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Resumo
O peróxido de hidrogênio é a molécula mais simples a apresentar quiralidade por suas
características rotacionais. Com propriedades abrasivas e alto poder de oxidação, há am-
plo interesse na biologia, física, medicina e na indústria. Este trabalho visa estudar a
influência dos gases nobres sobre a rotação interna da molécula de peróxido de hidrogênio
aprofundando a análise das taxas e elucidando a interação entre os complexos X2O2-Ng
(X = Mu, H, D, T; Ng = He, Ne, Ar, Kr, Xe, Rn). O estudo das taxas de transição entre
conformações quirais do peróxido de hidrogênio foi feito a partir da Teoria de Estado de
Transição Convencional e com correções de Wigner e Bell, bem como a aplicação da Teoria
de Estado de Transição deformada (dTST). A análise de interação entre os complexos foi
feita com base na Teoria Quântica de Átomos em Moléculas (QTAIM). O nível de cálculo
utilizado foi MP2(Full) com bases aug-cc-pVTZ (He, Ne, Ar, Kr) e aug-cc-pVTZ-PP (Xe,
Rn), além das correções BSSE e ZPE. Os resultados mostram o efeito isotópico sobre as
energias de ativação, com as energias das barreiras do muônio, em média, 0.910 kcal.mol−1

menores que as do hidrogênio. Para o deutério e trítio, estas energias são, em média, 0.124
kcal.mol−1 e 0.173 kcal.mol−1 maiores que as do hidrogênio, respectivamente. A análise da
estrutura topológica da densidade de carga evidenciou a formação de pontos críticos de
anel nas configurações de barreira cis, com uma depleção eletrônica local. Essa depleção
aumenta com o número atômico dos gases nobres associados. A influência dos gases no-
bres se estende para a ligação entre os oxigênios; a intensidade da ligação é máxima para
sistemas com neônio. Nos sistemas com xenônio e radônio, a ligação entre os oxigênios
passa a ser do tipo iônica, com uma pequena depleção de cargas (∇2𝜌(𝑟𝑐) > 0) no ponto
crítico de ligação.

Palavras-chaves: Isótopos de Hidrogênio. Teoria de Estado de Transição. Teoria Quân-
tica de Átomos em Moléculas. Interações de van der Waals.



Abstract

Hydrogen peroxide is the simplest molecule to present chirality due to its rotational
properties. With an abrasive nature and high oxidation power, the molecule is of broad
interest in biology, physics, medicine, and also in industry. This work aims to study the
influence of noble gases upon hydrogen peroxide’s internal rotation, deepening the analysis
of the rates and elucidating the interactions between the X2O2-Ng complexes (X = Mu,
H, D, T; Ng = He, Ne, Ar, Kr, Xe, Rn). The study of the transition rates between chiral
conformations of hydrogen peroxide was carried out based on the Conventional Transition
State Theory and with corrections by Wigner and Bell, in addition to the application of
the deformed Transition State Theory (dTST). The analysis of the interaction between
the complexes was carried out based on the Quantum Theory of Atoms in Molecules.
The calculation level used was MP2(Full) with aug-cc-pVTZ (He, Ne, Ar, Kr) and aug-
cc-pVTZ-PP (Xe, Rn) bases, in addition to BSSE and ZPE corrections. The results show
the isotopic effect on activation energies, with muonium barrier energies, on average, 0.910
kcal.mol−1 lower than those of hydrogen. For deuterium and tritium, these energies are, on
average, 0.124 kcal.mol−1 and 0.173 kcal.mol−1 higher than those of hydrogen, respectively.
The analysis of the topological structure of the charge density showed the formation of
ring critical points in cis barrier configurations, with a local electronic depletion. This
depletion increases with the atomic number of the associated noble gases. The influence
of the noble gases extends to the bond between the oxygen, the bond intensity being
maximum for systems with neon. In systems with xenon and radon, the bond between
the oxygen becomes ionic, with a small depletion of charges (∇2𝜌(𝑟𝑐) > 0) at the bond
critical point.

Keywords: Hydrogen Isotopes. Transition State Theory. Quantum Theory of Atoms in
Molecules. van der Waals interactions.
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1 Introdução

Descoberto em 1818 por Louis-Jacques Thénard, o Peróxido de Hidrogênio (H2O2),
comumente conhecido como água oxigenada, é um importante componente de pesquisa
devido a suas características abrasivas, oxidativas, enantioseletivas, (WERNIMONT et
al., 1999; EUL; MOELLER; STEINER, 2001). Essas são de amplo interesse para diversas
áreas, como a Física, Biologia, Medicina e Ecologia, bem como para a indústria (SMIR-
NOFF; ARNAUD, 2019; TEONG; LI; ZHANG, 2019). O uso do H2O2 é amplo e suas
primeiras aplicações na medicina tinham propósitos diversos, desde a detecção de úlceras
na bexiga até o uso antisséptico (BAILEY; RIZK, 2021). Ainda há, atualmente, uma
grande variedade de seu uso na medicina devido aos seus efeitos homeostáticos e antissép-
ticos, podendo ser aplicado em cirurgia geral e neurocirurgias, bem como na ortopedia e
em tratamentos dermatológicos (BAILEY; RIZK, 2021; MURPHY; FRIEDMAN, 2019).

Fora da medicina, o Peróxido de Hidrogênio também pode ser utilizado como com-
bustível de propulsão aeroespacial e como peça fundamental na produção de combustíveis
através de biomassa (LUO et al., 2020; KOPACZ et al., 2022). Outro uso interessante
está na geração de eletricidade através de células de combustível, possuindo vantagens
sobre o Hidrogênio e gerando nada além de água como resíduo químico (FUKUZUMI;
YAMADA; KARLIN, 2012).

Uma característica importante do peróxido de hidrogênio é sua rotação interna,
que o torna a molécula mais simples a apresentar quiralidade. A quiralidade diz respeito à
organização de uma molécula e ela é dita quiral quando sua imagem espelhada não pode
ser sobreposta à sua geometria real, nem por translação nem por rotação da molécula.
Esta propriedade está presente nas mãos e dá nome à característica, a palavra "quirali-
dade"vem do grego kheir que significa mão. Em artigo recente (BALL; BRINDLEY, 2016),
é proposto que as características quirais do peróxido de hidrogênio podem ter tido papel
fundamental na formação das moléculas da vida por reações enantiosseletivas, influenci-
ando na formação estrutural do RNA e do DNA, o que pode explicar a homoquiralidade
observada na vida terrestre.

Moléculas quirais possuem a mesma fórmula química, entretanto, se organizam
de formas diferentes. Um exemplo famoso do efeito da quiralidade está relacionado ao
caso da talidomida. A talidomida foi lançada no mercado alemão, em 1957, pela empresa
Chemie Grünenthal (ainda operante) e sua compra podia ser realizada sem receita médica.
Inicialmente um calmante para ajudar com o sono, a talidomida logo passou a ser usada
por gestantes como uma forma de aliviar o enjoo. Sem um estudo rigoroso dos efeitos do
remédio, pacientes passaram a relatar neuropatias periféricas, isto é, apresentavam cãibras
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fortes, perda de coordenação motora e fraqueza muscular. Posteriormente, as gestantes
que ingeriam os produtos com determinada frequência tiveram complicações na gestação,
com a possível ocorrência da má formação do feto (MORO; INVERNIZZI, 2017).

O estudo de uma molécula quiral mais simples pode gerar ferramentas para a aná-
lise de moléculas mais complexas. Estudos a respeito da molécula de H2O2 em complexos
com gases nobres, tais como a caracterização da superfície de energia potencial (RON-
CARATTI et al., 2014) e o estudo das taxas de transição entre conformações quirais (Só
et al., 2019; SILVA, 2022) para sistemas X2O2-Ng (X = Mu, H, D, T; Ng = He, Ne, Ar,
Kr, Xe, Rn) foram realizados na literatura recente.

A Figura 1 mostra a curva de energia potencial do Peróxido de Hidrogênio, cons-
truída a partir do corte da superfície de energia potencial ao longo da coordenada de
torção 𝜃=𝜃2 − 𝜃1, onde 𝜃, 𝜃2 e 𝜃1 representam as posições absolutas e relativas das duas
ligações OH do Peróxido de Hidrogênio. Pode-se também observar a partir desta figura
as duas configurações quirais, localizadas nos denominados Poço Cis e Poço Trans; estes
estão separados por duas barreiras: Barreira Cis, com energia maior, e Barreira Trans,
com energia menor.
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Figura 1 – Curva de energia potencial do Peróxido de Hidrogênio, H2O2, em função do ângulo de
torção 𝜃 = 𝜃1 − 𝜃2. Fonte: (SILVA, 2022)

O perfil de energia das transições tratadas neste trabalho se encontra na figura
1. As geometrias, com o aumento do ângulo 𝜃 são de Barreira Cis, Poço Cis, Barreira
Trans e Poço Trans. Vale destacar que a energia do poço foi transladada para o zero,
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possibilitando uma melhor visualização da curva. Neste trabalho, serão abordadas duas
reações de transição quiral. A primeira é a transição do poço trans (𝜃 = 247.2∘) para
o poço cis (𝜃 = 112.8∘) via barreira cis (𝜃 = 0∘).A segunda é a transição do poço cis
(𝜃 = 112.8∘) para o poço trans (𝜃 = 247.2∘) via barreira trans(𝜃 = 180∘).

O objetivo dessa dissertação é estudar a influência dos gases nobres sobre a rotação
interna da molécula de peróxido de hidrogênio, responsável pela transição quiral, a fim
de fornecer uma ferramenta de base para análise de transição quiral em moléculas mais
complexas.

Neste trabalho, aprofunda-se os estudos sobre os complexos de A2O2-Ng (A = Mu,
H, D, T; Ng = He, Ne, Ar, Kr, Xe e Rn) adicionando a ZPE sobre as taxas de transição
já encontradas, além da aplicação da correção de R.P. Bell de 1958 e da Teoria de Estado
de Transição deformada. Também é visado fazer uma análise de QTAIM que possibilite
explicações sobre o mecanismo para a variação das taxas de reação dos complexos.

1.1 Os Isótopos
O Hidrogênio (H) foi, por muito tempo, considerado o átomo mais simples exis-

tente, sendo composto por um único próton com um único elétron orbital. Isso muda com
a descoberta de novas partículas elementares, como o múon e o tau. O múon (𝜇−) é, assim
como o elétron, um lépton. Sendo assim, o múon é uma partícula elementar que respeita
a estatística de Fermi-Dirac, com função de onda antissimétrica. Assim como a maior
parte das partículas conhecidas, o múon possui uma antipartícula: o antimúon ou múon
positivo (𝜇+). O tempo de vida médio de um múon positivo é da ordem de 2, 2 × 10−6

segundos, sendo assim, são considerados compostos instáveis. Apesar de sua natureza vo-
látil, o múon ainda possui um tempo de vida longo suficiente para realizar interações e
se associar quimicamente, uma vez que essas ocorrem na ordem de nanosegundos (WAL-
KER, 1983) . Com esse tipo de associação, o múon é capaz de realizar reações químicas
simples.

e μ+

Figura 2 – Representação ilustrativa do Muônio (Mu), formado por um anti-múon (𝜇+) e um elétron
orbital (e).

Um dos componentes que pode ser formado por um antimúon é o Muônio, de
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símbolo Mu. O Muônio (Mu) é uma estrutura semelhante à um átomo, sendo o seu
“núcleo” formado por um antimúon e tendo um elétron orbital. Com essa estrutura, uma
vez que o 𝜇+ tem a mesma carga do próton, pode-se considerar que o Muônio é um
isótopo mais leve do Hidrogênio. O Muônio possui um núcleo nove vezes mais leve que o
Hidrogênio, sendo que sua massa é de 0.1119 u. Apesar da massa menor que a do próton,
o múon positivo ainda é muito mais massivo que o elétron, sendo cerca de 207 vezes mais
pesado. Dessa forma, a aproximação de Born-Oppenheimer pode ser utilizada. Os orbitais
eletrônicos do Muônio são equivalentes aos do Hidrogênio e este possui, essencialmente, a
mesma estrutura eletrônica do hidrogênio, do deutério e do trítio. (WALKER, 1983)

Já o Deutério (D) e o Trítio (T) são isótopos mais pesados do hidrogênio. A massa
do deutério é de 2.014 u, e seu núcleo é formado por um próton e um nêutron. Já o
Trítio tem massa de 3.016 u, com núcleo formado por dois nêutrons e um próton. Com
as massas maiores, é esperada uma menor reatividade para os complexos formados com
esses isótopos.
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2 Metodologia

2.1 Teoria do Estado de Transição
A Teoria do Estado de Transição (TST, do inglês Transition State Theory), tam-

bém conhecida como Teoria do Complexo Ativado, foi desenvolvida por Eyring (EYRING,
1935) e, concomitantemente, por Polanyi e Evans (EVANS; POLANYI, 1935). A TST
permite determinar a constante cinética de reação em função da temperatura de reações
químicas e se baseia na equação empírica de Arrhenius que, por sua vez, se baseou nos
trabalhos de van’t Hoff. De acordo com este, a variação da constante de velocidade de
reação com a temperatura é dada por:

𝑑 ln 𝑘(𝑇 )
𝑑𝑇

= 𝐸𝑎

𝑅𝑇 2 , (2.1)

em que 𝑘 é a constante de velocidade da reação, 𝐸𝑎 é a energia de ativação, 𝑅 é a constante
universal dos gases (em kcal · mol−1 · K−1) e 𝑇 é a temperatura absoluta. A 𝐸𝑎 pode ser
interpretada como a energia necessária para que a reação ocorra. Considerando que 𝐸𝑎 é
independente da temperatura, pode-se diferenciar ambos os lados da equação. Realizando
a integral e a exponenciação de ambos os lados, surge a Equação de Arrhenius:

𝑘(𝑇 ) = 𝐴𝑒−𝐸𝑎/𝑅𝑇 (2.2)

Em que 𝐴 é denominado fator pré-exponencial e está associado ao número de
colisões entre moléculas que ocorre durante a reação.

2.2 Equação de Eyring
Para desenvolver a TST é necessário assumir algumas hipóteses, em especial, três

hipóteses são únicas à TST (STEINFELD; FRANCISCO; HASE, 1989): 1. Sistemas mo-
leculares que atravessaram o estado de transição formando produtos não podem voltar a
ser reagentes, 2. No estado de transição, o movimento ao longo da coordenada de reação
pode ser separado de outros movimentos e ser tratado de forma clássica, 3. Mesmo na
ausência de equilíbrio entre moléculas reagentes e produtos, os estados de transição que
se tornam produtos são distribuídos entre os estados de acordo com as leis de Maxwell-
Boltzmann.Esta estrutura se trata de um ponto de equilíbrio instável (um ponto de má-
ximo para a coordenada de reação) em que os produtos podem decair em reagentes ou



26 Capítulo 2. Metodologia

retornar ao seu estado inicial de produto. O TS se trata de um ponto crítico de aglomera-
ção dos átomos envolvidos na reação. É possível escrever a reação química que passa por
um TS da seguinte forma:

R1 + R2 −−⇀↽−− TS −−→ P1 + P2 (2.3)

Uma molécula não-linear tem 3N − 6 modos normais de vibração. Nos estados
estáveis (reagentes ou produtos), todos os modos normais são caracterizados por frequên-
cias reais. Em um TS, 3N − 5 dos modos têm frequências reais, mas um dos modos tem
frequência imaginária, já que o TS se trata de um ponto de sela. De fato, a frequência
é dada pela raiz quadrada da derivada segunda do potencial no ponto, escalonada pela
massa reduzida:

𝜈 =

⎯⎸⎸⎷ 𝜕2𝑉
𝜕𝑥2

𝜇

⃒⃒⃒⃒
⃒⃒⃒
𝑥=𝑥𝑇 𝑆

, (2.4)

em que 𝑥 é a coordenada de reação. No caso da concavidade ser para baixo, a derivada
segunda é negativa, logo a frequência 𝜈1 é imaginária e caracteriza o TS.

Figura 3 – Representação da estrutura do TS. A curva representa o caminho de mínima energia
(CME). À esquerda os reagentes, que formam o TS e podem decair em produtos, à di-
reita.

A coordenada de reação representa a forma como os átomos mudam sua configu-
ração, podendo ser mudanças nas distâncias interatômicas, nos ângulos de ligação e em
características que levam os reagentes aos produtos.
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A partir das concentrações dos componentes envolvidos na reação, é possível de-
finir, então, as velocidades de reação. Considerando que o TS é formado a partir dos
reagentes e que os reagentes e os produtos são formados a partir do TS, defini-se as
constantes cinéticas de reação a partir da variação da concentração no tempo:

𝑣1 ≡ 𝑑[R1]
𝑑t = −𝑑[R2]

𝑑t = 𝑘1(𝑇 )[TS] (2.5)

𝑣2 ≡ 𝑑[TS]
𝑑t = 𝑘2(𝑇 )[R1][R2] (2.6)

𝑣3 ≡ −𝑑[P1]
𝑑t = +𝑑[P2]

𝑑t = 𝑘3(𝑇 ).[TS] (2.7)

Pela Equação 2.3, há um equilíbrio químico entre os reagentes e o TS. Isto significa
que a formação do TS a partir dos reagentes se dá na mesma velocidade da formação de
reagentes a partir do TS, por um certo período de tempo. Assim:

𝑣1 = 𝑣2 =⇒ 𝑘1[TS] = 𝑘2[R1][R2]. (2.8)

Dessa forma, é definida uma constante de quase-equilíbrio, 𝐾𝑇 𝑆, tal que:

KTS ≡ 𝑘2

𝑘1
= [TS]

[R1][R2]
. (2.9)

Portanto,

[TS] = KTS[R1][R2]. (2.10)

Isso implica que a formação de produtos, 2.7, com relação aos reagentes se dá por:

𝑑[P2]
𝑑t = 𝑘3(𝑇 )KTS[R1][R2]. (2.11)

Mas quando é considerada uma reação global, os produtos são formados a partir
dos reagentes, assim:
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𝑑[P2]
𝑑t = 𝑘𝑡𝑎𝑥𝑎(𝑇 )[R1][R2] (2.12)

Combinando a 2.11 e a 2.12, emerge uma relação entre a constante cinética de
reação global e as constantes para a estrutura do TS:

𝑘𝑡𝑎𝑥𝑎(𝑇 ) = 𝑘3(𝑇 )KTS (2.13)

A Equação 2.13 mostra a constante cinética com que os produtos e reagentes se
formam a partir do TS e é uma forma rudimentar da equação de Eyring. É preciso, então,
determinar quem são a constante cinética 𝑘3 e a constante de quase-equilíbrio KTS. Para
tal, utiliza-se da termodinâmica estatística. A partir do ensemble canônico, a equação da
constante cinética pode ser escrita em termos das funções de partição.

2.3 Mecânica Estatística
Para achar a equação da constante cinética é necessário uma descrição de termo-

dinâmica estatística para o problema. Isso dará uma forma de calcular a energia livre de
Gibbs, cuja variação está diretamente ligada à forma que as reações ocorrem. Para tanto,
inicia-se com o ensemble canônico, onde é tomado como verdade que o sistema tem troca
de energia, mas não de matéria. Em outras palavras, a soma das concentrações dos rea-
gentes e dos produtos é constante, mas a energia do sistema pode variar. Pela distribuição
de Boltzmann, para um sistema com 𝑁 partículas, a probabilidade de uma partícula estar
em um estado i com energia 𝐸𝑖 é dada por:

𝑝𝑖 = 𝑛𝑖

𝑁
, (2.14)

em que 𝑁 = ∑︀
𝑖 𝑛𝑖 e 𝑛𝑖 é o número de partículas com energia 𝐸𝑖. No ensemble canônico,

é possível escrever essa probabilidade em termos da função de partição molecular 𝑞, ou
seja:

𝑝𝑖 = 𝑒−𝐸𝑖/𝑘𝑏𝑇

𝑞
; 𝑞 =

∑︁
𝑖

𝑒−𝐸𝑖/𝑘𝑏𝑇 , (2.15)

em que 𝑘𝑏 é a constante de Boltzmann.

Para uma molécula, é razoável assumir que a energia é dividida em partes associa-
das aos tipos de movimento do sistema e em uma parte associada às interações eletrônicas
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(ATKINS; PAULA; KEELER, 2014). Assim, a energia de um estado qualquer será dada
pela soma das energias translacional (tr), vibracional (vib), rotacional (rot) e eletrônica
(ele):

𝐸𝑖 = 𝐸tr
𝑖 + 𝐸vib

𝑗 + 𝐸rot
𝑘 + 𝐸ele

𝑙 (2.16)

Substituindo a Equação 2.16 na expressão da função de partição:

𝑞 =
∑︁

𝑖,𝑗,𝑘,𝑙

𝑒−(𝐸tr
𝑖 +𝐸vib

𝑗 +𝐸rot
𝑘 +𝐸ele

𝑙 )/𝑘𝑏𝑇 (2.17)

Pela expressão acima é possível perceber que a função de partição pode ser escrita
em termos de suas contribuições:

𝑞 = 𝑞tr𝑞vib𝑞rot𝑞ele. (2.18)

Portanto, para determinar a função de partição do sistema é necessário achar,
explicitamente, suas contribuições. Começando pela função de partição translacional para
uma partícula livre. Considerando que os níveis de energia translacionais são contínuos,
é possível definir a função de partição a partir de uma integral definida no espaço de fase
(PATHRIA; BEALE, 2011):

𝑞𝑡𝑟
𝑁 =

∑︁
𝑖

𝑒−𝐸𝑡𝑟
𝑖 /𝑘𝑏𝑇 → 𝑞𝑡𝑟 = 1

𝑁 !ℎ𝑁

∫︁
𝒱
𝑒−𝐸𝑡𝑟

𝑖 /𝑘𝑏𝑇 𝑑𝑝 𝑑𝑞, (2.19)

em que 𝒱 é o volume no espaço de fase, 𝑁 é o número de partículas, ℎ a constante de
Planck, 𝑝 é o momento linear e 𝑞 a coordenada generalizada. Considerando apenas uma
partícula, 𝑁 = 1. Para um movimento unidimensional, define-se os limites de integra-
ção, sendo 𝑙𝑥 o limite superior espacial e ∞ o limite para o momento. Como a energia
translacional é a energia cinética da partícula, pode-se escrever a energia em termos do
momento, isto é, 𝐸𝑡𝑟

𝑖 = 𝑝2/2𝑚. Assim, a integral fica:

𝑞𝑡𝑟𝑥
1 = 1

ℎ

∫︁ 𝑙𝑥

0
𝑑𝑞
∫︁ ∞

0
𝑒−𝑝2/2𝑚𝑘𝑏𝑇 𝑑𝑝. (2.20)

Efetuando a integral, a função de partição translacional de uma partícula unidi-
mensional é dada por:

𝑞𝑡𝑟𝑥
1 = (2𝜋𝑚𝑘𝑏𝑇 )1/2

ℎ
𝑙𝑥. (2.21)
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Para uma partícula que se move em um volume 𝑉 , há três componentes espaciais
e três componentes de momento, cada componente contribui com um 1/ℎ, logo:

𝑞𝑡𝑟
1 = 1

ℎ

∫︁ 𝑉

0
𝑑3𝑞

∫︁ ∞

0
𝑒−𝑝2/2𝑚𝑘𝑏𝑇 𝑑3𝑝. (2.22)

Assumindo que os momentos estão em um volume esférico no espaço de fase,
toma-se então uma superfície esférica que cobre essa região (PATHRIA; BEALE, 2011).
Integrando sobre a espessura 𝑑𝑝, obtém-se:

𝑞𝑡𝑟
1 = 1

ℎ3𝑉
∫︁ ∞

0
𝑒−𝑝2/2𝑚𝑘𝑏𝑇 · 4𝜋𝑝2 𝑑𝑝. (2.23)

Efetuando a integral obtém-se a função de partição translacional em um volume,
para uma partícula livre:

𝑞𝑡𝑟 = (2𝜋𝑚𝑘𝑏𝑇 )3/2

ℎ3 𝑉. (2.24)

Para a parte rotacional é conveniente analisar primeiro a energia de um rotor clás-
sico (ATKINS; PAULA; KEELER, 2014). A energia clássica de um objeto com momento
de inércia 𝐼 é dada por:

𝐸𝑟𝑜𝑡
𝑐 = 1

2𝐼𝛼𝜔
2
𝛼. (2.25)

O momento angular, 𝐽 , em torno do eixo de rotação 𝛼 é dado pelo produto entre
a frequência angular e o momento de inércia, logo se pode escrever a energia em termos
do momento angular:

𝐸𝑟𝑜𝑡
𝑐 = 𝐽2

𝛼

2𝐼𝛼

. (2.26)

Considerando três eixos de rotação, com o mesmo momento de inércia 𝐼:

𝐸𝑟𝑜𝑡
𝑐 = 𝐽2

𝑎 + 𝐽2
𝑏 + 𝐽2

𝑐

2𝐼 = 𝐽2

2𝐼 . (2.27)

Partindo do operador de momento angular 𝐽2 e da sua autofunção |𝜓⟩ escreve-se
(COHEN-TANNOUDJI et al., 2020):
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𝐽2 |𝜓⟩ = 𝑗(𝑗 + 1)ℎ̄2 |𝜓⟩ ; 𝑗 = 0, 1, 2 · · · (2.28)

Substituindo a relação acima na energia do rotor, a expressão para os níveis de
energia rotacionais se torna:

𝐸 = 𝑗(𝑗 + 1)ℎ̄2

2𝐼 . (2.29)

Como para cada nível há 2𝑗 + 1 estados degenerados, é possível escrever a função
de partição rotacional como:

𝑞𝑟𝑜𝑡 =
∑︁

𝑗

(2𝑗 + 1)𝑒−𝑗(𝑗+1)𝛽ℎ̄2/2𝐼 , (2.30)

em que 𝛽 = 1/𝑘𝑏𝑇 . Em casos em que 𝑘𝑏𝑇 é muito maior que a separação entre os níveis
de energia, aproxima-se o somatório em 𝑗 por uma integral:

𝑞𝑟𝑜𝑡 ≈
∫︁ ∞

0
(2𝑗 + 1)𝑒−𝑗(𝑗+1)𝛽ℎ̄2/2𝐼 𝑑𝑗. (2.31)

Fazendo a substituição 𝑢 = 𝑗(𝑗 + 1)𝛽ℎ̄2/2𝐼, a integral dá:

𝑞𝑟𝑜𝑡 = 2𝐼
𝛽ℎ̄2

∫︁ ∞

0
𝑒−𝑢 𝑑𝑢. (2.32)

No caso de uma molécula linear, com dois graus de liberdade para rotação, há de
se considerar o número de rotação 𝜎. O número de rotação está associado à quantidade
de vezes que um objeto deve ser rotacionado sobre um eixo para que este retorne à
configuração inicial. Assim, a função de partição para uma molécula linear é dada por:

𝑞𝑟𝑜𝑡 = 8𝜋2𝐼𝑘𝑏𝑇

𝜎ℎ2 . (2.33)

Para o caso de uma molécula não-linear, como é o caso dos A2O2, com três mo-
mentos de inércia, a contribuição rotacional é (PATHRIA; BEALE, 2011):

𝑞𝑟𝑜𝑡 =
√
𝜋

𝜎

(︃
8𝜋2𝐼𝐴

𝛽ℎ

)︃1/2 (︃8𝜋2𝐼𝐵

𝛽ℎ

)︃1/2 (︃8𝜋2𝐼𝐶

𝛽ℎ

)︃1/2

. (2.34)



32 Capítulo 2. Metodologia

Passando para a contribuição vibracional, considera-se que a energia de um osci-
lador harmônico quântico é dada por (PATHRIA; BEALE, 2011):

𝐸𝑣𝑖𝑏 =
(︂
𝑛+ 1

2

)︂
ℎ𝜈. (2.35)

em que 𝜈 é a frequência de vibração. A função de partição vibracional é, portanto:

𝑞𝑣𝑖𝑏 =
∞∑︁

𝑛=0
𝑒−(𝑛+1/2)𝛽ℎ𝜈 . (2.36)

Para avaliar a série, basta dividi-la em duas exponenciais, uma dependente de 𝑛 e
outra independente. Assim:

𝑞𝑣𝑖𝑏 =
∞∑︁

𝑛=0
𝑒−𝑛𝛽ℎ𝜈𝑒− 1

2 𝛽ℎ𝜈 . (2.37)

Como o somatório é uma série infinita em 𝑛 e 𝑒−𝑛𝛽ℎ𝜈 < 1 ,∀𝑛, trata-se de uma
série geométrica convergente, assim a parte vibracional da função de partição molecular
é dada por (PATHRIA; BEALE, 2011):

𝑞𝑣𝑖𝑏 = exp(−𝛽ℎ𝜈/2)
1 − exp(−𝛽ℎ𝜈) . (2.38)

Caso o sistema tenha vários modos de vibração, a função de partição total é dada
pelo produto para as 𝑖 diferentes frequências. Assim:

𝑞𝑣𝑖𝑏 =
∏︁

𝑖

exp(−𝛽ℎ𝜈𝑖/2)
1 − exp(−𝛽ℎ𝜈𝑖)

, (2.39)

em que 𝜈𝑖 é a frequência vibracional de cada modo.

Finalmente, para a parte eletrônica vê-se que, na maior parte dos casos, as dife-
renças entre a energia eletrônica e as outras energias são muito grandes e o sistema ocupa
apenas o estado fundamental (ATKINS; PAULA; KEELER, 2014). Assim, é possível con-
siderar que a parte eletrônica não contribui para a função de partição molecular. Com
esta consideração, escreve-se:

𝑞𝑒𝑙𝑒 = 1. (2.40)
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Com as funções de partição em mãos, é possível encontrar a equação da constante
de quase-equilíbrio, KTS. Para tal, é necessário avaliar a energia livre de Gibbs, que, por sua
vez, requer conhecimento sobre a entropia do sistema. Recorrendo novamente à equação
2.14 e às propriedades do ensemble canônico, a entropia pode ser dada em função das
probabilidades:

𝑆 = −𝑘𝑏

∑︁
𝑖

𝑛𝑖 ln 𝑝𝑖. (2.41)

Mas a distribuição de probabilidades está relacionada à função de partição mole-
cular pela 2.15. Assim:

𝑆 = −𝑘𝑏

∑︁
𝑖

𝑛𝑖 ln
(︃
𝑒−𝛽𝐸𝑖

𝑞

)︃
= −𝑘𝑏

(︃
−𝛽

∑︁
𝑖

𝑛𝑖𝐸𝑖 −
∑︁

𝑖

𝑛𝑖 ln 𝑞
)︃
. (2.42)

Portanto:

𝑆 = 1
𝑇

∑︁
𝑖

𝑛𝑖𝐸𝑖 + 𝑘𝑏

∑︁
𝑖

𝑛𝑖 ln 𝑞. (2.43)

Vale lembrar que a variação da energia interna do sistema 𝑈 − 𝑈(0) é dada por∑︀
𝑖 𝑛𝑖𝐸𝑖 (ATKINS; PAULA; KEELER, 2014). Logo:

𝑆 = 𝑈 − 𝑈(0)
𝑇

+ 𝑘𝑏 ln 𝑞𝑁 . (2.44)

Define-se uma função de partição total para o sistema de 𝑁 moléculas. Tomando
moléculas como independentes e indistinguíveis, escreve-se:

𝑄 = 𝑞𝑁

𝑁 ! . (2.45)

Assim:

𝑆 = 𝑈 − 𝑈(0)
𝑇

+ 𝑘𝑏 ln𝑄 = 𝑈 − 𝑈(0)
𝑇

+ 𝑘𝑏(𝑁 ln 𝑞 − ln(𝑁 !)). (2.46)

Usando a aproximação de Stirling no último termo, surge a seguinte expressão
para a entropia:
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𝑆 = 𝑈 − 𝑈(0)
𝑇

+𝑁𝑘𝑏 ln
(︂
𝑞

𝑁

)︂
+𝑁𝑘𝑏. (2.47)

Com a entropia em termos das variáveis termodinâmicas, é possível definir a en-
talpia, a energia livre de Gibbs e a energia livre de Helmholtz. A entalpia do sistema pode
ser definida como:

𝐻 = 𝑈 + 𝑃𝑉, (2.48)

em que 𝑃 é a pressão e 𝑉 o volume. O termo 𝑃𝑉 trata do trabalho realizado sobre ou
pelo sistema e demonstra a energia necessária para expandir suas fronteiras. A variação
da entalpia está associada ao tipo de reação. Para uma variação negativa, Δ𝐻 < 0 a
reação é dita exotérmica, ou seja, há liberação de calor. No caso de Δ𝐻 > 0 a reação é
dita endotérmica e para Δ𝐻 = 0 a reação é isotérmica.

A energia livre de Gibbs, 𝐺, por sua vez, é definida em termos da entalpia:

𝐺 = 𝐻 − 𝑇𝑆. (2.49)

A energia livre de Gibbs está relacionada à espontaneidade de uma reação para
uma pressão constante. Para reações espontâneas Δ𝐺 < 0, para reações não espontâneas
Δ𝐺 > 0 e em caso de equilíbrio Δ𝐺 = 0.

Já a energia livre de Helmholtz, 𝐴, é definida por:

𝐴 = 𝑈 − 𝑇𝑆. (2.50)

Ela também está relacionada à espontaneidade do sistema da mesma forma que a
energia livre de Gibbs, mas aqui o volume é constante e não a pressão.

Juntando a 2.49 e a 2.50, obtém-se a energia livre de Gibbs como:

𝐺 = 𝐴+ 𝑃𝑉. (2.51)

Substituindo a entropia 2.47 em 2.50 e considerando que 𝐴(0) = 𝑈(0), a variação
da energia livre de Helmholtz é dada por:

𝐴− 𝐴(0) = −𝑁𝑘𝑏𝑇 ln
(︂
𝑞

𝑁

)︂
−𝑁𝑘𝑏𝑇. (2.52)
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Assim, é possível escrever a variação da energia livre de Gibbs, considerando que
𝐺(0) = 𝐴(0) e que, para um gás ideal, 𝑃𝑉 = 𝑛𝑅𝑇 . Assim:

𝐺−𝐺(0) = −𝑁𝑘𝑏𝑇 ln
(︂
𝑞

𝑁

)︂
−𝑁𝑘𝑏𝑇 + 𝑛𝑅𝑇. (2.53)

Por definição 𝑅 = 𝑘𝑏𝑁/𝑛, em que 𝑛 é o número de moles do gás. Assim:

𝐺−𝐺(0) = −𝑛𝑅𝑇 ln
(︂
𝑞

𝑁

)︂
. (2.54)

A energia de Gibbs padrão para uma reação, Δ∘𝐺 pode ser encontrada em termos
da constante 𝐾 da seguinte forma (ATKINS; PAULA; KEELER, 2014):

Δ∘𝐺 = −𝑛𝑅𝑇 ln K. (2.55)

As condições padrão para dada temperatura se referem à substância pura em uma
pressão de 1 bar (cerca de 0.987 atm) (ATKINS; PAULA; KEELER, 2014). Para uma
reação com um TS como na 2.3, é conveniente definir a energia livre de Gibbs padrão
para a formação do estado de transição a partir dos produtos:

Δ∘𝐺 = 𝐺∘
TS −𝐺∘

𝑅1 −𝐺∘
𝑅2 . (2.56)

Substituir essa relação na 2.54 e evidenciar as funções de partição dos reagentes e
da TS, dá:

Δ∘𝐺 = 𝐺∘
TS(0) −𝐺∘

𝑅1(0) −𝐺∘
𝑅2(0) − 𝑛𝑅𝑇 ln

(︃
𝑞∘

TS
𝑁

−
𝑞∘

𝑅1

𝑁
−
𝑞∘

𝑅2

𝑁

)︃
. (2.57)

Mas como 𝐺(0) = 𝑈(0), é possível interpretar que a energia de ativação do sistema,
𝐸𝑎, (Figura 3) é dada pela diferença 𝐺TS(0) −𝐺𝑅1(0) −𝐺𝑅2(0) por mole. Assim:

𝐸𝑎 =
𝐺∘

TS(0) −𝐺∘
𝑅1(0) −𝐺∘

𝑅2(0)
𝑛

. (2.58)

Substituindo em 2.57 e evidenciando −𝑛𝑅𝑇 , tem-se:

Δ∘𝐺 = −𝑛𝑅𝑇
[︃
− 𝐸𝑎

𝑅𝑇
+ ln

(︃
𝑞∘

TS
𝑞∘

𝑅1𝑞
∘
𝑅2

𝑁

)︃]︃
(2.59)
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Quando comparadas a 2.59 e a 2.56, percebe-se que:

ln K =
[︃
− 𝐸𝑎

𝑅𝑇
+ ln

(︃
𝑞∘

TS
𝑞∘

𝑅1𝑞
∘
𝑅2

𝑁

)︃]︃
. (2.60)

Exponenciando ambos os lados, é obtida a equação de taxa, KTS, em termos das
funções de partição em condições padrão e da energia de ativação:

𝐾TS = 𝑞∘
TS

𝑞∘
𝑅1𝑞

∘
𝑅2

𝑁𝑒−𝐸𝑎/𝑅𝑇 . (2.61)

Como o TS é caracterizado por uma única frequência imaginária, 𝜈1, é conveniente
expandir 𝑞∘

TS em termos de sua parte vibracional:

𝑞∘
TS = 𝑞𝑣𝑖𝑏

TS 𝑞
∘

TS, (2.62)

em que 𝑞 ∘
TS é a função de partição do TS sem a parte vibracional. Para a parte vibraci-

onal, expandem-se as exponenciais e se considera que termos de ordem dois ou mais são
negligenciáveis, uma vez que 𝛽ℎ𝜈1 << 1:

𝑞𝑣𝑖𝑏 = 1 − 𝛽ℎ𝜈1/2 + (𝛽ℎ𝜈1/2)2/2! + · · ·
1 − (1 − 𝛽ℎ𝜈1 + (𝛽ℎ𝜈1)2/2! + · · · ) ≈ 𝑘𝑏𝑇

ℎ𝜈1
. (2.63)

Substituindo em 2.61:

𝐾TS = 𝑘𝑏𝑇

ℎ𝜈1

𝑞 ∘
TS

𝑞∘
𝑅1𝑞

∘
𝑅2

𝑁𝑒−𝐸𝑎/𝑅𝑇 . (2.64)

É razoável assumir que a taxa de passagem do complexo através do TS é proporci-
onal à sua frequência característica, 𝜈1. Assim, a taxa de formação dos produtos a partir
do TS pode ser escrita como:

𝑘3 = 𝜅(𝑇 )𝜈1, (2.65)

em que 𝜅(𝑇 ) é um coeficiente de transmissão que representa o efeito de tunelamento
através da energia da barreira que caracteriza o TS. Por ser um coeficiente de transmissão,
seu valor está contido entre zero e um, isto é, 0 ≤ 𝜅(𝑇 ) ≤ 1. Substituindo essa relação em
2.64 e lembrando da 2.13, escreve-se:
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𝑘𝑡𝑎𝑥𝑎(𝑇 ) = 𝜅(𝑇 )𝑘𝑏𝑇

ℎ

𝑞 ∘
TS

𝑞∘
𝑅1𝑞

∘
𝑅2

𝑁𝑒−𝐸𝑎/𝑅𝑇 (2.66)

Para casos em que não há efeito de tunelamento 𝜅(𝑇 ) = 1 e a Equação 2.66 é
chamada Equação de Eyring Convencional. Neste trabalho, são avaliadas as contantes
cinéticas para o caso convencional e para casos com efeito de tunelamento.

É importante notar que a energia de ativação utilizada em 2.66 não leva em consi-
deração a energia de ponto zero (ZPE). Esta é a menor energia possível para um sistema
quântico. Isso se corrige com a adição da ZPE à energia de ativação de tal forma que:

𝐸𝑎 = 𝐸∘
𝑎 + 𝐸𝑍𝑃 𝐸, (2.67)

em que 𝐸∘
𝑎 é a energia sem ZPE. Dessa forma, a 𝐸𝑎 passa a conter, também, a ZPE.

Escrever a equação da constante cinética em termos das quantidades molares do problema,
isto é 𝑞𝑚 = 𝑞/𝑛, dá:

𝑘𝑡𝑎𝑥𝑎(𝑇 ) = 𝜅(𝑇 )𝑘𝑏𝑇

ℎ

𝑞 ∘
𝑚,TS

𝑞∘
𝑚,𝑅1𝑞

∘
𝑚,𝑅2

𝑁𝑎𝑒
−𝐸𝑎/𝑅𝑇 . (2.68)

Então, escreve-se a equação de Arrhenius modificada, explicitando a dependência
da temperatura com um termo 𝑇 𝑛:

𝑘𝑡𝑎𝑥𝑎(𝑇 ) = 𝐴𝑇 𝑛𝑒−𝐸𝑎/𝑅𝑇 . (2.69)

Como a equação da constante cinética depende das funções de partição e da energia
de ativação, então para que o cálculo numérico possa ser realizado são necessárias as
frequências dos modos normais, as geometrias e as energias eletrônicas no reagente, no
TS e nos produtos da reação em estudo. Para fazer o cálculo da energia eletrônica é
necessário considerar uma aproximação fundamental em Física Atômica e Molecular: A
Aproximação de Born-Oppenheimer (ABO). A ABO consiste em uma forma de desacoplar
a equação de Schrödinger molecular em uma parte eletrônica e uma parte nuclear. Na
próxima seção, serão discutidas as ideias por trás da ABO e do problema eletrônico, mas
antes vamos às correções de tunelamento.

2.3.1 Correções

2.3.1.1 Correção de tunelamento de Wigner

Foram feitas três correções de tunelamento neste trabalho: Wigner, (WIGNER,
1932), R.P Bell (BELL, 1959) e a Teoria de Estado de Transição Deformada. A correção
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de Wigner aproxima a curva de energia por um potencial do tipo parabólico, tal que:

𝑉𝑊 𝑖𝑔𝑛𝑒𝑟(𝑠) = 𝐸𝑎 + 1
2𝑚(2𝜋𝜈1)2𝑠2, (2.70)

em que 𝑠 é a coordenada de reação. Resolvendo a equação de Schrödinger independente do
tempo, esse potencial implica em um coeficiente de transmissão dado por (BELL, 1959):

𝜅𝑊 (𝑇 ) = 1 − 1
24

(︃
ℎ𝜈1

𝑘𝑏𝑇

)︃2

. (2.71)

2.3.1.2 Correção de tunelamento de Bell

Outra correção utilizada neste trabalho foi a desenvolvida por R.P. Bell em 1959
(BELL, 1959). Em 1935, Bell propôs uma correção para reações envolvendo o hidrogê-
nio. Para tal, ele sugere um parâmetro de permeabilidade da barreira de potencial, 𝐺.
Recorrendo à aproximação semi-clássica de WKB, Bell escreve uma permeabilidade do
tipo:

𝐺′ = 𝑒𝑥𝑝

(︃
−4𝜋

√
2𝑚
ℎ

∫︁ 𝑥2

𝑥1
{𝑉 (𝑥) −𝑊}1/2𝑑𝑥

)︃
, (2.72)

para 𝐸 > 𝑊 , e 𝐺 = 1 para 𝑊 > 𝐸. Em que 𝑚 é a massa da partícula, 𝑉 (𝑋) é a energia
potencial como função da coordenada de reação, 𝑥1 e 𝑥2 são pontos em que 𝑉 (𝑥) = 0,
𝑊 é a energia da partícula e 𝐸 é a energia de ativação (ponto de máximo da energia
potencial). Resolvendo para um potencial parabólico com largura 2𝑎:

𝑉 (𝑥) = 𝐸 + 𝐸𝑥2

𝑎2 , (2.73)

Bell obteve as seguintes expressões para a permeabilidade e para o coeficiente de
transmissão:

𝐺′
1 = 𝑒𝑥𝑝

[︂
−𝛽

(︂
1 − 𝑊

𝐸

)︂]︂
, (2.74)

𝜅𝐵35 = 1
𝑘𝑏𝑇

∫︁ ∞

0
𝐺𝑒−𝑊/𝑘𝑏𝑇𝑑𝑊 = 𝑒−𝐸/𝑘𝑏𝑇 + 1

𝑘𝑏𝑇

∫︁ 𝐸

0
𝐺′𝑒−𝑊/𝑘𝑏𝑇𝑑𝑊. (2.75)

Assim,

𝜅𝐵35 = 1
𝛽 − 𝛼

{𝛽𝑒−𝛼 − 𝛼𝑒−𝛽}, (2.76)
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com

𝛼 = 𝐸

𝑘𝑏𝑇
e 𝛽 = 2𝜋2𝑎

√
2𝑚𝐸
ℎ

. (2.77)

Em 1959, Bell apresenta uma nova investigação do problema do tunelamento bus-
cando por um melhor tratamento (BELL, 1959). Considerando que, mesmo que não haja
solução exata da equação de Schrödinger para uma barreira de potencial parabólica, a
permeabilidade da barreira deve obedecer às propriedades: (i) Ela deve se reduzir à solu-
ção WKB, 2.74, para 𝑊 ≪ 𝐸, e deve tender à unidade quando 𝑊 → ∞. (ii) Uma solução
exata para o caso particular 𝑊 = 𝐸 dá 𝐺(𝑊 ) = 1/2. Bell propõe este valor baseado em
cálculos teóricos feitos por ele (BELL, 1937) e por Eckart (ECKART, 1930) com uma
aproximação das massas e energias das barreiras. Esses cálculos também sugerem uma
forma simétrica de 𝐺(𝑊 ), tal que 𝐺(𝐸 − 𝑊 ) + 𝐺(𝐸 + 𝑊 ) = 1. A forma de 𝐺(𝑊 ) que
respeita essas condições é dada por:

𝐺(𝑊 ) = 1
1 + 𝑒𝛽𝑦

, com 𝑦 = 1 −𝑊/𝐸 (2.78)

Substituindo 𝐸/𝑘𝑏𝑇 por 𝛼 na 2.75 e realizando a mudança de variáveis sugerida
em 2.78:

𝜅𝐵 =
∫︁ 1

−∞

𝛼𝑒𝛼𝑦

1 + 𝑒𝛽𝑦
𝑑𝑦 (2.79)

Em problemas de química cinética, 𝑒−𝛼 e 𝑒−𝛽 são muito pequenos, de tal forma
que, 𝑒𝛼−𝛽, geralmente, é muito maior que um ou muito menor que um. Há três casos para
a solução de 𝑄: (i) 𝛼 > 𝛽, cuja solução dá

𝜅𝐵 = 𝛼𝑒𝛼−𝛽

𝛼− 𝛽
[1 + O(𝑒−𝛽)]. (2.80)

(ii) 𝛼 ≃ 𝛽. Aqui faz-se a substituição 𝑥 = 𝑒𝛼𝑦 na 2.79, assim

𝜅𝐵 =
∫︁ 𝑒𝛼

0

𝑑𝑥

1 + 𝑥𝛽/𝛼
. (2.81)

Dessa forma,

𝜅𝐵 =

⎧⎪⎨⎪⎩𝑙𝑛(1 + 𝑒𝛽) = 𝛽(1 +𝑂(𝑒−𝛽)) , para 𝛼 = 𝛽.

𝛽(1 + 1
2(𝛼− 𝛽) − 1

6𝛽(𝛼− 𝛽)2 + ...) +𝑂(𝑒−𝛽) , para 𝛼 ≈ 𝛽.
(2.82)

(iii) 𝛼 < 𝛽, o caso mais presente em processos químicos. A correção pode ser escrita
na forma:
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𝜅𝐵 =
∫︁ ∞

0

𝑑𝑥

1 + 𝑥𝛽/𝛼

∫︁ ∞

𝑒𝛼

𝑑𝑥

1 + 𝑥𝛽/𝛼

= 𝜋𝛼/𝛽

𝑠𝑒𝑛(𝜋𝛼/𝛽) − 𝛼𝑒𝛼−𝛽

𝛼− 𝛽

{︃
1 − 𝛽 − 𝛼

2𝛽 − 𝛼
𝑒−𝛽 + 𝛽 − 𝛼

3𝛽 − 𝛼
𝑒−2𝛽 − ...

}︃ (2.83)

Se 𝑒𝑥𝑝(𝛼 − 𝛽) ≫ 1, o segundo termo pode ser negligenciado. Da 2.77 sabe-se que
2𝜋𝛼/𝛽 = ℎ𝜈/𝑘𝑏𝑇 , assim, é conveniente escrever 𝜅 em primeira ordem como:

𝜅𝐵1 = 1
2𝑢
⧸︂
𝑠𝑒𝑛

(︂1
2𝑢
)︂
, (2.84)

com 𝑢 = 2𝜋𝛼/𝛽 = ℎ𝜈/𝑘𝑏𝑇 ;𝑢 < 2𝜋.

2.3.1.3 Teoria de Estado de Transição deformada (dTST)

Por fim, foi utilizada a 𝑑-TST, para o cálculo das constantes de transição. As cor-
reções devido ao tunelamento descritas nas subsecções anteriores têm como característica
em comum o produto da TST convencional com um coeficiente de transmissão. Já a 𝑑-
TST (CARVALHO-SILVA et al., 2017; CARVALHO-SILVA; COUTINHO; AQUILANTI,
2020; CARVALHO-SILVA et al., 2023), baseia-se na reescrita da constante apresentada
pela TST por meio de uma substituição da exponencial em 2.66(com 𝜅 = 1) pela expo-
nencial deformada. Pelo limite de Euler:

lim
𝑑→0

(︂
1 − 𝑑

𝐸

𝑘𝑏𝑇

)︂ 1
𝑑

= 𝑒−𝐸/𝑘𝑏𝑇 . (2.85)

Assim,

𝑘𝑑(𝑇 ) = 𝑘𝑏𝑇

ℎ

𝑞 ∘
TS

𝑞∘
𝑅1𝑞

∘
𝑅2

(︂
1 − 𝑑

𝐸

𝑘𝑏𝑇

)︂ 1
𝑑

. (2.86)

O parâmetro de deformação 𝑑 é inversamente proporcional ao quadrado da energia
de ativação (altura da barreira) e diretamente proporcional ao quadrado da frequência
imaginária característica do TS (SILVA et al., 2013)

𝑑 = −1
3

(︃
ℎ𝜈

2𝐸

)︃2

(2.87)

2.4 O Problema Eletrônico
Um dos problemas mais importantes em Física Atômica e Molecular é resolver a

equação de Schrödinger dependente ou independente do tempo. Considerando um sistema
molecular composto por M núcleos, cujas posições são dadas por R ≡ {R1,R2, ...,R𝑀},
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e N elétrons, cujas posições são dadas por r ≡ {r1, r2, ..., r𝑀}, a seguinte equação de
Schrödinger pode ser escrita, em regime não-relativístico:

𝐻̂Ψ(R, r) = 𝐸Ψ(R, r), (2.88)

em que a Ψ(R, r) é a autofunção que descreve o sistema molecular. O Hamiltoniano, 𝐻̂,
é dado pela soma das energias cinéticas e de interação eletrônica entre os componentes
do sistema, isto é:

𝐻̂ = 𝑇𝑒 + 𝑇𝑛 + 𝑉𝑒𝑒 + 𝑉𝑒𝑛 + 𝑉𝑛𝑛, (2.89)

em que 𝑇 é a energia cinética e 𝑉 a interação eletrônica entre os seus componentes, com os
subíndices n e e representando núcleo e elétron, respectivamente. Quando esse operador é
representado no espaço das configurações, obtém-se o seguinte Hamiltoniano em unidades
atômicas (SZABO; OSTLUND, 1996):

𝐻̂ = −1
2

𝑁∑︁
𝑖=1

∇2
𝑖 − 1

2

𝑀∑︁
𝐴=1

∇2
𝐴

𝑀𝐴

+
𝑁−1∑︁
𝑖=1

𝑁∑︁
𝑗>𝑖

1
𝑟𝑖𝑗

−
𝑁∑︁

𝑖=1

𝑀∑︁
𝐴

𝑍𝐴

𝑟𝑖𝐴

+
𝑀−1∑︁
𝐴=1

𝑀∑︁
𝐵>𝐴

𝑍𝐴𝑍𝐵

𝑅𝐴𝐵

(2.90)

2.4.1 A Aproximação de Born-Oppenheimer

Devido ao acoplamento entre elétrons e núcleos, a equação de Schrödinger 2.88,
com o hamiltoniano dado pela Equação 2.90, não pode ser resolvida analiticamente e nem
numericamente (dependendo do tamanho do complexo). Para contornar esta dificuldade,
a autofunção é expressa em termos de uma expansão adiabática (SZABO; OSTLUND,
1996), ou seja, a autofunção é dada pelo produto de duas outras autofunções: uma parte
eletrônica dependente parametricamente das distâncias nucleares (R) e explicitamente
das posições eletrônicas (r) e uma outra nuclear que depende somente da configuração
nuclear (R). Dessa forma:

Ψ(r,R) = 𝜑𝑒(r; R)𝜑𝑛(R). (2.91)

Substituindo 2.90 e 2.91 em 2.88 tem-se:

𝐻̂Ψ(r,R) = − 1
2

𝑁∑︁
𝑖=1

∇2
𝑖𝜑𝑒(r; R)𝜑𝑛(R) − 1

2

𝑀∑︁
𝐴=1

∇2
𝐴

𝑀𝐴

𝜑𝑒(r; R)𝜑𝑛(R)+

+
𝑁−1∑︁
𝑖=1

𝑁∑︁
𝑗>𝑖

𝜑𝑒(r; R)𝜑𝑛(R)
𝑟𝑖𝑗

−
𝑁∑︁

𝑖=1

𝑀∑︁
𝐴=1

𝜑𝑒(r; R)𝜑𝑛(R)𝑍𝐴

𝑟𝑖𝐴

+

+
𝑀−1∑︁
𝐴=1

𝑀∑︁
𝐵>𝐴

𝜑𝑒(r; R)𝜑𝑛(R)𝑍𝐴𝑍𝐵

𝑅𝐴𝐵

.

(2.92)
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A aproximação de Born-Oppenheimer leva em consideração o fato de os núcleos
serem muito mais massivos que os elétrons. Isso significa que o movimento nuclear se
dá de forma muito mais lenta que o eletrônico. Sendo assim, pode-se considerar que
os M núcleos são fixos e que a força de repulsão internuclear é constante. Em termos
matemáticos, isso significa que:

∇2
𝐴𝜑𝑒 ≈ 0 e ∇𝐴𝜑𝑒 ≈ 0. (2.93)

Fazendo a separação de variáveis (vide (SILVA, 2022) para uma passagem mais
detalhada), separa-se a hamiltoniana em duas equações. Uma referente à parte nuclear e
outra à parte eletrônica do sistema molecular. Para a parte eletrônica:

⎛⎝−1
2

𝑁∑︁
𝑖=1

∇2
𝑖 +

𝑁−1∑︁
𝑖=1

𝑁∑︁
𝑗>𝑖

1
𝑟𝑖𝑗

−
𝑁∑︁

𝑖=1

𝑀∑︁
𝐴

𝑍𝐴

𝑟𝑖𝐴

⎞⎠𝜑𝑒 = 𝜀𝑒𝑙𝑒(R)𝜑𝑒. (2.94)

Já a parte nuclear é dada por:

(︃
−1

2

𝑀∑︁
𝐴=1

∇2
𝐴

𝑀𝐴

+
𝑀−1∑︁
𝐴=1

𝑀∑︁
𝐵>𝐴

𝑍𝐴𝑍𝐵

𝑅𝐴𝐵

+ 𝜀𝑒𝑙𝑒(R)
)︃
𝜑𝑛 = 𝐸𝜑𝑛. (2.95)

Pode-se interpretar 𝜀𝑒𝑙𝑒 como a influência do potencial gerado pelos elétrons sobre
os núcleos. Dessa forma, é definido um potencial 𝑉 (R) que se dá pela soma de 𝜀𝑒𝑙𝑒(R)
com o potencial de interação entre núcleos:

𝑉 (R) = 𝑍𝐴𝑍𝐵

𝑅𝐴𝐵

+ 𝜀𝑒𝑙𝑒(R) (2.96)

Obtendo a equação de Schrödinger nuclear :

(︃
−1

2

𝑀∑︁
𝐴=1

∇2
𝐴

𝑀𝐴

+ 𝑉 (R)
)︃
𝜑𝑛 = 𝐸𝜑𝑛 (2.97)

2.5 A Teoria de Perturbação de Møller-Plesset
A partir da aproximação de Born-Oppenheimer, pode-se obter a equação de Schrö-

dinger eletrônica. Resolver esta equação é um dos principais problemas em Física Atômica
e Molecular. Existem diversos métodos para chegar à soluções para energia, entretanto, as
equações tanto nuclear, quanto eletrônica, não podem ser resolvidas de forma analítica.
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Um dos primeiros métodos para solução da parte eletrônica foi o Método de
Hartree-Fock (HF). O Método de HF é um método variacional a partir de um único
determinante de Slater. A seguir, será feita uma breve descrição deste método pois ele é
a base para a Teoria de Perturbação de Møller-Plesset (TPMP), utilizada neste trabalho.

2.5.1 O Método de Hartree-Fock

Como explicitado, o HF é um método variacional, isto é, ele consiste em achar
uma solução teste para o problema e encontrar a energia a partir dessa solução. No HF,
a solução assumida é o determinante de Slater, que é uma solução apropriada por ser
antissimétrica, ou seja, por respeitar a estatística de Fermi que rege sistemas formados
por léptons, nesse caso, elétrons.

O determinante de Slater também é particularmente útil por tratar os elétrons
como partículas idênticas, isto é, partículas indistinguíveis entre si. A construção de um
determinante de Slater pode ser feita através de uma combinação linear assimétrica dos
orbitais espaciais. Para o caso de uma função de onda que é solução teste para a equação
de Schrödinger eletrônica de dois elétrons, pode-se escrever:

Φ(r1, r2) = 1√
2

[𝜓1(r1)𝜓2(r2) − 𝜓1(r2)𝜓2(r1)], (2.98)

em que as 𝜓𝑖 são orbitais espaciais e ri as posições dos elétrons. O 1√
2 surge devido a

normalização da função de onda, uma vez que:

∫︁
𝑑r1𝑑r2Φ*(r1, r2)Φ(r1, r2) = ⟨Φ|Φ⟩ = 1. (2.99)

Entretanto, essa solução se refere apenas aos orbitais espaciais. Para descrever o
elétron de forma completa, é preciso acrescentar as funções de spin. A função 𝛼(𝜔𝑖) é
referente ao spin 𝑢𝑝 do elétron 𝑖, já a 𝛽(𝜔𝑗) é referente ao spin 𝑑𝑜𝑤𝑛 do elétron 𝑗. Essas
funções são ortonormalizadas, isto é:

∫︁
𝑑𝜔𝑖 𝛼

*(𝜔𝑖)𝛼(𝜔𝑗) = 𝛿𝑖𝑗 (2.100)

∫︁
𝑑𝜔𝑖 𝛽

*(𝜔𝑖)𝛽(𝜔𝑗) = 𝛿𝑖𝑗 (2.101)

e ainda
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∫︁
𝑑𝜔𝑖 𝛽

*(𝜔𝑖)𝛼(𝜔𝑖) =
∫︁
𝑑𝜔𝑖 𝛼

*(𝜔𝑖)𝛽(𝜔𝑖) = 0. (2.102)

Defini-se, então, o spin orbital, dado pelo produto entre um orbital espacial e uma
função de spin 𝑢𝑝 ou 𝑑𝑜𝑤𝑛:

𝜒(x𝑖) = 𝜓(r𝑖)𝛼(𝜔𝑖) (2.103)

Tal que xi = {𝜔𝑖, r𝑖}, sendo evidente que cada orbital espacial pode formar dois
spins orbitais (caso restrito). Os orbitais passam a depender não só da posição dos elétrons,
mas também de seu spin. A anti-simetria da função de onda passa a valer também para
a função de spin, uma vez que spins diferentes representam estados distintos.

Então, para o caso de 𝑁 elétrons, em termos dos spins orbitais:

Φ(x1,x2, · · · ,xN) = 1√
𝑁 !

[𝜒1(x1)𝜒2(x2) · · ·𝜒𝑁(xN) − 𝜒1(x2)𝜒2(x1) · · ·𝜒𝑁(xN)

+ · · · + 𝜒1(xN) · · ·𝜒2(xa) · · ·𝜒𝑁(x1)]. (2.104)

Pela sua forma, percebe-se que a Φ tem o formato de um determinante de matriz
𝑁 ×𝑁 , assim:

Φ(x1,x2, · · · ,xN) =

⃒⃒⃒⃒
⃒⃒⃒⃒
⃒⃒⃒⃒
𝜒𝑖(x1) 𝜒𝑗(x1) · · · 𝜒𝑘(x1)
𝜒𝑖(x2) 𝜒𝑗(x2) · · · 𝜒𝑘(x2)

... ... . . . ...
𝜒𝑖(xN) 𝜒𝑗(xN) · · · 𝜒𝑘(xN)

⃒⃒⃒⃒
⃒⃒⃒⃒
⃒⃒⃒⃒ (2.105)

A função Φ(x1,x2, · · · ,xN) é o determinante de Slater de 𝑁 elétrons. Esta também
pode ser escrita como:

|𝜒𝑖𝜒𝑗 · · ·𝜒𝑘⟩ = (𝑁 !)−1/2
𝑁 !∑︁

𝑛=1
(−1)𝑝𝑛𝒫𝑛{𝜒𝑖(x1)𝜒𝑗(x2) · · ·𝜒𝑘(xN)}, (2.106)

em que 𝒫𝑛 é o operador de permutação, que permuta a ordem dos spins orbitais.

Pelo teorema variacional, o valor esperado da energia para uma função teste é
sempre maior ou igual à energia exata do sistema. Isto é:

𝐸0 = ⟨Φ| ℋ |Φ⟩ ≤
⟨
Φ̃
⃒⃒⃒
ℋ

⃒⃒⃒
Φ̃
⟩

= 𝐸 (2.107)
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em que Φ é a solução exata, que dá a energia exata 𝐸0 e Φ̃ é a função teste. O método
consiste em achar a função teste que minimize

⟨
Φ̃
⃒⃒⃒
ℋ

⃒⃒⃒
Φ̃
⟩
, em que ℋ é a hamiltoniana

eletrônica dada por:

ℋ̂ = −1
2

𝑁∑︁
𝑖=1

∇2
𝑖 −

𝑁∑︁
𝑖=1

𝑀∑︁
𝐴

𝑍𝐴

𝑟𝑖𝐴

+
𝑁−1∑︁
𝑖=1

𝑁∑︁
𝑗>𝑖

1
𝑟𝑖𝑗

(2.108)

Portanto, o objetivo do método HF é encontrar um determinante de Slater que
minimize a energia para um dado sistema. Para isso, a hamiltoniana eletrônica é separada
em dois operadores 𝒪1 e 𝒪2. O operador 𝒪1 é o operador de um elétron, contendo contri-
buição cinética e de interação elétron-núcleo (primeiro e segundo termos da hamiltoniana
eletrônica). O operador 𝒪2 é o operador de dois elétrons e compreende a interação entre
pares de elétrons (terceiro termo da hamiltoniana). Assim:

⟨
Φ̃
⃒⃒⃒
ℋ

⃒⃒⃒
Φ̃
⟩

=
⟨
Φ̃
⃒⃒⃒
𝒪1 + 𝒪2

⃒⃒⃒
Φ̃
⟩

=
⟨
Φ̃
⃒⃒⃒
𝒪1

⃒⃒⃒
Φ̃
⟩

+
⟨
Φ̃
⃒⃒⃒
𝒪2

⃒⃒⃒
Φ̃
⟩
. (2.109)

O operador 𝒪1 por sua vez pode ser escrito como a soma de operadores de um
único elétron. Isto é:

𝒪1 =
𝑁∑︁

𝑖=1

(︃
−1

2∇2
𝑖 −

𝑀∑︁
𝐴

𝑍𝐴

𝑟𝑖𝐴

)︃
=

𝑁∑︁
𝑖=1

ℎ(𝑖), (2.110)

em que ℎ(𝑖) é simplesmente ℎ(r𝑖), uma vez que não há dependência do spin na hamilto-
niana.

Aplicando ambos os operadores em 2.106 e chamando o determinante de Slater de
|𝐾⟩, escreve-se:

⟨𝐾| 𝒪1 |𝐾⟩ =
𝑁∑︁

𝑚=1

∫︁
𝑑x1 𝜒

*
𝑚(1)ℎ(1)𝜒𝑚(1) =

𝑁∑︁
𝑚=1

⟨𝑚|ℎ(1) |𝑚⟩ , (2.111)

Sendo que a soma é executada sobre todos os spin orbitais. Aqui basta levar ℎ(1)
em consideração devido à indistinguibilidade entre os elétrons. Para o operador de dois
elétrons:

⟨𝐾| 𝒪2 |𝐾⟩ = 1
2

𝑁∑︁
𝑚

𝑁∑︁
𝑛

∫︁
𝑑x1𝑑x2 𝜒

*
𝑚(1)𝜒*

𝑛(2)𝑟−1
12 [𝜒𝑚(1)𝜒𝑛(2) − 𝜒𝑚(2)𝜒𝑛(1)], (2.112)

ou simplesmente:



46 Capítulo 2. Metodologia

⟨𝐾| 𝒪2 |𝐾⟩ = 1
2

𝑁∑︁
𝑚

𝑁∑︁
𝑛

[⟨𝑚𝑛|𝑚𝑛⟩ − ⟨𝑚𝑛|𝑛𝑚⟩] = 1
2

𝑁∑︁
𝑚

𝑁∑︁
𝑛

⟨𝑚𝑛||𝑚𝑛⟩ , (2.113)

em que ⟨𝑎𝑏|𝑐𝑑⟩ =
∫︀
𝑑x1𝑑x2 𝜒

*
𝑎(1)𝜒*

𝑏(2)𝑟−1
12 𝜒𝑐(1)𝜒𝑑(2)

Substituindo 2.111 e 2.113 em 2.109, a energia passa a ser dada por:

𝐸 =
𝑁∑︁

𝑚=1
⟨𝑚|ℎ(1) |𝑚⟩ + 1

2

𝑁∑︁
𝑚

𝑁∑︁
𝑛

[⟨𝑚𝑛|𝑚𝑛⟩ − ⟨𝑚𝑛|𝑛𝑚⟩] (2.114)

As integrais relacionadas ao operador de dois elétrons são denominadas integrais
de 𝐶𝑜𝑢𝑙𝑜𝑚𝑏 e integrais de 𝑇𝑟𝑜𝑐𝑎. Essas integrais podem ser reescritas em termos de
operadores. O operador de Coulomb é dado por:

𝒥𝑏(1) =
∫︁
𝑑x2𝜒

*
𝑏(2)𝑟−1

12 𝜒𝑏(2) (2.115)

tal que:

⟨𝜒𝑎(1)|𝒥𝑏(1)|𝜒𝑎(1)⟩ =
∫︁
𝑑x1𝑑x2𝜒

*
𝑎(1)𝜒*

𝑏(2)𝑟−1
12 𝜒𝑎(1)𝜒𝑏(2) = 𝒥𝑎𝑏. (2.116)

Já o operador de Troca pode ser definido como:

𝒦𝑏(1) =
∫︁
𝑑x2𝜒

*
𝑏(2)𝑟−1

12 𝒫12𝜒𝑏(2), (2.117)

em que 𝒫12 é um operador de permutação que troca o elétron 1 pelo elétron 2. Dessa
forma:

⟨𝜒𝑎(1)|𝒦𝑏(1)|𝜒𝑎(1)⟩ =
∫︁
𝑑x1𝑑x2𝜒

*
𝑎(1)𝜒*

𝑏(2)𝑟−1
12 𝒫12{𝜒𝑎(1)𝜒𝑏(2)} (2.118)

=
∫︁
𝑑x1𝑑x2𝜒

*
𝑎(1)𝜒*

𝑏(2)𝑟−1
12 𝜒𝑎(2)𝜒𝑏(1)

= 𝒦𝑎𝑏.

Enfim, simplificando ⟨𝑎|ℎ|𝑎⟩ como ℎ𝑎𝑎, a energia é dada por:

𝐸 =
𝑁∑︁
𝑎

ℎ𝑎𝑎 + 1
2

𝑁∑︁
𝑎

𝑁∑︁
𝑏

[𝒥𝑎𝑏 − 𝒦𝑎𝑏]. (2.119)
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Agora basta encontrar os spins orbitais que minimizam a energia. Para isso, a
primeira variação é utilizada.

𝐸[Φ̃] =
⟨
Φ̃
⃒⃒⃒
ℋ
⃒⃒⃒
Φ̃
⟩

(2.120)

Fazendo uma pequena variação na função de onda e considerando apenas os termos
de primeira ordem:

𝐸[Φ̃ + 𝛿Φ̃] =
⟨
Φ̃ + 𝛿Φ̃

⃒⃒⃒
ℋ
⃒⃒⃒
Φ̃ + 𝛿Φ̃

⟩
(2.121)

=
⟨
Φ̃
⃒⃒⃒
ℋ
⃒⃒⃒
Φ̃
⟩

+
{︁⟨
𝛿Φ̃
⃒⃒⃒
ℋ

⃒⃒⃒
Φ̃
⟩

+
⟨
Φ̃
⃒⃒⃒
ℋ

⃒⃒⃒
𝛿Φ̃
⟩}︁

+ · · ·

= 𝐸[Φ̃] + 𝛿𝐸 + · · · .

É necessário achar o Φ̃ para o qual 𝛿𝐸 = 0. Ao fazer essa consideração e os
desenvolvimentos necessários, encontra-se a equação que minimiza a energia no Hartree-
Fock. A equação de Hartree-Fock é uma equação de autovalor e autovetor e é dada, em
sua forma canônica, por:

[︃
ℎ(1) +

𝑁∑︁
𝑏

(𝒥𝑏(1) − 𝒦𝑏)
]︃
𝜒𝑎(1) = 𝜀𝑎𝜒𝑎. (2.122)

Os termos entre colchetes podem ser expressos com um único operador, denomi-
nado operador de Fock:

𝑓(1) =
[︃
ℎ(1) +

𝑁∑︁
𝑏

(𝒥𝑏(1) − 𝒦𝑏)
]︃

= ℎ(1) + 𝑣𝐻𝐹 (1). (2.123)

O operador 𝑣𝐻𝐹 é chamado potencial de Hartree-Fock. Reescrevendo a equação de
HF com esse operador:

𝑓 |𝜒𝑎⟩ = 𝜀𝑎 |𝜒𝑎⟩ . (2.124)

O autovalor 𝜀𝑎 pode ser interpretado como a energia do elétron que ocupa o spin
orbital 𝑎. Por esse motivo 𝜀𝑎 é chamado de energia orbital. Multiplicando 2.124 por ⟨𝜒𝑎|
e somando sobre todos os 𝑎 spin orbitais, obtém-se:

𝑁∑︁
𝑎

𝜀𝑎 =
𝑁∑︁
𝑎

⟨𝑎|ℎ|𝑎⟩ +
𝑁∑︁
𝑎

𝑁∑︁
𝑏

⟨𝑎𝑏||𝑎𝑏⟩ . (2.125)
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Pela 2.114, fica claro que a energia eletrônica, no método HF, é diferente da soma
das energias orbitais. Isso se dá devido a uma limitação do método para a correlação
eletrônica. O operador de troca é a manifestação da energia de correlação na energia ele-
trônica total. Entretanto, no método HF a correlação eletrônica só aparece entre elétrons
de spin antiparalelos. Isso se dá devido as propriedade de anti-simetria dos determinantes
de Slater. A energia de correlação pode ser expressa pela diferença entre a energia exata
e a energia limite do Hartree-Fock, isto é:

𝐸𝑐𝑜𝑟𝑟 = 𝐸𝑒𝑥𝑎𝑡𝑎 − 𝐸𝐻𝐹 . (2.126)

O erro associado a energia devido a correlação é significativo e portanto é necessário
procurar outros métodos que corrigem a energia. Neste estudo, será utilizado a Teoria de
Perturbação de Møller-Plesset.

2.5.2 A Teoria de Perturbação de Møller-Plesset

O método perturbativo (MP) se baseia em adicionar um potencial perturbativo
à uma hamiltoniana não perturbada (ℋ0) de forma que a energia possa ser expandida
em uma série. Dentro desta metodologia, as energias obtidas podem ser menores que as
energias exatas do sistema. A hamiltoniana não-perturbada é suposta conhecida e no caso
do MP, esta é dada pela soma dos operadores de Fock:

ℋ0 =
∑︁

𝑖

𝑓(𝑖) =
∑︁

𝑖

ℎ(𝑖) +
∑︁

𝑖

𝑣𝐻𝐹 (𝑖) (2.127)

Assim, é possível somar a essa Hamiltoniana uma perturbação (𝒱 ), tal que:

𝐻̂ = ℋ0 + 𝒱 , (2.128)

em que 𝐻̂ é a hamiltoniana eletrônica e é dada por:

𝐻̂ =
∑︁

𝑖

ℎ(𝑖) +
𝑁−1∑︁
𝑖=1

𝑁∑︁
𝑗>𝑖

1
𝑟𝑖𝑗

. (2.129)

A perturbação 𝒱 pode ser expressa como:

𝒱 =
𝑁−1∑︁
𝑖=1

𝑁∑︁
𝑗>𝑖

1
𝑟𝑖𝑗

−
∑︁

𝑖

𝑣𝐻𝐹 (𝑖). (2.130)
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Com as definições de 𝐻̂ e 𝒱 obtém-se a seguinte equação de autofunção e autovalor:

𝐻̂ |𝜑𝑖⟩ = (ℋ0 + 𝒱 ) |𝜑𝑖⟩ = 𝜀𝑖 |𝜑𝑖⟩ . (2.131)

Supondo que as autofunções e autovalores de ℋ0

ℋ0

⃒⃒⃒
Ψ(0)

𝑖

⟩
= 𝐸

(0)
𝑖

⃒⃒⃒
Ψ(0)

𝑖

⟩
𝑜𝑢 ℋ0 |𝑖⟩ = 𝐸

(0)
𝑖 |𝑖⟩ , (2.132)

sejam conhecidos, então espera-se que ℋ0 tenha autovalores e autofunções próximas da-
quelas de 𝐻, isto é, a perturbação 𝒱 é pequena de tal forma que |𝜑𝑖⟩ é próximo a |𝑖⟩ e
que 𝜀𝑖 seja próximo a 𝐸(0)

𝑖 . Para isso, introduz-se o parâmetro 𝜆:

𝐻̂ = ℋ0 + 𝜆𝒱 . (2.133)

Desta forma, é possível expandir os autovalores e autofunções de 𝐻̂ em uma série
de Taylor:

𝜀𝑖 = 𝐸
(0)
𝑖 + 𝜆𝐸

(1)
𝑖 + 𝜆2𝐸

(2)
𝑖 + · · · (2.134)

|𝜑𝑖⟩ = |𝑖⟩ + 𝜆
⃒⃒⃒
Ψ(1)

⟩
+ 𝜆2

⃒⃒⃒
Ψ(2)

⟩
+ · · ·

Em que o índice sobrescrito representa a ordem de expansão. O objetivo é expressar
|𝜑𝑖⟩ e 𝜀𝑖 em termos de 𝐸(0)

𝑖 e dos elementos de matriz ⟨𝑖| 𝒱 |𝑗⟩. Para isso, são utilizadas
as propriedades de ortonormalidade da função de onda, ou seja:

⟨𝑖|𝜑𝑖⟩ = ⟨𝑖| (|𝑖⟩ + 𝜆
⃒⃒⃒
Ψ(1)

⟩
+ 𝜆2

⃒⃒⃒
Ψ(2)

⟩
+ · · · ) (2.135)

= ⟨𝑖|𝑖⟩ + 𝜆
⟨
𝑖
⃒⃒⃒
Ψ(1)

⟩
+ 𝜆2

⟨
𝑖
⃒⃒⃒
Ψ(2)

⟩
+ · · ·

Mas, pelas propriedades da função de onda,
⟨
𝑖
⃒⃒⃒
Ψ(𝑛)

𝑖

⟩
= 0 para qualquer 𝑛 dife-

rente de zero. E como ⟨𝑖|𝑖⟩ = 1, ⟨𝑖|𝜑𝑖⟩ também é igual a um. Assim, tomando a 2.131 e
substituindo as expansões:

(ℋ0 + 𝜆𝒱 ) |𝜑𝑖⟩ = (ℋ0 + 𝜆𝒱 )(|𝑖⟩ + 𝜆
⃒⃒⃒
Ψ(1)

⟩
+ 𝜆2

⃒⃒⃒
Ψ(2)

⟩
+ · · · ) = 𝜀𝑖 |𝜑𝑖⟩ (2.136)

= (𝐸(0)
𝑖 + 𝜆𝐸

(1)
𝑖 + 𝜆2𝐸

(2)
𝑖 + · · · )(|𝑖⟩ + 𝜆

⃒⃒⃒
Ψ(1)

⟩
+ 𝜆2

⃒⃒⃒
Ψ(2)

⟩
+ · · · )
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Organiza-se, então, os termos pela ordem de 𝜆 e se divide pela mesma, tirando a
dependência do parâmetro. Dessa for:

ℋ0 |𝑖⟩ = 𝐸
(0)
𝑖 |𝑖⟩

ℋ0

⃒⃒⃒
Ψ(1)

𝑖

⟩
+ 𝒱 |𝑖⟩ = 𝐸

(0)
𝑖

⃒⃒⃒
Ψ(1)

𝑖

⟩
+ 𝐸

(1)
𝑖 |𝑖⟩ (2.137)

ℋ0

⃒⃒⃒
Ψ(2)

𝑖

⟩
+ 𝒱

⃒⃒⃒
Ψ(1)

𝑖

⟩
= 𝐸

(0)
𝑖

⃒⃒⃒
Ψ(2)

𝑖

⟩
+ 𝐸

(1)
𝑖

⃒⃒⃒
Ψ(1)

𝑖

⟩
+ 𝐸

(2)
𝑖 |𝑖⟩

...

Multiplicando as equações por ⟨𝑖| e lembrando da 2.132 pode-se encontrar as re-
lações entre as energias expandidas:

𝐸
(0)
𝑖 = ⟨𝑖|ℋ0|𝑖⟩

𝐸
(1)
𝑖 = ⟨𝑖|𝒱 |𝑖⟩ (2.138)

𝐸
(2)
𝑖 = ⟨𝑖| 𝒱

⃒⃒⃒
Ψ(1)

𝑖

⟩
...

É preciso, então, descobrir a relação entre as funções de ordem zero (|𝑛⟩ =
⃒⃒⃒
Ψ(0)

𝑛

⟩
)

e as funções de ordem um. Para tal, a segunda equação de 2.138 é reescrita isolando os
termos, tal que:

(𝐸(0)
𝑖 − ℋ0)

⃒⃒⃒
Ψ(1)

𝑖

⟩
= (𝒱 − ⟨𝑖|𝒱 |𝑖⟩) |𝑖⟩ (2.139)

Como não se sabe a atuação de ℋ0 sobre
⃒⃒⃒
Ψ(1)

𝑖

⟩
, é conveniente expandir o vetor

em termos dos autovetores da hamiltoniana não perturbada, isto é:

⃒⃒⃒
Ψ(1)

𝑖

⟩
=
∑︁
𝑚

𝑐(1)
𝑛 |𝑛⟩ (2.140)

Multiplicando a Eq. 2.140 por ⟨𝑚|, obtém-se:

⟨
𝑛
⃒⃒⃒
Ψ(1)

𝑖

⟩
=
∑︁

𝑛

𝑐(1)
𝑛 ⟨𝑚|𝑛⟩ =

∑︁
𝑛

𝑐(1)
𝑛 𝛿𝑚𝑛 = 𝑐(1)

𝑚 (2.141)

Lembrando que
⟨
𝑖
⃒⃒⃒
Ψ(1)

𝑖

⟩
= 0, logo 𝑐

(1)
𝑖 = 0. Portanto, substitui-se 𝑐(1)

𝑛 em 2.140,
sem considerar o termo em que 𝑛 = 𝑖, uma vez que este não contribui para a expansão
da base. Este procedimento dá:
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⃒⃒⃒
Ψ(1)

𝑖

⟩
=
∑︁
𝑛̸=𝑖

|𝑛⟩
⟨
𝑛
⃒⃒⃒
Ψ(1)

𝑖

⟩
. (2.142)

A partir dessa relação e da 2.139, multiplicando a 2.139 por ⟨𝑛| chega-se na seguinte
expressão:

⟨𝑛| (𝐸(0)
𝑖 − ℋ0)

∑︁
𝑛′ ̸=𝑖

|𝑛′⟩
⟨
𝑛′
⃒⃒⃒
Ψ(1)

𝑖

⟩
= ⟨𝑛| 𝒱 |𝑖⟩ − ⟨𝑛|𝐸(0)

𝑖 |𝑖⟩ . (2.143)

Aplicando ℋ0 em |𝑛′⟩ e lembrando que ⟨𝑗|𝑘⟩ = 𝛿𝑗𝑘, tem-se:

𝐸
(0)
𝑖

⟨
𝑛
⃒⃒⃒
Ψ(1)

𝑖

⟩
− 𝐸(0)

𝑛

⟨
𝑛
⃒⃒⃒
Ψ(1)

𝑖

⟩
= ⟨𝑛| 𝒱 |𝑖⟩ . (2.144)

Conhecendo a relação entre as funções de ordem 0 e de ordem 1, ou seja:⟨
𝑛
⃒⃒⃒
Ψ(1)

𝑖

⟩
= ⟨𝑛| 𝒱 |𝑖⟩

(𝐸(0)
𝑖 − 𝐸

(0)
𝑛 )

, (2.145)

pode-se estabelecer a correção de energia de segunda ordem. Para isso, basta usar a
terceira equação de 2.139 e utilizar a relação de fechamento:

𝐸
(2)
𝑖 = ⟨𝑖|

∑︁
𝑛

𝒱 |𝑛⟩
⟨
𝑛
⃒⃒⃒
Ψ(1)

𝑖

⟩
. (2.146)

Com isto:

𝐸
(2)
𝑖 =

∑︁
𝑛

⟨𝑖| 𝒱 |𝑛⟩ ⟨𝑛| 𝒱 |𝑖⟩
𝐸

(0)
𝑖 − 𝐸

(0)
𝑛

, (2.147)

que representa a primeira ordem de correção da correlação eletrônica, uma vez que a
correção de primeira ordem somada à ordem 0 dá, simplesmente, a energia de Hartree-
Fock, ou seja:

𝐸(0) + 𝐸(1) =
𝑁∑︁
𝑎

ℎ𝑎𝑎 + 1
2

𝑁∑︁
𝑎

𝑁∑︁
𝑏

[𝒥𝑎𝑏 − 𝒦𝑎𝑏] (2.148)

Neste trabalho, utiliza-se apenas a segunda ordem de correção para a correlação
eletrônica. Portanto, a energia será calculada até 𝐸(2)

𝑖 , desconsiderando ordens maiores de
correção. Há dois principais motivos para não procurar por correções de ordens maiores.
O primeiro é a utilização prévia do método MP2 (Møller-Plesset de segunda ordem) em
outros trabalhos, disponíveis na literatura. O segundo é o alto custo computacional do
método, que se torna mais pesado com o aumento da ordem de correção.
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2.6 Teoria Quântica de Átomos em Moléculas
No início dos anos 1960, Richard F. W. Bader publica um artigo sobre a densidade

eletrônica da molécula de amônia (BADER; JONES, 1963). Bader inicia seu artigo de 1963
dizendo que a distribuição eletrônica de uma molécula ainda não havia recebido a devida
atenção. Nos seus trabalhos posteriores, Bader passa então a discutir as propriedades da
densidade eletrônica e, em 1991, publica o livro Atoms in Molecules A Quantum Theory,
compilando suas mais importantes descobertas sobre a densidade de carga. A Teoria
Quântica de Átomos em Moléculas (QTAIM, do inglês Quantum Theory of Atoms in
Molecules) estabelece relações, com base na mecânica quântica, entre propriedades físicas
e químicas de uma molécula. Essas relações são obtidas a partir da análise da densidade
eletrônica molecular, 𝜌.

A QTAIM explora a densidade eletrônica com o propósito de entender a natureza
das ligações químicas através de uma análise topológica (KUMAR; RAGHAVENDRA;
SUBRAMANIAN, 2016). A densidade eletrônica de um sistema molecular pode ser dada
por:

𝜌(r; X) = 𝑁
∫︁
𝑑𝜏 ′𝜓*(x; X)𝜓(x; X). (2.149)

Em que, 𝑁 é o número de elétrons, x são coordenadas eletrônicas, X as coordenadas
nucleares e 𝜏 ′ compreende as coordenadas cartesianas e de spin dos elétrons do sistema
analisado.

A densidade de carga é uma quantidade física valorada em cada ponto do espaço
tridimensional, um campo escalar. As características topológicas de um campo como 𝜌(r)
podem ser obtidas pela observação dos pontos críticos. Os Pontos Críticos (CP - Critical
Points) são aqueles em que

∇𝜌(𝑟𝑐) = 𝑖̂
𝜕𝜌

𝜕𝑥
+ 𝑗̂

𝜕𝜌

𝜕𝑦
+ 𝑘

𝜕𝜌

𝜕𝑧
= 0⃗, (2.150)

Esses pontos no espaço estão associados a máximos, mínimos ou selas da densidade
eletrônica. Para determinar o tipo de ponto crítico, basta tomar as segundas derivadas. A
Hessiana de 𝜌 contém derivadas parciais de segunda ordem em relação a todos os eixos,

𝐴(𝜌(r)) =

⎛⎜⎜⎜⎝
𝜕2𝜌

𝜕𝑥𝜕𝑥
𝜕2𝜌

𝜕𝑥𝜕𝑦
𝜕2𝜌

𝜕𝑥𝜕𝑧
𝜕2𝜌

𝜕𝑦𝜕𝑥
𝜕2𝜌

𝜕𝑦𝜕𝑦
𝜕2𝜌

𝜕𝑦𝜕𝑧
𝜕2𝜌

𝜕𝑧𝜕𝑥
𝜕2𝜌

𝜕𝑧𝜕𝑦
𝜕2𝜌

𝜕𝑧𝜕𝑧

⎞⎟⎟⎟⎠
(𝑟=𝑟𝑐)

, (2.151)

correspondendo às curvaturas locais no ponto (BADER, 1990). O traço da Hessiana é um
invariante por rotações, assim, fazendo uma transformação unitária, é possível diagonalizá-
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la. A matriz diagonalizada tem seus autovalores (𝜆𝑖) correspondentes aos termos do la-
placiano de 𝜌(𝑟):

∇2𝜌(𝑟𝑐) = 𝜕2𝜌

𝜕𝑥2 + 𝜕2𝜌

𝜕𝑦2 + 𝜕2𝜌

𝜕𝑧2 = 𝜆1 + 𝜆2 + 𝜆3. (2.152)

Portanto, o laplaciano de 𝜌(r) também é invariante por escolha de coordenadas. Os
autovalores da hessiana são reais, mas podem ser nulos. Pontos críticos são categorizados
pelo número de autovalores não nulos da hessiana (𝜔) e pela soma algébrica dos sinais
dos autovalores (𝜎). Os pontos críticos relacionados à distribuição de cargas costumam
ser de ranque 3 (𝜔 = 3), assim, há quatro possibilidades para a soma dos sinais de 𝜆𝑖

(𝜎 = −3,−1,+1,+3). Dessa forma, há também quatro tipos de CP de ranque três:

• (3, -3), todas as curvaturas são negativas e 𝜌 é um máximo local.

• (3, -1), duas curvaturas são negativas, 𝜌 é um máximo local nesses eixos. Uma
curvatura é positiva, no qual 𝜌 é mínimo local.

• (3, +1), duas curvaturas são positivas, 𝜌 é um mínimo local nesses eixos. Uma
curvatura é negativa, no qual 𝜌 é máximo local.

• (3, +3), todas as curvaturas são positivas e 𝜌 é um mínimo local.

Os pontos de máximo local de 𝜌 são aqueles onde os elétrons se aproximam dos
núcleos (BADER, 1990). Nesses pontos, o potencial coulombiano tende a menos infinito
e o gradiente da função de onda e de 𝜌 são descontínuos. Apesar de não serem pontos
críticos verdadeiros, tais pontos se comportam como pontos críticos do tipo (3, -3). Pontos
do tipo (3, -1) aparecem entre posições nucleares e podem ser usados para caracterizar os
tipos de ligação química; são chamados Pontos Críticos de Ligação (BCP - Bond Critical
Points). Pontos Críticos de Anel (RCP - Ring Critical Points) são do tipo (3, +1), e se
formam entre caminhos de ligação que fecham um caminho. Inúmeras características de
um sistema molecular podem ser descritas e previstas a partir da análise desses pontos
críticos como mostrado e discutido em (POPELIER, 2014; MATTA, 2013; BORISOV
et al., 2024; OLIVEIRA et al., 2024; MALLOUM; CONRADIE, 2022; FATAHIYAN;
MANESH; MASNABADI, 2022)

2.7 Métodos Computacionais
Como discutido na introdução, neste trabalho foi realizada a análise da densidade

eletrônica com base na QTAIM em sistemas X2O2-Ng (X = Mu, H, D, T; Ng = He,
Ne, Ar, Kr, Xe, Rn) , com o objetivo de relacionar esses dados com dados referentes às
constantes cinéticas de transição entre conformações quirais desses sistemas. O primeiro
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passo é a análise das constantes cinéticas de reação. As constantes foram calculadas para
todos os isótopos de hidrogênio em complexos com gases nobres.

O cálculo das constantes de transição necessita de informações sobre as geometrias,
frequências dos modos normais e energias eletrônicas em cada uma das configurações de
barreiras e poços. Esses cálculos foram realizados em trabalhos passados e os resultados
estão detalhados em (SILVA et al., 2023). Os cálculos foram feitos utilizando a Teoria
de Perturbação de Møller-Plesset em segunda ordem (MØLLER; PLESSET, 1934) com
bases de Dunning (DUNNING, 1989; WOON; DUNNING, 1993; WOON; DUNNING,
1994; WILSON et al., 1999); o nível de cálculo realizado foi MP2(Full) com bases aug-cc-
PVTZ para gases nobres mais leves (He, Ne, Ar, Kr) e aug-cc-PVTZ-PP para gases nobres
mais pesados (Xe, Rn), todos com correção de BSSE (Basis Set Superposition Error) e
ZPE (Zero-Point Energy). Como mostrado em (RONCARATTI et al., 2014) e (Só et
al., 2019), as bases de Dunning fornecem dados confiáveis por um preço computacional
razoável.

Para a geração das constantes, foi utilizado o pacote computacional Transitivity
(MACHADO et al., 2019), a partir do qual foram calculadas as constantes cinéticas de
transição convencionais (sem tunelamento) e com correção de Wigner, Bell 58 e dTST.

O mesmo nível de cálculo e bases foram usados para a geração das funções de
onda para a análise da QTAIM. Os cálculos referentes às funções de onda, frequências vi-
bracionais, geometrias otimizadas e energias eletrônicas foram realizados usando o pacote
computacional Gaussian 16 (FRISCH et al., 2016).

Com a função de onda do sistema molecular, é possível determinar as caracterís-
ticas topológicas da distribuição de densidade eletrônica dele. Para a análise de QTAIM
foram utilizados os programas Multiwfn (LU, 2024; LU; CHEN, 2012), Visual Molecu-
lar Dynamics - VMD (HUMPHREY; DALKE; SCHULTEN, 1996) e AIMALL (KEITH,
2019).
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3 Resultados e Discussão

3.1 Taxas de transição
As taxas de transição foram calculadas para todos os sistemas X2O2-Ng (X = Mu,

H, D, T; Ng = He, Ne, Ar, Kr, Xe, Rn) usando o pacote computacional disponível na
(MACHADO et al., 2019). Os dados estão dispostos de forma a realçar a influência dos
gases nobres sobre as taxas.

A Figura 4 mostra o logaritmo das constantes cinéticas de transição quiral con-
vencional (sem correções de tunelamento) e com as correções de tunelamento de Wigner,
Bell e pela Teoria de Estado de Transição Deformada para a temperatura variando entre
4000 K e 100 K.As taxas calculadas para o muônio apresentam peculiaridades devido à
sua pequena massa. Sendo nove vezes mais leve que o hidrogênio, seu comprimento de
onda é pequeno e as frequências associadas às estruturas de transição são altas, sendo
𝜈 = −1720, 298 cm−1 para a barreira cis e 𝜈 = −895, 184 cm−1 para a barreira trans
no sistema Mu2O2 -He. As reações passando pela barreira cis, isto é, a transição da con-
formação trans para a conformação cis, apresentam comportamento de acordo com a
equação de Arrhenius tanto para a taxa convencional como para a taxa com correção de
Wigner. Para a correção de Bell59, não houve convergência para nenhum sistema com
temperaturas abaixo de 400 K para barreira cis e abaixo de 200 K para barreira trans. A
temperatura de crossover é dada por

𝑇𝑐 = ℎ𝜈

2𝜋𝑘𝑏

(HANGGI et al., 1985) e, para o caso do sistema Mu2O2 -He, essas temperaturas foram de
393,92 K para a barreira cis e 204,98 K, para a barreira trans. Para o sistema Mu2O2 -Rn,
essas temperaturas foram de 378,30 K e 195,44 K, respectivamente, sendo o sistema de
menores frequências envolvendo o Muônio, justificando as não-convergências apresentadas.
Ainda nas reações da barreira cis, a dTST apresenta curvatura positiva suave, mantendo
as taxas acima das taxas convencionais.

As reações que passam pela barreira trans só convergiram para as taxas Conven-
cional e com correção de Wigner. As curvas obtidas para a taxa Convencional tendem a
constantes com a diminuição da temperatura. A 100 K o logaritmo neperiano dessas taxas
varia entre 28,69 cm3mol−1s−1 para o Mu2O2 -Ne e 29,54 cm3mol−1s−1 para o Mu2O2 -Rn.

Com a correção de Wigner, as constantes cinéticas tendem a aumentar com a
diminuição da temperatura, para T abaixo de 400 K (temperatura crítica), apresentando
comportamento sub-Arrhenius, isto é, passa a ser mais reativo para temperaturas menores,
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fenômeno que é também discutido em (CARVALHO-SILVA et al., 2023).

Figura 4 – Logaritmo das constantes cinéticas de transição quiral para os sistemas Mu2O2 -Ng em
função da temperatura recíproca (K−1) escalonada por 104.A temperatura variou entre 4000
K (104/T=2.5) e 100 K (104/T=100.0); (C) descreve a taxa convencional (sem correções
de tunelamento), (W) simboliza a taxa com correção de tunelamento de Wigner, (b58)
indica a taxa com a correção de tunelamento de Bell e (dTST) representa a taxa obtida
pela Teoria de Estado de Transição Deformada.

Na Figura 5 para os sistemas H2O2 -Ng, é possível notar que não houve dispari-
dades significativas entre os métodos de cálculo para altas temperaturas, apresentando
constantes cinéticas similares para o regime de tunelamento intenso com correção de Wig-
ner e dTST. A temperatura de crossover é de 136,64 K e, por isso, não há convergência
para os pontos com temperatura abaixo de 200 K nas reações passando pela barreira trans
com correção de Bell59 .
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Figura 5 – Logaritmo das constantes cinéticas de transição quiral para os sistemas H2O2 -Ng em função
da temperatura recíproca (K−1) escalonada por 104.A temperatura variou entre 4000 K
(104/T=2.5) e 100 K (104/T=100.0); (C) descreve a taxa convencional (sem correções de
tunelamento), (W) simboliza a taxa com correção de tunelamento de Wigner, (b58) indica
a taxa com a correção de tunelamento de Bell e (dTST) representa a taxa obtida pela
Teoria de Estado de Transição Deformada.

Na Figura 6 para os sistemas D2O2 -Ng, há um comportamento similar ao dos
sistemas H2O2 -Ng, porém transladados; as constantes cinéticas são menores devido ao
efeito isotópico. A mesma coisa foi observada para o trítio. Uma comparação entre as
constantes cinéticas com enfoque nos isótopos está disponível em (SILVA et al., 2023).
As temperaturas de crossover para os sistemas D2O2 -He e D2O2 -Ne na configuração de
barreira cis são de 101,31 K e 101,10 K, não convergindo no último ponto. Os outros siste-
mas com deutério apresentam temperatura crítica menor por terem frequências menores
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nas estruturas de transição.

Figura 6 – Logaritmo das constantes cinéticas de transição quiral para os sistemas D2O2 -Ng em função
da temperatura recíproca (K−1) escalonada por 104. A temperatura variou entre 4000 K
(104/T=2.5) e 100 K (104/T=100.0); (C) descreve a taxa convencional (sem correções de
tunelamento), (W) simboliza a taxa com correção de tunelamento de Wigner, (b58) indica
a taxa com a correção de tunelamento de Bell e (dTST) representa a taxa obtida pela
Teoria de Estado de Transição Deformada.

Como as barreiras trans são menores que as barreiras cis, as frequências 𝜈 associa-
das a elas têm módulo menor, portanto, temperaturas críticas mais baixas, possibilitando
a convergência para o tunelamento de Bell em todos os sistemas com hidrogênio, deutério
e trítio sob os parâmetros utilizados. A Figura 7, para os sistemas T2O2 -Ng, evidencia
que as interações com gases nobres para a temperatura de 4000 K (104/T = 2.5 K−1)
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não alteram significativamente a energia de ativação da Barreira Cis; assim, as constantes
cinéticas convergem nessa região.

Figura 7 – Logaritmo das constantes cinéticas de transição quiral para os sistemas T2O2 -Ng em função
da temperatura recíproca (K−1) escalonada por 104. A temperatura variou entre 4000 K
(104/T=2.5) e 100 K (104/T=100.0) e (C) descreve a taxa convencional (sem correções de
tunelamento), (W) simboliza a taxa com correção de tunelamento de Wigner, (b58) indica
a taxa com a correção de tunelamento de Bell e (dTST) representa a taxa obtida pela
Teoria de Estado de Transição Deformada.

Para a barreira trans, as interações com gases nobres são suficientes para gerar
diferenças na taxa para as temperaturas mais altas, devido às alterações na energia de
ativação. Para todos os sistemas cujas taxas convergiram, os sistemas com neônio tiveram
taxas abaixo dos sistemas com hélio. Ademais, a relação entre a massa do gás nobre
associado e a taxa é diretamente proporcional. A difere
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Sistema Barreira Cis Barreira Trans
kcal.mol−1 kcal.mol−1

Mu-He 6.100 -0.199
Mu-Ne 6.103 -0.171
Mu-Ar 5.926 -0.250
Mu-Kr 5.843 -0.247
Mu-Xe 5.706 -0.250
Mu-Rn 5.624 -0.258
H-He 7.045 0.655
H-Ne 7.016 0.660
H-Ar 6.830 0.618
H-Kr 6.733 0.614
H-Xe 6.602 0.616
H-Rn 6.537 0.617
D-He 7.172 0.771
D-Ne 7.141 0.774
D-Ar 6.945 0.731
D-Kr 6.858 0.739
D-Xe 6.729 0.741
D-Rn 6.662 0.741
T-He 7.224 0.820
T-Ne 7.191 0.821
T-Ar 6.999 0.786
T-Kr 6.905 0.788
T-Xe 6.776 0.791
T-Rn 6.709 0.790

Tabela 1 – Energias de ativação para barreiras cis e barreira trans, para cada sistema X2O2-Ng (X =
Mu, H, D, T; Ng = He, Ne, Ar, Kr, Xe, Rn) calculadas através do gaussian09.

Na Tabela 1 estão dispostas as energias de ativação para todos os isótopos e gases
nobres. As energias de ativação mudam para cada isótopo devido à correção da energia
de ponto zero (ZPE), correspondente à menor energia possível para os sistemas. Para o
caso do muônio, houve uma evidente diminuição das barreiras cis, com média de 0.910
kcal.mol−1 a menos que os sistemas com hidrogênio. Sem a correção de ZPE, a barreira
trans para sistemas com muônio é nula para o nível de cálculo realizado. A correção
faz com que a energia dos reagentes e produtos seja maior que a energia do estado de
transição, isso possivelmente está associado à formação de um complexo de van der Waals
que estabiliza a molécula em determinados ângulos como elaborado em (COUTINHO et
al., 2015). Tal estabilização faz com que a energia de ativação aparente seja negativa,
reações do tipo passam então a ter comportamento anti-Arrhenico. Como não há clareza
na forma dessa estrutura, faz-se necessária uma análise da superfície de energia potencial,
que poderia elucidar o comportamento observado. Essa tarefa está fora do escopo desta
dissertação.
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Os efeitos isotópicos relacionados à substituição do hidrogênio pelo deutério ou
trítio são menores, sendo a diferença média entre as barreiras cis de 0.124 kcal.mol−1 para
o deutério e de 0.173 kcal.mol−1 para o trítio. A diferença média entre as barreiras trans
foi de 0.1195 kcal.mol−1 para o deutério e 0.169 kcal.mol−1 para o trítio.

Pro outro lado, procuramos usar a QTAIM para investigar os mecanismos por trás
das taxas, com o objetivo de evidenciar a influência dos gases nobres sobre os peróxidos
de hidrogênio (Mu, H, D, T).
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3.2 QTAIM - Teoria Quântica de Átomos em Moléculas
Para a análise da densidade por meio da Teoria Quântica de Átomos em Moléculas,

é necessário o cálculo da função de onda do sistema. As funções de onda foram calculadas
no nível MP2(full) com bases de Dunning aug-cc-pVTZ sem pseudo-potencial para os
gases nobres He, Ne, Ar e Kr e aug-cc-pVTZ-PP com pseudo-potencial para os gases
nobres Xe e Rn, todos com correções de BSSE e ZPE. Foram avaliadas quantitativamente
as propriedades dos sistemas nos pontos críticos de ligação (BCP - Bond Critical Point),
(𝜔, 𝜎) = (3,−1) e pontos críticos de anel (RCP - Ring Critical Points), (𝜔, 𝜎) = (3,+1)
nas configurações de equilíbrio. Para todos os sistemas estudados, |V(r𝑐)|/G(r𝑐) < 1,
assim, todas as ligações analisadas são não covalentes (ESPINOSA et al., 2002). Outro
ponto importante é o uso da ABO, que faz uma separação da função de onda em uma
parte eletrônica e outra nuclear. O uso da ABO, portanto, não permite a diferenciação
entre as densidades eletrônicas com a substituição do hidrogênio por seus isótopos. Na
prática, isso implica em valores iguais para todas as propriedades dos sistemas analisados
a partir do QTAIM para todos os isótopos. Dessa forma, apenas os dados referentes ao
hidrogênio estão listados.

Sistema Tipo Ligação 𝜌(r𝑐) G(r𝑐) V(r𝑐) H(r𝑐) ∇2𝜌(r𝑐) | V(r𝑐) | /G(r𝑐) H(r𝑐) / ∇2𝜌(r𝑐) H(r𝑐)/𝜌(r𝑐)
H2O2-He 𝑒𝑎−3

0 ×10−3 Hartree ×10−3 𝑒𝑎−5
0 ×10−2 - Hartree/𝑒𝑎−5

0 ×10−2 Hartree/𝑒𝑎−3
0

BC 3,-1 He - H(4) 1.907 1.887 -1.126 0.761 1.060 0.597 7.186 0.399
BC 3,+1 - 1.737 1.872 -1.154 0.717 1.036 0.617 6.928 0.413
BC 3,-1 He - H(3) 1.907 1.887 -1.126 0.761 1.059 0.597 7.186 0.399
BT 3,-1 He - H(3) 1.822 1.837 -1.070 0.767 1.041 0.583 7.362 0.421
PC 3,-1 He - H(3) 1.871 1.861 -1.060 0.801 1.064 0.570 7.520 0.428
PT 3,-1 He - H(3) 1.871 1.861 -1.060 0.801 1.064 0.570 7.520 0.428

Figura 8 – Sistemas X2O2-He, nas configurações de Barreira Cis (BC), Barreira Trans (BT), Poço Cis
(PC) e Poço Trans (PT), com A = (Mu, H, D, T). Os parâmetros analisados foram: Den-
sidade eletrônica 𝜌(r𝑐), densidade de energia cinética G(r𝑐), densidade de energia potencial
V(r𝑐), densidade de energia total H(r𝑐), laplaciano da densidade eletrônica ∇2𝜌(r𝑐), razão
entre V(r𝑐) e G(r𝑐), razão entre H(r𝑐) e ∇2𝜌(r𝑐), razão entre H(r𝑐) e 𝜌(r𝑐). Os sobrescritos
dos átomos ligados aos gases nobre evidenciam a configuração de interação; O(1) se liga a
X(3) e O(2) a X(4).

A Figura 8 mostra os dados da análise de QTAIM para todos os isótopos, em cada
uma das quatro configurações selecionadas para o complexo com hélio. Houve a formação
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de um ponto crítico de anel na configuração de barreira cis, assim como para todos os
outros gases nobres. Para cada complexo com He, a densidade eletrônica variou entre
0,001907 e 0,001822 𝑒𝑎−3

0 para os BCPs. Os parâmetros analisados nos pontos críticos
selecionados não mudam com a substituição do hidrogênio por seus isótopos.

Sistema Tipo Ligação 𝜌(r𝑐) G(r𝑐) V(r𝑐) H(r𝑐) ∇2𝜌(r𝑐) | V(r𝑐) | /G(r𝑐) H(r𝑐) / ∇2𝜌(r𝑐) H(r𝑐)/𝜌(r𝑐)
H2O2-Ne 𝑒𝑎−3

0 ×10−3 Hartree ×10−3 𝑒𝑎−5
0 ×10−2 - Hartree/𝑒𝑎−5

0 ×10−2 Hartree/𝑒𝑎−3
0

BC 3,-1 Ne - H(3) 2.531 2.734 -1.990 0.744 1.391 0.728 5.349 0.294
BC 3,+1 - 2.198 2.630 -1.886 0.745 1.350 0.717 5.516 0.339
BC 3,-1 Ne - H(4) 2.531 2.735 -1.990 0.744 1.392 0.728 5.349 0.294
BT 3,-1 Ne - O(2) 1.944 2.263 -1.607 0.656 1.168 0.710 5.619 0.338
BT 3,+1 - 1.939 2.342 -1.648 0.694 1.214 0.704 5.713 0.358
BT 3,-1 Ne - H(3) 2.580 2.834 -2.029 0.805 1.456 0.716 5.530 0.312
PC 3,-1 Ne - H(3) 2.515 2.750 -1.943 0.807 1.423 0.707 5.671 0.321
PT 3,-1 Ne - H(3) 2.515 2.751 -1.944 0.807 1.423 0.707 5.671 0.321

Figura 9 – Sistemas X2O2-Ne, nas configurações de Barreira Cis (BC), Barreira Trans (BT), Poço Cis
(PC) e Poço Trans (PT), com A = (Mu, H, D, T). Os parâmetros analisados foram: Den-
sidade eletrônica 𝜌(r𝑐), densidade de energia cinética G(r𝑐), densidade de energia potencial
V(r𝑐), densidade de energia total H(r𝑐), laplaciano da densidade eletrônica ∇2𝜌(r𝑐), razão
entre V(r𝑐) e G(r𝑐), razão entre H(r𝑐) e ∇2𝜌(r𝑐), razão entre H(r𝑐) e 𝜌(r𝑐).Os sobrescritos
dos átomos ligados aos gases nobre evidenciam a configuração de interação; O(1) se liga a
X(3) e O(2) a X(4).

A Tabela 9 contém os dados dos sistemas com neônio. A presença do neônio au-
menta o valor da densidade eletrônica nos pontos críticos de ligação, em relação ao hélio.
De fato, nas tabelas seguintes, é possível notar que gases nobres com camadas eletrônicas
maiores tendem a aumentar o valor da densidade eletrônica nos BCPs. Outra diferença
evidente com relação ao hélio é a presença de um ponto crítico de ligação entre o oxigênio
e o gás nobre na configuração de barreira trans (𝜃 = 180°). Essa interação com oxigênio
acontece apenas para os sistemas com neônio e argônio. Diferentemente dos outros sis-
temas observados, a intensidade de interação, dada por H(r𝑐)/𝜌(r𝑐) no ponto crítico de
anel, é maior (0,04 Hartree/𝑒𝑎−3

0 ) que nos pontos críticos de ligação na configuração de
barreira cis.

Como fica evidente na Figura 10, as linhas de densidade dos complexos com hélio
são divididas em duas regiões bem comportadas, uma para o gás nobre e outra para a
molécula; à medida que a região de interação dos átomos não moleculares aumenta, as
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camadas mais externas dos gases nobres passam a interagir com as camadas da molécula
de peróxido de hidrogênio.

Figura 10 – Seção transversal das linhas de campo da densidade eletrônica para o sistema H2O2 -
He nas configurações: a) Barreira Cis, b) Poço Cis, c) Barreira Trans, d) Poço Trans, na
distância de equilíbrio entre os complexos. Linhas mais claras representam valores menores
da densidade.

Figura 11 – Seção transversal das linhas de campo da densidade eletrônica para o sistema H2O2 -
Ne nas configurações: a) Barreira Cis, b) Poço Cis, c) Barreira Trans, d) Poço Trans, na
distância de equilíbrio entre os complexos. Linhas mais claras representam valores menores
da densidade.

Comparando as linhas para a densidade eletrônica da Figura 10 com as da Figura
11, é possível ver que a interação entre o peróxido de hidrogênio e o neônio é mais intensa
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que para o sistema com hélio.

Sistema Tipo Ligação 𝜌(r𝑐) G(r𝑐) V(r𝑐) H(r𝑐) ∇2𝜌(r𝑐) | V(r𝑐) | /G(r𝑐) H(r𝑐) / ∇2𝜌(r𝑐) H(r𝑐)/𝜌(r𝑐)
H2O2-Ar 𝑒𝑎−3

0 ×10−3 Hartree ×10−3 𝑒𝑎−5
0 ×10−2 - Hartree/𝑒𝑎−5

0 ×10−2 Hartree/𝑒𝑎−3
0

BC 3,-1 Ar - H(4) 4.864 3.995 -2.867 1.128 2.049 0.718 5.504 0.232
BC 3,+1 - 4.084 3.774 -2.848 0.926 1.880 0.755 4.924 0.227
BC 3,-1 Ar - H(3) 4.972 4.083 -2.934 1.149 2.093 0.718 5.492 0.231
BT 3,-1 Ar - O(2) 3.535 3.275 -2.237 1.039 1.726 0.683 6.020 0.294
BT 3,+1 - 3.523 3.397 -2.354 1.044 1.777 0.693 5.876 0.296
BT 3,-1 Ar - H(3) 5.059 4.237 -2.990 1.247 2.193 0.706 5.685 0.246
PC 3,-1 Ar - H(3) 5.389 4.518 -3.194 1.324 2.337 0.707 5.665 0.246
PT 3,-1 Ar - H(3) 5.389 4.518 -3.194 1.324 2.337 0.707 5.665 0.246

Figura 12 – Sistemas X2O2-Ar, nas configurações de Barreira Cis (BC), Barreira Trans (BT), Poço Cis
(PC) e Poço Trans (PT), com A = (Mu, H, D, T). Os parâmetros analisados foram: Densi-
dade eletrônica 𝜌(r𝑐), densidade de energia cinética G(r𝑐), densidade de energia potencial
V(r𝑐), densidade de energia total H(r𝑐), laplaciano da densidade eletrônica ∇2𝜌(r𝑐), razão
entre V(r𝑐) e G(r𝑐), razão entre H(r𝑐) e ∇2𝜌(r𝑐), razão entre H(r𝑐) e 𝜌(r𝑐).Os sobrescritos
dos átomos ligados aos gases nobre evidenciam a configuração de interação; O(1) se liga a
X(3) e O(2) a X(4).

A Tabela 12, com os dados referentes ao argônio, mostra uma pequena diferença
nas interações do tipo H-Ar na barreira cis. Aqui, apesar da simetria no sistema, há uma
leve divergência entre os valores das propriedades no BCP entre o argônio e o hidrogênio
na configuração de barreira cis. Vale ressaltar que os valores na tabela estão escalonados
por 10−3, assim a diferença é de 0,000108 𝑒𝑎−3

0 . A interação com o oxigênio, devido à
formação de um ponto de sela entre as posições nucleares, altera a topologia eletrônica,
formando um platô raso contido entre as linhas de ligação, um ponto crítico de anel na
configuração de barreira trans. Pelo valor positivo do laplaciano da densidade eletrônica,
há uma pequena depleção de cargas em todos os pontos críticos de anel dos sistemas
estudados. Essa depleção aumenta junto com a estrutura do gás nobre no complexo ana-
lisado. A depleção de cargas no RCP aumenta a reatividade para reações de quebra do
anel. No caso dos complexos X2O2-Ng, essa quebra se dá pela rotação intramolecular. O
aumento da depleção de cargas está diretamente associado com o aumento da taxa de
reação envolvendo a quebra do anel (POPELIER, 2000).



66 Capítulo 3. Resultados e Discussão

Sistema Tipo Ligação 𝜌(r𝑐) G(r𝑐) V(r𝑐) H(r𝑐) ∇2𝜌(r𝑐) | V(r𝑐) | /G(r𝑐) H(r𝑐) / ∇2𝜌(r𝑐) H(r𝑐)/𝜌(r𝑐)
H2O2-Kr 𝑒𝑎−3

0 ×10−3 Hartree ×10−3 𝑒𝑎−5
0 ×10−2 - Hartree/𝑒𝑎−5

0 ×10−2 Hartree/𝑒𝑎−3
0

BC 3,-1 Kr - H(4) 5.824 4.412 -3.341 1.071 2.193 0.757 4.884 0.184
BC 3,+1 - 4.686 4.101 -3.194 0.907 2.003 0.779 4.528 0.194
BC 3,-1 Kr - H(3) 5.683 4.308 -3.253 1.055 2.145 0.755 4.918 0.186
BT 3,-1 Kr - H(3) 5.821 4.472 -3.330 1.142 2.246 0.745 5.087 0.196
PC 3,-1 Kr - H(3) 6.099 4.695 -3.523 1.172 2.347 0.750 4.993 0.192
PT 3,-1 Kr - H(3) 6.099 4.695 -3.523 1.172 2.347 0.750 4.993 0.192

Figura 13 – Sistemas X2O2-Kr, nas configurações de Barreira Cis (BC), Barreira Trans (BT), Poço Cis
(PC) e Poço Trans (PT), com A = (Mu, H, D, T). Os parâmetros analisados foram: Densi-
dade eletrônica 𝜌(r𝑐), densidade de energia cinética G(r𝑐), densidade de energia potencial
V(r𝑐), densidade de energia total H(r𝑐), laplaciano da densidade eletrônica ∇2𝜌(r𝑐), razão
entre V(r𝑐) e G(r𝑐), razão entre H(r𝑐) e ∇2𝜌(r𝑐), razão entre H(r𝑐) e 𝜌(r𝑐). Os sobrescritos
dos átomos ligados aos gases nobre evidenciam a configuração de interação; O(1) se liga a
X(3) e O(2) a X(4).

Na Tabela 13, percebe-se que não há mais uma interação entre o oxigênio e o gás
nobre na conformação de barreira trans. Comparando as Figuras 14 e 15 das linhas do
campo laplaciano de 𝜌 entre os sistemas, é possível ver pequenas variações entre as linhas
de interação O-Ar e O-Kr. Há novamente um pequeno aumento na depleção eletrônica
nos RCPs formados na conformação de barreira cis.
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Figura 14 – Secção transversal das linhas de campo do laplaciano da densidade eletrônica para o
sistema H2O2 -Ar nas configurações: a) Barreira Cis, b) Poço Cis, c) Barreira Trans, d)
Poço Trans, na distância de equilíbrio entre os complexos. Linhas pontilhas representam
regiões de depleção de carga (∇2𝜌(r) < 0), linhas sólidas estão associadas à concentração
de cargas (∇2𝜌(r) > 0).

Figura 15 – Seção transversal das linhas de campo do laplaciano da densidade eletrônica para o sistema
H2O2 -Kr nas configurações: a) Barreira Cis, b) Poço Cis, c) Barreira Trans, d) Poço Trans,
na distância de equilíbrio entre os complexos. Linhas pontilhas representam regiões de
depleção de carga (∇2𝜌(r) < 0), linhas sólidas estão associadas à concentração de cargas
(∇2𝜌(r) > 0).

Outra tendência observada é a redução da energia por partícula, representada por
H(r𝑐)/𝜌(r𝑐). A redução desse parâmetro com aumento da massa atômica dos gases nobres
está relacionada com o aumento das frequências vibracionais dos modos normais associ-
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ados aos gases nobres. V(r𝑐) e G(r𝑐), como interpretado por Espinosa em (ESPINOSA;
LECOMTE; MOLINS, 1999; ESPINOSA; MOLINS; LECOMTE, 1998), podem ser vis-
tos como uma espécie de pressão exercida pelos elétrons nos BCP. O aumento da pressão
está associado a uma constante de força maior, o que aumenta as frequências dos modos
normais. Os sistemas com neônio têm as menores frequências relacionadas aos graus de
liberdade entre a molécula e o gás nobre, resultando em taxas de transição menores. A
variação nas frequências implica em variações nas funções de partição vibracionais. As
frequências na estrutura de transição se tornam menores com aumento do número atô-
mico do gás nobre associado. O aumento da pressão eletrônica exercida pelos gases nobres,
portanto, gera mudanças nas barreiras de potencial, tornando-as menores. O aumento da
região de influência dos gases nobres com maior número atômico está relacionado a uma
maior depleção de cargas entre os complexos nas camadas externas da molécula. Isso im-
possibilita a formação de um BCP entre o gás nobre e o oxigênio para sistemas maiores.
As Figuras 18 e 19 para o Xe e Rn, respectivamente, evidenciam este fato, uma vez que
a interação eletrônica passa a modificar a ligação entre os oxigênios da molécula devido à
maior região de influência desses gases.

Sistema Tipo Ligação 𝜌(r𝑐) G(r𝑐) V(r𝑐) H(r𝑐) ∇2𝜌(r𝑐) | V(r𝑐) | /G(r𝑐) H(r𝑐) / ∇2𝜌(r𝑐) H(r𝑐)/𝜌(r𝑐)
H2O2-Xe 𝑒𝑎−3

0 ×10−3 Hartree ×10−3 𝑒𝑎−5
0 ×10−2 - Hartree/𝑒𝑎−5

0 ×10−2 Hartree/𝑒𝑎−3
0

BC 3,-1 Xe - H(4) 6.966 4.419 -3.781 0.638 2.023 0.856 3.153 0.092
BC 3,+1 - 5.736 4.332 -3.691 0.642 1.990 0.852 3.225 0.112
BC 3,-1 Xe - H(3) 6.965 4.418 -3.781 0.638 2.022 0.856 3.153 0.092
BT 3,-1 Xe - H(3) 6.704 4.294 -3.584 0.710 2.002 0.835 3.549 0.106
PC 3,-1 Xe - H(3) 7.023 4.512 -3.794 0.718 2.092 0.841 3.431 0.102
PT 3,-1 Xe - H(3) 7.023 4.512 -3.794 0.718 2.092 0.841 3.431 0.102

Figura 16 – Sistemas X2O2-Xe, nas configurações de Barreira Cis (BC), Barreira Trans (BT), Poço Cis
(PC) e Poço Trans (PT), com A = (Mu, H, D, T). Os parâmetros analisados foram: Densi-
dade eletrônica 𝜌(r𝑐), densidade de energia cinética G(r𝑐), densidade de energia potencial
V(r𝑐), densidade de energia total H(r𝑐), laplaciano da densidade eletrônica ∇2𝜌(r𝑐), razão
entre V(r𝑐) e G(r𝑐), razão entre H(r𝑐) e ∇2𝜌(r𝑐), razão entre H(r𝑐) e 𝜌(r𝑐). Os sobrescritos
dos átomos ligados aos gases nobre evidenciam a configuração de interação; O(1) se liga a
X(3) e O(2) a X(4).

Na Tabela 16 com os dados do xenônio, nota-se o aumento tendencial dos parâ-
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metros como a densidade eletrônica, o laplaciano da densidade e densidades de energia.
Não há diferença significativa para a densidade de energia cinética em relação ao sistema
com criptônio. O sistema com xenônio foi o com maior densidade de energia cinética nos
pontos críticos analisados entre os sistemas peróxidos de hidrogênio com gases nobres.
Uma diferença crucial para o sistema com xenônio está na interação entre os oxigênios do
peróxido de hidrogênio. A mudança na ligação O-O fica evidente na Figura 18, com as
linhas da seção transversal da topologia do campo ∇2𝜌(rc).

Sistema Tipo Ligação 𝜌(r𝑐) G(r𝑐) V(r𝑐) H(r𝑐) ∇2𝜌(r𝑐) | V(r𝑐) | /G(r𝑐) H(r𝑐) / ∇2𝜌(r𝑐) H(r𝑐)/𝜌(r𝑐)
H2O2-He 𝑒𝑎−3

0 ×10−3 Hartree ×10−3 𝑒𝑎−5
0 ×10−2 - Hartree/𝑒𝑎−5

0 ×10−2 Hartree/𝑒𝑎−3
0

BC 3,-1 Rn - H(3) 7.144 4.173 -3.690 0.482 1.862 0.884 2.591 0.068
BC 3,+1 - 5.968 4.186 -3.795 0.391 1.831 0.907 2.135 0.066
BC 3,-1 Rn - H(4) 7.144 4.172 -3.690 0.482 1.862 0.884 2.591 0.068
BT 3,-1 Rn - H(3) 6.846 4.036 -3.483 0.554 1.836 0.863 3.015 0.081
PC 3,-1 Rn - H(3) 7.180 4.247 -3.685 0.562 1.924 0.868 2.922 0.078
PT 3,-1 Rn - H(3) 7.167 4.239 -3.677 0.562 1.920 0.867 2.927 0.078

Figura 17 – Sistemas X2O2-Rn, nas configurações de Barreira Cis (BC), Barreira Trans (BT), Poço Cis
(PC) e Poço Trans (PT), com A = (Mu, H, D, T). Os parâmetros analisados foram: Densi-
dade eletrônica 𝜌(r𝑐), densidade de energia cinética G(r𝑐), densidade de energia potencial
V(r𝑐), densidade de energia total H(r𝑐), laplaciano da densidade eletrônica ∇2𝜌(r𝑐), razão
entre V(r𝑐) e G(r𝑐), razão entre H(r𝑐) e ∇2𝜌(r𝑐), razão entre H(r𝑐) e 𝜌(r𝑐). Os sobrescritos
dos átomos ligados aos gases nobre evidenciam a configuração de interação; O(1) se liga a
X(3) e O(2) a X(4).

A Tabela 17 com os dados do radônio encerra as propriedades dos CPs para os
sistemas X2O2-Ng (X = Mu, H, D, T; Ng = He, Ne, Ar, Kr, Xe, Rn) . O sistema com
radônio foi o com a maior densidade eletrônica nos pontos crítico de ligação e de anel. Além
disso, o sistema com radônio quebra a tendência de um pequeno aumento da densidade
de energia cinética, uma vez que todos os valores de G(r𝑐) para o sistema com radônio
são menores que os para o sistema com xenônio.
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Figura 18 – Secção transversal das linhas de campo do laplaciano da densidade eletrônica para o
sistema H2O2 -Xe nas configurações: a) Barreira Cis, b) Poço Cis, c) Barreira Trans, d)
Poço Trans, na distância de equilíbrio entre os complexos. Linhas pontilhas representam
regiões de depleção de carga (∇2𝜌(r) < 0), linhas sólidas estão associadas à concentração
de cargas (∇2𝜌(r) > 0).

Figura 19 – Secção transversal das linhas de campo do laplaciano da densidade eletrônica para o
sistema H2O2 -Rn nas configurações: a) Barreira Cis, b) Poço Cis, c) Barreira Trans, d)
Poço Trans, na distância de equilíbrio entre os complexos. Linhas pontilhas representam
regiões de depleção de carga (∇2𝜌(r) < 0), linhas sólidas estão associadas à concentração
de cargas (∇2𝜌(r) > 0).

A Tabela 2 contém as propriedades no BCP entre os oxigênios para cada um dos
sistemas com hidrogênio. Assim como nas tabelas já apresentadas, a substituição do H
por seus isótopos não interfere nas propriedades selecionadas na análise de QTAIM. No
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sistema com hélio, a densidade eletrônica varia entre 0,2866 (BC) e 0,2934 (PC ou PT) no
BCP entre os oxigênios, uma diferença de 0,0068 𝑒𝑎−3

0 apenas com a rotação interna do
peróxido de hidrogênio. O acúmulo de cargas é maior entre os oxigênios nos sistemas com
argônio, o que é evidenciado pela densidade de carga maior e pelo laplaciano de 𝜌(r𝑐) mais
negativo. Dos sistemas com a massa do argônio ou mais, é possível notar que a pressão
exercida pelos gases nobres diminui a concentração de cargas no BCP da ligação O(1) -
O(2). Os sistemas mais pesados (Xe, Rn) exercem pressão tal forma que passa a ter uma
pequena depleção de cargas entre os oxigênios, havendo a inversão do sinal do laplaciano
na região, o que também fica evidente nas Figuras 18 e 19.

Sistema Tipo Ligação 𝜌(r𝑐) G(r𝑐) V(r𝑐) H(r𝑐) ∇2𝜌(r𝑐) |V(r𝑐)|/G(r𝑐) H(r𝑐) / ∇2𝜌(r𝑐) H(r𝑐)/𝜌(r𝑐)
H2O2-He 𝑒𝑎−3

0 Hartree 𝑒𝑎−5
0 - Hartree/𝑒𝑎−5

0 Hartree/𝑒𝑎−3
0

BC 3,-1 O(1) - O(2) 0.286685 0.178812 -0.372503 -0.193692 -0.059520 2.083216 3.254223 -0.675625
BT 3,-1 O(1) - O(2) 0.285951 0.180663 -0.374103 -0.193440 -0.051108 2.070723 3.784909 -0.676478
PC 3,-1 O(1) - O(2) 0.293469 0.186671 -0.389067 -0.202396 -0.062897 2.084234 3.217912 -0.689665
PT 3,-1 O(1) - O(2) 0.293469 0.186671 -0.389067 -0.202396 -0.062897 2.084234 3.217912 -0.689665

H2O2-Ne

BC 3,-1 O(1) - O(2) 0.286652 0.178796 -0.372442 -0.193646 -0.059401 2.083057 3.259994 -0.675544
BT 3,-1 O(1) - O(2) 0.285919 0.180645 -0.374042 -0.193397 -0.051008 2.070592 3.791493 -0.676404
PC 3,-1 O(1) - O(2) 0.293563 0.186746 -0.389250 -0.202504 -0.063034 2.084385 3.212602 -0.689815
PT 3,-1 O(1) - O(2) 0.293565 0.186747 -0.389253 -0.202506 -0.063036 2.084387 3.212552 -0.689817

H2O2-Ar

BC 3,-1 O(1) - O(2) 0.287034 0.179185 -0.373325 -0.194141 -0.059823 2.083465 3.245251 -0.676369
BT 3,-1 O(1) - O(2) 0.285814 0.180636 -0.373930 -0.193294 -0.050632 2.070075 3.817593 -0.676293
PC 3,-1 O(1) - O(2) 0.293420 0.186700 -0.389050 -0.202350 -0.062602 2.083827 3.232348 -0.689627
PT 3,-1 O(1) - O(2) 0.293420 0.186700 -0.389050 -0.202350 -0.062602 2.083827 3.232348 -0.689627

H2O2-Kr

BC 3,-1 O(1) - O(2) 0.286997 0.179212 -0.373304 -0.194092 -0.059520 2.083031 3.260939 -0.676285
BT 3,-1 O(1) - O(2) 0.285729 0.180595 -0.373789 -0.193195 -0.050400 2.069769 3.833232 -0.676146
PC 3,-1 O(1) - O(2) 0.293397 0.186713 -0.389031 -0.202318 -0.062419 2.083576 3.241281 -0.689569
PT 3,-1 O(1) - O(2) 0.293397 0.186713 -0.389031 -0.202318 -0.062419 2.083576 3.241281 -0.689569

H2O2-Xe

BC 3,-1 O(1) - O(2) 0.271033 0.205200 -0.370581 -0.165380 0.159280 1.805946 -1.038300 -0.610185
BT 3,-1 O(1) - O(2) 0.269721 0.206406 -0.370846 -0.164440 0.167863 1.796684 -0.979610 -0.609669
PC 3,-1 O(1) - O(2) 0.277463 0.213314 -0.386439 -0.173125 0.160756 1.811597 -1.076940 -0.623958
PT 3,-1 O(1) - O(2) 0.277463 0.213314 -0.386439 -0.173125 0.160756 1.811597 -1.076940 -0.623958

H2O2-Rn

BC 3,-1 O(1) - O(2) 0.270949 0.205217 -0.370473 -0.165255 0.159848 1.805270 -1.033827 -0.609914
BT 3,-1 O(1) - O(2) 0.269640 0.206390 -0.370704 -0.164314 0.168301 1.796137 -0.976314 -0.609384
PC 3,-1 O(1) - O(2) 0.277422 0.213342 -0.386398 -0.173056 0.161142 1.811169 -1.073932 -0.623801
PT 3,-1 O(1) - O(2) 0.277411 0.213332 -0.386376 -0.173044 0.161155 1.811146 -1.073774 -0.623781

Tabela 2 – Propriedades dos BCPs entre oxigênios dos sistemas H2O2 -Ng (He, Ne, Ar, Kr, Xe, Rn),
nas configurações de Barreira Cis (BC), Barreira Trans (BT), Poço Cis (PC) e Poço Trans
(PT). Os parâmetros analisados foram: Densidade eletrônica 𝜌(r𝑐), densidade de energia
cinética G(r𝑐), densidade de energia potencial V(r𝑐), densidade de energia total H(r𝑐),
laplaciano da densidade eletrônica ∇2𝜌(r𝑐), razão entre V(r𝑐) e G(r𝑐), razão entre H(r𝑐)
e ∇2𝜌(r𝑐), razão entre H(r𝑐) e 𝜌(r𝑐). Os sobrescritos dos átomos ligados aos gases nobre
evidenciam a configuração de interação; O(1) se liga a X(3) e O(2) a X(4).

A presença do xenônio ou do radônio altera a natureza da ligação entre os oxigê-
nios de uma ligação covalente para uma ligação iônica, em vista que ligações covalentes
se caracterizam por ∇2𝜌(r𝑐) < 0 e |V(r𝑐)|/G(r𝑐)> 2, enquanto ligações iônicas se carac-
terizam por ∇2𝜌(r𝑐) > 0 e 2 > |V(r𝑐)|/G(r𝑐)> 1 (ESPINOSA et al., 2002). No Anexo A
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estão contidas todas as figuras do QTAIM referentes à densidade de energia potencial,
densidade de carga e laplaciano da densidade de carga, além de figuras com os pontos
críticos formados em cada conformação.

Os valores no BCP das ligações O-O nas configurações de poço revelam maior
concentração de cargas para o sistema com neônio, entre os sistemas de ligação covalente
entre oxigênios. O complexo H2O2 -Ne é o que tem maior densidade de energia poten-
cial, V(r𝑐), entre os oxigênios, com uma diferença de 0,0002 Hartree para o sistema com
criptônio (o sistema com menor concentração de cargas entre os sistemas com ligação
covalente). Além disso, o complexo H2O2 -Ne apresenta ∇2𝜌(r𝑐) mais negativo nos BCP
entre oxigênio entre os sistemas estudados, nas conformações de poço cis e trans. Isso
sugere maior estabilidade do sistema nessas configurações, com maior acúmulo de cargas
entre oxigênios. A maior estabilidade dos sistemas com neônio nas conformações quirais
se traduz na redução da taxa de transição e explica os comportamentos observados para
taxas dos sistemas com neônio estudadas.
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A Teoria de Estado de Transição compõe uma das mais importantes ferramentas
matemáticas para o cálculo de taxas de reações químicas. As taxas obtidas por meio da
teoria com e sem correções de tunelamento mostram que a influência dos gases nobres
tem efeito direto sobre a reação entre conformações cis e trans do peróxido de hidrogênio.

Uma análise das energias de ligação torna explícito o efeito isotópico sobre as
energias de ativação relacionadas às configurações das barreiras cis e trans. Na substituição
do hidrogênio pelo muônio, as energias das barreiras diminuem cerca de 0.9 kcal.mol−1,
enquanto que para os isótopos mais pesados estas energias aumentam de 0.124 kcal.mol−1

e 0.173 kcal.mol−1 para o deutério e trítio, respectivamente. Além disso, a substituição do
hidrogênio pelo muônio leva à aniquilação da barreira trans, esta região se transforma em
um pequeno poço com energia equivalente à energia de ZPE nas conformações dos poços
cis e trans.

Esse estudo também contribuiu na elucidação do mecanismo da influência dos
gases nobres sobre as taxas conformacionais quirais de todos sistemas estudados. Para
isso, utilizou-se a Teoria Quântica de Átomos em Moléculas para analisar as propriedades
nas configurações das barreiras e poços (cis e trans). A QTAIM possibilitou a análise
quantitativa da influência dos gases nobres através da formação de pontos críticos de anel
nas barreiras cis de todos os adutos e eles estão associados à uma depleção de cargas. As
taxas conformacionais que envolvem a quebra da estrutura anelar são favorecidas, ou seja,
um aumento da depleção de cargas no ponto crítico de anel leva a um aumento dessas
taxas.

O laplaciano da densidade de carga no ponto crítico de anel varia de 1.036 𝑒𝑎−5
0 ×

10−2 no sistema com Hélio para 2.003 𝑒𝑎−5
0 × 10−2 no sistema com Criptônio. Para o

Xenônio e para o Radônio, essa depleção diminui, sendo de 1.990 𝑒𝑎−5
0 × 10−2 para o

Xenônio e de 1.831 𝑒𝑎−5
0 ×10−2 para o Radônio. Para esses dois sistemas, há uma mudança

na ligação entre os oxigênios da molécula H2O2 que passa a ser caracterizada como iônica,
pela inversão de sinal do laplaciano no ponto crítico de ligação, que passa a ser positivo.

Com a associação de gases nobres mais pesados, a pressão exercida pelos elétrons
nos pontos crítico de ligação se intensifica. Isso está associado a um aumento da constante
de força que governa os modos normais de vibração, que passam a vibrar com frequências
maiores. Com exceção do sistema com neônio que tem as menores frequências vibracionais
no que diz respeito aos graus de liberdade entre a molécula e o gás nobre, a associação de
gases nobres mais pesados está relacionada a maiores frequências de vibração. O sistema
com neônio é diferente por intensificar a ligação entre os oxigênios, com o laplaciano mais
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negativo no ponto crítico de ligação entre os sistemas estudados. A maior estabilidade dos
sistemas com neônio nas conformações quirais reduz as taxas de transição.

As características ressaltadas pela análise de QTAIM forneceram ferramentas va-
liosas para o estudo do mecanismo de reação entre conformações quirais do peróxido de
hidrogênio. O estudo revelou a influência dos gases nobres na formação de pontos críticos
de anel que favorecem as taxas de transição quirais, bem como a influência sobre a ligação
entre oxigênios. Essas características possibilitam uma interpretação fenomenológica para
os comportamentos das taxas de transição quirais dos adutos estudados.

Como perspectiva, pretende-se investigar com mais profundidade a aniquilação da
barreira trans e o surgimento de um pequeno poço no lugar, quando o átomo de hidrogênio
é substituído pelo muônio. Espera-se com este aprofundamento esclarecer mais sobre
este intrigante fenômeno. Além disso, baseado no aprendizado deste trabalho, espera-se
também estudar os efeitos isotópicos em outros sistemas mais complexos que apresentam
transições conformacionais quirais.
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ANEXO A – Imagens das Linhas
Topológicas de 𝜌(r𝑐), ∇2𝜌(r𝑐) e V(r𝑐)

A.1 Densidade de Carga

Figura 20 – Secção transversal das linhas de campo da densidade eletrônica para o sistema H2O2 -
He nas configurações: a) Barreira Cis, b) Poço Cis, c) Barreira Trans, d) Poço Trans, na
distância de equilíbrio entre os complexos. Linhas mais claras representam valores menores
da densidade. Feito com AIMALL.
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Figura 21 – Secção transversal das linhas de campo da densidade eletrônica para o sistema H2O2 -
Ne nas configurações: a) Barreira Cis, b) Poço Cis, c) Barreira Trans, d) Poço Trans, na
distância de equilíbrio entre os complexos. Linhas mais claras representam valores menores
da densidade.

Figura 22 – Secção transversal das linhas de campo da densidade eletrônica para o sistema H2O2 -
Ar nas configurações: a) Barreira Cis, b) Poço Cis, c) Barreira Trans, d) Poço Trans, na
distância de equilíbrio entre os complexos. Linhas mais claras representam valores menores
da densidade.
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Figura 23 – Secção transversal das linhas de campo da densidade eletrônica para o sistema H2O2 -
Kr nas configurações: a) Barreira Cis, b) Poço Cis, c) Barreira Trans, d) Poço Trans, na
distância de equilíbrio entre os complexos. Linhas mais claras representam valores menores
da densidade.

Figura 24 – Secção transversal das linhas de campo da densidade eletrônica para o sistema H2O2 -
Xe nas configurações: a) Barreira Cis, b) Poço Cis, c) Barreira Trans, d) Poço Trans, na
distância de equilíbrio entre os complexos. Linhas mais claras representam valores menores
da densidade.
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Figura 25 – Secção transversal das linhas de campo da densidade eletrônica para o sistema H2O2 -
Rn nas configurações: a) Barreira Cis, b) Poço Cis, c) Barreira Trans, d) Poço Trans,
na distância de equilíbrio entre os complexos. Linhas mais claras representam valores
menores da densidade.

A.2 Laplaciano da Densidade de Carga

Figura 26 – Secção transversal das linhas de campo do laplaciano da densidade eletrônica para o
sistema H2O2 -He nas configurações: a) Barreira Cis, b) Poço Cis, c) Barreira Trans, d)
Poço Trans, na distância de equilíbrio entre os complexos. Linhas pontilhas representam
regiões de depleção de carga (∇2𝜌(r) < 0), linhas sólidas estão associadas à concentração
de cargas (∇2𝜌(r) > 0).
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Figura 27 – Secção transversal das linhas de campo do laplaciano da densidade eletrônica para o
sistema H2O2 -Ne nas configurações: a) Barreira Cis, b) Poço Cis, c) Barreira Trans, d)
Poço Trans, na distância de equilíbrio entre os complexos. Linhas pontilhas representam
regiões de depleção de carga (∇2𝜌(r) < 0), linhas sólidas estão associadas à concentração
de cargas (∇2𝜌(r) > 0).

Figura 28 – Secção transversal das linhas de campo do laplaciano da densidade eletrônica para o
sistema H2O2 -Ar nas configurações: a) Barreira Cis, b) Poço Cis, c) Barreira Trans, d)
Poço Trans, na distância de equilíbrio entre os complexos.
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Figura 29 – Secção transversal das linhas de campo do laplaciano da densidade eletrônica para o
sistema H2O2 -Kr nas configurações: a) Barreira Cis, b) Poço Cis, c) Barreira Trans, d)
Poço Trans, na distância de equilíbrio entre os complexos. Linhas pontilhas representam
regiões de depleção de carga (∇2𝜌(r) < 0), linhas sólidas estão associadas à concentração
de cargas (∇2𝜌(r) > 0).

Figura 30 – Secção transversal das linhas de campo do laplaciano da densidade eletrônica para o
sistema H2O2 -Xe nas configurações: a) Barreira Cis, b) Poço Cis, c) Barreira Trans, d)
Poço Trans, na distância de equilíbrio entre os complexos. Linhas pontilhas representam
regiões de depleção de carga (∇2𝜌(r) < 0), linhas sólidas estão associadas à concentração
de cargas (∇2𝜌(r) > 0).
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Figura 31 – Secção transversal das linhas de campo do laplaciano da densidade eletrônica para o
sistema H2O2 -Rn nas configurações: a) Barreira Cis, b) Poço Cis, c) Barreira Trans, d)
Poço Trans, na distância de equilíbrio entre os complexos.

A.3 Potencial Eletrostático

Figura 32 – Secção transversal das linhas de campo densidade de energia potencial eletrônica para o
sistema H2O2 -He nas configurações: a) Barreira Cis, b) Poço Cis, c) Barreira Trans, d)
Poço Trans, na distância de equilíbrio entre os complexos.
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Figura 33 – Secção transversal das linhas de campo densidade de energia potencial eletrônica para o
sistema H2O2 -Ne nas configurações: a) Barreira Cis, b) Poço Cis, c) Barreira Trans, d)
Poço Trans, na distância de equilíbrio entre os complexos.

Figura 34 – Secção transversal das linhas de campo densidade de energia potencial eletrônica para o
sistema H2O2 -Ar nas configurações: a) Barreira Cis, b) Poço Cis, c) Barreira Trans, d)
Poço Trans, na distância de equilíbrio entre os complexos. Linhas pontilhas representam
regiões de depleção de carga (∇2𝜌(r) < 0), linhas sólidas estão associadas à concentração
de cargas (∇2𝜌(r) > 0).
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Figura 35 – Secção transversal das linhas de campo densidade de energia potencial eletrônica para o
sistema H2O2 -Kr nas configurações: a) Barreira Cis, b) Poço Cis, c) Barreira Trans, d)
Poço Trans, na distância de equilíbrio entre os complexos.

Figura 36 – Secção transversal das linhas de campo densidade de energia potencial eletrônica para o
sistema H2O2 -Xe nas configurações: a) Barreira Cis, b) Poço Cis, c) Barreira Trans, d)
Poço Trans, na distância de equilíbrio entre os complexos.
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Figura 37 – Secção transversal das linhas de campo densidade de energia potencial eletrônica para o
sistema H2O2 -Rn nas configurações: a) Barreira Cis, b) Poço Cis, c) Barreira Trans, d)
Poço Trans, na distância de equilíbrio entre os complexos.
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