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Resumo

Teoria de Floquet em escalas temporais isoladas e
aplicacoOes

Neste trabalho, estudamos a w-periodicidade para func¢des definidas em escalas
temporais isoladas, bem como a equagdo dindmica linear de primeira ordem em escalas
temporais isoladas, para a qual sua funcdo de coeficietnes de matriz é w-periddica e
regressiva. Apresentamos a teoria de Floquet em escalas de tempo isoladas, baseada
na nova defini¢do de fungdes w-periddicas, e algumas aplicagdes de nossos resultados.

Os resultados referentes a teoria de Floquet sdo originais e podem ser encontrados em
[6].

Palavras-chave: Teoria de Floquet; escalas temporais isoladas; periodicidade
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Abstract

In this work, we study w-periodicity for functions defined on isolated time scales,
as well as the first-order linear dynamic equation on isolated time scales for which its
coefficient matrix function is w-periodic and regressive. We provide Floquet theory on
isolated time scales, based on the new definition of w-periodic functions and present
some applications of our results. The results concerning Floquet theory are original

and can be found in [6].

Keywords: Floquet theory; isolated time scales; periodicity
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Introduction

The theory of time scales was introduced by Stefan Hilger in his PhD thesis (see
[10]), in 1988. This theory, that can unify discrete and continuous analysis, as well the
cases in "between", which means the hybrid cases, has been attracting the attention of
many researchers, due to its power of unification, extension and discretization since
then (see [8, 9]). The basis of this theory will be explored in the first chapter. Although
this theory has the goal of unification discrete, hybrid and continuous theory, avoiding
that one needs to prove twice or even more times the analogue results, there are some
open questions related on how to generalize some fundamental concepts for all time
scales. One example is the concept of periodicity, which was completely open during
many years how to generalize for any time scale. The difficulty behind comes from the
fact that the classical definition of w-periodicity for a function is given by the following
property below:

flt+w) = f(t)

which should be fulfilled for all ¢ in the domain of f. However, clearly, this property is
not well-defined for every time scale, since it requires the additive property of the time
scale to ensure it makes sense. More precisely, one needs to ensure that ¢ +w € T for
all t € T. However, in the framework of time scales, it is quite restrictive and excludes

many interesting time scales. For instance, the quantum scale
No _ f.m.
¢g°={q¢":neNy}

for ¢ > 1 does not satisfy such property. On the other hand, it is a known fact that
this scale plays a crucial role for quantum calculus which has several applications in
quantum physics.

Therefore, motivated by this gap in the classical definition of periodicity, M. Bohner

and R. Chieochan [4] introduced for the first time the concept of w-periodicity for quan-
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tum time scale, which can be translated by:

q¢“f(q“t) = f(t)

for all ¢ € ¢"°. One first look at this definition may be very different from the one that
would be expected in this case, specially because it appears an extra factor multiplying
the function f. However, this definition is motivated by the fact that this definition
preserves a very important property of w-periodic functions stated below:

/t " F(s)As = /t:% £()As

for all ¢ € ¢"°. This property can be described below for the case ¢ = 2 and for the case
that fft f(s)As=c.

c/B
¢/16 c C |
1 2 4 8 16 37

Figure 1: The constant area of the rectangle corresponding to the 1-periodic function f
on the intervals [2",2"*1], n € {0,1,2,3,4}. This picture was borrowed from reference

[4].

The analogue of this property for the classical case can be read as follows:

[ ras= / F(s)As,

for all ¢ € T. This property represents a key for the investigations of periodic func-
tions, specially in the study of differential equations. Hence, a general definition of
periodicity needs to keep this property preserved. However, during many years, the
question on how to define the concept of periodicity for any time scales was open in the
literature and many researchers in the field tried to present some suitable definition.

In 2012, M. Adivar [1] made a very important progress in this direction. He pre-
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sented the so-called periodicity in shifts, which can be stated as below (see [1] for more
details).

Definition 0.0.1 (Periodicity in shifts). Let T be a time scale with the shift operators 6
associated with the initial point t, € T*, which is the largest subset of the time scale T such
that the shift operators 0, : [to, 00)r x T* — T* exist. The time scale T is said to be periodic
in shifts 0. if there exists a p € (to, 00)r+ such that (p,t) € Dy forallt € T*, where Dy :=
{(s,t) € [to,00)T x T*: 6+ (s,t) € T*}. Futhermore, if

P := mf{p € (to, OO)']T*: (p, t) c DifOT allt € T*} 75 to,

then P is called the period of time scale T.

With this definition in hand, M. Adivar [1] introduced a general definition of peri-

odic functions in the context of time scales described below:

Definition 0.0.2 (Periodic function in shifts d1). Let T be a time scale that is periodic in
shifts 6+ with the period P. We say that a real valued function f defined on T* is periodic in
shifts 6 if there exists a T' € [P, 0o)r« such that

(T,t) € Diand f(61(t)) = f(t) forall t € T*, where 61 := 5.(T\1). (1)

The smallest number T € [P, 0o)r+ such that (1) holds is called the period of f.

From the definition of Adivar, we get that the quantum scale can be considered
a periodic time scale in shifts. However, the concept presented by Adivar in [1] for
periodic functions in shifts does not recover the important property that we remarked
to be essential in the investigations of periodic functions, specially in the context of
dynamic equations on time scales.

On the other hand, in the same article of Adivar, it is possible to find another con-
cept that fits better with the central role of periodic functions, they are so-called A-

periodic function in shifts J,. The definition can be stated as follows (see [1]).

Definition 0.0.3 (A-periodic functions in shift 6. ). Let T be a time scale that is periodic in
shifts 6 with period P. We say that a real valued function f defined on T* is A-periodic in
shifts 6 if there exists a T’ € [P, 0o)r+ such that

(T,t) € Dy forallt € T", (2)

the shifts 01 are A-differentiable with rd-continuous derivatives and
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FOL()0L(t) = f(t) forall t € T*, )

where 61 (t) := 5.(T\ ).
The smallest number T' € [P, 0o)q+ such that the properties above (2)-(3) hold is called the
period of f.

This definition is consistent to the one presented by M. Bohner and R. Chieochan in
[4] for quantum case.

Later, in [8], M. Bohner, J. G. Mesquita and S. Streipert presented a concept of w-
periodicity for all isolated time scales only using iterated shifts, which is simply the
composition of the forward jump operator w times. Also, in [8], the authors investi-
gated the existence of periodic solutions for the first order linear dynamic equation on
time scales, employing this new concept.

Also, in the same article, the authors comparised their concept and the concept of
A-periodicity in shifts presented in Adivar's paper. We also bring some comments
concerning it in this work, to elucidate the reader about both definitions.

After all these advances in the construction of the definition of periodicity on iso-
lated time scales, many results have been proved, and interesting models were inves-
tigated. See [7], [8], [9].

Although all these developments, some important questions remain completely
open. One of them is concerning the Floquet theory for all isolated time scales. Consid-
ering the importance and relevance of this theory for the investigations for first-order
equations, our goal in this dissertation is to fulfill this gap and present a version of
Floquet theory in this context, employing the definition introduced by M. Bohner, J. G.
Mesquita and S. Streipert in [7].

On the other hand, the Floquet theory plays an important role in many applications,
such as in linear dynamic systems with periodic coefficient matrix functions, and in
many physical and technical situations, such as chaos and population growth. It gives
a cannonical form for each fundamental matrix solution of the common linear system,
and also, provides Floquet multipliers of
Z—f = A(t)z, 4)
whose distribution in the complex plane gives us valuable information about the solv-
ability and stability of periodic solutions to (non-)homogeneous systems of differen-
tial equations. The study of classical Floquet theory can be found in Hartman [3], and
Ahlbrandt and Ridenhour have studied Floquet theory on periodic time scales [5], with
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the additive property.

The study of Floquet theory for quantum calculus have been developed in a sep-
arated way by M. Bohner and R. Chieochan [4]. This theory was used as basis to
investigate a version for Floquet theory for any isolated time scales. More precisely,

we work with the following equation

™ = A(t)z, 5)
where
zt = M, forallt €T, (6)
pu(t)

since we are dealing with isolated time scales. Assume A is an w-periodic matrix func-
tion and is also regressive, i.e., I + p(t)A(t) is invertible for all ¢ € T, where [ is the
identity matrix. All the results of the Floquet theory on isolated time scales are original
and have not been investigated in the literature so far. The new results presented here
can be found in the paper [6].

This work is organized as follows: Chapter 1 is devoted to present auxiliary results
of time scales, presenting the necessary tools to understand this work. In Chapter 2,
we introduce some results of iterated shifts and the concept of periodicity on isolated
time scales used here. Also, we bring a discussion concerning different definitions
which appear in the literature for periodic functions making a comparasion. Finally, in
Chapter 3, we present our main result, that is, a version of Floquet theory on isolated
time scales, some important properties and examples are given to illustrate our new

definition.



Chapter

1

Basic on the theory of time scales

In this chapter, we will introduce some basic definitions and fundamental results

about time scales that will be useful for the comprehension of this work.

1.1 Basic Definitions

A time scale, denoted by T, is a closed and nonempty subset of the real numbers.
Some examples of time scales are R, Z, N, although Q, R\ Q, and C, are not time scales.

In this section, we introduce some fundamentals concepts in the theory of time
scales.

We start with the definition of forward and backward jump operators, which play

an essential role in this work.

Definition 1.1.1 (See [2, Definition 1.1]). Let T be a time scale. For t € T, we define the for-
ward jump operator o : T — T and the backward jump operator p : T — T, respectively,

by
o(t):=inf{s € T:s>t} and p(t) :=sup{seT:s <t}

In addition, in this definition, denoting () as the empty set, we adopt the following
convention:
i) If T has a maximum ¢, inf § = sup T, i. e., o(t) = ¢;
ii) If T has a minimum ¢, sup @ = inf T, i. e., p(t) = t.
The value of o(t) and p(t) play a central role for a classification of the points belong-
ing to T:
1. If t < o(t), t is called right-scattered;
2.Ift <supT and t = o(t), t is called right-dense;



1.1 Basic Definitions 9

3. If p(t) < t, tis called left-scattered;
4. Ift > inf T and p(t) = t, t is called left-dense;
5. If p(t) <t < o(t), tis called isolated;
6.If p(t) =t = o(t), t is called dense.
Now, we are ready to define the graininess function y : T — [0, 00) by

pu(t) :=o(t) —t

for all ¢t € T, that is, the graininess function is the distance from a point to the closest
point on the right and plays a central role in the analysis on time scales.
If T has a left-scattered maximum m, we define T® = T — m, otherwise, T = T. In

summary, we can write:

T — T\ (p(supT),supT], if supT < o
)T, if supT = oo.

Let f: T — R be a function, we define the function f? : T — R by
fo(t) = f(a(t)), forallt € T,

ie. f7o=foo.

Below, we present some examples to illustrate our definition:

Example 1.1.2 (See [2, Example 1.2]). If T = R, then for any t € R
o(t) =inf{s € R: s>t} =inf(t,00) = t,

and
p(t) =sup{s € R: s <t} =sup(—o0,t) =t.

Hence every point t € R is dense. The graininess function p turns out to be
wu(t) =0, forallt € T.
Example 1.1.3 (See [2, Example 1.2]). If T = Z, then for every t € Z
ot)=inf{s€Z:s>t}=inf{t+1,t+2,t+3,..} =t+1,

and
p(t) =sup{s€Z:s<t}=sup{..,t—3,t—2,t -1} =t — 1.
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Hence, every point t € Z is isolated. The graininess function p turns out to be
wu(t) =1, forallt € T.
Example 1.1.4. If T = ¢"°, ¢ > 1, then for every t € N,
o(t) =inf{s € ¢"° : s > t} = inf{qt, ¢°t, ¢*, ...} = qt,

and

t t t t
_ No . _ _
p(t) =supise€qg®:s<t —sup{..., , ,—}_—.

Hence, every point t € Ny is isolated. The graininess function p turns out to be

u(t) =t(qg—1), forall t € ¢"°.

Below we state the induction principle on time scales, which is different from the
classical one, and it is very useful to prove some fundamental results. However, we
omit its proof here. The reader may consult [2] for details.

Theorem 1.1.5 (Induction Principle, see [2, Theorem 1.7]). Let t, € T and assume that
{S(t) ot € [to, OO)}T

is a family of statements satisfying:

L. The statement S(t,) is true.

I If t € [ty,00) € T is right-scattered and S(t) is true, then S(c(t)) is also true.

I Ift € [ty,00) € T is right-dense and S(t) is true, then there is a neighborhood U of t
such that S(s) is true for all s € U N (t,00) € T.

IV.Ift € (ty,00) € T is left-dense and S(s) is true for all s € [to,t), then S(t) is true.
Then S(t) is true for all t € [ty, 00) € T.

1.2 Delta-derivatives

In this section, our goal is to present the definition of A-derivative and the main
results and properties.

Consider a function f: T — R and define the delta (or Hilger) derivative of f at a
point ¢t € T*.
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Definition 1.2.1 (See [2, Definition 1.10]). Assume f: T — R is a function and let t € T*,
define f2(t) to be the number with the property that given any e > 0, there is a neighborhood
Uoft(ie U= (t—0,t+0)NT for some § > 0) such that

f(o(t) = f(s)] = fA@)[o(t) = s]| < elo(t) — s| forall s € U.

We call f2(t) the delta (or Hilger) derivative of f at t.

We say that f is delta (or Hilger) differentiable on T* provided f(t) exists for all
t € T%, and the function f® : T* — R is called the (delta) derivative of f on T*.

Remark 1.2.2. Although the definition above is stated to functions taking value in R, this
definition can be generalized analogously to functions taking value in R™ or in any arbitrary
Banach space X.

Example 1.2.3 (See [2, Example 1.13]).
(i) If f: T — Ris defined by f(t) = « forall t € T, where o € R is a constant, f2(t)
Indeed, for any € > 0,

0.

[F(o(t)) = f(s)] = 0.fo(t) = s]| = la —a[ = 0 < €|o(t) — s|

holds for all s € T.
(i) If f: T — Ris defined by f(t) =t forall t € T, then f> = 1. Indeed, for every ¢ > 0,

[F(o(®) = F(s)] = Llo(t) = sll = [o(t) —s = (0(t) = s)| = 0 < €|o(t) — 5]
holds for all s € T.
(iti) If f : T — Ris defined by f(t) = t> forall t € T, then f2(t) = o(t) + ¢, forall t € T.

In fact, by the definition, given e > 0, there exists a neighborhood U = (t — €,t + €) N T such
that

(0(t)* = s* = (o(t) + 1) (o(t) = 5)| = (s = 1) - (o) — 5)| <el(a(t) — 5)|

holds for all s € U.
Below, we present some useful properties concerning the delta derivative.

Theorem 1.2.4 (See [2, Theorem 1.16]). Assume f: T — R isa function and let t € T". The
following statements hold:
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(i) If f is A-differentiable at t, then f is continuous at t.
(ii) If f is continuous at t and t is right-scattered, then f is A-differentiable at t with

fla(t) - f(t)
plt)

(iii) If t is right-dense, then f is A-differentiable at t iff the limit

A =

o 10 = £

s—t t—s

exists as a finite number. In this case,

500 — 1 O —I6)

s—t t—s

(iv) If f is A-differentiable at t, then

flo(t)) = F(8) + u() 2 ().

Proof. (i) Assume f is A-differentiable at ¢, then given €* > 0, there is a neighborhood
Uoft,ie. U= (t—0,t+6)NTsuch that |t —s| < §and

(o) = f(s) = fA@)[o(t) = s]| < €'lo(t) — s

for all s € U. Note that

[F(t) = F(s)] = [£(o(t) = f(s) = fA@)o(t) = s] = flo(t) + £(t) + fA (D)o (t) - 5|

t) = f(s) + fo(t) = flo() + FA@)o(t) — s] = F2AB)[o(t) - 5|
< lo(t) = sl + € lult)] + 2Ot = 5]

Since
lo(t) —s|=|o(t) —s+t—t]| < |o(t) —t| + |t —s| = |ul)] + [t — s,

it implies that
(&) = f()] < €lo(t) — s + € |u®)] + [F2 D]t — 5.
If 6 =¢"and |t — s| < 6, then

[f(t) = F(s)] < € (n®)] + 1t = sl) + @] + |2 O]t — 5]
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< e @2lult)] + 1) + | fA)].

For ¢* € (0, 1), define:
er = (|2lp®)] + 1+ |f2@))
Then
[f(t) = f&) < e (121 + 1+ 2 @)) = e

It follows that f is continuous at .

(ii) Assume f is continuous at ¢ and is right-scattered. By continuity,

flo) = f(s) _ fla(t) = f() _ flo(t)) — f(t)
t)—s o(t) '

Using the definition of limit, given € > 0, there is a neighborhood U of t (U = (t — d,t +
0) N T) such that

lim
s—t 0'(

t u(t)

B Flo) = f(s) _ flol) —F0)] _
t—s]<d = o) —s o) <
Multiplying all by |o(t) — s|, we get
flo(t)) = f(t)
fla(t)) = f(s) = @ o) = s[| < elo(t) = .

proving the desired result.
(iii) Assume ¢ is right-dense and f is A-differentiable at ¢. Let ¢ > 0, there is a
neighborhood U of ¢ (U = (t — §,t + ) N T) for § > 0 such that

[f(o(t) = f(s) = fADo(t) = sI| < elo(t) 5],
Since o(t) = t,
[f(t) = f(s) = fA@OIt = 5] < eft — 5]

for all s € U. Therefore,

f(t) = f(s)

A
) <



14 Basic on the theory of time scales

for all s € U, s # t. It implies that

fA<t> — lim f(t) — f(S)

s—t t—s ’

proving the result. Reciprocally, assuming

o Fo(0) = 1(5)

s—t t—s

exists and ¢ is right-dense, then f is A-differentiable at ¢, which means that given e > 0,
there exists a neighborhood U of ¢ such that:

[f(a(t)) = f(s) = f2O)o(t) = sl| < elo(t) - s],

for all s € U. That implies that

Lo St L0 el Jo0 oo
|t — s| [t — s| - |t — s|
Since o(t) =t, we get

LI 2o < .

Hence the limits exists, and

|[f(e(t) = f(s) = fAB)o(t) — s]| < elo(t) —s|-
It implies that

300 — 1 O =IG)

s—t t—s

(iv) If ¢ is right-dense, then pu(t) = o(t) —t =t — t = 0 and, clearly,

Fla(®)) = f(t) +0.f2(t) = f(t) + n(t) f2(2).

If t is right-scattered, then using (ii),
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getting the desired result. [

Remark 1.2.5. The formula (iv) is called the "simple useful formula”, since it can be used in
many different situations and it can be applied for any points in the time scale.

Example 1.2.6 (See [2, Example 1.18]).
(i) If T = R, then Theorem 1.2 (iii) yields that f: R — R is A-differentiable at t € R iff

10— 1 1O =)

exists,
s—t t—s

i.e., iff f is differentiable at t.
(ii) If T = Z, then Theorem 1.2 (ii) yields that f: Z — R is delta differentiable at t € 7Z

with

flo(t) — f(¥)
p(t)
where A is the usual forward difference operator.

rA) = = Af(D),

With that in hands, we can find the derivatives of sums, products, and quotients of

A-differentiable functions. It is the content of the next result.

Theorem 1.2.7 (See [2, Theorem 1.20]). Assume f, g : T — R are A-differentiable att € T".
Then:
(i) The sum f + g : T — R is A-differentiable at t with

(f +9)2(t) = f2(t) + g2 (1)
(ii) For any constant o, af : T — R is A-differentiable at t with
(af)2(t) = af2(1).
(iii) The product fg : T — R is A-differentiable at t with
(f9)2(t) = fA(D)g(t) + fo(t)g>(t) = f(t)g> (1) + f2(D)g(a (1))

(@) If f(t)f(o(t)) # 0, then ; is A-differentiable at t with

NN A
<f> O ONCO)
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(v) If g(t)g(o(t)) # 0, then ﬁ is A-differentiable at t with
I\ 209 — 1
(5) - e

Proof. Assume f and g are A-differentiable at ¢t € T*.
(i) Let € > 0, then there exist neighborhoods U; and U, of ¢ with

t)g* (1)
)

[o(t) — s (L.1)
forall s € U; and

|[o(t) — s]] (1.2)

|(f +9)(@(®) = (f + 9)(s) = (f + 9)*(D]o(t) - 3|

— F(0(0) + g(o(0)) — F(s) — g(s) — FADIt) — 5] — P W]lo(t) — 5]
< |F(o(®) - F(s) = FAWIo() — 81| + |9l () — g(s) — Dl (t) — 5]
T oty — sl + o) — o

=¢€lo(t) — s|

Therefore, f + g is A-differentiable at t and (f + g)2(¢) = f2(t) + g~ (¢) holds for every
te T .
(ii) Let € > 0, then there exists a neighborhood U of ¢ such that

7o) = 1) = P Olo(0) = 51| < 1o (t) =
for all s € U. With that, we have two cases:
° |la]>1
Therefore (af)(t) = af(t):
[(af)(a(t)) — (af)(s) = (af2(1)[o(t) — s]| = |al [f(a(t) = f(s) = f2(D)]o(t) — 5]

< |a|5|o< > ~s

= €elo(t) — s,
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getting that (af) is A-differentiable for ¢ € T".

° |a| <1
Using 0 < || < 1, we get

|(@f)(a(t) = (af)(s) = (af2 ) (t) — s]| < lalelo(t) = s| < elo(t) — ],

for all s € U. Then, af is A-differentiable at ¢ and (af)® = af?.
(iii) Let € > 0, there exist neighborhoods U; and U of ¢ such that

[f(o(t)) = f(s) = f2(B)[o(t) — 5] < elo(t) — s]
forall s € U, and
l9(a(t)) — g(s) — g® (D)o (t) — 5] < elo(t) — 5]

for all s € U,. Using Theorem 1.2.4 (i), f and ¢ are continuous, i.e., there exists a
neighborhood Us; of ¢ such that

[f(t) = f(s)] < e

forall s € Us. Define U := U, NU;NU;and let s € U, then

|(fg)(a(8)) = (fg)(s) = [f2(t)g(a(®)) + f(D)g> @)][o(t) — 5|
= |f(a(®)g(a(t)) — f(s)g(s) — f2Do(t) = slg(e(t)) — F(H)lo(t) — s]g™(1)] -

Adding and subtracting the terms f(s)g(o(t)), g(o(t))f(t), g(s)f(t), and g™ (t)[o(t) —
s|[f(s) — f(1)], we get

[f(@(®)g(a()) = f(s)g(s) = F2(Bo(t) = slg(a(t)) = f(B)[o(t) — s]g™ ()
+f(8)g(a(t) = f(s)g(a(t)) + g(a(®)f(t) — g(a(t))f(t) + g(5)f ()

= 9()f (&) + g () [o(t) = s][f () = F(1)] = g* (D)o (t) — s][f(s) — F(R)]]
=lg(a®)Lf(e(t) = f(s) = 2B (t) = s] + f(D)lg(o(t) — g(s) — 9> (B)]o(t) — 5]
+1f(s) = FONla(o(t) — g(s) = g B)o(t) = sl] + [o(t) = slg™(O[f(s) = f(D)]]

< |gle@)f(@(t) = f(s) = 2O (t) = s]| + [fB)lg(a(t) — g(s) — g* (D)o (t) — 3|
+[1f(s) = FOllg(e (1)) = g(s) = 9> (O)o(t) = s]| + [[o(t) = slg>(D[f (s) = F(B)]]

< elo(t) = sllg(a(®)] + elo(t) = s (E)] + elo(t) = sle + el [o(t) — s]g™(1)]
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< elo(t) = s|llgla@)+1f ()] + 1+ g2 (@B)]]-
Since ¢ > 0, |g((£))] > 0, |£(t)] > 0, and [g2 ()| > 0, we define
= ellglo )]+ [fH)] + 1+ [g>(B)]] > 0.
Then, we have
[(f9)(o(t) = (f9)(s) — [F2(D)g(a(t) + f(t)g>()][o(t) — 5| < €*|o(t) — 5.

Therefore, fg is A-differentiable at ¢ and (fg)*® = f2¢° + fg*. Analogously, one can
prove that (fg)® = f2g + f7¢®

(iv) Let € > 0, there exists a neighborhood U of ¢ such that

[F(o(0) = £(s) = F2@O)o(t) —s]| <

for all s € U. Hence,

1 +fA(t)[o(t)—s]1 f(s)f(o(t))’:

flo@)  fls)  fO)Fe®) || f(s)f(a(t)

= | f(s) = flo fF)f2Bo(t) — 5] 1

= |f(s) = flo(t) + 70) Hf(s)f(a(t))’

= 1)~ oty + (Jf)(,[;(t> L 20 (o)~ 5~ o) - Hff—)‘
— f(s) = fA)[o(t) —s At)[o S f(s) 1

< _\f(o(t>> f(s) = f20)o () = | + | f2®)o () ][ f() H’f (s)f(a(t) )‘

< _é\a(t)—SHf( s)f(o ()>I+2!a<t)—8|\f( ‘f—)‘

= lelo(t) = sllf(s)f

oo

Therefore, % is A-differentiable at ¢t and

1\*° fA
(?) e




1.2 Delta-derivatives 19

(v) Using Theorem 1.2.7 (iii) and (iv) and having ¢(t)g(c(t)) # 0

@A =7 (‘g@?;((;)( )+ g{j&

t)
_ —f®)g*t)ge(t) + f2()g(t)g(o(t))
9(t)g(o(t))g(o(t))
_ fRet) — f(H)g ()
9(t)g(o()) '
Therefore, § is A-differentiable at ¢ and
(i)A e
g 99°
getting the desired result. O

Example 1.2.8 (See [2, Exercise 1.23]). By Theorem 1.2.7 (iii), we have

(2= (FH2 = FAf+ 2= (F+ )5

Let us find the generalization of this formula of the derivative of the f™+'. We start by checking
the formula for f3:

(FN2= (N2 = (2 + (2= A+ O+ ()2 = PR+ 7+ ()]
Analogously, we get for f*:
(5= N =D+ U715 =T+ P+ 17+ ()]

A careful examination leads us to
fn—l-l fA Z fk fo

forall n € N. Now, we prove this formula is fulfilled. In order to do this, we use induction. For

it, consider n = 1, then:

n 1
Y =AY )
k=0 k=

= FA U+ )]
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Suppose this holds for p = n + 1, that means,
p—1
()2 = A0 ek

k=0

Now, let us prove that it holds for p + 1
(S =N = UM + (7)o f?
_ fA Z fk(fa)p—l—k

k=0

fH(frre

+ (e

= [/ R
k=0

ST+ L2+ LU 4+ P+ ()]
AN R,

~ =
i~

Using the example above, we can obtain the next theorem.

Theorem 1.2.9 (See [2, Theorem 1.24]). Let « be a constant and m € N.
(i) For f defined by f(t) = (t — o)™, we have

A=) (o) =)'t —a)y" =" teT.
v=0
(ii) For g defined by ¢(t) = T we have
m—1 1
go(t) = - te,

provided (t — a)(o(t) — a) # 0.

Proof. (i)Ifm=1, f(t) =t —«,and f2(t) = 1. Assume

A =) (o(t)—a)'(t —a)
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holds for f(t) = (t —a)™ Let F(t) = (t — a)™" = (t — @)™ (t — ) = f(t)(t — ). Using
the product rule:

F2(t) = ()t —a) + flo(t)(t — a)®

(5

= (o(t) =)' (t —a)™".

ot - Oé)m”> (t — )+ (f(a(t)

—a)'(t—a)"" + (o(t) —a)"

Il
q

v=0
(ii) To prove this part, we will use Theorem 1.2.4 (iv). Let g(¢) (t la)m - f (1t),
NP ()
A OTIE0)
This implies that
g2 (t) = _va:_ol(a(t) —a)'(t—a)m v

(t —a)m(a(t) —a)m
X (t—a) T (e (t) — )
(t —a)m(o(t) - 04)’”

1M
—

(t =)+ (ot) —a)m’
getting the desired result. O

The higher order derivatives of functions on time scales is defined in the usual way,
as one can check in the following definition.

Definition 1.2.10 (See [2, Definition 1.27]). For a function f: T — R, the second derivative
fAL exists and is well-defined provided f* is differentiable on T = (T*)* with derivative
A% = (f22 . T — R. Similarly, we define higher order derivatives f~" : T*" — R.
Finally, for t € T, we denote o*(t) = o(co(t)) and p*(t) = p(p(t)), and o"(t) and p"(t) for
n € N are defined accordingly. For convenience, we also put

L) =ac(t)=t, fA" =f and T =T.

Below, let us show an example to illustrate this definition.
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Example 1.2.11 (See [2, Exercise 1.29]). Let us find the second derivative of f on an arbitrary

time scale:
(i) f(t)=1
fAt) =0 and fA2(t) =0
(ii) f(t) =t

fAt) =1 and fA2(t) =0

(iii) f(t) = t*

For the second derivative, we need to apply Theorem 1.2.4 (ii) and (iii). Hence, if f2(t) =
o(t) + t is continuous at t and t is right-scattered, then > is A-differentiable at t with
a_fAo) = f20H) o) +o(o®t) —t—o(t) o) —t

fE8 = (120)

1(t) p(t) (1)

On the other hand, if t is right-dense, then f* is A-differentiable at t with

A i O =) tHot) —s—ols) . 2t —2s

s=ot 1—s s—t t—s st t—§

Example 1.2.12 (See [2, Example 1.31]). In general, f g is not twice differentiable even if both

f and g are twice differentiable, since
(f9)* =TS9+ 79"
If f and g are twice differentiable and if f° is differentiable, then

(fg)* = (f2g+ f7g™)>
= ARG+ fATGR 7GR 4 TR
= A9+ (f27 + f7%)g" + + 7792,

where we write f2° to denote f2°.

1.3 Integration

The definitions below will help us to describe classes of functions that are inte-
grable.
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Definition 1.3.1 (See [2, Definition 1.57]). A function f: T — R is called regulated pro-
vided its right-sided limits exist (finite) at all right-dense points in T and its left-sided limits
exist (finite) at all left-dense points in T.

Definition 1.3.2 (See [2, Definition 1.58]). A function f: T — R is called rd-continuous
provided it is continuous at right-dense points in T and its left-sided limits exist (finite) at
left-dense points in T. The set of rd-continuous functions f : T — R will be denoted here by

Cra = Cra(T) = Coa(T, R).

The set of functions f : T — R that are A-differentiable and whose derivative is rd-continuous
is denoted by
Cly = CY(T) = C4(T, R).

7

The next result will bring important properties from those types of functions. These

properties will be important for our purposes.

Theorem 1.3.3 (See [2, Theorem 1.60]). Assume f : T — R, then the following statements
hold.

(i) If f is continuous, then f is rd-continuous.

(ii) If f is rd-continuous, then f is requlated.

(iii) The jump operator o is rd-continuous.

(iv) If f is regqulated or rd-continuous, then so is f°.

(v) Assume f is continuous. If g : T — R is requlated or rd-continuous, then f o g has
that property too.

Proof.

(i) The item (i) follows directly from the definition of rd-continuous functions.

(ii) If f : T — R is rd-continuous, for all left-dense points at T its left-sided limits
exist, since f is continuous for all right-dense points at T, its right-sided limits exist,
and we conclude f is regulated.

(iii) Let ¢t € T be a right-dense point. Let € > 0, there exists 0 < § < e such that if
se (t—0,t+06)NT,then |o(s) —o(t)| < e. Hence, for s € [t,t+ 0], o(s) > o(t) =t, and

o(s)—o(t)=o0(s)—t=s—t<d<e
Also, for s € (t — 0,t), we have that

—-0<s—t<0
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Then
—e<—0<s—t=s—o(t) <o(s)—oa(t).

Therefore, for s € (t —0,t +6), we get |0(s) — o(t)| < ¢, showing that ¢ is continuous at
right-dense points.
(iv) Assume f is regulated and ¢ € T is right-dense, then

lim f7(s) = lim f(o(s)) = lim f(u)

s—tt s—tt u—tt

exists. Also, if t € T is left-dense, since o is rd-continuous, the limit lim, ;- o(s) exists.

Defining v: = lim, ;- o(s), we get

lim f9(s) = lim f(o(s)) = lim f(u)

s—t— s—t— U—v

also exists, which implies that f? is regulated. Now, assume f is rd-continuous and
t € T is right-dense, we have the limit

lim f%(s) = lim f(o(s)) = lim f(u)

s—t u—t

exists. Then f7 is continuous at ¢. Also, for all left-dense points ¢ € T, the left-sided
limits exist for f“, concluding that f“ is rd-continuous.
(v) Assuming f is continuous and g is rd-continuous, then clearly f o ¢ is rd-

continuous. The same happens for the regulated case. O

Definition 1.3.4 (See [2, Definition 1.62]). A continuous function f: T — R is called pre-
differentiable with region of differentiation D, provided D C T*, T*\D is countable and
contains no right-scattered elements of T, and f is differentiable at each t € D.

Below, we state the Mean Value Theorem for time scales, which is analogue from
the classical one, and which corollary is very useful. However, we omit its proof here.

The reader may consult [2] for details.

Theorem 1.3.5 (Mean Value Theorem, see [2, Theorem 1.67]).
Let f and g be real-valued functions defined on T, both pre-differentiable with D. Then

forallt € D implies

forallr,s e T, r <s.
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Corollary 1.3.6 (See [2, Corollary 1.68]). Suppose f and g are pre-differentiable with the
region of differentiation D. Then the following statements hold.
(i) If U is a compact interval with endpoints r,s € T, then

Iﬂ@—fvﬂé{ wp|f%m}w—r«

teUrND
(ii) If f2(t) = 0 forall t € D, then f is a constant function.
(iii) If f2(t) = g™(t) forall t € D, then

g(t) = f(t) +C
forall t € T, where C' is a constant.

Proof. (i) Suppose f is pre-differentiable with the region of differentiation D and let
r,s € T with r < s. Define

g(t) 1:{ sup IfA(t)l}(t—T)

T€[r,s]*ND

for t € T. Considering g*(t) > |f2(t)| and using the Mean Value Theorem, we get

re(r,s|*ND

If(t)—f(r)lSg(S)—9(T>=9(S)={ sup IfA(T)I}(S—T%

proving the result.

(ii) Considering f2(t) = 0 and using (i), we have

rﬂ@—fwﬂs{sw M}V—ﬂ—&

teU*ND

It follows that |f(s) — f(r)| = 0 for r, s € T, and thus, f is constant.
= f(t) — g(t), for each t € T. Using (ii),

(iii) Define h(t):
WA() = 1f = gl%(t) = f2(t) — g°(t) = C,
which implies f2(t) = g2 (t) + C. O

Theorem 1.3.7 (Existence of Pre-Antiderivatives, see [2, Theorem 1.70]). Let f be requ-
lated. Then there exists a function F which is pre-differentiable with region of differentiation D
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such that

hold for all t € D.

Definition 1.3.8 (See [2, Definition 1.71]). Assume f: T — R is a requlated function. Any
function F defined as in Theorem 1.3.5 is called a pre-antiderivative of f. We define the
indefinite integral of a regulated function f by

/f(t)At =F(t)+C,

where C' is an arbitrary constant and F is a pre-antiderivative of f. We define the Cauchy

A-integral by
| fae=Fe) - Fo)

forallr,s € T. A function F is called an antiderivative of f : T — R provided

holds for all t € T*.
Example 1.3.9 (See [2, Example 1.72]). If T = Z, evaluate the indefinite integral

/atAt,

where a # 1 is a constant. Since

we get that

where C'is an arbitrary constant.

Theorem 1.3.10 (Existence of Antiderivatives, see [2, Theorem 1.74]). Every rd-continuous
function has an antiderivative. In particular if t, € T, then F defined by

F(t) = /t:f(f)m

for t € T, is an antiderivative of f.
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Proof. Suppose f is an rd-continuous, by Theorem 1.3.3 (ii), f is regulated. Let F' be a
function, whose the existence is guaranteed by Theorem 1.3.5 with D satisfying

for all ¢ € D. We have that F' is pre-differentiable with D. Let ¢t € T*\D, then ¢ is
right-dense because T*\ D cannot contain any right-scattered points. Let ¢ > 0, then
there exists a neighborhood U of ¢ with

1f(s) = f(t)] <€

for all s € U. Define
h(r) = f(1) = f(t)(T — to)

for 7 € T. Then h is pre-differentiable with D and we have

WA () = FA(t) — f(t) = f(1) — f(t)

for all 7 € D. Hence,
W2 ()| = [ f(s) = f(t)| < e
for all s € D N U. Therefore,

sup |[h2(s)| < e
seDNU

Thus, by Corollary 1.3.6, for r € U,

[F'(t) = F(r) = f(O)(t = )| = [h(t) + f()(t = to) = [n(r) + [()(r —to)] = [(E)(t = 7)|
= [h(t) = h(r)]

< { sup |hA<s>r} t—s| <dt—s
seDNU

This implies that F is A-differentiable at ¢t with F2(t) = f(t), concluding the proof. [

Theorem 1.3.11 (See [2, Theorem 1.75]). If f € Cyyand t € T", then

o(t)
/t () AT = u() £(0).
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Proof. Since f € Cyq, using Theorem 1.3.10, there exists an antiderivative F' of f,

o(t)
/t (r)AT = F(o(t) — F(t) = p(t) F3(t) = u(t) /(1)

getting the result. O
Theorem 1.3.12 (See [2, Theorem 1.76)). If f € C,yand {2 > 0, then f is nondecreasing.

Proof. Let f* > 0on [a,b)NTand let s,t € T, witha < s <t < b. Then

F(t) = f(s) + / FA()AT > f(s),

proving the result. O

Theorem 1.3.13 (See [2, Theorem 1.77]). If a,b,c € T, a € R, and f,g € Cyq, then
W f,1f =2 f DAL+ [ g(H)At
(zl)f af At—aff
(iii) fa FO)At=—["f
(iv) [* F(t)AL = [© () At+ fc FH)AL
(v) fbf (o(0)g At = (f9)(b) — (fg)(a) — [, FA(D)g(t) At
i) [} F(t)g™(£)At = (f9)(b) — (f9)(a) — [} FA(t)g(o () AtL;
(vii) [ f(t)At =
(viii) If | f(t)| < ( )on [a,b), then

/abf(t)At‘ < /abg(t)At

(ix) If f(t) > 0 forall a <t < b, then [* f(t)At > 0.

Proof. Leta,b,c € T, € R, f,g9 € Cyq, and since f, g € Cyq, by Theorem 1.3.10, f and g
have antiderivatives F' and G, respectively. This implies that:
(i) F 4 G is an antiderivative of f + g, so that

/ () + 9] At = (F+ G)(b) — (F + G)(a)
Fla) + G(b) - G(a)

/f At+/ (t)At
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(ii) Having af (t) = (af)(t), we have that

/ |(af)(®)] At = (aF)(b) — (aF)(a)
= aF(b) — aF(a)

— o / ’ F(HAL,
(iii) Let
[ s =ro) - Fa
Therefore, a
FO) - F@)] =~ 1F(@) - FO) = - [ f0at
(iv) Let

b c b
/ F()AL = F(b) — F(a) = F(c) — F(a) + F(b) — F(c) = / F()AL + / FH)AL,

proving the result.
(v) By Theorem 1.2.7 (iii),

(f9)> = g+ 79"
Integrating, we have
b b b
[ uerwai= [ rragmss [ rogoan

Since fg is antiderivative of f7¢g® + f2%g,

| g mat= o) - o - | £ 0ewar

(vi) The proof of this item is very similar to the proof of the previous one. Thus,
we omit it here.
(vii) Note that

/ " HW)AL = F(a) — Fla) = 0.

proving the result.
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(viii) Since | f(t)| < ¢(t) on [a, b), integrating both sides, we get

[ 1swiar< [ gwa

On the other hand, for ¢ € [a, b), we have that —| f(¢)| < f(t) < |f(t)|, integrating all the

sides,
[ -voias [swacs [

/ bf(t)At] < [rwiais [gwa
/ It At' / g(1) A,

(ix) Since f(t) > 0, F2(t) = f(t) > 0. Using Theorem 1.3.12, F'(¢) is nondecreas-
ing, then for b > a, we get:

Therefore,

Hence,

zmm—Fm)20¢: /wwyu2a

getting the desired result. [

Theorem 1.3.14 (See [2, Theorem 1.79]). Let a,b € T and f € Cyy.

(i) If T =R, then
b b
/ ft)At = / f(t)dt

where the integral on the right hand side is the usual Riemann integral from calculus.
(ii) If [a, b] N T consists of only isolated points, then

D tclapynr M) [ (1) if a<b;

b ,
/ f)At=<¢ 0 if a=b;

- Zte[b,a)ﬁ’]l‘ p)f(t) if a>b.
(iii) If T = hZ = {hk : k € Z}, where h > 0, then

SETLR) i a<b;

b -
/mﬂﬂAhz 0 if a=b

L f) if a>b.
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(iv) If T = Z, then

b o ft)if a<b
/f(t)At: 0 if a=b;
¢ S () if a>b.

Proof. (i) The proof of part (i) follows from Example 1.2.6 and the standard Funda-
mental Theorem of Calculus.

(ii) In this case, we can write [a,b| N T = {a = to, t4, ..., t, = b}, where tg, ..., t, € T,
since [a,b] N T consists of only isolated points. Using Theorem 1.3.13 (iv),

/abf(t)At:/totlf(t)At+/tlt2f(t)At+...+/:1 F(t)AL.

Using Theorem 1.3.11, we have:

b n—1 that n—1 o(ts) n—1
[roae=3 [T roac=3 [T st =Y uwise) = Y wof0)
a k=0 vtk k=0 v tx k=0 t€la,b)NT

Analogously, we can prove the other cases.
(iii) If @ < b, using item (ii),

b
71

/ fmat= S winfw = S fr =Y fkh)h

te(a,b)NT tela,b)NT

The other cases follow analogously.

(iv) This is a particular case of (iii) when h = 1. O

Definition 1.3.15 (See [2, Definition 1.82]). If a € T, sup T = oo, and f is rd-continuous
on [a, o), then we define the improper integral by

/OO ()AL= lim bf(t)At

provided this limit exists, and we say that the improper integral converges in this case. If this
limit does not exist, then we say that the improper integral diverges.



32 Basic on the theory of time scales

1.4 Chain Rules

If f,g: R — R, then the chain rule from calculus states that if g is differentiable at ¢
and if f is differentiable at ¢(¢), then

(fog)(t) = f'(g(t)g'(t).

The analogue chain rule from calculus does not hold for all time scales, as you can

check on the next example:

Example 1.4.1 (See [2, Example 1.85]). Let T = Z, and assume f,g : Z — Z are defined by
f(t) =t* and g(t) = 2t. Thus,

(fog)® = f2g(t) = fA(2t) = (472 =4(o(t) +1) =42t + 1) =8t + 4
forallt € Z, and

F2(g()g () = [o(g(t)) + g(®)][g(t + 1) — g(t)]
—[2g(t)+1]-2=[2(2t)+1]- 2= [4t +1] -2 = 8t +2

forallt € Z. Then, we have

(fog)® =8t+4#8t+2= f(g(t)g™(¢).

Although the chain rule does not work here, we will present some alternative prop-

erties that hold to any time scale and may be useful.

Theorem 1.4.2 (Chain Rule, see [2, Theorem 1.87]). Assume g : R — R is continuous,
g : T — R is delta differentiable on T, and f : R — R is continuously differentiable. Then
there exists c in the real interval [t, o(t)] with

(fog)(t) = f(g(c)g™ (), forall t € T
Proof. Fixt € T®. Assume that ¢ is right-scattered. Then,

flg(o(t) — fg(t)
pu(t) '

(fog)?(t) =
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If g(o(t)) = g(t), then we get (f o g)*(t) = 0, and g = 0. This implies that

(fog)2(t) = f'(9(c)g>(2)

holds for any c in the real interval [t, o()].
Assuming g(o(t)) # g(t), then

flgle(?) — f(g(#)) glo(t)) —g(?)
glo®) —g(t) ()

where ¢ is between ¢(t) and g(o(t)), by Mean Value Theorem (Theorem 1.3.5). Since
g: R — R is continuous, there exists ¢ € [t, o(t)] such that g(c) = &, getting the desired

(fog)?(t) = = f'(€)g (1),

result.

Now, suppose t is right-dense. Then we have

(Fo g)A(t) = lim L91) = J(9(5))

where ¢, is between ¢(s) and ¢(¢), by Mean Value Theorem (Theorem 1.3.5). By the
continuity of g, we get

lim{; =g (t)
s—t
which gives the desired result. O
Below, we present an example to illustrate the result above.

Example 1.4.3 (See [2, Example 1.88]). Given T = Z, f(t) = t?, g(t) = 2t, let us find
directly the value c guaranteed by Theorem 1.4.2 so that

(fo9)2(3) = f'(9(c))g™(3)

and show that c belongs to the interval guaranteed by Theorem 1.4.2. Using Example 1.4.1, we
have
(fog)®(3)=83+4=24+4=28

forallt € Z, and

F(g(0)g>(t) = f(2¢)2 = [((2)2)] -2 = (4¢) -2 = (4c) - 2 = 8¢
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forallt € Z. Then, we have

Solving for c, we get
T

C —_

8 2
which is in the real interval |3, 0(3)] = [3, 4] as we guaranteed by Theorem 1.4.2.

Now, we present a version of chain rule which calculates (f o g)*, where g: T — R
and /: R — R.

Theorem 1.4.4 (Chain Rule, see [2, Theorem 1.90]). Let f: R — R be continuously differ-
entiable and suppose g: T — R is delta differentiable. Then fog : T — R is delta differentiable
and the formula

(fog) (1) = { | 1+ hu(t)g%»dh} g2 (0)

holds.

Proof. First, of all we apply the Substitution rule from calculus to find

g(o(t))
Fa(o(t)) — Flg(t)) = / el

— [g(o(t)) - g(t)] / £(hg(o(t)) + (1 — )g(t))dh.

Lett € T and € > 0 be given. Since g is A-differentiable at ¢, there exists a neighbor-
hood U; of t such that

l9(a(t)) = g(s) — g™ () (o (t) — s)| < €*lo(t) — 5| forall s €U

where
€

C T L2 [ (hg(o(t) + (1 h)g(t)]dh’

Furthermore, since f’ is continuous on R, so it is uniformly continuous on closed sub-

sets of R, and hence there exists a neighborhood U; of ¢ such that

(€ +lg2(®)])

7 (hg(o(8)) + (1= R)g(s)) — ['(hg(o(0)) + (1 = Rg()] < 5 for all s € U,.
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Also, note that
lhg(o(t)) + (1 = h)g(s) — (hg(a(t)) + (1 = R)g(t))| = (1 = h)[g(s) — g(t)] < |g(s) — g(t)]
holds for all 0 < i < 1. Defining U = U; N U, and leting s € U. We put

a = hg(o(t)) + (1= h)g(s) and 5= hg(a(t)) + (1 —h)g(t).

Then, we have

‘(fog)(())—(f 2 /f jan

- /f st oo

='[g<a<>>—g< / F@dh+ (o(t) — )5 (1) /l(f’(a) F(@))dn
< lg(o(®)) - g(s) (t) / F(@)dh + o (t) - slIg* (1) / 17(0) = £/(8)ldn

Se*|a<t>—s|/0 P (@)ldh + o (t) — s]1g>( |/0 (@) — 1(B)|dh
< elo(t) — s / FBdh+ e + 16 (0)|o(t) — 5| / (@) — £(8)ldh

< 5lo(t) = sl + 5lo(t) — 5]

= ¢€lo(t) — 5.

Thus, f o g is A-differentiable at ¢t and the derivative is as claimed above. O]

Example 1.4.5 (See [2, Example 1.91]). Wedefine g : Z — Rand f : R — R by

g(t) = # and f(x) = exp(x)

Then
PU)=t+1)2—12=2+1 and f(z)=exp(z).

Hence, by Theorem 1.4.4,

fog) ={/f t) + hu(t)g™(t)) h}gA(t)

— @2+ 1) / exp(t + h(2t + 1))dh
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= (2t + 1) exp(t?) /01 exp(h(2t 4+ 1))dh

= (2t +1) exp(t?) lexp(h(2t +1))]3Z0

2t+1

= (2t + 1) exp(t?) (exp(2t+1) —1)

2t+1
= exp(t?)(exp(2t + 1) — 1).

Also, it is easy to check that

Af(g(t) = flgt+1)) = fg(t)

(t+

((t+1)%) — exp(t?)
exp(t? + 2t + 1) — exp(t?)

(

(

exp

exp(t? + 2t + 1) — exp(t?)
exp(t?)(exp(2t + 1) — 1).

Let T be a time scale and v : T — R be an strictly increasing function such that
T = v(T) is also a time scale. By & we denote the jump function on T and by A we

denote the derivative on T. Then v o o = 5 o v.

Theorem 1.4.6 (Chain rule, see [2, Theorem 1.93]). Assume that v : T — R is strictly
increasing and T := v(T) is a time scale. Let w : T — R. If v2(t) and wi(v(t)) exist for

t € T%, then

(wo V)A = (wA o V)VA.

Proof. Let 0 < € < 1be given and define

[+ 2@ + lwA (@)

*

€ . =

Note that 0 < €* < 1. According to the assumptions, there exist neighborhoods U; of ¢
and U; of v(t) such that

lv(o(t)) — v(s) — (o(t) — s)v2(t)| < €|o(t) — s| forall s € U;
and

lw(o(v(t))) —w(r) — (a(v(t)) — T)wA(V(t>)| < €*|o(v(t)) —r|, forall r € U,.
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Writing U = U; Nv~1(Us) and letting s € U. Then, if s € Uy, v(s) € U, we obtain

w(v(o(t)) — wv(s) = (o(t) — s)[w(v(t))v ()]
= [w((o(t))) —w(v(s)) — (@(v(t)) — v(s))w (v (1) + [o(v(t)) — v(s) = (o(t) — s)v> (B)]w? (v (1))
< o(v(t) = v(s)| + o (t) — slfw (v (1))

< lo(w(t) = v(s) = (o(t) = )2 ()] + |o(t) = sl (O] + lo(t) — sllw ()]}
< e {elot) = sl +lo(t) = sl (O] + lo(t) = sllw(v(t))[}

= lo(t) = s| {e" + [ ()] + [w (1))}

< {1+ 2]+ [w (w(t)[Ho(t) — s

= e€lo(t) — 3.

getting the desired result. O

Example 1.4.7 (See [2, Example 1.94]). Let T = Ny and v(t) = 4t + 1. Hence
T=v(T)={4n+1:neNy}={1,5913,..}.

Moreover, let w : T — R be defined by w(t) = t2. Then

(wo ) (t) = [A(t+1) + 12 — (4 + 1)?
= (4t +5)* — (4t + 1)
= 16t* + 40t + 25 — 16t* — 8t — 1
= 32t + 24.

Applying Theorem 1.4.6 to obtain the A-derivative of the composite function:
VA(t) = (4t + 1) =4

and then

= = =2t+4
) —t t+4—t 4 i

) —w(t) (t+4)*—¢* 8t+16
t

therefore,
(WP o v)(t) = wP(r(t)) = w (At +1) = 2(4t + 1) +4 = 8t + 6

Thus, we obtain

[(w™ 0 )2](t) = (8t +6).4 = 32t + 24 = (w0 )2 (2).
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As consequence of Theorem 1.4.6, we can write the formula for the derivative of the
inverse function and the substitution rule for integrals.

Theorem 1.4.8 (Derivative of the Inverse, see [2, Theorem 1.97]). Assume v : T — R is
strictly increasing and T := v(T) is a time scale. Then

at points where v* is different from zero.

Theorem 1.4.9 (Substitution, see [2, Theorem 1.98]). Assume v: T — R is strictly in-
creasing and T := v(T) is a time scale. If f : T — R is an rd-continuous function and v is
A-differentiable with rd-continuous derivative, then for a,b € T,

b v(b) ~
/f(t>vA(t)At=/ )(foul)(s)As.

(a

Proof. Since f is rd-continuous and v is A-differentiable with rd-continuous derivative,

fv® is a rd-continuous function. It has antiderivative F, i.e.,

and

Then, using Theorem 1.3.11,

we get the desired result. O]
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Example 1.4.10 (See [2, Example 1.99]). Let us apply the method of substitution given by
Theorem 1.3.12 to evaluate the integral

t 2
Te4+ 147 T
/(\/2 1 )3TA
0

fort e T := Né = {V/n:n € Ny}. Define
v(t) =t
fort e Né . Then v : Né — R is strictly increasing and v <N§> = Ny is a time scale. Also,
VA =V 1+t

Hence if f(t) := 3 from Theorem 1.19, then
1 ) 1
/ (\/7’2 +1+ 7') 3TAT = / f(r)w™(r)Ar
0 0

:/0 f(V/5)As :/0 3°As = [%3] = %(3* —1).

s=0

1.5 The Regressive Group

In this section, we will define the generalized exponential function for an arbitrary

time scale T.

Definition 1.5.1 (See [2, Definition 2.25]). A function p: T — R is called regressive pro-
vided
1+ pu(t)p(t) #0, forall t € T"

We will denote the set of regressive and rd-continuous functions p: T — R by
R =R(T) = R(T,R).

Definition 1.5.2 (See [2, Theorem 2.7] and [2, Definition 2.13]). The “circle plus” addi-
tion and "circle minus” subtraction on R are defined, respectively, by

pP—q
1+ pg

pOqg=p+q+upg and poSq=



40 Basic on the theory of time scales

We can also define the "circle minus" subtraction on R by
(peq)(t):=(@a®(eq))(t) forallt € T",

where Op is defined by

(©p)(t) = IO forall t € T*.

1+ p()p(t)
It is not difficult to see that circle minus and circle plus operations can be transformed
into the usual subtraction and additivity when T = R. However, depending on the
time scale, we may have different operations, but quite useful ones. The following
theorem describes many properties that are consequence of these operations, which
will be useful.

Theorem 1.5.3 (See [2, Exercise 2.28]). Suppose p,q € R, then
()pop=0;

(ii) ©(Sp) = p;

(ii)poqeR;

() poq= {75

W elpeq =qop

(vi) S(p @ q) = (Gp) B (69).

Proof. (i) Note that

pOp=pd(Gp)
=p+ (©Sp) + pp(Sp)

p p
Y ( 1+up> up( 1+up)

—p
- 1
p+( +up)(1+u )
=0
(1) Notice that:
(©p)

e(ep) = ———-——

(©p) 1+ p(op)

(-~ )
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:_( - 14w )
L+pp 14 pup—pp

(171) We need to show that 1 + u(p © q) # 0 for all t € T". For t € T*, we have

L+ u(t)poq) =q+ pul?) <ﬁ>

1+ p(t)g(t) + u(®)pt) — pt)q(t)
1+ pu(t)q(t)
_ 14 u@)p()
1+ p(t)q(t)
£0.

We omit the proofs of (vi), (v) and (vi), since they follow as immediate consequence
of the properties of circle minus and circle plus. O

As a consequence, we obtain the following property which ensures that we can

work with this operation in the set of regressive functions.

Theorem 1.5.4 (See [2, Theorem 2.7]). If we define the “circle plus” addition & on R by

p(t) © q(t) := p(t) +q(t) + p(t)p(t)q(t),
with p,q € R, then (R, @) is an abelian group called the regressive group.

Now we define the generalized exponential function e,(, s) on time scale.

Definition 1.5.5 (See [2, Definition 2.21]). For h > 0, let &,: C;, — Z;, be given by

enz) = %Log(l + ),

and for h = 0, we define §,(z) = z, forall z € C. Then if p € R, then we define the exponential
function by

e,(t5) = exp ( / th(T)(p(T))AT) for steT

Theorem 1.5.6 (See [2, Theorem 2.36]). If p,q € R, then
(i) ep(t,s) =1 and e,(t,t) =1,

(i1 e, (0(t), 5) = (1+ p(B)p()ey(t, )

(ii) ﬁ = egp(t, s);
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(iv) ey(t, s) = ep(ls,t) = eep(s,1);
(V) ep(t, s)ep(s, 1) = ey(t,7);
(vi) e,(t, 5)eq(t, ) = epaq(t, s);
(vii) 2G5 = epeq(t, 5);

A
— __p@®)
(W”@<J i)

Definition 1.5.7 (See [2, Definition 2.32]). If p € R, then the first order linear dynamic

equation on time scale

is called regressive.

The next result brings an important property of the exponential function, which
relates it to theory of dynamic equations on time scales, and this is also expected.

Theorem 1.5.8 (See [2, Theorem 2.33]). Suppose y* = p(t)y is regressive and fix t, € T.

Then e, (-, o) is a solution of the initial value problem

y> =p(t)y, ylty) =1
on T.

Now, we are ready to state and prove the uniqueness of solution of the equation:

{yA:p@y (1.3)

Theorem 1.5.9 (See [2, Theorem 2.35]). If y> = p(t)y is regressive, the only solution of (1.3)
is given by e, (-, tp).

Proof. Assuming y is a solution and consider the quotient —*-. Using Theorem 1.5.9,
vy \° Y2 (B)ep(t to) — y(t)ey (¢ to)
(1) =
e(- to) ep(t,to)ep(a(t), to)

p(Oy(Ben(t, o) — 5Oyt t)
ep(tv to)ep(a(t>7 tO)

= 0.
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Thus, -2 is constant and
€p (t,to)

W )
€p(t,t0) Bp(to,to)
This implies that y(t) = e,(t, o), for every t € T, getting the desired result. O

To conclude this section, we study the first order nonhomogeneous linear equation.

Definition 1.5.10 (See [2, p. 75]). Let f: T — R be a function, we call the first order

nonhomogeneous linear equation by

y™ = p(t)y + f(t)
on a time scale T.

Theorem 1.5.11 (Variation of Constants Formula, see [2, Theorem 2.74]). Suppose y* =
p(t)y + f(t) is regressive. Let t, € T and xy € R. The unique solution of the initial value
problem

= —p(t)z® + f(t), x(to) =z
is given by
o) = cenltto) + | conlt.T)F(D)AT

to

Proof. Let us consider that

= —p(t)a” (t) + f(t), x(te) = 20

has a solution z(¢). Hence,

ep(t7 tO)f(t) = ep(t7 tO)IA + ep(ta t0>p(t>l’g(t)
= [ep (-, t0)2] ().

Integrating from ¢, to ¢ and applying Fundamental Theorem of Calculus, we have

[atmwsmiar= [ oo

= ep(t, to)x(t) — ep(to, to)x(to)
= e,(t, to)x(t) — xo.
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Thus, we write

0 Julep(T,t0) f(7)] AT
x(t) - €p(t, to) Gp(t, to)

= eop(t, to)To + / eep(t, 7) f(T)AT,

to

proving the result. O

Now, we finish this section with a more general result, which in the first order
dynamic equation on time scale does not appear the composition y and o in the right
hand side.

Theorem 1.5.12 (Variation of Constants, see [2, Theorem 2.77]). Suppose y* = p(t)y +
f(t) is regressive. Let ty € T and y, € R. The unique solution of the initial problem

y* =pt)y+ f(t), ylto) =wo

is given by
y(t) = ep(t, to)vo +/ ep(t,o(7))f(T)AT. (1.4)

to

Proof. Since y° (t) = y(t) + u(t)y>(t), it follows

It implies

(14 pOROWA () = py (1) + F(2)
flence 0 i)

A . p t (ol t

O = e Y T o)
Hence,

ft)
L+ u(t)p(t)
Applying Theorem 1.5.11, and using ©(Sp)(¢) = p(t), we have

y(t) = —opy’(t) +

) = eptton+ [ etr)t

. t f(7) -
= €,(t,t0)Yo +/to ep(T,1)[1 —f-,M(T)p(T)]A
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= e,(t,t0)Yo +/t f(m)ey(t,o(T))AT,

obtaining the expression (1.4). N

1.6 Regressive Matrices

In this section, we will define matrices for an arbitrary time scale T, and give some
important properties which will be very useful for our purposes. We omit the proofs
here, since they will follow very similarly from the results presented previously in this

chapter.

Definition 1.6.1 (See [2, Definition 5.1]). Let A be an m x n-matrix-valued function on T.
We say that A is rd-continuous on T if each entry of A is rd-continuous on T, and the class
of all such rd-continuous m x n—matrix-valued functions on T is denoted, similar to the scalar
case, by

Crg = Cp(T) = Cpy(T, R™*™).

We say that A is A-differentiable on T provided each entry of A is A-differentiable on T, and

in this case, we put

I i R I e e

Theorem 1.6.2 (See [2, Theorem 5.2]). If A is A-differentiable at t € T*, then A°(t) =
A(t) + p(t) A2 ().

Theorem 1.6.3 (See [2, Theorem 5.3]). Suppose A and B are A-differentiable n x n-matrix-
valued functions. Then

(i) (A+ B)® = A® + B%;

(ii) (aA)® = A if a is constant;

(iii) (AB)® = A®B° + AB» = A°B” + A®B

(iv) (A71)2 = —(A%)TAR AL = —ALAR(A%) 7L if AA° is invertible;

(v) (AB™Y)A = (A% — AB7'B?)(B%)! = (4% — (AB~Y)°B2)B~ Y if BB is invert-
ible.

We consider the linear system of dynamic equations on time scale

y® = At)y, (1.5)
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where A is an n x n-matrix-valued function on T. A vector-valued y: T — R" is said
to be a solution of (1.5) on T provided y~(t) = A(t)y(t) holds for each t € T*. To state
the main theorem on solvability of initial value problems involving equation (1.5), we

introduce the following definition, which is very similar to the scalar case.

Definition 1.6.4 (Regressivity, see [2, Definition 5.5]). An n x n-matrix-valued function A
on a time scale T is called regressive provided

I + u(t)A(t) is invertible for all t € T",
and the class of all such regressive and rd-continuous matrices functions is denoted by
R =R(T) = R(T,R"").

We say that the system (1.5) is regressive provided A € R.

The existence and uniqueness theorem for initial value problems of equation (1.5)

reads as follows.

Theorem 1.6.5 (Existence and Uniqueness Theorem, see [2, Theorem 5.8]). Let A € R
be an n x n-matrix-valued function on T and suppose that f : T — R™ is rd-continuous. Let
to € T and yo € R". Then the initial value problem

y> =AMty + f(t), ylto) =wo

has a unique solution y : T — R™.

The same way as before, we can define the operations in the context of regressive

functions the "circle plus" addition @ and the "circle minus" subtraction &, as follows.

Definition 1.6.6 (See [2, Definition 5.10] and [2, Definition 5.14]). Assume A and B are

regressive n X n-matrix-valued functions on T. Then we define A & B by
(A® B)(t) = A(t) + B(t) + n(t)A(t)B(t) forall te T,
we define S A by
(A)(t) = —[I + p(t)A@)] ' A(t) forall teT"
and we define A © B by

(Ae B)(t) = (A® (&B))(t) forall t € T".
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Definition 1.6.7 (Matrix Exponential Function, see [2, Definition 5.18]). Let ¢, € T and
assume that A € R is an n x n-matrix-valued function. The unique matrix-valued solution of
the IVP

YA = AW)Y, Y(to) =1,

where I denotes as usual the n x n-identity matrix, is called the matrix exponential function
(at to), and it is denoted by ea(-, to).

Example 1.6.8 (See [2, Example 5.19]). Assume A is a constant n x n-matrix. If T = R,
then

BA(t, tO) = eA(t_tO)a

while if T = Z and I + A is invertible, then
ea(t to) = (I + A1),

Theorem 1.6.9 (See [2, Theorem 5.21]). If A, B € R are matrix-valued functions on T, then

(i) eo(t,s) = Tand es(t,t) = I;

(ii) ea(o(t), s) = (I + u(H)A(t) ealt, s);

(iii) e, (t,5) = eca-(t, s);

(iv) ealt,s) = e, (s,t) = ecn-(s,1);

(v) ea(t,s)ea(s,r) =ea(t,r);

(vi) ea(t, s)ep(t,s) = eann(t,s) if ea(t,s) and B(t) commute.
Theorem 1.6.10 (Variation of Constants Formula, see [2, Definition 5.24]). Let A € R be
an n x n-matrix-valued function on T and suppose f : T — R" is rd-continuous. Let ty € T
and yo € R". Then the initial value problem

y™ = Aty + f(t), y(te) = yo (1.6)

has a unique solution y : T — R. Moreover, this solution is given by

y(t) = ealt,t0)yo +/ ealt,o(T))f(T)AT. (1.7)

to

As in the scalar case, we consider the analogue for its adjoint equation
ot = —A*(t)a°. (1.8)

Theorem 1.6.11 (Variation of Constants Formula, see [2, Theorem 5.27]). Let A € R be
an n x n-matrix-valued function on T and suppose that f : T — R" is rd-continuous. Let
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to € T and xo € R™. Then the initial value problem
ot = —A* ()2 + f(b), x(ty) = 20 (1.9)

has a unique solution x : T — R". Moreover, this solution is given by

x(t) = ecax(t, to)xo +/ eca(t, ) f(T)AT. (1.10)

to

To finish this section, we present Liouville's formula in the context of time scale.

Theorem 1.6.12 (Liouville's Formula, see [2, Theorem 5.28]). Let A be a 2 x 2 regressive
matrix-valued function on T. Assume X is a matrix-valued solution of

XA =At)X, teT.

Then X satisfies
detX (t) = ey aspaeta(t, to)detX (tg), t € T, (1.11)

where tr A and det A denote the trace and the determinant of A, respectively.



Chapter

2

Periodicity on Isolated Time Scales

In this chapter, our goal is to introduce some concepts about iterated shifts and the
definition of w-periodic functions on isolated time scales. The main references here are
[1], [8]. In this entire chapter, T will denote an isolated time scale, that is, all points in
T are right-scattered and left-scattered, except when the time scale has a minimum or
maximum (or both). In this case, the minimum point must be right-scattered and the

maximum point must be left-scattered. .

2.1 Iterated Shifts

Definition 2.1.1 (See [8, p. 262]). Let w € N, we define the iterated shift v : T — T by

V=0 =00---00.
——

w-times

Definition 2.1.2 (See [8, p. 262]). Let f : T — R, we use the following notation to simplify
[ =fou

This implies that
fr7i=(fov)? =fovoo=(foo) = f7,

which gives us that o and v commute, i.e.,

cov=voa,le, 0’ =1°.
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Lemma 2.1.3 (See [8, Lemma 3.1]). We have

A= 2.1)

getting the desired result. [

Lemma 2.1.4 (See [8, Lemma 3.2]). For f : T — R, we have
e =R e (2.2)

Proof. Using Lemma 2.1.3, we have

PR GO i ST b SN iy i (f”—f)”:VAfAV
[ I I ez 1 ’
which gives us the desire result. O

Lemma 2.1.5 (See [8, Lemma 3.3]). We have
AN AT T O (2.3)

Proof. By Lemma 2.1.3,

By the quotient rule, we have

14 A v 14
<u_) _ pp—
1

Using Lemmas 2.1.3 and 2.1.4, we get ¥ = v* . With that

<M_V)A B VAMAVM . VAMMA
0 T
v (pp® — pp®)
fp”
VA ( 1A — MA)
JAe
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LA (ulAu . MA)
e '

Since o (t) — t = p(t), u2(t) = o2 (t) — t> = o® — 1. Applying it to the equation:

VA (O’AV — 1”) — (O'A — 1) A (O'AV —o® -1+ 1)

pe pe

concluding the proof. O
Remark 2.1.6 (See [8, Remark 3.4]). Using the "simple useful formula”,

p =t pp® = p(l+p®) = p(l+0% = 1) = po®.

This implies that

Av A

AA _ A0 — O

VoS =t —.
Ho

The examples below will show some properties of the iterated shifts for the cases
T=R,T=2%,and T = ¢"°.

Example 2.1.7 (See [8, Example 3.5]). If T = R, then v(t) = t and v>(t) = 1.

Example 2.1.8 (See [8, Example 3.6]). If T = Z, then v(t) = t + w and v>(t) = 1, for all
teT.

Example 2.1.9 (See [8, Example 3.7]). If T = ¢"°, with ¢ > 1, then v(t) = ¢“t and v>(t) =
q“, for every t € T.

Lemma 2.1.10 (See [8, Lemma 3.8]). For f: T — R, define

v(t)
F,(t) = /t f(r)AT. (2.4)

Then
F& =12 — f (2.5)

v

Proof. Lett, € T and define F(t) := ft’; f(7)AT. We obtain F» = f. Hence,

v(t) t v(t)
F,(t)+ F(t) = /t f(r)AT + /t f(r)AT = /t f(r)AT = F"(t)

0
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Thus, F” — F = F,. Using Lemma 2.1.4, we get
Fp = (F)2(t) = FA(1) = v2 (1) (F2)"(t) — F2(t).
Since F2(t) = f(t), we get
vRO(F2) () = FA(1) = v2 () f(t) = f(1),

finishing the proof. O

Lemma 2.1.11 (See [8, Lemma 3.9]). Let tq € T. For f € R, we have

h(t) == e, (v(t),t) (2.6)
then
PA) = (V1) © R
and (t.10)
es(v(t),t) = es(v(to), to) ”ff@,t’()) . VteT. 2.7)
Proof. Let

By the semigroup property,

h(t) = es(v(t), to)ey(to, 1)
= ef(V<t>7 t0>€@f(t7 tO)'

Using the product and chain rules, we get

(©F) )] ecs(t, to) + e (1), to) [(©)()ecy(t, to)]

= [(v(1), to) e (v(t), to)] )
(©)(1) ecr(t,to) + es(v(t), to)(SF) (t)ecy (t, to)
)

It
ZVA(tf( (t))e (() o) (

)
v(t), to)(eef (t.to) [V () f(v(t

=e ( ( )(1+ ( )(@f)( ))} +ef(’/(t)7t0)69f(tatO)(@f)(t)
— () (uA (1 + u(B)©)®) +hE) (@ N)()
) [ 1+ uBEh)®) + (6f)<)]
<> < <>> £t
MO 07D
- <t>( Fw®) e f) (0
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proving (2.6). To see (2.7), we get from (2.6) that

h(t) = eyAfuef(t, to)h(fo) = €VAfu@f<t, to) . 6f<l/(t0), to).
Hence,

€VAf(t, to)
er(t,to)

proving (2.7). O

er(v(t),t) = er(v(to), to) -

Lemma 2.1.12 (See [8, Lemma 3.10]). For f € R, we have
er(v(t),v(s)) =eyap(t,s), Vs, teT. (2.8)

Proof. By Lemma 2.1.11 and using the semigroup property,

er(v(t),v(s)) = e(w(t), t)es (L, s)es(s, v(t))

= ep(v(t), t)es(t, s)eer(v(s), s)
_ep(v(t),t)

" el

_ eap(t,s) .

N ef( 73) (t )

= e,apm(t,s)

fulfilling (2.8). O

2.2 Periodicity

We start this section by recalling the concept of w-periodic functions on isolated
time scales. This definition will be essential to our purposes.

Definition 2.2.1 (See [8, Definition 4.1]). A function p: T — R is called w-periodic provided

v (t)p" (1) = p(t) (2.9)
The set of all w-periodic functions p: T — R is denoted by P, = P = P(T,R).

Remark 2.2.2 (See [8, Remark 4.2]). Since (2.1) holds, p € P if, and only if,

(up)” = pp- (2.10)
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Below, we show some examples which ensure that this definition is consistent with

the analogue known ones.

Example 2.2.3 (See [8, Example 4.3]). If T = Z, then p € P provided
p(t) = v2(O)p(v(t) = 1-p(t +w) =p(t +w), forallt € T,

which is the usual definition of w-periodicity.

Example 2.2.4 (See [8, Example 4.5]). If T = ¢V, with ¢ > 1, then p € P provided
p(t) = v2()p(v(t) = ¢° - p(g“t) forall t € T,

which is the periodicity condition from quantum calculus.
Lemma 2.2.5 (See [8, Lemma 4.6]). We have P,, C Ps,.
Proof. Define v: T — T by

Assuming p: T — R is w-periodic and using the Chain rule (2.2) applied to v, we get

P2 (Op((t)) = v (W (1)p(v((t))
A (w())p(r(v(t)))
= VA (w(t))p" (v(1))]
A p(w (1))
)

),

I
<

which shows that p is also 2w-periodic. O
Some important properties of periodicity are obtained next.

Theorem 2.2.6 (See [8, Theorem 4.7]). If p € P, then the integral
v(t)
/ p(7)AT is independent of t € T.
t

Proof. Define F,(t) := ft”(t p(7)A7. By (2.4) and (2.5), and since p is w-periodic, we get

Hence, F), is constant, proving the desired result. l
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Theorem 2.2.7 (See [8, Theorem 4.8]). If p € P, then

v(t) t
/ p(T)AT = / p(T)AT forall s, t € T. (2.11)
v(s) s

Proof. Let p € P. Hence,

/V " rar - / C o)A+ / (P + /t " mar

(s) (s)

By Theorem 2.2.6,

v(t) s v(s)
/ p(T)AT = C and / p(T)AT = —/ p(T)AT = —C.
t v(s) s

v(t) t
| winar= [ par,
v(s) s

getting the property (2.11). O

Then,

To finish, we obtain that the exponential function is w-periodic in both variables.

This is a quite interesting property.

Theorem 2.2.8 (See [8, Theorem 4.9]). If p € PNR, then
e,(v(t),t) is independent of t € T (2.12)
and

ep(v(t),v(s)) = ey(t,s) forall s,t, € T. (2.13)
Proof. To prove (2.12), using Lemma 2.1.11, motice that defining

implies
hE(t) = (V") © p)h(t).
ItpeP,
h2(t) = (V3p") © p)h(t) = (p© P)h(t) = 0 h(t) = 0.
Hence h(t) is constant, getting (2.13), using Lemma 2.1.12, and the fact that p € R, we

get
ep(v(t),v(s)) = eyap(t, s) = ey(t, )
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forall s,t € T. H

2.3 Examples

In this section, our goal is to present examples of periodic functions. A quite in-
teresting property that comes from directly to the definition of periodic functions in
this way is the possibility of a characterization of 1-periodic function on an arbitrary
isolated time scale. See the result below.

Theorem 2.3.1 (See [8, Theorem 5.1]). Let f: T — R. Then f is 1-periodic if, and only if,

there exists ¢ € R such that
c

p(t)
Proof. Suppose there exists ¢ € R such that f: T — R is given by (2.14). Then

f(t) forall t €T. (2.14)

By Remark 2.2.2,

(nf)” = nf.
Hence, (1.f)(t) is independent of ¢ € T, and equal to a constant ¢, which implies
C
)= —,
£ p(t)
forallt € T. ]

Remark 2.3.2 (See [8, Remark 5.2]). As a consequence of Theorem 2.3.1, any 1-periodic
function f: T — R for a given isolated time scale T can be described uniquely by the area
between two consecutive time points, since

o(t)
| 07 = st = Lt =

In the sequence, we present some examples of w-periodic functions on isolated time
scales.
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Example 2.3.3 (See [8, Example 5.3]). Consider any time scale
T = {tl (1€ Z} with O'(tl) =tiy1 > tifOT' all't € 7.

Define f: T — R by '
ft;) = =y foralli € Z.

pu(ti)
Then
(@)1 0) 2 D poe)
li(fz')2> Fltera)

_ p(tiv2) . (=1)+
pt)  pltie)

G

oot = /&)

Hence, f is 2-periodic on T.

Example 2.3.4. Let ty € T, with T =, _, vn(to). Define f : T — R by

ne”L

) if n isodd
ft) =
% if n is even.

Then, clearly, we get

Hence, by Definition 2.2.1, f is w-periodic.

To finish, we present a result such that enables us with given periodic functions to

construct more examples of w-periodic functions.

Theorem 2.3.5 (See [8, Theorem 5.6]). Assume p,q € P and «, B € R. Then
ap + Bq € Pand upq € P.

Moreover, if oo + pu(t)q(t) # 0 forall t € T, then

P
Q-+ pup

eP.




58 Periodicity on Isolated Time Scales

Proof. Suppose p,q € P, and «, 5 € R, then

[(ap + Bq)]” = p”(ap + Bq)" = ap”p” + Bp”q” = app + Brg = plap + Bq)
and
[1(upq))” = 1" (ppq)” = (up)”(rq)” = (up)(ng) = ulupq),

that is, u(ap + 5q) € P, and u(pupg) € P, by Remark 2.2.2. If o + pu(t)g(t) # 0 for all
t €T, we get

14

{u p }:NV( p )”:/f p _ () _ P
o+ pg o+ g a+(pg)” o+ (pg)  atpg  Cadpg

e P. ]

implying that P

Remark 2.3.6 (See [8, Remark 5.7]). Theorem 2.3.5 together with Theorem 2.3.1 shows that
p(t) # 0 forall t € T implies that

1
€ P if, and only if, — € P.
p € Pif, }/fuzp
Hence, if p € Pand p # 0,

1\" , 1 1 1 1 1
p2p (1)

As an immediate consequence, it follows that the set of all w-periodic and regressive
functions is a subgroup of the set of regressive functions, which is expected in the

theory of time scales, showing consistency of the definition.

Corollary 2.3.7 (See [8, Corollary 5.8]). If p e PNR, thencp € PNR. If p,q € PNR,
thenp®q e PNR.

Proof. Letp € PN R. Then, 1 + pu(t)p(t) # 0 for all t € T. By Theorem 2.3.5, for o = 1,

p
L+ pp
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Again by Theorem 2.3.5, we get

.
L+ pp

=opeP,

proving the first part. By the definition of “circle plus" and by Theorem 2.3.5, for
p,q € P, we get:
p+q€P and upq € P,

which imply that p +¢ € P and upg € P,

(p+q) + (upg) =p® q € P,

proving the desired result. [

2.4 Homogeneous Linear Dynamic Equation

In this section, we apply the definition of w-periodicity to investigate the properties

of a homogeneous linear dynamic equations on isolated time scales.

Theorem 2.4.1 (See [8, Theorem 6.1]). Let a € R. If
2 = a(t)zx (2.15)

has a nontrivial w-periodic solution, then
PN
a+—)o~ eP. (2.16)
1

Proof. Suppose (2.15) has a nontrivial w-periodic solution z, then by Variation of Con-
stants Formula (Theorem 1.5.11), we get

z(v(t)) = ea(v(t),t)z(t) forall t € T.
Since 7 is w-periodic, we get
Z(t) = v2 () z(v(t) = v™(t)eq(v(t),t)Z(t), forall t € T. (2.17)
Since x # 0, then z(t) # 0 for all ¢t € T. From (2.17), we get

V2 (t)eq(v(t),t) = 1. (2.18)
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Applying the A-derivative in (2.18), using the product rule and Lemma 2.1.11, we

obtain
VA2 (Deq(v(t), 1) + v27[((v2a”) © a)e (v(t),1)] = 0.
This implies
VAR +v2 ((vRa”) ©a) = 0. (2.19)
By Lemma 2.4.2 below, (2.16) and (2.19) are equivalent, proving the desired result.
[l
The next lemma gives two equivalent conditions to (2.16).
Lemma 2.4.2 (See [8, Lemma 6.2]). If a € R, then a satisfies (2.16) if, and only if,
VAR 4 AR = 1Ra (2.20)
holds, and (2.16) is equivalent to
N LAA
(v a)@a:—on. (2.21)

Proof. Leta € R, by Remark 2.2.2, (2.16) is equivalent to

{u (a + %) UA:| T m (a + %) o, (2.22)

Using Remark 2.1.6, we get
L) A A A A_ o A
pla+—)o%=(pa+1)0" =poa+ o~ =p’a+o°.
i

Therefore,

(/LO—CL)V—’—O'AV — CLILLU—'—O'A,

which implies by Lemma 2.1.5,
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— VAA + UAVAUaV’
which is (2.20). Reciprocally by Lemma 2.1.5, we get
A Ao

VA = A7 — ARy,

then we conclude that (2.20) is equivalent to

A, VRa—vhA
VA= R
1% (o}
(VA7 — A 8)q — pAA
o A
LAA A8
= — — p——r"%a
pQo K pQo
LAA
- pAo bay,
proving the desired result. O

The next theorem describes two interesting properties for the exponential function.

Theorem 2.4.3 (See [8, Theorem 6.3]). Let a € R and assume (2.15). For t, € T, we have

(v(t),t) = eqa(v(to), t )M forallt € T (2.23)
€a ) = €q 0/, %0 I/A(t) . .
Moreover, we have
(v(t), v(5)) = ealt )”A(S) forall s,t € T (2.24)
eqa(V(t),v(s)) = eqlt, s A (D) s, . .
Proof. The proof of this resut can be found in [8, Theorem 6.3]. O

To finish, the theorem below supplements Theorem 2.4.1 to describe a complete
characterization of periodic solution of (2.14).

Theorem 2.4.4 (See [8, Theorem 6.4]). Let a € R and assume (2.15). If

VA(to)ea(V(t()), to) = 1,

then all solutions of (2.14) are w-periodic. Otherwise, no nontrivial solution of (2.14) is w-
periodic.
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2.5 Remarks on other concepts of periodicity for general

time scales

In this section, our goal is to discuss other concepts of w-periodicity which appeared
in the literature, in order to generalize this concept for any time scale. In 2013, Adivar
[1] presented a unified concept of periodicity for any time scale, based on the definition
of shifts operators.

We start this section by presenting this definition.

Definition 2.5.1 (See [1, Definition 3]). Let T* be a nonempty subset of the time scale T
including a fixed number t, € T* such that there exist operators 04 : [ty,00)y x T* — T*
satisfying the following properties:

P1) The functions 64 are strictly increasing with respect to their second arquments, i.e., if
(To,t), (To,u) € Dy :={(s,t) € [to,00)r x T*: 0.(s,t) € T*},

then
TO <t<u

implies
0+ (To, t) < 6+(To, u).

P2) If (T, u), (Ty,u) € D_ with Ty < Ty, then
0_(Ty,u) > 6_(Tz,u)
and if (11, u), (Ta,u) € Dy with Ty < Ty, then
0 (T, u) < 04 (To,u).

P3) If t € [ty,00)t, then (t,ty) € D, and 6.(t,ty) = t. Moreover, if t € T*, then
(to,t) € Dy and §,(to,t) =t holds.

P4) If (s,t) € Dy then (s,0.(s,t)) = t, respectively.

P5) If (s,t) € Dy and (u,04(s,t)) € Dy, then (s,0+(u,t)) € Dy and 04 (u,04(s,t)) =
0+ (s, 04 (u,t)) respectively.

Then the operators 6_ and & associated with t, € T* (called the initial point) are said
to be backward and forward shift operators on the set T*, respectively. The variable s &
[to, 00)T in 04(s,t) is called the shift size. The values §.(s,t) and é—(s,t) in T* indicate s
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units translation of the term t € T* to the right and left, respectively. The sets D, are the
domains of the shift operators respectively.

As an immediate consequence of this definition, one can prove the following prop-
erties of the shift operators.

Lemma 2.5.2 (See [1, Lemma 1]). Let _ and . be the shift operators associated with the
initial point ty. We have:
i) 0_(t,t) = to forall t € [ty,00)r.

ii) 0_(to,t) =t forall t € T*.

iii) If (s,t) € D, then 6 (s,t) = uimplies 6_(s,u) = t. Conversely, if (s,u) € D_, then
d_(s,u) =t implies 0,(s,t) = u.

iv) 04 (t,0_(s,to)) = 0_(s,t) forall (s,t) € Dy witht > to.

v) 0+ (u,t) = 04(t, u) for all (u,t) € ([to,00)r X [to,00)r) N D=

vi) 04 (s,t) € [to,00)r for all (s,t) € Dy witht > t,.

vii) §_(s,t) € [to,00)r for all (s,t) € ([to,00)r X [s,00)r) N D_.

viii) If 5, (s, ) id A-differentiable in its second variable, then 62(s, -) > 0.

ix) 04 (0_(u,s),0-(s,v)) = d_(u,v) forall (s,v) € ([to,00)r X [s,00)7) N D_ and (u,s) €
([to, 00)T X [u, 00)T) N D_.
x)If (s,t) € D_and 6_(s,t) = t, then s = t.

With these notions and properties in hand, we are ready to present the definition of
periodicity in shifts.

Definition 2.5.3 (See [1, Definition 4]). Let T be a time scale with the shift operators d
associated with the initial point t, € T*. The time scale T is said to be periodic in shifts . if
there exists a p € (ty, 00)r- such that (p,t) € Dy for all t € T*. Futhermore, if

P :=inf{p € (tp,00)r+: (p,t) € Dy forallt € T*} # t,,
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then P is called the period of the time scale T.

Although this definition seems to be quite general, it does not colapses in the case
of quantum scale with the expected definition for periodic functions, since that by this

definition, the periodicity in such case may be read as follows

f(gt) = (1)

for all t € ¢"°o. Therefore, with this definition, the important property of periodicity for
areas does not keep preserved. However, Adivar [1] presented another concept that is
called textitA-periodic functions in shifts ¢, in his paper, which keeps such property
preserved. Below, we state this definition.

Definition 2.5.4 (See [1, Definition 6]). Let T be a time scale that is periodic in shifts 0, with
period P. We say that a real valued function f defined on T* is A-periodic in shifts o, if there
existsa T € [P, oo)rs such that

(T,t) € Dy forallt € T",
the shifts 61 are A-differentiable with rd-continuous derivatives and

FOL)8E" () = f(1)

forall t € T*, where
6L (t) := 6.(T\1).

The smallest number T' € [P, 0o)r+ such that the definition holds is called the period of f.

This definition brings a more general concept and could also be used in our treat-
ment here. However, we choose in this work to deal with the definition presented in
[8] by simplicity, since for this last concept one does not need to deal with the shifts
operators. Moreover, although the definition from Adivar includes also the continu-
ous case, there are some isolated time scales that are not so clear if they are included
by those shifts operators. For more details about it, see [8], Appendix.



Chapter

3

Floquet theory on isolated time scales

This chapter is the most important of this work, since it brings original contribu-
tions for the investigations of w-periodic functions on isolated time scales. More pre-
cisely, here we are interested to study Floquet theory for isolated time scales, using the
new definition (Definition 2.2.1) of periodic function on the isolated time scales. In
this entire chapter, we consider T as an isolated time scale. We focus on the first-order

linear equation, called Floquet isolated equation,

22 (t) = A(t)z(t), t € T, (3.1)
where
2B (t) = W forallt € T, (3.2)

A is an w-periodic matrix function defined below, and is also regressive, i.e., I +(t) A(?)
is invertible for all t € T, where I is the identity matrix.

The chapter is organized as follows: Section 1 is devoted to present some auxiliary
results involving periodicity on any isolated time scale. In Section 2, we investigate
Floquet Theory and prove several important properties. In Section 3, examples are
presented to illustrate our results. The results presented here, are completely original

and can be found in [6].



66 Floquet theory on isolated time scales

3.1 Periodic Functions
Lemma 3.1.1. If B is an w-periodic and regressive matrix-valued function on T, then
ep(t,s) =ep(v(t),v(s)) forall t,s € T.

Proof. Using the semigroup property, exponential properties and Lemma 2.1.11, we
get

ep(v(t),v(s)) = ep(v(t), t)ep(t, s)ep(s,v(s))

since B is w-periodic. O

Theorem 3.1.2. Let ty € T and w € N. If C is a nonsingular k x k constant matrix, then
there exists an w-periodic regressive matrix-valued function B on T such that

ep(v(ty),to) = C.

Proof. Let 1, be the eigenvalues of C, 1 <i < k. Forp € {0,1,2,...,w — 2}, define

J; 0 0

0 J

R, = 2
0
0 0 J,

where either J; is the 1 x 1 matrix given by J; = p; or
w1 0 .. 0
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with 1 <37 < k.

Now, define

Royim — {i‘[ (I + p(o"(to))Ry) ' C — I} .

a0 1)) | L

Hence, we get:

plo* o) Ry + 1 = [[ (1 + (" (o) R) ™' C.
k=0
This implies that
[T (T + nie*(t))Re) = C, (3.3)
k=0

where [[¢2) (I + (0" (to))Re) is the product starting from the left to the right. Since C
is nonsingular, from (3.3), it follows that R, is regressive for all p € {0,1,2,...,w — 1}.

We define: R pu(o?(10)
A (o (t
B(v™ (o7 (t - = W—O
W) = L moi(1a))
forall j € {0,1,2,...,w — 1} and all m € N,.
Let ¢t € T be such thatt > t,, then there exists m € Nyand j € {0,1,2,...,w—1} such

thatt = v™ !(07(ty)). Therefore, we get

Arom—1( 5 RJN(Uj(t(J))
= v (" (0 () M(Vm(qj<t0)))
_ p(vm (o)) - Rip(o?(to))

p(vm=Hol(to)))  p(r™(o?(t)))
= B (o’ (to))
= B(1),

proving that B is w-periodic. Also, for t = v (a7 (1)), we get

I+ pt)B(t) =1+ p(™ (07 (t))) - BW™ (0’ (t0)))
=1+ p(v™(0?(t0))) B(v™ (07 (to)))
= I+ p(o?(to)) Ry
# 0,
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since R; is regressive for each j € {0,...,w — 1} and using the w-periodicity of B. On
the other hand,

e (v(to) to) = f[{f (oM (0)) B0 ()
it )
= H {1+ u(o"(to)) Ri}

(353)_0’

proving the desired result.

O
3.2 Floquet Theory
In this section, our goal is to prove the Floquet theory on isolated time scales.
Lemma 3.2.1. Let ¢y, € T, suppose x : T — R™ is a solution of (3.1) satisfying
x(ty) = v (to)z(v(tg)). (3.4)
If (2.19) is satisfied, then x is w-periodic.
Proof. Define a function f : T — R" by
@) = v2)x(v(t)) — z(t), forallt € T. (3.5)

Then, by (3.5)
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and since f(ty) = 0, we get the desired result. O

As usual, a matrix-valued function ® is called a fundamental matrix of the Floquet
equation (3.1) provided it solves (3.1) and is nonsingular for all ¢ € T. The following

results gives a representation for any fundamental matrix (3.1).

Theorem 3.2.2. Suppose & : T — R"™"™ is a fundamental matrix for equation (3.1). Define
the matrix-valued function ¥ : T — R™" by

U(t) = v2(£)D(v(t)), forall t € T. (3.6)

Then WV is also a fundamental matrix of (3.1). Futhermore, there exist a regressive matrix-
valued function B and an w-periodic matrix-valued function P : T — R™ ™ such that

O(t) = P(t)ep(t, to), forallt € T. (3.7)

Proof. We have

Then, ¥ is a fundamental matrix of (2.19). Futhermore, define the nonsingular constant
matrix C by
C = ©_1<t0)‘;[/(t0)

Hence, the function D : T — R"*" defined by
D(t) =V(t) — ®(t)C, forallt € T

satisfies D(tp) = 0 and

It implies that
U(t) = d(t)C, forallt € T.
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Thus by Theorem 3.1.2, there exists an w-periodic and regressive matrix-valued func-
tion B such that

GB(V(to), to) = C

Defining the matrix-valued function P : T — R"*" by
P(t) := ®(t)ez'(t, 1), t € T.

we get that P is a nonsingular matrix-valued function on T. Using (3.1), (3.7) and (3.4),

we obtain

v () P(r(t) = v2(1) [2(v(t))eg' (v(t) to)]

I
<
~
~—

~

I i
~
Q
®
Sy}
=
e
<

~
D
s
~—~~
<
—~~
~
(=}
N—
<
—~
~
S~—
S~—

I
o= - I B = . =
~
D
Sy}

~

AAA:’-\A/—\/\
[
oy}
<
~~
(e
~
o
~
[
o)
—~
~~
o
<
—~
<~
o
~—
~—
[
Sy}
—~
<
—~
~+~
o
~
<
—~
~
~—
~—

forallt € T,i.e., P is w-periodic, proving the desired result. O

Theorem 3.2.3. Suppose ®, P, and B satisfy all the hypotheses of Theorem 3.2.2. Then x
solves (3.1) if, and only if, y given by y(t) = P~1(t)x(t), t € T, solves y*(t) = B(t)y(t).

Proof. Lett, € T. Assume z solves (3.1), by uniqueness of solution,
x(t) = ®(t)x(ty), forallt € T.

Defining y(t) := P~'(t)z(t), t € T, we have

which solves y2(t) = B(t)y(t).
Reciprocally, suppose y solves y*(t) = B(t)y(t) and define x : T — R" by z(t) =
P(t)y(t), for all t € T. By the uniqueness of solutions, we have

y(t) = ep(t, to)y(to), forallt € T.
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Therefore,
x(t) = P(t)es(t,t0)y(to) = P(t)y(to),

proving the desired result. O

Definition 3.2.4. Let © be a fundamental matrix for (3.1) and t, € T. The eigenvalues of
V2 (t0) 27 (to) @ (v (to))

are called the Floquet multipliers of (3.4).

Remark 3.2.5. Since fundamental matrices for (3.1) are not unique, let us show that the Flo-
quet multipliers are well defined. Let ® and U be any fundamental matrices for (3.1) and let

C = v2(tg)®  (t)®(v(ty)) and D = v™(to) ¥ (to) (v (to)).

We affirm that C and D have the same eigenvalues. By Theorem 3.2.2, there exists a nonsin-
gular constant matrix M such that

U(t) = d(t)M, forallt € T.
Hence,

D = v2(tg) M1 Htg)®(v(ty)) M
= MO (tg)v™ (L)@ (v(to)) M
=M 'CM.

Then, C and D are similar matrices, which implies that they have the same eigenvalues. There-
fore, the Floquet multipliers are well defined.

Remark 3.2.6. Note that the proof of Theorem 3.2.2 shows that the matrix-valued function
satisfies
VRO D(v(t)) = () V(2). (3.8)

On the other hand, notice that

(@1 BOW()> = (71 (1) - V(1) + & H(o(t)
=~ o (t) P2 ()D (1) W(t
=07 (o(t))[~AM) D)2 ()W (t) + A(t) T (t)]
= 0.

+
9
)
=
=
=
<
=
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It implies that
() U(t) = & (t0) ¥ (to)

forall t € T. Hence by (3.8), we have,

vAH)2TH ()R (v(1) = 271 (1) T(1)
= &~ (to) ¥ (to)
= 12 (1) 2™ (to) 2(v(to))
which implies that
v ()7 (1) D(v (1))
does not depend on t € T. Thus, the Floquet multipliers of (3.1) are also equal to the eigenvalues

of vA(t)d~ ()P (v(t)), fort € T.

Theorem 3.2.7. The number jiy is a Floquet multiplier of (3.1) if, and only if, there exists a
nontrivial solution x of (3.1) such that

vA)x(v(t)) = pox(t), vt € T.

Proof. Assume p is a Floquet multiplier of (3.1). Lett € T, by Remark 3.2.6, y is an
eigenvalue of C' := &7 1(tg)U(tg) = ®'(¢)¥(t), where ® is a fundamental matrix of
(3.1).

Let x( be the eigenvector corresponding to /i, i.e., Czg = poxo. Define x(t) := ®(t)zo

for all ¢t € T, then x is nontrivial solution of (3.1) and

= HoT t)?

proving the desired result. Reciprocally, assume that there exists a nontrivial solution
x of (3.1), such that v2(¢t)x(v(t)) = pex(t) for all t € T. Let ¥ be a fundamental matrix

of (3.1), then z(t) = ¥(t)y, for all t € T and some nonzero constant vector y,. Hence,

v ()P (v (t)yo = v (H)a(v(t) = mox(t) = oW (t)yo
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Lett = to,
v (to) W (v(to))yo = 110 (to)yo,
it implies that
V2 (to) W (t0) W (v (to) )yo = Hovo-
Therefore,
Dyo = poyo-

where D = v2(t)) U1 (t))¥(v(ty)). Hence, yo is an eigenvalue of D, proving the de-
sired result. ]

Remark 3.2.8. By Theorem 3.2.7, the equation (3.1) has a w-periodic solution if and only if
po = 1is a Floquet multiplier. The case x = 0 follows directly. Theferore, we assume, without
loss of generality, that x is a nontrivial solution, which is w-periodic. Then, v™(t)z(v(t)) =
x(t) for all t € T. From Theorem 3.2.7, o = 1. Reciprocally, if 1o = 1 is a Floquet multiplier,
by Theorem 3.2.7,

v ()2 (v(t) = pox(t) = (t)

which imples that x is w-periodic.

3.3 Examples

In this section, we present some examplse to illustrate our results.

Example 3.3.1. Let p be the w-periodic and regressive function on T. Define

0 L coshy,(v(t),1)

Ay ={ wlt) . forallt€T. (3.9)

o) sinh,,(v(t), ) 0

Then, we show that the coefficient matrix-valued function A is w-periodic. Indeed,

1
VA A(t)) = M<V(<t)>> 1 0 ) e (), 1(0)
wlt sinh, (v(v v
o) S (v (), v() 0
1
_ 1 0 D) cosh, (v(v(t)), v(t))
——sinh,(v(v(t)), v(t)) 0
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1
p(t)
smh t),t) 0

cosh, (v(t), 1)

A

from the definition of cosh, and sinh,, and the exponential function. The solution of (3.1),
where A is defined as in (3.9), satisfying the initial condition x(ty) = x¢, is ©(t) = ea(t, to)zo,
t € T. Assume also that 11, and 5 are eigenvalues corresponding to the constant matrix

C = v2(to)e; (to, to)ea(v(to), to) = v™(to)ea(v(to), to) = v™(to)ea(v(t), t)

where this last equality follows from Theorem 2.2.8. Applying Liouville’s formula (Theo-
rem 1.6.12), we get

piipe = det C = det (1> (to)ea(v(t),1))
- (VA( ))2deteA( (t),1t)
= (V2 ()" etrA—i-udetA(V(t),to) det e4(to, to)

= (1) ¢

where f: T — R is defined by

f(t) = ———= cosh,(v(t),t) sinh,(v(t),t), forallt € T.
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