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versidade de Braśılia, como parte dos requi-
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Agradeço também à todos os colegas e amigos que fiz na escola CEF 102 Norte, meu

amado local de trabalho. Em especial, agradeço aos meus queridos alunos, por terem me
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rado, para que eu pudesse permanecer em Braśılia e lograr essa conquista.
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RESUMO

Neste trabalho apresentamos diversas classes de problemas eĺıpticos não-lineares e encon-

tramos para eles resultados de existência, não-existências, multiplicidade e regularidade

de soluções. Utilizamos principalmente técnicas de Métodos Variacionais e Métodos To-

pológicos, mas também fazemos uso de técnicas da Teoria de Morse e de Regularidade

Eĺıptica para Equações Diferenciais Parciais.

Palavras-chave: Equações Diferenciais Parciais Eĺıpticas. Existência, não-existência e

multiplicidade de soluções. Métodos Variacionais. Métodos Topológicos.



ABSTRACT

In this work, we present various classes of nonlinear elliptic problems and obtain results

on the existence, non-existence, multiplicity, and regularity of solutions. We primarily

use techniques from Variational Methods and Topological Methods, but we also employ

techniques from Morse Theory and Elliptic Regularity for Partial Differential Equations.

Keywords: Elliptical Partial Differential Equations. Existence, non-existence and mul-

tiplicity of solutions. Variational Methods. Topological Methods.
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1.2.2 Estimativas à priori . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2 Problemas com fluxo côncavo na fronteira 39
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LISTA DE NOTAÇÕES E SÍMBOLOS

� on(1) denota um termo que se aproxima de zero quando n→ +∞.

� oϵ(1) denota um termo que se aproxima de zero quando ϵ→ 0+.

� Para Ω um aberto do RN (não necessariamente limitado), denota-se por ν o vetor

normal unitário exterior à ∂Ω.

� Para t ∈ R um parâmetro real e f, g : R → R aplicações, escrevemos f(t) = O(g(t))

para simbolizar que |f(t)| ≤ Cg(t), para todo t ∈ R, isto é, que f têm crescimento

controlado por g. Quando f é limitada, escrevemos f(t) = O(1).

� Para p ≥ 1, denota-se por p′ o expoente conjugado de p, o qual satisfaz p′ = +∞ se

p = 1 e
1

p
+

1

p′
= 1 se p > 1.

� Para k ≥ 0 e Ω ⊂ RN , consideramos Ck(Ω) como o espaço das funções definidas

em Ω, k vezes diferenciáveis, de maneira que todas as suas derivadas parciais até

a ordem k sejam cont́ınuas. No caso em que k = 0, este espaço corresponde ao

espaço das funções cont́ınuas. Quando Ω é um aberto limitado, podemos definir

sobre Ck(Ω) a norma

∥u∥Ck =
∑
|α|≤k

sup
x∈Ω

|Dαu(x)|,

onde α = (α1, ..., αN) é um multi-́ındice e |α| = α1+ · · ·+αN . Além disso, definimos

C∞(Ω) :=
⋂
k≥0

Ck(Ω)

e C∞
c (Ω) = {u ∈ C∞(Ω) : supp(u) é compacto}, onde supp(u) = {x ∈ Ω : u(x) ̸= 0}

é o suporte de u.

� Seja α ∈ (0, 1) e k ∈ N. Definimos o espaço de Hölder

Ck,α(Ω) = {u ∈ Ck(Ω) : ∥u∥Ck,α(Ω) < +∞},

em que

∥u∥Ck,α(Ω) = ∥u∥Ck +
∑
|β|=k

sup
x ̸=y

|Dβu(x)−Dβu(y)|
|x− y|α

e β = (β1, ..., βN) é um multi-́ındice com |β| = β1 + · · ·+ βN .

� Seja 1 ≤ p < +∞ e Ω ⊂ RN um conjunto mensurável. Definimos o espaço de

Lebesgue

Lp(Ω) = {u : Ω → R mensurável : ∥u∥Lp(Ω) < +∞},



em que

∥u∥Lp(Ω) =

(∫
Ω

|u|pdx
)1/p

.

Quando p = +∞, definimos

L∞(Ω) = {u : Ω → R mensurável : ∥u∥L∞(Ω) < +∞},

onde

∥u∥L∞(Ω) = inf{C > 0 : |u(x)| ≤ C, q.t.p. x ∈ Ω}.

� Para k ∈ N e 1 ≤ p < +∞, consideramos o espaço de Sobolev

W k,p(Ω) = {u ∈ Lp(Ω) : Dαu ∈ Lp(Ω),∀|α| ≤ k},

em que Dα denota a α-ésima derivada fraca de u, para cada α = (α1, ..., αN) multi-

ı́ndice com |α| = α1 + · · · + αN ≤ k. Neste caso, a norma de Sobolev é dada

por

∥u∥k,p =

∑
|α|≤k

∥Dαu∥pLp(Ω)

1/p

.



Introdução

Neste trabalho, estudamos diversas classes de problemas eĺıpticos. Em cada

uma delas, trabalharemos com técnicas únicas e muito diferentes entre si. Deste modo,

organizaremos esse texto em 3 caṕıtulos independentes, para buscar trazer uma melhor

sistematização dos resultados. As três seções a seguir apresentam os resultados de cada

um destes caṕıtulos.

Problemas com fluxo superlinear na fronteira

No primeiro caṕıtulo, começamos por estudar
−∆u− 1

2
(x · ∇u) = 0, em RN

+ ,

∂u

∂ν
= µa(x′)|u|q−2u+ b(x′)|u|2∗−2u, sobre ∂RN

+ ∼ RN−1,
(1)

onde RN
+ :=

{
(x′, xN) : x

′ ∈ RN−1, xN > 0
}
é o semi-espaço superior e ν é o vetor normal

exterior à fronteira ∂RN
+ , a qual pode ser identificada com o espaço RN−1. Além disso,

1 < q < 2, µ > 0, 2∗ :=
2(N − 1)

N − 2

e a, b : RN−1 → R são potenciais que satisfazem

(a0) a ∈ L
σq
K ∩ LN−1

loc (RN−1), com (2∗/q)
′ < σq ≤ (2/q)′;

(b0) b ∈ L∞(RN−1);

(ab) existem δ > 0, b0 > 0 e γ > N − 1 tais que

B′
δ := {x′ ∈ RN−1 : |x′| < δ} ⊂

(
Ω+
a ∩ Ω+

b

)

1



2

e

∥b∥∞ := ∥b∥L∞(RN−1) ≤ b(x′) + b0|x′|γ, q.t.p em B′
δ,

em que Ω+
a e Ω+

b representam os subconjuntos de RN−1 em que a, b são positivas.

O primeiro resultado provado no Caṕıtulo 1 é o seguinte:

Teorema A. Suponha que N ≥ 4 e que a e b satisfazem (a0), (b0) e (ab). Então, existe

µ∗ > 0 tal que, para todo µ ∈ (0, µ∗), o problema (1) possui pelo menos duas soluções

fracas não-nulas e não-negativas.

Observação. Com as hipóteses acima, no caso em que N = 3, é posśıvel obter a

existência de ao menos uma solução fraca não-nula e não-negativa para valores peque-

nos de µ > 0. Na realidade, ao invés da condição (ab), basta nesse caso que o conjunto

Ω+
a tenha interior não-vazio.

A primeira solução é obtida com um argumento de minimização, enquanto a segunda

requer argumentos mais sofisticados, uma vez que a imersão do traço perde a compacidade

no expoente cŕıtico. O ponto principal para superar essa dificuldade vem de estimativas

refinadas a partir de uma certa modificação das funções instanton exploradas por Escobar

em [38] e por Beckner em [15].

O funcional energia associado ao problema (1) é claramente par. Consequentemente,

assim como em Bartsch e Willem [14], seria esperado obter uma quantidade infinita de

soluções (sem sinal prescrito). No nosso segundo resultado, inspirados pelos trabalhos

[55, 74], substitúımos o termo cŕıtico b(x′)|u|2∗−2u por uma função mais geral f que seja

ı́mpar perto do zero. Mais especificamente, consideramos o problema
−∆u− 1

2
(x · ∇u) = 0, em RN

+ ,

∂u

∂ν
= µa(x′)|u|q−2u+ f(u), sobre RN−1,

, (2)

em que µ e q permanecem como antes e as funções a, f satisfazem

(f0) f ∈ C(R,R);

(f1) existe p ∈ (2, 2∗) de modo que

lim
s→0

f(s)

|s|p−1
= 0;

(ã0) a ∈ L
σq
K ∩ L∞(RN−1), em que (p/q)′ < σq ≤ (2/q)′;
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(a1) Ω+
a possui um ponto interior.

Usando as condições acima, provamos o seguinte:

Teorema B. Suponha que a e f satisfazem (ã0), (a1), (f0) e (f1). Além disso, suponha

que f é ı́mpar no intervalo [−CN,p, CN,p], em que

CN,p := max
{
1, 2S−1

2∗

}1/(2∗−p)(2∗ + 2− p

2

)(2∗+2−p)/2(2∗−p)2

.

Então existe µ̄ > 0 tal que, para cada µ ∈ (0, µ̄), o problema (2) possui um número infinito

de soluções fracas.

A prova também é variacional, porém apresenta um desafio significativo a ser supe-

rado. Se F (s) :=
∫ s
0
f(t)dt, o funcional energia formal associado ao problema (2) possui o

termo
∫
F (u)dσ, o qual pode ser infinito, uma vez que não se tem controle sobre o com-

portamento de f no infinito. Mesmo na definição de solução fraca, temos que considerar

que estamos com soluções no sentido distribucional. Para superar essa dificuldade, ado-

tamos ideias dos artigos [10, 13, 55, 74]. Isto envolve aplicar um truncamento à função f

de modo que o funcional truncado seja bem definido e coercivo em um espaço de Sobolev

apropriado. Depois de mostrar a existência de infinitos pontos cŕıticos para este funcional,

aplicamos uma variação da Iteração de Moser [60] para provar que, se µ > 0 é pequeno,

estes pontos cŕıticos possuem norma L∞ pequena na fronteira e, portanto, são soluções

fracas do problema original.

Os dois problemas que estudamos neste caṕıtulo recaem numa classe mais geral de

problemas que pode ser modelada por

−∆v = g(x, v,∇v), em RN
+ ,

∂v

∂ν
= h(x′, v), sobre RN−1.

Nesse sentido, falando um pouco sobre estudos relacionados, os autores em [42] conside-

raram o problema acima com

g(x, v,∇v) = µv +
1

2
(x · ∇v), h(x′, v) = |v|q−2v,

com 2 < q < 2∗. Além de obter resultados de existência de soluções para certos valores de

µ > 0, eles mostraram a relação entre o problema e a existência de soluções auto-similares

para a equação do calor não-linear

wt −∆w = 0, em RN
+ × (0,+∞),

∂w

∂ν
= |w|q−2w, sobre RN−1 × (0,+∞).

Para outras escolhas apropriadas das funções g e h, este problema modela problemas
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em glaciologia [66], genética populacional [9], mecânica de flúıdos não-Newtonianos [35],

elasticidade não-linear [29], entre outros. De uma perspectiva matemática, também se

relaciona ao estudo de obter as melhores constantes em imersões de traço de Espaços de

Sobolev [34, 38] assim como no estudo de deformação conforme de variedades Riemanni-

anas [39, 40].

Em um trabalho recente, Furtado e Silva [47] consideraram

g(x, v,∇v) = 1

2
(x · ∇v), h(x′, v) = µ|v|q−2v + |v|2∗−2v,

com 2 ≤ q < 2∗, e mostraram a existência de soluções não-nulas em dois casos: 2 < q < 2∗,

µ > 0; e q = 2, µ ∈ (0, µ1), onde µ1 > 0 é o primeiro autovalor de um problema linear

associado. Em virtude destes resultados, é natural perguntar o que acontece no caso

sublinear 1 < q < 2. Daremos uma resposta parcial ao que acontece nesse caso ao provar

o Teorema A.

Devido à natureza assimétrica do termo de fronteira não linear, os nossos problemas

recaem numa classe conhecida como problemas do tipo côncavo-convexo. Com o objetivo

de fazer uma perspectiva histórica, podemos considerar:

−∆u = g(x, u), em Ω, α1u+ α2
∂u

∂ν
= h(x, u), sobre ∂Ω,

em que Ω ⊂ RN , N ≥ 3, é um domı́nio limitado. No seu artigo clássico, Ambrosetti,

Brezis e Cerami [7] obtiveram duas soluções positivas quando α2 = 0, h ≡ 0, e g(x, s) =

µsq−1 + sp−1, com 1 < q < 2 < p ≤ 2∗ := 2N/(N − 2), e µ > 0 é pequeno. Em [44],

de Figueiredo, Gossez e Ubilla generalizaram esses resultados ao considerar g(x, s) =

µc(x)|s|q−2s + d(x)|s|p−2s, com c e d não possuindo sinal constante. No contexto de

condições de fronteira de Dirichlet, podemos mencionar [4, 63, 75] e suas referências.

Para o caso Neumann, quando α1 = 0, podemos citar o trabalho de Azorezo, Peral e

Rossi [12], que consideraram g(x, s) = |s|p−2s− s, h(x, s) = µ|s|q−2s e obteram resultados

similares aos de [7]. Em [48], os autores consideraram g ≡ 0 e h(x, s) = µc(x)|s|q−2s +

d(x)|s|p−2s, com 1 < q < 2 < p < 2∗. Os potenciais c e d são limitados e verificam

as seguintes condições de sinal:
∫
∂Ω
c(x)dσ < 0,

∫
∂Ω
d(x)dσ ̸= 0. Sob outras condições

mais técnicas, eles mostraram a existência de duas soluções positivas se µ > 0 é pequeno.

Alguns outros resultados acerca de existência de infinitas soluções podem ser encontrados

[13, 49, 55, 73, 74] e em suas referências.

Os dois resultados provados neste caṕıtulo estendem e/ou complementam os traba-

lhos acima mencionados de diversas formas: consideramos um operador diferente, poten-

ciais que podem mudar de sinal, o semi-espaço superior e condições locais de simetria.
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Eles foram recentemente publicados no artigo [46].

Vale ressaltar que uma versão inicial do Teorema A está explorada com muitos

detalhes na dissertação de mestrado do estudante (veja [62]). Lá, provamos este resultado

para N ≥ 5. Aqui, conseguimos estender também o resultado para N = 4, deixando-o

mais completo.

Problemas com fluxo côncavo na fronteira

No segundo caṕıtulo, investigamos a multiplicidade de soluções para duas classes de

problemas eĺıpticos com condição de Neumann não-linear contendo um termo natureza

côncava. Como comentado antes, no Caṕıtulo 1 também estudamos problemas com a

presença desse termo, que embora sejam voltados ao contexto de problemas côncavo-

convexos, possuem similaridades com as duas equações que tratamos aqui.

Nas últimas décadas, esse tipo de não-linearidade tem ganhado destaque nas pes-

quisas. Trabalhos como os de Abreu, Carrião e Miyagaki [1], Perera [68] e Wang [74]

contribúıram de forma decisiva para a consolidação de métodos voltados à existência de

múltiplas soluções para esses tipos de problema.

Considere Ω ⊂ RN um domı́nio regular, 1 < p < +∞, −∆pu = −div(|∇u|p−2∇u) o
operador p-laplaciano e o seguinte problema não-linear−∆pu+ |u|p−2u = 0, em Ω,

|∇u|p−2∂u

∂ν
= λ|u|q−2u+ g(x′, u), sobre ∂Ω,

(3)

com λ > 0, com λ > 0, 1 < q < p e g : ∂Ω× R → R cumprindo

(g0) g ∈ C(∂Ω× R,R);

(g1) existe δ > 0 tal que g(x′, s) = g(x′,−s) para todo x′ ∈ ∂Ω e para todo s ∈ [−δ, δ];

(g2) vale

lim
|s|→0

g(x′, s)

|s|q
= 0, uniformemente em x′ ∈ ∂Ω.

O primeiro resultado do Caṕıtulo 2 é:

Teorema C. Suponha que g satisfaz (g0)-(g2). Então, para qualquer λ > 0, o pro-

blema (3) admite uma sequência (un) ⊂ W 1,p(Ω) ∩ L∞(∂Ω) de soluções fracas tais que

∥un∥L∞(∂Ω) → 0, quando n→ +∞.
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A motivação para estudar este problema foi o trabalho de Z-Q. Wang [74], em

que o autor estuda os efeitos de uma não-linearidade côncava e ı́mpar perto da origem

atuando juntamente com a potência côncava pura. Neste trabalho, o autor mostrou a

existência de uma quantidade infinita de soluções com norma L∞ pequena. Com as

técnicas desenvolvidas por ele, somos capazes de definir um truncamento conveniente que

permite deixar a não-linearidade côncava em toda a parte. Isso, somado à paridade e ao

emprego de técnicas de simetria, garante uma infinidade de soluções.

Assim como no segundo problema do Caṕıtulo 1, também não temos aqui hipóteses

para o comportamento do termo não-linear no infinito, o que demandou a aplicação de

uma técnica de regularidade combinada com estimativas a priori para garantir que as

soluções do problema truncado são do original. No entanto, não fizemos iteração de

Moser, como no primeiro caṕıtulo. Ao invés disso, mostramos a validade um resultado

que pode ser aplicado para realizar um iteração do tipo bootstrap para problemas com

o p-laplaciano, que generaliza um resultado já conhecido da literatura ([10, Proposição

4.1]). Mais especificamente, provamos o seguinte:

Lema. Sejam

p > 1, s > max

{
1,
p(N − 1)

(p− 1)N

}
, γ :=

Ns(p− 1)

N − 1
,

h ∈ Ls(∂Ω) e ψ ∈ W 1,p(Ω) uma solução fraca de−∆pψ + |ψ|p−2ψ = 0, em Ω,

|∇ψ|p−2∂ψ

∂ν
= h, sobre ∂Ω.

Então, ψ ∈ W 1,γ(Ω) e existe uma constante universal C = C(N, s,Ω) > 0 tal que

∥ψ∥p−1
1,γ ≤ C∥h∥Ls(∂Ω).

No problema (3), a não-linearidade no bordo apresenta um parâmetro com sinal

positivo. Como forma de ter uma certa dualidade, inspirados pelos trabalhos de [59, 64, 68]

buscamos também fazer o estudo de uma equação semelhante, porém com parâmetro

negativo. Assim, neste trabalho, consideramos o seguinte problema:

−∆u+ u = 0, em Ω,
∂u

∂ν
= −λ|u|q−2u+ g(u), sobre ∂Ω,

(4)

onde λ > 0 e, agora, a não-linearidade g : R → R satisfaz
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(g3) g ∈ C1(R,R);

(g4) g(0) = 0 e g′(0) > λ1, em que λ1 > 0 é o primeiro autovalor do problema de Steklov

(ver (2.2));

(g5) existe C1 > 0 e r ∈ (2, 2∗) de modo que

|g(s)| ≤ C1(1 + |s|r−1), ∀s ∈ R;

(g6) lim sup|s|→+∞
2G(s)

|s|2
< λ1.

Inspirados nas técnicas desenvolvidas e/ou utilizadas nos trabalhos de Perera [67,

68], Paiva, do Ó e Medeiros [64] e Azorero, Peral e Manfredi [11], mostramos existência

e multiplicidade de soluções para o problema (4). Convém ressaltar que os trabalhos de

Perera [67, 68] são um divisor de águas para o estudo de algumas classes de problemas

eĺıpticos, pois a partir deles, permitiu-se aliar ferramentas de álgebra e (co)-homologia de

grupos à obtenção de resultados de natureza variacional.

Nosso primeiro resultado para o problema (4) é

Teorema D. Suponha a validade de (g3)-(g6). Então, existe λ
∗ > 0 tal que se λ ∈ (0, λ∗),

o problema (4) possui pelo menos 4 soluções não-triviais.

Em alguns casos, é posśıvel obter uma quinta solução, conforme pode-se ver no

resultado abaixo

Teorema E. Suponha a validade de (g3) e (g5). Além disso, suponha que existe k ≥ 2

tal que

(g̃4) g(0) = 0 e g′(0) > λk;

(g̃6) G(s) ≤
1

2
λk+1s

2, para todo s ∈ R.

Então, existe λ∗ > 0 tal que se λ ∈ (0, λ∗), o problema (4) possui 5 soluções não triviais.

Em [68], Perera estudou o efeito da presença do parâmetro negativo juntamente

com uma não-linearidade sublinear. No nosso caso, pedimos que a fonte que acompanha

a potência pura na condição de contorno tenho crescimento subcŕıtico, assim como é feito

em [64], o que caracteriza nosso problema como uma espécie de côncavo-convexo.
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O nosso trabalho é inovador, por transferir para o bordo os efeitos das não-linearidades.

Além disso, é muito importante frisar que foi necessário desenvolver uma nova versão do

resultado que compara mı́nimos locais nas topologias Sobolev e Hölder, peça essencial

para o estudo deste tipo de problema, como é destacado por Perera [68]. De fato, este

tipo de resultado não é natural e é bastante surpreendente obtê-lo, apesar de já ser algo

conhecido na literatura, pois requer uma estrutura bem particular do funcional, como

enfatizam Brezis e Niremberg em seu trabalho [21].

Uma caracteŕıstica marcante deste caṕıtulo está na análise detalhada do papel do

parâmetro que multiplica o termo côncavo na fronteira. Consideramos tanto o caso em

que esse parâmetro é positivo, reforçando a contribuição da não linearidade sublinear,

quanto o caso negativo, em que o termo côncavo passa a agir contra o aparecimento

de soluções. Essa mudança de sinal não apenas altera profundamente a geometria do

funcional associado ao problema, mas também demanda uma grande mudança nas técnicas

empregadas para resolvê-lo.

Nosso objetivo, portanto, é compreender como essa inversão no sinal do parâmetro

impacta a existência e multiplicidade de soluções, propondo métodos adequados a cada

configuração. Ampliamos os resultados previamente conhecidos para problemas com ter-

mos côncavos na fronteira e oferecemos uma análise comparativa que evidencia a sensibi-

lidade do problema em relação ao sinal do parâmetro envolvido.

Problema de autovalor com operador quase-linear

No terceiro caṕıtulo, tratamos da seguinte equação estacionária de reação-difusão-advecção−div(a(x)D1(u)∇u) +D2(u)[⃗b(x) · ∇u] = λu em Ω,

u = 0 sobre ∂Ω,
(5)

onde Ω ⊂ RN é um domı́nio limitado e regular, a ∈ C1,α(Ω, [a0,+∞)), para algum a0 > 0,

e b⃗ ∈ C0,α(Ω;RN). As funções D1, D2 ∈ C([0,+∞), [0,+∞)) satisfazem

(d1) Di(s) > 0, para qualquer s > 0 e i ∈ {1, 2},

(d2) D1(∞) := lims→+∞D1(s) > 0.
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Consideramos a função h : [0,+∞) → (0,+∞) definida por

h(s) =


D2(s)

D1(s)
, se s > 0,

lims→0
D2(s)

D1(s)
, se s = 0,

e assumimos que

(H1) h ∈ C1((0,+∞)) e h′(0) := lims→0+ h
′(s) ∈ R.

Os dois primeiros resultados do Caṕıtulo 3 são:

Teorema F. Suponha que h satisfaça (H1), h(∞) < +∞ e σ0
1D1(0) < σ∞

1 D1(∞). Então,

para qualquer λ ∈ (σ0
1D1(0), σ

∞
1 D1(∞)), o problema (5) admite uma solução clássica

positiva.

Teorema G. Suponha que h satisfaça (H1), h(∞) = +∞, e

(b1) existe ψ ∈ C2(Ω) tal que [⃗b(x) · ∇ψ] > 0, para todo x ∈ Ω.

Então, para qualquer λ > σ0
1D1(0), o problema (5) admite uma solução clássica positiva.

Na demonstração, realizamos uma mudança de variável bem conhecida. No entanto,

como não assumimos queD1 = D2, o problema equivalente permanece quase-linear. Ainda

assim, provamos que os métodos de sub e supersolução podem ser aplicados para obtenção

das soluções. Destacamos que, diferentemente de trabalhos anteriores, permitimos os casos

em que D1(0) = 0 ou D1(∞) = ∞.

A condição (b1) é usada para construir uma supersolução no caso mais delicado,

onde h(∞) = +∞. Se b⃗ for um campo conservativo regular, ou seja, se b⃗ = ∇ψ para

algum ψ ∈ C2(Ω), então [⃗b · ∇ψ] = |⃗b|2, e, portanto, (b1) é satisfeita desde que b⃗ não se

anule em Ω.

Fazemos também o estudo do problema via Teoria de Bifurcação, para conseguir

uma análise detalhada do comportamento global das soluções. O primeiro resultado nesse

sentido é

Teorema H. Suponha que D1(0) > 0.

(i) Então existe uma componente ilimitada C0 ⊂ R× C1
0(Ω) de soluções positivas para

(5) que emana da solução trivial em (σ0
1D1(0), 0).
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(ii) Se, adicionalmente, 0 < Di(∞) < +∞ para todo i ∈ {1, 2}, então existe uma compo-

nente ilimitada C∞ ⊂ R×C1
0(Ω) de soluções para (5) que intercepta (σ∞

1 D1(∞),∞).

Além disso, se b⃗ ∈ C1(Ω;RN) e h satisfaz (H1), então C∞ consiste em soluções po-

sitivas para (5).

Além disso, sob uma das seguintes hipóteses adicionais:

(b2) existe ξ ∈ (H1
0 (Ω) ∩ L4(Ω)) \ {0} tal que div(ξ2⃗b) tem sinal constante quase sempre

em Ω,

ou

(d3) existe C > 0 tal que
∫∞
0
D2(t)t

−1dt < C,

obtemos um resultado de não existência de soluções positivas de (5) para λ > 0 suficien-

temente grande (ver Proposição 3.2). Na verdade, se definirmos

λ := min{σ0
1D1(0), σ

∞
1 D1(∞)} e λ := max{σ0

1D1(0), σ
∞
1 D1(∞)},

podemos estabelecer o seguinte resultado de existência:

Teorema I. Suponha que D1(0) > 0, 0 < Di(∞) < +∞ para todo i ∈ {1, 2}, que h

satisfaça (H1) e que b⃗ ∈ C1(Ω;RN). Então, para qualquer λ ∈ (λ, λ), o problema (5)

admite uma solução clássica positiva. Se, adicionalmente, (b2) ou (d3) for satisfeita,

então os cont́ınuos C0 e C∞ dados pelo Teorema H coincidem.

Também destacamos que, pelo Teorema da Divergência, a condição (b2) implica que

div(ξ2⃗b(x)) = 0 q.t.p em Ω.

Por fim, vale ressaltar que estudamos as direções de bifurcação tanto da solução

trivial quanto do infinito (ver Teoremas 3.4, 3.5 e 3.6). Essa análise é particularmente

desafiadora devido à presença do termo gradiente. Além disso, como um subproduto da

classificação discutida acima, conseguimos estabelecer a existência de pelo menos duas

soluções positivas para (3.1) sob certas condições adequadas sobre a função D1 (ver Teo-

rema 3.7).

A equação (5) é de interesse tanto do ponto de vista matemático quanto do ponto

de vista de aplicações. Por exemplo, pode ser interpretada como um modelo de estado

estacionário de uma equação de reação-difusão-advecção na Dinâmica de Populações,

onde Ω representa o habitat de uma espécie, e a densidade populacional em cada ponto

x ∈ Ω é dada por u(x). Neste contexto, −div(a(x)D1(u)∇u) é denominado termo de
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difusão, descrevendo o movimento espacial da espécie. A função d(x, u) := a(x)D1(u)

representa a taxa de difusão, indicando que a velocidade de deslocamento depende da

posição x e da densidade populacional u(x), tornando o modelo mais realista do que

no caso semilinear. Por outro lado, D2(u)[⃗b(x) · ∇u] representa o termo de advecção,

que considera o movimento preferencial da espécie. Esse movimento pode resultar de

comportamentos individuais ou processos f́ısicos de transporte, como ventos ou correntes

de rios. Finalmente, λu representa o termo de reação, interpretado como a taxa de

reprodução local dos indiv́ıduos, assumindo que essa taxa é proporcional à densidade

populacional (de acordo com a lei de Malthus). Para maiores detalhes, veja [25, 32, 61] e

as referências neles contidas.

Do ponto de vista matemático, esta é uma equação eĺıptica quase-linear, onde o

termo não linear em u aparece tanto nas derivadas de segunda ordem quanto no termo de

gradiente. Isso introduz desafios técnicos significativos na análise, especialmente devido

à ausência de informação sobre o sinal do termo de gradiente.

Por exemplo, este problema não possui estrutura variacional, o que significa que

os métodos clássicos utilizados para provar não-existência de soluções positivas não são

aplicáveis aqui. Além disso, até onde sabemos, não existem resultados de estimativas a

priori para esta classe de problemas. Ademais, desde que nós permitimos que as funções

D1 e D2 degenerem na origem ou no infinito, isso introduz dificuldades técnicas adicionais.

O caso onde D1 = D2 foi estudado em [65], onde o autor aplica uma mudança

de variáveis e transforma o problema (5) em uma equação semilinear equivalente. Isso

permite a aplicação de métodos clássicos de sub e supersoluções a essa classe de problemas.

No trabalho [8], os autores desenvolvem teoremas globais de bifurcação para o caso

em que D2 ≡ 0. Entre outros resultados, eles estudam a seguinte equação:

−div(A(x, u)∇u) = λu, em Ω, u = 0, sobre ∂Ω,

onde A(x, s) é uma matriz simétrica, positiva definida, cujos coeficientes são funções de

Carathéodory limitadas. O estudo desse problema com coeficientes não limitados foi

realizado em [27].

A equação loǵıstica com um termo de difusão não linear e advecção linear foi estu-

dada em [24]. Destacamos também os trabalhos [22, 23], nos quais os autores estudam a

equação loǵıstica com difusão não linear na ausência de um termo de advecção.

Mais recentemente, em [30], um dos autores examinou o caso em que D1 ≡ 1 e

D2 = pup−1, com p > 1, na presença do termo clássico de reação loǵıstica. Nesse artigo,

os autores estabelecem resultados sobre a existência e multiplicidade de soluções positivas,
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além de um novo resultado de unicidade para essa classe de problemas. Subsequentemente,

o caso em que p < 1 foi analisado em [58].

Os resultado apresentados neste caṕıtulo final contaram com a colaboração de Wil-

lian Cintra (UnB) e José Carmona (Universidad de Almeŕıa, Espanha) e podem ser en-

contrados no artigo [26].



Caṕıtulo 1

Problemas com fluxo superlinear na

fronteira

Ao longo deste caṕıtulo, trabalhamos com o semi-espaço superior

RN
+ :=

{
(x′, xN) : x

′ ∈ RN−1, xN > 0
}
.

Denotando por ν o vetor normal exterior à fronteira ∂RN
+ , estudamos dois problemas da

forma

−∆u = g(x, u,∇u), em RN
+ ,

∂u

∂ν
= h(x′, u), sobre ∂RN

+ ,

No primeiro deles, consideramos o problema
−∆u− 1

2
(x · ∇u) = 0, em RN

+ ,

∂u

∂ν
= µa(x′)|u|q−2u+ b(x′)|u|2∗−2u, sobre RN−1,

(1.1)

em que 1 < q < 2, 2∗ =
2(N − 1)

N − 2
, µ > 0 é um parâmetro real e os potenciais a e b

possuem sinal indefinido e satisfazem certas condições.

Conforme veremos na próxima seção, as soluções fracas do problema (1.1) pertencem

ao espaço X definido como o fecho de C∞
c (RN

+ ) com relação à norma

∥u∥ =

(∫
RN
+

K(x)|∇u|2dx

)1/2

,

onde

K(x) := e|x|
2/4, x ∈ RN .

13
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Este tipo de espaço foi primeiramente introduzido em [41], com o espaço todo RN no lugar

de RN
+ . É importante destacar que X está imerso continuamente em

LrK :=

{
u ∈ L1

loc(RN−1) : u r :=

(∫
RN−1

K(x′, 0)|u|rdσ
)1/r

<∞

}
,

para todo r ∈ [2, 2∗], em que 2∗ := 2(N − 1)/(N − 2) (ver [43, Teorema 1.1]).

Assim, estamos aptos a apresentar as hipóteses nos potenciais a e b, que podem

inclusive mudar de sinal. Para isso, denotamos por s′ > 1 o expoente conjugado de s > 1,

isto é, 1/s+ 1/s′ = 1. Definimos

Ω+
a := {x′ ∈ RN−1 : a(x′) > 0}, Ω+

b := {x′ ∈ RN−1 : b(x′) > 0}

e assumimos que:

(a0) a ∈ L
σq
K ∩ LN−1

loc (RN−1), com (2∗/q)
′ < σq ≤ (2/q)′;

(b0) b ∈ L∞(RN−1);

(ab) existem δ > 0, b0 > 0 e γ > N − 1 tais que

B′
δ := {x′ ∈ RN−1 : |x′| < δ} ⊂

(
Ω+
a ∩ Ω+

b

)
e

∥b∥L∞(RN−1) ≤ b(x′) + b0|x′|γ, q.t.p. em B′
δ.

Provamos o seguinte:

Teorema A. Suponha que N ≥ 4 e que a e b satisfazem (a0), (b0) e (ab). Então, existe

µ∗ > 0 tal que, para todo µ ∈ (0, µ∗), o problema (1.1) possui pelo menos duas soluções

fracas não-nulas e não-negativas.

Observação 1.1. Com as hipóteses acima, no caso em que N = 3, é posśıvel obter a

existência de ao menos uma solução fraca não-nula e não-negativa para valores pequenos

de µ > 0. Na realidade, ao invés da condição (ab), basta nesse caso que o conjunto Ω+
a

tenha interior não-vazio.

Na segunda parte do caṕıtulo estudamos o problema
−∆u− 1

2
(x · ∇u) = 0, em RN

+ ,

∂u

∂ν
= µa(x′)|u|q−2u+ f(u), sobre RN−1,

, (1.2)
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em que µ > 0 e 1 < q < 2. Com relação ao potencial a e a não-linearidade f : R → R,
vamos supor o seguinte:

(f0) f ∈ C(R,R);

(f1) existe p ∈ (2, 2∗) de modo que

lim
s→0

f(s)

|s|p−1
= 0;

(ã0) a ∈ L
σq
K ∩ L∞(RN−1), em que (p/q)′ < σq ≤ (2/q)′;

(a1) Ω+
a possui um ponto interior.

Veremos adiante na Proposição 1.1 que a imersão do traço X ↪→ L2∗
K é cont́ınua.

Assim, fica bem definido o número

S2∗ := inf

{∫
RN
+

K(x)|∇u|2dx : u ∈ X, u 2∗ = 1

}

e podemos enunciar o nosso segundo resultado principal:

Teorema B. Suponha que a e f satisfazem (ã0), (a1), (f0) e (f1). Além disso, suponha

que f é ı́mpar no intervalo [−CN,p, CN,p], em que

CN,p := max
{
1, 2S−1

2∗

}1/(2∗−p)(2∗ + 2− p

2

)(2∗+2−p)/2(2∗−p)2

. (1.3)

Então existe µ̄ > 0 tal que, para cada µ ∈ (0, µ̄), o problema (1.2) possui um número

infinito de soluções fracas.

Vale ressaltar alguns exemplos válidos para a não-linearidade f . Além do clássico

exemplo f(s) = |s|r−2s, com r > 2, podemos considerar f(s) = |s|r−2ses
2
com r > 2, o

qual possui crescimento exponencial. Na verdade, não existe restrição no crescimento de

f quando |s| é grande.

1.1 Prova do Teorema A

Esta seção é dedicada à prova do Teorema A. Como já mencionado na Introdução, uma

versão inicial deste resultado pode ser encontrada com grande riqueza maior de detalhes
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na dissertação de mestrado do estudante (ver [62]). Porém, uma parte importante da

demonstração não foi feita nesse trabalho e está sendo complementada aqui (ver Lema 1.1),

além de que naquela época só conseguimos mostrar a existência da segunda solução no

Teorema A quando N ≥ 5. Complementamos assim aquele trabalho mostrando também

essa multiplicidade no caso N = 4. Como o resultado mostra a existência de duas soluções

e a forma de obtê-las é completamente distinta uma da outra, iremos dividir a seção em

duas partes.

1.1.1 Primeira solução

Nesta subseção, iniciaremos a prova do primeiro resultado principal deste caṕıtulo. Nesta

e na subseção seguinte, assumiremos que (a0), (b0) e (ab) são válidas. Além disso, ao

longo de todo o caṕıtulo, escreveremos ∥v∥∞ para representar a norma de uma função v

essencialmente limitada definida q.t.p. sobre RN−1.

Como falado na seção anterior, consideramos a função peso K : RN → R, dada por

K(x) := e|x|
2/4.

Um cálculo direto mostra que se u é uma função suave, então

div(K(x)∇u) = K(x)

[
∆u+

1

2
(x · ∇u)

]
.

Assim, para resolver (1.1) com uma abordagem variacional, é natural considerarmos o

espaço X definido anteriormente.

O seguinte resultado abstrato foi provado em [43, Teorema 1.1] (veja também [42] e

[62, Teorema 3.5] para uma maior riqueza de detalhes).

Proposição 1.1. Se r ∈ [2, 2∗], então

Sr := inf
u∈X\{0}

∫
RN
+
K(x)|∇u|2dx(∫

RN−1 K(x′, 0)|u|rdσ
)2/r < +∞, (1.4)

e portanto a imersão do traço X ↪→ LrK é cont́ınua. Além disso, se r ∈ [2, 2∗) esta imersão

também é compacta.

Multiplicando a primeira equação de (1.1) por K, obtemos o funcional energia as-

sociado à este problema, a saber

I(u) :=
1

2
∥u∥2 − µ

q

∫
RN−1

K(x′, 0)a(x′)(u+)qdσ − 1

2∗

∫
RN−1

K(x′, 0)b(x′)(u+)2∗dσ.
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É posśıvel verificar que I está bem definido, I ∈ C1(X,R) e seus pontos cŕıticos são

exatamente soluções fracas do problema.

Começamos com o seguinte resultado de regularidade

Lema 1.1. Se u ∈ X é um ponto cŕıtico de I, então u ≥ 0 q.t.p. em RN
+ . Além disso, se

(a0) e (b0) valem, então u ∈ Lsloc(RN
+ ) ∩ Lsloc(RN−1), para qualquer s ≥ 1.

Demonstração. Sejam u+ := max{u, 0} e u− := u+−u as partes positiva e negativa de u,

respectivamente. Uma vez que u+u− = 0 q.t.p. em RN
+ , um cálculo simples mostra que

0 = I ′(u)u− = −∥u−∥2. Isto prova que u = u+ ≥ 0, como enunciado.

Para a regularidade, primeiro note que v := K1/2u ∈ W 1,2
loc (RN

+ ) é uma solução fraca

do problema −∆v = g1(x, v), em RN
+

∂v

∂ν
= g2(x

′, v), sobre RN−1
,

em que g1 : RN
+ × R → R e g2 : RN−1 × R → R são dadas por

g1(x, s) := −
(
|x|2 + 4N

16

)
s

e

g2(x
′, s) := a(x′)e(2−q)|x

′|2/8|s|q−2s+ b(x′)e(2−2∗)|x′|2/8|v(x′, 0)|2∗−2s.

Ao definirmos

L1(x) :=

(
|x|2 + 4N

16

)
, L2(x

′) := |a(x′)|e(2−q)|x′|2/8 + ∥b∥∞|v(x′, 0)|2∗−2,

temos para todo x ∈ RN
+ , x

′ ∈ RN−1 e s ∈ R que

|g1(x, s)| ≤ L1(x)(1 + |s|), |g2(x′, s)| ≤ L2(x
′)(1 + |s|).

Sabemos que L1 ∈ L
N/2
loc (RN

+ ) e L2 ∈ LN−1
loc (RN−1), onde esta última inclusão se deve à

(a0) e ao fato de que v ∈ L2∗
loc(RN−1). Assim, podemos aplicar [1, Lema 4.1] para concluir

u ∈ Lsloc(RN
+ ) ∩ Lsloc(RN−1), para todo s ≥ 1.

Na primeira parte da prova do Teorema A, utilizaremos um argumento de mini-

mização para obter uma solução uµ com energia negativa. Assim, precisamos provar o

seguinte:

Lema 1.2. Existem µ∗ = µ∗(q, a σq , ∥b∥∞) > 0, ρ = ρ(q, ∥b∥∞) > 0 e α = α(ρ) > 0 tais



18

que, para todo µ ∈ (0, µ∗), vale

I(u) ≥ α, ∀u ∈ X ∩ ∂Bρ(0).

Demonstração. Segue da desigualdade de Hölder, (a0) e (1.4) que∫
RN−1

K(x′, 0)a(x′)(u+)qdσ ≤ a σq u
+ q

qσ′
q
≤ S

−q/2
qσ′

q
a σq∥u∥q.

Isso, combinado com (1.4), implica que

I(u) ≥ 1

2
∥u∥q

[
∥u∥2−q − µ

2

q
S
−q/2
qσ′

q
a σq − C1∥u∥2∗−q

]
,

onde C1 := (2/2∗)S
−2∗/2
2∗ ∥b∥∞ > 0.

Com um cálculo simples, vemos que a função h(t) = t2−q − C1t
2∗−q, para t > 0,

atinge seu máximo global no ponto

ρ :=

[
2− q

C1(2∗ − q)

]1/(2∗−2)

> 0.

Dessa forma, se considerarmos C2 := h(ρ), teremos que

I(u) ≥ 1

2
ρq
[
C2 − µ

2

q
S
−q/2
qσ′

q
a σq

]
≥ C2ρ

q

4
=: α > 0,

sempre que ∥u∥ = ρ e

0 < µ < µ∗ :=
qC2

4 a σq

S
q/2
qσ′

q
,

o que finaliza a prova.

O próximo resultado fornece a primeira solução do problema (1.1).

Proposição 1.2. Sejam µ∗ e ρ > 0 dados no Lema 1.2. Então, para qualquer µ ∈ (0, µ∗),

o ı́nfimo

cµ := inf
u∈Bρ(0)

I(u) < 0

é atingido em um ponto cŕıtico não-negativo uµ ∈ Bρ(0).

Demonstração. Utilizando (a0), (b0) e a Proposição 1.1, mostramos que cµ > −∞. Sejam

δ > 0 dado na condição (ab) e φ ∈ C∞
c (Bδ(0)) uma função não-negativa tal que φ ≡ 1 em
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Bδ/2(0). Desde que Bδ(0) ∩ ∂RN
+ ⊂ Ω+

a , obtemos∫
RN−1

K(x′, 0)a(x′)φqdσ ≥
∫
Bδ/2(0)∩∂RN

+

K(x′, 0)a(x′)dσ > 0.

Note agora que

I(tφ)

tq
=
t2−q

2
∥φ∥2 − µ

q

∫
RN−1

K(x′, 0)a(x′)φqdσ − t2∗−q

2∗

∫
RN−1

K(x′, 0)b(x′)φ2∗dσ,

donde segue que

lim sup
t→0+

I(tφ)

tq
≤ −µ

q

∫
RN−1

K(x′, 0)a(x′)φqdσ < 0,

e, portanto, I(tφ) < 0, para t > 0 pequeno. Isso prova que cµ < 0.

Seja (un) ⊂ Bρ(0) tal que I(un) → cµ. Como (un) é limitada, existe uµ ∈ X de

forma que un ⇀ uµ fracamente em X, un → uµ fortemente em LrK , para todo r ∈ [2, 2∗),

e un(x
′, 0) → uµ(x

′, 0) q.t.p. em RN−1. Ademais, pelo Lema 1.2, temos que (un) ⊂ Bρ(0),

para todo n ≥ n0. Assim, {un} é uma sequência minimizante para I|
Bρ(0)

. Dessa forma,

podemos aplicar o Prinćıpio Variacional de Ekeland [37] para assumir que I ′(un) → 0, se

n→ +∞.

Veja que I ′(uµ) = 0. De fato, desde que σq > (2∗/q)
′, temos que

1/σq + (q − 1)/2∗ < 1.

Consequentemente, existem r ∈ (2, 2∗) e τ > 1 tais que

1

σq
+
q − 1

r
+

1

τ
= 1.

Da convergência forte un → uµ em LrK , extráımos η0 ∈ LrK tal que |un(x′, 0)| ≤ η0(x
′)

q.t.p. em RN−1. Assim, para qualquer v ∈ C∞
c (RN

+ ), podemos usar a desigualdade de

Young para obter

|Ka(u+n )q−1v| ≤ K

[
|a|σq
σq

+
q − 1

r
|η0|r +

|v|τ

τ

]
q.t.p. sobre RN−1.

Sendo que v possui suporte compacto, o lado direito da desigualdade acima pertence à

L1(RN−1). Segue do Teorema da Convergência Dominada de Lebesgue que

lim
n→+∞

∫
RN−1

K(x′, 0)a(x′)(u+n )
q−1v dσ =

∫
RN−1

K(x′, 0)a(x′)(u+µ )
q−1v dσ. (1.5)



20

Utilizando que b ∈ L∞(RN−1) e um argumento simples, podemos verificar que

lim
n→+∞

∫
RN−1

K(x′, 0)b(x′)(u+n )
2∗−1v dσ =

∫
RN−1

K(x′, 0)b(x′)(u+µ )
2∗−1v dσ. (1.6)

Combinando as convergências dadas em (1.5) e (1.6) com a convergência fraca un ⇀ uµ,

conclúımos que

0 = lim
n→+∞

I ′(un)v = I ′(uµ)v, ∀ v ∈ C∞
c (RN

+ ),

e segue por argumentos de densidade que I ′(uµ) = 0. Pelo Lema 1.1, sabemos que uµ é

não-negativa.

Uma vez que qσ′
q ∈ [2, 2∗), existe η1 ∈ L

qσ′
q

K de modo que |un(x′, 0)| ≤ η1(x
′) q.t.p. em

RN−1. Portanto, podemos utilizar a desigualdade de Young juntamente com o Teorema

da Convergência Dominada de Lebesgue como antes para mostrar que

lim
n→+∞

∫
RN−1

K(x′)a(x′)(u+n )
qdσ =

∫
RN−1

K(x′)a(x′)(u+µ )
qdσ.

Assim,

cµ = lim inf
n→+∞

[
I(un)−

1

2∗
I ′(un)un

]
= lim inf

n→+∞

[(
1

2
− 1

2∗

)
||un||2 +

(
1

2∗
− 1

q

)
µ

∫
RN−1

K(x′, 0)a(x′)(u+n )
qdσ

]
≥

(
1

2
− 1

2∗

)
||uµ||2 +

(
1

2∗
− 1

q

)
µ

∫
RN−1

K(x′, 0)a(x′)(u+µ )
qdσ

= I(uµ)−
1

2∗
I ′(uµ)uµ = I(uµ).

Como já sabemos que I(uµ) ≥ cµ, conclúımos que I(uµ) = cµ.

1.1.2 Segunda solução

Em vistas de obter a segunda solução, adaptaremos argumentos de [49]. Dado c ∈ R,
relembre que dizer que I satisfaz a condição de Palais-Smale no ńıvel c significa que

qualquer sequência (un) ⊂ X tal que I(un) → c e I ′(un) → 0 possui uma subsequência

convergente.

Lema 1.3. Suponha que uµ dada na Proposição 1.2 seja o único ponto cŕıtico não-nulo

de I. Então, I satisfaz a condição Palais-Smale em qualquer ńıvel c ∈ R que satisfaça

c < c := I(uµ) +
1

2(N − 1)

1

∥b∥N−2
∞

SN−1
2∗ .
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Demonstração. Seja (un) de tal modo que I(un) → c < c e I ′(un) → 0. Pela desigualdade

de Hölder e denotando por on(1) uma quantidade que vai a zero quando n→ +∞, temos

que

c+ on(1)∥un∥ = I(un)−
1

2∗
I ′(un)un

≥
(
1

2
− 1

2∗

)
∥un∥2 −

(
1

q
− 1

2∗

)
µS

−q/2
qσ′

q
a σq∥un∥2,

e, portanto, (un) é limitada. Assim, existe u ∈ X tal que un ⇀ u fracamente em X.

Argumentando do mesmo jeito que na prova da Proposição 1.2, podemos mostrar que

lim
n→+∞

∫
RN−1

K(x′, 0)a(x′)(u+n )
qdσ =

∫
RN−1

K(x′, 0)a(x′)(u+)qdσ.

Definindo vn := un − u e aplicando o Lema de Brèzis-Lieb [20], obtemos que

0 = I ′(un)un = I ′(u)u+ ∥vn∥2 −
∫
RN−1

K(x′, 0)b(x′)(v+n )
2∗dσ + on(1).

Assim como na prova da Proposição 1.2, temos que I ′(u) = 0. Portanto, existe l ≥ 0 de

forma que

lim
n→+∞

∥vn∥2 = l = lim
n→+∞

∫
RN−1

K(x′, 0)b(x′)(v+n )
2∗dσ.

Por conta da imersão do traço X ↪→ L2∗
K (RN−1), vale que

∫
RN−1

K(x′, 0)b(x′)(v+n )
2∗dσ ≤ ∥b∥∞S−2∗/2

2∗

(∫
RN
+

K(x)|∇vn|2dx
)2∗/2

.

Se l > 0, podemos tomar n→ +∞ na expressão acima para deduzir que

l ≥ 1

∥b∥N−2
∞

SN−1
2∗ . (1.7)

Por outro lado,

c+ on(1) = I(un) = I(u) +
1

2
∥vn∥2 −

1

2∗

∫
RN−1

K(x′, 0)b(x′)(v+n )
2∗dσ,

em que on(1) denota uma quantidade que se aproxima de zero quando n → +∞. Desde

que I ′(u) = 0, segue que u ∈ {0, uµ} e, portanto, I(u) ≥ I(uµ). Assim, tomando o limite

quando n→ +∞ na igualdade acima e utilizando (1.7), obtemos que

c ≥ I(u) +
1

2(N − 1)

1

∥b∥N−2
∞

SN−1
2∗ ≥ c,
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o que é uma contradição. Consequentemente, l = 0 e temos que

lim
n→+∞

∥un − u∥2 = lim
n→+∞

∥vn∥2 = l = 0,

o que mostra que un → u fortemente em X.

Para cada ϵ > 0, considere a função

Uϵ(x
′, xN) :=

(
ϵ

|x′|2 + (xN + ϵ)2

)(N−2)/2

, (x′, xN) ∈ RN
+ .

A famı́lia {Uϵ}ϵ>0 consiste exatamente das funções que atingem a melhor constante da

imersão do traço D1,2(RN
+ ) ↪→ L2∗(RN−1) (veja [38] para maiores detalhes). Agora, defina

ψϵ(x) := K(x)−1/2φ(x)Uϵ(x), x ∈ RN
+ , (1.8)

em que φ ∈ C∞
c (RN

+ ) é tal que 0 ≤ φ ≤ 1, φ ≡ 1 em Bδ/2(0) ∩ RN
+ , φ ≡ 0 fora de

Bδ(0) ∩ RN
+ , e δ > 0 é o dado na condição (ab).

Considerando

AN :=

∫
RN
+

|∇Uϵ|2dx, BN :=

(∫
RN−1

|Uϵ|2∗dσ
)2/2∗

,

foi provado em [47, Lema 2.2] que AN/BN = S2∗ . Além disso, se ϵ→ 0+, temos que

∥ψϵ∥2 = AN +


O(ϵ2| ln ϵ|), se N = 4,

O(ϵ2), se N ≥ 5,

e ψϵ
2∗
2∗ = B

2∗/2
N +O(ϵ2).

O próximo resultado será utilizado para determinar, de forma precisa, o ńıvel mini-

max do funcional energia associado ao problema (1.1). É neste resultado que fica clara

a hipótese de N ≥ 4 no Teorema A. Ressaltamos que tudo o que foi feito na primeira

subseção é válido ainda quando N = 3.

Lema 1.4. Suponha que N ≥ 4 e considere

vϵ :=
ψϵ
ψϵ 2∗

,

em que ψϵ foi definida em (1.8). Então, se ϵ→ 0+, vale

∥vϵ∥2(N−1) = SN−1
2∗ +


O(ϵ2| ln ϵ|), se N = 4,

O(ϵ2), se N ≥ 5,
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e

vϵ
s
s = O

(
ϵN−1−s(N−2)/2

)
,

para todo 2∗/2 < s < 2∗.

Demonstração. Se N ≥ 5, podemos usar a definição de vϵ, o Teorema do Valor Médio e

a expressão acima para obter que

∥vϵ∥2(N−1) =
∥ψϵ∥2(N−1)

ψϵ
2(N−1)
2∗

=
[AN +O(ϵ2)]N−1

[B
2∗/2
N +O(ϵ2)]N−2

=
AN−1
N +O(ϵ2)

B
2∗(N−2)/2
N +O(ϵ2)

=
AN−1
N +O(ϵ2)

BN−1
N +O(ϵ2)

=

(
AN
BN

)N−1

+O(ϵ2) = SN−1
2∗ +O(ϵ2).

Em relação ao caso N = 4, podemos proceder de maneira análoga para obter

∥vϵ∥2(N−1) =
AN−1
N +O(ϵ2| ln ϵ|)
BN−1
N +O(ϵ2)

=
AN−1
N +O(ϵ2| ln ϵ|)

BN−1
N +O(ϵ2| ln ϵ|)

= SN−1
2∗ +O(ϵ2| ln ϵ|).

Agora, vejamos a estimativa para a norma vϵ
s
s. Desde que 0 ≤ φ ≤ 1 e φ se anula fora

de uma bola, podemos fazer uso da mudança de variáveis x′ = ϵy′ para obter C1 > 0 tal

que

ψϵ
s
s ≤ C1

∫
{|x′|≤δ}

[
ϵ

|x′|2 + ϵ2

]s(N−2)/2

dσ

≤ C1ϵ
N−1−s(N−2)/2

∫
{|y′|≤δ/ϵ}

[
1

|y′|2 + 1

]s(N−2)/2

dy′

≤ C1ϵ
N−1−s(N−2)/2

[
C2 +

∫
{|y′|≥1}

|y′|−s(N−2)dy′
]
.

O termo entre colchetes é finito se, e somente se, s > (N − 1)/(N − 2), o que está de

acordo com nossa hipótese. Assim, a última parte do lema segue da expressão anterior e

de ψϵ
s
2∗ = B

s/2
N + o(1).

Lema 1.5. Suponha N ≥ 4 e, para cada ϵ > 0, considere vϵ definida no lema anterior e

uµ o mı́nimo local de I dado pela Proposição 1.2. Então

lim
t→+∞

I(uµ + tvϵ) = −∞.
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Demonstração. Primeiramente, note que

I(u0 + tφ) =
1

2

∫
RN
+

K(x)|∇(u0 + tvϵ)|2dx−
µ

q

∫
RN−1

K(x′, 0)a(x′)(u0 + tvϵ)
qdσ

− 1

2∗

∫
RN−1

K(x′, 0)b(x′)(u0 + tvϵ)
pdσ

=
1

2
∥u0∥2 + t

∫
RN
+

K(x)∇u0∇vϵdx+
t2

2
∥vϵ∥2

− µ

q

∫
RN−1

K(x′, 0)a(x′)(u0 + tvϵ)
qdσ − 1

2∗

∫
RN−1

K(x′, 0)b(x′)(u0 + tvϵ)
2∗dσ

≤ O(1) +O(t) +O(t2)− µ

q

∫
RN−1

K(x′, 0)a(x′)(u0 + tφ)qdσ

− 1

2∗

∫
RN−1

K(x′, 0)b(x′)(u0 + tvϵ)
2∗dσ. (1.9)

Como uµ ≥ 0 e vϵ = 0 no complementar de B := Bδ(0) ∩ RN
+ e a, b > 0 no suporte de vϵ,

obtemos ∫
RN−1

K(x′, 0)a(x′)(uµ + tvϵ)
qdσ =

∫
RN−1\B

K(x′, 0)a(x′)uqµdσ

+

∫
B

K(x′, 0)a(x′)(uµ + tvϵ)
qdσ

≥ O(1) + tq
∫
B

K(x′, 0)a(x′)vqϵdσ

= O(1) +O(tq). (1.10)

Analogamente,∫
RN−1

K(x′, 0)b(x′)(uµ + tvϵ)
2∗dσ =

∫
RN−1\B

K(x′, 0)b(x′)u2∗µ dσ

+

∫
B

K(x′, 0)b(x′)(uµ + tvϵ)
2∗dσ

≥ O(1) + t2∗
∫
B

K(x′)b(x′)v2∗ϵ dσ. (1.11)

Combinando as desigualdades (1.9), (1.10) e (1.11), temos que

I(uµ + tvϵ) ≤ O(t2) +O(tq) +O(t) +O(1)− t2∗
2∗

∫
B

K(x′, 0)b(x′)v2∗ϵ dx
′.

Uma vez que a integral na desigualdade acima é positiva, ao fazermos t→ +∞, obtemos

o resultado.

Lema 1.6. Suponha que N ≥ 4. Para cada ϵ > 0, considere novamente vϵ dada pelo
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Lema 1.4 e defina tϵ > 0 tal que

mϵ := I(uµ + tϵvϵ) = max
t≥0

I(uµ + tvϵ).

Então (tϵ)ϵ>0 é limitado.

Demonstração. Para cada ϵ > 0, seja hϵ : [0,+∞) → R a aplicação de classe C1 dada por

hϵ(t) = I(uµ + tvϵ).

Do Lema 1.5, limt→+∞ hϵ(t) = −∞. Além disso, como uµ é mı́nimo local de I, existe

δ > 0 tal que hϵ(t) > h(0) para t ∈ (0, δ). Portanto, hϵ atinge um máximo em algum

tϵ > 0. Isso mostra que o número mϵ está bem definido. Suponha, por contradição, que

tϵn → +∞, para alguma sequência ϵn → 0+. De I ′(uµ)vϵn = 0, temos∫
RN
+

K(x)∇uµ∇vϵndx = µ

∫
RN−1

K(x′, 0)a(x′)uq−1
µ vϵndσ +

∫
RN−1

K(x′, 0)b(x′)u2∗−1
µ vϵndσ.

(1.12)

Ao combinar (1.12) com 0 = h′ϵn(tϵn) = I ′(uµ + tϵnvϵn)vϵn e recordando que a e b são

positivos no suporte de vϵn (pela construção de vϵ), obtemos

tϵ∥vϵn∥2 = µ

∫
RN−1

K(x′, 0)a(x′)(uµ + tϵnvϵn)
q−1vϵndσ − µ

∫
RN−1

K(x′, 0)a(x′)uq−1
µ vϵndσ

+

∫
RN−1

K(x′, 0)b(x′)(uµ + tϵnvϵn)
2∗−1vϵndσ −

∫
RN−1

K(x′, 0)b(x′)u2∗−1
µ ψϵndσ

≥ µ

∫
RN−1

K(x′, 0)a(x′)uq−1
µ vϵndσ − µ

∫
RN−1

K(x′, 0)a(x′)uq−1
µ vϵndσ

+

∫
RN−1

K(x′, 0)b(x′)(tϵnvϵn)
2∗−1vϵndσ −

∫
RN−1

K(x′, 0)b(x′)u2∗−1
µ vϵndσ

= t2∗−1
ϵn

∫
RN−1

K(x′, 0)b(x′)v2∗ϵndσ −
∫
RN−1

K(x′, 0)b(x′)u2∗−1
µ vϵndσ,

donde segue que∫
RN−1

K(x′, 0)b(x′)v2∗ϵndσ ≤ t2−2∗
ϵn ∥vϵn∥2 + t1−2∗

ϵn

∫
RN−1

K(x′, 0)b(x′)u2∗−1
µ vϵndσ.

Segue da desigualdade de Hölder, de vϵn 2∗ = 1 e do Lema 1.4 que

lim
n→+∞

∫
RN−1

K(x′, 0)b(x′)v2∗ϵndσ = 0.

Por outro lado, da condição (ab) temos que

b(x′) ≥ ∥b∥∞ − b0|x′|γ, q.t.p. em {|x′| ≤ δ},
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com b0 > 0. Consequentemente,

on(1) =

∫
RN−1

K(x′, 0)b(x′)v2∗ϵndσ ≥ ∥b∥∞ − b0

∫
RN−1

K(x′, 0)|x′|γv2∗ϵndσ. (1.13)

Desde que ψϵn
2∗
2∗ = B

2∗/2
N + on(1), obtemos que∫

RN−1

K(x′, 0)|x′|γv2∗ϵndσ ≤ C1

ψϵn
2∗
2∗

∫
{|x′|≤δ}

ϵN−1
n |x′|γ

[|x′|2 + ϵ2n]
N−1

dσ

≤ O(ϵN−1
n )

∫
{|x′|≤δ}

|x′|γ−2(N−1)dσ = O(ϵN−1
n ),

onde foi usado que γ > N−1 na última desigualdade acima. Segue de (1.13) que ∥b∥∞ = 0,

o que contradiz (ab). Fica então provado o lema.

O próxima lema é crucial para completar a prova do Teorema A.

Lema 1.7. Se N ≥ 4 então, para todo ϵ > 0 pequeno, o número mϵ definido no Lema 1.6

verifica mϵ < c̄.

Demonstração. Usando que I ′(uµ)vϵ = 0, temos que

mϵ = I(uµ) +
t2ϵ
2
∥vϵ∥2 −

µ

q
Γ1,ϵ −

1

2∗
Γ2,ϵ, (1.14)

onde

Γ1,ϵ :=

∫
RN−1

K(x′, 0)a(x′)
[
(uµ + tϵvϵ)

q − uqµ − tϵqu
q−1
µ vϵ

]
dσ,

e

Γ2,ϵ :=

∫
RN−1

K(x′, 0)b(x′)
[
(uµ + tϵvϵ)

2∗ − u2∗µ − tϵ2∗u
2∗−1
µ vϵ

]
dσ.

O Teorema do Valor Médio combinado com a positividade de a no suporte de vϵ implicam

que Γ1,ϵ ≥ 0. Além disso, para todo r, s ≥ 0 e σ ∈ (1, 2∗ − 1), existe Cσ > 0 tal que

(r + s)2∗ ≥ r2∗ + s2∗ + 2∗r
2∗−1s+ 2∗rs

2∗−1 − Cσr
2∗−σsσ.

Tomando r = uµ, s = tϵvϵ e σ = 2∗/2, podemos utilizar que Γ1,ϵ ≥ 0 e (1.14) para chegar

que

mϵ ≤ I(uµ) +

(
t2ϵ
2
∥vϵ∥2 −

t2∗ϵ
2∗

∥b∥∞
)
+ Γ2,ϵ,1 − Γ2,ϵ,2 + Γ2,ϵ,3, (1.15)

em que

Γ2,ϵ,1 :=
t2∗ϵ
2∗

∫
RN−1

K(x′, 0) [∥b∥∞ − b(x′)] v2∗ϵ dσ,

Γ2,ϵ,2 := t2∗−1
ϵ

∫
RN−1

K(x′, 0)b(x′)uµv
2∗−1
ϵ dσ
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e

Γ2,ϵ,3 := Cσ
t
2∗/2
ϵ

2∗

∫
RN−1

K(x′, 0)b(x′)u2∗/2µ v2∗/2ϵ dσ.

Agora, note que

max
t≥0

{
t2

2
∥vϵ∥2 −

t2∗

2∗
∥b∥∞

}
=

1

2(N − 1)

∥vϵ∥2(N−1)

∥b∥N−2
∞

.

Assumindo que N ≥ 5, do Lema 1.4 temos que ∥vϵ∥2(N−1) = SN−1
2∗ + O(ϵ2). Assim, da

definição c̄ e de (1.15), vale que

mϵ ≤ c̄+O(ϵ2) + Γ2,ϵ,1 − Γ2,ϵ,2 + Γ2,ϵ,3. (1.16)

Agora, vamos majorar cada um dos termos Γ2,ϵ,i, para i = 1, 2, 3. Para o primeiro,

podemos argumentar como na prova do Lema 1.6 para obter que Γ2,ϵ,1 = O(ϵN−1). Os

outros dois, no entanto, são um pouco mais delicados. Então, escolhemos r1 > 1 de modo

que
1

N + 4
<

r1
2(N − 1)

<
1

N
.

Utilizando o Lema 1.1 e a desigualdade de Hölder, temos que∫
RN−1

K(x′, 0)b(x′)uµv
2∗−1
ϵ dσ ≤ ∥b∥∞

(∫
{|x′|≤δ}

K(x′, 0)ur
′
1
µ dσ

)1/r′1

vϵ
2∗−1
(2∗−1)r1

.

Como 1 < r1 < 2(N − 1)/N , vale que N/(N − 2) < (2∗ − 1)r1 < 2∗, e, portanto, podemos

utilizar a expressão acima, o Lema 1.4 com s = (2∗ − 1)r1 e o Lema 1.6 para obter que

Γ2,ϵ,2 = O
(
ϵ(N−1)/r1−N/2

)
.

Agora, escolhemos r2 ∈ (1, 2) e argumentamos como antes para concluir que

Γ2,ϵ,3 ≤ ∥b∥∞
(∫

{|x′|≤δ}
K(x′, 0)u(2∗/2)r

′
2

µ dσ

)1/r′2

vϵ
2∗/2
(2∗/2)r2

.

Uma vez que r2 ∈ (1, 2), podemos utilizar o Lema 1.6 com s = (2∗/2)r2 ∈ (2∗/2, 2∗) para

obter

Γ2,ϵ,3 = O(ϵ(N−1)/r2−(N−1)/2).

Observando que

lim
r→2(N−1)/N

(
N − 1

r
− N

2

)
= 0 <

N − 1

2
= lim

r→1

(
N − 1

r
− N − 1

2

)
,
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podemos escolher os números r1, r2 > 0 acima, de tal modo que

ν1 :=
N − 1

r1
− N

2
< 2, ν2 :=

N − 1

r2
− N − 1

2
> ν1.

Visto que ν1 < min{2, ν2} e N ≥ 5, podemos utilizar todas as estimativas acima para

reescrever (1.16) como

mϵ ≤ c̄+O(ϵ2) +O(ϵN−1)−O(ϵν1) +O(ϵν2) < c̄,

se ϵ > 0 é suficientemente pequeno. Isto conclui a prova para o caso N ≥ 5.

No caso N = 4, a única alteração é que ∥vϵ∥2(N−1) = SN−1
2∗ +O(ϵ2| ln ϵ|). Repetindo

todos os passos anteriores, obtemos para ϵ > 0 suficientemente pequeno

mϵ ≤ c̄+O(ϵ2| ln ϵ|) +O(ϵN−1)−O(ϵν1) +O(ϵν2) < c̄,

observando que ϵ2−ν1| ln ϵ| → 0, quando ϵ→ 0+.

Com isso, estamos aptos a finalizar a prova do primeiro resultado principal deste

caṕıtulo.

Prova do Teorema A. Tome µ ∈ (0, µ∗), onde µ∗ é o dado no Lema 1.2. De acordo com

a Proposição 1.2, existe uma solução não-negativa uµ tal que I(uµ) < 0. Suponha, por

absurdo, que este seja o único ponto cŕıtico não-trivial de I. Assim, pelo Lema 1.3, I

satisfaz a condição Palais-Smale em qualquer ńıvel c < c̄. No Lema 1.5, provamos que

lim
t→+∞

I(uµ + tvϵ) = −∞,

e, portanto, existe t∗ > 0 de modo que I(uµ + t∗vϵ) < 0 e ∥uµ + t∗vϵ∥ > ρ, em que ρ > 0

foi obtido no Lema 1.2. Isso mostra que o ńıvel do Passo da Montanha

cMP := inf
θ∈Γ

max
0≤t≤1

I(θ(t)) > 0,

está bem definido, onde Γ := {θ ∈ C([0, 1], X) : θ(0) = 0, θ(1) = uµ + t∗vϵ}. Do Lema

1.7, temos que cMP < c̄. Aplicando o Teorema do Passo da Montanha (cf. [71, Teorema

2.2]) obtemos um ponto cŕıtico u0 ̸= 0 tal que I(u0) > 0. Desde que uµ possui energia

negativa, conclúımos que u0 ̸= uµ, o que é uma contradição. Isto assegura a existência da

nossa segunda solução não-trivial para (1.1). Como antes, ela é não-negativa em RN
+ .
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1.2 Prova do Teorema B

Nesta seção, provamos Teorema B. O problema (1.2) será resolvido em duas etapas:

Consideramos um truncamento apropriado para o problema e o resolveremos na primeira

parte desta seção e, na segunda, utilizaremos uma modificação da técnica de Iteração de

Moser para mostrar que as soluções do problema truncado também resolvem (1.2).

Ao longo de toda a seção vamos supor a validade das condições (ã0), (a1), (f0) e

(f1).

1.2.1 Solucionando um problema modificado

Como mencionado na introdução, se F (s) :=
∫ s
0
f(t)dt, o termo

∫
RN−1 K(x′, 0)F (u)dσ

pode não ser finito, pois não possúımos controle no comportamento de F (s) para valores

grandes de |s|. Assim, seguindo as mesmas ideias de Azorezo e Alonso [10] definimos

g : R → R por

g(s) :=


f(s), se |s| ≤ CN,p,

f(CN,p)

Cp−1
N,p

|s|p−2s, se |s| > CN,p,
(1.17)

em que CN,p é dada em (1.3). Desde que f é ı́mpar em [−CN,p, CN,p], a função g é ı́mpar

ao longo de toda a reta real. Além disso, da condição (f1), extráımos uma constante

Cg > 0, que depende de N e p, satisfazendo

|g(s)| ≤ Cg|s|p−1, ∀ s ∈ R. (1.18)

Sejam G(s) :=
∫ s
0
g(t)dt e J : X → R dado por

J(u) :=
1

2
∥u∥2 − µ

q

∫
RN−1

K(x′, 0)a(x′)|u|qdσ −
∫
RN−1

K(x′, 0)G(u)dσ.

Observe que qualquer u ∈ X que seja um ponto cŕıtico de J e que satisfaça ∥u∥∞ ≤ CN,p

é uma solução fraca do problema (1.2). Ademais, como a parte não quadrática de J

possui crescimento subcŕıtico, podemos usar um argumento padrão e a imersão compacta

dada na Proposição 1.1 para mostrar que qualquer sequência Palais-Smale de J possui

uma subsequência convergente. Com base na observação feita aqui, nosso objetivo nesta

subseção será estabelecer a existência de uma infinidade de pontos cŕıticos para J .

Utilizando a desigualdade de Hölder assim como no Lema 1.2, obtemos que

J(u) ≥ 1

2
∥u∥2 − µM1∥u∥q −M2∥u∥p,
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onde

M1 := ( a σq/q)S
−q/2
qσ′

q
e M2 := (Cg/p)S

−p/2
p ,

e Cg > 0 foi obtida em (1.18). Considere

h(t) :=
1

2
t2 − µM1t

q −M2t
p, t ≥ 0, (1.19)

e note que

(i) h(0) = 0;

(ii) existe t0 > 0 tal que h(t) < 0 se t ∈ (0, t0);

(iii) limt→+∞ h(t) = −∞.

Semelhantemente à prova do Lema 1.2, a aplicação k : [0,+∞) → R dada por

k(t) := (1/2)t2−q −M2t
p−q,

atinge seu máximo positivo em

t̄ =

[
2− q

2M2(p− q)

]1/(p−2)

> 0.

Sendo M = k(t̄) este máximo, e se valendo de que h(t) = tq(k(t)− µM1), conclúımos que

para todo µ ∈ (0,M1/M), h tem também um máximo positivo. Para estes valores de µ,

h possui ao menos duas ráızes positivas, a saber R1 < R2. Pela versão generalizada da

regra dos sinais de Descartes (veja [52, Teorema 2.1]), não existem outras ráızes positivas

para h. De agora em diante, assumiremos que µ ∈ (0, µ∗∗), onde µ∗∗ =
M1

M
.

Note que R1 depende de µ, além de que quanto menor o valor de µ, mais rápido

a função h assume valores positivos. Com efeito, quando µ = 0, a função h inicia to-

mando valores positivos, o que resulta que neste caso, R1 = 0. Portanto, o seguinte

comportamento é esperado:

Lema 1.8. A primeira raiz positiva de h verifica limµ→0+ R1(µ) = 0.

Demonstração. Uma vez que R1 > 0 é raiz de h, temos que

0 =
h(R1)

R2
1

=
1

2
− µM1R

q−2
1 −M2R

p−2
1 .

Por outro lado, sendo h′(R1) > 0, vale que

0 <
h′(R1)

2R1

=
1

2
− q

2
µM1R

q−2
1 − p

2
M2R

p−2
1 .
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Combinando as duas expressões acima, conclúımos que

1

2
= µM1R

q−2
1 +M2R

p−2
1 >

q

2
µM1R

q−2
1 +

p

2
M2R

p−2
1 .

Em virtude de p > 2 e da expressão acima, existe α ≥ 0 de modo que R1(µ) → α ≥ 0,

quando µ→ 0+. Se α > 0, passando o limite nos dois lados da expressão acima obtemos

que M2α
p−2 ≥ (p/2)M2α

p−2, o que acarreta em p ≤ 2. Esta clara contradição mostra que

α = 0, o que encerra a prova.

Uma vez que 0 < R1 < R2, podemos definir uma função corte ϕ ∈ C∞
c ([0,+∞))

de modo que 0 ≤ ϕ ≤ 1, ϕ ≡ 1 em [0, R1] e ϕ ≡ 0 em [R2,+∞). Sob essas condições,

consideramos o funcional Φ ∈ C1(X,R) definido por

Φ(u) :=
1

2
∥u∥2 − µ

q

∫
RN−1

K(x′, 0)a(x′)|u|qdσ − ϕ(∥u∥)
∫

RN−1

K(x′, 0)G(u)dσ.

A seguir, apresentamos as principais propriedades de Φ:

Lema 1.9. Sobre o funcional Φ, é válido que

(i) Φ é coercivo;

(ii) Se Φ(u) < 0, então ∥u∥ < R1 e existe uma vizinhança de u na qual Φ ≡ J ;

(iii) Φ satisfaz a condição de Palais-Smale em qualquer ńıvel c < 0.

Demonstração. Procedendo como na prova do Lema 1.2 e utilizando (1.18), obtemos que

Φ(u) ≥ 1

2
∥u∥2 − µM1∥u∥q − ϕ(∥u∥)M2∥u∥p.

Como ϕ se anula em (R2,+∞) e q < 2, conclúımos que Φ é coercivo, o que finaliza a

prova do item (i).

Para demonstrar o item (ii), definimos

hϕ(t) :=
1

2
t2 − µM1t

q − ϕ(t)M2t
p, t ≥ 0.

Da definição de ϕ, se t > R2, então

h′ϕ(t) = t− qµM1t
q−1.
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Neste caso, h′ϕ(t) > 0 se, e somente se, t > (qµM1)
1/(2−q). Porém, desde que h(R2) = 0,

temos que

R2 > (2µM1)
1/(2−q) > (qµM1)

1/(2−q),

e, portanto, hϕ é crescente em [R2,+∞).

Seja u ∈ X tal que Φ(u) < 0 e, por absurdo, suponha que ∥u∥ ≥ R1. Se ∥u∥ > R2,

então podemos usar novamente que h(R2) = 0 para obter que

0 > Φ(u) ≥ hϕ(∥u∥) ≥ hϕ(R2) = h(R2) +M2(1− ϕ(R2))R
p
2 =M2R

p
2 > 0,

o que é uma contradição. Consequentemente, R1 ≤ ∥u∥ ≤ R2. Porém, neste caso,

h(∥u∥) ≥ 0 e, portanto

0 > Φ(u) ≥ hϕ(∥u∥) ≥ h(∥u∥) ≥ 0,

o que é outra contradição. Assim, ∥u∥ < R1 e, portanto, Φ(u) = J(u). Da continuidade

de Φ, existe r > 0 tal que Φ < 0 em Br(u). Para qualquer elemento nesta bola, o mesmo

argumento anterior mostra que Φ = J . Assim, provamos também o item (ii).

Para o item (iii), Suponha que (un) ⊂ X seja tal que Φ(un) → c < 0 e Φ′(un) → 0.

Uma vez que podemos assumir que Φ(un) < 0, segue do item (ii) que Φ(un) = J(un) → c

e Φ′(un) = J ′(un) → 0, isto é, (un) é uma sequência Palais-Smale de J . Como Φ é

coercivo, segue que (un) é limitado e, portanto, como mencionado antes, (un) possui uma

subsequência convergente.

O próximo resultado é a ferramenta chave que nos permite atacar funcionais com

simetria.

Lema 1.10. Para cada k ∈ N, existe r = r(k) > 0, β = β(k) > 0 e um subespaço

k-dimensional Xk ⊂ X tal que

sup
u∈Xk∩∂Br(0)

Φ(u) ≤ −β < 0.

Demonstração. De acordo com a condição (a1), existe uma bola B′ ⊂ RN−1 tal que a > 0

q.t.p. em B′. Seja ν > 0 e y1 = (y′1, 0), · · · , yk = (y′k, 0) ∈ ∂RN
+ de tal modo que(

Bν(yi) ∩ ∂RN
+

)
⊂ B′ e Bν(yi) ∩ Bν(yj) = ∅, para todo i, j = 1, . . . , k, com i ̸= j. Para

cada i = 1, . . . , k, escolhemos uma função suave ϕi satisfazendo ϕi ≡ 1 em Bν/2(yi) ∩ RN
+

e ϕi ≡ 0 fora de Bν(yi) ∩ RN
+ .

Uma vez que estas funções possuem suporte disjunto, o conjunto {ϕ1, ..., ϕk} é line-

armente independente, e o subespaço Xk := ⟨{ϕ1, ..., ϕk}⟩ gerado por elas tem dimensão
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k. Note que a aplicação

Q(u) :=

(∫
RN−1

K(x′, 0)a(x′)|u|qdσ
)1/q

,

define uma norma em Xk. Com efeito, claramente Q(0) = 0. Vejamos que Q(u) > 0

para todo u ̸= 0. De fato, seja u =
∑k

i=1 αiϕi uma função não-nula. Se denotarmos

B′
i := Bν/2(yi) ∩ ∂RN

+ , teremos por (a1) que

Q(u)q =

∫
RN−1

K(x′, 0)a(x′)|α1ϕ1 + ...+ αkϕk|qdσ

≥
k∑
i=1

∫
B′

i

K(x′, 0)a(x′)|α1ϕ1 + ...+ αkϕk|qdσ

=
k∑
i=1

|αi|q
∫
B′

i

K(x′, 0)a(x′)dσ > 0,

uma vez que os conjuntos Bi são disjuntos, ϕi ≡ 1 e a > 0 em Bi e, como u ̸= 0, pelo

menos um entre os αi’s é não-nulo. As demais propriedades que uma norma deve verificar

podem ser facilmente deduzidas pela definição de Q.

Como dimXk <∞, existe C1 = C1(k) > 0 tal que

C1∥u∥q ≤
∫
RN−1

K(x′, 0)a(x′)|u|qdσ, ∀u ∈ Xk.

Consequentemente, para algum C2 > 0, é válido que

Φ(u) ≤ 1

2
∥u∥q

(
∥u∥2−q + C2∥u∥p−q −

2µC1

q

)
≤ −β < 0, ∀u ∈ Xk.

para r = r(k) > 0 satisfazendo

r2−q + C2r
p−q <

µC1

q

e β = β(k) := rqµC1/(2q).

Seja Σ a classe de todos os subconjuntos fechados de X \{0} que são simétricos com

respeito à origem. Se A ∈ Σ, o gênero de A, denotado por γ(A), é definido da seguinte

forma

γ(A) := inf
{
k ∈ N : existe φ : A→ Rk cont́ınua e ı́mpar

}
,

quando este conjunto é não-vazio. Caso este conjunto seja vazio, definimos γ(A) = +∞.

Citamos [71, Caṕıtulo 7] para maiores detalhes neste assunto.
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Estamos em posição de provar o principal resultado desta subseção.

Proposição 1.3. O funcional Φ possui infinitos pontos cŕıticos com energia negativa

Demonstração. Para cada k ∈ N, considere

Γk := {A ∈ Σ : γ(A) ≥ k}

e

ck := inf
A∈Γk

sup
u∈A

Φ(u).

Como Φ permanece limitado em bolas e é coercivo, temos que ck ∈ R. Sejam Xk e

r > 0 os dados no Lema 1.10. É claro que podemos definir um homeomorfismo ı́mpar entre

Xk ∩ ∂Br(0) e a esfera unitária Sk−1 ⊂ Rk. Portanto, podemos utilizar [71, Proposição

7.7] para mostrar que γ (Xk ∩ ∂Br(0)) = k.

Uma vez que Xk ∩ ∂Br(0) é fechado e simétrico, este conjunto pertence à Γk. Segue

do Lema 1.10 que

ck ≤ sup
u∈Xk∩∂Br(0)

Φ(u) ≤ −β < 0.

Assim, todos os ńıveis minimax ck são negativos. Do Lema 1.9(iii), Φ satisfaz a condição

Palais-Smale em cada um desses ńıveis. Utilizando que Γk+1 ⊂ Γk, conclúımos que ck ≤
ck+1. Ademais, desde que Φ é par e satisfaz a condição Palais-Smale em qualquer ńıvel

negativo, podemos argumentar nas mesmas linhas de [71, Proposição 9.3] para provar

que, se ck = · · · = ck+j = c e Kc = {u ∈ X : Φ(u) = c, Φ′(u) = 0}, então γ(Kc) ≥ j + 1.

As considerações acima provam que cada ck < 0 é um valor cŕıtico de Φ. Além

disso, se algum desses valores repetir, isto é cl = cl+1 < 0, teremos que γ(Kcl) ≥ 2,

implicando que Kcl possuirá uma quantidade infinita de elementos (cf. [71, Observação

7.3]). Consequentemente, podemos concluir que Φ possui infinitos pontos cŕıticos com

energia negativa.

1.2.2 Estimativas à priori

Esta subseção é inteiramente dedicada à prova do Teorema B.

Prova do Teorema B. Seja u ∈ X um dos pontos cŕıticos de Φ dados pela Proposição 1.3.

Desde que Φ(u) < 0, segue do Lema 1.9(ii) que ∥u∥ < R1 e J ′(u) = 0. Vamos mostrar

que, para todo µ > 0 suficientemente pequeno, vale que

|u(x′, 0)| ≤ CN,p, q.t.p. em RN−1, (1.20)
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e, portanto, seguirá da definição de g (veja (1.17)) que f(u) = g(u). Assim, J ′(u) = 0,

implicando que u é uma solução do problema original (1.2).

A ideia da prova de (1.20) é uma adaptação do clássico método de Iteração de

Moser [60]. No que se segue, vamos supor que u ≥ 0. Se este não for o caso, é suficiente

performar todos os cálculos separadamente para as partes positiva e negativa de u.

Inspirados pelo truncamento de Stampacchia (veja [18, 72]), definimos, para qual-

quer 0 < L < 1 e x ∈ RN
+ ,

uL(x) :=

u(x)− L, se u(x) > L,

0, se u(x) ≤ L.

Para β > 1, também definimos

ϕL := u
2(β−1)
L u.

Sendo que Φ(u) < 0, decorre do Lema 1.9 que J ′(u)ϕL = 0. Portanto, podemos utilizar

(1.18) para obter que∫
RN
+

K(x)(∇u · ∇ϕL)dx ≤ µ

∫
RN−1

K(x′, 0)a(x′)uq−1ϕLdσ

+ Cg

∫
RN−1

K(x′, 0)up−1ϕLdσ.

(1.21)

Sendo u∇uL = u∇u no conjunto {u > L} e tendo em vista que

∇ϕL = 2(β − 1)u2β−3
L u∇uL + u2β−2

L ∇u,

é válido que∫
RN
+

K(x)(∇u · ∇ϕL)dx =

∫
{u>L}

K(x)(∇u · ∇ϕL)dx

=

∫
{u>L}

K(x)
[
2(β − 1)u2β−3

L u+ u
2(β−1)
L

]
|∇u|2dx.

Assim, como uL = 0 em {u ≤ L}, temos∫
RN
+

K(x)(∇u · ∇ϕL)dx ≥
∫
RN
+

K(x)u
2(β−1)
L |∇u|2dx. (1.22)

Se chamarmos de Γ1 o termo multiplicando µ em (1.21), teremos que

Γ1 =

∫
{L<u<1}

K(x′, 0)a(x′)uq−1ϕLdσ +

∫
{u≥1}

K(x′, 0)a(x′)uq−1ϕLdσ.
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Uma vez que uL ≤ u < 1, no conjunto {L < u < 1} ocorre

uq−1ϕL = uq−1u
2(β−1)
L u ≤ uq.

Além disso, em {u ≥ 1} vale que uq−1 ≤ up−1. Assim

Γ1 ≤
∫
RN−1

K(x′, 0)a(x′)uqdσ + a ∞

∫
RN−1

K(x′, 0)up−1ϕLdσ. (1.23)

Usando a desigualdade de Hölder na primeira integral de (1.23) e combinando (1.22) e

(1.21), obtemos∫
RN
+

K(x)u
2(β−1)
L |∇u|2dx ≤ µS

−q/2
qσ′

q
a σq∥u∥q

+ (µ a ∞ + Cg)

∫
RN−1

K(x′, 0)up−1ϕLdσ.

(1.24)

De uL ≤ u e da desigualdade de Hölder com os expoentes s = 2∗/(p − 2) e s′ =

2∗/(2∗ + 2− p), temos que∫
RN−1

K(x′, 0)up−1ϕLdσ ≤
∫
RN−1

K(x′, 0)up−2u2βdσ

≤ u p−2
2∗ u 2β

mβ ≤ S
(2−p)/2
2∗ ∥u∥p−2 u 2β

mβ,

em que

m := 2s′ =
2 · 2∗

2∗ + 2− p
< 2∗.

Por definição, uL(x) → u(x), quando L → 0+. Além do mais, sabemos que ∥u∥ ≤ R1.

Portanto, podemos substituir a desigualdade acima em (1.24) e utilizar o Lema de Fatou

para chegar em∫
RN
+

K(x)u2(β−1)|∇u|2dx ≤ µS
−q/2
qσ′

q
a σqR

q
1

+ (µ a ∞ + Cg)S
(2−p)/2
2∗ Rp−2

1 u 2β
mβ.

(1.25)

Agora, definindo

zL := uβ−1
L u,

observe que (∫
RN−1

K(x′, 0)z2∗L dσ

)2/2∗

≤ S−1
2∗

∫
RN
+

K(x)|∇zL|2dx.
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Como uL = 0 em {u ≤ L},

∇zL =
[
(β − 1)uβ−2

L u+ uβ−1
L

]
∇u.

Portanto, utilizando que uL ≤ u e (β − 1)2 + 1 + 2(β − 1) = β2, conclúımos que(∫
RN−1

K(x′, 0)z2∗L dσ

)2/2∗

≤ S−1
2∗ β

2

∫
RN
+

K(x)u2(β−1)|∇u|2dx.

Uma vez que zL(x) → uβ(x), quando L → 0+, segue da estimativa acima, de (1.25) e do

Lema de Fatou que

u 2β
2∗β

≤ S−1
2∗ β

2
[
µS

−q/2
qσ′

q
a σqR

q
1 + (µ a ∞ + Cg)S

(2−p)/2
2∗ Rp−2

1 u 2β
mβ

]
.

Lembre que estamos assumindo 0 < µ < µ∗∗, onde µ∗∗ foi introduzido no começo da

subseção anterior. Isso assegura que a função h definida em (1.19) possui exatamente

duas ráızes positivas 0 < R1 < R2. Precisamos reduzir mais uma vez o valor de µ.

Na verdade, como R1(µ) → 0, quando µ → 0+ (veja Lema 1.8) sabemos que existe

0 < µ̄ < µ∗∗ tal que, para todo µ ∈ (0, µ̄), todas as desigualdades abaixo são satisfeitas:

µS
−q/2
qσ′

q
a σqR

q
1 < 1, (µ a ∞ + Cg)S

(2−p)/2
2∗ Rp−2

1 < 1, S
−1/2
2∗ R1 < 1. (1.26)

Com esta restrição sobre µ, temos que

u 2β
2∗β

≤ C1β
2max

{
1, u 2β

mβ

}
, (1.27)

em que C1 := 2S−1
2∗ . Isso mostrar que, uma vez que u ∈ LmβK , então u ∈ L2∗β

K . Assim, se

fixarmos β := 2∗/m > 1, teremos 2∗β > 2∗ = mβ, e assim melhoramos a regularidade de

u. Além disso, 2∗β = mβ2 e podemos repetir os cálculos acima, substituindo β por β2, e

utilizar (1.27) para obter que

u 2β2

2∗β2 ≤ C1β
4max

{
1, u 2β2

mβ2

}
= C1β

4max
{
1, u 2β2

2∗β

}
≤ C1β

4max

{
1,
(
C1β

2max{1, u 2β
2∗ }
)β}

.

Tomando C2 := max{1, C1}, podemos reescrever a estimativa acima como

u 2β2

2∗β2 ≤ C1+β
2 β2(2+β)max

{
1, u 2β2

2∗

}
.
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Dado k ∈ N, repetindo esse processo k vezes obtemos

u 2∗βk ≤ C

1

2βk
∑k−1

i=0 β
i

2 (β2)

1

2βk
∑k

i=1 iβ
k−i

max {1, u 2∗} . (1.28)

Como β > 1, temos que

1

βk

k−1∑
i=0

βi ≤
∞∑
i=1

(
1

β

)i
=

1

(β − 1)
,

1

βk

k∑
i=1

iβk−i ≤
∞∑
i=1

i

(
1

β

)i
=

β

(β − 1)2
.

Além disso, da última desigualdade em (1.26) e de ∥u∥ ≤ R1, temos que

u 2∗ ≤ S
−1/2
2∗ ∥u∥ ≤ S

−1/2
2∗ R1 < 1.

As observações acima aliadas ao fato de que β = (2∗ + 2 − p)/2, C2 > 1, (1.28) e (1.3)

implicam que

u 2∗βk ≤ C
1/[2(β−1)]
2 ββ/(β−1)2 = CN,p, ∀ k ∈ N, (1.29)

donde se conclui que (1.20) vale. Com efeito, suponha por contradição que exista C3 >

CN,p e Ω ⊂ RN−1 com medida positiva e finita em RN−1 tal que |u(x′, 0)| > C3 para q.t.p.

x′ ∈ Ω. Então,

u 2∗βk ≥
(∫

Ω

|u|2∗βk

dσ

)1/(2∗βk)

≥ C3|Ω|1/(2∗β
k),

o que implica que lim infk→+∞ u 2∗βk ≥ C3 > CN,p, contrariando (1.29). Esta contradição

conclui a prova do Teorema B.



Caṕıtulo 2

Problemas com fluxo côncavo na

fronteira

Considere Ω ⊂ RN um domı́nio regular, 1 < p < +∞, ∆pu = div(|∇u|p−2∇u) o operador

p-laplaciano e o seguinte problema não-linear−∆pu+ |u|p−2u = 0, em Ω,

|∇u|p−2∂u

∂ν
= λ|u|q−2u+ g(x′, u), sobre ∂Ω,

(2.1)

em que λ > 0, 1 < q < p, ∂u
∂ν

é a derivada parcial na direção normal externa e g : ∂Ω×R →
R satisfaz:

(g0) g ∈ C(∂Ω× R,R);

(g1) existe δ > 0 tal que

g(x′, s) = g(x′,−s), ∀x′ ∈ ∂Ω, s ∈ [−δ, δ];

(g2) uniformemente em x′ ∈ ∂Ω, vale

lim
|s|→0

g(x′, s)

|s|q
= 0.

No primeiro resultado deste caṕıtulo, provamos o seguinte teorema de multiplicidade.

Teorema C. Suponha que g satisfaz (g0)-(g2). Então, para qualquer λ > 0, o Pro-

blema (2.1) admite uma sequência (un) ⊂ W 1,p(Ω) ∩ L∞(∂Ω) de soluções fracas tais que

∥un∥L∞(∂Ω) → 0, quando n→ +∞.

39
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No problema acima, a não-linearidade no bordo apresenta um parâmetro com sinal

positivo. Com forma de ter uma certa dualidade, inspirados pelos trabalhos de [59, 64, 68]

buscamos também fazer o estudo de uma equação semelhante, porém com parâmetro ne-

gativo. Para tanto, será essencial o uso de algumas propriedades do problema de autovalor

de Steklov −∆u+ u = 0, em Ω,
∂u

∂ν
= λ|u|p−2u, sobre ∂Ω.

. (2.2)

Mais adiante, na sub-seção 2.1.2, apresentamos com mais detalhes este problema

de autovalor, trazendo os principais resultados acerca dele. De antemão, registramos que

ele admite uma sequência de autovalores (λn) tal que λn → +∞ se n → +∞, e que o

primeiro autovalor λ1 > 0 é simples e isolado.

No segundo resultado deste caṕıtulo, consideramos a existência e multiplicidade de

soluções fracas para o problema semilinear−∆u+ u = 0, em Ω,
∂u

∂ν
= −λ|u|q−2u+ g(u), sobre ∂Ω,

(2.3)

onde λ > 0 e, agora, a não-linearidade g : R → R satisfaz

(g3) g ∈ C1(R,R);

(g4) g(0) = 0 e g′(0) > λ1;

(g5) existe C1 > 0 e r ∈ (2, 2∗) tais que

|g(s)| ≤ C1(1 + |s|r−1), ∀s ∈ R;

(g6) vale

lim sup
|s|→+∞

2G(s)

|s|2
< λ1.

Nosso primeiro resultado para o problema (2.3) é

Teorema D. Suponha que g satisfaz (g3)-(g6). Então existe λ∗ > 0 tal que o Problema

(2.3) possui pelo menos 4 soluções não nulas, sempre que λ ∈ (0, λ∗).

Em alguns casos, é posśıvel obter uma quinta solução, conforme podemos ver no

resultado abaixo
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Teorema E. Suponha que g satisfaz (g3), (g5) e que existe k ≥ 2 tal que

(g̃4) g(0) = 0 e g′(0) > λk;

(g̃6) G(s) ≤
1

2
λk+1s

2, para todo s ∈ R.

Então existe λ∗ > 0 tal que o problema (2.3) possui pelo menos 5 soluções não nulas,

sempre que λ ∈ (0, λ∗).

Apesar dos problemas (2.1) e (2.3) parecerem semelhantes, eles são estruturalmente

bem diferentes entre si, o que é refletido pelas técnicas que utilizaremos para solucionar

cada um.

Ao longo de todo este caṕıtulo, vamos denotar por ∥·∥1,t a norma emW 1,t(Ω), t > 1,

definida por

∥u∥1,t :=
(∫

Ω

[
|∇u|t + |u|t

]
dx

)1/t

, ∀u ∈ W 1,t(Ω).

2.1 Resultados Auxiliares

Nesta seção, enunciamos e demonstramos alguns resultados auxiliares que serão empre-

gados ao longo do caṕıtulo. Na primeira subseção, estabelecemos um resultado de regu-

laridade que, ao que sabemos, é inédito e possui interesse próprio.

2.1.1 Um Resultado de Regularidade

Provamos aqui um resultado de regularidade que permite performar um argumento de

regularização do tipo bootstrap para problemas com o p-laplaciano com condições de Neu-

mann não-lineares e, por isso, será bastante útil na prova do Teorema D.

Antes de apresentar o resultado principal, vamos enunciar um resultado auxiliar que

enunciamos dentro do contexto em que vamos utilizar, embora ele seja mais geral.

Teorema 2.1. [2, Teorema 3.9] Se 1 < p < +∞ e L ∈ (W 1,p(Ω))′, então existe único

v = (v0, v1, . . . , vN) ∈ [Lp
′
(Ω)]N+1 tal que

L(u) =

∫
Ω

uv0 dx+
N∑
i=1

∫
Ω

uxivi dx, ∀u ∈ W 1,p(Ω).
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Além disso,

∥L∥(W 1,p(Ω))′ =

(
N∑
i=0

∫
Ω

|vi|p dx

)1/p

.

Observe que podemos reescrever o resultado acima da seguinte forma: dado L ∈
(W 1,p(Ω))′, existe único v = (v0, v̄) ∈ Lp

′
(Ω)× [Lp

′
(Ω)]N tal que

L(u) =

∫
Ω

[uv0 +∇u · v̄] dx, ∀u ∈ W 1,p(Ω).

Além disso, denotando v̄ = (v1, . . . , vN),

∥L∥(W 1,p(Ω))′ =

(
N∑
i=0

∫
Ω

|vi|p dx

)1/p

≥
(∫

Ω

[|v0|p + C|v̄|p] dx
)1/p

≥ min{1, C}1/p
(∫

Ω

[|v0|p + |v̄|p] dx
)1/p

= min{1, C}1/p∥v∥Lp′ (Ω)×[Lp′ (Ω)]N ,

em que C = C(p) é uma constante que depende apenas de p e verifica

C|x|p ≤ |x1|p + · · ·+ |xN |p, ∀x = (x1, . . . , xN) ∈ RN .

O resultado principal dessa sub-seção, que é uma generalização de [12, Proposição

4.1], está enunciado abaixo.

Lema 2.1. Sejam

p > 1, s > max

{
1,
p(N − 1)

(p− 1)N

}
, γ :=

Ns(p− 1)

N − 1
,

h ∈ Ls(∂Ω) e ψ ∈ W 1,p(Ω) uma solução fraca de−∆pψ + |ψ|p−2ψ = 0, em Ω,

|∇ψ|p−2∂ψ

∂ν
= h, sobre ∂Ω.

(2.4)

Então ψ ∈ W 1,γ(Ω) e existe uma constante universal C = C(N, s,Ω) > 0 tal que

∥ψ∥p−1
1,γ ≤ C∥h∥Ls(∂Ω). (2.5)

Demonstração. Tomando φ ∈ C1(Ω) como função teste na formulação fraca de (2.4),
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obtemos ∫
Ω

(|∇ψ|p−2∇ψ∇φ+ |ψ|p−2|ψφ)dx =

∫
∂Ω

hφdσ, ∀φ ∈ C1(Ω).

Temos pela desigualdade de Hölder que∣∣∣∣ ∫
Ω

(|∇ψ|p−2∇ψ∇φ+ |ψ|p−2ψφ) dx

∣∣∣∣ ≤ ∥h∥Ls(∂Ω)∥φ∥Ls′ (∂Ω), ∀φ ∈ C1(Ω).

Usamos densidade para estender a desigualdade acima para toda φ ∈ W 1,t(Ω), em que t

será um valor apropriado entre 1 e N . Mais especialmente, considere

t :=
Ns

Ns− (N − 1)
.

Como 1 < s < +∞, temos que 1 < t < N , de modo que podemos considerar o expoente

cŕıtico t∗ :=
t(N − 1)

N − t
. Observe que

t∗ =
t(N − 1)

N − t
=

Ns(N − 1)

Ns− (N − 1)

N − Ns

Ns− (N − 1)

=
Ns(N − 1)

N2s−N(N − 1)−Ns

=
s(N − 1)

Ns− (N − 1)− s
=

s(N − 1)

(N − 1)(s− 1)
=

s

s− 1
= s′.

Como t∗ = s′, podemos aplicar a imersão do traço W 1,t(Ω) ↪→ Lt∗(∂Ω) para obter uma

constante positiva C1 = C1(N, t,Ω) = C1(N, s,Ω) > 0 tal que∣∣∣∣ ∫
Ω

(|∇ψ|p−2∇ψ∇φ+ |ψ|p−2ψφ) dx

∣∣∣∣ ≤ C1∥h∥Ls(∂Ω)∥φ∥1,t, ∀φ ∈ W 1,t(Ω). (2.6)

A desigualdade acima mostra que o funcional linear Tψ : W 1,t(Ω) → R dado por

Tψ(φ) :=

∫
Ω

(|∇ψ|p−2∇ψ∇φ+ |ψ|p−2ψφ) dx, φ ∈ W 1,t(Ω),

está bem definido, é cont́ınuo e ∥Tψ∥ ≤ C∥h∥Ls(∂Ω). Logo, Tψ ∈ (W 1,t(Ω))′ e podemos

usar o Teorema 2.1 para obter um vetor v = (v1, v2) ∈ (Lt
′
(Ω))N × Lt

′
(Ω) tal que

Tψ(φ) =

∫
Ω

(v1 · ∇φ+ v2φ) dx, ∀φ ∈ W 1,t(Ω).

Como t > 1, v é único. Portanto, de (2.6), temos que v1 = |∇ψ|p−2∇ψ e v2 = |ψ|p−2ψ.
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Assim, |ψ|p−1, |∇ψ|p−1 ∈ Lt
′
(Ω) o que significa que ψ, |∇ψ| ∈ Lt

′(p−1)(Ω). Note agora que

t′ =
t

t− 1
=

Ns

Ns− (N − 1)
Ns

Ns− (N − 1)
− 1

=
Ns

Ns−Ns+ (N − 1)
=

Ns

N − 1
,

de modo que

t′(p− 1) =
Ns(p− 1)

N − 1
= γ.

Ademais, para C2 = C2(t
′) = C2(s) > 0,

∥Tψ∥ ≥ C2∥v∥(Lt′ (Ω))N×Lt′ (Ω) = C2

(∫
Ω

(|∇ψ|t′(p−1) + |ψ|t′(p−1))dx

)1/t′

= C2∥ψ∥p−1
1,γ ,

e, portanto,

∥ψ∥p−1
1,γ ≤ C∥h∥Ls(∂Ω),

onde C = C(N, s,Ω) := C1

C2
, o que encerra a prova de (2.5).

Observação 2.1. Como s >
p(N − 1)

(p− 1)N
, temos que

γ =
Ns(p− 1)

N − 1
>
N(p− 1)

(N − 1)

p(N − 1)

(p− 1)N
= p.

Logo o resultado acima efetivamente melhora a regularidade esperada da solução. Além

disso, se p ≥ N , então
p(N − 1)

(p− 1)N
≤ 1 e portanto a condição sobre s pode ser trocada

por s > 1. Na realidade, em qualquer um dos casos, a única condição que realmente é

necessária é s > 1, porém precisamos que s >
p(N − 1)

(p− 1)N
para garantir que γ > p e que,

portanto, o resultado melhora a regularidade da solução.

2.1.2 O problema de autovalor de Steklov

Nesta sub-seção, trazemos os principais resultados acerca do problema de autovalor de

Steklov (2.2). Todas as demonstrações e demais detalhes técnicos podem ser encontradas

em [53, 57]. Vale ressaltar que estes trabalhos estudam uma versão já generalizada deste

problema de autovalor, considerando-o com o operador p-laplaciano, 1 < p < +∞. Pri-

meiramente, ressaltamos que o problema de Steklov possui uma sequência de autovalores

Teorema 2.2. O problema de autovalor de Steklov (2.2) admite uma sequência positiva

de autovalores (λn) de modo que λn → +∞ quando n→ +∞.

Demonstração. Veja [53, Teorema 3.5].
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Teorema 2.3. Sobre o primeiro autovalor do problema de Steklov, temos

(i) vale a caracterização variacional

λ1 = inf
u∈H1(Ω)

{∫
Ω

[
|∇u|2 + u2

]
dx :

∫
∂Ω

u2 dσ = 1

}
;

(ii) se φ1 ∈ H1(Ω) é uma autofunção de (2.2) associada à λ1, então φ1 > 0 ou φ1 < 0

em Ω;

(iii) λ1 é simples, isto é, se φ e ψ são duas autofunções de (2.2) associadas à ele, então

existe c ∈ R tal que ϕ = cψ;

(iv) λ1 é isolado, isto é, existe a > λ1 tal que λ1 é o único autovalor de (2.2) em [0, a];

(v) se φ ∈ H1(Ω) é uma autofunção de (2.2) associada à um autovalor λ ̸= λ1, então

φ troca de sinal sobre ∂Ω.

Demonstração. Veja [53, Lema 5.6, Teorema 5.7, Proposição 5.8 e Teorema 5.16] e [57,

Equação 1.3, Teorema 1.1 e Lema 2.3].

Para finalizar esta seção, vamos estabelecer uma notação adequada para poder tratar

dos auto-espaços gerados pelas autofunções deste problema. Considere a aplicação A :

H1(Ω) → H−1(Ω) dada por

A(u) = −∆u+ u

em que ∆u denota o laplaciano de u no sentido das distribuições. Ao operador A está

associada uma forma bilinear, cont́ınua e coerciva. Portanto, para cada f ∈ L2(∂Ω) existe

uma única uf ∈ H1(Ω) com A(uf ) = 0 em Ω e uf = f sobre ∂Ω. Agora, considere o

operador Λ : L2(∂Ω) → L2(∂Ω) dado por

Λ(f) =
∂uf
∂ν

,

que nos permite escrever o problema de Steklov como

Λ(f) = λf.

Pelo visto no Teorema 2.2, este problema admite uma sequência de autovalores. Assim,

para cada j ∈ N, podemos denotar por Hj := ker(Λ − λjI) o auto-espaço gerado pelo

j-ésimo autovalor do problema de Steklov. Para cada k ∈ N, defina

Xk =
k⊕
j=1

Hj.
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Podemos então expressar H1(Ω) = Xk ⊕ X⊥
k para todo k ∈ N. Além disso, valem as

desigualdades variacionais:

∥u∥21,2 ≤ λk

∫
∂Ω

u2dσ, ∀u ∈ Xk, (2.7)

e

∥u∥21,2 ≥ λk+1

∫
∂Ω

u2dσ, ∀u ∈ X⊥
k (2.8)

2.2 Prova do Teorema C

Esta seção é dedicada à prova do Teorema C. Usamos as mesmas ideias de [74] (veja

também [50]). Uma vez que não sabemos nada a respeito do comportamento de g no

infinito, o funcional energia I associado ao problema (2.1) pode não estar bem definido.

Para contornar este obstáculo, constrúımos um truncamento conveniente para obter um

funcional de classe C1 com boas propriedades.

Lema 2.2. Suponha que g satisfaz (g0)-(g2) e considere 0 < θ <

(
p− q

q

)
λ. Então

existem 0 < a < δ/p e g̃ ∈ C(∂Ω× R;R) tal que para quaisquer (x′, s) ∈ ∂Ω× R valem

(a) g̃(x′,−s) = −g̃(x′, s);

(b) g̃(x′, s) = g(x′, s) se |s| ≤ a;

(c) g̃(x′, s)s− pG̃(x′, s) ≤ θ|s|q;

(d) |G̃(x′, s)| ≤ λ

pq
|s|q;

(e) |g̃(x′, s)| ≤ θ|s|q−1.

Demonstração. Seja 0 < θ <

(
p− q

q

)
λ. Por (g2), para qualquer

0 < ϵ <
θ

2(p2 + p+ 1)
(2.9)

existe 0 < a < δ/p tal que

|G(x′, s)| ≤ ϵ|s|q e |g(x′, s)s| ≤ ϵ|s|q, ∀x′ ∈ ∂Ω, |s| ≤ pa. (2.10)
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Considere ϕ ∈ C1
c (R) uma função corte par que satisfaça

ϕ ≡ 1, em [−a, a];

ϕ ≡ 0, em R \ (−pa, pa);

0 ≤ ϕ ≤ 1, em R;

ϕ′(s)s ≤ 0, |ϕ′(s)| ≤ p

a
, em R.

Fixe

0 < β <
θ

2p(p+ 1)
(2.11)

e considere a função de classe C1 dada por

G̃(x′, s) = ϕ(s)G(x′, s) + (1− ϕ(s))β|s|q.

Se |s| ≤ pa, utilizando (2.9), (2.10) e (2.11), obtemos

|G̃(x′, s)| ≤ (ϵ+ β)|s|q ≤
(

θ

p(p+ 1)

)
|s|q ≤

(
λ(p− q)

p(p+ 1)q

)
|s|q ≤ λ

pq
|s|q.

Se |s| > pa, então

|G̃(x′, s)| ≤ β|s|q ≤ λ

pq
|s|q,

e, com isso, temos provado o item (d). Para os demais, note inicialmente que

g̃(x′, s) :=
∂G̃

∂s
(x′, s) = ϕ′(s)[G(x′, s)− β|s|q] + ϕ(s)g(x′, s) + (1− ϕ(s))qβ|s|q−2s

é cont́ınua. É fácil verificar que g̃(x′, s) = g(x′, s) se |s| ≤ a, o que prova o item (b) e

mostra que g̃ é ı́mpar em s quando s ∈ [−a, a]. Além disso, como ϕ se anula fora de

(−pa, pa), vale que

g̃(x′, s) = qβ|s|q−2s, |s| > pa,

que é ı́mpar em s. Por fim, se s ∈ (−pa, pa)\ (−a, a), uma vez que g é ı́mpar em s quando

s ∈ [−δ, δ], ϕ é par e (−pa, pa) ⊂ (−δ, δ), temos que g̃ se exprime como somas de produtos

de funções pares por funções ı́mpares, o que gera uma função ı́mpar. Assim, fica provado

também o item (a).



48

Se |s| ≤ pa, podemos usar as propriedades de ϕ, (2.10) e q < p para obter

|g̃(x′, s)| ≤ |ϕ′(s)|(|G(x′, s)|+ β|s|q) + |g(x′, s)|+ qβ|s|q−1

≤ p

a
(ϵ|s|q + β|s|q) + ϵ|s|q−1 + pβ|s|q−1

≤ p2ϵ|s|q−1 + p2β|s|q−1 + ϵ|s|q−1 + pβ|s|q−1

≤ (p2 + 1)ϵ|s|q−1 + p(p+ 1)β|s|q−1.

E, portanto, segue de (2.9) e (2.11) que

|g̃(x′, s)| ≤ ≤ θ

2
|s|q−1 +

θ

2
|s|q−1 = θ|s|q−1.

Se |s| > pa, então ϕ(s) = 0. Logo,

|g̃(x′, s)| = qβ|s|q−1 ≤ pβ|s|q−1 ≤ θ|s|q−1,

isto é, o item (e) também está provado. Tudo o que nos resta é demonstrar o item (c).

Observe que, se |s| ≤ pa, podemos repetir o mesmo argumento acima para obter

g̃(x′, s)s− pG̃(x′, s) = |G(x′, s)|(p+ |ϕ′(s)||s|) + β|s|q(q + |ϕ′(s)||s|) + |g(x′, s)s|

≤ ϵ|s|q(p+ p2) + β|s|q(p+ p2) + ϵ|s|q

≤ (p2 + p+ 1)ϵ|s|q + (p2 + p)β|s|q

≤ θ

2
|s|q + θ

2
|s|q = θ|s|q.

Para |s| > pa, temos ϕ = ϕ′ ≡ 0, e portanto

g̃(x′, s)s− pG̃(x′, s) = qβ|s|q + pβ|s|q ≤ 2pβ|s|q ≤ θ

p+ 1
|s|q ≤ θ|s|q.

Assim, o lema está provado.

O Lema 2.2 (d) combinado com a imersão do traçoW 1,p(Ω) ↪→ Lq(∂Ω) assegura que

o funcional Ĩ : W 1,p(Ω) → R dado por

Ĩ(u) :=
1

p

∫
Ω

(|∇u|p + |u|p) dx− λ

q

∫
∂Ω

|u|q dσ −
∫
∂Ω

G̃(x′, u) dσ,

é de classe C1. Usando o Lema 2.2(a) conclúımos que Ĩ é par. Além disso, vale o seguinte:

Lema 2.3. Se u ∈ W 1,p(Ω), então

Ĩ(u) = 0 = Ĩ ′(u)u ⇐⇒ u = 0.
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Demonstração. É claro que, se u = 0, então Ĩ(u) = 0 = Ĩ ′(u)u. Suponha então que

Ĩ(u) = 0 = Ĩ ′(u)u. Usando o Lema 2.2(c), obtemos

0 = −pĨ(u) + Ĩ ′(u)u = λ

(
p− q

q

)∫
∂Ω

|u|q dσ +

∫
∂Ω

(pG̃(x′, u)− g̃(x′, u)u) dσ

≥
[
λ

(
p− q

q

)
− θ

]
∥u∥qLq(∂Ω),

o que implica que u = 0 sobre ∂Ω. Neste caso,

0 = Ĩ(u) =
1

p
∥u∥p1,p,

o que implica que u = 0.

Observação 2.2. Suponha que u ∈ W 1,p(Ω) é um ponto cŕıtico de Ĩ tal que ∥u∥L∞(∂Ω) ≤
a. Então, u satisfaz∫
Ω

(|∇u|p−2∇u∇φ+ |u|p−2uφ) dx = λ

∫
∂Ω

|u|q−2uφ dσ+

∫
∂Ω

g̃(x′, u)φ dσ, ∀φ ∈ W 1,p(Ω).

Porém, como ∥u∥L∞(∂Ω) ≤ a, vale pelo Lema 2.2(b) que g(x′, u) = g̃(x′, u). Assim,

podemos reescrever a expressão acima por∫
Ω

(|∇u|p−2∇u∇φ+ |u|p−2uφ) dx = λ

∫
∂Ω

|u|q−2uφ dσ+

∫
∂Ω

g(x′, u)φ dσ, ∀φ ∈ W 1,p(Ω),

o que significa dizer exatamente que u resolve (2.1) no sentido fraco.

Lembramos que, para c ∈ R,X um espaço de Banach e J ∈ C1(X,R), uma sequência

(un) ⊂ X é chamada sequência Palais-Smale para J no ńıvel c se

lim
n→+∞

J(un) = c e lim
n→+∞

J ′(un) = 0.

Quando toda sequência deste tipo possui subsequência convergente, dizemos que J satisfaz

a condição de Palais-Smale no ńıvel c.

Para obter os pontos cŕıticos de Ĩ, faremos uso do resultado a seguir.

Teorema 2.4. [74, Lema 2.4] Sejam X um espaço de Banach e J ∈ C1(X,R). Suponha

que J satisfaça a condição de Palais-Smale, seja par, limitado inferiormente e que J(0) =

0. Suponha ainda que, para todo k ∈ N, existam um subespaço Xk ⊂ X com dimensão k

e ρk > 0 tais que

sup
u∈Xk∩Sρk

J(u) < 0,

em que Sρk = {u ∈ X : ∥u∥X = ρk}. Então, J possui uma sequência de valores cŕıticos
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ck < 0 tais que ck → 0 se k → +∞.

No nosso primeiro resultado, vamos provar que Ĩ satisfaz a condição de compacidade

requerida no teorema acima.

Lema 2.4. O funcional Ĩ é coercivo e satisfaz a condição de Palais-Smale em qualquer

ńıvel c ∈ R.

Demonstração. Fazendo uso do Lema 2.2(d) e da imersão do traço W 1,p(Ω) ↪→ Lq(∂Ω),

obtemos

Ĩ(u) ≥ 1

p
∥u∥p1,p −

λ(p+ 1)

qp
∥u∥qLq(∂Ω)

≥ 1

p
∥u∥q1,p

[
∥u∥p−q1,p − λ(p+ 1)C1

q

]
.

Uma vez que p > q, conclúımos que lim∥u∥→+∞ Ĩ(u) = +∞, isto é, Ĩ é coercivo.

Fixe c ∈ R e considere (un) ⊂ W 1,p(Ω) tal que Ĩ(un) → c e Ĩ ′(un) → 0. Uma vez

que Ĩ é coercivo, (un) é limitada. A menos de subsequência, existe u ∈ W 1,p(Ω) tal que

un ⇀ u fracamente em W 1,p(Ω) e un → u em Lq(∂Ω). Pela desigualdade de Hölder e do

Lema 2.2(e) temos que∫
∂Ω

|un|q−2un(un − u) dσ ≤ ∥un∥q−1
Lq(∂Ω)∥un − u∥Lq(∂Ω) = on(1),

e ∫
∂Ω

g̃(x′, un)(un − u) dσ ≤ θ∥un∥q−1
Lq(∂Ω)∥un − u∥Lq(∂Ω) = on(1).

Assim,

Ĩ ′(un)(un − u) =

∫
Ω

[|∇un|p−2∇un(∇un −∇u) + |un|p−2un(un − u)] dx

− λ

∫
∂Ω

|un|q−2un(un − u) dσ −
∫
∂Ω

g̃(x′, un)(un − u) dσ

=

∫
Ω

|∇un|p−2∇un(∇un −∇u) + |un|p−2un(un − u) dx+ on(1).

Como on(1) = Ĩ ′(un)(un − u), conclúımos que

lim
n→+∞

∫
Ω

[
|∇un|p−2∇un(∇un −∇u) + |un|p−2un(un − u)

]
dx = 0. (2.12)

Da convergência fraca un ⇀ u em W 1,p(Ω), temos que

∥u∥1,p ≤ lim inf
n→+∞

∥un∥1,p. (2.13)
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Argumentando como em [36], considere o funcional de classe C1 F : W 1,p(Ω) → R dado

por

F (v) =
1

p

∫
Ω

[|∇v|p + |v|p] dx =
1

p
∥v∥p1,p.

Observe que F é de classe C1 e convexo. Assim, usando (2.12), obtemos

lim inf
n→+∞

[F (u)− F (un)] ≥ lim inf
n→+∞

F ′(un)(u− un) = 0.

Segue então de (2.13) que

∥u∥p1,p = pF (u) ≥ lim inf
n→+∞

pF (un) = lim inf
n→+∞

∥un∥p1,p ≥ (lim inf
n→+∞

∥un∥1,p)p ≥ ∥u∥p1,p,

o que mostra que ∥un∥1,p → ∥u∥1,p em R quando n → +∞. Como já possúımos a

convergência fraca de un para u em W 1,p(Ω), segue da convexidade uniforme deste espaço

que un → u fortemente em W 1,p(Ω), o que finaliza a prova.

O resultado a seguir fornece a hipótese geométrica do nosso teorema abstrato.

Lema 2.5. Para cada k ∈ N, existe um número ρk > 0 e um subespaço Xk ⊂ W 1,p(Ω) de

dimensão k tais que

sup
u∈Xk∩Sρk

Ĩ(u) < 0,

em que Sρk := {u ∈ X : ∥u∥1,p = ρk}.

Demonstração. Fixe k pontos distintos x′1, ..., x
′
k ∈ ∂Ω e considere r > 0 tal que Br(x′i) ∩

Br(x′j) = ∅, para todo i, j = 1, . . . , k, com i ̸= j. Para cada i = 1, . . . , k, escolhemos uma

função suave ϕi ∈ C1(Ω) tal que ϕi ≡ 1 em Bi := Br/2(xi) ∩ Ω e ϕi ≡ 0 em Ω \Br(xi).

Uma vez que estas funções possuem suportes disjuntos, o conjunto {ϕ1, ..., ϕk} é

linearmente independente, e o subespaço gerado Xk := span{ϕ1, ..., ϕk} ⊂ W 1,p(Ω) possui

dimensão k. Afirmamos que a aplicação

∥u∥Lq(∂Ω) =

(∫
∂Ω

|u|q dσ
)1/q

,

definem uma norma em Xk. De fato, vejamos que ∥u∥Lq(∂Ω) > 0 para qualquer u ̸= 0.

Seja u =
∑k

i=1 αiϕi uma função não-nula. Com isso, pelo menos um dos coeficientes αi é
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não-nulo. Assim,

∥u∥qLq(∂Ω) =

∫
∂Ω

|α1ϕ1 + ...+ αkϕk|q dσ

≥
k∑
i=1

∫
Bi

|α1ϕ1 + ...+ αkϕk|q dσ

=
k∑
i=1

|αi|q
∫
Bi

dσ > 0,

já que os conjuntos Bi são disjuntos e ϕi ≡ 1 em Bi. As demais propriedades que uma

norma verifica são naturalmente satisfeitas. Agora, como dimXk < ∞, podemos obter

C = C(k) > 0 tal que

C(k)∥u∥q1,p ≤ ∥u∥qLq(∂Ω), ∀u ∈ Xk.

Combinando o feito acima com o Lema 2.2(d), para todo u ∈ Xk vale

Ĩ(u) ≤ 1

p
∥u∥p1,p −

λ

q

∫
∂Ω

|u|qdσ +
λ

pq

∫
∂Ω

|u|qdσ

=
1

p
∥u∥p1,p − ∥u∥qLq(∂Ω)

[
λ(p− 1)

pq

]
≤ 1

p
∥u∥q1,p

(
∥u∥p−q1,p − λ(p− 1)

q
C(k)

)
.

Consequentemente, definindo ρk =

(
λ(p− 1)

2q
C(k)

)1/(p−q)

> 0, obtemos que

Ĩ(u) ≤ λρqk(1− p)C(k)

2pq
< 0, ∀u ∈ Skρk ,

finalizando assim a demonstração.

Agora, estamos em condições de apresentar a prova do Teorema C.

Prova do Teorema C. Usando os lemas anteriores e o Teorema 2.4, obtemos uma sequência

de valores cŕıticos (ck) do funcional Ĩ tal que ck → 0, quando k → +∞. Para cada k ∈ N,
considere uk ∈ W 1,p(Ω) um ponto cŕıtico de Ĩ tal que Ĩ(uk) = ck. Naturalmente, (uk)

é uma sequência de Palais-Smale de Ĩ no ńıvel 0. Decorre do Lema 2.4 que, a menos

de subsequência, existe u ∈ W 1,p(Ω) de modo que uk → u fortemente em W 1,p(Ω). Da

regularidade de Ĩ, segue que Ĩ(u) = 0 e Ĩ ′(u) = 0. Assim, segue do Lema 2.3 que u = 0,

isto é,

lim
k→+∞

∥uk∥1,p = 0. (2.14)
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Sendo Ĩ ′(uk) = 0, então uk é uma solução fraca do problema−∆puk + |uk|p−2uk = 0, em Ω,

|∇uk|p−2∂uk
∂ν

= hk, sobre ∂Ω,

em que

hk(x
′) := λ|uk|q−2uk + g̃(x′, uk).

Usando o Lema 2.2(e), temos que

|hk(x′)| ≤ (λ+ θ)|uk|q−1. (2.15)

Agora, temos dois casos a considerar

Caso 1: 1 < p < N

Como uk ∈ Lp∗(∂Ω), então hk ∈ Lp∗/(q−1)(∂Ω). Uma vez que 1 < q < p, valem

p∗
q − 1

=
p(N − 1)

(N − p)(q − 1)
>

p

q − 1
> 1,

p∗
q − 1

>
p∗

p− 1
>
p(N − 1)

(p− 1)N
.

Desse modo, podemos aplicar o Lema 2.1 com s = p∗/(q − 1) para concluir que

uk ∈ W 1,γ1(Ω), com γ1 =
Np∗(p− 1)

(q − 1)(N − 1)
> p∗

e

∥uk∥p−1
1,γ1

≤ C(N, p, q,Ω)∥hk∥Lp∗/(q−1)(∂Ω).

Além do mais, de (2.15), da imersão do traço de Sobolev e de (2.14), segue que

∥hk∥Lp∗/(q−1)(∂Ω) ≤ C1(λ, θ, p, q,N,Ω)∥uk∥q−1
1,p → 0, quando k → +∞.

Combinando as duas últimas expressões, conclúımos que ∥uk∥1,γ1 → 0, quando k → +∞.

Se γ1 > N , entãoW 1,γ1(Ω) ↪→ L∞(∂Ω) e potanto ∥uk∥L∞(∂Ω) → 0, quando k → +∞.

Assim, existe k0 ∈ N grande o suficiente de modo que ∥uk∥L∞(∂Ω) ≤ a, para qualquer

k ≥ k0. Das considerações feitas na Observação 2.2, {uk}k≥k0 é uma sequência de soluções

fracas de (2.1).

Se γ1 = N , podemos usar imersão do traço para concluir que uk ∈ Lt(Ω), para

qualquer t ≥ γ1. Assim, hk ∈ Lt/(q−1)(∂Ω) para tais valores de t. Usando novamente o
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Lema 2.1, conclúımos que

uk ∈ W 1,γ(Ω), com γ =
Nt(p− 1)

(q − 1)(N − 1)
> N,

para t > 1 grande. Portanto, uk ∈ L∞(∂Ω) e

∥uk∥L∞(∂Ω) ≤ C∥uk∥1,γ ≤ C∥hk∥1/(p−1)

Lr/(q−1)(∂Ω)
≤ C∥uk∥(q−1)/(p−1)

1,γ1
→ 0, se k → +∞,

e novamente o resultado segue.

Resta considerar o caso em que γ1 < N , no qual faremos um argumento do tipo

bootstrap. Observe inicialmente que

γ1
p∗

=
N(p− 1)

(q − 1)(N − 1)
=: β > 1.

Com isso, γ1 = βp∗. Já que uk ∈ L(γ1)∗(∂Ω), temos que hk ∈ L(γ1)∗/(q−1)(∂Ω). Como

γ1 > p∗, obtemos
(γ1)∗
q − 1

>
p∗

q − 1
>
p(N − 1)

(p− 1)N
> 1.

Aplicando o Lema 2.1 com s = (γ1)∗/(q − 1), conclúımos que

uk ∈ W 1,γ2(Ω), com γ2 =
N(γ1)∗(p− 1)

(q − 1)(N − 1)
> (γ1)∗.

Mais ainda,

∥uk∥p−1
1,γ2

≤ C∥hk∥L(γ1)∗/(q−1)(∂Ω) ≤ C∥uk∥q−1
1,γ1

→ 0, se k → +∞.

Além disso,
γ2

(γ1)∗
=

N(p− 1)

(q − 1)(N − 1)
= β

e portanto

γ2 = α(γ1)∗ > αγ1 = α2p∗.

Se γ2 ≥ N , o resultado segue como antes. Caso contrário, poderemos ir repetindo todos

os passos feitos de modo recursivo, obtendo uma sequência (γn) ⊂ R tal que

uk ∈ W 1,γn(Ω), com γn > αnp∗, lim
k→+∞

∥uk∥1,γn → 0.

Como α > 1 e γn > αnp∗, segue que γn → +∞ quando n → +∞. Portanto, escolhendo

n ∈ N suficientemente grande, temos que γn > N e assim podemos finalizar a prova para

este caso.
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Caso 2: p ≥ N

Neste caso, a imersão de Sobolev implica que uk ∈ Lt(∂Ω) para todo t ≥ p. Assim,

como hk ∈ Lt/(q−1)(∂Ω) e do Lema 2.1 temos que

uk ∈ W 1,γ(Ω), com γ =
Nt(p− 1)

N − 1
≥ Nt > N

e

∥uk∥p−1
1,γ ≤ C∥hk∥Lt/(q−1)(∂Ω) ≤ C∥uk∥q−1

1,p → 0, se k → +∞.

Como γ > N , segue que uk ∈ L∞(∂Ω) e

∥uk∥L∞(∂Ω) ≤ C∥uk∥1,γ → 0, se k → +∞,

donde o resultado segue.

2.3 Mı́nimos locais nas topologias H1 e C1

Nesta seção, iniciamos o estudo do problema (2.3). Inicialmente, observe que soluções

fracas de (2.3) são exatamente os pontos cŕıticos do funcional energia Jλ : H1(Ω) → R
definido por

Jλ(u) :=
1

2

∫
Ω

(|∇u|2 + |u|2)dx+ λ

q

∫
∂Ω

|u|qdσ −
∫
∂Ω

G(u)dσ,

em que G(s) :=
∫ s
0
g(t)dt. Usando (g5) e as imersões do traço de Sobolev podemos mostrar

que Jλ está bem definido e é de classe C1.

Para podermos atacar apropriadamente o problema (2.3), precisamos provar um

resultado abstrato acerca do funcional energia associado a este problema. Para tanto,

faremos uso dos dois importantes resultados de regularidade a seguir:

Teorema 2.5. [53, Teorema 4.4] Sejam Ω ⊂ RN um domı́nio limitado, 1 < p < +∞ e

u0 ∈ W 1,p(Ω) uma solução fraca de

−∆pu = f(x, u), em Ω,

em que f : Ω×R → R é uma função de Carathéodory. Considere g(x) = f(x, u0), a qual

está definida q.t.p. em Ω. Se

g ∈ Ls(Ω), com s >
p

p− 1
N,
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então u ∈ C1,α(Ω) para algum 0 < α < 1. Em particular, o resultado vale se g ∈ L∞(Ω).

Teorema 2.6. [53, Teorema 4.9] Seja Ω ⊂ RN um domı́nio limitado com fronteira C1,γ,

0 < γ ≤ 1. Seja u0 ∈ W 1,p(Ω) ∩ L∞(Ω) uma solução fraca e limitada do problema−∆pu = g(x), em Ω,

|∇u|p−2∂u

∂ν
= ϕ(x′, u), sobre ∂Ω,

com ∥u0∥L∞(Ω) ≤M . Suponha que g ∈ L∞(Ω) com ∥g∥L∞(Ω) ≤ K e ϕ satisfaça

|ϕ(x, z)− ϕ(y, w)| ≤ L[|x− y|γ + |z − w|γ], |ϕ(x, z)| ≤ L,

para todo (x, z), (y, w) ∈ ∂Ω × [−M,M ]. Então, existe α = α(γ,N, p,M,K) ∈ (0, 1) tal

que u0 ∈ C1,α(Ω) e

∥u∥C1,α(Ω) ≤ C = C(γ,N, p,M,K,L,Ω).

Os dois resultados acima são ferramentas para mostrar regularidade do tipo C1,α.

O primeiro mostra essa regularidade no interior, enquanto o segundo a transporta até

o bordo. Tendo eles em mãos, podemos nos voltar ao principal resultado dessa seção,

o qual permite, em linhas gerais, obter mı́nimos locais do funcional buscando-os apenas

na topologia de C1, que é consideravelmente menor. Existem vários trabalhos que fazem

este tipo de resultado (veja [45, 51, 59, 64]). O mais clássico deles é o célebre trabalho de

Brezis-Nirenberg [21], do qual o resultado abaixo é uma versão.

Teorema 2.7. Suponha que u0 ∈ H1(Ω) seja um mı́nimo local de Jλ na topologia C1.

Então u0 é também mı́nimo local de Jλ na topologia H1.

Demonstração. Por hipótese, existe δ > 0 tal que

Jλ(u0) ≤ Jλ(u0 + v), ∀v ∈ C1(Ω), ∥v∥C1 < δ. (2.16)

Fixe v ∈ C1(Ω) com ∥v∥C1 = 1 e defina fv : (−δ, δ) → R por

fv(t) = Jλ(u0 + tv).

Por (2.16), vale que fv(0) ≤ fv(t) para todo t ∈ (−δ, δ). Como fv é de classe C1, isso

implica que f ′
v(0) = 0. Em outras palavras, J ′

λ(u0)v = 0. Da arbitrariedade da escolha de

v ∈ C1(Ω) na esfera de raio 1 e pela linearidade da aplicação v ∈ C1(Ω) 7→ J ′
λ(u0)v ∈ R,

segue que

J ′
λ(u0)v = 0, ∀v ∈ C1(Ω).
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Uma vez que C1(Ω) é denso em H1(Ω), segue que J ′
λ(u0) = 0. Portanto, u0 é solução

fraca de −∆u0 + u0 = 0, em Ω,
∂u0
∂ν

= −λ|u0|q−2u0 + g(u0), sobre ∂Ω.

Definindo f(s) := −λ|s|q−2s+ g(s), em virtude de (g5), vale que

|f(s)| ≤ λ|s|q−1 + C1(1 + |s|r−1), ∀s ∈ R.

Como u0 ∈ H1(Ω) ↪→ L2∗(∂Ω) e 1 < q < 2 < r, temos que∫
∂Ω

|f(u0)|2∗/(r−1) dσ ≤
∫
∂Ω

[
λ|u0|q−1 + C1(1 + |u0|r−1)

]2∗/(r−1)

dσ

≤
∫
∂Ω

[
λ(1 + |u0|r−1) + C1(1 + |u0|r−1)

]2∗/(r−1)

dσ

≤ (λ+ C1)
2∗/(r−1)

∫
∂Ω

[
|u0|r−1 + 1

]2∗/(r−1)

dσ

≤ 2r−1(λ+ C1)
2∗/(r−1)

∫
∂Ω

|u0|2∗ + 1 dσ < +∞,

e portanto f(u0) ∈ L2∗/(r−1)(∂Ω). Usando 2 < r < 2∗ e N ≥ 3, obtemos

r − 1 < 2∗ − 1 =
N

N − 2
=⇒ 1

N
<

1

(N − 2)(r − 1)

=⇒ 2∗
r − 1

=
2(N − 1)

(N − 2)(r − 1)
>

2(N − 1)

N
> 1.

Aplicando o Lema 2.1, com s = 2∗/(r − 1) segue que

u0 ∈ W 1,γ1(Ω), com γ1 =
2∗N

(r − 1)(N − 1)
> 2, (2.17)

em que usamos ainda a conta feita na Observação 2.1 para garantir que γ1 > 2.

Vamos considerar agora 3 casos distintos.

Caso 1: γ1 > N

Neste caso, devido às imersões de Sobolev, u0 ∈ C0,α(Ω), para algum 0 < α < 1.

Em particular, u0 ∈ L∞(Ω). Assim, uma vez que −∆u0 = −u0 em Ω, segue do Teorema

2.5 que u0 ∈ C1,α(Ω).

Precisamos agora garantir a regularidade no bordo. Observe que f se decompõe na

soma de −λ|s|q−2s, que é Hölder cont́ınua com expoente q−1, o termo g(s) que, por ser de

classe C1, é localmente Lipschitz e, portanto, localmente Hölder com qualquer expoente.
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Se M = ∥u0∥L∞(Ω), existe L1 = L1(M) > 0 tal que

|g(s)− g(t)| ≤ L1|s− t|q−1, ∀ s, t ∈ [−M,M ].

Também, pelo que já foi já comentado acima, existe L1 > 0, independente de M tal que

| − λ|s|q−2s− (−λ|t|q−2t)| ≤ L2|s− t|q−1, ∀s, t ∈ R.

Com isso, sendo L3 = max{L1, L2} > 0,

|f(s)− f(t)| ≤ L3|s− t|q−1, ∀ s, t ∈ [−M,M ].

Além disso, segue do crescimento de g que, para qualquer s ∈ [−M,M ], vale

|f(s)| ≤ λ|s|q−1 + |g(s)| ≤ λM q−1 + C1(1 +M r−1) =: L4.

Escolhendo-se L := max{L3, L4}, estamos em condições de aplicar o Teorema 2.6 (veja

também [54, Teorema 2]) para garantir que u0 ∈ C1,α(Ω).

Caso 2: γ1 = N

Este caso é bem semelhante. De fato, teremos pelas imersões de Sobolev que u0 ∈
Lt(Ω) para todo t ≥ 1. Aplicando o Teorema 2.5, ganhamos que u0 é de classe C1,α(Ω),

para algum 0 < α < 1. Para conseguir a regularidade no bordo, basta proceder como no

caso anterior.

Caso 3: γ1 < N

Nesta situação, faremos a aplicação do bootstrap. Já observamos anteriormente que

u0 ∈ W 1,γ1(Ω), com γ1 > 2 dado em (2.17). Além disso,

γ1
2

=
2∗N

2(r − 1)(N − 1)
=

N

(r − 1)(N − 2)
=

2∗ − 1

r − 1
=: β > 1.

Pela imersão do traço, temos que u0 ∈ L(γ1)∗(∂Ω), de onde se conclui que f(u0) ∈
L(γ1)∗/(r−1)(∂Ω). Sendo γ1 > 2, r < 2∗ e N ≥ 3, conclúımos que

(γ1)∗
r − 1

>
2∗

r − 1
>

2(N − 1)

N
> 1.

Com isso, aplicando novamente o Lema 2.1, obtemos que

u0 ∈ W 1,γ2(Ω), com γ2 =
N(γ1)∗

(N − 1)(r − 1)
.
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Se γ2 ≥ N , repetimos o argumento usando nos casos anteriores para concluir que u0 ∈
C1,α(Ω). Caso isso não ocorra, perceba que

γ2
γ1

=

N(γ1)∗
(N − 1)(r − 1)

2∗N

(N − 1)(r − 1)

=
(γ1)∗
2∗

=

γ1(N − 1)

N − γ1
2(N − 1)

N − 2

=
γ1(N − 2)

2(N − γ1)
>
γ1
2

= β.

Portanto, γ2 >
γ21
2

= 2β2. Iterando esse processo obtemos, no próximo passo de iteração,

u0 ∈ W 1,γ3(Ω), com γ3 =
N(γ2)∗

(N − 1)(r − 1)
.

Além disso,
γ3
γ2

=
(γ2)∗
(γ1)∗

=
γ2(N − γ1)

γ1(N − γ2)
>
γ2
γ1
.

Assim,

γ3 >
γ22
γ1

>
γ41
4γ1

=
γ31
4

= 2β3.

Recursivamente, obteremos uma sequência crescente (γn)n∈N tal que u0 ∈ W 1,γn(Ω) e

γn > 2βn. Uma vez que β > 1, segue que γn → +∞ se n → +∞. Logo, em algum

momento, teremos γn > N e o Caso 1 mostra que u0 ∈ C1,α(Ω).

Afim de provar o teorema vamos supor, por contradição, que u0 não é mı́nimo local

de Jλ na topologia de H1. Isso significa que, para todo ϵ > 0, existe vϵ ∈ H1(Ω) com

∥vϵ∥1,2 ≤ ϵ tal que

Jλ(u0 + vϵ) < Jλ(u0). (2.18)

Afirmamos que Jλ é fracamente semicont́ınuo inferiormente. Com efeito, sejam

(un) ⊂ H1(Ω) e u ∈ H1(Ω) tais que un ⇀ u fracamente em H1(Ω). Então, (un) é

limitada e, a menos de subsequência, vale para todo 1 ≤ s < 2∗ que
un → u, em Ls(∂Ω),

un(x
′) → u(x′), q.t.p. x′ ∈ ∂Ω,

∃ϕs ∈ Ls(∂Ω) tal que |un(x′)| ≤ ϕs(x
′) q.t.p. x′ ∈ ∂Ω.

Dessa forma,

lim
n→+∞

λ

q

∫
∂Ω

|un|q dσ =
λ

q

∫
∂Ω

|u|q dσ.

Além disso, de (g3), vale que

lim
n→+∞

G(un(x
′)) = G(u(x′)), q.t.p. x′ ∈ ∂Ω.
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Por outro lado, de (g5),

G(un(x
′)) ≤ C(|un(x′)|+ |un(x′)|r) ≤ C(ϕ1(x

′) + |ϕr(x′)|r) ∈ L1(∂Ω).

Decorre do Teorema da Convergência Dominada de Lebesgue que

lim
n→+∞

∫
∂Ω

G(un) dσ =

∫
∂Ω

G(u) dσ.

Portanto, como a norma é fracamente semicont́ınua inferiormente, segue que

lim inf
n→+∞

Jλ(un) = lim inf
n→+∞

[1
2
∥un∥21,2 +

λ

q

∫
∂Ω

|un|q dσ −
∫
∂Ω

G(un) dσ
]

≥ 1

2
∥u∥21,2 +

λ

q

∫
∂Ω

|u|q dσ −
∫
∂Ω

G(u) dσ = Jλ(u).

Como H1(Ω) é reflexivo e separável, a bola fechada

Bϵ(u0) =
{
v ∈ H1(Ω) : ∥u0 − v∥1,2 ≤ ϵ

}
,

é compacta e metrizável na topologia fraca de H1. Usando resultados clássicos de Análise

Funcional (veja por exemplo [19, p. 11]), conclúımos que Jλ|Bϵ(u0)
é limitado inferiormente

e que o ı́nfimo é atingido. Sem perda de generalidade, denotaremos o elemento que atinge

este ı́nfimo também por u0 + vϵ. Desta forma,

Jλ(u0 + vϵ) = inf
v∈H1(Ω), ∥v∥1,2≤ϵ

Jλ(u0 + v). (2.19)

Observe que vϵ minimiza o funcional v ∈ H1(Ω) 7→ Jλ(u0 + v) quando restrito à bola

fechada Bϵ(0). Sem perda de generalidade, podemos supor que, na realidade, ∥vϵ∥1,2 = ϵ

pois, do contrário, bastaria considerar que estamos na bola de raio ϵ′ < ϵ em que ϵ′ =

∥vϵ∥1,2. Assim, vϵ minimiza o funcional v ∈ H1(Ω) 7→ Jλ(u0 + v) restrito à esfera

Sϵ = {v ∈ H1(Ω) : ∥v∥1,2 = ϵ} =

{
v ∈ H1(Ω) : Ψ(v) :=

∫
Ω

(|∇v|2 + v2) dx = ϵ2
}
.

Usando o Teorema dos Multiplicadores de Lagrange obtemos µϵ ∈ R tal que

J ′
λ(u0 + vϵ)φ = µϵΨ

′(vϵ)φ, ∀φ ∈ H1(Ω). (2.20)

Afirmação: µϵ ≤ 0 para todo ϵ > 0.

Por absurdo, suponha que para algum ϵ > 0 se tenha µϵ > 0. Considere a aplicação

h(t) := Jλ(u0 + (1− t)vϵ), t ∈ [0, 1].
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Note que h é de classe C1([0, 1]), h(0) = Jλ(u0 + vϵ) e h(1) = Jλ(u0). Por outro lado,

usando a definição de h e (2.20), obtemos

h′(0) = J ′
λ(u0 + vϵ)(−vϵ) = µϵΨ

′(vϵ)(−vϵ) = −2µϵ∥vϵ∥21,2 = −2µϵϵ
2 < 0.

Assim, existe τ ∈ (0, 1) de tal maneira que h(0) > h(τ), ou seja

Jλ(u0 + vϵ) > Jλ(u0 + (1− τ)vϵ).

Entretanto, a desigualdade acima entra em contradição com (2.19), uma vez que

∥(1− τ)vϵ∥1,2 = (1− τ)∥vϵ∥1,2 = (1− τ)ϵ < ϵ.

Logo, µϵ ≤ 0 para todo ϵ > 0.

Dada φ ∈ H1(Ω), segue de (2.20) que

(1− 2µϵ)

∫
Ω

(∇vϵ∇φ+ vϵφ) dx+

∫
Ω

(∇u0∇φ+ u0φ) dx

= −λ
∫
∂Ω

|u0 + vϵ|q−2(u0 + vϵ)φdσ

+

∫
∂Ω

g(u0 + vϵ)φdσ.

Em outras palavras, vϵ é uma solução fraca de(1− 2µϵ)(−∆vϵ + vϵ)−∆u0 + u0 = 0, em Ω,

∂(u0 + vϵ)

∂ν
= −λ|u0 + vϵ|q−2(u0 + vϵ) + g(u0 + vϵ), sobre ∂Ω.

Entretanto, uma vez que u0 satisfaz (2.3) e usando que µϵ ≤ 0, obtemos que vϵ é solução

fraca de−∆vϵ + vϵ = 0, em Ω,
∂vϵ
∂ν

= −λ|u0 + vϵ|q−2(u0 + vϵ) + λ|u0|q−2u0 + g(u0 + vϵ)− g(u0), sobre ∂Ω.

Considere a aplicação k : ∂Ω× R → R dada por

k(x′, s) =− λ|u0(x′) + s|q−2(u0(x
′) + s) + λ|u0(x′)|q−2u0(x

′)

+ g(u0(x
′) + s)− g(u0(x

′)).
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Utilizando que 1 < q < 2 < r e o crescimento de g, conclúımos que:

|k(x′, s)| ≤ λ(|u0 + s|q−1 + |u0|q−1) + |g(u0 + s)|+ |g(u0)|

≤ λ(2 + |u0 + s|r−1 + |u0|r−1) + C1(2 + |u0 + s|r−1 + |u0|r−1)

≤ C2(1 + |u0|r−1 + |s|r−1),

e, portanto,

|k(x′, vϵ(x′))| ≤ C2(1 + |u0|r−1 + |vϵ|r−1). (2.21)

A regularidade de x′ 7→ k(x′, vϵ(x
′)) é determinada apenas pela regularidade de vϵ,

uma vez que u0 ∈ C1,α(Ω). O nosso objetivo agora é mostrar que vϵ ∈ C1(Ω). Para tanto,

vamos aplicar novamente os resultados de regularidade que utilizamos para mostrar que

u0 era suave. Primeiramente, como vϵ ∈ L2∗(∂Ω), k(·, vϵ) ∈ L2∗/(r−1)(∂Ω). Aplicando o

Lema 2.1 como antes, temos que vϵ ∈ W 1,γ1(Ω). Mais ainda, pela parte final do Lema

2.1, existe C3 = C3(Ω, N, r) > 0 que independe de ϵ de forma que

∥vϵ∥1,γ1 ≤ C3∥k(·, vϵ)∥L2∗/(r−1)(∂Ω). (2.22)

Vamos calcular o valor do termo no lado direito da desigualdade acima. Para tanto,

observe que deduz-se facilmente da construção de vϵ que vϵ → 0 em H1(Ω). Assim, existe

ϕ ∈ L2∗(∂Ω) tal que, a menos de subsequência, vale que|vϵ| ≤ ϕ, q.t.p. sobre ∂Ω,

vϵ,∇vϵ → 0, q.t.p. em Ω.

Denotando por (vϵ) esta subsequência, usando (2.21) e o disposto acima, temos que

∥k(·, vϵ)∥2∗/(r−1)

L2∗/(r−1)(∂Ω)
≤

∫
∂Ω

[C2(1 + |u0|r−1 + |vϵ|r−1)]2∗/(r−1) dσ

≤ C4

∫
∂Ω

(1 + |u0|2∗ + |vϵ|2∗) dσ

≤ C4

∫
∂Ω

(1 + |u0|2∗ + |ϕ|2∗) dσ = C5.

Portanto, ∥k(·, vϵ)∥L2∗/(r−1)(∂Ω) é limitada por uma constante que não depende de ϵ. Segue

de (2.22) que (vϵ) é também limitada em W 1,γ1(Ω) por uma constante independente de ϵ.

Se γ1 > N , as imersões de Sobolev implicam que vϵ ∈ C0,α(Ω). Além disso, (vϵ) é

limitada em C0,α(Ω) por uma constante que não depende de ϵ. Se γ1 = N , o mesmo acon-

tece, só que dessa vez, com a norma de Ls(∂Ω), qualquer que seja o valor de s ≥ γ1. Assim,

procedendo de maneira similar ao feito acima, é posśıvel mostrar que ∥k(·, vϵ)∥Ls/(r−1)(∂Ω) é

controlada uniformemente por uma constante que independe de ϵ. Escolhendo-se s grande
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o suficiente, temos pelo Lema 2.1 que vϵ ∈ W 1,γ(Ω) com γ > N e recáımos no caso ante-

rior, uma vez que também possúımos a estimativa a priori que garante que ∥vϵ∥1,γ possui

um controle que não depende de ϵ. Assim, neste caso também possúımos um controle

uniforme para a norma de vϵ em C0,α(Ω).

Caso γ1 < N , os passos da iteração de bootstrap podem ser totalmente repetidos sem

prejúızo até recairmos nos casos anteriores. Com isso, temos provado que vϵ ∈ C0,α(Ω) e,

além disso, ∥vϵ∥C0,α(Ω) é majorada por uma constante independente de ϵ .

Aplicando o Teorema 2.5 obtemos que vϵ ∈ C1,α(Ω). Para alcançar a regularidade

no bordo, precisamos verificar novamente as condições do Teorema 2.6, já que a não-

linearidade no bordo da equação de vϵ não é a mesma que se faz presente na equação

satisfeita por u0.

Seja M̃ > 0 a menor constante que limita uniformemente ∥vϵ∥C0,α(Ω) para todo ϵ > 0

e redefina M := ∥u0∥C0,α(Ω) + M̃ . Argumentando como na prova de (2.21), temos que

|k(x′, s)| ≤ C2(1 + ∥u0∥r−1

C0,α(Ω)
+ M̃ r−1) ≤ C6(1 +M r−1) =: L5, (2.23)

para todo (x′, s) ∈ ∂Ω× [−M̃, M̃ ]. Como antes, existe L6 = L6(M) tal que

|g(a)− g(b)| ≤ L6|a− b|q−1, ∀ a, b ∈ [−M,M ].

Dessa forma, usando que u0 ∈ C0,α(Ω), que a aplicação s ∈ [−M̃, M̃ ] 7→ s é Hölder

cont́ınua em qualquer expoente e que 1 < q < 2, vale para todo (x′, s) e (y′, t) em

∂Ω× [−M̃, M̃ ] que

|g(u0(x′) + s)− g(u0(y
′) + t)| ≤ L6|u0(x′) + s− u0(y

′)− t|q−1

≤ L6[|u0(x′)− u0(y
′)|+ |s− t|]q−1

≤ L6(C7|x′ − y′|α + C8|s− t|α)q−1

≤ 2q−1L6(C
q−1
7 |x′ − y′|α(q−1) + Cq−1

8 |s− t|α(q−1))

e, portanto, existe L7 = L7(M) > 0 tal que

|g(u0(x′) + s)− g(u0(y
′) + t)| ≤ L7(|x′ − y′|α(q−1) + |s− t|α(q−1)), (2.24)

para todo (x′, s), (y′, t) ∈ ∂Ω× [−M̃, M̃ ].

Também vale que

|g(s)− g(t)| ≤ L6|s− t|q−1 ≤ L6C
q−1
8 |s− t|α(q−1) = L8|s− t|α(q−1). (2.25)
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Utilizando que a função h(s) := |s|q−2s é Hölder de expoente q − 1, obtemos∣∣∣h(u0(x′) + s)− h(u0(y
′) + t)

∣∣∣ ≤ C9|u0(x′) + s− u0(y
′)− t|q−1

≤ C9[|u0(x′)− u0(y
′)|+ |s− t|]q−1

≤ C9(C7|x′ − y′|α + C8|s− t|α)q−1

≤ 2q−1C9(C
q−1
7 |x′ − y′|α(q−1) + Cq−1

8 |s− t|α(q−1))

e, portanto,∣∣∣h(u0(x′) + s)− h(u0(y
′) + t)

∣∣∣ ≤ L9(|x′ − y′|α(q−1) + |s− t|α(q−1)), (2.26)

para todo (x′, s), (y′, t) ∈ ∂Ω× [−M̃, M̃ ]. Por fim, nessas mesmas condições, temos que∣∣∣h(u0(x′))− h(u0(y
′)
∣∣∣ ≤ C9|u0(x′)− u0(y

′)|q−1 ≤ L10|x′ − y′|α(q−1).

Tomando-se L = max{L5, L7, L8, L9, L10} e combinando a expressão acima com (2.23),

(2.24), (2.25), (2.26), temos

|k(x′, s)− k(y′, t)| ≤ L(|x′ − y′|α(q−1) + |s− t|α(q−1)), |k(x′, s)| ≤ L,

para todo (x′, s), (y′, t) ∈ ∂Ω×[−M̃, M̃ ]. Assim, podemos aplicar o Teorema 2.6 e concluir

que vϵ ∈ C1,β(Ω) para algum θ ∈ (0, 1) e, além disso,

∥vϵ∥C1,θ(Ω) ≤ C(α, q,N, L,M),

onde C(α, q,N, L,M) é uniforme em ϵ, pois M não depende de ϵ. Com isso, (vϵ) e

(∇vϵ) são famı́lias equilimitadas e equicont́ınuas. Pelo Teorema de Àrzela-Ascoli, existe

v ∈ C1(Ω) tal que vϵ → v em C1(Ω). Uma vez que vϵ,∇vϵ → 0 q.t.p. em Ω, então

v = 0. Portanto, para ϵ > 0 suficientemente pequeno, ∥vϵ∥C1(Ω) < δ. Usando então (2.16)

conclúımos que

Jλ(u0) ≤ Jλ(u0 + vϵ),

o que contradiz (2.18) e finaliza a demonstração.

2.4 Prova do Teorema D

Esta seção é dedicada à prova do Teorema D. Inicialmente, provemos algumas proprieda-

des variacionais acerca do funcional energia Jλ.

Lema 2.6. Suponha que g satisfaz (g3) e (g6). Então, o funcional energia Jλ é coercivo.
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Demonstração. Por (g6), existe a < λ1 tal que G(s) ≤ (a/2)s2 para |s| suficientemente

grande. Pela regularidade de g, existe C > 0 de forma que

G(s) ≤ 1

2
as2 + C, ∀s ∈ R.

Assim, dada u ∈ H1(Ω) vale que

Jλ(u) =
1

2

∫
Ω

(|∇u|2 + |u|2) dx+ λ

q

∫
∂Ω

|u|q dσ −
∫
∂Ω

G(u) dσ

≥ 1

2
∥u∥21,2 −

∫
∂Ω

(
1

2
au2 + C

)
dσ

=
1

2
∥u∥21,2 −

1

2
a∥u∥2L2(∂Ω) − C|∂Ω|

≥ 1

2
∥u∥21,2

(
1− a

λ1

)
− C|∂Ω|,

em que usamos que ∥u∥2L2(∂Ω) ≤ λ−1
1 ∥u∥21,2 para qualquer u ∈ H1(Ω) (veja [57]). Uma vez

que a < λ1, a desigualdade acima assegura a coercividade de Jλ.

Como consequência deste resultado, do crescimento subcŕıtico de g e da compacidade

da imersão do traço, podemos argumentar como na prova do Lema 2.4 para garantir que

Jλ satisfaz a condição de Palais-Smale em qualquer ńıvel c ∈ R.

Defina agora J±
λ ∈ C1(H1(Ω),R) por

J±
λ (u) :=

1

2

∫
Ω

(|∇u|2 + u2) dx+
λ

q

∫
∂Ω

|u±|q dσ −
∫
∂Ω

G(u±) dσ,

onde u+ := max{u, 0} e u− := min{u, 0} denotam, respectivamente, as partes positivas

e negativas de u. Procedendo da mesma forma que no Lema 2.6, podemos mostrar que

J±
λ é coercivo e satisfaz a condição de Palais-Smale. A serventia de apelar para esses

funcionais auxiliares se justifica no próximo resultado.

Lema 2.7. Se u± ∈ H1(Ω) um ponto cŕıtico de J±
λ . Então, ±u± ≥ 0 q.t.p. em Ω. Em

particular, u± é ponto cŕıtico de Jλ.

Demonstração. Faremos a prova apenas para o funcional J+
λ , pois o outro caso é análogo.

Como u+ é ponto cŕıtico de J+
λ , ela é solução fraca do problema−∆u+ + u+ = 0, em Ω,

∂u+
∂ν

= −λ|u++|q−2u++ + g(u++), sobre ∂Ω,
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Tomando u−+ como função teste, temos

0 = (J+
λ )

′(u+)u
−
+

=

∫
Ω

(∇u+∇u−+ + u+u
−
+) dx+ λ

∫
∂Ω

|u++|q−2u++u
−
+ dσ −

∫
∂Ω

g(u++)u
−
+ dσ

=

∫
Ω

(|∇u−+|2 + |u−+|2) dx = ∥u−+∥21,2.

Logo u−+ = 0, o que mostra que u+ ≥ 0 q.t.p. em Ω.

Do resultado anterior, vemos que é suficiente obter pontos cŕıticos de J±
λ para en-

contrar soluções de (2.3). Na próxima seção, demonstramos um outro resultado nessa

mesma linha de racioćınio que relacionará os mı́nimos locais de J±
λ com os mı́nimos locais

de Jλ.

No próximo lema, mostramos que a origem é um mı́nimo local de Jλ, assim como

de J±
λ . Isso será peça essencial para a obtenção de duas das soluções de (2.3).

Lema 2.8. A origem é um mı́nimo local de Jλ e de J±
λ .

Demonstração. Provaremos o resultado apenas para o funcional Jλ. Os demais são

análogos. Pelo Teorema 2.7 é suficiente mostrar que a origem é um mı́nimo local de

Jλ na topologia C1. Seja ρ > 0 e considere u ∈ C1(Ω) tal que ∥u∥C1(Ω) < ρ. Considere a

função auxiliar h : [−1, 1] → R definida por

h(s) =


G(s)

s2
, se s ∈ [−1, 1] \ {0},

g′(0)

2
, se s = 0.

Com uma aplicação direta da regra de L’Hôpital, prova-se que h é cont́ınua. Desse modo,

existe C1 > 0 tal que |h(s)| ≤ C1 para qualquer s ∈ [−1, 1]. Uma vez que G(0) = 0, isso

implica dizer que

|G(s)| ≤ C1|s|2, ∀s ∈ [−1, 1]. (2.27)

Por (g5), temos também que

|G(s)| ≤ C2(|s|+ |s|r), ∀s ∈ R.

Como para |s| > 1, é válido que |s| ≤ |s|2, obtemos que

|G(s)| ≤ C2(|s|2 + |s|r), ∀s ∈ R \ [−1, 1]. (2.28)
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Combinando (2.27) com (2.28), conclúımos que

|G(s)| ≤ C3(|s|2 + |s|r), ∀s ∈ R. (2.29)

Assim,

Jλ(u) ≥ λ

q

∫
∂Ω

|u|q dσ −
∫
∂Ω

G(u) dσ

≥ λ

q

∫
∂Ω

|u|q dσ −
∫
∂Ω

C2(|u|2 + |u|r) dσ

=

∫
∂Ω

(
λ

q
− C3|u|2−q − C2|u|r−q

)
|u|q dσ

≥
(
λ

q
− C4∥u∥2−qC0(Ω)

− C4∥u∥r−qC0(Ω)

)∫
∂Ω

|u|q dσ.

Uma vez que u → 0 em C1(Ω) quando ρ → 0 e tendo em vista que q < 2 < r, podemos

escolher ρ > 0 suficientemente pequeno para que

Jλ(u) ≥
λ

2q

∫
∂Ω

|u|qdσ ≥ 0 = Jλ(0), ∀u ∈ C1(Ω), ∥u∥C1(Ω) < ρ.

Assim, a origem é de fato um mı́nimo local de Jλ na topologia C1 e, portanto, também o

é na topologia H1.

No último resultado auxiliar desta seção, mostramos que J±
λ satisfaz a segunda

geometria do Passo da Montanha.

Lema 2.9. Seja φ1 > 0 a primeira autofunção do problema de Steklov (2.2) normalizada

em H1(Ω). Então existem λ∗ > 0 e t0 > 0 tais que J±
λ (±t0φ1) < 0 para todo 0 < λ < λ∗.

Demonstração. Uma vez que g′(0) > λ1 e g(0) = 0, existe ϵ0 tal que para todo 0 < ϵ < ϵ0

existe δ > 0 de maneira que

g′(s) ≥ λ1 + ϵ, ∀ s ∈ (−δ, δ).

Dessa forma,

G(s) ≥
(
λ1 + ϵ

2

)
s2, ∀ s ∈ (−δ, δ).

Por outro lado, decorre de (g5) que

G(s) ≥ −C1|s|r, ∀ |s| ≥ δ.
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Existe C2 = C2(δ) > 0 suficientemente grande de modo que

−C1|s|r ≥
(
λ1 + ϵ

2

)
s2 − C2|s|r, |s| ≥ δ.

Combinando todas essas informações, chegamos que

G(s) ≥
(
λ1 + ϵ

2

)
s2 − C2|s|r, s ∈ R.

Feitas essas preliminares podemos provar o lema. Faremos a prova somente com o

funcional J+
λ , pois o outro será análogo. Uma vez que φ1 > 0, então J+

λ (tφ1) = Jλ(tφ1).

Utilizando a desigualdade acima, ∥φ1∥1,2 = 1, as imersões do traço e o fato de φ1 ser

autofunção associada à λ1, temos pelas imersões de Sobolev e pela caracterização de λ1

que

Jλ(tφ1) =
1

2

∫
Ω

(|∇(tφ1)|2 + (tφ1)
2) dx+

λ

q

∫
∂Ω

|tφ1|q dσ −
∫
∂Ω

G(tφ1) dσ

≤ t2

2
+
λtq

q
∥φ1∥qLq(∂Ω) −

∫
∂Ω

[(
λ1 + ϵ

2

)
(tφ1)

2 − C2|tφ1|r
]
dσ

≤ t2

2
+
C3λt

q

q
−
(
λ1 + ϵ

2λ1

)
t2 + C4t

r,

Vamos chamar de h(t) a última parcela na desigualdade acima, isto é,

h(t) :=
t2

2

(
1− λ1 + ϵ

λ1

)
+
C3λt

q

q
+ C4t

r, t ≥ 0.

Temos que h é de classe C1, h1(0) = 0 e h1(t) > 0 para t > 0 próximo da origem, uma

vez que q < 2 < r. Além disso, h(t) = tq
(
s(t) +

C3λ

q

)
, onde

s(t) :=
t2−q

2

(
1− λk + ϵ

λk

)
+ C4t

r−q, t ≥ 0

Com um cálculo simples, mostramos que h1 possui um mı́nimo global negativo atingido

em

t0 =


(
λ1 + ϵ

λ1
− 1

)
(2− q)

2C4(r − q)


1/(r−2)

.

Dessa forma, existe λ∗ > 0 tal que se 0 < λ < λ∗, vale

h(t0) = tq0

(
s(t0) +

C3λ

q

)
< 0,
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o que implica que J+
λ (tφ1) = Jλ(t0φ1) ≤ h(t0) < 0.

Estamos prontos para obter as 4 primeiras soluções do problema (2.3).

Prova do Teorema D. Note inicialmente que, pelo Lema 2.8, o ponto u = 0 é um mı́nimo

local de J±
λ . Tome λ∗ o dado no Lema 2.9 e considere λ ∈ (0, λ∗). Lembre que comentamos

que este mesmo resultado assegura que J±
λ satisfaz a segunda geometria do passo da

montanha. Dessa forma, como J±
λ satisfaz a condição de Palais Smale, segue do Teorema

do Passo da Montanha que existe u1± ∈ H1(Ω) ponto cŕıtico de J±
λ satisfazendo J±

λ (u1±) >

0. Por outro lado, como J±
λ é limitado inferiormente (por ser cont́ınuo e coercivo), ele

admite um mı́nimo global atingindo em algum u2± ∈ H1(Ω). Em virtude do Lema 2.9,

vale que

J±
λ (u2±) = inf

u∈H1(Ω)
J±
λ (u) ≤ J±

λ (±t0φ1) < 0.

o que garante que u1± ̸= u2±. Como naturalmente também vale u1± ̸= u2±, esses 4 pontos

cŕıticos são distintos. Além disso, pelo Lema 2.7, cada um deles é também ponto cŕıtico

de Jλ e, portanto, solução do Problema (2.3).

2.5 Prova do Teorema E

Essa seção é dedicada à da prova do Teorema E. Na seção anterior, encontramos 4 soluções

do problema (2.3) ao encontrar pontos cŕıticos dos funcionais J±
λ . Veremos que existe entre

esses funcionais uma relação ainda mais forte:

Lema 2.10. Se u± é um mı́nimo local de J±
λ , então ele também é um mı́nimo local de

Jλ.

Demonstração. Em virtude do Teorema 2.7, é suficiente provar que u0 é mı́nimo local de

Jλ na topologia de C1(Ω).

Observe inicialmente que, como u± é mı́nimo local de J±
λ , ele é um ponto cŕıtico

deste funcional. Assim, pelo Lema 2.7, ele é ponto cŕıtico de Jλ e satisfaz ±u± ≥ 0. Uma

conferência da prova do Teorema 2.7 mostra que qualquer ponto cŕıtico de Jλ possui pelo

menos a regularidade C1,α(Ω).

Seja então ρ > 0 tal que

J±
λ (u) ≥ J±

λ (u±), ∀u ∈ C1(Ω), ∥u− u±∥C1(Ω) < ρ.
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Para u ∈ C1(Ω) como acima, fazendo uso da igualdade Jλ(u±) = J±
λ (u±), obtemos

Jλ(u)− Jλ(u±) = Jλ(u)− J±
λ (u±)

≥ Jλ(u)− J±
λ (u)

=
λ

q

∫
∂Ω

(|u|q − |u±|q) dσ −
∫
∂Ω

(G(u)−G(u±)) dσ,

e portanto

Jλ(u)− Jλ(u±) ≥
λ

q

∫
∂Ω

|u∓|q dσ −
∫
∂Ω

G(u∓) dσ.

Segue então de (2.29) e de u ∈ C1(Ω) que

Jλ(u)− Jλ(u±) ≥ λ

q

∫
∂Ω

|u∓|q dσ −
∫
∂Ω

C2(|u∓|2 + |u∓|r) dσ

=

∫
∂Ω

(
λ

q
− C3|u∓|2−q − C3|u∓|r−q

)
|u∓|q dσ

≥
(
λ

q
− C3∥u∓∥2−qC0(Ω)

− C3∥u∓∥r−qC0(Ω)

)∫
∂Ω

|u∓|q dσ.

Uma vez que u → u± em C1(Ω) quando ρ → 0 e que ±u± ≥ 0, então u∓ → 0 em

C0(Ω) quando ρ → 0. Dessa forma, como 2 − q > 0 e r − q > 0, podemos escolher ρ

suficientemente pequeno de modo que

Jλ(u)− Jλ(u±) ≥
λ

2q

∫
∂Ω

|u∓|qdσ ≥ 0,

donde conclúımos que u± é mı́nimo local de Jλ na topologia C1. O resultado segue agora

do Teorema 2.7.

O resultado acima mostra que as soluções u2± encontradas na seção anterior são

mı́nimos locais de Jλ, uma vez que estes pontos são os mı́nimos globais de J±
λ .

Para encontrar a quinta solução, precisamos falar um pouco de Teoria de Morse,

com ênfase no conceito de Grupos Cŕıticos. Para mais detalhes e para conferir os vários

pré-requisitos desse assunto, indicamos a leitura do livro [28]. Em linhas gerais,

Definição 2.1 (Grupo Cŕıtico). Sejam X um espaço de Banach, Φ : X → R um funcional

de classe C1 e u0 ∈ X um ponto cŕıtico isolado de Φ com Φ(u0) = c. Para cada q ∈ N,
definimos o q-ésimo grupo cŕıtico de Φ em u0 por

Cq(Φ, u0) = Hq(Φc ∩ U, (Φc ∩ U) \ {u}),

em que Φc = {v ∈ X : Φ(v) ≤ c}, U ⊂ X é uma vizinhança de u0 tal que u0 é o único

ponto cŕıtico de Φ em Φc ∩U e Hq(·, ·) representa o q-ésimo grupo de homologia singular
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relativa com coeficientes em Z.

De forma intuitiva, o grupo Cq(Φ, u) mede a contribuição topológica do ponto cŕıtico

u à faixa de ńıvel Φc. Quando o funcional Φ possui uma estrutura variacional adequada,

esses grupos cŕıticos são todos nulos, exceto possivelmente em um único ı́ndice q. Este

ı́ndice onde o grupo cŕıtico Cq(Φ, u) não é trivial é exatamente o ı́ndice de Morse de u. No

contexto de funções definidas em RN , o ı́ndice de Morse de um ponto cŕıtico é a dimensão

do maior subespaço de RN cuja a matriz Hessiana nesse ponto é negativa definida. Por

exemplo, em mı́nimos locais, onde a Hessiana do ponto é positiva definida em todo o RN

o ı́ndice de Morse é 0. Assim, é esperado que

Lema 2.11 ([28, Exemplo 1, p. 33]). Seja u ∈ X um mı́nimo local isolado de Φ : X → R.
Então

Cq(Φ, u) =

Z, se q = 0,

0, se q ̸= 0.

A ideia para obter a quinta solução do problema (2.3) é encontrar um ponto cŕıtico de

Jλ com energia negativa e que possua o grupo cŕıtico de algum grau distinto do respectivo

grupo cŕıtico de u2±. Para tanto, aplicaremos o seguinte resultado abstrato, devido à

Perera [68].

Teorema 2.8 ([68, Teorema 3.1]). Sejam X = E1 ⊕ E2 um espaço de Banach com

0 < k := dimE1 < +∞ e I ∈ C1(X,R) satisfazendo:

(I1) existe ρ > 0 tal que

sup
u∈E1∩Sρ

I(u) < 0,

em que Sρ := {u ∈ X : ∥u∥X = ρ};

(I2) I ≥ 0 em E2;

(I3) existe e ∈ E1 \ {0} tal que I é limitado inferiormente no semi-espaço

{se+ u : s ≥ 0 e u ∈ E2}.

Além disso, suponha que I satisfaz a condição de Palais-Smale e possua apenas valores

cŕıticos isolados com cada valor cŕıtico correspondendo à uma quantia finita de pontos

cŕıticos. Então, I possui dois pontos cŕıticos u1, u2 ∈ X com

I(u1) < 0 ≤ I(u2), Ck−1(I, u1) ̸= 0 e Ck(I, u2) ̸= 0.
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Para mostrar que Jλ satisfaz as hipóteses geométricas do teorema acima, vamos fazer

uma decomposição conveniente de H1(Ω) usando os subespaços gerados pelas autofunções

do problema de Steklov, como já foi minunciosamente detalhado no final da Seção 2.1.2.

Como consequência da desigualdade variacional (2.7), temos o seguinte:

Lema 2.12. Suponha que g satisfaça (g3), (g̃4) e (g5). Então existem ρ > 0 e λ∗ > 0 tais

que

sup
u∈Xk∩Sρ

Jλ(u) < 0,

para todo 0 < λ < λ∗, em que Sρ := {u ∈ H1(Ω) : ∥u∥1,2 = ρ}.

Demonstração. Usando que g′(0) > λk e argumentando como no Lema 2.9, obtemos

C2 > 0 tal que

G(s) ≥
(
λk + ϵ

2

)
s2 − C2|s|r, s ∈ R.

Seja u ∈ Xk com ∥u∥1,2 = ρ, com ρ > 0 a ser determinado posteriormente. Utilizando a

imersão do traço H1(Ω) ↪→ Ls(∂Ω), 1 ≤ s ≤ 2∗ e (2.7), temos que

Jλ(u) =
1

2
∥u∥21,2 +

λ

q

∫
∂Ω

|u|q dσ −
∫
∂Ω

G(u) dσ

≤ ρ2

2
+
λ

q
∥u∥qLq(∂Ω) −

∫
∂Ω

[(
λk + ϵ

2

)
u2 − C2|u|r

]
dσ

≤ ρ2

2
+
C3λρ

q

q
−
(
λk + ϵ

2λk

)
ρ2 + C4ρ

r

= hk(ρ),

em que

hk(t) :=
t2

2

(
1− λk + ϵ

λk

)
+
C3λt

q

q
+ C4t

r, t ≥ 0.

Da mesma forma que na demonstração do Lema 2.9, ao tomar ρ > 0 o ponto de mı́nimo

global da aplicação

sk(t) =
t2−q

2

(
1− λk + ϵ

λk

)
+ C4t

r−q, t ≥ 0,

existe λ∗ > 0 tal que se 0 < λ < λ∗, vale que

hk(ρ) = ρq
(
sk(ρ) +

C3λ

q

)
< 0,

donde segue que Jλ(u) ≤ hk(ρ) < 0 para toda u ∈ Xk com ∥u∥1,2 = ρ. Dáı, para esta

escolha de ρ, vale que

sup
u∈Xk∩Sρ

Jλ(u) < 0,



73

o que conclui a prova do lema.

Lema 2.13. Se g satisfaz (g̃6) então

Jλ(u) ≥ 0, ∀u ∈ X⊥
k .

Demonstração. Utilizando (g̃6) e (2.8), obtemos que

Jλ(u) =
1

2
∥u∥21,2 +

λ

q

∫
∂Ω

|u|q dσ −
∫
∂Ω

G(u) dσ

≥ 1

2
∥u∥21,2 −

λk+1

2

∫
∂Ω

u2 dσ ≥ 0,

para toda u ∈ X⊥
k .

Observação 2.3. É importante observar que a substituição das condições (g̃4) e (g̃6) por

(g4) e (g5) também garantem, assim como na sessão anterior, a existência de pelo menos

quatro soluções para o problema (2.3), uma vez que a condição (g̃4) implica na validade

de (g4) e a condição (g̃6) garante a coercividade de Jλ, além de também permitir provar

os Lemas 2.8 e 2.10 de uma maneira até mais simples, por já implicar a dominância de

|G(s)| por um termo quadrático em toda a reta.

Possúımos todas as ferramentas necessárias para demonstrar o Teorema E.

Demonstração do Teorema E. Como já comentado na Observação 2.3, já conhecemos 4

soluções do problema (2.3), a saber u1± com Jλ(u1±) > 0 e u2± com Jλ(u2±) < 0. Falta

apenas encontrar a quinta solução. Façamos a decomposição H1(Ω) = E1 ⊕ E2, com

E1 = Xk e E2 = X⊥
k em que k ≥ 2 é o dado nas hipóteses (g̃4) e (g̃6). Seja 0 < λ < λ∗,

com λ∗ > 0 obtido no Lema 2.12. Dessa forma, Jλ satisfaz a condição (I1). Do Lema 2.13,

temos também a validade de (I2). Como Jλ é limitado inferiormente em todo H1(Ω), a

condição (I3) é trivialmente satisfeita. Assim, pelo Teorema 2.8, existe u3 ∈ H1(Ω) com

Jλ(u3) < 0 e Ck−1(I, u3) ̸= 0. Claramente, u3 ̸= u1±. Agora, pelo Lema 2.11, uma vez

que u2± são mı́nimos locais isolados de Jλ, vale que Cq(I, u2±) = 0 para todo q ̸= 0. Uma

vez que k ≥ 2, temos em particular que Ck−1(I, u2±) = 0, o que mostra que u3 ̸= u2± e,

portanto, é um ponto cŕıtico distinto de todos os 4 já previamente obtidos. Temos assim

a nossa quinta solução de (2.3).

Observação 2.4. Para finalizar este caṕıtulo, vamos deixar registrado algumas dificul-

dades que aparecem no estudo da versão para o p-laplaciano do problema (2.3). Primei-

ramente, não seria posśıvel obter neste caso a quinta solução dada no Teorema E, pois

usamos fortemente na demonstração a decomposição de H1(Ω) como a soma direta dos

auto-espaços associados ao problema de autovalor. O mesmo não poderia ser feito com

W 1,p(Ω).
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Entretanto, o Teorema D poderia ser obtido sem prejúızo nenhum, uma vez que o

que foi feito na seção 2.5 pode ser totalmente replicado sem prejúızo algum para o caso do

p-laplaciano. Isso não foi feito neste trabalho porque não conseguimos conseguir provar o

Teorema 2.7 para este caso. Se tentássemos seguir a prova, depois de aplicar o Teorema

dos Multiplicadores de Lagrange obteŕıamos que a função vϵ resolveria−div(A(vϵ)) + |u0 + vϵ|p−2(u0 + vϵ)− |u0|p−2u0 − µϵ|vϵ|p−2vϵ = 0, em Ω,

A(vϵ) · ν = −λ(|u0 + vϵ|q−2(u0 + vϵ)− |u0|q−2u0) + g(u0 + vϵ)− g(u0), sobre ∂Ω,

em que

A(vϵ) := |∇(u0 + vϵ)|p−2∇(u0 + vϵ)− |∇u0|p−2∇u0 − µϵ|∇vϵ|p−2∇vϵ.

Precisamos de um resultado que permita regularizar vϵ e que, além disso, ainda forneça

uma estimativa a priori. Acreditamos ser posśıvel obter isso, uma vez que em trabalhos

relacionados (ver [11, 51, 64]) apareceram situações semelhantes, sendo que no primeiro

deles é feita uma análise detalhada do processo de regularização.



Caṕıtulo 3

Problema de autovalor com operador

quase-linear

Neste caṕıtulo, consideramos a equação estacionária de reação-difusão-advecção−div(a(x)D1(u)∇u) +D2(u)[⃗b(x) · ∇u] = λu, em Ω,

u = 0, sobre ∂Ω,
(3.1)

onde Ω ⊂ RN é um domı́nio limitado e regular, a ∈ C1,α(Ω, [a0,+∞)), para algum a0 > 0,

e b⃗ ∈ C0,α(Ω;RN). As funções D1, D2 ∈ C([0,+∞), [0,+∞)) satisfazem

(d1) Di(s) > 0, para qualquer s > 0 e i ∈ {1, 2},

(d2) D1(∞) := lims→+∞D1(s) > 0,

No que se segue, consideramos a função h : [0,+∞) → (0,+∞) definida por

h(s) =


D2(s)

D1(s)
, se s > 0,

lim
s→0+

D2(s)

D1(s)
, se s = 0,

(3.2)

e assumimos que

(H1) h ∈ C1((0,+∞)) e h′(0) := lims→0+ h
′(s) ∈ R.

Definimos também as quantidades

h(∞) := lim
s→+∞

D2(s)

D1(s)
, Di(∞) := lim

s→+∞
Di(s), para i ∈ {1, 2},

75
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e o operador

L0 := −div(a(x)∇) + h(0)[⃗b(x) · ∇].

Quando h(∞) ∈ R, também consideramos

L∞ := −div(a(x)∇) + h(∞)[⃗b(x) · ∇].

Seja L um operador eĺıptico de segunda ordem com coeficientes Hölder cont́ınuos

em um domı́nio regular e limitado U ⊂ RN . Denotamos por σU1 [L] o autovalor principal

de L em U , sob a condição homogênea de Dirichlet. Para simplificar, também adotamos

as seguintes notações:

σ0
1 := σΩ

1 [L0], σ∞
1 := σΩ

1 [L∞].

No nosso primeiro teorema principal, obtemos a existência de solução para o problema

quando σ0
1D1(0) < σ∞

1 D1(∞). Mais especificamente, provamos os seguintes resultados

Teorema F. Suponha que h satisfaça (H1), h(∞) < +∞ e σ0
1D1(0) < σ∞

1 D1(∞). Então,

para qualquer λ ∈ (σ0
1D1(0), σ

∞
1 D1(∞)), o problema (3.1) admite uma solução clássica

positiva.

Teorema G. Suponha que h satisfaça (H1), h(∞) = +∞, e

(b1) existe ψ ∈ C2(Ω) tal que [⃗b(x) · ∇ψ] > 0, para todo x ∈ Ω.

Então, para qualquer λ > σ0
1D1(0), o problema (3.1) admite uma solução clássica positiva.

Uma forma de complementar os resultados anteriores, seria considerar o caso em

que a desigualdade σ0
1D1(0) < σ∞

1 D1(∞) não é válida. Para isso, aplicamos a teoria de

bifurcação. No próximo resultado, apresentamos condições necessárias para bifurcação

tanto a partir de soluções triviais quanto do infinito. Mais especificamente, provamos o

seguinte:

Teorema H. Suponha que D1(0) > 0.

(i) Então existe uma componente ilimitada C0 ⊂ R× C1
0(Ω) de soluções positivas para

(3.1) que emana da solução trivial em (σ0
1D1(0), 0);

(ii) Se, adicionalmente, 0 < Di(∞) < +∞ para todo i ∈ {1, 2}, então existe uma compo-

nente ilimitada C∞ ⊂ R×C1
0(Ω) de soluções para (3.1) que intercepta (σ∞

1 D1(∞),∞).

Além disso, se b⃗ ∈ C1(Ω;RN) e h satisfaz (H1), então C∞ consiste em soluções po-

sitivas para (3.1).
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De fato, provamos que a bifurcação de soluções positivas a partir da solução tri-

vial (respectivamente, do infinito) não pode ocorrer em nenhum outro ponto além de

(σ0
1D1(0), 0) (respectivamente, (σ∞

1 D1(∞),∞)).

Além disso, sob uma das seguintes hipóteses adicionais:

(b2) existe ξ ∈ (H1
0 (Ω) ∩ L4(Ω)) \ {0} tal que div(ξ2⃗b) tem sinal constante quase sempre

em Ω,

ou

(d3) existe C > 0 tal que
∫∞
0
D2(t)t

−1dt < C,

obtemos um resultado de não existência de soluções positivas de (3.1) para λ > 0 sufici-

entemente grande (ver Proposição 3.2). Na verdade, se definirmos

λ := min{σ0
1D1(0), σ

∞
1 D1(∞)} e λ := max{σ0

1D1(0), σ
∞
1 D1(∞)},

podemos estabelecer o seguinte resultado de existência:

Teorema I. Suponha que D1(0) > 0, 0 < Di(∞) < +∞ para todo i ∈ {1, 2}, que h

satisfaça (H1) e que b⃗ ∈ C1(Ω;RN). Então, para qualquer λ ∈ (λ, λ), o problema (3.1)

admite uma solução clássica positiva. Se, adicionalmente, (b2) ou (d3) for satisfeita, então

os cont́ınuos C0 e C∞ dados pelo Teorema H coincidem.

O restante do caṕıtulo está organizado da seguinte forma: Na Seção 2, introduzimos

uma mudança de variáveis e aplicamos métodos de sub e supersoluções. A Seção 3 inves-

tiga a bifurcação de soluções positivas. Finalmente, na Seção 4, analisamos a direção da

bifurcação e discutimos a multiplicidade de soluções.

3.1 Método de Sub-Supersolução

Iniciamos esta seção realizando uma mudança de variável da seguinte maneira: definimos

a função auxiliar

g(s) :=

∫ s

0

D1(t)dt, s ∈ R+ := {s ∈ R : s ≥ 0}.

Como g′(s) = D1(s) > 0, para todo s > 0, a função g é injetora e pertence à classe C1.

Além disso, como
∫∞
0
D1(s)ds = ∞, pela hipótese (d2), também temos que g(R+) = R+.
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Assim, a função g é invert́ıvel e, se chamarmos sua inversa de g−1, então a aplicação

q(s) :=

g−1(s), se s ≥ 0,

0, se s < 0,

está bem definida.

Um cálculo direto mostra que u ∈ C2(Ω)∩C(Ω) é uma solução positiva de (3.1) se,

e somente se, w = g(u) for uma solução positiva de−div(a(x)∇w) + h(q(w))[⃗b(x) · ∇w] = λq(w), em Ω,

w = 0, sobre ∂Ω,
(3.3)

onde h foi definido em (3.2). O próximo resultado apresenta algumas propriedades da

função q que serão úteis.

Lema 3.1. A aplicação q é crescente e de classe C1. Além disso,

lim
s→0

q(s)

s
=

 1
D1(0)

se D1(0) > 0,

+∞ se D1(0) = 0,
(3.4)

e

lim
s→+∞

q(s)

s
=

 1
D1(∞)

se D1(∞) < +∞,

0 se D1(∞) = +∞.
(3.5)

Demonstração. Desde que q é a inversa de g, ela é de classe C1 e

q′(s) =
1

g′(q(s))
> 0, ∀s > 0.

Então, q é crescente. Ademais,

lim
s→0

q(s)

s
= lim

s→0
q′(s) = lim

s→0

1

g′(q(s))
= lim

s→0

1

D1(q(s))

e (3.4) segue da regra de L’Hospital. A prova de (3.5) é análoga.

Como queremos aplicar o método de sub-super solução, apresentamos as seguintes

definições:

Definição 3.1. Dizemos que w ∈ C2(Ω) ∩ C(Ω) é uma sub-solução de (3.3) se−div(a(x)∇w) + h(q(w))[⃗b(x) · ∇w] ≤ λq(w) em Ω,

w ≤ 0 sobre ∂Ω.



79

Já uma função w ∈ C2(Ω) ∩ C(Ω) é chamada uma super-solução de (3.3) se a expressão

acima é válida com as desigualdades invertidas. Além disso, um par w, w de sub-super

soluções é dito ordenado se w ≤ w. Neste caso, dizemos que w∗ é uma solução minimal de

(3.3) no intervalo ordenado [w,w] caso w∗ esteja neste intervalo, seja solução de (3.3) e

qualquer outra solução v ∈ [w,w] de (3.3) satisfaça w∗ ≤ v. De modo análogo, definimos

o que seria uma solução maximal.

A seguir, mostramos que o método de sub-super solução pode ser aplicado ao pro-

blema (3.3).

Teorema 3.1. Suponha que h satisfaça (H1) e que exista um par ordenado w,w de sub-

super soluções de (3.3). Então, o problema possui uma solução minimal w∗ e uma solução

maximal w∗ no intervalo ordenado [w,w].

Demonstração. Para qualquer λ > 0, considere

fλ(x, s, η) := λq(s)− h(q(s))[⃗b(x) · η], (x, s, η) ∈ Ω× R+ × RN .

Como b⃗ ∈ C0,α(Ω;RN), temos que fλ(·, s, η) ∈ C0,α(Ω) para todo (s, η) ∈ R+ × RN . Por

(H1), as derivadas parciais ∂fλ/∂η e ∂fλ/∂s são cont́ınuas. Se definirmos

c(ρ) := λq(ρ) + ∥⃗b∥L∞(Ω) max
0≤s≤ρ

h(q(s)), ρ ≥ 0,

é claro que, para qualquer s ∈ [0, ρ], vale

|fλ(x, s, η)| ≤ λq(s) + |⃗b(x)|h(q(s))|η| ≤ c(ρ)(1 + |η|2).

Com isso, o resultado segue ao aplicar [5, Teorema 1.1].

Agora, o nosso objetivo é obter um par ordenado de sub-super soluções de (3.3).

Começaremos estabelecendo a sub-solução.

Lema 3.2. O problema (3.3) possui uma sub-solução para todo λ > σ0
1D1(0).

Demonstração. Escolham > 1 tal que λ > mσ0
1D1(0). Seja φ0 > 0 a principal autofunção

de L0 tal que ∥φ0∥L∞(Ω) = 1. Defina, para ϵ > 0, a função w := ϵφm0 e note que

∇(w) = ϵmφm−1
0 ∇φ0
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e

div(a(x)∇w) = ϵmφm−1
0 [∇a · ∇φ0 + a(x)∆φ0] + ϵm(m− 1)φm−2

0 |∇φ0|2

= ϵmφm−1
0 div(a(x)∇φ0) + ϵm(m− 1)φm−2

0 |∇φ0|2

= ϵmφm−1
0 (h(0)⃗b(x) · ∇φ0 − σ0

1φ0) + ϵm(m− 1)φm−2
0 a(x)|∇φ0|2.

Assim, w é uma sub-solução de (3.3) se, e somente se,(
λq(ϵφm0 )

mϵφm0
− σ0

1

)
φ0 ≥ (1−m)a(x)φ−1

0 |∇φ0|2 + (h(q(ϵφm0 ))− h(0))[⃗b(x) · ∇φ0],

em Ω. Uma vez que m > 1, a(x) ≥ a0 > 0 em Ω e φ−1
0 ≥ ∥φ0∥−1

∞ = 1, a desigualdade

acima é verdadeira se(
λq(ϵφm0 )

mϵφm0
− σ0

1

)
φ0 + (m− 1)a0|∇φ0|2 − ∥⃗b · ∇φ0∥L∞(Ω)|h(q(ϵφm0 ))− h(0)| ≥ 0, (3.6)

para todo x ∈ Ω. Se D1(0) > 0, podemos usar q(0) = 0 e (3.4) para concluir que os

limites a seguir

lim
ϵ→0+

|h(q(ϵφm0 ))− h(0)| = 0

e

lim
ϵ→0+

(
λq(ϵφm0 )

mϵφm0
− σ0

1

)
= µ0 :=

(
λ

mD1(0)
− σ0

1

)
> 0,

valem uniformemente em Ω. Denotando o lado esquerdo de (3.6) por Γϵ, temos que

Γϵ(x) = (µ0 + oϵ(1))φ0(x) + (m− 1)a0|∇φ0(x)|2 + oϵ(1), x ∈ Ω. (3.7)

Obteremos ϵ > 0 e m > 1 de tal modo que Γϵ seja não-negativo em Ω, o que

claramente implica (3.6). Para tanto, note inicialmente que L0 não possui termos de

ordem zero e, portanto, podemos aplicar o Prinćıpio do Máximo Forte para concluir que

φ0 > 0 em Ω e ∂φ0

∂ν
< 0 sobre ∂Ω. Então, dado r > 0 pequeno e definindo

Ωr := {x ∈ Ω : dist(x, ∂Ω) < r} ,

obtemos c1 = c1(r) > 0 de maneira que

φ0 ≥ c1 > 0 em Ω \ Ωr, |∇φ0|2 ≥ c1 > 0, em Ωr.

Em Ω \ Ωr, podemos utilizar (3.7), a primeira desigualdade acima, m > 1 e µ0 > 0, para

concluir que

Γϵ(x) ≥ (µ0 + oϵ(1))c1 + oϵ(1) ≥ 0, ∀ ϵ ∈ (0, ϵ1].
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Analogamente, desde que φ0 > 0, no conjunto Ωr temos que

Γϵ(x) ≥ (m− 1)a0c
2
1 + oϵ(1) ≥ 0, ∀ ϵ ∈ (0, ϵ2]..

Consequentemente, se fixamos ϵ := min{ϵ1, ϵ2}, conclúımos que (3.6) é válida e, portanto,

w = ϵφm0 é uma sub-solução de (3.3).

Quando D1(0) = 0, segue de (3.4) que q(s)/s → +∞, se s → 0. Assim, para

qualquer µ0 > 0 temos que

Γϵ(x) ≥ (µ0 + oϵ(1))φ0(x) + (m− 1)a0|∇φ0(x)|2 + oϵ(1), x ∈ Ω,

e podemos repetir os argumentos acima. Os detalhes serão omitidos.

Na construção da super-solução, consideramos dois casos distintos dependendo de

h(∞). Primeiramente, vamos discutir o caso em que h(∞) é finito.

Lema 3.3. Se h(∞) ∈ [0,+∞), então o problema (3.3) possui uma super-solução para

todo λ < σ∞
1 D1(∞).

Demonstração. Inicialmente, assuma que D1(∞) <∞. Seja U ⊂ RN um domı́nio regular

de RN tal que Ω ⊂ U e tome ã, b̃ : U → R extensões regulares de a, b⃗ em U com

ã ≥ a0/2 > 0. Podemos considerar então o operador L∞ agindo em funções definidas em

U e usar λ < σ∞
1 D1(∞) para supor que U é escolhido de tal sorte que

λ < σU1 [L∞]D1(∞) ≤ σ∞
1 D1(∞).

Seja φ̃∞ > 0 uma autofunção de L∞ associada à σU1 [L∞] de modo que ∥φ̃∞∥L∞(Ω) = 1.

Se definirmos para K > 0, a função w := Kφ̃∞, um cálculo direto mostra que w é uma

super-solução de (3.3) se, e somente se,(
λq(Kφ̃∞)

Kφ̃∞
− σU1 [L∞]

)
φ̃∞ ≤ (h(q(Kφ̃∞))− h(∞)) [⃗b(x) · ∇φ̃∞], em Ω. (3.8)

Conclúımos de (3.5) que q(s) → +∞, se s → +∞. Desde que φ̃∞ é positivo, segue

novamente de (3.5) que

µ∞ := lim
K→+∞

(
λq(Kφ̃∞)

Kφ̃∞
− σU1 [L∞]

)
=

λ

D1(∞)
− σU1 [L∞] < 0.

Por construção, existe c1 > 0 tal que φ̃∞ ≥ c1 > 0 em Ω. Consequentemente, para K > 0
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grande, temos que(
λq(Kφ̃∞)

Kφ̃∞
− σU1 [L∞]

)
φ̃∞ = (µ∞ + oK(1)) φ̃∞ ≤ µ∞

2
c1 < 0,

em Ω. A desigualdade em (3.8) é uma consequência da limitação acima e do fato que

lim
K→+∞

(h(q(Kφ̃∞))− h(∞)) = 0,

uniformemente em Ω.

Se D1(∞) = +∞, podemos repetir os mesmos argumentos acima, observando que

µ∞ = −σU1 [L∞] < 0. Omitimos novamente os detalhes.

O caso em que h(∞) = ∞ é mais delicado e exige a presença da condição geométrica

(b1). Mais precisamente:

Lema 3.4. Se h(∞) = ∞ e b⃗ satisfaz (b1), então o problema (3.3) possui uma super-

solução para todo λ > 0.

Demonstração. Sejam ψ ∈ C2(Ω) dada em (b1) e M > 0 tal que ψ+M > 0 em Ω. Defina

w = K(ψ +M), onde K > 0 é uma constante a ser escolhida posteriormente. Por meio

de um cálculo direto vemos que w é uma super-solução de (3.3) se, e somente se,

λq(K(ψ +M))

K(ψ +M)
(ψ +M) + div(a(x)∇ψ) ≤ h(q(K(ψ +M)))[⃗b(x) · ∇ψ] em Ω. (3.9)

Como h(∞) = ∞ e [⃗b(x) · ∇ψ] > 0, segue de (3.5) que

lim
K→+∞

h(q(K(ψ +M)))[⃗b(x) · ∇ψ] = +∞

e

lim
K→+∞

λq(K(ψ +M))

K(ψ +M)
=

 λ
D1(∞)

se D1(∞) < +∞,

0 se D1(∞) = +∞.

uniformemente em Ω. Já que div(a(x)∇ψ(x)) é limitado, as expressões acima implicam

na validade de (3.9) para K > 0 suficientemente grande.

Observação 3.1. A regularidade de ϕ pode ser enfraquecida, de modo a podermos con-

siderar ϕ ∈ C2(Ω) ∩ C(Ω), desde que ainda se tenha a limitação superior da aplicação

x 7→ div(a(x)∇ϕ). Além do mais, podemos considerar w como uma super-solução q.t.p.

se b⃗(x)·∇ϕ > 0 apenas fora de um conjunto de medida nula. É claro que, como a natureza

do nosso método de sub-super solução é pontual, não iremos fazer este caso aqui.
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Estamos aptos a provar os nossos primeiros resultados de existência para o problema

(3.1).

Prova do Teorema F. Fixe λ ∈ (σ1
0D1(0), σ

∞
1 D1(∞)). A partir dos Lemas 3.2 e 3.3 obte-

mos um par de sub-super soluções w = ϵφm0 , w = Kφ̃∞ para o problema auxiliar (3.3).

Desde que φ̃∞ ≥ c1 > 0 em Ω, podemos tomar K > 0 suficientemente grande de modo

que w ≤ w em Ω. Segue do Teorema 3.1 que o problema (3.3) possui ao menos uma

solução w em [w,w]. Já que φ0 > 0 em Ω, esta solução é positiva. Portanto, tomando

u = q(w), obtemos uma solução positiva para (3.1).

Observação 3.2. Se D1(0) = 0 ou D1(∞) = +∞, o intervalo (σ0
1D1(0), σ

∞
1 D1(∞)) está

bem definido. Entretanto, se D1(0) > 0 e D1(∞) < +∞, pode ocorrer que σ0
1D1(0) >

σ∞
1 D1(∞), o que acarretaria na impossibilidade da existência de algum λ onde o método

de sub-super solução poderia ser aplicado com as funções que foram obtidas nos Lemas

3.2 e 3.3. Para ilustrar essa situação, considere

D1(s) = D2(s) = D(s) = 1 +
1

s+ 1
.

Neste caso, h ≡ 1, portanto σ0
1 = σ∞

1 . Por outro lado, D(0) = 2 > 1 = D(∞).

Prova do Teorema G. A prova é análoga à do F, a única diferença é que usamos o Lema

3.4 ao invés do Lema 3.3.

3.2 Abordagem via Bifurcação

Essa seção é dedicada ao estudo de pontos de bifurcação de soluções positivas, assim

como provar o Teorema I. Antes, porém, vamos revisar alguns fatos básicos e resultados

abstratos da Teoria de Bifurcação. Para maiores detalhes, recomendamos as referências

[31, 33, 56, 69, 70].

Definição 3.2 (Ponto de bifurcação a partir da origem). Sejam U um espaço de Banach

e F : R×U → U uma aplicação cont́ınua tal que F(λ, 0) = 0, para todo λ ∈ R. Dizemos

que (λ0, 0) é um ponto de bifurcação da equação F(λ, u) = 0 a partir da curva de soluções

triviais (λ, 0) se existe uma sequência (λn, un) ⊂ R×U \ {0} de modo que F(λn, un) = 0,

λn → λ0 e un → 0, quando n→ +∞.

Na prova do Teorema H, usaremos o seguinte resultado abstrato, o qual é um com-

pilado dos resultados dados em [56, Proposição 6.5.2, Lema 6.5.3, Lema 6.5.4 e Teorema

6.5.5]:
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Teorema 3.2. Seja U um espaço de Banach ordenado cujo cone positivo PU seja normal e

possua interior não-vazio. Considere K : U → U um operador linear, cont́ınuo, compacto

e fortemente positivo, isto é, que K(PU\{0}) ⊂ int(PU). Considere também G : R×U → U
um operador cont́ınuo que seja compacto em conjuntos limitados e que, para qualquer

conjunto compacto Λ ⊂ R, satisfaça

lim
∥u∥U→0

G(λ, u)
∥u∥U

= 0, uniformemente para λ ∈ Λ.

Finalmente, assuma que o operador

F(λ, u) := u− λKu− G(λ, u),

satisfaça o Prinćıpio do Máximo Forte, no sentido que

(λ, u) ∈ R× (PU \ {0})
F(λ, u) = 0

}
=⇒ u ∈ int(PU).

Então, existe uma componente ilimitada C ⊂ R × int(PU) de soluções de F(λ, u) = 0

emanando de (λ0, 0), onde λ0 denota o inverso do raio espectral de K. Além disso, este é

o único ponto de bifurcação de soluções positivas a partir da curva de soluções triviais.

Agora, lembre que

Definição 3.3 (Ponto de Bifurcação no Infinito). Um ponto (λ0,∞), com λ0 ∈ R, é um

ponto de bifurcação no infinito da equação F(λ, u) = 0 se existe uma sequência (λn, un) ⊂
R× U tal que F(λn, un) = 0, λn → λ0 e ∥un∥U → +∞, quando n→ +∞.

Em ordem de apresentar o resultado abstrato, necessitamos demonstrar a segunda

parte do Teorema H. Considere um operador uniformemente eĺıptico L, uma função

cont́ınua κ : Ω → R de modo que κ(x) ≥ κ0 > 0 em Ω e denote por µ1 o principal

autovalor de

Lu = λκ(x)u em Ω, u = 0 sobre ∂Ω.

Com essas notações, podemos enunciar o seguinte caso particular dos resultados contidos

em [70, Teorema 2.28 e Corolário 2.37]:

Teorema 3.3. Se G ∈ C(Ω× R× RN × R) satisfaz

lim
(s,|ξ|)→(+∞,+∞)

|G(x, s, ξ, λ)|
(s2 + |ξ|2)1/2

= 0, (3.10)

uniformemente em x ∈ Ω e em λ ∈ Λ compacto, então a equação

Lu = λκ(x)u+ G(x, u,Du, λ) em Ω, u = 0 sobre ∂Ω,
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possui um cont́ınuo C∞ ⊂ R × C1
0(Ω) de soluções que toca (µ1,∞). Além disso, existe

uma vizinhança M de (µ1,∞) tal que

(i) C∞ \M é limitado em R× C1
0(Ω) e toca R× {0} ou

(ii) C∞ \M é ilimitado.

Se, adicionalmente, G for continuamente diferenciável e

G(x, s, ξ, λ) = G1(x, s, ξ, λ)s+
N∑
j=1

(G2)j(x, s, ξ, λ)ξj, (3.11)

com G1, G2 cont́ınuas em (s, ξ) = (0, 0), então as soluções obtidas podem ser consideradas

positivas.

O restante desta seção é destinado ao estudo da bifurcação a partir da curva de

soluções triviais e da bifurcação a partir do infinito.

3.2.1 Bifurcação a partir da solução trivial

Nosso objetivo agora é mostrar a existência de um cont́ınuo ilimitado C0 ⊂ R×C1
0(Ω) de

soluções positivas de (3.1) emanando do ponto (σ0
1D1(0), 0). Isso é exatamente o que está

enunciado no primeiro item do Teorema H, cuja prova apresentamos agora:

Prova do Teorema H item (i). O primeiro passo é reescrever o problema (3.3) de um

modo em que possamos aplicar o Teorema 3.2. Desde que L0 não possui termos de

ordem zero, podemos considerar a aplicação K = L−1
0 : C(Ω) → C1

0(Ω), que é exatamente

o operador resolvente associado ao problema linearL0u = f, em Ω,

u = 0, sobre ∂Ω,

para cada f ∈ C(Ω). É fácil ver que K é linear e cont́ınuo. Utilizando algumas ferra-

mentas padrão de regularidade eĺıptica combinadas com a imersão compacta de Sobolev

W 2,p(Ω) ↪→ C1
0(Ω), para p > N , mostra-se que K é compacto. Como L0 satisfaz o

Prinćıpio do Máximo Forte, temos em particular que K é fortemente positivo. Além

disso, já que K = L−1
0 , o inverso do raio espectral do operador K coincide com σ0

1.
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Note que w ∈ C2(Ω) ∩ C(Ω) é uma solução clássica de (3.3) se, e somente se,L0w = λq(w) + (h(0)− h(q(w))) [⃗b(x) · ∇w], em Ω,

w = 0, sobre ∂Ω.

Sendo D1(0) > 0, o problema acima se torna equivalente à

F (λ,w) := w − λ
1

D1(0)
K(w)−G(λ,w) = 0,

onde G : R× C1
0(Ω) → C1

0(Ω) é definida por

G(λ,w) := λK

(
q(w)− w

D1(0)

)
+K

(
(h(0)− h(q(w))) [⃗b(x) · ∇w]

)
.

Note que G é cont́ınua e compacta. Ademais, para qualquer w ̸= 0, podemos usar que K

é um operador linear e cont́ınuo para concluir que

∥G(λ,w)∥C1
0 (Ω)

∥w∥C1
0 (Ω)

≤ C1|λ|
∥w∥C1

0 (Ω)

∥∥∥∥q(w)− w

D1(0)

∥∥∥∥
C(Ω)

+ C2∥h(q(w))− h(0)∥C(Ω)

≤ C1|λ|
∥∥∥∥q(w)w

− 1

D1(0)

∥∥∥∥
C(Ω)

+ C2∥h(q(w))− h(0)∥C(Ω)

com C1 = C1(T ) > 0 e C2 = C2(⃗b) > 0. Assim, recordando que q(0) = 0 e usando (3.4),

conclúımos que, para qualquer conjunto compacto Λ ⊂ R, vale que

lim
∥w∥

C1
0(Ω)

→0

∥G(λ,w)∥C1
0 (Ω)

∥w∥C1
0 (Ω)

= 0, uniformemente em λ ∈ Λ.

Por fim, lembre que o cone positivo P do espaço de Banach ordenado C1
0(Ω) verifica (ver

[6, p. 623-624])

int(P) =

{
u ∈ C1

0(Ω) : u > 0 em Ω,
∂u

∂ν
< 0 em ∂Ω

}
.

Suponha que λ ∈ R e w ∈ P \ {0} sejam tais que F (λ,w) = 0. Então, w é uma solução

não-trivial e não-negativa de (3.3). Assim, para

L̃ := −div(a(x)∇) + h(q(w(x)))[⃗b(x) · ∇],

temos que L̃w = λq(w), em Ω,

w = 0, sobre ∂Ω.
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Se λ ≤ 0, segue do Prinćıpio Máximo Forte que w ≤ 0, o que é uma contradição. Con-

sequentemente, λ > 0 e podemos aplicar novamente o Prinćıpio do Máximo Forte para

concluir que w ∈ int(P).

As considerações acima garantem que podemos aplicar o Teorema 3.2 para extrair

o cont́ınuo de soluções positivas C0 dado no item (i) do Teorema H.

3.2.2 Bifurcação no infinito

Nesta sub-seção, obteremos resultados sobre a bifurcação no infinito para o problema

(3.1), complementando o estudo feito acima. Começaremos provando a segunda parte do

Teorema H:

Prova do Teorema H item (ii). Desde que Di(∞) ∈ (0,+∞), para i = 1, 2, nós temos

que h(∞) < +∞. Assim, podemos reescrever (3.3) da seguinte maneira: L∞w = λ
1

D1(∞)
w +G(x,w,∇w, λ), em Ω,

u = 0, sobre ∂Ω,
(3.12)

onde

G(x, s, ξ, λ) := λ

(
q(s)− s

D1(∞)

)
+ (h(∞)− h(q(s))) [⃗b(x) · ξ],

para todo (x, s, ξ, λ) ∈ Ω×R×RN ×R. É claro que a decomposição em (3.11) vale com

G1(x, s, ξ, λ) :=


λ
(
q(s)
s

− 1
D1(∞)

)
, se s ̸= 0,

λ
(

1
D1(0)

− 1
D1(∞)

)
, se s = 0,

e

(G2)j(x, s, ξ, λ) := (h(∞)− h(q(s))) bj(x),

para todo j = 1, . . . , N .

Seja Λ ⊂ R um conjunto compacto e note que, para qualquer λ ∈ Λ,

lim
(s,|ξ|)→(+∞,+∞)

∣∣∣λ(q(s)− s

D1(∞)

) ∣∣∣
(s2 + |ξ|2)1/2

≤ c1 lim
(s,|ξ|)→(+∞,+∞)

∣∣∣∣q(s)s − 1

D1(∞)

∣∣∣∣ = 0.

Além disso, ∣∣∣(h(∞)− h(q(s))) [⃗b(x) · ξ]
∣∣∣

(s2 + |ξ|2)1/2
≤ |h(∞)− h(q(s))|∥ b⃗∥L∞(Ω),
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e, consequentemente,

lim
(s,|ξ|)→(+∞,+∞)

∣∣∣(h(∞)− h(q(s))) [⃗b(x) · ξ]
∣∣∣

(s2 + |ξ|2)1/2
= 0.

Já que os dois limites acima são uniformes em x ∈ Ω e λ ∈ Λ, conclúımos que

lim
(s,|ξ|)→(+∞,+∞)

|G(x, s, ξ, λ)|
(s2 + |ξ|2)1/2

= 0, uniformemente em x ∈ Ω, λ ∈ Λ,

e, portanto, (3.10) é válida. Assim, podemos aplicar o Teorema 3.3 para o problema

(3.12) e utilizar a definição de σ∞
1 para finalizar a prova do H item (ii).

É interessante observar que o nosso problema não admite outros pontos de bifurcação

no infinito, como podemos ver no próximo resultado:

Proposição 3.1. Suponha que D1(0) > 0 e Di(∞) ∈ (0,+∞), para i = 1, 2. Se λ > 0

é um ponto de bifurcação no infinito de (3.3) de soluções positivas em R× C1
0(Ω), então

λ = σ∞
1 D1(∞).

Demonstração. Seja λ > 0 tal que existe uma sequência de soluções (λn, wn) ⊂ R×C1
0(Ω)

de (3.3) de modo que wn ≥ 0 em Ω e

(λn, ∥wn∥C1
0 (Ω)) → (λ,+∞).

Pelo Prinćıpio Máximo Forte, temos que wn(x) > 0 para todo x ∈ Ω. Além disso, em

virtude de resultados clássicos de regularidade eĺıptica, (λn, wn) é uma solução clássica de

(3.3) e

∥wn∥L2(Ω) → +∞.

Definindo vn := wn/∥wn∥L2(Ω) e usando que (λn, wn) é uma solução de (3.3), nós temos

que ∫
Ω

a(x)[∇vn · ∇ϕ] dx+
∫
Ω

h(q(wn))[⃗b(x) · ∇vn]ϕ dx = λn

∫
Ω

q(wn)

∥wn∥L2(Ω)

ϕ dx, (3.13)

para qualquer ϕ ∈ H1
0 (Ω).

Se escolhermos ϕ = vn, obteremos que∫
Ω

a(x)|∇vn|2 dx+
∫
Ω

h(q(wn))[⃗b(x) · ∇vn]vn dx = λn

∫
Ω

q(wn)

∥wn∥L2(Ω)

vn dx. (3.14)

No que se segue, consideremos b⃗ ̸= 0. O caso em que b⃗ ≡ 0 é semelhante. Segue de (d1),
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D1(0) > 0, (3.4) e (3.5) que

q(s) ≤ c1s, ∀s ≥ 0,

para algum c1 > 0. Utilizando novamente que D1(0) > 0, juntamente com Di(∞) ∈
(0,+∞), extráımos c2 > 0 tal que

|h(s)| ≤ c2, ∀s ≥ 0.

Ademais, existe c3 > 0 de modo que |λn| ≤ c3, para todo n ≥ 1. Dado ϵ > 0, podemos

aplicar essas estimativas em (3.14) para concluir que

a0∥vn∥2H1
0 (Ω) ≤ c1c3

∫
Ω

v2ndx+ c2∥⃗b∥L∞(Ω)

∫
Ω

|∇vn||vn|dx

≤ c1c3

∫
Ω

v2ndx+ c2∥⃗b∥L∞(Ω)

(
ϵ∥vn∥2H1

0 (Ω) +
1

4ϵ
∥vn∥2L2(Ω)

)
,

onde também fizemos uso da desigualdade de Young na última linha. Escolhendo ϵ =

a0/2c2∥⃗b∥L∞(Ω) > 0 e lembrando que ∥vn∥L2(Ω) = 1, obtemos que

a0
2
∥vn∥2H1

0 (Ω) ≤ c1c3 +
c22∥⃗b∥2∞
2a0

.

Portanto, (vn) é limitada em H1
0 (Ω). A menos de subsequência, temos que

vn ⇀ v em H1
0 (Ω), vn → v em L2(Ω). vn(x) → v(x) q.t.p. em Ω, (3.15)

para algum v ∈ H1
0 (Ω). Utilizando ϕ = (vn−v) como função teste em (3.13) obtemos que∫

Ω

a(x)[∇vn · ∇(vn − v)] dx = Γ1,2 − Γ2,n (3.16)

onde

Γ1,n := λn

∫
Ω

q(wn)

∥wn∥L2(Ω)

(vn − v) dx e Γ2,n :=

∫
Ω

h(q(wn))(vn − v)[⃗b(x) · ∇vn] dx.

Da desigualdade de Hölder, temos que

|Γ1,n| ≤ c1c3

∫
Ω

|vn||vn − v|dx ≤ c1c3∥vn∥2L2(Ω)∥vn − v∥2L2(Ω),

e

|Γ2,n| ≤ c2∥⃗b∥L∞(Ω)

∫
Ω

|∇vn||vn − v|dx ≤ c2∥⃗b∥L∞(Ω)∥vn∥2H1
0 (Ω)∥vn − v∥2L2(Ω).

Segue de (3.15) que

lim
n→+∞

Γ1,n = 0 = lim
n→+∞

Γ2,n.
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Portanto, podemos utilizar (3.16), (3.15) e a(x) ≥ a0 para obter que

lim
n→+∞

∥vn∥2H1
0 (Ω) = ∥v∥2H1

0 (Ω).

Isso somado a convergência fraca de (vn) implicam que vn → v fortemente em H1
0 (Ω).

Agora, vamos analisar o limite de cada termos em (3.13). Primeiramente, a con-

vergência fraca de (vn) fornece

lim
n→+∞

∫
Ω

a(x)[∇vn · ∇ϕ] dx =

∫
Ω

a(x)[∇v · ∇ϕ] dx,

Desde que vn > 0, temos que v ≥ 0. Além disso, v ̸= 0, afinal ∥v∥L2(Ω) = 1. Assim, o

conjunto

Ω+ = {x ∈ Ω : v(x) > 0}

possui medida positiva. É claro que wn(x) = vn(x)∥wn∥L2(Ω) → +∞ q.t.p. em Ω+ e assim

lim
n→+∞

h(q(wn(x))) = h(∞) e lim
n→+∞

q(wn)

∥wn∥L2(Ω)

= lim
n→+∞

q(wn)

wn
vn =

1

D1(∞)
v,

para q.t.p. x ∈ Ω+. Segue de (3.15) e do Teorema da Convergência Dominada de Lebesgue

que

lim
n→+∞

∫
Ω+

h(q(wn))[⃗b(x) · ∇vn]ϕ dx =

∫
Ω+

h(∞)[⃗b(x) · ∇v]ϕ dx,

e

lim
n→+∞

∫
Ω+

q(wn)

∥wn∥L2(Ω)

ϕ dx =

∫
Ω+

1

D1(∞)
vϕ dx.

Por outro lado,∣∣∣ ∫
Ω\Ω+

h(q(wn))[⃗b(x) · ∇vn]ϕ
∣∣∣ dx ≤ c2∥⃗b∥L∞(Ω)

∫
Ω\Ω+

|∇vn||ϕ| dx

e ∣∣∣ ∫
Ω\Ω+

q(wn)

∥wn∥L2(Ω)

ϕ
∣∣∣ dx ≤ c1

∫
Ω\Ω+

|vn||ϕ| dx

Já que v ≡ 0 em Ω \ Ω+, podemos argumentar como antes para obter

lim
n→+∞

∫
Ω\Ω+

h(q(wn))[⃗b(x) · ∇vn]ϕ dx = lim
n→+∞

∫
Ω\Ω+

q(wn)

∥wn∥L2(Ω)

dx = 0.

Combinando essas convergências e fazendo n→ ∞ em (3.13), conclúımos que∫
Ω

a(x)[∇v · ∇ϕ] dx+
∫
Ω

h(∞)[⃗b(x) · ∇v]ϕ dx =
λ

D1(∞)

∫
Ω

vϕ dx, ∀ϕ ∈ H1
0 (Ω).
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Portanto, v é uma solução fraca de
L∞v =

λ

D1(∞)
v, em Ω,

v = 0, sobre ∂Ω.

Como v ̸= 0 e v ≥ 0, ela tem que ser uma autofunção associada ao primeiro autovalor de

L∞. Assim, λ = σ∞
1 D1(∞), o que finaliza a prova.

3.2.3 Prova do Teorema I

Essa sub-seção é dedicada à apresentar a demonstração do Teorema I. Inicialmente, mos-

tramos um resultado de não-existência, o qual será usado para complementar o estudo

dos cont́ınuos obtidos anteriormente. Vale ressaltar que este resultado por si só pode ser

interessante.

Proposição 3.2. Suponha que D1(∞) < +∞ e tome u ∈ H1
0 (Ω) \ {0} uma solução fraca

e não-negativa de (3.1).

(i) Se D2 satisfaz (d3), então para toda ψ ∈ (H1
0 (Ω) ∩ L4(Ω)) \ {0} vale que

λ ≤ ∥D1∥L∞(R)

∫
Ω
a(x)|∇ψ|2dx∫

Ω
ψ2dx

+ C

∫
Ω

|div(ψ2⃗b(x))| dx

(ii) Se b⃗ satisfaz (b2), então

λ ≤ ∥D1∥L∞(R)

∫
Ω
a(x)|∇ξ|2dx∫

Ω
ξ2dx

,

em que ξ ∈ (H1
0 (Ω) ∩ L4(Ω)) \ {0} é tal que div(ξ2b) possui sinal constante q.t.p.

em Ω.

Demonstração. Sejam u ∈ H1
0 (Ω) \ {0} uma solução fraca e não-negativa de (3.1) e ψ ∈

(H1
0 (Ω) ∩ L4(Ω)) \ {0}. Dado ϵ > 0, podemos utilizar ψ2/(u + ϵ) ∈ H1

0 (Ω) como função

teste, obtendo que

λ

∫
Ω

u

u+ ϵ
ψ2 dx =

∫
Ω

D2(u)

u+ ϵ
ψ2 [⃗b(x) · ∇u] dx

−
∫
Ω

a(x)D1(u)∇u ·
[

ψ2

(u+ ϵ)2
∇u− 2ψ

u+ ϵ
∇ψ
]
dx.

(3.17)



92

Seja fϵ : R+ → R+ a função de classe C1 dada por

fϵ(s) :=

∫ s

0

D2(t)

t+ ϵ
dt, s ∈ R+.

Integrando por partes, obtemos que∫
Ω

D2(u)

u+ ϵ
ψ2 [⃗b(x) · ∇u] dx =

∫
Ω

ψ2 [⃗b(x) · ∇(fϵ(u))] dx

=

∫
∂Ω

fϵ(u)ψ
2 [⃗b(x) · ν⃗(x)] dσ −

∫
Ω

fϵ(u)div(ψ
2⃗b(x)) dx

= −
∫
Ω

fϵ(u)div(ψ
2⃗b(x)) dx,

Assim, voltando à equação (3.17), podemos concluir que

λ

∫
Ω

u

u+ ϵ
ψ2 dx = −

∫
Ω

a(x)D1(u)∇u ·
[

ψ2

(u+ ϵ)2
∇u− 2ψ

u+ ϵ
∇ψ
]
dx

−
∫
Ω

fϵ(u)div(ψ
2⃗b(x)) dx

= −
∫
Ω

a(x)D1(u)

∣∣∣∣∇ψ − ψ

u+ ϵ
∇u
∣∣∣∣2dx+ ∫

Ω

a(x)D1(u)|∇ψ|2 dx

−
∫
Ω

fϵ(u)div(ψ
2⃗b(x)) dx

≤ ∥D1∥L∞(R)

∫
Ω

a(x)|∇ψ|2 dx+
∫
Ω

|fϵ(u)div(ψ2⃗b(x))| dx.

Fazendo ϵ→ 0+ e utilizando o Teorema da Convergência Dominada de Lebesgue, obtemos

λ

∫
Ω

ψ2 dx ≤ ∥D1∥L∞(R)

∫
Ω

a(x)|∇ψ|2 dx+
∫
Ω

|f(u)div(ψ2⃗b(x))| dx.

A desigualdade acima combinada com as hipóteses implicam no resultado.

Observação 3.3. Se div(⃗b(x)) = 0 para todo x ∈ Ω e, para alguma função não-nula

ψ ∈ H1
0 (Ω) ∩ L4(Ω), nós tivermos que [⃗b · ∇ψ] = 0 q.t.p. em Ω, então div(ψ2⃗b(x)) = 0

q.t.p. em Ω e, portanto, (b2) vale. Esta condição no produto interno significa que ψ é

a primeira integral do campo vetorial b⃗. Ela aparece em diversos problemas envolvendo

grandes termos de advecção. Veja, por exemplo, [3, 16, 17].

Observação 3.4. A Proposição 3.1 é um ind́ıcio que, mesmo sem as condições da Pro-

posição 3.2, deveŕıamos ter um resultado de não-existência para valores grandes de λ,

desde que se tivesse a finitude de Di(∞), para i ∈ {1, 2}. Entretanto, não conseguimos

obtê-lo.

Estamos em posição de provar o nosso segundo resultado principal acerca de existência
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de soluções. Durante a demonstração, para um conjunto C ⊂ R × C1
0(Ω), denotaremos

por ProjRC o conjunto {λ ∈ R : ∃u ∈ C1
0(Ω) de modo que (λ, u) ∈ C}, que é exatamente

a projeção de C em R.

Prova do Teorema I. Inicialmente, observe que o Teorema H fornece a existência dos

cont́ınuos C0 e C∞, bifurcando a partir da origem em σ0
1D1(0) e do infinito em σ∞

1 D1(∞),

respectivamente. Além disso, pelo Teorema 3.2 e pela Proposição 3.1, estes são os únicos

pontos de bifurcação de soluções positivas de (3.1). Ademais, pelo Prinćıpio Máximo

Forte, (3.1) não possui solução positiva para λ = 0. Assim,

ProjRC0 ⊂ (0,∞) e ProjRC∞ ⊂ (0,∞).

Se C0 = C∞, então (λ, λ) ⊂ ProjRC0, o que implica o resultado.

Agora suponha que C0 ̸= C∞. Desde que C0 é ilimitado e σ∞
1 D1(∞) é o único ponto

de bifurcação no infinito, segue que (σ0
1D1(0),∞) ⊂ ProjRC0. De modo similar, temos

que (σ∞
1 D(∞),∞) ⊂ ProjRC∞. Consequentemente, o resultado segue.

Finalmente, assumindo (b2) ou (d3), podemos aplicar a Proposição 3.2 para concluir

que o problema (3.1) não admite solução positiva para λ > 0 grande e, portanto, as pri-

meiras coordenadas de C0 e C∞ são limitadas. Dáı, pela natureza global desses cont́ınuos

segue que C0 = C∞.

A Figura 3.1 ilustra os posśıveis diagramas de bifurcação dados pelo Teorema I.

Na parte (a), mostramos uma posśıvel configuração quando C0 ̸= C∞, e na parte (b),

uma posśıvel diagrama quando eles são iguais. Para simplificar a figura, denotaremos

λ0 = σ0
1D1(0) e λ∞ = σ∞

1 D1(∞).

λ0λ∞
λ

∥ · ∥C1
0 (Ω)

(a)

C0

λ0λ∞
λ

∥ · ∥C1
0 (Ω)

C∞

(b)

C0 = C∞

Figura 3.1: Posśıveis diagramas de bifurcação.
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3.3 Direção de Bifurcação e Multiplicidade de Soluções

Nesta seção, estudaremos a direção de bifurcação de soluções positivas tanto da ori-

gem quanto no infinito. Esta análise nos permitirá obter resultados de multiplicidade

de soluções em alguns casos.

No que se segue, analisaremos a direção de bifurcação a partir da curva de soluções

triviais. Recorde que a bifurcação em um ponto (λ∗, 0) é dita subcŕıtica se existe uma

vizinhança de (λ∗, 0) em C1
0(Ω)×R tal que toda solução (λ, u) de (3.1) nesta vizinhança

satisfaz λ < λ∗. De forma análoga, se para toda solução (λ, u) de (3.1) em uma vizinhança

de (λ∗, 0) ocorrer que λ∗ < λ, então dizemos que a bifurcação em (λ∗, 0) é supercŕıtica.

Teorema 3.4. Suponha que D1 ∈ C2(R+), D2 ∈ C1(R+) e D1(0) > 0. Então, (σ0
1D1(0), 0)

é um ponto de bifurcação de (3.1) a partir da curva de soluções triviais (λ, 0). Além

disso, se denotarmos por φ∗
0 a principal autofunção positiva do operador adjunto L∗

0, esta

bifurcação será subcŕıtica se

I := D′
1(0)

∫
Ω

a(x)φ0 [∇φ0 · ∇φ∗
0] dx+D′

2(0)

∫
Ω

φ0φ
∗
0

[⃗
b(x) · ∇φ0

]
dx < 0, (3.18)

e supercŕıtica se I > 0.

Demonstração. Seja F : R× C2
0(Ω) → C(Ω) dada por

F (λ, u) := −div(a(x)D1(u)∇u)−D2(u)[⃗b(x) · ∇u]− λu.

É claro que F é de classe C1 e as soluções de F (λ, u) = 0 são soluções de (3.1). Além

disso, com um cálculo direto, temos que

L(λ) := DuF (λ, 0) = D1(0)L0 − λI.

Como σ0
1 é um autovalor simples de L0, temos que

ker
[
L(σ0

1D1(0))
]
= span{φ0}.

Afirmamos que

L′(σ0
1D1(0))φ0 /∈ R[L(σ0

1D1(0))], (3.19)

em que R[L(σ0
1D1(0))] denota o resolvente do operador L(σ0

1D1(0)). Com efeito, se isso

não for o caso, podeŕıamos usar L′(σ0
1D1(0)) = −I para extrair ξ ∈ C2

0(Ω) de forma que

−φ0 = L(σ0
1D1(0))ξ = D1(0)

[
L0ξ − σ0

1ξ
]
.
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Multiplicando essa igualdade por φ∗
0 e integrando por partes sobre Ω, obtemos que

0 >

∫
Ω

−φ0φ
∗
0 dx = D1(0)

∫
Ω

[
L0ξ − σ0

1ξ
]
φ∗
0 dx

= D1(0)

∫
Ω

[
L∗
0φ

∗
0 − σ0

1φ
∗
0

]
ξ dx = 0,

o que é uma contradição. Isso prova (3.19).

Aplicando o Teorema de Crandall-Rabinowitz [31, Teorema 1.7] conclúımos que

(σ0
1D1(0), 0) é um ponto de bifurcação de F (λ, u) = 0 a partir da curva de soluções

triviais. Mais ainda, sendo Z o complemento topológico de ker [L(σ0
1D1(0))] em C2

0(Ω),

existem ϵ > 0 e aplicações cont́ınuas

λ : (−ϵ, ϵ) → R, ψ : (−ϵ, ϵ) → Z

de modo que λ(0) = 0, ψ(0) = 0 e as soluções não-triviais de F (λ, u) = 0 em uma

vizinhança de (σ0
1D1(0), 0) são dadas por

(µ(s), u(s)) :=
(
σ0
1D1(0) + λ(s), s(φ0 + ψ(s))

)
s ∈ (−ϵ, ϵ), s ̸= 0.

Desde que φ0 ∈ int(P), então u(s) ∈ int(P) para s > 0 suficientemente pequeno,

onde P denota o cone positivo do espaço de Banach ordenado C1
0(Ω). Isso implica que as

únicas soluções positivas em uma vizinhança de (σ0
1D1(0), 0) são dadas por (µ(s), u(s)),

para s > 0 pequeno. Uma vez que F (µ(s), u(s)) = 0, podemos tomar φ∗
0 como função

teste para chegar que∫
Ω

[
σ0
1D1(0) + λ(s)

]
u(s)φ∗

0 dx =

∫
Ω

a(x)D1(u(s))[∇u(s) · ∇φ∗
0] dx

+

∫
Ω

D2(u(s))[⃗b(x) · ∇u(s)]φ∗
0 dx.

(3.20)

Ademais,

D1(0)

∫
Ω

φ∗
0L0u(s) dx = D1(0)

∫
Ω

u(s)L∗
0φ

∗
0 dx = σ0

1D1(0)

∫
Ω

u(s)φ∗
0 dx,

isto é,

σ0
1D1(0)

∫
Ω

u(s)φ∗
0 dx = D1(0)

∫
Ω

a(x)[∇u(s) · ∇φ∗
0] dx

+D2(0)

∫
Ω

[⃗b(x) · ∇u(s)]φ∗
0 dx.

(3.21)
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Por outro lado, fazendo a expansão de Taylor obtemos para i = 1, 2 que

Di(u(s)) = Di(0) + sD′
i(0)u

′(0) + o(s) = Di(0) + sD′
i(0)φ0 + o(s),

as s → 0. Substituindo a equação acima em (3.20), utilizando (3.21) e lembrando que

u(s)/s = (φ0 + ψ(s)), conclúımos que

λ(s)

s

∫
Ω

(φ0 + ψ(s))φ∗
0 dx =

∫
Ω

a(x)

(
D′

1(0)φ0 +
o(s)

s

)
[∇φ∗

0 · ∇ (φ0 + ψ(s))] dx

+

∫
Ω

(
D′

2(0)φ0 +
o(s)

s

)
[⃗b(x) · ∇ (φ0 + ψ(s))]φ∗

0 dx

Fazendo s → 0+, obtemos que λ′+(0)
∫
Ω
φ0φ

∗
0 dx = I, isto é, o sinal de λ′+(0) é dado pelo

sinal de I, o que conclui a prova.

Como consequência deste resultado, é posśıvel mostrar que a direção de bifurcação

de soluções positivas a partir da solução trivial é determinada pelo sinal de D′
1(0), desde

que se assuma hipóteses apropriadas sobre o campo vetorial b⃗. Especificamente, temos o

seguinte resultado:

Teorema 3.5. Suponha que D1 ∈ C2(R+), D2 ∈ C1(R+), D1(0) > 0 e defina

L′
0 := −div(a(x)D1(0)∇).

Suponha que b⃗ ∈ C1(Ω;RN) satisfaça div(⃗b(x)) = 0 e [⃗b(x) · ∇z0(x)] = 0 q.t.p. em Ω,

em que z0 > 0 é a principal autofunção de L′
0 associada à σΩ

1 [L
′
0]. Então, a bifurcação de

soluções positivas de (3.1) a partir de (σ0
1D1(0), 0) é subcŕıtica se D′

1(0) < 0 e supercŕıtica

se D′
1(0) > 0.

Demonstração. Por simplicidade, denote λ′ = σΩ
1 [L

′
0]. Desde que [⃗b(x) ·∇z0(x)] = 0 q.t.p.

em Ω, então

L0z0 =
λ′

D1(0)
z0, em Ω, z0 = 0, sobre ∂Ω.

Como z0 > 0, conclúımos que λ′ = σ0
1D1(0) e z0 = φ0, em que φ0 é uma autofunção posi-

tiva de L0 associada à σ0
1. Ademais, sendo que b⃗ é um campo vetorial livre de divergência,

L0 é um operador uniformemente eĺıptico e auto-adjunto. Em particular, φ∗
0 = φ0 e

podemos aplicar o Teorema da Divergência para obter que

3

∫
Ω

φ0φ
∗
0

[⃗
b(x) · ∇φ0

]
dx =

∫
Ω

[⃗b(x) · ∇(φ3
0)] dx

= −
∫
Ω

div(⃗b(x))φ3
0 dx+

∫
∂Ω

φ3
0

[⃗
b(x) · η

]
dσ = 0.
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Assim,

I = D′
1(0)

∫
Ω

a(x)φ0 [∇φ0 · ∇φ∗
0] dx = D′

1(0)

∫
Ω

a(x)φ0|∇φ0|2 dx

tem o mesmo sinal de D′
1(0).

O mesmo tipo de resultado pode ser obtido quando consideramos a bifurcação no

infinito. Ressaltamos que os conceitos de bifurcação subcŕıtica e supercŕıtica são definidos

de maneira análoga.

Teorema 3.6. Suponha que D1(0) > 0, Di(∞) ∈ (0,+∞), para i = 1, 2, e defina

L′
∞ := −div(a(x)D1(∞)∇).

Suponha que b⃗ ∈ C1(Ω;RN) satisfaça div(⃗b(x)) = 0 e [⃗b(x) · ∇z∞(x)] = 0 q.t.p. em Ω,

onde z∞ > 0 é uma autofunção principal de L′
∞ associada à σΩ

1 [L
′
∞]. Então a bifurcação

de soluções positivas a partir do infinito em λ = σ∞
1 D1(∞) é

(i) subcŕıtica, se D1(s) ≤ D1(∞) para todo s > 0.

(ii) supercŕıtica, se D1(s) > D1(∞) para todo s > 0.

Demonstração. Procedendo de maneira análoga à prova do Teorema 3.5 obtemos queL∞z∞ =
σΩ
1 [L

′
∞]

D1(∞)
z∞, em Ω,

z∞ = 0, sobre ∂Ω,

e, portanto, σΩ
1 [L

′
∞] = σ∞

1 D1(∞) e z∞ = φ∞. Assim, segue da Proposição 3.2 e da

Observação 3.3 que, se (λ, u) ∈ R ×H1
0 (Ω) é uma solução fraca e não-negativa de (3.1),

então

0 < λ ≤ ∥D1∥L∞(R)

∫
Ω
a(x)|∇φ∞|2dx∫

Ω
φ2
∞dx

= ∥D1∥L∞(R)σ
∞
1 .

Se D1(s) ≤ D1(∞) < +∞, então ∥D1∥L∞(R) ≤ D1(∞), e portanto

λ ≤ σ∞
1 D1(∞),

o que implica que a bifurcação no infinito de soluções positivas é subcŕıtica. Com isso,

provamos o item (i).

Para demonstrar o item (ii), argumentaremos por contradição. Suponha queD1(s) >

D1(∞) para todo s > 0 e assuma que exista uma sequência (λn, un) de soluções clássicas

de (3.1) tal que

(λn, ∥un∥C1
0 (Ω)) → (σ∞

1 D1(∞),+∞)
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e λn ≤ σ∞
1 D1(∞), para todo n ∈ N. Como φ∞ ∈ int(P), podemos escolher u2n/φ∞ como

função teste na equação satisfeita por φ∞ para chegar que∫
Ω

a(x)D1(∞)∇φ∞ ·
[
2un
φ∞

∇un −
u2n
φ2
∞
∇φ∞

]
dx = σ∞

1 D1(∞)

∫
Ω

u2n dx, (3.22)

onde utilizamos que [⃗b(x) · φ∞(x)] = 0 q.t.p. em Ω. Uma vez que (λn, un) verifica (3.1),

podemos tomar un como função teste nessa equação e usar λn ≤ σ∞
1 D1(∞) para obter

que∫
Ω

a(x)D1(un)|∇un|2 dx+
∫
Ω

D2(un)[⃗b(x) · ∇un]un dx ≤ σ∞
1 D1(∞)

∫
Ω

u2n dx. (3.23)

Definindo f(s) :=
∫ s
0
D2(t)t dt, utilizando que div(⃗b(x)) = 0 q.t.p. em Ω e integrando por

partes, temos que∫
Ω

D2(un)[⃗b(x) · ∇un]un dx =

∫
∂Ω

f(un)[⃗b(x) · ν⃗(x)] dσ −
∫
Ω

f(un)div(⃗b(x)) dx = 0.

Assim, segue de (3.22) e de (3.23) que∫
Ω

a(x)D1(∞)∇φ∞ ·
[
2un
φ∞

∇un −
u2n
φ2
∞
∇φ∞

]
dx ≥

∫
Ω

a(x)D1(un)|∇un|2 dx.

Consequentemente, podemos usar D1(s) > D1(∞) para obter que

0 <

∫
Ω

a(x)|∇un|2[D1(un)−D1(∞)] dx ≤ −
∫
Ω

a(x)D1(∞)

∣∣∣∣∇un − un
φ∞

∇φ∞

∣∣∣∣2dx ≤ 0,

o que é uma contradição.

Por fim, podemos combinar os Teoremas 3.4 e 3.6 para estabelecer o seguinte resul-

tado de multiplicidade:

Teorema 3.7. Suponha que todas as condições dos Teoremas 3.4 e 3.6 sejam válidas e

considere I o número real dado em (3.18).

(i) Se σ0
1D1(0) > σ∞

1 D1(∞), I > 0, e D1(s) > D1(∞) para todo s > 0, então existe

λ∗ > σ0
1D1(0) de modo que o problema (3.1) possui ao menos duas soluções clássicas

e positivas para cada λ ∈ (σ0
1D1(0), λ

∗).

(ii) Se σ0
1D1(0) < σ∞

1 D1(∞), I < 0, e D1(s) < D1(∞) para todo s > 0, então existe

0 < λ∗ < σ0
1D1(0) de modo que o problema (3.1) possui ao menos duas soluções

clássicas e positivas para cada λ ∈ (λ∗, σ0
1D1(0)).
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Demonstração. Provaremos apenas o item (i), pois o segundo item é totalmente análogo.

Uma vez que I > 0 e D1(s) > D1(∞) para cada s > 0, pelos Teoremas 3.4 e 3.6, temos

que ambas as bifurcações (na origem e no infinito) são supercŕıticas. Assim, usando que

σ0
1D1(0) > σ∞

1 D1(∞), obtemos λ∗ > σ0
1D1(0) de maneira que (3.1) possua duas soluções

clássicas e positivas para cada λ ∈ (σ0
1D1(0), λ

∗).

λ∞ λ0 λ∗
λ

(a)

∥ · ∥C1
0 (Ω)

λ∗ λ0 λ∞
λ

∥ · ∥C1
0 (Ω)

(b)

C0 = C∞C0 = C∞

Figura 3.2: Posśıveis Diagramas de Bifurcação

Na Figura 3.2, ilustramos os posśıveis comportamento do cont́ınuum de soluções

C0 = C∞ sob as hipóteses do Teorema 3.7 (i) e (ii). Por simplicidade, denotamos λ0 =

σ0
1D1(0) e λ∞ = σ∞

1 D1(∞).

Observação 3.5. Note que todas as hipóteses do Teorema 3.7 são satisfeitas neste caso:

Assuma D1(s) = D2(s) = D(s). Neste caso, h ≡ 1 e σ0
1 = σ∞

1 . Além disso, suponha

que div(⃗b(x)) = 0 e b⃗ · ∇φa = 0 q.t.p. em Ω, onde φa > 0 denota a principal autofunção

positiva para o operador −div(a(x)∇·). Assim, se D(s) > D(∞) > 0 para todo s > 0

e D′(0) > 0, podemos aplicar o item (i) para obter duas soluções positivas de (3.1) para

λ em um intervalo espećıfico. A função s ≥ 0 7→ D(s) := e−(s−1)2e−(s−1) + 1 satisfaz

todas as condições acima. De forma semelhante, se 0 < D(s) < D(∞) para todo s ≥ 0 e

D′(0) < 0, todas as condições no item (ii) são válidas. Um exemplo é a função s ≥ 0 7→
D(s) = −e−(s−1)2e−(s−1) + 2.

Observação 3.6. Algumas questões interessantes que podem levar a trabalhos futuros são

(i) Complementar a descrição das soluções positivas de (3.1) quando h(∞) = ∞, sem

a hipótese (b1);

(ii) Obter resultados de existência ou não-existência de soluções de (3.1) para valores

grandes de λ sem a presença das hipóteses (b2) ou (d3).

(iii) Estudar o caso degenerado em que h(0) não é um número real.



Considerações Finais

Neste trabalho, estudamos diversas classes de problemas eĺıpticos, obtendo resultados de

existência, multiplicidade, não-existência e regularidade de soluções.

Nos dois primeiros caṕıtulos estudamos variações de problemas clássicos, impondo

condições de Neumann não-lineares no bordo e conseguimos para esses problemas obter o

mesmo tipo de resultado que é válido quando a não-linearidade se faz presente no interior

com condição de Dirichlet homogênea.

Já no último caṕıtulo, o objeto de estudo foi bem distinto, bem como as técnicas

utilizadas. Em verdade, todo o trabalho se mostra como uma grande mistura heterogênea

de problemas de equações diferenciais parciais, ressaltando a abrangência da pesquisa

realizada durante o peŕıodo de doutorado.

Para o futuro próximo, gostaŕıamos de complementar os resultados do Caṕıtulo 2,

finalizando o estudo do problema (2.3) para o p-laplaciano, bem como fechando os casos

que não foram estudados no Caṕıtulo 3.
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