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Resumo

A percepção precisa da cena de trânsito é essencial para a segurança e a eficácia dos
Sistemas Avançados de Assistência ao Condutor (ADAS), bem como para a transição rumo
à condução autônoma. Este trabalho investiga a fusão de dados entre sensores de câmera e
radar automotivo, utilizando a base de dados nuScenes, com foco na aplicação de técnicas
de fusão nos níveis baixo e médio, tendo como referência comparativa o detector de objetos
Faster R-CNN. Inicialmente, foi implementada a fusão de baixo nível por meio da Radar
Region Proposal Network (RRPN), na qual o radar é empregado como sensor principal na
geração de regiões de interesse. No entanto, essa abordagem apresentou desempenho inferior
ao do detector baseado exclusivamente em câmera, uma vez que objetos não detectados pelo
radar não são processados pela rede neural, comprometendo a robustez da detecção. Os
resultados indicaram que mais da metade das bicicletas e motocicletas anotadas na base
nuScenes não possuem qualquer ponto de radar associado; no caso dos pedestres, apenas
cerca de 20% apresentam ao menos um ponto detectável por esse sensor.

Em seguida, foi avaliada a fusão de características (médio nível), com a implementação do
módulo Spatial Attention Fusion (SAF) na arquitetura da rede. Os resultados demonstraram
melhorias consistentes nas métricas de desempenho, com destaque para ganhos de 1.64%
em AP75, 0.96% em AP50, 0.80% em AR e 1.36% em APs, indicando maior precisão na
localização das caixas delimitadoras e na detecção de pequenos objetos. Esses avanços
validam o potencial da fusão sensorial em nível de características como estratégia eficaz para
aprimorar a percepção em sistemas autônomos.

Palavras-chave: Fusão sensorial. Detecção de objetos. Camera. Radar.



Abstract

Accurate traffic scene perception is essential for the safety and effectiveness of Advanced
Driver Assistance Systems (ADAS), as well as for the transition toward autonomous driving.
This work investigates data fusion between camera and automotive radar sensors using the
nuScenes database, focusing on the application of low- and mid-level fusion techniques,
using the Faster R-CNN object detector as a benchmark. Initially, low-level fusion was
implemented using the Radar Region Proposal Network (RRPN), in which radar is used as
the primary sensor in generating regions of interest. However, this approach underperformed
the camera-only detector, since objects not detected by radar are not processed by the neural
network, compromising detection robustness. The results indicated that more than half of
the bicycles and motorcycles annotated in the nuScenes database do not have any associated
radar points; in the case of pedestrians, only about 20% have at least one point detectable by
this sensor.

Subsequently, mid-level feature fusion was evaluated through the implementation of the
Spatial Attention Fusion (SAF) module within the network architecture. The results showed
consistent improvements across performance metrics, with notable increases of 1.64% in
AP75, 0.96% in AP50, 0.80% in AR, and 1.36% in APs, indicating greater accuracy in bound-
ing box localization and enhanced detection of small objects. These advances validate the
potential of feature-level sensor fusion as an effective strategy to improve perception in
autonomous systems

Keywords: Sensor Fusion. Object Detection. Câmera. Radar.
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1 Introdução

Ocrescente aumento no volume de tráfego nas rodovias, aliado à ocorrência frequente
de congestionamentos, à presença de sinalizações ambíguas e à constante pressão imposta
pelas condições do trânsito, demanda o desenvolvimento de soluções capazes de aprimorar
a segurança, a eficiência e a comodidade na condução veicular. Nesse contexto, os Sistemas
Avançados de Assistência ao Condutor (ADAS) têm recebido atenção significativa por parte
da comunidade científica internacional.

Um dos pilares para o desenvolvimento de sistemas ADAS é a detecção robusta e em
tempo real de objetos presentes no ambiente rodoviário. Considerando que as condições
de condução em estradas são frequentemente complexas e imprevisíveis, é necessário que
os veículos estejam equipados com diferentes tipos de sensores capazes de fornecer uma
percepção confiável e abrangente do entorno do veículo (YU, Z. et al., 2018). Os sensores são
responsáveis pela coleta de dados que alimentam os sistemas computacionais embarcados,
os quais auxiliam nas decisões relacionadas à direção, frenagem e controle de velocidade
(KOCIC; JOVICIC; DRNDAREVIC, 2018). Entre os sensores mais utilizados na percepção
do ambiente rodoviário estão o RADAR (Radio Detection and Ranging), o LiDAR (Light
Detection and Ranging) e as câmeras.

A importância da percepção multissensorial ficou evidente em 2016, quando ocorreu,
na Flórida (EUA), o primeiro acidente fatal envolvendo um veículo equipado com o sistema
Autopilot da Tesla. A investigação indicou que o módulo de percepção visual interpretou
erroneamente a carroceria branca de um caminhão como parte do céu claro, falhando
na identificação do veículo pesado (LIU, Z. et al., 2022). Embora o sistema já integrasse
múltiplos sensores, incluindo radar, sua lógica de fusão descartou os sinais potencialmente
relevantes. Esse incidente evidenciou as limitações do uso isolado de sensores e os desafios
da integração multissensorial, ressaltando a importância da fusão adequada de dados para
maior confiabilidade na detecção de obstáculos e na compreensão do ambiente rodoviário.

A fusão de dados combina informações provenientes de diferentes sensores com o
objetivo de explorar seus pontos fortes e atenuar suas limitações. Além do reconhecimento
ambiental, essas tecnologias devem considerar fatores como tempo de resposta, custo e
disponibilidade dos sensores para produção em larga escala, bem como a robustez em
condições meteorológicas adversas. De modo geral, ao se aplicar a fusão de dados, busca-se
alcançar benefícios como redundância e complementaridade de informações, melhoria na
resposta temporal, tolerância a falhas e redução de custos (DARMS et al., 2010).
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Dentre os principais sensores utilizados para a percepção do ambiente de trânsito,
as câmeras se destacam pelo baixo custo, pela riqueza de informações e pela facilidade na
classificação de objetos. No entanto, apresentam limitações, como sensibilidade a variações
nas condições de iluminação e dificuldade em obter informações tridimensionais dos alvos
(LIU, Z. et al., 2022). Por outro lado, os radares são capazes de detectar objetos a distâncias
significativamente maiores e são altamente robustos em condições climáticas adversas. Além
disso, fornecem informações precisas sobre a velocidade dos objetos detectados, permitindo
prever sua trajetória e deslocamento (NABATI; HARRIS; QI, 2021). Ainda assim, os radares
apresentam limitações, como a baixa densidade dos pontos de detecção, o que dificulta a
estimativa de informações geométricas e a classificação precisa dos objetos (LIU, Y. et al.,
2022).

A fusão sensorial entre câmera e radar oferece vantagens relevantes, pois esses
sensores são complementares e amplamente utilizados na percepção automotiva. Essa
integração alia a alta resolução lateral das câmeras à robustez do radar frente a variações
de iluminação e condições climáticas, além de apresentar menor custo de produção em
comparação aos sensores LiDAR.

1.1 Justificativa

A percepção precisa do ambiente é um dos pilares fundamentais para a operação
segura e eficiente dos sistemas ADAS e veículos autônomos. Para atingir esse objetivo, os
sistemas modernos de percepção embarcada recorrem à integração de múltiplos sensores,
cujas características são, em grande parte, complementares. As câmeras fornecem infor-
mações visuais ricas em detalhes espaciais e semânticos, enquanto os radares oferecem
medições confiáveis de distância e velocidade, mesmo em condições adversas de iluminação
ou clima. No entanto, quando utilizados de forma isolada, esses sensores apresentam limita-
ções significativas: as câmeras são sensíveis a variações de iluminação, e os radares, embora
robustos, possuem baixa resolução espacial. Nesse contexto, a fusão sensorial surge como
uma estratégia promissora para combinar as vantagens individuais dos sensores e mitigar
suas limitações, ampliando a confiabilidade e a robustez dos sistemas de percepção.

A base de dados nuScenes foi escolhida por sua ampla adoção na comunidade ci-
entífica, o que possibilita a comparação direta dos resultados com diferentes métodos de
fusão para detecção 2D. Além de oferecer dados multissensoriais sincronizados e anota-
dos em cenários reais sob diversas condições meteorológicas, mostra-se particularmente
adequada a este estudo. Para a tarefa de detecção, adotou-se o Faster R-CNN, um detector
clássico e amplamente consolidado na literatura, reconhecido pela alta precisão em cenários
complexos. Embora existam arquiteturas mais recentes e otimizadas para execução em
tempo real, a escolha do Faster R-CNN se justifica por sua estabilidade e pelo uso recorrente
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como baseline em pesquisas de visão computacional. O objetivo não é comparar diferentes
detectores, mas avaliar o desempenho do mesmo algoritmo apenas com imagens de câmera
e, posteriormente, com fusão câmera-radar, isolando os efeitos da integração sensorial.

No que se refere à fusão entre os dados da câmera e do radar, foram selecionados
os métodos Radar Region Proposal Network (RRPN) e Spatial Attention Fusion (SAF). Essa
escolha fundamenta-se no levantamento do estado da arte, no qual essas abordagens apresen-
taram a melhor performance em seus respectivos níveis de fusão, configurando-se, portanto,
como representativas tanto da fusão em nível de dados (baixo nível) quanto da fusão em
nível de características (médio nível). A opção por não incluir também a fusão em nível
de decisão (alto nível) deveu-se não apenas ao curto tempo disponível para desenvolver
as três estratégias, mas igualmente ao fato de que, no levantamento realizado, não foram
identificadas implementações desse tipo que atendessem aos critérios definidos.

Dessa forma, este trabalho se justifica pela necessidade de investigar e desenvolver
técnicas eficazes de fusão de dados entre sensores de câmera e radar automotivo, com foco
especial nos níveis de fusão de dados (baixo nível) e de características (médio nível). A
pesquisa busca contribuir para o avanço da percepção multissensorial em sistemas ADAS e
veículos autônomos, oferecendo propostas compatíveis com arquiteturas modernas de visão
computacional e aplicáveis a cenários urbanos complexos.

1.2 Objetivos

1.2.1 Objetivo geral

Desenvolver e avaliar abordagens de fusão de dados em níveis baixo e médio entre
sensores câmera e radar automotivo, com o propósito de melhorar a acurácia da detecção de
objetos aplicada à percepção do entorno veicular.

1.2.2 Objetivos específicos

• Converter os dados da base de referência para um formato padronizado, compatível
com frameworks de detecção de objetos;

• Adaptar a implementação da fusão em nível baixo, baseada em técnicas de geração de
propostas a partir de dados de radar, para o framework selecionado;

• Modificar a arquitetura do framework de detecção de objetos baseado em imagens,
integrando também os dados de radar na rede de extração de características (backbone),
viabilizando a fusão em nível médio;

• Desenvolver uma representação espacial dos dados de radar em formato de imagem e
implementar a fusão de características no framework escolhido.
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2 Fundamentação teórica

Este capítulo apresenta os fundamentos teóricos que embasam o desenvolvimento
deste trabalho, com foco na detecção ambiental por meio da fusão sensorial e no uso de
redes neurais convolucionais para detecção de objetos. Na Seção 2.1, são introduzidos os
Sistemas Avançados de Assistência ao Condutor e os níveis de automação definidos para
a condução veicular. A Seção 2.2 discute os principais sensores utilizados na percepção da
cena de trânsito em sistemas ADAS baseados em visão, como câmeras, radares e LiDARs,
além dos diferentes níveis de fusão de informações multissensoriais. Em seguida, a Seção 2.3
aborda os detectores de objetos baseados em redes neurais convolucionais, com ênfase nos
modelos de um e dois estágios mais consolidados na literatura, detalhando suas arquiteturas,
mecanismos de detecção e contribuições para o avanço das soluções em visão computacional.

2.1 Sistemas Avançados de Assistência ao Condutor

Os Sistemas Avançados de Assistência ao Condutor tornaram-se indispensáveis nos
veículos modernos. Impulsionado pela crescente demanda por mobilidade, o trânsito tornou-
se cada vez mais complexo e, portanto, um desafio ainda maior para todos os usuários das
rodovias. O objetivo do ADAS é reduzir as consequências de um acidente, prevenir acidentes
de trânsito e, num futuro próximo, facilitar a condução totalmente autônoma (ZIEBINSKI
et al., 2016).

Esses sistemas têm demonstrado eficácia na redução de acidentes de trânsito ao
permitir a detecção antecipada de obstáculos, a emissão de alertas ao condutor e, em alguns
casos, a atuação direta sobre os controles do veículo, como frenagem e direção assistida
(PARK; YU, W., 2021). Por isso, muitos desses sistemas estão deixando de ser considera-
dos itens exclusivos de veículos de luxo e passando a compor o equipamento padrão em
automóveis de menor custo (ZIEBINSKI et al., 2016).

Atualmente, o desenvolvimento dos sistemas ADAS tem se voltado cada vez mais
à proteção de usuários vulneráveis nas rodovias, especialmente no contexto de veículos
comerciais (OTTO et al., 2012). A seguir, são apresentados alguns exemplos de aplicação
desses sistemas, conforme Ziebinski et al. (2016):

• Monitoramento de ponto cego (Blind Spot Detection – BSD):monitora as áreas
laterais próximas ao veículo que não são facilmente visíveis pelo motorista. Sua função
é alertar o condutor por meio de um sinal visual, como um ícone no espelho retrovisor
lateral, ou por um aviso sonoro, sempre que houver objetos presentes no ponto cego.
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• Alerta de tráfego cruzado traseiro (Rear Cross Traffic Alert – RCTA): auxilia na
prevenção de acidentes ao sair de uma vaga em marcha à ré, situação que pode fre-
quentemente resultar em colisões com pedestres ou ciclistas, ocasionando ferimentos
graves.

• Alerta de saída de faixa (LaneDepartureWarning – LDW):monitora asmarcações
laterais da via e detecta quando o veículo está prestes a sair da faixa de rodagem. Ao
analisar o movimento da direção, o sistema pode avaliar se a mudança de faixa foi
intencional ou não.

• Assistência à frenagem de emergência (Emergency Brake Assist – EBA): con-
tribui para a segurança ao oferecer suporte ativo à frenagem, incluindo a frenagem
automática em situações de risco iminente. Dessa forma, colisões traseiras podem
ser evitadas ou, ao menos, ter seus impactos reduzidos devido à menor velocidade e
energia de impacto.

• Controle de cruzeiro adaptativo com função Stop&Go (Adaptive Cruise Control
with Stop&Go – ACC+S&G):mantém automaticamente a distância em relação ao
veículo à frente, mesmo em condições de trânsito com paradas e retomadas. O sistema
pode alertar o condutor ou reduzir ativamente a velocidade se a distância se tornar
insuficiente, sendo especialmente útil em congestionamentos e situações de tráfego
intenso.

A progressiva incorporação de sistemas ADAS nos veículos modernos está direta-
mente relacionada à evolução dos níveis de automação na condução. Para padronizar essa
evolução, em 2014, a SAE International, introduziu o padrão J3016 “Níveis de Automação
de Condução” para os consumidores, apresentado na Tabela 1. O padrão J3016 define os seis
níveis distintos de automação de direção, começando pelo nível SAE 0, onde o motorista
tem total controle do veículo, até o nível SAE 5, onde os veículos podem controlar todos os
aspectos das tarefas de direção dinâmica sem intervenção humana (YEONG et al., 2021).

De acordo com a classificação da SAE J3016, a responsabilidade pela condução
permanece inteiramente com o condutor humano nos três primeiros níveis, ainda que os
sistemas de assistência, como controle de cruzeiro adaptativo e assistência de manutenção de
faixa, possam fornecer suporte parcial em determinadas tarefas. A partir do nível 3, o sistema
de condução passa a assumir o controle do veículo em cenários específicos, dispensando a
atuação do condutor enquanto o sistema estiver ativo. No entanto, no nível 3, ainda é exigida
a presença de um condutor habilitado, capaz de retomar o controle quando solicitado. Nos
níveis 4 e 5, o próprio sistema do veículo realiza todas as tarefas de direção. No nível 4, isso
acontece apenas em situações específicas e previamente definidas. Já no nível 5, o veículo
é totalmente autônomo e pode dirigir em qualquer situação, sem precisar da ajuda de um
condutor.
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Tabela 1 – SAE J3016 – Níveis de Automação da Direção (SAE INTERNATIONAL, 2019)

Categoria Nível 0 Nível 1 Nível 2 Nível 3 Nível 4 Nível 5

O que o
condutor
precisa
fazer?

Continuar dirigindo sempre que os recursos de assistên-
cia estão ativos, mesmo que não precise usar pedais ou
volante.

Não precisa assumir o controle da direção quando esses
sistemas estão ativos

Deve supervisionar constantemente os sistemas; devendo
frear, manobrar ou acelerar conforme necessário para
manter a segurança.

Quando solicitado
pelo sistema, deve-
se reassumir a dire-
ção.

Nenhuma ação será exigida do con-
dutor.

O que os
sistemas
fazem?

Apenas fornecem
alertas e assistência
momentânea.

Assistência na
direção ou na
frenagem/acele-
ração.

Assistência na direção
e na frenagem/acelera-
ção simultaneamente.

Dirigem o veículo
sob condições espe-
cíficas.

Dirigem sob con-
dições específicas,
sem necessidade de
condutor.

Dirigem em to-
das as condições
possíveis.

Exemplos
de siste-
mas

Frenagem automá-
tica de emergência;
Alerta de ponto
cego; Alerta de
saída de faixa.

Centralização de
faixa ouControle
de cruzeiro adap-
tativo

Centralização de faixa
e Controle de cruzeiro
adaptativo

Piloto automático
em congestiona-
mento

Táxi autônomo; Pe-
dais/Volante podem
ou não estar instala-
dos.

Igual ao nível 4,
mas aplicável em
qualquer local e
condição

Conforme destacado por Dimitrievski et al. (2019), alcançar os níveis mais avançados
de automação (níveis 4 e 5) exige não apenas uma integração completa entre hardware
e software, mas também o aprimoramento contínuo de algoritmos capazes de realizar a
detecção e o acompanhamento preciso de objetos. Esses sistemas devem ser suficientemente
robustos para operar com dados ruidosos, lidar com oclusões temporárias, comportamentos
imprevisíveis dos agentes no trânsito e eventuais falhas nos sensores. Assim, o avanço rumo
à direção totalmente autônoma depende diretamente da superação desses desafios técnicos
e da consolidação de soluções confiáveis para a percepção do ambiente.

2.2 Fusão de sensores para detecção ambiental

A combinação de dados provenientes de diferentes sensores, como câmeras, radares
e LiDARs, permite explorar informações complementares e redundantes, resultando em
maior exatidão, confiabilidade e robustez na percepção do ambiente ao redor do veículo,
especialmente em condições adversas. Esse aprimoramento é possibilitado por técnicas de fu-
são multissensorial, amplamente utilizadas em sistemas ADAS e condução autônoma. Nesta
seção, o conteúdo está organizado em quatro partes principais: inicialmente, apresentam-se
os sensores câmera, radar e LiDAR, com foco em seus princípios de funcionamento e prin-
cipais características; por fim, são abordados os três níveis de fusão de informações, com
ênfase na integração entre os sensores de câmera e radar.
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2.2.1 Câmera

A visão artificial é uma tecnologia popular que tem sido usada há décadas em disci-
plinas como robótica móvel, vigilância e inspeção industrial. Esta tecnologia oferece capa-
cidades interessantes devido ao baixo custo dos sensores e fornece uma gama de tipos de
informação, incluindo espacial (forma, tamanho, distância), dinâmica (objetos em movi-
mento através da análise do deslocamento entre quadros consecutivos) e semântica (análise
de forma). As câmeras no mercado oferecem uma ampla gama de configurações em termos
de resolução, taxa de quadros, tamanho do sensor e parâmetros ópticos (YEONG et al., 2021).
As câmeras podem ser encontradas em versão mono e estéreo, como mostrado nas Figuras
1(a) e 1(d). Há também as câmeras olho de peixe e as câmeras RGB-D, exibidas nas Figuras
1(b) e 1(c).

Figura 1 – Sensores visuais típicos. (a) câmera monocular, (b) câmera olho de peixe, (c) câmera
RGB-D, (d) câmera estéreo (LU et al., 2018).

As câmeras fornecem informações ricas sobre a aparência, como contorno, textura,
distribuição de cores e outros detalhes visuais, permitindo alcançar desempenho promissor
tanto em precisão quanto em velocidade na detecção de objetos (LIU, Y. et al., 2022). Câmeras
olho de peixe são uma variante de câmeras monoculares que oferecem amplo ângulo de
visão e são atraentes para evitar obstáculos em ambientes complexos, como espaços estreitos
e lotados. No entanto, câmeras monoculares e olho de peixe não são capazes de obter mapa
de profundidade (LU et al., 2018).

Para obter omapa de profundidade, existem duas abordagens principais: triangulação
e Time-of-Flight (ToF). A triangulação pode ser passiva, como na visão estéreo, ou ativa, como
em sistemas de luz estruturada, que projetam padrões de luz infravermelha para estimar
profundidade a partir da distorção do padrão. As câmeras ToF medem o tempo que a luz leva
para ir do emissor ao objeto e retornar ao detector, calculando a profundidade diretamente
em circuitos integrados(ZOLLHÖFER et al., 2018).

As câmeras estéreo exploram as diferenças de perspectiva entre duas imagens, per-
mitindo estimar a distância de objetos à frente do veículo em um intervalo típico de 20 a 30
metros. A redundância proporcionada pela segunda câmera aumenta a confiabilidade do
sistema (ZIEBINSKI et al., 2016), porém a precisão é fortemente dependente da calibração, o
que o torna sensível às condições ambientais, além de implicar maior carga computacional
em comparação a outros sensores (ZHU, Y.; WANG, T.; ZHU, S., 2022).
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Já câmeras RGB-Dutilizamprincipalmente luz estruturada, comono primeiroKinect,
ou ToF, como noKinect V2. Funcionalmente, essas abordagens diferem quanto à resiliência à
luz de fundo (por exemplo, em aplicações externas), à qualidade dos dados de profundidade
e à robustez ao efeito de múltiplos caminhos, em que a luz percorre trajetos indiretos
(ZOLLHÖFER et al., 2018).

2.2.2 Radar

O interesse no uso de radar se expandiu nos últimos anos; esses sensores vêm ga-
nhando popularidade por estarem entre os principais componentes de detecção empregados
em sistemas ADAS, direção autônoma e aplicações industriais. A tarefa fundamental de
um sistema de radar é detectar os alvos em seus arredores e, ao mesmo tempo, estimar seus
parâmetros associados (ABDU et al., 2021). Os radares são sensores ativos que transmitem
ondas de rádio e analisam os sinais refletidos para determinar a localização e a velocidade
dos objetos, ilustrado na Figura 2. Geralmente, representam os objetos detectados como
pontos bidimensionais em uma visão superior (Bird’s Eye View – BEV), fornecendo o ângulo
de azimute, a velocidade instantânea e a distância na direção radial (NABATI; QI, 2021).

Figura 2 – Sensor de radar de longo alcance (AG, 2017).

O radar FMCW (Frequency Modulated Continuous Wave) é uma tecnologia de de-
tecção amplamente utilizada nos setores automotivo e industrial. Trata-se de um tipo de
radar de onda contínua (CW) que transmite sinais com frequência crescente, denominados
chirps, geralmente em forma de onda dente de serra (KUMAR; JAYASHANKAR, 2019).
Esses radares também funcionam normalmente em frequências de 24 GigaHertz (GHz),
77 GHz e 79 GHz. A frequência GHz corresponde a comprimentos de onda milimétricos;
portanto, eles também são chamados de radares de ondas milimétricas (MMW). Existem três
classes principais de sistemas de radar automotivo, dependendo da aplicação: SRR (radar de
curto alcance), principalmente para assistência de estacionamento e aviso de proximidade
de colisão, MRR (radar de médio alcance), principalmente para detecção de ponto cego, pre-
venção de colisão lateral/traseira e LRR. (Radar de longo alcance) para controle de cruzeiro
adaptativo e detecção precoce de colisões (JAHROMI; TULABANDHULA; CETIN, 2019).
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2.2.3 LiDAR

LiDAR (Light Detection and Ranging) é uma tecnologia de sensoriamento ativo que
calcula a distância até um objeto medindo o tempo de ida e volta de um pulso de laser. Para
aplicações robóticas e automotivas, utiliza-se um laser NIR de baixa potência, invisível e
seguro para o olho humano, com comprimento de onda entre 900 e 1050 nm (ZHOU, 2022).
Em sistemas de direção autônoma, sensores LiDAR com 64 ou 128 canais são amplamente
empregados para gerar imagens a laser e nuvens de pontos de alta resolução, podendo ser
encontrados nas variantes 1D, 2D ou 3D (YEONG et al., 2021). Esses sensores são classifi-
cados, com base no método de varredura do feixe de laser, em duas categorias principais:
com varredura e sem varredura. Entre os modelos com varredura, há os mecânicos, como os
optomecânicos motorizados, e os não mecânicos, como os baseados em sistemas MEMS,
que movimentam apenas o feixe, sem deslocamento de componentes ópticos. LiDARs sem
partes móveis, como os do tipo Flash e os com matrizes ópticas em fases (OPA), são denomi-
nados solid-state. Já os baseados em MEMS são classificados como de estado quase sólido
(quasi-solid-state) (WANG, D.; WATKINS; XIE, H., 2020).

Os LiDARs mecânicos são amplamente utilizados em pesquisa, sendo uma das
principais soluções para varredura ambiental de longo alcance. Eles utilizam componentes
ópticos avançados e lentes rotativas acionadas por motores elétricos para direcionar os feixes
de laser, oferecendo um campo de visão horizontal de até 360°, o que permite a cobertura
completa do entorno do veículo (YEONG et al., 2021). Por outro lado, LiDARs de estado
sólido (SSL), por eliminarem o uso de partes móveis como lentes rotativas, reduzem o risco
de falhas mecânicas. No entanto, apresentam um campo de visão horizontal mais limitado,
geralmente de até 120°, quando comparados aos sistemas mecânicos tradicionais (YEONG
et al., 2021). Tecnologias como as baseadas em matrizes ópticas em fases (OPA) permitem
varredura com acesso aleatório em todo o campo de visão, possibilitando a observação de
áreas específicas de interesse e a variação dinâmica da densidade dos feixes. Com isso, é
possível realizar uma varredura ampla em baixa resolução e, em seguida, focar objetos de
interesse em alta resolução, otimizando a detecção de formas mesmo em longas distâncias
(ZHOU, 2022).

2.2.4 Níveis de fusão: Câmera e Radar

Os métodos de fusão de informações multissensoriais são classificados em três cate-
gorias, com base nos diferentes níveis de fusão: fusão de informações de baixo nível, fusão de
informações de nível médio e fusão de informações de alto nível. Esses correspondem à fusão
em nível de dados, fusão em nível de característica e fusão em nível de decisão, conforme
proposto pela teoria tradicional de fusão de dados de múltiplas fontes (LIU, Z. et al., 2022).
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Na fusão emnível de decisão (alto nível), cada sensor realiza umalgoritmode detecção
ou rastreamento separadamente e posteriormente combina o resultado em uma decisão
global (YEONG et al., 2021). Os principais métodos de fusão aplicam a teoria bayesiana, a
estrutura de filtragem de Kalman e a teoria de Dempster Shafer. Em algumas literaturas, a
lista de alvos de detecção de radar foi usada para verificar os resultados da detecção de visão
(WEI et al., 2022), exemplificado na Figura 3(a).

As principais vantagens da fusão de alto nível é a menor carga computacional e a
redução de recursos de comunicação necessários. Essa abordagem possibilita a padronização
da interface para o algoritmo de fusão, eliminando a necessidade de um conhecimento
aprofundado dos algoritmos de processamento de sinal subjacentes (YEONG et al., 2021).
No entanto, sua principal limitação está na dificuldade de modelar a função de densidade de
probabilidade conjunta dos diferentes tipos de informações de detecção, dado que o ruído
entre elas é distinto (WEI et al., 2022). Além disso, o ajuste fino dos algoritmos de fusão
tende a ter impacto insignificante na precisão ou na latência dos dados (YEONG et al., 2021).

Figura 3 – Arquitetura da fusão radar e câmera por nível (CHANG et al., 2020).

A fusão em nível de dados (baixo nível) gera primeiro a região de interesse (ROI)
com base em pontos de radar. A região correspondente da imagem de visão é então extraída
de acordo com o ROI. Finalmente, o extrator de recursos e o classificador são usados para
realizar a detecção de objetos nessas imagens. Algumas literaturas usam redes neurais para
detecção e classificação de objetos (WEI et al., 2022), exemplificado na Figura 3(b).

Esse tipo de fusão permite utilizar as informações captadas por radares antes que as
câmeras processem a lista de alvos, o que pode acelerar significativamente os algoritmos de
processamento de imagens (WU, X. et al., 2018). Apesar disso, a eficácia da detecção depende
diretamente do número de pontos de radar disponíveis. Em casos onde não há pontos radar
em determinadas regiões da imagem, essas áreas podem ser ignoradas, comprometendo
a segurança (CHANG et al., 2020). Além disso, ao trabalhar com informações em baixo
nível, tem-se acesso a uma grande quantidade de dados brutos, o que pode criar desafios
relacionados à memória e à largura de banda de comunicação (YEONG et al., 2021).
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A fusão em nível de recurso converte os pontos de radar captados nomundo tridimen-
sional (3D) em um plano de imagem bidimensional (2D). As profundidades e velocidades
representadas pelos pontos de radar são armazenadas como valores de pixel na imagem
transformada. Essa imagem apresenta múltiplos canais, nos quais cada canal corresponde a
diferentes estados físicos do ambiente, medidos pelo sensor de radar. Dessa forma, é possível
obter dois tipos de representações visuais para a mesma cena de condução: uma imagem de
radar e uma imagem da câmera (CHANG et al., 2020), conforme ilustrado na Figura 3(c).

2.3 Detectores de objetos baseados em redes neurais

convolucionais

A detecção de objetos é uma tecnologia computacional relacionada à visão computa-
cional e ao processamento de imagens, focada na identificação de instâncias de objetos de
uma determinada classe (como humanos, edifícios ou carros) em imagens e vídeos digitais
(JIAO et al., 2019). O campo evoluiu consideravelmente com o surgimento das redes neurais
convolucionais profundas e ao aumento do poder computacional das GPUs (Unidade de
Processamento Gráfico). A maioria dos detectores de objetos de última geração utiliza redes
de aprendizagem profunda tanto no backbone, responsável por extrair características das
imagens de entrada, quanto como rede de detecção, que realiza a classificação e a localização
dos objetos (JIAO et al., 2019).

A introdução da CNN baseada em região (RCNN) por (GIRSHICK et al., 2013)
marcou um avanço significativo, inaugurando uma nova era de progresso para a detecção
de objetos. O surgimento dos modelos de detecção de objetos baseados em deep learning
trouxe uma distinção clara entre duas abordagens principais: os "detectores de dois estágios"e
os "detectores de um estágio"(KHANAM; HUSSAIN et al., 2024). Nos detectores de dois
estágios, o primeiro estágio gera propostas de regiões ou objetos, enquanto o segundo estágio
classifica essas propostas e ajusta as caixas delimitadoras (SULTANA; SUFIAN; DUTTA,
2020). Em contrapartida, os detectores de um estágio mapeiam diretamente os recursos
extraídos para caixas delimitadoras, tratando a tarefa de detecção como um problema de
regressão. Embora geralmente mais rápidos, esses detectores tendem a ser menos precisos
que os de dois estágios (NABATI; QI, 2020).

A Figura 4 apresenta uma linha do tempo que organiza o lançamento de diferentes
detectores de objetos ao longo dos anos. Métodos anteriores a 2012 são classificados como
detectores tradicionais, baseados em técnicas clássicas de processamento de imagens. Após
esse marco, surgiram os detectores baseados em aprendizado profundo, divididos nas duas
categorias principais: os de um estágio, que realizam predições diretamente a partir das
características extraídas; e os de dois estágios, que combinam propostas de região com etapas
de classificação e refinamento.
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No estudo “An Evaluation of Deep Learning Methods for Small Object Detection” reali-
zado por Nguyen et al. (2020), conclui-se que os métodos de dois estágios, como o Faster
R-CNN (REN et al., 2015), apresentam desempenho superior, demonstrando sua eficácia em
diferentes datasets e em diversos contextos de detecção de objetos, incluindo aqueles com
variação de escalas. Sendo reconhecido como uma referencia (baseline) na área, servindo
como base para novas pesquisas e desenvolvimentos. Se o objetivo é alcançar um equilíbrio
entre precisão e velocidade, o YOLO (REDMON et al., 2016) prova ser uma boa opção, já
que o equilíbrio entre velocidade e precisão o torna adequado para aplicações práticas. No
entanto, em cenários onde a precisão é priorizada, Faster R-CNN (REN et al., 2015) ou
RetinaNet (LIN; GOYAL et al., 2020) continua sendo uma alternativa viável.

Figura 4 – Linha do tempo da detecção de objetos (LI, Z. et al., 2024).

A seguir, serão abordados os detectores de objetos consolidados na literatura, tais
como Fast R-CNN (GIRSHICK, 2015), Faster R-CNN (REN et al., 2015), Mask R-CNN (HE
et al., 2017), YOLO (REDMON et al., 2016) e RetinaNet (LIN; GOYAL et al., 2020), com
ênfase em suas arquiteturas, propostas e principais contribuições.

2.3.1 Fast R-CNN

Fast R-CNN, proposto por Girshick (2015), é uma extensão do R-CNN que aborda
várias de suas limitações, incluindo o treinamento em múltiplas etapas, o custo computacio-
nal elevado e o tempo excessivo para detecção de objetos. Essa nova abordagem combina
classificação de regiões e regressão de caixas delimitadoras em um único estágio de treina-
mento, usando uma arquitetura baseada em redes neurais profundas (SULTANA; SUFIAN;
DUTTA, 2020).
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No R-CNN, cada proposta de região é processada individualmente pela rede convolu-
cional, resultando em cálculos redundantes e altos custos computacionais. O Fast R-CNN
resolve esse problema ao processar a imagem inteira, extraindo recursos para todas as regiões
de interesse (RoIs) uma única vez e enviados à CNN para classificação e localização. Compa-
rado com R-CNN, que insere propostas de cada região para a CNN, uma grande quantidade
de tempo para o processamento da CNN e um grande espaço em disco para armazenamento
dos recursos pode ser economizado no Fast R-CNN (JIAO et al., 2019).

A arquitetura Fast R-CNN, ilustrada na Figura 5, recebe como entrada uma imagem
completa, juntamente com as regiões de interesse (RoIs), que são geradas por métodos
externos, como o algoritmo de busca seletiva. A imagem é então processada por uma rede
convolucional profunda, como a VGG-16, que extrai um mapa de características convolucio-
nais.

Figura 5 – Arquitetura Fast-RCNN (GIRSHICK, 2015).

Cada RoI é processada por uma camada de RoI Pooling, que converte regiões de
interesse de tamanhos variados em mapas de características de tamanho fixo. Essa camada
divide a região em uma grade uniforme e aplica operações de pooling, comomax pooling, em
cada célula, garantindo uma saída com dimensões consistentes. Posteriormente, cada RoI
agrupada é mapeada para um vetor de recursos por camadas fully connected (FCs). A rede
tem dois vetores de saída por RoI (GIRSHICK, 2015). A primeira camada de saída aplica a
função de ativação (softmax) para classificar cada região proposta como pertencente a uma
das classes de objeto, enquanto a segunda camada realiza a regressão dos quatro parâmetros
que definem a caixa delimitadora (bbox regressor) associada a cada detecção (JOHN, A.;
MEVA, 2020).

Os testes no conjunto de dados PASCAL VOC 2007 demonstraram que Fast R-CNN
alcançou um mAP de 66,9% , superando os 66,0% do R-CNN. Além disso, o tempo de
treinamento foi reduzido de 84 horas para 9,5 horas, e o tempo de teste por imagem foi
reduzido para 0,32 segundos, comparado aos 47 segundos do R-CNN (JIAO et al., 2019).



28

2.3.2 Faster R-CNN

O Faster R-CNN representa uma evolução significativa em relação ao R-CNN e ao
Fast R-CNN ao solucionar a principal limitação relacionada à geração lenta de propostas de
regiões (RoIs). O Fast R-CNN ainda depende da busca seletiva, um processo custoso que
compromete o desempenho. Conforme Ren et al. (2015), embora o Fast R-CNN atinja taxas
quase em tempo real com redes profundas, ignora o tempo gasto na geração de propostas,
que permanece como gargalo computacional. A busca seletiva, um dos métodos mais po-
pulares, apresenta um tempo médio de execução de cerca de 2 segundos por imagem em
implementações baseadas em CPU.

Em contraste, o Faster R-CNN propõe uma solução mais eficiente ao substituir o
algoritmo de busca seletiva por umaRede de Propostas de Região (RPN), uma rede totalmente
convolucional (FCN) capaz de gerar propostas com maior rapidez e eficiência, aproveitando
as características extraídas pela própria rede de detecção (SULTANA; SUFIAN; DUTTA,
2020). Sua arquitetura, ilustrada na Figura 6, é composta por três partes principais: uma
rede de pré-processamento, responsável por extrair características de alto nível da imagem; a
RPN, que gera propostas de regiões candidatas; e o cabeçote Faster R-CNN, que refina essas
propostas, classificando os objetos e ajustando suas caixas delimitadoras.

Figura 6 – Arquitetura Faster-RCNN (FENG et al., 2021).

Uma RPN é uma rede totalmente convolucional (FCN) que recebe uma imagem de
tamanho arbitrário como entrada e gera um conjunto de propostas de objetos candidatos
retangulares. Cada proposta de objeto é associada a uma pontuação de objetividade para
detectar se a proposta contém um objeto ou não (SULTANA; SUFIAN; DUTTA, 2020). O
RPN é treinado ponta a ponta para gerar propostas de regiões de alta qualidade, que são
usadas pelo Fast R-CNN para detecção. Ao Fundir o RPN e Fast R-CNN em uma única rede
(Faster R-CNN), compartilhamos seus recursos convolucionais, gerando uma rede neural
com mecanismos de atenção (REN et al., 2015).
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Os experimentos demonstraram que o Faster R-CNN obteve uma melhoria significa-
tiva em termos de precisão e tempo de execução. No conjunto de dados PASCAL VOC 2007,
o Faster R-CNN alcançou uma média de precisão (mAP) de 69,9%, superando o Fast R-CNN,
que obteve 66,9%, e também apresentou um tempo de execução significativamente menor,
reduzindo quase 10 vezes o tempo de processamento de 1830ms para 198ms (JIAO et al.,
2019).

2.3.3 Mask R-CNN

O Mask R-CNN avança as técnicas anteriores de detecção de objetos, indo além
ao localizar os pixels exatos de cada instância de objeto (segmentação de instância) em
vez de apenas delimitar caixas (SULTANA; SUFIAN; DUTTA, 2020). Além de introduzir a
segmentação, o Mask R-CNN apresenta maior precisão em relação ao Faster R-CNN devido
algumas melhorias na arquitetura. Conforme destacado por (JIAO et al., 2019), o modelo
adota a ResNet-FPN como backbone, que combina recursos de múltiplas escalas por meio
de uma abordagem de pirâmide de características. Essa estratégia permite a extração de
informações semanticamente ricas de mapas de baixa resolução e de detalhes precisos em
mapas de alta resolução, sendo especialmente eficaz para detectar objetos pequenos.

A camada RoI Pooling também é substituida no modelo pela camada RoI Align, que
resolve o problema de desalinhamento causado pela quantização nas etapas de pooling.
O RoI Align utiliza interpolação bilinear para calcular valores exatos em localizações es-
pecíficas, preservando de forma mais eficiente a informação espacial e garantindo uma
correspondência mais precisa entre os RoIs e as características extraídas (JIAO et al., 2019).

Os experimentos mostraram que, com as duas melhorias mencionadas, a precisão foi
aprimorada. O uso do backbone ResNet-FPN aumentou em 1,7 pontos a precisão da caixa
delimitadora (box AP), enquanto a operação RoI Align contribuiu com um aumento de 1,1
pontos na mesma métrica, no conjunto de dados de detecção MS COCO (JIAO et al., 2019).

2.3.4 YOLO

Em 2016, o campo da detecção de objetos passou por transformações significativas
de paradigma com a introdução do You Only Look Once (YOLO) por Redmon et al. (2016),
um marco que desafiou o paradigma dominante de dois estágios. Ao utilizar uma única rede
neural para processar a imagem inteira em uma única passagem, o YOLOv1 apresentou
uma abordagem revolucionária que priorizava a velocidade e a simplicidade. Apesar de
comprometer a precisão em certos cenários, especialmente para objetos menores, o modelo
estabeleceu as bases para futuras iterações, que buscaram equilibrar melhor a relação entre
desempenho e eficiência (KHANAM; HUSSAIN et al., 2024).
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O pipeline do YOLO trabalha dividindo a imagem de entrada em uma grade de
𝑆 × 𝑆, onde cada célula da grade é responsável por detectar objetos cujo centro está contido
nela, conforme ilustrado na Figura 7. O score de confiança é calculado como o produto de
duas partes: 𝑃(objeto), que representa a probabilidade de a caixa conter um objeto, e o 𝐼𝑂𝑈
(Intersection over Union), que mede a precisão da sobreposição da caixa em relação ao objeto
detectado. Cada célula da grade prevê𝐵 caixas delimitadoras (𝑥, 𝑦, 𝑤, ℎ) com seus respectivos
escores de confiança, além de probabilidades condicionais de classe em 𝐶 dimensões para 𝐶
categorias (JIAO et al., 2019).

Figura 7 – Pipeline do YOLO (KHARAZI, 2025).

A primeira versão priorizou alta velocidade com uma única CNN,mas teve limitações
na precisão, especialmente para objetos pequenos ou sobrepostos. O YOLOv2 introduziu
caixas de âncora e camadas de passagem para melhorar a localização dos objetos, enquanto
o YOLOv3 trouxe uma arquitetura de extração de características multiescala, aprimorando a
detecção em diferentes tamanhos. Nas versões YOLOv4 e YOLOv5, incorporaram backbones
otimizados, aumento de dados diversificado e estratégias de treinamento eficientes (TERVEN;
CÓRDOVA-ESPARZA; ROMERO-GONZÁLEZ, 2023).

A partir do YOLOv5, os modelos oficiais do YOLO passaram a oferecer escalas ajus-
táveis para atender a diferentes aplicações e requisitos de hardware (TERVEN; CÓRDOVA-
ESPARZA; ROMERO-GONZÁLEZ, 2023). Esses modelos incluem escalas como nano, pe-
queno, médio, grande e extra-grande. Modelos menores, como "nano" e "pequeno", possuem
menos parâmetros, sendomais rápidos e leves, ideais para dispositivos de borda ou aplicações
que exigem alta velocidade. Por outro lado, modelos maiores, como "grande" e "extra-grande",
apresentam maior quantidade de parâmetros, oferecendo maior precisão ao custo de maior
demanda computacional. As principais melhorias e características de cada versão do YOLO
podem ser acompanhadas na Tabela 2.
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Modelo Ano Principais Características Backbone Conjunto de Dados mAP FPS

YOLOv1 2016 Detecção de disparo único, modelo unificado Darknet-19 PASCAL VOC 2007 63.4% 45
YOLOv2 2017 Caixas de âncora, normalização de lote, recur-

sos refinados
Darknet-19 PASCAL VOC 2007 78.6% 40

YOLOv3 2018 Pontuação de objetividade, previsões multies-
cala, conexões residuais, classificação multir-
rótulo

Darknet-53 MS COCO 57.9% 20

YOLOv4 2020 Agregação de características aprimorada, nor-
malização demini-lotes cruzados (CMBN), au-
mento de dados diversificado, conexões parci-
ais entre estágios (CSP), ativação Mish

CSPDarknet53 MS COCO 65.7% 33

YOLOv5 2020 Implementação em PyTorch, arquitetura mo-
dular, treinamento rápido, design otimizado
para diversos hardwares, múltiplos tamanhos
de modelo equilibrando velocidade e precisão

EfficientNet-L MS COCO 55.8%-66.9% 288-140

YOLOv6 2022 Reparametrização, módulos de atenção, ca-
beça desacoplada

EfficientRep MS COCO 35.9%-52.5% 802-121

YOLOv7 2022 Backbone e cabeça otimizados, agregação de
camadas E-ELAN

E-ELAN MS COCO 52.8%-73.8% -

YOLOv8 2023 Detecção sem âncoras, treinamento e inferên-
cia mais rápidos, recursos amigáveis ao usuá-
rio, camadas convolucionais aprimoradas

CSPDarknet +
ConvNeXt

MS COCO 37.3%-53.9% -

YOLOv9 2024 Introdução de Programmable Gradient Infor-
mation (PGI) e Generalized Efficient Layer Ag-
gregation Network (GELAN), melhor equilí-
brio entre precisão e eficiência

GELAN MS COCO 38.3%-55.6% -

YOLOv10 2024 Detecção fim-a-fim sem NMS, dual assign-
ments consistentes, variantes otimizadas para
eficiência

CSPNet apri-
morado

MS COCO 38.5%-54.4% 543-93

YOLOv11 2024 Blocos C3k2, SPPF otimizado, atenção espa-
cial paralela (C2PSA), suporte a múltiplas ta-
refas

CSPDarknet-
C3k2

MS COCO 39.4%-54.7% 667-88

YOLOv12 2025 Arquitetura centrada em atenção, módulos
Area Attention, R-ELAN, suporte a FlashAt-
tention

R-ELAN +
Area Attention

MS COCO 40.6%-55.2% 610-85

Tabela 2 – Comparação entre versões do YOLO (KHANAM; HUSSAIN et al., 2024; WANG, C.-Y.;
YEH; LIAO, 2024; WANG, A. et al., 2024; KHANAM; HUSSAIN, 2024; TIAN; YE;

DOERMANN, 2025).

2.3.5 RetinaNet

Os detectores de objetos de um estágio, embora ofereçam vantagens significativas em
termos de velocidade e simplicidade, historicamente apresentam menor precisão quando
comparados aos detectores de dois estágios. Essa lacuna de desempenho foi investigada por
Lin, Goyal et al. (2020) ao introduzirem o RetinaNet, onde identificaram o desequilíbrio
entre as classes de primeiro plano e fundo na fase de treinamento (KHANAM; HUSSAIN
et al., 2024).

O RetinaNet é uma rede de detecção de estágio único, unificada e composta por um
backbone e duas sub-redes. O backbone, baseado em uma combinação de ResNet e Feature
Pyramid Network (FPN), Figura 8(a) e Figura 8(b), é responsável por calcular um mapa de
características convolucionais rico e multiescalar a partir de uma imagem de entrada. Sobre
esse backbone, são acopladas duas sub-redes: a primeira realiza a classificação convolucional
de objetos nas âncoras geradas, Figura 8(c), enquanto a segunda executa a regressão das
caixas delimitadoras para ajustá-las às posições e dimensões reais dos objetos detectados,
Figura 8(d), (LIN; GOYAL et al., 2020).
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Figura 8 – Arquitetura de rede RetinaNet (LIN; GOYAL et al., 2020).

Conforme autor Lin, Goyal et al. (2020), o design do RetinaNet compartilha várias
semelhanças com detectores densos anteriores, especialmente no que diz respeito ao uso de
"âncoras", conceito introduzido pela RPN (REN et al., 2015), e à aplicação de pirâmides de
recursos, como observado no FPN (LIN; DOLLÁR et al., 2016). No entanto, o grande diferen-
cial do RetinaNet para alcançar resultados superiores em termos de precisão e eficiência não
está em inovações no design da rede, mas sim na introdução de uma nova função de perda.

A função de perda, também conhecida como perda focal, é uma perda de entropia
cruzada dimensionada dinamicamente, onde o fator de escala decai para zero à medida que
a confiança na classe correta aumenta. Intuitivamente, esse fator de escala pode reduzir
automaticamente o peso da contribuição de exemplos fáceis durante treinamento e focar
rapidamente o modelo em exemplos difíceis (LIN; GOYAL et al., 2020).

Experimentos no conjunto de dados de teste MS COCO, mostram que o RetinaNet
com backbone ResNet-101-FPN alcançou um desempenho de 39,1% de AP. Utilizando o
ResNeXt-101-FPN, o modelo atingiu 40,8% de AP. Esses resultados destacam a eficiência do
RetinaNet em melhorar a precisão da detecção, especialmente para objetos de tamanhos
pequenos e médios (JIAO et al., 2019).
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3 Estado da arte

O estudo do estado da arte é essencial para identificar avanços, lacunas e tendências
em uma área. A revisão da literatura permitiu definir o problema de pesquisa e conhecer
técnicas utilizadas. Esta seção está dividida em três partes: metodologia, detalhando o
processo de revisão sistemática; revisão sistemática, com os trabalhos relevantes; e técnicas
de fusão para detecção 2D, apresentando as estratégias tecnológicas mais promissoras.

3.1 Metodologia

O primeiro passo dametodologia consistiu na formulação das perguntas relacionadas
ao tema ’Fusão Sensorial entre Radar e Câmera para Detecção de Objetos no Ambiente de
Veículos Autônomos’, as quais são apresentadas a seguir:

1. O que é a fusão sensorial e quais são suas aplicações em sistemas de condução assistida?

2. Quais são os benefícios e limitações dos principais sensores utilizados na percepção
da cena de trânsito?

3. Quais são os principais desafios técnicos na integração de dados de radar e câmera em
redes neurais profundas?

4. Quais implementações de fusão entre radar e câmera têm demonstrado melhor de-
sempenho em redes neurais profundas aplicadas à percepção da cena de trânsito?

A fim de obter as palavras-chave mais relevantes, realizou-se uma pesquisa na base
de dado Scopus com a seguinte query: ‘sensor fusion’ E ‘camera’ E ‘radar’, com a janela
temporal de 2020 a 2022. Dos 712 artigos obtidos, foram selecionados os 100 mais relevantes,
os quais foram posteriormente submetidos ao VOSViewer para uma análise das palavras
encontradas nos resumos. A partir dessa análise, foram extraídas 54 palavras que apareceram
no mínimo 8 vezes nesse contexto. Dentre elas, as palavras-chave selecionadas para nossa
pesquisa são apresentadas na tabela 3:

Tabela 3 – Palavras-Chave escolhidas

Palavra-Chave Termos Associados
KW1 "Sensor Fusion", "multi-sensor", "data fusion"
KW2 "Camera"
KW3 "Radar"
KW4 "Autonomous Vehicles", "Autonomous Driving", "self-driving", "autonomous car"
KW5 "Advanced Driver Assistance Systems", "ADAS"
KW6 "Object Detection", "Object Tracking", "Semantic Segmentation"
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Com base na combinação das perguntas de pesquisa e palavras-chave selecionadas,
a seguinte query foi elaborada: "Sensor Fusion"OR "multi-sensor"OR "data fusion"AND
"camera"AND "radar"AND ("ADAS"OR "Advanced driver-assistance"OR "Autonomous Vehi-
cles"OR "Autonomous Driving"OR "self-driving"OR "autonomous car"). Essa consulta foi
utilizada para realizar buscas nas bases de dados IEEE Xplore, Scopus e Tufts JumboSearch,
resultando inicialmente em 650 artigos. Após a remoção de duplicatas, o número final de
artigos selecionados foi reduzido para 425.

Tabela 4 – Processo de triagem de artigos

Etapa AÇÃO Y Total de artigos

0 Combinar 3 bases de dados (IEEExplore, Tufts JumboSearch, Scopus) 650
0 Informações duplicadas e irrelevantes removidas 225
0 Nova população Y0 425

TRIAGEMAUTOMÁTICA DE TÍTULOS

- População Y0 425
1 Triagem automática de títulos (KW1+KW2+KW3+KW6 ≥ 3) Y1 33
- Nova população Y0-Y1 392

TRIAGEMMANUAL DE TÍTULOS

- População Y0-Y1 392
1 Pesquisador / Orientador (Y&Y) Y2 21
1 Pesquisador / Orientador (Y&M OUM&Y) Y3 32
1 Pesquisador / Orientador (Y&N OUM&MOU N&Y) Y4 146
1 Pesquisador / Orientador (N&N OUM&N OU N&M) 193
- Nova população (Y1+Y2+Y3+Y4) Y5 232

TRIAGEMAUTOMÁTICA DE RESUMOS

- População Y5 232
2 Palavras-chave de pesquisa (KW1+KW2+KW3+KW5+KW6 = 5) Y6 15
2 Palavras-chave de pesquisa (KW1+KW2+KW3+KW5+KW6 < 5) 217
- Nova população Y5-Y6 217

TRIAGEMMANUAL DE RESUMOS

- População Y5-Y6 217
2 Pesquisador / Orientador (Y&Y) Y7 48
2 Pesquisador / Orientador (Y&M OUM&Y OU N&Y OU Y&N) Y8 37
2 Pesquisador / Orientador (N&N OUM&N OU N&M) 132
- Nova população (Y6+Y7+Y8) Y9 100

TRIAGEMDO TEXTO COMPLETO

- População Y9 100
3 Não encontrado ou sem acesso 15
3 Critérios de inclusão (Contribuição ≥ 2; Teoria ≥ 2; Metodologia ≥ 1; Análise de

dados = TODOS)
42

3 Critérios de exclusão (Contribuição ≤ 1; Teoria ≤ 1) 43
RESULTADOS

TOTAL DE ARTIGOS INCLUÍDOS 42
TOTAL DE ARTIGOS EXCLUÍDOS 608
PERCENTUAL DE ARTIGOS INCLUÍDOS 7%
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A triagem dos artigos foi realizada em três etapas. Na primeira, os títulos foram
filtrados automaticamente, aprovando aqueles que continham ao menos três das quatro
palavras-chave KW1, KW2, KW3 e KW6. Os demais foram avaliados manualmente, com
leitura dos títulos e validação cruzada entre pesquisador e orientador; artigos marcados
como negado por ambos (N&N) ou talvez e negado (M&N ou N&M) foram recusados. Como
resultado, 33 artigos foram aprovados automaticamente e 199 por triagem manual, totali-
zando 232 para a próxima etapa (Tabela 4). Na segunda etapa, os resumos foram analisados:
aqueles que continham simultaneamente as palavras-chave KW1, KW2, KW3, KW5 e KW6
foram automaticamente aprovados, enquanto os demais passaram por triagem manual com
validação cruzada, resultando na exclusão de 132 artigos e aprovação de 100. Na etapa final,
os textos completos foram avaliados superficialmente com notas de 0 a 3 para contribuição,
teoria e metodologia. Apenas os que obtiveram pelo menos 2 em contribuição e teoria foram
considerados elegíveis; artigos inacessíveis ou fora dos critérios também foram excluídos.
Ao final, 42 artigos foram selecionados para leitura detalhada.

3.2 Análise temática

Nesta seção, o objetivo é responder às perguntas de pesquisa com base na literatura
disponível sobre a fusão sensorial entre radar e câmeras para detecção de objetos no ambiente
automotivo. As perguntas, formuladas na seção de planejamento, serão abordadas a partir
da análise dos artigos selecionados. A revisão da literatura será organizada em torno de
temas principais, que agruparão as questões a serem respondidas. Para a elaboração desta
etapa, foi utilizado o software ©Nvivo, que permitiu realizar o agrupamento (clusterização)
das informações extraídas dos artigos, como um esforço do pesquisador para responder às
perguntas de pesquisa com base na análise crítica da literatura.

Quais são os requisitos necessários para aplicar a fusão entre os sensores câmeras e
radar para tarefa de detecção de objetos?

• Tema 1: Fusão sensorial e sua aplicação voltada para sistemas automotivos.
O que é a fusão sensorial e qual sua aplicação no ambiente de condução assistida?

• Tema 2: Benefícios e limitações dos sensores câmera, radar e LiDAR para
detecção de objetos no contexto automotivo.
Quais os benefícios e limitações entre os principais sensores utilizados na percepção
da cena de trânsito?

• Tema 3: Oportunidades e desafios na aplicação de redes neuronais multissen-
soriais
Quais são os principais desafios técnicos na integração de dados de radar e câmera em
redes neuronais profundas?
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Para responder ao último questionamento, este estudo adota a tarefa de detecção
de objetos 2D como foco principal de análise. Na Seção 3.3, são apresentadas as principais
arquiteturas de redes neurais propostas na literatura para a fusão de dados de radar e câmera,
acompanhadas de suas respectivas classificações com base nas métricas mais utilizadas para
avaliação do desempenho em detecção de objetos 2D.

3.2.1 Tema 1: Fusão sensorial e sua aplicação voltada para sistemas auto-
motivos.

A fusão de sensores tem suas origens em aplicações militares, onde a integração de
informações provenientes de diversas fontes foi empregada para desenvolver uma visão
mais completa e precisa de campos de batalha ou situações de combate(ALTENDORFER;
WIRKERT; HEINRICHS-BARTSCHER, 2010). O objetivo principal das aplicações de fusão
de dados é combinar informações de sensores individuais de maneira que seus pontos
fortes sejam maximizados e suas limitações minimizadas. Tipicamente, as configurações de
fusão de dados abordam aspectos como redundância e complementaridade da informação,
aprimoramento da temporalidade dos dados e redução de custos (DARMS et al., 2010).

De acordo comAltendorfer,Wirkert eHeinrichs-Bartscher (2010), a fusão de sensores
oferece uma série de vantagens gerais que tornam os sistemas mais eficazes e confiáveis em
aplicações complexas. Entre os principais benefícios, destacam-se:

• Robustez: A redundância proporcionada pelo uso de múltiplos sensores aumenta a
resistência do sistema a falhas parciais, garantindo maior confiabilidade em condições
adversas.

• Cobertura ampliada: Quando os alcances de diferentes sensores não se sobrepõem
ou apresentam apenas sobreposições parciais, a fusão sensorial permite expandir
significativamente a cobertura conjunta.

• Maior confiança: As medições realizadas por um sensor podem ser confirmadas por
outras fontes sensoriais que monitoram o mesmo domínio, elevando a confiabilidade
dos dados coletados.

• Melhoria na precisão: A combinação de dados provenientes de múltiplos sensores
que monitoram o mesmo domínio permite medições mais precisas de grandezas como
distância, velocidade e outras variáveis relevantes.
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Como aumento da complexidade do tráfego, os Sistemas Avançados de Assistência ao
Condutor tornaram-se essenciais nos veículos modernos, visando reduzir as consequências
de acidentes, prevenir colisões e, no futuro, possibilitar a condução totalmente autônoma
(ZIEBINSKI et al., 2016). Nesse contexto, a abordagem tradicional para direção autônoma
tem passado por mudanças significativas. Em vez de se basear em um único tipo de sensor,
como câmeras, radares ou LiDAR, as soluções atuais integram diferentes sensores para criar
sistemas mais robustos e adaptáveis. Essa combinação permite melhorar o desempenho em
condições variadas, ao mesmo tempo que considera a viabilidade econômica dessas tecnolo-
gias (KUMAR; JAYASHANKAR, 2019). Um exemplo dessa transformação é apresentado por
Wei et al. (2022), que analisaram os dados de grandes fabricantes sobre o uso de sensores
em veículos autônomos. A Tabela 5, fundamentada neste estudo, ilustra como as principais
montadoras estruturaram suas soluções, destacando variações tanto na quantidade quanto
nos tipos de sensores empregados.

Empresa Sistema de Direção Configuração dos Sensores

Tesla Autopilot 8 câmeras, 12 radares ultrassônicos, radar mmWave
Baidu Apollo Lidar, radar mmWave, câmera
NIO Aquila Lidar, 11 câmeras, 5 radares mmWave, 12 radares ultrassônicos
Xpeng XPILOT 6 câmeras, 2 radares mmWave, 12 radares ultrassônicos
Audi Traffic Jam Pilot 6 câmeras, 5 radares mmWave, 12 radares ultrassônicos, Lidar

Mercedes Benz Drive Pilot 4 câmeras panorâmicas, Lidar, radar mmWave

Tabela 5 – Soluções de sensores de direção autônoma de alguns fabricantes (WEI et al., 2022).

Em sistemas de direção autônoma ou ADAS, vários sensores são frequentemente
usados para melhorar a redundância e a tolerância a falhas do sistema. Como a função
de detecção não pode ser alcançada por um único sensor, o objetivo da fusão de dados
multissensor é usar informações redundantes e informações complementares fornecidas por
vários números ou tipos de sensores para reduzir a incerteza e a ambiguidade das informações
de observação e aumentar a confiabilidade e a capacidade de sobrevivência do sistema de
detecção (LIU, Z. et al., 2022).

Descoberta: A fusão sensorial desempenha um papel crucial no ambiente de veí-
culos autônomos, integrando dados de diferentes sensores para melhorar a percepção do
entorno e a tomada de decisão. Essa abordagem permite combinar informações comple-
mentares e redundantes, aumentando a precisão, confiabilidade e robustez dos sistemas de
detecção em condições adversas. Além disso, a fusão sensorial é essencial para superar as li-
mitações de sensores individuais, como a incapacidade de lidar isoladamente com diferentes
condições ambientais, tornando-se uma tecnologia indispensável para alcançar a segurança
e a eficiência necessárias na condução autônoma.
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3.2.2 Tema 2: Benefícios e limitações dos sensores câmera, radar e LiDAR
para detecção de objetos no contexto automotivo.

Os principais sensores utilizados para percepção ambiental em veículos autônomos
são a câmera, o radar e o LiDAR. Cada um desses sensores apresenta benefícios e limitações
próprios, conforme ilustrado na Figura 9.

Figura 9 – Vantagens e limitações dos principais sensores utilizados para percepção ambiental
(KIM, Y. et al., 2022).

Os avanços nas pesquisas com detectores de objetos baseados em redes neurais
convolucionais (CNNs) têm proporcionado alta precisão em condições favoráveis, como
dias ensolarados e ambientes com boa iluminação (LI, L. Q.; XIE, Y. L., 2020). No entanto,
esses algoritmos ainda enfrentam desafios relevantes em cenários reais, caracterizados pela
diversidade de objetos, incluindo pedestres, carros, caminhões, bicicletas e motocicletas,
que apresentam variações de escala e proporção. Além disso, o desempenho da detecção é
significativamente comprometido por oclusões parciais e por condições climáticas adversas,
como chuva intensa e neblina (MICHAELIS et al., 2019).

Embora a fusão entre câmera e LiDAR tenha alcançado uma boa taxa de detecção de
alvos, atender aos requisitos em tempo real continua sendo um desafio, devido ao grande
volume de informações adquiridas e ao alto custo computacional envolvido. Além disso,
o desempenho de reconhecimento tanto das câmeras quanto dos sensores LiDAR é signi-
ficativamente afetado por condições climáticas adversas, limitando a robustez do sistema
em ambientes de tráfego complexos (JIANG; ZHANG, L.; MENG, 2019). Por outro lado, os
radares automotivos oferecem vantagens importantes, como ampla capacidade de adaptação
a diferentes condições ambientais, penetração eficaz em chuva e nevoeiro, além de fornecer
diretamente informações sobre profundidade, velocidade e um amplo alcance de detecção
(CHAVEZ-GARCIA et al., 2012).
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Comparados aos LiDARs, os radares oferecem maior alcance de detecção e uma
certa capacidade de penetração, o que os torna mais adequados para enfrentar condições
desafiadoras. Além disso, os radares são mais econômicos na prática, favorecendo seu uso
em detrimento dos LiDARs (LIU, Y. et al., 2022). Já que para a produção em massa, o custo
geralmente é o principal critério na escolha do sensor, tornando o uso do LiDAR raro, apesar
de seu alto desempenho (KANG; KUM, 2020).

Apesar da sua robustez, o radar automotivo também apresenta algumas limitações
importantes. Os pontos de radar são significativamente esparsos, o que dificulta a estimativa
de informações geométricas, como localização e dimensões, além de comprometer a classifi-
cação precisa dos objetos (LIU, Y. et al., 2022). Apesar de sua capacidade de detectar objetos
a longas distâncias, os sinais retornados frequentemente contêm ruídos provenientes do solo,
edificações e grades, o que contribui para o aumento de Falsos Positivos (FP), especialmente
em pequenos alvos(LI, L. Q.; XIE, Y. L., 2020). A identificação de pedestres é outro desafio,
pois sua seção transversal de radar (Radar Cross Section, RCS) é consideravelmente menor
em comparação a outros usuários da cena de transito, tornando sua detecção difícil em cenas
desordenadas, principalmente quando estão estáticos, parcialmente obstruídos ou próximos
a objetos altamente refletivos, como veículos, postes, semáforos e placas de sinalização
(DIMITRIEVSKI et al., 2019).

Descoberta: A combinação de câmeras e radares é uma solução eficiente e econô-
mica. As câmeras, com sua capacidade de detectar objetos utilizando redes neurais convo-
lucionais (CNNs), oferecem informações detalhadas sobre a aparência e o contexto visual,
desempenhando um papel crucial na detecção de pedestres, superando as limitações dos ra-
dares, que têm dificuldade em identificar pedestres devido à baixa seção transversal de radar
(RCS). Por outro lado, os radares são extremamente robustos em condições climáticas adver-
sas, como chuva, nevoeiro e baixa iluminação, onde as câmeras apresentam desempenho
reduzido. Além disso, os radares fornecem dados confiáveis de profundidade e velocidade,
complementando as informações visuais das câmeras. Ambos os sensores são econômicos e
amplamente utilizados na indústria automotiva, facilitando sua integração em veículos de
produção emmassa. Assim, a fusão entre câmeras e radares oferece uma solução balanceada
e eficaz, combinando precisão, robustez e viabilidade econômica.
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3.2.3 Tema 3: Oportunidades e desafios na aplicação de redes neuronais
multissensoriais

O melhor desempenho alcançado pelas redes neuronais no processamento de dados
baseados em imagens fez com que os pesquisadores incorporassemmodalidades de detecção
adicionais na forma de fusão de sensores. Com esse objetivo, os modelos de aprendizagem
profunda estão sendo expandidos para realizar a fusão multissensor profunda, a fim de se
beneficiarem dos dados de complementaridade de modelos de detecção múltipla, particular-
mente em situações ambientais complexas, como no caso da condução autônoma (ABDU
et al., 2021).

Diferentemente do aprendizado de máquina tradicional, que exige a engenharia ma-
nual de recursos para extrair características relevantes, o aprendizado profundo automatiza
essa etapa. Para isso, depende de hardware avançado, como GPUs, capazes de otimizar opera-
ções complexas, como amultiplicação dematrizes, que são fundamentais para o treinamento
de modelos com grande número de parâmetros. Essa capacidade permite lidar com tarefas
de maior complexidade, embora exija um poder computacional significativamente superior
aos métodos clássicos. Além disso, como requer grandes quantidades de informação para um
treinamento eficaz, o aprendizado profundo apresenta desempenho superior em cenários
com grandes volumes de dados, mas sua eficácia tende a diminuir quando os conjuntos de
dados são reduzidos (ABDU et al., 2021).

Segundo Park e Wenchang Yu (2021), é uma tarefa desafiadora desenvolver um
sistema de classificação de objetos com um conjunto de dados relativamente pequeno. Em
geral, a uma rede neural treinada com um pequeno número de amostras de dados é propensa
a baixo desempenho e overfitting. No entanto, ao utilizar modelos CNN de última geração
treinados com grandes volumes de dados, os recursos aprendidos podem ser reaproveitados
em um novo sistema com um conjunto de dados menor. Esse processo, conhecido como
aprendizado de transferência, permite que modelos CNN pré-treinados sejam usados como
ponto de partida para novas tarefas. Essa abordagemproporciona uma precisão geral superior
em comparação ao treinamento de um modelo a partir do zero.

Os sinais de radar enfrentam desafios consideráveis em sua aplicação com algoritmos
de aprendizado profundo, principalmente devido à escassez de conjuntos de dados de acesso
público e à ausência de anotações de objetos. Como consequência, muitos pesquisadores
desenvolvem seus próprios conjuntos de dados para avaliar e validar os modelos propostos.
No entanto, a criação desses conjuntos é um processo demorado, especialmente quando se
busca alcançar uma escala adequada. Frequentemente, as bases de dados geradas e seus
benchmarks não são disponibilizados publicamente, o que dificulta a comparação entre
algoritmos e limita o avanço das pesquisas baseadas em sinal de radar com redes neurais
(ABDU et al., 2021).



41

A qualidade e o alinhamento dos dados também são fatores críticos: o sistema de
visão deve ser calibrado tanto espacial quanto temporalmente, pois desalinhamentos du-
rante a coleta dos dados de treinamento podem introduzir erros significativos nos conjuntos,
comprometendo o desempenho das redes neurais (FENG et al., 2021). A calibração é fun-
damental para etapas posteriores do processamento de dados, como a fusão sensorial, a
detecção de obstáculos, a localização, o mapeamento e o controle do veículo (YAN et al.,
2022). No contexto da percepção em tempo real, as informações ambientais captadas em
momentos distintos podem apresentar discrepâncias significativas, especialmente devido ao
movimento do veículo e às variações no ambiente. Por isso, é essencial que os dados obtidos
por diferentes sensores estejam sincronizados no tempo, de modo a permitir uma fusão
eficaz das informações (ZHANG, X. et al., 2019). Existem duas abordagens principais para a
calibração temporal dos sensores: a sincronização externa, que utiliza hardware dedicado
para alinhar os tempos de aquisição, e a sincronização interna, que explora os carimbos de
data e hora gerados por cada sensor para realizar o alinhamento temporal (YEONG et al.,
2021). Em paralelo, a calibração espacial entre sensores, como radar e câmera, é frequente-
mente abordada na literatura como calibração de coordenadas, cujo objetivo é alinhar os
pontos do radar com os objetos detectados nas imagens. Para isso, os métodos mais utilizados
são classificados em três categorias principais: transformação de coordenadas, verificação
entre sensores e abordagens baseadas em visão (WEI et al., 2022).

• Método de transformação de coordenadas: Ométodo de transformação de coordenadas
unifica as informações de radar e de visão sob omesmo sistema de coordenadas através
de operações matriciais;

• Método de verificação de sensor: O método de verificação de sensor calibra vários
sensores entre si com as informações de detecção de diferentes sensores no mesmo
objeto. Primeiro, a lista de alvos é gerada pelo radar e depois a lista é verificada pelas
informações de visão;

• Método baseado em visão: Utiliza de técnicas como subtração adaptativa de fundo
ou movimento estéreo para achar a correspondência de objetos de radar e objetos de
imagem.

Atualmente, há uma maior disponibilidade de conjuntos de dados públicos que
incluem informações de radar. A Tabela 6, adaptada de Sheeny et al. (2021), apresenta
uma comparação entre os principais conjuntos de dados automotivos, destacando aspectos
como os sensores utilizados, as condições ambientais contempladas e os tipos de anotações
oferecidas.
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Tabela 6 – Conjuntos de dados automotivos públicos com detecção de radar (SHEENY et al., 2021)

Base Tam Radar LiDAR Câmera Noite Nevoa Chuva Neve Detec
Obj

Rastre
Obj

Odo
metria

Anot
3D

nuScenes G Nuvem de
pontos esparsa

✓ ✓ ✓ ✓ ✓ ✓ ✓

Oxford
Radar Ro-
botCar

G Imagem de
radar de alta
resolução

✓ ✓ ✓ ✓ ✓

MulRan G Imagem de
radar de alta
resolução

✓ ✓

Astyx P Nuvem de
pontos esparsa

✓ ✓ ✓ ✓

RADIATE G Imagem de
radar de alta
resolução

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ Pseudo-
3D

A base nuScenes (CAESAR et al., 2020) oferece dados de radar em formato de nuvem
de pontos esparsa, juntamente com LiDAR e câmeras, cobrindo condições climáticas como
noite e chuva, além de incluir anotações para detecção e rastreamento de objetos. Já o
Oxford Radar RobotCar (BARNES et al., 2019) e o MulRan (KIM, G. et al., 2020) fornecem
imagens de radar de alta resolução, mas focam principalmente em aplicações de localização
e mapeamento, sem anotações específicas para objetos. O Astyx (MEYER, 2019), embora seja
um conjunto de dados pequeno, com cerca de 500 quadros anotados, inclui anotações 3D. O
RADIATE (SHEENY et al., 2021) oferece imagens de radar de alta resolução, juntamente
com LiDAR e câmeras, abrangendo condições ambientais adversas, como neblina, chuva e
neve.

Descoberta: As redes neurais multissensor emergem como a chave para aumentar a
robustez e a precisão dos modelos que utilizam apenas câmeras. A transferência de aprendi-
zado é uma solução valiosa para aproveitar modelos já treinados, que possuem alta eficiência
em tarefas de detecção, permitindo a adaptação desses modelos para novos contextos e
proporcionando uma precisão superior à de um treinamento realizado completamente do
zero. No entanto, a criação de uma nova base de dados para treinar modelos multissensor
é uma tarefa custosa e demorada, que exige anotações detalhadas de todos os objetos de
interesse na cena, além da calibração adequada entre os sensores, tanto espacial quanto
temporalmente, para garantir a precisão dos dados. Felizmente, já existem bases de dados
públicas que atendem a esses requisitos, como nuScenes, Oxford Radar RobotCar, MulRan
e RADIATE, que fornecem dados de radar, câmeras e LiDAR em condições variadas, com
anotações para tarefas como detecção, rastreamento de objetos e odometria. A utilização
dessas bases de dados públicas facilita o desenvolvimento e aprimoramento de modelos de
aprendizado profundo, pois permite a comparação de algoritmos e a validação de novos
métodos, acelerando o progresso na área.
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3.3 Técnicas de fusão entre câmera e radar para detec-

ção 2D

A área de visão computacional abrange uma ampla gama de tarefas, incluindo seg-
mentação semântica, detecção e rastreamento de objetos em 2D e 3D, entre outras. Cada
uma dessas atividades envolve técnicas específicas, com desafios e limitações que exigem
soluções adaptadas às suas particularidades. Dentre elas, a detecção de objetos se destaca
como um tema central, especialmente devido à sua relevância para a navegação de veículos
autônomos. Com o objetivo de proporcionar uma compreensão abrangente das abordagens
descritas na literatura, esta seção se concentra na análise das principais técnicas de fusão
sensorial que utilizam sinais de radar e câmera para a detecção de objetos em 2D.

Na Tabela 8, apresenta-se um resumo detalhado das técnicas exploradas em 14 artigos
distintos, abordando as arquiteturas utilizadas, o nível de fusão adotado, a operação de fusão
empregada, o problema investigado, os tipos de objetos identificados e as bases de dados
utilizadas. Complementarmente, a Tabela 7 reúne os resultados quantitativos reportados com
base na base de dados nuScenes, utilizando métricas como Precisão Média (AP) e Revocação
Média (AR). A análise dessas tabelas permite comparar as diferentes arquiteturas propostas,
identificar padrões de projeto e destacar as abordagens com desempenho mais robusto na
detecção de objetos em 2D, fornecendo uma base sólida para decisões de implementação e
futuras otimizações.

Alguns estudos também reportaram a latência dos algoritmos como uma métrica
de desempenho. No entanto, esses valores não foram incluídos na análise comparativa
apresentada, pois a latência não pode ser diretamente comparada entre trabalhos que utilizam
hardwares distintos, o que compromete a validade da comparação. De forma semelhante,
também foram desconsideradas métricas obtidas em bases distintas da nuScenes, devido às
variações que diferentes conjuntos de dados podem introduzir nos resultados.

Tabela 7 – Quadro resumo das métricas obtidas por trabalhos de fusão sensorial entre RADAR e
Câmera para detecção de Objetos 2D na base de dados NuScenes

Reference Scale AP 𝐴𝑃50 𝐴𝑃75 mAP AR Repository

Chang et al. (2020) 800 72.4 90.0 79.3 - 79.0 SAF-FCOS
Yadav, Vierling e Berns (2020) 1024 72.3 88.9 84.3 - 75.3 BIRANet
Yadav, Vierling e Berns (2020) 512 68.7 87.6 79.7 - 72.0 BIRANet
Yadav, Vierling e Berns (2020) 512 64.7 82.1 57.4 - 67.5 RANet

Nabati e Qi (2019) - 35.4 59.0 37.4 - 42.1 RRPN
Nobis et al. (2020) 640 - - - 43.9 - CRF-Net

V. John, Nithilan et al. (2020) 224 42.3 - - - - SO-Net
Liang Qun Li e Yuan Liang Xie (2020) 800 24.3 48.4 22.3 - 33.7 Li-Xie

Nabati e Qi (2020) - 35.6 60.5 37.4 44.5 42.1 Nabati-Qi
Vijay John e Mita (2019) 416 56.0 - - - - RVNet

https://github.com/Singingkettle/SAF-FCOS
https://github.com/RituYadav92/Radar-RGB-Attentive-Multimodal-Object-Detection
https://github.com/RituYadav92/Radar-RGB-Attentive-Multimodal-Object-Detection
https://github.com/RituYadav92/Radar-RGB-Attentive-Multimodal-Object-Detection
https://github.com/mrnabati/RRPN
https://github.com/TUMFTM/CameraRadarFusionNet
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Tabela 8 – Quadro resumo das técnicas utilizadas pelos pesquisadores para fusão sensorial entre câmera e radar automotivo

Reference Network Architecture Level of Fusion Fusion Operation Problem Object Type Data set

Chang et al. (2020) SAF-FCOS based on FCOS Feature level Addition; Multiplication 2D Object detection Bicycle, car, motorcycle, bus,
train, truck

NuScenes

Yadav, Vierling e
Berns (2020)

BIRANet based on ResNet Feature level Addition 2D Object detection
and distance
estimation

Car, Truck, Person,
Motorcycle, Bicycle, Bus

NuScenes

Nabati e Qi (2019) RRPN based Fast-R-CNN Data level Transformation matrix 2D Object detection Car, Truck, Person,
Motorcycle, Bicycle and Bus

NuScenes

Nobis et al. (2020) CRF-Net based RetinaNet with VGG Multi-level Feature concatenated 2D Object detection Car, bus, motorcycle, truck,
trailer, bicycle and human

NuScenes

V. John, Nithilan et al.
(2020)

SO-Net based Yolov3 and Encoder-decoder Feature level Concatenation 2D Object detection
and Free space
Segmentation

Vehicles and free space NuScenes

Liang Qun Li e
Yuan Liang Xie (2020)

Li-Xie based on the YOLOv3 Feature level Concatenation; Multiplication 2D Object detection car, bus, truck, trailer NuScenes

Nabati e Qi (2020) Nabati-Qi based on Fast-R-CNN Multi-level Region proposal 2D Object detection
and distance
estimation

Car, Truck, Person, Bus,
Bicycle, Motorcycle

NuScenes

Vijay John e Mita
(2019)

RVNet based on YOLOv3 Feature level Concatenation 2D Object detection vehicles, pedestrians,
two-wheelers and objects
(moving and debris)

NuScenes

Kang e Kum (2020) VGG16 data level Transformation matrix Vehicle localization vehicles own, Stanford
Park e Wenchang Yu

(2021)
VGG-19, GoogLeNet e VGG-16 data level Transformation matrix 2D Object detection bicycle, car and pedestrian Udacity vehicle, INRIA

Person and others
Ze Liu et al. (2022) Based Faster R-CNN decision level JPDA Target Recognition

and Tracking
Vehicles and pedestrians Own, MS COCO 2014,

VOC2007 and VOC2012
Xinyu Zhang et al.

(2019)
RCNN data level Transformation matrix 2D Object detection car, trucks and vans Own

Han et al. (2016) Model based machine learning (DPM) data level Transformation matrix 2D Object detection Vehicles, Pedestrians, Two
Wheels, Traffic Cones

PASCAL VOC2010, INRIA
Person

Jiang, Lijun Zhang e
Meng (2019)

YOLOv2 decision level Transformation matrix Target detection buses, cars, bicycles,
motorcycles and pedestrians

PASCAL VOC, VOC2007,
VOC2012
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4 Projeto, implementação e resulta-
dos

Com o objetivo de desenvolver e avaliar a fusão de dados em níveis baixo e médio en-
tre sensores câmera e radar no ambiente automotivo, foi escolhida a base de dados nuScenes,
devido à sua popularidade no meio acadêmico e à sua rica coleção de cenas multissen-
soriais sincronizadas, capturadas nas cidades de Boston e Cingapura, conhecidas por seu
tráfego urbano intenso e variado. Como o Detectron2 não oferece suporte nativo aos dados
do nuScenes, adotamos o formato COCO (Common Objects in Context) como padrão de
anotação. A conversão para esse formato foi necessária para viabilizar a utilização da base
em frameworks de detecção de objetos 2D.

Para a implementação, treinamento e avaliação dos modelos, utilizamos a biblioteca
de código aberto Detectron2 (WU, Y. et al., 2019). O Detectron2 fornece uma infraestrutura
eficiente e modular para tarefas de visão computacional, permitindo o treinamento de
diversosmodelos de detecção e segmentação, como Faster R-CNN,Mask R-CNN e RetinaNet.
Além disso, conta com o Detectron2 Model Zoo, um repositório de modelos pré-treinados
que facilita a transferência de aprendizado, oferecendo diversas combinações de backbones,
como R50-FPN, R101-C4 e R101-DC5. Para garantir a eficiência da detecção baseada em
câmera, adotou-se a estratégia de transferência de aprendizado, uma vez que o treinamento
com pesos aleatórios na base nuScenes exigiria mais tempo de processamento e não atingiria,
o mesmo nível de acurácia de modelos inicializados com pesos treinados em conjuntos
maiores, como COCO ou ImageNet. A Figura 10 organiza visualmente o fluxo de atividades
conduzidas no desenvolvimento do trabalho, antecipando os tópicos descritos nesta seção.

Figura 10 – Fluxograma do desenvolvimento

Fonte: Produzido pelo autor
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4.1 Visão Geral

A primeira proposta de fusão, em nível baixo, teve como base a adaptação do RRPN
ao Detectron2, à qual foi incorporada a extensão desenvolvida neste trabalho: um gerador
de âncoras customizado, definido a partir de um estudo das características geométricas das
categorias presentes na base nuScenes, de forma a adequar melhor as âncoras aos tipos de
objetos buscados. Para a avaliação, três modelos foram treinados: o Faster R-CNN tradicional,
utilizado como referência por considerar apenas a imagem da câmera; o modelo com RRPN,
no qual os dados de radar são incorporados ao processo de geração de propostas; e a versão
estendida da RRPN, correspondente à proposta deste trabalho, que inclui o gerador de
propostas customizado.

A segunda proposta de fusão, em nível médio, consistiu em modificações estruturais
no backbone da rede, de forma a permitir a integração direta entre os sinais de radar e
as imagens da câmera. A arquitetura resultante combina duas redes ResNet-50 paralelas,
sendo uma responsável pelo processamento da câmera e a outra pelo radar, cujas saídas
são fundidas por meio de um módulo de atenção espacial (Spatial Attention Fusion – SAF)
(CHANG et al., 2020), aplicado antes da pirâmide de características (FPN). Para a avaliação
dessa abordagem, dois modelos foram treinados: o Faster R-CNN tradicional, utilizado como
referência por considerar apenas imagens da câmera, e a arquitetura proposta, que integra
os dados de câmera e radar por meio da fusão SAF.

Oprocesso de avaliação teve como objetivo quantificar os ganhos na tarefa de detecção
de objetos 2D proporcionados pela fusão sensorial entre câmera e radar. Para isso, foram
utilizadas as métricas oficiais do conjunto COCO. Com o intuito de investigar a robustez
dos modelos em condições ambientais adversas, a base de validação foi segmentada em três
subconjuntos: validação completa, cenas noturnas e cenas com chuva. Essa divisão teve
como propósito avaliar o desempenho dos modelos em diferentes cenários de visibilidade.

4.1.1 Base de dados nuScenes

O nuScenes(CAESAR et al., 2020) é um banco de dados público desenvolvido pela
empresa nuTonomy, lançado em 2019. Ele oferece um conjunto abrangente de dados multi-
modais, contendo 1.000 cenas capturadas em Boston e Cingapura, cidades conhecidas por
seu tráfego intenso e desafios complexos de direção. Cada cena tem uma duração de 20
segundos, contendo amostras sincronizadas de imagens, LIDAR e RADAR, adquiridas a uma
taxa de 2 Hz. Para a coleta dos dados, foram utilizados dois veículos Renault Zoe, equipados
com um conjunto idêntico de sensores, conforme ilustrado na Figura 11 e detalhado na
Tabela 9. O conjunto de dados resultante inclui aproximadamente 1,4 milhão de imagens de
câmera, 390 mil varreduras LIDAR e 1,4 milhão de varreduras RADAR, além de 1,4 milhão
de anotações de objetos distribuídas em 23 classes.
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Figura 11 – Configuração dos sensores no veiculo NuScenes.

Fonte: (CAESAR et al., 2020)

Tabela 9 – Sensores utilizados pela nuScenes.

Sensor Detalhes
6x Câmera RGB, frequência de captura de 12Hz, sensor CMOS de 1/1.8", resolu-

ção de 1600 × 900, auto exposição, comprimido em JPEG
1x Lidar Giratório, 32 feixes, frequência de captura de 20Hz, FOV horizontal

de 360°, FOV vertical de -30° a 10°, alcance de ≤ 70m, precisão de
±2cm, até 1.4M pontos por segundo

5x Radar Alcance de ≤ 250m, 77GHz, FMCW, frequência de captura de 13Hz,
precisão de vel. de ±0.1km/h

GPS & IMU GPS, IMU, AHRS. Precisão de 0.2° em orientação, 0.1° em rotação/ba-
lanço, posicionamento RTK de 20mm, taxa de atualização de 1000Hz

Os objetos são anotados quando contêm pelo menos um ponto detectado por LiDAR
ou radar. Cada anotação inclui a categoria semântica do objeto, atributos como visibilidade
e pose, além de cuboids que descreve sua posição e dimensões 3D, representado pelos
parâmetros, largura, comprimento, altura e ângulo de guinada. As detecções de radar são
armazenadas emumconjunto de 18 campos, que descrevemaposição, velocidade e qualidade
da detecção dos objetos. Entre os principais, destacam-se as coordenadas 𝑥, 𝑦 e 𝑧, que
representam a posição tridimensional do ponto, enquanto 𝑣𝑋 e 𝑣𝑌 indicam suas velocidades
em metros por segundo. As velocidades 𝑣𝑋𝑐𝑜𝑚𝑝 e 𝑣𝑌𝑐𝑜𝑚𝑝 são corrigidas para compensar o
movimento do veículo. O campo RCS (Radar Cross Section) quantifica a intensidade do sinal
refletido, indicando a capacidade do objeto de refletir ondas de radar. Além disso, diversos
outros campos fornecem informações sobre a validade da detecção e as incertezas associadas
às medições.
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Para utilizar os dados dos sensores em referencial comum, garantindo a correta fusão
de dados, a base nuScenes disponibiliza o campo calibrated_sensor, que contém as tabelas
de rotação e translação de cada sensor, além da matriz intrínseca das câmeras, obtidas a
partir de um processo de calibração realizado aproximadamente duas vezes por semana
ao longo dos seis meses de coleta de dados. A rotação e a translação permitem alinhar os
sensores ao referencial do veículo, enquanto a matriz intrínseca possibilita a projeção da
nuvem de pontos 3D nas imagens da câmera.

4.1.2 Conversão para o formato COCO

O COCO organiza as informações em um arquivo JSON estruturado em três seções
principais: images, categories e annotations. A seção images armazenametadados sobre cada
imagem do conjunto de dados, incluindo um identificador único (id), o nome do arquivo
e suas dimensões em pixels. A seção categories define as classes dos objetos detectados,
que, para esse nossos modelos serão: Pedestre, Bicicleta, Motocicleta, Carro, Caminhão
e Ônibus. Já a seção annotations contém as informações de cada objeto anotado dentro
das imagens, vinculando cada anotação a uma imagem específica por meio do campo
image_id, correspondente ao id da imagem. Além disso, cada anotação inclui o identificador
da categoria (category_id), as coordenadas da caixa delimitadora (bbox) e a área ocupada
pelo objeto.

Para incorporar os dados do radar, adicionamos a seção pointcloud, que contém os
campos de identificação (id), referência à imagem correspondente (image_id) e os dados de
aferição (points). O campo points armazena uma lista de todos os pontos de radar associados
a cada imagem, incluindo as coordenadas projetadas no plano da imagem (x e y em pixels),
a distância do ponto ao radar (em metros) e as velocidades relativas (vx e vy em metros por
segundo).

A conversão das detecções do radar para o plano da imagem no nuScenes é realizada
utilizando o devkit do conjunto de dados, que aplica uma série de transformações baseadas
nas matrizes de calibração dos sensores, garantindo o alinhamento espacial e temporal
por meio do registro de data e hora de cada sensor. Inicialmente, os pontos do radar são
carregados no referencial do próprio sensor e transformados para o referencial do veículo no
timestamp correspondente à captura do radar. Em seguida, os pontos são convertidos para
o sistema global e, posteriormente, ajustados para o referencial do veículo no instante da
captura da imagem da câmera. Depois disso, a transformação para o referencial da câmera é
aplicada, e a projeção dos pontos no plano da imagem ocorre por meio da matriz intrínseca
da câmera. Por fim, pontos fora do campo de visão ou atrás da câmera são descartados,
garantindo uma fusão precisa dos dados radar-visão.
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4.1.3 Configuração do treinamento e Avaliação

O treinamento dosmodelos foi realizado utilizando dados da câmera e do radar frontal
provenientes do banco de dados nuScenes (CAESAR et al., 2020), previamente convertidos
para o formato COCO (LIN; MAIRE et al., 2014). A Tabela 10 apresenta a configuração
adotada para o treinamento dos modelos avaliados, contemplando diferentes níveis de fusão
sensorial. Nela, são especificados os principais hiperparâmetros utilizados, incluindo o
gerador de propostas, a arquitetura de backbone, o número máximo de iterações, a taxa
de aprendizado inicial (LR Base), o otimizador, os passos de ajuste da taxa de aprendizado
(Steps) e o fator de decaimento (Gamma). Também são indicados o limiar de pontuação
para os testes (Score Thresh Test), o número de classes e os tipos de objetos detectados.
Cada abordagem de fusão é comparada com o benchmark Faster R-CNN, identificado pelo
símbolo (*), com o objetivo de avaliar os ganhos proporcionados pelas estratégias de fusão
de dados e de características.

Tabela 10 – Configuração de treinamento dos modelos por nível de fusão

Configurações Fusão de Dados Fusão de Características

Gerador de Propostas RPN* |RRPN |Custom_RRPN RPN
Backbone R50-FPN R50-FPN* |2R50-SAF-FPN
Máx Iter 30000 20000
LR Base 0.0005 0.00025

Otimizador - AdamW
Steps 25000; 28000 -
Gamma 0.1 -

Score Thresh Test 0.6 0.6
Num Classes 06 06
Classes Pedestre, Bicicleta, Motocicleta, Carro, Caminhão e Ônibus

* Modelo de referência, Faster-RCNN (Benchmark).

Para avaliar a eficiência da fusão câmera-radar na detecção de objetos 2D, utilizamos
as métricas do conjunto de dados COCO (LIN; MAIRE et al., 2014). Dentre essas métricas,
destacam-se a Precisão Média (AP), que quantifica a capacidade do modelo de realizar
predições corretas ao calcular a área sob a curva de precisão versus revocação, e a Revocação
Média (AR), que expressa a capacidade de recuperar objetos anotados, ou seja, a fração
de verdadeiros positivos em relação ao total de anotações. Ambas são calculadas sobre 10
limiares de Interseção sobre União (IoU), uniformemente espaçados de 0.50 a 0.95, com
incremento de 0.05. Também utilizamos valores específicos de AP, como o AP50 e o AP75, que
correspondem aos limiares fixos de IoU 0.50 e 0.75, respectivamente. Essas métricas podem
ser reportadas de forma global ou segmentadas por categoria. Conforme a convenção do
COCO, não se distingueAP demAP (assim comoARdemAR), presumindo-se que o contexto
torne essa equivalência clara. Para uma análise em diferentes escalas, também reportamos
os valores de AP segmentados pelo tamanho dos objetos, conforme a definição do COCO:
pequenos (AP𝑠, área < 322), médios (AP𝑚, 322 < área < 962) e grandes (AP𝑙, área > 962).
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Com o objetivo de avaliar o desempenho dos modelos em diferentes condições de
condução, o conjunto de validação foi segmentado em três grupos: dia, noite e chuva. A
separação entre cenas diurnas e noturnas baseou-se no horário de captura, enquanto as cenas
de chuva foram identificadas pela chave rain na descrição de cena. A Tabela 10 apresenta a
distribuição das instâncias entre essas categorias. Devido à alta similaridade entre o conjunto
completo e o grupo diurno, optou-se por não utilizar este último na avaliação.

Tabela 11 – Distribuição das instâncias entre todas as 6 categorias

Categoria Total (N) Dia Noite Chuva

Pessoa (N) 8,635 8,598 37 382
Bicicleta (N) 556 552 4 34
Motocicleta (N) 922 753 169 70
Carro (N) 22,236 20,722 1,514 5,166
Ônibus (N) 1,162 1,162 0 169
Caminhão (N) 4,640 4,558 82 1,281
Total (N) 38,151 36,345 1,806 7,102
Total (%) 100 95.3 4.7 18.6

4.2 Método 1: Fusão em nível de dados baseada em

RRPN

Esta seção explora o método de fusão sensorial de baixo nível que utiliza a detecção
por radar para gerar regiões de interesse (ROIs) no sistema de coordenadas da câmera. Para
isso, foi adotado o algoritmo RRPN (Radar Region Proposal Network) (NABATI; QI, 2019),
que gera caixas delimitadoras (âncoras) sobre a imagem a partir das coordenadas e distâncias
fornecidas por cada ponto de detecção do radar.

Nabati eQi (2019) propôs ummétodo para ajustar fator de escala das âncoras combase
na distância dos objetos detectados. Esse mecanismo parte do princípio de que objetos mais
distantes ocupam áreas menores na imagem e, portanto, devem ter âncoras proporcionais à
sua projeção. Cada ponto de radar é mapeado para o plano da imagem como um vetor de
três componentes: coordenadas projetadas e distância. O fator de escala aplicado à âncora
de cada detecção é calculado segundo a seguinte equação:

𝑆𝑖 = 𝛼 1𝑑𝑖
+ 𝛽 (4.1)

Em que 𝑆𝑖 representa o fator de escala da âncora da detecção 𝑖, 𝑑𝑖 é a distância ao
objeto, e 𝛼 e 𝛽 são parâmetros definidos para ajustar esse escalonamento. Os parâmetros 𝛼 e
𝛽 foram determinados usando uma pesquisa de grade dentro de um intervalo de valores que
maximiza a Interseção sobre União (IoU) entre as caixas delimitadoras geradas e as caixas
delimitadoras da verdade básica do conjunto de treinamento (NABATI; QI, 2019).
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Além da compensação baseada na distância, o algoritmo também permite configurar
parâmetros como os formatos das âncoras, definidos por aspect ratios, as posições relativas
ao ponto de detecção (como centro, cima, esquerda e direita), e um fator multiplicador
aplicado a cada âncora gerada. Essa flexibilidade possibilita a criação de um gerador de
âncoras customizado, conforme será apresentado nas seções seguintes.

4.2.1 Gerador de Âncora RRPN

As âncoras são geradas com base nos sinais de radar, para cada leitura de radar no
plano da imagem, são adotados três aspect ratios, que representam a razão entre a altura e a
largura das caixas delimitadoras: 0,5, 1 e 2. Esses valores correspondem, respectivamente, a
retângulos horizontais, quadrados e retângulos verticais, permitindo uma melhor adaptação
das âncoras às diferentes formas dos objetos presentes na cena.

Como os pontos de radar raramente coincidem exatamente com o centro dos objetos
de interesse, as âncoras não são geradas apenas na posição central do ponto de detecção, mas
também deslocadas para as posições superior, esquerda e direita. Dessa forma, cada ponto
de detecção do radar contribui com quatro pontos distintos de referência para a geração de
âncoras, conforme ilustrado na Figura 12.

Figura 12 – Âncoras geradas pelo RRPN.

Fonte: Produzido pelo autor

Além das variações de posicionamento, são aplicados fatores de escalamultiplicativos
de 1×, 2× e 4×, ajustando o tamanho das caixas delimitadoras para abranger objetos de
diferentes dimensões. Assim, considerando as três proporções de aspect ratio e as quatro
posições de deslocamento, a introdução dos fatores de escala resulta em um total de 36 caixas
delimitadoras por ponto de detecção do radar, como ilustrado na Figura 13.
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Figura 13 – Bounding boxes geradas por ponto de radar

Fonte: Produzido pelo autor com dados de nuScenes

4.2.2 Gerador de âncora customizado

Para obter âncorasmais representativas para os tipos de objetos que se pretende identi-
ficar, sendo eles: pedestres, bicicletas,motocicletas, carros, ônibus e caminhões. Investigou-se
as proporções das caixas delimitadoras da verdade básica no conjunto de treinamento NuS-
cenes(CAESAR et al., 2020). A relação entre a altura e a largura das caixas delimitadoras de
cada objeto de interesse foi extraída e agrupada em três categorias distintas: Pequeno para
pedestres, bicicletas e motocicletas; Médio para carros; e Grande para ônibus e caminhões.
Cada categoria foi plotada em um histograma para analisar as proporções mais frequentes
por tamanho do objeto conforme mostrado na Figura 14.

A análise do histograma da Figura 14, mostra que objetos menores tendem a ter uma
caixa delimitadora retangular vertical, com uma proporção de cerca de 1,8. As distribuições
das barras nos histogramas para objetos médios e grandes são mais semelhantes, com objetos
médios tendo uma proporção de aspecto mais padronizada, com numerosos picos em torno
de 0,4, 0,6 e 0,8. Da mesma forma, objetos grandes têm uma frequência mais baixa e um
desvio padrão mais alto. Dadas essas características de cada objeto, foram escolhidos os
seguintes multiplicadores e proporções para gerar as âncoras do modelo proposto.

Tabela 12 – Aspect Ratios for Different Multiplied Factors

Fator multiplicador Aspect Ratio [H/W]
1X 1.8; 0.6
2X 1.8; 0.6
3X 0.8; 0.6; 0.4
4X 0.8; 0.6; 0.4
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Figura 14 – Histograma do aspect ratio por tamanho de objeto

Fonte: Produzido pelo autor

Figura 15 – Âncoras geradas pelo RRPN customizado.

Fonte: Produzido pelo autor

A Figura 15 ilustra as âncoras geradas com os fatores multiplicadores 1× e 3×, posici-
onadas nos pontos central, superior, esquerdo e direito em relação à detecção do radar. O
processo proposto de geração de âncoras resultou em um total de 40 caixas delimitadoras
por ponto de detecção. As Figuras 32 e 33, apresentadas em anexo, comparam o gerador de
âncoras RRPN com a versão customizada, evidenciando as propostas de região produzidas
para um mesmo ponto de detecção.
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4.2.3 Resultados

Nesta seção, são apresentados os resultados obtidos no treinamento de três modelos
distintos. O primeiro modelo, Faster R-CNN (REN et al., 2015), utiliza exclusivamente
imagens da câmera frontal e emprega o gerador de propostas RPN. Esse modelo serve
como referência para comparação, uma vez que a principal diferença entre as abordagens
analisadas está no mecanismo de geração de propostas. Os outros dois modelos incorporam
a fusão de dados entre câmera e radar. O segundo modelo utiliza o gerador de propostas
RRPN, cuja abordagem foi detalhada na Seção 4.2.1. Por fim, o terceiro modelo, denominado
Custom_RRPN, adota uma estratégia personalizada de geração de âncoras, conforme descrito
na Seção 4.2.2.

Os resultados experimentais são apresentados nas Tabelas 13 e 14. Além disso, as
Tabelas 15 e 16mostram os desempenhos específicos dosmodelos em condições desafiadoras,
como cenas noturnas e ambientes chuvosos, respectivamente.

Tabela 13 – Precisão média por categoria na base completa

Categoria Faster R-CNN RRPN Custom RRPN
Pessoa (AP) 15.480 7.734 6.452
Bicicleta (AP) 7.434 5.604 4.978
Motocicleta (AP) 8.898 5.515 6.869
Carro (AP) 36.639 28.566 28.355
Ônibus (AP) 34.139 29.622 34.916
Caminhão (AP) 16.637 13.332 16.555

Tabela 14 – Resultados na base de validação completa

Métrica Faster R-CNN RRPN Custom RRPN
AP 19.87 15.22 16.35
AR 25.4 20.0 21.0
AP50 38.79 30.02 31.05
APs 1.60 0.36 0.21
APm 11.66 6.23 6.18
AP1 30.9 25.78 27.66

Os resultados nas Tabelas 13 a 16 destacam uma melhoria nas métricas entre o
Custom_RRPN em comparação com o RRPN, porém não muito significativa. Comparado ao
Faster R-CNN (REN et al., 2015), todas as métricas foram inferiores neste treinamento. A
técnica de fusão de dados, que utiliza radar para gerar regiões de interesse propostas para a
câmera, degrada o desempenho do detector de objetos que utiliza apenas a câmera.
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Tabela 15 – Resultados na base de validação noturna

Métrica Faster R-CNN RRPN Custom RRPN
AP 12.94 9.07 9.58
AR 16.0 11.9 11.6
AP50 24.39 18.96 19.26
APs 6.13 0.03 0.17
APm 9.75 4.42 5.21
AP1 19.01 15.10 16.26

Tabela 16 – Resultados na base de validação em condição de chuva

Métrica Faster R-CNN RRPN Custom RRPN
AP 13.67 10.56 11.78
AR 17.6 14.2 15.5
AP50 28.22 21.48 23.89
APs 10.46 7.32 7.56
APm 10.27 6.39 7.54
AP1 20.57 15.39 18.30

Neste formato de fusão, o radar é utilizado como sensor principal para a detecção.
Dessa forma, objetos não detectados pelo radar não são procurados nem analisados pela
rede neural. Para validar essa hipótese, os objetos anotados nos conjuntos de validação e
teste foram carregados. Para cada objeto, foi verificado se havia pontos de radar associados e
quantificada a quantidade de pontos relacionados. Manteve-se amesma divisão de categorias
na análise da proporção por tamanho de objeto: a Figura 16 apresenta os resultados para
objetos pequenos, a Figura 17 para objetos médios e a Figura 18 para objetos grandes.

Os histogramas apresentados nas Figuras 16 a 18 indicam que objetos pequenos
possuem maior probabilidade de não serem detectados pelo radar. Quando detectados, rara-
mente apresentammais de um ponto vinculado. No caso específico da detecção de pedestres,
aproximadamente 20% dessa categoria possui ao menos um ponto de radar associado, o
que justifica, os baixos índices de detecção observados na Tabela 13. A análise das demais
categorias de objetos na cena segue um padrão semelhante, corroborando os resultados do
experimento apresentados nas Tabelas 13 a 16. Conforme evidenciado, caminhões e ônibus
foram melhor detectados pelo radar e apresentaram maior número de pontos associados,
resultando em valores de APl mais próximos aos obtidos com o modelo Faster R-CNN (REN
et al., 2015).
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Figura 16 – Histograma de detecções de radar para
pequenos objetos no banco de dados NuScenes.

Figura 17 – Histograma de detecções de radar para objetos
médios no banco de dados NuScenes.

Figura 18 – Histograma de detecções de radar para objetos
grandes no banco de dados NuScenes.
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O algoritmo RRPN (NABATI; QI, 2019) pode aumentar potencialmente a veloci-
dade do Fast R-CNN (GIRSHICK, 2015), aproximando-o do desempenho em tempo real
exigido por aplicações em veículos autônomos. No entanto, com o lançamento do Faster R-
CNN(REN et al., 2015), que integra de forma mais eficiente a geração de propostas por meio
da Region Proposal Network (RPN), torna-se impraticável utilizar exclusivamente a detecção
por radar para gerar regiões de interesse. Para mitigar a ausência de detecção em áreas sem
retorno do radar, é essencial também realizar a extração de características da imagem. Dessa
forma, os modelos de detecção baseados em redes neurais convolucionais (CNNs), quando
implementados com esquemas de fusão de nível médio (ou fusão de características), têm se
mostrado mais eficazes ao integrar informações de diferentes fontes e melhorar a robustez
da detecção.

4.3 Método 2: Fusão em nível de característica baseado

em SAF

Esta seção explora o método de fusão em nível de característica, com base no trabalho
de Chang et al. (2020). Nesse método, a fusão por meio do módulo SAF (Spatial Attention
Fusion) tem como principal objetivo aprimorar a detecção de pequenos objetos e de objetos
desfocados, ao enfatizar regiões relevantes e reforçar a confiabilidade das detecções oriun-
das da câmera. Além disso, essa abordagem assegura que as áreas sem retorno do radar
sejam preservadas após a fusão, permitindo que continuem sendo consideradas nas etapas
subsequentes do processo de detecção. O detector de objetos adotado foi o Faster R-CNN,
amplamente reconhecido como referência na área de detecção de objetos. Para aprimorar o
reconhecimento em múltiplas escalas, integrou-se à arquitetura o módulo Feature Pyramid
Networks (FPN).

4.3.1 Fluxo dos dados do radar no Detectron2

Como o Detectron2 (WU, Y. et al., 2019) é projetado exclusivamente para trabalhar
com imagens, as leituras do radar precisam ser processadas e enviadas até a etapa de extração
de recursos para que possam ser fundidas com as características da câmera. Após a extração
dos dados da base nuScenes e a geração do arquivo JSON no formato COCO, que inclui
informações do radar (coordenadas, distância e velocidades) para cada imagem, conforme
detalhado na Seção 4.1.2, a função load_coco_json é utilizada para carregar esses dados.
Essa função gera um dicionário contendo os metadados de cada imagem do banco (como
nome do arquivo, ID e dimensões), juntamente com as anotações correspondentes (caixas
delimitadoras e categorias dos objetos). Para acomodar as informações do radar, essa função
foi modificada de modo a incluir os dados no formato do dicionário, conforme exemplificado
em A.1.
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As classes DatasetMapper e DefaultPredictor também são modificadas. Durante a
execução do treinamento ou predição, essas classes são responsáveis por buscar a imagem a
partir do caminho armazenado no campo "file_name", transformá-la em tensor e carregá-la
no dispositivo configurado (GPU ou CPU). Além de carregar a imagem da câmera, como
fazem as classes originais, a versão customizada também gera uma imagem RGB a partir
dos dados do radar. Nessa conversão, as coordenadas são usadas para posicionar os pontos
na imagem, enquanto os valores dos canais representam a distância, a velocidade relativa
em X e a velocidade relativa em Y. Como saída, a classe retorna um dicionário contendo as
imagens da câmera e do radar devidamente carregadas e transformadas em tensores.

As informações da câmera e do radar são fundidas após a extração de características
de cada sensor pelo ResNet-50, e as características combinadas são então enviadas para
o FPN, seguindo o fluxo normal do modelo. Toda essa fusão em nível de características
ocorre na camada de backbone do Detectron2, exigindo uma adaptação na classe Generali-
zedRCNN, que implementa um modelo genérico baseado em R-CNN dentro da arquitetura
do Detectron2. Essa classe gerencia a extração de características, a geração de propostas e a
predição final em modelos como o Faster R-CNN.

Os tensores da câmera e do radar são passados para o backbone utilizando uma
operação de concatenação. Para isso, o tensor de imagem do radar é redimensionado para o
tamanho da imagem da câmera, já que esse é um parâmetro configurável no Detectron2.
Outras operações de pré-processamento, como normalização, já aplicadas à imagem da
câmera em GeneralizedRCNN, também são realizadas na imagem do radar, assegurando
um tratamento consistente entre os sensores. Por fim, a operação de concatenação é revertida
no backbone, os tensores são enviados para o extrator de caracteristicas, e uma operação de
fusão pode ser aplicada para combinar os mapas de características dos sensores.

4.3.2 Gerando imagem da nuvem de pontos do radar

As nuvens de pontos e as detecções do radar não podem ser diretamente utilizadas
nos extratores de características, já que esses métodos operam em imagens. Para contornar
essa situação, os dados do radar são processados e transformados em uma imagem com as
mesmas proporções da imagemda câmera,mantendo a equivalência espacial entra elas. Cada
canal da imagem de radar, responsável pela coloração R, G e B, é associado a um valor físico
detectado. A abordagem escolhida, baseada em Chang et al. (2020), escolhemos a distância
para preencher o canal vermelho, a velocidade radial para o canal verde e a velocidade
transversal para o canal azul. Cada medição é representada na Figura 19, com os valores
mapeados por coloração para melhor visualização. Além disso, seguimos a abordagem do
artigo para representar a detecção de radar como um círculo na imagem. No estudo, foi
avaliado diferentes raios entre 1 e 11 e concluíram que o raio 7 proporcionou o melhor
desempenho no ResNet-50.
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Figura 19 – Detecções de distância, velocidade radial e velocidade
transversal obtidas pelo radar

Fonte: Produzido pelo autor com dados de nuScenes

Figura 20 – Imagem câmera e imagem gerada para o radar

Fonte: Produzido pelo autor com dados de nuScenes



60

Para obter uma regra de representação dessas medições na imagem, cada detecção é
convertida em intensidade de pixel, variando de 0 a 255. A faixa de valores escolhida para
a distância foi de 0 a 250 metros, e para as velocidades relativas, de -33 a 33 m/s (-118 a
118 km/h). A faixa de valores de cada medição é normalizada para que os valores em pixel
fiquem entre 127 e 255, conforme a Equação 4.2. As imagens da mesma cena, obtidas pela
câmera e geradas para o radar, são apresentadas na Figura 20.

𝑃𝑖𝑥𝑒𝑙 = (Detecção −MIN
MAX −MIN × 128 + 127) (4.2)

4.3.3 Arquitetura

A arquitetura detalhada do modelo de referência é apresentada na Figura 21. Nela,
os rótulos em azul destacam as classes do Detectron2 que implementam cada módulo do
Faster R-CNN com ResNet e FPN (Benchmark). A principal classe, GeneralizedRCNN,
estrutura o modelo em três blocos: o backbone, responsável pela extração de características
da imagem; o RPN, encarregado de gerar propostas de região que podem conter objetos; e o
ROI Heads, responsável por processar as regiões propostas, e ajustar as caixas delimitadoras.

O backbone utiliza a ResNet-50 para extrair características da imagem de entrada.
Essas características são refinadas pela Feature Pyramid Network (FPN), que combina in-
formações de diferentes níveis da rede para gerar mapas de características em múltiplas
escalas. As saídas da FPN são representadas pelos níveis 𝑃2, 𝑃3, 𝑃4, 𝑃5 e 𝑃6, correspon-
dendo a resoluções reduzidas por fatores de 4, 8, 16, 32 e 64 em relação à imagem original,
respectivamente.

A fusão de características entre os dados da câmera e do radar ocorre no bloco back-
bone, como falado na seção anterior, mantendo os demais blocos do modelo de referência
sem alterações. O backbone proposto utiliza duas redes ResNet-50, uma para extrair caracte-
rísticas da imagem da câmera e outra para a imagem do radar. Essas características passam
pelo bloco Spatial Attention Fusion (SAF) para serem fundidas antes de seguirem para o
refinamento no FPN, como mostrado na Figura 22.

O bloco de fusão SAF utiliza uma matriz de atenção espacial gerada a partir das
características extraídas do radar, que são aplicadas aos mapas de características da visão.
Esse mecanismo realça regiões onde o radar fornece informações relevantes e atenua a
influência de áreas menos confiáveis. Para isso, as características do radar passam por três
camadas convolucionais com diferentes tamanhos de kernel (1×1, 3×3 e 5×5), cada uma
com padding correspondente (0, 1 e 2, respectivamente), a fim de preservar as proporções
espaciais das features originais. As saídas dessas convoluções são somadas, resultando em
uma matriz de atenção espacial com as mesmas dimensões do mapa de características da
câmera, como ilustrado na Figura 23.
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Figura 21 – Arquitetura detalhada do Faster RCNN com FPN e Resnet. Rótulos azuis
representam nomes de classes no Detectron2

Fonte: (HONDA, 2020)

Figura 22 – Arquitetura do backbone (2R50-SAF-FPN)

Fonte: Modificado de (HONDA, 2020)
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Figura 23 – Operações aplicadas no mapa de característica do radar

Fonte: Produzido pelo autor com dados de nuScenes

Para concluir a fusão SAF, a matriz de atenção espacial gerada a partir das caracterís-
ticas do radar é multiplicada pelos mapas extraídos da visão, modulando a informação visual
com base na percepção complementar do radar. Esse processo realça regiões com retorno
do radar, como objetos em movimento ou altamente refletivos, sem suprimir as áreas da
imagem onde não há detecção. A Figura 24 ilustra esse efeito, comparando os mapas de
características da câmera (linha superior), do radar (linha intermediária) e da fusão SAF
(linha inferior), nas saídas res2, res3 e res4 do extrator de características. Observa-se que as
regiões com retorno do radar apresentammaior ativação nos mapas fundidos, especialmente
nas saídas de maior resolução, como res2 e res3, ao mesmo tempo em que a estrutura visual
é preservada nas regiões sem detecção.

Figura 24 – Mapas de características extraídos da câmera, do radar e da fusão
SAF

Fonte: Produzido pelo autor com dados de nuScenes
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4.3.4 Resultados

Nesta seção, apresentamos os resultados obtidos para os dois modelos treinados.
O primeiro modelo, o Faster R-CNN (REN et al., 2015), utiliza exclusivamente imagens
da câmera frontal do conjunto de dados. Ele emprega a arquitetura ResNet-50 com FPN
(R50-FPN) como backbone e serve como base de comparação, já que a principal diferença
entre os modelos está na estrutura do backbone. No segundo modelo, realiza-se a fusão de
características diretamente no mapa de características, combinando informações provenien-
tes da câmera e do radar frontal. Para isso, são utilizadas duas redes ResNet-50, com a fusão
SAF aplicada antes da FPN (2R50-SAF-FPN), conforme descrito na Seção 4.3.3.

A Figura 25 ilustra a efetividade do modelo proposto. Na primeira linha, apresenta-
se a imagem de referência com os pontos de radar sobrepostos, as detecções do modelo
Faster R-CNN representadas em verde e as anotações manuais (Ground Truth) em vermelho.
Observa-se um veículo preto parcialmente visível, cuja frente e traseira estão encobertas
por uma árvore e por uma placa de sinalização. Apesar da oclusão, diversos pontos de radar
registraram a presença do veículo, o que aumentou a confiabilidade da detecção. Como
resultado, a instância ultrapassou o limiar de pontuação adotado no teste (Score Threshold
Test, especificado na tabela 10), sendo corretamente detectada pelo modelo Faster SAF-CNN,
como ilustrado na imagem da segunda linha.

Figura 25 – Comparação da detecção entre os modelos.

Fonte: Produzido pelo autor com dados de nuScenes

Os resultados experimentais completos são apresentados nas Tabelas 17 e 18. Além
disso, as Tabelas 20 e 21 detalham o desempenho dos modelos em condições adversas, como
cenas noturnas e chuvosas, respectivamente.
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Tabela 17 – Precisão média por categoria na base de validação completa

Categoria Faster R-CNN Faster SAF-CNN
Pessoa (AP) 23.230 23.440
Bicicleta (AP) 13.448 13.301
Motocicleta (AP) 13.159 14.008
Carro (AP) 43.049 44.274
Ônibus (AP) 33.361 32.266
Caminhão (AP) 18.874 21.963

Tabela 18 – Resultados na base de validação completa

Métrica Faster R-CNN Faster SAF-CNN
AP 24.19 24.87
AR 33.7 34.5
AP50 47.69 48.65
AP75 21.37 23.01
APs 3.06 4.42
APm 18.53 19.02
AP1 33.56 34.30

Na avaliação sobre a base de validação completa, observa-se um incremento na
precisão média de 3,09%, 1,09% e 0,85% nas categorias caminhão, carro e motocicleta (Tabela
17), respectivamente. Também foram registrados acréscimos de 0,80% em AR, 0,96% em
AP50 e 1,36% em APs, indicando maior consistência na detecção de objetos dentro dos
limiares estabelecidos e melhor desempenho em alvos de menor dimensão. O valor de AP75
apresentou uma elevação de 1,64%, evidenciando maior precisão na localização das caixas
delimitadoras. A Tabela 19 ilustra a relevância desse resultado, mostrando que o modelo
proposto identificou 383 objetos adicionais na cena de trânsito em relação ao Faster R-CNN
e reduziu 703 detecções falsas, o que reforça o impacto prático dessa melhoria.

Tabela 19 – Comparação de Detecções (IoU 75%)

Modelo Verdadeiros
Positivos

Falsos
Positivos

Falsos
Negativos

Faster SAF-CNN 14,719 25,273 23,432
Faster R-CNN 14,336 25,976 23,815
Diferença 383 -703 -383
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A avaliação em condições adversas, conforme apresentado nas Tabelas 20 e 21, re-
vela uma leve superioridade do modelo proposto nas métricas analisadas. Destaca-se, em
particular, um ganho de 1,35% em AP75 na base sob condição de chuva, indicando maior
precisão na localização das caixas delimitadoras. No caso da base de validação em condição
noturna, que representa apenas 4,7% das categorias da base completa, o modelo, embora
também utilize os dados provenientes do radar, cuja resposta não é afetada pelas condições
de iluminação, não apresentou um ganho tão expressivo. Esse resultado pode estar associ-
ado à reduzida quantidade de objetos detectáveis e ao número limitado de cenas noturnas,
conforme mostrado na Tabela 11.

Tabela 20 – Resultados na base de validação noturna

Métrica Faster R-CNN Faster SAF-CNN
AP 13.22 13.40
AR 18.20 18.30
AP50 28.04 28.33
AP75 11.20 11.44
APs 11.24 11.17
APm 10.20 10.34
AP1 17.68 17.93

Tabela 21 – Resultados na base de validação em condição de chuva

Métrica Faster R-CNN Faster SAF-CNN
AP 18.67 18.72
AR 27.70 27.40
AP50 35.89 35.95
AP75 16.91 18.26
APs 3.85 3.60
APm 15.92 15.52
AP1 23.43 23.37

A Tabela 22 compara o tempo médio de execução entre o nosso método proposto
(SAF) e o Faster R-CNN (FAS). O SAF apresentou aproximadamente três vezes o tempo do
FAS, sendo 13,37% desse aumento associado ao gerador de imagens de radar, implementado
em Python, e passível de otimização com linguagens mais eficientes como C++. As opera-
ções de fusão não impactaram significativamente o tempo, já que o backbone apresentou
desempenho similar ao do FAS. A maior parte do tempo adicional (71,38%) foi consumida
pelo gerador de propostas, resultado da fusão e modificação do mapa de características que
alimenta essa etapa. Além disso, valores elevados nos mapas de características parecem
influenciar o tempo gasto, sugerindo a necessidade de estudar a relação entre a ativação das
regiões de interesse do radar e o desempenho do gerador de propostas, visando otimizar o
equilíbrio entre precisão e velocidade.
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Tabela 22 – Comparação de tempo médio entre Faster R-CNN e Faster SAF-CNN

Etapa FAS (ms) SAF (ms) SAF / FAS Diferença relativa (%)
Create_radar_img 2.97 499.16 168.0x 13.37%
Preprocessing 22.32 21.26 0.95x -0.05%
Backbone (Fusion) 19.64 23.15 1.18x 0.14%
Proposal_Generator 1257.41 3583.87 2.85x 71.38%
Roi_Heads 44.44 47.94 1.08x 1.16%
Tempo médio 1434.12 4268.69 2.98x 100%

Os resultados obtidos evidenciam que a fusão de características por meio do módulo
SAF proporciona uma melhora no desempenho da detecção de objetos, com destaque para
o aumento da precisão na localização das caixas delimitadoras, sobretudo em situações
envolvendo oclusões e na detecção de pequenos objetos. Essa tendência é reforçada por
resultados qualitativos obtidos em diferentes condições. Em ambientes com neblina, nos
quais a visibilidade da câmera é severamente reduzida, o modelo com fusão foi capaz de
detectar corretamente a frente de um caminhãomuito próximo e dois veículos mais distantes
(Figura 26), bem como identificar um carro e uma van estacionados à frente do veículo
(Figura 27).

Figura 26 – Comparação da detecção entre os modelos.

Fonte: Produzido pelo autor com dados de nuScenes
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Figura 27 – Comparação da detecção entre os modelos.

Fonte: Produzido pelo autor com dados de nuScenes

A Figura 28 destaca a capacidade do modelo em identificar um carro e um pedestre
a longa distância, evidenciando sua eficácia na detecção de pequenos objetos. Na Figura 29,
observa-se a correta identificação de dois caminhões muito próximos, sendo o segundo
parcialmente ocultado pelo primeiro, o que demonstra a robustez domodelo frente a oclusões.

Figura 28 – Comparação da detecção entre os modelos.

Fonte: Produzido pelo autor com dados de nuScenes
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Figura 29 – Comparação da detecção entre os modelos.

Fonte: Produzido pelo autor com dados de nuScenes

A Figura 30 apresenta um caminhão de grande porte a média distância e um pedestre
à frente do veículo, enquanto a Figura 31 evidencia a presença de um caminhão de pequeno
porte a curta distância, posicionado à direita. Em ambos os casos, o modelo multissensorial
realiza detecções críticas do ponto de vista da segurança veicular, uma vez que os objetos
identificados representam potenciais riscos de colisão.

Figura 30 – Comparação da detecção entre os modelos.

Fonte: Produzido pelo autor com dados de nuScenes
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Figura 31 – Comparação da detecção entre os modelos.

Fonte: Produzido pelo autor com dados de nuScenes
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5 Conclusões

A percepção precisa do ambiente é um requisito fundamental para a navegação
segura de veículos autônomos e motivou a realização deste trabalho, cujo objetivo foi ex-
plorar estratégias de fusão sensorial no contexto automotivo, com o uso de algoritmos de
detecção baseados em redes neurais convolucionais. A fusão entre sensores de câmera e
radar apresenta vantagens significativas, uma vez que esses dispositivos são complemen-
tares e amplamente utilizados na indústria automotiva. Essa combinação permite aliar a
alta resolução lateral proporcionada pelas câmeras à robustez do radar, especialmente em
condições climáticas adversas ou de baixa luminosidade. Além disso, o radar possui menor
custo de produção em comparação ao sensor LiDAR, tornando-se uma alternativa atrativa
para aplicações em larga escala.

A fundamentação teórica teve início com a apresentação dos Sistemas Avançados de
Assistência ao Condutor (ADAS), que contribuem para a segurança veicular ao oferecerem
suporte progressivo à direção. Esses sistemas se relacionam diretamente à classificação da
norma SAE J3016, que define seis níveis de automação, do controle totalmente manual à
condução autônoma plena. Com o avanço desses níveis, cresce a necessidade de mecanismos
de percepção ambiental precisos, razão pela qual foram analisados os principais sensores
empregados em veículos autônomos, como câmeras, radares e LiDARs, abordando suas
características, tipos e funcionalidades. Foram também descritas as três categorias clássicas
de fusão sensorial presentes na literatura, com ênfase nas estratégias que combinam dados
de câmeras e radares. Por fim, a última seção tratou dos detectores baseados em redes neurais
convolucionais, destacando os algoritmos tradicionais das arquiteturas de um e dois estágios.

Para identificar avanços e lacunas, foi realizada uma análise temática da literatura,
estruturada em torno de quatro perguntas de pesquisa, distribuídas em três temas principais
e um tópico complementar. O primeiro tema tratou da fusão sensorial e sua aplicação voltada
para sistemas automotivos. A principal descoberta foi o papel essencial dessa tecnologia na
integração de dados complementares e redundantes, o que resulta em maior precisão, robus-
tez e confiabilidade dos sistemas de percepção. A fusão sensorial mostrou-se indispensável
para garantir a segurança e a eficiência exigidas pela condução autônoma.

O segundo tema explorou os benefícios e limitações dos sensores câmera, radar
e LiDAR para detecção de objetos. Verificou-se que a combinação entre câmeras e rada-
res representa uma solução eficaz e economicamente viável. As câmeras destacam-se na
interpretação visual e na detecção de pedestres, enquanto os radares oferecem desempe-
nho superior em condições adversas e fornecem informações cruciais de profundidade e
velocidade, evidenciando a complementaridade entre ambos.



71

Por fim, o terceiro tema tratou dos requisitos para aplicar técnicas modernas de visão
computacional à fusão sensorial. Verificou-se que o uso de redes neurais multissensoriais,
aliado à transferência de aprendizado, contribui significativamente para a robustez dos
modelos que utilizam apenas câmeras. Contudo, a construção de bases de dados multissenso-
riais com anotações precisas e calibração entre sensores representa um desafio considerável.
Nesse sentido, a disponibilidade de conjuntos de dados públicos desempenha papel crucial
no avanço da área, permitindo testes comparáveis e a validação de novas metodologias.

Para responder à quarta pergunta, foi incluída uma seção específica dedicada às téc-
nicas de fusão entre câmera e radar. Nessa etapa, foram discutidas as principais arquiteturas
propostas na literatura, analisando-as com base nas métricas mais relevantes para a tarefa
de detecção 2D de objetos, como Average Precision (AP) e Average Recall (AR). Essa análise
permitiu identificar padrões de projeto, destacar as abordagens mais robustas e fornecer
uma base sólida para futuras implementações e aprimoramentos.

Na etapa experimental utilizou a base de dados nuScenes, convertida para o formato
COCO, para avaliar duas abordagens distintas de fusão sensorial. A primeira abordagem
consistiu na fusão emnível de dados, utilizando a arquiteturaRadarRegion ProposalNetwork
(RRPN). A segunda abordou a fusão em nível de características, por meio do módulo Spatial
Attention Fusion (SAF).

A fusão em nível de dados (RRPN), na qual o radar atua como sensor principal, apre-
sentou desempenho inferior ao modelo baseado exclusivamente em câmera. Essa limitação
está relacionada ao fato de que muitos objetos anotados na base de dados, como bicicletas,
motocicletas e pedestres, frequentemente não possuem pontos de radar associados. Nossa
análise indica que mais da metade das bicicletas e motocicletas não apresentam pontos de
radar, enquanto apenas 20% dos pedestres têm ao menos um, comprometendo a detecção,
pois a ausência de retorno do radar impede a geração de regiões de interesse para a câmera

Em contrapartida, a abordagem de fusão em nível de características baseada no
módulo SAF mostrou-se significativamente mais eficaz. Os resultados indicaram ganhos nas
métricas de: 1,64% em AP75, 0,96% em AP50, 0,80% em AR e 1,36% em APs, destacando a
melhoria na localização precisa das caixas delimitadoras e na detecção de pequenos objetos. A
análise do tempo de execução revelou que a maior parte do processamento adicional ocorreu
na etapa de geração de propostas, sugerindo que otimizações nessa etapa são necessárias
para reduzir o tempo total do modelo. Apesar disso, os avanços obtidos ressaltam o potencial
da integração entre as informações visuais da câmera e as medições do radar como estratégia
eficaz para aprimorar a percepção em sistemas ADAS, ampliando a capacidade da rede de
extrair contextos relevantes mesmo em cenários com oclusões parciais ou neblina. Para
atingir tempos próximos ao processamento em tempo real, detectores rápidos e configuráveis,
como YOLO, são mais indicados, permitindo ajustar o trade-off entre precisão e velocidade.
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Nesse contexto, os dados de radar, embora esparsos e sujeitos a ruídos decorrentes
de objetos irrelevantes e reflexões no solo, mostraram-se eficazes na detecção de objetos
mesmo quando se utiliza apenas a projeção de suas detecções no plano da imagem. Con-
siderando as capacidades ainda subexploradas desse sensor, propõe-se uma investigação
mais abrangente, incorporando informações adicionais, como a utilização de atributos de
velocidade e direção de movimento dos objetos para rastreamento multiobjeto, o que per-
mite maior robustez frente a oclusões temporárias. Paralelamente, planeja-se abordar o
elevado tempo de processamento observado no modelo SAF, especialmente na etapa de
geração de propostas, e explorar otimizações no gerador de imagens de radar, atualmente
implementado em Python. Também será investigada a influência dos valores elevados nos
mapas de características, buscando o equilíbrio entre precisão e velocidade. Nesse contexto,
detectores rápidos e configuráveis, como YOLO, poderão ser explorados para atingir tempos
próximos ao processamento em tempo real, mantendo a eficácia da fusão multissensorial e
promovendo sistemas mais robustos e confiáveis para percepção ambiental multissensorial.

Apesar dos avanços obtidos, o trabalho enfrentou limitações importantes relacio-
nadas ao ambiente de desenvolvimento e aos dados utilizados. O Detectron2 foi adotado
inicialmente devido à sua modularidade, suporte a múltiplos detectores e ampla documenta-
ção, o que facilitou o ajuste do primeiro modelo de fusão. No entanto, essa escolha impôs
restrições técnicas, pois o framework não era compatível com versões mais recentes do
CUDA e do PyTorch, inviabilizando o uso dos computadores do laboratório do campus,
equipados com hardware mais moderno. Como resultado, o desenvolvimento precisou con-
tinuar em um ambiente pessoal, o que limitou a paralelização do treinamento em múltiplas
GPUs, reduziu os recursos computacionais disponíveis e aumentou significativamente o
tempo de treinamento dos modelos. Do ponto de vista dos dados, a base nuScenes, que
é amplamente utilizada na literatura e composta por sensores variados, observou-se uma
distribuição limitada de amostras em condições adversas, com apenas 4,7% dos objetos
presentes em cenas noturnas e 18,6% em condições de chuva, dificultando a avaliação dos
modelos nessas condições. Além disso, as anotações são realizadas apenas quando há pelo
menos um ponto de radar ou LiDAR associado ao objeto, o que leva à ausência de rótulos
em muitos casos visualmente evidentes, fazendo com que diversas detecções corretas sejam
penalizadas por não encontrarem correspondência nas anotações.
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APÊNDICE A – Códigos

A.1 Fluxo dos dados do radar no Detectron2

Código A.1 – Formato do dicionário gerado pelo dados COCO
1 {
2 "file_name ": "caminho/imagem_01.jpg",
3 "height ": 900,
4 "width": 1600,
5 "image_id ": 01
6 "annotations ": [
7 {
8 "iscrowd ": 0,
9 "bbox": [ 613.17 , 381.07 , 262.68 , 151.08 ],
10 "category_id ": 5,
11 "bbox_mode ": 1
12 },
13 % Mais anotações aqui
14 ],
15 "pointcloud ": [
16 [ 1298.83 , 650.80 , 7.71, -5.00, -2.25 ],
17 [ 1574.58 , 670.32 , 6.91, -5.25, -2.00 ],
18 % Mais pontos aqui
19 ]
20 }
21 % Mais imagens
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ANEXO A – Propostas de Região

Figura 32 – Âncoras RRPN e customizada centro e topo.

Fonte: Produzido pelo autor com dados de nuScenes

Figura 33 – Âncoras RRPN e customizada esquerda e
direita.

Fonte: Produzido pelo autor com dados de nuScenes
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ANEXO B – Detecções Faster R-CNN
versus modelo com Fusão SAF

Figura 34 – Comparação da detecção entre os modelos.

Fonte: Produzido pelo autor com dados de nuScenes
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Figura 35 – Comparação da detecção entre os modelos.

Fonte: Produzido pelo autor com dados de nuScenes

Figura 36 – Comparação da detecção entre os modelos.

Fonte: Produzido pelo autor com dados de nuScenes
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Figura 37 – Comparação da detecção entre os modelos.

Fonte: Produzido pelo autor com dados de nuScenes

Figura 38 – Comparação da detecção entre os modelos.

Fonte: Produzido pelo autor com dados de nuScenes
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Figura 39 – Comparação da detecção entre os modelos.

Fonte: Produzido pelo autor com dados de nuScenes

Figura 40 – Comparação da detecção entre os modelos.

Fonte: Produzido pelo autor com dados de nuScenes
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Figura 41 – Comparação da detecção entre os modelos.

Fonte: Produzido pelo autor com dados de nuScenes

Figura 42 – Comparação da detecção entre os modelos.

Fonte: Produzido pelo autor com dados de nuScenes
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