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Resumo

A percepcdo precisa da cena de transito € essencial para a seguranca e a eficicia dos
Sistemas Avancados de Assisténcia ao Condutor (ADAS), bem como para a transi¢do rumo
a conducdo auténoma. Este trabalho investiga a fusdo de dados entre sensores de cAmera e
radar automotivo, utilizando a base de dados nuScenes, com foco na aplicacio de técnicas
de fusdo nos niveis baixo e médio, tendo como referéncia comparativa o detector de objetos
Faster R-CNN. Inicialmente, foi implementada a fusdo de baixo nivel por meio da Radar
Region Proposal Network (RRPN), na qual o radar é empregado como sensor principal na
geracdo de regides de interesse. No entanto, essa abordagem apresentou desempenho inferior
ao do detector baseado exclusivamente em camera, uma vez que objetos nao detectados pelo
radar ndo sao processados pela rede neural, comprometendo a robustez da detec¢do. Os
resultados indicaram que mais da metade das bicicletas e motocicletas anotadas na base
nuScenes nao possuem qualquer ponto de radar associado; no caso dos pedestres, apenas

cerca de 20% apresentam ao menos um ponto detectavel por esse sensor.

Em seguida, foi avaliada a fusdo de caracteristicas (médio nivel), com a implementacado do
modulo Spatial Attention Fusion (SAF) na arquitetura da rede. Os resultados demonstraram
melhorias consistentes nas métricas de desempenho, com destaque para ganhos de 1.64%
em AP75, 0.96% em AP50, 0.80% em AR e 1.36% em APs, indicando maior precisdo na
localizacdo das caixas delimitadoras e na deteccdo de pequenos objetos. Esses avancgos
validam o potencial da fusdo sensorial em nivel de caracteristicas como estratégia eficaz para
aprimorar a percep¢do em sistemas auténomos.

Palavras-chave: Fusdo sensorial. Deteccdo de objetos. Camera. Radar.



Abstract

Accurate traffic scene perception is essential for the safety and effectiveness of Advanced
Driver Assistance Systems (ADAS), as well as for the transition toward autonomous driving.
This work investigates data fusion between camera and automotive radar sensors using the
nuScenes database, focusing on the application of low- and mid-level fusion techniques,
using the Faster R-CNN object detector as a benchmark. Initially, low-level fusion was
implemented using the Radar Region Proposal Network (RRPN), in which radar is used as
the primary sensor in generating regions of interest. However, this approach underperformed
the camera-only detector, since objects not detected by radar are not processed by the neural
network, compromising detection robustness. The results indicated that more than half of
the bicycles and motorcycles annotated in the nuScenes database do not have any associated
radar points; in the case of pedestrians, only about 20% have at least one point detectable by
this sensor.

Subsequently, mid-level feature fusion was evaluated through the implementation of the
Spatial Attention Fusion (SAF) module within the network architecture. The results showed
consistent improvements across performance metrics, with notable increases of 1.64% in
AP75,0.96% in AP50, 0.80% in AR, and 1.36% in APs, indicating greater accuracy in bound-
ing box localization and enhanced detection of small objects. These advances validate the
potential of feature-level sensor fusion as an effective strategy to improve perception in

autonomous systems

Keywords: Sensor Fusion. Object Detection. Camera. Radar.
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1 Introducao

O crescente aumento no volume de trafego nas rodovias, aliado a ocorréncia frequente
de congestionamentos, a presenca de sinalizacdes ambiguas e a constante pressdo imposta
pelas condic¢oes do transito, demanda o desenvolvimento de solugdes capazes de aprimorar
a seguranca, a eficiéncia e a comodidade na conducdo veicular. Nesse contexto, os Sistemas
Avancados de Assisténcia ao Condutor (ADAS) tém recebido atencdo significativa por parte
da comunidade cientifica internacional.

Um dos pilares para o desenvolvimento de sistemas ADAS ¢ a deteccdo robusta e em
tempo real de objetos presentes no ambiente rodovidrio. Considerando que as condicoes
de conducdo em estradas sdo frequentemente complexas e imprevisiveis, € necessario que
os veiculos estejam equipados com diferentes tipos de sensores capazes de fornecer uma
percepc¢ao confiavel e abrangente do entorno do veiculo (YU, Z. et al., 2018). Os sensores sao
responsaveis pela coleta de dados que alimentam os sistemas computacionais embarcados,
os quais auxiliam nas decisdes relacionadas a direcdo, frenagem e controle de velocidade
(KOCIC; JOVICIC; DRNDAREVIC, 2018). Entre os sensores mais utilizados na percepcao
do ambiente rodoviario estdo o RADAR (Radio Detection and Ranging), o LiDAR (Light
Detection and Ranging) e as cAmeras.

A importancia da percep¢do multissensorial ficou evidente em 2016, quando ocorreu,
na Florida (EUA), o primeiro acidente fatal envolvendo um veiculo equipado com o sistema
Autopilot da Tesla. A investigacdo indicou que o modulo de percepgdo visual interpretou
erroneamente a carroceria branca de um caminhdo como parte do céu claro, falhando
na identificacdo do veiculo pesado (LIU, Z. et al., 2022). Embora o sistema j4 integrasse
multiplos sensores, incluindo radar, sua logica de fusio descartou os sinais potencialmente
relevantes. Esse incidente evidenciou as limitagdes do uso isolado de sensores e os desafios
da integracdo multissensorial, ressaltando a importancia da fusdo adequada de dados para

maior confiabilidade na detec¢do de obstaculos e na compreensio do ambiente rodovidrio.

A fusdo de dados combina informacdes provenientes de diferentes sensores com o
objetivo de explorar seus pontos fortes e atenuar suas limitagdes. Além do reconhecimento
ambiental, essas tecnologias devem considerar fatores como tempo de resposta, custo e
disponibilidade dos sensores para producdo em larga escala, bem como a robustez em
condi¢des meteorologicas adversas. De modo geral, ao se aplicar a fusio de dados, busca-se
alcancar beneficios como redundancia e complementaridade de informagdes, melhoria na
resposta temporal, tolerancia a falhas e reducdo de custos (DARMS et al., 2010).
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Dentre os principais sensores utilizados para a percepcao do ambiente de transito,
as cameras se destacam pelo baixo custo, pela riqueza de informacdes e pela facilidade na
classificacdo de objetos. No entanto, apresentam limitacdes, como sensibilidade a variagdes
nas condicdes de iluminacio e dificuldade em obter informagdes tridimensionais dos alvos
(LIU, Z. et al., 2022). Por outro lado, os radares sdo capazes de detectar objetos a distancias
significativamente maiores e sdo altamente robustos em condic¢des climaticas adversas. Além
disso, fornecem informacoes precisas sobre a velocidade dos objetos detectados, permitindo
prever sua trajetdria e deslocamento (NABATI; HARRIS; QI, 2021). Ainda assim, os radares
apresentam limitacdes, como a baixa densidade dos pontos de deteccdo, o que dificulta a
estimativa de informacdes geométricas e a classificagdo precisa dos objetos (LIU, Y. et al.,
2022).

A fusdo sensorial entre camera e radar oferece vantagens relevantes, pois esses
sensores sdo complementares e amplamente utilizados na percep¢do automotiva. Essa
integracdo alia a alta resolucgdo lateral das caAmeras a robustez do radar frente a variacoes
de iluminacdo e condicdes climaticas, além de apresentar menor custo de producdo em
comparacdo aos sensores LiDAR.

1.1 Justificativa

A percepcdo precisa do ambiente ¢ um dos pilares fundamentais para a operacdo
segura e eficiente dos sistemas ADAS e veiculos autbnomos. Para atingir esse objetivo, os
sistemas modernos de percep¢do embarcada recorrem a integracdo de multiplos sensores,
cujas caracteristicas sdo, em grande parte, complementares. As cameras fornecem infor-
macoes visuais ricas em detalhes espaciais e semanticos, enquanto os radares oferecem
medicdes confiaveis de distancia e velocidade, mesmo em condi¢oes adversas de iluminacio
ou clima. No entanto, quando utilizados de forma isolada, esses sensores apresentam limita-
coes significativas: as cameras sdo sensiveis a variacoes de iluminagao, e os radares, embora
robustos, possuem baixa resolucdo espacial. Nesse contexto, a fusdo sensorial surge como
uma estratégia promissora para combinar as vantagens individuais dos sensores e mitigar
suas limitacoes, ampliando a confiabilidade e a robustez dos sistemas de percepcao.

A base de dados nuScenes foi escolhida por sua ampla ado¢do na comunidade ci-
entifica, o que possibilita a comparacao direta dos resultados com diferentes métodos de
fusdo para deteccao 2D. Além de oferecer dados multissensoriais sincronizados e anota-
dos em cendrios reais sob diversas condi¢oes meteorologicas, mostra-se particularmente
adequada a este estudo. Para a tarefa de deteccdo, adotou-se o Faster R-CNN, um detector
classico e amplamente consolidado na literatura, reconhecido pela alta precisdo em cenarios
complexos. Embora existam arquiteturas mais recentes e otimizadas para execucdo em
tempo real, a escolha do Faster R-CNN se justifica por sua estabilidade e pelo uso recorrente
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como baseline em pesquisas de visdo computacional. O objetivo ndo é comparar diferentes
detectores, mas avaliar o desempenho do mesmo algoritmo apenas com imagens de camera
e, posteriormente, com fusio camera-radar, isolando os efeitos da integragdo sensorial.

No que se refere a fusdo entre os dados da cdmera e do radar, foram selecionados
os métodos Radar Region Proposal Network (RRPN) e Spatial Attention Fusion (SAF). Essa
escolha fundamenta-se no levantamento do estado da arte, no qual essas abordagens apresen-
taram a melhor performance em seus respectivos niveis de fusdo, configurando-se, portanto,
como representativas tanto da fusdao em nivel de dados (baixo nivel) quanto da fusdo em
nivel de caracteristicas (médio nivel). A opcao por nao incluir também a fusdo em nivel
de decisdo (alto nivel) deveu-se ndo apenas ao curto tempo disponivel para desenvolver
as trés estratégias, mas igualmente ao fato de que, no levantamento realizado, ndo foram
identificadas implementacdes desse tipo que atendessem aos critérios definidos.

Dessa forma, este trabalho se justifica pela necessidade de investigar e desenvolver
técnicas eficazes de fusdo de dados entre sensores de cimera e radar automotivo, com foco
especial nos niveis de fusdo de dados (baixo nivel) e de caracteristicas (médio nivel). A
pesquisa busca contribuir para o avancgo da percep¢ao multissensorial em sistemas ADAS e
veiculos autonomos, oferecendo propostas compativeis com arquiteturas modernas de visdo

computacional e aplicaveis a cendrios urbanos complexos.

1.2 Objetivos

1.2.1 Objetivo geral

Desenvolver e avaliar abordagens de fusdo de dados em niveis baixo e médio entre
sensores cadmera e radar automotivo, com o propoésito de melhorar a acuricia da detecgdo de

objetos aplicada a percepc¢do do entorno veicular.

1.2.2 Objetivos especificos

« Converter os dados da base de referéncia para um formato padronizado, compativel
com frameworks de deteccio de objetos;

« Adaptar a implementacdo da fusdo em nivel baixo, baseada em técnicas de geracdo de
propostas a partir de dados de radar, para o framework selecionado;

« Modificar a arquitetura do framework de deteccdo de objetos baseado em imagens,
integrando também os dados de radar na rede de extragdo de caracteristicas (backbone),

viabilizando a fusdo em nivel médio;

« Desenvolver uma representacdo espacial dos dados de radar em formato de imagem e

implementar a fusio de caracteristicas no framework escolhido.
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2 Fundamentacao teorica

Este capitulo apresenta os fundamentos tedricos que embasam o desenvolvimento
deste trabalho, com foco na deteccio ambiental por meio da fusdo sensorial e no uso de
redes neurais convolucionais para deteccdo de objetos. Na Secdo 2.1, sdo introduzidos os
Sistemas Avancados de Assisténcia ao Condutor e os niveis de automacao definidos para
a conducdo veicular. A Secdo 2.2 discute os principais sensores utilizados na percepcio da
cena de transito em sistemas ADAS baseados em visido, como cimeras, radares e LiDARS,
além dos diferentes niveis de fusdo de informac¢des multissensoriais. Em seguida, a Se¢do 2.3
aborda os detectores de objetos baseados em redes neurais convolucionais, com énfase nos
modelos de um e dois estagios mais consolidados na literatura, detalhando suas arquiteturas,
mecanismos de deteccdo e contribuicdes para o avango das solucdes em visdo computacional.

2.1 Sistemas Avancados de Assisténcia ao Condutor

Os Sistemas Avancados de Assisténcia ao Condutor tornaram-se indispensaveis nos
veiculos modernos. Impulsionado pela crescente demanda por mobilidade, o transito tornou-
se cada vez mais complexo e, portanto, um desafio ainda maior para todos os usuarios das
rodovias. O objetivo do ADAS ¢é reduzir as consequéncias de um acidente, prevenir acidentes
de transito e, num futuro proximo, facilitar a conducao totalmente autdbnoma (ZIEBINSKI
et al., 2016).

Esses sistemas tém demonstrado eficdcia na reducdo de acidentes de transito ao
permitir a detec¢@o antecipada de obstaculos, a emissdo de alertas ao condutor e, em alguns
casos, a atuacgdo direta sobre os controles do veiculo, como frenagem e direcdo assistida
(PARK; YU, W., 2021). Por isso, muitos desses sistemas estdo deixando de ser considera-
dos itens exclusivos de veiculos de luxo e passando a compor o equipamento padrdo em
automoveis de menor custo (ZIEBINSKI et al., 2016).

Atualmente, o desenvolvimento dos sistemas ADAS tem se voltado cada vez mais
a protecdo de usudrios vulneraveis nas rodovias, especialmente no contexto de veiculos
comerciais (OTTO et al., 2012). A seguir, sdo apresentados alguns exemplos de aplicacio
desses sistemas, conforme Ziebinski et al. (2016):

+ Monitoramento de ponto cego (Blind Spot Detection - BSD): monitora as areas
laterais préximas ao veiculo que ndo sio facilmente visiveis pelo motorista. Sua funcao
¢ alertar o condutor por meio de um sinal visual, como um icone no espelho retrovisor
lateral, ou por um aviso sonoro, sempre que houver objetos presentes no ponto cego.
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+ Alerta de trafego cruzado traseiro (Rear Cross Traffic Alert - RCTA): auxilia na
prevencdo de acidentes ao sair de uma vaga em marcha a ré, situacdo que pode fre-
quentemente resultar em colisdes com pedestres ou ciclistas, ocasionando ferimentos

graves.

« Alertade saida de faixa (Lane Departure Warning - LDW): monitora as marcacoes
laterais da via e detecta quando o veiculo estd prestes a sair da faixa de rodagem. Ao
analisar o movimento da direcdo, o sistema pode avaliar se a mudanca de faixa foi
intencional ou ndo.

« Assisténcia a frenagem de emergéncia (Emergency Brake Assist - EBA): con-
tribui para a seguranca ao oferecer suporte ativo a frenagem, incluindo a frenagem
automatica em situacdes de risco iminente. Dessa forma, colisdes traseiras podem
ser evitadas ou, ao menos, ter seus impactos reduzidos devido a menor velocidade e
energia de impacto.

« Controle de cruzeiro adaptativo com funcio Stop&Go (Adaptive Cruise Control
with Stop&Go - ACC+S&G): mantém automaticamente a distdncia em relagcdo ao
veiculo a frente, mesmo em condig¢des de transito com paradas e retomadas. O sistema
pode alertar o condutor ou reduzir ativamente a velocidade se a distancia se tornar
insuficiente, sendo especialmente util em congestionamentos e situacdes de trafego
intenso.

A progressiva incorporacao de sistemas ADAS nos veiculos modernos esta direta-
mente relacionada a evolucdo dos niveis de automacgdo na conducdo. Para padronizar essa
evolucdo, em 2014, a SAE International, introduziu o padrdo J3016 “Niveis de Automacaio
de Conducdo” para os consumidores, apresentado na Tabela 1. O padrio J3016 define os seis
niveis distintos de automacao de direcdo, comecando pelo nivel SAE 0, onde o motorista
tem total controle do veiculo, até o nivel SAE 5, onde os veiculos podem controlar todos os
aspectos das tarefas de direcdo dinAmica sem intervencdo humana (YEONG et al., 2021).

De acordo com a classificacdo da SAE J3016, a responsabilidade pela conducio
permanece inteiramente com o condutor humano nos trés primeiros niveis, ainda que os
sistemas de assisténcia, como controle de cruzeiro adaptativo e assisténcia de manutencio de
faixa, possam fornecer suporte parcial em determinadas tarefas. A partir do nivel 3, o sistema
de condugdo passa a assumir o controle do veiculo em cenarios especificos, dispensando a
atuacdo do condutor enquanto o sistema estiver ativo. No entanto, no nivel 3, ainda € exigida
a presenca de um condutor habilitado, capaz de retomar o controle quando solicitado. Nos
niveis 4 e 5, o proprio sistema do veiculo realiza todas as tarefas de direcdo. No nivel 4, isso
acontece apenas em situacgoes especificas e previamente definidas. Ja no nivel 5, o veiculo
¢ totalmente auténomo e pode dirigir em qualquer situacio, sem precisar da ajuda de um
condutor.
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Tabela 1 - SAE J3016 - Niveis de Automacéo da Direcio (SAE INTERNATIONAL, 2019)

Categoria | Nivel 0 | Nivel 1 | Nivel 2 | Nivel 3 | Nivel 4 | Nivel 5
O que o | Continuar dirigindo sempre que os recursos de assistén- Naio precisa assumir o controle da direcdo quando esses
condutor | cia estdo ativos, mesmo que ndo precise usar pedais ou sistemas estao ativos
precisa volante.
fazer?

Deve supervisionar constantemente os sistemas; devendo Quando solicitado | Nenhuma ag¢ao sera exigida do con-

frear, manobrar ou acelerar conforme necessario para pelo sistema, deve- | dutor.

manter a seguranga. se reassumir a dire-

cdo.
O que os | Apenas fornecem | Assisténcia na | Assisténcia na dire¢do | Dirigem o veiculo | Dirigem sob con-| Dirigem em to-
sistemas | alertas e assisténcia | direcio ou na | e na frenagem/acelera- | sob condicoes espe- | dicoes especificas, | das as condi¢des
fazem? momentéanea. frenagem/acele- | cdo simultaneamente. | cificas. sem necessidade de | possiveis.
racdo. condutor.

Exemplos | Frenagem automd- | Centralizacdo de | Centralizacdo de faixa | Piloto automético | Taxi autdbnomo; Pe- | Igual ao nivel 4,
de siste- | tica de emergéncia; | faixa ou Controle | e Controle de cruzeiro | em  congestiona- | dais/Volante podem | mas aplicdvel em
mas Alerta de ponto | de cruzeiro adap- | adaptativo mento ou ndo estar instala- | qualquer local e

cego; Alerta de | tativo dos. condi¢do

saida de faixa.

Conforme destacado por Dimitrievski et al. (2019), alcangar os niveis mais avancados
de automacao (niveis 4 e 5) exige ndo apenas uma integracdo completa entre hardware
e software, mas também o aprimoramento continuo de algoritmos capazes de realizar a
deteccdo e o acompanhamento preciso de objetos. Esses sistemas devem ser suficientemente
robustos para operar com dados ruidosos, lidar com oclusdes temporarias, comportamentos
imprevisiveis dos agentes no transito e eventuais falhas nos sensores. Assim, 0 avanco rumo
a direcdo totalmente autbnoma depende diretamente da superacdo desses desafios técnicos
e da consolidacio de solucdes confidveis para a percepcdo do ambiente.

2.2 Fusao de sensores para deteccao ambiental

A combinacio de dados provenientes de diferentes sensores, como cameras, radares
e LiDARSs, permite explorar informacdes complementares e redundantes, resultando em
maior exatidao, confiabilidade e robustez na percepcido do ambiente ao redor do veiculo,
especialmente em condi¢des adversas. Esse aprimoramento € possibilitado por técnicas de fu-
sdo multissensorial, amplamente utilizadas em sistemas ADAS e conduc¢do autbnoma. Nesta
secdo, o conteudo estd organizado em quatro partes principais: inicialmente, apresentam-se
os sensores camera, radar e LiDAR, com foco em seus principios de funcionamento e prin-
cipais caracteristicas; por fim, sdo abordados os trés niveis de fusdo de informagées, com

énfase na integracdo entre os sensores de cimera e radar.
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2.2.1 Camera

A visdo artificial ¢ uma tecnologia popular que tem sido usada h4 décadas em disci-
plinas como roboética movel, vigilancia e inspe¢do industrial. Esta tecnologia oferece capa-
cidades interessantes devido ao baixo custo dos sensores e fornece uma gama de tipos de
informacao, incluindo espacial (forma, tamanho, distdncia), dindmica (objetos em movi-
mento através da analise do deslocamento entre quadros consecutivos) e semantica (andlise
de forma). As cdmeras no mercado oferecem uma ampla gama de configuracées em termos
de resolucdo, taxa de quadros, tamanho do sensor e parametros 6pticos (YEONG et al., 2021).
As cameras podem ser encontradas em versdo mono e estéreo, como mostrado nas Figuras
1(a) e 1(d). Ha também as cameras olho de peixe e as cAmeras RGB-D, exibidas nas Figuras
1(b) e 1(c).

.
a) Monocular b) Olho de peixe ¢) RGB-D d) Estéreo

Figura 1 - Sensores visuais tipicos. (a) cdimera monocular, (b) cAmera olho de peixe, (c) cAmera
RGB-D, (d) cAmera estéreo (LU et al., 2018).

As cameras fornecem informacdes ricas sobre a aparéncia, como contorno, textura,
distribuicdo de cores e outros detalhes visuais, permitindo alcancar desempenho promissor
tanto em precisdo quanto em velocidade na deteccdo de objetos (LIU, Y. et al., 2022). Cameras
olho de peixe sdo uma variante de cAmeras monoculares que oferecem amplo angulo de
visdo e sdo atraentes para evitar obstaculos em ambientes complexos, como espacos estreitos
e lotados. No entanto, cAmeras monoculares e olho de peixe nao sdo capazes de obter mapa
de profundidade (LU et al., 2018).

Para obter o mapa de profundidade, existem duas abordagens principais: triangulacdo
e Time-of-Flight (ToF). A triangulacdo pode ser passiva, como na visio estéreo, ou ativa, como
em sistemas de luz estruturada, que projetam padrdes de luz infravermelha para estimar
profundidade a partir da distorcdo do padrdo. As cameras ToF medem o tempo que a luz leva
para ir do emissor ao objeto e retornar ao detector, calculando a profundidade diretamente
em circuitos integrados(ZOLLHOFER et al., 2018).

As cameras estéreo exploram as diferencas de perspectiva entre duas imagens, per-
mitindo estimar a distancia de objetos a frente do veiculo em um intervalo tipico de 20 a 30
metros. A redundancia proporcionada pela segunda camera aumenta a confiabilidade do
sistema (ZIEBINSKI et al., 2016), porém a precisio é fortemente dependente da calibragdo, o
que o torna sensivel as condi¢des ambientais, além de implicar maior carga computacional
em comparacio a outros sensores (ZHU, Y.; WANG, T.; ZHU, S., 2022).



22

Ja cameras RGB-D utilizam principalmente luz estruturada, como no primeiro Kinect,
ou ToF, como no Kinect V2. Funcionalmente, essas abordagens diferem quanto a resiliéncia a
luz de fundo (por exemplo, em aplicagdes externas), a qualidade dos dados de profundidade
e & robustez ao efeito de multiplos caminhos, em que a luz percorre trajetos indiretos
(ZOLLHOFER et al., 2018).

2.2.2 Radar

O interesse no uso de radar se expandiu nos ultimos anos; esses sensores vém ga-
nhando popularidade por estarem entre os principais componentes de detec¢do empregados
em sistemas ADAS, direcdo autdonoma e aplicacées industriais. A tarefa fundamental de
um sistema de radar é detectar os alvos em seus arredores e, a0 mesmo tempo, estimar seus
parametros associados (ABDU et al., 2021). Os radares sdo sensores ativos que transmitem
ondas de radio e analisam os sinais refletidos para determinar a localizacdo e a velocidade
dos objetos, ilustrado na Figura 2. Geralmente, representam os objetos detectados como
pontos bidimensionais em uma visdo superior (Bird’s Eye View — BEV), fornecendo o angulo
de azimute, a velocidade instantanea e a distdncia na direcdo radial (NABATT; QI, 2021).

——

Figura 2 - Sensor de radar de longo alcance (AG, 2017).

O radar FMCW (Frequency Modulated Continuous Wave) ¢ uma tecnologia de de-
teccdo amplamente utilizada nos setores automotivo e industrial. Trata-se de um tipo de
radar de onda continua (CW) que transmite sinais com frequéncia crescente, denominados
chirps, geralmente em forma de onda dente de serra (KUMAR; JAYASHANKAR, 2019).
Esses radares também funcionam normalmente em frequéncias de 24 GigaHertz (GHz),
77 GHz e 79 GHz. A frequéncia GHz corresponde a comprimentos de onda milimétricos;
portanto, eles também sdo chamados de radares de ondas milimétricas (MMW). Existem trés
classes principais de sistemas de radar automotivo, dependendo da aplicacdo: SRR (radar de
curto alcance), principalmente para assisténcia de estacionamento e aviso de proximidade
de colisdo, MRR (radar de médio alcance), principalmente para deteccdo de ponto cego, pre-
vencdo de colisdo lateral/traseira e LRR. (Radar de longo alcance) para controle de cruzeiro
adaptativo e deteccdo precoce de colisdes JAHROMI; TULABANDHULA; CETIN, 2019).
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2.2.3 LiDAR

LiDAR (Light Detection and Ranging) ¢ uma tecnologia de sensoriamento ativo que
calcula a distancia até um objeto medindo o tempo de ida e volta de um pulso de laser. Para
aplicagOes robdticas e automotivas, utiliza-se um laser NIR de baixa poténcia, invisivel e
seguro para o olho humano, com comprimento de onda entre 900 e 1050 nm (ZHOU, 2022).
Em sistemas de direcdo autdnoma, sensores LiDAR com 64 ou 128 canais sio amplamente
empregados para gerar imagens a laser e nuvens de pontos de alta resolucdo, podendo ser
encontrados nas variantes 1D, 2D ou 3D (YEONG et al., 2021). Esses sensores sdo classifi-
cados, com base no método de varredura do feixe de laser, em duas categorias principais:
com varredura e sem varredura. Entre os modelos com varredura, hd os mecinicos, como os
optomecanicos motorizados, e 0s nao mecanicos, como os baseados em sistemas MEMS,
que movimentam apenas o feixe, sem deslocamento de componentes 6pticos. LIDARs sem
partes moveis, como os do tipo Flash e os com matrizes dpticas em fases (OPA), sio denomi-
nados solid-state. J4 os baseados em MEMS sdo classificados como de estado quase sélido
(quasi-solid-state) (WANG, D.; WATKINS; XIE, H., 2020).

Os LiDARs mecanicos sio amplamente utilizados em pesquisa, sendo uma das
principais solugdes para varredura ambiental de longo alcance. Eles utilizam componentes
opticos avancgados e lentes rotativas acionadas por motores elétricos para direcionar os feixes
de laser, oferecendo um campo de visdo horizontal de até 360°, o que permite a cobertura
completa do entorno do veiculo (YEONG et al., 2021). Por outro lado, LiDARSs de estado
solido (SSL), por eliminarem o uso de partes méveis como lentes rotativas, reduzem o risco
de falhas mecanicas. No entanto, apresentam um campo de visao horizontal mais limitado,
geralmente de até 120°, quando comparados aos sistemas mecanicos tradicionais (YEONG
et al., 2021). Tecnologias como as baseadas em matrizes dpticas em fases (OPA) permitem
varredura com acesso aleatério em todo o campo de visdo, possibilitando a observacdo de
areas especificas de interesse e a variacdo dinamica da densidade dos feixes. Com isso, é
possivel realizar uma varredura ampla em baixa resolucgao e, em seguida, focar objetos de
interesse em alta resolucdo, otimizando a detec¢cdo de formas mesmo em longas distancias
(ZHOU, 2022).

2.2.4 Niveis de fusio: Camera e Radar

Os métodos de fusio de informagdes multissensoriais sdo classificados em trés cate-
gorias, com base nos diferentes niveis de fusao: fusdo de informacdes de baixo nivel, fusio de
informacdes de nivel médio e fusdo de informacoes de alto nivel. Esses correspondem a fusdo
em nivel de dados, fusdo em nivel de caracteristica e fusdo em nivel de decisdo, conforme
proposto pela teoria tradicional de fusdo de dados de multiplas fontes (LIU, Z. et al., 2022).
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Na fusdo em nivel de decisdo (alto nivel), cada sensor realiza um algoritmo de deteccio
ou rastreamento separadamente e posteriormente combina o resultado em uma decisdo
global (YEONG et al., 2021). Os principais métodos de fusdo aplicam a teoria bayesiana, a
estrutura de filtragem de Kalman e a teoria de Dempster Shafer. Em algumas literaturas, a
lista de alvos de detec¢do de radar foi usada para verificar os resultados da deteccdo de visdo
(WEI et al., 2022), exemplificado na Figura 3(a).

As principais vantagens da fusio de alto nivel é a menor carga computacional e a
reducio de recursos de comunica¢do necessarios. Essa abordagem possibilita a padronizacio
da interface para o algoritmo de fusdo, eliminando a necessidade de um conhecimento
aprofundado dos algoritmos de processamento de sinal subjacentes (YEONG et al., 2021).
No entanto, sua principal limitacdo estd na dificuldade de modelar a funcio de densidade de
probabilidade conjunta dos diferentes tipos de informacdes de deteccdo, dado que o ruido
entre elas é distinto (WEI et al., 2022). Além disso, o ajuste fino dos algoritmos de fusio
tende a ter impacto insignificante na precisio ou na laténcia dos dados (YEONG et al., 2021).

Predigio
Geragdo ROI
Extrai Atributos Extrai Atributos
‘ Predigio | ‘ Extrai Atribu‘ros| l Gaacao ROI |—>| Fuséo |
‘ Clusterizagio ! ‘ Geracdo ROI | | Clustmlzacao l ‘Extral Ambutos | Extrai Ambu‘ros
Pontos Radar Imagem Cimera Pontos Radar Imagem Camera Imagem Radar Imagem Cimera
(a) Fusio nivel de decisdo (Alto) (b) Fusdo nivel de dados (Baixo) (c) Fusdo nivel de caracteristicas (Médio)

Figura 3 - Arquitetura da fusio radar e camera por nivel (CHANG et al., 2020).

A fusdo em nivel de dados (baixo nivel) gera primeiro a regido de interesse (ROI)
com base em pontos de radar. A regido correspondente da imagem de visdo € entdo extraida
de acordo com o ROI. Finalmente, o extrator de recursos e o classificador sdo usados para
realizar a deteccdo de objetos nessas imagens. Algumas literaturas usam redes neurais para
deteccdo e classificacdo de objetos (WEI et al., 2022), exemplificado na Figura 3(b).

Esse tipo de fusdo permite utilizar as informagdes captadas por radares antes que as
cameras processem a lista de alvos, o que pode acelerar significativamente os algoritmos de
processamento de imagens (WU, X. et al., 2018). Apesar disso, a eficdcia da detec¢do depende
diretamente do namero de pontos de radar disponiveis. Em casos onde nao hé pontos radar
em determinadas regides da imagem, essas dreas podem ser ignoradas, comprometendo
a seguranca (CHANG et al., 2020). Além disso, ao trabalhar com informacées em baixo
nivel, tem-se acesso a uma grande quantidade de dados brutos, o que pode criar desafios
relacionados a memdria e a largura de banda de comunicacio (YEONG et al., 2021).
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A fuslo em nivel de recurso converte os pontos de radar captados no mundo tridimen-
sional (3D) em um plano de imagem bidimensional (2D). As profundidades e velocidades
representadas pelos pontos de radar sdo armazenadas como valores de pixel na imagem
transformada. Essa imagem apresenta multiplos canais, nos quais cada canal corresponde a
diferentes estados fisicos do ambiente, medidos pelo sensor de radar. Dessa forma, é possivel
obter dois tipos de representagdes visuais para a mesma cena de condu¢do: uma imagem de
radar e uma imagem da camera (CHANG et al., 2020), conforme ilustrado na Figura 3(c).

2.3 Detectores de objetos baseados em redes neurais
convolucionais

A detecclo de objetos € uma tecnologia computacional relacionada a visdo computa-
cional e ao processamento de imagens, focada na identificacdo de instancias de objetos de
uma determinada classe (como humanos, edificios ou carros) em imagens e videos digitais
(JIAO et al., 2019). O campo evoluiu consideravelmente com o surgimento das redes neurais
convolucionais profundas e ao aumento do poder computacional das GPUs (Unidade de
Processamento Grdfico). A maioria dos detectores de objetos de ultima geragdo utiliza redes
de aprendizagem profunda tanto no backbone, responsavel por extrair caracteristicas das
imagens de entrada, quanto como rede de deteccdo, que realiza a classificacdo e a localizacdo
dos objetos (JIAO et al., 2019).

A introduc@o da CNN baseada em regido (RCNN) por (GIRSHICK et al., 2013)
marcou um avanco significativo, inaugurando uma nova era de progresso para a deteccao
de objetos. O surgimento dos modelos de detec¢do de objetos baseados em deep learning
trouxe uma distincao clara entre duas abordagens principais: os "detectores de dois estagios’e
os "detectores de um estagio"(KHANAM; HUSSAIN et al., 2024). Nos detectores de dois
estagios, o primeiro estigio gera propostas de regides ou objetos, enquanto o segundo estigio
classifica essas propostas e ajusta as caixas delimitadoras (SULTANA; SUFIAN; DUTTA,
2020). Em contrapartida, os detectores de um estdgio mapeiam diretamente os recursos
extraidos para caixas delimitadoras, tratando a tarefa de deteccio como um problema de
regressdo. Embora geralmente mais rapidos, esses detectores tendem a ser menos precisos
que os de dois estagios (NABATT; QI, 2020).

A Figura 4 apresenta uma linha do tempo que organiza o lancamento de diferentes
detectores de objetos ao longo dos anos. Métodos anteriores a 2012 sdo classificados como
detectores tradicionais, baseados em técnicas classicas de processamento de imagens. Apos
esse marco, surgiram os detectores baseados em aprendizado profundo, divididos nas duas
categorias principais: os de um estagio, que realizam predi¢cOes diretamente a partir das
caracteristicas extraidas; e os de dois estagios, que combinam propostas de regido com etapas

de classificacdo e refinamento.
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No estudo “An Evaluation of Deep Learning Methods for Small Object Detection” reali-
zado por Nguyen et al. (2020), conclui-se que os métodos de dois estagios, como o Faster
R-CNN (REN et al., 2015), apresentam desempenho superior, demonstrando sua eficacia em
diferentes datasets e em diversos contextos de detec¢do de objetos, incluindo aqueles com
variacdo de escalas. Sendo reconhecido como uma referencia (baseline) na area, servindo
como base para novas pesquisas e desenvolvimentos. Se o objetivo é alcan¢ar um equilibrio
entre precisdo e velocidade, o YOLO (REDMON et al., 2016) prova ser uma boa opc¢ao, ja
que o equilibrio entre velocidade e precisdo o torna adequado para aplicacdes praticas. No
entanto, em cendrios onde a precisdo é priorizada, Faster R-CNN (REN et al., 2015) ou
RetinaNet (LIN; GOYAL et al., 2020) continua sendo uma alternativa viavel.

Linha do Tempo YOLOv2 CenterNet YOLOX YOLOv7 YOLOv9 YOLOvll YOLOv13
: YOLOv1
Detectores de Objetos RetinaNet ComerNet] ~ YOLOvs | YOLOV6 YOLOv10
] ggp | RetinaNet ComerNe V3 VOLOW YOLOv12
YOLOV3 YOLOv4
Um Estagio
2016 2017 2018 2019 2020 2021 2022 2024 2025
VIDet HOG DPM
P> AlexNet
2001 2006 2008 2012 Fast RCNN FPN Cascade RCNN Dynamic R-CNN
RCNN
Mask RCNN Libra RCNN | Sparse R-CNN
SPPNet
Faster RCNN Gird RCNN

Dois Estagios 014 2015 2016 2017 2018 2019 2020
Meétodos Tradicionais Meétodos baseados em Deep Learning

Figura 4 - Linha do tempo da detecgdo de objetos (LI, Z. et al., 2024).

A seguir, serdo abordados os detectores de objetos consolidados na literatura, tais
como Fast R-CNN (GIRSHICK, 2015), Faster R-CNN (REN et al., 2015), Mask R-CNN (HE
et al., 2017), YOLO (REDMON et al., 2016) e RetinaNet (LIN; GOYAL et al., 2020), com

énfase em suas arquiteturas, propostas e principais contribuicdes.

2.3.1 Fast R-CNN

Fast R-CNN, proposto por Girshick (2015), é uma extensdo do R-CNN que aborda
varias de suas limitacoes, incluindo o treinamento em multiplas etapas, o custo computacio-
nal elevado e o tempo excessivo para deteccdo de objetos. Essa nova abordagem combina
classificacdo de regides e regressdo de caixas delimitadoras em um unico estagio de treina-
mento, usando uma arquitetura baseada em redes neurais profundas (SULTANA; SUFIAN;
DUTTA, 2020).
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No R-CNN, cada proposta de regido € processada individualmente pela rede convolu-
cional, resultando em célculos redundantes e altos custos computacionais. O Fast R-CNN
resolve esse problema ao processar a imagem inteira, extraindo recursos para todas as regides
de interesse (Rols) uma unica vez e enviados a CNN para classificacio e localizacdo. Compa-
rado com R-CNN, que insere propostas de cada regido para a CNN, uma grande quantidade
de tempo para o processamento da CNN e um grande espaco em disco para armazenamento
dos recursos pode ser economizado no Fast R-CNN (JTAO et al., 2019).

A arquitetura Fast R-CNN, ilustrada na Figura 5, recebe como entrada uma imagem
completa, juntamente com as regides de interesse (Rols), que sdo geradas por métodos
externos, como o algoritmo de busca seletiva. A imagem ¢ entdo processada por uma rede
convolucional profunda, como a VGG-16, que extrai um mapa de caracteristicas convolucio-

nais.

N uRu o
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S {ConvNet \\ 5
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Figura 5 - Arquitetura Fast-RCNN (GIRSHICK, 2015).

Cada Rol ¢ processada por uma camada de Rol Pooling, que converte regides de
interesse de tamanhos variados em mapas de caracteristicas de tamanho fixo. Essa camada
divide a regido em uma grade uniforme e aplica operacdes de pooling, como max pooling, em
cada célula, garantindo uma saida com dimensoes consistentes. Posteriormente, cada Rol
agrupada ¢ mapeada para um vetor de recursos por camadas fully connected (FCs). A rede
tem dois vetores de saida por Rol (GIRSHICK, 2015). A primeira camada de saida aplica a
funcdo de ativacio (softmax) para classificar cada regido proposta como pertencente a uma
das classes de objeto, enquanto a segunda camada realiza a regressdo dos quatro pardmetros
que definem a caixa delimitadora (bbox regressor) associada a cada deteccdo (JOHN, A.;
MEVA, 2020).

Os testes no conjunto de dados PASCAL VOC 2007 demonstraram que Fast R-CNN
alcancou um mAP de 66,9% , superando os 66,0% do R-CNN. Além disso, o tempo de
treinamento foi reduzido de 84 horas para 9,5 horas, e o tempo de teste por imagem foi
reduzido para 0,32 segundos, comparado aos 47 segundos do R-CNN (JIAO et al., 2019).
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2.3.2 Faster R-CNN

O Faster R-CNN representa uma evolucdo significativa em relagdo ao R-CNN e ao
Fast R-CNN ao solucionar a principal limitacdo relacionada a geracdo lenta de propostas de
regides (Rols). O Fast R-CNN ainda depende da busca seletiva, um processo custoso que
compromete o desempenho. Conforme Ren et al. (2015), embora o Fast R-CNN atinja taxas
quase em tempo real com redes profundas, ignora o tempo gasto na geracio de propostas,
que permanece como gargalo computacional. A busca seletiva, um dos métodos mais po-
pulares, apresenta um tempo médio de execucao de cerca de 2 segundos por imagem em

implementacoes baseadas em CPU.

Em contraste, o Faster R-CNN propde uma solucido mais eficiente ao substituir o
algoritmo de busca seletiva por uma Rede de Propostas de Regido (RPN), uma rede totalmente
convolucional (FCN) capaz de gerar propostas com maior rapidez e eficiéncia, aproveitando
as caracteristicas extraidas pela propria rede de deteccdo (SULTANA; SUFIAN; DUTTA,
2020). Sua arquitetura, ilustrada na Figura 6, € composta por trés partes principais: uma
rede de pré-processamento, responsavel por extrair caracteristicas de alto nivel da imagem; a
RPN, que gera propostas de regides candidatas; e o cabecote Faster R-CNN, que refina essas
propostas, classificando os objetos e ajustando suas caixas delimitadoras.

Region Proposal Network (RPN)

Classificacdo da
presenca de objeto

Regrecio da caixa
delimitadora

Cabecalho Faster-RCNN

Geragao do ROI Refinamento da
caixa delimitadora

Imagem de entrada

R PR
Rede de Pré-processamento 3‘3‘ ?
Extraciio de caracteristicas 1

(ResNet, VGG, GooglLelNet efc.)

Probabilidade da
classe do objeto

Para cada ROI

Figura 6 — Arquitetura Faster-RCNN (FENG et al., 2021).

Uma RPN é uma rede totalmente convolucional (FCN) que recebe uma imagem de
tamanho arbitrario como entrada e gera um conjunto de propostas de objetos candidatos
retangulares. Cada proposta de objeto ¢ associada a uma pontuacdo de objetividade para
detectar se a proposta contém um objeto ou ndo (SULTANA; SUFIAN; DUTTA, 2020). O
RPN ¢ treinado ponta a ponta para gerar propostas de regides de alta qualidade, que sdo
usadas pelo Fast R-CNN para deteccdo. Ao Fundir o RPN e Fast R-CNN em uma tnica rede
(Faster R-CNN), compartilhamos seus recursos convolucionais, gerando uma rede neural
com mecanismos de aten¢do (REN et al., 2015).
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Os experimentos demonstraram que o Faster R-CNN obteve uma melhoria significa-
tiva em termos de precisdo e tempo de execucdo. No conjunto de dados PASCAL VOC 2007,
o Faster R-CNN alcancou uma média de precisdo (mAP) de 69,9%, superando o Fast R-CNN,
que obteve 66,9%, e também apresentou um tempo de execug¢do significativamente menor,
reduzindo quase 10 vezes o tempo de processamento de 1830ms para 198ms (JIAO et al.,
2019).

2.3.3 Mask R-CNN

O Mask R-CNN avanca as técnicas anteriores de deteccdo de objetos, indo além
ao localizar os pixels exatos de cada instancia de objeto (segmentacdo de instancia) em
vez de apenas delimitar caixas (SULTANA; SUFTAN; DUTTA, 2020). Além de introduzir a
segmentacdo, o Mask R-CNN apresenta maior precisdo em relagdo ao Faster R-CNN devido
algumas melhorias na arquitetura. Conforme destacado por (JIAO et al., 2019), o modelo
adota a ResNet-FPN como backbone, que combina recursos de multiplas escalas por meio
de uma abordagem de piramide de caracteristicas. Essa estratégia permite a extracao de
informacoes semanticamente ricas de mapas de baixa resolucdo e de detalhes precisos em
mapas de alta resolucdo, sendo especialmente eficaz para detectar objetos pequenos.

A camada Rol Pooling também ¢ substituida no modelo pela camada Rol Align, que
resolve o problema de desalinhamento causado pela quantizacdo nas etapas de pooling.
O Rol Align utiliza interpolagdo bilinear para calcular valores exatos em localizacoes es-
pecificas, preservando de forma mais eficiente a informacdo espacial e garantindo uma
correspondéncia mais precisa entre os Rols e as caracteristicas extraidas (JIAO et al., 2019).

Os experimentos mostraram que, com as duas melhorias mencionadas, a precisao foi
aprimorada. O uso do backbone ResNet-FPN aumentou em 1,7 pontos a precisdo da caixa
delimitadora (box AP), enquanto a operacdo Rol Align contribuiu com um aumento de 1,1
pontos na mesma métrica, no conjunto de dados de deteccio MS COCO (JIAO et al., 2019).

2.3.4 YOLO

Em 2016, o campo da deteccdo de objetos passou por transformacdes significativas
de paradigma com a introducdo do You Only Look Once (YOLO) por Redmon et al. (2016),
um marco que desafiou o paradigma dominante de dois estigios. Ao utilizar uma unica rede
neural para processar a imagem inteira em uma unica passagem, o YOLOv1 apresentou
uma abordagem revoluciondria que priorizava a velocidade e a simplicidade. Apesar de
comprometer a precisdo em certos cenarios, especialmente para objetos menores, o modelo
estabeleceu as bases para futuras iteracoes, que buscaram equilibrar melhor a relagdo entre
desempenho e eficiéncia (KHANAM; HUSSAIN et al., 2024).
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O pipeline do YOLO trabalha dividindo a imagem de entrada em uma grade de
S X S, onde cada célula da grade € responsavel por detectar objetos cujo centro estd contido
nela, conforme ilustrado na Figura 7. O score de confianca é calculado como o produto de
duas partes: P(objeto), que representa a probabilidade de a caixa conter um objeto, e 0 IOU
(Intersection over Union), que mede a precisdo da sobreposicio da caixa em relacdo ao objeto
detectado. Cada célula da grade prevé B caixas delimitadoras (x, y, w, h) com seus respectivos
escores de confianca, além de probabilidades condicionais de classe em C dimensdes para C
categorias (JIAO et al., 2019).

0 (17 E um objeto?
Caixa delimitadora

7 ‘- Roétulo de classe

Figura 7 - Pipeline do YOLO (KHARAZI, 2025).

A primeira versdo priorizou alta velocidade com uma tinica CNN, mas teve limitacoes
na precisao, especialmente para objetos pequenos ou sobrepostos. O YOLOv2 introduziu
caixas de dncora e camadas de passagem para melhorar a localizacdo dos objetos, enquanto
o YOLOV3 trouxe uma arquitetura de extracdo de caracteristicas multiescala, aprimorando a
deteccdo em diferentes tamanhos. Nas versdes YOLOv4 e YOLOVS5, incorporaram backbones
otimizados, aumento de dados diversificado e estratégias de treinamento eficientes (TERVEN;
CORDOVA-ESPARZA; ROMERO-GONZALEZ, 2023).

A partir do YOLOV5, os modelos oficiais do YOLO passaram a oferecer escalas ajus-
taveis para atender a diferentes aplicacoes e requisitos de hardware (TERVEN; CORDOVA-
ESPARZA; ROMERO-GONZALEZ, 2023). Esses modelos incluem escalas como nano, pe-
queno, médio, grande e extra-grande. Modelos menores, como "nano” e "pequeno”, possuem
menos parametros, sendo mais rapidos e leves, ideais para dispositivos de borda ou aplicacdes
que exigem alta velocidade. Por outro lado, modelos maiores, como "grande” e “extra-grande”,
apresentam maior quantidade de pardmetros, oferecendo maior precisdo ao custo de maior
demanda computacional. As principais melhorias e caracteristicas de cada versdo do YOLO
podem ser acompanhadas na Tabela 2.
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Modelo Ano Principais Caracteristicas Backbone Conjunto de Dados mAP FPS
YOLOvl 2016 Deteccdo de disparo tinico, modelo unificado Darknet-19 PASCAL VOC 2007 63.4% 45
YOLOv2 2017 Caixas de ancora, normalizacio de lote, recur- Darknet-19 PASCAL VOC 2007 78.6% 40
sos refinados
YOLOv3 2018 Pontuacdo de objetividade, previsdes multies- Darknet-53 MS COCO 57.9% 20
cala, conexdes residuais, classificacdo multir-
rétulo
YOLOv4 2020 Agregacdo de caracteristicas aprimorada, nor- CSPDarknet53 MS COCO 65.7% 33

malizagio de mini-lotes cruzados (CMBN), au-
mento de dados diversificado, conexdes parci-
ais entre estagios (CSP), ativacao Mish
YOLOv5 2020 Implementacdoem PyTorch, arquitetura mo- EfficientNet-L MS COCO 55.8%-66.9% 288-140
dular, treinamento rapido, design otimizado
para diversos hardwares, multiplos tamanhos
de modelo equilibrando velocidade e precisdo

YOLOv6 2022 Reparametrizagdo, mddulos de atencdo, ca- EfficientRep MS COCO 35.9%-52.5% 802-121
beca desacoplada

YOLOv7 2022 Backbone e cabeca otimizados, agregacdo de E-ELAN MS COCO 52.8%-73.8%
camadas E-ELAN

YOLOv8 2023 Deteccdo sem ancoras, treinamento e inferén- CSPDarknet + MS COCO 37.3%-53.9%

cia mais rdpidos, recursos amigéaveis ao usud- ConvNeXt
rio, camadas convolucionais aprimoradas
YOLOvV9 2024 Introducdo de Programmable Gradient Infor- GELAN MS COCO 38.3%-55.6%
mation (PGI) e Generalized Efficient Layer Ag-
gregation Network (GELAN), melhor equili-
brio entre precisao e eficiéncia
YOLOv10 2024 Deteccdo fim-a-fim sem NMS, dual assign- CSPNet apri- MS COCO 38.5%-54.4%  543-93
ments consistentes, variantes otimizadas para morado
eficiéncia
YOLOv11l 2024 Blocos C3k2, SPPF otimizado, atencdo espa- CSPDarknet- MS COCO 39.4%-54.7% 667-88
cial paralela (C2PSA), suporte a multiplas ta- C3k2
refas
YOLOv12 2025 Arquitetura centrada em atencdo, médulos R-ELAN + MS COCO 40.6%-55.2%  610-85
Area Attention, R-ELAN, suporte a FlashAt- Area Attention
tention

Tabela 2 - Comparacio entre versdes do YOLO (KHANAM; HUSSAIN et al., 2024; WANG, C.-Y;
YEH; LIAO, 2024; WANG, A. et al., 2024; KHANAM; HUSSAIN, 2024; TIAN; YE;
DOERMANN, 2025).

2.3.5 RetinaNet

Os detectores de objetos de um estagio, embora oferecam vantagens significativas em
termos de velocidade e simplicidade, historicamente apresentam menor precisdo quando
comparados aos detectores de dois estagios. Essa lacuna de desempenho foi investigada por
Lin, Goyal et al. (2020) ao introduzirem o RetinaNet, onde identificaram o desequilibrio
entre as classes de primeiro plano e fundo na fase de treinamento (KHANAM; HUSSAIN
et al., 2024).

O RetinaNet ¢ uma rede de detec¢do de estigio unico, unificada e composta por um
backbone e duas sub-redes. O backbone, baseado em uma combinacdo de ResNet e Feature
Pyramid Network (FPN), Figura 8(a) e Figura 8(b), é responsavel por calcular um mapa de
caracteristicas convolucionais rico e multiescalar a partir de uma imagem de entrada. Sobre
esse backbone, sdo acopladas duas sub-redes: a primeira realiza a classificagdo convolucional
de objetos nas ancoras geradas, Figura 8(c), enquanto a segunda executa a regressdo das
caixas delimitadoras para ajusti-las as posi¢cdes e dimensdes reais dos objetos detectados,
Figura 8(d), (LIN; GOYAL et al., 2020).
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Figura 8 - Arquitetura de rede RetinaNet (LIN; GOYAL et al., 2020).

Conforme autor Lin, Goyal et al. (2020), o design do RetinaNet compartilha vérias
semelhancas com detectores densos anteriores, especialmente no que diz respeito ao uso de
"ancoras”, conceito introduzido pela RPN (REN et al., 2015), e a aplicacdo de piramides de
recursos, como observado no FPN (LIN; DOLLAR et al., 2016). No entanto, o grande diferen-
cial do RetinaNet para alcancar resultados superiores em termos de precisdo e eficiéncia ndo

estd em inovagdes no design da rede, mas sim na introducdo de uma nova funcao de perda.

A funcdo de perda, também conhecida como perda focal, ¢ uma perda de entropia
cruzada dimensionada dinamicamente, onde o fator de escala decai para zero a medida que
a confianca na classe correta aumenta. Intuitivamente, esse fator de escala pode reduzir
automaticamente o peso da contribuicido de exemplos faceis durante treinamento e focar
rapidamente o modelo em exemplos dificeis (LIN; GOYAL et al., 2020).

Experimentos no conjunto de dados de teste MS COCO, mostram que o RetinaNet
com backbone ResNet-101-FPN alcan¢ou um desempenho de 39,1% de AP. Utilizando o
ResNeXt-101-FPN, o modelo atingiu 40,8% de AP. Esses resultados destacam a eficiéncia do
RetinaNet em melhorar a precisdo da deteccao, especialmente para objetos de tamanhos
pequenos e médios (JTAO et al., 2019).
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3 Estado da arte

O estudo do estado da arte é essencial para identificar avangos, lacunas e tendéncias
em uma area. A revisdo da literatura permitiu definir o problema de pesquisa e conhecer
técnicas utilizadas. Esta secao estd dividida em trés partes: metodologia, detalhando o
processo de revisdo sistematica; revisao sistematica, com os trabalhos relevantes; e técnicas

de fusdo para deteccdo 2D, apresentando as estratégias tecnolégicas mais promissoras.

3.1 Metodologia

O primeiro passo da metodologia consistiu na formulacdo das perguntas relacionadas
ao tema 'Fusdo Sensorial entre Radar e Camera para Deteccdo de Objetos no Ambiente de
Veiculos Autonomos’, as quais sdo apresentadas a seguir:

1. O que é a fusdo sensorial e quais sdo suas aplicagcdes em sistemas de conducao assistida?

2. Quais sdo os beneficios e limitagdes dos principais sensores utilizados na percepc¢do
da cena de transito?

3. Quais sdo os principais desafios técnicos na integracdo de dados de radar e cAimera em
redes neurais profundas?

4. Quais implementacoes de fusdo entre radar e cAimera tém demonstrado melhor de-

sempenho em redes neurais profundas aplicadas a percepcao da cena de transito?

A fim de obter as palavras-chave mais relevantes, realizou-se uma pesquisa na base
de dado Scopus com a seguinte query: ‘sensor fusion’ E ‘camera’ E ‘radar’, com a janela
temporal de 2020 a 2022. Dos 712 artigos obtidos, foram selecionados os 100 mais relevantes,
os quais foram posteriormente submetidos ao VOSViewer para uma anélise das palavras
encontradas nos resumos. A partir dessa anélise, foram extraidas 54 palavras que apareceram
no minimo 8 vezes nesse contexto. Dentre elas, as palavras-chave selecionadas para nossa
pesquisa sdo apresentadas na tabela 3:

Tabela 3 — Palavras-Chave escolhidas

Palavra-Chave Termos Associados

KW1 "Sensor Fusion”, "multi-sensor”, "data fusion”

Kw2 "Camera”

KW3 "Radar”

Kw4 "Autonomous Vehicles”, "Autonomous Driving", "self-driving”, "autonomous car”
KW5 "Advanced Driver Assistance Systems”, "ADAS"

KW6 "Object Detection”, "Object Tracking”, "Semantic Segmentation”




34

Com base na combinacgdo das perguntas de pesquisa e palavras-chave selecionadas,
a seguinte query foi elaborada: "Sensor Fusion"OR "multi-sensor"OR "data fusion"AND
"camera"’AND "radar"AND ("ADAS"OR "Advanced driver-assistance"OR "Autonomous Vehi-
cles"OR "Autonomous Driving"OR "self-driving"OR "autonomous car"). Essa consulta foi
utilizada para realizar buscas nas bases de dados IEEE Xplore, Scopus e Tufts JumboSearch,
resultando inicialmente em 650 artigos. Apos a remocao de duplicatas, o namero final de
artigos selecionados foi reduzido para 425.

Tabela 4 - Processo de triagem de artigos

Etapa ACAO Y  Total de artigos
0 Combinar 3 bases de dados (IEEExplore, Tufts JumboSearch, Scopus) 650
0 Informagdes duplicadas e irrelevantes removidas 225
0 Nova populagdo YO 425

TRIAGEM AUTOMATICA DE TITULOS
- Populacédo YO 425
1 Triagem automaética de titulos (KW1+KW2+KW3+KW6 > 3) Y1 33
- Nova populacdo Y0-Y1 392
TRIAGEM MANUAL DE TITULOS
- Populacdo Y0-Y1 392
1 Pesquisador / Orientador (Y&Y) Y2 21
1 Pesquisador / Orientador (Y&M OU M&Y) Y3 32
1 Pesquisador / Orientador (Y&N OU M&M OU N&Y) Y4 146
1 Pesquisador / Orientador (N&N OU M&N OU N&M) 193
- Nova populacio (Y1+Y2+Y3+Y4) Y5 232
TRIAGEM AUTOMATICA DE RESUMOS
- Populacdo Y5 232
2 Palavras-chave de pesquisa (KW1+KW2+KW3+KW5+KW6 = 5) Y6 15
2 Palavras-chave de pesquisa (KW1+KW2+KW3+KW5+KW6 < 5) 217
- Nova populagdo Y5-Y6 217
TRIAGEM MANUAL DE RESUMOS
- Populacédo Y5-Y6 217
2 Pesquisador / Orientador (Y&Y) Y7 48
2 Pesquisador / Orientador (Y&M OU M&Y OU N&Y OU Y&N) Y8 37
2 Pesquisador / Orientador (N&N OU M&N OU N&M) 132
- Nova populacdo (Y6+Y7+Y8) Y9 100
TRIAGEM DO TEXTO COMPLETO
- Populacédo Y9 100
3 Nao encontrado ou sem acesso 15
3 Critérios de inclusdo (Contribui¢do > 2; Teoria > 2; Metodologia > 1; Andlise de 42
dados = TODOS)
3 Critérios de exclusdo (Contribui¢do < 1; Teoria < 1) 43
RESULTADOS
TOTAL DE ARTIGOS INCLUIDOS 42
TOTAL DE ARTIGOS EXCLUIDOS 608

PERCENTUAL DE ARTIGOS INCLUIDOS 7%
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A triagem dos artigos foi realizada em trés etapas. Na primeira, os titulos foram
filtrados automaticamente, aprovando aqueles que continham ao menos trés das quatro
palavras-chave KW1, KW2, KW3 e KW6. Os demais foram avaliados manualmente, com
leitura dos titulos e validagdo cruzada entre pesquisador e orientador; artigos marcados
como negado por ambos (N&N) ou talvez e negado (M&N ou N&M) foram recusados. Como
resultado, 33 artigos foram aprovados automaticamente e 199 por triagem manual, totali-
zando 232 para a proxima etapa (Tabela 4). Na segunda etapa, os resumos foram analisados:
aqueles que continham simultaneamente as palavras-chave KW1, KW2, KW3, KW5 e KW6
foram automaticamente aprovados, enquanto os demais passaram por triagem manual com
validacdo cruzada, resultando na exclusio de 132 artigos e aprovacao de 100. Na etapa final,
os textos completos foram avaliados superficialmente com notas de 0 a 3 para contribuicao,
teoria e metodologia. Apenas os que obtiveram pelo menos 2 em contribuicdo e teoria foram
considerados elegiveis; artigos inacessiveis ou fora dos critérios também foram excluidos.
Ao final, 42 artigos foram selecionados para leitura detalhada.

3.2 Analise tematica

Nesta secdo, o objetivo é responder as perguntas de pesquisa com base na literatura
disponivel sobre a fusdo sensorial entre radar e cameras para detec¢do de objetos no ambiente
automotivo. As perguntas, formuladas na se¢do de planejamento, serdo abordadas a partir
da andlise dos artigos selecionados. A revisdo da literatura serd organizada em torno de
temas principais, que agrupardo as questdes a serem respondidas. Para a elaboracdo desta
etapa, foi utilizado o software ©Nvivo, que permitiu realizar o agrupamento (clusterizacdo)
das informacdes extraidas dos artigos, como um esforco do pesquisador para responder as
perguntas de pesquisa com base na andlise critica da literatura.

Quais sdo os requisitos necessarios para aplicar a fusdo entre os sensores cameras e
radar para tarefa de deteccdo de objetos?

« Tema 1: Fusao sensorial e sua aplicacao voltada para sistemas automotivos.

O que ¢ a fusdo sensorial e qual sua aplicacdo no ambiente de conducdo assistida?

« Tema 2: Beneficios e limitacdes dos sensores cimera, radar e LiDAR para
deteccao de objetos no contexto automotivo.
Quais os beneficios e limitacoes entre os principais sensores utilizados na percepg¢ao
da cena de transito?

« Tema 3: Oportunidades e desafios na aplicacao de redes neuronais multissen-
soriais
Quais sdo os principais desafios técnicos na integracdo de dados de radar e cAimera em
redes neuronais profundas?
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Para responder ao ultimo questionamento, este estudo adota a tarefa de deteccdo
de objetos 2D como foco principal de andlise. Na Secdo 3.3, sdo apresentadas as principais
arquiteturas de redes neurais propostas na literatura para a fusdo de dados de radar e cAmera,
acompanhadas de suas respectivas classificagdes com base nas métricas mais utilizadas para

avaliacdo do desempenho em deteccdo de objetos 2D.

3.2.1 Tema 1: Fuslo sensorial e sua aplicagdo voltada para sistemas auto-

motivos.

A fusdo de sensores tem suas origens em aplica¢des militares, onde a integracdo de
informacdes provenientes de diversas fontes foi empregada para desenvolver uma visdo
mais completa e precisa de campos de batalha ou situacées de combate(ALTENDORFER,;
WIRKERT; HEINRICHS-BARTSCHER, 2010). O objetivo principal das aplicacées de fusdo
de dados é combinar informacdes de sensores individuais de maneira que seus pontos
fortes sejam maximizados e suas limitagdes minimizadas. Tipicamente, as configuracoes de
fusdo de dados abordam aspectos como redundancia e complementaridade da informacao,
aprimoramento da temporalidade dos dados e reducdo de custos (DARMS et al., 2010).

De acordo com Altendorfer, Wirkert e Heinrichs-Bartscher (2010), a fusio de sensores
oferece uma série de vantagens gerais que tornam os sistemas mais eficazes e confidveis em

aplicagdes complexas. Entre os principais beneficios, destacam-se:

« Robustez: A redundancia proporcionada pelo uso de multiplos sensores aumenta a
resisténcia do sistema a falhas parciais, garantindo maior confiabilidade em condic¢des

adversas.

« Cobertura ampliada: Quando os alcances de diferentes sensores ndo se sobrepéem
ou apresentam apenas sobreposi¢ées parciais, a fusdo sensorial permite expandir

significativamente a cobertura conjunta.

« Maior confianca: As medicdes realizadas por um sensor podem ser confirmadas por
outras fontes sensoriais que monitoram o mesmo dominio, elevando a confiabilidade

dos dados coletados.

« Melhoria na precisao: A combinacio de dados provenientes de multiplos sensores
que monitoram o mesmo dominio permite medi¢des mais precisas de grandezas como

distancia, velocidade e outras variaveis relevantes.
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Com o aumento da complexidade do trafego, os Sistemas Avancgados de Assisténcia ao
Condutor tornaram-se essenciais nos veiculos modernos, visando reduzir as consequéncias
de acidentes, prevenir colisdes e, no futuro, possibilitar a conduc¢do totalmente autbnoma
(ZIEBINSKI et al., 2016). Nesse contexto, a abordagem tradicional para direcdo autébnoma
tem passado por mudancas significativas. Em vez de se basear em um tnico tipo de sensor,
como cameras, radares ou LiDAR, as solugdes atuais integram diferentes sensores para criar
sistemas mais robustos e adaptdveis. Essa combinacdo permite melhorar o desempenho em
condicdes variadas, ao mesmo tempo que considera a viabilidade econdmica dessas tecnolo-
gias (KUMAR; JAYASHANKAR, 2019). Um exemplo dessa transformacio € apresentado por
Wei et al. (2022), que analisaram os dados de grandes fabricantes sobre o uso de sensores
em veiculos autdnomos. A Tabela 5, fundamentada neste estudo, ilustra como as principais
montadoras estruturaram suas solucgoes, destacando variacdes tanto na quantidade quanto
nos tipos de sensores empregados.

Empresa Sistema de Direcio Configuracio dos Sensores

Tesla Autopilot 8 cAmeras, 12 radares ultrassonicos, radar mmWave
Baidu Apollo Lidar, radar mmWave, cimera
NIO Aquila Lidar, 11 cameras, 5 radares mmWave, 12 radares ultrassonicos
Xpeng XPILOT 6 cameras, 2 radares mmWave, 12 radares ultrassonicos
Audi Traffic Jam Pilot 6 cameras, 5 radares mmWave, 12 radares ultrassonicos, Lidar
Mercedes Benz Drive Pilot 4 cameras panoramicas, Lidar, radar mmWave

Tabela 5 - Solucoes de sensores de direcdo autdnoma de alguns fabricantes (WEI et al., 2022).

Em sistemas de direcdo autdnoma ou ADAS, varios sensores sdo frequentemente
usados para melhorar a redundancia e a tolerancia a falhas do sistema. Como a func¢éo
de deteccdo ndo pode ser alcancada por um unico sensor, o objetivo da fusdo de dados
multissensor ¢ usar informacdes redundantes e informagdes complementares fornecidas por
varios numeros ou tipos de sensores para reduzir a incerteza e a ambiguidade das informacoes
de observacdo e aumentar a confiabilidade e a capacidade de sobrevivéncia do sistema de
deteccdo (LIU, Z. et al., 2022).

Descoberta: A fusio sensorial desempenha um papel crucial no ambiente de vei-
culos autonomos, integrando dados de diferentes sensores para melhorar a percepcao do
entorno e a tomada de decisdo. Essa abordagem permite combinar informac¢des comple-
mentares e redundantes, aumentando a precisio, confiabilidade e robustez dos sistemas de
deteccdo em condicOes adversas. Além disso, a fusdo sensorial é essencial para superar as li-
mitacdes de sensores individuais, como a incapacidade de lidar isoladamente com diferentes
condi¢des ambientais, tornando-se uma tecnologia indispensavel para alcangar a seguranga
e a eficiéncia necessarias na conducio auténoma.
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3.2.2 Tema 2: Beneficios e limitages dos sensores camera, radar e LIDAR
para deteccdo de objetos no contexto automotivo.
Os principais sensores utilizados para percepcdo ambiental em veiculos autbnomos

sdo a camera, o radar e o LIDAR. Cada um desses sensores apresenta beneficios e limitacoes
proprios, conforme ilustrado na Figura 9.

Robustez Climatica
Robustez da

Baixo lluminagao
custo
!_ R
Camera Info i il
Semantica 3D Ui
“\’ /
U /
Info .
velocidade Resolucao LIDAR
Alcance de deteccéo
Radar Camera + Radar

Figura 9 - Vantagens e limitacGes dos principais sensores utilizados para percepcdo ambiental
(KIM, Y. et al., 2022).

Os avancos nas pesquisas com detectores de objetos baseados em redes neurais
convolucionais (CNNs) tém proporcionado alta precisdo em condicdes favoraveis, como
dias ensolarados e ambientes com boa iluminagao (LI, L. Q.; XIE, Y. L., 2020). No entanto,
esses algoritmos ainda enfrentam desafios relevantes em cendrios reais, caracterizados pela
diversidade de objetos, incluindo pedestres, carros, caminhdes, bicicletas e motocicletas,
que apresentam variacdes de escala e proporcao. Além disso, o desempenho da deteccdo é
significativamente comprometido por oclusées parciais e por condi¢des climaticas adversas,
como chuva intensa e neblina (MICHAELIS et al., 2019).

Embora a fusdo entre caAmera e LiDAR tenha alcancado uma boa taxa de deteccdo de
alvos, atender aos requisitos em tempo real continua sendo um desafio, devido ao grande
volume de informacgdes adquiridas e ao alto custo computacional envolvido. Além disso,
o desempenho de reconhecimento tanto das cameras quanto dos sensores LiDAR ¢ signi-
ficativamente afetado por condi¢ées climdticas adversas, limitando a robustez do sistema
em ambientes de trafego complexos (JIANG; ZHANG, L.; MENG, 2019). Por outro lado, os
radares automotivos oferecem vantagens importantes, como ampla capacidade de adaptacio
a diferentes condicoes ambientais, penetracio eficaz em chuva e nevoeiro, além de fornecer
diretamente informacdes sobre profundidade, velocidade e um amplo alcance de detec¢do
(CHAVEZ-GARCIA et al., 2012).
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Comparados aos LiDARs, os radares oferecem maior alcance de deteccdo e uma
certa capacidade de penetracdo, o que os torna mais adequados para enfrentar condicoes
desafiadoras. Além disso, os radares sdo mais econdmicos na pratica, favorecendo seu uso
em detrimento dos LiDARs (LIU, Y. et al., 2022). Ja que para a produ¢do em massa, o custo
geralmente € o principal critério na escolha do sensor, tornando o uso do LiDAR raro, apesar
de seu alto desempenho (KANG; KUM, 2020).

Apesar da sua robustez, o radar automotivo também apresenta algumas limitacdes
importantes. Os pontos de radar sdo significativamente esparsos, o que dificulta a estimativa
de informagdes geométricas, como localizagdo e dimensdes, além de comprometer a classifi-
cacdo precisa dos objetos (LIU, Y. et al., 2022). Apesar de sua capacidade de detectar objetos
a longas distancias, os sinais retornados frequentemente contém ruidos provenientes do solo,
edificagdes e grades, o que contribui para o aumento de Falsos Positivos (FP), especialmente
em pequenos alvos(LI, L. Q.; XIE, Y. L., 2020). A identificacdo de pedestres é outro desafio,
pois sua se¢do transversal de radar (Radar Cross Section, RCS) é consideravelmente menor
em comparag¢do a outros usuarios da cena de transito, tornando sua deteccdo dificil em cenas
desordenadas, principalmente quando estao estaticos, parcialmente obstruidos ou préximos
a objetos altamente refletivos, como veiculos, postes, semaforos e placas de sinalizacio
(DIMITRIEVSKI et al., 2019).

Descoberta: A combinacdo de cameras e radares é uma solucéo eficiente e econo-
mica. As cAmeras, com sua capacidade de detectar objetos utilizando redes neurais convo-
lucionais (CNNs), oferecem informacdes detalhadas sobre a aparéncia e o contexto visual,
desempenhando um papel crucial na deteccdo de pedestres, superando as limitacdes dos ra-
dares, que tém dificuldade em identificar pedestres devido a baixa secdo transversal de radar
(RCS). Por outro lado, os radares sdo extremamente robustos em condicdes climaticas adver-
sas, como chuva, nevoeiro e baixa iluminacdo, onde as cAmeras apresentam desempenho
reduzido. Além disso, os radares fornecem dados confidveis de profundidade e velocidade,
complementando as informacdes visuais das cAmeras. Ambos 0s sensores sao economicos e
amplamente utilizados na industria automotiva, facilitando sua integracao em veiculos de
producdo em massa. Assim, a fusio entre cameras e radares oferece uma solucio balanceada
e eficaz, combinando precisdo, robustez e viabilidade econdmica.



40

3.2.3 Tema 3: Oportunidades e desafios na aplicacdo de redes neuronais

multissensoriais

O melhor desempenho alcancado pelas redes neuronais no processamento de dados
baseados em imagens fez com que os pesquisadores incorporassem modalidades de deteccio
adicionais na forma de fusio de sensores. Com esse objetivo, os modelos de aprendizagem
profunda estdo sendo expandidos para realizar a fusdo multissensor profunda, a fim de se
beneficiarem dos dados de complementaridade de modelos de detec¢ao multipla, particular-
mente em situagcdes ambientais complexas, como no caso da condug¢do autébnoma (ABDU
et al., 2021).

Diferentemente do aprendizado de maquina tradicional, que exige a engenharia ma-
nual de recursos para extrair caracteristicas relevantes, o aprendizado profundo automatiza
essa etapa. Para isso, depende de hardware avancado, como GPUs, capazes de otimizar opera-
coes complexas, como a multiplicacdo de matrizes, que sdo fundamentais para o treinamento
de modelos com grande numero de parametros. Essa capacidade permite lidar com tarefas
de maior complexidade, embora exija um poder computacional significativamente superior
aos métodos classicos. Além disso, como requer grandes quantidades de informagdo para um
treinamento eficaz, o aprendizado profundo apresenta desempenho superior em cenérios
com grandes volumes de dados, mas sua eficicia tende a diminuir quando os conjuntos de
dados sdo reduzidos (ABDU et al., 2021).

Segundo Park e Wenchang Yu (2021), ¢ uma tarefa desafiadora desenvolver um
sistema de classificacido de objetos com um conjunto de dados relativamente pequeno. Em
geral, a uma rede neural treinada com um pequeno numero de amostras de dados € propensa
a baixo desempenho e overfitting. No entanto, ao utilizar modelos CNN de tltima geragao
treinados com grandes volumes de dados, os recursos aprendidos podem ser reaproveitados
em um novo sistema com um conjunto de dados menor. Esse processo, conhecido como
aprendizado de transferéncia, permite que modelos CNN pré-treinados sejam usados como
ponto de partida para novas tarefas. Essa abordagem proporciona uma precisdo geral superior

em comparacdo ao treinamento de um modelo a partir do zero.

Os sinais de radar enfrentam desafios consideraveis em sua aplicagdo com algoritmos
de aprendizado profundo, principalmente devido a escassez de conjuntos de dados de acesso
publico e a auséncia de anotacdes de objetos. Como consequéncia, muitos pesquisadores
desenvolvem seus proprios conjuntos de dados para avaliar e validar os modelos propostos.
No entanto, a criacdo desses conjuntos € um processo demorado, especialmente quando se
busca alcancar uma escala adequada. Frequentemente, as bases de dados geradas e seus
benchmarks nio sdo disponibilizados publicamente, o que dificulta a comparacdo entre
algoritmos e limita o avanco das pesquisas baseadas em sinal de radar com redes neurais
(ABDU et al., 2021).
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A qualidade e o alinhamento dos dados também sdo fatores criticos: o sistema de
visdo deve ser calibrado tanto espacial quanto temporalmente, pois desalinhamentos du-
rante a coleta dos dados de treinamento podem introduzir erros significativos nos conjuntos,
comprometendo o desempenho das redes neurais (FENG et al., 2021). A calibragéo é fun-
damental para etapas posteriores do processamento de dados, como a fusio sensorial, a
deteccdo de obstaculos, a localizagdo, o mapeamento e o controle do veiculo (YAN et al.,
2022). No contexto da percep¢do em tempo real, as informacdes ambientais captadas em
momentos distintos podem apresentar discrepancias significativas, especialmente devido ao
movimento do veiculo e as variacdes no ambiente. Por isso, é essencial que os dados obtidos
por diferentes sensores estejam sincronizados no tempo, de modo a permitir uma fusdo
eficaz das informacdes (ZHANG, X. et al., 2019). Existem duas abordagens principais para a
calibracdo temporal dos sensores: a sincronizacdo externa, que utiliza hardware dedicado
para alinhar os tempos de aquisicao, e a sincronizacdo interna, que explora os carimbos de
data e hora gerados por cada sensor para realizar o alinhamento temporal (YEONG et al.,
2021). Em paralelo, a calibracio espacial entre sensores, como radar e cimera, € frequente-
mente abordada na literatura como calibracido de coordenadas, cujo objetivo € alinhar os
pontos do radar com os objetos detectados nas imagens. Para isso, os métodos mais utilizados
sdo classificados em trés categorias principais: transformacdo de coordenadas, verificagio
entre sensores e abordagens baseadas em visdo (WEI et al., 2022).

« Método de transformacdo de coordenadas: O método de transformacao de coordenadas
unifica as informagdes de radar e de visdo sob 0 mesmo sistema de coordenadas através
de operacdes matriciais;

« Método de verificagcdo de sensor: O método de verificacdo de sensor calibra varios
sensores entre si com as informagdes de detecgcdo de diferentes sensores no mesmo
objeto. Primeiro, a lista de alvos é gerada pelo radar e depois a lista é verificada pelas
informacdes de visio;

« Método baseado em visdo: Utiliza de técnicas como subtragdo adaptativa de fundo
ou movimento estéreo para achar a correspondéncia de objetos de radar e objetos de
imagem.

Atualmente, ha uma maior disponibilidade de conjuntos de dados publicos que
incluem informacdes de radar. A Tabela 6, adaptada de Sheeny et al. (2021), apresenta
uma comparacao entre os principais conjuntos de dados automotivos, destacando aspectos
como os sensores utilizados, as condi¢ées ambientais contempladas e os tipos de anotacdes
oferecidas.
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Tabela 6 - Conjuntos de dados automotivos publicos com deteccdo de radar (SHEENY et al., 2021)

Base Tam Radar LiDAR | Caimera| Noite | Nevoa | Chuva | Neve Detec | Rastre Odo Anot
Obj Obj metria 3D
nuScenes G Nuvem de v v v v v v v
pontos esparsa

Oxford G Imagem de v 4 v v 4
Radar Ro- radar de alta

botCar resolugao

MulRan G Imagem de v v

radar de alta
resolucdo

Astyx P Nuvem de v 4 v v
pontos esparsa
RADIATE| G Imagem de v v v 4 v v 4 v v Pseudo-
radar de alta 3D

resolucdo

A base nuScenes (CAESAR et al., 2020) oferece dados de radar em formato de nuvem
de pontos esparsa, juntamente com LiDAR e caAmeras, cobrindo condic¢des climéticas como
noite e chuva, além de incluir anotac¢des para deteccdo e rastreamento de objetos. J4 o
Oxford Radar RobotCar (BARNES et al., 2019) e o MulRan (KIM, G. et al., 2020) fornecem
imagens de radar de alta resolu¢do, mas focam principalmente em aplica¢des de localizacio
e mapeamento, sem anotacdes especificas para objetos. O Astyx (MEYER, 2019), embora seja
um conjunto de dados pequeno, com cerca de 500 quadros anotados, inclui anotacdes 3D. O
RADIATE (SHEENY et al., 2021) oferece imagens de radar de alta resolucdo, juntamente
com LiDAR e cameras, abrangendo condi¢es ambientais adversas, como neblina, chuva e

neve.

Descoberta: As redes neurais multissensor emergem como a chave para aumentar a
robustez e a precisdo dos modelos que utilizam apenas cadmeras. A transferéncia de aprendi-
zado é uma solucao valiosa para aproveitar modelos j4 treinados, que possuem alta eficiéncia
em tarefas de detecgdo, permitindo a adaptacdo desses modelos para novos contextos e
proporcionando uma precisao superior a de um treinamento realizado completamente do
zero. No entanto, a criagdo de uma nova base de dados para treinar modelos multissensor
¢ uma tarefa custosa e demorada, que exige anotagdes detalhadas de todos os objetos de
interesse na cena, além da calibracdo adequada entre os sensores, tanto espacial quanto
temporalmente, para garantir a precisao dos dados. Felizmente, j& existem bases de dados
publicas que atendem a esses requisitos, como nuScenes, Oxford Radar RobotCar, MulRan
e RADIATE, que fornecem dados de radar, cAimeras e LiDAR em condicdes variadas, com
anotacdes para tarefas como detec¢do, rastreamento de objetos e odometria. A utilizacio
dessas bases de dados publicas facilita o desenvolvimento e aprimoramento de modelos de
aprendizado profundo, pois permite a comparacao de algoritmos e a validacdo de novos

métodos, acelerando o progresso na 4rea.
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3.3 Técnicas de fusao entre camera e radar para detec-
cao 2D

A érea de visdo computacional abrange uma ampla gama de tarefas, incluindo seg-
mentacao semantica, deteccdo e rastreamento de objetos em 2D e 3D, entre outras. Cada
uma dessas atividades envolve técnicas especificas, com desafios e limitagdes que exigem
solucoes adaptadas as suas particularidades. Dentre elas, a deteccdo de objetos se destaca
como um tema central, especialmente devido a sua relevancia para a navegacdo de veiculos
autdnomos. Com o objetivo de proporcionar uma compreensdo abrangente das abordagens
descritas na literatura, esta secio se concentra na andlise das principais técnicas de fusdo
sensorial que utilizam sinais de radar e cAmera para a deteccdo de objetos em 2D.

Na Tabela 8, apresenta-se um resumo detalhado das técnicas exploradas em 14 artigos
distintos, abordando as arquiteturas utilizadas, o nivel de fusdo adotado, a operacio de fusdo
empregada, o problema investigado, os tipos de objetos identificados e as bases de dados
utilizadas. Complementarmente, a Tabela 7 reine os resultados quantitativos reportados com
base na base de dados nuScenes, utilizando métricas como Precisdo Média (AP) e Revocacio
Média (AR). A andlise dessas tabelas permite comparar as diferentes arquiteturas propostas,
identificar padroes de projeto e destacar as abordagens com desempenho mais robusto na
deteccdo de objetos em 2D, fornecendo uma base sélida para decisdes de implementacdo e
futuras otimizacoes.

Alguns estudos também reportaram a laténcia dos algoritmos como uma métrica
de desempenho. No entanto, esses valores nao foram incluidos na andlise comparativa
apresentada, pois a laténcia ndo pode ser diretamente comparada entre trabalhos que utilizam
hardwares distintos, o que compromete a validade da comparacdo. De forma semelhante,
também foram desconsideradas métricas obtidas em bases distintas da nuScenes, devido as

variagdes que diferentes conjuntos de dados podem introduzir nos resultados.

Tabela 7 - Quadro resumo das métricas obtidas por trabalhos de fusdo sensorial entre RADAR e
Camera para deteccio de Objetos 2D na base de dados NuScenes

Reference Scale AP AP AP mAP AR Repository
Chang et al. (2020) 800 724 90.0 79.3 - 79.0 SAF-FCOS
Yadav, Vierling e Berns (2020) 1024 72.3 889 84.3 - 75.3  BIRANet
Yadav, Vierling e Berns (2020) 512 68.7 87.6 79.7 - 72.0  BIRANet
Yadav, Vierling e Berns (2020) 512 647 821 574 - 67.5 RANet
Nabati e Qi (2019) - 354 59.0 374 - 421 RRPN
Nobis et al. (2020) 640 - - - 439 - CRF-Net
V. John, Nithilan et al. (2020) 224 423 - - - - SO-Net
Liang Qun Li e Yuan Liang Xie (2020) 800 24.3 484 223 - 33.7 Li-Xie

Nabati e Qi (2020) - 356 60.5 374 445 421 Nabati-Qi
Vijay John e Mita (2019) 416 560 - - - - RVNet



https://github.com/Singingkettle/SAF-FCOS
https://github.com/RituYadav92/Radar-RGB-Attentive-Multimodal-Object-Detection
https://github.com/RituYadav92/Radar-RGB-Attentive-Multimodal-Object-Detection
https://github.com/RituYadav92/Radar-RGB-Attentive-Multimodal-Object-Detection
https://github.com/mrnabati/RRPN
https://github.com/TUMFTM/CameraRadarFusionNet

Tabela 8 — Quadro resumo das técnicas utilizadas pelos pesquisadores para fusdo sensorial entre cimera e radar automotivo

Reference Network Architecture Level of Fusion Fusion Operation Problem Object Type Data set
Chang et al. (2020) SAF-FCOS based on FCOS Feature level Addition; Multiplication 2D Object detection  Bicycle, car, motorcycle, bus, NuScenes
train, truck
Yadav, Vierling e BIRANet based on ResNet Feature level Addition 2D Object detection Car, Truck, Person, NuScenes
Berns (2020) and distance Motorcycle, Bicycle, Bus
estimation
Nabati e Qi (2019) RRPN based Fast-R-CNN Data level Transformation matrix 2D Object detection Car, Truck, Person, NuScenes
Motorcycle, Bicycle and Bus
Nobis et al. (2020) CRF-Net based RetinaNet with VGG Multi-level Feature concatenated 2D Object detection Car, bus, motorcycle, truck, NusScenes
trailer, bicycle and human
V. John, Nithilan et al. SO-Net based Yolov3 and Encoder-decoder Feature level Concatenation 2D Object detection Vehicles and free space NusScenes
(2020) and Free space
Segmentation
Liang Qun Lie Li-Xie based on the YOLOv3 Feature level Concatenation; Multiplication ~ 2D Object detection car, bus, truck, trailer NuScenes
Yuan Liang Xie (2020)
Nabati e Qi (2020) Nabati-Qi based on Fast-R-CNN Multi-level Region proposal 2D Object detection Car, Truck, Person, Bus, NuScenes
and distance Bicycle, Motorcycle
estimation
Vijay John e Mita RVNet based on YOLOV3 Feature level Concatenation 2D Object detection vehicles, pedestrians, NuScenes
(2019) two-wheelers and objects
(moving and debris)
Kang e Kum (2020) VGG16 data level Transformation matrix Vehicle localization vehicles own, Stanford
Park e Wenchang Yu VGG-19, GoogLeNet e VGG-16 data level Transformation matrix 2D Object detection bicycle, car and pedestrian Udacity vehicle, INRIA
(2021) Person and others

Ze Liu et al. (2022) Based Faster R-CNN

Xinyu Zhang et al. RCNN

(2019)

Han et al. (2016) Model based machine learning (DPM)

Jiang, Lijun Zhang e YOLOV2

Meng (2019)

decision level

data level

data level

decision level

JPDA

Transformation matrix

Transformation matrix

Transformation matrix

Target Recognition
and Tracking
2D Object detection

2D Object detection

Target detection

Vehicles and pedestrians

car, trucks and vans

Vehicles, Pedestrians, Two
Wheels, Traffic Cones

buses, cars, bicycles,
motorcycles and pedestrians

Own, MS COCO 2014,
VOC2007 and VOC2012

Own

PASCAL VOC2010, INRIA
Person

PASCAL VOC, VOC2007,
VOC2012

144
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4 Projeto, implementacao e resulta-
dos

Com o objetivo de desenvolver e avaliar a fusdo de dados em niveis baixo e médio en-
tre sensores cimera e radar no ambiente automotivo, foi escolhida a base de dados nuScenes,
devido a sua popularidade no meio académico e a sua rica colecdo de cenas multissen-
soriais sincronizadas, capturadas nas cidades de Boston e Cingapura, conhecidas por seu
trafego urbano intenso e variado. Como o Detectron2 nao oferece suporte nativo aos dados
do nuScenes, adotamos o formato COCO (Common Objects in Context) como padrdo de
anotacdo. A conversdo para esse formato foi necessaria para viabilizar a utilizacdo da base
em frameworks de deteccdo de objetos 2D.

Para a implementacao, treinamento e avaliacdo dos modelos, utilizamos a biblioteca
de cdédigo aberto Detectron2 (WU, Y. et al., 2019). O Detectron2 fornece uma infraestrutura
eficiente e modular para tarefas de visdo computacional, permitindo o treinamento de
diversos modelos de deteccio e segmentagdo, como Faster R-CNN, Mask R-CNN e RetinaNet.
Além disso, conta com o Detectron2 Model Zoo, um repositério de modelos pré-treinados
que facilita a transferéncia de aprendizado, oferecendo diversas combinagdes de backbones,
como R50-FPN, R101-C4 e R101-DCS5. Para garantir a eficiéncia da deteccido baseada em
camera, adotou-se a estratégia de transferéncia de aprendizado, uma vez que o treinamento
com pesos aleatdrios na base nuScenes exigiria mais tempo de processamento e no atingiria,
o mesmo nivel de acuricia de modelos inicializados com pesos treinados em conjuntos
maiores, como COCO ou ImageNet. A Figura 10 organiza visualmente o fluxo de atividades
conduzidas no desenvolvimento do trabalho, antecipando os topicos descritos nesta secao.

Baixar dados
camera/radar frontal
nuScenes

| Converter para formato | . Integrar dados de Radar |
COCO ao Deteciron2

Implementar fusiio de

| baixo nivel ao Detectron2

Treinar e Avaliar os | Implementar fusdo de
modelos médio nivel ao Detectron2

Figura 10 - Fluxograma do desenvolvimento

Fonte: Produzido pelo autor
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4.1 Visao Geral

A primeira proposta de fusido, em nivel baixo, teve como base a adaptacdo do RRPN
ao Detectron2, a qual foi incorporada a extensdo desenvolvida neste trabalho: um gerador
de ancoras customizado, definido a partir de um estudo das caracteristicas geométricas das
categorias presentes na base nuScenes, de forma a adequar melhor as ancoras aos tipos de
objetos buscados. Para a avaliacdo, trés modelos foram treinados: o Faster R-CNN tradicional,
utilizado como referéncia por considerar apenas a imagem da cAmera; o modelo com RRPN,
no qual os dados de radar sdo incorporados ao processo de geracdo de propostas; e a versao
estendida da RRPN, correspondente a proposta deste trabalho, que inclui o gerador de
propostas customizado.

A segunda proposta de fusdo, em nivel médio, consistiu em modificacées estruturais
no backbone da rede, de forma a permitir a integracdo direta entre os sinais de radar e
as imagens da caAmera. A arquitetura resultante combina duas redes ResNet-50 paralelas,
sendo uma responsavel pelo processamento da cAmera e a outra pelo radar, cujas saidas
sdo fundidas por meio de um modulo de atencao espacial (Spatial Attention Fusion — SAF)
(CHANG et al., 2020), aplicado antes da pirdmide de caracteristicas (FPN). Para a avaliacio
dessa abordagem, dois modelos foram treinados: o Faster R-CNN tradicional, utilizado como
referéncia por considerar apenas imagens da camera, e a arquitetura proposta, que integra
os dados de camera e radar por meio da fusdo SAF.

O processo de avaliacdo teve como objetivo quantificar os ganhos na tarefa de deteccio
de objetos 2D proporcionados pela fusdo sensorial entre cAmera e radar. Para isso, foram
utilizadas as métricas oficiais do conjunto COCO. Com o intuito de investigar a robustez
dos modelos em condicoes ambientais adversas, a base de validacdo foi segmentada em trés
subconjuntos: validacdo completa, cenas noturnas e cenas com chuva. Essa divisdo teve

como proposito avaliar o desempenho dos modelos em diferentes cendrios de visibilidade.

4.1.1 Base de dados nuScenes

O nuScenes(CAESAR et al., 2020) é um banco de dados publico desenvolvido pela
empresa nuTonomy, lancado em 2019. Ele oferece um conjunto abrangente de dados multi-
modais, contendo 1.000 cenas capturadas em Boston e Cingapura, cidades conhecidas por
seu trafego intenso e desafios complexos de direcdo. Cada cena tem uma duracdo de 20
segundos, contendo amostras sincronizadas de imagens, LIDAR e RADAR, adquiridas a uma
taxa de 2 Hz. Para a coleta dos dados, foram utilizados dois veiculos Renault Zoe, equipados
com um conjunto idéntico de sensores, conforme ilustrado na Figura 11 e detalhado na
Tabela 9. O conjunto de dados resultante inclui aproximadamente 1,4 milhdo de imagens de
camera, 390 mil varreduras LIDAR e 1,4 milhdo de varreduras RADAR, além de 1,4 milhdo

de anotacdes de objetos distribuidas em 23 classes.
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Figura 11 - Configuracdo dos sensores no veiculo NuScenes.

Fonte: (CAESAR et al., 2020)

Tabela 9 - Sensores utilizados pela nuScenes.

Sensor Detalhes

6x Camera RGB, frequéncia de captura de 12Hz, sensor CMOS de 1/1.8", resolu-
cdo de 1600 X 900, auto exposicdo, comprimido em JPEG

1x Lidar Giratorio, 32 feixes, frequéncia de captura de 20Hz, FOV horizontal
de 360°, FOV vertical de -30° a 10°, alcance de < 70m, precisdo de
+2cm, até 1.4M pontos por segundo

5x Radar Alcance de < 250m, 77GHz, FMCW, frequéncia de captura de 13Hz,
precisdo de vel. de £0.1km/h

GPS & IMU GPS, IMU, AHRS. Precisdo de 0.2° em orientacgdo, 0.1° em rotagao/ba-
lancgo, posicionamento RTK de 20mm, taxa de atualizacdo de 1000Hz

Os objetos sdo anotados quando contém pelo menos um ponto detectado por LiDAR
ou radar. Cada anotac¢do inclui a categoria semantica do objeto, atributos como visibilidade
e pose, além de cuboids que descreve sua posicdo e dimensoées 3D, representado pelos
parametros, largura, comprimento, altura e angulo de guinada. As deteccoes de radar sdo
armazenadas em um conjunto de 18 campos, que descrevem a posicao, velocidade e qualidade
da deteccdo dos objetos. Entre os principais, destacam-se as coordenadas x, y e z, que
representam a posicao tridimensional do ponto, enquanto vy e vy indicam suas velocidades
em metros por segundo. As velocidades Ux ,mp € Uyeomp S80 corrigidas para compensar o
movimento do veiculo. O campo RCS (Radar Cross Section) quantifica a intensidade do sinal
refletido, indicando a capacidade do objeto de refletir ondas de radar. Além disso, diversos
outros campos fornecem informacdes sobre a validade da deteccdo e as incertezas associadas
as medicoes.
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Para utilizar os dados dos sensores em referencial comum, garantindo a correta fusio
de dados, a base nuScenes disponibiliza o campo calibrated_sensor, que contém as tabelas
de rotacgdo e translagdo de cada sensor, além da matriz intrinseca das cameras, obtidas a
partir de um processo de calibragdo realizado aproximadamente duas vezes por semana
ao longo dos seis meses de coleta de dados. A rotacao e a translacdo permitem alinhar os
sensores ao referencial do veiculo, enquanto a matriz intrinseca possibilita a projecdo da
nuvem de pontos 3D nas imagens da camera.

4.1.2 Conversio para o formato COCO

O COCO organiza as informagdes em um arquivo JSON estruturado em trés secoes
principais: images, categories e annotations. A secdo images armazena metadados sobre cada
imagem do conjunto de dados, incluindo um identificador unico (id), o nome do arquivo
e suas dimensodes em pixels. A secdo categories define as classes dos objetos detectados,
que, para esse nossos modelos serdo: Pedestre, Bicicleta, Motocicleta, Carro, Caminhdo
e Onibus. J4 a secdo annotations contém as informagdes de cada objeto anotado dentro
das imagens, vinculando cada anota¢do a uma imagem especifica por meio do campo
image_id, correspondente ao id da imagem. Além disso, cada anota¢do inclui o identificador
da categoria (category_id), as coordenadas da caixa delimitadora (bbox) e a drea ocupada
pelo objeto.

Para incorporar os dados do radar, adicionamos a secdo pointcloud, que contém os
campos de identificacdo (id), referéncia a imagem correspondente (image_id) e os dados de
afericdo (points). O campo points armazena uma lista de todos os pontos de radar associados
a cada imagem, incluindo as coordenadas projetadas no plano da imagem (x e y em pixels),
a distancia do ponto ao radar (em metros) e as velocidades relativas (vx e vy em metros por

segundo).

A conversdo das deteccdes do radar para o plano da imagem no nuScenes ¢ realizada
utilizando o devkit do conjunto de dados, que aplica uma série de transformacdes baseadas
nas matrizes de calibracdo dos sensores, garantindo o alinhamento espacial e temporal
por meio do registro de data e hora de cada sensor. Inicialmente, os pontos do radar sdo
carregados no referencial do proprio sensor e transformados para o referencial do veiculo no
timestamp correspondente a captura do radar. Em seguida, os pontos sdo convertidos para
o sistema global e, posteriormente, ajustados para o referencial do veiculo no instante da
captura da imagem da camera. Depois disso, a transformacao para o referencial da cimera é
aplicada, e a projecdo dos pontos no plano da imagem ocorre por meio da matriz intrinseca
da camera. Por fim, pontos fora do campo de visao ou atrds da camera sao descartados,
garantindo uma fusdo precisa dos dados radar-visdo.
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4.1.3 Configuracio do treinamento e Avaliacdo

O treinamento dos modelos foi realizado utilizando dados da cAmera e do radar frontal
provenientes do banco de dados nuScenes (CAESAR et al., 2020), previamente convertidos
para o formato COCO (LIN; MAIRE et al., 2014). A Tabela 10 apresenta a configuragdo
adotada para o treinamento dos modelos avaliados, contemplando diferentes niveis de fusio
sensorial. Nela, sdo especificados os principais hiperparametros utilizados, incluindo o
gerador de propostas, a arquitetura de backbone, o numero méaximo de iteragdes, a taxa
de aprendizado inicial (LR Base), o otimizador, os passos de ajuste da taxa de aprendizado
(Steps) e o fator de decaimento (Gamma). Também sdo indicados o limiar de pontuagdo
para os testes (Score Thresh Test), o nimero de classes e os tipos de objetos detectados.
Cada abordagem de fusdo € comparada com o benchmark Faster R-CNN, identificado pelo
simbolo (*), com o objetivo de avaliar os ganhos proporcionados pelas estratégias de fusdo
de dados e de caracteristicas.

Tabela 10 - Configuracdo de treinamento dos modelos por nivel de fusao

Configuracoes Fusao de Dados Fusao de Caracteristicas
Gerador de Propostas ~ RPN" IRRPN |Custom_RRPN RPN
Backbone R50-FPN R50-FPN" [2R50-SAF-FPN
Max Iter 30000 20000
LR Base 0.0005 0.00025
Otimizador - AdamW
Steps 25000; 28000 -
Gamma 0.1 -
Score Thresh Test 0.6 0.6
Num Classes 06 06
Classes Pedestre, Bicicleta, Motocicleta, Carro, Caminhio e Onibus

* Modelo de referéncia, Faster-RCNN (Benchmark).

Para avaliar a eficiéncia da fusdo camera-radar na deteccdo de objetos 2D, utilizamos
as métricas do conjunto de dados COCO (LIN; MAIRE et al., 2014). Dentre essas métricas,
destacam-se a Precisdo Média (AP), que quantifica a capacidade do modelo de realizar
predicdes corretas ao calcular a drea sob a curva de precisao versus revocacgdo, e a Revocagdo
Meédia (AR), que expressa a capacidade de recuperar objetos anotados, ou seja, a fracao
de verdadeiros positivos em relagcdo ao total de anotagées. Ambas sdo calculadas sobre 10
limiares de Intersecdo sobre Unido (IoU), uniformemente espagados de 0.50 a 0.95, com
incremento de 0.05. Também utilizamos valores especificos de AP, como o AP, e 0 AP5, que
correspondem aos limiares fixos de IoU 0.50 e 0.75, respectivamente. Essas métricas podem
ser reportadas de forma global ou segmentadas por categoria. Conforme a convencio do
COCO, nio se distingue AP de mAP (assim como AR de mAR), presumindo-se que o contexto
torne essa equivaléncia clara. Para uma andlise em diferentes escalas, também reportamos
os valores de AP segmentados pelo tamanho dos objetos, conforme a definicio do COCO:
pequenos (AP, drea < 32%), médios (AP,,, 32? < 4drea < 96%) e grandes (AP, area > 962).
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Com o objetivo de avaliar o desempenho dos modelos em diferentes condi¢oes de
conducdo, o conjunto de validacdo foi segmentado em trés grupos: dia, noite e chuva. A
separacdo entre cenas diurnas e noturnas baseou-se no horério de captura, enquanto as cenas
de chuva foram identificadas pela chave rain na descri¢do de cena. A Tabela 10 apresenta a
distribuicdo das instancias entre essas categorias. Devido a alta similaridade entre o conjunto

completo e o grupo diurno, optou-se por ndo utilizar este ultimo na avaliagdo.

Tabela 11 - Distribuicdo das instancias entre todas as 6 categorias

Categoria Total (N) Dia Noite Chuva
Pessoa (N) 8,635 8,598 37 382
Bicicleta (N) 556 552 4 34
Motocicleta (N) 922 753 169 70
Carro (N) 22,236 20,722 1,514 5,166
Onibus (N) 1,162 1,162 0 169
Caminhdo (N) 4,640 4,558 82 1,281
Total (N) 38,151 36,345 1,806 7,102
Total (%) 100 95.3 4.7 18.6

4.2 Método 1: Fusao em nivel de dados baseada em
RRPN

Esta secdo explora o método de fusdo sensorial de baixo nivel que utiliza a deteccao
por radar para gerar regides de interesse (ROIs) no sistema de coordenadas da camera. Para
isso, foi adotado o algoritmo RRPN (Radar Region Proposal Network) (NABATTI; QI, 2019),
que gera caixas delimitadoras (Ancoras) sobre a imagem a partir das coordenadas e distancias

fornecidas por cada ponto de deteccdo do radar.

Nabati e Qi (2019) propos um método para ajustar fator de escala das ancoras com base
na distancia dos objetos detectados. Esse mecanismo parte do principio de que objetos mais
distantes ocupam areas menores na imagem e, portanto, devem ter ancoras proporcionais a
sua proje¢do. Cada ponto de radar é mapeado para o plano da imagem como um vetor de
trés componentes: coordenadas projetadas e distdncia. O fator de escala aplicado a ancora

de cada detecc¢do é calculado segundo a seguinte equacao:

S =as+8 (41)

d;
Em que S; representa o fator de escala da ncora da deteccdo i, d; € a distancia ao
objeto, e a e 8 sdo parametros definidos para ajustar esse escalonamento. Os parametros « e
B foram determinados usando uma pesquisa de grade dentro de um intervalo de valores que
maximiza a Intersecdo sobre Unido (IoU) entre as caixas delimitadoras geradas e as caixas

delimitadoras da verdade basica do conjunto de treinamento (NABATTI; QI, 2019).
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Além da compensag¢do baseada na distancia, o algoritmo também permite configurar
parametros como os formatos das ancoras, definidos por aspect ratios, as posicoes relativas
ao ponto de detec¢do (como centro, cima, esquerda e direita), e um fator multiplicador
aplicado a cada ancora gerada. Essa flexibilidade possibilita a criacdo de um gerador de
ancoras customizado, conforme serd apresentado nas se¢des seguintes.

4.2.1 Gerador de Ancora RRPN

As ancoras sio geradas com base nos sinais de radar, para cada leitura de radar no
plano da imagem, sdo adotados trés aspect ratios, que representam a razdo entre a alturae a
largura das caixas delimitadoras: 0,5, 1 e 2. Esses valores correspondem, respectivamente, a
retangulos horizontais, quadrados e retdngulos verticais, permitindo uma melhor adaptacio

das ancoras as diferentes formas dos objetos presentes na cena.

Como os pontos de radar raramente coincidem exatamente com o centro dos objetos
de interesse, as ancoras ndo sdo geradas apenas na posicao central do ponto de detec¢do, mas
também deslocadas para as posicoes superior, esquerda e direita. Dessa forma, cada ponto
de deteccdo do radar contribui com quatro pontos distintos de referéncia para a geracao de

ancoras, conforme ilustrado na Figura 12.

Proposta Central Proposta Superior

Proposta Esquerda Proposta Direita

Figura 12 - Ancoras geradas pelo RRPN.

Fonte: Produzido pelo autor

Além das variacdes de posicionamento, sdo aplicados fatores de escala multiplicativos
de 1X, 2X e 4%, ajustando o tamanho das caixas delimitadoras para abranger objetos de
diferentes dimensdes. Assim, considerando as trés proporcoes de aspect ratio e as quatro
posicoes de deslocamento, a introducdo dos fatores de escala resulta em um total de 36 caixas
delimitadoras por ponto de deteccdo do radar, como ilustrado na Figura 13.
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Proposta do centro Proposta do topo

Figura 13 - Bounding boxes geradas por ponto de radar

Fonte: Produzido pelo autor com dados de nuScenes

4.2.2 Gerador de Ancora customizado

Para obter Ancoras mais representativas para os tipos de objetos que se pretende identi-
ficar, sendo eles: pedestres, bicicletas, motocicletas, carros, 6nibus e caminhdes. Investigou-se
as proporcoes das caixas delimitadoras da verdade basica no conjunto de treinamento NuS-
cenes(CAESAR et al., 2020). A relacdo entre a altura e a largura das caixas delimitadoras de
cada objeto de interesse foi extraida e agrupada em trés categorias distintas: Pequeno para
pedestres, bicicletas e motocicletas; Médio para carros; e Grande para 6nibus e caminhdes.
Cada categoria foi plotada em um histograma para analisar as proporcdes mais frequentes
por tamanho do objeto conforme mostrado na Figura 14.

A andlise do histograma da Figura 14, mostra que objetos menores tendem a ter uma
caixa delimitadora retangular vertical, com uma proporc¢ado de cerca de 1,8. As distribuicoes
das barras nos histogramas para objetos médios e grandes sdo mais semelhantes, com objetos
médios tendo uma proporc¢ao de aspecto mais padronizada, com numerosos picos em torno
de 0,4, 0,6 e 0,8. Da mesma forma, objetos grandes tém uma frequéncia mais baixa e um
desvio padrdo mais alto. Dadas essas caracteristicas de cada objeto, foram escolhidos os
seguintes multiplicadores e propor¢des para gerar as ancoras do modelo proposto.

Tabela 12 - Aspect Ratios for Different Multiplied Factors

Fator multiplicador | Aspect Ratio [H/W]

1X 1.8; 0.6
2X 1.8; 0.6
3X 0.8;0.6; 0.4

4X 0.8;0.6; 0.4
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Figura 14 - Histograma do aspect ratio por tamanho de objeto
Fonte: Produzido pelo autor

Proposta centro Proposta topo

Proposta esquerda Proposta direita

Figura 15 - Ancoras geradas pelo RRPN customizado.

Fonte: Produzido pelo autor

A Figura 15 ilustra as dncoras geradas com os fatores multiplicadores 1X e 3%, posici-
onadas nos pontos central, superior, esquerdo e direito em relacdo a deteccdo do radar. O
processo proposto de geracdo de ancoras resultou em um total de 40 caixas delimitadoras
por ponto de deteccdo. As Figuras 32 e 33, apresentadas em anexo, comparam o gerador de
ancoras RRPN com a versdo customizada, evidenciando as propostas de regido produzidas

para um mesmo ponto de deteccao.
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4.2.3 Resultados

Nesta secdo, sdo apresentados os resultados obtidos no treinamento de trés modelos
distintos. O primeiro modelo, Faster R-CNN (REN et al., 2015), utiliza exclusivamente
imagens da camera frontal e emprega o gerador de propostas RPN. Esse modelo serve
como referéncia para comparagdo, uma vez que a principal diferenca entre as abordagens
analisadas estd no mecanismo de geracdo de propostas. Os outros dois modelos incorporam
a fusdo de dados entre camera e radar. O segundo modelo utiliza o gerador de propostas
RRPN, cuja abordagem foi detalhada na Secdo 4.2.1. Por fim, o terceiro modelo, denominado
Custom_RRPN, adota uma estratégia personalizada de geracio de ancoras, conforme descrito
na Secdo 4.2.2.

Os resultados experimentais sdo apresentados nas Tabelas 13 e 14. Além disso, as
Tabelas 15 e 16 mostram os desempenhos especificos dos modelos em condicdes desafiadoras,

como cenas noturnas e ambientes chuvosos, respectivamente.

Tabela 13 - Precisdo média por categoria na base completa

Categoria Faster R-CNN RRPN Custom RRPN
Pessoa (AP) 15.480 7.734 6.452
Bicicleta (AP) 7.434 5.604 4.978
Motocicleta (AP) 8.898 5.515 6.869
Carro (AP) 36.639 28.566 28.355
Onibus (AP) 34.139 29.622 34.916
Caminhio (AP) 16.637 13.332 16.555

Tabela 14 - Resultados na base de validagdo completa

Métrica Faster R-CNN RRPN Custom RRPN

AP 19.87 15.22 16.35
AR 254 20.0 21.0
AP50 38.79 30.02 31.05
APs 1.60 0.36 0.21
APm 11.66 6.23 6.18
AP1 30.9 25.78 27.66

Os resultados nas Tabelas 13 a 16 destacam uma melhoria nas métricas entre o
Custom_RRPN em compara¢do com o RRPN, porém ndo muito significativa. Comparado ao
Faster R-CNN (REN et al., 2015), todas as métricas foram inferiores neste treinamento. A
técnica de fusdo de dados, que utiliza radar para gerar regides de interesse propostas para a
camera, degrada o desempenho do detector de objetos que utiliza apenas a cadmera.
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Tabela 15 - Resultados na base de validagdo noturna

Métrica Faster R-CNN RRPN Custom RRPN

AP 12.94 9.07 9.58
AR 16.0 11.9 11.6
AP50 24.39 18.96 19.26
APs 6.13 0.03 0.17
APm 9.75 4.42 5.21
AP1 19.01 15.10 16.26

Tabela 16 — Resultados na base de validagdo em condi¢do de chuva

Métrica Faster R-CNN RRPN Custom RRPN

AP 13.67 10.56 11.78
AR 17.6 14.2 15.5
AP50 28.22 21.48 23.89
APs 10.46 7.32 7.56
APm 10.27 6.39 7.54
AP1 20.57 15.39 18.30

Neste formato de fusdo, o radar ¢ utilizado como sensor principal para a deteccao.
Dessa forma, objetos ndo detectados pelo radar ndo sdo procurados nem analisados pela
rede neural. Para validar essa hipotese, os objetos anotados nos conjuntos de validagdo e
teste foram carregados. Para cada objeto, foi verificado se havia pontos de radar associados e
quantificada a quantidade de pontos relacionados. Manteve-se a mesma divisdo de categorias
na andlise da proporc¢do por tamanho de objeto: a Figura 16 apresenta os resultados para
objetos pequenos, a Figura 17 para objetos médios e a Figura 18 para objetos grandes.

Os histogramas apresentados nas Figuras 16 a 18 indicam que objetos pequenos
possuem maior probabilidade de ndo serem detectados pelo radar. Quando detectados, rara-
mente apresentam mais de um ponto vinculado. No caso especifico da deteccao de pedestres,
aproximadamente 20% dessa categoria possui a0 menos um ponto de radar associado, o
que justifica, os baixos indices de deteccdo observados na Tabela 13. A anélise das demais
categorias de objetos na cena segue um padrdo semelhante, corroborando os resultados do
experimento apresentados nas Tabelas 13 a 16. Conforme evidenciado, caminhdes e 6nibus
foram melhor detectados pelo radar e apresentaram maior niimero de pontos associados,
resultando em valores de APl mais proximos aos obtidos com o modelo Faster R-CNN (REN
et al., 2015).
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Figura 16 — Histograma de deteccoes de radar para
pequenos objetos no banco de dados NuScenes.

Histogramas para carros
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Figura 17 - Histograma de detec¢6es de radar para objetos
médios no banco de dados NuScenes.

Histogramas para énibus

Hé pontos de radar? Numero de pontos por objeto
6000
10000 1
n ©
2 7500 § #0001
@ §
] g
5 5000 A g
£ & 2000
e _r—l_l—
o 0 T T T T T T T
0,0 05 10 00 25 5.0 1 100 125 1sp 15 20
Falso, Verdadeiro Pontos deradar
Histogramas para caminh&o
Ha pontos de radar? Numero de pentos por objeto
30000 4
W 40000 o
2 2
& £ 20000 4
g 20000 g
i * 10000 4
o o T T T T T T u
00 Qs 10 0.0 25 50 7510.0 125 15,0175 200
Fatso Ventadirs Pontos de radar
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grandes no banco de dados NuScenes.
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O algoritmo RRPN (NABATTI; QI, 2019) pode aumentar potencialmente a veloci-
dade do Fast R-CNN (GIRSHICK, 2015), aproximando-o do desempenho em tempo real
exigido por aplicacées em veiculos autbnomos. No entanto, com o lancamento do Faster R-
CNN(REN et al., 2015), que integra de forma mais eficiente a geracdo de propostas por meio
da Region Proposal Network (RPN), torna-se impraticdvel utilizar exclusivamente a detec¢do
por radar para gerar regides de interesse. Para mitigar a auséncia de deteccdo em 4reas sem
retorno do radar, € essencial também realizar a extracio de caracteristicas da imagem. Dessa
forma, os modelos de deteccdo baseados em redes neurais convolucionais (CNNs), quando
implementados com esquemas de fusdo de nivel médio (ou fusdo de caracteristicas), tém se
mostrado mais eficazes ao integrar informacdes de diferentes fontes e melhorar a robustez
da deteccao.

4.3 Meétodo 2: Fusao em nivel de caracteristica baseado
em SAF

Esta secdo explora o método de fusdo em nivel de caracteristica, com base no trabalho
de Chang et al. (2020). Nesse método, a fusdo por meio do modulo SAF (Spatial Attention
Fusion) tem como principal objetivo aprimorar a detec¢cdo de pequenos objetos e de objetos
desfocados, ao enfatizar regides relevantes e reforcar a confiabilidade das deteccdes oriun-
das da camera. Além disso, essa abordagem assegura que as areas sem retorno do radar
sejam preservadas apoés a fusio, permitindo que continuem sendo consideradas nas etapas
subsequentes do processo de detecgdo. O detector de objetos adotado foi o Faster R-CNN,
amplamente reconhecido como referéncia na 4rea de deteccdo de objetos. Para aprimorar o
reconhecimento em multiplas escalas, integrou-se a arquitetura o médulo Feature Pyramid
Networks (FPN).

4.3.1 Fluxo dos dados do radar no Detectron2

Como o Detectron2 (WU, Y. et al., 2019) é projetado exclusivamente para trabalhar
com imagens, as leituras do radar precisam ser processadas e enviadas até a etapa de extracdo
de recursos para que possam ser fundidas com as caracteristicas da cAimera. Apds a extracdo
dos dados da base nuScenes e a geracdo do arquivo JSON no formato COCO, que inclui
informacdes do radar (coordenadas, distancia e velocidades) para cada imagem, conforme
detalhado na Secdo 4.1.2, a funcdo load_coco_json ¢ utilizada para carregar esses dados.
Essa funcdo gera um dicionario contendo os metadados de cada imagem do banco (como
nome do arquivo, ID e dimensdes), juntamente com as anotagdes correspondentes (caixas
delimitadoras e categorias dos objetos). Para acomodar as informacdes do radar, essa funcdo
foi modificada de modo a incluir os dados no formato do dicionério, conforme exemplificado
em A.l.
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As classes DatasetMapper e DefaultPredictor também sido modificadas. Durante a
execucdo do treinamento ou predicdo, essas classes sdo responsaveis por buscar a imagem a
partir do caminho armazenado no campo "file_name", transforma-la em tensor e carrega-la
no dispositivo configurado (GPU ou CPU). Além de carregar a imagem da cdmera, como
fazem as classes originais, a versdo customizada também gera uma imagem RGB a partir
dos dados do radar. Nessa conversao, as coordenadas sdo usadas para posicionar os pontos
na imagem, enquanto os valores dos canais representam a distancia, a velocidade relativa
em X e a velocidade relativa em Y. Como saida, a classe retorna um dicionario contendo as

imagens da cAmera e do radar devidamente carregadas e transformadas em tensores.

As informacdes da cAmera e do radar sido fundidas ap6s a extracdo de caracteristicas
de cada sensor pelo ResNet-50, e as caracteristicas combinadas sdo entdo enviadas para
o FPN, seguindo o fluxo normal do modelo. Toda essa fusdo em nivel de caracteristicas
ocorre na camada de backbone do Detectron2, exigindo uma adaptacao na classe Generali-
zedRCNN, que implementa um modelo genérico baseado em R-CNN dentro da arquitetura
do Detectron2. Essa classe gerencia a extracdo de caracteristicas, a geracdo de propostas e a
predicdo final em modelos como o Faster R-CNN.

Os tensores da camera e do radar sdo passados para o backbone utilizando uma
operac¢do de concatenacdo. Para isso, o tensor de imagem do radar ¢ redimensionado para o
tamanho da imagem da camera, ja que esse € um parametro configuravel no Detectron2.
Outras operagdes de pré-processamento, como normalizacdo, ja aplicadas a imagem da
camera em GeneralizedRCNN, também sdo realizadas na imagem do radar, assegurando
um tratamento consistente entre os sensores. Por fim, a operacdo de concatenacio é revertida
no backbone, os tensores sdo enviados para o extrator de caracteristicas, e uma operacio de
fusdo pode ser aplicada para combinar os mapas de caracteristicas dos sensores.

4.3.2 Gerando imagem da nuvem de pontos do radar

As nuvens de pontos e as detec¢des do radar ndo podem ser diretamente utilizadas
nos extratores de caracteristicas, ja que esses métodos operam em imagens. Para contornar
essa situacdo, os dados do radar sdo processados e transformados em uma imagem com as
mesmas proporcoes da imagem da cAmera, mantendo a equivaléncia espacial entra elas. Cada
canal da imagem de radar, responsavel pela coloracio R, G e B, é associado a um valor fisico
detectado. A abordagem escolhida, baseada em Chang et al. (2020), escolhemos a distancia
para preencher o canal vermelho, a velocidade radial para o canal verde e a velocidade
transversal para o canal azul. Cada medicdo € representada na Figura 19, com os valores
mapeados por coloragdo para melhor visualizacio. Além disso, seguimos a abordagem do
artigo para representar a deteccdo de radar como um circulo na imagem. No estudo, foi
avaliado diferentes raios entre 1 e 11 e concluiram que o raio 7 proporcionou o melhor
desempenho no ResNet-50.
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Figura 19 - Deteccdes de distancia, velocidade radial e velocidade
transversal obtidas pelo radar

Fonte: Produzido pelo autor com dados de nuScenes
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Figura 20 - Imagem camera e imagem gerada para o radar

Fonte: Produzido pelo autor com dados de nuScenes
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Para obter uma regra de representacao dessas medi¢des na imagem, cada detec¢do é
convertida em intensidade de pixel, variando de 0 a 255. A faixa de valores escolhida para
a distancia foi de 0 a 250 metros, e para as velocidades relativas, de -33 a 33 m/s (-118 a
118 km/h). A faixa de valores de cada medicao é normalizada para que os valores em pixel
fiquem entre 127 e 255, conforme a Equacdo 4.2. As imagens da mesma cena, obtidas pela
camera e geradas para o radar, sdo apresentadas na Figura 20.

Deteccdao — MIN
MAX — MIN

Pixel = ( X 128 + 127) (4.2)

4.3.3 Arquitetura

A arquitetura detalhada do modelo de referéncia é apresentada na Figura 21. Nela,
os rotulos em azul destacam as classes do Detectron2 que implementam cada moédulo do
Faster R-CNN com ResNet e FPN (Benchmark). A principal classe, GeneralizedRCNN,
estrutura o modelo em trés blocos: o backbone, responséavel pela extracdo de caracteristicas
da imagem; o RPN, encarregado de gerar propostas de regido que podem conter objetos; e o
ROI Heads, responsével por processar as regioes propostas, e ajustar as caixas delimitadoras.

O backbone utiliza a ResNet-50 para extrair caracteristicas da imagem de entrada.
Essas caracteristicas sdo refinadas pela Feature Pyramid Network (FPN), que combina in-
formacoes de diferentes niveis da rede para gerar mapas de caracteristicas em maultiplas
escalas. As saidas da FPN sdo representadas pelos niveis P2, P3, P4, P5 e P6, correspon-
dendo a resolugoes reduzidas por fatores de 4, 8, 16, 32 e 64 em relacdo a imagem original,

respectivamente.

A fusio de caracteristicas entre os dados da camera e do radar ocorre no bloco back-
bone, como falado na secio anterior, mantendo os demais blocos do modelo de referéncia
sem alteracdes. O backbone proposto utiliza duas redes ResNet-50, uma para extrair caracte-
risticas da imagem da cAmera e outra para a imagem do radar. Essas caracteristicas passam
pelo bloco Spatial Attention Fusion (SAF) para serem fundidas antes de seguirem para o

refinamento no FPN, como mostrado na Figura 22.

O bloco de fusdo SAF utiliza uma matriz de atencdo espacial gerada a partir das
caracteristicas extraidas do radar, que s3o aplicadas aos mapas de caracteristicas da visdo.
Esse mecanismo realca regides onde o radar fornece informacdes relevantes e atenua a
influéncia de dreas menos confidveis. Para isso, as caracteristicas do radar passam por trés
camadas convolucionais com diferentes tamanhos de kernel (1x1, 3X3 e 5%X5), cada uma
com padding correspondente (0, 1 e 2, respectivamente), a fim de preservar as proporcoes
espaciais das features originais. As saidas dessas convolug¢des sdo somadas, resultando em
uma matriz de atencdo espacial com as mesmas dimensdes do mapa de caracteristicas da

camera, como ilustrado na Figura 23.
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Figura 23 - Operacdes aplicadas no mapa de caracteristica do radar

Fonte: Produzido pelo autor com dados de nuScenes

Para concluir a fusdo SAF, a matriz de atencio espacial gerada a partir das caracteris-
ticas do radar é multiplicada pelos mapas extraidos da visdo, modulando a informacao visual
com base na percepcdo complementar do radar. Esse processo realca regides com retorno
do radar, como objetos em movimento ou altamente refletivos, sem suprimir as areas da
imagem onde ndo ha detecclo. A Figura 24 ilustra esse efeito, comparando os mapas de
caracteristicas da camera (linha superior), do radar (linha intermediaria) e da fusdo SAF
(linha inferior), nas saidas res2, res3 e res4 do extrator de caracteristicas. Observa-se que as
regides com retorno do radar apresentam maior ativagdo nos mapas fundidos, especialmente
nas saidas de maior resolucdo, como res2 e res3, a0 mesmo tempo em que a estrutura visual

¢ preservada nas regides sem deteccao.
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Figura 24 - Mapas de caracteristicas extraidos da cdmera, do radar e da fusdo
SAF

Fonte: Produzido pelo autor com dados de nuScenes
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4.3.4 Resultados

Nesta secdo, apresentamos os resultados obtidos para os dois modelos treinados.
O primeiro modelo, o Faster R-CNN (REN et al., 2015), utiliza exclusivamente imagens
da camera frontal do conjunto de dados. Ele emprega a arquitetura ResNet-50 com FPN
(R50-FPN) como backbone e serve como base de comparacao, ja que a principal diferenca
entre os modelos estd na estrutura do backbone. No segundo modelo, realiza-se a fusdo de
caracteristicas diretamente no mapa de caracteristicas, combinando informacdes provenien-
tes da cAmera e do radar frontal. Para isso, sdo utilizadas duas redes ResNet-50, com a fusio
SAF aplicada antes da FPN (2R50-SAF-FPN), conforme descrito na Se¢do 4.3.3.

A Figura 25 ilustra a efetividade do modelo proposto. Na primeira linha, apresenta-
se a imagem de referéncia com os pontos de radar sobrepostos, as deteccdes do modelo
Faster R-CNN representadas em verde e as anotagdes manuais (Ground Truth) em vermelho.
Observa-se um veiculo preto parcialmente visivel, cuja frente e traseira estdo encobertas
por uma arvore e por uma placa de sinalizacdo. Apesar da oclusao, diversos pontos de radar
registraram a presenca do veiculo, o que aumentou a confiabilidade da deteccdo. Como
resultado, a instancia ultrapassou o limiar de pontuacio adotado no teste (Score Threshold
Test, especificado na tabela 10), sendo corretamente detectada pelo modelo Faster SAF-CNN,
como ilustrado na imagem da segunda linha.

Deteccdes - Faster R-CNN
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B Detecgdo

Figura 25 - Comparacdo da deteccio entre os modelos.

Fonte: Produzido pelo autor com dados de nuScenes

Os resultados experimentais completos sdo apresentados nas Tabelas 17 e 18. Além
disso, as Tabelas 20 e 21 detalham o desempenho dos modelos em condicdes adversas, como

cenas noturnas e chuvosas, respectivamente.
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Tabela 17 - Precisdo média por categoria na base de validagdo completa

Categoria Faster R-CNN Faster SAF-CNN
Pessoa (AP) 23.230 23.440
Bicicleta (AP) 13.448 13.301
Motocicleta (AP) 13.159 14.008
Carro (AP) 43.049 44.274
Onibus (AP) 33.361 32.266
Caminhao (AP) 18.874 21.963

Tabela 18 — Resultados na base de validagdo completa

Métrica Faster R-CNN Faster SAF-CNN

AP 24.19 24.87
AR 33.7 34.5

AP50 47.69 48.65
AP75 21.37 23.01
APs 3.06 4.42

APm 18.53 19.02
AP1 33.56 34.30

Na avaliacdo sobre a base de validacdo completa, observa-se um incremento na
precisdo média de 3,09%, 1,09% e 0,85% nas categorias caminh@o, carro e motocicleta (Tabela
17), respectivamente. Também foram registrados acréscimos de 0,80% em AR, 0,96% em
AP50 e 1,36% em APs, indicando maior consisténcia na deteccdo de objetos dentro dos
limiares estabelecidos e melhor desempenho em alvos de menor dimensao. O valor de AP75
apresentou uma elevacdo de 1,64%, evidenciando maior precisdo na localizacio das caixas
delimitadoras. A Tabela 19 ilustra a relevancia desse resultado, mostrando que o modelo
proposto identificou 383 objetos adicionais na cena de transito em relacdo ao Faster R-CNN
e reduziu 703 deteccdes falsas, o que reforca o impacto pratico dessa melhoria.

Tabela 19 - Comparacio de Deteccdes (IoU 75%)

Modelo Verdadeiros Falsos Falsos
Positivos  Positivos Negativos

Faster SAF-CNN 14,719 25,273 23,432

Faster R-CNN 14,336 25,976 23,815

Diferenca 383 -703 -383
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A avaliacdo em condicOes adversas, conforme apresentado nas Tabelas 20 e 21, re-
vela uma leve superioridade do modelo proposto nas métricas analisadas. Destaca-se, em
particular, um ganho de 1,35% em AP75 na base sob condicio de chuva, indicando maior
precisdo na localizacdo das caixas delimitadoras. No caso da base de validacao em condicdo
noturna, que representa apenas 4,7% das categorias da base completa, o modelo, embora
também utilize os dados provenientes do radar, cuja resposta ndo € afetada pelas condigdes
de iluminacao, ndo apresentou um ganho tdo expressivo. Esse resultado pode estar associ-
ado a reduzida quantidade de objetos detectdveis e ao nimero limitado de cenas noturnas,

conforme mostrado na Tabela 11.

Tabela 20 — Resultados na base de validacdo noturna

Métrica Faster R-CNN Faster SAF-CNN

AP 13.22 13.40
AR 18.20 18.30
AP50 28.04 28.33
AP75 11.20 11.44
APs 11.24 11.17
APm 10.20 10.34
AP1 17.68 17.93

Tabela 21 - Resultados na base de validacdo em condi¢do de chuva

Métrica Faster R-CNN Faster SAF-CNN

AP 18.67 18.72
AR 27.70 27.40
AP50 35.89 35.95
AP75 16.91 18.26
APs 3.85 3.60
APm 15.92 15.52
AP1 2343 23.37

A Tabela 22 compara o tempo médio de execucdo entre o nosso método proposto
(SAF) e o Faster R-CNN (FAS). O SAF apresentou aproximadamente trés vezes o tempo do
FAS, sendo 13,37% desse aumento associado ao gerador de imagens de radar, implementado
em Python, e passivel de otimizacdo com linguagens mais eficientes como C++. As opera-
coes de fusdo ndo impactaram significativamente o tempo, ja que o backbone apresentou
desempenho similar ao do FAS. A maior parte do tempo adicional (71,38%) foi consumida
pelo gerador de propostas, resultado da fusdo e modificacdo do mapa de caracteristicas que
alimenta essa etapa. Além disso, valores elevados nos mapas de caracteristicas parecem
influenciar o tempo gasto, sugerindo a necessidade de estudar a relacdo entre a ativacio das
regides de interesse do radar e o desempenho do gerador de propostas, visando otimizar o

equilibrio entre precisdo e velocidade.
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Tabela 22 - Comparacao de tempo médio entre Faster R-CNN e Faster SAF-CNN

Etapa FAS (ms) SAF (ms) SAF/FAS Diferenca relativa (%)
Create_radar_img 2.97 499.16 168.0x 13.37%
Preprocessing 22.32 21.26 0.95x -0.05%
Backbone (Fusion) 19.64 23.15 1.18x 0.14%
Proposal_Generator  1257.41 3583.87 2.85x 71.38%
Roi_Heads 44.44 47.94 1.08x 1.16%

Tempo médio 1434.12 4268.69 2.98x 100%

Os resultados obtidos evidenciam que a fusio de caracteristicas por meio do médulo
SAF proporciona uma melhora no desempenho da detec¢do de objetos, com destaque para
o aumento da precisdo na localizacao das caixas delimitadoras, sobretudo em situacdes
envolvendo oclusdes e na deteccido de pequenos objetos. Essa tendéncia é reforcada por
resultados qualitativos obtidos em diferentes condi¢des. Em ambientes com neblina, nos
quais a visibilidade da camera é severamente reduzida, o modelo com fusdo foi capaz de
detectar corretamente a frente de um caminhio muito préximo e dois veiculos mais distantes

(Figura 26), bem como identificar um carro e uma van estacionados a frente do veiculo
(Figura 27).
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Figura 26 - Comparacdo da deteccdo entre os modelos.

Fonte: Produzido pelo autor com dados de nuScenes
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Figura 27 - Comparacdo da deteccio entre os modelos.

Fonte: Produzido pelo autor com dados de nuScenes

A Figura 28 destaca a capacidade do modelo em identificar um carro e um pedestre
a longa distancia, evidenciando sua eficcia na deteccio de pequenos objetos. Na Figura 29,
observa-se a correta identificacdo de dois caminhdes muito préximos, sendo o segundo
parcialmente ocultado pelo primeiro, o que demonstra a robustez do modelo frente a oclusdes.
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Figura 28 — Comparacdo da detecclo entre os modelos.

Fonte: Produzido pelo autor com dados de nuScenes
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Figura 29 - Comparacdo da detecclo entre os modelos.

Fonte: Produzido pelo autor com dados de nuScenes

A Figura 30 apresenta um caminhao de grande porte a média distancia e um pedestre
a frente do veiculo, enquanto a Figura 31 evidencia a presenca de um caminhdo de pequeno
porte a curta distancia, posicionado a direita. Em ambos os casos, o modelo multissensorial
realiza deteccdes criticas do ponto de vista da segurancga veicular, uma vez que os objetos
identificados representam potenciais riscos de colisdo.
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Figura 30 - Comparacdo da detecclo entre os modelos.

Fonte: Produzido pelo autor com dados de nuScenes
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Detecgdes - Faster R-CNN

Figura 31 - Comparacio da deteccio entre os modelos.

Fonte: Produzido pelo autor com dados de nuScenes
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5 Conclusoes

A percepcdo precisa do ambiente é um requisito fundamental para a navegagdo
segura de veiculos autbnomos e motivou a realizacdo deste trabalho, cujo objetivo foi ex-
plorar estratégias de fusio sensorial no contexto automotivo, com o uso de algoritmos de
deteccdo baseados em redes neurais convolucionais. A fusdo entre sensores de camera e
radar apresenta vantagens significativas, uma vez que esses dispositivos sdo complemen-
tares e amplamente utilizados na industria automotiva. Essa combinac¢do permite aliar a
alta resolucdo lateral proporcionada pelas cAmeras a robustez do radar, especialmente em
condig¢oes climaticas adversas ou de baixa luminosidade. Além disso, o radar possui menor
custo de producio em comparagao ao sensor LiDAR, tornando-se uma alternativa atrativa
para aplicagdes em larga escala.

A fundamentacdo tedrica teve inicio com a apresentacio dos Sistemas Avancados de
Assisténcia ao Condutor (ADAS), que contribuem para a seguranca veicular ao oferecerem
suporte progressivo a direcdo. Esses sistemas se relacionam diretamente a classificacio da
norma SAE J3016, que define seis niveis de automacao, do controle totalmente manual a
conducdo auténoma plena. Com o avango desses niveis, cresce a necessidade de mecanismos
de percepcao ambiental precisos, razdo pela qual foram analisados os principais sensores
empregados em veiculos autbnomos, como cameras, radares e LiDARs, abordando suas
caracteristicas, tipos e funcionalidades. Foram também descritas as trés categorias classicas
de fusdo sensorial presentes na literatura, com énfase nas estratégias que combinam dados
de cameras e radares. Por fim, a dltima sec¢do tratou dos detectores baseados em redes neurais
convolucionais, destacando os algoritmos tradicionais das arquiteturas de um e dois estagios.

Para identificar avancos e lacunas, foi realizada uma anadlise temadtica da literatura,
estruturada em torno de quatro perguntas de pesquisa, distribuidas em trés temas principais
e um topico complementar. O primeiro tema tratou da fusdo sensorial e sua aplicacdo voltada
para sistemas automotivos. A principal descoberta foi o papel essencial dessa tecnologia na
integracdo de dados complementares e redundantes, o que resulta em maior precisio, robus-
tez e confiabilidade dos sistemas de percepc¢do. A fusdo sensorial mostrou-se indispensavel

para garantir a seguranca e a eficiéncia exigidas pela conducdo auténoma.

O segundo tema explorou os beneficios e limitacdes dos sensores caAmera, radar
e LiDAR para deteccdo de objetos. Verificou-se que a combinacdo entre cAmeras e rada-
res representa uma solucio eficaz e economicamente viavel. As cameras destacam-se na
interpretagdo visual e na deteccdo de pedestres, enquanto os radares oferecem desempe-
nho superior em condi¢des adversas e fornecem informacdes cruciais de profundidade e

velocidade, evidenciando a complementaridade entre ambos.
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Por fim, o terceiro tema tratou dos requisitos para aplicar técnicas modernas de visdo
computacional a fusdo sensorial. Verificou-se que o uso de redes neurais multissensoriais,
aliado a transferéncia de aprendizado, contribui significativamente para a robustez dos
modelos que utilizam apenas cdmeras. Contudo, a construcdo de bases de dados multissenso-
riais com anotacoes precisas e calibracio entre sensores representa um desafio consideravel.
Nesse sentido, a disponibilidade de conjuntos de dados publicos desempenha papel crucial

no avanco da area, permitindo testes comparaveis e a validacao de novas metodologias.

Para responder a quarta pergunta, foi incluida uma secao especifica dedicada as téc-
nicas de fusio entre cAmera e radar. Nessa etapa, foram discutidas as principais arquiteturas
propostas na literatura, analisando-as com base nas métricas mais relevantes para a tarefa
de deteccdo 2D de objetos, como Average Precision (AP) e Average Recall (AR). Essa andlise
permitiu identificar padrdes de projeto, destacar as abordagens mais robustas e fornecer
uma base sdlida para futuras implementacgdes e aprimoramentos.

Na etapa experimental utilizou a base de dados nuScenes, convertida para o formato
COCO, para avaliar duas abordagens distintas de fusdo sensorial. A primeira abordagem
consistiu na fusdo em nivel de dados, utilizando a arquitetura Radar Region Proposal Network
(RRPN). A segunda abordou a fusdo em nivel de caracteristicas, por meio do modulo Spatial
Attention Fusion (SAF).

A fusdo em nivel de dados (RRPN), na qual o radar atua como sensor principal, apre-
sentou desempenho inferior ao modelo baseado exclusivamente em camera. Essa limitacdo
estd relacionada ao fato de que muitos objetos anotados na base de dados, como bicicletas,
motocicletas e pedestres, frequentemente ndo possuem pontos de radar associados. Nossa
andlise indica que mais da metade das bicicletas e motocicletas ndo apresentam pontos de
radar, enquanto apenas 20% dos pedestres tém ao menos um, comprometendo a detecc¢ao,

pois a auséncia de retorno do radar impede a geracao de regides de interesse para a camera

Em contrapartida, a abordagem de fusdo em nivel de caracteristicas baseada no
maddulo SAF mostrou-se significativamente mais eficaz. Os resultados indicaram ganhos nas
métricas de: 1,64% em AP75, 0,96% em AP50, 0,80% em AR e 1,36% em APs, destacando a
melhoria nalocaliza¢do precisa das caixas delimitadoras e na detec¢ao de pequenos objetos. A
analise do tempo de execucdo revelou que a maior parte do processamento adicional ocorreu
na etapa de geracdo de propostas, sugerindo que otimizacoes nessa etapa sdo necessarias
para reduzir o tempo total do modelo. Apesar disso, os avangos obtidos ressaltam o potencial
da integracdo entre as informagdes visuais da camera e as medi¢des do radar como estratégia
eficaz para aprimorar a percepcio em sistemas ADAS, ampliando a capacidade da rede de
extrair contextos relevantes mesmo em cendrios com oclusdes parciais ou neblina. Para
atingir tempos proximos ao processamento em tempo real, detectores rapidos e configuraveis,

como YOLO, s3o mais indicados, permitindo ajustar o trade-off entre precisdo e velocidade.
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Nesse contexto, os dados de radar, embora esparsos e sujeitos a ruidos decorrentes
de objetos irrelevantes e reflexdes no solo, mostraram-se eficazes na deteccio de objetos
mesmo quando se utiliza apenas a projecdo de suas deteccdes no plano da imagem. Con-
siderando as capacidades ainda subexploradas desse sensor, propde-se uma investigacao
mais abrangente, incorporando informagdes adicionais, como a utilizagdo de atributos de
velocidade e direcao de movimento dos objetos para rastreamento multiobjeto, o que per-
mite maior robustez frente a oclusdes tempordrias. Paralelamente, planeja-se abordar o
elevado tempo de processamento observado no modelo SAF, especialmente na etapa de
geracdo de propostas, e explorar otimizacoes no gerador de imagens de radar, atualmente
implementado em Python. Também serd investigada a influéncia dos valores elevados nos
mapas de caracteristicas, buscando o equilibrio entre precisdo e velocidade. Nesse contexto,
detectores radpidos e configuraveis, como YOLO, poderdo ser explorados para atingir tempos
proximos ao processamento em tempo real, mantendo a eficicia da fusdo multissensorial e

promovendo sistemas mais robustos e confidveis para percepcao ambiental multissensorial.

Apesar dos avancos obtidos, o trabalho enfrentou limitacdes importantes relacio-
nadas ao ambiente de desenvolvimento e aos dados utilizados. O Detectron2 foi adotado
inicialmente devido a sua modularidade, suporte a multiplos detectores e ampla documenta-
cdo, o que facilitou o ajuste do primeiro modelo de fusdo. No entanto, essa escolha impos
restricdes técnicas, pois o framework ndo era compativel com versdes mais recentes do
CUDA e do PyTorch, inviabilizando o uso dos computadores do laboratério do campus,
equipados com hardware mais moderno. Como resultado, o desenvolvimento precisou con-
tinuar em um ambiente pessoal, o que limitou a paralelizacdo do treinamento em multiplas
GPUs, reduziu os recursos computacionais disponiveis e aumentou significativamente o
tempo de treinamento dos modelos. Do ponto de vista dos dados, a base nuScenes, que
¢ amplamente utilizada na literatura e composta por sensores variados, observou-se uma
distribuicdo limitada de amostras em condicdes adversas, com apenas 4,7% dos objetos
presentes em cenas noturnas e 18,6% em condicoes de chuva, dificultando a avaliagdo dos
modelos nessas condicdes. Além disso, as anotacdes sdo realizadas apenas quando ha pelo
menos um ponto de radar ou LiDAR associado ao objeto, o que leva a auséncia de rétulos
em muitos casos visualmente evidentes, fazendo com que diversas detec¢des corretas sejam
penalizadas por ndo encontrarem correspondéncia nas anotagoes.
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APENDICE A - Coddigos

Fluxo dos dados do radar no Detectron2
Codigo A.1 — Formato do dicionario gerado pelo dados COCO
"file_name": "caminho/imagem_O1.jpg",
"height": 900,
"width": 1600,
"image_id": 01
"annotations": [
{
"iscrowd": O,
"bbox": [ 613.17, 381.07, 262.68, 151.08 ],
"category_id": 5,
"bbox_mode": 1
I g
% Mais anotagdes aqui
1o
"pointcloud": [
[ 1298.83, 650.80, 7.71, -5.00, -2.25 1],
[ 1574.58, 670.32, 6.91, -5.25, -2.00 1,
% Mais pontos aqui
]

% Mais imagens
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ANEXO A - Propostas de Regiao

RREPM Proposta do centro Proposta customizada do centro

RRPM Proposta do topo Proposta customizada do topo

Figura 32 - Ancoras RRPN e customizada centro e topo.

Fonte: Produzido pelo autor com dados de nuScenes

RRPM Proposta da esquerda Proposta customizada da esquerda

Proposta customizada da direita

RRFN Proposta da direita

Figura 33 - Ancoras RRPN e customizada esquerda e
direita.

Fonte: Produzido pelo autor com dados de nuScenes
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ANEXO B - Deteccoes Faster R-CNN
versus modelo com Fusao SAF

Figura 34 - Comparacio da deteccio entre os modelos.

Fonte: Produzido pelo autor com dados de nuScenes
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Detecgoes - Faster R-CNN

Detecgdes - Faster SAF-CNN

Figura 35 - Comparacdo da deteccio entre os modelos.

Fonte: Produzido pelo autor com dados de nuScenes

~ Detecgbes - Faster R-CNN

Detecgdes - Faster SAF-CNN

Figura 36 - Comparacio da deteccio entre os modelos.

Fonte: Produzido pelo autor com dados de nuScenes
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Detecgdes - Faster R-CNN
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Figura 37 - Comparacdo da deteccdo entre os modelos.

Fonte: Produzido pelo autor com dados de nuScenes

Detecgdes - Faster R-CNN

140

120

Distancia

Legenda
B Ground Truth
I Deteccao

Figura 38 - Comparacdo da deteccio entre os modelos.

Fonte: Produzido pelo autor com dados de nuScenes
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Detecgdes - Faster R-CNN
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Figura 39 - Comparacdo da deteccdo entre os modelos.

Fonte: Produzido pelo autor com dados de nuScenes
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Figura 40 - Comparacdo da deteccio entre os modelos.

Fonte: Produzido pelo autor com dados de nuScenes
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Detecgdes - Faster R-CNN
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Figura 41 - Comparacio da deteccio entre os modelos.

Fonte: Produzido pelo autor com dados de nuScenes
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Figura 42 - Comparacio da deteccio entre os modelos.

Fonte: Produzido pelo autor com dados de nuScenes
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