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Resumo 

 

A detecção de fraudes em transações financeiras é um desafio crítico para assegurar a 

segurança e a integridade das instituições do setor. Com a crescente sofisticação das práticas 

fraudulentas, torna-se indispensável o aprimoramento contínuo dos modelos de detecção. 

Nesse contexto, os avanços em inteligência artificial assumem papel fundamental, oferecendo 

soluções capazes de identificar e mitigar ameaças de forma mais eficaz. Neste contexto, este 

trabalho tem como objetivo desenvolver aplicações e métodos de inteligência artificial 

voltados à melhoria de modelos de prevenção a fraudes e detecção de anomalias na indústria 

financeira, abordando lacunas e desafios identificados na área. Em destaque, apresenta, de 

forma inédita, a proposição de um modelo SLM para geração de dados sintéticos utilizando 

inteligência artificial generativa, visando o balanceamento de classes. Para alcançar o objetivo 

proposto, este trabalho está estruturado em um capítulo introdutório seguido de quatro artigos, 

apresentados nos capítulos subsequentes. O segundo capítulo estabelece o referencial teórico, 

abordando conceitos fundamentais sobre fraudes, ciência de dados e modelos analíticos. Na 

sequência, o terceiro capítulo apresenta uma revisão sistemática da literatura, utilizando 

técnicas de bibliometria e análise de redes complexas para mapear relações de citação entre 

estudos e evidenciar os principais desafios do tema: desbalanceamento de classes, necessidade 

de detecção em tempo real, interpretabilidade e escassez de dados rotulados. Com base nesses 

achados, o quarto capítulo propõe modelos de IA generativa voltados à criação de dados 

sintéticos, visando corrigir o desequilíbrio de classes. Nesse contexto, é introduzido o modelo 

Aurora de SLM, projetado especificamente para geração de dados sintéticos. Por fim, o quinto 

capítulo apresenta um estudo de caso que contempla o desenvolvimento e a aplicação 

empírica de um modelo de detecção de anomalias para pessoas físicas. A relevância desta 

pesquisa transcende o âmbito acadêmico, estendendo-se à indústria financeira e aos 

profissionais dedicados à prevenção de fraudes, oferecendo soluções para lacunas críticas do 

setor, especialmente no que se refere ao desbalanceamento de classes. A principal 

contribuição reside no aprimoramento de técnicas consolidadas, na aplicação empírica 

rigorosa, na análise crítica dos resultados e, sobretudo, na promoção da inovação por meio da 

proposição de uma solução original para os desafios de geração de dados sintéticos e data 

augmentation. 

 

Palavras- chave: Inteligência Artificial (IA); Risco Operacional Bancário; Detecção de 

Fraudes; Anomalias; Desbalanceamento de Classes; Dados Sintéticos. 
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Abstract 

 

Fraud detection in financial transactions is a critical challenge for ensuring the security and 

integrity of institutions in the sector. As fraudulent practices become increasingly 

sophisticated, continuous improvement of detection models is essential. In this context, 

advances in artificial intelligence play a fundamental role, providing solutions capable of 

identifying and mitigating threats more effectively. This work aims to develop AI-based 

applications and methods to enhance fraud prevention and anomaly detection models in the 

financial industry, addressing key gaps and challenges identified in the field. Notably, it 

introduces an innovative SLM model for synthetic data generation using generative AI, 

designed to tackle class imbalance. The study is structured into an introductory chapter 

followed by four articles. Chapter two establishes the theoretical framework, covering core 

concepts of fraud, data science, and analytical models. Chapter three presents a systematic 

literature review, employing bibliometric techniques and complex network analysis to map 

citation relationships and highlight major challenges: class imbalance, real-time detection 

requirements, interpretability, and scarcity of labeled data. Based on these findings, chapter 

four proposes generative AI models for synthetic data creation, introducing the Aurora SLM 

model specifically designed for this purpose. Finally, chapter five presents a case study 

involving the development and empirical application of an anomaly detection model for 

individual accounts. The relevance of this research extends beyond academia, offering 

practical solutions to critical gaps in the financial industry, particularly regarding class 

imbalance. Its main contributions include the refinement of established techniques, rigorous 

empirical application, in-depth critical analysis of results, and, most importantly, innovation 

through the proposal of an original solution for synthetic data generation and data 

augmentation. 

 

Key-words: Artificial Intelligence (AI); Banking Operational Risk; Fraud Detection; 

Anomalies; Class Imbalance; Synthetic Data. 
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Capítulo 1 - Introdução 

 

Um ambiente de negócios cada vez mais digitalizado oferece oportunidades e desafios 

às instituições financeiras. A digitalização permitiu ofertar uma gama mais ampla de serviços 

e produtos financeiros durante as 24 horas dos 7 dias da semana, atendendo às necessidades 

dos clientes de forma mais eficiente e conveniente. No entanto, a digitalização também 

aumenta a exposição a ameaças cibernéticas, principalmente no setor financeiro de varejo que 

se tornou um dos principais alvos de atividades ilícitas e fraudulentas. Isso está exigindo 

pesquisas e investimentos significativos em segurança para proteger dados e as transações dos 

clientes.  

 

1.1. Contextualização, tema e problema de pesquisa 

Como qualquer organização, as instituições financeiras estão sujeitas a uma ampla 

gama de riscos durante o curso de suas atividades. Conhecer as suas características e 

particularidades é essencial, uma vez que os riscos desconhecidos representam os mais 

marcantes (Martin et al., 2004). Dentre essas ameaças, a fraude se destaca como uma das mais 

significativas enfrentadas globalmente pelos bancos. Ao longo do tempo, as técnicas 

utilizadas por fraudadores têm aumentado, evoluído e se sofisticado, dificultando 

progressivamente sua detecção e mitigação.  

As fraudes em instituições financeiras envolvem uma variedade de esquemas que 

exploram vulnerabilidades tecnológicas e humanas. Entre as mais comuns estão a falsificação 

e adulteração de documentos; a aplicação de phishing, que utiliza comunicações falsas para 

roubar dados bancários; a clonagem de cartões; e os golpes via PIX, em que criminosos 

simulam urgência para obter transferências indevidas. Também se destacam fraudes digitais 

como o uso de softwares maliciosos para capturar sessões bancárias, além da clonagem de 

WhatsApp e perfis falsos em redes sociais para extorquir contatos da vítima. 

Paralelamente às fraudes, as anomalias representam potencial ameaça à estabilidade e 

segurança dos bancos. Anomalias referem-se a irregularidades ou comportamentos que 

desviam do esperado ou do normal. Podem indicar algo fora do comum nos sistemas, nas 

transações ou nos processos da instituição. Representam uma ameaça à estabilidade e 

segurança das instituições porque podem indicar vulnerabilidades críticas em seus sistemas, 
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processos ou operações, que, se não forem tratadas, podem resultar em sérias consequências 

financeiras, operacionais e reputacionais. 

Com o avanço da tecnologia e a crescente digitalização das transações financeiras, a 

necessidade de sistemas eficazes de detecção de fraudes e anomalias nunca foi tão importante. 

A aplicação de modelos analíticos e Inteligência Artificial (IA) tem se mostrado promissor 

para combater essas ameaças e garantir a segurança financeira. Tais modelos permitem 

processar grandes volumes de dados em tempo real, proporcionando uma resposta mais rápida 

a atividades suspeitas. A habilidade de identificar eficientemente anomalias financeiras, 

reduzindo custos operacionais e elevando a precisão de fraudes, tornou-se um divisor de águas 

no combate a atividades fraudulentas. A integração de machine learning com técnicas 

analíticas tradicionais, formando modelos híbridos, tem sido particularmente eficaz. Modelos 

analíticos baseados em machine learning têm desempenhado um papel central na 

transformação da metodologia de detecção de anomalias e prevenção de fraudes por bancos e 

instituições financeiras. 

A prevenção de fraudes e a detecção de anomalias constituem componentes 

primordiais da Gestão de Segurança da Informação em instituições bancárias e integram a 

estrutura de gestão de riscos corporativos (Damenu & Beaumont, 2017). No setor bancário, a 

gestão de riscos se baseia nas regras de Basileia III, um conjunto de regulamentos 

internacionais que buscam fortalecer a regulamentação, supervisão e gestão de riscos nas 

transações bancárias. Essas regras reforçam a necessidade de uma gestão de riscos mais 

robusta, especialmente na gestão de capital, liquidez e exposição ao risco.  

Os bancos usam técnicas de benchmarking para comparar suas práticas com as 

exigências de Basileia III, garantindo que as práticas adotadas por eles estejam alinhadas com 

os padrões internacionais (Locher, 2005). A auditoria das melhores práticas deve ser realizada 

regularmente com o objetivo de saber o que se pode aprender delas e de adaptar planos que 

definam os papeis e responsabilidades na estrutura organizacional e de governança da 

instituição em sintonia com suas estratégias e padrões regulatórios. Assim, os bancos que 

conseguem realizar benchmarking eficaz podem melhorar sua posição competitiva e manter 

padrões de risco compatíveis com os requisitos globais, fortalecendo sua resiliência e 

estabilidade no mercado. 

Diante da relevância do assunto para a indústria financeira, a presente tese define 
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métodos e modelos de detecção de fraudes e anomalias como seu tema central. Em outras 

palavras, a área de interesse em que esta pesquisa está enquadrada é “aplicações de modelos 

analíticos e de inteligência artificial na detecção de anomalias e mitigação de fraudes 

bancárias. 

 Dentro desse tema, a questão central que a tese procura resolver é como o 

desenvolvimento de modelos analíticos e de inteligência artificial podem ser utilizados para 

aprimorar a detecção de fraudes e anomalias nas transações financeiras?  

 

 

1.2. Desafios e lacunas de pesquisa sobre o tema 

  Historicamente, a detecção de fraudes e anomalias dependia fortemente de sistemas 

baseados em regras e da experiência humana. No entanto, com o aumento do número, 

complexidade e sofisticação das fraudes, esses métodos se tornaram insuficientes. A 

experiência passada pode não ser satisfatória para identificar padrões inéditos ou avançados 

de fraude. Nas últimas décadas, a literatura especializada tem explorado com uma maior 

intensidade o uso de técnicas de IA, mineração de dados e aprendizado de máquina para 

melhorar a detecção de fraudes. Essas técnicas podem identificar padrões complexos e sutis 

que podem ser difíceis para os humanos detectarem. 

Estudos acadêmicos recentes comprovam a eficiência da utilização dos modelos 

analíticos e de inteligência artificial pelas instituições financeiras. Porém, a dinâmica 

constante das ameaças cibernéticas e a crescente demanda dos clientes pela eficácia na 

segurança de seus dados e patrimônio exigem melhoras contínuas, aprimoramentos 

ininterruptos dos métodos e modelos existentes.  A inteligência artificial, a aprendizagem de 

máquina e a mineração de dados emergem como poderosas ferramentas nessa batalha contra 

as ameaças de fraudes e comportamentos anormais que, de outra forma, poderiam passar 

despercebidos pelos sistemas convencionais de monitoramento. 

Além disso, apesar dos avanços, ainda persistem desafios e lacunas na literatura sobre 

o tema.  

O primeiro desafio é que a maioria dos estudos em modelos de detecção de fraudes se 

concentra em técnicas de aprendizado supervisionado, que requerem grandes conjuntos de 

dados rotulados para treinamento. Isso é um desafio, pois os dados de fraude são tipicamente 
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escassos comparados as transações não fraudulentas.  

Outro aspecto crítico relacionado à escassez de dados rotulados é o elevado custo e a 

complexidade do processo de anotação, uma vez que a validação de uma transação como 

fraude geralmente exige investigações manuais, auditorias e conhecimento especializado. Isso 

faz com que os conjuntos de dados disponíveis sejam limitados e, muitas vezes, 

desatualizados em relação às estratégias de fraude mais recentes, reduzindo a eficácia dos 

modelos supervisionados. Nesse contexto, cresce o interesse por abordagens alternativas, 

como métodos semi supervisionados e não supervisionados, que buscam explorar o grande 

volume de transações não rotuladas para extrair padrões úteis e auxiliar na identificação de 

atividades suspeitas. 

O segundo problema diz respeito à explicabilidade dos modelos da detecção da fraude. 

Muitas vezes, os modelos baseados em inteligência artificial são complexos e de difícil 

interpretação, o que pode limitar sua aceitação nas decisões. Portanto, há uma necessidade de 

mais pesquisas que explorem maneiras de integrar efetivamente esses sistemas de IA nos 

fluxos de trabalho bancários existentes, a fim de maximizar seu impacto e garantir 

transparência nas decisões tomadas. 

O terceiro desafio trata de que muitos dos modelos atuais ainda lutam para equilibrar 

a precisão com a minimização de falsos positivos devido à natureza dos dados ser 

extremamente desequilibrada entre as classes. Um conjunto de dados é considerado 

desbalanceado quando uma ou mais classes têm significativamente menos observações em 

comparação com outras, o que compromete a capacidade do modelo de identificar 

adequadamente os padrões dessa classe. Como consequência, o modelo pode aprender de 

forma inadequada os padrões das classes com menos dados, resultando em desempenho 

deficiente, métricas enganosas e risco de overfitting nessas classes. 

Deste modo, existe a necessidade de utilizar técnicas eficazes para tratar a quantidade 

de dados entre as classes até atingir um equilíbrio desejado para a aprendizagem e 

reconhecimento de padrões. A seguir, são apresentadas algumas das técnicas mais utilizadas 

para lidar com o desbalanceamento de classes: 

1. Oversampling: Consiste em aumentar a representatividade da classe minoritária, seja 

duplicando instâncias existentes via reamostragem ou gerando novos exemplos 

sintéticos por meio de algoritmos. Esta técnica auxilia os modelos a aprenderem 
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melhor os padrões da classe minoritária, reduzindo o viés em favor da classe 

majoritária e melhorando o desempenho na detecção de eventos raros. 

2. Undersampling (subamostragem): Diminui o número de observações na classe 

majoritária. Essa técnica ajuda a balancear a distribuição dos dados, mas deve ser usada 

com cautela para não descartar informações relevantes.  

3. Ajuste de Pesos (Cost-Sensitive Learning): Muitos algoritmos de aprendizado 

permitem a ponderação das classes, aumentando a penalidade para erros cometidos na 

classe minoritária. Dessa forma, o modelo “se importa mais” em classificar 

corretamente as instâncias menos representadas.  

4. Uso de Algoritmos Específicos ou Ensemble Methods: A) algoritmos como Random 

Forest ou Gradient Boosting podem ser adaptados para lidar melhor com classes 

desbalanceadas, muitas vezes combinando a reamostragem com o ajuste de pesos. B) 

Técnicas híbridas: Combinar oversampling e undersampling para alcançar um 

equilíbrio sem perder a variabilidade dos dados.  

5. Alteração das Métricas de Avaliação: Em vez de focar apenas em acurácia, é 

importante usar métricas que deem visibilidade para as classes minoritárias, como F1-

Score, Precision, Recall e AUC-ROC. Essa abordagem permite monitorar e ajustar o 

desempenho do modelo de maneira correta e equilibrada. 

Cada uma dessas estratégias pode ser aplicada isoladamente ou combinada, 

dependendo do contexto e da complexidade do problema. A escolha da técnica mais adequada 

deve considerar além do equilíbrio dos dados, a preservação da informação relevante e o 

impacto das modificações na generalização do modelo. Assim, este trabalho propõe métodos 

e modelos para atuar contra o desequilíbrio de classes com geração de dados sintéticos via 

utilização de inteligência artificial - IA generativa. 

Nesse contexto, a presente tese justifica-se pela urgência e constante necessidade do 

setor financeiro de desenvolver métodos e modelos inovadores para identificar fraudes e 

comportamentos atípicos. Além disso, propõe novas soluções para as lacunas ainda existentes 

com destaque para o desafio do desbalanceamento de classes entre fraudes e não fraudes, por 

meio de métodos e modelos voltados à geração de dados sintéticos e á minimização deste 

problema. 
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1.3. Objetivos da Tese 

A identificação de atividades irregulares ou suspeitas envolve a detecção de transações 

fraudulentas, risco operacionais, lavagem de dinheiro ou roubo de identidade e dados. Para 

isso, modelos analíticos e IA são usados para analisar grandes volumes de dados de transações 

para identificar padrões e comportamentos anômalos que podem indicar atividades 

fraudulentas. Esses sistemas têm a capacidade de aprender continuamente, adaptando-se a 

novas táticas de fraude e melhorando a precisão da detecção, identificando práxis sistemáticas, 

fazendo previsões e tomando decisões com base em dados sem a necessidade de intervenção 

humana direta. À medida que os sistemas são expostos a mais dados e situações, eles adquirem 

habilidades e melhoram suas capacidades e desempenho. 

Diante desse cenário, a presente tese tem como objetivo central desenvolver aplicações 

e métodos de inteligência artificial para melhora de modelos de prevenção a fraudes e 

detecção de anomalias na indústria financeira, atuando nas lacunas e desafios identificados.  

Como objetivos específicos, buscará: i) analisar a literatura acadêmica e o estado da 

arte sobre o tema por meio de uma revisão sistemática; ii) propor um método e modelo de 

geração de dados sintéticos com utilização de modelos de inteligência artificial generativa 

para atuar sobre a necessidade de balanceamento de classes; iii) desenvolver modelo com 

aplicação de técnicas de aprendizado não supervisionado para detecção de anomalias. 

 

1.4. Estrutura da Tese 

Com a finalidade de atender os objetivos propostos, esta pesquisa adota a modalidade 

de tese em formato de artigos, que inclui, além de esta introdução e o segundo Capítulo de 

referencial teórico geral, três (3) artigos e as considerações finais da tese.   

Assim, o Capítulo 2, faz uma revisão teórica atrelada aos artigos, onde aborda-se os 

principais conceitos e referenciais teóricos sobre fraudes, anomalias, além da base conceitual 

sobre modelos, ciência de dados, inteligência artificial, aprendizado de máquina e mineração 

de dados, voltada para finanças e banking.  

No Capítulo 3, apresenta-se o primeiro artigo, em que se realiza uma revisão 

bibliográfica sistemática, aplicando técnicas de bibliometria e análise de redes complexas. 

Seu objetivo é mapear conexões citacionais e identificar os principais desafios presentes na 

literatura como: desbalanceamento de classes, exigência de detecção imediata, clareza 
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interpretativa e a contínua transformação nos padrões de fraudes, com uma notável ascensão 

em casos vinculados à engenharia social. O artigo foi publicado na revista Journal of 

Bibliometrics in Business and Management1. 

O Capítulo 4 contém o segundo artigo, que visa desenvolver e colocar em prática 

alguns métodos e modelos de geração de dados sintéticos com uso de aprendizado de máquina 

e inteligência artificial generativa (GenIA).  A proposta é equilibrar os dados e realizar 

oversampling, aumentando a quantidade de exemplos da classe minoritária, de modo a reduzir 

falsos positivos e melhorar a performance de modelos preditivos de fraudes. Inicialmente, 

foram desenvolvidos modelos tradicionais de IA, como SMOTE, GAN e VAE. Em seguida, 

o trabalho avançou para o desenvolvimento de aplicações de IA Generativa para criação dos 

dados sintéticos que respeitassem os mesmos padrões de estrutura dos dados originais. Para 

tal feito, foi aplicado inicialmente engenharia de prompt, depois modelos de IA Generativa 

com RAG e por fim, um modelo inédito de SLM, batizado de Aurora, desenvolvido via fine-

tuning com o conhecimento intrínseco para geração de dados sintéticos. 

No Capítulo 5, inclui-se o terceiro artigo, que se dedica ao desenvolvimento e avaliação 

de um modelo de detecção de anomalias, denominadas de negócios não sustentáveis, 

utilizando dados de uma grande instituição financeira brasileira, voltados a produtos de 

seguridade para pessoas físicas e jurídicas. 

Para finalizar, há um capítulo final de conclusão e considerações finais. Nele, são 

discutidas a integração dos objetivos, resultados e conclusões individuais dos três artigos, bem 

como, as contribuições para o campo de estudo, limitações do trabalho e possível agenda de 

pesquisa futura. 

 

1.5. Justificativa da Tese  

A relevância deste trabalho, assim como de futuras agendas de pesquisa sobre detecção 

de fraudes bancárias usando modelos analíticos e IA, é variada e abrangente para a literatura 

acadêmica. Primeiramente, os resultados da pesquisa trazem insights inovadores que 

aprofundam o conhecimento sobre como melhor detectar e prevenir fraudes bancárias, 

 
1 Pinto, A. C., Tessmann, M. S., & Lima, A. V. (2024). Fraud and anomaly detection models in banks: a systematic 

analysis and literature connection. International Journal of Bibliometrics in Business and Management, 3(2), 182-

205. DOI: 10.1504/IJBBM.2024.140372 
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contribuindo para o desenvolvimento de modelos mais precisos e eficientes, capazes de 

superar as limitações dos métodos atualmente empregados.  

Destaca-se que este tema de pesquisa é interdisciplinar, combinando elementos de 

ciência da computação, finanças, estatística e ética. Portanto, os avanços nessa área podem ter 

implicações em várias disciplinas acadêmicas. A realização de pesquisas neste campo é de 

grande importância para a academia, a indústria e a sociedade como um todo. 

Buscando atender os requisitos de originalidade, ineditismo, inovação e relevância, a 

tese contribui com o campo de pesquisa ao levantar o estado da arte dos métodos e modelos 

de detecção de anomalias e fraudes; identificando os principais desafios relacionados ao 

assunto; fornecendo propostas com sugestões de soluções para os problemas mencionados; e 

executando uma agenda de pesquisa que aborde esses desafios na indústria bancária e 

financeira. A abordagem adotada inclui o desenvolvimento de aplicações empíricas com 

modelos de IA Generativa sobre o tema, detalhadas nos capítulos 4 e 5, que buscam atuar nos 

gaps identificados:  

• Balanceamento da base de dados. Dados de fraudes são escassos e altamente 

desequilibrados, portanto, o desenvolvimento de modelos com oversamping melhores 

tendem a reduzir falso positivos; 

• Desenvolvimento de modelos não supervisionados. A criação de modelos que 

não dependam exclusivamente de dados rotulados é essencial para ampliar a 

capacidade de detecção de anomalias;  

• Integração de sistemas de IA aos fluxos de trabalho bancários: Garantir que os 

modelos desenvolvidos possam ser integrados aos processos já existentes para 

maximizar seu impacto e eficiência. 

Resumindo, é importante ressaltar que os resultados dessas pesquisas têm implicações 

diretas na indústria financeira, ajudando as instituições a protegerem-se contra fraudes e a 

oferecerem um serviço mais seguro aos seus clientes. Com o cenário de fraudes em constante 

evolução, a pesquisa contínua é necessária para abordar novos tipos de fraudes. 
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2. Referencial Teórico - Principais Conceitos sobre riscos financeiros e 

ciência de dados  

Neste capítulo, apresenta-se e discute-se a base conceitual sobre riscos financeiros, 

fraudes e transações atípicas nas transações financeiras, bem como os métodos para enfrentá-

los. Discute-se o conjunto de teorias, modelos, estudos e evidências prévias que dão base a 

este trabalho. Busca-se articular a estrutura do trabalho e dar coerência à tese formada por três 

artigos.  

Na seção 2.1, é apresentada a base conceitual sobre riscos financeiros, em especial o 

risco operacional, bem como sobre fraudes e anomalias. A seguir, é apresentado conceitos 

gerais e evolução histórica sobre inteligência artificial, aprendizado de máquina e mineração 

de dados, técnicas estas que são aplicadas em modelos de prevenção a fraudes e anomalias.  

Em sequência, salientamos as principais características e diferenciações entre modelos 

supervisionados e não supervisionados, bem como os principais tipos de modelos de 

aprendizado de máquina (classificação, regressão e clusterização). Subsequentemente, é 

apresentada a metodologia Crisp-DM como principal método de desenvolvimento de modelos e, 

a seguir, explicita-se os principais algoritmos de aprendizado de máquina e as principais medidas 

de desempenho destes.  

Por fim, antes da conclusão, no item 2.3 destaca-se, no que se refere aos modelos e pesquisa 

em fraudes e anomalias, quais são os principais desafios e lacunas de pesquisa deste tema no 

âmbito financeiro.  

 

2.1.Riscos financeiros, fraudes e anomalias  

Todos os agentes econômicos, independentemente do ramo de atuação, estão expostos a 

uma multiplicidade de riscos ao longo do ciclo operacional de seus negócios. O conhecimento 

desses riscos é fundamental, assim como a gestão eficaz daqueles considerados mais relevantes, 

levando em consideração a forma de atuação, o nicho de mercado e a escala dos negócios. 

Damodaran (2010) destaca que o risco é onipresente em quase todas as atividades humanas 

e não há uma definição única e consensual para o termo. A discussão sobre o tema, portanto, 

baseia-se na distinção entre o risco passível de ser quantificado de forma objetiva e o risco 

subjetivo. 

No setor bancário, o risco está relacionado à possibilidade reais de perdas financeiras e 
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dificuldades que afetem a capacidade de cumprir com as obrigações financeiras. Incluem risco 

operacional, de crédito, de mercado, de liquidez e sistêmico e têm várias fontes, como mudanças 

no mercado, volatilidade dos preços de seus ativos, flutuações na taxa de juros e câmbio, desastres 

naturais, ataques cibernéticos, inadimplência de clientes e falhas internas. (Bessis, 2011) 

Para administrar o risco, é necessário realizar uma análise detalhada dos processos e 

previsões, identificar potenciais falhas, suas causas e consequências, bem como remodelar 

permanentemente as transações de seguros e reservas para identificar e mitigar esses perigos. 

Nesse sentido, as grandes instituições financeiras seguem as orientações do Bank of International 

Settlements – BIS (Banco de Compensações Internacionais), especialmente aquelas estabelecidas 

pelos Acordos de Basileia. 

Com a publicação dos Acordos de Basileia e o aumento subsequente da regulamentação 

nacional do setor, a gestão de riscos adquiriu maior relevância, resultando no desenvolvimento e 

aprimoramento de diversos procedimentos, mecanismos e modelos para a mensuração e controle 

de riscos. De acordo com o conceito regulatório, as tratativas de mitigação de fraudes, é 

referenciada dentro do arcabouço do Risco Operacional (RO), que também incluem erros internos 

e falhas sistêmicas. O RO É reconhecido como um componente essencial, devido aos elevados 

montantes de perdas efetivas e de capital alocado por essas instituições. 

O Banco de Compensações Internacionais (BIS) define o risco operacional como a 

possibilidade de perdas em decorrência de falhas em processos, pessoas, tecnologia ou eventos 

externos (BIS, 2021).  

Essa abrangente definição engloba tanto os riscos externos imprevistos, fora do controle 

direto da empresa, bem como diversos eventos internos, tais como erros humanos, falhas em 

sistemas de informação, defeitos na identificação de fraudes e anomalias, imprecisões no 

diagnóstico do contexto externo, entre outros. Por exemplo, uma falha operacional (como um erro 

de avaliação de um pedido de empréstimo) pode aumentar o risco de crédito ao aprovar um 

empréstimo para um tomador de alto risco. Assim, a má gestão de riscos operacionais pode 

comprometer a capacidade da instituição financeira de gerir adequadamente seu portfólio de 

crédito, exacerbando as perdas. Para os autores Hull (2012) e Pesaran, Schuermann, Treutler e 

Weiner (2006), o risco de crédito é o principal risco operacional enfrentado pelas instituições 

financeiras. 

O BIS (2021) propõe uma gestão de risco operacional abrangente e proativa, composta por 
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cinco etapas: identificação, avaliação, implementação de controles, monitoramento e 

acompanhamento, e cultura de gestão de riscos. Essa abordagem visa minimizar o impacto de 

eventos adversos, fortalecer a reputação da instituição, otimizar processos e reduzir custos, além 

de garantir o cumprimento das exigências regulatórias e contribuir para a vantagem competitiva. 

No Brasil, o risco operacional é normatizado, para o sistema bancário, pela Resolução 

Conselho Monetário Nacional (CMN) 4557/2017, que se refere o risco operacional, de forma 

similar ao BIS, como resultados de mudanças do contexto externo e da deficiência ou inadequação 

de processos internos, pessoas ou sistemas. Essa Resolução estabelece diretrizes para o 

gerenciamento de riscos, a manutenção da estrutura de capital adequada, a governança corporativa 

e política de segurança cibernética. 

 Neste contexto, o risco operacional é causado basicamente por fraudes financeiras e 

anomalias em transações, ao comprometer a integridade dos processos internos. A fraude é 

definida como qualquer ação intencional ou comportamento enganoso executado com o objetivo 

de obter vantagem financeira ilícita, seja através da manipulação de informações contábeis, 

distorção de transações financeiras, falsificação e omissões de documentos ou qualquer outra 

forma de conduta desonesta dentro do contexto financeiro de uma organização ou sistema. Essas 

atividades fraudulentas podem resultar em perdas financeiras significativas para as partes afetadas, 

incluindo investidores, acionistas, instituições financeiras e consumidores. 

De acordo com um estudo realizado por Hilal et. al (2022), a fraude financeira é descrita 

como " qualquer ato intencional ou deliberado para privar outro de propriedade ou dinheiro por 

astúcia, decepção ou outros meios injustos".  Esses crimes podem ocorrer em diversos contextos 

e formas, desde transações corporativas até operações de mercado, e são frequentemente 

perpetradas por indivíduos ou grupos que buscam explorar vulnerabilidades nos sistemas 

financeiros e contábeis. Dentre os tipos de fraudes financeiras apresentado por Hilal et. al (2022), 

destaca-se: fraude de cartão de crédito; fraudes em seguros; lavagem de dinheiro; pirâmides 

financeiras e manipulação de informações de mercado. 

No que tange a anomalias financeiras, estas se referem aos desvios dos padrões, 

comportamentos ou eventos incomuns, atípicos ou inesperados nos dados financeiros de um 

cliente, uma empresa, mercado ou sistema financeiro. Essas irregularidades podem indicar a 

possibilidade de atividades fraudulentas, falhas sistêmicas, erros contábeis e operacionais, 

manipulação de informações ou outros problemas financeiros, bem como choques 
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macroeconômicos que são eventos exógenos imprevistos que causam grandes mudanças nos 

principais indicadores econômicos de um país ou região. 

As anomalias financeiras podem se manifestar de várias maneiras, como discrepâncias 

significativas nos registros contábeis, padrões incomuns de transações, variações repentinas nos 

fluxos de caixa, inconsistências nos relatórios financeiros ou qualquer outra irregularidade que não 

siga o padrão esperado de funcionamento financeiro. A detecção de anomalias tem um papel 

significativo na detecção de fraudes financeiras e é utilizada para extrair informações atípicas e 

desvios em grandes quantidades de dados (Ngai et al., 2011).  

Na literatura, existe uma quantidade significativa de trabalhos aplicando métodos 

estatísticos, bem como técnicas de inteligência artificial e aprendizado de máquina para abordar a 

detecção de fraudes e anomalias em registros de pedido de empréstimo, emissões de notas fiscais, 

declaração de impostos, cartões de crédito e seguros, sendo a maioria focada nos dois últimos. 

Além disso, a maioria dos novos artigos científicos direciona seu foco para técnicas não 

supervisionadas, muitas das quais abordando conjuntos de dados desbalanceados e incompletos 

Hilal et. al (2022). 

Segundo a Pesquisa Global de Identidade e Fraude, apresentada em Serasa Experian 

(2021), no âmbito global, 8 em cada 10 empresas disseram que agora têm uma estratégia de 

reconhecimento do cliente, um aumento de 26% desde o início da pandemia. Isso se deve à 

constatação de que as perdas causadas por fraudes têm aumentado a cada ano no Brasil e no mundo. 

Essa pesquisa identificou que 57% das empresas relataram perdas maiores associadas a fraudes na 

abertura e no roubo de contas em 2020, em comparação com 55% em 2018 e 51% em 2017. Além 

disso, menciona ter atuado mais de 3 mil eventos fraudulentos por segundo em 2020. Contudo, o 

foco na atuação e mitigação da fraude, está provocando o bloqueio de transações legítimas de 

muitos clientes por suspeita de fraudes, identificando-se situações de falsos positivos. Apesar do 

principal dano ser a perda financeira, o bloqueio errado também causa perda de confiança do 

cliente. 

A proporção de fraudes em relação ao volume total de transações na indústria 

financeira pode variar dependendo do país e do período considerado. No Brasil, por exemplo, 

estudo de Mapa da Fraude2, divulgado pela ClearSale em 2020, apontou que mais de 902 mil 

 
2 https://br.clear.sale/mapa-da-fraude 
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das mais de 22 milhões de transações analisadas eram uma tentativa de fraude, o que 

corresponde a aproximadamente 4,05% do total.  

Já no primeiro trimestre de 2023, a empresa de prevenção de fraudes e segurança digital 

CAF relata, a partir de dados do Banco Central, que 1,73% das transações digitais nos canais 

eletrônicos do sistema financeiro do país tiveram intenções criminosas, ou seja, 2,8 mil tentativas 

de fraudes financeiras por minuto (CAF, 2023). 

Esses números destacam a importância de novos investimentos, contínuas pesquisas e 

desenvolvimento de métodos oriundos da ciência da computação para a detecção de fraudes 

na indústria financeira.  

 

2.2.Métodos da ciência de dados  

 O ecossistema da ciência de dados refere-se ao conjunto interligado de disciplinas, 

tecnologias e práticas que compõem a área de estudo e aplicação da computação. Ele abrange 

desde os fundamentos teóricos da ciência da computação — como algoritmos e estruturas de dados 

—  passando por técnicas de mineração de dados e aprendizado de máquina, até aplicações práticas 

e avançadas, incluindo inteligência artificial (IA). 

O ecossistema da ciência de dados envolve uma série de componentes interconectados que 

transformam dados brutos em insights úteis. Seus principais componentes seguem uma sequência. 

Ele começa com a obtenção de dados estruturados (bancos de dados) ou não estruturados (mídias 

sociais, IoT). A coleta e o armazenamento são realizados por meio de ferramentas como SQL, data 

lakes e nuvem. Em seguida, a engenharia de dados entra em ação, realizando a limpeza e o 

processamento das informações. Linguagens de programação como Python e R, juntamente com 

ferramentas como TensorFlow e Tableau, constituem a base técnica para análise e visualização. 

Os modelos e algoritmos aplicados envolvem estatística, aprendizado de máquina e inteligência 

artificial. Para garantir eficiência e escalabilidade, são utilizadas infraestruturas computacionais 

robustas, como GPUs e plataformas de big data. Profissionais especializados — cientistas e 

engenheiros de dados — colaboram com stakeholders para gerar valor estratégico, enquanto 

práticas de governança e ética asseguram a privacidade e o uso responsável dos dados. Por fim, a 

comunicação dos resultados é essencial, sendo realizada por meio de gráficos, dashboards e 

técnicas de storytelling. Trata-se de um ecossistema dinâmico, multidisciplinar e em constante 

evolução (Géron, 2022). 
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Com o avanço do hardware e a crescente capacidade de processamento, novas áreas 

começaram a emergir dentro do ecossistema da ciência de dados. Nos anos 1980 e 1990, a internet 

e o desenvolvimento de redes de computadores abriram caminho para a era da informação, onde a 

coleta, armazenamento e análise de grandes volumes de dados tornaram-se cruciais. Neste 

contexto, surgiram a mineração de dados e a ciência de dados, disciplinas focadas na extração de 

conhecimento útil a partir de grandes conjuntos de dados. 

Desta forma, na seguinte seção será apresentada a contextualização e breve descritivo das 

tecnologias ligadas a ciência da computação, com viés para a ciência de dados e sua evolução 

histórica com o surgimento da inteligência artificial, mineração de dados, aprendizado de máquina, 

bem como os principais algoritmos e medidas de performance associadas. 

 

2.2.1. Ciência da Computação 

A utilização da computação evoluiu aceleradamente nas últimas décadas, dando origem a 

tecnologias inovadoras aplicadas em diversas áreas como a medicina, economia, finanças, 

robótica, linguística e em diversos setores da indústria e serviços. A tendência é que no futuro 

essas técnicas se façam ainda mais presente nas nossas rotinas e desempenhem papéis cruciais na 

análise e interpretação de dados para a tomada de decisões e automação de processos.  

Conforme descreve Brookshear (2013), a Ciência da Computação é uma área de 

conhecimento que investiga e cria métodos, ferramentas e tecnologias computacionais para 

automatizar processos e solucionar problemas relacionados ao processamento de informações. 

Essa ciência vai além do estudo de algoritmos e sua implementação em softwares, abrangendo 

também técnicas de organização e gerenciamento de dados, telecomunicações, protocolos de 

comunicação e outros campos especializados da computação. 

A ciência da computação é conceituada como um campo amplo que estuda os fundamentos 

teóricos e práticos da computação, abrangendo desde a concepção e construção de hardware até o 

desenvolvimento de software e algoritmos. É a base da Inteligência Artificial (IA), que por sua 

vez incorporam técnicas de mineração de dados e aprendizado de máquina. 

 

2.2.2. Inteligência Artificial 

A Inteligência Artificial (IA) é um campo da ciência da computação que se concentra 

no desenvolvimento de sistemas computacionais capazes de realizar e replicar tarefas que 
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normalmente exigiriam atuação humana. Isso inclui reconhecer padrões, aprender com dados, 

tomar decisões, automatizar tarefas e resolver problemas complexos de forma eficiente. 

Segundo Russell e Norvig (2010), a Inteligência Artificial é o estudo de como fazer os 

computadores realizarem tarefas que, até o momento, os seres humanos fazem melhor. 

Inicialmente limitada a sistemas baseados em regras e lógica simbólica, a IA também 

evoluiu rapidamente, especialmente com o desenvolvimento de técnicas de aprendizado de 

máquina, que permitem que os sistemas "aprendam" padrões a partir de dados ao invés de 

serem explicitamente programados para cada tarefa. Nas últimas décadas, o aprendizado de 

máquina, e em particular o aprendizado profundo (deep learning), tornou-se um dos pilares 

mais importantes do ecossistema da ciência da computação e da Inteligência Artificial, 

aplicável em áreas como visão computacional, processamento de linguagem natural, 

reconhecimento de fala, jogos e simulações. 

Conforme Gartner (2023), a IA pode ser definida como a aplicação de técnicas 

baseadas em lógica e análises avançadas, para interpretar eventos, apoiar e automatizar 

decisões e realizar ações. Essa definição está em conformidade com o crescente 

desenvolvimento das tecnologias e recursos que utilizam técnicas de probabilidade e 

estatística para treinar algoritmos, permitindo identificar padrões ocultos e incertezas, fazer 

inferências e previsões para tomar decisões a partir de grandes volumes de dados. 

Mais recentemente, os algoritmos de Inteligência Artificial têm visto avanços 

significativos nos últimos anos, especialmente com o surgimento e aprimoramento de 

modelos de linguagem natural, que imitam a comunicação humana, com grande capacidade 

de processamento e compreensão de texto. Entre esses modelos, destacam-se os Large 

Language Models (LLMs), que são modelos de linguagem treinados em grandes volumes de 

texto e capazes de gerar e compreender linguagem natural com uma alta precisão.  

A origem dos LLMs pode ser traçada a partir de avanços em técnicas de aprendizado 

profundo e processamento de linguagem natural. Um dos marcos iniciais foi o desenvolvimento 

do modelo de “saco de palavras contínuo” (Continuous Bag-of-Words - CBOW) e o modelo de 

Skip-gram contínuo por Mikolov et al. (2013), que introduziu a ideia de representar palavras em 

um espaço vetorial contínuo, permitindo que as relações semânticas entre as palavras fossem 

capturadas de maneira mais eficaz. Ambos os modelos utilizam a softmax hierárquica baseada 

em árvore de Huffman para eficiência computacional e buscam prever a palavra atual com base 
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no contexto, no primeiro modelo, e tenta maximizar a classificação de uma palavra com base em 

outra na mesma sentença no segundo modelo.  

Contudo, um importante avanço, ocorreu com a introdução do algoritmo Transformer por 

Vaswani et al. (2017). Este modelo eliminou a necessidade de estruturas sequenciais, como 

RNNs, e introduziu a atenção auto-regressiva (self-attention), que permitiu um paralelismo muito 

mais eficiente e escalabilidade para treinamento em grandes conjuntos de dados. Esta abordagem 

permite um maior nível de paralelização e diminuiu significativamente o tempo de treinamento, 

mantendo ou superando o desempenho dos modelos existentes em tarefas de tradução de 

linguagem. 

A arquitetura Transformer é baseada em uma estrutura de encoder-decoder composta por 

múltiplas camadas de self-attention, seguidas por camadas feed-forward. Cada camada de self-

attention no encoder conecta todas as posições de entrada, capturando dependências de longo 

alcance de maneira eficiente. O decoder utiliza um mecanismo semelhante, com a adição de 

atenção cruzada para integrar informações do encoder, além de uma atenção auto-regressiva para 

a geração sequencial de saídas. (Vaswani et al., 2017) 

Com o desenvolvimento do algoritmo Transformer por Vaswani et al. (2017), eliminou-

se a necessidade de estruturas sequenciais, introduzindo a atenção auto-regressiva (self-

attention). Esta inovação propiciou um paralelismo consideravelmente mais eficiente e uma alta 

escalabilidade no treinamento de grandes conjuntos de dados. Tal abordagem permite uma maior 

paralelização, reduzindo significativamente o tempo de treinamento, enquanto mantém ou até 

supera o desempenho dos modelos existentes em tarefas de tradução de linguagem. 

A arquitetura Transformer, de forma simplificada, é composta por um modelo 

codificador-decodificador que integra múltiplas camadas de atenção auto-regressiva seguidas por 

camadas de redes neurais feed-forward. No codificador, cada camada de atenção está ligada a 

todas as posições da entrada, o que permite que o modelo capture de maneira eficaz dependências 

de longo alcance. O decodificador funciona de maneira semelhante, porém adiciona um 

mecanismo de atenção cruzada que incorpora as informações provenientes do codificador, 

facilitando a integração dos dados processados (Vaswani et al., 2017). 

A atenção auto-regressiva é o componente central, e seu cálculo é expresso da seguinte 

maneira: 
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𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(

𝑄𝐾𝑇

√𝑑𝑘

) )𝑉 (2.1) 

 

 onde: 

Q: (Queries) são as entradas de consulta. 

K: (Keys) são as entradas de chave. 

V: (Values) são as entradas de valor. 

𝑑𝑘: é a dimensão das chaves. 

Por exemplo, quando uma pessoa lê um texto e deseja compreender o significado de uma 

palavra, o cérebro direciona a atenção para outras partes da frase que auxiliam na construção do 

sentido. De forma semelhante, o modelo de atenção identifica quais partes da informação são 

mais relevantes para cada palavra ou elemento em processamento. 

O mecanismo de atenção calcula a média ponderada dos valores V, onde os pesos são 

determinados pela similaridade entre a consulta Q e a chave K. A similaridade é medida usando 

o produto escalar, normalizado pela raiz quadrada da dimensão das chaves para estabilizar os 

gradientes durante o treinamento. 

Dentre os usos em processamento de linguagem natural, destaca-se o BERT 

(Bidirectional Encoder Representations from Transformers), apresentado por Devlin et al. 

(2018), que foi desenvolvido na Google e trata-se de um modelo de linguagem pré-treinado 

baseado também na arquitetura Transformer possuindo a capacidade de compreender o 

contexto bidirecionalmente, o que o torna eficaz em tarefas de entendimento de linguagem 

natural, como classificação de texto, perguntas e respostas e análise de sentimentos. Outros 

modelos neste mesmo contexto são o XLNet (Yang et al., 2019) e o T5, Text-To-Text Transfer 

Transformer (Raffel, et al., 2020) 

Entre os modelos de linguagem mais destacados está o GPT (Generative Pre-trained 

Transformer), desenvolvido pela OpenAI, que utiliza a arquitetura Transformer. O GPT foi 

lançado em 2018 e desde então foi sucedido por versões mais avançadas, como o GPT-2 e o 

GPT-3 tornando-se mundialmente famoso após 2023. Esses modelos foram treinados em 

grandes quantidades de dados textuais e demonstraram habilidades impressionantes em 

tarefas de geração de texto, tradução automática, resumo de texto etc. Eles são notáveis por 

sua capacidade de gerar texto naturalmente fluente, coerente e realizar uma variedade de 

tarefas de processamento de linguagem natural com desempenho impressionante. Isso abre 
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possibilidades para aplicação em áreas que vão desde suporte ao cliente, criação de conteúdo 

e educação, até a automação de processos mais complexos, como programação e análise de 

dados. 

Radford et al. (2019) descreveram o desenvolvimento e o desempenho do GPT-2, 

destacando sua capacidade de gerar texto de alta qualidade em uma variedade de tarefas de 

linguagem natural. Além disso, o artigo também discute o uso de modelos de linguagem como 

GPT-2 como ferramentas versáteis para uma variedade de aplicações de inteligência artificial.  

O artigo descreve o treinamento do modelo em um corpus de texto massivo e não 

rotulado, denominado WebText. O WebText foi criado a partir de rastreamentos da web e 

contém trilhões de palavras. Os autores avaliaram o desempenho do GPT-2 em diversas 

tarefas de Processamento de Linguagem Natural (PNL), incluindo resposta a perguntas 

(CoQA), classificação de sentimento (SST-2) e tradução automática (WMT). Apesar de não 

ter sido treinado especificamente para nenhuma dessas tarefas, o GPT-2 demonstrou um 

desempenho surpreendentemente bom em todas elas, superando ou igualando o desempenho 

de modelos supervisionados treinados especificamente para cada tarefa. (Radford et al., 2019) 

 

2.2.3. Mineração de dados 

A Inteligência Artificial também está intimamente relacionada com a Mineração de Dados, 

pois estas técnicas buscam processar, explorar e peneirar grandes conjuntos de dados brutos para 

descobrir regularidades, anomalias e conexões que possam ser usados para prever resultados e 

tomar decisões informadas. Sendo uma das áreas da IA, a Mineração de Dados fornece dados 

de entrada valiosos para os sistemas de IA permitindo que eles aprendam com exemplos 

históricos e façam previsões sobre eventos futuros. Por exemplo, em um sistema de 

recomendação de filmes, a Mineração de Dados pode ser usada para analisar o histórico de 

visualizações de um usuário e, em seguida, alimentar esses dados em um algoritmo de IA para 

sugerir filmes semelhantes que o usuário possa gostar. De forma similar é possível analisar o 

histórico e hábitos do cliente para identificar anomalias, classificá-los em função de seu perfil 

e sugerir novos serviços. Além disso, as técnicas de Mineração de Dados também são usadas 

em outras áreas, como marketing, finanças, saúde e segurança, para melhorar a tomada de 

decisões, identificar fraudes, prever comportamentos futuros e otimizar processos 

operacionais. 
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Segundo Han et al. (2006), a Mineração de Dados, ou Data Mining, é a extração de 

padrões úteis ou conhecimento implícito em grandes quantidades de dados. Este processo 

envolve várias etapas, incluindo a seleção e pré-processamento dos dados, a aplicação de 

algoritmos de mineração para identificar padrões e a interpretação dos resultados obtidos.  

As técnicas de mineração de dados surgiram nos anos 1960, quando a pesquisa 

acadêmica passou a demandar formas de lidar com grandes volumes de dados. No entanto, só 

se popularizaram na década de 1990, impulsionadas pelo aumento do poder de processamento 

dos computadores e pelo avanço das tecnologias de armazenamento e análise de dados. Esse 

crescimento ocorreu em resposta à crescente quantidade de informações acumuladas nas 

organizações e à necessidade de extrair insights e conhecimento útil a partir desses dados. A 

mineração de dados utiliza uma variedade de técnicas, incluindo clustering, classificação, 

regressão e redes neurais. 

Entre os pioneiros nesta área, destacam-se Rakesh Agrawal e Jiawei Han. Rakesh é 

bem conhecido por desenvolver conceitos e tecnologias fundamentais de mineração de dados 

utilizados por grandes empresas como IBM e Microsoft. Seus artigos estão entre os mais 

citados nas áreas de bancos de dados e mineração de dados. Han contribuiu significativamente 

para a mineração de dados, mineração de texto, sistemas de banco de dados, redes de 

informação, através de suas pesquisas em clustering, classificação e mineração de padrões 

sequenciais. Seus livros e publicações são amplamente utilizados em cursos e pesquisas sobre 

mineração de dados.  

 

2.2.4. Aprendizado de Máquina 

O Aprendizado De Máquina (Machine Learning – ML ou Aprendizado Automático) é 

outra das áreas da inteligência artificial (IA). O ML foca no desenvolvimento de algoritmos e 

modelos computacionais capazes de aprender e melhorar seus desempenhos a partir de dados, 

sem a necessidade de serem explicitamente programados para realizar uma tarefa específica. 

Mimetizando as habilidades humanas, esse processo de aprendizado baseia-se na reprodução 

de ações ou habilidades de pessoas, na identificação de estereótipos e tendencias nos dados, 

bem como na aplicação desses padrões para fazer previsões, tomar decisões ou adquirir novas 

habilidades e conhecimentos observados nas melhores práticas. Ou seja, o ML permite que os 

computadores aprendam com experiências passadas para realizar tarefas futuras de forma 
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mais eficiente e precisa. 

Conforme descrito por Tian et al. (2012), o machine learning é uma extensão da 

ciência da computação, que, em conjunto com aplicações da estatística, permitiu que os 

softwares aprendessem com modelos de comportamento, sendo utilizados principalmente em 

problemas de classificação e predição. 

Murphy (2012, p.1) define aprendizado de máquina como “um conjunto de métodos 

que podem detectar padrões automaticamente em dados e, em seguida, usar esses padrões 

descobertos para prever dados futuros ou para realizar outros tipos de tomada de decisão sob 

incerteza.” Em outras palavras, machine learning é uma abordagem computacional que se 

baseia na construção e estudo de sistemas que podem aprender com dados, em vez de seguir 

explicitamente instruções programadas.  

O tema de aprendizado de máquina, assim como os modelos de detecção de fraudes e 

anomalias, evoluiu consideravelmente ao longo das últimas décadas, passando por diferentes 

fases que refletem avanços tecnológicos e teóricos. Essa evolução ocorreu tanto no 

desenvolvimento de novas abordagens teóricas e metodológicas quanto na aplicação prática, 

impulsionada pela disponibilidade de grandes bancos de dados estruturados, pelo 

aprimoramento dos algoritmos e pela crescente demanda por soluções mais sofisticadas e 

escaláveis. 

O campo de aprendizado de máquina teve suas origens na década de 1950 e 1960, com 

contribuições significativas de pioneiros como Alan Turing e Arthur Samuel. Alan Turing 

(2009), na década de 1950, explorou a ideia de máquinas capazes de aprender com a 

experiência, introduzindo o conceito de "máquina de aprendizado" e lançando as bases para 

o campo da inteligência artificial. Samuel (1959), em seu trabalho com o programa de xadrez 

de autotreinamento em 1956, desenvolveu o primeiro programa de aprendizado de máquina 

conhecido, que aprimorou seu desempenho à medida que jogava. Esses esforços pioneiros 

estabeleceram os fundamentos teóricos iniciais do aprendizado de máquina. 

Nas décadas seguintes, o desenvolvimento de algoritmos e métodos de aprendizado de 

máquina tornou-se significativamente mais robusto e escalável. Na década de 1970 surgiram 

técnicas como a árvore de decisão — posteriormente formalizadas por Breiman et al. (1984) 

— e as redes neurais artificiais, cujas bases foram estabelecidas por McCulloch e Pitts (1943) 

e aprimoradas por Rosenblatt (1958) com o perceptron. Já na década de 1980, houve avanços 



41 
 

em algoritmos de vizinhos mais próximos (k-NN), originalmente proposto por Fix e Hodges 

(1951), em um artigo intitulado "Discriminatory Analysis: Nonparametric Discrimination: 

Consistency Properties”. Houve também progressos em técnicas de agrupamento, com 

destaque para o algoritmo k-means, introduzido por MacQueen (1967), ampliando 

substancialmente o escopo de aplicação das abordagens de aprendizado de máquina. 

No final do século XX e o início do século XXI, com o advento e expansão do uso da 

internet, concomitante com o crescimento exponencial dos dados digitais, métodos de 

aprendizado de máquina capazes de lidar com grandes volumes de dados de forma eficiente 

tornaram-se uma prioridade. O aprendizado profundo emergiu como uma área promissora, 

com redes neurais profundas capazes de aprender representações complexas dos dados. Seu 

desenvolvimento foi influenciado por trabalhos como Fukushima (1980) com a rede 

neocognitron, Rumelhart et al. (1986) nos avanços do algoritmo de retropropagação e LeCun 

et al. (2015) sobre redes neurais convolucionais e o uso de GPUs para acelerar o treinamento 

de modelos de aprendizado profundo. 

Na última década, o campo do aprendizado de máquina tem se tornado cada vez mais 

interdisciplinar, recebendo contribuições significativas de áreas como neurociência, 

psicologia e ciência da computação. Além disso, o aprendizado por reforço emergiu como 

uma área de pesquisa importante, especialmente em domínios como jogos, robótica e 

automação. Essa abordagem permite treinar agentes de inteligência artificial a interagir com 

o ambiente e aprender com as consequências de suas ações. Trabalhos como os de Sutton e 

Barto (1998) estabeleceram as bases teóricas do aprendizado por reforço, enquanto Silver et 

al. (2016) demonstraram seu potencial prático com o AlphaGo, um marco no desenvolvimento 

de sistemas autônomos capazes de superar o desempenho humano em tarefas complexas. 

Assim, o aprendizado de máquina (ML) e a mineração de dados, como área da 

Inteligência artificial, desempenham um papel crucial na área de segurança da informação, 

oferecendo diversas aplicações que contribuem para a proteção de sistemas, redes e dados 

contra ameaças cibernéticas.  

Na detecção de anomalias, seus algoritmos podem identificar padrões incomuns nos 

dados, ajudando a detectar atividades suspeitas que possam indicar ataques ou violações de 

segurança. Na prevenção de fraudes, a análise de padrões de comportamento e transações 

pode auxiliar na identificação de intrusos e atividades fraudulentas, protegendo organizações 
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e usuários contra fraudes financeiras e digitais.  

Além disso, as técnicas de ML e Data Mining são capazes de identificar e classificar 

Malwares (softwares maliciosos projetados para extrair dados que podem ser utilizados para 

obter ganhos financeiros ilícitos) garantindo a autenticidade das identidades o acesso seguro 

a sistemas e dados. Portanto, o uso do ML e Data Mining na Segurança da Informação 

proporciona uma abordagem proativa e eficaz para proteger sistemas e dados contra ameaças 

cibernéticas, fortalecendo a resiliência das organizações em um cenário digital cada vez mais 

complexo e dinâmico. 

 

2.2.5. Principais características dos modelos supervisionados e não supervisionado 

Uma característica dos modelos de Aprendizado Automático (ML) é que usam tanto 

técnicas econométricas e estatística computacional quanto processos de otimização matemática. A 

forma de aprendizado dos algoritmos pode ser classificada em: supervisionado, não 

supervisionado e por reforço. 

O conceito de aprendizado supervisionado começou a ganhar forma na década de 1950, 

com o surgimento de algoritmos como a regressão linear e o perceptron, desenvolvido por 

Rosenblatt (1958). 

No aprendizado supervisionado, parte-se de um conjunto de dados rotulados, ou seja, cada 

observação no conjunto de dados vem acompanhada de uma resposta correta ou saída esperada 

(rótulo). Geralmente esse conjunto de dados é dividido aleatoriamente em dados de treinamento e 

dados de teste. Usando os dados de treinamento, o modelo aprende a mapear corretamente as 

entradas para as saídas e faz previsões para cada observação de entrada e os compara com os 

rótulos fornecidos. Posteriormente, com base na diferença entre a previsão e o rótulo verdadeiro, 

estima-se uma função de erro ou perda, utilizada para ajustar os parâmetros do modelo, de forma 

que as previsões futuras fiquem cada vez mais próximas dos rótulos corretos.  

Após o treinamento, o modelo deve ser capaz de generalizar, ou seja, fazer boas previsões 

com os dados de teste que não foram vistos durante o treinamento, com base nos padrões 

aprendidos.  Ou seja, após o treinamento do modelo, é necessário avaliar se o modelo aprendeu 

adequadamente e se pode generalizar adequadamente para novos dados.  

Desta forma, o conjunto de dados de teste serve para avaliar essa capacidade de 

generalização. Assim, o objetivo de um modelo supervisionado é não apenas aprender com os 
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dados de treinamento, mas ser capaz de fazer boas previsões para novos dados (Gregório, 2018). 

Em concordância com o objetivo da pesquisa, os modelos de aprendizado supervisionado usam 

métodos de Regressão, Classificação K-Vizinhos Mais Próximos (KNN), Árvores de Decisão, 

Redes Neurais entre outros. 

Em contraposição ao modelo anterior, o aprendizado não supervisionado é um tipo de 

aprendizado de máquina em que o modelo é treinado com um conjunto de dados sem rótulos, ou 

seja, sem a saída desejada associada a cada observação. Começou a ser explorado na mesma época 

(década de 1950), com algoritmos como o k-means clustering, que foi introduzido por Hugo 

Steinhaus em 1956 e popularizado por James MacQueen em 1967. Seu objetivo é encontrar 

padrões, estruturas ou regularidades nos dados por conta própria, sem supervisão explícita.  

Como definido por Bishop (2006), o aprendizado não supervisionado busca identificar 

estruturas ocultas nos dados, como agrupamentos (clusters), associações ou padrões que não são 

imediatamente aparentes, organizando os dados de maneira coerente com base em suas 

características internas. Além disso, permite a redução de dimensionalidade, que consiste em 

simplificar os dados, mantendo as características mais importantes e eliminando redundâncias ou 

ruídos, o que facilita a visualização e o processamento de grandes volumes de dados. Desta forma, 

é possível segmentar clientes e detectar comportamentos ou padrões incomuns em conjuntos de 

dados, como em fraudes financeiras, defeitos em serviços fornecidos ou problemas de segurança 

cibernética.  

Apesar dos desafios, o aprendizado não supervisionado tem uma ampla gama de aplicações 

em áreas como análise exploratória de dados, reconhecimento de padrões, segmentação de 

mercado e processamento de linguagem natural. Ao explorar a estrutura interna dos dados, o 

aprendizado não supervisionado pode revelar insights valiosos e padrões ocultos que, de outra 

forma, poderiam passar despercebidos. 

 A terceira forma de aprendizagem de máquinas, a aprendizagem por reforço, é aquela em 

que o modelo tenta aprender qual é a melhor ação a ser tomada, dependendo das circunstâncias na 

qual essa ação será executada. Este conceito foi formalizado por Sutton e Barto (2018) que 

definiram o aprendizado por reforço como o aprendizado de máquina de como agir para maximizar 

uma medida de recompensa. 

 O aprendizado por reforço trata-se, portanto, uma das formas de aprendizado de máquina 

em que um agente aprende a tomar ações em um ambiente para maximizar uma recompensa 
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cumulativa ao longo do tempo. Desta forma, é possível vincular recompensas e punições ao 

aprendizado do modelo, ponderando-as da forma certa. 

 

2.2.6. Principais tipos de modelos de ML: classificação, regressão, agrupamento 

No ramo da Ciência de Dados, existem diversos tipos de modelos de Aprendizado de 

Máquinas, cada um com características e aplicações específicas. Entre os tipos de modelos são: 

classificação, regressão e agrupamento. 

Os modelos de classificação são uma ferramenta poderosa para prever a classe a qual um 

novo dado pertence. Essa classificação pode ser binária (por exemplo, um e-mail ser spam ou não 

spam) ou multiclasse (por exemplo, qual o tipo de flor, qual a raça de cachorro, entre outros).  

Segundo Mitchell (1997), um classificador aprende a partir de um conjunto de treinamento, 

onde cada exemplo é um par composto de uma entrada de descrição do objeto e uma classe. Os 

algoritmos de classificação são treinados com exemplos rotulados e, em seguida, usam esses 

exemplos para prever a classe de novos dados não rotulados.  

Existem diversos tipos de modelos de classificação, cada um com suas vantagens e 

desvantagens. Alguns exemplos incluem Regressão Logística, K-Nearest Neighbors (KNN), 

Árvores de Decisão, Support Vector Machine (SVM) e Redes Neurais. A escolha do modelo mais 

adequado para uma tarefa específica depende de diversos fatores, como o tipo de dado, o objetivo 

da tarefa e a quantidade de dados disponíveis. (Hastie et al., 2009) 

 Já os modelos de aprendizado de máquina do tipo regressão são utilizados para prever um 

valor numérico contínuo. Segundo Hastie et al., (2009), o objetivo da regressão é modelar a relação 

entre uma ou mais variáveis de entrada e uma variável de saída. Os algoritmos de regressão são 

treinados com dados que possuem pares de entrada e saída, e o objetivo é encontrar uma função 

que mapeie as entradas para as saídas de forma mais precisa possível. Essa previsão pode ser 

utilizada para estimar valores futuros, como salário, o preço de uma ação ou a temperatura em um 

determinado dia.  

Além da regressão linear, árvores de decisão para regressão e redes neurais, existem vários 

outros modelos amplamente utilizados. Exemplos incluem: Regressão Polinomial, que lida com 

relações não lineares; Random Forest e Gradient Boosting Machines (GBMs), como XGBoost e 

LightGBM, que oferecem maior precisão e robustez; Support Vector Regression (SVR), adequado 

para problemas com poucos dados; K-Nearest Neighbors (KNN), que usa os valores dos vizinhos 
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mais próximos; e Gaussian Process Regression, útil para lidar com incertezas. Para dados 

sequenciais, modelos baseados em séries temporais, como ARIMA, Prophet ou Redes Neurais 

Recorrentes (RNNs), são especialmente eficazes. Também, estão disponíveis os Modelos Lineares 

Generalizados (MLGs) que são uma extensão poderosa dos modelos de regressão linear 

tradicional, desenvolvidos para lidar com situações em que a variável resposta não segue uma 

distribuição normal, o que é bastante comum em dados reais — como contagens, proporções ou 

classificações binárias e multinominais. Esses diversos modelos oferecem um arsenal poderoso 

para lidar com diferentes tipos de problemas e dados (Hastie et al., 2009). 

 O terceiro tipo de modelo de ML consiste no agrupamento, ou clustering. Este é um tipo 

de modelo de aprendizado de máquina considerado não supervisionado, pois seu objetivo é 

organizar instâncias de dados semelhantes em grupos, chamados clusters. Segundo descreve 

Bishop (2006), o agrupamento envolve a atribuição de objetos a grupos de modo que os objetos 

no mesmo grupo sejam mais semelhantes entre si do que com aqueles em outros grupos. 

Diferentemente dos modelos supervisionados, os algoritmos de agrupamento não requerem 

exemplos rotulados para treinamento e buscam identificar estruturas intrínsecas nos dados. 

Um dos algoritmos de agrupamento mais populares é o K-Means, que particiona os dados 

em k clusters, onde k é um parâmetro definido pelo usuário. Por exemplo, em um conjunto de 

dados de clientes de uma empresa, o K-Means pode identificar grupos com padrões de compra 

semelhantes, permitindo à empresa personalizar suas estratégias de marketing. 

Além do K-Means, há o Hierarchical Clustering que cria uma hierarquia de clusters. O 

DBSCAN identifica formas arbitrárias e lida bem com outliers. Gaussian Mixture Models 

(GMM) usa distribuições para flexibilidade. Mean-Shift e Affinity Propagation detectam 

clusters baseados na densidade e em mensagens entre pontos. Spectral Clustering e Birch são 

eficazes para clusters complexos e grandes conjuntos de dados. OPTICS revela mais da 

estrutura dos dados além do DBSCAN, e algoritmos de Clustering Fuzzy permitem pertencer 

a múltiplos clusters. Cada técnica se adapta a diferentes tamanhos, formatos e distribuições 

de dados. 

 

2.2.7. Principais algoritmos de aprendizado de máquina supervisionados 



46 
 

A seguir, apresenta-se uma síntese das principais técnicas de aprendizado de máquina, 

incluindo Regressão Logística, Naive Bayes, Random Forest, Extreme Gradient Boosting 

(XGBoost), Support Vector Machine (SVM) linear e Redes Neurais Artificiais 

 

2.2.7.1. Regressão Logística 

 

A regressão logística, também chamada de análise logit, no âmbito das finanças e analise 

de riscos, é uma técnica frequentemente adotada por instituições financeiras e bureaus de crédito. 

Esse método de análise binária é ideal para situações em que a variável dependente é categórica e 

apresenta apenas dois possíveis resultados: Um exemplo comum na modelagem financeira é a 

previsão de descumprimento de obrigações, em que um indivíduo ou empresa pode ser classificado 

como solvente (representado pelo número zero) ou insolvente (representado pelo número um). 

Outro exemplo de aplicação na identificação de fraudes é o de um serviço bancário on-line capaz 

de determinar se uma transação em curso é fraudulenta, utilizando informações como o endereço 

IP do usuário, localização geográfica, o histórico de transações e outros indicadores. 

O objetivo da regressão logística é gerar uma função matemática que estime a 

probabilidade de uma observação pertencer a um grupo previamente determinado, com base em 

um do conjunto de variáveis independentes. Ou seja, atuar em um problema de classificação, 

estimando uma probabilidade de uma observação com um determinado perfil pertencer a uma 

classe. Deste modo, os coeficientes estimados pelo modelo de regressão indicam a influência de 

cada variável independente para a ocorrência do evento.  

A função matemática central na regressão logística é a função logit, que modela o log-odds 

(logaritmo da chances). A forma geral da função logit é: 

 𝑙𝑜𝑔𝑖𝑡ሾ𝑝ሿ = log ൤
𝑝

1 − 𝑝
൨ (2.2) 

onde,  

p = probabilidade do evento de interesse (por exemplo, a probabilidade de pertencimento 

a uma classe), que é 0 ou 1. 

𝑝

1−𝑝
 é razão de probabilidades (chance).  

O uso do logaritmo do odds é fundamental em regressão logística, pois transforma 

probabilidades restritas ao intervalo [0, 1] em valores de −∞  a + ∞, permitindo que o modelo 
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aplique uma relação linear entre as variáveis independentes e o log-odds. 

ln (
𝑝

1 − 𝑝
) = 𝑋′𝜷 

𝑝

1 − 𝑝
= 𝑒𝑋′𝜷 

𝑝 = 𝑒𝑋′𝜷(1 − 𝑝) = 𝑒𝑋′𝜷 − 𝑝 𝑒𝑋′𝜷 

𝑝 𝑒𝑋′𝜷 + 𝑝 = 𝑒𝑋′𝜷 = 𝑝(1 + 𝑒𝑋′𝜷) 

𝑝 =
𝑒𝑋′𝜷

(1 + 𝑒𝑋′𝜷)
=

𝑒𝑋′𝜷

𝑒𝑋′𝜷

1 + 𝑒𝑋′𝜷

𝑒𝑋′𝜷

=
1

(1 + 𝑒−𝑋′𝜷)
 

 

Assim, na regressão logística, a probabilidade p é modelada como uma função das variáveis 

independentes X. A equação é: 

 
𝑝 =  

1

1 +  𝑒(𝛽0+𝛽1𝑥1+𝛽2𝑥2+⋯+𝛽𝑛𝑥𝑛)
 

(2.3) 

 

𝑥1, 𝑥2 … 𝑥𝑛 = são as variáveis independentes 

β = são os coeficientes do modelo. 

Ao interpretar os coeficientes de um modelo de classificação, cada β representa o efeito da 

variável explicativa sobre os log-odds do evento, sendo que o expoente de β (exp(β)) é entendido 

como uma razão de chances (odds ratio). Por exemplo, se exp(β) = 1,5, isso indica que a variável 

em questão aumenta as chances do evento ocorrer em 50%, assumindo que as demais variáveis se 

mantêm constantes. 

Esta equação representa a função sigmoide ||mostrada na Figura x, em que a curva azul 

com o coeficiente positivo (β>0), indica que à medida que X aumenta, a probabilidade estimada 

também aumenta. A curva vermelha com coeficiente negativo (β<0) mostra que à medida que X 

aumenta, a probabilidade estimada diminui. Assim, mapeia-se qualquer valor real para um valor 

entre 0 e 1, interpretado como a probabilidade ocorrência do evento de interesse. A soma 

𝛽
0

+ 𝛽1𝑥1 + 𝛽2𝑥2 + ⋯ + 𝛽𝑛𝑥𝑛 é a combinação linear das variáveis independentes, ponderada 

pelos seus respectivos coeficientes. Essa combinação linear é então transformada pela função 

logística para gerar uma probabilidade. 
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Figura 2.1 - Exemplos de curvas de modelo de Regressão Logísica 

 

Fonte: Elaboração própria. 

 

Para estimar os coeficientes β usa-se o método de máxima verossimilhança que, a partir de 

uma distribuição de Bernoulli de n observações independentes, é definida por: 

𝑙(𝑦1, … 𝑦𝑛, 𝛽) = ෑ 𝑝𝑦𝑖(1 − 𝑝)(1−𝑦𝑖)

𝑛

𝑖=1

 

 

2.2.7.2. Naive Bayes 

O algoritmo Naive Bayes é um algoritmo de classificação probabilístico binário muito 

utilizado em machine learning. Baseado no Teorema de Bayes, este modelo é frequentemente 

aplicado em processamento de linguagem natural e diagnósticos médicos, entre outros. O teorema 

de Bayes trata da probabilidade condicional, isto é, a probabilidade de o evento A ocorrer, dado o 

evento B. (LEWIS, 1998) 

 

Desta forma o Teorema de Bayes, que define a probabilidade posterior como: 

 
𝑃( 𝐶𝑘 פפ 𝑥 ) =

𝑃( 𝑥 פפ 𝐶𝑘 )𝑃(𝐶𝑘)

𝑃(𝑥)
 

(2.4) 

Sendo: 

𝑃( 𝐶𝑘 פפ 𝑥 ): Probabilidade da classe 𝐶𝑘 dado o vetor de características 𝑥. (Probabilidade posterior) 
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𝑃( 𝑥 פפ 𝐶𝑘 ): Probabilidade do vetor de características 𝑥 ser observado, dado que a classe é 𝐶𝑘 . 

(Probabilidade condicional) 

𝑃(𝐶𝑘): Probabilidade a priori da classe 𝐶𝑘, obtida da distribuição dos dados. 

𝑃(𝑥): Probabilidade de observar o vetor 𝑥 (Constante para todas as classes). 

O algoritmo supõe que todas as características (variáveis explicativas ou features) são 

independentes entre si, mesmo que isso não seja verdade na prática, por isso seu nome naive - 

ingênuo. (LEWIS, 1998). Ou seja, parte-se da hipótese de que a ocorrência de um evento A em 

nada interfere na probabilidade de ocorrência do outro evento, B, portanto, a probabilidade de 

ambos ocorrerem é igual ao produto de suas probabilidades. Essa simplificação facilita o cálculo 

das probabilidades e torna o algoritmo eficiente usando método de máxima verossimilhança que 

determina os parâmetros das distribuições das features. 

Assim, 𝑃( 𝑥 פפ 𝐶𝑘 ) pode ser decomposto como: 

 
𝑃( 𝑥 פפ 𝐶𝑘 ) = ෑ

𝑃( 𝑥𝑖 פפ 𝐶𝑘 )𝑃(𝐶𝑘)

𝑃(𝑥)

𝑛

𝑖=1

 
(2.5) 

sendo: 

𝑥𝑖: Cada característica (ou variável) no vetor 𝑥. 

𝑛: Número total de características. 

A classe predita 𝐶pred  é aquela que maximiza a probabilidade posterior (𝑃( 𝐶𝑘 פפ 𝑥 ). Desta 

forma, a rede bayesiana é descrita assim: 

 𝐶pred = arg max
𝐶𝑘

 𝑃 ( 𝐶𝑘 פפ 𝑥 ) 
(2.6) 

 

A classe 𝐶𝑘 escolhida é a que maximiza a probabilidade posterior: 

Substituindo 𝑃( 𝑥𝑖 פפ 𝐶𝑘 ), o Teorema de Bayes e a suposição de independência condicional: 

 
𝐶pred = arg max

𝐶𝑘

൭𝑃(𝐶𝑘) ෑ 𝑃( 𝑥𝑖 פפ 𝐶𝑘 )

𝑛

𝑖=1

൱ 
(2.7) 

2.2.7.3. Random Forest 

No universo do aprendizado de máquina, uma das formas de melhorar a capacidade dos 

algoritmos é por meio da combinação destes. Neste artigo, faz parte desta classe de modelos o 

Random Forest e Xgboost. 
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Estes algoritmos são conhecidos como do tipo Ensemble, ou seja, que combinam modelos 

simples e de baixo poder preditivo (weak models), para produzir um único forte, robusto e com 

maior acurácia. As principais metodologias de Ensemble são: Bagging e Boosting.  

 A metodologia bagging, proposta utilizada no Random Forest, foi proposta por Breiman 

(2001), tem por objetivo reduzir a variância das predições. Vários algoritmos são treinados 

separadamente em diversas reamostragens com reposição do mesmo conjunto de treinamento. De 

maneira geral, o método bagging se baseia na: 

• Construção das bases de treinamento utilizando bootstrap na base de treinamento original. 

Amostragem com reposição para formação dos dados; 

• Criar múltiplos algoritmos construídos para cada conjunto de dado reamostrado; 

• Combinar os algoritmos: As predições são combinadas utilizando médias, moda, mediana 

para regressão ou voto majoritário para problemas de classificação. 

 

O algoritmo Random Forest opera construindo múltiplas árvores de decisão durante o 

treinamento e produzindo a classe que é a moda das classes (classificação) ou a média das 

previsões (regressão) das árvores individuais. No caso, este modelo combina várias arvores de 

decisão e os valores combinados tendem a ser mais robusto que o valor gerado por um único 

modelo. O modelo constrói várias árvores pouco correlacionadas, onde a principal melhoria das 

árvores combinadas é a redução da variância. (JAMES et al, 2013) 

Destaca-se como vantagem da técnica de Random Forest a capacidade de lidar com dados 

em grandes volumes e com muitas variáveis e a habilidade de identificar as variáveis mais 

significativas dentro de um conjunto de variáveis de entrada. Em contrapartida, como 

desvantagem, o modelo pode facilmente superajustar a base de dados de treino (overfitting), assim 

como dar maior importância para variáveis altamente categorizadas, mesmo que estas não 

possuam alto poder explicativo, além deste modelo ser de difícil interpretação. (JAMES et al, 

2013) 

A formulação matemática do algoritmo Random Forest é baseada na combinação de 

modelos (métodos ensemble) e pode ser dividida em três etapas: 

1. Amostragem Bootstrap: 

https://medium.com/cinthiabpessanha/random-forest-como-funciona-um-dos-algoritmos-mais-populares-de-ml-cc1b8a58b3b4
https://medium.com/cinthiabpessanha/random-forest-como-funciona-um-dos-algoritmos-mais-populares-de-ml-cc1b8a58b3b4
https://medium.com/cinthiabpessanha/random-forest-como-funciona-um-dos-algoritmos-mais-populares-de-ml-cc1b8a58b3b4
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Dado um conjunto de treinamento D contendo N exemplos, são gerados B subconjuntos 

𝐷_𝑏 (para b=1, 2, ..., B) por meio de amostragem com reposição. Cada subconjunto 𝐷_𝑏 pode 

conter exemplos repetidos e nem todos os exemplos de D necessariamente aparecem em cada 𝐷_𝑏. 

2. Construção das Árvores de Decisão: 

Para cada subconjunto 𝐷_𝑏, é construída uma árvore de decisão ℎ_𝑏 (𝑥) Durante a 

construção de cada árvore, em cada nó de decisão, é selecionado aleatoriamente um subconjunto 

de m atributos dentre os M atributos disponíveis (m≪M). A melhor divisão no nó é escolhida 

apenas dentro desse subconjunto aleatório de atributos, promovendo diversidade entre as árvores. 

3. Combinação das Predições: 

• Classificação: 

A predição final 𝑦  para uma nova entrada x é determinada pelo voto majoritário das 

predições individuais das árvores: 

 ℎ𝑡(𝑥), 𝑝𝑎𝑟𝑎 𝑡 =  1,2, . . . , 𝑇 
(2.8) 

Onde ℎ𝑡(𝑥), representa a predição da árvore 𝑡 para a entrada 𝑥 

 

𝑦ො = 𝑎𝑟𝑔𝑚𝑎𝑥𝑐∈𝐶 ෍ 1

𝑇

𝑡=1

{ ℎ𝑡(𝑥)  = 𝑐} 
(2.9) 

Onde: 

• 𝑐 é o conjunto de classes possíveis. 

• 1(. ) é a função indicadora, que vale 1 se a árvoreℎ𝑡(𝑥) previu a classe c, e 0 caso 

contrário. 

 

 

• Regressão: 

A predição final é calculada pela média aritmética das predições individuais. Isso reduz a 

variância do modelo e melhora a capacidade de generalização: 

 

𝑦ො =
1

𝑇
෍ ℎ𝑡(𝑥)

𝑇

𝑡=1

 
(2.10) 

Esta formulação acima não inclui outros parâmetros que podem ser acrescentados como a 

função de impureza usada para os cortes, o critério de parada para o crescimento das árvores, entre 

outros. Além disso, a implementação exata pode variar dependendo da biblioteca de aprendizado de 

máquina utilizada. 

 

https://medium.com/cinthiabpessanha/random-forest-como-funciona-um-dos-algoritmos-mais-populares-de-ml-cc1b8a58b3b4
https://medium.com/cinthiabpessanha/random-forest-como-funciona-um-dos-algoritmos-mais-populares-de-ml-cc1b8a58b3b4
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2.2.7.4. XGBoost 

Segundo James et al. (2013), no método boosting, os algoritmos são aplicados de maneira 

sequencial, de forma que, a cada iteração o algoritmo aplicado utiliza os resultados da iteração 

anterior. Ou seja, a cada iteração ajusta-se o algoritmo usando os resíduos do modelo (erros) da 

interação anterior como a variável dependente, no lugar da variável resposta. 

Deste modo, o algoritmo XGBoost (Extreme Gradient Boosting), desenvolvido por Chen 

e Guestrin (2016) é um algoritmo de aprendizado de máquina do tipo boosting, e uma 

implementação popular e eficiente do método de aprendizado supervisionado Gradient Boosted 

Trees. Baseado no boosting, XGBoost se destaca pela aproximação de funções, otimizando 

funções de perda específicas e aplicando técnicas de regularização. Este método tem se destacado 

em competições de machine learning na plataforma Kaggle, muitas vezes sendo combinado com 

redes neurais profundas.  

Aqui está uma descrição detalhada do algoritmo conforme (Chen e Guestrin, 2016). O 

objetivo principal do XGBoost é minimizar uma função de perda regularizada, que consiste em 

duas partes: 

1. Função de Perda (ℒ): Mede a discrepância entre as previsões do modelo e os valores 

reais. 

2. Termo de Regularização (Ω): Controla a complexidade do modelo para evitar 

overfitting. 

Matematicamente, a função objetivo pode ser expressa como: 

 

ℒ(Φ) = ෍ 𝑙(𝑦𝑖, 𝑦𝑖ෝ)

𝑛

𝑖=1

+ ෍ Ω(𝑓𝑘)

𝐾

𝑘=1

 
(2.11) 

 

Onde: 

• 𝑛 é o número de amostras. 

• 𝑙 é a função de perda. 

• 𝑦𝑖 são os valores reais. 

• 𝑦𝑖ෝ  são as previsões do modelo. 

• 𝐾 é o número de árvores.  

• Ω(𝑓𝑘) é o termo de regularização para a 𝐾-ésima árvore.  
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O XGBoost constrói as árvores de decisão de forma sequencial, onde cada nova árvore 

tenta corrigir os erros residuais das árvores anteriores. Para cada nó da árvore, o algoritmo busca 

a melhor divisão que minimiza a função objetivo. Isso é feito calculando os gradientes de primeira 

e segunda ordem da função de perda em relação às previsões. 

A atualização das previsões é dada por: 

 𝑦𝑖ෝ
(𝑡)

= 𝑦𝑖ෝ
(𝑡−1)

+ η ⋅ 𝑓𝑡(𝑥𝑖) (2.12) 

onde: 

• 𝑡 é a iteração atual. 

• 𝜂 é a taxa de aprendizado.  

• 𝑓𝑡(𝑥𝑖) é a previsão da 𝑡-ésima árvore para a amostra 𝑥𝑖.  

 

O termo de regularização no XGBoost é definido como: 

 

Ω(𝑓) = γ𝑇 +
1

2
λ ෍ 𝑤𝑗

2

𝑇

𝑗=1

 
(2.13) 

onde: 

• 𝑇 é o número de folhas na árvore. 

• 𝑤𝑗 são os pesos das folhas. 

• 𝛾 e 𝜆 são hiperparâmetros que controlam a complexidade da árvore. 

O principal fator por trás do sucesso do XGBoost é sua escalabilidade em todos os cenários 

devido a sua otimização algorítmica.  O sistema é capaz de rodar mais de dez vezes mais rápido 

do que outras soluções populares em uma única máquina e pode escalar para bilhões de 

exemplos em configurações distribuídas ou com recursos limitados de memória (Chen e 

Guestrin, 2016). 

 

2.2.7.5. Suport Vector Machine - SVM 

 Outra técnica amplamente conhecida nos modelos de aprendizado de máquina para 

classificação é o Support Vector Machine – SVM. Desenvolvido por Boser, Guyon e Vapnik 

(1992), o SVM é um algoritmo de aprendizado supervisionado utilizado tanto para classificação 

quanto para regressão. Trata-se de  um classificador linear binário não-probabilístico que classifica 

os dados sempre em apenas duas classes 
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 Segundo Betancourt (2005), o SVM tem como vantagens: i) a facilidade de treinar; ii) não 

apresenta um ótimo local, como nas redes neurais; iii) escala relativamente bem para dados em 

espaços de alta dimensão; iv) a relação entre a complexidade do classificador e o erro pode ser 

explicitamente controlado; e v) dados não tradicionais, como caracteres, podem ser usados como 

entrada, em vez de vetores de recursos. 

 Por outro lado, a fraqueza do SVM é a necessidade de uma função "boa" do kernel, ou seja, 

são necessárias metodologias eficientes para ajustar os parâmetros de inicialização do SVM. 

(BETANCOURT, 2005) 

 O SVM opera encontrando os vetores de suporte, que são os pontos de dados mais 

próximos ao hiperplano de separação. Esses pontos determinam a margem, que corresponde à 

distância entre o hiperplano e os vetores de suporte. O objetivo do SVM é maximizar essa margem, 

garantindo uma melhor generalização do modelo.  

 A formulação matemática do algoritmo SVM é representada por (Boser, Guyon e Vapnik, 

1992). A ideia central do SVM é identificar um hiperplano que separa os dados de diferentes 

classes de maneira ótima. Para conjuntos de dados linearmente separáveis, o SVM busca o 

hiperplano que maximiza a distância (margem) entre as duas classes mais próximas, conhecidas 

como vetores de suporte. 

 Matematicamente, consideremos um conjunto de treinamento com n amostras, onde cada 

amostra 𝑥𝑖 pertence a uma das duas classes 𝑦𝑖∈ {−1,+1}. O hiperplano de decisão pode ser definido 

pela equação: 

 𝑤⊤𝑥 + 𝑏 = 0 
(2.14) 

onde: 

𝑤 é o vetor de pesos normal ao hiperplano. 

𝑏 é o termo de bias (deslocamento). 

O objetivo é encontrar 𝑤 e 𝑏 que maximizem a margem entre as classes, sujeita às restrições de 

que todas as amostras sejam classificadas corretamente. Isso leva a um problema de otimização 

quadrática sujeito a restrições lineares. 

A formulação de otimização do SVM pode ser expressa da seguinte maneira: 

Maximizar a margem: 
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Margem =

2

|𝑤|
 (2.15) 

Sujeito a: 

 𝑦𝑖(𝑤⊤𝑥𝑖 + 𝑏) ≥ 1,  ∀𝑖 = 1,2, … , 𝑛 
(2.16) 

 Essa formulação busca maximizar a margem minimizando ∥ 𝑤 ∥ , pois 
2

|𝑤|
 aumenta à 

medida que |𝑤|diminui. Enquanto garante que todas as amostras estejam do lado correto do 

hiperplano com uma distância mínima de 1. 

 

2.2.7.6. Redes Neurais Artificiais - ANN 

 Por fim, as Redes Neurais Artificiais (ANNs) são modelos inspirados no funcionamento 

do cérebro humano, descritos inicialmente por McCulloch e Pitts (1943). Eles desenvolveram o 

perceptron, um sistema que simula as características básicas de um neurônio biológico. As ANNs 

são compostas por múltiplas camadas de neurônios artificiais e são amplamente utilizadas em 

tarefas de classificação, regressão e outras aplicações de aprendizado de máquina. 

 Desta forma, as ANNs são uma técnica de processamento de informações inspirada pelo 

sistema nervoso humano. Conforme descrito por Haykin (2007), o cérebro humano pode ser 

considerado um sistema de processamento de informação extremamente complexo, não linear e 

paralelo, que realiza diversas atividades de maneira muito mais eficaz do que os sistemas 

computacionais convencionais. 

Aqui está uma descrição detalhada do algoritmo: 

i) Neurônios: As ANNs são compostas por unidades de processamento chamadas 

neurônios ou nós. Cada neurônio recebe várias entradas, aplica uma função de ativação 

e produz uma saída. 

ii) Pesos e Viés: Cada entrada de um neurônio é multiplicada por um peso e o viés é 

adicionado. Os pesos e o viés são os parâmetros do modelo que são aprendidos durante 

o treinamento. 

iii) Função de Ativação: A função de ativação transforma a soma ponderada das entradas 

em uma saída. Exemplos comuns de funções de ativação incluem a função sigmóide, a 

função tangente hiperbólica e a função ReLU. 



56 
 

iv) Camadas: As ANNs são geralmente organizadas em camadas. Existem três tipos de 

camadas: a camada de entrada, as camadas ocultas e a camada de saída. 

Figura 2.2 - Rede Neural feed-forward com duas camadas ocultas 

 

Fonte: Reprodução de Goldberg (2016). 

 

A formulação matemática de uma ANN é a seguinte: 

 Dado um conjunto de treinamento: 

 {(𝑥𝑖, 𝑦𝑖)}𝑖=1
𝑛  

(2.17) 

onde 𝑥𝑖 ∈ ℝ𝑑 é a entrada e 𝑦𝑖é a saída correspondente, a saída de um neurônio é dada por: 

 𝑓(𝑥) = 𝜎(𝑤𝑇𝑥 + 𝑏) 
(2.18) 

Onde: 

𝑤: vetor de pesos; 

𝑏: viés; 

𝜎: viés: função de ativação e; 

𝑇: denota transposição 

 Durante o treinamento, os pesos e o viés são atualizados para minimizar uma função de 

perda, que mede a diferença entre a saída da rede e a saída desejada. 

 

2.2.8. Principais algoritmos de aprendizado de máquina não supervisionados 
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Desta forma, a seguir é apresentada uma síntese de algumas das principais técnicas de 

aprendizado de máquina não supervisionados, tais quais: K-means; DBSCAN; Análise de 

componentes principais (PCA); Isolation Forest; e Autoencoder 

 

2.2.8.1. K-means 

 O algoritmo K-Means é um dos métodos mais populares e simples de aprendizado de 

máquina não supervisionado para a tarefa de clusterização. Ele organiza um conjunto de dados em 

um número pré-definido de grupos (clusters) "k". Seu principal objetivo é minimizar a variância 

intra-cluster, garantindo que os pontos dentro de cada grupo sejam o mais semelhantes possível 

entre si e o mais distintos possível dos pontos em outros grupos. 

O k-means funciona através das seguintes etapas: 

1. Inicialização: Escolhem-se k centroides iniciais. Isso pode ser feito de forma aleatória ou 

por métodos mais sofisticados, como o k-means++. 

2. Atribuição: Cada ponto de dados é atribuído ao centroide mais próximo, formando k 

clusters. 

3. Atualização: Para cada cluster, calcula-se um novo centroide, que é a média aritmética de 

todos os pontos que pertencem ao cluster. 

4. Convergência: Repete-se os passos de atribuição e atualização até que os centroides não 

mudem mais ou até que o número máximo de iterações seja atingido. 

O resultado final é um conjunto de clusters em que  a soma das distâncias dos pontos ao 

seu centroide correspondente é minimizada. No entanto, como o algoritmo pode convergir para 

mínimos locais, a escolha inicial dos centróides pode influenciar significativamente o resultado 

final. 

 A formulação matemática do algoritmo k-means pode ser descrita como um problema de 

minimização, onde o objetivo é minimizar a soma das distâncias quadradas entre cada ponto de 

dados e o centroide do cluster ao qual ele pertence. 

 A formulação matemática do algoritmo k-means pode ser descrita como um problema de 

minimização, onde o objetivo é minimizar a soma das distâncias quadradas entre cada ponto de 

dados e o centroide do cluster ao qual ele pertence. 
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Um conjunto de dados 𝑋 = { 𝑥1, 𝑥2, … , 𝑥𝑛}, onde cada 𝑥𝑛 ∈ ℝ𝑑 é um vetor de dados de 

dimensão d. O objetivo do algoritmo é particionar 𝑋 em 𝑘 clusters 𝐶 = {𝐶1, 𝐶2, … , 𝐶𝑛}, com cada 

cluster 𝐶𝑗 representado por um centroide 𝜇𝑗 ∈ ℝ𝑑. 

 

𝐽 =  ෍ ෍ ∥ 𝑥𝑖 − 𝜇𝑗 ∥2

𝑥𝑖∈𝐶𝑗

𝑘

𝑗=1

 
(2.19) 

 onde: 

 ∥ 𝑥𝑖 − 𝜇𝑗 ∥2 é a distância euclidiana quadrada entre o ponto de dados 𝑥𝑖 e o centroide do 

cluster 𝜇𝑗 . 

𝐽 é a soma total das distâncias quadradas de todos os pontos de dados ao seu respectivo 

centroide. 

  Essa formulação matemática destaca a natureza iterativa e o objetivo de minimização do 

algoritmo k-means, que busca agrupar os dados em clusters de tal forma que a variabilidade dentro 

de cada cluster seja minimizada. 

 

2.2.8.2. DBSCAN 

DBSCAN (Density-Based Spatial Clustering of Applications with Noise) é um algoritmo 

de clustering baseado em densidade que agrupa pontos em regiões de alta densidade separadas por 

áreas esparsas. Proposto por Ester et al. (1996), ele classifica os pontos em três categorias: núcleo, 

borda ou ruído, com base na quantidade de vizinhos dentro de um raio ϵ e no número mínimo de 

pontos necessários para formar um núcleo (min Pts). 

O algoritmo inicia um cluster a partir de cada ponto núcleo, incorporando seus vizinhos 

diretos dentro de ϵ. O processo se expande iterativamente, adicionando pontos de borda ao cluster 

até que não haja mais conexões válidas. Pontos que não atendem aos critérios de núcleo e não 

estão próximos a nenhum núcleo são considerados ruído. 

O DBSCAN depende de dois parâmetros: ϵ (eps) e min Pts. O conjunto de vizinhos diretos 

𝑁𝜖(𝑝) de um ponto p é definido como: 

 𝑁𝜖(𝑝) = {𝑞 ∈ 𝐷 | 𝑑𝑖𝑠𝑡(𝑝, 𝑞) ≤ ϵ 
(2.20) 

onde: 

𝐷 é o conjunto de dados. 

𝑑𝑖𝑠𝑡(𝑝, 𝑞) é uma função de distância (geralmente distância Euclidiana). 
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Um ponto 𝑝 é considerado um ponto central se: 

 |𝑁𝜖(𝑝)| ≥ min Pts 
(2.21) 

O DBSCAN começa verificando cada ponto no conjunto de dados para determinar se ele é 

um ponto central. Se for, o algoritmo cria um novo cluster, adicionando ao cluster o ponto e todos 

os seus vizinhos dentro da distância ϵ. Em seguida, explora recursivamente os vizinhos dos pontos 

adicionados, incluindo pontos de borda ao cluster. Este processo continua até que não haja mais 

pontos elegíveis para serem adicionados ao cluster. Após isso, o algoritmo move-se para o próximo 

ponto ainda não visitado e repete o procedimento, ignorando pontos classificados de ruído. 

Dentre as vantagens do DBSCAN destacam-se a capacidade de identificar clusters de 

formas e tamanhos arbitrários e a robustez contra ruídos, já que ignora pontos considerados como 

ruído. Além disso, ele é determinístico, o que significa que produz o mesmo resultado em 

diferentes execuções com os mesmos dados. No entanto, as desvantagens incluem a escolha 

complexa de ϵ e min Pts, sensibilidade a densidades de cluster variáveis e alta complexidade 

computacional, especialmente para conjuntos de dados grandes. 

 

2.2.8.3. Isolation Forest 

O algoritmo Isolation Forest (IF), introduzido por Liu et al. em 2008, é uma técnica popular 

para detecção de anomalias. A principal ideia por trás do algoritmo é que as anomalias são mais 

fáceis de serem "isoladas" das observações normais. O algoritmo constrói uma floresta de árvores 

de isolamento, onde cada árvore isola observações individuais por meio de cortes aleatórios nas 

dimensões dos dados. 

Cada árvore de isolamento é construída recursivamente selecionando aleatoriamente uma 

característica e um valor de corte dentro do alcance dos dados dessa característica. A construção 

continua até que cada ponto de dados seja isolado em uma folha única ou até atingir uma 

profundidade máxima da árvore. O princípio chave é que, se um ponto é uma anomalia, ele será 

isolado em uma profundidade menor em comparação a pontos normais, pois será necessária uma 

menor quantidade de divisões para isolá-lo. 

A profundidade de isolamento de uma instância é usada para calcular a pontuação de 

anomalia. A pontuação é determinada pela profundidade média de todas as árvores de isolamento. 

Assim, um ponto/observação com uma profundidade média baixa é mais provável de ser uma 

anomalia. 
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A pontuação de anomalia s(x,n) para uma instância x é calculada como: 

 
𝑠(𝑥, 𝑛) = 2

− 
𝐸൫ℎ(𝑥)൯

𝑐(𝑛)  
(2.22) 

onde: 

𝐸൫ℎ(𝑥)൯ é a profundidade média da instância x nas árvores de isolamento e 𝑐(𝑛) é o custo 

de um nó externo para uma árvore binária completa, dado por: 

 
𝑐(𝑛) =  2𝐻(𝑛 − 1) − ቆ

2(𝑛 − 1)

𝑛
ቇ (2.23) 

onde: 

𝐻(𝑖) sendo o i-ésimo número harmônico, aproximadamente igual a ln(𝑖) + 0.5772156649 

(constante de Euler-Mascheroni). 

O algoritmo Isolation Forest é altamente eficiente em termos de tempo e espaço, o que o 

torna adequado para grandes conjuntos de dados. Além disso, sua implementação é simples, pois 

não requer normalização prévia dos dados nem tratamento de valores ausentes. Ele também é 

eficaz em dados de alta dimensão e robusto a ruídos e outliers. No entanto, seu desempenho pode 

ser sensível à escolha de parâmetros, como a profundidade máxima das árvores e o número de 

árvores na floresta. A interpretação dos motivos pelos quais um ponto é considerado anômalo pode 

ser, ainda, menos intuitiva em comparação com outros métodos. 

 

2.2.8.4. Auto Encoder 

O Autoencoder é um tipo de rede neural projetada para aprender representações de dados 

não rotulados. Ele é composto por duas partes principais: o encoder e o decoder. O encoder mapeia 

a entrada para um espaço latente de menor dimensão, enquanto o decoder reconstrói a entrada 

original a partir desse espaço latente. Esse processo força a rede a aprender as características mais 

salientes dos dados (Legrand et al., 2018). 

A estrutura e funcionamento do Autoencoder apresenta as etapas de encoder, decoder e 

função de custo. De forma simplificada o encoder busca reduzir a dimensionalidade dos dados e 

aprender uma representação latente significativa, enquanto o decoder busca reconstruir os dados 

de entrada a partir dessa representação. Assim temos: 

a. Encoder: é a parte da rede neural que transforma a entrada de alta dimensionalidade 

em uma representação de baixa dimensionalidade, ou representação latente. Consiste em 
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uma ou mais camadas de neurônios que transformam a entrada x em uma representação 

latente z. A transformação pode ser descrita matematicamente como: 

 𝑧 = 𝑓(𝑊𝑒𝑥 + 𝑏𝑒) 
(2.24) 

onde: 

𝑊𝑒 são os pesos do encoder 

𝑏𝑒 são os vieses do encoder 

𝑓 é uma função de ativação não-linear, como a ReLU ou a Sigmoid 

O objetivo do treinamento de um Autoencoder é minimizar o erro de reconstrução, que é a 

diferença entre os dados de entrada originais e a saída reconstruída. Ao forçar a rede a aprender a 

reconstruir os dados a partir de uma representação comprimida, o Autoencoder aprende a capturar 

as características mais importantes dos dados, ignorando o ruído e os detalhes irrelevantes. Durante 

o treinamento, o encoder aprende a captar as características mais significativas dos dados de 

entrada, comprimindo a informação e eliminando redundâncias. 

b. Decoder: é a parte da rede neural que tenta reconstruir os dados originais a partir 

da representação latente. O decoder recebe a representação latente z e tenta reconstruir a 

entrada x através de transformações lineares e não lineares. Matematicamente, isso pode 

ser descrito como: 

 𝑥ො = 𝑓(𝑊𝑑𝑧 + 𝑏𝑑) 
(2.25) 

onde: 

𝑊𝑑 são os pesos do encoder 

𝑏𝑑  são os vieses do encoder 

𝑔 é uma função de ativação, muitas vezes a mesma usada no encoder 

Desta forma, o objetivo do decoder é reconstruir a entrada original o mais próximo 

possível. Ele faz isso usando a informação comprimida pelo encoder para gerar uma saída que 

tenha uma baixa perda em relação à entrada original. Durante o treinamento, o decoder é ajustado 

para minimizar a diferença entre a entrada original e a saída reconstruída, o que força o encoder a 

aprender uma representação latente que retém a informação mais crítica. 

c. Função de Custo: O objetivo do treinamento do autoencoder é minimizar a 

diferença entre a entrada x e a reconstrução 𝑥ො. A função de custo é uma parte fundamental 

do treinamento de um autoencoder, pois define o objetivo de aprendizado e quantifica o 
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quão bem o autoencoder está realizando seu trabalho de reconstrução dos dados de entrada 

a partir da representação latente. 

Essa diferença é medida através de uma função de custo, como o erro quadrático médio: 

 
𝐿(𝑥, 𝑥ො) =  

1

𝑛
෍(𝑥𝑖 − 𝑥ො𝑖)

2

𝑛

𝑖=1

 
(2.26) 

A escolha da função de custo afeta significativamente a performance do autoencoder. Uma 

função de custo adequada ajuda o modelo a aprender a codificar e decodificar os dados de forma 

eficiente, mantendo a essência da informação enquanto descarta o ruído e as redundâncias. Durante 

o treinamento, o modelo ajusta seus pesos para minimizar a função de custo, melhorando a 

qualidade da reconstrução dos dados. 

Além disso, a função de custo influencia a estabilidade e a convergência do treinamento do 

modelo. Uma função de custo mal escolhida pode levar a um treinamento instável ou a um modelo 

que não generaliza bem para dados novos. 

 

2.2.8.5. Análise de Componentes Principais - PCA 

A Análise de Componentes Principais (PCA, do inglês Principal Component Analysis) é 

uma técnica de análise multivariada usada para reduzir a dimensionalidade de um conjunto de 

dados enquanto preserva a variância máxima possível. Ela transforma um conjunto de observações 

de variáveis possivelmente correlacionadas em um conjunto de valores de variáveis linearmente 

não correlacionadas, chamadas de componentes principais. 

O PCA foi desenvolvido inicialmente por Pearson (1901), como um análogo ao método 

dos mínimos quadrados para problemas de regressão linear. Posteriormente, Hotelling (1933) 

expandiu os fundamentos matemáticos da técnica, permitindo a aplicação em uma ampla variedade 

de campos, especialmente na economia e na psicologia. 

A técnica do PCA visa, então, reduzir a dimensionalidade, ou seja número de variáveis, em 

um conjunto de dados, mantendoo maior quantidade possível de informações. O PCA alcança isso 

através da matriz de covariância que captura as relações entre as diferentes variáveis. Se as 

variáveis forem padronizadas (isto é, tiverem variância unitária), a matriz de covariância se torna 

a matriz de correlação. 
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Antes de aplicar o PCA, os dados são normalmente padronizados para que cada variável 

tenha média zero e desvio padrão unitário. Sejam 𝑋 os dados originais com n observações e p 

variáveis conforme abaixo: 

 𝑋𝑝𝑎𝑑𝑟𝑜𝑛𝑖𝑧𝑎𝑑𝑜 =  
𝑥 −  µ

𝜎
 (2.27) 

onde: 

µ é o vetor de médias das variáveis 

σ é o vetor de desvios padrão. 

Após padronizar os dados, calcula-se a matriz de covariância Σ conforme a seguir: 

 
෍ =  

1

𝑛 − 1
𝑋𝑝𝑎𝑑𝑟𝑜𝑛𝑖𝑧𝑎𝑑𝑜

𝑇 𝑋𝑝𝑎𝑑𝑟𝑜𝑛𝑖𝑧𝑎𝑑𝑜 (2.28) 

A matriz de covariância (ou correlação) é decomposta em seus autovalores e autovetores 

sendo que os autovetores representam as direções de maior variância nos dados, enquanto os 

autovalores quantificam a magnitude da variância em cada direção. Os autovetores são ordenados 

em ordem decrescente de seus autovalores correspondentes.  

 ∑𝑣 =  𝜆𝑣 
(2.29) 

Onde 𝜆 representa os autovalores e 𝑣os autovetores. Os autovalores indicam a variância 

explicada por cada componente principal. Os autovetores são ordenados de acordo com os 

autovalores em ordem decrescente. O autovetor correspondente ao maior autovalor é o primeiro 

componente principal. 

O primeiro componente principal captura a maior quantidade de variância nos dados, o 

segundo componente principal captura a segunda maior quantidade de variância, e assim por 

diante. Os dados originais são projetados nos componentes principais selecionados, resultando em 

um novo conjunto de dados com dimensionalidade reduzida. 

 𝑍 =  𝑋𝑝𝑎𝑑𝑟𝑜𝑛𝑖𝑧𝑎𝑑𝑜 𝑥 𝑉 
(2.30) 

onde: 

Z é a matriz dos componentes principais  

V é a matriz dos autovetores ordenados. 

Em suma o PCA apresenta a vantagem de reduzir a dimensionalidade dos dados, facilitando 

a visualização e análise, eliminando a redundância entre variáveis e melhorando o desempenho de 

modelos de aprendizado de máquina ao mitigar o overfitting. No entanto, a técnica pode levar à 
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perda de informação significativa, dificultar a interpretação devido aos componentes principais 

serem combinações lineares das variáveis originais, ser sensível à escala das variáveis e não 

capturar relações não lineares nos dados. 

 

2.2.9. Principal metodologia para estruturar projetos de mineração de dados e 

aprendizado de máquina 

No que se refere a criação e comparação de modelos com técnicas de machine learning a 

ciência de dados utiliza-se de alguns métodos para desenvolver e testar modelos. A metodologia 

mais utilizada na academia e no mercado é o Cross Industry Standard Process for Data Mining, 

conhecido como Crisp-DM. Esta metodologia reúne as algumas das melhores práticas mineração 

de dados, de forma que o processo de tratamento de dados e modelagem seja o mais produtivo e 

eficiente possível. (TUKEY, 1977).  

Conforme descrita por Wirth e Hipp (2000), a metodologia Crisp-DM fornece uma visão 

geral do ciclo de vida de um projeto de mineração de dados. Ele contém seis fases, suas respectivas 

tarefas e seus resultados, assim divididos no Quadro 2.1 abaixo: 

Quadro 2.1 - Etapas Metodologia Crisp-DM 

Fases  Descrição 

Entendimento do negócio 

Essa fase inicial concentra-se no entendimento dos 

objetivos e requisitos do projeto de uma perspectiva 

comercial e, em seguida, na conversão desse conhecimento 

em uma definição de problema de mineração de dados e em 

um plano preliminar do projeto desenvolvido para atingir os 

objetivos. 

Compreensão dos Dados 

A fase de entendimento dos dados começa com uma coleta 

inicial de dados, familiarização e identificar dos problemas 

de qualidade dos dados. Também se descobre os primeiros 

insights e a formar as primeiras hipóteses. 

Preparação dos dados 

A fase de preparação de dados abrange todas as atividades 

para construir o conjunto de dados final a partir dos dados 

brutos iniciais. É provável que as tarefas de preparação de 

dados sejam executadas várias vezes no decorrer do 

processo. Esta etapa inclui seleção de tabelas, limpeza de 

dados, construção de novos atributos e transformação de 

dados para ferramentas de modelagem. 
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Modelagem 

Nesta fase, várias técnicas de modelagem são selecionadas 

e aplicadas, e seus parâmetros são calibrados para valores 

ideais. Normalmente, existem várias técnicas para o mesmo 

tipo de problema de mineração de dados. Algumas técnicas 

requerem formatos de dados específicos 

Avaliação 

Nesta fase do projeto, avalia-se a performance preditiva do 

modelo e, antes de prosseguir para a implantação final do 

modelo, é importante avaliar mais detalhadamente o 

modelo e revisar as etapas executadas na construção do 

modelo para garantir que ele atinja adequadamente os 

objetivos de negócios. No final desta fase, uma decisão 

sobre o uso dos resultados da mineração de dados deve ser 

alcançada. 

Implementação 

O conhecimento adquirido pelo modelo precisará ser 

organizado e apresentado de forma que o cliente possa usá-

lo. Esta fase de implantação pode ser tão simples quanto 

gerar um relatório ou tão complexa quanto implementar um 

processo repetível de mineração de dados.  De qualquer 

forma, é importante saber de antemão quais ações 

precisarão ser realizadas para realmente fazer uso dos 

modelos criados. 

Fonte: Wirth e Hipp (2000, p. 5-8). Adaptado. Elaboração própria. 

 

2.2.10. Principais medidas de desempenho dos algoritimos  

As principais medidas de desempenho dos algoritmos variam de acordo com o tipo de 

problema que está sendo abordado. Aqui estão algumas das medidas de desempenho mais 

comuns em diferentes contextos: 

I. Classificação, conforme síntese apresentada por Bishop (2006): 

• Matriz de Confusão: Um Quadro que mostra o número de instâncias de cada 

classe prevista pelo modelo em comparação com as classes reais. Isso permite 

uma análise mais detalhada do desempenho do modelo, incluindo taxa de 

verdadeiros positivos, verdadeiros negativos, falsos positivos e falsos 

negativos. 

Quadro 2.2 - Matriz de Confusão 

  

Previsto 



66 
 

 

 

Negativo (N) Positivo (P) 

 

Real 

Negativo Verdadeiro Negativo (VN) Falso Positivo (FP) 

Erro Tipo I 

Positivo Falso Negativo (FN) Erro 

Tipo II 

Verdadeiro Positivo (VP) 

Fonte: elaboração própria 

 

Como base neste quadro estima-se: 

• Acurácia: A proporção de instâncias classificadas corretamente pelo modelo 

em relação ao total de instâncias. É uma medida geral da capacidade do modelo 

de fazer previsões corretas. 

• Precisão: mede a proporção de instâncias classificadas como positivas que são 

realmente positivas, ou seja, a precisão é a razão entre o número de verdadeiros 

positivos e o número total de previsões positivas feitas pelo modelo 

(verdadeiros positivos e falsos positivos). 

• Recall: mede a proporção de instâncias positivas que são corretamente 

identificadas pelo modelo, ou seja, a razão entre o número de verdadeiros 

positivos e o número total de casos positivos. Tanto precisão, quanto recall são 

medidas especialmente úteis em problemas com base de dados que apresentam 

desequilíbrio de classe. 

• F1-Score: A média harmônica da precisão e recall, que fornece uma medida 

única do desempenho do modelo, equilibrando a precisão e a recall. 

II. Regressão conforme explicitado por Deisenroth et al. (2020) e Bruce, Bruce e Gedeck 

(2020): 

• Erro quadrático médio (Mean Squared Error - MSE): métrica que calcula a 

média de diferença ao quadrado entre o valor predito com o real. Por ter a 

diferença ao quadrado, penaliza-se valores que sejam muito diferentes entre o 

previsto e o real.  
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(2.31) 

onde: 

y: é o valor real 

𝑦ො: é o valor previsto 

𝑛: é o número total de observações ou pontos de dados 

𝑦𝑖 e 𝑦ො𝑖: são o i-ésimo valor real e previsto, respectivamente. 

 

• Raíz do Erro Médio Quadrático (Root Mean Square Error - RMSE): É a raiz 

quadrada da média dos quadrados das diferenças entre os valores previstos pelo 

modelo e os valores reais. É uma medida comum para avaliar a precisão das 

previsões em problemas de regressão. 

 

 

(2.32) 

  

• Erro Absoluto Médio (Mean Absolute Error - MAE): A média das diferenças 

absolutas entre os valores previstos pelo modelo e os valores reais. Por haver 

valores positivos e negativos, é adicionado um módulo entre a diferença dos 

valores. É menos sensível a outliers do que o MSE. 

 
 

(2.33) 

• Erro percentual absoluto médio (Mean Absolute Percentual Error – MAPE): é 

a métrica que apresenta a porcentagem de erro médio em relação aos valores 

reais. Ou seja, demonstra o cálculo do valor da média da divisão entre a 

diferença entre o valor real e o predito sobre o valor real. 

 

 
(2.34) 

• R² (Coeficiente de Determinação): Uma medida que indica a proporção da 

variabilidade nos dados que é explicada pelo modelo. Valores mais altos de R² 
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indicam um melhor ajuste do modelo aos dados. O resultado varia de 0 a 1, 

porém também podem ser expressos em termos percentuais. 

 
 

(2.35) 

III. Agrupamento: 

• Índice de Silhueta (Silhouette Score): Uma medida que quantifica o quão bem 

os clusters estão separados uns dos outros. Valores mais altos indicam que os 

pontos dentro de um cluster estão mais próximos uns dos outros do que dos 

pontos de outros clusters. 

• Índice de Davies-Bouldin (Davies-Bouldin Index): Uma medida que avalia a 

dispersão entre os clusters. Valores mais baixos indicam clusters mais densos e 

bem separados. 

• Índice de Calinski-Harabasz (Calinski-Harabasz Score): Uma medida que 

avalia a dispersão entre os clusters em relação à dispersão dentro dos clusters. 

Valores mais altos indicam clusters mais densos e bem separados. 

 

2.3.Principais desafios e lacunas de pesquisa em fraudes e anomalias no setor financeiro 

A aplicação de modelos analíticos de machine learning em bancos e instituições financeiras 

tem trazido benefícios significativos. Esses modelos são capazes de processar grandes volumes de 

dados em tempo real, permitindo a detecção mais rápida de atividades suspeitas. Além disso, 

contribuem para a redução de custos operacionais e aprimoram a precisão na detecção de fraudes 

financeiras. Os modelos analíticos de machine learning têm se mostrado altamente eficazes na 

identificação de anomalias financeiras, contribuindo para a prevenção de perdas substanciais e a 

manutenção da confiança dos clientes. 

Em diversos trabalhos relacionados ao tema, detalhados com mais detalhes no artigo de 

revisão da literatura presente no capítulo 3, verifica-se a recorrência da proposição da criação de 

modelos analíticos híbridos para mitigar o risco operacional e reduzir perdas com fraudes e 

redução de falsos negativos desses modelos. Dentre os modelos híbridos, são sugeridos modelos 

que utilizam aprendizado de máquina em conjunto com regras de negócio ou a combinação em 

sequência de dois ou mais modelos analíticos para melhor precisão em casos de fraude. Também 

se verifica o forte uso de técnicas mais profundas como redes neurais e deep learning. 
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Essencialmente, os esforços de pesquisa recentes têm se concentrado na analisar variáveis 

comportamentais e cadastrais de usuários que foram vítimas de fraudes. Diversos autores também 

discutem os desafios e as limitações existentes na detecção de fraudes financeiras, principalmente 

a adaptação por se tratar de um processo em constante evolução. Destaca-se a importância de 

abordagens adaptativas e de técnicas de atualização contínua dos modelos de detecção de 

anomalias para enfrentar esses desafios. (Hilal et. al., 2022; Zamini & Hasheminejad, 2019; Zhang 

et al., 2022). 

Assim, de forma resumida, os principais desafios identificados foram: 

1. Dados desbalanceados: Os conjuntos de dados utilizados para detecção de anomalias e 

fraudes geralmente são altamente desbalanceados, com a maioria das transações sendo legítimas 

e apenas uma pequena proporção sendo fraudulentas, ou seja, há um forte desequilíbrio entre as 

classes de fraudes e não fraudes. Esse desequilíbrio dificulta o treinamento de modelos de 

aprendizado de máquina para detectar adequadamente as transações fraudulentas, uma vez que o 

desequilíbrio pode levar a uma baixa taxa de detecção de fraudes ou a muitos falsos positivos. Um 

alto número de falsos positivos pode levar a interrupções desnecessárias e incômodos para os 

clientes, enquanto uma baixa taxa de detecção pode permitir que fraudes passem despercebidas 

(Wei et al., 2013; Zhang et al., 2022; Ngai et al., 2011; West e Bhattacharya, 2016; Nami e Shajari, 

2018) 

2. Evolução de padrões: Os métodos de fraude estão em constante evolução, o que significa 

que as anomalias e fraudes podem apresentar padrões e características diferentes ao longo do 

tempo. Os modelos de detecção de anomalias precisam ser capazes de se adaptar a essas mudanças 

e detectar novos tipos de fraudes à medida que surgem. Destaca-se persuasões chamadas de 

engenharias sociais onde os fraudadores estão em constante evolução, desenvolvendo novas táticas 

e estratégias para evitar a detecção utilizando-se de atuação da própria vítima. Assim, os modelos 

de detecção devem ser atualizados regularmente e incorporar técnicas de detecção avançadas para 

acompanhar essas mudanças. (Zhang et al., 2022; West e Bhattacharya, 2016; Hilal et. al., 2022) 

3. Detecção em tempo real: As instituições financeiras exigem sistemas de detecção de 

fraudes em tempo real para interromper atividades fraudulentas antes que causem grandes 

prejuízos. Isso impõe a necessidade de modelos eficientes e rápidos que possam processar grandes 

volumes de dados em tempo real e fornecer detecção em tempo hábil. Este desafio se desdobra em 

necessidade de grandes volumes de dados rotulados para treino dos modelos, no caso de modelos 
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supervisionados, e para os demais modelos, o uso de variáveis plausíveis de serem obtidas em 

tempo real, de baixa complexidade. Modelos com variáveis complexas tendem a ter melhor 

acurácia e precisão, porém não são disponíveis em curto espaço de tempo. (Zioviris et al., 2022; 

West e Bhattacharya, 2016; Bakumenko e Elragal, 2022; Zhou et al., 2021) 

4. Interpretabilidade dos modelos: Modelos complexos de aprendizado de máquina e 

inteligência artificial podem ter dificuldades em fornecer explicações claras e interpretações dos 

resultados, o que pode representar um desafio em termos de confiança e aceitação dos modelos 

pelas empresas financeiras e reguladores. 

5. Concentração de modelos supervisionados: maioria dos estudos para desenvolvimento 

de modelos preditivos de fraudes se concentram em técnicas de aprendizado supervisionado, que 

requerem grandes conjuntos de dados rotulados para treinamento. (Hilal et. al., 2022; Zioviris et 

al., 2022) 

6. Uso de Inteligência Artificial nos processos: Integrar dados de diferentes fontes e 

sistemas, muitas vezes fragmentados e desorganizados, pode ser um processo complexo e 

demorado, exigindo expertise técnica e infraestrutura robusta. Do mesmo modo, novos modelos 

de IA Generativa pode atuar em partes importantes do desenvolvimento e treinamento do modelo. 

Contudo estas tecnologias demandam infraestrutura específica de hardware para atuação. Do 

mesmo modo, é necessária atenção para vieses e discriminação, assim quando a IA é treinada com 

dados tendenciosos, pode perpetuar vieses e discriminações existentes, levando a resultados 

injustos e à exclusão de grupos específicos. 

Essas análises buscam decifrar os padrões e características distintas dos usuários, ajudando 

a detectar situações em que intrusos tentam se passar por clientes legítimos. Apesar dos avanços, 

a literatura também aponta diversos desafios, como os desafios apresentados acima. Estes desafios, 

bem como a proposição e desenvolvimento de modelo de detecção de anomalias não 

supervisionado, será objeto de desenvolvimento no artigo proposto no capítulo 5.  

Neste contexto, para enfrentar o desafio do desbalanceamento de classes na detecção de 

fraudes financeiras, propomos no Capítulo 4 um modelo baseado em Large Language Models 

(LLMs) especializados em finanças, capaz de gerar dados sintéticos representativos de transações 

fraudulentas. A abordagem consiste na utilização de um LLM para aprender padrões de transações 

legítimas e fraudulentas, permitindo a geração de amostras sintéticas realistas que preservem a 

distribuição estatística e comportamental dos dados originais. O modelo utiliza técnicas de 
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engenharia de prompt e fine-tuning, garantindo que as fraudes sintéticas criadas reflitam as 

características mais recentes das anomalias detectadas. Dessa forma, cria-se uma solução 

inovadora para ser aplicada visando equilibrar e reduzir o impacto da sub-representação das 

transações fraudulentas no treinamento de modelos preditivos. 

 

2.4.Conclusões 

Na esfera acadêmica e no setor financeiro, a busca por modelos otimizados de detecção 

de fraudes assume uma relevância ímpar. Para o mundo acadêmico, o desenvolvimento e 

aprimoramento desses modelos não apenas alimenta a vanguarda da pesquisa em ciência de 

dados e finanças, mas também demonstra a aplicabilidade concreta de teorias e métodos 

inovadores. Paralelamente, no setor financeiro, modelos mais precisos e eficazes não só 

minimizam perdas financeiras significativas, mas também fortalecem a confiança e a lealdade 

dos clientes. 

Os modelos de detecção de mitigação de fraudes são de suma importância no cenário 

atual, onde a digitalização está em ascensão e a busca para redução do risco operacional está 

cada vez maior. Modelos analíticos e de IA desempenham um papel crucial na identificação 

de atividades suspeitas e na prevenção de fraudes, protegendo assim as organizações e 

indivíduos contra perdas financeiras significativas. Além disso, esses modelos ajudam a 

manter a integridade dos sistemas e a confiança dos usuários, que são fundamentais para o 

sucesso a longo prazo de qualquer organização. 

À medida que as fraudes se tornam mais sofisticadas, cresce a necessidade de modelos 

avançados e robustos, evidenciando a interdependência entre avanços acadêmicos e sua 

implementação prática para assegurar a integridade do sistema financeiro. A evolução da 

ciência de dados, da estatística, aprendizado de máquina e inteligência artificial tem 

desempenhado um papel central nesse contexto ao longo dos anos.  

A complexidade crescente dos padrões de fraude, a necessidade de detecção em tempo 

real e a escassez de bases de dados rotuladas, somada ao alto desbalanceamento de classes, 

comum na análise de fraudes, continuam a representar desafios tanto para a academia quanto 

para a indústria financeira. Diferentes técnicas têm sido exploradas para mitigar essas 

dificuldades e aprimorar os modelos de detecção. 

A lacuna de pesquisa identificada, detalhada no artigo do capítulo 3, evidencia a 
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necessidade de aprofundamento na literatura sobre modelos analíticos que não sejam 

estritamente supervisionados e aperfeiçoamento de técnicas para tratar o desbalanceamento 

de classes. Isso se deve à escassez de grandes conjuntos de dados rotulados para treinamento, 

bem como à necessidade de desenvolver e aprimorar novas abordagens para geração de dados 

sintéticos de forma a lidar com o desbalanceamento de classes. Desta forma, é objetivo deste 

trabalho oferecer novas soluções para geração de dados sintéticos baseadas em IA generativa 

e propostas de modelos não supervisionados que desviam da necessidade de dados rotulados 

para treino. 

Nesse tipo de pesquisa, as variáveis e modelos adotados devem ser diferentes dos 

tradicionais. Essa abordagem contribuiria para a literatura vigente sobre o tema, além de trazer 

novas proposições tanto para a academia quanto para os agentes de mercado impactados pela 

necessidade de geração de dados.  

 

 

 

 

 

 

 

 

  



73 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Capítulo 3 
  



74 
 

 

 

3. Modelos de detecção de fraudes e anomalias em bancos: análise sistemática 
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Resumo 

Este trabalho busca analisar e verificar conexões existentes na literatura sobre detecção de 

fraudes em bancos. Para isso, são analisados e classificados 227 artigos publicados até 

dezembro de 2022 na Web of Knowledge por meio do protocolo PRISMA. Os trabalhos foram 

identificados por meio das palavras-chave “Fraude”, “Modelo”, “Detecção”, “Banca” e 

“Risco” e classificados em 12 categorias, como tipo de estudo, abordagem, corte, desenho, 

natureza, objetivo do estudo, método, abrangência espacial, período de estudo, foco, dados 

utilizados e resultados. Com base na classificação, estatísticas de redes complexas também 

são usadas para identificar as conexões de citação existentes entre elas. Os resultados mostram 

que há uma disseminação do uso de técnicas de aprendizado de máquina juntamente com 

regras de negócios para detectar possíveis casos de fraude e um aumento crescente de casos 

de fraude com engenharia social. Esses achados são úteis para a literatura científica que 

investiga o risco operacional como bem como para os profissionais responsáveis pela detecção 

de fraudes. 

 

Palavras-chave: A detecção de fraude; detecção de anomalias; revisão sistemática da 

literatura; bibliométrica; aprendizado de máquina; bancos. 

 
3.2. Introdução 

Como qualquer empresa, uma instituição financeira está sujeita a uma ampla gama de 

riscos durante a condução de seus negócios. Conhecer as suas características e 

particularidades é essencial, uma vez que os riscos a que está exposto e que se desconhece são 

os mais marcantes (Martin et al., 2004). O risco está onipresente em quase todas as atividades 

e não há unanimidade quanto à definição do seu termo. Assim, toda a discussão se baseia na 

distinção entre risco mensurável e risco subjetivo. 

Em geral, a capacidade de um banco fazer frente a perdas inesperadas é muito 

dependente dos modelos de risco que a instituição possui e do montante de capital em seu 

patrimônio. Devido às crises econômicas ocorridas no final do século XX e início do século 

XXI, houve uma tendência mundial para o desenvolvimento de regras cada vez mais 

complexas e rígidas sobre os modelos de gestão de risco e capital que os bancos devem manter 
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(Hull, 2012). Segundo Damodaran (2012), em finanças, o risco é definido como uma função 

da variabilidade dos retornos obtidos em um investimento em comparação com o retorno 

esperado do investimento, enquanto Jorion (2000) descreve o risco como a volatilidade de 

resultados inesperados. 

As boas práticas relacionadas à gestão de riscos e capital devem ser perenes e incluir 

atividades relacionadas a definições estratégicas, controles e incluir a definição de papéis e 

responsabilidades na estrutura de governança, além de buscar o atendimento aos padrões 

regulatórios. Ter uma gestão de riscos de qualidade para uma instituição financeira é essencial 

para sua confiança e sustentabilidade diante de perdas esperadas e inesperadas. 

A gestão de riscos de segurança da informação e a prevenção de fraudes são os 

principais componentes da Gestão de Segurança da Informação em Bancos e devem ser vistos 

como componentes da gestão de riscos corporativos (Damenu e Beaumont, 2017). O setor 

bancário, por sua vez, se baseia nas regras de Basileia III para gerenciar riscos operacionais 

corporativos, que estão diretamente relacionados ao gerenciamento de riscos de segurança da 

informação (Locher , 2005). Munir e Manarvi (2010) defendem que esses gerenciamentos de 

segurança da informação, juntamente com o combate à fraude, devem ser combinados com o 

gerenciamento de riscos operacionais. 

Damenu e Beaumont (2017) apresentam a necessidade de pesquisas que tenham como 

foco a avaliação dos aspectos sociotécnicos de segurança e prevenção de fraudes que são cada 

vez mais importantes no ambiente corporativo. Além disso, as abordagens predominantes para 

avaliações de segurança geralmente seguem abordagens automatizadas e mecânicas, 

concentrando-se em componentes e possivelmente omitindo questões holísticas e envolvendo 

funcionários. Para capturar esses aspectos, os autores recomendam o uso de modelos 

analíticos de aprendizado de máquina combinados com regras de negócios. 

O objetivo deste trabalho é fornecer uma avaliação abrangente, transparente e 

replicável de toda a literatura relevante sobre modelos de fraude e detecção de anomalias em 

bancos, por meio de uma revisão sistemática da literatura. Isso inclui examinar as conexões 

existentes entre os estudos-chave realizados nesta área. 

Da mesma forma, este estudo busca abordar a questão de pesquisa de identificar os 

principais trabalhos atuais em modelos de detecção de fraudes bancárias. Ele visa identificar 

tendências predominantes, os métodos e técnicas mais comumente utilizados, as fontes de 
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dados empregadas, o foco da pesquisa e os resultados alcançados. Além disso, o estudo se 

esforça para mapear as lacunas existentes no campo de estudo e analisar colaborações e 

influências entre autores, instituições e países neste domínio. 

Para isso, a metodologia é composta por duas técnicas: a revisão sistemática da 

literatura que classifica as obras em doze características como tipo de estudo, abordagem, 

corte, desenho, natureza, objetivo do estudo, método, abrangência espacial, período do estudo, 

foco, dados utilizados e resultados e, posteriormente, a análise de redes complexas que 

identificam as conexões existentes entre essas obras por meio de suas citações.  

Certas análises bibliométricas são cruciais em uma revisão de literatura, pois permitem 

a identificação de tendências, padrões e lacunas no campo de estudo, além de mapear 

colaborações e influências entre autores, instituições e países. Essa abordagem também é 

essencial para avaliar a importância e o impacto de diferentes autores, artigos e tópicos, por 

meio da análise de citações e coautoria. Facilita a compreensão das interconexões entre várias 

disciplinas, revelando como diferentes áreas do conhecimento estão interligadas. 

As principais contribuições deste trabalho incluem fornecer uma síntese abrangente do 

conhecimento atual, identificar lacunas que necessitam de investigação adicional e, assim, 

moldar uma agenda de pesquisa futura sobre o assunto, além de oferecer uma base baseada 

em problemas do mundo real para facilitar uma abordagem baseada em evidências e 

possibilitar o desenvolvimento de novas técnicas para a detecção, previsão e análise de 

fraudes. As contribuições são alcançadas por meio da análise do trabalho explicado e 

categorizado na seção de metodologia e analisado na seção de resultados. 

Nossos resultados mostram que há um uso generalizado de algoritmos de aprendizado 

de máquina em conjunto com regras de negócios para detecção de fraudes e um aumento 

crescente de casos de fraude com engenharia social. Esses achados são úteis para a literatura 

científica que investiga os riscos operacionais e para os agentes econômicos que buscam 

detectar fraudes nas organizações. 

Além desta introdução, este trabalho é composto por mais quatro seções, nas quais a 

segunda traz um breve referencial teórico, a terceira explica a metodologia e as técnicas 

empregadas, a quarta apresenta os resultados e, por fim, a seção cinco conclui. 

 

3.3. Referencial Teórico  
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Silva e cols. (2017) apresentam uma revisão sistemática da literatura sobre risco 

financeiro sistêmico. Para tanto, os autores analisaram e classificaram 266 artigos publicados 

até setembro de 2016 nas bases de dados Scopus e Web of Knowledge; esses artigos foram 

identificados por meio das palavras-chave “risco sistêmico”, “estabilidade financeira”, 

“financeiro”, “medição”, “indicador” e “índice”. Eles foram avaliados com base em 10 

categorias, a saber, tipo de estudo, tipo de abordagem, objeto de estudo, método, abrangência 

espacial, abrangência temporal, contexto, foco, tipo de dados utilizados e resultados. Em 

relação aos artigos mais importantes na visão dos próprios pesquisadores, foi construída uma 

rede de 102 artigos considerados importantes para o avanço do assunto. Foi realizada uma 

análise aprofundada dos 27 artigos que descreviam a principal trajetória desse campo de 

pesquisa. Em conclusão, a análise e classificação dessa literatura permitiram identificar as 

lacunas remanescentes na literatura sobre risco sistêmico; isso contribuiu para uma futura 

agenda de pesquisa sobre o assunto. Além disso, foram identificados os artigos mais influentes 

neste campo de pesquisa e os artigos que compõem a pesquisa mainstream sobre risco 

financeiro sistêmico. Segundo as suas conclusões, o bom funcionamento do sistema 

financeiro depende fundamentalmente da confiança dos agentes muito mais do que noutros 

setores da economia. Quanto aos artigos mais importantes, na visão dos próprios 

pesquisadores, há uma diversidade de objetos e abordagens para propor formas inovadoras ou 

medidas de risco úteis para mensurar o risco financeiro sistêmico. 

No mesmo sentido, Fahim e Sillitti (2019) apresentam os resultados de uma revisão 

sistemática da literatura sobre técnicas de detecção de anomalias, exceto nos domínios de 

segurança e análise de risco. Os autores usaram estudos publicados de 2000 a 2018 nas áreas 

de aplicação de ambientes de vida inteligentes, sistemas de transporte, sistemas de saúde, 

objetos inteligentes e sistemas industriais. A principal fonte de dados utilizada foi o 

monitoramento de sensores, soluções de baixo custo e alto impacto em diversos domínios de 

aplicação. Os sensores geram uma enorme quantidade de dados que podem ser analisados 

para identificar comportamentos não saudáveis. Foram identificadas várias lacunas de 

pesquisa relacionadas à coleta de dados, análise de grandes conjuntos de dados 

desequilibrados, limitações de métodos estatísticos para processar os enormes dados 

sensoriais e poucos artigos de pesquisa sobre a previsão de comportamento anormal em 

cenários reais. Com base na análise deste trabalho, pesquisadores e profissionais podem se 



78 
 

familiarizar com as abordagens existentes, usá-las para resolver problemas reais e/ou 

contribuir ainda mais para o desenvolvimento de novas técnicas de detecção, previsão e 

análise de anomalias. 

Em outra revisão sistemática, Pourhabibi et al. (2020) desenvolveu uma estrutura para 

sintetizar a literatura existente sobre a aplicação de métodos de detecção de anomalias 

baseados em gráficos (GBAD) na detecção de fraudes publicada entre 2007 e 2018. Este 

estudo visa investigar as tendências atuais e identificar os principais desafios que exigem 

esforços de pesquisa significativos para aumentar a credibilidade da técnica. Usando oito 

perguntas que investigam aspectos específicos da pesquisa de detecção de fraude baseada em 

GBAD, os autores desenvolveram uma estrutura de classificação para analisar 

sistematicamente 39 trabalhos acadêmicos identificados por meio de uma pesquisa 

sistemática na literatura. Algumas aplicações mais recentes das técnicas GBAD mostraram 

que é possível atribuir um nível de confiança a usuários individuais para indicar a 

probabilidade de cada indivíduo, por exemplo, pagar um empréstimo ou se esses indivíduos 

são quem dizem ser, com base em cada dados de indivíduos descobertos na Internet. 

Em outra revisão publicada mais recentemente, Hilal et al. (2022) apresentam pesquisa 

que buscou investigar e apresentar uma revisão completa das técnicas de detecção de 

anomalias mais populares e eficazes aplicadas para detectar fraudes financeiras, com foco em 

destacar os avanços recentes nas áreas de aprendizado semi-supervisionado e não 

supervisionado. A metodologia por trás desta pesquisa foi impulsionada pela missão de que 

uma revisão abrangente das técnicas de detecção de anomalias facilite ao leitor a compreensão 

de suas vantagens e limitações quando aplicadas a uma área específica de fraude. As direções 

mais promissoras para pesquisas futuras, na opinião dos autores, envolvem a investigação do 

desempenho de modelos de detecção que incorporam tanto o poder de sobreamostragem 

quanto o poder discriminativo de modelos generativos, como LSTMs e CNNs, que capturam 

relacionamentos temporais de longo e curto prazo nos dados. e, finalmente, resultar em um 

sistema mais robusto e eficiente. Além disso, pode valer a pena explorar as áreas de fraude 

menos pesquisadas, como fraude de valores mobiliários e commodities, fraude hipotecária, 

informações privilegiadas e outras. 

Por fim, Nonnenmacher e Gómez (2021) realizaram uma revisão sistemática dos 

estudos existentes que aplicam a detecção não supervisionada de anomalias em um contexto 
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de auditoria. Uma abordagem para resolver a crescente quantidade de dados causada pela 

transformação digital é aplicar regras aos dados. Uma desvantagem disso é que as regras 

provavelmente encontrarão apenas erros, enganos ou desvios que já foram antecipados pelo 

auditor. A detecção de anomalias não supervisionada pode ir além desses recursos e detectar 

novos desvios de processo ou novas tentativas de fraude. Depois de analisar profundamente 

16 trabalhos de 2006 a 2019, os resultados revelam que a maioria dos estudos desenvolve uma 

abordagem apenas para um conjunto de dados específico e não aborda a integração no 

processo de auditoria ou como os resultados devem ser melhor apresentados ao auditor. 

Portanto, os autores desenvolveram uma agenda de pesquisa abordando tanto a generalização 

da detecção de anomalias de auditoria não supervisionada quanto a preparação de resultados 

para auditores. 

Em resumo, esses autores identificaram lacunas de pesquisa em vários espectros, tais 

como: lacunas relacionadas à coleta de dados, análise de conjuntos de dados grandes e 

desequilibrados, limitações dos métodos estatísticos para processamento de dados em massa 

(Fahim e Sillitti, 2019); o poder discriminativo de modelos generativos como LSTMs e CNNs, 

bem como outros tipos de fraudes, incluindo fraudes em títulos mobiliários, fraudes 

hipotecárias e outros (Hilal et al., 2022); e a generalização da detecção de anomalias em 

auditoria não supervisionada quanto à preparação de resultados para auditores 

(Nonnenmacher e Gómez, 2021). 

Diante desses desenvolvimentos, um estudo bibliométrico renovado se faz necessário 

devido à progressão temporal do tema, ao aumento exponencial recente de publicações e à 

introdução de novas técnicas envolvendo aprendizado de máquina, inteligência artificial e 

mudanças no comportamento de agentes. A literatura recente apresenta perspectivas variadas, 

destacando tendências de pesquisa emergentes e a lacuna notável no estudo de fraudes 

envolvendo engenharia social. 

 

3.4. Metodologia  

3.4.1. Revisão Sistemática da Literatura 

Ao se aprofundar no estudo de um tema, os resultados na literatura costumam ser 

contraditórios e, para contornar esse problema, os pesquisadores podem se valer de uma 
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revisão sistemática da literatura. É um tipo de investigação que visa identificar, selecionar, 

avaliar e sintetizar as principais evidências disponíveis na literatura, deve ser abrangente e 

não tendenciosa para que os critérios adotados sejam divulgados e outros pesquisadores 

possam repetir o procedimento e, desta forma, são considerados o melhor nível de evidência 

para a tomada de decisão (Galvão e Pereira, 2014). 

Neste trabalho, utiliza-se a pesquisa meta-síntese, apropriada quando uma revisão 

sistemática visa integrar a pesquisa qualitativa para sintetizar estudos qualitativos sobre um 

tema, localizar temas, conceitos ou teorias-chave que forneçam explicações novas ou mais 

poderosas para o fenômeno sob revisão. (Galvão e Ricarte, 2019; Siddaway et al., 2019).  

O critério adotado para a possível seleção dos artigos baseou-se em buscas em bases de 

dados de acesso livre. Assim, realizou-se pesquisa bibliográfica por meio de publicações de 

artigos científicos obtidos em meio eletrônico na base de dados Web of Science. Na pesquisa 

foram utilizadas as palavras-chave “Fraude”, “Modelo”, “Detecção” e posteriormente foram 

analisados artigos mais aderentes ao tema do setor financeiro e bancário, utilizando filtros como 

“banking” ou “banco”, “risco”, “detecção de anomalias” e “financeiro”. Não foram utilizadas 

restrições na construção do banco de dados quanto aos anos de publicação, sendo o idioma 

inglês a única restrição para a inclusão dos estudos. Assim, foram selecionados 227 artigos. 

Como limitação do estudo, está a utilização apenas do fluxograma no formato do 

protocolo PRISMA aplicado de forma específica, contudo, outras premissas do referido 

protocolo de revisão sistemática não são utilizadas.  

A Tabela 3.1 apresenta os critérios para categorização dos artigos definidos neste 

trabalho. Esta categorização foi adaptada de Silva et al. (2017). 

 

Tabela 3.1 - Critérios de Categorização dos Artigos 

Ordem Características  Código 

1 Tipo de estudo A – Teórico  

B – Empírico C – Ambos 

2 Abordagem 
A – Quantitativo  

B – Qualitativo C – Quantitativo e qualitativo D – 

Não aplicável 
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3 Recorte A – Transversal  

B – Longitudinal C – Não aplicável 

4 Projeto 

A – Experimentar  

B – Quase-Experiência  

C – Correlacional  

D – Preditivo  

E – Observacional 

5 Natureza A – Exploratória  

B – Descritiva C – Explicativa 

6 
Propósito do 

estudo A – Regulação  

B – Risco Operacional/Fraude C – Risco de Crédito 

D – Segurança E – Auditoria F – Outros 

7 Método 
A – Econométrico/Estatístico  

B – Machine Learning C – Otimização Matemática 

D – Não aplicável 

8 
Escopo 

Espacial 
A – Um país  

B – Mais de um país C – Global D - Não 

especificado 

9 
Período do 

Estudo A – Até 2 anos  

B – De 2 a 5 anos C – De 5 a 10 anos D – Mais de 

10 anos E – Não aplicável 

10 Foco 
A – Bancos tradicionais  

B – Instituições financeiras não bancárias C – 

Fundos de investimento D – Empresas não 

financeiras E – Setor público 

11 
Dados 

utilizados A – Público/mercado  

B – Balanço das companhias abertas C – Privado D 

– Reguladores E – Outros F – Não informado 



82 
 

12 Resultados 

A – Consistente com o que foi verificado na 

literatura  

B – Nova perspectiva C – Replicação com 

resultados divergentes D – Estudo comparativo 
Fonte: Elaborado pelo autor. 

 

 Com isso, o presente trabalho busca contribuir com essa literatura ao considerar 227 

trabalhos que investigaram a detecção de fraudes em bancos e instituições financeiras e 

classificando-os segundo doze características como tipo de estudo, abordagem, corte, 

desenho, natureza, objetivo do estudo, método, abrangência espacial, período de estudo, foco, 

dados utilizados e resultados, além de identificar por meio das métricas de redes complexas 

as conexões existentes entre esses trabalhos, a fim de quantificar sua relevância na literatura. 

Essas doze características ajudam a responder à pergunta de pesquisa, ao objetivo proposto e 

também foram validadas em outras bibliografias em finanças, como Silva et al. (2017). 

 

 

3.4.2. Métricas de Redes Complexas 

Buscando analisar conexões entre os trabalhos selecionados e, assim, compreender 

melhor seus achados identificando sua influência na literatura, são utilizadas métricas de redes 

complexas. Como pode ser visto em Passos et. al (2022), a análise da rede pode ocorrer no 

nível dos agentes (nós) ou no nível da rede (como um todo).  

A análise de dados por meio de redes complexas tem emergido como uma ferramenta 

poderosa para investigar sistemas complexos encontrados em uma variedade de disciplinas 

acadêmicas e aplicações do mundo real. Essa abordagem, fundamentada na teoria dos grafos, 

permite a representação e análise de interações entre elementos individuais, proporcionando 

insights valiosos sobre a estrutura e dinâmica desses sistemas interconectados. 

Em essência, conforme Passos et. al (2022) uma rede complexa é composta por nós 

(ou vértices) que representam entidades individuais, e arestas (ou conexões) que representam 

as interações entre essas entidades. Essa abordagem transcende a organização tradicional de 

dados, revelando padrões e insights ocultos em conjuntos de dados interconectados. Através 

da modelagem matemática de redes, podemos explorar a dinâmica subjacente a sistemas 

complexos, desde redes sociais e biológicas até sistemas de transporte e financeiros. 

Dentre as métricas das redes complexas podemos destacar: 
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1. Grau (Degree): O grau de um vértice é o número de conexões que ele possui. Em 

uma rede de transações bancárias, o grau de um cliente representa quantas transações ele 

realizou. Um cliente com alto grau pode ser um influenciador na rede. 

2. Centralidade de Proximidade (Closeness Centrality): Mede a distância média entre 

um vértice e todos os outros vértices na rede. Em uma rede de investidores em um mercado 

de ações, a centralidade de proximidade de um investidor indica quão rapidamente ele pode 

acessar informações de outros investidores. Um investidor central pode ter vantagem 

competitiva. 

3. Centralidade de Intermediação (Betweenness Centrality): Avalia a importância de 

um vértice como intermediário nas comunicações entre outros vértices. Em uma rede de 

empresas e seus fornecedores, a centralidade de intermediação de uma empresa indica se ela 

atua como intermediária nas transações entre outras empresas.  

4. Coeficiente de Aglomeração (Clustering Coefficient): Mede a tendência de vértices 

vizinhos formarem grupos densamente conectados. Em uma rede de colaboração entre 

empresas, o coeficiente de aglomeração de uma empresa indica se ela está inserida em um 

grupo coeso de parceiros. Empresas com alto coeficiente de aglomeração podem formar 

alianças estratégicas. 

O foco, neste caso, é a análise no nível dos agentes, especialmente as métricas de 

centralidade de grau (ou valência) e o algoritmo PageRank, cuja base teórica é a centralidade 

do autovetor. 

O algoritmo PageRank é um algoritmo utilizado para avaliar a importância relativa dos 

nós em uma rede de grafos, especialmente em motores de busca na internet. Ele foi 

desenvolvido pelos fundadores do Google, Larry Page e Sergey Brin, enquanto eram 

estudantes na Universidade de Stanford, e foi um dos principais componentes do algoritmo 

de classificação de páginas usado pelo Google em seu mecanismo de busca. 

O princípio subjacente ao PageRank é bastante intuitivo: um site é considerado 

importante se for vinculado por outros sites importantes. Assim, o algoritmo atribui uma 

pontuação de importância a cada página da web com base nas páginas que a vinculam e na 

importância dessas páginas. A ideia fundamental é que páginas importantes tendem a ser 

vinculadas por outras páginas importantes. 

Matematicamente, o algoritmo PageRank pode ser representado por um sistema de 
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equações lineares. Seja 𝑃𝑅(𝑢) a pontuação de PageRank atribuída a uma página 𝑢, então a 

pontuação de PageRank de uma página 𝑢 é calculada pela fórmula: 

 
 (3.1) 

 

onde: 

𝑃𝑅(𝑢) é a pontuação de PageRank da página 𝑢. 

𝐵𝑢 é o conjunto de páginas que possuem um link para a página 𝑢. 

𝐿(𝑣) é o número de links na página 𝑣. 

Essencialmente, o PageRank de uma página é a soma dos PageRanks de todas as 

páginas que a vinculam, dividido pelo número de links nessas páginas. Isso reflete a ideia de 

que uma página importante é aquela que é vinculada por outras páginas importantes, mas 

também leva em conta o número de links nessas páginas. 

O algoritmo PageRank é iterativo e converge para uma distribuição de PageRank 

estável em que as pontuações de PageRank refletem a importância relativa das páginas na 

rede. Ele tem sido fundamental para melhorar a qualidade dos resultados de pesquisa na 

internet, ajudando os usuários a encontrar informações relevantes de forma mais eficaz. 

As medidas de nível de agente que usamos são centralidade de grau ou valência; e 

centralidade do autovetor. A centralidade de grau (ou valência) é definida pela seguinte 

expressão: 

 

1

, 0
n

i ij i

j

k a k n
=

=    (3.2) 

e 

 
0v v vk N k n=    (3.3) 

onde: 

um ij é a entrada da i-ésima linha e j-ésima coluna da matriz de adjacência A. 

N v é a vizinhança do agente (nó ou vértice) V. 

Para redes direcionadas temos: 

ik +
= In-degree (número de agentes de entrada, ou seja, número de arestas ou relações iniciando 

no agente v). 
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ik −
= grau de saída (número de agentes de saída, ou seja, número de arestas ou relações que 

terminam em agente v). 

 

1

n

i ij

j

k a+

=

=  (3.4) 

 

1

n

i ij

j

k a−

=

=  (3.5) 

A medida de grau nas redes segmentadas também é conhecida como prestígio, expressão muito 

utilizada em ARS (análise de redes sociais). 

Existem dois tipos de prestígio: (i) apoio; e (ii) influência. O de apoio é o grau de entrada 

e o de influência é o grau de saída. Em redes pesadas (ou ponderadas), a força é equivalente ao 

grau. É igual à soma dos pesos das arestas adjacentes a um dado agente (ou das relações ligadas a 

este agente). Como em (3.6): 

 

1
ij

n
w w

i

j

k a
=

=  (3.6) 

A equação (3.7) fornece a centralidade do autovetor, que é a métrica que serviu de base 

para o desenvolvimento do PageRank TM : 

 

1

1 n

i ij j

j

x a x
 =

=   (3.7) 

onde: 

xi/ xj representa a centralidade do agente i / j;  

aij denota a matriz de adjacência A ( aij = 1 se os agentes iej são conectados por uma aresta e aij 

= 0 se não são); e 

indica o maior autovetor da matriz A. 

A centralidade do autovetor é uma medida proposta por Bonacich (1987) e se baseia na 

noção de que a centralidade de um agente é definida pela centralidade dos agentes com os quais 

ele se relaciona (via trocas, transações, etc.). Assim, o poder ou situação econômico-financeira de 

um agente é definido pelo poder ou situação econômico-financeira de seus alteres. Os alters são 

os agentes diretamente relacionados ao agente central (também chamados de ponto focal ou ego). 

A centralidade do autovetor é a combinação linear das centralidades de seus vizinhos de primeira 

ordem. 
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3.5. Resultados  

 

3.5.1. Seleção e Análise Exploratória 

Os dados utilizados são descritos e apresentados na Figura 3.1 do Fluxograma 

PRISMA, conforme descrito por Liberati et al. (2009). 

Figura 3.1 - Fluxograma de seleção de artigos na revisão sistemática – PRISMA 

 

 
Fonte: Elaborado pelo autor. 

 

Ao analisarmos a base de dados considerando os anos de publicação, observamos que, 

em média, havia aproximadamente seis publicações por ano com o tema e filtro de busca 
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utilizados nos primeiros cinco anos. No entanto, essa média cresce fortemente a partir de 2017 

e se mantém até 2022, com níveis médios quatro vezes superiores ao período de 2006 a 2016, 

conforme podemos observar na Figura 3.2. 

Figura 3.2 - Número de artigos por ano 

 

Fonte: Elaborado pelo autor. 

A apresentação quantitativa de publicações categorizadas por países e regiões não 

apenas aprimora a compreensão da distribuição e impacto da pesquisa, mas também lança luz 

sobre as dinâmicas globais e locais que influenciam a produção científica. Essa categorização 

é essencial por várias razões. Em primeiro lugar, ela oferece insights sobre a diversidade 

geográfica e cultural da pesquisa, auxiliando na avaliação do impacto global versus local dos 

estudos e oferecendo perspectivas sobre sua relevância e aplicabilidade em diferentes 

contextos geográficos. Por fim, a categorização por país e região pode revelar padrões de 

colaboração internacional, ilustrando como o conhecimento é compartilhado e disseminado 

entre diferentes partes do mundo, o que é crucial para a compreensão das dinâmicas e 

interconexões da pesquisa científica global. 

Analisando as publicações por região, verificamos que elas estão espalhadas por vários 

países, porém, 24 delas possuem apenas uma publicação. Vale citar a Índia e a China com 

seus pesquisadores destacados frente ao número de publicações, com 38 e 26 publicações, 

respectivamente. A  Figura 3.3 mostra a distribuição das publicações por países e regiões. 
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Figura 3.3 - Publicações por países e regiões 

 

Fonte: Elaborado pelo autor. 

A apresentação quantitativa de publicações por origens, fontes e periódicos em uma 

revisão sistemática contribui para uma compreensão mais profunda e contextualizada do 

campo de estudo e da ideologia dessa origem, além da diversidade, perspectivas e credibilidade 

da fonte.  

Dessa forma, ao considerarmos a fonte científica na qual os trabalhos foram publicados, 

observa-se que as 10 principais fontes concentraram apenas 16% dos artigos publicados - 36 

de 227. Uma grande dispersão de periódicos foi observada para os 116 artigos restantes, com 

a grande maioria das fontes - 109 - publicando apenas um artigo e 7 fontes publicando dois 

trabalhos, como mostrado na Figura 3.4. 

Análises bibliométricas específicas baseadas em redes desempenham um papel vital 

em revisões de literatura. Elas possibilitam a descoberta de tendências, padrões e áreas 

inexploradas dentro do campo de estudo, além de auxiliarem no mapeamento das redes 

colaborativas e influentes entre autores, instituições e países. Tal abordagem é fundamental 

para avaliar a importância e influência de diversos autores, artigos e temas por meio de 

análises de citação e coautoria. Isso auxilia na compreensão das conexões entre múltiplas 

disciplinas, revelando as inter-relações entre diferentes campos do conhecimento. 
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Figura 3.4 - Papéis por diários 

 
 

Fonte: Elaborado pelo autor. 

 

Dessa forma, em relação às medidas de centralidade apresentadas a seguir, a rede de 

interação por citação mensura a influência de artigos ou autores com base no número de vezes 

em que são citados, auxiliando na identificação das obras mais influentes. A rede de interação 

por coautoria em pesquisa mapeia as colaborações entre pesquisadores, revelando os 

principais colaboradores e tendências colaborativas no campo. Por fim, os links entre 

palavras-chave analisam as conexões entre diferentes tópicos e conceitos, auxiliando na 

identificação de temas dominantes e na compreensão de como estão interconectados, 

orientando a estrutura temática da revisão. 

Ao analisar a literatura, é importante verificar as conexões existentes entre os trabalhos 

publicados para entender como ela foi desenvolvida. Verificar a dinâmica da citação é uma 

dessas maneiras. No que diz respeito à rede de citações entre os trabalhos mais influentes na 

literatura que investiga fraudes bancárias, verifica-se que a rede de citações também é esparsa 

com pluralidade de trabalhos. Observe que o artigo mais citado é Ngai et al. (2011) que discute 

a aplicação de técnicas de mineração de dados para detecção de fraudes e apresenta uma 

revisão da literatura acadêmica sobre o assunto. A Figura 3.5 apresenta as conexões entre as 
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obras. 

 

Figura 3.5 - Rede de interações de citações 

 

Fonte: Elaborado pelo autor. 

Ao analisar as redes de interações entre os autores da literatura sobre detecção de 

fraudes em bancos, também é possível melhorar seu entendimento. Neste caso, redes de 

influência não ocorrem em pesquisas para este campo de análise, uma possível motivação 

para isso pode ser devido a diferentes formas de abordar o assunto em diferentes campos de 

pesquisa como riscos, modelos computacionais, auditorias, ciência da computação, finanças 

e etc. A Figura 3.6 demonstra que não há conexões entre os autores das obras. 



91 
 

Figura 3.6 - Rede de interação co-autor de pesquisa 

 

Fonte: Elaborado pelo autor. 

A análise bibliométrica de redes de palavras-chave é importante para identificar temas 

centrais em um campo de estudo, mapear tendências ao longo do tempo, descobrir relações 

temáticas entre diferentes áreas e inspirar a formulação de novas hipóteses de pesquisa. Observa-

se que, nos temas de pesquisa representados pelas palavras-chave, os temas de detecção de fraude 

estão intimamente alinhados com algoritmos de detecção de anomalias, pois as técnicas são 

aplicadas em ambas as situações devido ao desequilíbrio de classe comumente encontrado em tais 

casos. Da mesma forma, o uso de aprendizado de máquina e mineração de dados exibe uma 

conexão intrínseca com o tema no desenvolvimento desses modelos. 

Da mesma forma, considerando as palavras-chave dos trabalhos, há uma forte ligação com 

'detecção de fraude', 'detecção de fraude de cartão de crédito', 'classificação' e 'modelo'. A rede 

completa pode ser analisada na Figura 3.7. 



92 
 

Figura 3.7 - Links entre as palavras-chave 

 

Fonte: Elaborado pelo autor. 

 

3.5.2. Classificação por Categorias 

Dos 227 trabalhos obtidos, os resumos foram lidos a priori e também foi iniciada uma 

avaliação com base nos critérios de inclusão e exclusão, com o intuito de selecionar os estudos 

a serem analisados na íntegra. Para a seleção final, o objetivo do artigo deve coincidir com a 

questão problema e envolver a análise sob a ótica da gestão de riscos. Dessa forma, foram 

retirados os artigos que não atendiam a esses critérios e aqueles que não possuíam publicações 

completas em periódicos revisados por pares. Assim, a seleção final concentrou-se em 50 

artigos, conforme aplicação do protocolo PRISMA apresentado na metodologia. 

Após a identificação dos artigos, eles foram classificados, conforme descrito na seção 

de metodologia. A Tabela 3.2 apresenta a classificação. 



 

Tabela 3.2 - Classificação dos Artigos 

Artigo 
Tipo de 

estudo 

Abordage

m 

Recor

te 
Projeto Natureza 

Objeto 

de 

estudo 

Método 
Escopo 

Espacial 

Período 

de 

estudo 

Foco Dados  Resultados 

Zioviris et ai. (2022) 1B 2A 3A 4D 5B 6B; 6D 7B; 7C 8C 9E 10A 11A 12B 

Bernardo e cols. 2022) 1B 2C 3A 4E 5B 6E 7C 8D 9E 10C 11E 12C 

Wei e outros. (2013) 1B 2C 3B 4D 5B 6B 7B 8A 9A 10A 11C 12B; 12D 

Akila e Reddy (2017) 1B 2A 3B 4D 5B 6B 7C 8A 9A 10A 11C 12B 

Nami e Shajari (2018) 1B 2A 3A 4C; 4D 5C 6B; 6D 7A; 7B 8A 9A 10A 11C 12B 

Darwish (2020) 1C 2A 3C 4D; 4E 5B 6B 7A; 7B 8D 9E 10A; 10B 11F 12D 

Kumar et ai. (2019) 1C 2A 3B 4B; 4D 5B 
6B; 6D; 

6E 
7A; 7B 8D 9A 10A 11C 12A 

Nanduri et ai. (2020) 1C 2C 3B 4B 5C 
6B; 6D; 

6F 
7B; 7C 8D 9A 10D 11C 12C; 12D 

Karthik et ai. (2022) 1C 2C 3B 4B; 4D 5B 6A; 6E 7A; 7B 8D 9B 10B; 10D 11C; 11E 12B; 12D 

Pandey (2010) 1C 2C 3A 4C 5A 6A 7A; 7B 8A 9E 10A 11C 12D 

Labanca et ai. (2022) 1B 2A 3A 4D 5B 6B 7B 8A 9E 10A 11C; 11E 12B 

Can et ai. (2020) 1C 2C 3B 4A; 4D 5C 
6B; 6D; 

6E 
7A; 7B 8A 9B 10A 11C 12B; 12D 

Babu e Vasavi (2017) 1B 2A 3B 4B 5B 
6A; 6B; 

6E 
7A; 7B 8A 9D 10E 11C 12C 

Wu e outros. (2014) 1B 2A 3A 4D 5A; 5B 6C 7A 8A 9D 10A; 10D 11C 12A 

Saha et al. (2016) 1B 2C 3A 4C; 4D 5B 6E 7A 8D 9E 10A 11C 12A 

Ravi (2021) See More 1B 2C 3A 4B; 4D 5B 6F 7A 8D 9E 10B 11C 12A 

Teng e Lee (2019) 1B 2A 3A 4D 5B 6C 7B 8A 9C 10A 11A 12A 

Rahman et ai. (2021) 1C 2C 3A 4B 5A 6F 7A 8A 9E 10A; 10B 11F 12A; 12D 

Boyle et ai. (2015) 1C 2C 3A 4C 5B 6E 7D 8A 9E 10D 11F 12A; 12D 

Mu e Carroll (2016) 1B 2C 3A 4C 5A 6B; 6E 7D 8A 9E 10D 11C 12B; 12D 

Lokanan et ai. (2019) 1B 2C 3A 4B 5B 6E 7A 8A 9D 10A; 10D 11B 12A 

Ashfaq et ai. (2021) 1C 2A 3B 4A; 4D 5A; 5B 6B 7A; 7B 8D 9E 10A; 10B 11E 12A 

Bakumenko e Elragal 

(2022) 
1C 2A 3A 4A; 4D 5A; 5C 6B 7B 8A 9E 10A 11A 12A; 12D 

Bose et ai. (2017) 1A 2C 3C 4B 5B 6B 7D 8D 9E 10A 11E 12A 

Carminati et ai. (2015) 1C 2A 3B 4A; 4D 5A; 5C 6B 7A; 7B 8A 9A 10A 11C 12B 

Carminati et ai. (2018) 1B 2A 3A 4B 5B 6B; 6D 7B 8A 9A 10A 11C 12A 

Cui et al. (2021) 1C 2A 3A 4B 5B 6B 7B 8A 9A 10A 11C 12B 

Esen et al. (2019) 1B 2A 3A 4B 5B 6B 7B 8A 9C 10A 11C 12B 

Hewapatirana (2019) 1A 2C 3C 4E 5A; 5B 6B 7B 8D 9E 10A 11A 12A 

Hsin et al. (2022) 1B 2A 3A 4A; 4D 5B 6B 7B 8D 9E 10A 11A 12A 

Khodabandehlou e 

Golpayegani (2022) 
1A 2B 3C 4C 5A 6B 7B 8D 9E 10A 11A 12A 



 

Kim e outros. (2014) 1A 2B 3C 4C; 4E 5C 6B; 6D 7D 8D 9E 10A 11F 12B 

Li et ai. (2021) 1C 2A 3C 4D 5A; 5B 6B; 6C 7B; 7C 8A 9E 10A 11C; 11E 12B 

Mosavi et al. (2020) 
1C 2A 3A 4E 5A 

6B; 6D; 

6F 
7B 8D 9E 

10A; 10B; 

10C 
11A 12A; 12D 

Nesvijevskaia et ai. 

(2021) 
1B 2A 3A 4B 5C 6B 7A 8A 9A 10A 11A 12A 

Nicholls et ai. (2021) 1A 2B 3C 4E 5B 6D 7B 8D 9E 10B 11A 12A 

Oliveira e cols. (2006) 1C 2C 3A 4B 5B 6B; 6F 7A; 7B 8D 9E 10A; 10B 11A 12B 

Omidi et al. (2019) 1B 2A 3A 4B 5B 6B 7B 8A 9E 10A 11A 12D 

Prabha et al. (2021) 1A 2B 3C 4E 5B 6B 7D 8D 9B 10A 11E 12D 

Sair e outros. (2019) 1C 2A 3A 4B 5A; 5C 6B 7A; 7B 8B 9A 10B; 10D 11A 12B 

Stojanovic et ai. (2021) 1B 2A 3A 4B 5A 6B 7B 8B 9A 10B 11A 12B 

Sudjianto et al. (2010) 1A 2A 3C 4E 5C 6B 7A; 7B 8D 9E 10A 11A 12A 

Ti et al. (2022) 1C 2A 3A 4B 5B 6B 7B 8A 9E 10A 11C 12A 

Oeste e Bhattacharya 

(2016) 
1B 2A 3A 4B 4B 6B 7B 8B 9B 10A; 10B 11C 12A 

Zafari et ai. (2022) 1C 2A 3A 4B; 4D 5B 6B 7A 8A 9C 10D 11E 12B 

Zamini e Hasheminejad 

(2019) 
1A 2B 3C 4E 5B 6B; 6D 7D 8B 9C 10A 11E 12D 

Zhang et ai. (2021) 1C 2A 3A 4D 5C 
6B; 6D; 

6F 
7A; 7B 8D 9E 10A; 10B 11C; 11E 12B; 12D 

Zhang et ai. (2022) 1B 2A 3A 4B 5B 6B 7B 8D 9E 10A 11F 12D 

Zhou et ai. (2021) 1C 2A 3A 4D 5C 6B; 6F 7B; 7C 8D 9E 10A 11C 12B; 12D 

Zhu e Yang (2019) 1C 2A 3A 4B 5B 6B; 6F 7B 8D 9E 10A 11A 12B; 12D 
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Com os resultados apresentados na Tabela 3.2 , é possível verificar um grande número 

de trabalhos que analisaram fraudes com cartões de crédito, possivelmente motivados pelo tema 

estar atrelado às maiores necessidades da atualidade dada a preocupação da indústria de meios 

de pagamento e fintechs em evitar perdas operacionais. Da mesma forma, verifica-se que todos 

os estudos utilizam uma abordagem quantitativa e o tipo de estudo é classificado como 

empírico, muitas vezes juntamente com o tipo classificado como teórico. 

Em relação ao período do estudo, a maioria dos trabalhos, 68% dos quais com série 

histórica, utilizou dados de até cinco anos para a construção dos modelos e esses dados foram 

obtidos, em sua maioria, por meio de instituições privadas e seus próprios históricos séries, 

seguidas das bases de dados públicas disponíveis no mercado, conforme a Figura 3.8. 

Figura 3.8 - Banco de dados utilizado nos artigos 

 

Fonte: Elaborado pelo autor. 

 

Quanto ao principal objetivo do trabalho, a ampla maioria dos objetos de pesquisa é 

referente a risco operacional e fraudes, seguido por modelos de segurança, representando 53% 

e 15%, respectivamente. Considerando os temas risco operacional e detecção à fraudes e 

anomalias, o método de pesquisa mais utilizado faz uso de aprendizado de máquina. Nos 

últimos anos, a utilização de modelos analíticos não é mais um diferencial, mas tornou-se 

padrão no mercado devido a enorme quantidade de dados a ser processado e a disseminação 

global de empresas de tecnologia funcionava no ramo de banking e meios de pagamento. Os 

principais objetivos dos trabalhos e a distribuição dos métodos podem ser verificados na Figura 
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3.9 e Figura 3.10, respectivamente. 

Figura 3.9 - Principais objetivos dos artigos 

 

Fonte: Elaborado pelo autor. 

Figura 3.10 - Principais métodos dos artigos 

 

Fonte: Elaborado pelo autor. 

 

O principal setor econômico que utiliza informações e modelos de detecção de fraudes é o 

bancário tradicional, seguido por outras instituições financeiras não bancárias. São consideradas 

instituições financeiras não bancárias as instituições que são apenas meios de pagamento, como as 

processadoras de cartões de crédito, e que são o principal setor alvo dos modelos analíticos. Ao 
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analisar as conclusões dos trabalhos, verifica-se a recorrência da proposição da criação de modelos 

analíticos híbridos para mitigar o risco operacional e reduzir perdas com fraudes e redução de falsos 

negativos desses modelos. Dentre os modelos híbridos, são sugeridos modelos que utilizam 

aprendizado de máquina em conjunto com regras de negócio ou a combinação em sequência de dois 

ou mais modelos analíticos para melhor precisão em casos de fraude. 

É importante ressaltar que os modelos desenvolvidos nos trabalhos utilizam variáveis 

comportamentais e cadastrais de usuários lesados por fraude, a fim de identificar características e 

padrões de usuários para detectar momentos em que outra pessoa tenta se passar pelo usuário/cliente. 

Assim, os resultados dos artigos são - em sua maioria - comparativos com os resultados já descritos 

na literatura e que, por alguns motivos específicos, podem ter melhor aplicação prática conforme 

cada um desses estudos apresenta. 

 

3.6. Conclusão  

Este trabalho buscou compreender a produção científica sobre detecção de fraudes em 

bancos e identificar as conexões existentes entre os trabalhos, visto que o tema é relevante para 

o setor bancário devido aos potenciais prejuízos decorrentes de falhas na detecção, que podem 

inviabilizar o funcionamento da organização, fato que acarreta altos volumes de investimentos 

em métodos para reduzir riscos e perdas decorrentes de fraudes. 

Para isso, a metodologia utilizada foi composta por uma combinação de métodos: a 

revisão sistemática da literatura e as métricas de redes complexas. Além disso, foram 

considerados 227 trabalhos científicos sobre o tema, o que possibilitou classificá-los segundo 

doze características como tipo de estudo, abordagem, corte, desenho, natureza, finalidade do 

estudo, método, abrangência espacial, período do estudo, foco, dados utilizados e resultados e 

medir a conectividade existente entre eles por meio de suas citações, coautorias e recorrência 

de palavras-chave. 

Através do estudo apresentado, buscamos alcançar várias contribuições significativas. 

Em primeiro lugar, foi fornecida uma síntese abrangente do conhecimento atual, refletindo a 

profundidade e amplitude da pesquisa realizada. Em segundo lugar, identificamos lacunas 

críticas no conhecimento existente, estabelecendo assim uma agenda de pesquisa futura sobre 

o tema, que pode orientar investigações subsequentes. Por fim, com base em problemas do 

mundo real, desenvolvemos e fortalecemos um agrupamento de casos e modelos reais para 

possibilitar o avanço e refinamento de novas técnicas para detecção, previsão e análise de 
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fraudes, destacando o impacto prático e teórico de nosso trabalho. A análise de rede 

bibliométrica foi crucial principalmente porque facilita a visualização das relações entre 

autores, obras e conceitos, auxilia na identificação de autores-chave e trabalhos fundamentais 

e ajuda a mapear a estrutura e evolução de um campo de estudo. 

A investigação revela que temas relacionados à detecção de fraudes estão 

significativamente correlacionados com algoritmos de detecção de anomalias. Esse 

alinhamento ocorre porque as técnicas empregadas em ambos os contextos são semelhantes, 

especialmente na abordagem do desequilíbrio de classe frequentemente encontrado em tais 

cenários. A maioria dos estudos fornece análises descritivas e introduz modelos preditivos para 

detecção de fraudes. O foco principal desses trabalhos está nos bancos tradicionais, e os 

resultados estão alinhados com os verificados anteriormente na literatura, embora com novas 

perspectivas. 

Os resultados mostram que o uso de técnicas de aprendizado de máquina para detecção 

de fraudes são os métodos mais utilizados, em que muitos trabalhos buscam criar diferentes 

modelos para identificar padrões de comportamento e registro que indiquem que outra pessoa 

está tentando usar os acessos do usuário do site. instituição. Muitos desses modelos utilizam 

combinações de técnicas de aprendizado de máquina ou econometria/estatística com regras de 

negócios e dois tipos de modelos de aprendizado de máquina em sequência – métodos híbridos 

– buscando reduzir o número de falsos positivos e ser mais precisos na detecção de fraudes. 

Mesmo com o crescimento de aplicações de outras formas de fraude como a engenharia 

social, não foram encontradas publicações de modelos analíticos sendo desenvolvidos para 

prevenir fraudes desta natureza. Ressalte-se que tais fraudes envolvendo engenharia social 

utilizam senhas, cartões físicos originais e dispositivos normalmente já utilizados pelo usuário 

da instituição, burlando alguns dos principais controles de mitigação de fraudes. Esses achados 

são úteis para a literatura científica que investiga os riscos operacionais quando apresentados, 

bem como para os agentes econômicos responsáveis pela identificação de fraudes nas 

organizações.  

Comparado aos estudos de revisão existentes identificados na seção de revisão de 

literatura, há uma notável similaridade nas obras quanto à adoção generalizada de vários 

algoritmos de aprendizado de máquina combinados entre si na busca de modelos mais precisos. 

Além disso, um desafio comum no desenvolvimento desses modelos é a necessidade de bancos 

de dados extensos e a presença de dados desbalanceados. Com relação às lacunas na literatura 
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e às potenciais agendas de pesquisa, também é necessária uma exploração mais aprofundada 

em modelos generativos, conforme descrito por Hilal et al. (2022). Deste modo, vislumbra-se 

a possibilidade de desenvolvimento de pesquisa aprofundando detecção e anomalias com 

combinações de técnicas e o desenvolvimento de modelos generativos (LLMs) no auxílio aos 

desafios dos dados desbalanceados.  

Também neste diagnóstico, constatou-se que não há publicações sobre modelos 

diretamente ligados à detecção de fraudes quando as operações são realizadas pelos próprios 

usuários em processos conhecidos como engenharia social. Nesse tipo de pesquisa, as variáveis 

e modelos devem ser diferentes dos tradicionais e a contraparte da operação deve ser observada. 

O aprofundamento desse tema poderia ser objeto de uma relevante agenda de pesquisa em 

finanças bancárias e meios de pagamento, com vistas a ampliar o escopo da prevenção de 

fraudes. 

O desenvolvimento de trabalhos sobre modelos de detecção de fraudes e anomalias para 

bancos é fundamental para a consolidação e síntese do conhecimento teórico atual, possibilitando a 

identificação de métodos e técnicas comprovadamente eficazes na detecção de fraudes. Além disso, 

inspira o desenvolvimento de novas abordagens devido às lacunas na pesquisa existente e oferece 

insights valiosos sobre a aplicação de avanços tecnológicos, como aprendizado de máquina e 

inteligência artificial, na melhoria contínua dos sistemas de segurança bancária. 
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4. Aplicações de IA Generativa para Geração de Dados Sintéticos – O uso no 
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Resumo 

O desequilíbrio de classes é um problema comum em aprendizado de máquina que pode prejudicar 

o desempenho de modelos preditivos. Este estudo apresenta uma abordagem inovadora para lidar 

com dados desbalanceados por meio da criação de dados sintéticos utilizando Inteligência Artificial 

Generativa (GenIA). A técnica de data augmentation via geração de dados sintéticos proposta 

emprega modelos generativos e Large Language Models (LLMs), para gerar amostras sintéticas 

das classes minoritárias, equilibrando assim a distribuição das classes no conjunto de dados. Desta 

forma, foram desenvolvidos tanto modelos tradicionais de oversamplig (SMOTE, GAN e VAE) 

quanto modelos de LLM com aplicação de RAG e Fine-tuning treinados para gerarem 

sobreamostragem. O novo LLM desenvolvido, via Fine-Tuning, com habilidade para gerar dados 

sintéticos foi batizado de Aurora. A metodologia e modelos foram aplicados e testados em base de 

dados de um grande banco nacional e sua eficiência comparada com os modelos atuais preditivos 

de fraudes. Os resultados indicaram que o modelo LLM Aurora desenvolvido para data 

augmentation, bem como engenharia de prompt e RAG, são viáveis e eficazes. Os testes de 

similaridade e correlação entre os dados originais e sintéticos demonstrou eficácia dos 

modelos de LLM para este fim. No entanto, identificou-se como limitação a alta dependência dos 

LLMs ao processamento do hardware (GPU), à quantidade de tokens e ao ambiente de plataforma 

em que estão hospedados. 

 

 

Palavras-chave: Dados sintéticos, IA Generativa, Oversampling, Desequilíbrio de classes, Data 

Augmentation, LLM, SMOTE. 

 

4.1. Introdução  

Hoje, as transações financeiras são mais frequentes e diversas devido à globalização e 

digitalização. Infelizmente, este ambiente também proporcionou oportunidades para a proliferação 

de fraudes e golpes, levando a perdas significativas para bancos e seus clientes.  

No cenário financeiro contemporâneo, a integridade e segurança das transações tornaram-

se componentes cruciais na garantia da confiança dos clientes e na preservação da imagem das 

instituições bancárias. Paralelamente, a crescente sofisticação e frequência dos ataques 

cibernéticos, particularmente em fraudes, têm se intensificado. Portanto, é fundamental que os 

bancos se aprofundem no desenvolvimento e implementação de modelos avançados de detecção 

de fraudes, priorizando tanto a preservação do patrimônio dos clientes quanto a sustentabilidade 

operacional da própria instituição.  
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De forma sintética, modelos de detecção de fraudes são sistemas algorítmicos desenvolvidos 

para identificar atividades anômalas que podem indicar a ocorrência de uma fraude. Estes modelos, 

geralmente baseados em técnicas de aprendizado de máquina, analisam padrões históricos de 

transações e comportamentos dos usuários para prever e identificar transações potencialmente 

fraudulentas em tempo real. Empregam desde métodos estatísticos clássicos até abordagens mais 

avançadas, como redes neurais e florestas aleatórias. A escolha do algoritmo adequado depende da 

natureza dos dados, do tipo de fraude que se pretende detectar e dos recursos disponíveis para a 

implementação. 

Além disso, a indústria tem investido intensivamente no uso de modelos analíticos, tanto 

puros quanto híbridos. A combinação de características provenientes de diferentes fontes de 

informação — como dados transacionais, cadastro de contas, comportamento do usuário e 

características temporais — contribui para aumentar a precisão na detecção de fraudes (Wei et al., 

2013). 

Essa tendencia atende também á crescente regulamentação e supervisão dos setores 

financeiros em muitas jurisdições. Bancos que não adotam medidas rigorosas de detecção de 

fraudes podem enfrentar penalidades regulatórias e litígios. 

No entanto, um dos problemas recorrentes nesse campo é o desequilíbrio de classes nos 

conjuntos de dados, onde uma ou mais classes estão sub-representadas em relação às demais. Esse 

desbalanceamento pode levar a modelos de aprendizado de máquina tendenciosos e menos 

eficazes, especialmente em tarefas de classificação. 

Para mitigar esse problema, técnicas de aumento de dados (Data Augmentation) e 

oversampling têm sido amplamente exploradas. O aumento de dados consiste em complementar 

uma coleta de observações com dados similares gerados a partir da informação já existente. Essa 

abordagem é frequentemente utilizada para superar a limitação conjuntos de dados pequenos, 

evidenciada em diversos estudos anteriores (Bej et al., 2021; Chang et al., 2013; Mohammed et al., 

2020; Mujahid et al., 2024; Yang et al., 2024).  

Tradicionalmente, métodos como o SMOTE (Synthetic Minority Over-sampling 

Technique) têm sido utilizados para gerar novas amostras da classe minoritária. No entanto, 

avanços recentes em Inteligência Artificial Generativa (GenIA), especialmente com o uso de Large 

Language Models (LLM), oferecem novas possibilidades para a criação de dados sintéticos de alta 

qualidade. 

Os LLMs são modelos de linguagem treinados em grandes quantidades de texto, capazes de 
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gerar e compreender linguagem natural com um nível de sofisticação impressionante. Esses 

modelos têm mostrado um desempenho excepcional em várias tarefas de processamento de 

linguagem natural (NLP) e vêm sendo adaptados para aplicações em outras áreas, como a geração 

de dados sintéticos para aprendizado de máquina. 

Os benefícios dos LLMs incluem a capacidade de capturar complexidades e nuances dos 

dados, criando amostras sintéticas que são mais realistas e diversificadas. Isso pode levar a uma 

melhor generalização dos modelos de aprendizado de máquina, reduzindo o risco de overfitting e 

aumentando a robustez contra dados desbalanceados. 

Assim, o presente artigo tem como problema de pesquisa enfrentar o desbalanceamento de 

classes presente nas bases de dados em modelos de prevenção a fraudes. Este estudo investiga a 

eficácia do uso de LLMs para gerar dados sintéticos em conjuntos de dados desbalanceados. 

Desta forma, o objetivo deste trabalho é desenvolver modelo de IA Generativa LLM próprio 

capaz de aplicar técnicas de oversampling e geração de dados sintéticos que equilibrem as classes 

de uma base de dados. 

Objetivos específicos: i) desenvolver e mensurar a performance de modelos tradicionais de 

dados sintéticos, como SMOTE, GAN e VAE; ii) aplicar modelos de LLM para geração de dados 

sintéticos, via engenharia de prompt, e mensurar sua performance; iii) desenvolver e aplicar modelo 

de LLM com direcionamento para geração de dados sintéticos via RAG Geração Aumentada de 

Recuperação (Retrieval-Augmented Generation); iv) desenvolver um novo modelo inédito de LLM 

próprio com conhecimento intrínseco para geração de dados sintéticos.  

Com base na questão de pesquisa, formulam-se as seguintes hipóteses: i) O uso de modelos 

LLM para geração de dados sintéticos não influencia significativamente a performance e a 

eficiência de modelos destinados à mitigação e prevenção de fraudes; ii) os modelo LLM geradores 

de dados sintéticos são eficientes na geração de dados similares aos reais; e iii) os modelos de 

geração de dados sintéticos com LLM (IA generativa) não apresentam diferenças significativas em 

relação a outros modelos de geração de dados sintéticos para mitigar e prevenir fraudes. 

Os experimentos foram conduzidos em um conjunto de dados real de modelagem para 

fraudes desbalanceados. A performance dos modelos de geração de dados sintéticos foi comparada 

com base em dois critérios: primeiro, a similaridade entre as distribuições reais e sintéticas e, em 

segundo lugar, a melhora na performance de modelos preditivos de classificação de fraudes após a 

aplicação do oversampling sintético.  

Os resultados demonstraram uma melhora significativa no poder preditivo de modelos que 
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usam data augmentation, bem como na capacidade de generalização dos modelos, comprovando a 

eficácia da abordagem proposta. Os testes de similaridade e correlação entre os dados originais e 

sintéticos demonstraram a eficácia dos modelos de LLM para este fim. Além disso, a análise das 

métricas de desempenho, como precisão, recall e F1-score, reforçou a similaridade do uso de dados 

sintéticos gerados por LLM em comparação com métodos tradicionais de oversampling, como 

SMOTE. Os resultados obtidos reforçam a promessa desta abordagem, destacando sua relevância 

e aplicabilidade em diversos cenários práticos. 

Concluímos que a utilização de LLM para a criação de dados sintéticos representa uma 

solução promissora para problemas de desequilíbrio de classes, proporcionando uma maneira 

eficaz de melhorar a robustez e a performance de modelos de aprendizado de máquina em cenários 

realistas. Além disso, a geração de dados sintéticos com características similares às reais que podem 

ser aplicadas para fins de privacidade de dados. 

A análise demonstra que a utilização de dados sintéticos melhora a precisão dos modelos 

preditivos, abordando problemas de escassez e desbalanceamento de dados. Os resultados indicam 

que a abordagem é eficaz e propõem futuras pesquisas para otimizar o uso de dados sintéticos na 

detecção de fraudes. Este estudo contribui significativamente para o campo ao mostrar a viabilidade 

e os benefícios do uso de LLM na geração de dados sintéticos. 

A geração de dados sintéticos utilizando LLM para oversampling em problemas de 

aprendizado de máquina é de relevante para o campo de pesquisa acadêmico pois aborda e propõe 

uma solução a desafio crítico na modelagem de dados: o desequilíbrio de classes. Isso ajuda a evitar 

modelos tendenciosos e melhora a precisão e generalização das previsões.  

Este trabalho se justifica ao explorar o uso de técnicas avançadas de IA Generativa, como 

os LLMs, em uma abordagem inovadora para criar amostras sintéticas realistas e diversificadas, 

potencialmente superando métodos tradicionais como o SMOTE. Além disso, a aplicação de LLMs 

e SLMs (Small Language Models) podem trazer insights valiosos sobre a capacidade desses 

modelos de capturar e replicar complexidades intrínsecas dos dados, contribuindo para o 

desenvolvimento de soluções mais robustas e precisas em aprendizado de máquina. Assim, este 

estudo não só enriquece o corpo teórico da ciência de dados e IA, mas também tem implicações 

práticas significativas para diversas áreas que dependem de previsões precisas a partir de dados 

desbalanceados. 

 

4.2. Revisão da Literatura  
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As principais técnicas utilizadas em modelos analíticos de detecção de fraudes incluem 

regras e heurísticas, que estabelecem critérios pré-definidos para identificar transações 

suspeitas com base em limites de valor, padrões de comportamento do cliente, e localização 

geográfica. Além disso, técnicas estatísticas e de aprendizado de máquina são amplamente 

empregadas, utilizando modelos preditivos como árvores de decisão, regressão logística e redes 

neurais, aplicados por meio de algoritmos de classificação. 

A detecção de fraudes é um campo crítico no contexto de segurança financeira e 

tecnológica, exigindo a aplicação de modelos de aprendizado de máquina para identificar 

transações suspeitas. Uma característica marcante desse domínio é o desbalanceamento de 

classes, em que as instâncias de fraudes representam uma pequena fração em comparação com 

as transações legítimas. Esse desequilíbrio impõe desafios significativos ao desenvolvimento 

de modelos eficazes, pois algoritmos convencionais tendem a ser enviesados em favor da classe 

majoritária, resultando em uma alta taxa de falsos negativos. Consequentemente, a revisão da 

literatura sobre métodos de detecção de fraudes frequentemente aborda estratégias específicas 

para lidar com esse desbalanceamento, incluindo técnicas de reamostragem, ajustes de 

penalização e a aplicação de algoritmos especializados, visando aumentar a sensibilidade e a 

precisão na identificação de fraudes. 

Neste sentido Ngai et al. (2011) oferecem uma visão abrangente sobre a aplicação de 

técnicas de mineração de dados na detecção de fraudes financeiras, apresentando um framework 

de classificação para facilitar a compreensão e o desenvolvimento de abordagens eficientes. 

Eles discutem os desafios e limitações, como a falta de conjuntos de dados reais e a necessidade 

de lidar com desequilíbrios de classe que representam obstáculos significativos para a criação 

de modelos de prevenção a fraudes. Ngai et al. (2011) classificam as fraudes financeiras em 

quatro grupos: fraude bancária, fraude em seguros, fraude em títulos e commodities, e outras 

fraudes financeiras. Eles destacam a necessidade de uma abordagem integrada que combine 

diferentes métodos e técnicas para resultados mais eficazes. 

West e Bhattacharya (2016) abordam a detecção de fraudes financeiras como um campo 

em constante evolução, necessitando de abordagens avançadas para enfrentar a crescente 

sofisticação das fraudes. Eles revisam técnicas como análise de padrões, mineração de dados, 

redes neurais, algoritmos genéticos, lógica difusa e sistemas especialistas, enfatizando os 

desafios do desequilíbrio de classes e a importância da interpretabilidade dos modelos. Além 

disso, defendem uma abordagem multidisciplinar que combine conhecimentos financeiros com 
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técnicas avançadas de análise de dados em tempo real. 

Em um dos primeiros trabalhos a utilizarem de novas técnicas para geração de dados 

sintéticos aplicados a modelos, Wei et al. (2013) propõem uma estrutura eficaz para a detecção 

de fraudes bancárias online em dados desbalanceados, utilizando a técnica SMOTE para gerar 

um conjunto sintético de fraudes e melhorar o desempenho dos modelos. Eles aplicam 

algoritmos como Random Forest, utilizando características transacionais, informações de 

contas e comportamentos de usuários para melhorar a precisão da detecção. Os resultados 

mostram uma melhoria significativa na detecção de fraudes e redução de falsos positivos. 

Com o mesmo objetivo, Nami e Shajari (2018) apresentam uma abordagem de duas 

etapas para a detecção de fraudes em cartão de crédito, considerando tanto o desequilíbrio de 

classe quanto os custos de erros de classificação. A metodologia combina o algoritmo Dynamic 

Random Forest (DRF) com o método k-Nearest Neighbors (k-NN), adaptando o DRF para lidar 

com o desequilíbrio e utilizando k-NN para ajustar as classificações finais. O resultado da 

proposta é uma nova medida de similaridade baseada no tempo de transação que atribui maior 

peso às transações recentes, mostrando que o comportamento recente dos portadores de cartão 

é crucial na avaliação de transações fraudulentas. 

Zioviris et al. (2022) exploram a detecção de fraudes em cartões de crédito por meio de 

um modelo de aprendizado profundo em múltiplos estágios. A abordagem utiliza autoencoders 

para seleção de recursos e redes neurais convolucionais (CNNs) e recorrentes (RNNs) para que 

capturam características transacionais complexas. O estudo destaca a importância da detecção 

eficaz de fraudes em tempo real e da interpretabilidade do modelo para obter a confiança dos 

usuários, discutindo métodos para tornar o modelo mais explicável e transparente, sustentando 

sua aplicabilidade prática. 

 No que se refere ao tema de fraudes com engenharia social, é importante notar a existência 

de várias referências acadêmicas significativas na incluindo trabalhos de Mitnick e Simon (2002), 

Hadnagy (2011), Sheng et al. (2009), Stajano e Wilson (2010), e Hijji e Alam (2021). Em suma, 

estes autores descrevem a engenharia social como um conjunto de técnicas usadas por fraudadores 

para enganar pessoas e obter informações confidenciais ou acesso indevido a sistemas, 

frequentemente para atividades fraudulentas. Para eles, as interações entre a engenharia social e a 

detecção de fraudes e anomalias acontecem de diversas formas, como:  

i) Phishing e spear phishing, onde os fraudadores se passam por entidades legítimas usando 

e-mails, mensagens de texto ou chamadas telefônicas falsas para solicitar informações 



107  

confidenciais;  

ii) Engenharia direcionada, que envolve pesquisa detalhada sobre os alvos e coleta de 

informações pessoais disponíveis publicamente;  

iii) Pretexting, que usa histórias fictícias ou desculpas para obter informações;  

iv) Engenharia social reversa, onde fraudadores se passam por clientes ou superiores em 

instituições financeiras para obter acesso a sistemas ou informações confidenciais.  

Estes estudos exploram diferentes aspectos da engenharia social, oferecendo percepções 

valiosas sobre as técnicas dos fraudadores, o perfil das vítimas e estratégias de prevenção. 

Destacam-se as abordagens comportamentais de clientes e fraudadores, indicando a necessidade 

de expandi-las por meio de modelos analíticos baseados em aprendizado de máquina. Este campo 

representa uma área promissora para pesquisa adicional e proposição de soluções inovadoras tanto 

para a academia quanto para a indústria. 

No que se refere a trabalhos focados na geração de dados sintéticos como forma 

oversamping - ou seja, visando de aumentar artificialmente o número de exemplos da classe 

minoritária - diversos autores aplicam diferentes técnicas para equilibrar as classes minoritárias e 

majoritárias da base de dados. Entre as técnicas mais recentes e eficientes destacam-se: i) Synthetic 

Minority Oversampling Technique - SMOTE; ii) Generative Adversarial Networks - GAN, ou 

Redes Adversárias Generativas, em português, e iii) Autoencoders Variacionais (VAE). 

O algoritmo SMOTE foi desenvolvido por Chawla et. al. (2002) com o objetivo de realizar 

a sobreamostragem da classe minoritária envolvendo a criação de exemplos sintéticos com base 

nas características dos exemplos observações reais dessa classe. A ideia principal é sobre-amostrar 

a classe minoritária e criar exemplos com base nos vizinhos mais próximos a essa classe. Em outras 

palavras, a classe minoritária é sobreramostrada ao gerar novos exemplos dados sintéticos similares 

a seus k-vizinhos mais próximos. Essa abordagem aumenta a diversidade dos dados da classe 

minoritária, evitando a simples duplicação e, consequentemente, reduzindo o risco de overfitting. 

Essa técnica ajuda a melhorar o desempenho dos modelos ao balancear o conjunto de dados, 

proporcionando métricas de avaliação mais robustas, como precisão, recall e F1-score. (Chawla et. 

al., 2002). 

Embora o SMOTE seja eficaz para lidar com o desequilíbrio de classes, ele também tem 

algumas limitações. A técnica pode gerar exemplos que não são realistas se a distribuição da classe 

minoritária for muito complexa. Além disso, o SMOTE pode introduzir ruído se os exemplos 

gerados não forem representativos da distribuição real dos dados (Chawla et. al., 2002). 
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No que se refere a modelos generativos, as duas técnicas amplamente utilizadas para a 

geração de dados sintéticos baseados em redes neurais são as redes generativas adversárias (GAN) 

e os Autoencoders Variacionais (VAE). Essas técnicas têm se tornado extremamente populares 

devido à sua capacidade de capturar distribuições de dados complexas. A utilização de GANs para 

a geração de dados está ganhando crescente popularidade na comunidade de aprendizado de 

máquina, embora exija o treinamento de vários modelos, o que acarreta desafios e sobrecarga 

computacional na busca pelos parâmetros ótimos do modelo. Por outro lado, o método VAE faz 

suposições fortes sobre a distribuição dos dados, o que pode prejudicar o desempenho do modelo 

gerativo (Marco et al., 2023). 

As Redes Adversárias Generativas (Generative Adversarial Networks - GANs) 

apresentadas por Goodfellow et al. (2014) são uma técnica poderosa para a geração de dados 

sintéticos, com ampla aplicação em diversas aplicações, desde a criação de imagens realistas até a 

síntese de dados em áreas como detecção de fraudes. 

As GANs utilizam dois modelos principais que competem entre si: o Gerador e o 

Discriminador. O Gerador cria dados sintéticos a partir de vetores de ruído, tentando fazer com que 

esses dados sejam indistinguíveis dos dados reais. O Discriminador, por sua vez, tenta distinguir 

entre os dados reais e os gerados pelo Gerador. Durante o treinamento, o Gerador é otimizado para 

“enganar” o Discriminador, enquanto o Discriminador é otimizado para melhorar sua capacidade 

de distinguir entre dados reais e sintéticos. Esse processo adversarial resulta em um jogo na qual 

ambos os modelos se aprimoram continuamente (Goodfellow et al., 2014). 

Outro modelo amplamente utilizado para a geração de dados sintéticos, e que vem 

ganhando popularidade nessa área, são os Autoencoders Variacionais (VAEs). Estes modelos, 

também baseados em redes neurais, foram desenvolvidos e apresentados por Kingma e Welling 

(2013), que combinou conceitos de autoencoders e variáveis latentes estocásticas para criar uma 

técnica que pode capaz de gerar novos dados a partir da distribuição aprendida durante o 

treinamento. Eles são uma extensão dos autoencoders tradicionais, incorporando princípios da 

estatística bayesiana para fornecer uma representação latente mais rica e probabilística. 

Desta forma, os Autoencoders Variacionais (VAEs) são redes neurais projetadas para 

aprendizado não supervisionado que transformam dados de entrada em uma representação latente 

probabilística. O modelo consiste em um codificador que mapeia a entrada para uma distribuição 

latente, e um decodificador que reconstrói a entrada a partir de amostras dessa distribuição. Durante 

o treinamento, os VAEs maximizam a evidência inferior variacional (ELBO), que inclui um termo 
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de reconstrução para garantir a fidelidade da reconstrução e uma divergência de Kullback-Leibler 

(KL) para regularizar a distribuição latente. A técnica de reparametrização é usada para permitir a 

propagação do gradiente através do processo de amostragem, possibilitando a otimização eficiente 

dos parâmetros do modelo (Kingma e Welling, 2013). 

Uma descrição mais detalhada dos três métodos citados será apresentada na seção seguinte 

de metodologia.  

No que se refere ao estado da arte de algoritmos desenvolvidos para criação de dados 

sintéticos para equilíbrio de classes, destaca-se a utilização de modelos híbridos que combinam 

duas ou mais técnicas acima citadas. 

Cheah, Yang e Lee (2023) abordam o problema do desequilíbrio de classes em conjuntos 

de dados de fraudes financeiras, que comumente resulta em previsões tendenciosas para a classe 

não fraudulenta e, consequentemente, em um desempenho insatisfatório na detecção de fraudes. 

Para mitigar esse problema, os autores exploram e comparam a eficácia de técnicas híbridas de 

geração de dados, combinando a Técnica de Sobreamostragem de Minoria Sintética (SMOTE) com 

Redes Generativas Adversariais (GAN).  

A pesquisa de Cheah, Yang e Lee emprega diferentes arquiteturas de redes neurais, 

incluindo Redes Neurais Feed-forward (FNN), Redes Neurais Convolucionais (CNN) e uma 

combinação das duas (FNN+CNN), para avaliar o impacto das técnicas híbridas sobre o 

desempenho de detecção de fraudes. Os resultados indicam que as técnicas híbridas, especialmente 

SMOTified-GAN e GANified-SMOTE, superam ou igualam o desempenho das técnicas SMOTE 

e GAN isoladamente, demonstrando eficácia superior na detecção de fraudes financeiras. 

Independentemente do tamanho da amostra de fraudes geradas, as técnicas híbridas apresentaram 

um desempenho consistente, destacando-se como abordagens promissoras para melhorar a precisão 

e recall na detecção de fraudes, contribuindo significativamente para a mitigação do problema do 

desequilíbrio de classes. 

No contexto da medicina, o artigo de Eom e Byeon (2023) aborda o desafio do desequilíbrio 

de classes em conjuntos de dados estruturados, com ênfase em dados clínicos. Compara métodos 

tradicionais de sobreamostramento com técnicas baseadas em redes adversárias generativas 

condicionais (CGAN) e redes adversárias generativas tabulares condicionais (CTGAN). Utilizando 

dados epidemiológicos de pacientes com demência de Parkinson do Biobanco Nacional da Coreia, 

os autores ajustaram a razão de desequilíbrio para diferentes valores e analisaram o desempenho 

das técnicas de sobre amostragem.  
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Os resultados mostraram que CGAN e CTGAN superaram significativamente os métodos 

tradicionais, como ROS, SMOTE, B-SMOTE e ADASYN, em termos de AUC e F1-score, 

melhorando a classificação das classes minoritárias. Este estudo não só amplia a aplicação de GAN 

para dados estruturados, mas também oferece uma solução eficaz para o problema de desequilíbrio 

de dados, sugerindo direções futuras para pesquisa nessa área. Conclui-se que CGAN e CTGAN 

são técnicas promissoras para lidar com o desequilíbrio de classes, apresentando um desempenho 

superior na classificação de dados médicos desequilibrados. 

Kruschwitz e Schmidhuber (2024) investigam o uso de dados sintéticos gerados por 

modelos de linguagem de grande escala (LLMs) para melhorar a detecção de linguagem tóxica. O 

estudo avalia a eficácia desses dados sintéticos em comparação com dados reais na tarefa de 

classificação de toxicidade, especialmente em contextos em que há escassez de dados. O objetivo 

central é determinar se é possível utilizar exclusivamente dados sintéticos para treinar modelos de 

detecção de toxicidade com desempenho comparável ao de modelos treinados com dados reais. 

A metodologia adotada envolve a geração de textos sintéticos usando o GPT-3 Curie, 

seguida por uma etapa de filtragem com um classificador treinado em dados reais para garantir a 

relevância e a qualidade dos textos gerados. Os autores realizam experimentos combinando dados 

originais e sintéticos, além de comparar desempenhos entre modelos treinados exclusivamente com 

dados sintéticos e com dados reais (Kruschwitz e Schmidhuber, 2024). 

Kruschwitz e Schmidhuber (2024) utilizaram prompts cuidadosamente elaborados para 

guiar a saída de um modelo de linguagem de grande escala (LLM), como o GPT-3 Curie, com o 

objetivo de garantir a geração de dados relevantes e de alta qualidade. As métricas de avaliação 

incluem precisão, recall e F1-score, aplicadas em diferentes cenários de detecção de toxicidade, 

destacando melhorias notáveis na detecção de linguagem tóxica não-odiável e condescendente 

quando se utilizam dados sintéticos em combinação com dados reais. 

Smith et al. (2024) propõem a utilização de modelos de linguagem de larga escala (LLMs) 

para a geração de dados sintéticos, com o objetivo de melhorar a performance de classificadores 

em conjuntos de dados desbalanceados. A metodologia OPAL, desenvolvida pelos autores, envolve 

a utilização de prompts específicos que guiam os LLMs na produção de novos registros sintéticos, 

preservando as propriedades estatísticas dos dados reais, como correlações entre variáveis e 

distribuições marginais. Esta abordagem foi comparada com métodos tradicionais de 

oversampling, como SMOTE e duplicação de dados. 

Os resultados demonstraram que o OPAL supera os métodos tradicionais em todas as 
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métricas avaliadas, reduzindo significativamente a taxa de erro dos classificadores em cenários de 

dados desbalanceados. Por exemplo, na base de dados Diabetes, a taxa de erro com OPAL foi 

significativamente menor em comparação com o SMOTE e sem oversampling. As conclusões 

indicam que o uso de LLMs para oversampling sintético é uma estratégia eficaz e promissora, 

proporcionando uma melhor generalização dos modelos de aprendizado de máquina (Smith et al., 

2024). 

Zhou et al. (2024) fornecem uma visão abrangente dos métodos de aumento de dados 

orientados por grandes modelos, categorizando os estudos relevantes e explorando suas aplicações, 

técnicas de pós-processamento, sucessos e limitações. O artigo busca contribuir para a geração de 

dados suficientes e diversos para treinar modelos grandes mais sofisticados, oferecendo insights 

críticos para pesquisadores. Os autores abordam métodos de aumento de dados orientados por 

grandes modelos, como modelos de linguagem e de difusão, categorizando-os em aumento de 

imagens, aumento de texto e aumento de dados pareados. Além disso, explora técnicas de pós-

processamento de dados e discute suas aplicações em processamento de linguagem natural, visão 

computacional e processamento de sinais de áudio. O objetivo é fornecer uma visão abrangente 

dessas técnicas, avaliando seus sucessos e limitações, e sugerindo desafios e direções futuras, 

visando contribuir para a geração de dados suficientes e diversos para treinar modelos grandes mais 

sofisticados. 

Os resultados indicam que os métodos de aumento de dados orientados por grandes 

modelos superam as abordagens tradicionais em diversas aplicações. Em visão computacional, os 

modelos geraram imagens sintéticas de alta qualidade, melhorando a acurácia dos sistemas de 

reconhecimento de imagem. No processamento de linguagem natural, os métodos aumentaram a 

diversidade e a qualidade dos textos gerados, resultando em melhorias nas tarefas de tradução e 

compreensão de texto. As conclusões destacam a necessidade de desenvolver técnicas mais 

robustas e escaláveis, sugerindo que futuras pesquisas devem focar em melhorar a eficácia e a 

diversidade dos dados gerados por grandes modelos. No que se refere ao aumento de dados 

pareados, que envolve a combinação de dados de diferentes modalidades, os autores concluem que, 

embora esse tipo de aumento ofereça melhorias substanciais na qualidade e quantidade de dados 

de treinamento, ainda há desafios relacionados à manutenção da coerência e relevância dos dados 

gerados (Zhou et al., 2024). 

Neunzig et al. (2023) apresentaram um estudo sobre a geração de dados sintéticos para 

melhorar o desempenho preditivo de características de teste hidráulico. A metodologia envolveu o 
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uso de Redes Adversariais Generativas e Autoencoders Variacionais. Os resultados indicaram que 

a combinação de regressão da altura de gap e classificação não fornece uma abordagem adequada 

para um conjunto de dados de produção com uma divisão de séries temporais. No entanto, a adição 

de dados sintéticos ao conjunto de dados original melhorou o modelo de classificação. A Regressão 

por Floresta Aleatória foi usada para a regressão de altura de gap, produzindo erros médios 

absolutos mais baixos e resultando em um 𝑅2 R2 mais alto em comparação com outros métodos de 

regressão. 

Marco et al. (2023) desenvolveram um modelo de autoencoder variacional condicional 

(CVAE) combinado com uma função de relevância para reamostragem, visando a geração de dados 

sintéticos para a tarefa de regressão no contexto da estimativa de esforço de software (SEE). A 

principal inovação deste estudo reside na adaptação do CVAE, originalmente utilizado para 

classificação, para no contexto de regressão, abordando a limitação de dados e melhorando a 

precisão das previsões. O desempenho do modelo foi avaliado e comparado com sete métodos 

populares de geração de dados sintéticos, incluindo SMOTER, GAN, CTGAN, entre outros, 

utilizando métricas como Erro Médio Absoluto (MAE), Raiz do Erro Quadrático Médio (RMSE), 

Erro Absoluto Relativo (RAE) e Coeficiente de Determinação (R²). Os resultados demonstraram 

que o CVAE proposto supera os métodos existentes nas bases de dados China e Desharnais. As 

conclusões do estudo sugerem que o uso do CVAE com reamostragem baseada em relevância é 

capaz de gerar dados sintéticos que são altamente semelhantes aos reais, melhorando a qualidade 

das previsões de SEE em comparação com modelos que utilizam apenas os dados originais e outros 

métodos de geração de dados sintéticos. 

Nas finanças, Ding et al. (2023) investigaram a aplicação de uma Rede Generativa 

Adversarial Variacional (VAEGAN) aprimorada na detecção de fraudes com cartões de crédito, 

enfrentando o desafio do desequilíbrio de dados. A metodologia envolveu a geração de dados 

sintéticos da classe minoritária para aumentar o conjunto de treinamento, utilizando um VAEGAN 

aprimorado. Os resultados mostraram que este método de oversampling supera técnicas 

tradicionais como GAN, VAE e SMOTE, melhorando significativamente a precisão e o F1 score 

dos modelos de classificação. Conclui-se que a VAEGAN aprimorada é eficaz para resolver 

problemas de classificação em conjuntos de dados desequilibrados, oferecendo uma abordagem 

robusta para a detecção de fraudes em cartões de crédito. 

Veigas et al. (2021) propuseram um modelo de detecção de fraudes em transações com 

cartões de crédito, utilizando um Conjunto Empilhado Otimizado (OSE) que incorpora técnicas de 
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sobreamostragem como SMOTE e GAN para gerar dados sintéticos. O estudo demonstrou que, 

após o balanceamento do conjunto de dados, os classificadores individuais (MLP, kNN e SVM) 

mostraram melhorias na pontuação F1. O modelo final, que combina esses classificadores em um 

meta-classificador, alcançou uma precisão de 99,86% e um aumento de 16% na pontuação F1, 

destacando-se como uma solução eficaz para a detecção de fraudes em cenários reais. 

Patki et al. (2016) apresentam o Synthetic Data Vault (SDV), um sistema que gera dados 

sintéticos para viabilizar projetos de ciência de dados, preservando a privacidade dos dados 

originais. O SDV utiliza uma técnica de modelagem recursiva chamada "agregação de parâmetros 

condicionais" para criar um modelo generativo de bancos de dados relacionais. A técnica usa a 

cópula Gaussiana para capturar a distribuição multivariada dos dados. Testado em cinco conjuntos 

de dados públicos, o sistema demonstrou que os dados sintéticos produzidos podem substituir 

efetivamente os dados reais na construção de modelos preditivos, sem perda significativa de 

acurácia. Os resultados mostraram que não houve diferença estatisticamente significativa na 

performance dos modelos preditivos desenvolvidos com dados sintéticos comparados aos 

desenvolvidos com dados reais. Conclui-se que o SDV é uma solução viável e eficiente para a 

geração de dados sintéticos, capaz de atender às necessidades de diversas aplicações em ciência de 

dados, promovendo a segurança e a privacidade dos dados originais. 

Do mesmo modo, segundo Tanaka e Aranha (2019), a utilização de Redes Adversariais 

Generativas (GANs) para a geração de dados sintéticos pode ser uma técnica eficaz em situações 

de conjuntos de dados desequilibrados e onde a privacidade dos dados é uma preocupação. Em 

seus experimentos, um classificador de Árvore de Decisão treinado com dados sintéticos alcançou 

resultados comparáveis, e em alguns casos superiores, aos obtidos com dados reais. Além disso, ao 

comparar o desempenho de diferentes métodos de aumento de dados para classes minoritárias, 

verificou-se que as GANs proporcionaram melhorias significativas, ainda que não superiores ao 

SMOTE e ADASYN em todos os cenários avaliados. Esses resultados indicam que o uso de GANs 

é promissor para evitar overfitting e melhorar a representatividade dos dados em tarefas de 

aprendizado de máquina. 

Cai et al. (2023) propuseram uma abordagem para resolver o problema do desequilíbrio de 

dados na inferência de tópicos disciplinares hierárquicos, um problema de processamento de 

linguagem natural, utilizando aumento de dados baseado em grandes modelos de linguagem 

(LLMs). O estudo foca em propostas de pesquisa submetidas para financiamento, que apresentam 

desequilíbrios de dados entre diferentes disciplinas. A metodologia envolve a amostragem de 
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classes minoritárias e a construção de prompts para gerar dados adicionais com o modelo de 

linguagem Llama V1. As propostas de pesquisa geradas, usando os prompts desenvolvidos, são 

capazes de abordar os problemas de desequilíbrio e gerar dados científicos de alta qualidade. Os 

resultados indicam uma melhoria na precisão dos modelos de inferência de tópicos e na equidade 

da atribuição de revisores especialistas. 

De modo a avaliar os riscos e viéses que os modelos de oversampling também podem 

apresentar Van den Goorbergh et al. (2022) apresentam uma análise detalhada dos efeitos das 

correções de desequilíbrio de classes em modelos de regressão logística, tanto padrão quanto 

penalizada. O principal achado é que métodos como random undersampling (RUS), random 

oversampling (ROS) e SMOTE não melhoram a discriminação dos modelos, medida pelo AUROC, 

mas causam uma superestimação sistemática das probabilidades para a classe minoritária, 

resultando em forte descalibração dos modelos. Essa distorção nas estimativas de probabilidade 

compromete a utilidade clínica dos modelos, podendo levar a decisões equivocadas, como o 

encaminhamento excessivo de pacientes para tratamentos especializados. Além disso, o estudo 

evidencia que o uso de RUS reduz artificialmente o tamanho da amostra, aumentando o risco de 

overfitting e a variância dos modelos. Mesmo após a aplicação de procedimentos de recalibração, 

os modelos corrigidos por desequilíbrio continuaram apresentando desempenho inferior em termos 

de calibração e discriminação. Os autores concluem que o desequilíbrio de classes não é um 

problema intrínseco para modelos de predição e alertam para os riscos de aplicar correções de 

desequilíbrio sem evidência clara de benefício, especialmente em contextos clínicos onde a 

calibração precisa das probabilidades é essencial para a tomada de decisão. 

Neste mesmo sentido, Chen et al (2024) oferece uma revisão abrangente das abordagens 

recentes para lidar com dados desbalanceados, incluindo técnicas de pré-processamento, métodos 

algorítmicos e estratégias de aprendizado em conjunto. A principal conclusão  é que, embora 

existam diversas técnicas promissoras para melhorar o desempenho de modelos em cenários de 

desequilíbrio, cada uma apresenta limitações significativas que devem ser cuidadosamente 

consideradas. O oversampling, por exemplo, pode levar ao overfitting, aumentar a complexidade 

computacional e introduzir ruído nos dados, o que compromete a capacidade de generalização dos 

modelos. Técnicas como SMOTE e suas variantes podem gerar amostras duplicadas ou falsas, 

sendo inadequadas para dados de alta dimensionalidade e sensíveis ao ruído. Métodos algorítmicos 

como o aprendizado sensível a custo enfrentam dificuldades na estimativa precisa dos custos de 

erro e podem sofrer com viés de distribuição. Estratégias de ensemble learning, como boosting e 
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bagging, embora eficazes, exigem alto custo computacional e são sensíveis a dados ruidosos ou 

mal rotulados. O trabalho destaca que a escolha inadequada de técnicas pode comprometer a 

performance em dados não vistos e reduzir a robustez dos modelos, sendo necessário um equilíbrio 

entre complexidade, custo computacional e capacidade de generalização para lidar com o problema 

de forma eficaz. 

 

 

4.3. Metodologia  

Os modelos analíticos de detecção de fraudes são abordagens avançadas que utilizam 

técnicas estatísticas, de aprendizado de máquina (machine learning) e inteligência artificial para 

identificar padrões e comportamentos suspeitos em transações financeiras. Por meio de algoritmos 

e análise de dados, esses modelos processam grandes volumes de informações para detectar 

atividades fraudulentas ou anomalias que indiquem possíveis fraudes. 

Esses modelos analíticos podem incorporar diferentes variáveis e indicadores, como padrões 

de comportamento do cliente, histórico de transações, informações demográficas, entre outros. Ao 

aplicar técnicas estatísticas e de aprendizado de máquina, os modelos analíticos são capazes de 

detectar comportamentos atípicos ou suspeitos, permitindo uma intervenção rápida e eficaz para 

prevenir fraudes. No entanto, é importante ressaltar que nenhum modelo analítico é infalível. Novas 

técnicas de fraude estão constantemente surgindo, exigindo uma atualização contínua dos modelos 

e a combinação de abordagens analíticas com a expertise humana.  

Desta forma, neste trabalho explora-se a aplicação de técnicas de geração de dados 

sintéticos em quatro frentes conforme Ding et al. (2023) e Smith et al. (2024): 

i. Utilizando métodos de aprendizado de máquinas via Redes Adversárias 

Generativas, Redes Variacionais e SMOTE.  

ii. Metodologias baseadas em Large Language Models (LLM) com engenharia de 

prompt, 

iii. Aplicação de LLM com método RAG Geração Aumentada por Recuperação).  

iv. Por fim, desenvolve-se do modelo inédito de SLM (small language model), a partir 

de um LLM com fine-tuning, com habilidade de geração de dados sintéticos. 

 Desta forma, primeiramente foi realizado revisão da literatura adjacente sobre o tema, com 

uma análise para identificar tendências, desafios e soluções em detecção de fraudes em bancos e em 

seguida, o desenvolvimento de modelos de aprendizado de máquina e de Inteligência Artificial 
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para atuar sobre um dos principais desafios encontrados – desbalanceamento de classes.   

 Conforme abordado na revisão de literatura, um dos principais métodos será o SMOTE de 

Chawla et. al. (2002). O SMOTE atua criando exemplos sintéticos da classe minoritária por meio 

da interpolação entre amostras de classes minoritárias e seus K vizinhos mais próximos, em vez de 

simplesmente duplicar os exemplos existentes. A metodologia básica pode ser descrita nas 

seguintes etapas: 

1. Seleção de exemplos minoritários: Para cada exemplo 𝑥 da classe minoritária, seleciona-se 

um conjunto de k vizinhos mais próximos (geralmente utilizando a distância Euclidiana). 

2. Geração de exemplos sintéticos: Para cada exemplo 𝑥 da classe minoritária, um ou mais 

dos k vizinhos são selecionados aleatoriamente. Um novo exemplo sintético é gerado ao 

interpolar linear entre o exemplo 𝑥 e um de seus vizinhos 𝑥_𝑣𝑖𝑧𝑖𝑛ℎ𝑜 

Desta forma, a formulação matemática do SMOTE pode ser descrita como: seja 𝑥 um 

exemplo da classe minoritária, e 𝑥_𝑣𝑖𝑧𝑖𝑛ℎ𝑜 um dos k vizinhos mais próximos de 𝑥. O novo 

exemplo sintético 𝑥_𝑠𝑖𝑛𝑡é𝑡𝑖𝑐𝑜é gerado pela seguinte fórmula: 

 𝑥_𝑠𝑖𝑛𝑡é𝑡𝑖𝑐𝑜 =  𝑥 +  λ(𝑥_𝑣𝑖𝑧𝑖𝑛ℎ𝑜 −  𝑥) 
(4.1) 

onde: 

• λ é um número aleatório no intervalo [0,1]. 

• 𝑥 é o vetor de características do exemplo minoritário, 

•  𝑥_𝑣𝑖𝑧𝑖𝑛ℎ𝑜 é o vetor de características de um dos k vizinhos mais próximos de 𝑥. 

Essa interpolação gera um ponto ao longo da linha que conecta 𝑥 e 𝑥_𝑣𝑖𝑧𝑖𝑛ℎ𝑜, distribuído 

aleatoriamente no espaço entre eles.  

 O segundo modelo a ser combinado com os demais de forma híbrida para geração dos dados 

sintéticos são as Redes Adversárias Generativas (GANs) conforme apresentado por Goodfellow et 

al., (2014). As GANs consistem em dois modelos neurais que competem entre si: o Gerador e o 

Discriminador. O Gerador produz dados sintéticos a partir de vetores de ruído, buscando criar 

dados que se pareçam o máximo possível com os dados reais. Já o Discriminador tem a tarefa de 

diferenciar entre os dados reais e os dados gerados pelo Gerador. Durante o treinamento, o Gerador 

é ajustado para enganar o Discriminador, enquanto o Discriminador é ajustado para melhorar sua 

capacidade de distinguir entre dados reais e gerados. Esse processo adversarial cria um ciclo de 

aprimoramento contínuo entre os dois modelos, resultando em um jogo de soma zero. 

A formulação matemática das GANs pode ser descrita como um problema de otimização 

em duas partes, onde 𝐺 representa o Gerador e 𝐷 representa o Discriminador. A função de perda 
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𝑉(𝐷, 𝐺) é definida como: 

 𝑚𝑖𝑛𝐺𝑚𝑎𝑥𝐷𝑉(𝐷, 𝐺) = 𝐸𝑥~𝑝𝑑𝑎𝑡𝑎(𝑥)ሾ𝑙𝑜𝑔𝐷(𝑥)ሿ + 𝐸𝑧~𝑝𝑧(𝑧) ቂ𝑙𝑜𝑔 ቀ1 − 𝐷൫𝐺(𝑧)൯ቁቃ (4.2) 

 onde: 

𝐸𝑥~𝑝𝑑𝑎𝑡𝑎(𝑥)  é a expectativa da probabilidade logarítmica que o Discriminador  

𝐷 atribui a dados reais 𝑥.  

𝐸𝑧~𝑝𝑧(𝑧)é a expectativa da probabilidade logarítmica que o Discriminador atribui a dados 

sintéticos G(z) gerados a partir do vetor de ruído 𝑧.  

 O procedimento de treinamento das Redes Adversárias Generativas (GANs) começa com 

a definição da arquitetura da rede, seguida pela inicialização dos pesos do Gerador e do 

Discriminador. Posteriormente, o processo alterna entre a atualização dos parâmetros do 

Discriminador (𝐷) para maximizar a função de perda e a atualização dos parâmetros do Gerador 

(𝐺) para minimizá-la. 

Na etapa seguinte, o Discriminador é treinado para maximizar sua capacidade de distinguir 

entre dados reais e sintéticos. Isso é feito amostrando um minibatch de dados reais e um minibatch 

de vetores de ruído. O Gerador utiliza esses vetores para criar dados sintéticos, e os parâmetros do 

Discriminador são então ajustados para aumentar a probabilidade de classificação correta. 

Após isso, o Gerador é treinado para minimizar a função de perda, criando dados sintéticos 

que o Discriminador não consiga diferenciar dos reais. Para isso, um novo minibatch de vetores de 

ruído é amostrado, gerando novos dados sintéticos, e os parâmetros do Gerador são ajustados para 

reduzir a probabilidade de que o Discriminador detecte esses dados como falsos. Esse ciclo de 

treinamento, alternando entre o ajuste do Discriminador e do Gerador, é repetido até que o modelo 

convirja, idealmente quando o Discriminador não consegue distinguir entre dados reais e sintéticos. 

Autoencoders Variacionais (VAEs), conforme apresentado por Kingman e Welling (2013), 

representam uma classe de redes neurais probabilísticas que se consolidaram como ferramentas 

poderosas para aprendizado de representações, geração de dados e visualização de informações 

complexas. Sua capacidade de modelar distribuições de probabilidade sobre dados de alta 

dimensão os torna particularmente úteis em diversos domínios, incluindo visão computacional, 

processamento de linguagem natural e análise de dados. 

A estrutura fundamental de um VAE consiste em dois componentes principais: um 

codificador e um decodificador. O codificador recebe um dado de entrada e o mapeia para um 

espaço latente probabilístico, representado por uma distribuição de probabilidade. Essa distribuição 
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captura as características essenciais do dado original de forma compacta e eficiente. Já o 

decodificador recebe amostras do espaço latente e as utiliza para reconstruir dados semelhantes aos 

dados de entrada. 

A chave para a natureza probabilística dos VAEs reside na função de perda, que incorpora 

tanto o erro de reconstrução do decodificador quanto a divergência entre a distribuição do espaço 

latente e uma distribuição de referência pré-definida, geralmente uma distribuição normal ou 

uniforme. Essa regularização probabilística incentiva o VAE a aprender representações latentes 

que capturam não apenas as informações dos dados de treinamento, mas também a variabilidade 

inerente à classe de dados. 

A abordagem proposta baseia-se na reparametrização da fronteira (limite) inferior 

variacional para obter um estimador que pode ser diferenciado, que pode ser otimizado utilizando 

técnicas de gradiente estocástico. A inferência variacional envolve a otimização de uma 

aproximação à distribuição posterior, geralmente intratável. O objetivo do VAE é maximizar a 

evidência inferior variacional (ELBO), que é dada por: 

 𝐿(𝜃, 𝜙;  𝑥)  =  𝐸𝑧~𝑞𝜙(𝑧|𝑥)ሾ𝑙𝑜𝑔 𝑝𝜃(𝑥|𝑧)ሿ  −  𝐷𝐾𝐿(𝑞𝜙(𝑧|𝑥) || 𝑝(𝑧)) 
(4.3) 

onde: 

𝐸𝑧~𝑞𝜙(𝑧|𝑥)ሾ𝑙𝑜𝑔 𝑝𝜃(𝑥|𝑧)ሿ  : é o termo de reconstrução, que mede quão bem o decodificador pode 

reconstruir a entrada 𝑥 a partir da amostra latente 𝑧. 

𝐷𝐾𝐿(𝑞𝜙(𝑧|𝑥) || 𝑝(𝑧)) : é a divergência de Kullback-Leibler, que regulariza a distribuição latente 

𝑞𝜙(z פ x) para que esteja próxima do prior p(z). 

 Durante o treinamento, o codificador produz os parâmetros da distribuição latente 𝑞𝜙 (𝑧 פ

𝑥), geralmente uma média 𝜇 e uma variância σ^2. Uma amostra 𝑧 é obtida usando a 

reparametrização: 

 z = μ + σ ⊙ ϵ     com     ϵ ∼ N(0, I) 
(4.4) 

 Isso permite que o gradiente seja propagado através do processo de amostragem, permitindo 

o uso de métodos de otimização padrão, como o gradiente descendente. 

 O segundo método aplicado de geração de dados sintéticos será por meio da utilização de 

modelos de LLM, via engenharia de prompt. Esta abrange um conjunto diversificado de técnicas e 

estratégias destinadas a aprimorar o desempenho dos modelos de IA. Entre essas práticas, destaca-

se a utilização de prompts contextuais que fornecem (incorporam) informações adicionais para 

direcionar as respostas, a experimentação com diferentes formatos e estruturas de indagações, bem 
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como a implementação de métodos iterativos de teste e refinamento. A personalização dos prompts 

para tarefas específicas adapta os modelos a diversos contextos. Dessa forma, a engenharia de 

prompt não apenas eleva a qualidade das respostas geradas, mas também expande a versatilidade 

e a aplicabilidade dos sistemas de IA generativa em múltiplos cenários. 

Além da necessidade de construir e testar prompts para o modelo, emprega-se a 

metodologia, In Context Learning, também conhecida como Few-Shot Learing. Conforme descrito 

Brown et al. (2020) a ICL constitui uma abordagem avançada na utilização de modelos de 

inteligência artificial generativa (GenAI), permitindo que esses sistemas aprendam e adaptem-se a 

tarefas específicas com base apenas nas informações contextuais fornecidas durante a interação, 

sem a necessidade de re-treinamento extensivo. As vantagens do ICL incluem a flexibilidade para 

lidar com uma ampla variedade de tarefas, a eficiência na utilização de dados contextuais para 

melhorar a precisão das respostas e a capacidade de personalização conforme as necessidades 

específicas do usuário.  

No setor financeiro, a aplicação do ICL pode ser particularmente benéfica em áreas como 

análise de risco, previsão de mercado, atendimento ao cliente personalizado e detecção de fraudes. 

Além disso, a capacidade do ICL de interpretar e contextualizar grandes volumes de dados 

financeiros possibilita decisões mais informadas e estratégicas, aumentando a eficiência 

operacional e a competitividade das instituições financeiras. 

Neste trabalho, exploramos o In-Context Learning (ICL) por meio da construção e teste de 

diversos prompts estruturados com seguinte formato: Contexto, Instrução, Objetivo, Relevância, 

Expectativa, Restrições, Demonstração e Indicador de Saída 

Em sequência, o terceiro método de geração de dados a ser testado para o objetivo deste 

trabalho será a aplicação da técnica de Retrieval Augmented Generation (RAG) em alguns modelos 

LLM de código aberto para verificar a performance.  

Considera-se RAG uma abordagem que busca enriquecer a capacidade de geração de texto 

dos modelos de linguagem de grande porte (LLMs) por meio de recursos de recuperação de 

informação. Em termos gerais, o RAG combina técnicas de busca em bases de conhecimento 

externas (como bancos de dados, wikis ou coleções de documentos) com a capacidade de geração 

de texto de modelos como GPT ou BERT. Dessa forma, quando se faz uma consulta ou pergunta, 

o sistema extrai trechos relevantes do conjunto de documentos disponíveis e integra essas 

informações no processo de geração de respostas, resultando em textos mais precisos e 

contextualizados. A principal vantagem desse método é que ele permite ao modelo incorporar 
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conhecimento externo, evitando, por exemplo, limitações decorrentes de treinamento estático ou 

alucinações de conteúdo, pois o processo de busca se apoia em fontes confiáveis e específicas. 

A formulação matemática básica do RAG pode ser entendida em duas etapas. Na primeira, 

dada uma consulta Q (query), busca-se um conjunto de documentos relevantes {d1, d2, … , d𝑘} 

através de uma função de similaridade, frequentemente modelada por uma probabilidade 

condicional 𝑝(d𝑖|𝑞). Na segunda etapa, gera-se o texto com base nos documentos recuperados, 

combinando a distribuição do modelo de linguagem p𝜃(𝑦|𝑞, d𝑖) para cada documento. Uma forma 

resumida dessa abordagem pode ser descrita como: 

 

𝑝( 𝑦  פפ  𝑞 )  ≈   ෍ 𝑝𝜃( 𝑦  פפ  𝑑𝑖,  𝑞 )𝑝( 𝑑𝑖  פפ  𝑞 )

𝑘

𝑖=1

 ,   
(4.5) 

onde,  𝑦 representa a sequência de texto a ser gerada, e 𝜃 são os parâmetros do modelo 

treinado. Essa formulação possibilita ao sistema integrar fontes externas de informação, 

incrementando sua capacidade de resposta baseada em evidências concretas. 

No presente estudo, descrevemos as etapas de desenvolvimento de um sistema RAG nesta 

seção, tendo como base o modelo DeepSeek V3 e utilizando a biblioteca LangChain para 

integração entre repositórios vetoriais e o LLM. Destaca-se a importância de um processo 

metodológico sistemático, abrangendo desde a preparação de dados até a manutenção contínua do 

modelo em produção. 

A fim de construir um sistema RAG eficaz, propõe-se uma metodologia estruturada em 

cinco etapas principais, baseado em Shen et al. (2024) e (Lewis et al., 2020), descritas a seguir. 

Cada fase será descrita, enfatizando os aspectos práticos e os cuidados necessários para permitir 

qualidade e maior precisão do sistema. 

1. Preparação e Análise de Dados 

1.1. Coleta e Organização 

A construção de um conjunto de dados robusto inicia-se pela seleção e aquisição de fontes 

adequadas (p. ex., bases públicas, repositórios corporativos, APIs especializadas). Para melhor 

gerenciamento, recomenda-se armazenar as informações em estruturas padronizadas, como 

arquivos CSV, JSON ou bancos de dados relacionais. 

1.2.  Limpeza e Pré-Processamento 

A etapa a seguir envolve a remoção de inconsistências, duplicações e ruídos, bem como a 

padronização do texto. Práticas comuns incluem a normalização de encoding, e a remoção de 

caracteres especiais. A segmentação do texto em sentenças ou parágrafos é frequentemente 
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utilizada para facilitar etapas futuras de geração de embeddings. 

1.3. Validação dos Dados 

Antes de proceder ao treinamento, realiza-se uma validação minuciosa para assegurar a 

integridade e a completude do conjunto de dados (Kandpal et al., 2023). Essa verificação pode ser 

feita por meio de inspeção manual ou ferramentas de data validation, visando identificar lacunas 

ou problemas que comprometam a fase de modelagem. 

2. Geração de Embeddings 

2.1. Seleção do Modelo 

A definição de um modelo de embedding pré-treinado deve levar em conta o idioma, o 

tamanho do vocabulário e a natureza dos textos (Reimers & Gurevych, 2019). 

SentenceTransformers e Hugging Face Transformers são exemplos de ferramentas que oferecem 

modelos consolidados e atualizados para a geração de vetores. 

2.2. Conversão Vetorial e Indexação em Banco de Dados Vetorial 

Com o modelo escolhido, cada unidade textual (documento, parágrafo ou sentença) é 

convertida em um vetor de alta dimensão. Essas representações vetoriais codificam aspectos 

semânticos, permitindo a comparação de similaridade entre diferentes textos de forma eficiente. 

Em seguida, os vetores são armazenados em bancos de dados especializados, tais como VectorDB, 

Mongo, que viabilizam buscas por similaridade de maneira escalável. A adoção de técnicas de 

indexação otimiza a recuperação de documentos relevantes, reduzindo a latência do sistema. 

3. Integração com a Plataforma de RAG 

3.1. Carregamento do LLM Base 

O primeiro passo consiste no carregamento do modelo de linguagem base para aplicação do 

RAG. Neste projeto, optou-se pela utilização do Qwen 2.5, Llama 3.3, O3 e DeepSeek V3, de 

forma a testar a performance e viabilidade com um leque de modelos. 

3.2. Configuração do Pipeline de Recuperação 

Em seguida, define-se o fluxo de trabalho que une o LLM ao banco de dados vetorial. A 

biblioteca LangChain fornece componentes para orquestrar o processo de consulta, de modo que o 

prompt do LLM seja enriquecido com os textos mais relevantes antes da geração de resposta. 

3.3. Integração Recuperação-Geração 

A etapa chave consiste em unir os documentos recuperados aos mecanismos de geração do 

LLM. Nessa fase, configura-se se o texto externo será concatenado, sumarizado ou transformado 

de outras formas, garantindo que a saída final seja contextualizada e coerente (Shen et al., 2024). 
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4. Testes e Avaliação do Sistema 

4.1. Definição de Métricas 

A mensuração de desempenho do RAG pode envolver indicadores como Precision, Recall, 

F1 Score ou métricas de similaridade para avaliar a relevância dos resultados (caso aplicado neste 

trabalho). Em aplicações específicas, avaliações humanas também podem ser empregadas para 

verificar a adequação das respostas (Liang et al., 2022). 

4.2. Ajuste de Parâmetros 

Com base na análise dos resultados, parâmetros como modelo de embedding, tamanho do 

embedding, hyperparameters do LLM (p. ex., temperature) e algoritmos de recuperação podem 

ser ajustados. Esse processo iterativo de refinamento visa incrementar a exatidão e a utilidade 

prática do sistema. 

5. Manutenção e Atualização 

5.1. Atualização de Dados 

Em cenários onde novas informações surgem continuamente, a atualização periódica do 

repositório é imprescindível. Nessa etapa, adicionam-se documentos recentes, removem-se dados 

obsoletos e, quando necessário, são corrigidas eventuais inconsistências. 

5.2. Reindexação e Retreinamento 

Sempre que mudanças substanciais ocorrem na base de dados, recomenda-se a geração de 

novos embeddings e a reindexação do banco vetorial, além de possíveis ajustes no modelo de 

linguagem, especialmente se a distribuição dos dados sofrer alterações significativas. 

6. Monitoramento Contínuo 

Finalmente, acompanha-se o desempenho em produção por meio de logs e indicadores de 

qualidade. Uma queda de desempenho ou o aumento de erros de recuperação podem sinalizar a 

necessidade de intervenções pontuais, seja na base de dados ou na configuração do sistema. 

Por último, será também desenvolvido um modelo de SLM inédito, chamado Aurora, gerado 

por fine-tuning. Esta técnica consiste na adaptação de um modelo já treinado em grandes 

quantidades de dados de texto (um “modelo base”) para tarefas específicas, por meio do 

treinamento adicional em um conjunto de dados de tamanho menor, porém mais especializado. 

Esse processo permite ao modelo refinar seus parâmetros, ajustando-se aos padrões e ao 

vocabulário específicos de uma determinada aplicação (como análise de sentimentos, detecção de 

fraude ou geração de texto acadêmico). O fine-tuning aproveita o conhecimento geral do modelo 

base, tornando o processo de treinamento mais eficiente, tanto em termos de tempo quanto de 
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recursos computacionais, quando comparado ao treinamento a partir do zero. 

Em termos de especialização, o fine-tuning (ajuste fino) surge como uma estratégia 

fundamental para adaptar modelos de linguagem às demandas de domínios ou tarefas específicas. 

Ao expor o modelo a um conjunto de dados especializado, ajustam-se seus parâmetros de modo a 

potencializar a acurácia das respostas em contextos determinados. Assim, o ajuste fino assegura 

que os modelos, previamente treinados de forma geral, tornem-se efetivos em cenários particulares. 

Conforme demonstrado por Howard & Ruder (2018), essa metodologia tem se mostrado 

particularmente eficaz em tarefas de processamento de linguagem natural, proporcionando ganhos 

significativos na acurácia e na capacidade de generalização dos modelos. 

A matemática do fine-tuning envolve o ajuste e a reotimização do conjunto de parâmetros 

𝜃 do modelo. Para uma tarefa T com um conjunto de dados anotados 𝐷 =  {(𝑥𝑖, 𝑦𝑖)}, onde 𝑥𝑖 

representa a entrada e 𝑦𝑖 o rótulo ou saída desejada, minimiza-se uma função de perda L(θ) 

específica para a tarefa. Assim, busca-se: 

 𝜃∗ = 𝑎𝑟𝑔𝑚𝑖𝑛 𝐿(𝜃; 𝐷), 
(4.6) 

sujeito às restrições e regularizações adequadas. Como o modelo base já contém parâmetros 

que capturam representações linguísticas gerais, o processo de fine-tuning tende a convergir mais 

rapidamente e a exigir menos dados especializados para atingir desempenho satisfatório na tarefa 

de destino. 

O fine-tuning em um modelo de LLM oferece inúmeras vantagens, especialmente quando 

se busca personalização e precisão em tarefas específicas. Esse processo permite ajustar um modelo 

pré-treinado com dados específicos para o contexto desejado, refinando sua capacidade de 

compreender e responder a demandas únicas. Como resultado, o fine-tuning pode melhorar 

substancialmente a qualidade das saídas do modelo, reduzindo inconsistências e alinhando suas 

respostas aos objetivos de aplicação.  

A metodologia de fine-tuning envolve o ajuste dos parâmetros de um modelo, com o 

objetivo de adaptar-se a um novo conjunto de dados sem comprometer o conhecimento 

previamente adquirido durante o pré-treinamento. Durante esse processo, é comum optar por 

congelar as camadas iniciais – responsáveis pela extração de características gerais – e atualizar 

apenas as camadas superiores, ou mesmo ajustar todos os parâmetros com uma taxa de aprendizado 

reduzida, minimizando o risco de overfitting.  

Para avaliação dos modelos, além da performance na aplicação em modelos de classificação 

de fraudes, calculou-se diversos indicadores de similaridade entre os dados reais e sintéticos. A 
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verificação das correlações foi realizada por meio de métricas como distância de Jensen-Shannon, 

divergência Kullback-Leibler (KL), Mean Absolute Difference MAD, índice de Similaridade e 

teste de Mantel. Essa série de indicadores, é a base comparativa de qualificação para validar se os 

dados sintéticos gerados são similares aos dados reais da classe minoritária. 

Para calcular a JS, foi necessário medir a distância da distribuição de probabilidade de cada 

variável e calcular a média entre elas. A interpretação dos valores de JS é a seguinte: 

• Distribuições são consideradas muito similares quando o JS é menor que 0.1. 

• Distribuições são relativamente similares quando o JS está entre 0.1 e 0.5. 

• Distribuições são consideravelmente diferentes quando o JS é maior que 0.5. 

Valores mais altos de divergência KL indicam maior diferença entre as distribuições. 

Entende-se que KL é uma medida de diferença entre duas distribuições de probabilidade. 

Especificamente, ela quantifica o quanto uma distribuição de probabilidade (Q) diverge de uma 

distribuição de referência (P).  

Em termos práticos, a divergência KL é usada em várias áreas, como aprendizado de 

máquina e teoria da informação, para medir a eficiência de um modelo probabilístico em relação a 

um modelo de referência. Uma divergência de Kullback-Leibler igual a 0 indica que as funções e 

distribuições P e Q são muito parecidas, enquanto uma divergência de 1 indica que se comportam 

de maneira diferente. 

Para avaliar o quão próximo um dataset sintético (gerado a partir de um dataset original) 

está em termos de correlações, é necessário, basicamente, comparar as duas matrizes de correlação 

— a do conjunto original e a do conjunto sintético — e resumir essa comparação em um único 

número de avalie quanto das correlações estão próximas. Assim, é analisada as correlações das 

diferentes técnicas de geração de dados sintéticos comparando as matrizes de correlação aplicando 

a métrica de Diferença Média Absoluta (Mean Absolute Difference, MAD). Quanto menor este 

valor, mais similares são as correlações. 

 
𝑀𝐴𝐷 =

1

𝑛(𝑛 − 1)/2
෍ פ 𝑟𝑖𝑗(𝑂) − 𝑟𝑖𝑗(𝑆)|

𝑖<𝑗

 (4.7) 

𝑅𝑜: matriz de correlação (n×n) do dataset original. 

𝑅𝑠: matriz de correlação (n×n) do dataset sintético 

A seguir, foi aplicado a normalização baseada na fórmula abaixo, para obter um Índice de 

Similaridade de 0 a 1. Onde quanto mais próximo de 1, mais similar são as matrizes de correlação. 
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𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑑𝑎𝑑𝑒 = 1 −

1

൫𝑛
2
൯

෍ פ 𝑟𝑖𝑗(𝑂) − 𝑟𝑖𝑗(𝑆)|

𝑖<𝑗

 (4.8) 

 Em determinadas situações, quando o objetivo é verificar se as matrizes são 

estatisticamente diferentes, existem testes específicos, como os baseados na distribuição de Wishart 

ou nos desvios assintóticos da matriz de correlação. No entanto, esses testes produzem um valor-p 

em vez de um índice contínuo de similaridade. Assim, a pergunta a ser respondida é se há evidência 

de diferença significativa entre a matriz original e a matriz sintética. 

O teste de Mantel (Derivado da Distribuição Wishart) avalia a igualdade das matrizes de 

covariância entre dois ou mais grupos. Neste contexto, consideramos dois grupos: dados originais 

e dados sintéticos. Se o p-valor for pequeno (por exemplo, < 0,05), rejeitamos a hipótese de que as 

matrizes são iguais, indicando evidências de diferença nas correlações. Caso contrário, não há 

evidência estatística significativa de diferença. 

Cabe destacar, que muitos modelos de LLM são acessados por meio de plataformas e 

agentes de IA. Entende-se por agentes de Inteligência Artificial (IA) sistemas computacionais 

projetados para realizar tarefas que normalmente requerem inteligência humana. Eles percebem o 

ambiente ao seu redor, processam informações, tomam decisões e executam ações para alcançar 

objetivos específicos, utilizando algoritmos avançados e técnicas de aprendizado de máquina para 

analisar dados, reconhecer padrões e adaptar seu comportamento com base em novas informações. 

Em um contexto acadêmico, os agentes de IA são frequentemente estudados em termos de sua 

capacidade de raciocínio, aprendizado, planejamento e interação com humanos e outros agentes. 

 

4.4. Resultados dos Estudos  

4.4.1. Base de Dados 

As informações empregadas neste estudo provêm de um conjunto de dados privado, 

contendo registros reais referentes a um modelo de detecção de fraudes em operações de crédito 

espúrio, disponibilizado por uma grande instituição financeira nacional. O referido dataset é 

composto por 168.596 observações e 37 atributos, os quais englobam variáveis cadastrais e 

comportamentais. A distribuição entre fraudes e não fraudes é de 0,94% e 99,06%, respectivamente, 

evidenciando um forte desbalanceamento na base de dados. 

O Quadro 4.1  Quadro 1 apresenta, de forma consolidada para a confidencialidade do 

processo interno da instituição, as características das 25 variáveis do dataset.  
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Quadro 4.1 - Análise descritiva das variáveis do dataset 

Grupo Temático das 

Variáveis 

Quantidade de 

Variáveis 
Descrição 

Perfil do Cliente 6 

Contempla atributos pessoais e características que 

ajudam a entender o contexto individual de cada 

pessoa. 

Dados Financeiros 7 
Envolve aspectos relacionados à capacidade finan-

ceira e movimentação econômica no tempo. 

Histórico e Atividades  

Bancárias 
6 

Refere-se a eventos que indicam o uso de recursos 

e a relação do cliente com transações anteriores. 

Relacionamento com Produ-

tos e Serviços 
5 

Abrange interações relacionadas ao acesso e posse 

de soluções oferecidas no ambiente financeiro. 

Interações e Uso de  

Tecnologia 
5 

Observa como o cliente se engaja com ferramentas 

digitais e acessa diferentes canais disponíveis. 

Equipamentos e Vínculos 3 
Considera elementos que demonstram ligações en-

tre dispositivos e usuários em múltiplas situações. 

Risco e Análises Cadastrais 5 

Relaciona fatores que ajudam a compreender pa-

drões de comportamento e medidas de segurança 

aplicáveis. 

Fonte: Elaboração do autor. 

 

Conforme apresentado no Quadro 4.1, a estrutura agrupa variáveis de um modelo de fraude 

de forma discreta e organizada, destacando diferentes aspectos do comportamento financeiro e 

interação do cliente com o sistema bancário. Entre os principais achados, observa-se uma 

diversidade de fatores que influenciam a análise de risco, desde características pessoais até padrões 

de transações e acessos digitais. Notavelmente, o grupo relacionado ao histórico bancário revela 

informações sobre movimentações e uso de recursos ao longo do tempo, o que pode indicar 

mudanças na relação do cliente com o banco. Além disso, fatores vinculados a equipamentos e 

acessos digitais demonstram a relevância da tecnologia na identificação de perfis e possíveis 

inconsistências. A abordagem permite uma visão estratégica para a avaliação de padrões, 

fortalecendo medidas de segurança e gestão de fraudes. 

A Tabela 4.1 apresenta a análise descritiva e estatística das variáveis. 
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Tabela 4.1- Análise descritivas das variáveis – Base de dados 

  mean std min 25% 50% 75% max IQR 

1 1,75 1,61 0 1 1 3 99 2 

2 15,28 6,35 0 18 18 18 18 0 

3 3072,77 68,33 0 3000 3120 3120 3410 120 

4 311,42 372,77 0 55 190 458 3953 403 

5 3836,47 18513,95 -70398 0 0 0 1206459 0 

6 65,15 99,12 -1 -1 -1 110 375 111 

7 305,28 861,17 0 0 0,01 51,14 5547,75 51,14 

8 51,38 32,48 0 19 61 83 99 64 

9 5,02 0,76 1 5 5 5 11 0 

10 3637,37 2638,04 -1 1369 3318 5345,25 17181 3976,25 

11 38,50 13,50 0 28 37 47 124 19 

12 3,64 2,05 0 3 3 3 9 0 

13 27,68 27,58 0 10 10 50 80 40 

14 0,55 0,52 0 0 1 1 2 1 

15 84937,65 98282,30 0 10120 20680 153199 363241 143079 

16 382,46 373,29 -1 91 268 568 5060 477 

17 0,35 0,76 0 0 0 0 25 0 

18 0,25 0,48 0 0 0 0 34 0 

19 2849,47 2458,14 -1 949 2135 4307 17181 3358 

20 467,87 1428,50 -1 1 2 8 10379 7 

21 472,58 1436,34 -1 1 3 10 10379 9 

22 6704,93 34563,90 -418761 0 88 7281 101814 7281 

23 17,89 35,63 -1 2 9 21 3700 19 

24 303309,04 433124,06 -10 5904,75 88775,5 444906 2178443 439001,3 

25 -0,34 3,67 -1 -1 -1 -1 124 0 

26 1,39 4,31 0 0 0 0 200 0 

27 133,64 204,98 -1 -1 -1 224 3977 225 

28 3,72 15,99 -1 -1 -1 -1 89 0 

29 3,21 1,38 0 3 3 4 5 1 

30 4,56 1,79 -2 3 5 6 6 3 

31 183333,84 910227,52 -316690 0 9883 159618,75 137492463 159618,8 

32 -21,06 53954,37 -418761 0 0 347 7912262 347 

33 1,18 1,45 0 0 0 3 4 3 

34 4,39 2,90 0 2 4 7 19 5 

35 40928,81 63660,08 0 0 5355,14 61076,028 260529,8 61076,03 

36 11,75 22,69 -1 4 6 8 375 4 

37 65,13 86,34 -1 5 25 96 377 91 

Fonte: Elaborado pelo autor 

 

A distribuição com os histogramas das variáveis é apresentada na Figura 4.1. Os nomes das 

variáveis foram omitidos e substituídas por uma sequência de letras de acordo com as regras de 

sigilo estabelecida com a fornecedora das informações. A 
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Figura 4.1 - Histograma das nove primeiras variáveis da base de dados 

 

Fonte: Elaboração do autor 
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4.4.2. Modelo de classificação de fraudes – Base original 

Para comparar a performance das diferentes técnicas de geração de dados sintéticos, foram 

realizados treinamentos com três modelos preditivos de classificação de fraudes e para cada modelo, 

apresentam-se indicadores de performance: acurácia, precisão, recall, F1 score e AUC.  

Este procedimento utilizou-se como referência primária para comparar e avaliar o ganho, ou 

eventual ausência de melhoria, na performance dos modelos treinados com as diferentes técnicas de 

geração de dados sintéticos, implementados nas próximas etapas.  

Figura 4.2 - Gráficos da Curva ROC dos modelos gerados – Dados desbalanceados 

 

Fonte: Elaboração do autor. 

 
 

Tabela 4.2 - Comparativo de Performance dos modelos - Sem balanceamento de classes 

Modelo Acurácia Precisão Recall F1-Score AUC 

Decision Tree 0,988113 0,30434783 0,353933 0,3272727 0,67363466 

Random Forest 0,993735 0,88785047 0,266854 0,4103672 0,63328815 

Gradient Boosting 0,993024 0,66666667 0,292135 0,40625 0,64546587 
Fonte: Elaboração do autor. 

 

Conforme Tabela 4.2, verifica-se que o modelo Decision Tree apresentou o melhor AUC 

com valor de 0,67, enquanto o modelo Random Forest obteve a melhor precisão, atingindo 0,887.  

Estes indicadores de performance foram utilizados por serem os que minimizam os falsos negativos, 

objetivo destes modelos.  

 

 

4.5.1. Dados Sintéticos com SMOTE, GAN e CVAE  

Para comparar a performance dos modelos preditivos de classificação para prevenção de 

fraudes apresentados na seção anterior, foi realizado um balanceamento dos dados, de forma que a 
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classe minoritária atingisse uma proporção de 50% dos dados de treino, garantindo equilíbrio na 

aferição dos indicadores de performance dos modelos. Antes do balanceamento, o conjunto de 

dados passou por pré-tratamentos, como a remoção de outliers e a correção de valores nulos, 

preparando-o para a aplicação dos modelos. 

 

4.4.1.1. Performance modelos e análise da qualidade dos dados sintéticos 

Os resultados da geração de dados sintéticos, utilizando as técnicas apresentadas na seção 

de Metodologia – SMOTE, GAN e CVAE, são apresentados nas Tabela 4.3 a Tabela 4.5. 

Tabela 4.3 - Comparativo de Performance dos modelos - Balanceamento SMOTE 

Modelo Acurácia Precisão Recall F1-Score AUC 

Decision Tree 0,97865896 0,15 0,34550562 0,20918367 0,6646898 

Random Forest 0,99235853 0,54339623 0,40449438 0,46376812 0,7008474 

Gradient Boosting 0,97948506 0,2076087 0,53651685 0,29937304 0,7598252 
Fonte: Elaboração do autor. 

 

Tabela 4.4 - Comparativo de Performance dos modelos - Balanceamento GAN 

Modelo Acurácia Precisão Recall F1-Score AUC 

Decision Tree 0,987425 0,2767442 0,33427 0,302799 0,6635371 

Random Forest 0,993483 0,8529412 0,244382 0,379913 0,6220175 

Gradient Boosting 0,993299 0,7580645 0,264045 0,391667 0,6316754 
Fonte: Elaboração do autor. 

 

Tabela 4.5 - Comparativo de Performance dos modelos - Balanceamento VAE 

Modelo Acurácia Precisão Recall F1-Score AUC 

Decision Tree 0,988732847 0,3180593 0,33146067 0,3246217 0,662803587 

Random Forest 0,99357474 0,87254902 0,25 0,3886463 0,624849614 

Gradient Boosting 0,993069898 0,67763158 0,28932584 0,4055118 0,64409608 
Fonte: Elaboração do autor. 

 

Observa-se que as técnicas utilizadas de geração de dados sintéticos, apesar de suas 

particularidades, melhoram a performance dos modelos de classificação, em comparação aos 

modelos com dados desbalanceados apresentados na Tabela 4.2. A técnica SMOTE obteve 

resultados de AUC de até 0,75, utilizando Gradiente Boosting enquanto o GAN e o CVAE 

alcançaram até 0,66 no Decision Tree.  

Em comparação com os modelos de classificação treinados sem dados desbalanceados, os 

modelos Random Forest e Gradient Boosting com dados sintéticos para balanceamento de classes 
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tiveram evolução do AUC, principalmente utilizando a técnica SMOTE.  

Nos dados gerados com SMOTE, observou-se aumento no Recall, ou seja, todos os modelos 

exibem um aumento significativo no recall, indicando melhor detecção da classe minoritária. 

Contudo, a precisão diminui, refletindo um aumento nos falsos positivos. Neste mesmo modelo, 

houve melhoria no AUC, especialmente no Gradient Boosting, o mesmo aumenta para 0,7598252, 

sugerindo melhor capacidade de classificação geral. 

Os dados gerados com GAN e VAE apresentaram resultados semelhantes aos dados 

desbalanceados. As métricas não indicaram melhorias significativas em relação ao cenário original, 

mostrando apenas pequenas variações, tanto positivas quanto negativas, sem tendências claras de 

aprimoramento. 

De modo geral, o balanceamento de classes usando SMOTE foi o mais eficaz para melhorar 

o desempenho dos modelos, especialmente em termos de Recall e AUC. O aumento no recall veio 

acompanhado de uma redução na precisão, o que mostra a existência um trade-off. Esse trade-off 

é comum em problemas de desbalanceamento de classes e deve ser considerado conforme o 

contexto do problema, principalmente nas estratégias de minimização de fraudes. Em detecção de 

fraudes, é geralmente mais crítico minimizar os falsos negativos, ou seja, evitar que transações 

fraudulentas passem despercebidas. Portanto, priorizar o aumento do recall, mesmo que isso venha 

com um aumento nos falsos positivos. 

A seguir apresentamos a distribuição dos histogramas por cada método de geração de dados 

sintéticos utilizados: 
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Figura 4.3 - Distribuição Variáveis Dados Sintéticos vs Reais – Método SMOTE 

 

Fonte: Elaborado pelo autor. 
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Figura 4.4 - Distribuição Variáveis Dados Sintéticos vs Reais – Método GAN 

 

Fonte: Elaborado pelo autor. 
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Figura 4.5 - Distribuição Variáveis Dados Sintéticos vs Reais – Método VAE 

 

Fonte: Elaborado pelo autor. 
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Podemos verificar com a análise das distribuições a consistência visual dos dados sintéticos 

gerados por três métodos diferentes: SMOTE, GAN e CVAE; ou seja, os dados gerados pelos esses 

métodos apresentam formas ou padrões semelhantes aos dados originais. 

A Figura 4.3 mostra a distribuição das variáveis dos dados sintéticos gerados pelo método 

SMOTE em comparação com os dados reais. Observa-se que o SMOTE consegue replicar bem a 

distribuição dos dados originais, mantendo a forma geral dos histogramas. No entanto, pode haver 

algumas discrepâncias nas extremidades das distribuições, onde os dados sintéticos podem 

apresentar uma leve superestimação ou subestimação em relação aos dados reais. 

Neste mesmo sentido, a Figura 4.4 apresenta a distribuição das variáveis dos dados 

sintéticos gerados pelo método GAN em comparação com os dados reais. Os histogramas gerados 

pelo GAN tendem a capturar melhor as nuances dos dados reais, resultando em uma 

correspondência mais próxima entre as distribuições sintéticas e reais. No entanto, a complexidade 

do modelo GAN pode introduzir algumas variações que não estão presentes nos dados originais, 

especialmente em variáveis com distribuições mais complexas. 

Do mesmo modo, a Figura 4.5 ilustra a distribuição das variáveis dos dados sintéticos 

gerados pelo método VAE em comparação com os dados reais. O VAE também mostra uma boa 

capacidade de replicar a distribuição dos dados originais, com histogramas que se assemelham 

bastante aos dos dados reais. No entanto, assim como o SMOTE, pode haver pequenas 

discrepâncias nas extremidades das distribuições, onde os dados sintéticos podem não capturar 

perfeitamente a variabilidade dos dados reais. 

A seguir, a tendência observada foi validada por meio da aplicação do indicador de Distância 

de Jensen-Shannon (JS), que quantifica a similaridade entre distribuições originais e sintéticas. A 

Distância de Jensen-Shannon é uma medida de divergência entre duas distribuições de 

probabilidade, sendo uma versão suavizada da divergência de Kullback-Leibler. No Quadro 4.2, são 

apresentados os valores de JS para três técnicas de geração de dados sintéticos: SMOTE, GAN e 

VAE.  

Quadro 4.2 - Comparativo Distância de Jensen-Shannon (JS) das técnicas 

 SMOTE GAN VAE 

Distância de Jensen-Shannon  0.16982 0.32384 0.39743 

Divergência de Kullback-Leibler 0.18834 0.78501 0.56996 

Fonte: Elaboração do autor. 
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A análise dos resultados indica que o método SMOTE apresenta a menor distância de JS 

(0.16982), sugerindo que os dados sintéticos gerados por este método são relativamente similares 

aos dados originais. Embora não sejam considerados muito similares (JS < 0.1), a similaridade é 

aceitável. O método GAN apresenta uma distância de JS intermediária (0.32384), indicando que os 

dados sintéticos gerados por este método são relativamente similares aos dados originais, mas com 

uma maior divergência em comparação ao SMOTE. O método VAE apresenta a maior distância de 

JS (0.39743), sugerindo que os dados sintéticos gerados por este método são os menos similares aos 

dados originais entre os três métodos analisados. A divergência é significativa, mas ainda dentro da 

faixa de similaridade relativa. 

No Quadro 4.3 a seguir, aplicamos a análise por divergência de Kullback-Leibler (KL). 

Para analisar-lo, é importante entender que ela sempre será não-negativa e será zero apenas 

quando as duas distribuições forem idênticas. 

Quadro 4.3 - Comparativo divergência de Kullback-Leibler (KL) das técnicas 

 SMOTE GAN VAE 

Divergência de Kullback-Leibler 0.18834 0.78501 0.56996 

Fonte: Elaboração do autor. 

 

A análise dos resultados indica que o método SMOTE apresenta a menor divergência de KL 

(0.18834), sugerindo que os dados sintéticos gerados por este método são os mais próximos dos 

dados originais. Embora não sejam idênticos (KL = 0), a diferença é relativamente pequena. 

Por outro lado, o método GAN apresenta a maior divergência de KL (0.78501), indicando 

que os dados sintéticos gerados por este método são os mais distantes dos dados originais entre os 

três métodos analisados. A magnitude da divergência é significativa, sugerindo que o GAN pode 

introduzir variações que não estão presentes nos dados originais.  

Por fim, o método VAE apresenta uma divergência de KL intermediária (0.56996), 

revelando maior proximidade com os dados originais em comparação ao GAN, embora ainda com 

diferenças relevantes. 

Como próximo indicador, a Figura 4.6, Figura 4.7 e Figura 4.8 apresentam uma comparação 

detalhada das estatísticas descritivas das variáveis originais com aquelas geradas pelos métodos 

sintéticos SMOTE, GAN e VAE, respectivamente. A análise visual dessas figuras indica que, em 

geral, os três métodos reproduzem com razoável precisão as médias e os desvios padrão das variáveis 

originais. Observa-se, contudo, que o método SMOTE (Figura 4.6) apresenta uma aderência 
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bastante satisfatória às médias originais, com pequenas variações nos desvios padrão em algumas 

variáveis, destacando sua robustez na geração de dados sintéticos para variáveis com diferentes 

escalas e distribuições. 

Por outro lado, o modelo GAN (Figura 4.7) apresenta resultados igualmente consistentes, 

com diferenças pouco expressivas na maioria das variáveis. Contudo, percebe-se uma leve 

ampliação na variabilidade dos desvios padrão de algumas variáveis específicas, sugerindo que este 

método pode introduzir alguma dispersão adicional em certas características dos dados sintéticos 

gerados. Em geral, o método GAN se mostra adequado na preservação da estrutura estatística dos 

dados originais, ainda que apresente esta leve tendência ao aumento na variabilidade em comparação 

ao método SMOTE. 

Finalmente, o método VAE, ilustrado na Figura 4.8, revela um padrão semelhante aos 

métodos anteriores na manutenção das médias originais, embora apresente diferenças ligeiramente 

mais pronunciadas nos desvios padrão em algumas variáveis específicas. Essas variações indicam 

que o modelo VAE pode, em determinados contextos, modificar a dispersão original dos dados, 

aspecto que deve ser considerado conforme a finalidade de uso dos dados sintéticos. Em suma, os 

três métodos demonstraram eficácia satisfatória na reprodução das estatísticas essenciais das 

variáveis originais, com pequenas diferenças que podem orientar a escolha específica de um método 

dependendo das necessidades analíticas e do contexto dos dados analisados. 
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Figura 4.6 - Análise descritiva dados gerados com originais - Smote 

 

Fonte: Elaborado pelo autor. 
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Figura 4.7 – Análise descritiva dados gerados com originais - GAN 

 

Fonte: Elaborado pelo autor. 
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Figura 4.8 – Análise descritiva dados gerados com originais - VAE 

 

Fonte: Elaborado pelo autor. 
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Por fim, as Figuras Figura 4.9,Figura 4.10 eFigura 4.11, apresentam os gráficos de correlação 

entre as variáveis reais e sintéticas, , respectivamente, por SMOTE, GAN e VAE, de modo a 

verificar se as correlações significativas são preservadas.   

Figura 4.9 – Correlação entre as variáveis reais e geradas - SMOTE 

 Fonte: Elaborado pelo autor. 

 

Figura 4.10 – Correlação entre as variáveis reais e geradas - GAN 

 

Fonte: Elaborado pelo autor. 
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Figura 4.11 – Correlação entre as variáveis reais e geradas - VAE 

 

Fonte: Elaborado pelo autor. 

 

 Na Figura 4.9, referente ao método SMOTE, é possível observar que as estruturas gerais 

das correlações são mantidas de maneira consistente, embora algumas variações sutis nas 

intensidades das correlações possam ser identificadas. As associações mais fortes e significativas 

das variáveis originais tendem a permanecer bem representadas nos dados gerados, indicando que 

o SMOTE é eficaz na preservação das estruturas relacionais essenciais presentes no conjunto 

original. 

No mesmo modo, a Figura 4.10, correspondente ao método GAN, exibe um padrão geral 

de preservação das correlações nas matrizes dos dados originais e sintéticos. Contudo, há uma leve 

variação das correlaciones entre variáveis. Isso sugere que o modelo GAN introduz pequenas 

alterações nas estruturas correlacionais dos dados sintéticos, apesar de ainda mantenha um bom 

nível de fidelidade em relação às correlações mais robustas e relevantes. 

Por fim, a Figura 4.11, relativa ao método VAE, evidencia uma maior discrepância nas 

correlações em comparação aos dois métodos anteriores. Observa-se que algumas correlações, 

especialmente entre determinadas variáveis, apresentam diferenças notáveis na intensidade, o que 

pode implicar em mudanças mais pronunciadas nas relações lineares representadas. Portanto, o 

método VAE, embora capaz de gerar dados sintéticos coerentes, pode exigir cautela em contextos 

em que a preservação exata da estrutura correlacional seja essencial. 

A seguir, é apresentado a aplicação os indicadores MAD, similaridade e Teste de Mantel 

para as bases geradas, em comparação as originais, vinculados a semelhanças por correlação 

similares. 
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Tabela 4.6 - Comparativo entre as semelhanças por correlação 

Técnica MAD Similaridade Mantel Test 

SMOTE 0.0397 0.9603 0.9002 

p-value: 0.0010 

GAN 0.0902 0.9098 0.6679 

p-value: 0.0010 

VAE 0.5828 0.4172 -0.0599  

p-value: 0.3430 

  Fonte: Elaborado pelo autor. 

  

Como observamos na Tabela 4.6 - Comparativo entre as semelhanças por correlação, a análise 

dos resultados indica que, dentre as técnicas avaliadas, o método SMOTE obteve o melhor 

desempenho em termos de similaridade entre os dados sintéticos e originais. Isso é demonstrado 

pelo menor valor do erro absoluto médio (MAD = 0,0397) e pela alta similaridade correspondente 

(0,9603), destacando uma reprodução bastante fiel dos padrões originais. Além disso, o Teste de 

Mantel corroborou essa semelhança, apontando uma correlação alta (0,9002) e estatisticamente 

significativa (p-valor = 0,0010).  

Por outro lado, a técnica GAN apresentou desempenho intermediário, com um valor de 

MAD um pouco mais elevado (0,0902), resultando em uma similaridade ainda aceitável (0,9098), 

embora inferior à do SMOTE. Esse desempenho também se reflete na correlação obtida pelo teste 

de Mantel (0,6679), que, embora estatisticamente significativa (p-valor = 0,0010), indica menor 

capacidade do modelo em preservar as relações originais entre as variáveis. 

Já a técnica VAE demonstrou resultados consideravelmente inferiores às anteriores, com 

um valor de MAD substancialmente mais elevado (0,5828) e uma similaridade bastante reduzida 

(0,4172). Além disso, o Teste Mantel indicou ausência de correlação entre os dados sintéticos e os 

originais (correlação= -0,0599), sendo este resultado não significativo (p-valor = 0,3430). Tal 

desempenho sugere que, neste caso específico, os dados gerados por VAE não refletem 

adequadamente a estrutura original da base de dados analisada. 
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4.5.3.1. Conclusão dados sintéticos SMOTE, GAN e VAE  

 De forma geral, verifica-se que estes métodos estatísticos e de aprendizado de máquina 

tradicional avaliados são eficientes e adequados para aplicações em data augmentation na geração 

de dados sintéticos, sendo adequados para aplicações em data augmentation e oversampling, com 

o objetivo de aprimorar o treinamento de modelos de classificação. 

No contexto da geração de dados sintéticos, o modelo foi modificado (adaptado) para 

incluir uma inovação com a adição de um termo de regularização baseado na correlação, visando 

aproximar a correlação dos dados sintéticos aos dados originais. Dessa forma, foi introduzida uma 

penalização de correlação (correlation penalty), dada a divergência da correlação dos dados 

sintéticos em relação aos originais. A função responsável pela criação e treinamento dos modelos 

também foi personalizada para permitir o controle sobre a perda de reconstrução e a perda K. 

Uma segunda inovação foi a aplicação de uma camada customizada de reamostragem nos 

modelos GAN e VAE, permitindo a retropropagação correta do gradiente pela amostra estocástica. 

Verificou-se que os modelos que utilizam redes neurais (GAN e VAE) geram dados sintéticos com 

maior correlação entre as variáveis, em comparação aos métodos tradicionais. 

 A análise da Distância de Jensen-Shannon revela que o método SMOTE é o mais eficaz em 

gerar dados sintéticos que se assemelham aos dados originais, seguido pelo GAN e, por último, 

pelo VAE. Esses resultados são importantes para a escolha do método de geração de dados 

sintéticos em aplicações onde a similaridade com os dados originais é crucial. 

 De modo complementar, a análise da divergência de Kullback-Leibler revela que o método 

SMOTE é o mais eficaz em gerar dados sintéticos que preservam a distribuição dos dados originais, 

seguido pelo VAE e, por último, pelo GAN. Esses resultados são importantes para a escolha do 

método de geração de dados sintéticos em aplicações onde a similaridade com os dados originais 

é crucial. 

 No que se refere a análise estatística comparativa entre média e desvio padrão de cada 

variável gerada, todos os três métodos (SMOTE, GAN e VAE) demonstram uma capacidade 

razoável de gerar dados sintéticos que replicam as estatísticas descritivas dos dados originais. O 

GAN parece oferecer uma correspondência mais próxima, enquanto o SMOTE e o VAE 

apresentam pequenas discrepâncias nas extremidades das distribuições.  

Em resumo, todos os três métodos (SMOTE, GAN e CVAE) demonstram uma capacidade 

razoável de gerar dados sintéticos que replicam a distribuição dos dados originais. O GAN parece 

oferecer uma correspondência mais próxima, enquanto o SMOTE e o CVAE apresentam pequenas 
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discrepâncias nas extremidades das distribuições. Cabe alertar, que se o objetivo é manter padrões 

de correlação, o método VAE mostrou discrepâncias mais pronunciadas nas correlações entre 

algumas variáveis, sugerindo que seu uso deve ser avaliado com cuidado em aplicações nas quais 

a preservação exata das relações lineares originais seja essencial. 

Considerando as evidências apresentadas, conclui-se que a técnica SMOTE é a mais eficaz 

na preservação da similaridade estrutural dos dados originais, seguida pelo GAN, que apresentou 

resultados razoáveis. Por outro lado, a abordagem baseada em VAE mostrou-se inadequada, 

comprometendo significativamente a fidelidade dos dados gerados. Dessa forma, recomenda-se o 

uso preferencial do método SMOTE em aplicações que demandam alta fidelidade na reprodução 

das características estatísticas dos dados originais, especialmente em contextos de bases 

desbalanceadas. 

 

 

4.5.2. Dados Sintéticos com LLM  

No que se refere a geração de dados sintéticos com uso de IA Generativa na modalidade 

LLM (Large Language Model) foram realizados testes e cenários para que o modelo gere os dados 

sintéticos da classe minoritária apontada. Neste tipo de modelo, a engenharia de prompt tornou-se 

de suma importância para o atingimento dos objetivos. 

A engenharia de prompt constitui um processo sistemático de formulação, desenvolvimento 

e aprimoramento de comandos ou instruções (prompts) direcionados a modelos de linguagem 

baseados em inteligência artificial generativa, como o GPT-4. Este campo emergente é crucial para 

maximizar a eficiência das interações entre usuários e sistemas de IA assegurando que as respostas 

produzidas sejam precisas, pertinentes e alinhadas com as expectativas e requisitos específicos dos 

usuários. A eficácia da engenharia de prompt reside na capacidade de elaborar solicitações que 

exploram de maneira otimizada as capacidades inerentes aos modelos, reduzindo ambiguidades e 

orientando a geração de conteúdo de forma controlada, eficiente e alinhada aos contextos de 

aplicação. 

A qualidade das instruções do Prompt impacta diretamente o desempenho do modelo, 

pois prompts precisos e minuciosamente estruturados fornecem contexto, exemplos e 

orientações claras. Nesse cenário, a formulação de bons prompts torna-se indispensável para 

maximizar a pertinência dos resultados, bem como para alinhar as saídas do modelo aos 

objetivos específicos de cada aplicação. Conforme descrito na seção de metodologia, 
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utilizaremos nesta etapa do trabalho a aplicação do prompt no formato do  In-Context Learning 

(ICL).  

Além das plataformas próprias dos modelos (OpenAI, Gemini, etc) foram utilizadas as 

seguintes ferramentas e plataformas locais e versões webs: POE, Anything LLM, LM Studio, 

Novita, Playground LLM, Perplexity.AI.  

Como limitação deste trabalho, não está no escopo a geração de dados sintéticos com dados 

em séries temporais. 

 

4.5.3.1.1. Performance dos modelos e qualidade dados gerados 

Nesta seção são apresentados os resultados quantitativos da geração de dados sintéticos 

aplicada via metodologia de engenharia de prompt para diversos modelos de LLM em suas 

plataformas. 

Diante das limitações de tokens e desempenho de alguns modelos de linguagem (LLMs), a 

utilização do dataset completo tornou-se inviável em certos cenários de teste. Em resposta, 

empregou-se um subconjunto reduzido, composto exclusivamente por dados da classe minoritária, 

visando otimizar a alocação de tokens, especialmente em aplicações locais onde grandes datasets 

geravam erros.  

Assim, foram realizados testes com o dataset completo e com dados minoritários para a 

geração de dados sintéticos. Adicionalmente, o dataset completo foi utilizado para verificar a 

capacidade do modelo GenAI em discernir padrões entre transações fraudulentas e não fraudulentas. 

Constatou-se que a performance da geração de conteúdo depende do tamanho do modelo 

(parâmetros), limites de tokens no input/output, presença de mecanismos de reasoning, ambiente de 

execução (GPU) e plataformas de ambiente (Docker, etc.). 

Para otimizar o desempenho, foram testadas variações de prompts, aplicando técnicas de ICL 

(In-Context Learning) e de engenharia de prompts baseadas em IA, conforme detalhado na seção 

anterior. Neste teste foram avaliados os seguintes modelos: 

• OpenAI GPT: 4o, o1, o3-mini-high, ADA. 

• Claude: 3.5 Haiku, 3.5 Sonnet, 3 Opus. 

• Gemini: 1.5 Pro, 2.0 Advanced, 1.5 Flash, 2.0 Flash. 

• Llama: 3.2 8B, 3.1-70B, 3.1 405B 

• Qwen: 2.5 Math 7B 

• DeepSeek: V3, R1 
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• Gemma: 2 7B 

• Mistral: Large2 

• Grok: 2 

 

Assim, a aplicação de LLMs via prompts para a geração de dados sintéticos envolveu 

diversas abordagens, com foco em modelos de inteligência artificial e as respostas dos modelos 

indicavam métodos estatísticos.  O output dos modelos foram apresentados em arquivos .csv, 

quando a plataforma permitia, ou no formato texto no próprio chat do modelo. 

De forma geral, o modelo GPT (em versões, como GPT-4o e GPT-o1), tentou aplicar 

técnicas como SMOTE e VAE, mas encontrou erros de execução ao tentar rodar. Esse modelo, em 

conjunto com o3, utilizaram abordagens estatísticas baseadas nas distribuições observadas com 

reamostragem de variáveis. Para variáveis numéricas, a geração de dados sintéticos buscou preservar 

a distribuição original, reamostrando valores com base na média e desvio padrão, além de manter as 

faixas mínima e máxima e o comportamento estatístico geral. Para variáveis categóricas, a 

amostragem foi realizada de forma a preservar a frequência das categorias existentes. 

O modelo Claude em suas versões 3.5 Haiku, 3.5 Sonnet e 3 Opus, também tentou utilizar o 

SMOTE sem sucesso. Esses modelos aplicaram técnicas de amostragem aleatória e geração de 

valores respeitando as distribuições originais das variáveis. No entanto, enfrentaram dificuldades 

devido ao tamanho da base de dados e limitações na execução dos comandos. Embora a metodologia 

declarada pelo 3.5 Haiku fosse o SMOTE, a confirmação dessa aplicação não foi possível. Após 

novos requisitos, foi possível gerar novos dados. A técnica usada para geração de dados sintéticos 

foi de amostragem aleatória, de cada variável, que conste dentro do intervalo mínimo e máximo da 

variável (calculado primeiramente). 

Os modelos Gemini, em suas versões 1.5 Pro, 2.0 Advanced e 1.5 Flash, também foram 

testados. Esses modelos utilizaram técnicas de interpolação aleatória e amostragem com reposição 

para gerar dados sintéticos. Apesar de algumas limitações na execução de código Python e na 

geração de arquivos para download, os modelos conseguiram gerar dados sintéticos seguindo as 

distribuições originais das variáveis. A técnica alegada foi uma combinação de amostragem aleatória 

com reposição (para variáveis categóricas) e interpolação linear (para variáveis numéricas), aplicada 

individualmente a cada variável 

Os modelos Llama, em suas versões 3.2, 3.1 405G e 3.1 70B, foi executado no LLM Studio 

e na interface POE. Esses modelos aplicaram técnicas como RAG (Retrieved 3 relevant citations for 
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user query) e amostragem por sobrevivência, mas enfrentaram dificuldades devido ao tamanho da 

base de dados e limitações na geração de arquivos para download. A geração de dados sintéticos foi 

realizada utilizando técnicas estatísticas e preservação de correlações entre as variáveis. O modelo 

sugere que utiliza o SMOTE, porém não é possível confirmar. Esta plataforma gerou dados 

impressos no corpo do chat. 

Por fim, outros modelos como DeepSeek, Qwen2.5, Gemma, Mistral e Grok, também foram 

testados para a geração de dados sintéticos. Esses modelos aplicaram técnicas variadas, como 

amostragem estatística e interpolação linear. No entanto, enfrentaram limitações das ferramentas, 

principalmente por serem modelos menores e de aplicação local, na execução de código, geração de 

arquivos e preservação das distribuições originais das variáveis. A geração de dados sintéticos foi 

realizada utilizando uma técnica baseada em amostragem estatística e preservação de correlações 

entre as variáveis. Destaca-se para o modelo da Qwen 2.5 Math, onde a técnica utilizada foi 

amostragem aleatória com reposição incluindo variações de acordo com suas estatísticas. 

 Após a aplicação e testes nos diferentes modelos, foram realizados testes de similaridade 

entre os dados sintéticos gerados e os dados originais, e suas correlações. Desta forma, a seguir, 

apresentamos o quadro com as estatísticas por modelos no Quadro 4.4 a seguir. 

Quadro 4.4 - Modelos de LLM testados e sua performance 

Modelo Versão Distância de 

Jensen-

Shannon 

Divergência 

Kullback-

Leibler 

Mean 

Absolute 

Difference 

MAD 

Índice de 

Similarid

ade 

Mantel Test 

Correlação 

observada 

GPT 4o 0.04260 0.03082 0.0279 0.9721 0.4635 

p-value: 0.0010 

GPT  o1 0.39841 0.74062 0.2750 0.7250 0.0512 

p-value: 0.3900 

GPT  o3 mini-high 0.38265 0.4899 0.2606 0.7394 0.0429 

p-value: 0.5160 

GPT ADA3 0.302876 0.43987 0.1240 0.8760 0.0835 

p-value: 0.3240 

Claude 3.5 Haiku 0.13139 0.17972 0.1241 0.8759 0.4170 

 
3 Advanced Data Analysis is a feature within ChatGPT's GPT-4 that allows users to upload data directly to ChatGPT 

to write and test code. 
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p-value: 0.0010 

Claude 3.5 Sonnet 0.13172 0.16884 0.1242 0.8758 0.4170 

p-value: 0.0010 

Claude 3 Opus 0.31459 0.39253 0.1753 0.8247 0.1535 

p-value: 0.0130 

Gemini 1.5 Pro 0.04251 0.04305 0.1235 0.8765 0.0940 

p-value: 0.2210 

Gemini 2.0 Advanced 0.24145 0.38300 0.1635 0.8365 0.2979 

p-value: 0.0010 

Llama 3.1- 70B 0.179443 0.18779 0.1228 0.8772 0.3821 

p-value: 0.0010 

Llama 3.1 – 405 B 0.32278 0.23006 0.2371 0.7629 -0.0859 

p-value: 0.1900 

DeepSeek Math / V3 0.14844 0.20160 0.1131 0.8869 0.3465 

p-value: 0.0010 

DeepSeek R1 0.30335 0.33086 0.2028 0.7972 0.1535 

p-value: 0.0130 

Mistral Large 2 0.14118 0.19123 0.1191 0.8809 0.3507 

p-value: 0.0010 

Qwen2.5 Math 0.08733 0.11283 0.0716 0.9284 0.4364 

p-value: 0.0010 

Gemini 1.5 Flash Modelo apresentou a lógica, porém não gerou saída com dados gerados. 

Gemini 2.0 Flash Modelo apresentou a lógica, porém não gerou saída com dados gerados. 

Gemma 7b Modelo apresentou a lógica, porém não gerou saída com dados gerados. 

Grok 2 Modelo apresentou a lógica, porém não gerou saída com dados gerados. 

Fonte: elaboração própria 

Os modelos GPT 4o, GPT ADA, Claude 3 Opus e Gemini 1.5 PRO enfrentaram dificuldades 

em utilizar o SMOTE para gerar dados sintéticos da classe minoritária. Como alternativa, todos os 

modelos recorreram a distribuições estatísticas para criar os registros. Eles utilizaram estatísticas 

descritivas e frequências de cada variável na classe minoritária, realizando reamostragens seguindo 

a média e o desvio padrão (distribuição normal). Para variáveis categóricas, os valores foram 

gerados por amostragem aleatória com reposição, garantindo a manutenção das proporções 
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originais. 

Além disso, cada modelo adotou abordagens específicas para gerar os dados sintéticos. O 

GPT 4o e o GPT ADA utilizaram distribuições normais (gaussianas) com média e desvio padrão 

iguais aos da variável original. O modelo GPT ADA, após tentativa de criação de dados com 

SMOTE, ele realizou a criação por meio de amostragem aleatória com reposição, para variáveis 

numéricas e utilizou a moda para as variáveis categóricas. O Claude 3 Opus criou uma função para 

gerar valores aleatórios a partir da distribuição de frequência da variável, enquanto o Gemini 1.5 

PRO utilizou uma técnica de interpolação aleatória entre as amostras existentes. 

Os modelos Claude intentam aplicar técnicas mais robustas; contudo, a plataforma de 

hospedagem não conseguiu gerar mais de 500 casos completos. A execução foi interrompida 

prematuramente, possivelmente devido a limitações de processamento ou tokens, e o modelo sugeria 

a aplicação do código em Python pelo usuário. Adicionalmente, a plataforma carece (no momento 

em que a pesquisa foi realizada) da funcionalidade de download em formato CSV.  

A comparação dos modelos testados revela desempenhos significativamente variados em 

relação aos indicadores avaliados, destacando diferenças importantes em termos de proximidade aos 

dados originais e correlação observada pelo teste de Mantel. 

Entre os modelos analisados, o GPT versão 4o apresentou uma performance notoriamente 

superior, evidenciada pelos menores valores da distância de Jensen-Shannon (0,04260), divergência 

Kullback-Leibler (0,03082) e média das diferenças absolutas (MAD de 0,0279), além de um elevado 

índice de similaridade (0,9721) e uma correlação Mantel significativa (0,4635, p-value = 0,0010). 

O modelo Qwen2.5 Math também demonstrou desempenho robusto, com baixa distância de 

Jensen-Shannon (0,08733), pequena divergência Kullback-Leibler (0,11283) e o menor MAD 

(0,0716) entre os demais modelos, bem como uma forte correlação Mantel observada (0,4364, p-

value = 0,0010). 

Os modelos Claude 3.5 Haiku e Claude 3.5 Sonnet exibiram desempenhos semelhantes, com 

distâncias Jensen-Shannon e divergências Kullback-Leibler próximas (aproximadamente 0,131 e 

0,17 respectivamente), MAD quase idêntico (em torno de 0,124) e correlação Mantel significativa 

(0,4170, p-value = 0,0010). 

Por sua vez, o modelo Gemini 1.5 Pro, apesar de apresentar bons valores de distância Jensen-

Shannon (0,04251) e divergência Kullback-Leibler (0,04305), exibiu correlação Mantel fraca e não 

significativa (0,0940, p-value = 0,2210). 

Em contraste, modelos como GPT o1 e GPT o3 mini-high apresentaram desempenho 
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relativamente fraco em todos os indicadores avaliados, com altas distâncias Jensen-Shannon 

(aproximadamente 0,39) e divergências Kullback-Leibler elevadas, acompanhadas por baixas 

correlações Mantel e p-valores não significativos. 

Cabe destacar ainda que modelos como Gemini 1.5 Flash, Gemini 2.0 Flash, Gemma 7b e 

Grok 2 não forneceram resultados quantitativos, tendo apenas demonstrado lógica, impossibilitando 

uma avaliação numérica precisa. 

Em resumo, modelos como GPT 4o, Qwen2.5 Math e Claude 3.5 (Haiku e Sonnet) 

demonstraram superioridade significativa nos indicadores avaliados, enquanto os demais modelos 

exibiram performances inferiores ou inconsistentes. 

A Figura 4.12, de modo complementar ao Quadro 4.4, apresentada um comparativo das 

matrizes de correlações entre os modelos com dados reais e os dados sintéticos gerados para o 

exemplo que utilizou o modelo GPT 4o da OpenAI. Verifica-se, desta forma, que após a aplicação 

da engenharia de prompt de geração de dados sintéticos as variáveis dos dados sintéticos possem 

distribuição semelhante as variáveis reais utilizando muitos dos modelos aplicados.  

Do mesmo modo, as FigurasFigura 4.13 e Figura 4.14 apresentam os gráficos de distribuição 

(histograma) das variáveis reais versus os dados sintéticos gerados, e as estatísticas descritivas (Box 

Plot) para o modelo GPT 4o, respectivamente. Os gráficos para os demais modelos também se 

encontram no Anexo 1. 

Figura 4.12 – Correlação entre as variáveis reais e geradas – LLM GPT4o 

 

Fonte: elaboração própria 
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Figura 4.13– Estatísticas descritivas – Box Plot – Modelo GPT 4o 

 

Fonte: elaboração própria 
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Figura 4.14 – Distribuição das variáveis - Modelo GPT 4o 

  

Fonte: elaboração própria 
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4.5.3.2. Performance modelos LLM nos modelos preditivos de fraudes 

Nesta seção, foi verificado se os novos dados sintéticos melhoram a performance dos modelos 

preditivos aplicados na sessão 4.5.1. Foi desenvolvido um modelo preditivo de classificação, cujo 

desempenho foi mensurado por meio das métricas de precisão, recall e AUC. 

Para este teste, com base nos critérios apresentados no Quadro 4.4- principalmente menor 

Distância de Jensen-Shannon, menor divergência Kullback-Leibler, menor Mean Absolute 

Difference (MAD), maior Índice de similaridade, e maior correlação observada com significância 

estatística (p-value ≤ 0.05), foram selecionados os cinco melhores em performance:  GPT 4o; 

Gemini 1.5 Pro; Qwen2.5 Math; Claude 3.5 Haiku e Claude 3.5 Sonnet. 

O resultado da aplicação dos modelos preditivos é apresentado no Quadro 4.5. A comparação 

desses valores demonstra claramente os benefícios de aplicar técnicas de geração de dados 

sintéticos para oversampling em bases desbalanceadas. Embora os modelos da Claude (Sonnet e 

Haiku) geraram poucos dados sintéticos, seus resultados continuam sendo vantajosos comparada a 

base original desbalanceada. Destacam-se ainda que os modelos 4o e Gemini 1.5 Pro apresentaram 

resultados excelentes comparados a base original. 

Quadro 4.5 - Comparativo dos modelos utilizando dados sintéticos gerados por LLM 

Modelo e 

Métrica 

Base 

Original 
 

OpenIA 

4o 

Gemini 

1.5 Pro 

Qwen2.5 

Math 

Claude 

Haiku 

Claude 

Sonnet 

LR - Precision 1,00000 0,96203 0,70430 0,77778 0,90000 0,85714 

LR - Recall 0,03125 0,85876 0,74011 0,14894 0,17308 0,27907 

LR -AUC 0,51563 0,90938 0,68672 0,56748 0,58297 0,63254 

DT -Precision 0,66667 0,93296 0,91124 0,77778 0,88889 0,85294 

DT - Recall 0,62500 0,94350 0,87006 0,74468 0,61538 0,67442 

DT -AUC 0,77802 0,93175 0,88503 0,83738 0,79341 0,81973 

GBM -Precision 0,86364 0,98235 0,94857 0,85714 0,94444 0,97059 

GBM -Recall 0,59375 0,94350 0,93785 0,76596 0,65385 0,76744 

GBM -AUC 0,78653 0,96175 0,93893 0,86200 0,81978 0,88022 

 Fonte: Elaborado pelo autor. 

 

Para o modelo de regressão logística (LR), a base original (ou seja sem oversampling) 

apresentou alta precisão (1,00), mas recall extremamente baixo (0,03125) e AUC próximo à 
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aleatoriedade (0,51563), indicando dificuldades significativas na identificação da classe 

minoritária. Ao aplicar técnicas de geração sintética, destacaram-se especialmente o modelo 

OpenAI 4o e Gemini 1.5 Pro, com melhoras expressivas no recall (0,85876 e 0,74011, 

respectivamente) e AUC (0,90938 e 0,68672), sugerindo eficácia na redução do impacto negativo 

do desbalanceamento. Qwen2.5, Claude Haiku e Claude Sonnet tiveram desempenho inferior, 

especialmente em recall e AUC, indicando limitações em gerar dados sintéticos efetivos para o 

modelo LR. 

No caso do modelo de árvore de decisão (DT), os resultados evidenciam um ganho 

consistente em todas as técnicas de oversampling, quando comparadas à base original. Destacaram-

se novamente OpenAI 4o e Gemini 1.5 Pro que apresentaram elevadas taxas de precisão (0,93296 

e 0,91124) e recall (0,94350 e 0,87006), resultando em AUC muito superiores (0,93175 e 0,88503) 

em relação à base original (AUC=0,77802). Embora as outras técnicas (Qwen2.5, Claude Haiku e 

Claude Sonnet) também tenham gerado ganhos expressivos, ficaram atrás em termos de recall e 

AUC em comparação com os dois primeiros métodos mencionados. 

Por fim, para o modelo Gradient Boosting (GBM), todas as técnicas avaliadas apresentaram 

melhorias substanciais em comparação com à base original, especialmente no recall e no AUC. 

Destacam-se novamente os métodos OpenAI 4o e Gemini 1.5 Pro, ambos com altos valores de 

recall (0,94350 e 0,93785) e AUC (0,96175 e 0,93893). O modelo Claude Sonnet também 

apresentou resultados robustos com alta precisão (0,97059) e um bom equilíbrio em recall 

(0,76744) e AUC (0,88022). Qwen2.5 e Claude Haiku, embora superiores à base original, ficaram 

atrás em métricas-chave como recall e AUC, indicando limitações relativas nestes métodos. 

 

 

4.5.3.3. Conclusão dados sintéticos LLM 

Verifica-se que, seguindo a metodologia proposta, com a aplicação adequada de prompt e do 

pré-processamento de dados, é possível criar bons dados sintéticos. A solicitação de geração de 

dados sintéticos a modelos LLM, por meio de engenharia de prompt mostra-se viável, porém possui 

limitações associadas à quantidade de tokens, às restrições das plataformas, às características dos 

dados utilizados e, principalmente, ao tipo de modelo aplicado. 

Ao aplicar a metodologia, verificou-se que os modelos GPT 4o, GPT ADA, Claude 3 Opus 

e Gemini 1.5 Pro não obtiveram sucesso com a técnica SMOTE para geração sintética da classe 

minoritária e optaram por métodos estatísticos alternativos. GPT 4o e GPT ADA adotaram 
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distribuições normais (gaussianas) baseadas nas médias e desvios padrões originais. Claude 3 Opus 

utilizou uma função para gerar valores conforme as frequências originais das variáveis, enquanto 

Gemini 1.5 Pro aplicou interpolação aleatória entre amostras já existentes. Variáveis categóricas 

foram tratadas por amostragem aleatória com reposição para manter as proporções originais. 

Foi realizada uma avaliação comparativa entre diferentes modelos de linguagem (LLMs), 

analisando suas performances por meio de indicadores estatísticos como Distância de Jensen-

Shannon, Divergência de Kullback-Leibler, Mean Absolute Difference (MAD), Índice de 

Similaridade e Correlação obtida no teste de Mantel. Os resultados destacaram o GPT-4o e o 

Gemini 1.5 Pro como modelos de alto desempenho, apresentando valores particularmente baixos 

em divergências e elevados índices de similaridade, com destaque para o GPT-4o (Distância 

Jensen-Shannon = 0,04260; Índice de Similaridade = 0,9721), que também obteve correlação 

significativa (r = 0,4635; p = 0,0010). Em contrapartida, os modelos como GPT o1 e GPT o3 Mini-

High tiveram performance significativamente inferior, evidenciada pelos maiores valores de 

divergência e menor similaridade, além de correlações não significativas (p > 0,05). 

Alguns modelos como Claude 3.5 Haiku, Claude 3.5 Sonnet, Llama 3.1-70B, DeepSeek Math 

V3, Mistral Large 2 e Qwen2.5 Math também demonstraram boas performances, com valores 

satisfatórios nos indicadores e correlações significativas (p = 0,0010). Outros, como Gemini 1.5 

Flash, Gemini 2.0 Flash, Gemma 7b e Grok 2, apesar de demonstrarem compreensão lógica das 

solicitações, não conseguiram produzir resultados efetivos com dados gerados. Esses achados 

apontam diferenças relevantes na capacidade preditiva e na geração de respostas coerentes entre os 

modelos, destacando a importância da escolha adequada do LLM com base em critérios 

quantitativos claros para diferentes aplicações práticas. 

A capacidade de processamento de tokens em modelos de linguagem (LLMs) desempenha 

papel crucial na análise e geração de dados sintéticos. Modelos menores, como o Gemma 2, 

apresentam limitações consideráveis devido à sua capacidade reduzida de leitura e processamento 

de tokens, impactando negativamente na capacidade de manipular grandes datasets. Muitos 

modelos, mesmo aqueles disponíveis comercialmente em versões pagas, enfrentam dificuldades 

significativas em processar datasets extensos devido a restrições intrínsecas à sua arquitetura de 

tokenização e capacidade de entrada. 

Os testes realizados evidenciaram dificuldades práticas para aplicação direta das técnicas 

tradicionais de geração de dados sintéticos, como SMOTE, GAN e ADASYN, nos ambientes atuais 

dos LLMs. Observou-se que modelos como GPT-4o, mesmo após análises detalhadas, não 
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conseguiram aplicar efetivamente estas técnicas devido à limitação operacional e à complexidade 

dos dados. Em contrapartida, foi possível utilizar uma abordagem alternativa baseada em 

amostragem aleatória com perturbações, obtendo resultados limitados. 

Outro ponto importante identificado foi a sensibilidade dos modelos ao tamanho dos 

datasets utilizados. Modelos locais com menor capacidade, em torno de 8 bilhões de parâmetros, 

apresentaram tempos prolongados de execução e desempenho inferior devido ao tamanho 

significativo das bases de dados. Observou-se também que modelos dependentes exclusivamente 

da informação contida em prompts apresentaram resultados inferiores em comparação aqueles 

capazes de processar integralmente arquivos no formato CSV. Nesse contexto, fica evidente que 

tanto a estrutura da plataforma utilizada quanto o método de fornecimento dos dados influenciam 

significativamente os resultados. 

Por fim, constatou-se que a quantidade de dados sintéticos gerados pela maioria dos 

modelos ainda é insuficiente, frequentemente gerando apenas cerca de 50 exemplos, mesmo diante 

da necessidade prática mínima de aproximadamente 500 exemplos. Nesse sentido, ressalta-se a 

importância de agentes executores integrados nas plataformas de inteligência artificial para a 

realização eficiente e escalável de tarefas relacionadas à geração de dados sintéticos, considerando-

se as atuais limitações técnicas e a rápida evolução dessas ferramentas. 

No que tange a aplicação para oversampling, o estudo revelou que o uso de técnicas de 

geração sintética de dados pode melhorar significativamente o desempenho dos modelos 

preditivos, especialmente em cenários altamente desbalanceados. Os métodos baseados em 

OpenAI 4o e Gemini 1.5 Pro foram consistentemente superiores, sugerindo forte eficácia na 

geração de dados sintéticos úteis e representativos para treinar modelos de classificação mais 

robustos e confiáveis. 

 

 

 

 

4.5.3. Dados Sintéticos via modelo LLM com RAG  

A utilização de LLMs pré-treinados oferece grande potencial para diversas aplicações. 

Contudo, a necessidade de acessar informações específicas e privadas exige uma abordagem mais 

refinada. Nesse contexto, o método RAG (Retrieval-Augmented Generation) surge como solução 

promissora, ao combinar a capacidade de geração de texto fluente dos LLMs com a precisão da 
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recuperação de informação.  

A técnica de Geração Aumentada por Recuperação (RAG) combina modelos de linguagem 

de grande porte (LLMs) com sistemas de recuperação de informações. Seu objetivo é enriquecer a 

geração de texto dos LLMs com informações relevantes extraídas de uma base de dados ou 

documentos externos. Isso permite que o modelo produza respostas mais precisas, atualizadas e 

contextualmente relevantes, superando limitações de conhecimento inerentes ao modelo pré-

treinado. 

 

4.6.5.1. Contextualização de ferramentas e processos de IA Generativa 

A construção de um modelo LLM com RAG requer um conjunto de ferramentas essenciais: 

um LLM pré-treinado como base (ex: GPT-4o), um banco de dados vetorial (ex: ChromaDB, 

Pinecone) para armazenar e pesquisar informações, um framework de incorporação (ex: 

SentenceTransformers) para transformar texto em vetores numéricos, e uma biblioteca RAG (ex: 

LangChain) para integrar o LLM com o banco de dados vetorial. 

Destaca-se a relevância de plataformas como Anything LLM, LM Studio e iniciativas 

colaborativas como CrewAI, destacando sua importância para a consolidação de um 

ecossistema robusto de Inteligência Artificial. 

Um dos elementos importantes para a orquestração do RAG é a ligação do mesmo com 

banco de dados vetorial que armazenam as informações e codificam dados em embeddings, o 

que permite executar buscas por similaridade semântica. Tal característica é especialmente útil 

para tarefas de recomendação, categorização de conteúdos em larga escala e aprimoramento de 

aplicações que utilizam RAG, pois a eficiência na recuperação de informações adequadas a cada 

prompt melhora a precisão dos resultados apresentados. 

Nesse contexto, destaca-se o LangChain, uma estrutura de desenvolvimento projetada 

para viabilizar a criação de aplicações que integram grandes modelos de linguagem (LLMs) 

com diversas fontes de dados e ferramentas externas. Seu objetivo principal é facilitar a 

construção de sistemas que vão além da simples geração de texto, permitindo interações mais 

complexas e robustas. Essa integração é alcançada por meio de componentes modulares que 

suportam o gerenciamento de prompts, a orquestração de fluxos de trabalho e a implementação 

de memórias para armazenamento de estados entre interações. O LangChain também permite a 

conexão com APIs, bancos de dados e outros recursos externos, o que possibilita a criação de 

soluções personalizadas em domínios como atendimento ao cliente, análise de dados e geração 
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de conteúdo. 

Um fluxo de trabalho (workflow) relevante que aplica o encadeamento descrito com as 

funções do LangChain é o LangFlow. Esta é uma ferramenta de low-code que simplifica a 

criação de aplicações e fluxos de trabalho baseados em modelos de linguagem. Com uma 

interface gráfica intuitiva, LangFlow permite que desenvolvedores e pesquisadores conectem 

módulos como agentes de linguagem, templates de prompt, memórias de conversação e 

integrações com APIs, facilitando a prototipagem rápida e a experimentação em projetos de 

inteligência artificial. Essa plataforma modular promove a customização e a integração de 

processos complexos sem a necessidade de escrever códigos extensos, viabilizando, por 

exemplo, a implementação de estratégias de fine-tuning para ajustar modelos a tarefas 

específicas, bem como a construção de sistemas baseados em RAG. 

Essa dualidade de uso – combinando a eficiência da recuperação de dados com a 

capacidade de adaptação dos modelos – é ressaltada em comparativos recentes na literatura, 

como na análise de RAG versus fine-tuning além dos fundamentos teóricos apresentados por 

Lewis et al. (2020), que embasam o conceito de RAG. 

Nesse sentido, ferramentas como Anything LLM e LM Studio facilitam a adoção prática 

de modelos de linguagem em diferentes setores, ao oferecer interfaces intuitivas, recursos de 

ajuste fino e integração com bases de dados. Essas plataformas permitem a análise e o 

gerenciamento de modelos em larga escala, possibilitando um desenvolvimento mais célere de 

aplicações que empregam metodologias de engenharia de prompt, RAG e outras técnicas 

correlatas. O objetivo central consiste em simplificar o processo de implantação e manutenção 

de soluções de Inteligência Artificial, alcançando resultados mais eficazes na interação homem-

máquina. 

Desta forma, nesta seção, será desenvolvido um modelo LLM com aplicação do protocolo 

e metodologia proposta de RAG para que as respostas do modelo LLM sejam efetivas para 

situações de geração de dados, oversampling, data augmentation e similares. 

 

4.6.5.2. Performance Modelos LLM com RAG 

Neste estudo de caso, a base de dados material utilizada na etapa 1 da metodologia RAG 

(Retrieval-Augmented Generation) será composta por informações qualificadas e organizadas no 

formato JSON. Essa base reunirá dados estruturados sobre os diferentes métodos de geração de 

dados sintéticos e técnicas de oversampling, conforme detalhado a seguir. 
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• Funções do Código do Smote original em python. 

• Geração de Dados Sintéticos por Interpolação Aleatória 

• Geração de Dados Sintéticos Amostra aleatória e Distribuição Normal e Perturbações 

• Oversampling Simples 

• Geração de Dados Sintéticos Usando Quantis e Perturbação 

• Data Augmentation com Bootstrap e Ruído Gaussiano 

• Mistura Aleatória de Atributos (Feature Blending) 

• Geração de Dados Sintéticos com K-Means e Perturbação dos Centróides 

• Geração Iterativa de Dados Sintéticos com Ruído Gaussiano 

• Geração de Dados Sintéticos com SMOTE 

• Oversampling com SMOTE para Balanceamento de Classes 

 

A implementação do modelo, com a aplicação da metodologia RAG foi feita por meio das 

ferramentas, LM Studio, Anything LLM, Perplexity e POE. A escolha do banco de dados vetorial 

para embedding variou de acordo com a plataforma utilizando por exemplo, LanceDB e MongoDB. 

Para a geração dos vetores, adotou-se o modelo de embedding text-embedding-3-large. Assim, foi 

possível aplicar e testar o modelo desenvolvido. 

Como métricas de avaliação, foram utilizadas as mesmas da seção anterior, a saber: 

Distância de Jensen-Shannon; Divergência Kullback-Leibler; Mean Absolute Difference; MAD -

Índice de Similaridade; e Mantel Test - correlação observada. O resultado consta no Quadro 4.6 a 

seguir:  

Quadro 4.6 - Modelos de LLM com RAG testados e sua performance de similaridade 

Modelo Versão Distância 

de Jensen-

Shannon 

Divergência 

Kullback-

Leibler 

Mean 

Absolute 

Difference 

MAD 

Índice de 

Similarid

ade 

Mantel Test 

Correlação 

observada 

GPT 4o 

 

0.07305 0.03020 0.0466 0.9534 0.9580 

p-value: 0.0010 

GPT o3  0.11306 0.05875 0.1167 0.8833 0.8295 

p-value: 0.0010 

Llama 3.1 8B 0.16010 0.22311 0.1133 0.8867 0.3480 
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p-value: 0.0010 

Llama 3.3 70B 0.15139 0.09867 0.2061 0.7939 0.6668 

p-value: 0.0010 

Qwen  2.5 7B 0.09734 0.05463 0.0955 0.9045 0.8973 

p-value: 0.0010 

DeepSeek R1  0.142572 0.04242 0.1447 0.8553 0.8116 

p-value: 0.0010 

Fonte: Elaboração própria 

 

Os experimentos com diferentes modelos de linguagem revelaram avanços e desafios 

notáveis na geração de dados sintéticos, na velocidade de resposta e na precisão de métodos 

implementados. Modelos da OpenAI, como o OpenAI o1, aplicado via ferramenta AnythingLLM, 

conseguiram criar códigos robustos utilizando técnicas como a amostragem aleatória com 

perturbações, mas enfrentaram falhas ao gerar dados sintéticos de forma consistente. Já o modelo 

4o, utilizou interpolação aleatória entre amostras reais, demonstrou a necessidade de estudos 

adicionais devido a erros persistentes. Esses resultados destacam a importância de refinar 

abordagens para garantir a confiabilidade e aplicabilidade dos modelos. 

A análise dos modelos da família Llama indicou uma ampla variação de desempenho. 

Enquanto o Llama 3.1 8B apresentou respostas completas e exemplos em Python, ele foi 

prejudicado por lentidão nos testes RAG, porém demonstrou desempenho moderado em código e 

casos sintéticos. O modelo 11B, integrante do Llama 3.2, apresentou limitações que 

comprometeram sua capacidade de geração de dados. Por sua vez, o modelo 3B não conseguiu 

apresentar uma resposta com dados sintéticos gerados. Apesar do maior porte, o Llama 3.3 70B 

também ficou aquém das expectativas no tocante à lentidão, impactado pelo ambiente de produção 

do modelo.  

Por fim, outras abordagens, como os modelos Gemma2, Phi, Qwen e DeepSeek R1, também 

apresentaram resultados diversificados. O Gemma2 foi rápido, mas limitado em técnicas RAG. Os 

modelos Phi enfrentaram instabilidades com respostas inconsistentes e erros nos testes RAG, 

particularmente o Phi3.1-mini-128k e o Phi4-14B, enquanto o Phi3.5 3.8B mostrou dificuldades 

similares. O modelo Qwen 2.5 apresentou equilíbrio, rapidez e completude. O DeepSeek R1, após 

ajustes em sua plataforma, demonstrou potencial em técnicas específicas, como a interpolação 

controlada com perturbações. Essa diversidade de resultados reforça a necessidade de abordagens 
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customizadas e avanços tecnológicos para atender às demandas variadas de aplicação. 

A análise dos modelos de LLM com RAG testados evidencia um desempenho satisfatório 

e coerente com as expectativas estabelecidas. O GPT-4o destacou-se por sua alta similaridade 

(0.9534) e correlação observada (0.9580), além dos menores índices de divergência de Jensen-

Shannon (0.07305) e Kullback-Leibler (0.03020). Em contraste, o GPT-o3 apresentou índices 

ligeiramente inferiores, com similaridade de 0.8833 e correlação de 0.8295, mostrando maior 

divergência entre as métricas (0.11306 e 0.05875, respectivamente). Os modelos da família Llama, 

como o 3.1 8B, alcançaram uma similaridade de 0.8867, embora apresentassem uma baixa 

correlação de 0.3480 e um índice de Jensen-Shannon relativamente alto (0.16010), enquanto o 

Llama 3.3 70B obteve similaridade de 0.7939 e correlação de 0.6668, com diferenças absolutas 

médias mais elevadas (0.2061). 

Outros modelos demonstraram performances equilibradas, com destaque para o Qwen 2.5 

7B, que obteve uma similaridade de 0.9045, correlação de 0.8973 e divergência de Jensen-Shannon 

de 0.09734, sendo mais consistente que o DeepSeek R1, que alcançou similaridade de 0.8553 e 

correlação de 0.8116, com um índice de divergência de 0.142572. Apesar de limitações pontuais, 

os resultados gerais reforçam a eficiência desses modelos nas tarefas de similaridade, com 

variações notáveis conforme suas capacidades específicas e abordagens técnicas. 

 Como verificado na Figura 4.15 (para LLM GPT 4o) e Anexo 2 (para demais modelos 

testados) as análises de correlações mantiveram padrões muito semelhantes, provando o sucesso 

dos modelos com RAG. 

Figura 4.15 – Correlação entre as variáveis reais e geradas – LLM GPT4o 

 

Fonte: elaboração própria 

Desta forma, verifica-se que todos os modelos onde foi possível aplicar a RAG, foram 
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gerados dados sintéticos de forma aceitável e com características similares aos dados originais. Nos 

testes foram verificados que algumas vezes o modelo gera dados idênticos aos originais. Portanto, 

cabe ao cientista de dados excluir estes dados da análise e ou aplicação que de deslumbra aplicar. 

 

4.6.5.3. Performance do modelo LLM - RAG com modelo preditivo 

Desta forma, na Tabela 4.7 comparativa a seguir, são analisados os resultados de diferentes 

modelos de classificação aplicados a um conjunto de dados sintético, avaliados por meio Árvore 

de Decisão que foram medidos em termos de Precisão, Recall e AUC. A Precisão reflete a 

capacidade do modelo em minimizar falsos positivos, indicando a proporção de predições corretas 

entre as classificações positivas realizadas. O Recall, por sua vez, avalia a sensibilidade do modelo 

ao identificar corretamente os casos positivos existentes, enquanto a AUC (Área sob a Curva ROC) 

fornece uma métrica agregada que captura a habilidade discriminativa do classificador 

independentemente do limiar de decisão adotado. 

Os modelos comparados foram ajustados de forma a permitir uma análise mais direta entre 

as abordagens, com o modelo "original" estabelecendo a base de comparação. Essa estrutura 

comparativa possibilita identificar os trade-offs entre as técnicas de classificação, evidenciando, 

por exemplo, se um aumento na Precisão pode ocorrer em detrimento do Recall ou se ambos os 

aspectos podem ser otimizados simultaneamente sem comprometer a capacidade discriminativa 

global (AUC).  

Tabela 4.7 - Comparativo dos modelos utilizando dados sintéticos gerados por LLM 

Modelo Dado  

Original 

Llama 

3.1-8B 

Qwen 2.5-

7b 

OpenIA 

o3 

OpenIA 

4o 

Llama 3.3 

70B 

Deepseek 

R1 

DT Precision 0,6429 0,8125 0,7778 0,9024 0,9452 0,7000 0,8140 

DT Recall 0,6207 0,9070 0,8000 0,8605 0,9583 0,7778 0,7778 

DT AUC 0,7241 0,8772 0,8310 0,8951 0,9407 0,7889 0,8199 

LR Precision 0,7273 0,6818 0,6000 0,6667 0,7536 0,5429 0,6471 

LR Recall 0,5517 0,6977 0,6000 0,6047 0,7222 0,5278 0,7333 

LR AUC 0,7241 0,7302 0,6793 0,6883 0,6976 0,6306 0,7115 

GBM Precision 0,8400 0,9500 0,8438 0,8864 0,9855 0,8378 0,9149 

GBM Recall 0,7241 0,8837 0,7714 0,9070 0,9444 0,8611 0,9556 

GBM AUC 0,8276 0,9249 0,8426 0,9096 0,9626 0,8806 0,9433 

Fonte: Elaborado pelo autor. 
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A aplicação da geração de dados sintéticos com RAG, utilizando diferentes modelos de 

grandes linguagens (LLM) para oversampling, demonstrou impactos positivos significativos nos 

modelos preditivos avaliados - Regressão Logística (LR), Árvore de Decisão (DT) e Gradient 

Boosting Machine (GBM) - os resultados apresentados na análise comparativa da Tabela 4.7.  

Observando os resultados, percebe-se que todos os modelos, em geral, apresentaram uma 

melhoria substancial ao incorporar dados sintéticos, com destaque para as métricas de precisão, 

recall e Área Sob a Curva ROC (AUC). 

Na análise detalhada do desempenho por algoritmos, a Árvore de Decisão mostrou notável 

melhoria em todas as métricas quando alimentada com dados sintéticos gerados pelos modelos 

OpenAI-4o e OpenAI-o3, destacando-se com valores elevados de precisão (0,9452) e recall 

(0,9583) no OpenAI-4o, bem acima dos valores observados na base original (0,6429 e 0,6207, 

respectivamente). Similarmente, o Gradient Boosting obteve incrementos expressivos com o uso 

de dados sintéticos, especialmente no modelo OpenAI-4o, atingindo precisão quase perfeita 

(0,9855), recall alto (0,9444) e uma excepcional AUC de 0,9626. Esses resultados indicam que a 

qualidade da geração sintética de dados proporcionada pelos modelos da OpenAI impactou 

positivamente e de forma consistente o desempenho preditivo desses classificadores. 

Contudo, para esta base de dados analisada, a Regressão Logística apresentou resultados 

mais variados e menos consistentes em comparação aos outros algoritmos. Embora tenha havido 

ganhos em recall com Deepseek-R1 (0,7333) e OpenAI-4o (0,7222), observou-se queda na 

precisão na maioria dos modelos avaliados, particularmente notável no Llama 3.3-70B (0,5429) e 

Qwen 2.5-7b (0,6000), ambos abaixo da precisão obtida na base original (0,7273). Além disso, os 

ganhos na métrica AUC para a Regressão Logística foram modestos, com valores próximos ao 

original (0,7241), variando pouco entre 0,6306 e 0,7302. 

 

4.6.5.4. Conclusão e resultado geração dados sintéticos com RAG 

Verifica-se que é possível e eficiente gerar dados sintéticos por meio de modelos de LLM 

com RAG conforme modelo proposto neste trabalho. 

Diversos fatores influenciam a geração de dados sintéticos e podem impactar diretamente 

a performance de um modelo de agente de IA. Primeiramente, a capacidade de tokens do modelo 

é essencial, pois muitos modelos dependem de uma quantidade máxima de tokens para funcionar 

de maneira eficiente. Modelos menores tendem a apresentar limitações nesse aspecto, afetando 

negativamente a performance e a qualidade dos dados gerados. Além disso, a plataforma utilizada 
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para rodar o modelo também desempenha um papel importante; por exemplo, é necessário que a 

arquitetura suporte a execução de Python em Docker no backend, garantindo estabilidade e 

compatibilidade. 

Outro aspecto crítico é o hardware utilizado durante a execução. Quando rodado 

localmente, o desempenho do modelo está diretamente relacionado à memória disponível e ao uso 

de GPU no ambiente, sendo ambos determinantes para otimizar a performance. Por fim, em 

sistemas de chat local, respostas anteriores são continuamente carregadas no prompt a cada nova 

interação, o que pode acumular tokens de contexto e resposta, resultando em lentidão progressiva. 

Diante dessas variáveis, o desenvolvimento de um modelo de agente de IA especializado na 

geração de dados sintéticos poderia abordar essas limitações e oferecer resultados mais robustos e 

consistentes. 

A implementação de um sistema RAG, conforme descrita, evidencia a relevância de uma 

abordagem meticulosa para cada etapa do processo, desde a preparação de dados até a manutenção 

contínua do modelo. A adoção dos diferentes modelos de LLM com aplicação da biblioteca 

LangChain para orquestração entre o banco de dados vetorial e o modelo de geração, bem como 

uso de plataformas com estrutura de RAG (LM Studio, POE.AI e AnythingLLM) se mostraram 

vantajosas, pois ambas as ferramentas oferecem flexibilidade para lidar com diversos cenários e 

exigências de domínio. Além disso, a constante reavaliação das métricas e o refinamento de 

parâmetros asseguram a qualidade e a pertinência das respostas produzidas, evidenciando o 

potencial do RAG para aplicações que demandem informações atualizadas e contextualizadas. 

Os modelos analisados cumpriram seus objetivos, com destaque para o GPT-4º, que 

alcançou os menores índices de divergência (Jensen-Shannon: 0.07305) e a maior similaridade 

(0.9534). O Qwen 2.5 7B também obteve resultados equilibrados, com uma similaridade de 0.9045 

e baixa divergência (0.09734), superando o desempenho do DeepSeek R1 (similaridade de 0.8553). 

Modelos como o Llama apresentaram variações, sendo o 3.1 8B mais consistente (similaridade de 

0.8867) em relação ao 3.3 70B, que teve menor eficiência (similaridade de 0.7939). 

No geral, os resultados destacam a eficiência dos modelos em tarefas de similaridade, 

apesar de limitações específicas. Ajustes técnicos podem maximizar seu desempenho para atender 

às demandas futuras com maior precisão e confiabilidade. 

Nos testes referentes a aplicação dos dados sintéticos gerados pelos modelos utilizando 

RAG, demostram que o uso de oversampling com dados sintéticos gerados por modelos de grandes 

linguagens (LLMs) melhora significativamente o desempenho dos classificadores DT (Árvore de 
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Decisão) e GBM (Gradient Boosting Machine), especialmente com o modelo OpenAI-4o, que 

obteve os maiores valores em precisão (DT: 0,9452, GBM: 0,9855), recall (DT: 0,9583, GBM: 

0,9444) e AUC (DT: 0,9407, GBM: 0,9626). A Regressão Logística, porém, apresentou ganhos 

menos expressivos e resultados mais instáveis entre os modelos avaliados, destacando-se apenas 

no recall com Deepseek-R1 (0,7333).  

De maneira geral, os testes evidenciam que a eficácia na geração de dados sintéticos e na 

execução de código Python varia significativamente entre os modelos, dependendo de fatores como 

o limite de tokens, a técnica de amostragem empregada (por exemplo, random sampling with 

perturbations ou synthetic data generation with random interpolation between samples) e a 

plataforma utilizada (como AnythingLLM, LM Studio ou GPT4all). Enquanto alguns modelos se 

destacam pela rapidez na resposta ou pela capacidade de gerar código, muitos apresentam desafios 

na consistência e integridade dos dados sintéticos gerados, indicando a necessidade de novos testes 

e ajustes metodológicos para aprimorar seus desempenhos em cenários práticos. 

 

 

 

4.5.4. Dados Sintéticos Modelo SLM Aurora com Fine-Tuning 

Nesta seção, conforme apresentado na metodologia, foi evoluída a abordagem e aplicada a 

estratégia de fine-tuning para treinar um modelo SLM (Small Language Model) com conhecimento 

de criação de dados sintéticos. O modelo desenvolvido foi batizado de Aurora. Foi utilizado como 

base o modelo de código aberto Qwen 2.5 7B pois este apresenta boa performance matemática e 

de geração de código conforme verificado na seção anterior. A aplicação deste novo modelo criado 

será para uso em máquinas locais, tal fato é um limitador de desempenho comparado a outros 

modelos LLM que são hospedados em servidores de GPU em nuvem.   

Essa abordagem é especialmente relevante, pois a geração de dados sintéticos pode 

contribuir significativamente para a superação de desafios relacionados à escassez de dados e à 

proteção da privacidade, conforme discutido por Radford et al. (2019). Ao ajustar um LLM pré-

treinado para capturar padrões específicos do domínio de interesse, deve-se obter um modelo capaz 

de sintetizar dados realísticos. Estes dadospoderão ser utilizados para aprimorar a validação e o 

desenvolvimento de aplicações avançadas em ciência de dados. 
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4.7.5.1. Performance de Modelo com Fine-Tuning - Aurora 

 

Da mesma forma aos testes realizados com modelos abertos de IA generativa para a geração 

de dados sintéticos apresentados anteriormente, nesta sessão, modelos de LLM específicos foram 

desenvolvidos via fine-tuning, incorporando o conhecimento de data augmentation. 

Para desenvolvimento do modelo próprio Aurora, o fine-tuning eficiente (ajuste fino ou 

treinamento adicional) do modelo de LLM base foi realizado usando a biblioteca Unsloth, integrada 

à técnica LoRA (Low-Rank Adaptation), que permite treinar grandes modelos de linguagem com 

pouca memória, rapidez e eficiência. 

O fine-tuning foi executado no Google Collab, usando GPU A100 e T4 com aplicação do 

SFTTrainer, especializado para treinamento supervisionado com a biblioteca TRL (Transformers 

Reinforcement Learning). O modelo final é aplicado localmente na máquina do usuário via 

ferramenta LMSudio, desta forma, possui uma arquitetura limitada de operacionalização. 

O conteúdo para o Fine-tuning foi baseado na coleta de dados com diferentes métodos e 

técnicas de geração de dados sintéticos, oversampling e data augmentation validadas na sessão 

anterior, além disso, códigos Python específicos para a aplicação desses métodos foram 

acrescentados e validados. Desta forma, o modelo Aurora recebe a habilidade de geração destes 

dados. 

A avaliação do modelo Aurora, fine-tuned a partir do Qwen 2.5 7B, demonstra uma 

capacidade notável na geração de dados sintéticos, conforme as métricas apresentadas no Quadro 

4.7 . As baixas Distância de Jensen-Shannon (0.1310) e Divergência Kullback-Leibler (0.1114) 

indicam que a distribuição estatística dos dados gerados pelo Aurora é muito próxima à dos dados 

originais, sugerindo uma captura eficaz das características gerais. Isso é complementado por um 

alto Índice de Similaridade (0.8644), que reforça a elevada semelhança global entre os conjuntos 

de dados sintético e de referência. 

Quadro 4.7 - Modelos de LLM Aurora – Desenvolvido com Fine-Tuning 

Modelo 

Base 

Versão Distância 

de Jensen-

Shannon 

Divergência 

Kullback-

Leibler 

Mean 

Absolute 

Difference 

MAD 

Índice de 

Similarid

ade 

Mantel Test 

Correlação 

observada 

Qwen  2.5 7B 0.1310 0.1114 0.1356 0.8644 0.8372 
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p-value: 0.0010 

Fonte: elaboração própria 

 

Além da similaridade distributiva e geral, a qualidade dos dados sintéticos é evidenciada 

pela precisão em níveis mais granulares e estruturais. O baixo Mean Absolute Difference (0.1356) 

sugere que as diferenças médias entre valores ou estatísticas pontuais são mínimas. Mais 

importante ainda, o Teste de Mantel apresentou uma correlação forte e estatisticamente 

significativa (0.8372, p=0.001), indicando que o Aurora conseguiu preservar eficazmente as 

relações e a estrutura interna presentes nos dados originais. Esse é um aspecto crucial para a 

utilidade dos dados sintéticos em tarefas analíticas complexas. 

No que tange a análise de correlação, a  Figura 4.16 apresenta duas matrizes de correlação 

de Pearson, comparando os dados reais (df_validation_fraud) e os dados sintéticos gerados pelo 

modelo Aurora (synthetic_frauds). A análise visual revela que as duas matrizes exibem padrões de 

correlação muito semelhantes, indicando que o modelo Aurora foi bem-sucedido em replicar as 

relações entre as variáveis presentes nos dados reais. Demostra que gerou dados sintéticos que 

preservam com precisão as características de correlação dos dados reais.  

Essa preservação é evidente na semelhança dos padrões de correlação, na distribuição das 

correlações positivas e negativas e na presença de uma diagonal principal vermelha intensa em 

ambas as matrizes. Esses resultados comprovam o sucesso do modelo na replicação da estrutura de 

dependência entre as variáveis, indicando que os dados sintéticos podem ser utilizados de forma 

confiável para análises e modelagem. 

Figura 4.16 - Correlação de Pearson - dados originais vs gerado modelo Aurora 
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Fonte: elaboração própria 

 Os box-plots na Figura 4.17 mostram que a média e o desvio padrão são quase idênticos 

entre os dados reais e sintéticos. Isso indica que o modelo gerador de dados sintéticos conseguiu 

capturar com precisão as características estatísticas centrais dos dados reais. A semelhança na 

forma e na extensão dos box-plots sugere que a distribuição geral das variáveis foi bem preservada 

no processo de geração de dados sintéticos. 

Destaca-se o fato inédito de ter um modelo de IA Generativa SLM para ser utilizado de 

forma local para geração de dados sintéticos. Tal fato por si só apresenta limitação intrínseca de 

ambiente de aplicação do modelo pelos limitadores de hardware e arquitetura em comparação aos 

grandes modelos disponibilizados online nas plataformas da OpenAI, Google e etc. 

No que se refere a análise das distribuições das variáveis, conforme apresentado na Figura 

4.18, observa-se uma semelhança entre os conjuntos real e sintético. Em quase todos os gráficos, 

os histogramas dos dados sintéticos seguem de perto o padrão dos histogramas dos dados reais, 

indicando que o modelo gerador de dados sintéticos capturou com precisão as características de 

distribuição das variáveis originais. Essa semelhança é observada tanto na forma geral das 

distribuições quanto nas frequências relativas dos valores, sugerindo que o modelo replicou com 

sucesso as nuances estatísticas dos dados reais. 
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Figura 4.17 – Estatísticas descritivas – Box Plot – Modelo Aurora 

 

 Fonte: Elaborado pelo autor 
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Figura 4.18 – Distribuição das variáveis – Modelo Aurora 

 

 Fonte: Elaborado pelo autor 
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O Quadro 4.8 apresenta uma comparação do desempenho de três modelos preditivos 

(Regressão Logística, Árvore de Decisão e GBM) usando tanto dados sintéticos gerados pelo 

modelo Aurora quanto dados originais. O modelo GBM, treinado com dados sintéticos do Aurora, 

obteve a maior precisão de 90,32%, recall de 77,78% e AUC de 0,89751, superando o modelo 

treinado com dados originais em todas as métricas. A Árvore de Decisão com dados sintéticos 

alcançou 73,53% de precisão e 69,44% de recall, enquanto a Regressão Logística apresentou 

63,33% de precisão e 52,78% de recall. 

Quadro 4.8 - Comparativo de modelos preditivos utilizando dados sintéticos gerados pelo modelo 

Aurora de SLM 

Modelo Logistic Regression Decision Tree GBM 

Precisão (Aurora) 0,63333 0,73529 0,90323 

Recall (Aurora) 0,52778 0,69444 0,77778 

AUC (Aurora) 0,76676 0,76964 0,89751 

Precisão (Original) 0,72222 0,83333 0,80000 

Recall (Original) 0,44828 0,68966 0,68966 

AUC (Original) 0,78537 0,81034 0,89180 

 Fonte: Elaborado pelo autor. 

 

Em geral, os modelos treinados com dados sintéticos do Aurora demonstraram desempenho 

competitivo em relação aos modelos treinados com dados originais. O GBM, em particular, 

apresentou um aumento significativo no desempenho, com um aumento de 10,32% na precisão, 

8,81% no recall e 0,57% no AUC em comparação com o modelo treinado com dados originais. 

Isso sugere que o modelo Aurora pode gerar dados sintéticos eficazes para treinar modelos 

preditivos, com potencial para superar o desempenho obtido com dados originais em alguns casos. 

Cabe salientar que o modelo desenvolvido foi aplicado em máquina local, não possuindo 

os recursos e ecossistema disponíveis das grandes plataformas, bem como utilização de grandes 

GPUs. Tal fato limitou a capacidade do modelo neste teste, porém apresenta condições e 

expectativas dos resultados serem ampliados com a utilização de equipamentos e infraestruturas 

mais robustas.  
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4.7.5.2. Conclusão e resultado modelo Aurora Fine Tuning 

 

Num cenário de constante evolução da inteligência artificial, a geração de dados sintéticos 

desponta como uma abordagem promissora, capaz de mitigar desafios relacionados à privacidade, 

à escassez e ao desbalanceamento de dados, além de atender à necessidade de conjuntos de 

treinamento mais robustos e representativos. É nesse contexto que se destaca o modelo Aurora, 

uma inovação focada no desenvolvimento de uma inteligência artificial generativa especializada, 

destinada à produção de dados sintéticos de alta fidelidade. 

Diferentemente de modelos de propósito geral, o Aurora foi especificamente concebido e 

refinado (através de fine-tuning sobre bases como o Qwen 2.5 7B) para dominar a complexa tarefa 

de gerar conjuntos de dados artificiais, sintéticos. Seu diferencial reside na capacidade de replicar 

não apenas as características estatísticas, mas também a estrutura intrínseca de dados reais, o que 

representa um avanço focado na capacidade das IAs generativas. 

A análise conjunta das métricas quantitativas valida de forma robusta o processo de fine-

tuning e confirma a proficiência do modelo Aurora na geração de dados sintéticos de alta 

fidelidade, a partir da base Qwen 2.5 7B. Os resultados são convincentes e consistentes quanto à 

similaridade distributiva dos dados gerados, marcadas pela baixas Distância de Jensen-Shannon 

(0.1310) e Divergência Kullback-Leibler (0.1114). Estes valores atestam que a distribuição 

estatística geral dos dados sintéticos gerados pelo Aurora se alinha estreitamente com a dos dados 

originais. 

A proximidade de valores encontrados, mensurado pelo baixo Mean Absolute Difference 

(0.1356) sugere que, em média, os valores numéricos ou estatísticas descritivas dos dados sintéticos 

diferem pouco dos seus correspondentes originais. Do mesmo modo, o elevado Índice de 

Similaridade (0.8644) quantifica uma forte semelhança global entre os conjuntos de dados sintético 

e de referência. 

Crucialmente, o Teste de Mantel revelou uma correlação alta (0.8372) e estatisticamente 

muito significativa (p=0.001), demonstrando que as relações e a estrutura interna (distâncias 

relativas entre pontos de dados) foram eficazmente preservadas no conjunto de dados sintético. 

A análise dos box-plots confirma a eficácia do modelo em gerar dados sintéticos que se 

assemelham estatisticamente aos dados reais. A proximidade das médias e a similaridade na 

dispersão dos dados indicam que o modelo conseguiu replicar as características importantes das 

variáveis originais. Essa semelhança estatística é crucial para garantir que os dados sintéticos 
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possam ser usados de forma confiável em análises e modelagens subsequentes. 

A análise visual dos histogramas revela também uma forte semelhança entre as 

distribuições dos dados reais e sintéticos. O modelo de geração de dados sintéticos foi bem-

sucedido em replicar as características de distribuição das variáveis originais, tanto na forma geral 

quanto nas frequências relativas dos valores. 

A análise comparativa do desempenho de modelos preditivos treinados com dados 

sintéticos gerados pelo modelo Aurora e dados originais revela resultados promissores. O modelo 

GBM, em particular, demonstrou um desempenho superior ao modelo treinado com dados 

originais, alcançando uma precisão de 90,32%, um recall de 77,78% e um AUC de 0,89751. Esse 

resultado indica que o modelo Aurora foi capaz de gerar dados sintéticos de alta qualidade, 

permitindo que o modelo GBM aprendesse padrões mais eficazes e superasse o desempenho obtido 

com dados reais. Em geral, os modelos treinados com dados sintéticos do Aurora apresentaram um 

desempenho competitivo, demonstrando o potencial do modelo para gerar dados sintéticos úteis 

em diversas aplicações de aprendizado de máquina. 

Cabe destacar que o uso de um modelo de IA Generativa SLM de forma local para a criação 

de dados sintéticos apresentou resultados satisfatórios mesmo com as limitações inerentes ao 

ambiente em que é aplicada, principalmente devido às restrições de hardware e arquitetura. O 

desempenho desse modelo pode ser comparável ao de soluções de mercado disponíveis em 

plataformas online, mesmo não dispondo dos mesmos recursos avançados e da infraestrutura 

robusta oferecida por grandes provedores, como OpenAI e Google. 

Essa convergência de resultados — baixas divergências, baixa diferença média, alta 

similaridade geral e, notavelmente, a preservação da estrutura interna validada estatisticamente — 

fornece forte evidência do sucesso da abordagem de fine-tuning. Assim, fica estabelecida a 

capacidade do modelo Aurora de produzir dados sintéticos de alta qualidade, que mimetizam de 

perto as características essenciais e relacionais dos dados de referência utilizados. 

 

4.6. Conclusão Geração dados Sintéticos com GenAI  

No gerenciamento de modelos de detecção de fraudes, as instituições financeiras aplicam 

critérios rigorosos para lidar com falsos positivos. Frequentemente, priorizam modelos com alto 

recall para garantir a detecção da maioria das fraudes, enquanto mantêm a precisão em um nível 

aceitável. Isso é crucial para evitar a sobrecarga dos sistemas de verificação e minimizar o impacto 

nos clientes. Do mesmo modo, devem implementar sistemas de pontuação de risco ou etapas 
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adicionais de verificação para transações sinalizadas, ajudando a reduzir o impacto dos falsos 

positivos. É essencial, portanto, realizar uma análise custo-benefício que pondere os prejuízos 

associados a falsos positivos e falsos negativos, ajustando o modelo conforme necessário para 

otimizar o retorno geral. 

Conforme verificado na seção de geração de dados sintéticos com modelos tradicionais de 

inteligência artificial, os resultados evidenciam que os três métodos avaliados (SMOTE, GAN e 

VAE) são eficazes na geração de dados sintéticos, cada um com características distintas. O modelo 

GAN apresentou a melhor correspondência estatística com os dados originais, enquanto o SMOTE 

se destacou na preservação da correlação entre variáveis. A introdução de um termo de regularização 

baseado na correlação melhorou a aproximação entre os dados sintéticos e originais, e uma camada 

customizada de reamostragem foi essencial para otimizar a retropropagação do gradiente nos 

modelos baseados em redes neurais. A análise da Distância de Jensen-Shannon indicou que o 

SMOTE gera os dados sintéticos mais similares aos originais, seguido pelo GAN e pelo VAE. 

Contudo a divergência de Kullback-Leibler apontou uma inversão parcial, com SMOTE mantendo 

a liderança, mas com o VAE superando o GAN nesse critério. 

Em termos de desempenho, os modelos de redes neurais foram mais eficazes em cenários 

onde a normalização não afeta a interpretação dos resultados, enquanto o SMOTE mostrou 

superioridade ao garantir que os dados pudessem ser retornados à escala original. O VAE apresentou 

discrepâncias mais pronunciadas na preservação das correlações, tornando-o menos adequado para 

aplicações onde essa característica é essencial. Dessa forma, para cenários que exigem alta 

fidelidade na preservação da estrutura dos dados, recomenda-se o uso do SMOTE, seguido pelo 

GAN, com o VAE sendo utilizado com cautela devido à sua menor capacidade de replicar padrões 

de correlação. 

A geração de dados sintéticos por meio de engenharia de prompt em modelos de LLM 

demonstrou ser viável, embora tenha apresentado limitações importantes. Modelos como GPT-4o e 

Gemini 1.5 Pro apresentaram alto desempenho, manifestado pela baixa Distância de Jensen-

Shannon (0,04260 para GPT-4o) e alto Índice de Similaridade (0,9721 para GPT-4o), além de 

correlações significativas. No entanto, modelos como GPT o1 e GPT o3 mini-high tiveram 

desempenho inferior, e a aplicação de técnicas tradicionais como SMOTE mostrou-se problemática, 

exigindo a adoção demétodos alternativos como distribuições gaussianas e interpolação. Além disso, 

a capacidade limitada de processamento de tokens e a sensibilidade ao tamanho dos datasets 

impactaram negativamente a geração de dados sintéticos. 
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Apesar dos desafios, o uso de dados sintéticos gerados por LLMs mostrou potencial para 

melhorar o desempenho de modelos preditivos, especialmente em cenários desbalanceados. 

Modelos como GPT-4o e Gemini 1.5 Pro demonstraram eficácia na geração de dados 

representativos, superando as limitações técnicas e a insuficiência na quantidade de dados gerados 

(cerca de 50 exemplos, em média). A necessidade de agentes executores integrados nas plataformas 

de IA para otimizar a geração de dados sintéticos foi destacada, visando a superação das limitações 

atuais e aprimoramento da escalabilidade. 

Na sequência, ao aplicar o LLM com RAG para a geração de dados sintéticos, você aproveita 

a capacidade do modelo de linguagem em gerar texto coerente e contextualmente rico, enquanto o 

mecanismo de recuperação assegura que as informações relevantes e específicas das classes sub-

representadas sejam incorporadas, resultando em um dataset mais balanceado e um modelo preditivo 

mais robusto. 

O estudo dos modelos LLM com RAG destacam que a eficiência dessa abordagem é 

influenciada por diversos fatores, incluindo a capacidade de tokens dos modelos, a plataforma de 

execução (que deve suportar Python em Docker no backend) e o hardware disponível (memória e 

GPU). A implementação de um sistema RAG,  utilizando a biblioteca LangChain para orquestração 

entre o banco de dados vetorial e o modelo de geração, junto a plataformas como o LMStudio, 

demonstraram ser vantajosa, permitindo flexibilidade e adaptação a diferentes cenários. Modelos 

como GPT-4o e Qwen 2.5 7B apresentaram resultados promissores, com baixos índices de 

divergência (Jensen-Shannon de 0.07305 para GPT-4o) e alta similaridade (0.9534 para GPT-4o), 

evidenciando a eficácia da abordagem RAG na geração de dados sintéticos de alta qualidade. 

De forma complementar, a aplicação dos dados sintéticos gerados via RAG em tarefas de 

oversampling melhorou significativamente o desempenho de modelos de classificação, 

especialmente Árvores de Decisão (DT) e Gradient Boosting Machine (GBM), sendo o modelo 

OpenAI-4o o que se destacou. No entanto, a regressão logística (LR) apresentou resultados mais 

instáveis. A pesquisa também apontou variações na eficácia dos modelos em relação à execução de 

código Python e à consistência dos dados gerados, influenciadas por fatores como o limite de tokens 

e a técnica de amostragem utilizada. Verificou-se também a necessidade de aprimorar e manter o 

ambiente de execução dos modelos para otimizar o desempenho dos LLMs e SLM locais em 

cenários práticos de geração de dados sintéticos com RAG. 

Nesse contexto, o modelo Aurora se destaca como uma inovação significativa, um projeto 

focado no desenvolvimento de uma IA generativa especializada na criação de dados sintéticos de 
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alta fidelidade. 

reais. A análise conjunta de métricas quantitativas valida robustamente o processo de fine-

tuning e confirma a proficiência do modelo Aurora na geração de dados sintéticos de alta fidelidade 

a partir da base Qwen 2.5 7B. Os resultados são convincentes e consistentes, com baixa Distância 

de Jensen-Shannon (0.1310) e Divergência Kullback-Leibler (0.1114), atestando a similaridade 

distributiva dos dados gerados. 

Os resultados obtidos demonstram a capacidade do modelo Aurora na produção de dados 

sintéticos de alta qualidade, que mimetizam de perto as características essenciais e relacionais dos 

dados de referência utilizados. A convergência de resultados - manifestada pelas baixas 

divergências, baixa diferença média (Mean Absolute Difference de 0.1356), alta similaridade geral 

(Índice de Similaridade de 0.8644) e a preservação da estrutura interna (Teste de Mantel com 

correlação de 0.8372 e p=0.001) - valida estatisticamente o sucesso da abordagem de fine-tuning. 

Além disso, a análise comparativa do desempenho de modelos preditivos treinados com dados 

sintéticos gerados pelo modelo Aurora e dados originais revela resultados promissores, com o 

modelo GBM alcançando uma precisão de 90,32%, recall de 77,78% e AUC de 0,89751, 

demonstrando o potencial do modelo para gerar dados sintéticos úteis em diversas aplicações de 

aprendizado de máquina. 
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Resumo 

Este estudo apresenta a aplicação de modelos não supervisionados de detecção de anomalias em 

produtos de seguridade no setor financeiro, com o objetivo de superar limitações das abordagens 

tradicionais de monitoramento interno. A ausência de dados rotulados impôs desafios significativos 

à validação dos modelos, exigindo abordagens alternativas, como pseudo-supervisão e amostragem 

especializada, para viabilizar a análise de desempenho. Através do treinamento do modelo com 

algoritmos de aprendizado de máquina, como autoencoder e isolation forest, busca-se alcançar uma 

performance superiores na detecção de irregularidades as técnicas tradicionais de amostra 

estratificada de controles internos. A interpretabilidade dos resultados foi analisada com a aplicação 

do SHAP value, os quais revelaram contribuições negativas significativas de variáveis operacionais 

críticas: atrasos em etapas processuais (SHAP ≈ -1,03), altas taxas de desistência recentes (SHAP ≈ 

-2,42) e perdas financeiras acumuladas (SHAP ≈ -1,94), todas indicando padrões consistentes com 

riscos operacionais imediatos de acordo com os especialistas e fazem sentido negocial. A análise de 

interpretação via SHAP Waterfall complementou ao demonstrar a discrepância entre o valor 

esperado da saída do modelo (E[f(x)] = 14,843) e a predição observada (f(x) = 8,332), explicada 

principalmente pelas variáveis críticas mencionadas. Em outro exemplo, perdas contratuais 

acumuladas (SHAP = -1,94) e inadimplência recorrente (SHAP = -1,38) foram os principais 

determinantes do desvio, enquanto atributos de alto valor nominal, como transações de grande 

montante, exerceram pouco impacto. Esses resultados reforçam a coerência negocial da modelagem, 

pois os fatores de risco identificados alinham-se com expectativas práticas do domínio financeiro. 

Apesar da precisão satisfatória (0,3135), o modelo apresentou baixo recall (0,0922), refletindo a 

dificuldade em capturar a totalidade das perdas operacionais, mas mantendo alta especificidade 

(0,8918) e acurácia global de 61,27%. Os achados indicam ganhos operacionais relevantes, com 

redução de falsos positivos e fortalecimento do processo decisório por meio de insights acionáveis. 

Recomenda-se o uso de estratégias complementares, como ajuste de limiares, aprendizado 

semissupervisionado e fine-tuning com feedback especializado, para aprimorar o desempenho e 

adaptabilidade dos sistemas em ambientes complexos e dinâmicos. A pesquisa contribui para a 

evolução de práticas de monitoramento de riscos no setor financeiro, demonstrando o potencial da 

inteligência artificial na detecção proativa de condutas irregulares, promovendo maior segurança, 

eficiência e confiabilidade institucional. 

 

 

Palavras -chave: anomalias; perdas operacionais; não supervisionado; relacionamento com 

clientes; prevenção; 

 

 

5.1. Introdução 

O mundo financeiro moderno opera em uma escala e complexidade sem precedentes, com 
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uma imensidão de transações ocorrendo a cada segundo. Em um ambiente tão dinâmico e 

interconectado, bancos e instituições financeiras enfrentam o constante desafio de garantir a 

integridade e autenticidade de cada operação, detectando anomalias para prevenir fraudes, manter a 

confiança do cliente e evitar perdas financeiras. 

A identificação de anomalias, ou padrões que se desviam da norma, surge como um 

mecanismo vital para detectar e prevenir atividades fraudulentas. Esta prática não só serve como 

uma barreira contra possíveis ameaças, mas também como uma ferramenta para melhorar a 

confiabilidade e eficiência das operações financeiras. No âmbito das instituições financeiras, a 

detecção de anomalias surge como um elemento crítico na salvaguarda da integridade das operações 

e na preservação da confiança dos stakeholders. À medida que o ambiente bancário se torna cada 

vez mais digitalizado, interconectado e complexo, a capacidade de identificar e responder 

prontamente a atividades atípicas assume uma importância sem precedentes. 

A detecção de anomalias refere-se ao processo de identificar padrões em um conjunto de 

dados que não se conformam ao comportamento esperado. Estas "anomalias" ou "outliers" podem 

ser indicativas de uma variedade de eventos, desde erros de dados até atividades fraudulentas. No 

contexto bancário, onde a precisão das transações é fundamental, a identificação precoce de tais 

irregularidades pode ser a diferença entre uma operação segura e um potencial desastre financeiro. 

Torna-se evidente que os modelos de detecção de anomalias não são mais um luxo, mas uma 

necessidade estratégica. As abordagens tradicionais, que muitas vezes dependem de regras rígidas 

ou limiares predefinidos, estão rapidamente se tornando obsoletas. Em contraste, métodos 

modernos, muitas vezes ancorados em aprendizado de máquina e análise de big data, oferecem 

flexibilidade, adaptabilidade e precisão sem paralelo. 

A natureza intrincada das transações financeiras, aliada à complexidade das atividades 

fraudulentas, impõe desafios específicos (Hilal et al., 2022; Zamini & Hasheminejad, 2019; Zhang 

et al., 2022). Um dos principais obstáculos é o desbalanceamento dos dados, uma vez que a grande 

maioria das transações é legítima, enquanto as fraudes representam apenas uma pequena fração. 

Esse desequilíbrio pode comprometer a capacidade dos modelos de detecção de anomalias, 

resultando em falsos positivos que, além de gerar incômodo aos clientes, exigem revisões manuais 

desnecessárias e elevam os custos operacionais. 

Outro desafio relevante é o a interpretabilidade dos modelos: para ganhar a confiança dos 

tomadores de decisão, os modelos precisam ser transparentes e facilmente interpretáveis. Técnicas 

complexas de aprendizado de máquina, como redes neurais profundas, muitas vezes são vistas como 



182  

"caixas-pretas", tornando difícil entender suas decisões. Soma-se a isso, o desafio da baixa latência 

(entendida como o atraso de tempo entre o momento em que uma ação é iniciada (ou um dado é 

enviado) e o momento em que essa ação é concluída (ou o dado é recebido/processado): em 

ambientes bancários que operam em tempo real, os modelos precisam processar informações e tomar 

decisões em milissegundos. Garantir essa velocidade sem comprometer a precisão impõe um 

elevado custo de implementação, visto que o desenvolvimento, treinamento e manutenção de 

modelos sofisticados, especialmente aqueles que empregam tecnologias emergentes, podem ser 

onerosos. emergentes. 

Neste contexto, o presente artigo tem como objetivo, desenvolver modelos analítico de 

detecção de anomalias em produtos de bancários utilizando técnicas de aprendizado de 

máquina, e verificar se esses modelos superam as abordagens tradicionais de monitoramento 

de controles internos. Para tanto, serão utilizados dados de um banco nacional, com aplicação 

prática dos modelos e mensuração dos resultados obtidos. 

Este estudo busca avançar o conhecimento acadêmico ao aprofundar e expandir 

investigações anteriores sobre detecção de anomalias em bancos e instituições financeiras, tema de 

crescente relevância diante dos desafios contemporâneos de segurança e conformidade regulatória. 

A pesquisa justifica-se pela lacuna existente na literatura quanto à aplicação prática e à eficácia das 

principais técnicas de detecção em cenários com ausência de dados rotulados, uma realidade comum 

no setor financeiro. Como contribuição, o trabalho propõe o aprimoramento de métodos já 

consolidados, realiza testes empíricos com modelos desenvolvidos, analisa criticamente os 

resultados obtidos e apresenta soluções viáveis e fundamentadas para superar limitações atuais. Ao 

enfatizar o potencial dos modelos de detecção de anomalias, o artigo reforça sua utilidade prática e 

seu papel estratégico no fortalecimento dos mecanismos de monitoramento e prevenção de 

irregularidades, oferecendo subsídios teóricos e aplicados para futuras pesquisas e implementações 

no campo. 

Com a implementação dessas abordagens analíticas, espera-se ampliar a abrangência do 

monitoramento de atipicidades, tanto aquelas discutidas na literatura acadêmica quanto as 

observadas no sistema financeiro. O uso de técnicas modernas de analytics para detecção de 

anomalias permite uma atuação preventiva, com potencial para redução de perdas operacionais, 

mitigação do risco de conduta e levantamento de informações para retroalimentação dos processos 

de gestão de risco e de controles internos. 

 A implementação bem-sucedida desses modelos não só fortalece a segurança contra fraudes, 
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mas também impulsiona a confiança do cliente e eficiência operacional. Trata-se, portanto, de um 

fator crítico para garantir a integridade das operações nas instituições financeiras. Tal 

monitoramento busca encontrar operações financeiras incomuns que possam indicar ilícitos e 

negócios não sustentáveis como: venda casada, operações feitas apenas para bater meta que depois 

são canceladas/estornadas; operações sem o conhecimento do cliente; entre outros. Tais operações 

podem indicar riscos operacionais ou legais e a perdas operacionais para os clientes e para o banco.  

O desenvolvimento e aplicação de modelos analíticos para atipicidades em negócios não 

sustentáveis está de acordo com a Resolução CMN Nº 4.949, de 30 de setembro de 2021, que dispõe 

sobre princípios e procedimentos a serem adotados no relacionamento com clientes e usuários de 

produtos e de serviços. Nesta Resolução, fica estabelecido que as instituições devem instituir 

mecanismos de acompanhamento, de controle e de mitigação de riscos relacionados ao cumprimento 

da política de relacionamento, onde cada cliente deve ter ofertado seu produto e serviço de acordo 

com seu perfil. 

Dessa forma, há atuação preventiva, com potencial para redução de perdas operacionais, 

mitigação do risco de conduta e levantamento de informações para retroalimentação dos processos 

de gestão de risco e de controles internos. 

 

5.2. Revisão da Literatura   

5.2.1. Anomalias  

A detecção de anomalias em instituições financeiras desempenha um papel crucial na 

identificação de atividades fraudulentas e na garantia da segurança e integridade dos dados. 

Para esse fim, utilizam-se modelos analíticos voltados à verificação de atividades incomuns ou 

comportamentos anômalos em conjuntos de dados. Esses modelos aplicam algoritmos 

sofisticados baseados em técnicas estatísticas e de aprendizado de máquina para fornecer 

insights valiosos no combate a fraudes e proteção das operações financeiras 

Os modelos analíticos com uso de técnicas de machine learning fornecem uma 

abordagem sistemática e automatizada para detectar essas anomalias. Segundo Chalapathy e 

Chawla (2019), essas técnicas podem ser combinadas para aumentar a sensibilidade na detecção 

de anomalias e reduzir falsos positivos. 

As principais técnicas de análise de anomalias buscam identificar transações que diferem 

significativamente do padrão normal de comportamento. Entre os algoritmos mais utilizados nesse 

contexto, destacam-se o One-Class Support Vector Machine (OC-SVM), Autoencoders, Support 
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Vector Machines (SVM) e o DBSCAN (Density-Based Spatial Clustering of Applications with 

Noise). 

De modo mais abrangente, Hilal et al. (2022) apresentam estudo que revisa uma variedade 

de técnicas de detecção de anomalias aplicadas à detecção de fraudes financeiras. Isso inclui 

métodos estatísticos, aprendizado de máquina, mineração de dados e abordagens baseadas em 

inteligência artificial. Cada técnica é discutida em termos de sua aplicabilidade, vantagens e 

desvantagens na detecção de fraudes financeiras. Além disso, o artigo apresenta avanços recentes 

na detecção de fraudes financeiras, como o uso de técnicas de detecção de anomalias baseadas em 

redes neurais, algoritmos genéticos e aprendizado de máquina profundo. Essas abordagens 

avançadas facilitam a identificação de padrões complexos e sutis associados a fraudes financeiras, 

aprimorando a capacidade de detecção e prevenção de atividades fraudulentas.  

Dando suporte ao tema, destaca-se o recente trabalho de Bakumenko e Elragal (2022) que 

aborda a importância da detecção de anomalias em dados financeiros e apresenta uma revisão 

abrangente de algoritmos de aprendizado de máquina aplicados a essa tarefa. Os autores 

argumentam que as técnicas tradicionais podem ser insuficientes diante do volume e da velocidade 

com que os dados financeiros são gerados atualmente. O estudo ressalta a importância da preparação 

adequada dos dados, do ajuste de hiperparâmetros e do tratamento de conjuntos de dados 

desequilibrados no contexto da detecção de anomalias. Deste modo, os autores exploram algoritmos 

como k-means, Isolation Forest, Autoencoders e One-Class Support Vector Machines (OC-SVM), 

cujas vantagens e limitações são discutidas em diferentes contextos financeiros. 

No que se refere a modelos de detecção de anomalias não supervisionados, objeto deste 

trabalho, dois modelos foram treinados no estudoi de Bakumenko e Elragal (2022): Isolation Forests 

e autoencoders. O Isolation Forest foi avaliado com base em scores de anomalia e para decidir quais 

pontos de dados seriam considerados anomalias, um threshold (limiar estatístico foi estabelecido a 

partir desses mesmos scores. Os pontos de dados com scores acima desse threshold foram rotulados 

como anomalias, enquanto aqueles com scores abaixo foram considerados normais. Já os 

autoencoders, utilizam redes neurais para redução de dimensionalidade e reconstrução de dados. O 

modelo é treinado para reconstruir os dados normais com alta precisão, de modo que desvios na 

reconstrução de dados pode indicar uma anomalia. A diferença entre os dados originais e os dados 

reconstruídos foi calculada como um erro de reconstrução para cada ponto de dados no conjunto de 

teste. Quanto maior esse erro, maior a suspeita de anomalia (Bakumenko e Elragal, 2022). 

O trabalho de Zhang et al. (2021) apresenta um framework unificado e abrangente para a 
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detecção de anomalias em séries temporais multivariadas. O framework proposto, denominado 

AURORA, integra várias técnicas de detecção e propõe uma solução robusta que combina diferentes 

técnicas e abordagens. Os resultados mostram sua eficácia na identificação de anomalias, 

proporcionando insights valiosos para a detecção precoce de eventos anômalos sendo projetado para 

lidar com os desafios específicos das séries temporais multivariadas, como a dependência entre as 

variáveis e a heterogeneidade dos padrões de anomalias. Além disso, os experimentos indicam que 

AURORA supera outras abordagens existentes na identificação precisa de eventos anômalos (Zhang 

et al., 2021). 

O estudo realizado por Zhang et al. (2022) apresenta uma abordagem otimizada para lidar 

com conjuntos de dados desequilibrados na detecção de fraudes em cartões de crédito. Como as 

fraudes são relativamente raras em comparação com as transações normais, os autores empregam 

técnicas de reamostragem, como oversampling e undersampling, para equilibrar as classes de fraude 

e não fraude.  Isso permite que os modelos de detecção de anomalias aprendam adequadamente com 

ambos os tipos de instâncias. Os resultados demonstram uma melhora significativa na precisão e na 

taxa de detecção de fraudes, confirmando a eficácia da abordagem proposta. A precisão e a taxa de 

detecção de fraudes são significativamente aprimoradas, demonstrando a eficácia da abordagem 

proposta (Zhang et al., 2022). 

Neste contexto, Zhou et al. (2021) aborda o problema da detecção de anomalias em redes 

dinâmicas atribuídas. Redes dinâmicas atribuídas são redes que evoluem ao longo do tempo e 

possuem atributos associados a seus nós e arestas. A detecção de anomalias nesse contexto é 

importante para identificar comportamentos anômalos ou atividades suspeitas em diferentes 

aspectos das redes. 

Os autores propõem um novo método para detecção de anomalias em redes dinâmicas 

atribuídas, que combina a análise de atributos e a análise de topologia da rede. A abordagem utiliza 

aprendizado de máquina para modelar e identificar padrões normais de comportamento na rede, 

permitindo a detecção de anomalias quando ocorrem desvios significativos desses padrões. Além 

disso, para lidar com a natureza dinâmica da rede, onde os padrões evoluem ao longo do tempo, os 

autores apresentam uma estratégia baseada em janelas deslizantes, que captura variações no 

comportamento da rede e ajusta continuamente o modelo de detecção de anomalias. Os resultados 

experimentais mostram a eficácia do método em diferentes cenários de aplicação (Zhou et al., 2021). 

No que se refere a modelos de detecção de anomalias não supervisionado, Zong et al. (2018) 

apresenta proposta de um modelo numa arquitetura denominada "DAGMM" (Deep Autoencoding 
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Gaussian Mixture Model). A metodologia aplicada envolve a utilização de redes autoencoder para 

reduzir a dimensionalidade dos dados, seguida pela modelagem da distribuição gaussiana nos 

espaços de características de baixa dimensão. A principal inovação do DAGMM é seu treinamento 

de ponta a ponta, que permite que a rede de estimativa e a rede de compressão melhorem 

mutuamente seu desempenho. 

Para avaliar o desempenho do modelo DAGMM, Zong et al. (2018) utilizaram métricas, 

como a precisão, a recall e o F1-score. Os resultados indicam que que o modelo supera outras 

técnicas de detecção de anomalias, em benchmarks públicos, alcançando até 14% de melhoria no 

F1-score. A arquitetura DAGMM demonstrou superioridade na detecção de anomalias em diversos 

conjuntos de dados, incluindo KDDCUP, Thyroid, Arrhythmia e KDDCUP-Rev. Em particular, a 

DAGMM mostrou uma alta capacidade de detectar anomalias em situações em que outras técnicas 

tiveram dificuldade. Como conclusão, os autores afirmam que o modelo DAGMM é uma abordagem 

eficaz para a detecção de anomalias em dados de alta dimensão. Além disso, destacam a importância 

de considerar a relação entre os hiperparâmetros na função objetivo do DAGMM para otimizar o 

desempenho (Zong et al., 2018). 

Em um trabalho relevante fora da área de finanças, Schlegl et al. (2017) aborda a detecção 

de anomalias em imagens médicas utilizando Redes Adversariais Generativas Profundas (Deep 

Generative Adversarial Networks - GANs). O foco principal foi desenvolver um modelo capaz de 

identificar anomalias em dados não vistos anteriormente, treinando-o exclusivamente em imagens 

saudáveis. Os autores propõem um modelo, batizado de AnoGAN, que utiliza dados normais para 

aprender a representação de imagens saudáveis. Com base nesse processo, eles introduzem uma 

métrica de pontuação de anomalia, que quantifica a diferença entre as imagens reais e as imagens 

geradas, permitindo a identificação de padrões anômalos. 

O desempenho do modelo proposto foi avaliado usando-se a curva ROC (Receiver Operating 

Characteristic) e a Área sob a Curva ROC (AUC) e métricas tradicionais, como precisão, recall, 

sensibilidade e especificidade. Além disso, os autores destacam a "Perda Residual" que mede a 

dissimilaridade visual entre a imagem real de consulta e a imagem gerada pelo modelo. Os autores 

concluem, que o modelo foi capaz de detectar diferentes anomalias conhecidas, como fluido 

retiniano e HRF (Hyperreflective Foci), mesmo sem tê-las visto durante o treinamento.  

Além disso, o método utiliza AnoGAN (Anomaly GAN), um modelo baseado em Redes 

Adversariais Generativas (GANs) para detecção de anomalias em imagens médicas, que se mostrou 

capaz de gerar imagens médicas realistas e identificar diferenças notáveis entre imagens normais e 
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anômalas (Schlegl et al., 2017). 

Por fim, Goldstein e Uchida (2016), realizaram uma avaliação abrangente de 19 diferentes 

algoritmos de detecção de anomalias não supervisionados em 10 conjuntos de dados oriundos de 

diversos domínios de aplicação. A análise desses algoritmos é mais complexa do que na 

classificação supervisionada tradicional. O estudo abrange diversas abordagens, incluindo aqueles 

baseados em vizinhos mais próximos, clustering, estatísticas, densidade e outros métodos. Os 

algoritmos foram avaliados segundo métricas como precisão, sensibilidade, estabilidade e 

velocidade de processamento. 

Os autores indicam para avaliação de algoritmos de detecção de anomalias não 

supervisionados classificar os resultados de acordo com a pontuação da anomalia e depois aplicar 

iterativamente um limite do primeiro ao último rank. Isso resulta em N valores de tupla (taxa de 

verdadeiros positivos e taxa de falsos positivos), que formam a curva ROC (Receiver Operating 

Characteristic). A área sob a curva (AUC), a integral da ROC, é utilizada como métrica de 

desempenho da detecção. Muitas vezes, um parâmetro k precisa ser ajustado. Goldstein e Uchida 

(2016) sugerem testar múltiplos valores de k e reportar a média e o desvio padrão da AUC como 

estratégia para otimização. 

Os resultados indicaram variação significativa no desempenho dos algoritmos, dependendo 

do objetivo do modelo. Os pesquisadores recomendaram o uso de métodos baseados em vizinhos 

mais próximos, como o k-NN, para tarefas de detecção de anomalias globais, e o LOF para detecção 

de anomalias locais. No entanto, observou-se que o desempenho dos algoritmos também dependia 

da natureza do conjunto de dados e das características do problema em questão. Portanto, as 

recomendações foram adaptadas às necessidades específicas de cada aplicação (Goldstein e Uchida, 

2016). 

 

5.2.2. Desafios e Considerações  

Ao analisar a bibliografia apresentada, observa-se a recorrente proposta de criação de 

modelos analíticos híbridos para mitigar o risco operacional, reduzir perdas com fraudes e minimizar 

a ocorrência de falsos negativos. Dentre esses modelos híbridos, destacam-se aqueles que combinam 

aprendizado de máquina com regras de negócio, ou que integram dois ou mais modelos analíticos 

em sequência, visando maior precisão na detecção de fraudes. Também se verifica o forte uso de 

técnicas avançadas como redes neurais e deep learning. 

 Os principais desafios na detecção de fraudes incluem o desbalanceamento dos dados, a 
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evolução constante dos métodos fraudulentos, necessidade de detecção em tempo real, 

interpretabilidade dos modelos e a predominância de abordagens supervisionadas.  

O desbalanceamento ocorre porque a maioria das transações é legítima, o que dificulta o 

treinamento de modelos que consigam identificar fraudes sem gerar muitos falsos positivos ou 

negligenciar casos suspeitos. Além disso, as fraudes evoluem constantemente, exigindo que os 

modelos sejam atualizados regularmente para detectar novos padrões e evitar ataques que exploram 

vulnerabilidades humanas, como a engenharia social. Já a necessidade de detecção em tempo real 

impõe desafios técnicos, pois os modelos precisam ser rápidos e eficientes sem comprometer a 

precisão. 

A interpretabilidade dos modelos também é um obstáculo, especialmente quando se utilizam 

técnicas avançadas de inteligência artificial, que muitas vezes funcionam como "caixas-pretas". Isso 

pode dificultar a aceitação por parte de instituições financeiras e reguladores, que precisam confiar 

nos modelos para a tomada de decisões.  

Outro ponto crítico é a predominância de modelos supervisionados, que exigem grandes 

volumes de dados rotulados para o treinamento. No entanto, a obtenção desses rótulos é cara, 

demorada e, em alguns casos, impraticável, visto que fraudes são eventos raros e em constante 

mutação. Essa dependência de dados rotulados limita a aplicabilidade dos modelos supervisionados 

em cenários reais, tornando necessário o desenvolvimento de alternativas mais flexíveis. 

Nesse contexto, modelos não supervisionados surgem como uma solução promissora, pois 

conseguem identificar anomalias sem a necessidade de rótulos. Técnicas como clustering e 

autoencoders permitem que os modelos aprendam padrões normais dos dados e detectem desvios 

que possam indicar atividades fraudulentas. Além disso, esses modelos são mais adaptáveis a novos 

tipos de fraudes e podem operar em tempo real, tornando-os mais viáveis para cenários dinâmicos.  

 

5.3. Metodologia  

Paralelamente às fraudes, as anomalias representam potencial ameaça à estabilidade e 

segurança dos bancos. Anomalias podem surgir em diversas formas, desde transações atípicas 

até comportamentos de clientes que se desviam dos padrões habituais. Identificar tais anomalias 

é essencial para prevenir atividades suspeitas, como corrupção, lavagem de dinheiro, 

financiamento ao terrorismo e outros delitos financeiros. Portanto, a capacidade de detectar 

anomalias em tempo real e adotar medidas proativas para mitigar os riscos associados é crucial 

para a estabilidade e a credibilidade de qualquer instituição financeira. 
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As abordagens de detecção de anomalias são aplicadas para identificar comportamentos 

atípicos ou não conformes nas transações financeiras. Esses modelos utilizam técnicas como a 

distância de Mahalanobis, Isolation Forest, SVM, Auto Encoders e densidade local para 

identificar padrões incomuns nos dados. Embora sejam eficazes na detecção de anomalias, 

esses modelos podem gerar um número significativo de falsos positivos devido à dificuldade 

em definir limites claros entre comportamentos normais e anormais (Bakumenko & Elragal, 

2022; Hilal et. al., 2022; Zhang et al., 2022) 

No trabalho deste capítulo, aplicaremos técnicas de aprendizado de máquina com 

abordagens de detecção de anomalias seguindo os modelos não supervisionados. 

Após revisar a literatura, foram desenvolvidos modelos analíticos não supervisionados 

focando em produtos de capitalização. Para tal, foi aplicado três modelos analíticos de detecção 

de anomalias, apresentados a seguir, ao qual sua descrição foi apresentada no capítulo dois 

desta tese: 

• Isolation Forest: A metodologia Isolation Forest fundamenta-se na construção de 

múltiplas árvores de decisão para identificar anomalias. Nela, as observações atípicas 

são aquelas que requerem um número significativamente menor de partições para serem 

isoladas em um nó da árvore (Liu et al., 2008). 

• COPOD: é uma metodologia para identificação de anomalias que utiliza cópulas para 

gerar um score de atipicidade. A utilização de cópulas nos permite utilizar distribuições 

de probabilidade marginais de cada variável separadamente da estrutura de dependência 

presente entre as variáveis presentes no conjunto de dados (Li et al, 2020). 

• Fully connected Autoencoder: É um tipo especial de rede neural que busca aprender uma 

representação eficiente do conjunto de dados, mesmo em cenários de alta 

dimensionalidade. Nesse contexto, estudos anteriores, como os de Legrand et al. (2018) 

e Xu et al. (2018), destacam métodos promissores para lidar com tais desafios.  

 

Por se tratar de modelos de machine learning não supervisionados, a avaliação de 

performance dos modelos será feita sob o aspecto negocial comparativamente a técnicas e processo 

atualmente estabelecidos na instituição financeira. Esta avaliação, dentro deste arcabouço 

experimental, será em três etapas destacadas a seguir:   

1. Interpretabilidade SHAP do modelo: Esta etapa, aplicada ao algoritmo de Isolation 

Forest, explica a contribuição de cada variável na saída interpretativa de cada uma 
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das variáveis utilizadas no modelo. Representa uma primeira verificação do 

alinhamento negocial das descobertas. 

2. Consistência Negocial: Envolve a avaliação de especialistas em fraudes e controles 

internos. Eles analisarão os casos mais anômalos utilizando os gráficos SHAP value 

e SHAP Waterfall, com o objetivo de validar o sentido negocial das variáveis 

apontadas como mais importantes, contrastando-as com os métodos tradicionais de 

controle. 

3. Avaliação da consistência com as práticas de monitoramento de movimentações não 

convencionais: Consiste no cruzamento dos casos considerados anômalos de cada 

modelo com a regra de monitoramento atualmente existentes nas equipes de 

fiscalização e controles internos específica do produto aplicado. Este processo visa 

verificar o ganho de eficiência e possibilitou a geração de uma 'base-teste' com dados 

rotulados para análise estatística. Tal etapa é considerada crítica e importante para o 

processo, visto que atualmente demanda processamento manual e limitação de 

recursos, não sendo possível fiscalizar cem porcento das propostas. Assim o atual 

método baseia-se em amostragem estratificada por conveniência, ou seja, por regras 

que possui hoje taxa de acerto que varia de 15 a 20% das amostras. A ótica 

apresentada é de identificar perda operacional para o cliente e/ou banco. 

Nesta última etapa, após avaliação manual dos especialistas, será realizada avaliação de 

performance estatística dos modelos por meio das métricas de acurácia, precisão e recall, conforme 

aplicado por Zhang et al. (2022) e Zong et al. (2018) e com base na área sob a curva ROC (AUC) 

conforme Schlegl et al. (2017) e Goldstein e Uchida (2016). A realização desta avaliação é essencial, 

visto que, apesar de envolver técnicas de modelos não supervisionados, estamos diante de uma tarefa 

de classificação. O resultado do monitoramento será uma proxy do rótulo de classificação aplicada 

para inferir os indicadores de performance estatísticos típicos de modelos supervisionados. 

Deste modo, serão realizadas comparações das variáveis mais importantes e análise do 

sentido negocial.  O objetivo é confrontar os resultados obtidos pelos modelos desenvolvidos com 

os dos sistemas convencionais de detecção de fraudes da instituição financeira, visando discutir a 

aplicabilidade e eficácia desses modelos em ambientes reais. 

Os modelos de detecção de anomalias terão como objetivos a mitigação de perdas 

operacionais com o uso de inteligência analítica visando atuar como foco no monitoramento de 

padrões atípicos na comercialização de produtos de seguridade. 
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Tal monitoramento busca encontrar operações financeiras incomuns que possam indicar 

ilícitos ou serem inviáveis, tais como: venda casada, operações feitas apenas para bater meta que 

depois são canceladas/estornadas; operações sem o conhecimento do cliente; entre outros. Tais 

operações podem indicar riscos operacionais ou legais, levando a perdas para os clientes e para o 

banco. Dessa forma, a atuação do monitoramento é preventiva, com potencial para redução de perdas 

operacionais, mitigação do risco de conduta e o levantamento de informações para retroalimentação 

dos processos de gestão de risco e de controles internos. 

Tendo como premissa que a maior parte das contratações realizadas nas dependências da 

instituição financeira buscam alinhamento com os padrões éticos relacionados à Política de 

Relacionamento preconizada pelo Bacen conforme Resolução CMN Nº 4.949, foram criados escores 

de anomalia para quantificação do distanciamento do padrão usual para cada uma das contratações.  

 

5.3.1. Base de dados  

A amostra utilizada para desenvolvimento e treino dos modelos deste trabalho é composta por 

operações de capitalização contratadas de clientes pessoa física, disponibilizadas anonimizadas por 

uma intuição financeira nacional. Por se tratar de abordagem não supervisionada, ou seja, sem uma 

variável resposta, todas as operações são analisadas com o objetivo de se encontrar aquelas que são 

mais propensas a serem anomalias. 

O período de coleta de dados para treino dos modelos foi de janeiro/2022 a julho/2022. A 

contagem total de 417 mil operações no período. Para cada um dos contratos, foram levantadas 

informações sobre as partes envolvidas na comercialização dos produtos.  

Após as análises iniciais, processamentos dos dados e testes de consistência, foram 

identificadas 25 variáveis, utilizadas para aplicação dos modelos. Elas estão apresentadas no Quadro 

5.1 de forma consolidada para a confidencialidade do processo interno da instituição. 

Quadro 5.1 - Variáveis de Modelagem 

Tema das variáveis Quantidade  Descrição Geral do Tema 

Métricas de Cancelamento 

(Churn) 

8 Variáveis que medem taxas, percentuais ou indica-

dores de cancelamento de contratos/serviços por 

clientes e dependentes. 

Métricas Operacionais e Internas 8 Variáveis relacionadas a cancelamentos, captação e 

perdas financeiras associadas a funcionários ou ge-

rentes. 

Comportamento e Engajamento 

do Cliente 

3 Variáveis que descrevem interações do cliente com 

a instituição, como tempo de relacionamento e his-

tórico de reclamações. 
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Dados Demográficos do Cliente 3 Variáveis que caracterizam o perfil socioeconômico 

e etário dos clientes  

Métricas Financeiras e de Perda 

(Foco Cliente) 

3 Variáveis que quantificam perdas financeiras acu-

muladas ou eventos de resgate associados ao cli-

ente. 
Fonte: Elaboração do autor. 

 

Tabela 5.1 - Análise descritivas das variáveis – Base de treino dos modelos 

Variable mean std min 25% 50% 75% max IQR 

1 3,4203 6,71685 0 0 0 3 30 3 

2 0,00374 0,069614 0 0 0 0 5 0 

3 0,546133 0,907992 0 0 0 0,86 12 0,86 

4 0,004892 0,024868 0 0 0 0 1 0 

5 0,006001 0,012434 0 0 0 0,008621 0,269231 0,008621 

6 0,003556 0,021556 0 0 0 0 1 0 

7 0,004479 0,010548 0 0 0 0,006283 0,263393 0,006283 

8 0,003735 0,015071 0 0 0 0 0,613095 0 

9 0,184902 1,23274 0 0 0 0 12 0 

10 30,6359 50,68056 0 0 11 43 731 43 

11 0,29524 1,460998 0 0 0 0 135 0 

12 0,005341 0,025516 0 0 0 0 1 0 

13 0,005271 0,020064 0 0 0 0,00578 1 0,00578 

14 10317,08 40764,72 0 2098,005 4596,405 9375,538 3333276 7277,533 

15 58,80535 15,92075 16 48 61 71 103 23 

16 3,688894 1,552705 0 3 3 5 9 2 

17 0,004617 0,021732 0 0 0 0 1 0 

18 0,003391 0,018454 0 0 0 0 1 0 

19 0,001925 0,043832 0 0 0 0 1 0 

20 36,32097 723,4677 0 0 0 0 74810,56 0 

21 0,001339 0,032177 0 0 0 0 5,24292 0 

22 360,712 34,78419 0 365 365 365 365 0 

23 998,3492 2766,951 0 0 200 970,85 95616,67 970,85 

24 0,005179 0,021506 0 0 0,001168 0,00537 3,42647 0,00537 

25 0,003898 0,009918 0 0 0,00039 0,004305 0,759246 0,004305 

Fonte: Elaborado pelo autor 

 

O Quadro 5.1 fornece uma visão estruturada das variáveis selecionadas para a modelagem, 

categorizando-as em cinco temas principais. Observa-se uma concentração de variáveis nas 

categorias "Métricas de Cancelamento (Churn)" e "Métricas Operacionais e Internas", ambas com 8 

variáveis, indicando um foco significativo na mensuração direta do fenômeno de churn e nos fatores 

internos da organização que podem influenciá-lo. As categorias subsequentes, "Comportamento e 

Engajamento do Cliente", "Dados Demográficos do Cliente" e "Métricas Financeiras e de Perda 
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(Foco Cliente)", contêm 3 variáveis cada, sugerindo a incorporação de aspectos relacionados às 

interações do cliente, seu perfil socioeconômico e o impacto financeiro associado, totalizando 25 

variáveis. Essa distribuição temática evidencia uma abordagem multifacetada para compreender os 

determinantes do cancelamento, abrangendo desde indicadores diretos até características 

contextuais e operacionais. 

A análise descritiva exposta na Tabela 5.1 revela características cruciais da base de treino 

para a modelagem. Evidencia-se uma acentuada heterogeneidade nos dados, marcada por 

expressivas disparidades de escala entre variáveis e uma forte predominância de assimetria positiva 

– muitas com mediana de valor zerado e valores médios/máximos consideravelmente superiores. 

Essa configuração sugere a presença de outliers e distribuições não normais, tornando imperativas 

etapas de pré-processamento, como escalonamento e transformações adequadas, para garantir a 

validade e otimizar o desempenho dos modelos subsequentes. 

Com base na análise visual dos histogramas fornecidos na Figura 5.1, observa-se uma 

confirmação gráfica robusta das características identificadas na análise descritiva numérica. A 

maioria expressiva das variáveis demonstra uma severa assimetria à direita, visualizada pela 

concentração maciça de dados na primeira classe (usualmente em torno de zero) e uma cauda longa 

que se estende para valores elevados, sugerindo a presença de outliers e a não aderência à 

distribuição normal. As distintas escalas nos eixos horizontais entre os gráficos também são 

evidentes, reforçando a heterogeneidade nas ordens de grandeza.   

Esta representação gráfica sublinha a criticidade da etapa de pré-processamento, indicando 

a necessidade de transformações para corrigir a assimetria e de escalonamento para normalizar as 

diferentes magnitudes das variáveis antes da aplicação em algoritmos de modelagem. 
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Figura 5.1 – Histograma distribuição das variáveis de modelagem 

 

Fonte: Elaboração própria. 
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Figura 5.2 – Estatísticas descritivas – Box Plot – Base de treino dos modelos 

 

Fonte: Elaboração própria. 
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Figura 5.3 – Matriz de correlação entre as variáveis 

 

Fonte: Elaborado pelo autor 

  

A matriz de correlações visualizada na Figura 5.3 indica que, de modo geral, as relações 

lineares entre a maioria das variáveis são fracas, com coeficientes predominantemente próximos de 

zero. No entanto, identificam-se focos de correlação positiva moderada a forte, como entre as 

variáveis 4 e 6 (0.82), 5 e 7 (0.66), e 17 e 18 (0.73), além de associações relevantes entre 8 e 13 

(0.57) e 11 e 12 (0.53). Correlações negativas significativas são virtualmente inexistentes. Essa 

configuração aponta para a existência de multicollinearidade pontual entre alguns pares de variáveis, 

um fator que merece atenção na etapa de seleção de atributos e construção do modelo para assegurar 

sua estabilidade e interpretabilidade. 
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5.4. Resultados  

Esta sessão tem o objetivo de apresentar os resultados dos modelos desenvolvidos para 

cálculo de escores de anomalia em contratos formalizados de operações de produto de seguridade. 

Será apresentado os dataset utilizado, incluindo suas variáveis, e os resultados obtidos sob as três 

perspectivas de avaliação previamente apresentadas na metodologia. As métricas de performance 

dos modelos, como de precisão, recall e AUC dos modelos são apresentados e discutidos de forma 

complementar na sessão de consistência com práticas de monitoramento de movimentações não 

convencionais. 

 

5.4.1. Desenvolvimento dos modelos e discussão dos resultados  

Para cada segmento, foi desenvolvido um modelo ensemble. Os três modelos escolhidos para 

compor o Ensemble, foram: Isolation Forest, Copula-Based Outlier Detection (COPOD) e Fully 

connected AutoEncoder conforme técnicas e algoritmos apresentados na seção 3 desta tese.  

Iniciou-se o processo de modelagem com a seleção de atributos relevantes para a 

identificação de operações não convencionais. Para a execução desta etapa, escolheu-se o modelo 

de Isolation Forest por ser uma metodologia implementada com a ferramenta interpretativa  SHAP, 

conforme Lundberg et al (2017). A análise dos summary plots permite observar o comportamento 

das variáveis criadas em relação a detecção de anomalias, passando uma maior segurança na escolha 

de informações relevantes dentro do contexto do projeto.  

Após a seleção das informações relevantes, estas foram utilizadas para ajustar um novo 

Isolation Forest. Em seguida, esse mesmo conjunto de variáveis relevantes foi empregado no ajuste 

dos modelos COPOD e AutoEncoder, completando o ensemble. 

Os escores foram construídos com base em variáveis relacionadas à promoção da 

sustentabilidade e alinhamento com o objetivo da instituição financeira. Os dados utilizados 

compreendem informações sobre produtos, clientes, funcionários, dependências, administradores de 

dependência e relacionamento com os clientes. 

Desenvolvidos os três modelos individualizados, foram seguidos os três passos apresentados 

na metodologia para avaliação da qualidade do modelo para o uso proposto: i) interpretabilidade 

Shap; ii) consistência negocial com Shap whaterfall; e iii) consistência com as práticas de 

monitoramento de movimentações não convencionais.  

https://shap.readthedocs.io/en/latest/index.html
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5.4.1.1.Interpretabilidade via SHAP  

Observando o eixo vertical, notamos a listagem das variáveis utilizadas no modelo, enquanto 

o eixo horizontal indica o impacto que cada variável exerce na saída do modelo, em termos de valor 

de SHAP. As cores das marcas de dispersão (vermelho e azul) representam, de modo geral, valores 

altos e baixos das variáveis, respectivamente. Quanto maior a amplitude dos valores de SHAP para 

uma variável, maior a sua relevância para o comportamento do modelo na identificação de pontos 

atípicos. 

 A Figura 5.4  apresenta os resultados da análise de SHAP (Shapley Additive Explanations), 

que revela a contribuição individual de cada variável para a detecção de anomalias.  

Observando o eixo vertical, notamos a listagem das variáveis utilizadas no modelo, enquanto 

o eixo horizontal indica o impacto que cada variável exerce na saída do modelo, em termos de valor 

de SHAP. As cores indicam o valor da variável: vermelho para valores altos e azul para valores 

baixos. Quanto maior a amplitude dos valores de SHAP para uma variável, maior a sua relevância 

para o comportamento do modelo na identificação de pontos atípicos. 

 

Figura 5.4 – SHAP Value Modelo 
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Fonte: Elaboração própria. 

 

A análise dos valores SHAP indica que as variáveis com maior impacto negativo no modelo 

(próximas de -3,5) estão fortemente associadas a fatores operacionais e comportamentais. As 

principais influências negativas incluem indicadores relacionados a processos internos, como 

atrasos, cancelamentos em categorias específicas e métricas financeiras críticas. Esses atributos 

sugerem que o modelo é altamente sensível a falhas em fluxos operacionais e à recorrência de perdas 

ou desistências, o que reflete diretamente na sua capacidade de identificar padrões anômalos. 

Além disso, variáveis associadas a cancelamentos administrativos e contratuais apresentam 

contribuições significativas, apontando que descontinuidades abruptas, independentemente do tipo 

de cliente ou serviço, têm papel relevante na geração de alertas no modelo. 

Por outro lado, variáveis com valores SHAP mais próximos de zero demonstram menor 

impacto na predição. Entre elas, estão características demográficas, indicadores de desempenho 

positivo ou eventos históricos pontuais de perda, cuja influência sobre o desfecho do modelo é 

limitada. Essas observações reforçam que o foco da inteligência preditiva está concentrado em 

evidências atuais e recorrentes de risco.  

Também é importante notar a presença de variáveis que capturam oscilações 

comportamentais recentes, como variações mensais em serviços ou volumes de cancelamento por 

grupos específicos. Tais variações podem sinalizar tendências emergentes e alterações no perfil de 

risco ao longo do tempo. 

 

5.4.1.2.Consistência Negocial das Variáveis com Shap whaterfall  

Para validar a coerência das anomalias detectadas com as regras de negócio, utilizou-se a 

visualização Shap Waterfall aplicada ao modelo Isolation Forest. A Figura 5.5 e Figura 5.6 

registram os resultados dessa abordagem, detalhando os fatores de maior escore de atipicidade 

calculada pelo modelo AutoEncoder e a maior atipicidade condicionada à classificação de anomalia 

do modelo COPOD.  
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Figura 5.5 - Exemplo SHAP Waterfall – Maior Anomalia -Autoencoder 

 

Fonte: Elaboração própria. 

A análise do gráfico SHAP Waterfall apresentado na Figura 5.5 - Exemplo SHAP Waterfall – 

Maior Anomalia -Autoencoder, referente à maior anomalia detectada por um AutoEncoder, 

exemplifica os fatores críticos que contribuíram para a classificação atípica da instância. O valor 

esperado do modelo, E(f(x)) = 14.843, contrasta significativamente com a saída f(x) = 8.332, 

indicando um desvio acentuado característico de anomalia. Os valores SHAP negativos destacam as 

variáveis que mais reduziram a previsão do modelo, sendo “Tendência de Instabilidade em 

Relacionamento" (SHAP = -2.42) e "Histórico Recente de Oscilação de Vida" (SHAP = -2.05) as 

principais responsáveis por essa redução. Essas variáveis sugerem problemas operacionais, como 

atrasos em processos críticos e taxas elevadas de cancelamento, que se alinharam a padrões 

anômalos. Além disso, variáveis como "Descontinuidade Administrativa Atual" e "Dimensão de 

Maturidade Pessoal" apresentaram impacto neutro ou positivo limitado (SHAP próximo de zero ou 

positivo), insuficientes para compensar os efeitos negativos dominantes.   

A técnica SHAP Waterfall, neste contexto, descreve visualmente como cada variável 

contribui para a diferença entre a saída esperada e o resultado observado, oferecendo transparência 

à decisão do AutoEncoder. No cenário de detecção de anomalias, essa interpretabilidade é crucial 

para validar se o modelo identifica padrões coerentes com riscos operacionais ou financeiros. O 

AutoEncoder, ao reconstruir os dados com alto erro nesta instância, sinaliza uma discrepância 

estrutural, enquanto o SHAP quantifica o papel específico de cada variável nessa discrepância. Essa 

combinação permite não apenas a identificação da anomalia, mas também a priorização de ações 
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corretivas com base nas variáveis mais impactantes, reforçando a eficácia do modelo em cenários 

práticos de gestão de riscos. 

 

Figura 5.6 - Exemplo SHAP Waterfall – Maior Anomalia – COPOD 

 
 Fonte: Elaboração própria. 

 A análise da Erro! Fonte de referência não encontrada.Figura 5.6, referente ao exemplo 

SHAP Waterfall aplicado à maior anomalia detectada pelo modelo COPOD, evidencia os principais 

fatores que contribuíram para a classificação atípica da instância. O valor esperado E(f(x)) = 

14.843 contrasta drasticamente com f(x) = 5.484, indicando um desvio significativo. As variáveis 

com maior impacto negativo são " Descontinuidade Vinculada a Perfil Interno" (SHAP = -

1.94) e "Intensidade Monetária da Interação" (SHAP = -1.38).   

Esses valores destacam que contratos com prejuízos acumulados e intensidade monetária 

altos são críticos para a detecção da anomalia. Adicionalmente, métricas percentuais 

como "indicador de Complexidade" (0.104) e "Desvio Relacional Agregado" (1.29) reforçam 

padrões de risco operacional e financeiro. Variáveis como "Latência Inicial de Interação" 

(+.11) e Historico Recente de Oscilação de Vínculo (-0,11)" têm contribuições neutras ou pouco 

expressivas, confirmando que o modelo prioriza desvios associados a custos diretos e inadimplência. 

A partir da análise individualizada entende-se que os resultados dos testes do modelo 

COPOD retornou valores mais consistentes com a expectativa dos analistas sobre a possibilidade de 

anomalias. Enquanto o caso da Figura 5.5Erro! Fonte de referência não encontrada. foi 

considerado anômalo por conta de percentuais de cancelamentos elevados em uma baixa quantidade 

de contratações, o da Figura 5.6 considerou um comportamento atípico o conjunto entre as diversas 
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variáveis. 

 

5.4.1.3.Consistência com Práticas de Monitoramento de Movimentações não 

Convencionais  

Por se tratar de um modelo não supervisionado, a ausência de rótulos (labels) para as 

anomalias é uma das maiores dificuldades em sistemas reais de detecção de fraudes ou anomalias. 

Não ter um “ground truth” dificulta o treinamento do modelo (ou a escolha de hiperparâmetros) e 

principalmente a avaliação quantitativa do desempenho. 

Uma das estratégias mais viáveis é a amostragem dirigida com especialistas. Nela, 

subconjuntos de dados (estratificados ou não) são selecionados aleatoriamente para análise humana. 

Por exemplo, em cenários antifraude, analistas especializados podem classificar manualmente 

registros como "normais" ou "anômalos", criando um ‘testbed’ limitado. Embora o custo operacional 

seja elevado — especialmente em grandes volumes —, mesmo amostras modestas permitem estimar 

métricas parciais e ajustar o modelo. Contudo, é crucial reconhecer que não há soluções universais: 

a avaliação permanece incompleta sem anomalias previamente validadas.  

Nesse contexto, alocar recursos para rotulação pontual, priorizando casos críticos ou 

suspeitos, emerge como uma prática equilibrada. Ao direcionar esforços para rotular um 

subconjunto estratégico, obtém-se uma base para calcular indicadores de desempenho e refinar o 

algoritmo iterativamente, mitigando riscos de supervisão enviesada ou incompleta. 

Considerando a verificação manual realizada pelos especialistas, para geração de uma base-

teste, identificou-se entre as operações confirmadas como anômalas aquelas que efetivamente 

resultaram em resgates de perdas operacionais para os clientes no resgate. Para efeito de verificação 

manual, forma analisadas operações que foram indicadas como anômalas pelas três modelos. Além 

disso, como critério negocial de marcação, foram consideradas casos frequentemente seguidos de 

recontratações do mesmo produto, evidenciando um descasamento de interesses e caracterizando 

práticas não sustentáveis. 

Esse padrão reforça a importância da análise de monitoramento sob a perspectiva da perda 

operacional, permitindo a identificação de movimentações não convencionais que podem 

comprometer a integridade do sistema e a segurança financeira dos clientes. 

Deste modo, dentre as operações que foram marcadas como anômalas, 39,5% realmente 

geraram perdas, ou seja, a taxa de acerto dos modelos de anomalias com perdas operacionais, foi de 
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0.394464. Em outras palavras, de todas as operações que ele apontou como casos de anomalias nas 

operações, aproximadamente quarenta porcento geraram perda financeira para os clientes. 

Este critério negocial é caracterizado pela política de relacionamento com o cliente, que visa 

ofertar produtos de acordo com o perfil e necessidade do cliente. Um dos indícios de negócios não 

sustentáveis é quando o produto é resgatado/cancelado antes do prazo e geram perdas financeiras 

para o cliente. Conforme informado pelos especialistas, a taxa de aproximadamente 40% é bastante 

superior ao método tradicional de amostra estratificada de controles internos, com uso de regras, 

que possui média de sucesso de 15% a 20%. 

A detecção de anomalias em cenários não supervisionados representa um desafio 

significativo, especialmente quando há limitações de recursos para a verificação manual das 

ocorrências identificadas. Nesse contexto, a estratégia adotada priorizou a precisão do modelo, 

buscando reduzir a quantidade de falsos positivos e, assim, minimizar a necessidade de revisões 

manuais excessivas.  

Os modelos para anomalias adotados neste experimento buscaram melhor precisão embora o 

recall fique baixo.  Isso significa que das operações que o modelo aponta como anômalas, a maior 

parte deles é realmente passível de perdas operacionais. Em contraposição, há outras perdas 

operacionais de valor do cliente que não são detectados pelo modelo indicadas pelo baixo recall. Por 

fim, para avaliação final sob a ótica da perda operacional, foi considerado o horizonte temporal 

dentro de um período de até 15 meses após a proposta, o que pode ter trazer desvio da marcação de 

baixo recall, pois muitos resgates do produto são exercidos em 12 meses, gerando perda operacional, 

mas não necessariamente uma anomalia para o modelo. Os resultados da matriz de confusão entre 

as indicações do modelo de anomalias versus as apuradas pelos especialistas constam na Tabela 5.2. 

 

Tabela 5.2 - Performance dos modelos de anomalias após verificação dos especialistas 

Métrica Valor 

Precisão 0.313543 

Recall 0.092194 

F1-Score 0.142490 

Acurácia 0.612729 

Especificidade 0.891790 

AUC 0.491992 

Fonte: elaborado pelo autor. 
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Os resultados apresentados na Tabela 5.2 indicam que a precisão do modelo foi de 0,3135, 

sugerindo que aproximadamente 31% das anomalias identificadas realmente correspondem a 

padrões atípicos confirmados pelos especialistas. Entretanto, o recall de 0,0922 revela que o modelo 

conseguiu detectar apenas 9,2% das perdas operacionais no produto existentes, demonstrando uma 

limitação na abrangência da detecção.  

A especificidade de 0,8918 indica que a maioria dos casos normais foi corretamente 

classificada, enquanto a acurácia global de 61,27% reforça a importância de analisar métricas mais 

específicas, uma vez que a predominância de casos normais pode inflacionar esse indicador. 

Dada a priorização da precisão, o modelo evita um volume excessivo de falsos positivos, o 

que é crucial quando há restrições para a revisão manual das anomalias detectadas. No entanto, a 

baixa pontuação F1-Score de 0,1425 evidencia um desequilíbrio entre precisão e recall, indicando 

que muitos outros casos de perdas não foram identificadas. Esse resultado sugere a necessidade de 

ajustes no modelo para melhorar a detecção das anomalias sem comprometer excessivamente a 

precisão. 

O AUC (0.4919), um indicador da capacidade do modelo de distinguir padrões normais de 

anômalos, mostra um desempenho próximo ao aleatório, o que sugere dificuldades na separação 

entre esses grupos. Esse resultado pode estar relacionado à natureza dos dados e à ausência de um 

treinamento supervisionado, que poderia fornecer padrões mais claros para a classificação. 

Em análise do sentido negocial do observado alto número de resgates gerando perda 

operacional para o cliente, os especialistas alegaram que há diversos motivos para que este fenômeno 

ocorra sem caracterizar uma operação anômala ou não sustentável.  

Estratégias como o refinamento dos limiares de decisão, o uso de técnicas de aprendizado 

semissupervisionado ou a combinação de diferentes algoritmos de detecção podem ser consideradas 

para aprimorar o desempenho global do sistema. Dessa forma, a abordagem adotada deve equilibrar 

a detecção eficiente de anomalias e a viabilidade operacional da revisão manual, garantindo um 

impacto positivo na mitigação de riscos. 

 

 

5.5. Conclusão modelos de anomalias 

Este trabalho aplicou modelos de detecção de anomalias ao desenvolver modelos empíricos 

não supervisionados, voltados para produtos de seguridade no setor financeiro. Utilizando dados de 
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um banco nacional e técnicas de aprendizado de máquina, os modelos propostos buscam superar as 

limitações das abordagens tradicionais de monitoramento interno, oferecendo soluções inovadoras 

para desafios práticos identificados tanto na academia quanto na indústria. A implementação bem-

sucedida desses sistemas não apenas amplia a capacidade de identificar movimentações não 

convencionais, como perdas financeiras e operacionais, vendas casadas ou operações canceladas, 

mas também fortalece a segurança contra fraudes, a confiança dos clientes e a eficiência operacional, 

alinhando-se às demandas por métodos mais robustos e adaptáveis.   

A carência de dados rotulados ("ground truth") em modelos de detecção de anomalias não 

supervisionados representa um desafio crítico, pois inviabiliza a validação direta de desempenho e 

a calibração precisa dos algoritmos. Sem referências claras de normalidade ou anomalia, métricas 

tradicionais — como precisão e recall — tornam-se inacessíveis, comprometendo a confiança nas 

previsões do modelo. Essa limitação exige abordagens criativas para simular um conjunto de 

validação confiável, garantindo que o modelo não apenas identifique padrões atípicos, mas também 

se alinhe a expectativas práticas do domínio de aplicação.   

A análise de interpretabilidade via SHAP Values demonstrou, de forma transparente, a 

contribuição individual de variáveis na detecção de anomalias, destacando que métricas 

operacionais críticas — como atrasos em etapas processuais, taxas elevadas de desistência em 

períodos recentes e perdas financeiras acumuladas — tiveram impacto negativo significativo 

(valores próximos de -3,5), sinalizando padrões associados a riscos imediatos. Por outro lado, 

atributos demográficos ou de desempenho positivo mostraram relevância marginal (SHAP próximo 

de zero), enquanto oscilações temporais em indicadores setoriais reforçaram a sensibilidade do 

modelo a mudanças comportamentais abruptas. A técnica SHAP evidenciou a priorização do 

algoritmo por fatores de risco operacional e financeiro, traduzindo complexidades técnicas em 

insights acionáveis para gestão proativa de anomalias, alinhada a estratégias de mitigação de perdas 

e otimização de processos críticos. Tais apontamentos são condizentes com o sentido negocial 

esperado para as variáveis. 

Em sequência, a análise de consistência negocial por meio do método SHAP Waterfall, 

identificou os principais fatores associados às anomalias detectadas pelos modelos. No primeiro 

caso, a discrepância entre o valor esperado (E(f(x)) = 14,843) e a saída observada (f(x) = 8,332) foi 

influenciada por variáveis operacionais críticas, como indicadores de cancelamento em períodos 

recentes (SHAP = -2,42) e atrasos em etapas processuais-chave (SHAP = -1,03), refletindo possíveis 

falhas em processos sistêmicos. No segundo modelo, o desvio significativo foi atribuído 
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principalmente a métricas financeiras críticas, como perdas contratuais acumuladas (SHAP = -1,94) 

e indicadores de inadimplência recorrente (SHAP = -1,38). Em ambos os cenários, variáveis com 

valores absolutos elevados (e.g., transações de alto montante) tiveram impacto reduzido, 

evidenciando que os modelos priorizam padrões de risco associados a custos diretos e interrupções 

operacionais, em detrimento de atributos contextuais ou métricas neutras.   

 Neste contexto, a abordagem adotada para a detecção de anomalias priorizou a precisão do 

modelo, reduzindo a quantidade de falsos positivos e minimizando a necessidade de revisões 

manuais excessivas. Os resultados indicam que, embora a precisão tenha sido relativamente alta 

(0,3135), o recall foi baixo (0,0922), sugerindo que apenas uma pequena parcela das perdas 

operacionais foi efetivamente identificada. A especificidade de 0,8918 demonstra que a maioria dos 

casos normais foi corretamente classificada, enquanto a acurácia global de 61,27% reforça a 

importância de considerar métricas específicas para avaliar o desempenho real do modelo. No 

entanto, a baixa pontuação F1-Score (0,1425) revela um desequilíbrio entre precisão e recall, 

indicando que muitas perdas operacionais aparecem, mas o modelo não os classifica diretamente 

como anomalia. Tal fato pode ser explicado pelo critério da equipe de especialistas sobre a marcação 

da perda operacional e financeira pelo cliente que pode ser diferente do critério monetário, onde 

muitos resgates podem ter sido realizados de forma consciente. Junta-se ao fato do horizonte 

temporal do modelo (15 meses) poder apresentar desvio na marcação de resgates visto ações 

automáticas após 12 meses. 

Apesar das limitações inerentes à ausência de dados rotulados, a integração de amostragem 

especializada e pseudo-supervisão oferecem um caminho viável para validar modelos não 

supervisionados. Essas abordagens não substituem um "ground truth" ideal, mas permitem criar 

marcos de referência dinâmicos, ajustáveis conforme novos dados ou feedback humano são 

incorporados. Ao combinar automação com intervenção estratégica, é possível transformar desafios 

de rotulação em oportunidades para desenvolver sistemas mais robustos e adaptáveis, capazes de 

evoluir em ambientes de incerteza e complexidade crescente. 

Dessa forma, é essencial buscar um equilíbrio entre a detecção eficiente e a viabilidade 

operacional, garantindo um impacto positivo na mitigação de riscos. Tais modelos apresentaram 

ganhos consistentes pois permitiram identificar variáveis na detecção de anomalias visando a 

prevenção de perdas operacionais em negócios não sustentáveis.  Adicionalmente, foi verificadaa 

consistência negocial, indicando futuras monitoramentos e retroalimentando o processo de indução 

da contratação deste tipo de operações, bem como trouxe aprimoramento na precisão e redução de 
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custos com ganhos operacionais no trabalho de amostragem. 

Diante desse cenário, é necessário aprimorar o modelo para melhorar a detecção das 

anomalias sem comprometer excessivamente a precisão. A análise do fenômeno revelou que nem 

todos os resgates que geram perdas operacionais são, de fato, anomalias ou operações insustentáveis, 

o que reforça a complexidade do problema.  

Para otimizar o desempenho do sistema, pode-se explorar estratégias como o ajuste dos 

limiares de decisão, a adoção de aprendizado semissupervisionado e a combinação de diferentes 

algoritmos. Para futuras pesquisas, sugerimos aprimorar o modelo atual com finetuning, utilizando 

o feedback dos especialistas para calibrar as múltiplas camadas da rede neural do modelo de 

anomalias, garantindo que ele reconheça os casos específicos detectados por eles e atenda melhor 

aos objetivos da área de controles internos. 

 Ao integrar técnicas modernas de ciência de dados, o estudo visa aprimorar a abrangência 

do monitoramento de riscos operacionais e legais, como práticas ilícitas ou negócios insustentáveis, 

que podem gerar perdas para clientes e instituições. A análise empírica dos resultados demonstra o 

potencial dos modelos para atuar preventivamente, mitigando riscos de conduta e retroalimentando 

processos de gestão de risco e controles internos. Assim, o trabalho não apenas confirma a eficácia 

das abordagens propostas, mas também estabelece um marco para a aplicação de inteligência 

artificial em contextos financeiros complexos, reforçando a necessidade de inovação contínua na 

detecção proativa de anomalias. 
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5. Considerações Finais 

A presente tese aborda a utilização de inteligência artificial na premente necessidade do 

setor financeiro por métodos e modelos inovadores para a detecção de fraudes e 

comportamentos atípicos, com ênfase na superação do desafio do desbalanceamento de classes. 

A motivação central reside na constante evolução das táticas fraudulentas, exigindo soluções 

computacionais avançadas para proteger instituições e clientes. A pesquisa investigou e 

desenvolveu abordagens que mitiguem as limitações dos métodos tradicionais, explorando o 

potencial da inteligência artificial, especialmente no que concerne à geração de dados sintéticos 

para o balanceamento de classes e à aplicação de técnicas de aprendizado não supervisionado. 

Para atingir seu objetivo principal esta tese estruturou-se em uma abordagem de 

múltiplos artigos e nos estudos de caso, utilizou-se de base de dados de uma instituição 

financeira nacional. Inicialmente,  

Os resultados apresentados nos artigos que compõem esta tese oferecem contribuições 

significativas para o campo da ciência de dados aplicada à detecção de fraudes. A exploração 

de técnicas de IA generativa para o balanceamento de dados representa um avanço promissor 

para lidar com a escassez de exemplos da classe minoritária, um problema recorrente na área. 

Tal técnica também pode ser aplicada em diversos outros fins, como disponibilização de dataset 

de forma a obedecer a privacidade dos dados. Adicionalmente, o desenvolvimento de um 

modelo de detecção de anomalias não supervisionado demonstra o potencial de identificar 

padrões atípicos sem a necessidade de dados previamente rotulados, o que pode ser 

particularmente útil em cenários onde a rotulagem é dispendiosa ou inviável. 

A revisão da literatura realizada, objeto do capítulo 3, visou mapear a produção científica 

voltada à detecção de fraudes em bancos, adotando uma abordagem que combinou revisão 

sistemática da literatura e análise de redes complexas. Com base em 227 estudos até dezembro 

de 2023, foram identificadas conexões entre os trabalhos por meio de citações, coautorias e a 

recorrência de palavras-chave, além de uma classificação detalhada segundo doze 

características. Essa metodologia permitiu não apenas a síntese do conhecimento atual, mas 

também a identificação de lacunas críticas, evidenciando a necessidade de novas abordagens 

que integrem métodos preditivos e análises descritivas para aprimorar a eficiência dos sistemas 

de segurança bancária. 

Os resultados indicam que técnicas de aprendizado de máquina, frequentemente 

combinadas com métodos estatísticos ou regras de negócios em modelos híbridos, são as mais 
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utilizadas para a detecção de fraudes. Além disso, o estudo destaca a ausência de publicações 

voltadas à prevenção de fraudes decorrentes da engenharia social, bem como destacou os 

desafios comuns na literatura sobre o tema, em destaque a base de dados desbalanceada, a 

necessidade de dados rotulados para modelos de classificação e interpretabilidade.  Em síntese, 

a revisão sistemática não só consolida os métodos comprovadamente eficazes na detecção e 

análise de fraudes, mas também propõe uma agenda de pesquisa que incentive o 

desenvolvimento de modelos generativos e abordagens inovadoras para lidar com os desafios 

dos dados desbalanceados e ampliar o escopo da prevenção de fraudes. 

No desenvolvimento de modelos para atuar na geração de dados sintéticos apresentado 

no capítulo 4, a análise comparativa dos métodos tradicionais de inteligência artificial para 

geração de dados sintéticos evidenciou inovações significativas, como o desenvolvimento do 

modelo Aurora de IA Generativa.  

Os modelos SMOTE, GAN e VAE demonstraram eficácia na geração de dados 

sintéticos, cada um com vantagens específicas. O GAN apresentou a melhor correspondência 

estatística com os dados originais, enquanto o SMOTE se destacou na preservação das 

correlações entre variáveis, conforme evidenciado pelas métricas de Jensen-Shannon e 

Kullback-Leibler. 

A integração de modelos de linguagem de grande porte (LLMs) com abordagens de 

recuperação aumentada (RAG) utilizando modelos como GPT-4o e Gemini 1.5 Pro, superou 

limitações técnicas tradicionais, gerando dados com alta similaridade e baixa divergência 

estatística. O uso de frameworks como LangChain e plataformas como LMStudio contribuiu 

para a criação de conjuntos de dados mais balanceados, impulsionando os métodos de 

oversampling e aprimorando o desempenho preditivo. 

O small language model (SLM) Aurora desenvolvido destacou-se pelo seu caráter 

inovador ao ser especificamente refinado por meio de fine-tuning, direcionado para a criação 

de dados sintéticos de alta fidelidade. Essa abordagem personalizada possibilitou a replicação 

não apenas das características estatísticas, mas também da estrutura intrínseca dos dados reais, 

comprovada por métricas quantitativas robustas. O modelo Aurora demonstrou alta eficácia na 

geração de dados sintéticos, com baixa divergência estatística (Jensen-Shannon e Kullback-

Leibler) e elevada similaridade com os dados reais. Esses resultados reforçam seu potencial 

como uma ferramenta promissora para aplicações preditivas, contribuindo significativamente 

para o avanço da literatura sobre modelagem sintética. 



210  

Destaca-se também como um achado relevante deste estudo, que a aplicabilidade local 

de um modelo de IA Generativa SLM para criação de dados sintéticos mostrou-se eficaz, 

mesmo diante de limitações de hardware e arquitetura. Verificou-se que os resultados são 

influenciados pela limitação da quantidade tokens disponíveis por modelo, ambiente de 

aplicação dos modelos, memória, docker de IDE de código, GPUs e outras questões de 

infraestrutura. 

Por fim, no capítulo 5 este trabalho desenvolveu e aplicou modelos empíricos não 

supervisionados de detecção de anomalias em produtos de seguridade no setor financeiro, 

utilizando dados de um banco nacional e técnicas avançadas de aprendizado de máquina. Os 

métodos propostos buscam superar as limitações das abordagens tradicionais de monitoramento 

interno, ampliando a capacidade de identificar movimentações atípicas que podem resultar em 

perdas financeiras e operacionais. A análise detalhada, utilizando técnicas como SHAP e SHAP 

Waterfall, evidenciou a importância de variáveis operacionais e financeiras críticas, 

demonstrando de forma transparente a influência de indicadores como atrasos processuais, 

cancelamentos recentes e perdas acumuladas, além de revelar o impacto de fatores de risco e a 

necessidade de calibrar os modelos para alinhar os resultados às expectativas práticas do 

domínio. 

Além disso, a pesquisa destacou a importância de equilibrar a precisão do modelo com 

a viabilidade operacional, evidenciando desafios como a ausência de dados rotulados que 

dificulta a validação direta dos algoritmos. Estratégias inovadoras, como a integração de 

amostragem especializada, pseudo-supervisão e ajustes de limiares de decisão, foram propostas 

para aprimorar a detecção das anomalias sem comprometer a precisão, bem como a utilização 

de métodos semissupervisionados e fine-tuning com feedback de especialistas. Tais avanços 

não só fortalecem a mitigação de riscos operacionais e a segurança contra fraudes, mas também 

estabelecem um marco para a aplicação contínua de inteligência artificial em contextos 

financeiros complexos, promovendo melhorias significativas nos processos de controle e gestão 

de riscos. 

Por fim, cabe ressaltar que este trabalho de pesquisa buscou atender aos requisitos de 

originalidade, ineditismo e relevância ao investigar e propor soluções para os desafios 

persistentes na detecção de fraudes bancárias. As contribuições da tese abrangem desde o 

levantamento do estado da arte até o desenvolvimento e aplicação empírica de modelos 

inovadores, com foco no tratamento do desbalanceamento de classes através da geração de 
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dados sintéticos com IA generativa e na exploração de modelos não supervisionados. Os 

resultados obtidos possuem implicações práticas relevantes para a indústria financeira, 

auxiliando, com uso de inteligência artificial no aprimoramento de modelos de mitigação de  

fraudes, além de fomentar futuras pesquisas na área. 
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Anexo 1 – Aplicação de LLM via Prompt 

 

Figura 0.1 – Correlação entre as variáveis reais e geradas – LLM GPT4 ADA 

 

Fonte: elaboração própria 

Figura 0.2 – Correlação entre as variáveis reais e geradas – o3-mini-high 

 

Fonte: elaboração própria 
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Figura 0.3 – Correlação entre as variáveis reais e geradas – LLM Gemini 

 

Fonte: elaboração própria 

Figura 0.4 – Correlação entre as variáveis reais e geradas – LLM Claude 3 Opus 

 

Fonte: elaboração própria 

Figura 0.5 – Correlação entre as variáveis reais e geradas – LLM Claude 3.5 Sonnet 
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Fonte: elaboração própria 

Figura 0.6 – Correlação entre as variáveis reais e geradas – LLM GPT o1 

 

Fonte: elaboração própria 

Figura 0.7 – Correlação entre as variáveis reais e geradas – LLM Gemini 2.0 advanced 

 

Fonte: elaboração própria 
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Figura 0.8 – Correlação entre as variáveis reais e geradas – LLM Llama 3.1 70B 

 

Fonte: elaboração própria 

Figura 0.9 – Correlação entre as variáveis reais e geradas – LLM Llama 3.1 405B 

 

Fonte: elaboração própria 

Figura 0.10 – Correlação entre as variáveis reais e geradas – LLM DeepSeek 

 

Fonte: elaboração própria 
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Figura 0.11 – Correlação entre as variáveis reais e geradas – LLM Mistral 

 

Fonte: elaboração própria 

Figura 0.12 – Correlação entre as variáveis reais e geradas – DeepSeek R1 

 

Fonte: elaboração própria 

Figura 0.13 – Correlação entre as variáveis reais e geradas – Qwen2.5 

 

Fonte: elaboração própria 
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Figura 0.14 – Estatísticas descritivas – Box Plot – Modelo GPT ADA 

 

Fonte: elaboração própria 
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Figura 0.15 – Distribuição das variáveis - Modelo GPT ADA 

 Fonte: 

elaboração própria 
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Figura 0.16 – Estatísticas descritivas – Box Plot – Modelo GPT o3-mini-high 

  

Fonte: elaboração própria 
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Figura 0.17 – Distribuição das variáveis – Modelo GPT o3-mini-high 

 

Fonte: elaboração própria 
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Figura 0.18 – Distribuição das variáveis – Modelo GPT Gemini 

 

Fonte: elaboração própria 
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Figura 0.19 – Estatísticas descritivas – Box Plot – Modelo Claude Sonnet 3.5 

  

Fonte: elaboração própria 
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Figura 0.20 – Distribuição das variáveis - Modelo Claude Sonnet 3.5 

 

Fonte: elaboração própria 
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Figura 0.21 – Distribuição das variáveis modelo GPT Claude 3 Opus 

 

Fonte: elaboração própria 
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Figura 0.22 – Estatísticas descritivas – Box Plot – Modelo GPT o1 

 

Fonte: elaboração própria 
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Figura 0.23 – Distribuição das variáveis – Modelo GPT o1 

 

Fonte: elaboração própria 
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Figura 0.24 – Estatísticas descritivas – Box Plot – Modelo Gemini 2.0 

 

Fonte: elaboração própria 
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Figura 0.25 – Distribuição das variáveis – Modelo Gemini 2.0 

 

Fonte: elaboração própria 
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Figura 0.26 – Estatísticas descritivas – Box Plot – Modelo Llama 3.1 70B 

 

Fonte: elaboração própria 
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Figura 0.27 – Distribuição das variáveis – Modelo Lhama 3.1 70B 

 

Fonte: elaboração própria 
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Figura 0.28 – Estatísticas descritivas – Box Plot – Modelo Llama 3.1 405B 

 

Fonte: elaboração própria 
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Figura 0.29 – Distribuição das variáveis - Llama 3.1 405B 

 

Fonte: elaboração própria 
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Figura 0.30 – Estatísticas descritivas – Box Plot – Modelo Deepseek V3 

 

Fonte: elaboração própria 
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Figura 0.31 – Distribuição das variáveis – Modelo DeepSeek V3 

 

Fonte: elaboração própria 
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Figura 0.32 – Estatísticas descritivas – Box Plot – Modelo DeepSeek R1 

 

Fonte: elaboração própria 
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Figura 0.33 – Distribuição das variáveis – Modelo DeepSeek R1 

  

Fonte: elaboração própria 
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Figura 0.34 – Estatísticas descritivas – Box Plot – Modelo Mistral 

 

Fonte: elaboração própria 
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Figura 0.35 – Distribuição das variáveis – Modelo Mistral 

 

Fonte: elaboração própria 
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Figura 0.36 – Estatísticas descritivas – Box Plot – Modelo Qwen2.5 

 

Fonte: elaboração própria 
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Figura 0.37 – Distribuição das variáveis – Modelo Qwen 2.5 

 

Fonte: elaboração própria 
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Anexo 2 – Aplicação de LLM com RAG 

Figura 0.1 – Correlação entre as variáveis reais e geradas – LLM GPTo3 

 
Fonte: elaboração própria 

Figura 0.2 – Correlação entre as variáveis reais e geradas – LLM Llama 3.3 70B 

 
Fonte: elaboração própria 
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Figura 0.3 – Correlação entre as variáveis reais e geradas – LLM Llama 3.1 

 
Fonte: elaboração própria 

Figura 0.4 – Correlação entre as variáveis reais e geradas – LLM Qwen 2.5 7B 

 
Fonte: elaboração própria 
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Figura 0.5 – Correlação entre as variáveis reais e geradas – LLM DeepSeek R1 

 
Fonte: elaboração própria 


