* = sz\}‘/g + 0,(1), obtemos que

C N—1],./7
/ K(2',0)|2'v>do < —12/ %da
RN-1 Ve, 157 Jgari<ay (|72 + €3]

< O / @[y = 0N,
{l2'|<d}

onde foi usado que v > N —1 na ultima desigualdade acima. Segue de (|1.13)) que ||b]|- = 0,
o que contradiz . Fica entao provado o lema. ]

O préxima lema é crucial para completar a prova do Teorema [A]

Lema 1.7. Se N > 4 entdo, para todo € > 0 pequeno, o nimero m,. definido no Lema[I.0]

verifica m, < C.

Demonstragao. Usando que I'(u,)v. = 0, temos que

t2 I 1
me = ](Uu) =+ EH'UGH2 — EF1’€ — 2—*F276, (114)
onde
Ty, = K(2',0)a(x") [(u, + teve)? — uf, — tequl ™" v] do,
RN-1
e
[y, = K(2,0)b(x") [(uy + teve)® — ulr — t2,u2 "' ] do.
RN-1

O Teorema do Valor Médio combinado com a positividade de a no suporte de v, implicam

que I'1 . > 0. Além disso, para todo r,s > 0 e o € (1,2, — 1), existe C, > 0 tal que
(r+s8)% > ¥ £ 5% 42,07 s+ 2rs™ 1 — Cur® 757,

Tomando r = u,, s = t.v. e 0 = 2,/2, podemos utilizar que I'y > 0 e (1.14) para chegar

que

t2 t2*
me S [(U“) + (§€||U€H2 — 26 Hb||oo> + FQ,EJ — FQ’E’Q + F27€73, (115)
em que
t2*
Foer = K(2",0) [[|blloc — b(2")] vZdo,
2* RN-1

[oeo = tf*1/ K(m',O)b(x’)qug*’lda
RN-1
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e
2./2
Tyes = Cyom K (2, 0)b(z Y u>/*v>/do.
7 2* RN-1 K

Agora, note que

Sl = Sl b
max § —||Ve||” — oo (T :
ezl =3 1) I

Assumindo que N > 5, do Lema temos que [lv ]2V Y = S + O(e?). Assim, da
definicao ¢ e de ([1.15)), vale que

me <+ O0(2) +Tgq — oo+ Toes. (1.16)

Agora, vamos majorar cada um dos termos I's;, para i = 1,2,3. Para o primeiro,
podemos argumentar como na prova do Lema para obter que 'y .1 = O(e¥71). Os
outros dois, no entanto, sao um pouco mais delicados. Entao, escolhemos r; > 1 de modo
que

1 1 1

< < —.
N+4 2(N-1) N

Utilizando o Lema [I.1] e a desigualdade de Hélder, temos que

1/rq
K(x’ﬁ)b(w’)uuvf*‘ldas||b||oo( /{ K<w’,0>u2’ld0> el 5.,

RN-1 la’|<8}

Como 1 < r; <2(N—1)/N, vale que N/(N —2) < (2, —1)r; < 2,, e, portanto, podemos
utilizar a expressao acima, o Lema com s = (2, — 1)r; e o Lema para obter que

F252 -0 (E(N—l)/rl—N/Q) )

Agora, escolhemos ry € (1,2) e argumentamos como antes para concluir que

1/74
L /2)r 2./2
F276’3 < Hb‘|oo(/{|m,|<5} K(x/’ O)ul(f /2) 2d0') I'Uel (2*//2)7“2'

Uma vez que 75 € (1,2), podemos utilizar o Lema [L.6] com s = (2,/2)r; € (2,/2,2.) para
obter
Doy = O(eN-D/ra=(N=1)/2y

Observando que
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podemos escolher os ntimeros 71,7, > 0 acima, de tal modo que

N—-1 N N—-1 N-1
V= —— <2, = — > 1.
™ 2 T9 2

Visto que v; < min{2,15} e N > 5, podemos utilizar todas as estimativas acima para

reescrever (|[1.16]) como
me < ¢+ 0(2) + O(V 1) — O(e™) + O(e”) < ¢,

se € > (0 ¢é suficientemente pequeno. Isto conclui a prova para o caso N > 5.

No caso N = 4, a tinica alteragao é que ||v[|* ¥ = SY¥ ™' 4+ O(e?| In¢|). Repetindo

todos os passos anteriores, obtemos para € > 0 suficientemente pequeno
me < e+ O(Ine]) + O(N 1) — O(e™) + O(e”?) < ¢,
observando que ¢27!|Ine| — 0, quando ¢ — 0. ]

Com isso, estamos aptos a finalizar a prova do primeiro resultado principal deste

capitulo.

Prova do Teoremaldl. Tome u € (0, u*), onde p* é o dado no Lema . De acordo com
a Proposicao , existe uma soluc@o nao-negativa u, tal que I(u,) < 0. Suponha, por
absurdo, que este seja o tnico ponto critico nao-trivial de I. Assim, pelo Lema [I.3] I
satisfaz a condicao Palais-Smale em qualquer nivel ¢ < ¢. No Lema [1.5] provamos que

lim [ =—

i (uy + tve) 00,

e, portanto, existe ¢, > 0 de modo que I(u, + t,ve) <0 e |lu, + tyv|| > p, em que p > 0
foi obtido no Lema [I.2] Isso mostra que o nivel do Passo da Montanha

Cmp = ég, jnax 1(6(t)) > 0,
estd bem definido, onde I' := {# € C([0,1], X) : #(0) =0, #(1) = u, + t.v.}. Do Lema
[1.7) temos que cyp < €. Aplicando o Teorema do Passo da Montanha (cf. [71, Teorema
2.2]) obtemos um ponto critico uy # 0 tal que I(uy) > 0. Desde que w, possui energia
negativa, concluimos que ug # u,, 0 que é uma contradicao. Isto assegura a existéncia da

nossa segunda solugao nao-trivial para (L.1). Como antes, ela é nao-negativa em RY. [
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1.2 Prova do Teorema

Nesta secao, provamos Teorema . O problema (1.2) serd resolvido em duas etapas:
Consideramos um truncamento apropriado para o problema e o resolveremos na primeira
parte desta secao e, na segunda, utilizaremos uma modificacao da técnica de Iteragao de

Moser para mostrar que as solugoes do problema truncado também resolvem (|1.2)).

Ao longo de toda a se¢ao vamos supor a validade das condigoes |(ap)), [(a1)}, |(fo) e

(/1)

1.2.1 Solucionando um problema modificado

Como mencionado na introdugdo, se F(s) := [ f(t)dt, o termo [,y K(2/,0)F (u)do

pode nao ser finito, pois ndo possuimos controle no comportamento de F'(s) para valores

grandes de |s|. Assim, seguindo as mesmas ideias de Azorezo e Alonso [10] definimos
g:R — R por

f(s), se |s| < Cnp,

§) = 1.17

" %'3‘%2& se [s| > Clp, 0

em que Cy,, ¢ dada em (1.3). Desde que f é impar em [—Cl,,, C,), a fungao g é fmpar

ao longo de toda a reta real. Além disso, da condicao , extraimos uma constante

Cy, > 0, que depende de N e p, satisfazendo
lg(s)| < C,lsPPt, VseR. (1.18)

Sejam G(s) := [, g(t)dt e J: X — R dado por

J(u) := 1HuH2 — H/ K(2',0)a(x")|u|?do — K(',0)G(u)do.
2 q JrN-1 RN-1
Observe que qualquer u € X que seja um ponto critico de J e que satisfaga ||ul| < Cyyp
¢ uma solucao fraca do problema . Ademais, como a parte nao quadratica de J
possui crescimento subcritico, podemos usar um argumento padrao e a imersao compacta
dada na Proposicao [1.1] para mostrar que qualquer sequéncia Palais-Smale de J possui
uma subsequéncia convergente. Com base na observacao feita aqui, nosso objetivo nesta

subsecao sera estabelecer a existéncia de uma infinidade de pontos criticos para J.

Utilizando a desigualdade de Holder assim como no Lema[I.2] obtemos que

1
T(w) = Sllull® = udh[Jull® = Molful?,
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onde
My = (lalo, /0)S,* e My = (Cy/p)S, ",

e Cy > 0 foi obtida em ([1.18). Considere
1
h(t) == §t2 — pMyt? — Mot?, ¢ >0, (1.19)

e note que

(ii) existe ty > 0 tal que h(t) < 0se t € (0,t);

(iil) limyyy o0 A(t) = —00.
Semelhantemente a prova do Lema , a aplicagao k : [0,4+00) — R dada por
k(t) == (1/2)t*9 — Myt?™ 1,

atinge seu maximo positivo em

F— [—2 4 }1/@_2) >0
2Ms(p — q)

Sendo M = k(1) este mdximo, e se valendo de que h(t) = t(k(t) — uM;), concluimos que
para todo p € (0, M;/M), h tem também um méaximo positivo. Para estes valores de p,
h possui ao menos duas raizes positivas, a saber Ry < Rs. Pela versao generalizada da

regra dos sinais de Descartes (veja [52] Teorema 2.1]), nao existem outras raizes positivas
M,
M

Note que Ry depende de p, além de que quanto menor o valor de u, mais rapido

para h. De agora em diante, assumiremos que p € (0, u**), onde pu** =

a funcao h assume valores positivos. Com efeito, quando g = 0, a fun¢ao h inicia to-
mando valores positivos, o que resulta que neste caso, R; = 0. Portanto, o seguinte

comportamento é esperado:

Lema 1.8. A primeira raiz positiva de h verifica lim,,_,o+ Ry (1) = 0.

Demonstracao. Uma vez que Ry > 0 é raiz de h, temos que

MRy 1 _ _
0= (R%l) =5 — HMR] 2 MyRV2.

Por outro lado, sendo h'(Ry) > 0, vale que

W(R) 1
V<2R ~3

. %,uMlR‘{_Q - gMng_2.
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Combinando as duas expressoes acima, concluimos que

1 ) ) . .
5 = WMRL 4 MRy > %uMlR‘l’ 24 gMngf 2,

Em virtude de p > 2 e da expressao acima, existe & > 0 de modo que Ry(u) — a > 0,
quando u — 0F. Se a > 0, passando o limite nos dois lados da expressao acima obtemos
que MyaP=2 > (p/2)MyaP~2, o que acarreta em p < 2. Esta clara contradigao mostra que

a = 0, o que encerra a prova. ]

Uma vez que 0 < Ry < Ry, podemos definir uma funcao corte ¢ € C°([0, +00))
de modo que 0 < ¢ <1, ¢ =1em [0,R;] e p =0 em [Ry, +00). Sob essas condigoes,
consideramos o funcional ® € C'(X,R) definido por

Bu) =g lul? =2 [ K 0al)uptd  s(lul) [ K@ 0)Gdo

RN-1

A seguir, apresentamos as principais propriedades de ®:

Lema 1.9. Sobre o funcional ®, é vdlido que

(i) ® € coercivo;
(ii) Se ®(u) < 0, entao ||u|| < Ry e existe uma vizinhanga de v na qual ® = J;

(111)  satisfaz a condi¢do de Palais-Smale em qualquer nivel ¢ < 0.
Demonstracao. Procedendo como na prova do Lema e utilizando (|1.18]), obtemos que
1 2 q P
B(u) > o lull® = Myl — o)) Mo "

Como ¢ se anula em (R, +00) e ¢ < 2, concluimos que ® é coercivo, o que finaliza a

prova do item (i).

Para demonstrar o item (ii), definimos
1
he(t) :== §t2 — uMit? — p(t)Mat?, ¢ > 0.
Da definicao de ¢, se t > Ry, entao

h(t) =t — quMyt®".
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Neste caso, h;,(t) > 0 se, e somente se, t > (quM,)V/ =9 Porém, desde que h(R,) = 0,

temos que
Ry > (QuMl)l/(%q) > (q,uMl)l/(Z*Q),

e, portanto, hg é crescente em Ry, +00).

Seja u € X tal que ®(u) < 0 e, por absurdo, suponha que ||u|] > R;. Se |ju| > R,

entao podemos usar novamente que h(Ry) = 0 para obter que
0> @(u) = ho(l[ul]) = he(Ra) = h(R2) + Ma(1 — ¢(R2)) Ry = MaRj > 0,

o que é uma contradi¢cao. Consequentemente, R; < |lu| < Ry. Porém, neste caso,
h(||u||) > 0 e, portanto

0> ®(u) > hy([lul]) = h(]|ul]) = 0,

o que é outra contradi¢do. Assim, ||u|| < R; e, portanto, ®(u) = J(u). Da continuidade
de @, existe 7 > 0 tal que ® < 0 em B,.(u). Para qualquer elemento nesta bola, o mesmo

argumento anterior mostra que ® = J. Assim, provamos também o item (ii).

Para o item (iii), Suponha que (u,) C X seja tal que ®(u,) — ¢ <0 e ®'(u,) — 0.
Uma vez que podemos assumir que ®(u,) < 0, segue do item (ii) que ®(u,,) = J(u,) — ¢
e ' (u,) = J'(u,) — 0, isto é, (u,) é uma sequéncia Palais-Smale de J. Como ® é
coercivo, segue que (u,) é limitado e, portanto, como mencionado antes, (u,) possui uma

subsequéncia convergente. O]

O proximo resultado é a ferramenta chave que nos permite atacar funcionais com

simetria.

Lema 1.10. Para cada k € N, existe r = r(k) > 0, § = (k) > 0 e um subespago
k-dimensional X} C X tal que

sup  P(u) < —-p<0.
u€XNOB(0)

Demonstracao. De acordo com a condicao , existe uma bola B’ C RV~ tal que a > 0
qtp. em B. Sejav > 0ey = (45,0), - ,yp = (v},,0) € ORY de tal modo que
(B,(y;) NORY) C B' e B,(y;) N B,(y;) = @, para todo i,j = 1,...,k, com i # j. Para
cada i = 1,..., k, escolhemos uma funcao suave ¢; satisfazendo ¢; = 1 em B, /5(y;) N @
e ¢; =0 fora de B,(y;) N @

Uma vez que estas fungoes possuem suporte disjunto, o conjunto {¢i, ..., ¢} € line-

armente independente, e o subespago X := ({1, ..., ox}) gerado por elas tem dimensao
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k. Note que a aplicacao

ow = ([ st onirar)

define uma norma em Xj;. Com efeito, claramente @(0) = 0. Vejamos que Q(u) > 0
para todo u # 0. De fato, seja u = Zle a;¢; uma funcao nao-nula. Se denotarmos

B} := B, 5(y;) N ORY, teremos por (a1)| que

Qu)! = K(2',0)a(z")|arpr + ... + axdy|?do

RN-1
k

K(2',0)a(z")|ar¢1 + ... + axdy|?do

\'M

= ) lail” | K(2/,0)a(z)do >0,

uma vez que os conjuntos B; sao disjuntos, ¢; =1 e a > 0 em B; e, como u # 0, pelo
menos um entre os «;’s é nao-nulo. As demais propriedades que uma norma deve verificar

podem ser facilmente deduzidas pela definicao de Q.

Como dim X}, < oo, existe C; = Cy(k) > 0 tal que
Ch|lul|? < K(2',0)a(x)|ul?do, Vu e Xj.
RN-1

Consequentemente, para algum Cy > 0, é valido que

1 2uC
(u) < 5l (Hul!“ + Callull — “T) <-B<0, VueX,

para r = r(k) > 0 satisfazendo

C
P24 Oyt < B
q

e 8= p0(k):=r1uCy/(2q). O

Seja ¥ a classe de todos os subconjuntos fechados de X \ {0} que sao simétricos com
respeito a origem. Se A € X, o género de A, denotado por y(A), é definido da seguinte
forma

v(A) := inf {k € N : existe ¢ : A — R* continua e impar} ,

quando este conjunto é nao-vazio. Caso este conjunto seja vazio, definimos y(A) = +oo.

Citamos [71], Capitulo 7] para maiores detalhes neste assunto.
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Estamos em posicao de provar o principal resultado desta subsecao.

Proposicao 1.3. O funcional ® possui infinitos pontos criticos com energia negativa

Demonstracdo. Para cada k € N, considere

['v:={AeX :~v(A) >k}

= inf sup ®(u).
= )
Como ® permanece limitado em bolas e é coercivo, temos que ¢; € R. Sejam X e
r > 0 os dados no Lema . E claro que podemos definir um homeomorfismo impar entre
X, N OB,(0) e a esfera unitaria S*~! C R*. Portanto, podemos utilizar [71, Proposiciao
7.7] para mostrar que v (X N9B,(0)) = k.

Uma vez que X N 0B, (0) é fechado e simétrico, este conjunto pertence a I'y. Segue

do Lema que

cr < sup d(u) < -5 <0.
wEXENOB,(0)

Assim, todos os niveis minimax ¢, sao negativos. Do Lema [1.9(iii), ® satisfaz a condigao
Palais-Smale em cada um desses niveis. Utilizando que 'y ; C I'y, concluimos que ¢ <
crr1- Ademais, desde que ® é par e satisfaz a condigao Palais-Smale em qualquer nivel
negativo, podemos argumentar nas mesmas linhas de [71, Proposi¢ao 9.3] para provar
que,secy = =¢j=ce K.={ue X : ®(u) =c, ' (u) =0}, entéo y(K.) > j+ 1.

As consideragoes acima provam que cada ¢, < 0 é um valor critico de ®. Além
disso, se algum desses valores repetir, isto é ¢ = ¢41 < 0, teremos que y(K,) > 2,
implicando que K., possuirda uma quantidade infinita de elementos (cf. |71, Observacao
7.3]). Consequentemente, podemos concluir que ® possui infinitos pontos criticos com

energia negativa. O

1.2.2 Estimativas a priori
Esta subsegao é inteiramente dedicada & prova do Teorema [B]

Prova do Teorema[B. Seja u € X um dos pontos criticos de ® dados pela Proposicao [1.3]
Desde que ®(u) < 0, segue do Lema [L.9(ii) que ||u|| < R; e J'(u) = 0. Vamos mostrar

que, para todo u > 0 suficientemente pequeno, vale que

lu(2',0)] < Onp,  q.t.p. em RV (1.20)
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e, portanto, seguird da defini¢do de g (veja (1.17)) que f(u) = g(u). Assim, J'(u) = 0,
implicando que u é uma solugdo do problema original ((1.2)).

A ideia da prova de ([1.20) é uma adaptacao do cldssico método de Iteracao de
Moser [60]. No que se segue, vamos supor que u > 0. Se este nao for o caso, é suficiente

performar todos os calculos separadamente para as partes positiva e negativa de u.

Inspirados pelo truncamento de Stampacchia (veja [I8], [72]), definimos, para qual-
quer0<L<1ex€@,

Para g > 1, também definimos

¢LZ=:U%B_UU.

Sendo que ®(u) < 0, decorre do Lema (1.9 que J'(u)¢;, = 0. Portanto, podemos utilizar
(1.18) para obter que

K(z)(Vu-Veor)de < p K(2',0)a(x ui ¢rdo
RY R (1.21)
+ K(z',0)u’" ¢ do.

RN-1

Sendo uVuy, = uVu no conjunto {u > L} e tendo em vista que
Vor = 2(8 — D)2 *uVug +u2 *Vu,
é valido que
K(z)(Vu-Veor)dz = / K(x)(Vu-Vor)dx
RY {u>L}

= / K(z) [Q(B — Du Py + ui(ﬁfl) IVul*dz.
{u>L}
Assim, como uy =0 em {u < L}, temos

K(z)(Vu-Vo)de > | K()ul’V|Vu|’d. (1.22)

N N
RY RY

Se chamarmos de I'; o termo multiplicando p em (|1.21)), teremos que

Iy :/ K(x’,O)a(x/)uq_1¢Lda+/ K(z',0)a(z ) u?*prdo.
{L<u<1} {u>1}
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Uma vez que uy, < u < 1, no conjunto {L < u < 1} ocorre
u o, = uq_luL(B_l)u < uf.
Além disso, em {u > 1} vale que u9~! < uP~!. Assim

I < K(2',0)a(z")uldo +]a] K(2',0)u ' ¢rdo. (1.23)

RN-1 RN-1

Usando a desigualdade de Hélder na primeira integral de ((1.23) e combinando (|1.22) e
(1.21)), obtemos

[ K@ uPds < psgal, Jule
Ry (1.24)
+ (Wals + Cy) K(2',0)u’" ' ¢rdo.

RN—-1

De ur < u e da desigualdade de Hélder com os expoentes s = 2,/(p —2) e §' =
2./(2« + 2 — p), temos que

K, 00w’ prdo < K(2,0)u" *u* do
RN-1 RN-1
_ 2— 2 _
< b ul®y < SV ulP Al %,
em que
25’ 222
m = 48 = *

Por defini¢ao, ur(x) — u(x), quando L — 07. Além do mais, sabemos que |ju|| < R;.
Portanto, podemos substituir a desigualdade acima em ([1.24]) e utilizar o Lema de Fatou

para chegar em

O./

RY L (1.25)
+ (Halw + Cy) S& P2 RV ul 22,

K(2)u?P Y| Vul?dr < ,uSq_qﬂlalqu‘f

Agora, definindo

observe que
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Como ur, =0 em {u < L},
Vzp = [(5 — 1)uh u+ uﬁ_l] Vu.

Portanto, utilizando que uy, <we (8 —1)>+1+2(8 — 1) = B2, concluimos que
2/2.
( K(m',O)zi*da) < SQ_*IBZ/ K (2)u?P Y| Vu|*dz.
RN-1 RY

Uma vez que zp,(z) — v?(z), quando L — 0%, segue da estimativa acima, de (1.25) e do

Lema de Fatou que

0135 < 858 [, el o, B + (sl o + Cy) SV RE 1025

!
Tq

Lembre que estamos assumindo 0 < p < p**, onde p** foi introduzido no comeco da
subsecao anterior. Isso assegura que a funcao h definida em possui exatamente
duas raizes positivas 0 < R; < R,. Precisamos reduzir mais uma vez o valor de pu.
Na verdade, como R;(u) — 0, quando p — 07 (veja Lema sabemos que existe
0 < 1 < p** tal que, para todo p € (0, 1), todas as desigualdades abaixo sao satisfeitas:

MS;,‘ZMICLI%R‘{ <1, (Halw—+C))SSPPRI2 <1, 5,'°R < 1. (1.26)
Com esta restricao sobre u, temos que
a1}, < Gt max {1, 11 2, } (1.27)

em que C] := 252:1. Isso mostrar que, uma vez que u € LT[?B, entao u € L%ﬂ. Assim, se
fixarmos 5 := 2,/m > 1, teremos 2,5 > 2, = mf3, e assim melhoramos a regularidade de

w. Além disso, 2,3 = mB3? e podemos repetir os cdlculos acima, substituindo 3 por 52, e

utilizar (1.27]) para obter que

2 2 2
luly, < Cptmax {1,102} = Cigtmax {1, 1}

B
< (1" max {1, (€182 max{1, 1u13’}) } -
Tomando Cy := max{1, C}}, podemos reescrever a estimativa acima como

232 148 52(2 232
lul}, < O3P8 ) max {1, ju13}
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Dado k € N, repetindo esse processo k vezes obtemos

1 g 1 ,
23k S B 2_5'“ Sk gkt

lula, g0 < C (3?) max {1, Julz,} - (1.28)

Como S > 1, temos que

o0

Ly ey () - ey -
B prS B)  (B-1) B* — o 3)  (B-1)*

Além disso, da ultima desigualdade em ((1.26)) e de |ju|| < Ry, temos que

lula, < S5 %[lu]l < S5 /Ry < 1.

As observagoes acima aliadas ao fato de que f = (2, +2 —p)/2, Cy > 1, (1.28) e (1.3)
implicam que
lulo, g < Cy/PEVIgAIE-1* — 0y Wk eN, (1.29)

donde se conclui que ([1.20) vale. Com efeito, suponha por contradicao que exista C3 >

Cnp e Q C RY"! com medida positiva e finita em RV~ tal que |u(z’,0)| > C3 para q.t.p.

2’ € Q. Entao,
lula, g > (/ lu
Q

o que implica que liminfy_, ;oo Julg, s > C3 > Cyp, contrariando (1.29)). Esta contradicao

. 1/(2+6%) i
2.3 da> > C5|QY/ @5,

conclui a prova do Teorema [B] O



Capitulo 2

Problemas com fluxo concavo na

fronteira

Considere 2 C RY um dominio regular, 1 < p < +00, A,u = div(|]Vu|P~2Vu) o operador

p-laplaciano e o seguinte problema nao-linear

—Apu + |u’p—2u =0, em {2, ( )
2.1
|Vu|p—2% = AMu|72u + g(2',u), sobre 02,
v

emque A >0,1<qg<np, % é a derivada parcial na direcao normal externa e g : 02 xR —

R satisfaz:
(90) g € C(00 x R, R);

(g1) existe 6 > 0 tal que

g($/7 S) = g(x/’ _8)7 vxl E aQ’ S G [_5’ 5];

(g2) uniformemente em a’ € 052, vale

1- g(‘%‘l78)_
ls|=0 |s|2 a

No primeiro resultado deste capitulo, provamos o seguinte teorema de multiplicidade.

Teorema C. Suponha que g satisfaz . Entao, para qualquer N\ > 0, o Pro-
blema (2.1)) admite uma sequéncia (u,) C WHP(Q) N L>®(0Q) de solugdes fracas tais que
|tn | Lo 00y = 0, quando n — +oo.

39
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No problema acima, a nao-linearidade no bordo apresenta um parametro com sinal
positivo. Com forma de ter uma certa dualidade, inspirados pelos trabalhos de [59] [64] [68]
buscamos também fazer o estudo de uma equacao semelhante, porém com parametro ne-
gativo. Para tanto, sera essencial o uso de algumas propriedades do problema de autovalor
de Steklov

—Au+u=0, em (2,

Ou = Mul|P~2u, sobre 9.
v

(2.2)

Mais adiante, na sub-secao [2.1.2, apresentamos com mais detalhes este problema
de autovalor, trazendo os principais resultados acerca dele. De antemao, registramos que
ele admite uma sequéncia de autovalores (\,) tal que A\, — +00 se n — +00, e que o

primeiro autovalor A\; > 0 é simples e isolado.

No segundo resultado deste capitulo, consideramos a existéncia e multiplicidade de

solugoes fracas para o problema semilinear

—Au+u=0, em (2, (2.3)
2.3
? = —Mu|"?u + g(u), sobre 0f),
v

onde A > 0 e, agora, a nao-linearidade g : R — R satisfaz
(93) 9 € CH(R,R);

(94) 9(0) =0e g'(0) > Ay;

(g5) existe C7; > 0er € (2,2,) tais que

9(s)] < i1+ s, Vs €R;

(g6) vale
lim sup Gls)

|s]—+o0 |S|

< A1

Nosso primeiro resultado para o problema (2.3)) é

Teorema D. Suponha que g satisfaz (g6)l Entao existe \* > 0 tal que o Problema
(2.3)) possui pelo menos 4 solugoes nao nulas, sempre que A € (0, \*).

Em alguns casos, é possivel obter uma quinta solugao, conforme podemos ver no

resultado abaixo
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Teorema E. Suponha que g satz’sfaz e que existe k > 2 tal que
(g1) 9(0) =0 e g(0) > A

- 1 9
(gs) G(s) < §Ak+1s , para todo s € R.

Entao existe \* > 0 tal que o problema (2.3)) possui pelo menos 5 solugdes nao nulas,
sempre que A € (0, \*).

Apesar dos problemas (2.1)) e (2.3) parecerem semelhantes, eles sao estruturalmente
bem diferentes entre si, o que é refletido pelas técnicas que utilizaremos para solucionar

cada um.

Ao longo de todo este capitulo, vamos denotar por || |1 ; a norma em W(Q), ¢ > 1,

definida por

1/t
HUHLt = (/ [|Vu|t + |u‘t} d,ﬁlf) s Yu € Wl’t(Q)_
Q

2.1 Resultados Auxiliares

Nesta se¢ao, enunciamos e demonstramos alguns resultados auxiliares que serao empre-
gados ao longo do capitulo. Na primeira subsecao, estabelecemos um resultado de regu-

laridade que, ao que sabemos, é inédito e possui interesse proprio.

2.1.1 Um Resultado de Regularidade

Provamos aqui um resultado de regularidade que permite performar um argumento de
regularizacao do tipo bootstrap para problemas com o p-laplaciano com condi¢oes de Neu-

mann nao-lineares e, por isso, serd bastante 1til na prova do Teorema [D]

Antes de apresentar o resultado principal, vamos enunciar um resultado auxiliar que

enunciamos dentro do contexto em que vamos utilizar, embora ele seja mais geral.

Teorema 2.1. [2, Teorema 3.9] Se 1 < p < 400 e L € (W'P(Q))', entdo existe tinico
v = (vg,v1,...,vn) € [LP ()N tal que

N
L(u) :/uvodx—i—Z/umividx, Yu € WhP(Q).
Q — Ja
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Além disso,

N 1/p
1l wm ) = (Z/Q|vil”dx> :
1=0

Observe que podemos reescrever o resultado acima da seguinte forma: dado L €
(WP(Q)), existe tinico v = (vg, 7) € L (Q) x [ (Q)]N tal que

L(u) = / [uvg + Vu - v dz, Yue€ WH(Q).
Q

Além disso, denotando v = (vy,...,vyN),

N 1/p
Ll wr ey = (Z/prdx)
=0

> (/Q [[vo? + C[ol?] dm)l/p

1/p
> min{1,C}/? (/ [Jvol? + |0]7] dﬂf)
Q

= min{laC}l/p”UHLp’(Q)x[Lp’(Q)]Na
em que C' = C(p) é uma constante que depende apenas de p e verifica
Clz|P < |zifP + -+ |znlP, V= (z1,...,25) € RV,
O resultado principal dessa sub-se¢ao, que é uma generalizacao de [12, Proposi¢ao
4.1], esta enunciado abaixo.
Lema 2.1. Sejam

N -1 Ns(p—1
p>1, s>max{1,u}, ::L

(p—1)N N—-1"

h € L*(0R2) e € WHP(Q) uma solugdo fraca de

—ApY + [P =0, em (2,

(2.4)
|V¢|p’28—w =h, sobre 0S2.
v
Entio ¢ € WY(Q) e existe uma constante universal C = C(N,s,) > 0 tal que
WITS" < Cllkllzeon- (2.5)

Demonstra¢io. Tomando ¢ € C'(Q2) como funcdo teste na formulacio fraca de (2.4),
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obtemos
/ (VP2VeV e + [P 2lde)de = / hedo, Ve € C1(Q).
Q o0

Temos pela desigualdade de Holder que

< ||h|

‘ /Q (VEP>VoVe + [olP2) de

ol o, Ve e CHQ).

Usamos densidade para estender a desigualdade acima para toda ¢ € WH(Q), em que ¢
serda um valor apropriado entre 1 e N. Mais especialmente, considere

Ns

PE N vy

Como 1 < s < 400, temos que 1 <t < N, de modo que podemos considerar o expoente

critico t, := % Observe que
Ns(N —1)
t—t(N_l)— Ns—(N-1) Ns(N —1)
’ N—t N Ns N2s— N(N —1)— Ns
Ns— (N —1)
s(N —1) s(N —1) s ,

= = = S.

T Ns—(N—-1)—s (N—-1)(s—1) s—1

Como t, = s, podemos aplicar a imersao do trago W (Q) < L' (9) para obter uma
constante positiva C; = C1(N,t,Q) = C1(N,s,Q) > 0 tal que

< Cillhllzeollellie Ve € WH(Q).  (2.6)

/Q (VEP2VVe + [BP2p) d

A desigualdade acima mostra que o funcional linear Ty : W'(Q) — R dado por

Ty(p) = / VP2V + [ 20p) de, o € WH(Q),

estd bem definido, é continuo e | Ty|| < C||h||Lsoq). Logo, Ty € (WH(Q))" e podemos
usar o Teorema [2.1| para obter um vetor v = (v1,vy) € (L¥'(Q))" x LY (Q) tal que

Ty(o) = / (01 Vo + vap) da, Vo € WH(Q),

Como ¢ > 1, v é tnico. Portanto, de (2.6), temos que v; = |V|P2VY e vy = [[P~2).
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Assim, [P~ |[Vy[P~! € LY (Q) o que significa que v, |Vip| € L'®P=D(Q). Note agora que

Ns
o t  Ns—(N-1) Ns _Ns
Ct—1 Ns _1—N3—Ns+(N—1)—N—1’

Ns— (N —1)
de modo que
Ns(p—1)
t'(p—1)= =
(p—1) N1

Ademais, para Cy = Cy(t') = Cy(s) > 0,

1t
| Tyl = Collvll e @pyvxrr @ = 02(/Q(|V¢|t ®=1 4 ! (p_l))d$> = GollyIF,

e, portanto,
-1
1117 < CllhllLs @0,
onde C'= C(N,s,Q) = %, o que encerra a prova de (2.5]). O
N -1
Observacao 2.1. Como s > M, temos que
(p=1)N

_Ns(p—1) _Np—-1)p(N-1)
N—1 ~(N-1) (p—DN

Logo o resultado acima efetivamente melhora a reqularidade esperada da solugdo. Além
p(N —1)
(p—1N
por s > 1. Na realidade, em qualquer um dos casos, a unica condi¢ao que realmente é
p(N —1)
| (p—1)N
portanto, o resultado melhora a reqularidade da solugado.

disso, se p > N, entao < 1 e portanto a condicao sobre s pode ser trocada

necessdria € s > 1, porém precisamos que s > para garantir que Y > p e que,

2.1.2 O problema de autovalor de Steklov

Nesta sub-secao, trazemos os principais resultados acerca do problema de autovalor de
Steklov . Todas as demonstragoes e demais detalhes técnicos podem ser encontradas
em [53], 57]. Vale ressaltar que estes trabalhos estudam uma versao ja generalizada deste
problema de autovalor, considerando-o com o operador p-laplaciano, 1 < p < 4o00. Pri-

meiramente, ressaltamos que o problema de Steklov possui uma sequéncia de autovalores

Teorema 2.2. O problema de autovalor de Steklov (2.2) admite uma sequéncia positiva

de autovalores (\,) de modo que A, — +00 quando n — +00.

Demonstracao. Veja [53, Teorema 3.5]. O
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Teorema 2.3. Sobre o primeiro autovalor do problema de Steklov, temos

(i) vale a caracterizag¢ao variacional

A\ = inf {/ [|Vu\2+u2}da::/ quazl};
uweHY(Q) | Jo 0

(ii) se o1 € H'(Q) € uma autofungdo de (2.2)) associada a Ny, entio o; > 0 ou @ <0

em €);

(111) A1 € simples, isto €, se p e Y sao duas autofungoes de (2.2)) associadas a ele, entao

existe ¢ € R tal que ¢ = c;
(iv) A1 € isolado, isto €, existe a > Ai tal que Ay € o unico autovalor de (2.2) em [0, al;

(v) se p € HY(Q) € uma autofuncdo de ([2.2)) associada a um autovalor X # A, entdo

@ troca de sinal sobre 0S2.

Demonstracao. Veja [53] Lema 5.6, Teorema 5.7, Proposigao 5.8 e Teorema 5.16] e [57,
Equacao 1.3, Teorema 1.1 e Lema 2.3]. ]

Para finalizar esta secao, vamos estabelecer uma notagao adequada para poder tratar
dos auto-espacos gerados pelas autofuncoes deste problema. Considere a aplicacao A :
HY(Q) — H Q) dada por

Alu) = —Au+u

em que Au denota o laplaciano de u no sentido das distribui¢oes. Ao operador A estd
associada uma forma bilinear, continua e coerciva. Portanto, para cada f € L?(9f) existe
uma tnica uy € H'(Q) com A(uf) = 0 em Q e uy = f sobre Q. Agora, considere o
operador A : L*(9Q)) — L*(09) dado por

_ Juy

A =5,

que nos permite escrever o problema de Steklov como

Pelo visto no Teorema [2.2] este problema admite uma sequéncia de autovalores. Assim,
para cada j € N, podemos denotar por H; := ker(A — \;I) o auto-espaco gerado pelo

j-ésimo autovalor do problema de Steklov. Para cada k € N, defina

k
X, =P H;
j=1
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Podemos entao expressar H'(Q) = X, @ X para todo k € N. Além disso, valem as

desigualdades variacionais:

Jull?, < )\k/ uldo, Yu € Xy,
o0

lull? > Apss / 2do, Vu e X
o0

2.2 Prova do Teorema

(2.7)

(2.8)

Esta segao ¢ dedicada & prova do Teorema [C] Usamos as mesmas ideias de [74] (veja

também [50]). Uma vez que nao sabemos nada a respeito do comportamento de g no

infinito, o funcional energia I associado ao problema (2.1)) pode nao estar bem definido.

Para contornar este obstaculo, construimos um truncamento conveniente para obter um

funcional de classe C' com boas propriedades.

Lema 2.2. Suponha que g satisfaz |(go)(gz)| € considere 0 < 6 <

u) M. Entao
q

existem 0 < a < d/p e g € C(0Q x R;R) tal que para quaisquer (z',s) € 9 x R valem

(a) g(xla _8) - —g(ZE,,S);
(b) g(z',s) = g(a',s) se |s| <a;

(c) §(a',s)s — pG(a', s) < O]s]7;
. A

d) |G(2',s)] < —]s|9;

(d) |G(2', s)| pq! |

(e) |g(z, s)] < O]s|*".

Demonstra¢ao. Seja 0 < 0 < (M) A. Por|(go) para qualquer

q

7

0<e< ——
2P +p+1)

existe 0 < a < §/p tal que

(2.9)

|G(2',s)] <€|s|? e |g(',s)s| <e|s|?, Va' €09, |s| < pa. (2.10)



Considere ¢ € C}(R) uma funcio corte par que satisfaga

(
6 =1, em [~a,d;

=0, em R\ (—pa, pa);
0<¢<1, emR;

#(s)s <0, |¢/(s)) < E, em R.
\ a
Fixe
0<B<—F—=
2p(p+ 1)

e considere a funcao de classe C! dada por

G2’ 5) = o(s)G(2',5) + (1 = ¢(s))Bls|".

Se |s| < pa, utilizando (2.9), (2.10) e (2.11]), obtemos

o) < et ol < (s lstr < (G250 Yo < 2

Se |s| > pa, entao

A
|G (2", s)| < Bls|” < —]s]*,
Pq

e, com isso, temos provado o item (d). Para os demais, note inicialmente que

47

(2.11)

gla’,s) = o= (a', s) = ¢'(5)[G(2', 5) = Bls|] + d(s)g(a, s) + (1 — é(s))gB]s|""*s

é continua. E facil verificar que §(2/,s) = g(a’,s) se |s| < a, o que prova o item (b) e

mostra que g é impar em s quando s € [—a,a]. Além disso, como ¢ se anula fora de

(—pa, pa), vale que
g(a',s) = qBls|" s, |s| > pa,

que é impar em s. Por fim, se s € (—pa, pa) \ (—a,a), uma vez que g é impar em s quando

s € [=6,6], ¢ é par e (—pa, pa) C (—0,0), temos que g se exprime como somas de produtos

de funcoes pares por fungoes impares, o que gera uma funcao impar. Assim, fica provado

também o item (a).
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Se |s| < pa, podemos usar as propriedades de ¢, (2.10) e ¢ < p para obter

9(2',s)] < | (s)|(|G(a', s)| + Bs|?) + |g(', s)| + gB]s|*
< Sefsl? 4 Blsl?) + els|" + pBls|!
< plels|Tt 4+ p?Bls|T +els|TTh + sl
< (PP 4 Dels|*t + p(p+1)8]s)7 .

E, portanto, segue de (2.9)) e (2.11) que
N o, ., 0 _
G < < DSl s = ol
Se |s| > pa, entdao ¢(s) = 0. Logo,
19(2', 5)| = gB|s|"" < pBs|T™" < O]s]T,

isto é, o item (e) também estd provado. Tudo o que nos resta é demonstrar o item (c).

Observe que, se |s| < pa, podemos repetir o mesmo argumento acima para obter

g(a',s)s — pG(a’, s) Gz, 9)|(p+ 1 (s)lIs]) + Bls|*(q + @' (s)ls]) + [g(a", 5)s|

< els|?(p+p°) + Bls|U(p + p*) + €ls|?
< (PP +p+Dels|”+ (p* + p)Bs|®

9 9
< gl Slsl? = Ols|*.

Para |s| > pa, temos ¢ = ¢/ = 0, e portanto

- 0
§(a', s)s — pG(a', s) = qB|s|" + pB|s|” < 2pBls|? < P s < O]s]".

Assim, o lema esta provado. O

O Lema[2.2 (d) combinado com a imersdo do trago W'P(2) = L(0) assegura que
o funcional I : W'(Q) — R dado por

I(u) ::1/(|Vu|p+|u|p)d:p—é/ |u|’1dcr—/ G(z',u) do,
b Ja q Joo 2io)

¢ de classe C'. Usando o Lema (a) conclufmos que I é par. Além disso, vale o seguinte:

Lema 2.3. Se u € W?(Q), entao

I(u)=0=1TI"(u)u < u=0.
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Demonstracio. E claro que, se u = 0, entdo f(u) =0 = f’(u)u Suponha entao que
I(u) = 0 = I'(u)u. Usando o Lema (C), obtemos

0=—pl(u)+T'(wu = A(?) /69 |u|? do + /m(pé(m/,u) — g(2',u)u) do

p—q
> [A(T) _ e] el o

o que implica que u = 0 sobre 0€2. Neste caso,

~ 1
0=1I(u) =~|ul?
(u) p|| |

1,p

o que implica que u = 0. O

Observagao 2.2. Suponha que u € WHP(QQ) é um ponto critico de I tal que l|w|l oo 90) <

a. Entao, u satisfaz

/(lVUV’QVquo—i-]uV’ngo) dx = )\/ |u|? up d0+/ G2, u)p do, Vo € WH(Q).
Q 20 20

Porém, como ||u||r=~wpa) < a, vale pelo Lema [2.9(b) que g(x',u) = g(z',u). Assim,
(09)

podemos reescrever a expressao acima por

/(qu|p_2VuV<p—l—|u|p_2ugp) dx = )\/ |u| T up da+/ g(@',u)p do, Vo € WH(Q),
0 B B

Q

o que significa dizer exatamente que u resolve (2.1)) no sentido fraco.

Lembramos que, para c € R, X um espaco de Banach e J € C'(X,R), uma sequéncia
(u,) C X é chamada sequéncia Palais-Smale para J no nivel ¢ se

lim J(u,)=c e lim J'(u,) =0.

n—-+o0o n—-+oo

Quando toda sequéncia deste tipo possui subsequéncia convergente, dizemos que J satisfaz

a condi¢cao de Palais-Smale no nivel c.
Para obter os pontos criticos de I, faremos uso do resultado a seguir.

Teorema 2.4. [74, Lema 2.4] Sejam X um espaco de Banach e¢ J € C'(X,R). Suponha
que J satisfaca a condigdo de Palais-Smale, seja par, limitado inferiormente e que J(0) =
0. Suponha ainda que, para todo k € N, existam um subespaco X C X com dimensao k
e pr > 0 tais que

sup  J(u) <0,

’uEXkﬁSpk

em que S,, = {u € X : ||ullx = pr}. Entao, J possui uma sequéncia de valores criticos
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cr < 0 tais que ¢, — 0 se k — 400.

No nosso primeiro resultado, vamos provar que [ satisfaz a condi¢ao de compacidade
requerida no teorema acima.
Lema 2.4. O funcional I € coercivo e satisfaz a condi¢io de Palais-Smale em qualquer

nivel ¢ € R.

Demonstragio. Fazendo uso do Lema [2.2(d) e da imersdo do trago W?(Q) — L(09),

obtemos

- 1 Ap+1)
I(u) = ];HUH’f,p——HUHqu(aQ)
1 o AMp+1D)y
> —ulli, |t = ————|
p q

Uma vez que p > ¢, concluimos que limy|— o0 /(1) = +00, isto é, I é coercivo.

Fixe ¢ € R e considere (u,) C W'P(Q) tal que I(u,) = ¢ e I'(u,) — 0. Uma vez
que I é coercivo, (u,) é limitada. A menos de subsequéncia, existe u € WP(Q) tal que

u, — u fracamente em W'?(Q) e u,, — u em L(99). Pela desigualdade de Holder e do
Lema[2.2(e) temos que

/8 01 = 0) < [ty = o) = (1)

/BQ 9", up) (up — u) do < HHUTLH[]L;(laQ)”un — ul|La(o0) = on(1).
Assim,

I'(up) (uy —u) = /[|Vun|p_2Vun(Vun — V) + |un [P up (u, — u)] do
Q
- )\/ | |7 210, (1, — 1) do — / (2" uy) (up, — u) do
00 00
= / (VP 2V, (Vu, — V) + [, P2 u, (u, — u) dz + 0, (1).
Q
Como 0,(1) = I'(uy)(u, — ), concluimos que

lim [\Vun|p’2Vun(Vun — V) + |t [P 2w, (u, — u)] dx = 0. (2.12)
0

n—-+00

Da convergéncia fraca u, — u em W'P(Q), temos que

lullp < Timinf [l (2.13)
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Argumentando como em [36], considere o funcional de classe C' F': W?(Q) — R dado
por

1 1
Fv:—/ VolP + [v|P] dx = ~||v||¥ .
(v) p Q[I [P+ [vl] p|| 17
Observe que F' ¢ de classe C! e convexo. Assim, usando (2.12]), obtemos

liminf [F(u) — F(uy,)] > liminf F'(u,)(u — u,) = 0.

n—-4o00 n—-+4o0o

Segue entao de (2.13]) que

lullt, = pE(u) 2 liminf pF(u,) = liminf |ju, [}y, = (iminf {lu,]1,)" 2 [Jull

n—4o0o p?

o que mostra que |[uyll1, — |[u/i, em R quando n — +o0o. Como ja possuimos a
convergéncia fraca de u,, para u em W1P(Q), segue da convexidade uniforme deste espaco

que u, — u fortemente em W'?(Q), o que finaliza a prova. n

O resultado a seguir fornece a hipdtese geométrica do nosso teorema abstrato.

Lema 2.5. Para cada k € N, existe um nimero p, > 0 e um subespaco X C WHP(Q) de
dimensao k tais que

sup 1(u) <0,
uEXkﬂSpk

em que S,, = {u € X :||ull1p = pr}.

Demonstracao. Fixe k pontos distintos z/, ..., 2}, € 0§ e considere r > 0 tal que B,.(z}) N

Br(x;») =@, paratodoi,j=1,...,k, com # j. Paracadai=1,..., k, escolhemos uma

funcio suave ¢; € C1(Q) tal que ¢; = 1 em B; := B, ja(x;) NQe¢;=0em Q\ B,(z;).
Uma vez que estas fungdes possuem suportes disjuntos, o conjunto {¢1,...,¢x} é

linearmente independente, e o subespaco gerado Xy, := span{¢y, ..., ¢p} C W1P(Q) possui

dimensao k. Afirmamos que a aplicacao

1/q
follsiomy = [ tutras)
o0

definem uma norma em Xj. De fato, vejamos que ||u||La@0) > 0 para qualquer u # 0.

. k - - . . ,
Seja u =Y ., a;¢; uma fungdo nao-nula. Com isso, pelo menos um dos coeficientes «; é
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nao-nulo. Assim,

T / 1 + . + el do
o0
k
> Z/ |041¢1+...+Oék¢k|qd0'
i=1 7 Bi

k
= Z|a,-|q/ do > 0,
i=1 i
ja que os conjuntos B; sao disjuntos e ¢; = 1 em B;. As demais propriedades que uma
norma verifica sao naturalmente satisfeitas. Agora, como dim X; < oo, podemos obter
C' = C(k) > 0 tal que

CE)ulll, < lullfapg), Yue Xk

)’
Combinando o feito acima com o Lema [2.2)(d), para todo u € X, vale

fw) < 2

A A
ullf, — —/ \u|?do + —/ |ul?do
p ’ q Joa Pq Joa

1 Alp—1)
=l = Dl |

1 4 Ap—1)
< ];Huu‘f,p(uuw;pq - Tc*(k)).

Ap—1)

1/(p—q)
) C’(k:)) > 0, obtemos que
q

Consequentemente, definindo p; = (

k
<0, VuesS,,

finalizando assim a demonstracao. O]
Agora, estamos em condigoes de apresentar a prova do Teorema [C|

Prova do Teorema[d. Usando os lemas anteriores e o Teoremal[2.4] obtemos uma sequéncia
de valores criticos (¢;) do funcional I tal que ¢, — 0, quando k — +o0o. Para cada k € N,
considere u, € W'(Q) um ponto critico de I tal que I(ug) = ¢;. Naturalmente, (uy)
é uma sequéncia de Palais-Smale de I no nivel 0. Decorre do Lema que, a menos
de subsequéncia, existe u € W'?(2) de modo que ux — u fortemente em W1P(Q). Da
regularidade de I, segue que I(u) =0 e I'(u) = 0. Assim, segue do Lema que u = 0,
isto é,

Jim [ = 0. (2.14)
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Sendo I’ (ug) = 0, entao uy é uma solugao fraca do problema

_Apuk + |uk‘p_2uk =0, e1m Qa
0

|Vuk|p_2ﬂ = hg, sobre 99,
Ov

em que
hi(2') = Mug|7 2up + §(2', ug).

Usando o Lema [2.2)(e), temos que

()] < (A + 0) g (2.15)

Agora, temos dois casos a considerar
Caso 1: 1 <p < N
Como uy, € LP+(082), entdo hy, € LP/@=D(9). Uma vez que 1 < q < p, valem

p- __pN-1) _p pe PPN

qg—1 (N—-p)g—1) q¢—1 q—1 p—1>(p—1)N'

Desse modo, podemos aplicar o Lema com s = p,/(q — 1) para concluir que

Np.(p—1)

up € WH(Q), com v, = G- DV -1

>p*
)

s < CN, 2, g, DNkl e a1 90

Além do mais, de ([2.15)), da imersao do trago de Sobolev e de ([2.14]), segue que
k]l oera-00) < C1(A, 0,p,¢, N, Q)HukH({;l — 0, quando k — +o0.

Combinando as duas ultimas expressoes, concluimos que ||ug|l1,, — 0, quando k — +o0.

Se 1 > N, entdo W (Q) < L>(99) e potanto ||ug|| @) — 0, quando k — +oc.
Assim, existe ko € N grande o suficiente de modo que |[ug||L=@0) < a, para qualquer
k > ko. Das consideragoes feitas na Observacao , {ug >k, ¢ uma sequéncia de solugoes
fracas de (2.1)).

Se 71 = N, podemos usar imersao do trago para concluir que ux € L'Y(Q), para

qualquer t > 7;. Assim, hy € LY@ D(9Q) para tais valores de ¢t. Usando novamente o
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Lema concluimos que

Nt(p—1)
up € WH7(82), com = N,
(¢ =N =1)
para t > 1 grande. Portanto, u, € L*(02) e
1/(p—1) 1)/(p—1
lullz= ooy < Cllunlliy < Okl gy < Cllusllin, ™0 =0, se k= oo,

e novamente o resultado segue.

Resta considerar o caso em que 7; < N, no qual faremos um argumento do tipo

bootstrap. Observe inicialmente que

m__ Np-1)
pe (=N -1)

= 0> 1

Com isso, 71 = Bp.. J& que up € LOV(99), temos que hy € LOV-/(4=1(9Q). Como

Y1 > ps, Obtemos

(M) _ P >p(N—1)
¢g—1" ¢—1" (p—1)N

Aplicando o Lema com s = (71)+/(q¢ — 1), concluimos que

> 1.

N(’Yl)*(p — 1)

up € WH2(Q), com v, = G-V =1) > (71)+-

Mais ainda,

luilli5, < Cllhell ooy < Clueliz, =0, se k — +oo.

Além disso,
T2 _ Np-1)
()« (=1 -1)

=0
e portanto
Y2 = a(n). > an = a’p..
Se 79 > N, o resultado segue como antes. Caso contrario, poderemos ir repetindo todos
os passos feitos de modo recursivo, obtendo uma sequéncia (7,) C R tal que

up € W (Q), com 7y, > a”p., lim [|ugll14, — 0.
k—+o0

Como a > 1 e vy, > a"p,, segue que 7, — +00 quando n — +o0. Portanto, escolhendo
n € N suficientemente grande, temos que ~,, > N e assim podemos finalizar a prova para

este caso.
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Caso 2: p> N

Neste caso, a imersdao de Sobolev implica que u; € LY(9Q) para todo t > p. Assim,
como hy, € LY@ (9Q) e do Lema [2.1| temos que

Nt(p—1)
1

up € W (Q), com v = >Nt >N
||uk| 11);,1 < CHthLt/(q—l)(aQ) < C’||uk| 611;1 — O, se k — 4o0.

Como v > N, segue que uy € L>®(0N) e
gl Le@a) < Clluglli, =0, se k— +oo,

donde o resultado segue. O]

2.3 Minimos locais nas topologias H'! e (!

Nesta segao, iniciamos o estudo do problema ([2.3). Inicialmente, observe que solugoes
fracas de (2.3)) sdo exatamente os pontos criticos do funcional energia Jy : H(Q2) — R

definido por

1 A
) = /Q(\Vu|2 +luP)do + /m ultdo ~ | Gluyae,

em que G(s) := [; g(t)dt. Usando e as imersoes do trago de Sobolev podemos mostrar
que Jy estd bem definido e ¢ de classe C!.

Para podermos atacar apropriadamente o problema ({2.3]), precisamos provar um
resultado abstrato acerca do funcional energia associado a este problema. Para tanto,

faremos uso dos dois importantes resultados de regularidade a seguir:

Teorema 2.5. [53, Teorema 4.4] Sejam Q C RY um dominio limitado, 1 < p < 400 e

ug € WHP(Q) uma solugao fraca de
—Apu = f(z,u), emQ,

em que f: QX R — R € uma funcao de Carathéodory. Considere g(x) = f(x,ug), a qual
estd definida q.t.p. em €. Se

g€ L*(Q), com s> LN,
p—1
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entao u € CH*(Q) para algum 0 < o < 1. Em particular, o resultado vale se g € L>=(Q).

Teorema 2.6. [53, Teorema 4.9] Seja Q C RY um dominio limitado com fronteira C*7,

0<vy<1. Sejaug € WH(Q) N L°(Q) uma solugao fraca e limitada do problema

—Ayu = g(x), em €,
]Vu]”_Q% = (', u), sobre 0%,

com |[ug|| L) < M. Suponha que g € L=(Q) com ||g||r=@) < K e ¢ satisfaca
|¢(SL’,Z> - ¢(y7w)| < LHJ; - y|’y + "Z - ,w|’Y]7 ‘(b(l’,Z)l < L7

para todo (z,2), (y,w) € 0Q x [-=M, M]. Entao, ezxiste o« = oy, N,p, M, K) € (0,1) tal
que ug € C12(Q) e
Hu”CLQ(ﬁ) < ¢ = C(’Y, NaPa M7 K,L,Q)

Os dois resultados acima sdo ferramentas para mostrar regularidade do tipo O,
O primeiro mostra essa regularidade no interior, enquanto o segundo a transporta até
o bordo. Tendo eles em maos, podemos nos voltar ao principal resultado dessa secao,
o qual permite, em linhas gerais, obter minimos locais do funcional buscando-os apenas
na topologia de C!, que é consideravelmente menor. Existem vérios trabalhos que fazem
este tipo de resultado (veja [45] 511, 59, 64]). O mais cldssico deles é o célebre trabalho de

Brezis-Nirenberg [21], do qual o resultado abaixo é uma versao.

Teorema 2.7. Suponha que uy € H*(Q) seja um minimo local de Jy na topologia C*.

Entdo ug € também minimo local de Jy na topologia H*.

Demonstracao. Por hipétese, existe 6 > 0 tal que
In(ug) < Ja(ug +v), Yo e CHQ), ||v]|er < 6. (2.16)
Fixe v € CY(2) com |[v||cr = 1 e defina f, : (—4,d) — R por
fo(t) = Jx(ug + tv).

Por (2.16), vale que f,(0) < f,(t) para todo ¢ € (=6,8). Como f, é de classe C", isso
implica que f;(0) = 0. Em outras palavras, J}(ug)v = 0. Da arbitrariedade da escolha de
v € C'(Q) na esfera de raio 1 e pela linearidade da aplicacdo v € C1(Q) + Ji(ug)v € R,
segue que

Ji(ug)v =0, Yo e CH(Q).
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Uma vez que C*(Q) é denso em H'(Q), segue que Jj(ug) = 0. Portanto, uy é solugao

fraca de
—AUO + Ug = 0, €m Q’
0
# = —A|uo|?ug + g(uo), sobre 0f).
v

Definindo f(s) := —\|s|?"%s + g(s), em virtude de vale que
1F(s)] < As|fH+Ci(1+|s|"), Vs eR.

Como uy € H'(Q) — L*(0Q) e 1 < ¢ < 2 < r, temos que

2./(r-1) 1 o1y 2/
(o) /0 do < | Aol + C1(1 + fuol )| do
) )
r—1 r—1 2/(r=1)
< [ A ol ) + G+ ol )| do
20
2./(r=1)
< (A + 01)2*/(r_1) / [|w)|r_1 + 1] do
20
< 2N 4 0/ [ug|* + 1do < +o0,
20
e portanto f(ug) € L*/=V(99Q). Usando 2 < r < 2, e N > 3, obtemos
N 1 1
1< 1= <
" N2 NS (N—2)r -1
% 2AN-D)  _AN-1)
r—1 (N—-2)(r—1) N ‘

Aplicando o Lema 2.1, com s = 2, /(r — 1) segue que

2. N
—D(N=1)

ug € WH(Q), com 7, = 2,

em que usamos ainda a conta feita na Observagao [2.1| para garantir que v; > 2.
Vamos considerar agora 3 casos distintos.

Caso 1: v1 > N

(2.17)

Neste caso, devido as imersoes de Sobolev, uy € C%*(Q), para algum 0 < o < 1.

Em particular, ug € L>*(2). Assim, uma vez que —Aug = —ug em €2, segue do Teorema

que up € CH(Q).

Precisamos agora garantir a regularidade no bordo. Observe que f se decompoe na

soma de —\|s|772s, que é Holder continua com expoente ¢— 1, o termo g(s) que, por ser de

classe C*, ¢é localmente Lipschitz e, portanto, localmente Holder com qualquer expoente.
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Se M = ||uo|| (), existe Ly = Ly (M) > 0 tal que

l9(s) = g(t)] < Luls —t|"", Vs,t € [-M,M].
Também, pelo que ja foi ja comentado acima, existe L; > 0, independente de M tal que

| — A|s|97%s — (=A|t|97%)| < Lo|s — t|77, Vs, t € R.

Com isso, sendo L = max{L;, Lo} > 0,

|f(s) — f(t)] < Ls|s —t|9", Vs,t€[-M,M)].
Além disso, segue do crescimento de g que, para qualquer s € [—M, M], vale

1f(8)] < Ns|T 4 [g(s)] S AMTE+ Cy(1+ M"Y =: Ly.

Escolhendo-se L := max{Ls, L4}, estamos em condigoes de aplicar o Teorema (veja
também [54, Teorema 2|) para garantir que ug € CH(€).

Caso 2: v = N

Este caso é bem semelhante. De fato, teremos pelas imersoes de Sobolev que ug €
L'(Q) para todo ¢t > 1. Aplicando o Teorema ganhamos que ug é de classe C*(Q),
para algum 0 < o < 1. Para conseguir a regularidade no bordo, basta proceder como no

caso anterior.

Caso 3: vy < N

Nesta situacao, faremos a aplicacao do bootstrap. Ja observamos anteriormente que
ug € W (Q), com ~; > 2 dado em ([2.17). Além disso,
! 2, N N 2, —1

2T OIN=T) = DIN= -1 P7h

Pela imersio do traco, temos que uy € LOV+(9Q), de onde se conclui que f(ug) €
LOV-/=1)(9Q). Sendo 71 > 2, r < 2, e N > 3, concluimos que

() _ 2. _2AN-1)

> > 1.
r—1 r—1 N

Com isso, aplicando novamente o Lema [2.1], obtemos que

N (1)«
(N—=1)(r—1)

ug € W2(Q), com ~yy =
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Se 75 > N, repetimos o argumento usando nos casos anteriores para concluir que uy €

C1(Q). Caso isso nao ocorra, perceba que

N(71)« (N —1)
w_ D00 G0 N—m _wN-2)
gs! 2.N 2, 2(N —1) 2(N —m) 2 .
(N—=1)(r—-1) N —2
2
Portanto, v > 71 = 232, Tterando esse processo obtemos, no préximo passo de iteracao,
N(72)-
Wl,’vs 0 = .
up € (€2), com 73 N -1 -1

Além disso,

Assim,
73>7—§>7—%:7—§:2B3.

noodn 4

Recursivamente, obteremos uma sequéncia crescente (V,)nen tal que ug € WhHn(Q) e

Yo > 20" Uma vez que S > 1, segue que 7, — +00 se n — +o0o. Logo, em algum

momento, teremos v, > N e o Caso 1 mostra que uy € CH¥(Q).

Afim de provar o teorema vamos supor, por contradi¢ao, que ug nao € minimo local
de Jy na topologia de H!. Isso significa que, para todo € > 0, existe v. € H*(Q2) com
|vell1,2 < € tal que

J)\<U0 + UE) < J)\(Uo). (218)

Afirmamos que J, é fracamente semicontinuo inferiormente. Com efeito, sejam
(up,) C HY Q) e w € HY(Q) tais que u, — u fracamente em H'(Q). Entao, (u,) é

limitada e, a menos de subsequéncia, vale para todo 1 < s < 2, que

U, — u, em L°(09),
up(2') = u(x’), qt.p. 2 €909,
dps € L*(00) tal que |u,(2)| < ¢s(2') q.t.p. 2’ € ON.

Dessa forma,

A A
lim —/ |un|?do = —/ |u|? do.
n=too g Joq q Joo
Além disso, de|(gs)], vale que

lim G(u,(2') = G(u(z')), qt.p. 2" €N.

n—-+o0o
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Por outro lado, de |(gs)|
G(un(2)) < C(Jun(a")] + un(2)]") < C(01(2)) + [&p(2)|") € L (09).

Decorre do Teorema da Convergéncia Dominada de Lebesgue que

lim G(uy)do = / G(u) do.

n—-+o0o 90

Portanto, como a norma é fracamente semicontinua inferiormente, segue que

o T 2 A q
lrlLrBig;f Ia(up) = lqlgli&f [§|\unH12 + . /89 U, | do — /89 G(un) da}
1 A

> —||u||i2+—/ |u|qda—/ G(u)do = Jy(u).
2 q Joa 00

Como H'(2) é reflexivo e separavel, a bola fechada

Bi(w) = {v e H'(S) : llu — ]2 < €},

é compacta e metrizével na topologia fraca de H'. Usando resultados cldssicos de Anélise

Funcional (veja por exemplo [19] p. 11]), concluimos que J P é limitado inferiormente
elug

e que o infimo ¢é atingido. Sem perda de generalidade, denotaremos o elemento que atinge

este infimo também por ug + v.. Desta forma,

Ia(ug +ve) = inf Ia(ug + v). (2.19)

veH! (Q), [[v][1,2<e

Observe que v, minimiza o funcional v € H*(Q) + Jy(up + v) quando restrito & bola
fechada B,(0). Sem perda de generalidade, podemos supor que, na realidade, ||v |12 = €
pois, do contrario, bastaria considerar que estamos na bola de raio € < € em que € =

|vel|1,2. Assim, v, minimiza o funcional v € H'(2) — Jy(ug + v) restrito a esfera

S.={ve HY(Q) : |v]12=¢} = {v € H'(Q): ¥(v) := /(|Vv|2 +v?) dr = 62} :
Q
Usando o Teorema dos Multiplicadores de Lagrange obtemos p. € R tal que

Ji(uo + ve)p = pV' (v, Vo € HY(Q). (2.20)

Afirmagao: . < 0 para todo € > 0.

Por absurdo, suponha que para algum € > 0 se tenha p. > 0. Considere a aplicagao

h(t) := Jx(uo + (1 — t)v.), te0,1].
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Note que h é de classe C'([0,1]), h(0) = Jx(ug + ve) e h(1) = Jy(ug). Por outro lado,
usando a definicao de h e (2.20)), obtemos

R (0) = 3 (uo + ve)(—ve) = pe¥' (ve) (—ve) = —2ptel|vellf , = —2pee® < 0.
Assim, existe 7 € (0, 1) de tal maneira que h(0) > h(7), ou seja
In(ug + ve) > Jy(up + (1 — 7)v,).
Entretanto, a desigualdade acima entra em contradi¢ao com ([2.19), uma vez que
1 =T)velr2 = (1 = 7)[lvel12 = (1 = T)e <e.

Logo, p. < 0 para todo € > 0.

Dada ¢ € H' (), segue de (2.20) que
(1 —2pu,) /(VUEVgO + vep) dx + /(VuOVga + ugp) dx
0 Q
= —)\/ |[uo + ve| 72 (up + ve ) do
00
+/ g(ug +ve)pdo.
00

Em outras palavras, v, é uma solucao fraca de

(1 — 2u)(—Ave + ve) — Aug + ug = 0, em (2,
0 c
w = —Aug + v T2 (ug + ve) + glug + ve), sobre 0f).
v
Entretanto, uma vez que ug satisfaz (2.3)) e usando que p. < 0, obtemos que v, é solugao
fraca de
—Av, + v, =0, em (2,
0,
5 —AMug + ve| T2 (ug + ve) + Mol 2up + g(ug + ve) — g(uo), sobre 09.

Considere a aplicacao k : 92 x R — R dada por

k(2',s) = — Muo(a") + 5|97 (uo(2) + 5) + Mug(2”)]9 2up(2)
+ g(uo(2') + 5) — g(uo(2')).
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Utilizando que 1 < ¢ < 2 < r e o crescimento de g, concluimos que:

k(@ s)] < A(luo+ s|"" + |uo|™™") + |g(uo + )| + |g(uo)]
< M2+ Jug + 8"+ Juo[ ) 4+ Cr(2 + Juo + s+ [uol"T)
< Co(1+ Jug|™™" + |s]"1),
e, portanto,

(2", ve(a)] < Co(1+ [uol™™" + o). (2.21)

A regularidade de z’' — k(z',v.(z)) é determinada apenas pela regularidade de v,
uma vez que uy € C1(Q). O nosso objetivo agora é mostrar que v, € C*(Q). Para tanto,
vamos aplicar novamente os resultados de regularidade que utilizamos para mostrar que
ug era suave. Primeiramente, como v, € L?(99Q), k(-,v.) € L*>/0=D(9Q). Aplicando o
Lema como antes, temos que v, € W17 (). Mais ainda, pela parte final do Lema
, existe C5 = C3(2, N,r) > 0 que independe de € de forma que

HUEHIM < Cs|k (-, ve) HLQ*/(T—U(aQ)' (2.22)

Vamos calcular o valor do termo no lado direito da desigualdade acima. Para tanto,
observe que deduz-se facilmente da construgio de v, que v, — 0 em H'(Q). Assim, existe

¢ € L*(99) tal que, a menos de subsequéncia, vale que

lve] < @, q.t.p. sobre 0f2,
Ve, VU, — 0, q.t.p. em €.

Denotando por (v) esta subsequéncia, usando (2.21)) e o disposto acima, temos que

24 /(r—1 — . (r—
||k‘i('7vf) LQ{E(/(rfl))(aﬂ) S /80[02(1 + |U0| 1 + |'U€| 1)]2 /(r=1) do
< 04/ (1+ [ugl? + [v[) do
o0
< 04/ (14 |uol* + |9|*) do = Cs.
o0

Portanto, [[k(-, ve)||f2./c-1) (90 € limitada por uma constante que nao depende de €. Segue
de (2.22) que (v,) é também limitada em W7 (Q2) por uma constante independente de €.

Se 41 > N, as imersoes de Sobolev implicam que v, € C%*(Q2). Além disso, (v.) é
limitada em C%%(Q) por uma constante que nio depende de €. Se y; = N, 0 mesmo acon-
tece, sé que dessa vez, com a norma de L*(J52), qualquer que seja o valor de s > ;. Assim,
procedendo de maneira similar ao feito acima, ¢ possivel mostrar que [[k(-, ve)| po/¢—1) a0 €

controlada uniformemente por uma constante que independe de €. Escolhendo-se s grande
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o suficiente, temos pelo Lema que v, € W(Q) com v > N e recailmos no caso ante-
rior, uma vez que também possuimos a estimativa a priori que garante que ||vc|;, possui
um controle que nao depende de €. Assim, neste caso também possuimos um controle

uniforme para a norma de v, em C%*(Q).

Caso y; < N, os passos da iteragao de bootstrap podem ser totalmente repetidos sem
prejuizo até recairmos nos casos anteriores. Com isso, temos provado que v, € C%*(Q) e

além disso, ||v€||co,a(§) ¢ majorada por uma constante independente de € .

Aplicando o Teorema obtemos que v, € C1¥(Q). Para alcangar a regularidade
no bordo, precisamos verificar novamente as condigoes do Teorema [2.6, j& que a néao-
linearidade no bordo da equacao de v, nao é a mesma que se faz presente na equacao

satisfeita por wuyg.

Seja M > 0 a menor constante que limita uniformemente ||’U6”00 o(m) bara todoe >0

e redefina M := |[ug|| co.eg) + M. Argumentando como na prova de (2.21), temos que

[k(2, 5)] < Co(l+ Jluollgon g + M) < Co(1+ M) = Ls, (2.23)

Co, oc(Q
para todo (2, 5) € 9Q x [—=M, M]. Como antes, existe Lg = Lg(M) tal que
|g(a)_g(b)| SL6|a_b|q_17 vaube [_M7M]

Dessa forma, usando que ug € C%*(Q), que a aplicacdo s € [~M,M] — s é Holder
continua em qualquer expoente e que 1 < g < 2, vale para todo (z/,s) e (¢/,t) em
90 x [=M, M] que

|9(uo(2') +5) — g(uo(y') + )| < Leluo(z') + s — uo(y’) — 77"
< Lelluo(2") = uo(y')| +|s — ]}
< Le(Crla’ — y/|* + Csls — ¢]*)!
< PL(OF ! — 7Y 1 O3 s — o)

e, portanto, existe Ly = L;(M) > 0 tal que
[9(uo(a’) + 5) = gluo(y) +1)| < La(|a’ — y/|*0D + [s — ¢]*l0D), (2.24)

para todo (z', s), (y/,t) € O x [—M, M].

Também vale que

lg(s) — g(t)| < Lg|s — t|7F < LeCI s — t|*0Y = Lg|s — ¢]*= D, (2.25)



64
Utilizando que a fungao h(s) := |s|7%s é Holder de expoente ¢ — 1, obtemos

h(uo(x") + 5) — h(uo(y') + t)| < Colug(z') + s — ug(y/) — t|7*

< Colluo(a) — uo(y')| + [s — t[]*"
< Co(Crlz" — | + Cs|s — ¢yt
< 2COF al — Y 4 O3 s — af0)

e, portanto,
‘h(uo(x') +5) — h(uo(y') + t)‘ < Ly(|2' — y/|Y + |s — ¢ D), (2.26)
para todo (2, 5), (y/,t) € 9Q x [—=M, M]. Por fim, nessas mesmas condicdes, temos que
() = hluo(y')| < Colun(a’) = ua(y)[* < Luola’ = /7.

Tomando-se L = max{Ls, L7, Ls, Ly, L1p} e combinando a expressao acima com (2.23)),
(2.24), (2.25), (2.26)), temos

k(') s) — k(y,t)| < L(|2’ — y/|*0Y 4 |s — t]*la7), |k(2', )| < L,

para todo (2', s), (¢/,t) € 02 x [—M, M] Assim, podemos aplicar o Teorema e concluir
que v, € CY5(Q) para algum @ € (0,1) e, além disso,

HUEHCI’Q(Q) < C(CK, q, N7 L7 M)a

onde C(«,q, N, L, M) é uniforme em ¢, pois M nao depende de e. Com isso, (v.) e
(V) sao familias equilimitadas e equicontinuas. Pelo Teorema de Arzela—Ascoli, existe
v € CYHQ) tal que v. — v em CY(Q). Uma vez que v, Vv, — 0 q.t.p. em Q, entdo
v = 0. Portanto, para € > 0 suficientemente pequeno, ||v€||01(§) < 9. Usando entao ([2.16)
concluimos que

Ia(ug) < Jx(ug + ve),

o que contradiz ([2.18)) e finaliza a demonstragao. ]

2.4 Prova do Teorema

Esta segao é dedicada a prova do Teorema [D] Inicialmente, provemos algumas proprieda-

des variacionais acerca do funcional energia J.

Lema 2.6. Suponha que g satisfaz e. Entao, o funcional energia Jy é coercivo.
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Demonstragao. Por [(ge)l existe a < A; tal que G(s) < (a/2)s® para |s| suficientemente
grande. Pela regularidade de g, existe C' > 0 de forma que

1
G(s) < 5@52 +C, VseR.

Assim, dada u € H'(2) vale que

1 A
Ja(u) = —/(]Vu|2+\u|2)dx+—/ lul?do — | G(u)do

2 Ja q Joo o0
Lo L

> §Hu T he iau +C |do

o9

Lo 1 2

= Sluls — sallullfaon — ClO2
1 a

> lulk, (1 5-) - clon),

em que usamos que ||u|\%2(am < A HJullf, para qualquer w € HY(Q) (veja [57]). Uma vez

que a < A1, a desigualdade acima assegura a coercividade de J). O

Como consequéncia deste resultado, do crescimento subcritico de g e da compacidade
da imersao do trago, podemos argumentar como na prova do Lema [2.4] para garantir que

J), satisfaz a condicao de Palais-Smale em qualquer nivel ¢ € R.

Defina agora J; € C*(H'(Q),R) por

1 A
JiE (u) ::—/(]Vu\2+u2)da:+—/ \uﬂqcza—/ G (u*) do,
2 Jo 4 Jog o0

onde ut := max{u,0} e v~ := min{u, 0} denotam, respectivamente, as partes positivas
e negativas de u. Procedendo da mesma forma que no Lema [2.6] podemos mostrar que
Jf é coercivo e satisfaz a condicao de Palais-Smale. A serventia de apelar para esses

funcionais auxiliares se justifica no proximo resultado.

Lema 2.7. Se uy € H'(Q) um ponto critico de J5. Entdo, uy > 0 g.t.p. em Q. Em

particular, uy € ponto critico de J.

Demonstragio. Faremos a prova apenas para o funcional Jy", pois o outro caso é andlogo.

Como u; é ponto critico de Jy, ela é solugdo fraca do problema

—AU+ + Uy = 0, €1m Qa
0
guy _ —Nuf|"?ul + g(ul), sobre 012,

ov
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Tomando u; como funcao teste, temos

0 = (V) (up)uy

= /(VU.}_VU_T_ +ugul) dr + )\/ | utuy do — / g(ul)ui do
Q o0 o9

= [ (9uP ) de =
Logo u; = 0, o que mostra que u4 > 0 q.t.p. em §2. O]

Do resultado anterior, vemos que ¢ suficiente obter pontos criticos de Jf para en-
contrar soluges de (2.3). Na préxima segdo, demonstramos um outro resultado nessa

mesma linha de raciocinio que relacionara os minimos locais de Jf com os minimos locais

de J)\.

No préximo lema, mostramos que a origem é um minimo local de Jy, assim como

de J Ai Isso serd pega essencial para a obtencao de duas das solugoes de ({2.3)).

Lema 2.8. A origem é um minimo local de Jy e de Jf.

Demonstrag¢ao. Provaremos o resultado apenas para o funcional Jy. Os demais sao
analogos. Pelo Teorema ¢é suficiente mostrar que a origem é um minimo local de
J) na topologia C*'. Seja p > 0 e considere u € C*(Q) tal que lullcr@) < p- Considere a
funcao auxiliar h : [-1,1] — R definida por

G<j), se s € [~1,1]\ {0},
(s)=4 7

9'(0) _

5 se s = 0.

Com uma aplicagao direta da regra de L’Hopital, prova-se que h é continua. Desse modo,
existe C7 > 0 tal que |h(s)| < C) para qualquer s € [—1,1]. Uma vez que G(0) = 0, isso
implica dizer que

|G(s)| < Cyls]?, Vs e[-1,1]. (2.27)
Por|(gs)} temos também que
|G(s)| < Co(ls| +|s]"), VseR.
Como para |s| > 1, é vélido que |s| < |s|?, obtemos que

|G(s)] < Co(]s|* +1s]"), VseR\[-1,1]. (2.28)
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Combinando ([2.27)) com (12.28), concluimos que

|G(s)| < Cs(|s|* + |s]"), Vse€R. (2.29)

Assim,

I(u) > i/ |u|? da—/ G(u)do
q Joo a0
A

> —/ fuf? da—/ Co([ul + [uf") do
q Joq o0

A
= / (— — Csluf*7 — C’2|u|r_q) lu|? do
oo \ 4

A 9 _
> o q, _ r qf q
= (q C4||u||CO(Q) C4||U||CO(Q)) /BQ |u| do.

Uma vez que v — 0 em C*(Q) quando p — 0 e tendo em vista que ¢ < 2 < 7, podemos

escolher p > 0 suficientemente pequeno para que

)\ J—
Ja(u) > 2—q/ ul’do > 0 = Jx(0), YueC'Q), [lulloig < p-
20

Assim, a origem é de fato um minimo local de Jy na topologia C* e, portanto, também o
é na topologia H'. O
No dultimo resultado auxiliar desta se¢ao, mostramos que Jf satisfaz a segunda

geometria do Passo da Montanha.

Lema 2.9. Seja 1 > 0 a primeira autofungdo do problema de Steklov (2.2)) normalizada
em HY(Y). Entdo existem \* > 0 ety > 0 tais que J;i (£top1) < 0 para todo 0 < A < \*.

Demonstragao. Uma vez que ¢'(0) > A; e g(0) = 0, existe ¢ tal que para todo 0 < € < ¢

existe 0 > 0 de maneira que
g(s) > M +e Vse(—40).

Dessa forma,

A
G(s) > < 1;6) s>, Vs € (=4,9).
Por outro lado, decorre de que

G(s) > —=Cyls|", V]s| >o.
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Existe Cy = Cy(d) > 0 suficientemente grande de modo que

)\1+€

—Chls" > ( > s — Cyls|",  |s| > 6.

Combinando todas essas informacoes, chegamos que

>\1+E

G(s) > < )52—02|S|T, seR.

Feitas essas preliminares podemos provar o lema. Faremos a prova somente com o
funcional Jy, pois o outro sera andlogo. Uma vez que ¢; > 0, entao Jy (tp1) = Ja(te1).
Utilizando a desigualdade acima, ||¢1]12 = 1, as imersoes do trago e o fato de ¢y ser

autofuncao associada a A\, temos pelas imersoes de Sobolev e pela caracterizacao de A\;

que
o) = 5 [19Ce0P + oo+ [ ot~ [ Gl do
, Q , /\q+8§2 oQ
< G+ alhin - [ |(257) ter? - Calto | ao
- ng ngxtq B (/\;;:E> 2Oy

Vamos chamar de h(t) a tltima parcela na desigualdade acima, isto é,

12 A+ € C\t?
h(t):=— 11— Cyt", t>0.

Temos que h é de classe C', hy(0) = 0 e hy(t) > 0 para t > 0 préximo da origem, uma

vez que ¢ < 2 < r. Além disso, h(t) =t (s(t) + %), onde
q

24 A
st) = — (1= Lo, >0
> "

Com um céalculo simples, mostramos que h; possui um minimo global negativo atingido

A e (=2
( IA —1) (2—-9q)

1
204@“ - Q)

€11

to =

Dessa forma, existe \* > 0 tal que se 0 < A < \*, vale

h(ty) = t¢ (s(to) + %) <0,
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o que implica que J; (tp1) = Jy(topr) < h(ty) < 0. O
Estamos prontos para obter as 4 primeiras solugoes do problema ({2.3).

Prova do Teorema[Dl. Note inicialmente que, pelo Lema 2.8} o ponto v = 0 é um minimo
local de J5*. Tome \* o dado no Lemal[2.9e considere A € (0, \*). Lembre que comentamos
que este mesmo resultado assegura que Jf satisfaz a segunda geometria do passo da
montanha. Dessa forma, como .J /\i satisfaz a condicao de Palais Smale, segue do Teorema
do Passo da Montanha que existe u;, € H'(£2) ponto critico de J; satisfazendo J5 (u;4) >
0. Por outro lado, como Jf é limitado inferiormente (por ser continuo e coercivo), ele
admite um minimo global atingindo em algum uy, € H'(2). Em virtude do Lema ,
vale que

5 (ugy) = uegllf(m I3 (u) < J3 (Ftopr) < 0.

o que garante que u;4 # us.. Como naturalmente também vale u; . # usy, esses 4 pontos

criticos sao distintos. Além disso, pelo Lema 2.7, cada um deles é também ponto critico
de J, e, portanto, solugdo do Problema ([2.3)). ]

2.5 Prova do Teorema [E

Essa secao é dedicada & da prova do TeoremalE] Na se¢ao anterior, encontramos 4 solugoes
" . . + .
do problema ([2.3]) ao encontrar pontos criticos dos funcionais J5-. Veremos que existe entre

esses funcionais uma relacao ainda mais forte:

Lema 2.10. Se uq € um minimo local de J/\i, entao ele também é um minimo local de
Jy.

Demonstracao. Em virtude do Teorema é suficiente provar que ug ¢ minimo local de
Jy na topologia de C*(Q).

Observe inicialmente que, como u4+ é minimo local de Jf, ele é um ponto critico
deste funcional. Assim, pelo Lema[2.7] ele é ponto critico de J) e satisfaz uy > 0. Uma
conferéncia da prova do Teorema mostra que qualquer ponto critico de Jy possui pelo

menos a regularidade C1*(€).

Seja entao p > 0 tal que

Ti() > Ji(us), Vue C'Q), [lu—utlerg < p-
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Para u € C'(Q) como acima, fazendo uso da igualdade Jy(uy) = J; (uL), obtemos

I(w) = a(uz) = Ja(u) — Iy (us)
(

\Y
>

I
Q| >
s

(lul? — |u*]7) do — / (G(w) - G(u*)) do,

o0

e portanto

A
J,\(u) — J)\(Ui) Z 5/

\uﬂwa—/ G(u¥) do.
o0 N

Segue entdo de (2.29) e de u € C*(Q) que

A
T(u) — J(ug) > _/ |u¥|qda—/ Col[u® 2 + |uF[) do
o0 o)

q
A
= / (——03]u$|2q—03\uﬂ’"q> |uT|? do
o0 \ 4
A
> A Fl2-¢ Flr—a_ Flq
> (3 clli, - Gty ) [ et

Uma vez que v — us em CY(Q) quando p — 0 e que +us > 0, entdo u¥ — 0 em
C°(Q) quando p — 0. Dessa forma, como 2 —¢q > 0 e r — ¢ > 0, podemos escolher p

suficientemente pequeno de modo que

A
J,\(’LL) — J,\(ui) 2 2—q /89 ‘u:qudO Z 0,

donde concluimos que u+ é minimo local de Jy na topologia C*. O resultado segue agora
do Teorema 2.7 O

O resultado acima mostra que as solucoes us, encontradas na secao anterior sao

minimos locais de Jy, uma vez que estes pontos sao os minimos globais de Jf.

Para encontrar a quinta solugao, precisamos falar um pouco de Teoria de Morse,
com énfase no conceito de Grupos Criticos. Para mais detalhes e para conferir os varios

pré-requisitos desse assunto, indicamos a leitura do livro [28]. Em linhas gerais,

Definig¢ao 2.1 (Grupo Critico). Sejam X um espago de Banach, ® : X — R um funcional
de classe C' e uy € X um ponto critico isolado de ® com ®(ug) = c. Para cada q € N,

definimos o q-ésimo grupo critico de ® em ugy por
Cy(®,up) = Hy(@.NU, (2. NU) \ {u}),

em que &. = {v e X : ®(v) < ¢}, U C X € uma vizinhanca de ug tal que uy € o unico

ponto critico de ® em ®.NU e H,(-,-) representa o q-ésimo grupo de homologia singular
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relativa com coeficientes em 7.

De forma intuitiva, o grupo Cy(®, u) mede a contribuicao topolégica do ponto critico
u a faixa de nivel .. Quando o funcional ® possui uma estrutura variacional adequada,
esses grupos criticos sao todos nulos, exceto possivelmente em um tunico indice q. Este
indice onde o grupo critico C,(®, u) nao é trivial é exatamente o indice de Morse de u. No
contexto de funcoes definidas em R”, o indice de Morse de um ponto critico é a dimensao
do maior subespaco de R cuja a matriz Hessiana nesse ponto é negativa definida. Por
exemplo, em minimos locais, onde a Hessiana do ponto ¢é positiva definida em todo o R¥

o indice de Morse é 0. Assim, é esperado que

Lema 2.11 ([28, Exemplo 1, p. 33]). Seja u € X um minimo local isolado de ® : X — R.

Entao
7, se q =0,

0, se q# 0.

A ideia para obter a quinta soluc¢ao do problema é encontrar um ponto critico de
Jy com energia negativa e que possua o grupo critico de algum grau distinto do respectivo
grupo critico de usy. Para tanto, aplicaremos o seguinte resultado abstrato, devido a
Perera [6§].

Teorema 2.8 ([68, Teorema 3.1]). Sejam X = E; @ Ey um espago de Banach com
0<k:=dimFE; < +oo el e CYX,R) satisfazendo:

(1) existe p > 0 tal que
sup I(u) <0,

weE1NS,

em que S, :={u € X : |lul|x = p};
(_[2) I Z 0 em EQ;

(I3) existe e € Ey \ {0} tal que I € limitado inferiormente no semi-espago

{se+u:s>0euc Ey}.

Além disso, suponha que I satisfaz a condi¢cdo de Palais-Smale e possua apenas valores
criticos isolados com cada valor critico correspondendo a uma quantia finita de pontos

criticos. Entao, I possui dois pontos criticos ui, us € X com

[(Ul) <0< [(’LLQ), Ck,l([,ul) % 0 e Ck-([,UQ) 7£ 0.
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Para mostrar que J, satisfaz as hipdteses geométricas do teorema acima, vamos fazer
uma decomposigao conveniente de H'(€2) usando os subespagos gerados pelas autofungoes

do problema de Steklov, como ja foi minunciosamente detalhado no final da Secao [2.1.2

Como consequéncia da desigualdade variacional ([2.7)), temos o seguinte:

Lema 2.12. Suponha que g satisfaca|(gs)|, ((ga)| €|(gs5)l. Entdo existem p >0 e A\* > 0 tais
que

sup  Jy(u) <0,
uEXkﬂSp

para todo 0 < X < X*, em que S, := {u € H'(Q) : |lull12 = p}.

Demonstragdo. Usando que ¢'(0) > X e argumentando como no Lema [2.9) obtemos

C5 > 0 tal que
AL+ €

G(s) > <

Seja u € Xy com |lul|12 = p, com p > 0 a ser determinado posteriormente. Utilizando a
imersao do traco H'(Q) < L*(09), 1 < s < 2, e (2.7), temos que

> s — Cyls|", seR.

1 A
B = Multa 2 [ o [ ctuyas
2 q Jaq 80

2
P A q A + € 9
< P2 _ _Colul"| d
< T Dl — [ [(255) - calut| do
2 Cshpt Ar +
< 10_|_ 3;0_(k 6)p2+c4pr

2 g
= hi(p),

2k

em que

t? A Ca At
hi(t) =5 (1 - k,\jf) + 3q +Cut”, t>0.

Da mesma forma que na demonstracao do Lema [2.9] ao tomar p > 0 o ponto de minimo

global da aplicagao

21

sult) = —- (1 -

A €
Y

)i iz

existe \* > 0 tal que se 0 < A < \*, vale que

C3A
hi(p) = p* (sk(p) + %) <0,
donde segue que Jy(u) < hi(p) < 0 para toda v € X com |lul|12 = p. Dal, para esta
escolha de p, vale que

sup Jy(u) <0,

uEXkﬂSp
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o que conclui a prova do lema. O

Lema 2.13. Se g satisfaz|(gs)| entao

J(uw) >0, Vue X

Demonstragao. Utilizando e (2.8)), obtemos que

1 A
L) = =|uli,+ —/ |ul? do — G(u) do
2 “ g Jea o0

1 A
Dz, - / P do > 0,
2 ’ 2 Joa

v

para toda u € Xj-. O

Observacao 2.3. E importante observar que a substituicao das condigoes e por
€ também garantem, assim como na sessao anterior, a existéncia de pelo menos
quatro solugoes para o problema , uma vez que a condi¢ao implica na validade
de e a condi¢ao garante a coercividade de Jy, além de também permitir provar
os Lemas € de uma maneira até mais simples, por ja implicar a dominancia de

|G(s)| por um termo quadrdtico em toda a reta.
Possuimos todas as ferramentas necessdrias para demonstrar o Teorema [E]

Demonstragao do Teorema[El Como ja comentado na Observagao 2.3 j4 conhecemos 4
solugoes do problema , a saber u;4 com Jy(u14) > 0 e ugy com Jy(uzy) < 0. Falta
apenas encontrar a quinta solu¢do. Fagamos a decomposi¢ao H'(Q) = E; & E,, com
Ey = X} e By = Xit em que k > 2 é o dado nas hip(’)teses e. Seja 0 < A < \*,
com \* > 0 obtido no Lema m Dessa forma, J, satisfaz a condigao Do Lema m,
temos também a validade de [(I;)] Como Jy ¢ limitado inferiormente em todo H'(Q2), a
condicao ¢ trivialmente satisfeita. Assim, pelo Teorema , existe uz € H'() com
Ja(uz) < 0 e Cy_1(I,u3) # 0. Claramente, uz # ;4. Agora, pelo Lema [2.11], uma vez
que ugy sao minimos locais isolados de Jy, vale que Cy (1, us, ) = 0 para todo ¢ # 0. Uma
vez que k > 2, temos em particular que Cx_1(/,us4) = 0, 0 que mostra que uz # usy €,
portanto, ¢ um ponto critico distinto de todos os 4 ja previamente obtidos. Temos assim

a nossa quinta solugao de ({2.3)). O

Observacao 2.4. Para finalizar este capitulo, vamos deizar registrado algumas dificul-
dades que aparecem no estudo da versdo para o p-laplaciano do problema . Primei-
ramente, nao seria possivel obter neste caso a quinta solu¢io dada no Teorema [E], pois
usamos fortemente na demonstracao a decomposi¢io de H*()) como a soma direta dos

auto-espacos associados ao problema de autovalor. O mesmo nao poderia ser feito com

WP (Q).
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Entretanto, o Teorema | poderia ser obtido sem prejuizo nenhum, uma vez que o
que foi feito na secao 2.5 pode ser totalmente replicado sem prejuizo algum para o caso do
p-laplaciano. Isso nao foi feito neste trabalho porque nao conseguimos consequir provar o
Teorema [2.7] para este caso. Se tentdssemos sequir a prova, depois de aplicar o Teorema

dos Multiplicadores de Lagrange obteriamos que a fung¢ao v. resolveria

—div(A(ve)) + [ug + ve|P (1o + ve) — |ug|P*ug — pre|velP~?ve = 0, em €,
Ave) v = =XJuo + v 772 (uo + ve) — |uo|T%ug) + g(ug + ve) — glug), sobre 052,
em que

A(ve) := |V (ug + v) P2V (ug + ve) — |Vug|P*Vug — pre| Vo P2 V.

Precisamos de um resultado que permita regularizar v. e que, além disso, ainda forneca
uma estimativa a priori. Acreditamos ser possivel obter isso, uma vez que em trabalhos
relacionados (ver [11, (51, [64]) apareceram situagoes semelhantes, sendo que no primeiro

deles € feita uma andlise detalhada do processo de regularizacao.



Capitulo 3

Problema de autovalor com operador

quase-linear

Neste capitulo, consideramos a equacao estacionaria de reacao-difusao-adveccao

(3.1)

—div(a(z) D (u)Vu) + Dy(u)[b(z) - Vu] = Au, em €,
u =0, sobre 02,

onde Q C RY é um dominio limitado e regular, a € C*(€, [ag, +00)), para algum ag > 0,
e be Co(Q;RY). As fungdes Dy, Dy € C([0,400), [0, +00)) satisfazem

(dy) D;(s) > 0, para qualquer s > 0 e ¢ € {1,2},

(d2) D;(00) := limg, 100 D1(s) > 0,

No que se segue, consideramos a funcdo h : [0,4+00) — (0, +00) definida por

D

DZES;’ se s > 0,
_ 1\$

lim , se s =0,

s—0t Dl(S)

€ assumimos que
(Hy) h e CY(0,+00)) e W(0) := lim,_,o+ h'(s) € R.

Definimos também as quantidades

BT Dz(S) T .
h(o0) := SEIEOO Di(s)’ D;(c0) = Sginoo D;(s), parai € {1,2},
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e o operador
Lo == —div(a(z)V) + h(0)[b(z) - V).

Quando h(oo) € R, também consideramos

Loo := —div(a(z)V) + h(co)[b(z) - V).

Seja L um operador eliptico de segunda ordem com coeficientes Holder continuos
em um dominio regular e limitado U C R¥. Denotamos por o¥[L] o autovalor principal
de L em U, sob a condi¢ao homogénea de Dirichlet. Para simplificar, também adotamos

as seguintes notacoes:

0? = O’?[Lo], o = a?[Loo].

No nosso primeiro teorema principal, obtemos a existéncia de solugao para o problema

quando ¢?D;(0) < o5°D;(00). Mais especificamente, provamos os seguintes resultados

Teorema F. Suponha que h satisfaca[(H,)], h(co) < 400 e 09D (0) < 0°Dy(00). Entdo,
para qualquer A € (0VD1(0),05°D;(o0)), o problema (3.1)) admite uma solugdio cldssica

positiva.

Teorema G. Suponha que h satisfaca h(co) = +o0, e
(by) existe ¥ € C2(Q) tal que [b(x) - Vip] > 0, para todo x € Q.
Entdo, para qualquer A > 0¥ D;(0), o problema (3.1) admite uma solugao cldssica positiva.

Uma forma de complementar os resultados anteriores, seria considerar o caso em
que a desigualdade 0%D;(0) < 65°D;(o0) nao é valida. Para isso, aplicamos a teoria de
bifurcacao. No proximo resultado, apresentamos condi¢oes necessarias para bifurcacao
tanto a partir de solucoes triviais quanto do infinito. Mais especificamente, provamos o

seguinte:

Teorema H. Suponha que D;(0) > 0.

(i) Entdo existe uma componente ilimitada € C R x C}(Q) de solugdes positivas para
[B.1) que emana da solugao trivial em (a9D;(0),0);

(i) Se, adicionalmente, 0 < D;(00) < +00 para todo i € {1,2}, entdo existe uma compo-
nente ilimitada €, C RxCZ(Q) de solugdes para que intercepta (07° D1 (00), 00).
Além disso, se be CYQ;RN) e h satisfaz entao €, consiste em solucoes po-
sitivas para (3.1)).
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De fato, provamos que a bifurcacao de solugoes positivas a partir da solucao tri-
vial (respectivamente, do infinito) nao pode ocorrer em nenhum outro ponto além de
(69D1(0),0) (respectivamente, (05°D;(00), 00)).

Além disso, sob uma das seguintes hipoteses adicionais:

(by) existe & € (HE() N L4(2)) \ {0} tal que div(£2b) tem sinal constante quase sempre

em {2,

ou
(d3) existe C' > 0 tal que [~ Do(t)t~tdt < C,

obtemos um resultado de nao existéncia de solugoes positivas de (3.1)) para A > 0 sufici-
entemente grande (ver Proposigao 3.2)). Na verdade, se definirmos

A= min{a?Dl(O), o7°Di(00)} e = max{a?Dl(O), 07°D;(00)},

podemos estabelecer o seguinte resultado de existéncia:

Teorema I. Suponha que D1(0) > 0, 0 < D;(c0) < +o0 para todo i € {1,2}, que h

satz’sfag:a e que b € CY;RN). Entdo, para qualquer X € (A, )\), o problema (3.1)
admite uma solugao cldssica positiva. Se, adicionalmente,|(bs)| ou|(ds)| for satisfeita, entdo

0s continuos € e €y dados pelo Teorema[H coincidem.

O restante do capitulo esta organizado da seguinte forma: Na Se¢ao 2, introduzimos
uma mudanca de varidveis e aplicamos métodos de sub e supersolucoes. A Secao 3 inves-
tiga a bifurcagao de solucoes positivas. Finalmente, na Secao 4, analisamos a direcao da

bifurcacao e discutimos a multiplicidade de solugoes.

3.1 Meétodo de Sub-Supersolucao

Iniciamos esta secao realizando uma mudanca de variavel da seguinte maneira: definimos

a funcao auxiliar
g(s) = / Dy (t)dt, seR;:={seR: s>0}.
0

Como ¢'(s) = Di(s) > 0, para todo s > 0, a funcdo g é injetora e pertence & classe C*.

Além disso, como fooo Dy (s)ds = oo, pela hipétese (dg), também temos que g(R;) = Ry.
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1

Assim, a funcao g é invertivel e, se chamarmos sua inversa de g~ , entao a aplicagao

g (s), ses>0,
q(s) :=
0, se s < 0,

estd bem definida.
Um célculo direto mostra que u € C?(£2) N C(Q) é uma solucdo positiva de ([3.1) se,

e somente se, w = g(u) for uma solucao positiva de

—div(a(z)Vw) + h(g(w))[b(z) - V] = Ag(w), em €,
w =0, sobre 0f),

(3.3)

onde h foi definido em (3.2)). O préximo resultado apresenta algumas propriedades da

funcao ¢ que serao tteis.

Lema 3.1. A aplicacdo q é crescente e de classe C*. Além disso,

—L_ se D;(0) >0,
lim 4&) _ | 0 1(0) (3.4)
5708 +oo  se D1(0) =0,
e
L se Di(o0) < 400,
im 48 ) D 1(00) (3.5)
sTtee S 0 se Dy(00) = +o0.

Demonstragao. Desde que ¢ é a inversa de g, ela é de classe C! e

q(s) = >0, Vs>0.

Entao, ¢ é crescente. Ademais,

oqls) I 1
s =IO =6 T SR D)
e (3.4) segue da regra de L'Hospital. A prova de (3.5) é anédloga. m

Como queremos aplicar o método de sub-super solucao, apresentamos as seguintes

definicoes:
Definigao 3.1. Dizemos que w € C%(2) N C(Q) € uma sub-solucdo de (3.3) se

—

—div(a(z)Vw) + h(q(w))[b(z) - V] < Aq(w) em €,
w <0 sobre 0€).
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Jd uma fungao w € C2(Q) N C(Q) é chamada uma super-solucio de (3.3) se a expressio
acima € vdlida com as desigualdades invertidas. Além disso, um par w, W de sub-super
solucoes € dito ordenado se w < w. Neste caso, dizemos que w, € uma solugcao minimal de
no intervalo ordenado [w,w] caso w, esteja neste intervalo, seja solugao de (3.3)) e
qualquer outra solugdo v € [w,w| de (3.3)) satisfaca w, <v. De modo andlogo, definimos

o que seria uma solugcao mazximal.

A seguir, mostramos que o método de sub-super solugao pode ser aplicado ao pro-

blema )

Teorema 3.1. Suponha que h satisfaca e que exista um par ordenado w,w de Sub-
super solucgoes de (3.3)). Entdo, o problema possui uma solu¢ao minimal w, e uma solu¢ao

mazimal w* no intervalo ordenado [w,W|.

Demonstracao. Para qualquer A > 0, considere

fA(Jf, 5777) = AQ(S) - h(q(S))[E(l’) ’ 77]7 (‘Ta 5777) € x Ry X RY.

Como b € CO(; RY), temos que fr(-,s,7) € C**(Q) para todo (s,1) € R, x RY. Por
(H,)| as derivadas parciais 0f\/0n e 0fy/0s sao continuas. Se definirmos

C(p) = )\q<p) + HEHL‘X’(Q) max h(Q(S)), 1Y > 07

0<s<p

é claro que, para qualquer s € [0, p], vale

(@, s,m)| < Aa(s) + [B(x)[R(a(s))In] < e(p)(1+ Inl*).

Com isso, o resultado segue ao aplicar [5, Teorema 1.1]. ]

Agora, o nosso objetivo é obter um par ordenado de sub-super solugoes de ([3.3)).

Comecaremos estabelecendo a sub-solucao.

Lema 3.2. O problema (3.3)) possui uma sub-solucdo para todo X > o¥D;(0).

Demonstragdo. Escolham > 1 tal que A > mo?D;(0). Seja ¢y > 0 a principal autofungao

de Ly tal que [|¢ol/z@) = 1. Defina, para € > 0, a funcao w := ey’ e note que

V(w) = emgpgl_IVgoo
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div(a(x)Vw) = emgogn_l[Va Vo + a(z)Agg] + em(m — 1)@81_2|V300|2
= empy 'div(a(z) Vi) + em(m — 1)@ Vo |?
= emyy (h(0)b(x) - Vipy — 0%p0) + em(m — 1) 2a(x) Vo

Assim, w é uma sub-solugao de (3.3)) se, e somente se,

(M

) 08 Yo = (1= mala)s! [Val? + (halegf) ~ MO - e

em €. Uma vez que m > 1, a(x) > ap > 0 em Q e ¢;' > [|po]|2! = 1, a desigualdade

acima é verdadeira se

)\ € m —
( alee) _ ag>¢0 + (m = Vaol Vool — 15+ Vepoll o @yllalesi)) — h(0)] = 0, (3.6)

mepy

para todo x € Q. Se D;(0) > 0, podemos usar ¢(0) = 0 e (3.4) para concluir que os
limites a seguir

lim [ (g(epq')) — h(0)| =0

e—0t

o (Aalews) o A 0
lim (28900 _j0) _ -
0+ < megy” 71 Ho mD;(0) o) >0

valem uniformemente em ). Denotando o lado esquerdo de (3.6]) por I, temos que

Lo(x) = (o + 0c(1)) po(z) + (m — 1)ag|Vo(x)|* + o (1), z € Q. (3.7)

Obteremos € > 0 e m > 1 de tal modo que I'. seja nao-negativo em €2, o que
claramente implica (3.6). Para tanto, note inicialmente que Ly nao possui termos de
ordem zero e, portanto, podemos aplicar o Principio do Maximo Forte para concluir que

wo>0em Qe %ﬁ‘;—o < 0 sobre 02. Entao, dado r > 0 pequeno e definindo
Q, ={z € Q:dist(z,00) <1},
obtemos ¢; = ¢;(r) > 0 de maneira que
0o >c1 >0 em Q\Q,, Vol > ¢ >0, em Q,.

Em Q\ Q,, podemos utilizar (3.7), a primeira desigualdade acima, m > 1 e o > 0, para
concluir que
Le(x) > (o +0c(1))er +0.(1) >0, Vee (0,6
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Analogamente, desde que ¢y > 0, no conjunto €2, temos que
L(x) > (m — Dagei +0.(1) >0, Vee (0,6)].
Consequentemente, se fixamos € := min{ey, €5}, concluimos que (3.6) é vélida e, portanto,
w = €p(’ ¢ uma sub-solucao de ((3.3]).
Quando D;(0) = 0, segue de (3.4) que q(s)/s — +oo, se s — 0. Assim, para
qualquer pg > 0 temos que

Lu(@) > (o + (1)) gola) + (m — Dao Vigo(@) +o.(1), @€,

e podemos repetir os argumentos acima. Os detalhes serao omitidos. O

Na construcao da super-solucao, consideramos dois casos distintos dependendo de

h(c0). Primeiramente, vamos discutir o caso em que h(oco) é finito.

Lema 3.3. Se h(oo) € [0,+00), entdo o problema (3.3)) possui uma super-solug¢do para
todo A < 05°Dq(00).

Demonstragdo. Inicialmente, assuma que D;(c0) < oo. Seja U C RY um dominio regular
de RN tal que Q C U e tome Ei,g : U — R extensoes regulares de a, b em U com
a > ag/2 > 0. Podemos considerar entao o operador L, agindo em fungoes definidas em

U e usar A < 07°D;(00) para supor que U é escolhido de tal sorte que

A < 0Y[Lso]Di(00) < 05° Dy (00).

Seja $oo > 0 uma autofunc¢do de L., associada & of [Ls] de modo que ||@uol|ro) = 1.
Se definirmos para K > 0, a funcao w := K., um célculo direto mostra que w é uma
super-solugao de (3.3)) se, e somente se,

(—Aq%i“) —or [LooO@oo < (h(g(K @) = h(oc) [B(@) - Vo], em 2 (38)

Concluimos de (3.5) que ¢(s) — 400, se s — +oo. Desde que ¢, € positivo, segue
novamente de (3.5 que

A
— oV [Ly) < 0.

= lim
fhoo K—4o0

(M otid) = g

Por construgao, existe ¢; > 0 tal que ¢, > ¢; > 0 em 2. Consequentemente, para K > 0
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grande, temos que

)\q K@/oo - . Moo
(M) o10] ) o = G+ 01 P < s <0,

em €). A desigualdade em ({3.8]) ¢ uma consequéncia da limitacao acima e do fato que

lim (2(q(K ¢x)) = h(o0)) = 0,

K—+o0
uniformemente em 2.

Se Dy(00) = 400, podemos repetir os mesmos argumentos acima, observando que

fhoo = —0Y[Los] < 0. Omitimos novamente os detalhes. O

O caso em que h(oc0) = oo é mais delicado e exige a presenca da condi¢ao geométrica

(b1)l Mais precisamente:

Lema 3.4. Se h(oco) = 00 ¢ b satisfaz entao o problema (3.3) possui uma super-
solugao para todo \ > 0.

Demonstragio. Sejam ¢ € C*(Q) dada em e M > 0tal que 1)+ M > 0 em €. Defina
w = K()+ M), onde K > 0 ¢é uma constante a ser escolhida posteriormente. Por meio
de um calculo direto vemos que w ¢ uma super-solucao de (3.3)) se, e somente se,

(K (Y + M)) . .
K@+ M) (Y + M)+ div(a(x)Ve)) < h(q(K (Y + M)))[b(x) - Vo] em Q. (3.9)

Como h(oo) = 0 e [g(x) - V] > 0, segue de (3.5) que

-

limh(q(K (6 + M)))[5(x) - Vo] = +oc

K—+4o0o
€
M@ ) [k se Diloo) < +ex,
K—+o00 K(l/)-i- M) 0 se Dl(oo) = +00.

uniformemente em Q. J4 que div(a(z)Vi(x)) ¢é limitado, as expressoes acima implicam

na validade de (3.9) para K > 0 suficientemente grande. m

Observacgao 3.1. A reqularidade de ¢ pode ser enfraquecida, de modo a podermos con-
siderar ¢ € C%(Q) N C(Q), desde que ainda se tenha a limitagdo superior da aplicacdo
x — div(a(z)V¢). Além do mais, podemos considerar W como uma super-solu¢do q.t.p.
se I;(x) -V > 0 apenas fora de um conjunto de medida nula. E claro que, como a natureza

do nosso método de sub-super solucao € pontual, nao iremos fazer este caso aqui.
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Estamos aptos a provar os nossos primeiros resultados de existéncia para o problema

BD.

Prova do Teorema[E. Fixe A € (6} D1(0),05°D;(00)). A partir dos Lemas 3.2 e 3.3 obte-
mos um par de sub-super solugoes w = ey, W = Ky para o problema auxiliar (3.3)).
Desde que po > ¢ > 0 em €2, podemos tomar K > 0 suficientemente grande de modo
que w < w em 2. Segue do Teorema que o problema (3.3 possui ao menos uma
solugdo w em [w,w|. J& que g > 0 em €2, esta solugdo é positiva. Portanto, tomando

u = q(w), obtemos uma solugao positiva para (3.1]). O

Observagao 3.2. Se D;(0) =0 ou D;(00) = 400, o0 intervalo (69 D;(0), 05°D;(c0)) estd
bem definido. Entretanto, se D1(0) > 0 e Di(00) < 400, pode ocorrer que oy D;(0) >
0°D1(00), 0 que acarretaria na impossibilidade da existéncia de algum X\ onde o método

de sub-super solucdao poderia ser aplicado com as funcoes que foram obtidas nos Lemas
e[3.3. Para ilustrar essa situagdo, considere

Di(s) = Dy(s) = D(s) =1+

Neste caso, h = 1, portanto 0% = o%°. Por outro lado, D(0) =2 > 1 = D(c0).

Prova do Teorema[G. A prova é andloga & do[F] a tinica diferenga é que usamos o Lema
3.4] ao invés do Lema 3.3l O

3.2 Abordagem via Bifurcacao

Essa secao é dedicada ao estudo de pontos de bifurcacao de solugoes positivas, assim
como provar o Teorema [l Antes, porém, vamos revisar alguns fatos basicos e resultados
abstratos da Teoria de Bifurcagao. Para maiores detalhes, recomendamos as referéncias
[311, 33, (56, 69}, [70].

Definigao 3.2 (Ponto de bifurcacao a partir da origem). Sejam U um espago de Banach
e F:RxU — U uma aplicagio continua tal que F(X,0) =0, para todo X\ € R. Dizemos
que (Mg, 0) € um ponto de bifurcacao da equagio F (A, u) = 0 a partir da curva de solugoes
triviais (X, 0) se existe uma sequéncia (A, u,) C R xU\ {0} de modo que F(A,,u,) =0,
A — Ao eu, — 0, quando n — +oo.

Na prova do Teorema [H] usaremos o seguinte resultado abstrato, o qual é um com-
pilado dos resultados dados em [50, Proposi¢ao 6.5.2, Lema 6.5.3, Lema 6.5.4 e Teorema
6.5.5]:
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Teorema 3.2. Sejald um espaco de Banach ordenado cujo cone positivo Py, seja normal e
possua interior nao-vazio. Considere IC: U — U um operador linear, continuo, compacto
e fortemente positivo, isto €, que IC(Py\{0}) C int(Py). Considere também G : RxU — U
um operador continuo que seja compacto em conjuntos limitados e que, para qualquer

conjunto compacto A C R, satisfaca

lim —Q()\, u)

=0, uniformemente para \ € A.
lullee=0  [[ut][eq

Finalmente, assuma que o operador
FA\u) :=u—Iu—G(\ u),
satisfaca o Principio do Maximo Forte, no sentido que

(A u) € Rx (Py\{0})

FOuu) =0 } = u € int(Py).

Entao, existe uma componente ilimitada € C R X int(Py) de solugoes de F(A\ u) = 0
emanando de (Ao, 0), onde Ny denota o inverso do raio espectral de IC. Além disso, este é

0 unico ponto de bifurca¢ao de solucoes positivas a partir da curva de solucoes triviais.

Agora, lembre que

Defini¢ao 3.3 (Ponto de Bifurcagao no Infinito). Um ponto (Ag,00), com A\g € R, € um
ponto de bifurca¢ao no infinito da equagao F (A, u) = 0 se existe uma sequéncia (A, u,) C
R x U tal que F(Ap,un) =0, Ay = o € ||tun|lyy = +00, quando n — +oo.

Em ordem de apresentar o resultado abstrato, necessitamos demonstrar a segunda
parte do Teorema [H] Considere um operador uniformemente eliptico £, uma fungio
continua x : © — R de modo que k(z) > kg > 0 em © e denote por p; o principal
autovalor de

Lu = Ak(z)u em €, u =0 sobre 0f.

Com essas notagoes, podemos enunciar o seguinte caso particular dos resultados contidos
em [70, Teorema 2.28 e Coroldrio 2.37]:

Teorema 3.3. Se G € C(Q x R x RY x R) satisfaz

G(z,5,& M|

i —0, 3.10
(s,/€) = (+o0,400) (5% 4 |€]2)1/2 (310

uniformemente em x € 2 e em A € A compacto, entao a equagao

Lu = Ak(z)u+ G(x,u, Du, \) em €, u=0 sobre 092,
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possui um continuo €, C R x CH(Q) de solugies que toca (u1,00). Além disso, existe

uma vizinhanga M de (11, 00) tal que

(i) € \ M € limitado em R x C}(Q) e toca R x {0} ou

(ii) €o \ M € ilimitado.
Se, adicionalmente, G for continuamente diferencidvel e

G(z,s,&, M) = Gi(z,5,& \)s (x,s,& N)E;, (3.11)

IIMZ

com Gy, Gy continuas em (s,&) = (0,0), entao as solugoes obtidas podem ser consideradas

positivas.

O restante desta secao é destinado ao estudo da bifurcacao a partir da curva de

solugoes triviais e da bifurcacao a partir do infinito.

3.2.1 Bifurcacao a partir da solucao trivial

Nosso objetivo agora é mostrar a existéncia de um continuo ilimitado ¢, C R x C3(2) de
solugoes positivas de (3.1)) emanando do ponto (¥ D;(0),0). Isso é exatamente o que estd

enunciado no primeiro item do Teorema [H] cuja prova apresentamos agora:

Prova do Teorema[H item (i). O primeiro passo é reescrever o problema (3.3) de um
modo em que possamos aplicar o Teorema [3.2, Desde que Ly nao possui termos de
ordem zero, podemos considerar a aplicacio K = L' : C(Q) — C}(Q), que é exatamente

o operador resolvente associado ao problema linear

Lou=f, em(,
u =0, sobre 0€2,

para cada f € C(Q). E fécil ver que K é linear e continuo. Utilizando algumas ferra-
mentas padrao de regularidade eliptica combinadas com a imersao compacta de Sobolev
W2P(Q) — C}(Q), para p > N, mostra-se que K é compacto. Como L, satisfaz o
Principio do Maximo Forte, temos em particular que K é fortemente positivo. Além

disso, ja que K = Ly', o inverso do raio espectral do operador K coincide com ¢?.
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Note que w € C?(2) N C(Q) é uma solucao classica de (3.3)) se, e somente se,

Low = Ag(w) + (h(0) — h(q(w))) [b(z) - Vw], em €,
w =0, sobre 0f).
Sendo D;(0) > 0, o problema acima se torna equivalente a

1
D1(0)

F\w) :=w—\ K(w) — G\ w) =0,

onde G : R x C}(Q) — CL(Q) é definida por

w —
G(\ = A\K — K ((h(0)—h b(zx) -V :
) = A (gtw) = 51565 ) + K ((1(0) = hlglw)) o) - T
Note que G é continua e compacta. Ademais, para qualquer w # 0, podemos usar que K

¢ um operador linear e continuo para concluir que

HG(ANU)HC&(§)< Ch|A| J(uw) — w
lwllcae  — lwlaa Dy(0)

)
gw) 1

+ Gl h(g(w)) = h0)ll oy

c@

~ + GyflA(g(w)) = h(0)]l o
c@)

< C4|A|

com Cy = C1(T) > 0 e Cy = Cy(b) > 0. Assim, recordando que ¢(0) = 0 ¢ usando (3.4),

concluimos que, para qualquer conjunto compacto A C R, vale que

IG(A, w)”cg(ﬁ)

11m
lwll o1 ) =0 ”chg(ﬁ)

=0, uniformemente em A\ € A.

Por fim, lembre que o cone positivo P do espaco de Banach ordenado C}(f2) verifica (ver
[6, p. 623-624])

Ou

int(P) = {u €C03(Q):u>0emQ, 5

< 0 em 89}.

Suponha que A € Re w € P\ {0} sejam tais que F(\,w) = 0. Entdo, w é uma solucao
nao-trivial e nao-negativa de (3.3). Assim, para

L := —div(a(z)V) + h(g(w(x)))[b(z) - V],

temos que
Lw = Ag(w), em Q,

w =0, sobre 0f).
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Se A < 0, segue do Principio Maximo Forte que w < 0, o que é uma contradicao. Con-
sequentemente, A > 0 e podemos aplicar novamente o Principio do Maximo Forte para

concluir que w € int(P).

As consideragoes acima garantem que podemos aplicar o Teorema para extrair
o continuo de solugdes positivas €y dado no item (i) do Teorema [H] O
3.2.2 Bifurcagao no infinito

Nesta sub-secao, obteremos resultados sobre a bifurcacao no infinito para o problema
(3.1]), complementando o estudo feito acima. Comegaremos provando a segunda parte do
Teorema [HE

Prova do Teorema[H item (ii). Desde que D;(c0) € (0,+00), para i = 1,2, nés temos
que h(o0) < 400. Assim, podemos reescrever (3.3) da seguinte maneira:

Loow =\

w+ G(r,w, Vw, \), em €,
NCI I ) (3.12)

u =0, sobre 0f2,

onde

Gz, 8,6 X) = A (Q(S) ) + (h(00) — h(g(s))) [b(x) - €],

"~ Dy(c0)

para todo (z,s,6,)) € Q@ x R x RY x R. E claro que a decomposicao em (|3.11]) vale com

A(@—ﬁ), se s # 0,

A(L— 1 >, se s =0,

D1(0) D1 (o0)

Gi(z,8,&,N) =

(Ga)j(w,5,& A) := (h(00) — h(q(s))) bj(),
para todo 7 =1,..., N.
Seja A C R um conjunto compacto e note que, para qualquer A € A,

‘A (Q(S) _ Dl(SOO)) ‘ < lim

1m —
(5,]€]) = (+00,+00) (s2 +|&J2)1/2 T (8,]€]) = (400, +00) ‘ S D1 (o)

Além disso,

(h(o0) = h(a())) @) - €]

(7 + )

< |h(o0) = h(q(s)]] bl e e,
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e, consequentemente,

y (h(o) ~ hla(s)) bla) 8]
(s,lfl)—>%£rnoo,+oo) (s2 + |5‘2)1/2 =

J& que os dois limites acima sao uniformes em = € Q e A € A, concluimos que

G(=, 5,8, M)

im = (0, uniformemente em x € Q, A € A,
(sl€))—(+oo,+o0) (82 + [€]2)1/2

e, portanto, (3.10) é vélida. Assim, podemos aplicar o Teorema para o problema
(3-12]) e utilizar a definigdo de o$° para finalizar a prova do [H|item (ii). O

E interessante observar que o nosso problema nao admite outros pontos de bifurcagao

no infinito, como podemos ver no préoximo resultado:

Proposicao 3.1. Suponha que D1(0) > 0 e D;(0c0) € (0,+00), para i = 1,2. Se A > 0
é um ponto de bifurcacdo no infinito de (3.3) de solugdes positivas em R x C3(Q), entdo
A =07°D(0).

Demonstragdo. Seja A > 0 tal que existe uma sequéncia de solugdes (\,, w,) C Rx C}(Q)
de (3.3) de modo que w, > 0 em Q e

(s l[wnlloa@y) = (A, +00).

Pelo Principio Méaximo Forte, temos que w,(x) > 0 para todo = € Q. Além disso, em

virtude de resultados cldssicos de regularidade eliptica, (A, w,) é uma solugao classica de

B3) o

||wnHL2(Q) — +00.
Definindo v, := wy/||wn| r2) € usando que (A,,w,) é uma solugao de (3.3), nés temos

que

/Q a(z)[Vu, - Vo) dz + / h(g(wy))[b(x) - Voalddz = A 9Wn) 4 gr (3.13)

0 " Ja llwallzae)
para qualquer ¢ € HJ ().

Se escolhermos ¢ = v,,, obteremos que

/Q a(z)|Vo,|? do + /Q h(q(w,))[b(z) - Vop]o, dz = A, /Q m%vndx. (3.14)

No que se segue, consideremos b # 0. O caso em que b = 0 é semelhante. Segue de ,
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0) >0, (B4) e (33) que

q(s) <eys, Vs >0,

para algum c¢; > 0. Utilizando novamente que D;(0) > 0, juntamente com D;(o0) €

(0, +00), extraimos co > 0 tal que
|h(s)| < e Vs >0.

Ademais, existe c3 > 0 de modo que |\,| < ¢3, para todo n > 1. Dado € > 0, podemos

aplicar essas estimativas em (3.14]) para concluir que

aollvallZs Sclcg/g)vidx+02||g||Loo(Q)/s2|an||vn|d:z:

. 1
<aa [ o+l (dulo + 5ol ).

onde também fizemos uso da desigualdade de Young na tltima linha. Escolhendo € =

(Z()/QCQHEHLOO(Q) > 0 e lembrando que ||vy[|12(q) = 1, obtemos que

116112

Qo

IIUnIIH1 o S e+
Portanto, (v,) é limitada em H}(€2). A menos de subsequéncia, temos que
v, = vem H}(), v, —vem L*(Q). wv,(v) — v(z) q.t.p. em Q, (3.15)
para algum v € H} (). Utilizando ¢ = (v, —v) como fungao teste em obtemos que
/Qa(:c)[an -V(vp, —v)]de =112 —T4, (3.16)
onde
“ / —w)dz e Ty im / h(g(wn)) (o — 0)[B(x) - Vo] da.
||wn||L2 o
Da desigualdade de Hoélder, temos que

ICinl < 6103/9 [onl[vn = vldz < cresl|vnll ) lvn = vl72(0)

ol < alfllimey [ 1Vonllon = olde < colfllimoylonlyaylon = ol

Segue de (3.15) que

lim I'i,, =0= lim Dy,.
n—-4o00 n—+400
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Portanto, podemos utilizar | - - e a(x) > ap para obter que

i ol @ = 01l @

Isso somado a convergéncia fraca de (v,) implicam que v, — v fortemente em HJ ().

Agora, vamos analisar o limite de cada termos em (3.13). Primeiramente, a con-

vergéncia fraca de (v,,) fornece

lim a(z)[Vu, - Vol dx = / a(x)[Vv - V¢ dx

n—-+00 Q Q

Desde que v, > 0, temos que v > 0. Além disso, v # 0, afinal ||v|;2() = 1. Assim, o
conjunto
={ze€Q:v(x)>0}

possui medida positiva. E claro que wy(z) = v, (z Mwn |l r2) = +00 g.t.p. em QF e assim

lim h(q(w,(z))) = h(co0) e lim _a(wa) = lim q(wn>vn = v

n—+00 n—+00 HwnHL2 n—+oo Wy, Dl(OO) ’

para q.t.p. x € Q7. Segue de (3.15)) e do Teorema da Convergéncia Dominada de Lebesgue

que

lim hq(wn))[b(z) - Vo] ¢ dz = /Q ) h(c0)[b(z) - Vv]¢ du,

n—-+00 o+

lim Lgb dr =

notoo Jor |[wnl|L2@)

e Di(oo )v¢dzz:

Por outro lado,

—

[ aw)Bw) - Foo]ds < cllflim [ (Tulloldo
Q\Qy Q\Q+

[ aesa [ il
O\ HwnHL2 Q\Q+

Ja que v =0em Q\ Q, podemos argumentar como antes para obter

lim h(q(w,))[b(z) - Vup]¢dz = lim _a(wa) dx = 0.

n=+oo JonQy n=too JovQ, ||7~Un||L2(Q)
Combinando essas convergéncias e fazendo n — oo em ([3.13)), concluimos que

/Qa(x)[VU~V(b] dx—i—/gh(oo)[g(a:)-Vv]gzﬁdx— ﬁ/ﬂwd% Vo e H(Q).
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Portanto, v é uma solucao fraca de

v =0, sobre 0f).

Como v # 0 e v > 0, ela tem que ser uma autofuncao associada ao primeiro autovalor de

Loo. Assim, A = 07°D;(00), o que finaliza a prova. O

3.2.3 Prova do Teorema [I

Essa sub-segdo ¢ dedicada a apresentar a demonstragao do Teoremalll Inicialmente, mos-
tramos um resultado de nao-existéncia, o qual serd usado para complementar o estudo
dos continuos obtidos anteriormente. Vale ressaltar que este resultado por si s6 pode ser

interessante.
Proposigao 3.2. Suponha que Dy(00) < 400 e tome u € Hy () \ {0} uma solugdo fraca
e nao-negativa de (3.1)).

(i) Se Dy satisfaz|(d3)], entio para toda 1 € (HE(2) N L))\ {0} vale que

a(z)|Vy|2dx
Jq 2 dx

3 < 1D ey 22 w0 [ i) da

(ii) Se b satisfaz entao

a(z)|VEPdr
fQ E2dx ’

A <Dy || oo (my fQ

em que & € (H(2) N LYQ)) \ {0} € tal que div(£2b) possui sinal constante q.t.p.

em ().

Demonstragdo. Sejam u € H(Q2) \ {0} uma solugio fraca e nao-negativa de ([3.1]) e ¢ €
(HL{(Q) N LY(Q)) \ {0}. Dado € > 0, podemos utilizar )%/(u + €) € H}(Q) como fungao

teste, obtendo que

u [ Dy(u) o5
? 2¢

(3.17)
—/Qa(a:)Dl(u)Vw {(u—l—e)Qvu_ mvw dx.
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Seja f. : Ry — R, a funcao de classe C* dada por

* Dy(t)
(s):= dt, R,.
fe(s) T+ s € Ry
Integrando por partes, obtemos que
Do) iy vudx—/¢2 (f.(w))) da
u+e€

F?b(a) - Pla)do — [ fla)div(0?F(o) do
0 Q
= - / fe(u)div(y?(2)) dx
Q
Assim, voltando a equagao , podemos concluir que

_ P 21
)\/ =" E@DQ dx = / a(x)Dy(u)Vu - {mVU - u——l—evﬂ dx

— / fe(u)div(¢2g(x)) dx
Q

——/<>D1<>

/ fo(w)div(¥?b(z)) d
<D= [ @ Vo da+ [ |filudiv(Fw)| de

2
w—uivu da:+/Q a(z) D (u)| Vo |? do

Fazendo € — 07 e utilizando o Teorema da Convergéncia Dominada de Lebesgue, obtemos

A / W di < ||Dy e / (@) Vo[ d + / () div(42B(2))] do.

A desigualdade acima combinada com as hipéteses implicam no resultado. O

Observacao 3.3. Se div(l;(:c)) = 0 para todo © € Q) e, para alguma fun¢ao nao-nula
¢ € HYQ) N LY ), nds tivermos que [b- V] = 0 q.t.p. em Q, entio div(2b(z)) = 0
q.t.p. em Q e, portanto, vale. Esta condi¢cao no produto interno significa que 1 €
a primeira integral do campo vetorial b. Ela aparece em diversos problemas envolvendo

grandes termos de advecgao. Veja, por exemplo, [3, (16, [17].

Observagao 3.4. A Proposicdo € um indicio que, mesmo sem as condicoes da Pro-
POSICA0 deveriamos ter um resultado de nao-existéncia para valores grandes de A,
desde que se tivesse a finitude de D;(c0), para i € {1,2}. Entretanto, nao consequimos
obté-lo.

Estamos em posicao de provar o nosso segundo resultado principal acerca de existéncia
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de solugdes. Durante a demonstragdo, para um conjunto C' C R x C(£2), denotaremos
por ProjpC o conjunto {\ € R : Ju € C}(Q) de modo que (\,u) € C}, que é exatamente

a projecao de C' em R.

Prova do Teoremall Inicialmente, observe que o Teorema [H| fornece a existéncia dos
continuos €y e €, bifurcando a partir da origem em ¢{D;(0) e do infinito em ¢$°D; (o),
respectivamente. Além disso, pelo Teorema [3.2| e pela Proposicao [3.1] estes sao os tnicos
pontos de bifurcacao de solucoes positivas de . Ademais, pelo Principio Maximo
Forte, nao possui solugao positiva para A = 0. Assim,

Projp€s C (0,00) e Projp€. C (0,00).

Se €5 = €, entdo (), ) C Projz€o, o que implica o resultado.

Agora suponha que €y # €. Desde que & é ilimitado e 0§°D;(c0) é o unico ponto
de bifurcacio no infinito, segue que (6%D;(0),00) C Projz€. De modo similar, temos

que (05°D(00),00) C Projp€.. Consequentemente, o resultado segue.

Finalmente, assumindo |(b,)|ou|(d3), podemos aplicar a Proposicao (3.2 para concluir
que o problema (3.1)) ndo admite solucao positiva para A > 0 grande e, portanto, as pri-
meiras coordenadas de € e €, sao limitadas. Dai, pela natureza global desses continuos

segue que €y = €. [

A Figura [3.1] ilustra os possiveis diagramas de bifurcacao dados pelo Teorema [
Na parte (a), mostramos uma possivel configuracao quando €, # €., e na parte (b),
uma possivel diagrama quando eles sao iguais. Para simplificar a figura, denotaremos
Xo = 0YD1(0) e A\yo = 05°D1(00).

I loxa I ley@

):\oo )\0
(a)

Figura 3.1: Possiveis diagramas de bifurcacao.
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3.3 Direcao de Bifurcacao e Multiplicidade de Solucoes

Nesta secao, estudaremos a direcao de bifurcacao de solugoes positivas tanto da ori-
gem quanto no infinito. Esta andlise nos permitira obter resultados de multiplicidade

de solugoes em alguns casos.

No que se segue, analisaremos a direcao de bifurcagao a partir da curva de solugoes
triviais. Recorde que a bifurcagdo em um ponto (A*,0) é dita subcritica se existe uma
vizinhanga de (A\*,0) em C3(Q) x R tal que toda solugao (A, u) de nesta vizinhanga
satisfaz A < A\*. De forma andloga, se para toda solucao (A, u) de em uma vizinhanca

de (A\*,0) ocorrer que \* < A, entdo dizemos que a bifurcagdo em (A*,0) é supercritica.

Teorema 3.4. Suponha que Dy € C*(Ry), Dy € C'(Ry) e D1(0) > 0. Entao, (69D,(0),0)
¢ um ponto de bifurcacao de (3.1) a partir da curva de solugoes triviais (A, 0). Além
disso, se denotarmos por ¢ a principal autofuncgao positiva do operador adjunto L, esta

bifurcacao serd subcritica se
1= Di(O)/Qa(w)wo [Vpo - Vipp) d + D’z(O)/QszvosOS [5(06) : V%] dr <0,  (3.18)
e supercritica se Z > 0.
Demonstracdo. Seja F : R x C2(Q) — C(Q) dada por
F(\u) := —div(a(z) Dy (u)Vu) — Dy(u)[b(z) - V] — Au.

E claro que F' é de classe C! e as solugoes de F(\,u) = 0 sao solugoes de (3.1)). Além

disso, com um calculo direto, temos que

L(\) := D F(),0) = Dy (0)Lo — AL

Como ¢ é um autovalor simples de Ly, temos que

ker [L(c}D1(0))] = span{ipo}.

Afirmamos que
L'(07D1(0))po ¢ R[L(07D1(0))], (3.19)

em que R[L(c{D;(0))] denota o resolvente do operador £(c9D;(0)). Com efeito, se isso

nao for o caso, poderiamos usar £'(69D;(0)) = —I para extrair £ € C2(Q) de forma que

—po = L(0YD;1(0))& = Dy(0) [Lo& — 0¥¢] .
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Multiplicando essa igualdade por ¢ e integrando por partes sobre {2, obtemos que

0> / — oy dr = Dl(())/ [Lgf — 0(1)5] g dx
Q Q

_ Dy(0) /Q [Ligt — 0%t € de =0,

o que ¢ uma contradicao. Isso prova (3.19)).

Aplicando o Teorema de Crandall-Rabinowitz [31, Teorema 1.7] concluimos que
(69D1(0),0) é um ponto de bifurcagao de F(A\,u) = 0 a partir da curva de solugoes
triviais. Mais ainda, sendo Z o complemento topolégico de ker [£(a¥D;(0))] em CZ(9),

existem € > 0 e aplicacoes continuas
A:(—€6) = R, WV (—€€) = Z

de modo que A(0) = 0, ¥(0) = 0 e as solugdes nao-triviais de F(A\,u) = 0 em uma

vizinhanga de (¢{D;(0),0) sdo dadas por

((s), u(s)) = (69D1(0) + A(s), s(0 +16(s))) s € (~€,¢), s £0.

Desde que ¢y € int(P), entao u(s) € int(P) para s > 0 suficientemente pequeno,
onde P denota o cone positivo do espaco de Banach ordenado C}(Q). Isso implica que as
tinicas solugoes positivas em uma vizinhanga de (o9 D1(0),0) sao dadas por (u(s),u(s)),
para s > 0 pequeno. Uma vez que F(u(s),u(s)) = 0, podemos tomar ¢ como fungao

teste para chegar que

/Q [U?Dl((]) + )\(s)} u(s)pydr = /Qa(x)Dl(u(s))[Vu(s) - Vg dx

(3.20)
+ /Q Dy (u(s))[b(z) - Vu(s)] g da.
Ademais,
D0) [ ilau(s) de = Da0) [ u(s) iy de = otDs(0) [ als)e de
isto &,
AD(0) [ u(s)gdz = Di(0) [ ala)[Vu(s) - Vil do o

+ D5(0) /Q[g(x) - Vu(s)]eg de.
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Por outro lado, fazendo a expansao de Taylor obtemos para i = 1, 2 que
Di(u(s)) = Di(0) + sDj(0)u'(0) + o(s) = Di(0) + sD;(0)po + o(s),

as s — 0. Substituindo a equagao acima em ([3.20)), utilizando (3.21)) e lembrando que
u(s)/s = (po + ¥(s)), concluimos que

2 [+ vt e = [ ato) (D100 + 22 ) 1965 9 (g0 + wish] o

o(s)\ 7

+ [ (D300 + L) )9 (o vt o

Fazendo s — 0T, obtemos que X, (0) [, o dz = T, isto é, o sinal de X' (0) ¢ dado pelo

sinal de Z, o que conclui a prova. O

Como consequeéncia deste resultado, é possivel mostrar que a direcao de bifurcacao
de solugbes positivas a partir da solugao trivial é determinada pelo sinal de D}(0), desde
que se assuma hipdteses apropriadas sobre o campo vetorial b. Especificamente, temos o

seguinte resultado:

Teorema 3.5. Suponha que Dy € C*(R,), Dy € CY(R,), D1(0) > 0 e defina
Ly = —div(a(z)D1(0)V).

Suponha que b € CY(LRY) satisfaga div(b(z)) = 0 e [b(z) - Vzo(a)] = 0 ¢.t.p. em Q,
em que zo > 0 € a principal autofungdo de L} associada a oS}[L}]. Entdo, a bifurcagdo de
solucdes positivas de (3.1)) a partir de (69 D1(0),0) € subcritica se D} (0) < 0 e supercritica
se D1(0) > 0.

Demonstragio. Por simplicidade, denote N = o$[L4]. Desde que [b(z)- Vzo(z)] = 0 q.t.p.

em (), entao
/

Lozg = —— Q = 0, sobre OS2
020 Dl(O) 20, €Im i, 20 , sobre

Como zp > 0, concluimos que X' = d9D1(0) e zy = @p, em que @y é uma autofungio posi-
tiva de Ly associada & 0. Ademais, sendo que b é um campo vetorial livre de divergéncia,
Ly é um operador uniformemente eliptico e auto-adjunto. Em particular, ¢f = ¢o €

podemos aplicar o Teorema da Divergéncia para obter que

3 [ ugh [fa) - Via] do = [ (o) (i) o
=— /Q div(b(x)) gl da + /aQ ©s [l;(m) : n} do = 0.
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Assim,
7= D4(0) [ a@)n V- Vi) dz = DY) [ alw)gal Vil d
Q Q
tem o mesmo sinal de D/ (0). O
O mesmo tipo de resultado pode ser obtido quando consideramos a bifurcagao no

infinito. Ressaltamos que os conceitos de bifurcagao subcritica e supercritica sao definidos

de maneira andloga.
Teorema 3.6. Suponha que D1(0) > 0, D;(c0) € (0,+00), para i = 1,2, e defina
L := —div(a(z)Di(c0)V).

Suponha que b € CH(Q;RY) satisfaga div(b(z)) = 0 e [b(z) - Vzoo(x)] = 0 q.t.p. em Q,
onde 2z > 0 € uma autofungdo principal de L associada a o$}[L..]. Entdo a bifurcacdo

de solugoes positivas a partir do infinito em A = 07°D;(00) €
(i) subcritica, se Di(s) < Di(00) para todo s > 0.
(ii) supercritica, se D1(s) > Dy(o0) para todo s > 0.

Demonstracao. Procedendo de maneira analoga a prova do Teorema (3.5 obtemos que

of'[LL]
1(00)
=0, sobre 0f),

Lowzoo = Zoo, €m €1,

oo

e, portanto, o![L. ] = 0°Di(00) € 2z = Poo. Assim, segue da Proposicio e da
Observagao |3.3| que, se (A, u) € R x H}(€Q) é uma solugao fraca e nao-negativa de (3.1)),

entao

Jo a(z) Vo [Pda
0 2 dx

Se Di(s) < D;(00) < +00, entao ||Dy|z=r) < D1(00), e portanto

0< A\ S ||D1||L00(R)

= || D1l om0t

A S O'i)ODl(OO),

o que implica que a bifurcacao no infinito de solugoes positivas é subcritica. Com isso,

provamos o item (i).

Para demonstrar o item (ii), argumentaremos por contradi¢ao. Suponha que D;(s) >

D1 (00) para todo s > 0 e assuma que exista uma sequéncia (A, u,) de solugoes cléssicas

de (3.1)) tal que

Ans [unllca@)) = (077 Di(o0), +00)
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e A, < 07°D;(0), para todo n € N. Como ¢, € int(P), podemos escolher u? /., como

funcao teste na equacao satisfeita por ., para chegar que

2 2
/ a(z)D1(00) Vs - LpunVun - :;—Q"Vgpoo} dr = 07°D1(c0) / u? de, (3.22)
Q 0 00 Q

onde utilizamos que [b(z) - poo(z)] = 0 q.t.p. em Q. Uma vez que (A, u,) verifica (3.1)),
podemos tomar u, como func¢do teste nessa equacdo e usar A\, < 0{°D;(c0) para obter

que

/Q a(2) D ()| Vun |2 der + /Q Da(un)[B(x) - VanJuy dz < 03Dy (50) /Q i dr. (3.23)

—

Definindo f(s fo Dy (t)tdt, utilizando que div(b(z)) = 0 q.t.p. em e integrando por

partes, temos que
/ Do (un)[b(x) - Vuglup dz = | f(un)[b(x) - #(x)] do — / flup)div(b(z)) dz = 0.
o0 Q

Assim, segue de (3.22)) e de (3.23) que

2u,, 2
/a(x)Dl(oo)Vgooo- [LVun — u—znvwoo] dr > / a(x) Ds (un) | Vu,|* da.
Q 2 % )

S8 [e’]
Consequentemente, podemos usar D;(s) > D;(o0) para obter que

0< /Qa(x)|Vun|2[D1(un) — Dy(00)]dx < — /Q a(a:)Dl(oo)’Vun — L Vs| dz <0,

[e.9]

o que é uma contradicao. O]

Por fim, podemos combinar os Teoremas [3.4] e [3.6] para estabelecer o seguinte resul-

tado de multiplicidade:

Teorema 3.7. Suponha que todas as condigoes dos Teoremas e sejam vdlidas e
considere T o numero real dado em (3.18)).

(i) Se 0%D1(0) > o°Dy(00), T > 0, e Dy(s) > Di(o0) para todo s > 0, entdo existe
A > YD1 (0) de modo que o problema (3.1) possui ao menos duas solugoes cldssicas
e positivas para cada \ € (o)D;(0), \*).

(ii) Se 09D1(0) < 0°Dy(0), Z < 0, e Di(s) < Di(00) para todo s > 0, entdo existe
0 < X* < aYD1(0) de modo que o problema (3.1]) possui ao menos duas solucies
cldssicas e positivas para cada X € (\*,0{D1(0)).
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Demonstrag¢ao. Provaremos apenas o item (i), pois o segundo item é totalmente analogo.
Uma vez que Z > 0 e Dy(s) > D;(o0) para cada s > 0, pelos Teoremas e temos
que ambas as bifurcagdes (na origem e no infinito) sdo supercriticas. Assim, usando que
%D (0) > 05°D;(o0), obtemos A* > ¢d%D;(0) de maneira que possua duas solugoes
cldssicas e positivas para cada A € (o9 D;(0), \*). O

I ley@) I lley@
0 0

e N v Y e

(a) (b)

Figura 3.2: Possiveis Diagramas de Bifurcagao

Na Figura [3.2] ilustramos os possiveis comportamento do continuum de solugoes
¢y = €4 sob as hipéteses do Teorema (i) e (ii). Por simplicidade, denotamos \g =
d¥D1(0) e Moo = 05°D1(00).

Observagao 3.5. Note que todas as hipdteses do Teorema[3.7] sio satisfeitas neste caso:
Assuma Dy(s) = Dy(s) = D(s). Neste caso, h = 1 e o) = o7°. Além disso, suponha
que div(l;(x)) =0eb- Vo, =0 q.t.p. em Q, onde p, > 0 denota a principal autofun¢ao
positiva para o operador —div(a(x)V-). Assim, se D(s) > D(occ) > 0 para todo s > 0
e D'(0) > 0, podemos aplicar o item (i) para obter duas solugdes positivas de (3.1)) para
A em um intervalo especifico. A fungio s > 0 — D(s) := e (5=D?e=(s=1) 4 1 satisfaz
todas as condi¢oes acima. De forma semelhante, se 0 < D(s) < D(00) para todo s > 0 e
D'(0) < 0, todas as condigoes no item (ii) sao vdlidas. Um exemplo € a fun¢io s > 0 —
D(s) = —e 6= De=(s=1) 4 9,

Observacao 3.6. Algumas questoes interessantes que podem levar a trabalhos futuros sao

(i) Complementar a descri¢ao das solugoes positivas de (3.1) quando h(co) = oo, sem

a hipdtese|(by))

(ii) Obter resultados de existéncia ou ndo-ezisténcia de solugoes de (3.1)) para valores

grandes de X sem a presenc¢a das hipdteses ou|(d3).

(111) Estudar o caso degenerado em que h(0) nao é um nimero real.



Consideracoes Finais

Neste trabalho, estudamos diversas classes de problemas elipticos, obtendo resultados de

existéncia, multiplicidade, nao-existéncia e regularidade de solugoes.

Nos dois primeiros capitulos estudamos variacoes de problemas classicos, impondo
condicoes de Neumann nao-lineares no bordo e conseguimos para esses problemas obter o
mesmo tipo de resultado que é valido quando a nao-linearidade se faz presente no interior

com condi¢ao de Dirichlet homogénea.

J& no ultimo capitulo, o objeto de estudo foi bem distinto, bem como as técnicas
utilizadas. Em verdade, todo o trabalho se mostra como uma grande mistura heterogénea
de problemas de equagoes diferenciais parciais, ressaltando a abrangéncia da pesquisa

realizada durante o periodo de doutorado.

Para o futuro préximo, gostariamos de complementar os resultados do Capitulo 2,
finalizando o estudo do problema ({2.3) para o p-laplaciano, bem como fechando os casos

que nao foram estudados no Capitulo 3.
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